Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile
Release Information

The following releases of this document have been made.

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
<th>Confidentiality</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 April 2013</td>
<td>A.a-1</td>
<td>Confidential-Beta Draft</td>
<td>Beta draft of first issue, limited circulation</td>
</tr>
<tr>
<td>12 June 2013</td>
<td>A.a-2</td>
<td>Confidential-Beta Draft</td>
<td>Second beta draft of first issue, limited circulation</td>
</tr>
<tr>
<td>04 September 2013</td>
<td>A.a</td>
<td>Non-Confidential Beta</td>
<td>Beta release</td>
</tr>
<tr>
<td>24 December 2013</td>
<td>A.b</td>
<td>Non-Confidential Beta</td>
<td>Second beta release</td>
</tr>
<tr>
<td>18 July 2014</td>
<td>A.c</td>
<td>Non-Confidential Beta</td>
<td>Third beta release</td>
</tr>
<tr>
<td>09 October 2014</td>
<td>A.d</td>
<td>Non-Confidential Beta</td>
<td>Fourth beta release</td>
</tr>
<tr>
<td>17 December 2014</td>
<td>A.e</td>
<td>Non-Confidential Beta</td>
<td>Fifth beta release</td>
</tr>
<tr>
<td>25 March 2015</td>
<td>A.f</td>
<td>Non-Confidential Beta</td>
<td>Sixth beta release</td>
</tr>
<tr>
<td>10 July 2015</td>
<td>A.g</td>
<td>Non-Confidential Beta</td>
<td>Seventh beta release</td>
</tr>
<tr>
<td>30 September 2015</td>
<td>A.h</td>
<td>Non-Confidential Beta</td>
<td>Eighth beta release</td>
</tr>
<tr>
<td>28 January 2016</td>
<td>A.i</td>
<td>Non-Confidential Beta</td>
<td>Ninth beta release</td>
</tr>
<tr>
<td>03 June 2016</td>
<td>A.j</td>
<td>Non-Confidential EAC</td>
<td>EAC release</td>
</tr>
<tr>
<td>30 September 2016</td>
<td>A.k</td>
<td>Non-Confidential Armv8.0 EAC</td>
<td>Updated EAC release</td>
</tr>
<tr>
<td>31 March 2017</td>
<td>B.a</td>
<td>Non-Confidential Armv8.1 EAC, v8.2 Beta</td>
<td>Initial release incorporating Armv8.1 and Armv8.2</td>
</tr>
<tr>
<td>26 September 2017</td>
<td>B.b</td>
<td>Non-Confidential Armv8.2 EAC</td>
<td>Initial Armv8.2 EAC release, incorporating SPE</td>
</tr>
<tr>
<td>20 December 2017</td>
<td>C.a</td>
<td>Non-Confidential Armv8.3 EAC</td>
<td>Initial Armv8.3 EAC release</td>
</tr>
<tr>
<td>31 October 2018</td>
<td>D.a</td>
<td>Non-Confidential Armv8.4 EAC</td>
<td>Initial Armv8.4 EAC release</td>
</tr>
<tr>
<td>29 April 2019</td>
<td>D.b</td>
<td>Non-Confidential Armv8.4 EAC</td>
<td>Updated Armv8.4 EAC release incorporating accessibility changes</td>
</tr>
<tr>
<td>05 July 2019</td>
<td>E.a</td>
<td>Non-Confidential Armv8.5 EAC</td>
<td>Initial Armv8.5 EAC release</td>
</tr>
<tr>
<td>20 February 2020</td>
<td>F.a</td>
<td>Non-Confidential Armv8.6 Beta</td>
<td>Initial Armv8.6 Beta release</td>
</tr>
<tr>
<td>31 March 2020</td>
<td>F.b</td>
<td>Non-Confidential Armv8.5 EAC, v8.6 Beta</td>
<td>Armv8.5 EAC release, initial Armv8.6 Beta release</td>
</tr>
<tr>
<td>17 July 2020</td>
<td>F.c</td>
<td>Non-Confidential Armv8.6 EAC</td>
<td>Initial Armv8.6 EAC release</td>
</tr>
</tbody>
</table>

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.
Note

- The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture. The context makes it clear when the term is used in this way.

- This document describes only the Armv8-A architecture profile. For the behaviors required by the previous version of this architecture profile, ARMv7-A, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means:

- All features of the specification are described in the manual.
- Information can be used for software and hardware development.

Web Address

http://www.arm.com

Limitations of this issue

This issue of the Armv8 Architecture Reference Manual contains many improvements and corrections. Validation of this document has identified the following issues that Arm will address in future issues:

- **PE state on reset to AArch64 state on page D1-2330 and PE state on reset into AArch32 state on page G1-5801** require further update. Since the reset information is present in the register descriptions, this does not affect the quality status of the release.

- **Appendix K14 Arm Pseudocode Definition** requires further review and update. Since this appendix is informative, rather than being part of the architecture specification, this does not affect the quality status of this release.
• For a list of the known issues in this manual, please refer to the Known Issues document on https://developer.arm.com/documentation/102105/latest.

• For a list of the known issues in the System register and instruction XML content, please refer to the Release Notes on https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools.
Contents
Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile

Preface
About this manual ... xvi
Using this manual .. xx
Conventions .. xxvii
Additional reading .. xxviii
Feedback ... xxx

Part A
Armv8 Architecture Introduction and Overview

Chapter A1
Introduction to the Armv8 Architecture
A1.1 About the Arm architecture .. A1-34
A1.2 Architecture profiles .. A1-36
A1.3 Armv8 architectural concepts A1-37
A1.4 Supported data types .. A1-40
A1.5 Advanced SIMD and floating-point support A1-52
A1.6 The Arm memory model ... A1-58

Chapter A2
Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions A2-60
A2.2 Architectural features within Armv8.0 architecture A2-63
A2.3 The Armv8 Cryptographic Extension A2-67
A2.4 The Armv8.1 architecture extension A2-69
A2.5 The Armv8.2 architecture extension A2-72
A2.6 The Armv8.3 architecture extension A2-81
A2.7 The Armv8.4 architecture extension A2-85
A2.8 The Armv8.5 architecture extension A2-90
A2.9 The Armv8.6 architecture extension ... A2-94
A2.10 The Reliability, Availability, and Serviceability Extension A2-97
A2.11 The Statistical Profiling Extension (SPE) ... A2-98
A2.12 The Scalable Vector Extension (SVE) ... A2-99
A2.13 The Activity Monitors Extension (AMU) ... A2-100
A2.14 The Memory Partitioning and Monitoring (MPAM) Extension A2-101

Part B

The AArch64 Application Level Architecture

Chapter B1

The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model .. B1-106
B1.2 Registers in AArch64 Execution state ... B1-107
B1.3 Software control features and EL0 .. B1-112

Chapter B2

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model ... B2-116
B2.2 Atomicity in the Arm architecture .. B2-118
B2.3 Definition of the Armv8 memory model .. B2-123
B2.4 Caches and memory hierarchy ... B2-143
B2.5 Alignment support .. B2-148
B2.6 Endian support .. B2-150
B2.7 Memory types and attributes ... B2-153
B2.8 Mismatched memory attributes .. B2-163
B2.9 Synchronization and semaphores .. B2-166

Part C

The AArch64 Instruction Set

Chapter C1

The A64 Instruction Set
C1.1 About the A64 instruction set .. C1-180
C1.2 Structure of the A64 assembler language ... C1-181
C1.3 Address generation .. C1-187
C1.4 Instruction aliases .. C1-190

Chapter C2

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions C2-192
C2.2 General information about the A64 instruction descriptions C2-195

Chapter C3

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions C3-200
C3.2 Loads and stores .. C3-207
C3.3 Data processing - immediate ... C3-224
C3.4 Data processing - register ... C3-229
C3.5 Data processing - SIMD and floating-point C3-237

Chapter C4

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding ... C4-266

Chapter C5

The A64 System Instruction Class
C5.1 The System instruction class encoding space C5-372
C5.2 Special-purpose registers .. C5-385
C5.3 A64 System instructions for cache maintenance C5-471
C5.4 A64 System instructions for address translation C5-532
C5.5 A64 System instructions for TLB maintenance C5-557
C5.6 A64 System instructions for prediction restriction C5-756
Chapter D10 Statistical Profiling Extension Sample Record Specification

D10.1 About the Statistical Profiling Extension Sample Records D10-2804
D10.2 Alphabetical list of Statistical Profiling Extension packets D10-2807

Chapter D11 The Generic Timer in AArch64 state

D11.1 About the Generic Timer .. D11-2832
D11.2 The AArch64 view of the Generic Timer .. D11-2836

Chapter D12 AArch64 System Register Encoding

D12.1 The System register encoding space ... D12-2844
D12.2 op0==0b10, Moves to and from debug and trace System registers D12-2845
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers D12-2847

Chapter D13 AArch64 System Register Descriptions

D13.1 About the AArch64 System registers ... D13-2862
D13.2 General system control registers .. D13-2870
D13.3 Debug registers ... D13-3567
D13.4 Performance Monitors registers ... D13-3678
D13.5 Activity Monitors registers ... D13-3745
D13.6 Statistical Profiling Extension registers .. D13-3784
D13.7 RAS registers ... D13-3836
D13.8 Generic Timer registers .. D13-3883

Part E The AArch32 Application Level Architecture

Chapter E1 The AArch32 Application Level Programmers’ Model

E1.1 About the Application level programmers’ model .. E1-3988
E1.2 The Application level programmers’ model in AArch32 state E1-3989
E1.3 Advanced SIMD and floating-point instructions .. E1-4000
E1.4 About the AArch32 System register interface .. E1-4011
E1.5 Exceptions ... E1-4012

Chapter E2 The AArch32 Application Level Memory Model

E2.1 About the Arm memory model ... E2-4014
E2.2 Atomicity in the Arm architecture ... E2-4016
E2.3 Definition of the Armv8 memory model .. E2-4020
E2.4 Ordering of translation table walks ... E2-4038
E2.5 Caches and memory hierarchy ... E2-4039
E2.6 Alignment support .. E2-4044
E2.7 Endian support .. E2-4046
E2.8 Memory types and attributes .. E2-4050
E2.9 Mismatched memory attributes ... E2-4060
E2.10 Synchronization and semaphores .. E2-4063

Part F The AArch32 Instruction Sets

Chapter F1 The AArch32 Instruction Sets Overview

F1.1 Support for instructions in different versions of the Arm architecture F1-4076
F1.2 Unified Assembler Language .. F1-4077
F1.3 Branch instructions .. F1-4079
F1.4 Data-processing instructions .. F1-4080
F1.5 PSTATE and banked register access instructions ... F1-4088
F1.6 Load/store instructions ... F1-4089
F1.7 Load/store multiple instructions ... F1-4092
F1.8 Miscellaneous instructions .. F1-4093
Chapter F2 About the T32 and A32 Instruction Descriptions
F2.1 Format of instruction descriptions .. F2-4116
F2.2 Standard assembler syntax fields .. F2-4120
F2.3 Conditional execution .. F2-4121
F2.4 Shifts applied to a register ... F2-4123
F2.5 Memory accesses .. F2-4125
F2.6 Encoding of lists of general-purpose registers and the PC F2-4126
F2.7 General information about the T32 and A32 instruction descriptions F2-4127
F2.8 Additional pseudocode support for instruction descriptions F2-4140
F2.9 Additional information about Advanced SIMD and floating-point instructions F2-4141

Chapter F3 T32 Instruction Set Encoding
F3.1 T32 instruction set encoding ... F3-4148
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding F3-4216

Chapter F4 A32 Instruction Set Encoding
F4.1 A32 instruction set encoding ... F4-4218
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding F4-4278

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions F5-4280
F5.2 Encoding and use of banked register transfer instructions F5-4989

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions F6-4994

Part G The AArch32 System Level Architecture

Chapter G1 The AArch32 System Level Programmers' Model
G1.1 About the AArch32 System level programmers' model G1-5712
G1.2 Exception levels .. G1-5713
G1.3 Exception terminology .. G1-5714
G1.4 Execution state .. G1-5716
G1.5 Instruction Set state .. G1-5718
G1.6 Security state .. G1-5719
G1.7 Security state, Exception levels, and AArch32 execution privilege G1-5722
G1.8 Virtualization .. G1-5724
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers G1-5726
G1.10 Process state, PSTATE ... G1-5735
G1.11 Instruction set states ... G1-5741
G1.12 Handling exceptions that are taken to an Exception level using AArch32 G1-5743
G1.13 Routing of aborts taken to AArch32 state ... G1-5762
G1.14 Exception return to an Exception level using AArch32 G1-5765
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state . G1-5770
G1.16 AArch32 state exception descriptions ... G1-5778
G1.17 Reset into AArch32 state ... G1-5800
G1.18 Mechanisms for entering a low-power state G1-5804
G1.19 The AArch32 System register interface ... G1-5809
G1.20 Advanced SIMD and floating-point support G1-5812
G1.21 Configurable instruction enables and disables, and trap controls G1-5818

x Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c
Non-Confidential ID072120
Chapter G8 AArch32 System Register Descriptions
G8.1 About the AArch32 System registers ... G8-6134
G8.2 General system control registers ... G8-6149
G8.3 Debug registers G8-6628
G8.4 Performance Monitors registers ... G8-6750
G8.5 Activity Monitors registers ... G8-6830
G8.6 RAS registers .. G8-6867
G8.7 Generic Timer registers ... G8-6928

Part H External Debug

Chapter H1 About External Debug
H1.1 Introduction to external debug ... H1-7010
H1.2 External debug ... H1-7011
H1.3 Required debug authentication .. H1-7012

Chapter H2 Debug State
H2.1 About Debug state ... H2-7014
H2.2 Halting the PE on debug events ... H2-7015
H2.3 Entering Debug state .. H2-7021
H2.4 Behavior in Debug state ... H2-7024
H2.5 Exiting Debug state ... H2-7051

Chapter H3 Halting Debug Events
H3.1 Introduction to Halting debug events ... H3-7054
H3.2 Halting Step debug events ... H3-7056
H3.3 Halt Instruction debug event .. H3-7066
H3.4 Exception Catch debug event ... H3-7067
H3.5 External Debug Request debug event .. H3-7071
H3.6 OS Unlock Catch debug event ... H3-7072
H3.7 Reset Catch debug events .. H3-7073
H3.8 Software Access debug event ... H3-7074
H3.9 Synchronization and Halting debug events ... H3-7075

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
H4.1 Introduction ... H4-7078
H4.2 DCC and ITR registers .. H4-7079
H4.3 DCC and ITR access modes ... H4-7082
H4.4 Flow control of the DCC and ITR registers ... H4-7086
H4.5 Synchronization of DCC and ITR accesses ... H4-7090
H4.6 Interrupt-driven use of the DCC ... H4-7096
H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-7097

Chapter H5 The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT) .. H5-7100
H5.2 Basic operation on the ECT .. H5-7102
H5.3 Cross-triggers on a PE in an Armv8 implementation H5-7106
H5.4 Description and allocation of CTI triggers ... H5-7107
H5.5 CTI registers programmers’ model ... H5-7111
H5.6 Examples .. H5-7112

Chapter H6 Debug Reset and Powerdown Support
H6.1 About Debug over powerdown ... H6-7116
H6.2 Power domains and debug ... H6-7117
H6.3 Core power domain power states ... H6-7118
H6.4 Powerup request mechanism ... H6-7120
H6.5 Emulating low-power states .. H6-7121
Chapter H7 The PC Sample-based Profiling Extension
H7.1 About the PC Sample-based Profiling Extension ... H7-7132

Chapter H8 About the External Debug Registers
H8.1 Relationship between external debug and System registers H8-7136
H8.2 Endianness and supported access sizes ... H8-7137
H8.3 Synchronization of changes to the external debug registers H8-7138
H8.4 Memory-mapped accesses to the external debug interface H8-7142
H8.5 External debug interface register access permissions H8-7145
H8.6 External debug interface registers ... H8-7149
H8.7 Cross-trigger interface registers .. H8-7156
H8.8 External debug register resets ... H8-7158

Chapter H9 External Debug Register Descriptions
H9.1 About the debug registers ... H9-7162
H9.2 External debug registers .. H9-7163
H9.3 Cross-Trigger Interface registers ... H9-7272

Part I Memory-mapped Components of the Armv8 Architecture
Chapter I1 Requirements for Memory-mapped Components
I1.1 Supported access sizes ... I1-7320
I1.2 Synchronization of memory-mapped registers ... I1-7322
I1.3 Access requirements for reserved and unallocated registers I1-7324

Chapter I2 System Level Implementation of the Generic Timer
I2.1 About the Generic Timer specification ... I2-7326
I2.2 Memory-mapped counter module ... I2-7328
I2.3 Memory-mapped timer components ... I2-7332

Chapter I3 Recommended External Interface to the Performance Monitors
I3.1 About the external interface to the Performance Monitors registers I3-7338

Chapter I4 Recommended External Interface to the Activity Monitors
I4.1 About the external interface to the Activity Monitors Extension registers I4-7344

Chapter I5 External System Control Register Descriptions
I5.1 About the external system control register descriptions I5-7348
I5.2 External Performance Monitors registers summary I5-7350
I5.3 Performance Monitors external register descriptions I5-7353
I5.4 External Activity Monitors Extension registers summary I5-7426
I5.5 Activity Monitors external register descriptions ... I5-7428
I5.6 Generic Timer memory-mapped registers overview I5-7463
I5.7 Generic Timer memory-mapped register descriptions I5-7464
I5.8 RAS register descriptions ... I5-7508

Part J Architectural Pseudocode
Chapter J1 Armv8 Pseudocode
J1.1 Pseudocode for AArch64 operation ... J1-7612
J1.2 Pseudocode for AArch32 operation ... J1-7733
J1.3 Shared pseudocode ... J1-7812
Part K Appendixes

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors
 K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors K1-7940
 K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors K1-7965

Appendix K2 Recommended External Debug Interface
 K2.1 About the recommended external debug interface .. K2-7984
 K2.2 PMUEVENT bus ... K2-7988
 K2.3 Recommended authentication interface ... K2-7989
 K2.4 Management registers and CoreSight compliance K2-7991

Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
 K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers K3-8004
 K3.2 Summary of events for exceptions taken to an Exception level using AArch64 K3-8019

Appendix K4 Recommendations for Reporting Memory Attributes on an Interconnect
 K4.1 Arm recommendations for reporting memory attributes on an interconnect ... K4-8022

Appendix K5 Additional Information for Implementations of the Generic Timer
 K5.1 Providing a complete set of features in a system level implementation K5-8024
 K5.2 Gray-count scheme for timer distribution scheme K5-8026

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets
 K6.1 Legacy Instruction Syntax ... K6-8028

Appendix K7 Address Translation Examples
 K7.1 AArch64 Address translation examples ... K7-8036
 K7.2 AArch32 Address translation examples ... K7-8048

Appendix K8 Example OS Save and Restore Sequences
 K8.1 Save Debug registers ... K8-8058
 K8.2 Restore Debug registers ... K8-8060

Appendix K9 Recommended Upload and Download Processes for External Debug
 K9.1 Using memory access mode in AArch64 state ... K9-8064

Appendix K10 Software Usage Examples
 K10.1 Use of the Advanced SIMD complex number instructions K10-8068
 K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension K10-8070

Appendix K11 Barrier Litmus Tests
 K11.1 Introduction ... K11-8078
 K11.2 Load-Acquire, Store-Release and barriers .. K11-8081
 K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers K11-8085
 K11.4 Using a mailbox to send an interrupt ... K11-8090
 K11.5 Cache and TLB maintenance instructions and barriers K11-8091
 K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers .. K11-8103

Appendix K12 Random Number Generation
 K12.1 Properties of the generated random number ... K12-8118

Appendix K13 Legacy Feature Naming Convention
 K13.1 The Armv8.0 architecture ... K13-8120
Appendix K14 Arm Pseudocode Definition
K14.1 About the Arm pseudocode ... K14-8130
K14.2 Pseudocode for instruction descriptions .. K14-8131
K14.3 Data types ... K14-8134
K14.4 Operators .. K14-8139
K14.5 Statements and control structures .. K14-8145
K14.6 Built-in functions ... K14-8150
K14.7 Miscellaneous helper procedures and functions K14-8153
K14.8 Arm pseudocode definition index .. K14-8155

Appendix K15 Registers Index
K15.1 Introduction and register disambiguation .. K15-8160
K15.2 Alphabetical index of AArch64 registers and System instructions K15-8165
K15.3 Functional index of AArch64 registers and System instructions K15-8179
K15.4 Alphabetical index of AArch32 registers and System instructions K15-8194
K15.5 Functional index of AArch32 registers and System instructions K15-8204
K15.6 Alphabetical index of memory-mapped registers K15-8215
K15.7 Functional index of memory-mapped registers K15-8222

Glossary
Preface

This preface introduces the *Arm Architecture Reference Manual, Armv8, for Armv8-A architecture profile*. It contains the following sections:

- *About this manual* on page xviii.
- *Using this manual* on page xx.
- *Conventions* on page xxvi.
- *Additional reading* on page xxviii.
- *Feedback* on page xxx.
About this manual

This manual describes the Arm® architecture v8, Armv8. The architecture describes the operation of an Armv8-A Processing element (PE), and this manual includes descriptions of:

- The two Execution states, AArch64 and AArch32.
- The instruction sets:
 - In AArch32 state, the A32 and T32 instruction sets, that are compatible with earlier versions of the Arm architecture.
 - In AArch64 state, the A64 instruction set.
- The states that determine how a PE operates, including the current Exception level and Security state, and in AArch32 state the PE mode.
- The Exception model.
- The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.
- The memory model, that defines memory ordering and memory management. This manual covers a single architecture profile, Armv8-A, that defines a Virtual Memory System Architecture (VMSA).
- The programmers’ model, and its interfaces to System registers that control most PE and memory system features, and provide status information.
- The Advanced SIMD and floating-point instructions, that provide high-performance:
 - Single-precision, half-precision, and double-precision floating-point operations.
 - Conversions between double-precision, single-precision, and half-precision floating-point values.
 - Integer, single-precision floating-point, half-precision floating-point, and in A64, double-precision vector operations in all instruction sets.
 - Single-precision, half-precision, and double-precision floating-point vector operations in the A64 instruction set.
- The security model, that provides two security states to support secure applications.
- The virtualization model, that supports the virtualization of Non-secure operation.
- The Debug architecture, that provides software access to debug features.

This manual gives the assembler syntax for the instructions it describes, meaning that it describes instructions in textual form. However, this manual is not a tutorial for Arm assembler language, nor does it describe Arm assembler language, except at a very basic level. To make effective use of Arm assembler language, read the documentation supplied with the assembler being used.

This manual is organized into parts:

Part A Provides an introduction to the Armv8-A architecture, and an overview of the AArch64 and AArch32 Execution states.

Part B Describes the application level view of the AArch64 Execution state, meaning the view from EL0. It describes the application level view of the programmers’ model and the memory model.

Part C Describes the A64 instruction set, that is available in the AArch64 Execution state. The descriptions for each instruction also include the precise effects of each instruction when executed at EL0, described as unprivileged execution, including any restrictions on its use, and how the effects of the instruction differ at higher Exception levels. This information is of primary importance to authors and users of compilers, assemblers, and other programs that generate Arm machine code.

Part D Describes the system level view of the AArch64 Execution state. It includes details of the System registers, most of which are not accessible from EL0, and the system level view of the programmers’ model and the memory model. This part includes the description of self-hosted debug.
Part E Describes the application level view of the AArch32 Execution state, meaning the view from the EL0. It describes the application level view of the programmers’ model and the memory model.

Note In AArch32 state, execution at EL0 is execution in User mode.

Part F Describes the T32 and A32 instruction sets, that are available in the AArch32 Execution state. These instruction sets are backwards-compatible with earlier versions of the Arm architecture. This part describes the precise effects of each instruction when executed in User mode, described as unprivileged execution or execution at EL0, including any restrictions on its use, and how the effects of the instruction differ at higher Exception levels. This information is of primary importance to authors and users of compilers, assemblers, and other programs that generate Arm machine code.

Note User mode is the only mode where software execution is unprivileged.

Part G Describes the system level view of the AArch32 Execution state, that is generally compatible with earlier versions of the Arm architecture. This part includes details of the System registers, most of which are not accessible from EL0, and the instruction interface to those registers. It also describes the system level view of the programmers’ model and the memory model.

Part H Describes the Debug architecture for external debug. This provides configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Part I Describes additional features of the architecture that are not closely coupled to a processing element (PE), and therefore are accessed through memory-mapped interfaces. Some of these features are OPTIONAL.

Part J Provides pseudocode that describes various features of the Armv8 architecture.

Part K, Appendixes Provide additional information. Some appendixes give information that is not part of the Armv8 architectural requirements. The cover page of each appendix indicates its status.

Glossary Defines terms used in this document that have a specialized meaning.

Note Terms that are generally well understood in the microelectronics industry are not included in the Glossary.
Using this manual

The information in this manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the Armv8-A architecture profile, including its relationship to the other Arm PE architectures. It introduces the terminology used to describe the architecture, and gives an overview of the Executions states, AArch64 and AArch32. It contains the following chapter:

Chapter A1 Introduction to the Armv8 Architecture
Read this for an introduction to the Armv8 architecture.

Part B, The AArch64 Application Level Architecture

Part B describes the AArch64 state application level view of the architecture. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers' Model
Read this for an application level description of the programmers’ model for software executing in AArch64 state. It describes execution at EL0 when EL0 is using AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model
Read this for an application level description of the memory model for software executing in AArch64 state. It describes the memory model for execution in EL0 when EL0 is using AArch64 state. It includes information about Arm memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set

Part C describes the A64 instruction set, that is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set
Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions
Read this to understand the format of the A64 instruction descriptions.

Chapter C3 A64 Instruction Set Overview
Read this for an overview of the individual A64 instructions, that are divided into five functional groups.

Chapter C4 A64 Instruction Set Encoding
Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class
Read this for a description of the AArch64 System instructions and register descriptions, and the System instruction class encoding space.

Chapter C6 A64 Base Instruction Descriptions
Read this for information on key aspects of the A64 base instructions and for descriptions of the individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions
Read this for information on key aspects of the A64 Advanced SIMD and floating-point instructions and for descriptions of the individual instructions, which are listed in alphabetical order.
Part D, The AArch64 System Level Architecture

Part D describes the AArch64 state system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model
Read this for a description of the AArch64 state system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 AArch64 Self-hosted Trace
Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter D4 The AArch64 System Level Memory Model
Read this for a description of the AArch64 state system level view of the general features of the memory system.

Chapter D5 The AArch64 Virtual Memory System Architecture
Read this for a system level view of the AArch64 Virtual Memory System Architecture (VMSA), the memory system architecture of an Armv8 implementation executing in AArch64 state.

Chapter D7 The Performance Monitors Extension
Read this for a description of an implementation of the Arm Performance Monitors, an optional non-invasive debug component.

Chapter D8 The Activity Monitors Extension
Read this for a description of an implementation of the Arm Activity Monitors, an optional non-invasive component.

Chapter D9 The Statistical Profiling Extension
Read this for a description of an implementation of the Statistical Profiling Extension, an optional AArch64 state non-invasive debug component.

Chapter D10 Statistical Profiling Extension Sample Record Specification
Read this for a description the sample records generated by the Statistical Profiling Extension.

Chapter D11 The Generic Timer in AArch64 state
Read this for a description of the AArch64 view of an implementation of the Arm Generic Timer.

Chapter D12 AArch64 System Register Encoding
Read this for a description of the encoding of the AArch64 System registers, and the other uses of the AArch64 System registers encoding space.

Chapter D13 AArch64 System Register Descriptions
Read this for an introduction to, and description of, each of the AArch64 System registers.

Part E, The AArch32 Application Level Architecture

Part E describes the AArch32 state application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model
Read this for an application level description of the programmers’ model for software executing in AArch32 state. It describes execution at EL0 when EL0 is using AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model
Read this for an application level description of the memory model for software executing in AArch32 state. It describes the memory model for execution in EL0 when EL0 is using AArch32 state. It includes information about Arm memory types, attributes, and memory access controls.
Part F, The AArch32 Instruction Sets

Part F describes the T32 and A32 instruction sets, that are used in AArch32 state. It contains the following chapters:

Chapter F1 The AArch32 Instruction Sets Overview
Read this for an overview of the T32 and A32 instruction sets.

Chapter F2 About the T32 and A32 Instruction Descriptions
Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F3 T32 Instruction Set Encoding
Read this for a description of the T32 instruction set encoding. This includes the T32 encoding of the Advanced SIMD and floating-point instructions.

Chapter F4 A32 Instruction Set Encoding
Read this for a description of the A32 instruction set encoding. This includes the A32 encoding of the Advanced SIMD and floating-point instructions.

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
Read this for a description of each of the T32 and A32 base instructions.

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
Read this for a description of each of the T32 and A32 Advanced SIMD and floating-point instructions.

Part G, The AArch32 System Level Architecture

Part G describes the AArch32 state system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model
Read this for a description of the AArch32 state system level view of the programmers’ model for execution in an Exception level that is using AArch32.

Chapter G2 AArch32 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter G3 AArch32 Self-hosted Trace
Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter G4 The AArch32 System Level Memory Model
Read this for a system level view of the general features of the memory system.

Chapter G5 The AArch32 Virtual Memory System Architecture
Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).

Chapter G6 The Generic Timer in AArch32 state
Read this for a description of the AArch32 view of an implementation of the Arm Generic Timer.

Chapter G7 AArch32 System Register Encoding
Read this for a description of the encoding of the AArch32 System registers, including the System instructions that are part of the AArch32 System registers encoding space.

Chapter G8 AArch32 System Register Descriptions
Read this for a description of each of the AArch32 System registers.
Part H, External Debug

Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 About External Debug
Read this for an introduction to external debug, and a definition of the scope of this part of the manual.

Chapter H2 Debug State
Read this for a description of debug state, which the PE might enter as the result of a Halting debug event.

Chapter H3 Halting Debug Events
Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
Read this for a description of the communication between a debugger and the PE debug logic using the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross-Trigger Interface
Read this for a description of the embedded cross-trigger interface.

Chapter H6 Debug Reset and Powerdown Support
Read this for a description of reset and powerdown support in the Debug architecture.

Chapter H7 The PC Sample-based Profiling Extension
Read this for a description of the PC Sample-based Profiling Extension that is an OPTIONAL extension to an Armv8 implementation.

Chapter H8 About the External Debug Registers
Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions
Read this for a description of each external debug register.

Part I, Memory-mapped Components of the Armv8 Architecture

Part I describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter I1 Requirements for Memory-mapped Components
Read this for descriptions of some general requirements for memory-mapped components within a system that complies with the Armv8 Architecture.

Chapter I2 System Level Implementation of the Generic Timer
Read this for a definition of a system level implementation of the Generic Timer.

Chapter I3 Recommended External Interface to the Performance Monitors
Read this for a description of the recommended memory-mapped and external debug interfaces to the Performance Monitors.

Chapter I4 Recommended External Interface to the Activity Monitors
Read this for a description of the recommended memory-mapped interface to the Activity Monitors.

Chapter I5 External System Control Register Descriptions
Read this for a description of each memory-mapped system control register.
Part J, Architectural Pseudocode

Part J contains pseudocode that describes various features of the Arm architecture. It contains the following chapter:

Chapter J1 Armv8 Pseudocode
Read this for the pseudocode definitions that describe various features of the Armv8 architecture, for operation in AArch64 state and in AArch32 state.

Part K, Appendixes

This manual contains the following appendixes:

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors
Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors in the Armv8 architecture, including AArch32 behaviors that were UNPREDICTABLE in previous versions of the architecture.

Appendix K2 Recommended External Debug Interface
Read this for a description of the recommended external debug interface.

Note
This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.

Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
Read this for a description of Arm recommendations for the use of the IMPLEMENTATION DEFINED event numbers.

Note
This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.

Appendix K4 Recommendations for Reporting Memory Attributes on an Interconnect
Read this for the Arm recommendations about how the architectural memory attributes are reported on an interconnect.

Appendix K5 Additional Information for Implementations of the Generic Timer
Read this for additional information about implementations of the Arm Generic Timer. This information does not form part of the architectural definition of the Generic Timer.

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets
Read this for information about the pre-UAL syntax of the AArch32 instruction sets, which can still be valid for the A32 instruction set.

Appendix K7 Address Translation Examples
Read this for examples of translation table lookups using the translation regimes described in Chapter D5 The AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual Memory System Architecture.

Appendix K8 Example OS Save and Restore Sequences
Read this for software examples that perform the OS Save and Restore sequences for an Armv8 debug implementation.
Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix K9 Recommended Upload and Download Processes for External Debug
Read this for information about implementing and using the Arm architecture.

Note: This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.

Appendix K10 Software Usage Examples
Read this for software examples that help understanding of some aspects of the Arm architecture.

Note: This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.

Appendix K11 Barrier Litmus Tests
Read this for examples of the use of barrier instructions provided by the Armv8 architecture.

Note: This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.

Appendix K14 Arm Pseudocode Definition
Read this for definitions of the AArch32 pseudocode.

Appendix K15 Registers Index
Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and memory-mapped registers.

Glossary
Defines terms used in this document that have a specialized meaning.

Note: Terms that are generally well understood in the microelectronics industry are not included in the Glossary.
Conventions

The following sections describe conventions that this book can use:

- **Typographic conventions.**
- **Signals on page xxvii.**
- **Numbers on page xxvii.**
- **Pseudocode descriptions on page xxvii.**
- **Assembler syntax descriptions on page xxvii.**

Typographic conventions

The typographical conventions are:

- *italic* Introduces special terminology, and denotes citations.
- *bold* Denotes signal names, and is used for terms in descriptive lists, where appropriate.
- *monospace* Used for assembler syntax descriptions, pseudocode, and source code examples.
 Also used in the main text for instruction mnemonics and for references to other items appearing in assembler syntax descriptions, pseudocode, and source code examples.
- **SMALL CAPITALS**
 Used in body text for a few terms that have specific technical meanings, and are defined in the Glossary.
- **Colored text** Indicates a link. This can be:
 - A URL, for example http://infocenter.arm.com.
 - A cross-reference, that includes the page number of the referenced information if it is not on the current page, for example, Assembler syntax descriptions on page xxvii.
 - A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the colored term, for example Simple sequential execution or SCTLR.
- **{ and }** Braces, { and }, have two distinct uses:
 - **Optional items** In syntax descriptions braces enclose optional items. In the following example they indicate that the `<shift>` parameter is optional:
    ```
    ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}
    ```
 Similarly they can be used in generalized field descriptions, for example TCR_ELx.{I}PS refers to a field in the TCR_ELx registers that is called either IPS or PS.
 - **Sets of items** Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set of two register fields, HCR_EL2.E2H and HCR_EL2.TGE
- **Notes** Notes are formatted as:

 ______ Note ________

 This is a Note.

 In this Manual, Notes are used only to provide additional information, usually to help understanding of the text. While a Note may repeat architectural information given elsewhere in the Manual, a Note never provides any part of the definition of the architecture.
Signals

In general this specification does not define hardware signals, but it does include some signal examples and recommendations. The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted means:

- HIGH for active-HIGH signals.
- LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by `0b`, and hexadecimal numbers by `0x`. In both cases, the prefix and the associated value are written in a monospace font, for example `0xFFFF0000`. To improve readability, long numbers can be written with an underscore separator between every four characters, for example `0xFFFF_0000_0000_0000`. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode is written in monospace font, and is described in Appendix K14 Arm Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler instructions. These are shown in a monospace font, and use the conventions described in Structure of the A64 assembler language on page C1-181, Appendix K14 Arm Pseudocode Definition, and Pseudocode operators and keywords on page K12-5648.
Additional reading

This section lists relevant publications from Arm and third parties.

See the Infocenter, https://developer.arm.com, for access to Arm documentation.

Arm publications

- ARM® Architecture Reference Manual Supplement, ARMv8, for the ARMv8-R AArch32 architecture profile (ARM DDI 0568).
- ARM® Debug Interface Architecture Specification, ADIv6.0 (ARM IHI 0074).
- ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).
- ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).
- ARM® CoreSight™ Architecture Specification (ARM IHI 0029).
- ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).
- ARM® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile (ARM DDI 0587).

Other publications

The following publications are referred to in this manual, or provide more information:

- SM3 Cryptographic Hash Algorithm, China Internet Network Information Center (CNNIC).
- SM4 Block Cipher Algorithm, China Internet Network Information Center (CNNIC).
- The QARMA Block Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative.
Feedback

Arm welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send email to errata@arm.com. Give:

- The title.
- The number, ARM DDI 0487F.c.
- The page numbers to which your comments refer.
- A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of any document when viewed with any other PDF reader.
Part A

Armv8 Architecture Introduction and Overview
Chapter A1
Introduction to the Armv8 Architecture

This chapter introduces the Arm architecture. It contains the following sections:

- *About the Arm architecture* on page A1-34.
A1.1 About the Arm architecture

The Arm architecture described in this Architecture Reference Manual defines the behavior of an abstract machine, referred to as a processing element, often abbreviated to PE. Implementations compliant with the Arm architecture must conform to the described behavior of the processing element. It is not intended to describe how to build an implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is compliant with the Arm architecture must be the same as a simple sequential execution of the program on the processing element. This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the processing element.

The Arm architecture includes definitions of:

- An associated debug architecture, see:
 - Chapter D2 AArch64 Self-hosted Debug.
 - Chapter G2 AArch32 Self-hosted Debug.
 - Part H of this manual, External Debug on page 7007.

- Associated trace architectures that define PE Trace Units that implementers can implement with the associated processor hardware. For more information, see:
 - The Embedded Trace Macrocell Architecture Specification.
 - Chapter D3 AArch64 Self-hosted Trace.
 - Chapter G3 AArch32 Self-hosted Trace.

 ______ Note _______
 A PE Trace Unit may be named a trace macrocell in other documentation.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC architecture features:

- A large uniform register file.
- A load/store architecture, where data-processing operations only operate on register contents, not directly on memory contents.
- Simple addressing modes, with all load/store addresses determined from register contents and instruction fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation system. It also describes how multiple PEs interact with each other and with other observers in a system.

This document defines the Armv8-A architecture profile. See Architecture profiles on page A1-36 for more information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size, performance, and very low power consumption are key attributes of the Arm architecture.

An important feature of the Armv8 architecture is backwards compatibility, combined with the freedom for optimal implementation in a wide range of standard and more specialized use cases. The Armv8 architecture supports:

- A 64-bit Execution state, AArch64.
- A 32-bit Execution state, AArch32, that is compatible with previous versions of the Arm architecture.

 ______ Note _______
 The AArch32 Execution state is compatible with the Armv7-A architecture profile, and enhances that profile to support some features included in the AArch64 Execution state.

Features that are optional are explicitly defined as such in this Manual.
Both Execution states support SIMD and floating-point instructions:

- **AArch32 state provides:**
 - SIMD instructions in the base instruction sets that operate on the 32-bit general-purpose registers.
 - Advanced SIMD instructions that operate on registers in the **SIMD and floating-point register (SIMD&FP register) file**.
 - Floating-point instructions that operate on registers in the SIMD&FP register file.

- **AArch64 state provides:**
 - Advanced SIMD instructions that operate on registers in the SIMD&FP register file.
 - Floating-point instructions that operate on registers in the SIMD&FP register file.

Note

The presence of an ID register field for a feature does not imply that the feature is optional.

See *Conventions on page xxvi* for information about conventions used in this manual, including the use of SMALL CAPITALS for particular terms that have Arm-specific meanings that are defined in the *Glossary*.
A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Eight major versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the first three versions are now obsolete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64
Is the 64-bit Execution state, meaning addresses are held in 64-bit registers, and instructions in the base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64 instruction set.

AArch32
Is the 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructions in the base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and A32 instruction sets.

Note

The *Base instruction set* comprises the supported instructions other than the Advanced SIMD and floating-point instructions.

Arm defines three architecture profiles:

A
Application profile, described in this manual:

- Supports a *Virtual Memory System Architecture* (VMSA) based on a *Memory Management Unit* (MMU).

Note

An Armv8-A implementation can be called an AArchv8-A implementation.

- Supports the A64, A32, and T32 instruction sets.

R
Real-time profile:

- Supports a *Protected Memory System Architecture* (PMSA) based on a *Memory Protection Unit* (MPU).
- Supports the A32 and T32 instruction sets.

M
Microcontroller profile:

- Implements a programmers' model designed for low-latency interrupt processing, with hardware stacking of registers and support for writing interrupt handlers in high-level languages.
- Implements a variant of the R-profile PMSA.
- Supports a variant of the T32 instruction set.

Note

This Architecture Reference Manual describes only the Armv8-A profile.

For information about the R and M architecture profiles, and earlier Arm architecture versions see:

- The *ARM® Architecture Reference Manual Supplement, ARMv8, for the ARMv8-R AArch32 architecture profile*.
- The *Arm®v8-M Architecture Reference Manual*.
- The *ARM®v7-M Architecture Reference Manual*.
- The *ARM®v6-M Architecture Reference Manual*.
A1.3 Armv8 architectural concepts

Armv8 introduces major changes to the Arm architecture, while maintaining a high level of consistency with previous versions of the architecture. The Armv8 Architecture Reference Manual includes significant changes in the terminology used to describe the architecture, and this section introduces both the Armv8 architectural concepts and the associated terminology.

The following subsections describe key Armv8 architectural concepts. Each section introduces the corresponding terms that are used to describe the architecture:

- **Execution state.**
- **The Armv8 instruction sets** on page A1-38.
- **System registers** on page A1-38.

A1.3.1 Execution state

The Execution state defines the PE execution environment, including:

- The supported register widths.
- The supported instruction sets.
- Significant aspects of:
 - The Exception model.
 - The Virtual Memory System Architecture (VMSA).
 - The programmers’ model.

The Execution states are:

AArch64

The 64-bit Execution state. This Execution state:

- Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link register.
- Provides a 64-bit Program Counter (PC), stack pointers (SPs), and Exception Link Registers (ELRs).
- Provides 32 128-bit registers for SIMD vector and scalar floating-point support.
- Provides a single instruction set, A64. For more information, see The Armv8 instruction sets on page A1-38.
- Defines the Armv8 Exception model, with up to four Exception levels, EL0 - EL3, that provide an execution privilege hierarchy, see Exception levels on page D1-2312.
- Provides support for 64-bit virtual addressing. For more information, including the limits on address ranges, see Chapter D5 The AArch64 Virtual Memory System Architecture.
- Defines a number of Process state (PSTATE) elements that hold PE state. The A64 instruction set includes instructions that operate directly on various PSTATE elements.
- Names each System register using a suffix that indicates the lowest Exception level at which the register can be accessed.

AArch32

The 32-bit Execution state. This Execution state:

- Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and Link Register (LR). The LR is used as both an ELR and a procedure link register. Some of these registers have multiple banked instances for use in different PE modes.
- Provides a single ELR, for exception returns from Hyp mode.
- Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point support.
- Provides two instruction sets, A32 and T32. For more information, see The Armv8 instruction sets on page A1-38.
- Supports the Armv7-A Exception model, based on PE modes, and maps this onto the Armv8 Exception model, that is based on the Exception levels.
- Provides support for 32-bit virtual addressing.
• Defines a number of Process state (PSTATE) elements that hold PE state. The A32 and T32 instruction sets include instructions that operate directly on various PSTATE elements, and instructions that access PSTATE by using the Application Program Status Register (APSR) or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transferring control between the AArch64 and AArch32 Execution states is known as interprocessing. The PE can move between Execution states only on a change of Exception level, and subject to the rules given in Interprocessing on page D1-2400. This means different software layers, such as an application, an operating system kernel, and a hypervisor, executing at different Exception levels, can execute in different Execution states.

A1.3.2 The Armv8 instruction sets

In Armv8 the possible instruction sets depend on the Execution state:

AArch64
AArch64 state supports only a single instruction set, called A64. This is a fixed-length instruction set that uses 32-bit instruction encodings.

For information on the A64 instruction set, see Chapter C3 A64 Instruction Set Overview.

AArch32
AArch32 state supports the following instruction sets:

- **A32**
 This is a fixed-length instruction set that uses 32-bit instruction encodings.

- **T32**
 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction encodings.

In previous documentation, these instruction sets were called the ARM and Thumb instruction sets. Armv8 extends each of these instruction sets. In AArch32 state, the Instruction set state determines the instruction set that the PE executes.

For information on the A32 and T32 instruction sets, see Chapter F1 The AArch32 Instruction Sets Overview.

The Armv8 instruction sets support SIMD and scalar floating-point instructions. See Advanced SIMD and floating-point support on page A1-52.

A1.3.3 System registers

System registers provide control and status information of architected features.

The System registers use a standard naming format: `<register_name>..<bit_field_name>` to identify specific registers as well as control and status bits within a register.

Bits can also be described by their numerical position in the form `<register_name>[x:y]` or the generic form `bits[x:y]`.

In addition, in AArch64 state, most register names include the lowest Exception level that can access the register as a suffix to the register name:

- `<register_name>_ELx`, where x is 0, 1, 2, or 3.

For information about Exception levels, see Exception levels on page D1-2312.

The System registers comprise:

- The following registers that are described in this manual:
 — General system control registers.
 — Debug registers.
 — Generic Timer registers.
 — Optionally, Performance Monitor registers.
 — Optionally, the Activity Monitors registers.
• Optionally, one or more of the following groups of registers that are defined in other Arm architecture specifications:
 — Trace System registers, as defined in the Embedded Trace Macrocell Architecture Specification, ETMv4.
 — Scalable Vector Extension System registers, as defined in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
 — Generic Interrupt Controller (GIC) System registers, see The Arm Generic Interrupt Controller System registers.

• RAS Extension System registers, as defined in the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile. The RAS Extension is a mandatory extension to the Armv8.2 architecture, and an OPTIONAL extension to the Armv8.0 and the Armv8.1 architectures.

For information about the AArch64 System registers, see Chapter D13 AArch64 System Register Descriptions.

For information about the AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

The Arm Generic Interrupt Controller System registers

From version 3 of the Arm Generic Interrupt Controller architecture, GICv3, the GIC architecture specification defines a System register interface to some of its functionality. The System register summaries in this manual include these registers, see:

• About the GIC System registers on page D12-2859, for more information about the AArch64 GIC System registers.

• About the GIC System registers on page G7-6130, for more information about the AArch32 GIC System registers.

These sections give only short overviews of the GIC System registers. For more information, including descriptions of the registers, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

—— Note ———
The programmers’ model for earlier versions of the GIC architecture is wholly memory-mapped.

A1.3.4 Armv8 Debug

Armv8 supports the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the Armv8 Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state, the PE is controlled by an external debugger.

All Armv8 implementations support both models. The model chosen by a particular user depends on the debug requirements during different stages of the design and development life cycle of the product. For example, external debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted debug might be used during application development.

For more information about self-hosted debug:
• In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.
• In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug on page 7007.
A1.4 Supported data types

The Armv8 architecture supports the following integer data types:

- **Byte** 8 bits.
- **Halfword** 16 bits.
- **Word** 32 bits.
- **Doubleword** 64 bits.
- **Quadword** 128 bits.

The architecture also supports the following floating-point data types:

- Double-precision, see *Double-precision floating-point format* on page A1-47 for details.
- BFloat16, see *BFloat16 floating-point format* on page A1-48 for details.

It also supports:

- Vectors, where a register holds multiple elements, each of the same data type. See *Vector formats* on page A1-41 for details.

The Armv8 architecture provides two register files:

- A general-purpose register file.
- A SIMD&FP register file.

In each of these, the possible register widths depend on the Execution state.

In AArch64 state:

- A general-purpose register file contains 64-bit registers:
 - Many instructions can access these registers as 64-bit registers or as 32-bit registers, using only the bottom 32 bits.
- A SIMD&FP register file contains 128-bit registers:
 - The quadword integer data types only apply to the SIMD&FP register file.
 - The floating-point data types only apply to the SIMD&FP register file.
 - While the AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits or 128-bits depending on the A64 instruction encoding used, see *Instruction Mnemonics* on page C1-183.

For more information on the register files in AArch64 state, see *Registers in AArch64 Execution state* on page B1-107.

In AArch32 state:

- A general-purpose register file contains 32-bit registers:
 - Two 32-bit registers can support a doubleword.
 - Vector formatting is supported, see *Figure A1-4* on page A1-44.
- A SIMD&FP register file contains 64-bit registers:
 - AArch32 state does not support quadword integer or floating-point data types.

--- **Note** ---

Two consecutive 64-bit registers can be used as a 128-bit register.

For more information on the register files in AArch32 state, see *The general-purpose registers, and the PC, in AArch32 state* on page E1-3991.
A1.4.1 Vector formats

In an implementation that includes the SIMD instructions that operate on the SIMD&FP register file, a register can hold one or more packed elements, all of the same size and type. The combination of a register and a data type describes a vector of elements. The vector is considered to be an array of elements of the data type specified in the instruction. The number of elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant end of the vector.

Vector formats in AArch64 state

In AArch64 state, the SIMD&FP registers can be referred to as Vn, where n is a value from 0 to 31.

The SIMD&FP registers support three data formats for loads, stores, and data-processing operations:

• A single, scalar, element in the least significant bits of the register.
• A 64-bit vector of byte, halfword, or word elements.
• A 128-bit vector of byte, halfword, word, or doubleword elements.

The element sizes are defined in Table A1-1 with the vector format described as:

• For a 128-bit vector: Vn{.2D, .4S, .8H, .16B}.
• For a 64-bit vector: Vn{.1D, .2S, .4H, .8B}.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>8 bits</td>
</tr>
<tr>
<td>H</td>
<td>16 bits</td>
</tr>
<tr>
<td>S</td>
<td>32 bits</td>
</tr>
<tr>
<td>D</td>
<td>64 bits</td>
</tr>
</tbody>
</table>

Table A1-1 SIMD elements in AArch64 state

Figure A1-1 on page A1-42 shows the SIMD vectors in AArch64 state.
A1.4 Supported data types

Table A1-2 shows the available formats. Each instruction description specifies the data types that the instruction supports.

<table>
<thead>
<tr>
<th>Data type specifier</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.<size></td>
<td>Any element of <size> bits</td>
</tr>
<tr>
<td>.F<size></td>
<td>Floating-point number of <size> bits</td>
</tr>
<tr>
<td>.I<size></td>
<td>Signed or unsigned integer of <size> bits</td>
</tr>
<tr>
<td>.P<size></td>
<td>Polynomial over {0, 1} of degree less than <size></td>
</tr>
<tr>
<td>.S<size></td>
<td>Signed integer of <size> bits</td>
</tr>
<tr>
<td>.U<size></td>
<td>Unsigned integer of <size> bits</td>
</tr>
</tbody>
</table>

Figure A1-1 SIMD vectors in AArch64 state

Vector formats in AArch32 state

Table A1-2 shows the available formats. Each instruction description specifies the data types that the instruction supports.

The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit, see *Half-precision floating-point formats* on page A1-44.

The .F32 data type is the Arm standard single-precision floating-point data type, see *Single-precision floating-point format* on page A1-46.
The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure A1-2 shows the hierarchy of the Advanced SIMD data types.

![Advanced SIMD data type hierarchy in AArch32 state](image)

† Output format only. See VMULL instruction description.
‡ Available only if the Cryptographic Extension is implemented. See VMULL instruction description.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32 state

For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have to distinguish between signed and unsigned inputs.

Figure A1-3 on page A1-44 shows the Advanced SIMD vectors in AArch32 state.

Note

In AArch32 state, a pair of even and following odd numbered doubleword registers can be concatenated and treated as a single quadword register.
The AArch32 general-purpose registers support vectors formats for use by the SIMD instructions in the Base instruction set. Figure A1-4 shows these formats, that means that a general-purpose register can be treated as either 2 halfwords or 4 bytes.

Figure A1-3 Advanced SIMD vectors in AArch32 state

Figure A1-4 Vector formatting in AArch32 state

A1.4.2 Half-precision floating-point formats

Armv8 supports two half-precision floating-point formats:

- IEEE half-precision, as described in the IEEE 754-2008 standard.
- Arm alternative half-precision format.

Note

BFloat16 is not a half-precision floating-point format, see **BFloat16 floating-point format on page A1-48.**
Both formats can be used for conversions to and from other floating-point formats. FPCR.AHP controls the format in AArch64 state and FPSCR.AHP controls the format in AArch32 state. FEAT_FP16 adds half-precision data-processing instructions, which always use the IEEE format. These instructions ignore the value of the relevant AHP field, and behave as if it has an Effective value of 0.

The description of IEEE half-precision includes Arm-specific details that are left open by the standard, and is only an introduction to the formats and to the values they can contain. For more information, especially on the handling of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

<table>
<thead>
<tr>
<th>15 14</th>
<th>10 9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>exponent</td>
<td>fraction</td>
</tr>
</tbody>
</table>

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision format is being used.

0 < exponent < 0x1F

The value is a normalized number and is equal to:

\[
(-1)^S \times 2^{(\text{exponent}-15)} \times (1.\text{fraction})
\]

The minimum positive normalized number is \(2^{-14}\), or approximately \(6.104 \times 10^{-5}\).

The maximum positive normalized number is \((2 - 2^{-10})\times 2^{15}\), or 65504.

Larger normalized numbers can be expressed using the alternative format when the exponent == 0xF.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

\[\text{fraction == 0}\]

The value is a zero. There are two distinct zeros:

+0 when S==0

-0 when S==1.

\[\text{fraction != 0}\]

The value is a denormalized number and is equal to:

\[
(-1)^S \times 2^{-14} \times (0.\text{fraction})
\]

The minimum positive denormalized number is \(2^{-24}\), or approximately \(5.960 \times 10^{-8}\).

Half-precision denormalized numbers are not flushed to zero by default. When FEAT_FP16 is implemented, the FPCR.FZ16 bit controls whether Flush-to-zero mode is enabled for half-precision data-processing instructions. For details, see Flush-to-zero on page A1-55.

exponent == 0xF

The value depends on which half-precision format is being used:

IEEE half-precision

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

\[\text{fraction == 0}\]

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value that is too big to be represented accurately as a normalized number.

\[\text{fraction != 0}\]

The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[9]:

- **bit[9] == 0** The NaN is a signaling NaN. The sign bit can take any value, and the remaining fraction bits can take any value except all zeros.
- **bit[9] == 1** The NaN is a quiet NaN. The sign bit and remaining fraction bits can take any value.

Alternative half-precision

The value is a normalized number and is equal to:

\[-1^S \times 2^{16} \times (1.fraction)\]

The maximum positive normalized number is \((2-2^{-10}) \times 2^{16}\) or 131008.

A1.4.3 Single-precision floating-point format

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes Arm-specific details that are left open by the standard. It is only intended as an introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

```
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| S  | exponent | fraction |
```

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

- **0 < exponent < 0xFF**
 - The value is a **normalized number** and is equal to:
 \[-1^S \times 2^{(exponent - 127)} \times (1.fraction)\]
 - The minimum positive normalized number is \(2^{-126}\), or approximately \(1.175 \times 10^{-38}\).
 - The maximum positive normalized number is \((2 - 2^{-23}) \times 2^{127}\), or approximately \(3.403 \times 10^{38}\).

- **exponent == 0**
 - The value is either a zero or a **denormalized number**, depending on the fraction bits:
 - **fraction == 0**
 - The value is a zero. There are two distinct zeros:
 - +0 When \(S==0\).
 - −0 When \(S==1\).
 - These usually behave identically. In particular, the result is **equal if +0 and −0 are compared as floating-point numbers**. However, they yield different results in some circumstances. For example, the sign of the infinity produced as the result of dividing by zero depends on the sign of the zero. The two zeros can be distinguished from each other by performing an integer comparison of the two words.
 - **fraction != 0**
 - The value is a denormalized number and is equal to:
 \[-1^S \times 2^{-126} \times (0.fraction)\]
 - The minimum positive denormalized number is \(2^{-149}\), or approximately \(1.401 \times 10^{-45}\).

 Denormalized numbers are always flushed to zero in Advanced SIMD processing in AArch32 state. They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing in AArch64 state. For details, see **Flush-to-zero on page A1-55**.
exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value that is too big to be represented accurately as a normalized number.

fraction !== 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[22]:

bit[22] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the remaining fraction bits can take any value except all zeros.

bit[22] == 1

The NaN is a quiet NaN. The sign bit and remaining fraction bits can take any value.

For details of the default NaN, see NaN handling and the Default NaN on page A1-56.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares as unordered with everything, including itself.

A1.4.4 Double-precision floating-point format

The double-precision floating-point format is as defined by the IEEE 754 standard. Double-precision floating-point is supported by both SIMD and floating-point instructions in AArch64 state, and only by floating-point instructions in AArch32 state.

This description includes implementation-specific details that are left open by the standard. It is only intended as an introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
S & 63 & 62 & 52 & 51 & 32 & 31 & 0 \\
\hline
& exponent & & & & & & \\
& & fraction & & & & & \\
\hline
\end{array}
\]

Double-precision values represent numbers, infinities, and NaNs in a similar way to single-precision values, with the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF

The value is a normalized number and is equal to:

\[(-1)^S \times 2^{(\text{exponent} - 1023)} \times (1.\text{fraction})\]

The minimum positive normalized number is \(2^{-1022}\), or approximately \(2.225 \times 10^{-308}\).

The maximum positive normalized number is \((2 - 2^{-52}) \times 2^{1023}\), or approximately \(1.798 \times 10^{308}\).
exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros that behave in the same way as the two
single-precision zeros:

+0 when S==0
–0 when S==1.

fraction != 0

The value is a denormalized number and is equal to:

\((-1)^{S} \times 2^{-1022} \times (0.\text{fraction})\)

The minimum positive denormalized number is \(2^{-1074}\), or approximately \(4.941 \times 10^{-324}\).

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details, see Flush-to-zero on page A1-55.

exponent == 0x7FF

The value is either an infinity or a NaN, depending on the fraction bits:

fraction == 0

The value is an infinity. As for single-precision, there are two infinities:
+\text{infinity} when S==0.
–\text{infinity} when S==1.

fraction != 0

The value is a NaN, and is either a quiet \text{NaN} or a \text{signaling NaN}.

The two types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:

bit[51] == 0

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[51] == 1

The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN, see \textit{NaN handling and the Default NaN} on page A1-56.

---Note---

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

---A1.5---

\textbf{BFloat16 floating-point format}

BFloat16, or BF16, is a 16-bit floating-point storage format. The BF16 format inherits many of its properties and
behaviors from the single-precision format defined by the IEEE754 standard, as described in \textit{Single-precision floating-point format} on page A1-46.

For the BFloat16 floating-point format, the layout is:

\begin{tabular}{|c|c|c|c|}
\hline
15 & 14 & 7 & 6 & 0 \\
\hline
S & exponent & fraction & & \\
\hline
\end{tabular}

\(0 < \text{exponent} < 0x\text{FF}\)

The value is a normalized number and is equal to:

\((-1)^{S} \times 2^{(\text{exponent}-127)} \times (1.\text{fraction})\)
The minimum positive normalized number is 2^{-126}, or approximately $1.175 \cdot 10^{-38}$.
The maximum positive normalized number is $(2 - 2^{-7}) \times 2^{127}$, or approximately $3.390 \cdot 10^{38}$.

exponent == 0

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction == 0

The value is a zero. There are two distinct zeros:

+0 when $S==0$

–0 when $S==1$.

These usually behave identically. However, they yield different results in some circumstances. For example, the sign of the result produced as the result of multiplying by zero depends on the sign of the zero. The two zeros can be distinguished from each other by performing an integer bitwise comparison of the two halfwords.

fraction != 0

The value is a denormalized number and is equal to:

$$(-1)^S \times 2^{-126} \times (0.fraction)$$

The minimum positive denormalized number is 2^{-133}, or approximately 9.184×10^{-41}.

If *Flush-to-zero* on page A1-55 is enabled, for the conversion instructions that generate a BF16 result, a result will be flushed to zero if it satisfies the condition $0 < \text{Abs(result)} < 2^{-126}$.

Denormalized numbers are unconditionally flushed to zero by the BF16 arithmetic instructions, and by Advanced SIMD floating-point instructions in AArch32 state. They might be flushed to zero by other floating-point instructions, see *Flush-to-zero* on page A1-55.

For the conversion instructions that generate a BF16 result, the Flush-to-zero mode is enabled by the FPCR.FZ bit in AArch64 state and the FPSCR.FZ bit in AArch32 state.

exponent == 0xFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction == 0

The value is an infinity. There are two distinct infinities:

+infinity when $S==0$. This represents all positive numbers that are too big to be represented accurately as a normalized number.

-infinity when $S==1$. This represents all negative numbers with an absolute value that is too big to be represented accurately as a normalized number.

fraction != 0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

The two types of NaN are distinguished by their most significant fraction bit, bit[6]:

bit[6] == 0 The NaN is a signaling NaN. The sign bit can take any value, and the remaining fraction bits can take any value except all zeros.

bit[6] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction bits can take any value.

In the arithmetic instructions that accept BF16 inputs, there is no distinction between quiet and signaling input NaNs, since these instructions cannot signal a floating-point exception, and any type of input NaN generates the same Default NaN result.

If Default NaN mode is enabled, for the conversion instructions that generate a BF16 result, a BF16 Default NaN result is encoded as $S==0$, exponent=0xFF, fraction=0x40 (bit[6] == 1).

BF16 values are 16-bit half-words that software can convert to single-precision format, by appending 16 zero bits, so that single-precision arithmetic instructions can be used. A single-precision value can be converted to BF16 format if required, either by:

- Truncating, by removing the least significant 16 bits.
- Using the BF16 conversion instructions, see BF16 floating-point instructions on page C3-244.
A1.4.6 Fixed-point format

Fixed-point formats are used only for conversions between floating-point and fixed-point values. They apply to general-purpose registers.

Fixed-point values can be signed or unsigned, and can be 16-bit or 32-bit. Conversion instructions take an argument that specifies the number of fraction bits in the fixed-point number. That is, it specifies the position of the binary point.

A1.4.7 Conversion between floating-point and fixed-point values

Armv8 supports the conversion of a scalar floating-point to or from a signed or unsigned fixed-point value in a general-purpose register.

The instruction argument #fbits indicates that the general-purpose register holds a fixed-point number with fbits bits after the binary point, where fbits is in the range 1 to 64 for a 64-bit general-purpose register, or 1 to 32 for a 32-bit general-purpose register.

More specifically:
- For a 64-bit register X_d:
 - The integer part is X_d[63:#fbits].
 - The fractional part is X_d[(#fbits-1):0].
- For a 32-bit register W_d or R_d:
 - The integer part is W_d[31:#fbits] or R_d[31:#fbits].
 - The fractional part is W_d[(#fbits-1):0] or R_d[(#fbits-1):0].

These instructions can cause the following floating-point exceptions:

- **Invalid Operation**
 When the floating-point input is NaN or Infinity or when a numerical value cannot be represented within the destination register.

- **Inexact**
 When the numeric result differs from the input value.

- **Input Denormal**
 When Flush-to-zero mode is enabled and the denormal input is replaced by a zero.

________ Note _________

An out of range fixed-point result is saturated to the destination size.

For more information, see Floating-point exceptions and exception traps on page D1-2354.

A1.4.8 Polynomial arithmetic over \{0, 1\}

Some SIMD instructions that operate on SIMD&FP registers can operate on polynomials over \{0, 1\}, see Supported data types on page A1-40. The polynomial data type represents a polynomial in x of the form \(b_{n-1}x^{n-1} + \ldots + b_1x + b_0\) where \(b_k\) is bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
- \(0 + 0 = 1 + 1 = 0\)
- \(0 + 1 = 1 + 0 = 1\)
- \(0 \times 0 = 0 \times 1 = 1 \times 0 = 0\)
- \(1 \times 1 = 1\).

That is:
- Adding two polynomials over \{0, 1\} is the same as a bitwise exclusive OR.
- Multiplying two polynomials over \{0, 1\} is the same as integer multiplication except that partial products are exclusive-ORed instead of being added.
A64, A32, and T32 provide instructions for performing polynomial multiplication of 8-bit values.

- For AArch32, see VMUL (integer and polynomial) on page F6-5394 and VMULL (integer and polynomial) on page F6-5400.
- For AArch64, see PMUL on page C7-1884 and PMULL, PMULL2 on page C7-1886.

The Cryptographic Extension adds the ability to perform long polynomial multiplies of 64-bit values. See PMULL, PMULL2 on page C7-1886.

Pseudocode description of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomial multiplication is described by the PolynomialMult() function defined in Chapter J1 Armv8 Pseudocode.
A1.5 Advanced SIMD and floating-point support

--- Note ---

In AArch32 state, the SIMD instructions that operate on SIMD&FP registers are always described as the Advanced SIMD instructions, to distinguish them from the SIMD instructions in the base instruction sets, that operate on the 32-bit general-purpose registers. The A64 instruction set does not provide any SIMD instructions that operate on the general-purpose registers, and therefore some AArch64 state descriptions use SIMD as a synonym for Advanced SIMD. Unless the context clearly indicates otherwise, this section describes the support for SIMD instructions that operate on SIMD&FP registers.

Armv8 can support the following levels of support for Advanced SIMD and floating-point instructions:

- Full SIMD and floating-point support without exception trapping.
- Full SIMD and floating-point support with exception trapping.
- No floating-point or SIMD support. This option is licensed only for implementations targeting specialized markets.

--- Note ---

All systems that support standard operating systems with rich application environments provide hardware support for Advanced SIMD and floating-point. It is a requirement of the ARM Procedure Call Standard for AArch64, see Procedure Call Standard for the Arm 64-bit Architecture.

Armv8 supports single-precision (32-bit) and double-precision (64-bit) floating-point data types and arithmetic as defined by the IEEE 754 floating-point standard. It also supports the half-precision (16-bit) floating-point data type for data storage, by supporting conversions between single-precision and half-precision data types and double-precision and half-precision data types. When FEAT_FP16 is implemented, it also supports the half-precision floating-point data type for data-processing operations.

The SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar operations, and support:

- Single-precision and double-precision arithmetic in AArch64 state.
- Single-precision arithmetic only in AArch32 state.
- When FEAT_FP16 is implemented, half-precision arithmetic is supported in AArch64 and AArch32 states.

Floating-point support in AArch64 state SIMD is IEEE 754-2008 compliant with:

- Configurable rounding modes.
- Configurable Default NaN behavior.
- Configurable Flush-to-zero behavior.

Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from Armv7. A32 and T32 Advanced SIMD floating-point always uses Arm standard floating-point arithmetic and performs IEEE 754 floating-point arithmetic with the following restrictions:

- Denormalized numbers are flushed to zero, see Flush-to-zero on page A1-55.
- Only default NaNs are supported, see NaN handling and the Default NaN on page A1-56.
- The Round to Nearest rounding mode is used.
- Untrapped floating-point exception handling is used for all floating-point exceptions.

If floating-point exception trapping is supported, floating-point exceptions, such as Overflow or Divide by Zero, can be handled without trapping. This applies to both SIMD and floating-point operations. When handled in this way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be produced by the operation. For more information about floating-point exceptions, see Floating-point exceptions and exception traps on page D1-2354.
In AArch64 state, the following registers control floating-point operation and return floating-point status information:

- **The Floating-Point Control Register, FPCR, controls:**
 - The half-precision format where applicable, FPCR.AHP bit.
 - Default NaN behavior, FPCR.DN bit.
 - Flush-to-zero behavior, FPCR.{FZ, FZ16} bits. If FEAT_FP16 is not implemented, FPCR.FZ16 is RES0.
 - Rounding mode support, FPCR.Rmode field.
 - Len and Stride fields associated with execution in AArch32 state, and only supported for a context save and restore from AArch64 state. These fields are obsolete in Armv8 and can be implemented as RAZ/WI. If they are implemented as RW and are programmed to a nonzero value, they make some AArch32 floating-point instructions UNDEFINED.
 - Floating-point exception trap controls, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits, see Floating-point exceptions and exception traps on page D1-2354.

- **The Floating-Point Status Register, FPSR, provides:**
 - Cumulative floating-point exceptions flags, FPSR.{IDC, IXC, UFC, OFC, DZC, IOC and QC}.
 - The AArch32 floating-point comparison flags {N,Z,C,V}. These bits are RES0 if AArch32 floating-point is not implemented.

 Note
 In AArch64 state, the process state flags, PSTATE.{N,Z,C,V} are used for all data-processing compares and any associated conditional execution.
 If FEAT_FlagM2 is implemented, the instructions AXFLAG and XAFLAG convert between the Arm condition flag format and an alternative format shown in Relationship between ARM format and alternative format PSTATE condition flags on page C6-770.

AArch32 state provides a single Floating-Point Status and Control Register, FPSCR, combining the FPCR and FPSR fields.

For system level information about the SIMD and floating-point support, see Advanced SIMD and floating-point support on page G1-5812.

A1.5.1 Instruction support

The Advanced SIMD and floating-point instructions support:

- Load and store for single elements and vectors of multiple elements.

 Note
 Single elements are also referred to as scalar elements.

- Data processing on single and multiple elements for both integer and floating-point data types.
- When FEAT_FCMA is implemented, complex number arithmetic.
- Floating-point conversion between different levels of precision.
- Conversion between floating-point, fixed-point integer, and integer data types.
- Floating-point rounding.

For more information on the SIMD and floating-point instructions in AArch64 state, see Chapter C3 A64 Instruction Set Overview.

For more information on the Advanced SIMD and floating-point instructions in AArch32 state, see Chapter F1 The AArch32 Instruction Sets Overview.
A1.5.2 Floating-point standards, and terminology

The Arm includes support for all the required features of ANSI/IEEE Std 754-2008, *IEEE Standard for Binary Floating-Point Arithmetic*, referred to as IEEE 754-2008. However, some terms in this manual are based on the 1985 version of this standard, referred to as IEEE 754-1985:

- Arm floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how IEEE 754-2008 changes these terms.
- References to IEEE 754 that do not include the issue year apply to either issue of the standard.

Table A1-3 shows how the terminology in this manual differs from that used in IEEE 754-2008.

<table>
<thead>
<tr>
<th>This manual</th>
<th>IEEE 754-2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized a</td>
<td>Normal</td>
</tr>
<tr>
<td>Denormal, or denormalized</td>
<td>Subnormal</td>
</tr>
<tr>
<td>Round towards Minus Infinity (RM)</td>
<td>roundTowardsNegative</td>
</tr>
<tr>
<td>Round towards Plus Infinity (RP)</td>
<td>roundTowardsPositive</td>
</tr>
<tr>
<td>Round towards Zero (RZ)</td>
<td>roundTowardZero</td>
</tr>
<tr>
<td>Round to Nearest (RN)</td>
<td>roundTiesToEven</td>
</tr>
<tr>
<td>Round to Nearest with Ties to Away</td>
<td>roundTiesToAway</td>
</tr>
<tr>
<td>Rounding mode</td>
<td>Rounding-direction attribute</td>
</tr>
</tbody>
</table>

a. Normalized number is used in preference to normal number, because of the other specific uses of normal in this manual.

A1.5.3 Arm standard floating-point input and output values

Armv8 provides full IEEE 754 floating-point arithmetic support. In AArch32 state, floating-point operations performed using Advanced SIMD instructions are limited to Arm standard floating-point operation, regardless of the selected rounding mode in the FPSCR. Unlike AArch32, AArch64 SIMD floating point arithmetic is performed using the rounding mode selected by the FPCR.

Arm standard floating-point arithmetic supports the following input formats defined by the IEEE 754 floating-point standard:

- Zeros.
- Normalized numbers.
- Denormalized numbers are flushed to 0 before floating-point operations, see *Flush-to-zero* on page A1-55.
- NaNs.
- Infinities.

Arm standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined by the IEEE 754 standard.

Arm standard floating-point arithmetic supports the following output result formats defined by the IEEE 754 standard:

- Zeros.
- Normalized numbers.
- Results that are less than the minimum normalized number are flushed to zero, see *Flush-to-zero* on page A1-55.
- NaNs produced in floating-point operations are always the default NaN, see *NaN handling and the Default NaN* on page A1-56.
A1.5.4 Flush-to-zero

The performance of floating-point processing can be reduced when doing calculations involving denormalized numbers and Underflow exceptions. In many algorithms, this performance can be recovered, without significantly affecting the accuracy of the final result, by replacing the denormalized operands and intermediate results with zeros. To permit this optimization, Arm floating-point implementations allow a Flush-to-zero mode to be used for different floating-point formats as follows:

For AArch64:

- If FPCR.FZ==1, then Flush-to-zero mode is used for all single-precision and double-precision inputs and outputs of all instructions. When FEAT_BF16 is implemented, Flush-to-zero mode is used for all single-precision and double-precision inputs and outputs of all instructions, and conversion instructions that generate a BF16 result.
- If FPCR.FZ16==1, then Flush-to-zero mode is used for all half-precision inputs and outputs of floating-point instructions, other than:
 - Conversions between half-precision and single-precision numbers.
 - Conversions between half-precision and double-precision numbers.

For AArch32:

- If FPSCR.FZ==0, then Flush-to-zero mode is used for all single-precision and double-precision inputs and outputs of all Advanced SIMD floating-point instructions.
- If FPSCR.FZ==1, then Flush-to-zero mode is used for all single-precision and double-precision inputs and outputs of all instructions. When FEAT_AA32BF16 is implemented, Flush-to-zero mode is used for all single-precision and double-precision inputs and outputs of all instructions, and conversion instructions that generate a BF16 result.
- If FPSCR.FZ16==1, then Flush-to-zero mode is used for all half-precision inputs and outputs of floating-point instructions, other than:
 - Conversions between half-precision and single-precision numbers.
 - Conversions between half-precision and double-precision numbers.

If Flush-to-zero mode is used on a single-precision or double-precision input:

- All inputs to floating-point operations that are denormalized numbers in their represented precision are treated as though they were zero with the same sign as the input, and an Input Denormal floating-point exception is generated.

Note

The Input Denormal floating-point exception occurs only in Flush-to-zero mode.

In AArch32 state, the FPSCR contains a cumulative exception bit FPSCR.IDC and optional trap enable bit FPSCR.IDE corresponding to the Input Denormal floating-point exception.

In AArch64 state, the FPSR contains a cumulative exception bit FPSR.IDC and optional trap enable bit FPCR.IDE corresponding to the Input Denormal floating-point exception.

The occurrence of all floating-point exceptions except Input Denormal is determined using the input values that are treated as zero by this mechanism.

If Flush-to-zero mode is used on a half-precision input:

- All inputs to floating-point operations that are denormalized numbers in their represented precision are treated as though they were zero with the same sign as the input.
Note

When FEAT_FP16 is implemented, when in Flush-to-zero mode, a half-precision floating-point number that is flushed to zero does not generate an Input Denormal floating-point exception. This is because this situation is much less exceptional than for double-precision or single-precision denormalized numbers.

The occurrence of all floating-point exceptions is determined using the input values that are treated as zero by this mechanism.

If Flush-to-zero mode is used on any output of an instruction:

• The output is returned as zero, with the same sign bit as the result, if the result before rounding of the operation specified by the instruction satisfies the condition:

\[0 < \text{Abs(result)} < \text{MinNorm}, \]

where:

— MinNorm is \(2^{-14}\) for half-precision.
— MinNorm is \(2^{-126}\) for single-precision.
— MinNorm is \(2^{-1022}\) for double-precision.

If this occurs, then:

— An Underflow Exception is generated, but in all implementations, the Underflow Exception is not trapped even if the AArch32 FPSCR.UFE==1 or the AArch64 FPCR.UFE==1.
— An Inexact Exception is not generated.

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754 compatibility is a requirement. Flush-to-zero mode must be used with care. Although it can improve performance on some algorithms, there are significant limitations on its use. These are application dependent:

• On many algorithms, it has no noticeable effect, because the algorithm does not normally use denormalized numbers.

• On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results of the algorithm.

A1.5.5 NaN handling and the Default NaN

The IEEE 754 standard specifies that:

• An operation that causes an Invalid Operation floating-point exception generates a quiet NaN as its result if that exception is untrapped.

• An operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN as its result.

The floating-point processing behavior when Default NaN mode is disabled adheres to this, with the following additions:

• If an untrapped Invalid Operation floating-point exception occurs, the quiet NaN result is derived from:

 — The first signaling NaN operand, if the exception occurs because at least one of the operands is a signaling NaN.
 — Otherwise, the default NaN.

• If an untrapped Invalid Operation floating-point exception does not occur, but at least one of the operands is a quiet NaN, the result is derived from the first quiet NaN operand.

Depending on the operation, the exact value of a derived quiet NaN result may differ in both sign and number of fraction bits from its source. For a quiet NaN result derived from signaling NaN operand, the most-significant fraction bit is set to 1.
A1.5 Advanced SIMD and floating-point support

--- Note ---

- In these descriptions, first operand relates to the left-to-right ordering of the arguments to the pseudocode function that describes the operation.
- The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

The SIMD and floating-point processing behavior, when Default NaN mode is enabled, is that the Default NaN is the result of all floating-point operations that either:
- Cause untrapped Invalid Operation floating-point exceptions.
- Have one or more quiet NaN inputs, but no signaling NaN inputs.

Table A1-4 shows the format of the default NaN for Arm floating-point operations.

Default NaN mode is selected for the floating-point processing by setting the FPCR.DN bit to 1.

Other aspects of the functionality of the Invalid Operation floating-point exception are not affected by Default NaN mode. These are that:
- If untrapped, it causes the FPSR.IOC bit to be set to 1.
- If trapped, it causes a user trap handler to be invoked.

Table A1-4 Default NaN encoding

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign bit</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exponent</td>
<td>0x3F</td>
<td>0xFF</td>
<td>0x7FF</td>
</tr>
</tbody>
</table>

A1.5.6 Round to Odd mode

Round to Odd mode is not defined by IEEE 754, and differs between the FCVTXN instruction and the BFloat16 instructions.

Round to Odd mode in FCVTXN

The FCVTXN instructions use Round to Odd rounding mode to ensure that if the result of the conversion is inexact the least significant bit of the mantissa is forced to 1.

This rounding mode enables a floating-point value to be converted to a lower precision format via an intermediate precision format while avoiding double rounding errors. For example, a 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit value and then using another instruction with the required rounding mode to convert the 32-bit value to the final 16-bit floating-point value.

Round to Odd mode in BFloat16

When FEAT_BF16 or FEAT_AA32BF16 are implemented, then BFloat16 instructions are implemented. The BFloat16 instructions use Round to Odd mode, sometimes known as sticky rounding, to avoid double rounding errors when converting a floating-point value to a lower precision format in two steps, if the intermediate format has at least two more bits of precision than the result format.

When used, the effect of Round to Odd mode depends on the rounded value:
- When the rounded value is inexact, the least significant bit of the fraction is set to 1.
- When the rounded value has a magnitude that is too large to represent in the single-precision format, then an appropriately signed single-precision Infinity is generated.
A1.6 The Arm memory model

The Arm memory model supports:

• Generating an exception on an unaligned memory access.
• Restricting access by applications to specified areas of memory.
• Translating virtual addresses (VAs) provided by executing instructions to physical addresses (PAs).
• Altering the interpretation of multi-byte data between big-endian and little-endian.
• Controlling the order of accesses to memory.
• Controlling caches and address translation structures.
• Synchronizing access to shared memory by multiple PEs.
• Barriers that control and prevent speculative access to memory.

VA support depends on the Execution state, as follows:

AArch64 state

Supports 64-bit virtual addressing, with the Translation Control Register determining the supported VA range. Execution at EL1 and EL0 supports two independent VA ranges, each with its own translation controls.

AArch32 state

Supports 32-bit virtual addressing, with the Translation Control Register determining the supported VA range. For execution at EL1 and EL0, system software can split the VA range into two subranges, each with its own translation controls.

The supported PA space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can translate VAs to blocks or pages of memory anywhere within the supported PA space.

For more information, see:

For execution in AArch64 state

• Chapter B2 The AArch64 Application Level Memory Model.
• Chapter D4 The AArch64 System Level Memory Model.
• Chapter D5 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state

• Chapter E2 The AArch32 Application Level Memory Model.
• Chapter G4 The AArch32 System Level Memory Model.
• Chapter G5 The AArch32 Virtual Memory System Architecture.
Chapter A2
Armv8-A Architecture Extensions

This chapter introduces the Arm architecture versions and extensions. It contains the following sections:

• *Armv8.0 architecture extensions* on page A2-60.
• *Architectural features within Armv8.0 architecture* on page A2-63.
• *The Armv8 Cryptographic Extension* on page A2-67.
• *The Armv8.1 architecture extension* on page A2-69.
• *The Armv8.2 architecture extension* on page A2-72.
• *The Armv8.3 architecture extension* on page A2-81.
• *The Armv8.4 architecture extension* on page A2-85.
• *The Armv8.5 architecture extension* on page A2-90.
• *The Armv8.6 architecture extension* on page A2-94.
• *The Reliability, Availability, and Serviceability Extension* on page A2-97.
• *The Statistical Profiling Extension (SPE)* on page A2-98.
• *The Scalable Vector Extension (SVE)* on page A2-99.
• *The Activity Monitors Extension (AMU)* on page A2-100.
A2.1 Armv8.0 architecture extensions

The original Armv8-A architecture is called Armv8.0. The following sections of this manual describe or summarize permitted extensions to Armv8.0:

- *Event monitors* on page D1-2399.
- *The IVIPT Extension* on page D5-2681.
- *Chapter H7 The PC Sample-based Profiling Extension*.

Note

The naming convention of features in the Arm architecture has been redefined. For more information on how these names map to the legacy convention, see *Appendix K13 Legacy Feature Naming Convention*.

In addition to describing Armv8.0, this manual describes the following architectural extensions:

Features added to Armv8.0 in later releases

Architectural features and architectural requirements have been added to the original Armv8-A architecture. For more information, see:

- *Additional functionality added to Armv8.0 in later releases* on page A2-63.
- *Architectural requirements within Armv8.0 architecture* on page A2-65.

For more information, see *Architectural features within Armv8.0 architecture* on page A2-63.

The Armv8.1 architectural extension

The Armv8.1 architecture extension adds both:

- Architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.
- Architectural requirements. These are mandatory.

An implementation is Armv8.1 compliant when all of the following apply:

- It includes all of the Armv8.1 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.1 compliant implementation includes the optional architecture component or extension. See *Architectural features added by Armv8.1* on page A2-69 for all of the Armv8.1 architectural features.
- It includes all of the Armv8.1 architectural requirements. *Additional requirements of Armv8.1* on page A2-71 lists these requirements.

For more information, see *The Armv8.1 architecture extension* on page A2-69.

The Armv8.2 architectural extension

The Armv8.2 architecture extension is an extension to Armv8.1. It adds both:

- Architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.
- Architectural requirements. These are mandatory.

An implementation is Armv8.2 compliant if all of the following apply:

- It is Armv8.1 compliant.
- It includes all of the Armv8.2 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.2 compliant implementation includes the optional architecture component or extension. The features are listed at:
 - *Architectural features added by Armv8.2* on page A2-72, which lists the original Armv8.2 architectural features.
— *Features added to the Armv8.2 extension in later releases* on page A2-78, which lists additional Armv8.2 architectural features.

- It includes all of the Armv8.2 architectural requirements. *Additional requirements of Armv8.2 on page A2-78* lists these requirements.

For more information, see *The Armv8.2 architecture extension* on page A2-72.

The Armv8.3 architectural extension

The Armv8.3 architecture extension is an extension to Armv8.2. It adds both:

- Architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.
- Architectural requirements. These are mandatory.

An implementation is Armv8.3 compliant if all of the following apply:

- It is Armv8.2 compliant.
- It includes all of the Armv8.3 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.3 compliant implementation includes the optional architecture component or extension. The features are listed at:
 - *Architectural features added by Armv8.3 on page A2-81*, which lists the original Armv8.3 architectural features.
 - *Features added to the Armv8.3 extension in later releases on page A2-83*, which lists additional Armv8.3 architectural features.
- It includes all of the Armv8.3 architectural requirements. *Additional requirements of Armv8.3 on page A2-83* lists these requirements.

For more information, see *The Armv8.3 architecture extension on page A2-81*.

The Armv8.4 architectural extension

The Armv8.4 architecture extension is an extension to Armv8.3. It adds architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.4 compliant if all of the following apply:

- It is Armv8.3 compliant.
- It includes all of the Armv8.4 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.4 compliant implementation includes the optional architecture component or extension. See *Architectural features added by Armv8.4 on page A2-85* for all of the Armv8.4 architectural features.

For more information, see *The Armv8.4 architecture extension on page A2-85*.

The Armv8.5 architectural extension

The Armv8.5 architecture extension is an extension to Armv8.4. It adds architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.5 compliant if all of the following apply:

- It is Armv8.4 compliant.
- It includes all of the Armv8.5 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.5 compliant implementation includes the optional architecture component or extension. See *Architectural features added by Armv8.5 on page A2-90* for all of the Armv8.5 architectural features.
- It includes all of the Armv8.5 architectural requirements. *Additional requirements of Armv8.5 on page A2-92* lists these requirements.

For more information, see *The Armv8.5 architecture extension on page A2-90*.
The Armv8.6 architectural extension

The Armv8.6 architecture extension is an extension to Armv8.5. It adds architectural features. Some of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.6 compliant if all of the following apply:

- It is Armv8.5 compliant.
- It includes all of the Armv8.6 architectural features that are mandatory. This includes all architectural features of an optional architecture component or extension that are defined as mandatory, if the Armv8.6 compliant implementation includes the optional architecture component or extension. See Architectural features added by Armv8.6 on page A2-94 for all of the Armv8.6 architectural features.
- It includes all of the Armv8.6 architectural requirements. Additional requirements of Armv8.6 on page A2-95 lists these requirements.

For more information, see The Armv8.6 architecture extension on page A2-94.

The Statistical Profiling Extension (SPE)

SPE is an optional extension to Armv8.2. That is, SPE requires the implementation of Armv8.2.

For more information, see The Statistical Profiling Extension (SPE) on page A2-98.

The Scalable Vector Extension (SVE)

SVE is an optional extension to Armv8.2. That is, SVE requires the implementation of Armv8.2.

For more information, see The Scalable Vector Extension (SVE) on page A2-99.

The Activity Monitors Extension (AMU)

AMU is an optional extension to Armv8.4. That is, AMU requires the implementation of Armv8.4.

For more information, see The Activity Monitors Extension (AMU) on page A2-100.

The Memory Partitioning and Monitoring Extension (MPAM)

MPAM is an optional extension to Armv8.2. That is, MPAM requires the implementation of Armv8.2.

For more information, see The Memory Partitioning and Monitoring (MPAM) Extension on page A2-101.

See also Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features.

A2.1.1 Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features

An Armv8.x compliant implementation can include any arbitrary subset of the architectural features of Armv8.(x+1), subject only to those constraints that require that certain features be implemented together.

Unless this manual permits otherwise, an Armv8.x compliant implementation does not include any features of Armv8.(x+2) or later.

--- Note ---

The addition of Armv8.(x+1) features to an Armv8.x compliant implementation is only permitted if the implementer has a license to Armv8.(x+1) in addition to the license to Armv8.x.
A2.2 Architectural features within Armv8.0 architecture

This includes architectural features and architectural requirements that have been added to the Armv8.0 architecture since the initial release, that were not part of the original Armv8-A architecture, see:

• Additional functionality added to Armv8.0 in later releases.
• Architectural requirements within Armv8.0 architecture on page A2-65.

A2.2.1 Additional functionality added to Armv8.0 in later releases

An implementation of Armv8.0 can include any or all of the features that this section describes.

The Armv8.0 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_SB, Speculation Barrier

FEAT_SB introduces a barrier to control speculation. This instruction is supported in both AArch64 and AArch32 states. This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations. The following fields identify the presence of FEAT_SB:

• ID_AA64ISAR1_EL1.SB.
• ID_ISR6_EL1.SB.
• ID_ISR6.SB.

For more information, see:

• Speculation Barrier (SB) on page B2-135.
• Barriers and CLREX instructions on page C3-203.
• Speculation Barrier (SB) on page E2-4033.
• Miscellaneous instructions on page F1-4093.

FEAT_SSBS, Speculative Store Bypass Safe

FEAT_SSBS allows software to indicate whether hardware is permitted to load or store speculatively in a manner that could give rise to a cache timing side channel, which in turn could be used to derive an address from values loaded to a register from memory. To do this, the software sets the PSTATE.SSBS. This feature is supported in both AArch64 and AArch32 states. This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations. The following fields identify the presence of FEAT_SSBS:

• ID_AA64PFR1_EL1.SSBS.
• ID_PFR2_EL1.SSBS.
• ID_PFR2.SSBS.

For more information, see:

• Speculative Store Bypass Safe (SSBS) on page B2-133.
• Speculative Store Bypass Safe (SSBS) on page E2-4030.

FEAT_CSV2, Cache Speculation Variant 2

FEAT_CSV2 adds a mechanism to identify if hardware cannot disclose information about whether branch targets trained in one hardware described context can affect speculative execution in a different hardware described context. In AArch64, the feature also adds the SCXTNUM_EL0, SCXTNUM_EL1, SCXTNUM_EL2, and SCXTNUM_EL3 registers, which provide a number that can be used to separate out different context numbers within their respective Exception levels for the purpose of protecting against side-channels using branch prediction and similar resources. This feature is supported in both AArch64 and AArch32 states. The SCXTNUM_ELx registers are only supported in AArch64 state. This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.
The following fields identify the presence of FEAT_CSV2:

- ID_AA64PFR0_EL1.CSV2.
- ID_PFR0_EL1.CSV2.
- ID_PFR0.CSV2.

For more information, see:

- Restrictions on the effects of speculation on page E2-4029.

FEAT_CSV3, Cache Speculation Variant 3

FEAT_CSV3 adds a mechanism to identify if hardware cannot disclose information about whether data loaded under speculation with a permission or domain fault can be used to form an address, generate condition codes, or generate SVE predicate values, to be used by instructions newer than the load in the speculative sequence.

This feature is supported in both AArch64 and AArch32 states.

This feature is optional in Armv8.0 implementations and mandatory in Armv8.5 implementations.

This feature is mandatory when FEAT_E0PD is implemented.

The following fields identify the presence of FEAT_CSV3:

- ID_AA64PFR0_EL1.CSV3.
- ID_PFR2_EL1.CSV3.
- ID_PFR2.CSV3.

FEAT_SPECRES, Speculation restriction instructions

FEAT_SPECRES adds the CFP RCTX, CPP RCTX, DVP RCTX, CFPRCTX, CPPRCTX, and DVPRTX System instructions. These instructions prevent predictions based on information gathered from earlier execution within a particular execution context from affecting the later speculative execution within that context, to the extent that the speculative execution is observable through side channels.

This feature is supported in both AArch64 and AArch32 states.

This feature is optional in Armv8.0 implementations and mandatory in Armv8.5 implementations.

The following fields identify the presence of FEAT_SPECRES:

- ID_AA64ISR1_EL1.SPECRES.
- ID_ISR6_EL1.SPECRES.
- ID_ISR6.SPECRES.

For more information, see:

- Prediction restriction instructions on page C5-378.
- Execution and data prediction restriction System instructions on page D4-2516.
- Execution and data prediction restriction System instructions on page G4-5950.

FEAT_CP15SDISABLE2, CP15SDISABLE2

FEAT_CP15SDISABLE2 provides an implementation-defined mechanism, the CP15SDISABLE2 signal, which when asserted HIGH prevents writes to a set of Secure CP15 registers. This signal is analogous to the existing CP15SDISABLE signal.

This feature is only supported when EL3 is executing in AArch32 state.

This feature is optional in Armv8.0 implementations.

For more information, *The CP15SDISABLE and CP15SDISABLE2 input signals on page G5-6096.*

FEAT_DoubleLock, Double Lock

FEAT_DoubleLock is the mnemonic used for the OS Double Lock.

If FEAT_DoPD is not implemented, and FEAT_Debugv8p2 is implemented, this feature is optional.
If FEAT_DoPD is not implemented and FEAT_Debugv8p2 is not implemented, this feature is mandatory.
If FEAT_DoPD is implemented this feature is not implemented.
The ID_AA64DFR0_EL1.DoubleLock field identifies that the OS Double Lock has been implemented.

FEAT_DGH, Data Gathering Hint
FEAT_DGH adds the Data Gathering Hint instruction to the hint space.
This instruction is added to the A64 instruction set only.
This feature is optional in Armv8.0 implementations.
The ID_AA64ISAR1_EL1.DGH field identifies the presence of FEAT_DGH.
For more information, see Hint instructions on page C3-203.

FEAT_ETS, Enhanced Translation Synchronization
FEAT_ETS adds support for enhanced memory access ordering requirements for translation table walks.
This feature is supported in AArch64 and AArch32 states.
This feature is optional in Armv8.0 implementations.
The following fields identify the presence of FEAT_ETS:
• ID_AA64MMFR1_EL1.ETS.
• ID_MMFR5_EL1.ETS.
• ID_MMFR5.ETS.
For more information, see:
• Ordering of memory accesses from translation table walks on page D5-2557.
• Ordering of translation table walks on page E2-4038.

FEAT_PCSRv8, PC Sample-based Profiling Extension
FEAT_PCSRv8 adds support for PC Sample-based Profiling Extension that provides coarse-grained, non-invasive profiling by an external debugger.
This feature is optional in Armv8.0 implementations.
The following fields identify the presence of FEAT_PCSRv8:
• EDDEVID.PCSample.
• DBGDEVID.PCSSample.
• EDDEVID1.PCSROffset.
• DBGDEVID1.PCSROffset.
• PMDEVID.PCSample.
For more information, see About the PC Sample-based Profiling Extension on page H7-7132.

A2.2.2 Architectural requirements within Armv8.0 architecture
The Armv8.0 architecture includes some mandatory changes, that have been added to the architecture at a later date, that are not associated with a feature. These are:

Prefetch speculation protection
When substituting a direct branch with another direct branch, or a nop with a direct branch, by the modified PE, at around the time that the executing PE is executing the software being modified, prefetch speculation protection prevents the old instructions from accidentally being fetched to the executing PE. For further information on implementation of these requirements, see:
• Ordering of instruction fetches on page B2-131.
• Ordering of instruction fetches on page E2-4028.
An implementation of the Armv8.0 architecture must comply with all of the additional requirements. When combined with the mandatory architectural features that have been added to the Armv8.0 architecture, such an implementation is also called an implementation of the Armv8.0 architecture.
A2.3 The Armv8 Cryptographic Extension

The Armv8.0 Cryptographic Extension provides instructions for the acceleration of encryption and decryption, and includes the following features:

- **FEAT_AES**, which includes the `AESD` and `AESE` instructions.
- **FEAT_PMULL**, which includes the `PMULL`, `PMULL2` instructions.
- **FEAT_SHA1**, which includes the SHA1+ instructions.
- **FEAT_SHA256**, which includes the SHA256+ instructions.

From Armv8.2, an implementation of the Armv8.0 Cryptographic Extension can include either or both of:

- The AES functionality, including support for multiplication of 64-bit polynomials. The `ID_AA64ISAR0_EL1.AES` field indicates whether this functionality is supported.
- The SHA1 and SHA2-256 functionality. The `ID_AA64ISAR0_EL1.{SHA2, SHA1}` fields indicate whether this functionality is supported.

The presence of the Cryptographic Extension in an implementation is subject to export license controls. The Cryptographic Extension is an extension of the SIMD support and operates on the vector register file.

The Cryptographic Extension also provides multiply instructions that operate on long polynomials.

The Cryptographic Extension provides this functionality in AArch64 state and AArch32 state, and an implementation that supports both AArch64 state and AArch32 state provides the same Cryptographic Extension functionality in both states.

For more information, see The Cryptographic Extension on page C3-259 or The Cryptographic Extension in AArch32 state on page F1-4110.

A2.3.1 Armv8.2 extensions to the Cryptographic Extension

Armv8.2 adds optional extensions to the Armv8 Cryptographic Extension, that provide cryptographic functionality in AArch64 state only. These optional features are:

FEAT_SHA512, Advanced SIMD SHA512 instructions

FEAT_SHA512 adds Advanced SIMD instructions that support SHA2-512 functionality.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SHA512 requires implementation of the Armv8.0 Cryptographic Extension FEAT_SHA1 and FEAT_SHA256 functionality.

The `ID_AA64ISAR0_EL1.SHA2` field identifies the presence of FEAT_SHA512.

For more information, see FEAT_SHA512, SHA2-512 functionality on page C3-260.

FEAT_SHA3, Advanced SIMD SHA3 instructions

FEAT_SHA3 adds Advanced SIMD instructions that support SHA3 functionality.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SHA3 requires implementation of the Armv8.0 Cryptographic Extension FEAT_SHA1 and FEAT_SHA256 functionality.

The `ID_AA64ISAR0_EL1.SHA3` field identifies the presence of FEAT_SHA3.

For more information, see FEAT_SHA3, SHA3 functionality on page C3-261.

FEAT_SM3, Advanced SIMD SM3 instructions

FEAT_SM3 adds Advanced SIMD instructions that support the Chinese cryptography algorithm SM3.

These instructions are added to the A64 instruction set only.

Implementation of FEAT_SM3 is independent of the implementation of any SHA functionality.

The `ID_AA64ISAR0_EL1.SM3` field identifies the presence of FEAT_SM3.
For more information, see *FEAT_SM3, SM3 functionality* on page C3-262.

FEAT_SM4, Advanced SIMD SM4 instructions

FEAT_SM4 adds Advanced SIMD instructions that support the Chinese cryptography algorithm SM4.

Implementation of FEAT_SM4 is independent of the implementation of any SHA functionality. These instructions are added to the A64 instruction set only. The ID_AA64ISAR0_EL1.SM4 field identifies the presence of FEAT_SM4.

For more information, see *FEAT_SM4, SM4 functionality* on page C3-262.
A2.4 The Armv8.1 architecture extension

The Armv8.1 architecture extension adds both architectural features and architectural requirements, see:

- Architectural features added by Armv8.1.
- Additional requirements of Armv8.1 on page A2-71.

A2.4.1 Architectural features added by Armv8.1

An implementation of the Armv8.1 extension must include all of the features that this section describes as mandatory. Such an implementation, when combined with the additional requirements of Armv8.1, is also called an implementation of the Armv8.1 architecture.

The Armv8.1 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_LSE, Large System Extensions

FEAT_LSE introduces a set of atomic instructions:

- Compare and Swap instructions, CAS and CASP.
- Atomic memory operation instructions, LD<OP> and ST<OP>, where <OP> is one of ADD, CLR, EOR, SET, SMAX, SMIN, UMAX, and UMIN.
- Swap instruction, SWP.

These instructions are only added to the A64 instruction set.
This feature is mandatory in Armv8.1 implementations.
Implementations of FEAT_VHE require the implementation of FEAT_LSE.
The ID_AA64ISAR0_EL1.Atomic field identifies the presence of FEAT_LSE.
For more information, see:
- Atomic memory operations on page C3-219.
- Swap on page C3-222.
- Compare and Swap on page C3-222.

FEAT_RDM, Advanced SIMD rounding double multiply accumulate instructions

FEAT_RDM introduces Rounding Double Multiply Add/Subtract Advanced SIMD instructions.
For more information, see:

For the A64 instruction set

- SQRDMMLAH (by element) on page C7-2045.
- SQRDMMLAH (vector) on page C7-2048.
- SQRDMMLSH (by element) on page C7-2050.
- SQRDMMLSH (vector) on page C7-2053.

For the T32 and A32 instruction sets

- VQRDMLAH on page F6-5476.
- VQRDMLSH on page F6-5480.

This feature is mandatory in Armv8.1 implementations.
The following fields identify the presence of FEAT_RDM:
- ID_AA64ISAR0_EL1.RDM.
- ID_ISAR5_EL1.RDM.
- ID_ISAR5.RDM.

FEAT_LOR, Limited ordering regions

Limited ordering regions allow large systems to perform special load-acquire and store-release instructions that provide order between the memory accesses to a region of the PA map as observed by a limited set of observers.
This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.1 implementations.
The ID_AA64MMFR1_EL1.LO field identifies the presence of FEAT_LOR.
For more information, see:
- Limited ordering regions on page B2-141.

FEAT_HPDS, Hierarchical permission disabled
FEAT_HPDS introduces the facility to disable the hierarchical attributes, APTable, PXNTable, and UXNTable, in the translation tables. This disable has no effect on the NSTable bit.
This feature is mandatory in Armv8.1 implementations.
This feature is added only to the VMSAv8-64 translation regimes. Armv8.2 extends this to the AArch32 translation regimes, see FEAT_AA32HPD.
The ID_AA64MMFR1_EL1.HPDS field identifies the presence of FEAT_HPDS.

FEAT_HAFDBS, Hardware management of the Access flag and dirty state
In Armv8.0, all updates to the translation tables are performed by software. From Armv8.1, for the VMSAv8-64 translation regimes only, hardware can perform updates to the translation tables in two contexts:
- Hardware management of the Access flag.
- Hardware management of dirty state, with updates to a dirty state in the translation tables.
The dirty state is introduced in Armv8.1.
Hardware management of dirty state can only be enabled when hardware management of the Access flag is also enabled.
This feature is optional in Armv8.1 implementations. It is implementation defined whether this is implemented.
The ID_AA64MMFR1_EL1.HAFDBS field identifies the presence of FEAT_HAFDBS.
For more information, see:
- The dirty state on page D5-2612.
- Hardware management of the Access flag and dirty state on page D5-2613.

FEAT_PAN, Privileged access never
FEAT_PAN adds a bit to PSTATE. When the value of this PAN state bit is 1, any privileged data access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible to data accesses at EL0, generates a Permission fault.
This feature is mandatory in Armv8.1 implementations.
This feature is supported in AArch64 and AArch32 states.
The following fields identify the presence of FEAT_PAN:
- ID_AA64MMFR1_EL1.PAN.
- ID_MMF3_EL1.PAN.
- ID_MMF3.PAN.
For more information, see:
- About PSTATE.PAN on page D5-2601.
- About the PAN bit on page G5-6011.

FEAT_VMID16, 16-bit VMID
In an Armv8.1 implementation, when EL2 is using AArch64, the virtual machine identifier (VMID) size is an implementation defined choice of 8 bits or 16 bits.
This feature is optional in Armv8.1 implementations. It is implementation defined whether this is implemented.
When implemented, this feature is supported only when EL2 is using AArch64.
The ID_AA64MMFR1_EL1.VMIDBits field identifies the supported VMID size.
FEAT_VHE, Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for Type 2 hypervisors in Non-secure state.

This feature is mandatory in Armv8.1 implementations.

An implementation that includes FEAT_VHE requires FEAT_LSE to be implemented.

The ID_AA64MMFR1_EL1.VH field identifies the presence of FEAT_VHE.

The following fields indicate the presence of the Virtualization Host Extensions for debug, including the changes for the PC Sample-based Profiling Extension and the Performance Monitors Extension:

- ID_AA64DFR0_EL1.DebugVer.
- ID_DFR0_EL1.{CopSDbg, CopDbg}.

For more information, see:
- Virtualization Host Extensions on page D5-2632.

FEAT_PMUv3p1, PMU Extensions v3.1

Armv8.1 makes the following enhancements to the Performance Monitors Extension:

- The event number space is extended to 16 bits to allow additional IMPLEMENTATION DEFINED event types, and the reserved space for future additions to the architecturally-defined event types is extended.
- The HPMD bit is added to MDCR_EL2. This bit disables event counting at EL2.
- The STALL_FRONTEND and STALL_BACKEND events are required to be implemented. For more information, see Required events on page D7-2763.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Arm8.1 implementation must include FEAT_PMUv3p1.

The following fields identify the presence of FEAT_PMUv3p1:

- ID_AA64DFR0_EL1.PMUVer.
- ID_DFR0_EL1.PerfMon.
- ID_DFR0.PerfMon.

A2.4.2 Additional requirements of Armv8.1

The Armv8.1 architecture includes some mandatory changes that are not associated with a feature. These are:

Changes to CRC32 instructions

All implementations of the Armv8.1 architecture are required to implement the CRC32* instructions. These are OPTIONAL in Armv8.0.

The following fields identify the presence of the CRC32* instructions:

- ID_AA64ISAR0_EL1.CRC32.
- ID_ISAR5_EL1.CRC32.
- ID_ISAR5.CRC32.

An implementation of the Armv8.1 extension must comply with all of the additional requirements. Such an implementation, when combined with the mandatory architectural features of Armv8.1, is also called an implementation of the Armv8.1 architecture.
A2.5 The Armv8.2 architecture extension

The Armv8.2 architecture extension adds both architectural features and architectural requirements, see:

- Architectural features added by Armv8.2.
- Additional requirements of Armv8.2 on page A2-78.
- Features added to the Armv8.2 extension in later releases on page A2-78.

The Armv8.2 architecture extension also adds functionality to the Cryptographic Extension, see Armv8.2 extensions to the Cryptographic Extension on page A2-67.

A2.5.1 Architectural features added by Armv8.2

An implementation of the Armv8.2 extension must include all of the features that this section describes as mandatory. Such an implementation, when combined with the additional requirements of Armv8.2, is also called an implementation of the Armv8.2 architecture.

The Armv8.2 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_ASMv8p2, Armv8.2 changes to the A64 ISA

FEAT_ASMv8p2 adds the BFC instruction to the A64 instruction set as an alias of BFM. It also requires that the BFC instruction and the A64 pseudo-instruction REV64 are implemented by assemblers.

--- Note ---

- In Armv8.0 and Armv8.1, the A64 pseudo-instruction REV64 is OPTIONAL.
- Because this feature relates to support for an instruction alias and for a pseudo-instruction, there are no corresponding feature ID register fields.

This change to the instruction set and assembler requirements is mandatory in an Armv8.2 implementation.

For more information, see:

- BFC on page C6-818.
- REV64 on page C6-1177.

FEAT_PAN2, AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN

FEAT_PAN2 adds variants of the AArch64 AT S1E1R and AT S1E1W instructions and the AArch32 ATS1CP and ATS1CPw instructions. These instructions factor in the PSTATE.PAN bit when determining whether or not the location will generate a permission fault for a privileged access, as is reported in the PAR. For more information, see:

For the AArch64 System instructions

- AT S1E1RP, Address Translate Stage 1 EL1 Read PAN on page C5-547.
- AT S1E1WP, Address Translate Stage 1 EL1 Write PAN on page C5-551.

For the AArch32 System instructions

- ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN on page G8-6172.
- ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN on page G8-6174.

This feature is mandatory in Armv8.2 implementations.

These instructions are added to the A64 and A32/T32 instruction sets.

The following fields identify the presence of FEAT_PAN2:

- ID_AA64MMFR1_EL1.PAN.
- ID_MMFR3_EL1.PAN.
- ID_MMFR3.PAN.
For more information, see:

- *Address translation instructions* on page D5-2583.
- *ATS1C**, Address translation stage 1, current security state on page G5-6084.
- *Encoding and availability of the address translation instructions* on page G5-6085.

FEAT_FP16, Half-precision floating-point data processing

FEAT_FP16 supports:

- Half-precision data-processing instructions for Advanced SIMD and floating-point in both AArch64 and AArch32 states.
- The FPCR.FZ16 and FPSCR.FZ16 bits, which enable a Flush-to-zero mode for half-precision data-processing instructions.

This feature is OPTIONAL in Armv8.2 implementations, unless one of the following is implemented:

- The Scalable Vector Extension (SVE).
- FEAT_FHM.

If SVE or FEAT_FHM is implemented, FEAT_FP16 is implemented. From Armv8.4, if FEAT_FHM is not implemented, FEAT_FP16 is not implemented.

When this feature is implemented it is implemented in both Advanced SIMD and floating-point, and in AArch64 and AArch32 states.

The following fields identify the presence of FEAT_FP16:

- ID_AA64ISAR0_EL1.FP, AdvSIMD.
- MVFR1_EL1.FPHP, SIMDHP.
- MVFR1.FPHP, SIMDHP.

For more information, see:

- *Modified immediate constants in A64 instructions* on page C2-196.

FEAT_DotProd, Advanced SIMD dot product instructions

FEAT_DotProd provides instructions to perform the dot product of two 32-bit vectors, accumulating the result in a third 32-bit vector. This can be performed using signed or unsigned arithmetic.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.4 implementations.

These instructions are added to the A64 and A32/T32 instruction sets.

The following fields identify the presence of FEAT_DotProd:

- ID_AA64ISAR0_EL1.DP.
- ID_ISAR6_EL1.DP.
- ID_ISAR6.DP.

For more information, see:

- *SIMD dot product* on page C3-257.
- *Advanced SIMD dot product instructions* on page F1-4107.

FEAT_FHM, Floating-point half-precision multiplication instructions

FEAT_FHM adds floating-point multiplication instructions.

These instructions are added to the A64 and A32/T32 instruction sets.

This feature is OPTIONAL in Armv8.2 implementations, and can only be implemented when FEAT_FP16 is implemented. This feature is mandatory in Armv8.4 implementations when FEAT_FP16 is implemented. This feature is not implemented in Armv8.4 implementations when FEAT_FP16 is not implemented.

The following fields identify the presence of FEAT_FHM:

- ID_AA64ISAR0_EL1.FHM.
For more information, see:

- **SIMD arithmetic** on page C3-245.
- **SIMD by element arithmetic** on page C3-251.
- **Advanced SIMD multiply instructions** on page F1-4106.

FEAT_LSMAOC, AArch32 Load/Store Multiple instruction atomicity and ordering controls

FEAT_LSMAOC adds controls that disable legacy behavior of AArch32 Load Multiple and Store Multiple instructions, and provide a trap of one aspect of this legacy behavior.

Implementation of FEAT_LSMAOC is **optional**. When implemented it provides:

- **LSMAOE fields** in the `SCTLR_EL1, SCTLR_EL2, HSCTLR, and SCTLR` registers. These fields can have the following effects on the behavior of AArch32 Load Multiple and Store Multiple instructions:
 - An interrupt can be taken between two memory accesses made by a single Load Multiple or Store Multiple instruction.
 - The memory accesses made by a single Load Multiple or Store Multiple instruction to Device memory with the non-Reordering attribute can be reordered.

- **nTLSMD fields** in the `SCTLR_EL1, SCTLR_EL2, HSCTLR, and SCTLR` registers. These fields can cause an access to Device-nGRE, Device-nGnRE, or Device-nGnRnE memory by an AArch32 Load Multiple and Store Multiple instruction to generate an Alignment fault.

Note

Armv8.2 deprecates software dependence on the legacy behavior of AArch32 Load Multiple and Store Multiple instructions, and these fields disable this behavior.

The following fields identify the presence of FEAT_LSMAOC:

- **ID_AA64MMFR2_EL1.LSM**.
- **ID_MMFR4_EL1.LSM**.
- **ID_MMFR4.LSM**.

For more information, see the register field descriptions and:

- **Generation of Alignment faults by Load/store multiple accesses to Device memory** on page E2-4045.
- **Multi-register loads and stores that access Device memory** on page E2-4058.
- **Taking an interrupt or other exception during a multiple-register load or store** on page G1-5777.

FEAT_UAO, Unprivileged Access Override control

Armv8.2 adds a bit to `PSTATE`. When the value of `PSTATE.UAO` is 1, and when executed at EL1 or at EL2 with `HCR_EL2.{E2H, TGE} == {1, 1}`, the memory accesses made by the Load/Store unprivileged instructions behave as if they were made by the Load/Store register instructions. See `Load/Store unprivileged` on page C3-211 and `Load/Store register` on page C3-207.

This feature is mandatory in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The **ID_AA64MMFR2_EL1.UAO** field identifies the presence of FEAT_UAO.

For more information, see `About PSTATE.UAO` on page D5-2602.

FEAT_DPB, DC CVAP instruction

FEAT_DPB introduces a mechanism to identify and manage persistent memory locations in a shared memory hierarchy, including adding the `DC CVAP` instruction.

This feature is mandatory in Armv8.2 implementations.

This feature is supported in AArch64 state only.
The ID_AA64ISAR1_EL1.DPB field identifies the presence of FEAT_DPB.
For more information about FEAT_DPB, see Memory hierarchy on page B2-143.

FEAT_VPIPT, VMID-aware PIPT instruction cache

FEAT_VPIPT supports a instruction cache type, described as the VMID-aware PIPT (VPIPT) instruction cache.

——— Note ————

Armv8.2 adds VPIPT to the set of supported cache types, meaning an Armv8.2 implementation is permitted to implement VPIPT caches, but is not required to do so.

This feature is supported in AArch64 and AArch32 states.
The CTR_EL0.L1Ip and CTR_L1Ip fields identify the presence of FEAT_VPIPT.
For more information, see:
• VPIPT (VMID-aware PIPT) instruction caches on page D5-2680.
• VPIPT (VMID-aware PIPT) instruction caches on page G5-6050.

FEAT_AA32HPD, AArch32 hierarchical permission disables

FEAT_HPDS introduced the ability to disable the hierarchical attributes, APTable, PXNTable, and UXNTable, in the VMSAv8-64 translation regimes. FEAT_AA32HPD extends this functionality to the VMSAv8-32 translation regimes when those regimes are using the Long descriptor translation table format.

This feature is optional in Armv8.2 implementations. It is implementation defined whether this is implemented.
The ID_MMFR4_EL1.HPDS and ID_MMFR4.HPDS fields identify the presence of FEAT_AA32HPD.
For more information, see Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992.

FEAT_HPDS2, Translation table page-based hardware attributes

Armv8.2 provides a mechanism to allow operating systems or hypervisors to make up to four bits of translation table final-level descriptors available for implementation defined hardware use.
This functionality is available for all translation regimes in AArch64 state and for stages of translation in AArch32 state that use the Long descriptor translation table format.

FEAT_HPDS2 is optional in Armv8.2 implementations, but implementation of FEAT_HPDS2 requires implementation of both:
• FEAT_HPDS.
• FEAT_AA32HPD, if any Exception level higher than EL0 can use AArch32.

——— Note ————

For stage 1 translations, page-based hardware attributes can only be used for a stage of translation for which the Hierarchical permission disables field has a value of 1.

The following fields identify the presence of FEAT_HPDS2:
• ID_AA64MMFR1_EL1.HPDS.
• ID_MMFR4_EL1.HPDS.
• ID_MMFR4.HPDS.
For more information, see:
• Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.
• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992.
FEAT_LPA, Large PA and IPA support

FEAT_LPA:

- Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using the 64KB translation granule.
- Allows a level 1 block size where the block covers a 4TB address range for the 64KB translation granule if the implementation support 52 bits of PA.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether it is implemented.

This feature is supported in AArch64 state only.

The ID_AA64MMFR0_EL1.PARange field identifies the presence of FEAT_LPA.

For more information about FEAT_LPA, see:
- VMSA address types and address spaces on page D5-2527.
- Address size configuration on page D5-2541.
- Extending addressing above 48 bits on page D5-2546.
- VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats on page D5-2587.
- Armv8 translation table level 3 descriptor formats on page D5-2591.

FEAT_LVA, Large VA support

FEAT_LVA supports a larger VA space for each translation table base register of up to 52 bits when using the 64KB translation granule.

This feature is supported in AArch64 state only.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether it is implemented.

If FEAT_LVA is implemented, then any implemented trace macrocell must be at least ETMv4.2.

The ID_AA64MMFR2_EL1.VARange field identifies the presence of FEAT_LVA.

For more information about FEAT_LVA, see:
- VMSA address types and address spaces on page D5-2527.
- Address size configuration on page D5-2541.
- Extending addressing above 48 bits on page D5-2546.
- VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats on page D5-2587.
- Armv8 translation table level 3 descriptor formats on page D5-2591.

FEAT_TTCNP, Translation table Common not private translations

FEAT_TTCNP permits multiple PEs in the same Inner Shareable domain to use the same translation tables for a given stage of address translation.

This feature is mandatory in Armv8.2 implementations.

This facility is available for all VMSAv8-64 translation regimes and for VMSAv8-32 translation stages that use the Long descriptor translation table format.

The following fields identify the presence of FEAT_TTCNP:
- ID_AA64MMFR2_EL1.CnP
- ID_MMF4_EL1.CnP
- ID_MMF4_CnP

For more information, see:
- Common not private translations on page D5-2656.
- Common not private translations in VMSAv8-32 on page G5-6039.
FEAT_XNX, Translation table stage 2 Unprivileged Execute-never

FEAT_XNX extends the stage 2 translation table access permissions to provide control of whether memory is executable at EL0 independent of whether it is executable at EL1.

This feature is mandatory in Armv8.2 implementations.

This facility is available for stage 2 translation stages in VMSAv8-64 and VMSAv8-32.

The following fields identify the presence of FEAT_XNX:
- ID_AA64MMFR1_EL1.XNX.
- ID_MMFRR4_EL1.XNX.
- ID_MMFRR4.XNX.

For more information, see:
- Access permissions for instruction execution on page D5-2606.
- Access permissions for instruction execution on page G5-6012.

FEAT_Debugv8p2, Debug v8.2

FEAT_Debugv8p2 covers a selection of mandatory changes, including:
- If the Core power domain is powered up and DoubleLockStatus() == TRUE, EDPRSR.{DLK,SPD,PU} is only permitted to read {UNKNOWN, 0, 0}.
- The definition of Exception Catch debug events is extended to include reset entry.
- All CONSTRAINED UNPREDICTABLE cases that generate Exception Catch debug events are removed.
- Controls are added to EDECCR to control Exception Catch debug event generation on exception return.
- All IMPLEMENTATION DEFINED control of external debug accesses to OSLAR_EL1 is removed.
- ExternalSecureNoninvasiveDebugEnabled() cannot override software controls of counting attributable events in Secure state.

If FEAT_Debugv8p2 is implemented, FEAT_DoubleLock is OPTIONAL.

The fields that identify the presence of FEAT_Debugv8p2 are:
- ID_AA64DFR0_EL1.DebugVer and DBGDIDR.Version.
- ID_DFR0_EL1.{CopSDbg, CopDbg} and ID_DFR0.{CopSDbg, CopDbg}.
- EDDEVARCH.ARCID.

For more information, see:
- Exception Catch debug event on page H3-7067.
- EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7123.
- Interaction with EL3 on page D7-2695.
- External access disabled on page H8-7145.

FEAT_PCSRv8p2, PC Sample-based profiling

In Armv8.2, the control and implementation of the OPTIONAL PC Sample-based Profiling extension is moved from ED*SR Debug registers to PM*SR registers in the Performance Monitors address space. See Chapter H7 The PC Sample-based Profiling Extension.

The PC Sample-based Profiling Extension is an OPTIONAL feature. If it is implemented, an Armv8.2 implementation must also include FEAT_PCSRv8p2.

If Secure EL2 and PC Sample-based Profiling are both implemented, FEAT_PCSRv8p2 is mandatory.

The following fields identify the presence of FEAT_PCSRv8p2:
- EDDEVVID.PCSample.
- DBGDEVVID.PCSample.
- EDDEVID1.PCSROffset.
- DBGDEVID1.PCSROffset.
• PMDEVID.PCSample.

FEAT_IIESB, Implicit Error Synchronization event

FEAT_IIESB adds an implicit error synchronization event at exception entry and return, controlled by the added SCTLR_ELx.IESB fields. An IESB field is added to the ESR_ELx syndrome registers.

The implicit error synchronization events affect the same synchronizable asynchronous events that are synchronized by the ESB instruction, see *The Reliability, Availability, and Serviceability Extension* on page A2-97.

This feature is optional in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The ID_AA64MMFR2_EL1.IESB field identifies the presence of FEAT_IIESB.

For more information, see the *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile*.

Extensions to the Arm Cryptographic Extensions

See the description of the FEAT_SHA512 and FEAT_SM3 features in *Armv8.2 extensions to the Cryptographic Extension* on page A2-67.

A2.5.2 Additional requirements of Armv8.2

The Armv8.2 architecture includes some mandatory changes that are not associated with a feature. These are:

Change to ACTLR2 and HCTLR2 registers

In AArch32 state, the ACTLR2 and HACTLR2 registers become mandatory.

Implementation of RAS Extension

The RAS Extension must be implemented, see *The Reliability, Availability, and Serviceability Extension* on page A2-97.

An implementation of the Armv8.2 extension must comply with all of the additional requirements. Such an implementation, when combined with the mandatory architectural features of Armv8.2, is also called an implementation of the Armv8.2 architecture.

If PMUv3 is implemented, the feature FEAT_PMUv3p4 is optional in Armv8.2 implementations.

A2.5.3 Features added to the Armv8.2 extension in later releases

FEAT_EVT, Enhanced Virtualization Traps

FEAT_EVT introduces additional traps for EL1 and EL0 Cache controls. These traps are independent of existing controls.

This feature is supported in AArch64 and AArch32 states.

This feature is optional in Armv8.2 implementations and is mandatory in Armv8.5.

ID_AA64MMFR2_EL1.EVT identifies the presence of the AArch64 traps controls.

ID_MMFR4_EL1.EVT and ID_MMFR4.EVT identify the presence of the AArch32 traps.

For more information, see:

• HCR_EL2.{TTLBIS, TTLBOS, TICAB, TOCU, TID4}.
• HCR2.{TTLBIS, TICAB, TOCU, TID4}.

FEAT_DPB2, DC CVADP instruction

FEAT_DPB2 allows two levels of cache clean to the Point of Persistence by:

• Redefining Point of Persistence, which changes the scope of DC CVAP.
• Defining a Point of Deep Persistence.
• Adding the DC CVADP System instruction.

This feature is supported in AArch64 state only.
This feature is optional in Armv8.2 implementations and is mandatory in Armv8.5 implementations.

The ID_AA64ISAR1_EL1.DPB field identifies the presence of FEAT_DPB2.

For further information, see Terminology for Clean, Invalidate, and Clean and Invalidate instructions on page D4-2501.

FEAT_BF16, AArch64 BFloat16 instructions

FEAT_BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in AArch64 state. This format supports:

- The BFloat16 floating-point data type.
- Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.
- Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch64 state only.

This feature is optional in Armv8.2 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.BF16 field identifies the presence of FEAT_BF16.

When both Advanced SIMD and SVE are implemented, the ID_AA64ISAR1_EL1.BF16 and the ID_AA64ZFR0_EL1.BF16 fields must return the same value.

For further information, see:
- BFloat16 floating-point instructions on page C3-244.
- SIMD BFloat16 on page C3-258.

FEAT_AA32BF16, AArch32 BFloat16 instructions

FEAT_AA32BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in AArch32 state. This format supports:

- The BFloat16 floating-point data type.
- Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.
- Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch32 state only.

This feature is optional in Armv8.2 implementations.

The ID_ISAR6_EL1.BF16 and ID_ISAR6.BF16 fields identify the presence of FEAT_AA32BF16.

For further information, see:
- Advanced SIMD BFloat16 instructions on page F1-4108.
- Floating-point data-processing on page F3-4178.

FEAT_I8MM, AArch64 Int8 matrix multiplication instructions

FEAT_I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot product instructions.

This feature is supported in AArch64 state only.

This feature is optional in Armv8.2 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.I8MM field identifies the presence of FEAT_I8MM.

When both Advanced SIMD and SVE are implemented, the ID_AA64ISAR1_EL1.I8MM and the ID_AA64ZFR0_EL1.I8MM fields must return the same value.

For further information, see:
- SIMD dot product on page C3-257.
- SIMD matrix multiplication on page C3-259.
FEAT_AA32I8MM, AArch32 Int8 matrix multiplication instructions

FEAT_AA32I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot product instructions.
This feature is supported in AArch32 state only.
This feature is OPTIONAL in Armv8.2 implementations.
The ID_ISAR6_EL1.I8MM and ID_ISAR6.I8MM fields identify the presence of FEAT_AA32I8MM.
For further information, see:
• Advanced SIMD dot product instructions on page F1-4107.
• Advanced SIMD matrix multiply instructions on page F1-4108.

The features that have been made OPTIONAL in Armv8.2 implementations are:
• FEAT_FlagM on page A2-85.
• FEAT_LSE2 on page A2-85.
• FEAT_LRCPC2 on page A2-85.
A2.6 The Armv8.3 architecture extension

The Armv8.3 architecture extension adds both architectural features and additional requirements, see:

- Architectural features added by Armv8.3.
- Additional requirements of Armv8.3 on page A2-83.
- Features added to the Armv8.3 extension in later releases on page A2-83.

A2.6.1 Architectural features added by Armv8.3

An implementation of the Armv8.3 extension must include all of the features that this section describes as mandatory. Such an implementation is also called an implementation of the Armv8.3 architecture.

The Armv8.3 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_FCMA, Floating-point complex number instructions

FEAT_FCMA introduces instructions for floating-point multiplication and addition of complex numbers.

These instructions are added to the A64 and A32/T32 instruction sets.

This feature is mandatory in Armv8.3 implementations.

The half-precision versions of these instructions are implemented only if FEAT_FP16 is implemented. Otherwise they are UNDEFINED.

The fields that identify the presence of FEAT_FCMA are:

- ID_AA64ISAR1_EL1.FCMA.
- ID_ISAR5_EL1.VCMA.
- ID_ISAR5.VCMA.

For more information, see:

- SIMD complex number arithmetic on page C3-258.
- Advanced SIMD complex number arithmetic instructions on page F1-4107.

FEAT_JSCVT, JavaScript conversion instructions

FEAT_JSCVT introduces instructions that perform a conversion from a double-precision floating point value to a signed 32-bit integer, with rounding to zero. For more information, see:

For the A64 instruction set

- FJCVTZS on page C7-1619.

For the A32/T32 instruction set

- VJCVT on page F6-5241.

These instructions are added to the A64 and A32/T32 instruction sets.

The feature is mandatory in Armv8.3 implementations.

The fields that identify the presence of FEAT_JSCVT are:

- ID_AA64ISAR1_EL1.JSCVT.
- ID_ISAR6_EL1.JSCVT.
- ID_ISAR6.JSCVT.

For more information, see:

- Floating-point conversion on page C3-239.
- About the A64 SIMD and floating-point instructions on page C7-1396.
- Advanced SIMD and floating-point instructions on page E1-4000.
- Floating-point data-processing instructions on page F1-4112.
FEAT_LRCPC, Load-acquire RCpc instructions

FEAT_LRCPC introduces three instructions to support the weaker Release Consistency processor consistent (RCpc) model that enables the reordering of a Store-Release followed by a Load-Acquire to a different address:

- **LDAPR** on page C6-941.
- **LDAPRB** on page C6-943.
- **LDAPRH** on page C6-945.

These instructions are added to the A64 instruction set.

The feature is mandatory in Armv8.3 implementations.

The ID_AA64ISAR1_EL1.LRCPC field identifies the presence of FEAT_LRCPC.

For more information, see:

- Load-Acquire/Store-Release on page C3-212.

FEAT_NV, Nested virtualization support

FEAT_NV provides support for a Guest Hypervisor to run in Non-secure EL1 and ensures that the Guest Hypervisor is unaware that it is running at that Exception level. A Guest Hypervisor is supported regardless of the value of HCR_EL2.E2H.

This feature is supported in AArch64 state only.

The feature is optional in Armv8.3 implementations. This feature must be implemented if FEAT_NV2 is implemented.

The ID_AA64MMFR2_EL1.NV field identifies the presence of FEAT_NV.

For more information, see Nested virtualization on page D5-2638.

FEAT_CCIDX, Extended cache index

FEAT_CCIDX introduces the following registers to allow caches to be described with greater numbers of sets and greater associativity:

- A 64-bit format of CCSIDR_EL1.
- CCSIDR2_EL1.
- CCSIDR2.

This feature is supported in AArch64 and AArch32 states.

This feature is optional in Armv8.3 implementations.

The following fields identify the presence of FEAT_CCIDX:

- ID_AA64MMFR2_EL1.CCIDX.
- ID_MMFR4_EL1.CCIDX.
- ID_MMFR4.CCIDX.

For more information, see:

- Possible formats of the Cache Size Identification Register, CCSIDR_EL1 on page D4-2495.
- Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on page G4-5931.

FEAT_PAuth, Pointer authentication

FEAT_PAuth adds functionality that supports address authentication of the contents of a register before that register is used as the target of an indirect branch, or as a load.

This feature is supported only in AArch64 state.

This feature is mandatory in Armv8.3 implementations.

The fields ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} identify the presence of FEAT_PAuth.

For more information, see Pointer authentication in AArch64 state on page D5-2530.
A2.6.2 Additional requirements of Armv8.3

If FEAT_PMUv3 is implemented, FEAT_PMUv3p4 is OPTIONAL in Armv8.3 implementations.

A2.6.3 Features added to the Armv8.3 extension in later releases

FEAT_SPEv1p1, Armv8.3 Statistical Profiling Extensions

FEAT_SPEv1p1 adds an Alignment Flag in the Events packet and filtering on this event using PMSEVFR_EL1, together with support for the profiling of Scalable Vector Extension operations.

This feature is only supported in AArch64.

This feature is OPTIONAL in Armv8.3 implementations. An Armv8.5 implementation that includes the Statistical Profiling Extension must include FEAT_SPEv1p1.

The fields in ID_AA64DFR0_EL1.PMSVer identify the presence of FEAT_SPEv1p1.

For more information, see Chapter D9 The Statistical Profiling Extension and Chapter D10 Statistical Profiling Extension Sample Record Specification.

FEAT_DoPD, Debug over Powerdown

FEAT_DoPD provides a debug programmers’ model where all debug and PMU registers are in the Core power domain, all CTI registers are in the Debug power domain. Power control is provided by a CoreSight Granular Power requestor (GPR) component.

When the OPTIONAL powerup mechanism is implemented and this feature is implemented, the debugger makes power control requests for the Core power domain using a CoreSight Class 0x9 ROM Table block, instead of using EDRCR.COREPURQ. EDRCR.COREPURQ is not implemented. Refer to the ARM® CoreSight Architecture Specification for more information.

This feature is OPTIONAL in Armv8.3 implementations.

When FEAT_DoPD is implemented:

- FEAT_DoubleLock is not implemented.
- FEAT_Debugv8p2 must be implemented.
- If PC Sample-based profiling is implemented, FEAT_PCSRv8p2 must be implemented.
- The optional Software Lock is not implemented by the architecturally-defined debug components in the PE Core power domain.
- If an ETMv4 PE Trace Unit is implemented, the ETM must implement:
 - ETMv4.2 or later.
 - The Unified Power Domain Model.

The fields that identify the presence of FEAT_DoPD are:

- EDDEVID.DebugPower.
- CTIDEV_ARCH.REVISION.

For more information, see Chapter H6 Debug Reset and Powerdown Support.

FEAT_PAuth2, Enhancements to pointer authentication

FEAT_PAuth2 adds enhanced pointer authentication functionality that changes the mechanism by which a PAC is added to the pointer.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1_EL1.APA and ID_AA64ISAR1_EL1.API fields identify the presence of FEAT_PAuth2.

For more information, see Pointer authentication in AArch64 state on page D5-2530.

FEAT_FPAC, Faulting on AUT* instructions

FEAT_FPAC introduces faulting on an AUT* instruction and, optionally, on the combined instructions that perform pointer authentication. FEAT_FPAC is added as a further extension to FEAT_PAuth2.
This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations, and can only be implemented if FEAT_PAuth2 is implemented.

The ID_AA64ISAR1_EL1.APA and ID_AA64ISAR1_EL1.API fields identify the presence of FEAT_FPAC.

For more information, see *Faulting on pointer authentication* on page D5-2533.
A2.7 The Armv8.4 architecture extension

The Armv8.4 architecture extension adds architectural features, see Architectural features added by Armv8.4. It also adds features to earlier architecture extensions, see Features added to earlier extensions on page A2-89.

A2.7.1 Architectural features added by Armv8.4

An implementation of the Armv8.4 extension must include all of the features that this section describes as mandatory. Such an implementation is also called an implementation of the Armv8.4 architecture.

The Armv8.4 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_DIT, Data Independent Timing instructions

FEAT_DIT provides independent timing for data processing instructions with the addition of the PSTATE.DIT and CPSR.DIT fields.

This feature is supported in AArch64 and AArch32 states.

This feature is mandatory in Armv8.4 implementations.

The following fields identify the presence of FEAT_DIT:
- ID_AA64PFR0_EL1.DIT.
- ID_PFR0_EL1.DIT.
- ID_PFR.DIT.

For more information, see:
- About PSTATE.DIT on page B1-113.
- About the DIT bit on page E1-3999.

FEAT_FlagM, Flag manipulation instructions v2

FEAT_FlagM provides instructions which manipulate the PSTATE.\{N,Z,C,V\} flags.

These instructions are added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64ISAR0_EL1.TS field identifies the presence of FEAT_FlagM.

For more information, see Flag manipulation instructions on page C3-231.

FEAT_LRCPC2, Load-acquire RCpc instructions v2

FEAT_LRCPC2 provides versions of LDAPR and STLPR with a 9-bit unscaled signed immediate offset.

These instructions are added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.

The ID_AA64ISAR1_EL1.LRCPC field identifies the presence of FEAT_LRCPC2.

For more information, see:
- Changes to single-copy atomicity in Armv8.4 on page B2-119.
- Non-exclusive Load-Acquire and Store-Release instructions on page C3-213.
- A64 instructions that are changed in Debug state on page H2-7025.

FEAT_LSE2, Large System Extensions v2

FEAT_LSE2 introduces changes to single-copy atomicity requirements for loads and stores, and changes to alignment requirements for loads and stores.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.
The ID_AA64MMFR2_EL1.AT field identifies the presence of FEAT_LSE2.
For more information, see:
- Requirements for single-copy atomicity on page B2-118.

FEAT_TLBIOS, TLB invalidate instructions in Outer Shareable domain
FEAT_TLBIOs provides TLBI maintenance instructions that extend to the Outer Shareable domain
and TLBI invalidation instructions that apply to a range of input addresses.
This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID_AA64ISAR0_EL1.TLB identifies the presence of FEAT_TLBIOs.
For more information, see:
- TLB maintenance instruction syntax on page D5-2664.
- TLB range maintenance instructions on page D5-2672.

FEAT_TLBIRANGE, TLB invalidate range instructions
FEAT_TLBIRANGE provides TLBI maintenance instructions that extend to the Outer Shareable
domain and TLBI invalidation instructions that apply to a range of input addresses.
This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID_AA64ISAR0_EL1.TLB identifies the presence of FEAT_TLBIRANGE.
For more information, see:
- TLB maintenance instruction syntax on page D5-2664.
- TLB range maintenance instructions on page D5-2672.

FEAT_TTL, Translation Table Level
FEAT_TTL provides the TTL field to indicate the level of translation table walk holding the leaf
table for the address that is being invalidated. This field is provided in all TLB maintenance
instructions that take a VA or an IPA argument.
This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID_AA64MMFR2_EL1.TTL identifies the presence of FEAT_TTL.
For more information, see:
- TLB maintenance instruction syntax on page D5-2664.
- TLB range maintenance instructions on page D5-2672.

FEAT_S2FWB, Stage 2 forced Write-Back
FEAT_S2FWB reduces the requirement of additional cache maintenance instructions in systems
where the data Cacheability attributes used by the Guest operating system are different from those
expected by the Hypervisor.
This feature is supported in AArch64 state.
This feature is mandatory in Armv8.4 implementations.
The ID_AA64MMFR2_EL1.FWB field identifies the presence of FEAT_S2FWB.
For more information, see:
- Memory region attributes on page D5-2622.
- The stage 2 memory region attributes, EL1&0 translation regime on page D5-2624.

FEAT_TTST, Small translation tables
FEAT_TTST relaxes the lower limit on the size of translation tables, by increasing the maximum
permitted value of the T1SZ and T0SZ fields in TCR_EL1, TCR_EL2, TCR_EL3, VTCR_EL2 and
VSTCR_EL2.
This feature is supported in AArch64 state only.
This feature is mandatory if FEAT_SEL2 is implemented.
This feature is OPTIONAL if FEAT_SEL2 is not implemented.

The ID_AA64MMFR2_EL1.ST field identifies the presence of FEAT_TTST.

For more information, see:
• Input address size on page D5-2543.
• Overview of the VMSAv8-64 address translation stages on page D5-2558.

FEAT_BBM, Translation table break-before-make levels

FEAT_BBM provides support to identify the requirements of hardware to have break-before-make sequences when changing between block size for a translation.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.BBM field identifies the presence of FEAT_BBM.

For more information, see:
• Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.
• Support levels for changing block size on page D5-2663.

FEAT_SEL2, Secure EL2

FEAT_SEL2 permits EL2 to be implemented in Secure state. When Secure EL2 is enabled, a translation regime is introduced that follows the same format as the other Secure translation regimes.

This feature is not supported if EL2 is using AArch32.
This feature is mandatory in Armv8.4 implementations that implement both EL2 and Secure state.

The ID_AA64PFR0_EL1.SEL2 field identifies the presence of FEAT_SEL2.

For more information, see:
• Virtualization on page D1-2318.
• The VMSAv8-64 address translation system on page D5-2534.

FEAT_NV2, Enhanced nested virtualization support

FEAT_NV2 supports nested virtualization by redirecting register accesses that would be trapped to EL1 and EL2 to access memory instead. The address of the memory access depends on information held in introduced register, VNCR_EL2.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.NV field identifies the presence of FEAT_NV2.

For more information, see Enhanced support for nested virtualization on page D5-2640.

FEAT_IDST, ID space trap handling

FEAT_IDST causes all AArch64 read accesses to the feature ID space when exceptions are generated to be reported in ESR_ELx using the EC code 0x18.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.

The ID_AA64MMFR2_EL1.IDS field identifies the presence of FEAT_IDST.

For more information, see Enhanced support for nested virtualization on page D5-2640.

FEAT_CNTSC, Generic Counter Scaling

FEAT_CNTSC adds a scaling register to the memory-mapped counter module that allows the frequency of the counter that is generated to be scaled from the basic frequency reported in the counter ID mechanisms.
This feature is supported in AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.4 implementations.
The **CNTID.CNTSC** field identifies the presence of **FEAT_CNTSC**.
For more information, see:

- *CNTCR, Counter Control Register* on page 15-7467.

FEAT_Debugv8p4, Debug v8.4

FEAT_Debugv8p4 covers a selection of mandatory changes:

- The fields **MDCR_EL3.{EPMAD, EDAD}** control Non-secure access to the debug and PMU registers. The bus Requester is responsible for other debug authentication.
- The Software Lock is obsolete.
- Non-invasive Debug controls are relaxed.
- Secure and Non-secure views of the debug registers are enabled.

The fields that identify the presence of **FEAT_Debugv8p4** are:

- **ID_AA64DFR0_EL1.DebugVer**.
- **DBGDIR.Version**.
- **ID_DFR0_EL1.{CopSDbg, CopDbg}**.
- **ID_DFR0.{CopSDbg, CopDbg}**.
- **EDDEVARCH.ARCHID**.

For more information, see:

- *Definition and constraints of a debugger in the context of external debug* on page H1-7010
- *External debug interface register access permissions* on page H8-7145

FEAT_TRF, Self-hosted Trace Extensions

FEAT_TRF adds controls of trace in a self-hosted system through System registers.

The feature provides:

- Control of Exception levels and Security states where trace generation is prohibited.
- Control of whether an offset is used for the timestamp recorded with trace information.
- A context synchronization instruction **TBS CSYNC** which can be used to prevent reordering of trace operation accesses with respect to other accesses of the same System registers.

If an ETM Architecture PE Trace Unit is implemented, this feature is mandatory, and the ETM PE Trace Unit must implement System register access to its control registers. If a different PE Trace Unit is implemented, this feature is OPTIONAL.

The reset state of the PE has prohibited regions controlled by the feature and not the external authentication signals. An external trace controller must override the internal controls before enabling trace, including trace from reset. This is a change from previous trace architectures and is not backwards-compatible.

The fields that identify the presence of **FEAT_TRF** are:

- **ID_AA64DFR0_EL1.TraceFilt**.
- **ID_DFR0_EL1.TraceFilt**.
- **ID_DFR0.TraceFilt**.
- **EDDFTB.TraceVer**.
- **ID_AA64DFR0_EL1.TraceVer**.

For more information, see:

- *Chapter D3 AArch64 Self-hosted Trace*.
- *Chapter G3 AArch32 Self-hosted Trace*.

FEAT_PMUv3p4, PMU Extensions v3.4

FEAT_PMUv3p4 introduces the **PMMIR_EL1** and **PMMIR** registers.
This feature is supported in AArch64 and AArch32 states.
The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.4 implementation must include FEAT_PMUv3p4.

The fields that identify the presence of FEAT_PMUv3p4 are:
- ID_AA64DFR0_EL1.PMUVer.
- ID_DFR0_EL1.Perfmon.
- ID_DFR0.Perfmon.
- EDDFR.PMUVer.

For more information, see *PMU events and event numbers* on page D7-2710.

FEAT_RASv1p1, RAS Extension v1.1

FEAT_RASv1p1 implements RAS System Architecture v1.1 and adds support for:
- FEAT_DoubleFault.
- Simplifications to ERR<n>STATUS.
- Additional ERR<n>MISC<m> registers.
- The OPTIONAL RAS Common Fault Injection Model Extension.

This feature is supported in AArch64 and AArch32 states.

This feature is mandatory in Armv8.4 implementations.

The following fields identify the complete or partial presence of FEAT_RASv1p1:
- ID_AA64PFR0_EL1.RAS.
- ID_AA64PFR1_EL1.RAS_frac.
- ID_PFR0_EL1.RAS.
- ID_PFR2_EL1.RAS_frac.
- ID_PFR0.RAS.
- ID_PFR2.RAS_frac.

For more information, see:
- *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.*

FEAT_DoubleFault, Double Fault Extension

FEAT_DoubleFault provides two controls:
- SCR_EL3.EASE.
- SCR_EL3.NMEA.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations if EL3 is implemented and EL3 uses AArch64. Otherwise, it is not implemented.

This feature is implemented if ID_AA64PFR0_EL1.RAS >= 0b0010 and the implementation includes EL3 using AArch64.

For more information, see:
- *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.*

A2.7.2 Features added to earlier extensions

The existing functionality of OS Double Lock is added as a feature mnemonic in Armv8.0, see *FEAT_DoubleLock* on page A2-64.
The Armv8.5 architecture extension adds architectural features and additional requirements, see:

- Architectural features added by Armv8.5.
- Additional requirements of Armv8.5 on page A2-92.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-93.

A2.8.1 Architectural features added by Armv8.5

An implementation of the Armv8.5 extension must include all of the features that this section describes as mandatory. Such an implementation is also called an implementation of the Armv8.5 architecture.

The Armv8.5 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_FlagM2, Enhancements to flag manipulation instructions

FEAT_FlagM2 provides instructions that convert between the PSTATE condition flag format used by the FCMP instruction and an alternative format described in Relationship between ARM format and alternative format PSTATE condition flags on page C6-770.

These instructions are added to the A64 instruction set only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64ISAR0_EL1.TS field identifies the presence of FEAT_FlagM2.

For more information, see:

- Flag manipulation instructions on page C3-231.
- Relationship between ARM format and alternative format PSTATE condition flags on page C6-770.

FEAT_FRINTTS, Floating-point to integer instructions

FEAT_FRINTTS provides instructions that round a floating-point number to an integral valued floating-point number that fits in a 32-bit or 64-bit integer number range.

These instructions are added to the A64 instruction set only.

This feature requires SIMD&FP, and is mandatory in Armv8.5 implementations when SIMD&FP is implemented.

The ID_AA64ISAR1_EL1.FRINTTS identifies the presence of FEAT_FRINTTS.

For more information, see Floating-point round to integral value on page C3-240.

FEAT_ExS, Context synchronization and exception handling

FEAT_ExS provides a mechanism to control whether exception entry and exception return are context synchronization events. Fields in the SCTLR_ELx registers enable and disable context synchronization at exception entry and return at an Exception level.

This feature is supported in AArch64 state only.

This feature is optional in Armv8.5 implementations.

The ID_AA64MMFR0_EL1.ExS identifies the presence of FEAT_ExS.

For more information, see:

- SCTLR_EL1, System Control Register (EL1) on page D13-3396, SCTLR_EL2 and SCTLR_EL3.
- Context synchronization event on page Glossary-8232

FEAT_GTG, Guest translation granule size

FEAT_GTG allows a hypervisor to support different granule sizes for stage 2 and stage 1 translation, and allows a nested hypervisor to determine what stage 2 granule sizes are available.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.5 implementations.

The `ID_AA64MMFR0_EL1.{TGran16_2, TGran64_2, TGran4_2}` fields identify whether each of the granule sizes is supported for stage 2 translation. The `ID_AA64MMFR0_EL1.{TGran16, TGran64, TGran4}` fields identify whether each of the granule sizes is supported for stage 1 translations.

For more information, see Memory translation granule size on page D5-2548.

FEAT_BTI, Branch Target Identification

FEAT_BTI allows memory pages to be guarded against the execution of instructions that are not the intended target of a branch. To do this, it introduces:

- The GP field, which denotes the blocks and pages in stage 1 translation tables that are guarded pages.
- The `PSTATE.BTYPE` field, which is used to determine whether an access to a guarded memory region will generate a Branch Target exception.
- The `BTI` instruction, which is used to guard against the execution of instructions that are not the intended target of a branch.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.5 implementations.

The `ID_AA64PFR1_EL1.BT` field identifies the presence of FEAT_BTI.

For more information, see:

- Exception entry on page D1-2333.
- Synchronous exception types, routing and priorities on page D1-2348.
- VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats on page D5-2587.
- About `PSTATE.BTYPE` on page D5-2602.
- Effect of entering Debug state on `PSTATE` on page H2-7023.

FEAT_E0PD, Preventing EL0 access to halves of address maps

FEAT_E0PD prevents access at EL0 to half of the addresses in the memory map.

This feature is supported in AArch64 state only. When EL1 is using AArch64 state, this feature affects access to EL0, in either Execution state.

This feature is mandatory in Armv8.5 implementations.

Implementations that support FEAT_E0PD must also support FEAT_CSV3.

The `ID_AA64MMFR2_EL1.E0PD` field identifies presence of FEAT_E0PD.

For more information, see:

- Preventing EL0 access to halves of the address map on page D5-2604.
- `TCR_EL1.{E0PD0, E0PD1}`.
- `TCR_EL2.{E0PD0, E0PD1}`.

FEAT_RNG, Random number generator

FEAT_RNG introduces the `RNDR` and `RNDRRS` registers. Reads to these registers return a 64-bit random number. A read to `RNDRRS` will cause a reseeding of the random number before the generation of the random number that is returned.

This feature is supported in AArch64 state only.

This feature is optional in Armv8.5 implementations.

The `ID_AA64ISAR0_EL1.RNDR` field identifies presence of FEAT_RNG.

- Effect of random number generation instructions on Condition flags on page C6-770.
- Appendix K12 Random Number Generation.
FEAT_MTE, Memory Tagging Extension

FEAT_MTE provides architectural support for runtime, always-on detection of various classes of memory error to aid with software debugging to eliminate vulnerabilities arising from memory-unsafe languages.

This feature is supported in AArch64 state only.

This feature is optional in Armv8.5 implementations.

The field that identifies the presence of FEAT_MTE is ID_AA64PFR1_EL1.MTE.

For more information, see:
- Chapter D6 Memory Tagging Extension.
- Chapter B2 The AArch64 Application Level Memory Model.
- PMU events and event numbers on page D7-2710.
- Chapter D9 The Statistical Profiling Extension.
- Chapter H2 Debug State.

FEAT_PMUv3p5, PMU Extensions v3.5

FEAT_PMUv3p5 extends event counters to 64-bit event counters, and adds mechanisms to disable the cycle counter in Secure state and in EL2.

FEAT_PMUv3p5 relaxes the behavior of PMCR.{IMP, IDCODE}, and deprecates use of these fields.

This feature is supported in AArch64 and AArch32 states.

The Performance Monitors Extension is an optional feature, but if it is implemented, an Armv8.5 implementation must include FEAT_PMUv3p5.

The fields that identify the presence of FEAT_PMUv3p5 are:
- ID_AA64DFR0_EL1.PMUVer.
- ID_DFR0_EL1.PerfMon.
- ID_DFR0.PerfMon.
- EDDFR.PMUVer.

For more information, see:
- Behavior on overflow on page D7-2699
- Prohibiting event counting on page D7-2703.
- PMU events and event numbers on page D7-2710.

A2.8.2 Additional requirements of Armv8.5

The Armv8.5 architecture includes some mandatory changes that are not associated with a feature. These are:

Restrictions on effects of speculation

Further restrictions are placed on execution for:
- Execution prediction instructions that predict addresses or register values.
- Data loaded under speculation with a permission or domain fault.
- Any System register read under speculation to a register that is not architecturally accessible from the current Exception level.

For more information, see:
- Restrictions on the effects of speculation on page E2-4029.

Changes to CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1

CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1 must be implemented.

Changes to the input channel gate function
If the Cross Trigger Matrix (CTM) is implemented, the input channel gate function must be implemented.

Deprecation of EDPRCR.CWRR

EDPRCR.CWRR is deprecated.

Mandatory changes are also made to earlier architectural extensions, see Architectural requirements added to earlier extensions.

A2.8.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:

- FEAT_SB on page A2-63.
- FEAT_SSBS on page A2-63.
- FEAT_CSV2 on page A2-63.
- FEAT_CSV3 on page A2-64.
- FEAT_SPECRES on page A2-64.
- FEAT_CP15SDISABLE2 on page A2-64.
- FEAT_EVT on page A2-78.
- FEAT_DPB2 on page A2-78.
- FEAT_SPEv1p1 on page A2-83.
- FEAT_DoPD on page A2-83.

A2.8.4 Architectural requirements added to earlier extensions

The additional architectural requirement that has been added to earlier extensions is Prefetch speculation protection on page A2-65.
A2.9 The Armv8.6 architecture extension

The Armv8.6 architecture extension adds architectural features and additional requirements, see:

- Architectural features added by Armv8.6.
- Additional requirements of Armv8.6 on page A2-95.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-95.

A2.9.1 Architectural features added by Armv8.6

An implementation of the Armv8.6 extension must include all of the features that this section describes as mandatory. Such an implementation is also called an implementation of the Armv8.6 architecture.

The Armv8.6 architecture extension adds the following architectural features, which are identified by the architectural feature name and a short description of the feature:

FEAT_ECV, Enhanced Counter Virtualization

FEAT_ECV enhances the Generic Timer architecture.

When executing in AArch64 state or AArch32 state, FEAT_ECV provides:

- Self-synchronizing views of the virtual and physical timers in AArch64 and AArch32 state.
- The ability to scale the generation of the event stream.

When EL2 is using AArch64 state, FEAT_ECV provides:

- An optional offset between the EL1 or EL0 view of physical time, and the EL2 or EL3 view of physical time.
- Traps configurable in CNTHCTL_EL2 that trap EL0 and EL1 access to the virtual counter or timer registers, and accesses to the physical timer registers when they are accessed using an EL02 descriptor.

The optional offset to views of physical time, and the configurable traps in CNTHCTL_EL2, both apply to EL1 and EL0 whether EL1 and EL0 are in AArch64 state or AArch32 state.

This feature is mandatory in Armv8.6 implementations.

The ID_AA64MMFR0_EL1.ECV field identifies the presence of FEAT_ECV. The ID_PFR1_EL1.GenTimer and ID_PFR1.GenTimer fields identify support for self-synchronized counter views in AArch32 state.

For more information, see:

- Self-hosted trace timestamps on page D3-2485.
- The profiling data on page D9-2783.
- The AArch64 view of the Generic Timer on page D11-2836.
- The AArch32 view of the Generic Timer on page G6-6104.

FEAT_FGT, Fine Grain Traps

FEAT_FGT introduces additional traps to EL2 of EL1 and EL0 access to individual or small groups of System registers and instructions. The traps are independent of existing controls.

This feature is supported in AArch64, and when EL1 is using AArch64, EL0 accesses using AArch32 are also trapped.

This feature is mandatory in Armv8.6 implementations.

The ID_AA64MMFR0_EL1.FGT field identifies presence of FEAT_FGT.

For more information, see:

- Traps to EL3 of EL2 accesses to fine-grained trap registers on page D1-2387.
- Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers on page D1-2383.
- Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers on page D1-2386.
- Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers on page D1-2381.
• Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU registers on page D1-2381.
• Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions on page D1-2381.
• Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers on page D1-2376.

FEAT_TWED, Delayed Trapping of WFE
FEAT_TWED introduces support for configurable delayed trapping of the WFE instruction.
This feature is supported in AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.6 implementations.
The ID_AA64MMFR1_EL1.TWED field identifies the presence of FEAT_TWED.
For more information, see *The Wait For Event instruction* on page D1-2392.

FEAT_AMUv1p1, AMU Extensions v1.1
FEAT_AMUv1p1 introduces support for virtualization of Activity Monitors event counters, and introduces controls to disable access to auxiliary event counters below the highest Exception level.
This feature is supported in AArch32 state and AArch64 state, if the hypervisor is using AArch64.
This feature is OPTIONAL in Armv8.6 implementations if the OPTIONAL FEAT_AMUv1 is implemented.
The fields ID_AA64PFR0_EL1.AMU, ID_PFR0_EL1.AMU, and ID_PFR0.AMU identify the presence of FEAT_AMUv1p1.
For more information, see *Chapter D8 The Activity Monitors Extension*.

FEAT_MTPMU, Multi-threaded PMU Extensions
FEAT_MTPMU introduces controls to disable PMEVTYPER<\alpha>_EL0.MT.
This feature requires at least one of EL2 and EL3. If neither is implemented, this feature is not implemented.
If EL2 or EL3 is implemented, the feature is OPTIONAL if FEAT_PMUv3 is implemented.
Multithreaded Armv8.6 implementations with FEAT_PMUv3 implemented must implement FEAT_MTPMU to enable any multithreaded event counting.
This feature is supported in AArch64 state and AArch32 state.
The fields ID_AA64DFR0_EL1.MTPMU and ID_DFR1.MTPMU identify the presence of FEAT_MTPMU.
For more information, see:
• *Multithreaded implementations on page D7-2704*.
• MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME, and HDCR.MTPME.
• *Common event numbers on page D7-2716*.

A2.9.2 Additional requirements of Armv8.6
The Armv8.6 architecture includes some mandatory changes that are not associated with a feature. These are:

Changes to the frequency of the physical counter
The frequency of CNTFRQ_EL0 is standardized to a frequency of 1GHz. This means that the system counter must be implemented at 64 bits. For more information, see:
• *The system counter on page D11-2834*.
• *The system counter on page G6-6102*.

A2.9.3 Features added to earlier extensions
The features that have been added to earlier architectural extensions are:
• FEAT_DGH on page A2-65.
• FEAT_ETS on page A2-65.
• FEAT_BF16 on page A2-79.
• FEAT_AA32BF16 on page A2-79.
• FEAT_I8MM on page A2-79.
• FEAT_AA32I8MM on page A2-80.
• FEAT_PAuth2 on page A2-83.
• FEAT_FPAC on page A2-83.
A2.10 The Reliability, Availability, and Serviceability Extension

The RAS Extension, FEAT_RAS, is a mandatory extension to the Armv8.2 architecture, and an OPTIONAL extension to the Armv8.0 and the Armv8.1 architectures.

The RAS Extension improves the dependability of a system by providing:

- Reliability, that is, the continuity of correct service.
- Availability, that is, the readiness for correct service.
- Serviceability, that is, the ability to undergo modifications and repairs.

ID_AA64PFR0_EL1.RAS in AArch64 state, and ID_PFR0.RAS in AArch32 state, indicate whether the RAS Extension is implemented.

The RAS Extension introduces a barrier instruction, the Error Synchronization Barrier (ESB), to the A32, T32, and A64 instruction sets.

System registers introduced by the RAS Extension are described in:
- For AArch64, RAS registers on page D13-3836.
- For AArch32, RAS registers on page G8-6867.

In addition, the RAS Extension introduces a number of memory-mapped registers. These are described in the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the Armv8-A architecture profile.

Armv8.2 introduces the following architectural features to the RAS Extension:
- FEAT_IESB.

Armv8.4 introduces the following architectural features to the RAS Extension:
- FEAT_RASv1p1.
- FEAT_DoubleFault.
A2.11 The Statistical Profiling Extension (SPE)

The Statistical Profiling Extension, FEAT_SPE, is an optional extension introduced by the Armv8.2 architecture. Implementation of the Statistical Profiling Extension requires implementation of at least Armv8.1 of the Armv8-A architecture profile. The Statistical Profiling Extension is only supported in AArch64 state.

The Statistical Profiling Extension provides a non-invasive method of sampling software and hardware using randomized sampling of either architectural instructions, as defined by the instruction set architecture, or by microarchitectural operations.

ID_AA64DFR0_EL1.PMSVer indicates whether the Statistical Profiling Extension is implemented.

For more information, see Chapter D9 The Statistical Profiling Extension.
A2.12 The Scalable Vector Extension (SVE)

The Scalable Vector Extension, FEAT_SVE, is an OPTIONAL extension introduced by the Armv8.2 architecture. SVE is supported in AArch64 state only.

The Scalable Vector Extension provides vector instructions that, primarily, support wider vectors than the Arm Advanced SIMD instruction set. The *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A* describes the SVE.

ID_AA64PFR0_EL1.SVE indicates whether the Scalable Vector Extension is implemented.

The Scalable Vector Extension affects some AArch64 System registers, and those register changes are included in this issue of this Manual, where they are identified as SVE features. SVE also introduces AArch64 System registers, however these do not appear in this manual. For more information about the System registers introduced by SVE, see the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

The SVE and Advanced SIMD events are documented in Chapter D7 The Performance Monitors Extension.

The Scalable Vector Extension introduces the following System registers:

- ID_AA64ZFR0_EL1.
- ZCR_EL1, and an EL2 alias of this register, ZCR_EL12.
- ZCR_EL2.
- ZCR_EL3.

The Scalable Vector Extension modifies the following existing System registers:

- CPACR_EL1.
- CPTR_EL2.
- CPTR_EL3.
- ESR_ELx.
- ID_AA64PFR0_EL1.
- TCR_EL1.
- TCR_EL2.
A2.13 The Activity Monitors Extension (AMU)

The Activity Monitors Extension is an OPTIONAL extension introduced by the Armv8.4 architecture. AMU is supported in AArch64 and AArch32 states.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, FEAT_AMUv1, which provides a function similar to a subset of the existing Performance Monitors Extension functionality, intended for system management use rather than debugging and profiling.

The Activity Monitors Extension implements a System register interface to the Activity Monitors registers, and also supports an optional external memory-mapped interface.

The fields that identify the presence of the Activity Monitors Extension are:

- ID_AA64PFR0_EL1.AMU.
- ID_PFR0_EL1.AMU.
- ID_PFR0.AMU.
- EDPFR.AMU.

For more information, see Chapter D8 The Activity Monitors Extension.
A2.14 The Memory Partitioning and Monitoring (MPAM) Extension

The MPAM Extension, FEAT_MPAM, is an OPTIONAL extension introduced by the Armv8.4 architecture and requires implementation of at least Armv8.2 of the Armv8-A architecture profile. MPAM is supported in AArch64 state only.

The MPAM Extension provides a framework for memory-system component controls that partition one or more of the performance resources of the component.

The fields that identify the presence of the MPAM Extension are:

- ID_AA64PFR0_EL1.MPAM.
- EDPFR.MPAM.

For more information, see ARM® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for ARMv8-A.
Part B
The AArch64 Application Level Architecture
Chapter B1
The AArch64 Application Level Programmers’ Model

- About the Application level programmers’ model on page B1-106.
- Registers in AArch64 Execution state on page B1-107.
- Software control features and EL0 on page B1-112.
B1.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application execution under an operating system, or higher level of system software. However, some knowledge of the system information is needed to put the Application level programmers’ model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege, indicated by different Exception levels that number upwards from EL0 to EL3. EL0 corresponds to the lowest privilege level and is often described as unprivileged. The Application level programmers’ model is the programmers’ model for software executing at EL0. For more information see Exception levels on page D1-2312.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged at EL0. This:

• Permits the operating system to allocate system resources to an application in a unique or shared manner.
• Provides a degree of protection from other processes, and so helps protect the operating system from malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference to the system level description.

Execution at any Exception level above EL0 is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level Programmers’ Model.
B1.2 Registers in AArch64 Execution state

This section describes the registers and process state visible at EL0 when executing in the AArch64 state. It includes the following:

- Registers in AArch64 state
- Process state, PSTATE on page B1-108
- System registers on page B1-110

B1.2.1 Registers in AArch64 state

In the AArch64 application level view, an Arm processing element has:

R0-R30 31 general-purpose registers, R0 to R30. Each register can be accessed as:

- A 64-bit general-purpose register named X0 to X30.
- A 32-bit general-purpose register named W0 to W30.

See the register name mapping in Figure B1-1.

![Figure B1-1 General-purpose register naming](image)

The X30 general-purpose register is used as the procedure call link register.

Note
In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This indicates that the argument takes the value zero, but does not indicate that the ZR is implemented as a physical register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack pointer can be accessed using the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note
Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information see the Procedure Call Standard for the Arm 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can only be updated on a branch, exception entry or exception return.

Note
Attempting to execute an A64 instruction that is not word-aligned generates a PC alignment fault, see PC alignment checking on page D1-2327.

V0-V31 32 SIMD&FP registers, V0 to V31. Each register can be accessed as:

- A 128-bit register named Q0 to Q31.
- A 64-bit register named D0 to D31.
- A 32-bit register named S0 to S31.
- A 16-bit register named H0 to H31.
- An 8-bit register named B0 to B31.
- A 128-bit vector of elements.
• A 64-bit vector of elements.

Where the number of bits described by a register name does not occupy an entire SIMD&FP register, it refers to the least significant bits. See Figure B1-2.

![Figure B1-2 SIMD and floating-point register naming](image)

For more information about data types and vector formats, see Supported data types on page A1-40.

FPCR, FPSR Two SIMD and floating-point control and status registers, FPCR and FPSR.

See Registers for instruction processing and exception handling on page D1-2321 for more information on the registers.

Pseudocode description of registers in AArch64 state

In the pseudocode functions that access registers:

• The assignment form is used for register writes.
• The non-assignment for register reads.

The uses of the $X[]$ function are:

• Reading or writing X0-X30, using n to index the required register.
• Reading the zero register ZR, accessed as $X[31]$.

Note

The pseudocode use of $X[31]$ to represent the zero register does not indicate that hardware must implement this register.

The AArch64 $SP[]$ function is used to read or write the current SP.

The AArch64 $PC[]$ function is used to read the PC.

The AArch64 $V[]$ function is used to read or write the Advanced SIMD and floating-point registers V0-V31, using a parameter n to index the required register.

The AArch64 $Vpart[]$ function is used to read or write a part of one of V0-V31, using a parameter n to index the required register, and a parameter $part$ to indicate the required part of the register, see the function description for more information.

The $SP[], PC[], V[],$ and $Vpart[]$ functions are defined in Chapter J1 Armv8 Pseudocode.

B1.2.2 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide instructions that operate on elements of PSTATE.
The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N Negative Condition flag. If the result of the instruction is regarded as a two's complement signed integer, the PE sets this to:
 • 1 if the result is negative.
 • 0 if the result is positive or zero.

Z Zero Condition flag. Set to:
 • 1 if the result of the instruction is zero.
 • 0 otherwise.
 A result of zero often indicates an equal result from a comparison.

C Carry Condition flag. Set to:
 • 1 if the instruction results in a carry condition, for example an unsigned overflow that is the result of an addition.
 • 0 otherwise.

V Overflow Condition flag. Set to:
 • 1 if the instruction results in an overflow condition, for example a signed overflow that is the result of an addition.
 • 0 otherwise.

Conditional instructions test the N, Z, C and V Condition flags, combining them with the Condition code for the instruction to determine whether the instruction must be executed. In this way, execution of the instruction is conditional on the result of a previous operation. For more information about conditional execution, see Condition flags and related instructions on page C6-769.

The exception masking bits

D Debug exception mask bit. When EL0 is enabled to modify the mask bits, this bit is visible and can be modified. However, this bit is architecturally ignored at EL0.

A SError interrupt mask bit.

I IRQ interrupt mask bit.

F FIQ interrupt mask bit.

For each bit, the values are:
0 Exception not masked.
1 Exception masked.

Access at EL0 using AArch64 state depends on SCTLR_EL1.UMA. See Traps to EL1 of EL0 accesses to the PSTATE. (D, A, I, F) interrupt masks on page D1-2371.

See Process state, PSTATE on page D1-2324 for the system level view of PSTATE.
Accessing PSTATE fields at EL0

At EL0 using AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly read using the MRS instruction and directly written using the MSR (register) instructions. Table B1-1 shows the Special-purpose registers that access the PSTATE fields that hold AArch64 state when the PE is at EL0 using AArch64. All other PSTATE fields do not have direct read and write access at EL0.

<table>
<thead>
<tr>
<th>Special-purpose register</th>
<th>PSTATE fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZCV</td>
<td>N, Z, C, V</td>
</tr>
<tr>
<td>DAIF</td>
<td>D, A, I, F</td>
</tr>
</tbody>
</table>

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F}. Table B1-2 shows the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F} when the PE is at EL0 using AArch64 state.

<table>
<thead>
<tr>
<th>Operand</th>
<th>PSTATE fields</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAIFSet</td>
<td>D, A, I, F</td>
<td>Directly sets any of the PSTATE.{D,A, I, F} bits to 1</td>
</tr>
<tr>
<td>DAIFClr</td>
<td>D, A, I, F</td>
<td>Directly clears any of the PSTATE.{D, A, I, F} bits to 0</td>
</tr>
</tbody>
</table>

However, access to the PSTATE.{D, A, I, F} fields at EL0 using AArch64 state depends on SCTLR_EL1.UMA. Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks on page D1-2371.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are guaranteed:

- Not to be visible to earlier instructions in the execution stream.
- To be visible to later instructions in the execution stream.

B1.2.3 System registers

System registers provide support for execution control, status and general system configuration. The majority of the System registers are not accessible at EL0.

However, some System registers can be configured to allow access from software executing at EL0. Any access from EL0 to a System register with the access right disabled causes the instruction to behave as UNDEFINED. The registers that can be accessed from EL0 are:

- **Cache ID registers**: The CTR_EL0 and DCZID_EL0 registers provide implementation parameters for EL0 cache management support.

- **Debug registers**: A Debug Communications Channel is supported by the MDCCSR_EL0, DBGDTR_EL0, DBGDTRRX_EL0 and DBGDTRTX_EL0 registers.

- **Performance Monitors registers**: The Performance Monitors Extension provides counters and configuration registers. Software executing at EL1 or a higher Exception level can configure some of these registers to be accessible at EL0.

 For more details, see Chapter D7 The Performance Monitors Extension.

- **Activity Monitors registers**: The Activity Monitors Extension provides counters and configuration registers. Software executing at EL1 or a higher Exception level can configure these registers to be accessible at EL0.
Thread ID registers

The TPIDR_EL0 and TPIDRR0_EL0 registers are two thread ID registers with different access rights.

Timer registers

In Armv8 the following operations are performed:

- Read access to the system counter clock frequency using CNTFRQ_EL0.
- Physical and virtual timer count registers, CNTPCT_EL0 and CNTVCT_EL0.
- Physical up-count comparison, down-count value and timer control registers, CNTP_CVAL_EL0, CNTP_TVAL_EL0, and CNTP_CTL_EL0.
- Virtual up-count comparison, down-count value and timer control registers, CNTV_CVAL_EL0, CNTV_TVAL_EL0, and CNTV_CTL_EL0.

For more details, see Chapter D8 The Activity Monitors Extension.
B1.3 Software control features and EL0

The following sections describe the EL0 view of the Armv8 software control features:

- Exception handling
- Wait for Interrupt and Wait for Event
- The YIELD instruction
- Application level cache management on page B1-113
- Instructions relating to Debug on page B1-113

B1.3.1 Exception handling

In the Arm architecture, an exception causes a change of program flow. Execution of an exception handler starts, at an Exception level higher than EL0, from a defined vector that relates to the exception taken.

Exceptions include:

- Interrupts.
- Memory system aborts.
- Exceptions generated by attempting to execute an instruction that is UNDEFINED.
- System calls.
- Secure monitor or Hypervisor traps.
- Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to make a system call to an operating system.

The BRK instruction generates a Breakpoint Instruction exception. This provides a mechanism for debugging software using debugger executing on the same PE, see Breakpoint Instruction exceptions on page D2-2431.

--- Note ---

The BRK instruction is supported only in the A64 instruction set. The equivalent instruction in the T32 and A32 instruction sets is BKPT.

B1.3.2 Wait for Interrupt and Wait for Event

Issuing a WFI instruction indicates that no further execution is required until a WFI wake-up event occurs, see Wait For Interrupt on page D1-2394. This permits entry to a low-power state.

Issuing a WFE instruction indicates that no further execution is required until a WFE wake-up event occurs, see Wait for Event mechanism and Send event on page D1-2391. This permits entry to a low-power state.

B1.3.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by a thread is of low importance so that it could yield, see YIELD on page C6-1393. This mechanism can be used to improve overall performance in a Symmetric Multithreading (SMT) or Symmetric Multiprocessing (SMP) system.

Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the arbitration priority of the snoop bit in an SMP system is modified. The YIELD instruction permits binary compatibility between SMT and SMP systems.

The YIELD instruction is a NOP hint instruction.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no implementation benefit.
B1.3.4 Application level cache management

A small number of cache management instructions can be enabled at EL0 from higher levels of privilege using the SCTLR_EL1 System register. Any access from EL0 to an operation with the access right disabled causes the instruction to behave as UNDEFINED.

About the available operations, see Application level access to functionality related to caches on page B2-144.

B1.3.5 Instructions relating to Debug

Exception handling on page B1-112 refers to the BRK instruction, which generates a Breakpoint Instruction exception. In addition, in both AArch64 state and AArch32 state, the HLT instruction causes the PE to halt execution and enter Debug state. This provides a mechanism for debugging software using a debugger that is external to the PE, see Chapter H1 About External Debug.

Note
In AArch32 state, previous versions of the architecture defined the DBG instruction, that could provide a hint to the debug system. In Armv8, this instruction executes as a NOP. Arm deprecates the use of the DBG instruction.

B1.3.6 About PSTATE.DIT

When the value of PSTATE.DIT is 1:

• The instructions listed in DIT are required to have;
 — Timing which is independent of the values of the data supplied in any of its registers, and the values of the NZCV flags.
 — Responses to asynchronous exceptions which do not vary based on the values supplied in any of their registers, or the values of the NZCV flags.
• All loads and stores must have their timing insensitive to the value of the data being loaded or stored.

Note
• Arm recommends that the FEAT_PAuth instructions do not have their timing dependent on the key value used in the pointer authentication, regardless of the PSTATE.DIT bit.
• When the value of PSTATE.DIT is 0, the architecture makes no statement about the timing properties of any instructions. However, it is likely that these instructions have timing that is invariant of the data in many situations.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.DIT is copied to SPSR_ELx.DIT.
On an exception that is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.
On an exception return from AArch64 state:
 • SPSR_ELx.DIT is copied to PSTATE.DIT, when the target Exception level is in AArch64 state.
 • SPSR_ELx.DIT is copied to CPSR.DIT, when the target Exception level is in AArch32 state.

PSTATE.DIT can be written and read at all Exception levels.

Note
• PSTATE.DIT is unchanged on entry into Debug state.
• PSTATE.DIT is not guaranteed to have any effect in Debug state.
The AArch64 Application Level Programmers' Model

B1.3 Software control features and EL0
Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

- About the Arm memory model on page B2-116.
- Atomicity in the Arm architecture on page B2-118.
- Definition of the Armv8 memory model on page B2-123.
- Caches and memory hierarchy on page B2-143.
- Endian support on page B2-150.
- Memory types and attributes on page B2-153.
- Mismatched memory attributes on page B2-163.
- Synchronization and semaphores on page B2-166.

Note
In this chapter, System register names usually link to the description of the register in Chapter D13 AArch64 System Register Descriptions, for example SCTLR_EL1.
B2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of memory accesses in a different order from the program order. The following sections of this chapter provide the complete definition of the Armv8 memory model, this introduction is not intended to contradict the definition found in those sections. In general, the basic principles of the Armv8 memory model are:

- To provide a memory model that has similar weaknesses to those found in the memory models used by high-level programming languages such as C or Java. For example, by permitting independent memory accesses to be reordered as seen by other observers.
- To avoid the requirement for multi-copy atomicity in the majority of memory types.
- The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the cases where it would be needed.
- The use of address, data, and control dependencies in the creation of order so as to avoid having excessive numbers of barriers or other explicit instructions in common situations where some order is required by the programmer or the compiler.
- If FEAT_MTE is implemented and enabled, the definitions of the memory model which apply to data accesses and data apply to Allocation Tag accesses and Allocation tags.

This section contains:

- Address space.
- Memory type overview.

B2.1.1 Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top eight address bits for use as a tag, as described in Address tagging in AArch64 state on page D5-2528. If this is done, address bits[63:56]:
- Are not considered when determining whether the address is valid.
- Are never propagated to the program counter.

Supervisory software determines the valid address range. Attempting to access an address that is not valid generates an MMU fault.

Simple sequential execution of instructions might overflow the valid address range. For more information, see Virtual address space overflow on page D4-2491.

Memory accesses use the Mem[] function. This function makes an access of the required type. If supervisory software configures the top eight address bits for use as a tag, the top eight address bits are ignored.

The AccType{} enumeration defines the different access types.

Note

- Chapter D4 The AArch64 System Level Memory Model and Chapter D5 The AArch64 Virtual Memory System Architecture include descriptions of memory system features that are transparent to the application, including memory access, address translation, memory maintenance instructions, and alignment checking and the associated fault handling. These chapters also include pseudocode descriptions of these operations.
- For information on the pseudocode that relates to memory accesses, see Basic memory access on page D4-2522, Unaligned memory access on page D4-2523, and Aligned memory access on page D4-2523.

B2.1.2 Memory type overview

Armv8 provides the following mutually-exclusive memory types:

- Normal This is generally used for bulk memory operations, both read/write and read-only operations.
Device

The Arm architecture forbids *Speculative* reads of any type of Device memory. This means Device memory types are suitable attributes for read-sensitive Locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device memory attribute.

Device memory has additional attributes that have the following effects:

- They prevent aggregation of reads and writes, maintaining the number and size of the specified memory accesses. See *Gathering* on page B2-159.
- They preserve the access order and synchronization requirements for accesses to a single peripheral. See *Reordering* on page B2-160.
- They indicate whether a write can be acknowledged other than at the end point. See *Early Write Acknowledgement* on page B2-161.

For more information on Normal memory and Device memory, see *Memory types and attributes* on page B2-153.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type. A *Note* in *Device memory* on page B2-157 describes how these memory types map onto the Armv8 memory types.
B2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Armv8 architecture, the atomicity requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For more information, see:

- Requirements for single-copy atomicity.
- Properties of single-copy atomic accesses on page B2-120.
- Multi-copy atomicity on page B2-120.
- Requirements for multi-copy atomicity on page B2-120.
- Concurrent modification and execution of instructions on page B2-120.

For more information about the memory types, see Memory type overview on page B2-116.

B2.2.1 Requirements for single-copy atomicity

For explicit memory accesses generated from an Exception level the following rules apply:

- A read that is generated by a load instruction that loads a single general-purpose register and is aligned to the size of the read in the instruction is single-copy atomic.
- A write that is generated by a store instruction that stores a single general-purpose register and is aligned to the size of the write in the instruction is single-copy atomic.
- Reads that are generated by a Load Pair instruction that loads two general-purpose registers and are aligned to the size of the load to each register are treated as two single-copy atomic reads, one for each register being loaded.
- Writes that are generated by a Store pair instruction that stores two general-purpose registers and are aligned to the size of the store of each register are treated as two single-copy atomic writes, one for each register being stored.
- Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit quantities are single-copy atomic.
- When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note

To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read values from the Load-Exclusive pair.

- Where translation table walks generate a read of a translation table entry, this read is single-copy atomic.
- For the atomicity of instruction fetches, see Concurrent modification and execution of instructions on page B2-120.
- Reads to SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size of the quantity being loaded are treated as single-copy atomic reads.
- Writes from SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size of the quantity being stored are treated as single-copy atomic writes.
- Element or Structure Reads to SIMD and floating-point registers of 64-bit or smaller elements, where each element is aligned to the size of the element being loaded, have each element treated as a single-copy atomic read.
- Element or Structure Writes from SIMD and floating-point registers of 64-bit or smaller elements, where each element is aligned to the size of the element being stored, have each element treated as a single-copy atomic store.
• Reads to SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated as a pair of single-copy atomic 64-bit reads.

• Writes from SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated as a pair of single-copy atomic 64-bit writes.

• For unaligned memory accesses, the single-copy atomicity is described in Alignment of data accesses on page B2-148.

• The reads and writes of the two words or two double-words accessed by CASP instructions are single-copy atomic at the size of the two words or double-words.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to different bytes is ensured by the architecture.

All accesses to any byte are single-copy atomic.

--- Note ---

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than individual bytes.

--- Note ---

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts, can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are returned from using their preferred return address, the instruction that generated the sequence of accesses is re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt or other exception during a multi-access load or store on page D1-2366.

--- Note ---

The exception behavior for these multiple access instructions means that they are not suitable for use for writes to memory for the purpose of software synchronization.

Changes to single-copy atomicity in Armv8.4

Instructions that are introduced in FEAT_LRCPC are single-copy atomic when the following conditions are true:

• All bytes being accessed are within the same 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether they are single-copy atomic.

If FEAT_LSE2 is implemented, all loads and stores are single-copy atomic when the following conditions are true:

• Accesses are unaligned to their data size but are aligned within a 16-byte quantity that is aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether loads and stores are single-copy atomic.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that load or store two 64-bit registers are single-copy atomic when the following conditions are true:

• The overall memory access is aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT_LSE2 is implemented, LDP, LDNP, and STP instructions that access fewer than 16 bytes are single-copy atomic when the following conditions are true:

• All bytes being accessed are within a 16-byte quantity aligned to 16 bytes.

• Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether LDP, LDNP, or STP instructions that access fewer than 16 bytes are single-copy atomic.
B2.2.2 Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one of the stores are Coherence-after the corresponding overlapping writes generated by the other store.
2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of the overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated by L1.

For more information, see Definition of the Armv8 memory model on page B2-123.

B2.2.3 Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both true:

- All writes to the same location are serialized, meaning they are observed in the same order by all observers, although some observers might not observe all of the writes.
- A read of a location does not return the value of a write until all observers observe that write.

Note

Writes that are not coherent are not multi-copy atomic.

B2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The Armv8 memory model is Other-multi-copy atomic. For more information, see External ordering constraints on page B2-128.

B2.2.5 Concurrent modification and execution of instructions

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior that can be achieved by executing any sequence of instructions that can be executed from the same Exception level, except where each of the instruction before modification and the instruction after modification is one of a B, BL, BRK, HVC, ISB, NOP, SMC, or SVC instruction.

For the B, BL, BRK, HVC, ISB, NOP, SMC, and SVC instructions the architecture guarantees that, after modification of the instruction, behavior is consistent with execution of either:

- The instruction originally fetched.
- A fetch of the modified instruction.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.
2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the following sequence of instructions and operations:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.
Note

- The `DC CVAU` operation is not required if the area of memory is either Non-cacheable or Write-Through Cacheable.
- If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs can cause the instructions to be concurrently modified by one PE and executed by another PE. If the modifications affect instructions other than those listed as being acceptable for modification, synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

3. In a multiprocessor system, the `IC IVAU` is broadcast to all PEs within the Inner Shareable domain of the PE running this sequence. However, when the modified instructions are observable, each PE that is executing the modified instructions must issue the following instruction to ensure execution of the modified instructions:

```
ISB ; Synchronize fetched instruction stream
```

For more information about the required synchronization operation, see [Synchronization and coherency issues between data and instruction accesses](#) on page `B2-146`.

For information about memory accesses caused by instruction fetches, see [Ordering relations](#) on page `B2-126`.

B2.2.6 Possible implementation restrictions on using atomic instructions

In some implementations, and for some memory types, the properties of atomicity can be met only by functionality outside the PE. Some system implementations might not support atomic instructions for all regions of the memory. In particular, this can apply to:

- Any type of memory in the system that does not support hardware cache coherency.
- Device, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does not support hardware cache coherency.

In such implementations, it is defined by the system:

- Whether the atomic instructions are atomic in regard to other agents that access memory.
- If the atomic instructions are atomic in regard to other agents that access memory, which address ranges or memory types this applies to.

An implementation can choose which memory type is treated as Non-cacheable.

The memory types for which it is architecturally guaranteed that the atomic instructions will be atomic are:

- Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.
- Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.

If the atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic instruction to such a location can have one or more of the following effects:

- The instruction generates a synchronous External abort.
- The instruction generates a System Error interrupt.
- The instruction generates an `IMPLEMENTATION DEFINED` MMU fault reported using the Data Abort Fault status code of `ESR_ELx.DFSC = 110101`.

`STR Wt, [Xn]`
`DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)`
`DSB ISH ; Ensure visibility of the data cleaned from cache`
`IC IVAU, Xn ; Invalidate instruction cache by VA to PoU`
`DSB ISH`
For the EL1&0 translation regime, if the atomic instruction is not supported because of the memory type that is defined in the first stage of translation, or the second stage of translation is not enabled, then this exception is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

- The instruction is treated as a *NOP*.
- The instructions are performed, but there is no guarantee that the memory accesses were performed atomically in regard to other agents that access memory. In this case, the instruction might also generate a System Error interrupt.
B2.3 Definition of the Armv8 memory model

This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:
• Basic definitions.
• Dependency definitions on page B2-125.
• Ordering relations on page B2-126.
• Ordering constraints on page B2-127.
• Internal visibility requirement on page B2-128.
• External ordering constraints on page B2-128.
• Completion and endpoint ordering on page B2-130.
• Ordering of instruction fetches on page B2-131.
• Restrictions on the effects of speculation on page B2-132.
• Memory barriers on page B2-134.
• Limited ordering regions on page B2-141.

For more information about endpoint ordering of memory accesses, see Reordering on page B2-160.

In the Armv8 memory model, the Shareability memory attribute indicates the degree to which hardware must ensure memory coherency between a set of observers, see Memory types and attributes on page B2-153.

The Armv8 architecture defines additional memory attributes and associated behaviors, which are defined in the system level section of this manual. See:
• Chapter D4 The AArch64 System Level Memory Model.
• Chapter D5 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes on page B2-163.

B2.3.1 Basic definitions

The Armv8 memory model provides a set of definitions that are used to construct conditions on the permitted sequences of accesses to memory.

Observer

An Observer refers to a processing element or mechanism in the system, such as a peripheral device, that can generate reads from, or writes to, memory.

Common Shareability Domain

For the purpose of this section, all Observers are assumed to belong to a Common Shareability Domain. All read and write effects access only Normal memory locations in a Common Shareability Domain, and excludes the situations described in Mismatched memory attributes on page B2-163.

Location

A Location refers to a single byte in memory.

Effects

The Effects of an instruction can be:
• Register effects.
• Memory effects.
• Barrier effects.
• Points of divergence.

The effects of an instruction I₁ are said to appear in program order before the effects of an instruction I₂ if and only if I₁ occurs before I₂ in the order specified by the program. Each effect generated by an instruction has a unique identifier, which characterizes it amongst the events generated by the same instruction.
Register effect

The Register effects of an instruction are register reads or register writes of that instruction. For an instruction that accesses registers, a register read effect is generated for each register read by the instruction and a register write effect is generated for each register written by the instruction. An instruction may generate both read and write Register effects.

Memory effect

The Memory effects of an instruction are the read or write effects of that instruction. For an instruction that accesses memory, a read effect is generated for each Location read by the instruction and a write effect is generated for each Location written by the instruction. An instruction may generate both read and write Memory effects.

Point of divergence

The Points of divergence of an instruction are effects which correspond to a branching decision being taken. At each point of divergence, the program order is split into two distinct branches, called executed and speculated branch respectively.

The minimal Points of divergence in a program execution are the Points of divergence which have no other Point of divergence before them in program order.

Intrinsic order

There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that instruction, according to the operation of that instruction.

The operation of an instruction is defined by the pseudocode in Chapter C6 A64 Base Instruction Descriptions.

Reads-from-register

The Reads-from-register relation couples reads and writes to the same register such that each register read is paired with exactly one register write in the execution of a program. A read R₂ Reads-from-register a write W₁ to the same register if and only if R₂ takes its data from W₁. By construction W₁ must be in program order before R₂ and there must be no intervening write to the same register in program order between W₁ and R₂.

Reads-from

The Reads-from relation couples reads and writes to the same Location such that each read is paired with exactly one write in the execution of a program. A read R₂ from a Location Reads-from a write W₁ to the same Location if and only if R₂ takes its data from W₁.

Coherence order

There is a per-location Coherence order relation that provides a total order over all writes from all coherent Observers to that Location, starting with a notional write of the initial value. The Coherence order of a Location represents the order in which writes to the Location arrive at memory.

Local read successor

A read R₂ of a Location is the Local read successor of a write W₁ from the same Observer to the same Location if and only if W₁ appears in program order before R₂ and there is not a write W₃ from the same Observer to the same Location appearing in program order between W₁ and R₂.

Local write successor

A write W₂ of a Location is a Local write successor of a write W₁ from the same Observer to the same Location if and only if W₁ appears in program order before W₂.

Coherence-after

A write W₂ to a Location is Coherence-after another write W₁ to the same Location if and only if W₂ is sequenced after W₁ in the Coherence order of the Location.

A write W₂ to a Location is Coherence-after a read R₁ of the same location if and only if R₁ Reads-from a write W₃ to the same Location and W₂ is Coherence-after W₃.
Observed-by

A read or a write RW₁ from an Observer is Observed-by a write W₂ from a different Observer if and only if W₂ is coherence-after RW₁.

A write W₁ from an Observer is Observed-by a read R₂ from a different Observer if and only if R₂ Reads-from W₁.

___ Note ___

The Observed-by relation only relates accesses generated by different Observers.

Overlapping accesses

Two Memory effects overlap if and only if they access the same Location. Two instructions overlap if and only if one or more of their generated Memory effects overlap.

Single-copy-atomic-ordered-before

A read R₁ is Single-copy-atomic-ordered-before another read R₂ if and only if all of the following statements are true:

- R₁ and R₂ are reads generated by the same instruction.
- R₁ is not a Local read successor of a write.
- R₂ is a Local read successor of a write.

DMB FULL

A DMB FULL is a DMB with neither the LD or the ST qualifier.

Where this section refers to DMB without any qualification, then it is referring to all types of DMB.

Unless a specific shareability domain is defined, a DMB applies to the Common Shareability Domain.

All properties that apply to DMB also apply to the corresponding DSB.

Context synchronization instruction

A Context synchronization instruction is one of the following:

- An ISB instruction.
- An instruction that generates a synchronous exception.
- An exception return instruction.
- A DCPS or DRPS instruction.

B2.3.2 Dependency definitions

Dependency through registers

A Dependency through registers from a first effect E₁ to a second effect E₂ exists within a PE if and only if at least one of the following applies:

- E₁ is a register write W₁ which has not been generated by a Store Exclusive, E₂ is a register read R₂ and R₂ Reads-from-register W₁.
- E₁ and E₂ have been generated by the same instruction and E₁ is before E₂ in the Intrinsic order of that instruction.
- There is a Dependency through registers from E₁ to a third effect E₃, and there is a Dependency through registers from E₃ to E₂.

Address dependency

An Address dependency from a memory read R₁ to a Memory effect RW₂ exists if and only if there is a Dependency through registers from R₁ to a Register effect E₃ generated by RW₂, and E₃ affects the address part of RW₂, and either:

- RW₂ is a Memory write effect W₂.
- RW₂ is a Memory read effect R₂ and there is no Point of divergence D₄ such that there is a Dependency through registers from R₁ to D₄ and from D₄ to R₂.
Data dependency

A Data dependency from a memory read \(R_1 \) to a memory write \(W_2 \) exists if and only if there is a

Dependency through registers from \(R_1 \) to a Register effect \(E_3 \) generated by \(W_2 \), and \(E_3 \) affects the
data part of \(W_2 \).

Control dependency

A Control dependency from a memory read \(R_1 \) to a subsequent Memory effect \(RW_2 \) exists if and

only if either:

- There is a Dependency through registers from \(R_1 \) to Point of divergence \(D_3 \) and \(RW_2 \) only
 occurs as a result of one of the two branches of that Point of divergence.
- There is a Dependency through registers from \(R_1 \) to the determination of a synchronous
 exception on an instruction generating an effect \(RW_3 \), and \(RW_2 \) appears in program order
 after \(RW_3 \).

B2.3.3 Ordering relations

Dependency-ordered-before

A dependency creates externally-visible order between a read and another Memory effect generated

by the same Observer. A read \(R_1 \) is Dependency-ordered-before a read or write \(RW_2 \) from the same

Observer if and only if \(R_1 \) appears in program order before \(RW_2 \) and any of the following cases

apply:

- There is an Address dependency or a Data dependency from \(R_1 \) to \(RW_2 \).
- \(RW_2 \) is a write \(W_2 \) and there is a Control dependency from \(R_1 \) to \(W_2 \).
- \(RW_2 \) is a read \(R_2 \) generated by an instruction appearing in program order after an instruction
 that generates a Context synchronization event \(E_3 \), and there is a Dependency through
 registers from \(R_1 \) to \(E_3 \).
- \(RW_2 \) is a write \(W_2 \) appearing in program order after a read or a write \(RW_3 \) and there is an
 Address dependency from \(R_1 \) to \(RW_3 \).
- \(RW_2 \) is a Local read successor \(R_2 \) of a write \(W_3 \) and there is an Address dependency or a Data
 dependency from \(R_1 \) to \(W_3 \).

Atomic-ordered-before

Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the

absence of dependencies. A read or a write \(RW_1 \) is Atomic-ordered-before a read or a write \(RW_2 \)

from the same Observer if and only if \(RW_1 \) appears in program order before \(RW_2 \) and either of the

following cases apply:

- \(RW_1 \) is a read \(R_1 \) and \(RW_2 \) is a write \(W_2 \) such that \(R_1 \) and \(W_2 \) are generated by an atomic
 instruction or a successful Load-Exclusive/Store-Exclusive instruction pair to the same
 Location.
- \(RW_1 \) is a write \(W_1 \) generated by an atomic instruction or a successful Store-Exclusive
 instruction and \(RW_2 \) is a read \(R_2 \) generated by an instruction with Acquire or AcquirePC
 semantics such that \(R_2 \) is a Local read successor of \(W_1 \).

For more information, see Synchronization and semaphores on page B2-166.

Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the

same Observer. A read or a write \(RW_1 \) is Barrier-ordered-before a read or a write \(RW_2 \) from the

same Observer if and only if \(RW_1 \) appears in program order before \(RW_2 \) and any of the following

cases apply:

- \(RW_1 \) appears in program order before a DMB FULL that appears in program order before \(RW_2 \).
- \(RW_1 \) appears in program order before an atomic instruction with both Acquire and Release
 semantics that appears in program order before \(RW_2 \).
The AArch64 Application Level Memory Model

B2.3 Definition of the Armv8 memory model

- RW₁ is a write W₁ generated by an instruction with Release semantics and RW₂ is a read R₂ generated by an instruction with Acquire semantics.
- RW₁ is a read R₁ and appears in program order before a DMB LD that appears in program order before RW₂.
- RW₁ is a read R₁ and is generated by an instruction with Acquire or AcquirePC semantics.
- RW₁ is a write W₁ and RW₂ is a write W₂ appearing in program order before a DMB ST that appears in program order before W₂.
- RW₂ is a write W₂ and is generated by an instruction with Release semantics.

Tag-ordered-before

If FEAT_MTE is implemented, a Tag read R₁ is Tag-ordered-before a read or a write Checked data access RW₂ generated by the same instruction if and only if all of the following applies:

- R₁ is in the Intrinsic order of that instruction before RW₂.
- R₁ reads the Allocation Tag at a tag physical address and compares it with the physical address Tag of the instruction. If the result of the comparison can cause a precise exception and the result is negative, then RW₂ does not architecturally occur.

Locally-ordered-before

Dependencies, Local write successor, Load/Store-Exclusive, atomic and barrier instructions can be composed within an Observer to create externally-visible order. A read or a write RW₁ is Locally-ordered-before a read or a write RW₂ from the same Observer if and only if any of the following cases apply:

- RW₁ is a write W₁ and RW₂ is a write W₂ that is equal to or generated by the same instruction as a Local write successor of RW₁.
- RW₁ is Dependency-ordered-before RW₂.
- RW₁ is Atomic-ordered-before RW₂.
- RW₁ is Barrier-ordered-before RW₂.
- RW₁ is Tag-ordered-before RW₂.
- RW₁ is Locally-ordered-before a read or a write that is Locally-ordered-before RW₂.

B2.3.4 Ordering constraints

The Armv8 memory model is described as being Other-multi-copy atomic. The definition of Other-multi-copy atomic is as follows:

Other-multi-copy atomic

In an Other-multi-copy atomic system, it is required that a write from an Observer, if observed by a different Observer, is then observed by all other Observers that access the Location coherently. It is, however, permitted for an Observer to observe its own writes prior to making them visible to other observers in the system.

The Other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the possible executions of a program. Those executions that meet the constraints given by the ordering model are said to be Architecturally well-formed. An implementation that is executing a program is only permitted to exhibit behavior consistent with an Architecturally well-formed execution.

Architecturally well-formed

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and any of the three alternative External ordering constraints.
B2.3.5 Internal visibility requirement

For a read or a write RW₁ that appears in program order before a read or a write RW₂ to the same Location, the Internal visibility requirement requires that exactly one of the following statements is true:

- RW₂ is a write W₂ that is Coherence-after RW₁.
- RW₁ is a write W₁, RW₂ is a read R₂ and either:
 - R₂ Reads-from W₁.
 - R₂ Reads-from a write that is Coherence-after W₁.
- RW₁ and RW₂ are both reads R₁, R₂, R₁ Reads-from a write W₃ and either:
 - R₂ Reads-from W₃.
 - R₂ Reads-from a write that is Coherence-after W₃.

Informally, if a Memory effect M₁ from an Observer appears in program order before a Memory effect M₂ from the same Observer, then M₁ will be seen to occur before M₂ by that Observer.

B2.3.6 External ordering constraints

The Armv8 memory model offers the following three alternative representations of the External ordering constraint:

- External visibility requirement.
- External completion requirement.
- External global completion requirement.

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and one of the three alternative representations in the External ordering constraints.

External visibility requirement

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses consistent with external observation. A read or a write RW₁ is Ordered-before a read or a write RW₂ if and only if any of the following cases apply:

- RW₁ is Observed-by a read or a write RW₃ which is generated by the same instruction as RW₂.
- RW₁ is Locally-ordered-before RW₂.
- RW₁ is Ordered-before a read or a write that is Ordered-before RW₂.

For a read or a write RW₁ from an Observer that is Ordered-before a read or a write RW₂ from a different Observer, the External visibility requirement requires that RW₂ is not Observed-by RW₁. This means that an Architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation.

Informally, if a Memory effect M₁ from an Observer appears in program order before a Memory effect M₂ from the same Observer, then M₁ will be seen to occur before M₂ by all Observers in the system.

Completes-before order

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within the system. The following effects constitute a single entry in the Completes-before order:

- Writes from the same instruction.
- Reads from the same instruction which read from external writes.
- Reads from the same instruction which read from the same internal write.
All other reads constitute distinct entries in the Completes-before order.

Completes-before

A read or a write RW1 Completes-before a read or a write RW2 if and only if RW1 appears in the Completes-before order before RW2.

Deriving Reads-from and Coherence order from the Completes-before order

The Completes-before order can be used to resolve the Reads-from and Coherence order relations for every memory access in the system as follows:

- For a read R1 of a memory location by an Observer, then:
 - If there is a write W2 to the same Location from the same Observer and all of the following are true:
 - W2 appears in program order before R1.
 - R1 Completes-before W2.
 - There are no writes to the Location appearing in program order between W2 and R1 then R1 Reads-from W2.
 - Otherwise, R1 Reads-from its closest preceding write in the Completes-before order to the same Location. If no such write exists, then R1 Reads-from the initial value of the memory location.

- The Coherence order of writes to a memory location is the order in which those writes appear in the Completes-before order. The final value of each memory location is therefore determined by the final write to each Location in the Completes-before order. If no such write exists for a given Location, the final value is the initial value of that Location.

External completion requirement

A read or a write RW1 Completes-before a read or a write RW2 if and only if any of the following statements are true:

- RW1 is Locally-ordered-before RW2.
- RW1 is a read R1 and RW2 is a read R2 and R1 is Single-copy-atomic-ordered-before R2.

Globally-completes-before order

The Globally-completes-before order is a total order that corresponds to the order in which Memory effects globally-complete within the system. The following effects constitute a single entry in the Globally-completes-before order:

- Writes from the same instruction.
- Reads from the same instruction which read from external writes.
- Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Globally-completes-before order.

Globally-completes-before

A read or a write RW1 Globally-completes-before a read or a write RW2 if and only if RW1 appears in the Globally-completes-before order before RW2.

Deriving Reads-from and Coherence order from the Globally-completes-before order

The Globally-completes-before order can be used to resolve the Reads-from and Coherence order relations for every memory access in the system as follows:

- A read R1 of a memory location by an Observer Reads-from its closest preceding write in the Globally-completes-before order to the same Location. If no such write exists, then R1 Reads-from the initial value of the memory location.
• The Coherence order of writes to a memory location is the order in which those writes appear in the Globally-completes-before order. The final value of each memory location is therefore determined by the final write to each Location in the Globally-completes-before order. If no such write exists for a given Location, the final value is the initial value of that Location.

External global completion requirement

The External global completion requirement requires that a read or a write RW₁ Globally-completes-before a read or a write RW₂ if and only if any of the following statements are true:

- RW₁ is Locally-ordered-before RW₂ and either:
 - RW₁ is a write.
 - RW₁ is a read R₁ and either:
 - R₁ is not a Local read successor of a write.
 - R₁ is a Local read successor of a write that is Locally-ordered-before RW₂.
- RW₁ is a read R₁ and RW₂ is a read R₂ and R₁ is Single-copy-atomic-ordered-before R₂.

B2.3.7 Completion and endpoint ordering

Interaction between Observers in a system is not restricted to communication via shared variables in coherent memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer as a form of message passing. These interactions typically involve an additional agent, which defines the instruction sequence that is required to establish communication links between different Observers. When these forms of interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between them.

For all memory, the completion rules are defined as:

- A read R₁ to a Location is complete for a shareability domain when all of the following are true:
 - Any write to the same Location by an Observer within the shareability domain will be Coherence-after R₁.
 - Any translation table walks associated with R₁ are complete for that shareability domain.

- A write W₁ to a Location is complete for a shareability domain when all of the following are true:
 - Any write to the same Location by an Observer within the shareability domain will be Coherence-after W₁.
 - Any read to the same Location by an Observer within the shareability domain will either Reads-from W₁ or Reads-from a write that is Coherence-after W₁.
 - Any translation table walks associated with the write are complete for that shareability domain.

- A translation table walk is complete for a shareability domain when the memory accesses, including the updates to translation table entries, associated with the translation table walk are complete for that shareability domain, and the TLB is updated.

- A cache maintenance instruction is complete for a shareability domain when the memory effects of the instruction are complete for that shareability domain, and any translation table walks that arise from the instruction are complete for that shareability domain.

- A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been invalidated are complete.

The completion of any cache or TLB maintenance instruction includes its completion on all PEs that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction.

Note

These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC completes only after memory at the PoC has been updated.
Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that exhibits side-effects is complete only when the read or write both:
- Can begin to affect the state of the Memory-mapped peripheral.
- Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note
This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral endpoint.

Peripherals
This section defines a Memory-mapped peripheral and the total order of reads and writes to a peripheral which is defined as the Peripheral coherence order:

Memory-mapped peripheral
A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral can have side-effects, such as causing the peripheral to perform an action. Values that are read from addresses within a Memory-mapped peripheral might not correspond to the last data value written to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in the Reads-from or Coherence order relations.

Peripheral coherence order
The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and writes to that peripheral.

Note
The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which accesses arrive at the endpoint.

For a read or a write RW1 and a read or a write RW2 to the same peripheral, then RW1 will appear in the Peripheral coherence order for the peripheral before RW2 if either of the following cases apply:
- RW1 and RW2 are accesses using Non-cacheable or Device attributes and RW1 is Ordered-before RW2.
- RW1 and RW2 are accesses using Device-nGnRE or Device-nGnRnE attributes and RW1 appears in program order before RW2.

Out-of-band-ordered-before
A read or a write RW1 is Out-of-band-ordered-before a read or a write RW2 if and only if either of the following cases apply:
- RW1 appears in program order before a DSB instruction that begins an IMPLEMENTATION DEFINED instruction sequence indirectly leading to the generation of RW2.
- RW1 is Ordered-before a read or a write RW3 and RW3 is Out-of-band-ordered-before RW2.

If a Memory effect M1 is Out-of-band-ordered-before a read or a write M2, then M1 is seen to occur before M2 by all Observers.

B2.3.8 Ordering of instruction fetches
For two memory locations A and B, if A has been written to and been made coherent with the instruction fetches of the shareability domain, before an update to B by an observer in the same shareability domain, then the instruction stream of each observer in the shareability domain will not see the updated value of B without also seeing the updated value of A.
A write has been made coherent with an instruction fetch of a shareability domain when:

\[
\text{CTR_EL0.\{DIC, IDC\} == \{0, 0\}}
\]

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

\[
\text{CTR_EL0.\{DIC, IDC\} == \{1, 0\}}
\]

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain.

\[
\text{CTR_EL0.\{DIC, IDC\} == \{0, 1\}}
\]

The write is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

\[
\text{CTR_EL0.\{DIC, IDC\} == \{1, 1\}}
\]

The write is complete for the shareability domain.

Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

- After delays in fetching from memory, the instruction queue can have entries written into it out of order.
- For an implementation:
 - When CTR_EL0.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries in the instruction queue are not impacted by the IC IVAU instructions of a different core.
 - When CTR_EL0.DIC == 1, if there is a write to the location that is held in the queue when there is an outstanding entry in the instruction queue for an older entry, then the instruction queue does not have entries invalidated from it.

B2.3.9 Restrictions on the effects of speculation

This section covers restrictions on speculation effects, including:

- Restrictions on the effects of speculation.
- Speculative Store Bypass Safe (SSBS) on page B2-133.
- Restrictions on the effects of speculation from Armv8.5 on page B2-133.

Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

- Each load from a location using a particular VA after an exception return that is a Context synchronization event will not speculatively read an entry from earlier in the coherence order for the location being loaded from than the entry generated by the latest store to that location using the same VA before the exception exit.

- Each load from a location using a particular VA after an exception entry that is a Context synchronization event will not speculatively read an entry from earlier in the coherence order for the location being loaded from than the entry generated by the latest store to that location using the same VA before the exception entry.

- Any load from a location using a particular VA before an exception entry that is a Context synchronization event will not speculatively read data from a store to the same location using the same VA after the exception entry.

- Any load from a location using a particular VA before an exception return that is a Context synchronization event will not speculatively read data from a store to the same location using the same VA after the exception exit.
• When data is loaded under speculation with a translation fault, it cannot be used to form an address, generate condition codes, or generate SVE predicate values to be used by instructions newer than the load in the speculative sequence.

• When data is loaded under speculation from a location without a translation for the translation regime being speculated in, the data cannot be used to form an address, generate condition codes, or generate SVE predicate values to be used by instructions newer than the load in the speculative sequence.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

Speculative Store Bypass Safe (SSBS)

When FEAT_SSBS is implemented, PSTATE.SSBS is a control that can be set by software to indicate whether hardware is permitted to load or store speculatively, in a manner that could be exploited to produce a cache timing side channel using an address derived from a register value that has been loaded from memory using a load instruction that speculatively read an entry for the location being loaded from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of PSTATE.SSBS is 0, hardware is not permitted to load or store speculatively in this way.

When the value of PSTATE.SSBS is 1, hardware is permitted to load or store speculatively in this way.

--- Note ---

• If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads of address values that have been speculatively loaded from memory to a register.

• Software written for architectures from Armv8.0 to Armv8.4 will set SPSR_ELx.SSBS to 0. This means that PSTATE.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding memory disambiguation issues for any subsequent speculative memory accesses if there is any possibility of those subsequent memory accesses creating a cache timing side channel.

Restrictions on the effects of speculation from Armv8.5

From Armv8.5, there are some further restrictions on the effects of speculation in addition to those in Armv8.0:

• Data loaded under speculation with a permission or domain fault cannot be used to form an address, to generate condition codes, or to generate SVE predicate values to be used by instructions newer than the load in the speculative sequence.

• Any System register read under speculation to a register that is not architecturally accessible from the current Exception level cannot be used to form an address, to generate condition codes, or to generate SVE predicate values to be used by instructions newer than the load in the speculative sequence.

--- Note ---

As the effects of speculation are not architecturally visible, this restriction requires that the effect of any speculation cannot give rise to side channels that will leak the values of memory locations, System registers, or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

• For all execution prediction resources that predict address or register values, speculative execution at one hardware defined context should be separated in a hard-to-determine manner from the predictions trained in a different hardware defined context. In the case of this definition, the hardware defined context is determined by:
 — The Exception level.
 — The Security state.
 — When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.
— When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.
— When executing at EL0 and using the EL1&0 translation regime, the address space identifier (ASID) and, if EL2 is implemented and enabled in the current Security state, the VMID.
— When executing at EL0 and using the EL2&0 translation regime, the ASID.
— When in AArch64 state, the current SCXTNUM_ELx value.

Note
— The definition of “hard-to-determine manner” is left open to implementations. Examples could include the complete separation of prediction resources, or the isolation of the predictions using a cryptographic or pseudo-random mechanism to separate each context.
— The architecture does not require that prediction resources that simply predict the direction of a branch are separated in this way.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory access that can cause a change to the micro-architectural state.
• Changes to Special-purpose registers can occur speculatively.

Note
If the SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries, each prediction resource should be invalidated by software for:
• Secure EL0 for all ASID and VMID values.
• Secure EL1 for all VMID values.

B2.3.10 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization events by a PE with respect to retiring Load/Store instructions. The memory barriers defined by the Armv8 architecture provide a range of functionality, including:
• Ordering of Load/Store instructions.
• Completion of Load/Store instructions.
• Context synchronization.

The following subsections describe the Armv8 memory barrier instructions:
• Instruction Synchronization Barrier (ISB) on page B2-135
• Data Memory Barrier (DMB) on page B2-135.
• Data Synchronization Barrier (DSB) on page B2-138.
• Speculation Barrier (SB) on page B2-135.
• Consumption of Speculative Data Barrier (CSDB) on page B2-136.
• Speculative Store Bypass Barrier (SSBB) on page B2-136.
• Profiling Synchronization Barrier (PSB CSYNC) on page B2-137.
• Physical Speculative Store Bypass Barrier (PSSBB) on page B2-137.
• Trace Synchronization Barrier (TSB CSYNC) on page B2-137
• Shareability and access limitations on the data barrier operations on page B2-138.
• LoadLOAcquire, StoreLORelease on page B2-140.

Note
Depending on the required synchronization, a program might use memory barriers on their own, or it might use them in conjunction with cache maintenance and memory management instructions that in general are only available when software execution is at EL1 or higher.
DMB and DSB instructions affect reads and writes to the memory system generated by Load/Store instructions and data or unified cache maintenance instructions being executed by the PE. Instruction fetches or accesses caused by a hardware translation table access are not explicit accesses.

Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction. Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the operation are visible to instructions fetched after the ISB instruction are:

- Completed cache and TLB maintenance instructions.
- Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB has been executed.

The pseudocode function for the operation of an ISB is `InstructionSynchronizationBarrier()`.

See also *Memory barriers on page D4-2524*.

Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the *Definition of the Armv8 memory model on page B2-123* and this introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB instruction and those which originate from a different PE, to the extent required by the DMB options, which have been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are Observed-by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

The DMB instruction only affects memory accesses and the operation of data cache and unified cache maintenance instructions, see *A64 Cache maintenance instructions on page D4-2504*. It has no effect on the ordering of any other instructions executing on the PE. A DMB instruction intended to ensure the completion of cache maintenance instructions must have an access type of both loads and stores.

The pseudocode function for the operation of a DMB instruction is `DataMemoryBarrier()`.

Speculation Barrier (SB)

An SB instruction is a memory barrier that prevents speculative execution of instructions until after the barrier has completed when those instructions could be observed through side-channels.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than the barrier:

- Cannot be performed to the extent that such speculation can be observed through side-channels as a result of control flow speculation or data value speculation.
- Can be performed when predicting that a instruction that could generate an exception does not generate an exception.
Speculative execution of an SB instruction:

- Cannot be as a result of control flow speculation.
- Cannot be as a result of data value speculation.
- Can be as a result of predicting that an instruction that could generate an exception does not generate an exception.

An SB instruction can complete when:

- It is known that it is not speculative.
- All the predicted data values generated by instructions appearing in program order before the SB instruction have their predicted values confirmed.

--- Note ---

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs of the speculative execution of instructions appearing in program order after the SB instruction.

Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution and data value prediction. This includes:

- Data value predictions of any instructions.
- \(\text{PSTATE.} \{N,Z,C,V\} \) predictions of any instructions other than conditional branch instructions appearing in program order before the CSDB that have not been architecturally resolved.
- Predictions of SVE predication state for any SVE instructions.

For purposes of the definition of CSDB, \(\text{PSTATE.} \{N,Z,C,V\} \) is not considered a data value. This definition permits:

- Control flow speculation before and after the CSDB instruction.
- Speculative execution of conditional data processing instructions after the CSDB instruction, unless they use the results of data value or \(\text{PSTATE.} \{N,Z,C,V\} \) predictions of instructions appearing in program order before the CSDB instruction that have not been architecturally resolved.

Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the SSBB instruction, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order before the SSBB instruction.

- When a load to a location appears in program order before the SSBB instruction, then the load does not speculatively read data from any store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order after the SSBB instruction.
Profiling Synchronization Barrier (PSB CSYNC)

The PSB CSYNC instruction is a memory barrier that ensures that all existing profiling data for the current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the profiling buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same physical address under certain conditions.

The semantics of the Physical Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the PSSBB instruction, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store appears in program order before the PSSBB instruction.

- When a load to a location appears in program order before the PSSBB instruction, then the load does not speculatively read data from any store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual addresses and from different Exception levels.

Trace Synchronization Barrier (TSB CSYNC)

The TSB CSYNC instruction is a memory barrier instruction that preserves the relative order of memory accesses to System registers due to trace operations and other memory accesses to the same registers.

A trace operation is an operation of the PE Trace Unit generating trace for an instruction when FEAT_TRF is implemented and enabled.

A TSB CSYNC instruction is not required to execute in program order with respect to other instructions. This includes being reordered with respect to other trace instructions. One or more context synchronization events are required to ensure that TSB CSYNC instruction is executed in the necessary order.

If trace is generated between a context synchronization event and a TSB CSYNC operation, these trace operations may be reordered with respect to the TSB CSYNC operation, and therefore may not be synchronized.

The following situations are synchronized using a TSB CSYNC operation:

- A direct write B to a System register is ordered after an indirect read or indirect write of the same register by a trace operation of a traced instruction A, if all of the following are true:
 - A is executed in program order before a context synchronization event C.
 - C is in program order before a TSB CSYNC operation T.
 - B is executed in program order after T.

- A direct read B of a System register is ordered after an indirect write to the same register by a trace operation of a traced instruction A if all the following are true:
 - A is executed in program order before a context synchronization event C1.
 - C1 is in program order before TSB CSYNC operation T.
 - T is executed in program order before a second context synchronization event C2.
 - B is executed in program order after C2.
A TSB CSYNC operation is not needed to ensure a direct write B to a System register is ordered before an indirect read or indirect write of the same register by a trace operation of a traced instruction A, if all the following are true:

- A is executed in program order after a context synchronization event C.
- B is executed in program order before C.

The pseudocode function for the operation of a TSB CSYNC instruction is TraceSynchronizationBarrier().

Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB instruction:

- At EL2 ensures that any memory accesses caused by Speculative translation table walks from the EL1&0 translation regime have been observed.
- At EL3 ensures that any memory accesses caused by speculative translation table walks from the EL2, EL1&0 or EL2&0 translation regimes have been observed.

For more information, see Use of out-of-context translation regimes on page D5-2548.

A DSB instruction executed by a PE, PEe, completes when all of the following apply:

- All explicit memory accesses of the required access types appearing in program order before the DSB are complete for the set of observers in the required shareability domain.
- If the required access types of the DSB is reads and writes, then all cache maintenance instructions, all TLB maintenance instructions, and all PSB CYNC instructions issued by PEe before the DSB are complete for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system or perform any part of its functionality until the DSB completes other than:

- Being fetched from memory and decoded.
- Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly or indirectly read without causing side-effects.

If FEAT_MTE is implemented and enabled on completion of a DSB instruction, all updates to TFSR_ELx.TFx or TFSRE0_EL1.TFx due to Tag Check fails caused by accesses for which the DSB operates will be complete. For more information on FEAT_MTE see Chapter D6 Memory Tagging Extension.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also Memory barriers on page D4-2524.

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions take an argument that specifies:

- The shareability domain over which the instruction must operate. This is one of:
 - Full system.
 - Outer Shareable.
 - Inner Shareable.
 - Non-shareable.

Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable domains of the processor.
The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Note

The distinction between Full system and Outer Shareable is only applicable for Normal Non-Cacheable memory accesses and Device memory accesses.

- The accesses for which the instruction operates. This is one of:
 - Read and write accesses, both before and after the barrier instruction.
 - Write accesses only, before and after the barrier instruction.
 - Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note

This form of a DMB or DSB instruction can be described as a Load-Load/Store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB) on page B2-135 or Data Synchronization Barrier (DSB) on page B2-138.

Table B2-1 shows how these options are encoded in the <option> field of the instruction:

<table>
<thead>
<tr>
<th>Accesses</th>
<th>Shareability domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before the barrier</td>
<td>After the barrier</td>
</tr>
<tr>
<td>Reads and writes</td>
<td>Reads and writes</td>
</tr>
<tr>
<td>Writes</td>
<td>Writes</td>
</tr>
<tr>
<td>Reads</td>
<td>Reads and writes</td>
</tr>
</tbody>
</table>

See the instruction descriptions for more information:
- DMB on page C6-908.
- DSB on page C6-911.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system operation, see ISB on page C6-933.

Load-Acquire, Load-AcquirePC, and Store-Release

Armv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. These instructions support the Release Consistency sequentially consistent (RCsc) model. In addition, FEAT_LRCPC provides Load-AcquirePC instructions. The combination of Load-AcquirePC and Store-Release can be used to support the weaker Release Consistency processor consistent (RCpc) model.

The full definitions of the Load-Acquire and Load-AcquirePC instructions are covered formally in the Definition of the Armv8 memory model on page B2-123. This introduction to the Load-Acquire and Load-AcquirePC instructions is not intended to contradict that section.

The basic principle of both Load-Acquire and Load-AcquirePC instructions is to introduce order between:
- The memory access generated by the Load-Acquire or Load-AcquirePC instruction.
- The memory accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction, such that the memory access generated by the Load-Acquire or Load-AcquirePC instruction is Observed-by each PE to the extent that the PE is required to observe the access coherently, before any of the memory accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction are Observed-by that PE to the extent that the PE is required to observe the accesses coherently.
The use of a Load-Acquire or Load-AcquirePC instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Armv8 memory model on page B2-123 and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the following:

- A set of memory accesses, RWx, that are generated by the PE executing the Store-Release instruction and that appear in program order before the Store-Release instruction, together with those that originate from a different PE to the extent that the PE is required to observe them coherently, Observed-by the PE before executing the Store-release.

- The memory access generated by the Store-Release (Wrel), such that all of the memory accesses, RWx, are Observed-by each PE to the extent that the PE is required to observe those accesses coherently, before Wrel is Observed-by that PE to the extent that the PE is required to observe that access coherently.

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

Where a Load-Acquire appears in program order after a Store-Release, the memory access generated by the Store-Release instruction is Observed-by each PE to the extent that PE is required to observe the access coherently, before the memory access generated by the Load-Acquire instruction is Observed-by that PE, to the extent that the PE is required to observe the access coherently. In addition, the use of a Load-Acquire, Load-AcquirePC or a Store-Release instruction on accesses to a Memory-mapped peripheral introduces order between the Memory effects of the instructions that access that peripheral, as described in the definition of Peripheral coherence order.

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and Store-Release-Exclusive Pair, access only a single data element. This access is single-copy atomic. The address of the data object must be aligned to the size of the data element being accessed, otherwise the access generates an Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to the instructions must be aligned to twice the size of the element being loaded, otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note

- Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity properties:
 - That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
 - That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

- The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the explicit DMB instruction.

LoadLOAcquire, StoreLORelease

For each PE, the Non-secure physical memory map is divided into a set of LORegions using a table that is held within the PE. Any PA in the Non-secure memory map can be a member of one LORegion. If a PA is assigned to more than one LORegion, then an implementation might treat it as if it has been assigned to fewer LORegions than that have been specified. A PA in the Secure physical memory map cannot be a member of any LORegion. For more information, see Limited ordering regions on page B2-141.

Armv8.1 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores that apply in relation to the defined LORegions. The new variants of the Load-Acquire and Store-Release instructions are LoadLOAcquire and StoreLORelease. See LoadLOAcquire/StoreLORelease on page C3-214.
For all memory types, these instructions have the following ordering requirements:

- **LoadLOAcquire** has the same semantics as Load-Acquire except that the memory accesses affected lie within the same LORegion as the address of the memory access generated by the LoadLOAcquire instruction. See *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

- **StoreLORelease** has the same semantics as Store-Release except that the memory accesses affected lie within the same LORegion as the address of the memory access generated by the StoreLORelease instruction. See *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

In addition, for accesses to Memory-mapped peripherals:

- **LoadLOAcquire** has the same semantics as Load-Acquire except that the affected Memory effects of instructions that access the peripheral lie within the same LORegion as the address of the memory access generated by the LoadLOAcquire instruction. See *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

- **StoreLORelease** has the same semantics as Store-Release except that the affected Memory effects of instructions that access the peripheral lie within the same LORegion as the address of the memory access generated by the StoreLORelease instruction. See *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

--- **Note**

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB instruction.

B2.3.11 Limited ordering regions

Armv8.1 introduces *limited ordering regions* (LORegions), which allow large systems to perform special load-acquire and store-release instructions that provide order between the memory accesses to a region of the PA map as observed by a set of observers.

This feature is supported in AArch64 state only.

Specification of the LORegions

The LORegions are defined in the Non-secure physical memory map using a set of LORegion descriptors. The number of LORegion descriptors is *IMPLEMENTATION DEFINED*, and can be discovered by reading the LORID_EL1 register.

Each LORegion descriptor consists of:

- A tuple of the following values:
 - A Start Address.
 - An End Address.
 - An LORegion Number.
- Valid bit which indicates whether that LORegion descriptor is valid.

A memory location lies within the LORegion identified by the LORegion Number if the PA lies between the Start Address and the End Address, inclusive. The Start Address must be defined to be aligned to 64KB and the End Address must be defined as the top byte of a 64KB block of memory.

The LORegion descriptors are programmed using the LORSA_EL1, LOREA_EL1, LORN_EL1, and LORC_EL1 registers in the System register space. These registers are only supported in the Non-secure memory map.

If a LoadLOAcquire or a StoreLORelease does not match with any LORegion, then:

- The LoadLOAcquire will behave as a Load-Acquire, and will be ordered in the same way with respect to all accesses, independent of their LORegions.

- The StoreLORelease will behave as a Store-Release, and will be ordered in the same way with respect to all accesses, independent of their LORegions.
Note

If no LORegions are implemented, then the LoadLOAcquire and StoreLORelease will therefore behave as a Load-Acquire and Store-Release.

A new access type `AccType_LIMITEDORDERED` has been added for these limited ordering instructions to be identified.
B2.4 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of the memory system are IMPLEMENTATION DEFINED. Armv8 defines the application level interface to the memory system, including a hierarchical memory system with multiple levels of cache. This section describes an application level view of this system. It contains the subsections:

- Introduction to caches.
- Memory hierarchy.
- Application level access to functionality related to caches on page B2-144
- Implication of caches for the application programmer on page B2-145.
- Preloading caches on page B2-147.

B2.4.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

- Main memory address information, commonly known as a tag.
- The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality

An access to one Location is likely to be followed by accesses to adjacent Locations. Examples of this principle are:

- Sequential instruction execution.
- Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.

Otherwise, the access is to memory. Typically, when making this access, a cache location is allocated and the cache line loaded from memory. Armv8 permits different cache topologies and access policies, provided they comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

- Memory accesses can occur at times other than when the programmer would expect them.
- A data item can be held in multiple physical locations.

B2.4.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory system that exploits this trade-off between size and latency. Figure B2-1 on page B2-144 shows an example of such a system in an Armv8-A system that supports virtual addressing.
The AArch64 Application Level Memory Model

B2.4 Caches and memory hierarchy

Figure B2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processing element, as shown in Figure B2-1.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more levels of separate instruction and data caches, with one or more unified caches that are located at the levels closest to the main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of Unification (PoU), Point of Coherency (PoC), Point of Persistence (PoP), and Point of Deep Persistence (PoDP).

For more information, including the definitions of PoU, PoC, PoP, and PoDP, see *About cache maintenance in AArch64 state* on page D4-2500.

If FEAT_MTE is implemented and enabled the behavior of cache maintenance instructions is modified for more information see *Allocation Tags* on page D6-2685.

The cacheability and shareability memory attributes

Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are allowed to be allocated into a cache or not. Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This attribute defines whether memory locations are shareable between different agents in a system. Marking a memory location as shareable for a particular domain requires hardware to ensure that the location is coherent for all agents in that domain. Shareability is defined independently for Inner and Outer Shareability domains.

For more information about Cacheability and Shareability, see *Memory types and attributes* on page B2-153.

B2.4.3 Application level access to functionality related to caches

As indicated in *About the Application level programmers’ model* on page B1-106, the application level corresponds to execution at EL0. The architecture defines a set of cache maintenance instructions that software can use to manage cache coherency. Software executing at a higher Exception level can enable use of some of this functionality from EL0, as follows:

When the value of SCTLR_EL1.UCI is 1

Software executing at EL0 can access:

- The data cache maintenance instructions, DC CVAU, DC CVAC, DC CVAP, DC CVADP, and DC CIVAC. See *The data cache maintenance instruction (DC)* on page D4-2505.
The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

- The instruction cache maintenance instruction IC IVAU. See *The instruction cache maintenance instruction (IC)* on page D4-2505.

Attempted execution of these instructions might generate a Permission fault as described in *Permission fault* on page D5-2646.

When the value of SCTL_EL1.UCT is 1

Software executing at EL0 can access the cache type register. See CTR_EL0.

When the value of SCTL_EL1.DZE is 1

Software executing at EL0 can access the data cache zero instruction DC ZVA. See *Data cache zero instruction* on page D4-2514.

The SCTL_EL1.{UCI, UCT, DZE} control fields are only accessible by software executing at EL1 or higher.

When HCR_EL2.{E2H, TGE} == 1 the controls {UCI, UCT and DZE} are found in SCTL_EL2.

This functionality is UNDEFINED at EL0 when the value of the corresponding SCTL_EL1 control field is 0, see:

- *Traps to EL1 of EL0 execution of cache maintenance instructions* on page D1-2371.
- *Traps to EL1 of EL0 accesses to the CTR_EL0* on page D1-2371.
- *Traps to EL1 of EL0 execution of DC ZVA instructions* on page D1-2371.

B2.4.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

- When memory locations are updated by other agents in the system that do not use hardware management of coherency.
- When memory updates made from the application software must be made visible to other agents in the system, without the use of hardware management of coherency.

For example:

- In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.
- In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of coherency occurs when new instruction data has been written into the data cache, but the instruction cache still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

- By not using the caches in situations where coherency issues can arise. This can be achieved by:
 — Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
 — Not enabling caches in the system.
- By using cache maintenance instructions to manage the coherency issues in software. See *Application level access to functionality related to caches* on page B2-144.
- By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable locations by observers within the different shareability domains, see *Non-shareable Normal memory* on page B2-155 and *Shareable, Inner Shareable, and Outer Shareable Normal memory* on page B2-154.
Note

The performance of these hardware coherency mechanisms is highly implementation-specific. In some implementations, the mechanism suppresses the ability to cache shareable locations. In other implementations, cache coherency hardware can hold data in caches while managing coherency between observers within the shareability domains.

Note

Not all these mechanisms are directly available to software operating at EL0 and might involve interaction with software operating at a higher Exception level.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible future execution paths. For all types of memory:

- The PE might have fetched the instructions from memory at any time since the last Context synchronization event on that PE.
- Any instructions fetched in this way might be executed multiple times, if this is required by the execution of the program, without being refetched from memory. In the absence of a Context synchronization event, there is no limit on the number of times such an instruction might be executed without being refetched from memory.

The Arm architecture requires the hardware to ensure coherency between instruction caches and memory, even for locations of shared memory. A write has been made coherent with an instruction fetch of a shareability domain when:

\[CTR_{EL0}\{DIC, IDC\} == \{0, 0\} \]

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

\[CTR_{EL0}\{DIC, IDC\} == \{0, 1\} \]

The write is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

\[CTR_{EL0}\{DIC, IDC\} == \{1, 1\} \]

The write is complete for the shareability domain.

If software requires coherency between instruction execution and memory, it must manage this coherency using Context synchronization events and cache maintenance instructions. The following code sequence can be used to allow a PE to execute code that the same PE has written.

```
; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Xn.
STR Wt, [Xn]       ; Clean data cache by VA to point of unification (PoU)
DC CVAU, Xn        ; Clean data cache by VA to point of unification (PoU)
DSB ISH            ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn        ; Invalidate instruction cache by VA to PoU
DSB ISH            ; Ensure completion of the invalidations
ISB                 ; Synchronize the fetched instruction stream
```
Note

- If this sequence is not executed between writing data to a location and executing the instruction at that location, the lack of coherency between instruction caches and memory means that the instructions that are executed might be the old instruction or the updated instruction, and which is used can arbitrarily vary during execution. It must not be assumed by software, before the synchronization sequence is executed, that when the updated instruction has been seen, the old instruction will not be seen again.

- For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required. However, the invalidate instruction cache instruction is required because the Armv8-A AArch64 architecture allows Non-cacheable accesses to be held in an instruction cache. See Non-cacheable accesses and instruction caches on page D4-2499.

- This code can be used when the thread of execution modifying the code is the same thread of execution that is executing the code. The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization. See Concurrent modification and execution of instructions on page B2-120.

- The system software controls whether these cache maintenance instructions are available to the application level by setting SCTLR_EL1.UCI.

B2.4.5 Preloading caches

The Arm architecture provides memory system hints `PRFM`, `LDNP`, and `STNP` that software can use to communicate the expected use of memory locations to the hardware. The memory system can respond by taking actions that are expected to speed up the memory accesses if they occur. The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction locations into caches.

The Preload instructions are hints, and so implementations can treat them as `NOP` without affecting the functional behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting memory system operations might, under exceptional circumstances, generate an asynchronous External abort, which is taken using an SError interrupt exception. For more information, see ISS encoding for an exception from a Data Abort on page D13-2987.

`PrefetchHint()` defines the prefetch hint types.

The `Hint_Prefetch()` function signals to the memory system that memory accesses of the type hint to or from the specified address are likely to occur in the near future. The memory system might take some action to speed up the memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated by the innermost cache level target and non-temporal hint stream.

For more information on PRFM and Load/Store instructions that provide hints to the memory system, see Prefetch memory on page C3-218 and Load/Store SIMD and Floating-point Non-temporal pair on page C3-216.
B2.5 Alignment support

This section describes alignment support. It contains the following subsections:

- Instruction alignment.
- Alignment of data accesses.

B2.5.1 Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location results in a PC alignment fault. See PC alignment checking on page D1-2327.

B2.5.2 Alignment of data accesses

An unaligned access to any type of Device memory causes an Alignment fault.

Unaligned accesses to Normal memory

The behavior of unaligned accesses to Normal memory is dependent on all of the following:

- The instruction causing the memory access.
- The memory attributes of the accessed memory.
- The value of SCTLR_ELx. {A, nAA}.
- Whether or not FEAT_LSE2 is implemented.

Load or Store of Single or Multiple registers

For all instructions that load or store single or multiple registers, but not Load-Exclusive, Store-Exclusive, Load-Acquire/Store-Release and Atomic instructions, if the address that is accessed is not aligned to the size of the data element being accessed, then:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

- An unaligned access is performed.
- If FEAT_LSE2 is not implemented, the access is not guaranteed to be single-copy atomic except at the byte access level.
- If FEAT_LSE2 is implemented:
 - If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner Write-Back, Outer Write-Back Cacheable memory, the memory access is single-copy atomic. For a Load-Pair or Store-Pair, including load non-temporal pair, instructions the entire memory access will be single-copy atomic.
 - If all the bytes of the memory accessed do not lie within a 16-byte quantity aligned to 16 bytes or the access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory the access is not guaranteed to be single-copy atomic except at the byte access level.

For these instructions, the definition of an unaligned access is based on the size of the accessed elements, not the overall size of the memory access. This affects SIMD element and structure loads and stores, and also Load/store pair instructions.

Load-Exclusive/ Store-Exclusive and Atomic instructions

For Load-Exclusive/Store-Exclusive, and Atomic instructions including those with acquire or acquire-release semantics:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:
If FEAT_LSE2 is not implemented, these instructions generate an Alignment fault if the address being accessed is not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner Write-Back, Outer Write-Back Cacheable memory, an unaligned access is performed.

• If all the bytes of the memory access do not lie within a 16-byte quantity aligned to 16-bytes, or the memory access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory, then it is a CONSTRAINED UNPREDICTABLE choice of either of the following:
 — An unaligned access is performed meeting all of the semantics of the instruction.
 — An Alignment fault is generated.

Where memory access is performed, then it is single-copy atomic.

For these instructions, the definition of an unaligned access is based on the overall access size.

Non-atomic Load-Acquire/Store-Release instructions

For Load-Acquire/Store-Release instructions which do not have exclusive or atomic behaviors:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

If FEAT_LSE2 is not implemented, then these instructions generate an Alignment fault if the address being accessed is not aligned to the size of the data structure being accessed.

If FEAT_LSE2 is implemented, then:

• If the memory access is not to Normal Inner Write-Back or Outer Write-Back Cacheable memory, then it is a CONSTRAINED UNPREDICTABLE choice of either of the following:
 — An unaligned access is performed meeting all of the semantics of the instruction.
 — An Alignment fault is generated.

• If all of the bytes of the memory access do not lie within a 16-byte quantity aligned to 16 bytes then the following applies:
 — If SCTLR_ELx.nAA applicable to the current Exception level is 0 an Alignment fault is generated.
 — If SCTLR_ELx.nAA applicable to the current Exception level is 1 then an unaligned access is performed which is not guaranteed to be single-copy atomic except at the byte access level.

In this case, the architecture does no define the order of the different transactions of the access defined by the single instructions relative to each other.

Note

• Unaligned accesses typically take additional cycles to complete compared to a naturally-aligned access.

• An operation that is not single-copy atomic above the byte level can abort on any memory access that it makes and can abort on more than one access. This means that an unaligned access that occurs across a page boundary can generate an abort on either side of the page boundary.
B2.6 Endian support

General description of endianness in the Arm architecture describes the relationship between endianness and memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

- Instruction endianness on page B2-151.
- Data endianness on page B2-151.
- Endianness of memory-mapped peripherals on page B2-152.

B2.6.1 General description of endianness in the Arm architecture

This section only describes memory addressing and the effects of endianness for data elements up to quadwords of 128 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 shows, for big-endian and little-endian memory systems, the relationship between:

- The quadword at address A.
- The doubleword at address A and A+8.
- The words at addresses A, A+4, A+8, and A+12.
- The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

The terms in Figure B2-2 have the following definitions:

- B_A: Byte at address A.
- HW_A: Halfword at address A.
- MSByte: Most significant byte.
- LSBByte: Least significant byte.

![Diagram of Endianness Relationships](image)

Figure B2-2 Endianness relationships
The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword, doubleword, word, or halfword are interpreted. For example, a load of a word from address 0x1000 always results in an access to the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme determines the significance of these 4 bytes.

B2.6.2 Instruction endianness

In Armv8-A, A64 instructions have a fixed length of 32 bits and are always little-endian.

B2.6.3 Data endianness

SCTLR_EL1.E0E, configurable at EL1 or higher, determines the data endianness for execution at EL0.

The data size used for endianness conversions:

- Is the size of the data value that is loaded or stored for SIMD and floating-point register and general-purpose register loads and stores.
- Is the size of the data element that is loaded or stored for SIMD element and data structure loads and stores.

For more information, see "Endianness in SIMD operations."

--- Note

This means the Armv8 architecture introduces a requirement for 128-bit endian conversions.

Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient method to transform explicitly the endianness of the data.

Table B2-2 shows the instructions that provide this functionality:

<table>
<thead>
<tr>
<th>Function</th>
<th>Instructions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse bytes in 32-bit word or words(^a)</td>
<td>REV32</td>
<td>For use with general-purpose registers</td>
</tr>
<tr>
<td>Reverse bytes in whole register</td>
<td>REV</td>
<td>For use with general-purpose registers</td>
</tr>
<tr>
<td>Reverse bytes in 16-bit halfwords</td>
<td>REV16</td>
<td>For use with general-purpose registers</td>
</tr>
<tr>
<td>Reverse elements in doublewords, vector</td>
<td>REV64</td>
<td>For use with SIMD and floating-point registers</td>
</tr>
<tr>
<td>Reverse elements in words, vector</td>
<td>REV32</td>
<td>For use with SIMD and floating-point registers</td>
</tr>
<tr>
<td>Reverse elements in halfwords, vector</td>
<td>REV16</td>
<td>For use with SIMD and floating-point registers</td>
</tr>
</tbody>
</table>

\(^a\) Can operate on multiple words.

Endianness in SIMD operations

SIMD element Load/Store instructions transfer vectors of elements between memory and the SIMD and floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements being transferred. This information is used to load and store data correctly in both big-endian and little-endian systems.

For example:
LD1 {V0.4H}, [X1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the endianness configuration, as shown in Figure B2-3. Therefore, the order of the elements in the registers is the same regardless of the endianness configuration.

Figure B2-3 SIMD byte order example

0	A[7:0]	0	A[7:0]
1	A[15:8]	1	A[7:0]
3	B[15:8]	3	B[7:0]
4	C[7:0]	4	C[15:8]
5	C[15:8]	5	C[7:0]
6	D[7:0]	6	D[15:8]
7	D[15:8]	7	D[7:0]

Memory system with little-endian addressing (LE) → Memory system with big-endian addressing (BE)

The `BigEndian()` pseudocode function determines the current endianness of the data.

The `BigEndianReverse()` pseudocode function reverses the endianness of a bitstring.

The `BigEndian()` and `BigEndianReverse()` functions are defined in Chapter J1 Armv8 Pseudocode.

B2.6.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Peripherals to which this requirement applies include:

- Memory-mapped register interfaces to a debugger, or to a Cross Trigger Interface, see Chapter H8 About the External Debug Registers.
- The memory-mapped register interface to the system level implementation of the Generic Timer, see Chapter I2 System Level Implementation of the Generic Timer.
- A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External Interface to the Performance Monitors.
- A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External Interface to the Activity Monitors.
- Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.
- The memory-mapped register interface to an Arm trace component. See, for example, the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4.
B2.7 Memory types and attributes

In Armv8 the ordering of accesses for addresses in memory, referred to as the memory order model, is defined by the memory attributes. The following sections describe this model:

- **Normal memory**.
- **Device memory** on page B2-157.
- **Memory access restrictions** on page B2-162.

B2.7.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions for these locations.

The Normal memory type has the following properties:

- A write to a memory location with the Normal attribute completes in finite time.
- Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-through cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory system in finite time. Two writes to the same location, where at least one is using the Normal memory type, might be merged before they reach the endpoint unless there is an ordered-before relationship between the two writes.
- Unaligned memory accesses can access Normal memory if the system is configured to generate such accesses.
- There is no requirement for the memory system beyond the PE to be able to identify the elements accessed by multi-register Load/Store instructions. See Multi-register loads and stores that access Normal memory on page B2-157.

--- Note ---

- The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they exhibit all of the following properties:
 - Read accesses can be repeated with no side-effects.
 - Repeated read accesses return the last value written to the resource being read.
 - Read accesses can fetch additional memory locations with no side-effects.
 - Write accesses can be repeated with no side-effects if the contents of the location accessed are unchanged between the repeated writes or as the result of an exception, as described in this section.
 - Unaligned accesses can be supported.
 - Accesses can be merged before accessing the target memory system.

- Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:
 - Memory accesses return UNKNOWN values.
 - UNPREDICTABLE effects on memory-mapped peripherals.

- An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on page B2-118 might be abandoned as a result of an exception being taken during the sequence of accesses. On return from the exception the instruction is restarted, and therefore, one or more of the memory locations might be accessed multiple times. This can result in repeated write accesses to a location that has been changed between the write accesses.

For accesses to Normal memory, a DMB instruction is required to ensure the required ordering.

The following sections describe the other attributes for Normal memory:

- **Shareable Normal memory** on page B2-154.
• Non-shareable Normal memory on page B2-155.
• Cacheability attributes for Normal memory on page B2-155.

See also:
• Multi-register loads and stores that access Normal memory on page B2-157.
• Atomicity in the Arm architecture on page B2-118.
• Memory barriers on page B2-134.
• Concurrent modification and execution of instructions on page B2-120.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is one of:

• Inner Shareable, meaning it applies across the Inner Shareable shareability domain.
• Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Shareable shareability domains.
• Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between data and instruction accesses on page B2-146.

Note

• System designers can use the shareability attribute to specify the locations in Normal memory for which coherency must be maintained. However, software developers must not assume that specifying a memory location as Non-shareable permits software to make assumptions about the incoherency of the location between different PEs in a shared memory system. Such assumptions are not portable between different multiprocessing implementations that might use the shareability attribute. Any multiprocessing implementation might implement caches that are shared, inherently, between different processing elements.
• This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

• Each observer is only a member of a single Inner Shareability domain.
• Each observer is only a member of a single Outer Shareability domain.
• All observers in an Inner Shareability domain are always members of the same Outer Shareability domain. This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper subset.

Note

• Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable locations are always treated as Outer Shareable.
The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating system.

The details of the use of the shareability attributes are system-specific. Example B2-1 shows how they might be used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

- In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses to memory locations with the Inner Shareable attribute.

- However, between the two clusters, the caches:
 - Are not required to be coherent for data accesses that have only the Inner Shareable attribute.
 - Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other observers share the memory system, software must use cache maintenance instructions, if the presence of caches might lead to coherency issues when communicating between the observers. This cache maintenance requirement is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned a Cacheability attribute that is one of:

- Write-Through Cacheable.
- Write-Back Cacheable.
- Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

- A region might be assigned cache allocation hints for read and write accesses.
- It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of Transient or Non-transient.

For more information see *Cacheability, cache allocation hints, and cache transient hints on page D4-2496.*
A memory location can be marked as having different cacheability attributes, for example when using aliases in a VA to PA mapping:

- If the attributes differ only in the cache allocation hint, this does not affect the behavior of accesses to that location.
- For other cases, see Mismatched memory attributes on page B2-163.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of memory might provide a better mechanism for controlling coherency than the use of hardware coherency mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties for Non-cacheable or Write-Through Cacheable memory:

- A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of cache made by an observer accessing the memory system inside the level of cache is visible to all observers accessing the memory system outside the level of cache without the need of explicit cache maintenance.
- A completed write to a memory location that is Non-cacheable for a level of cache made by an observer accessing the memory system outside the level of cache is visible to all observers accessing the memory system inside the level of cache without the need of explicit cache maintenance.
- For accesses to Normal memory that is Non-cacheable, a DMB instruction introduces a Barrier-ordered-before relation on all accesses to a single peripheral or block of memory that is of IMPLEMENTATION DEFINED size. For more information, see Ordering relations on page B2-126.

--- Note ---
Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For example, a programmer might know that a piece of memory is not going to be accessed again and would be better treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the boundaries between the Inner and Outer Shareability domains. However:

- Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the lowest level of cache.
- No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the Outer cacheability attributes.
- An implementation might not have any outer cache.

Example B2-2, Example B2-3 on page B2-157, and Example B2-4 on page B2-157 describe the possible ways of implementing a system with three levels of cache, level 1 (L1) to level 3 (L3).

--- Note ---
- L1 cache is the level closest to the PE, see Memory hierarchy on page B2-143.
- When managing coherency, system designs must consider both the inner and outer cacheability attributes, as well as the shareability attributes. This is because hardware might have to manage the coherency of caches at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example B2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

- The Inner cacheability attribute applied to L1 and L2 cache.
- The Outer cacheability attribute applied to L3 cache.
Example B2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2, and L3 cache. Do not use the Outer cacheability attribute.

Example B2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

- The Inner cacheability attribute applied to L1 cache.
- The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more SIMD&FP registers from an Exception level, there is no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these load or store instructions.

B2.7.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects, or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:

- **Gathering** Identified as G or nG, see Gathering on page B2-159.
- **Reordering** Identified as R or nR, see Reordering on page B2-160.
- **Early Write Acknowledgement** Identified as E or nE, see Early Write Acknowledgement on page B2-161.

The Armv8 Device memory types are:

- **Device-nGnRnE** Device non-Gathering, non-Reordering, No Early write acknowledgement.
 Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.
- **Device-nGnRE** Device non-Gathering, non-Reordering, Early Write Acknowledgement.
 Equivalent to the Device memory type in earlier versions of the architecture.
- **Device-nGRE** Device non-Gathering, Reordering, Early Write Acknowledgement.
 Armv8 adds this memory type to the translation table formats found in earlier versions of the architecture. The use of barriers is required to order accesses to Device-nGRE memory.
- **Device-GRE** Device Gathering, Reordering, Early Write Acknowledgement.
 Armv8 adds this memory type to the translation table formats found in earlier versions of the architecture. Device-GRE memory has the fewest constraints. It behaves similar to Normal memory, with the restriction that Speculative accesses to Device-GRE memory is forbidden.
Collectively these are referred to as *any Device memory type*. Going down the list, the memory types are described as getting *weaker*; conversely the going up the list the memory types are described as getting *stronger*.

--- Note ---

- As the list of types shows, these additional attributes are hierarchical. For example, a memory location that permits Gathering must also permit Reordering and Early Write Acknowledgement.
- The architecture does not require an implementation to distinguish between each of these memory types and Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes, describes the implementation rules for the attribute.

All of these memory types have the following properties:

- Speculative data accesses are not permitted to any memory location with any Device memory attribute. This means that each memory access to any Device memory type must be one that would be generated by a simple sequential execution of the program.

 The following exceptions to this apply:

 - Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

 - For Device memory with the Gathering attribute, reads generated by the LDNP instructions are permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is explicitly accessed by the instruction.

 - Where a load or store instruction performs a sequence of memory accesses, as opposed to one single-copy atomic access as defined in the rules for single-copy atomicity, these accesses might occur multiple times as a result of executing the load or store instruction. See *Properties of single-copy atomic accesses* on page B2-120.

--- Note ---

- An instruction that generates a sequence of accesses as described in *Atomicity in the Arm architecture on page B2-118* might be abandoned as a result of an exception being taken during the sequence of accesses. On return from the exception, the instruction is restarted, and therefore, one or more of the memory locations might be accessed multiple times. This can result in repeated accesses to a location where the program only defines a single access. For this reason, Arm strongly recommends that no accesses to Device memory are performed from a single instruction that spans the boundary of a translation granule or which in some other way could lead to some of the accesses being aborted.

- Write speculation that is visible to other observers is prohibited for all memory types.

- A write to a memory location with any Device memory type completes in finite time.

- If a value that would be returned from a read of a memory location with the Device memory type changes without an explicit write by an observer, this change must also be globally observed for all observers in the system in finite time. Such a change might occur in a peripheral location that holds status information.

- Data accesses to memory locations are coherent for all observers in the system, and correspondingly are treated as being Outer Shareable.

- A memory location with any Device memory attribute cannot be allocated into a cache.

- Writes to a memory location with any Device memory attribute must reach the endpoint for that address in the memory system in finite time. Two writes of Device memory type to the same location might be merged before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an ordered-before relationship between the two writes.

- For accesses to any Device memory type, a DMB instruction introduces a Barrier-ordered-before relation on all accesses to a single peripheral or block of memory that is of implementation defined size. For more information, see *Ordering relations on page B2-126*.
• All accesses to memory with any Device memory attribute must be aligned. Any unaligned access generates an Alignment fault at the first stage of translation that defined the location as being Device.

--- Note ---
In the EL1&0 translation regime in systems where HCR_EL2.TGE==1 and HCR_EL2.DC==0, any Alignment fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This causes ESR_EL2.ISS[24] to be 0.

--- Note ---
Hardware does not prevent speculative instruction fetches from a memory location with any of the Device memory attributes unless the memory location is also marked as Execute-never for all Exception levels.

--- Note ---
This means that to prevent speculative instruction fetches from memory locations with Device memory attributes, any location that is assigned any Device memory type must also be marked as Execute-never for all Exception levels. Failure to mark a memory location with any Device memory attribute as Execute-never for all Exception levels is a programming error.

See also Memory access restrictions on page B2-162.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR_ELx. For the EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are subject to a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage translation table walk might be made to memory locations with any Device memory type. These accesses might be made speculatively. When the value of the HCR_EL2.PTW bit is 1, a stage 2 permission fault is generated if a first stage translation table walk is made to any Device memory type.

--- Note ---
In general, making a translation table walk to any Device memory type is the result of a programming error.

For instruction fetches, if branches cause the program counter to point to an area of memory with the Device attribute which is not marked as Execute-never for the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.
• Take a Permission fault.

Gathering
In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a single transaction.
• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into a single memory transaction on an interconnect.

--- Note ---
This also applies to writebacks from the cache, whether caused by a Natural eviction or as a result of a cache maintenance instruction.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and coherency rules of the memory location are followed.
For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

- The number of memory accesses that are made corresponds to the number that would be generated by a simple sequential execution of the program.
- All accesses occur at their single-copy atomic sizes, except that there is no requirement for the memory system beyond the PE to be able to identify the single-copy atomic sizes accessed by multi-register Load/Store instructions that generate more than one single-copy atomic access. See Multi-register loads and stores that access Device memory on page B2-162.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

- A read from a memory location with the Gathering attribute can come from intermediate buffering of a previous write, provided that:
 - The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.
 - The accesses are not separated by other ordering constructions that require that the accesses are in order. Such a construction might be a combination of Load-Acquire and Store-Release.
 - The accesses are not generated by a Store-Release instruction.
- The Arm architecture only defines programmer visible behavior. Therefore, gathering can be performed if a programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent with the relaxations allowed by the Gathering attribute.

Reordering

In the Device memory attribute:

R Indicates that the location has the Reordering attribute. Accesses to the location can be reordered within the same rules that apply to accesses to Normal Non-cacheable memory. All memory types with the Reordering attribute have the same ordering rules as accesses to Normal Non-cacheable memory, see Ordering relations on page B2-126.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

Note

Some interconnect fabrics, such as PCIe, perform very limited reordering, which is not important for the software usage. It is outside the scope of the Arm architecture to prohibit the use of a non-Reordering memory type with these interconnects.

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral of implementation defined size, as defined by the peripheral, must be the same order that occurs in a simple sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory accesses are not to a peripheral, then this attribute imposes no restrictions.
Note

- The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee provided by the DMB instruction.

- The Arm architecture only defines programmer visible behavior. Therefore, reordering can be performed if a programmer cannot tell whether reordering has occurred.

- The non-Reordering property is only required by the architecture to apply the order of arrival of accesses to a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is not required to have an impact on the order of observation of memory accesses to SDRAM. For this reason, there is no effect of the non-Reordering attribute on the ordering relations between accesses to different locations described in Ordering relations on page B2-126 as part of the formal definition of the memory model.

- If the same memory location is mapped with different aliases, with a different Reordering attribute value or any different Device memory attribute values, these are a type of mismatched attribute. For information about the effects of accessing memory with mismatched attributes, see Mismatched memory attributes on page B2-163.

An implementation:

- Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements specified by the non-Reordering attribute.

- Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal memory, between:

- Accesses to one physical address with the non-Reordering attribute and accesses to a different physical address with the Reordering attribute.

- Access to one physical address with the non-Reordering attribute and access to a different physical address to Normal memory.

- Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION DEFINED size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory location specified in the instruction has the non-Reordering attribute.

Early Write Acknowledgement

In the Device memory attribute:

- E Indicates that the location has the Early Write Acknowledgement attribute.

- nE Indicates that the location has the No Early Write Acknowledgement attribute.

For memory system endpoints where the system architecture in which the PE is operating requires that acknowledgement of a write comes from the endpoint, assigning the No Early Write Acknowledgement attribute to a Device memory location guarantees that:

- Only the endpoint of the write access returns a write acknowledgement of the access.

- No earlier point in the memory system returns a write acknowledgement.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write Acknowledgement Location, completes only after the write has reached its endpoint in the memory system.

Peripherals are an example of system endpoints that require that the acknowledgement of a write comes from the endpoint.

Note

- The Early Write Acknowledgement attribute only affects where the endpoint acknowledgement is returned from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by either the Device Reordering attribute, or the use of barriers to create order.
• The areas of the physical memory map for which write acknowledgement from the endpoint is required is outside the scope of the Arm Architecture definition and must be defined as part of the system architecture in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are expected to support write acknowledgement from the endpoint.

• Arm recognizes that not all areas of a physical memory map will be capable of supporting write acknowledgement from the endpoint. In particular, Arm expects that regions of memory handled as posted writes under PCIe will not support write acknowledgement from the endpoint.

• For maximum software compatibility, Arm strongly recommends that all peripherals for which standard software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint are placed in areas of the physical memory map that support write acknowledgement from the endpoint.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register and generate more than one single-copy atomic access for that load or store, there is no requirement for the memory system beyond the PE to be able to identify the single-copy atomic sizes accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register, the order in which the registers are accessed is not defined by the architecture. This applies even to accesses to any type of Device memory.

For all instructions that load or store one or more SIMD and floating-point or SVE registers, and generate more than one single-copy atomic access for that load or store, there is no requirement for the memory system beyond the PE to be able to identify the single-copy atomic sizes accessed by these load or store instructions, even for access to any type of Device memory.

B2.7.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For accesses to any two bytes, \(p \) and \(q \), that are generated by the same instruction:
 — The bytes \(p \) and \(q \) must have the same memory type and shareability attributes, otherwise the results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned load or store that spans the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.
 — Except for possible differences in the cache allocation hints, Arm deprecates having different cacheability attributes for bytes \(p \) and \(q \).

For the permitted CONSTRAINED UNPREDICTABLE behavior, see *Crossing a page boundary with different memory types or Shareability attributes on page K1-7971*.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross an address boundary that corresponds to the smallest implemented translation granule, then behavior is CONSTRAINED UNPREDICTABLE, and *Crossing a peripheral boundary with a Device access on page K1-7971* describes the permitted behaviors. For this reason, it is important that an access to a volatile memory device is not made using a single instruction that crosses an address boundary of the size of the smallest implemented translation granule.

Note

— The boundary referred to is between two Device memory regions that are both of the size of the smallest implemented translation granule and aligned to the size of the smallest implemented translation granule.

— This restriction means it is important that an access to a volatile memory device is not made using a single instruction that crosses an address boundary of the size of the smallest implemented translation granule.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory map, rather than expecting a compiler to be aware of the alignment of memory accesses.
B2.8 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D5 The AArch64 Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a common definition of all of the following attributes of that location:

- Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.
- Shareability.
- Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

If FEAT_MTE is implemented, accesses to a location which use a common definition of the memory attributes but the Tagged attribute of that location differs do not cause a mismatched access to occur.

Note
In this document, the terms location and memory location refer to any byte within the current coherency granule and are used interchangeably.

When a memory Location is accessed with mismatched attributes, the only software visible effects are one or more of the following:

- Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:
 - A read of the memory Location by one agent might not return the value most recently written to that memory Location by the same agent.
 - Multiple writes to the memory Location by one agent with different memory attributes might not be ordered in program order.

- There might be a loss of coherency when multiple agents attempt to access a memory Location.

- There might be a loss of properties derived from the memory type, as described in later bullets in this section.

- If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

- Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes written with the Write-Back cacheable attribute might have their values reverted to the old values as a result of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of Device memory that are additional to the properties of Normal memory:

- Prohibition of Speculative read accesses.
- Prohibition on Gathering.
- Prohibition on reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type, Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common definition of the memory attributes, only if all the following conditions are met:
 - All writes are performed to an alias of the memory Location that uses the same definition of the Memory type, Shareability and Cacheability attributes.
 - Either:
 - In the EL1&0 translation regime, HCR_EL2.MIOCNCE has a value of 0.
 - All aliases with write permission have the Inner Cacheability attribute the same as the Outer Cacheability attribute.
• Either:
 — All writes are performed to an alias of the memory Location that has Inner Cacheability and Outer Cacheability attributes both as Non-cacheable.
 — All aliases to a memory Location use a definition of the Shareability attributes that encompasses all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined more precisely if all of the mismatched attributes define the memory Location as one of:
 • Any Device memory type.
 • Inner Non-cacheable, Outer Non-cacheable Normal memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the following:
 • Possible loss of properties derived from the memory type when multiple agents attempt to access the memory Location.
 • Possible reordering of memory transactions to the same memory Location with different memory attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory location all assign the same shareability attribute to a Location that has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a shareability domain can be avoided by use of software cache management. To do so, software must use the techniques that are required for the software management of the ordering or coherency of cacheable Locations between agents in different shareability domains. This means:
 • Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate, or clean, a Location from the caches if any agent might have written to the Location with the Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.
 • After writing to a cacheable Location with the Write-Back attribute, software must clean the Location from the caches, to make the write visible to external memory.
 • Before reading the Location with a cacheable attribute, software must invalidate, or clean and invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last value made visible in external memory.
 • Executing a DMB barrier instruction, with scope that applies to the common shareability of the accesses, between any accesses to the same cacheable Location that use different attributes.

In all cases:
 • Location refers to any byte within the current coherency granule.
 • A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate instruction.
 • In the sequences outlined in this section, all cache maintenance instructions and memory transactions must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the use of a common address, see Ordering and completion of data and instruction cache instructions on page D4-2511.

——— Note ————
With software management of coherency, race conditions can cause loss of data. A race condition occurs when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write, clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also occurs if the first operation of either sequence is a clean, rather than an invalidate.
2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are guaranteed only if:
 • Software running on a PE cleans and invalidates a Location from cache before and after each read or write to that Location by that PE.
 • A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses to the same memory Location that use different attributes.

 ——— Note ————-

The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location, and the accesses from the different agents have different memory attributes associated with the Location, the Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An implementation might not optimize the performance of a system that uses mismatched aliases.
B2.9 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The information in this section about memory accesses by synchronization primitives applies to accesses to both Normal memory and to any type of Device memory.

--- Note ---
Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table B2-3 shows the synchronization primitives and the associated CLREX instruction.

<table>
<thead>
<tr>
<th>Transaction size</th>
<th>Additional semantics</th>
<th>Load-Exclusivea</th>
<th>Store-Exclusivea</th>
<th>Othera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td></td>
<td>LDXR8</td>
<td>STXR8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Load-Acquire/Store-Release</td>
<td>LDXRB</td>
<td>STLXRB</td>
<td>-</td>
</tr>
<tr>
<td>Halfword</td>
<td></td>
<td>LDXR8</td>
<td>STXR8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Load-Acquire/Store-Release</td>
<td>LDXRH</td>
<td>STLRH</td>
<td>-</td>
</tr>
<tr>
<td>Registerb</td>
<td></td>
<td>LDXR</td>
<td>STXR</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Load-Acquire/Store-Release</td>
<td>LDXR</td>
<td>STLX</td>
<td>-</td>
</tr>
<tr>
<td>Pairb</td>
<td></td>
<td>LDXP</td>
<td>STLP</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Load-Acquire/Store-Release</td>
<td>LDXP</td>
<td>STLP</td>
<td>-</td>
</tr>
<tr>
<td>None</td>
<td>Clear-Exclusive</td>
<td>-</td>
<td>-</td>
<td>CLREX</td>
</tr>
</tbody>
</table>

a. Instruction in the A64 instruction set.
b. A register instruction operates on a doubleword if accessing an X register, or on a word if accessing a W register.
A pair instruction operates on two doublewords if access X registers, or on two words if accessing W registers.

Except for the row showing the CLREX instruction, the two instructions in a single row are a Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive instruction pair accessing a non-aborting memory address \(x \) is:

- The Load-Exclusive instruction reads a value from memory address \(x \).
- The corresponding Store-Exclusive instruction succeeds in writing back to memory address \(x \) only if no other observer, process, or thread has performed a more recent store to address \(x \). The Store-Exclusive instruction returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page B2-172. A Store-Exclusive instruction to any address in the marked block clears the marking.

--- Note ---
In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive instruction.

The following sections give more information:

- Exclusive access instructions and Non-shareable memory locations on page B2-167.
- Exclusive access instructions and Shareable memory locations on page B2-168.
- Marking and the size of the marked memory block on page B2-172.
- Context switch support on page B2-172.
B2.9 Synchronization and semaphores

B2.9.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely on a local Exclusives monitor, or local monitor, that marks any address from which the PE executes a Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

• The executing PE marks the physical memory address for exclusive access.
• The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

• If the address of the Store-Exclusive instruction is the same as the address that has been marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs. Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.
• A status value is returned to a register:
 — If the store took place, the status value is 0.
 — Otherwise, the status value is 1.
• The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state, the monitor is set.

If the local monitor is in the Open Access state

• No store takes place.
• A status value of 1 is returned to a register.
• The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Open Access state, the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

• If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.
• If the write is to a PA that is marked as Exclusive Access by its local monitor, it is IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if that store is by an observer other than the one that caused the PA to be marked.

Figure B2-4 on page B2-168 shows the state machine for the local monitor and the effect of each of the operations shown in the figure.
Figure B2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block on page B2-172.

For the local monitor state machine, as shown in Figure B2-4:

- The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being constructed so that it does not hold any PA, but instead treats any access as matching the address of the previous Load-Exclusive instruction.
- A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other PEs.
- The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have any effect on the local monitor.
- It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when the Store or StoreExc1 is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution of an operation shown in Figure B2-4.

An implementation must ensure that:

- The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the architectural execution of one of the operations shown in Figure B2-4.
- Any transition of the local monitor to the Open Access state not caused by the architectural execution of an operation shown in Figure B2-4 must not indefinitely delay forward progress of execution.

B2.9.2 Exclusive access instructions and Shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a Shareability attribute of Inner Shareable or Outer Shareable.
For shareable memory locations, exclusive access instructions rely on:

- A **local monitor** for each PE in the system, that marks any address from which the PE executes a Load-Exclusive. The local monitor operates as described in *Exclusive access instructions and Non-shareable memory locations* on page B2-167, except that for shareable memory any Store-Exclusive is then subject to checking by the global monitor if it is described in that section as doing at least one of the following:
 - Updating memory.
 - Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

- A **global monitor** that marks a PA as exclusive access for a particular PE. This marking is used later to determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur. Any successful write to the marked block by any other observer in the shareability domain of the memory location is guaranteed to clear the marking. For each PE in the system, the global monitor:
 - Can hold at least one marked block.
 - Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE, see *Load-Exclusive and Store-Exclusive instruction usage restrictions* on page B2-173.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces. The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global monitor require functionality outside the PE. Some system implementations might not implement this functionality for all locations of memory. In particular, this can apply to:

- Any type of memory in the system implementation that does not support hardware cache coherency.
- Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support hardware cache coherency.

In such a system, it is defined by the system:

- Whether the global monitor is implemented.
- If the global monitor is implemented, which address ranges or memory types it monitors.

Note

If FEAT_MTE is implemented and enabled it is IMPLEMENTATION DEFINED whether a global monitor monitors access to the Tag PA space. For more information see *Chapter D6 Memory Tagging Extension*.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system might define at least one location of memory, of at least the size of the translation granule, in the system memory map to support the global monitor for all Arm PEs within a common Inner Shareable domain. However, this is not an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as Lamport’s Bakery algorithm to achieve mutual exclusion.
Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

- Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.
- Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.

If the global monitor is not implemented for an address range or memory type, then performing a Load-Exclusive or a Store-Exclusive instruction to such a location has one or more of the following effects:

- The instruction generates an External abort.
- The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Data Abort Fault status code of `ESR_ELx.DFSC = 110101`.

 If the IMPLEMENTATION DEFINED MMU fault is generated for the EL1&0 translation regime then:
 - If the fault is generated because of the memory type defined in the first stage of translation, or if the second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.
 - Otherwise, the fault is a second stage fault and the exception is taken to EL2.

 The priority of this fault is IMPLEMENTATION DEFINED.
- The instruction is treated as a NOP.
- The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the local monitor becomes UNKNOWN.
- The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of 64-bit quantities, then the two quantities being stored might not be stored atomically.
- The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic access mechanisms, the effect that writes have on the global and local monitors used by Arm PEs is IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

- Some address ranges.
- Some memory types.

Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor only supports a single outstanding exclusive access to shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

- The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in the Exclusive Access state. In this case:
 - A status value of 0 is returned to a register to acknowledge the successful store.
 - The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
 - If the address accessed is marked for exclusive access in the global monitor state machine for any other PE, then that state machine transitions to Open Access state.
If no address is marked as exclusive access for the requesting PE, the store does not succeed:
- A status value of 1 is returned to a register to indicate that the store failed.
- The global monitor is not affected and remains in Open Access state for the requesting PE.

If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether the store succeeds or not:
- If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.
- If the global monitor state machine for the PE was in the Exclusive Access state before the Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible to it. This means that it responds to:
- Accesses generated by PE(n).
- Accesses generated by the other observers in the shareability domain of the memory location. These accesses are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:
- In the Exclusive Access state is set.
- In the Open Access state is clear.

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms for entering a low-power state on page D1-2391.

Figure B2-5 shows the state machine for PE(n) in a global monitor.

![Global monitor state machine diagram for PE(n) in a multiprocessor system](image)

† StoreExc1(Marked_address, !n) clears the monitor only if the StoreExc1 updates memory

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram:
- LoadExc1 represents any Load-Exclusive instruction
- StoreExc1 represents any Store-Exclusive instruction
- Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

For more information about marking, see Marking and the size of the marked memory block on page B2-172.
Note

For the global monitor state machine, as shown in Figure B2-5 on page B2-171:

- The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have any effect on the global monitor.
- Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and whether the local and global monitors are in the exclusive state. For this reason, Figure B2-5 on page B2-171 only shows how the operations by (!n) cause state transitions of the state machine for PE(n).
- A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the Load-Exclusive instruction.
- When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX instruction causes the global monitor to transition from Exclusive Access to Open Access state.
- It is IMPLEMENTATION DEFINED:
 - Whether a modification to a Non-shareable memory location can cause a global monitor to transition from Exclusive Access to Open Access state.
 - Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to transition from Open Access to Exclusive Access state.

B2.9.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the 64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 2^a bytes is created by ignoring the least significant bits of the memory address. A marked address is any address within this marked block. The size of the marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is IMPLEMENTATION DEFINED in the range 4-512 words.

Note

This definition means that the Exclusives reservation granule is:

- 4 words in an implementation where a is 4.
- 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDXRB of address 0x341B4 defines a marked block using bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR_EL0. Otherwise, software must assume that the maximum Exclusives reservation granule, 512 words, is implemented.

B2.9.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the description of the exclusive operations.
B2.9.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a LDXP/STXP pair or a LDXR/STXR pair. To support different implementations of these functions, software must follow the notes and restrictions given here.

The following notes describe the use of a LoadExcl/StoreExcl instruction pair, to indicate the use of any of the Load-Exclusive/Store-Exclusive instruction pairs shown in Table B2-3 on page B2-166. In this context, a LoadExcl/StoreExcl pair comprises two instructions in the same thread of execution:

• The exclusives support a single outstanding exclusive access for each PE thread that is executed. The architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal() function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:
 — The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the states of the local and global monitors for that PE are UNKNOWN.

 Note

 This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

 — The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the StoreExcl are executed with the same VA.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:
 — The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

 Note

 This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction sizes.

 — The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the StoreExcl have the same transaction size.

• An implementation of the LoadExcl and StoreExcl instructions can require that, in any thread of execution, the StoreExcl instruction accesses the same number of registers as the preceding LoadExcl instruction executed in that thread. If the StoreExcl instruction accesses a different number of registers than the preceding LoadExcl instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. As a result, software can rely on an LoadExcl/StoreExcl pair to eventually succeed only if they access the same number of registers. For more information, see CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive access a different number of registers on page B2-176.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of execution, the Tag Checked property of a memory access due to a StoreExcl instruction is the same as the Tag Checked property of a memory access by the preceding LoadExcl instruction executed in that thread. If the Tag Checked property of memory accesses due to a LoadExcl/StoreExcl pair in the same thread of execution differ, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:
 — The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.
Note

This means the StoreExcl might pass for some instances of such a LoadExcl/StoreExcl pair, and fail for other instances of such a LoadExcl/StoreExcl pair.

The data at the address accessed by the LoadExcl/StoreExcl pair is **UNKNOWN**.

This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the memory is accessed with the same Tag Checked property.

- LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop within a single thread of execution, the software meets all of the following conditions:

 1. Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory accesses, preloads, direct or indirect System register writes, address translation instructions, cache or TLB maintenance instructions, exception generating instructions, exception returns, or indirect branches.

 2. Between the Store-Exclusive returning a failing result and the retry of the corresponding Load-Exclusive:

 * There are no stores or PRFM instructions to any address within the Exclusives reservation granule accessed by the Store-Exclusive.

 * There are no loads or preloads to any address within the Exclusives reservation granule accessed by the Store-Exclusive that use a different VA alias to that address.

 * There are no direct or indirect System register writes, address translation instructions, cache or TLB maintenance instructions, exception generating instructions, exception returns, or indirect branches.

 * All loads and stores are to a block of contiguous virtual memory of not more than 512 bytes in size.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

- Performing stores to a PA covered by the Exclusives monitor.

- Prefetching with intent to write to a PA covered by the Exclusives monitor.

- Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a PA covered by the Exclusives monitor.

- Executing instruction cache invalidate all instructions.

- Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

- Executing TLB maintenance to a PA covered by the Exclusives monitor.

- Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

- The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a functional requirement.

- After taking a Data Abort exception, the state of the Exclusives monitors is **UNKNOWN**.
For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED UNPREDICTABLE behavior is as follows:

— The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory attributes.

— The data at the address accessed by the StoreExcl is UNKNOWN.

Note
Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair differ as a result of using different VAs with different attributes that point to the same PA.

The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance instructions, this also applies to the monitors of other PEs in the same shareability domain as the PE executing the cache maintenance instruction, as determined by the shareability domain of the address being maintained.

Note
Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

If the mapping of the VA to PA is changed between the LoadExcl instruction and the STREX instruction, and the change is performed using a break-before-make sequence as described in Using break-before-make when updating translation table entries on page D5-2662, if the StoreExcl is performed after another write to the same PA as the StoreExcl, and that other write was performed after the old translation was properly invalidated and that invalidation was properly synchronized, then the StoreExcl will not pass its monitor check.

Note
— The TLB invalidation will clear either the local or global monitor.
— The PA will be checked between the LoadExcl and StoreExcl.

The Exclusive Access state for an address accessed by a PE can be lost as a result of a PFRM PST* instruction to the same PA executed by another PE. This means that a very high rate of repeated PFRM PST* accesses to a memory location might impede the forward progress of another PE.

If FEAT_MTE is implemented and enabled a store exclusive instruction which if Unchecked would not perform the store and return a status value of 1, it is CONSTRAINED UNPREDICTABLE whether:

— The instruction is a Checked access,
— The instruction is an Unchecked access.

For more information see Chapter D6 Memory Tagging Extension.

Note
In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an implementation must ensure that forward progress is made by at least one PE.
CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive access a different number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED UNPREDICTABLE if, in a single thread of execution, either:

- An LDXP instruction of two 32-bit quantities is followed by an STXR instruction of one 64-bit quantity at the same address.
- An LDXR instruction of one 64-bit quantity is followed by an STXP instruction of two 32-bit quantities at the same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of:

- The STXP or STXR instruction generates an external Data Abort.
- The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data Abort Fault status code of ESR_ELx.DFSC = 0b110101.
- The STXP or STXR instruction always fails, returning a status of 1.
- The STXP or STXR instruction always passes, returning a status of 0.
- This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.9.6 Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock. These instructions can be used at the application level, but a complete understanding of what they do depends on a system level understanding of exceptions. They are described in Wait for Event mechanism and Send event on page D1-2391. However, in Armv8, when the global monitor for a PE changes from Exclusive Access state to Open Access state, an event is generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the need for spinlock code to include an SEV instruction after clearing a spinlock.
Part C

The AArch64 Instruction Set
Chapter C1
The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

- About the A64 instruction set on page C1-180.
- Structure of the A64 assembler language on page C1-181.
- Address generation on page C1-187.
- Instruction aliases on page C1-190.
C1.1 About the A64 instruction set

The A64 instruction set is the instruction set supported in the AArch64 Execution state. All A64 instructions have a width of 32 bits. The A64 encoding structure breaks down into the following functional groups:

- A miscellaneous group of branch instructions, exception generating instructions, and System instructions.
- Data-processing instructions associated with general-purpose registers. These instructions are supported by two functional groups, depending on whether the operands:
 - Are all held in registers.
 - Include an operand with a constant immediate value.
- Load and store instructions associated with the general-purpose register file and the SIMD and floating-point register file.
- SIMD and scalar floating-point data-processing instructions that operate on the SIMD and floating-point registers.

The encoding hierarchy within a functional group breaks down as follows:

- A functional group consists of a set of related instruction classes. *A64 instruction set encoding on page C4-266* provides an overview of the instruction encodings in the form of a list of instruction classes within their functional groups.
- An instruction class consists of a set of related instruction forms. Instruction forms are documented in one of two alphabetic lists:
 - The load, store, and data-processing instructions associated with the general-purpose registers, together with those in the other instruction classes. See *Chapter C6 A64 Base Instruction Descriptions*.
 - The load, store, and data-processing instructions associated with the SIMD and floating-point support. See *Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions*.
- An instruction form might support a single instruction syntax. Where an instruction supports more than one syntax, each syntax is an instruction variant. Instruction variants can occur because of differences in:
 - The size or format of the operands.
 - The register file used for the operands.
 - The addressing mode used for load/load/store memory operands.
Instruction variants might also arise as the result of other factors. Instruction variants are described in the instruction description for the individual instructions.

A64 instructions have a regular bit encoding structure:

- 5-bit register operand fields at fixed positions within the instruction. For general-purpose register operands, the values 0-30 select one of 31 registers. The value 31 is used as a special case that can:
 - Indicate use of the current stack pointer, when identifying a load/store base register or in a limited set of data-processing instructions. See *The stack pointer registers on page D1-2321*.
 - Indicate the value zero when used as a source register operand.
 - Indicate discarding the result when used as a destination register operand.
For SIMD and floating-point register access, the value used selects one of 32 registers.
- Immediate bits that provide constant data-processing values or address offsets are placed in contiguous bitfields. Some computed values in instruction variants use one or more immediate bitfields together with the secondary encoding bitfields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated instruction is UNDEFINED, unless the behavior is otherwise defined in this Manual.
C1.2 Structure of the A64 assembler language

The following sections describe the A64 assembler syntax:

- General requirements.
- Common syntax terms.
- Instruction Mnemonics on page C1-183.
- Condition code on page C1-183.
- Register names on page C1-184.

C1.2.1 General requirements

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general-purpose register holding a 64-bit doubleword.

An A64 assembler recognizes both uppercase and lowercase variants of the instruction mnemonics and register names, but not mixed case variants. An A64 disassembler can output either uppercase or lowercase mnemonics and register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an assembler must allow immediate values introduced with or without the # character. Arm recommends that an A64 disassembler outputs a # before an immediate operand.

In Example C1-1 on page C1-183, the sequence // is used as a comment leader and A64 assemblers are encouraged to accept this syntax.

C1.2.2 Common syntax terms

The following syntax terms are used frequently throughout the A64 instruction set description.

- **UPPER** Text in upper-case letters is fixed. Text in lower-case letters is variable. This means that register name Xn indicates that the X is required, followed by a variable register number, for example X29.
- < > Any text enclosed by angle braces, < >, is a value that the user supplies. Subsequent text might supply additional information.
- { } Any item enclosed by curly brackets, { }, is optional. A description of the item and how its presence or absence affects the instruction is normally supplied by subsequent text. In some cases curly braces are actual symbols in the syntax, for example when they surround a register list. These cases are called out in the surrounding text.
- [] Any items enclosed by square brackets, [], constitute a list of alternative characters. A single one of the characters can be used in that position and the subsequent text describes the meaning of the alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes or vector elements. These cases are called out in the surrounding text.
- a|b Alternative words are separated by a vertical bar, |, and can be surrounded by parentheses to delimit them. For example, U(ADD|SUB)W represents UADDW or USUBW.
- ± This indicates an optional + or - sign. If neither is used then + is assumed.
- uimmn An n-bit unsigned, positive, immediate value.
- simmn An n-bit two’s complement, signed immediate value, where n includes the sign bit.
- SP See Register names on page C1-184.
- Wn See Register names on page C1-184.
- WSP See Register names on page C1-184.
- WZR See Register names on page C1-184.
- Xn See Register names on page C1-184.
XZR

See Register names on page C1-184
C1.2.3 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an instruction based on the operand types. For example, the following ADD instructions all have different opcodes. However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD W0, W1, W2</td>
<td>add 32-bit register</td>
</tr>
<tr>
<td>ADD X0, X1, X2</td>
<td>add 64-bit register</td>
</tr>
<tr>
<td>ADD X0, X1, W2, SXTW</td>
<td>add 64-bit extended register</td>
</tr>
<tr>
<td>ADD X0, X1, #42</td>
<td>add 64-bit immediate</td>
</tr>
</tbody>
</table>

C1.2.4 Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related instructions on page C6-769.

Table C1-1 shows the available Condition codes.

<table>
<thead>
<tr>
<th>Cond</th>
<th>Mnemonic</th>
<th>Meaning (integer)</th>
<th>Meaning (floating-point)a</th>
<th>Condition flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>EQ</td>
<td>Equal</td>
<td>Equal</td>
<td>Z == 1</td>
</tr>
<tr>
<td>0001</td>
<td>NE</td>
<td>Not equal</td>
<td>Not equal or unordered</td>
<td>Z == 0</td>
</tr>
<tr>
<td>0010</td>
<td>CS or HS</td>
<td>Carry set</td>
<td>Greater than, equal, or unordered</td>
<td>C == 1</td>
</tr>
<tr>
<td>0011</td>
<td>CC or LO</td>
<td>Carry clear</td>
<td>Less than</td>
<td>C == 0</td>
</tr>
<tr>
<td>0100</td>
<td>MI</td>
<td>Minus, negative</td>
<td>Less than</td>
<td>N == 1</td>
</tr>
<tr>
<td>0101</td>
<td>PL</td>
<td>Plus, positive or zero</td>
<td>Greater than, equal, or unordered</td>
<td>N == 0</td>
</tr>
<tr>
<td>0110</td>
<td>VS</td>
<td>Overflow</td>
<td>Unordered</td>
<td>V == 1</td>
</tr>
<tr>
<td>0111</td>
<td>VC</td>
<td>No overflow</td>
<td>Ordered</td>
<td>V == 0</td>
</tr>
<tr>
<td>1000</td>
<td>HI</td>
<td>Unsigned higher</td>
<td>Greater than, or unordered</td>
<td>C == 1 && Z == 0</td>
</tr>
<tr>
<td>1001</td>
<td>LS</td>
<td>Unsigned lower or same</td>
<td>Less than or equal</td>
<td>!(C == 1 && Z == 0)</td>
</tr>
<tr>
<td>1010</td>
<td>GE</td>
<td>Signed greater than or equal</td>
<td>Greater than or equal</td>
<td>N == V</td>
</tr>
<tr>
<td>1011</td>
<td>LT</td>
<td>Signed less than</td>
<td>Less than, or unordered</td>
<td>N! = V</td>
</tr>
<tr>
<td>1100</td>
<td>GT</td>
<td>Signed greater than</td>
<td>Greater than</td>
<td>Z == 0 && N == V</td>
</tr>
<tr>
<td>1101</td>
<td>LE</td>
<td>Signed less than or equal</td>
<td>Less than, equal, or unordered</td>
<td>!(Z == 0 && N == V)</td>
</tr>
<tr>
<td>1110</td>
<td>AL</td>
<td>Always</td>
<td>Always</td>
<td>Any</td>
</tr>
<tr>
<td>1111</td>
<td>NV</td>
<td>Always</td>
<td>Always</td>
<td>Any</td>
</tr>
</tbody>
</table>

a. Unordered means at least one NaN operand.

b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is identical to AL.
C1.2.5 Register names

This section describes the AArch64 registers. It contains the following subsections:

- General-purpose register file and zero register and stack pointer.
- SIMD and floating-point register file on page C1-185.
- SIMD and floating-point scalar register names on page C1-185.
- SIMD vector register names on page C1-185.
- SIMD vector element names on page C1-186.

General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size, 32 bits or 64 bits, and the data size of the instruction.

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read and cleared to zero on a write.

Table C1-2 shows the qualified names for registers, where \(n \) is a register number 0-30.

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wn</td>
<td>32 bits</td>
<td>0-30</td>
<td>General-purpose register 0-30</td>
</tr>
<tr>
<td>Xn</td>
<td>64 bits</td>
<td>0-30</td>
<td>General-purpose register 0-30</td>
</tr>
<tr>
<td>WZR</td>
<td>32 bits</td>
<td>31</td>
<td>Zero register</td>
</tr>
<tr>
<td>XZR</td>
<td>64 bits</td>
<td>31</td>
<td>Zero register</td>
</tr>
<tr>
<td>WSP</td>
<td>32 bits</td>
<td>31</td>
<td>Current stack pointer</td>
</tr>
<tr>
<td>SP</td>
<td>64 bits</td>
<td>31</td>
<td>Current stack pointer</td>
</tr>
</tbody>
</table>

This list gives more information about the instruction arguments shown in Table C1-2:

- The names Xn and Wn both refer to the same general-purpose register, Rn.
- There is no register named W31 or X31.
- The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the corresponding register field is interpreted as a read or write of the current stack pointer. When instructions do not interpret this operand encoding as the stack pointer, use of the name SP is an error.
- The name WSP represents the current stack pointer in a 32-bit context.
- The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the corresponding register field is interpreted as returning zero when read or discarding the result when written. When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.
- The name WZR represents the zero register in a 32-bit context.
- The architecture does not define a specific name for general-purpose register R30 to reflect its role as the link register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and additional software names might be defined as part of the Procedure Call Standard, see Procedure Call Standard for the Arm 64-bit Architecture.
SIMD and floating-point register file

The 32 registers in the SIMD and floating-point register file, V0-V31, hold floating-point operands for the scalar floating-point instructions, and both scalar and vector operands for the SIMD instructions. When they are used in a specific instruction form, the names must be further qualified to indicate the data shape, that is the data element size and the number of elements or lanes within the register. A similar requirement is placed on the general-purpose registers. See General-purpose register file and zero register and stack pointer on page C1-184.

--- Note ---
The data type is described by the instruction mnemonics that operate on the data. The data type is not described by the register name. The data type is the interpretation of bits within each register or vector element, whether these are integers, floating-point values, polynomials, or cryptographic hashes.

SIMD and floating-point scalar register names

SIMD and floating-point instructions that operate on scalar data only access the lower bits of a SIMD and floating-point register. The unused high bits are ignored on a read and cleared to 0 on a write.

Table C1-3 shows the qualified names for accessing scalar SIMD and floating-point registers. The letter n denotes a register number between 0 and 31.

<table>
<thead>
<tr>
<th>Size</th>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>Bn</td>
<td></td>
</tr>
<tr>
<td>16 bits</td>
<td>Hn</td>
<td></td>
</tr>
<tr>
<td>32 bits</td>
<td>Sn</td>
<td></td>
</tr>
<tr>
<td>64 bits</td>
<td>Dn</td>
<td></td>
</tr>
<tr>
<td>128 bits</td>
<td>Qn</td>
<td></td>
</tr>
</tbody>
</table>

SIMD vector register names

If a register holds multiple data elements on which arithmetic is performed in a parallel, SIMD, manner, then a qualifier describes the vector shape. The vector shape is the element size and the number of elements or lanes. If the element size in bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are ignored on a read and cleared to zero on a write.

Table C1-4 shows the SIMD vector register names. The letter n denotes a register number between 0 and 31.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits × 8 lanes</td>
<td>Vn.8B</td>
</tr>
<tr>
<td>8 bits × 16 lanes</td>
<td>Vn.16B</td>
</tr>
<tr>
<td>16 bits × 4 lanes</td>
<td>Vn.4H</td>
</tr>
<tr>
<td>16 bits × 8 lanes</td>
<td>Vn.8H</td>
</tr>
<tr>
<td>32 bits × 2 lanes</td>
<td>Vn.25</td>
</tr>
</tbody>
</table>
SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that a single element from a SIMD and floating-point register is used as a scalar operand. The number of lanes is not represented, as it is not encoded in the instruction and can only be inferred from the index value.

Table C1-5 shows the vector register names and the element index. The letter \(i \) denotes the element index.

Table C1-5 Vector register names with element index

<table>
<thead>
<tr>
<th>Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>(Vn.B[i])</td>
</tr>
<tr>
<td>16 bits</td>
<td>(Vn.H[i])</td>
</tr>
<tr>
<td>32 bits</td>
<td>(Vn.S[i])</td>
</tr>
<tr>
<td>64 bits</td>
<td>(Vn.D[i])</td>
</tr>
</tbody>
</table>

An assembler must accept a fully qualified SIMD register name if the number of lanes is greater than the index value. See SIMD vector register names on page C1-185. For example, an assembler must accept all of the following forms as the name for the 32-bit element in bits [63:32] of the SIMD and floating-point register \(V9 \):

\[
\begin{align*}
V9.S[1] & \quad \text{//standard disassembly} \\
V9.2S[1] & \quad \text{//optional number of lanes} \\
V9.4S[1] & \quad \text{//optional number of lanes}
\end{align*}
\]

Note

The SIMD and floating-point register element name \(Vn.S[0] \) is not equivalent to the scalar SIMD and floating-point register name \(Sn \). Although they represent the same bits in the register, they select different instruction encoding forms, either the vector element or the scalar form.

SIMD vector register list

Where an instruction operates on multiple SIMD and floating-point registers, for example vector Load/Store structure and table lookup operations, the registers are specified as a list enclosed by curly braces. This list consists of either a sequence of registers separated by commas, or a register range separated by a hyphen. The registers must be numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for disassembly if there are more than two registers in the list and the register number are increasing. The following examples are equivalent representations of a set of four registers \(V4 \) to \(V7 \), each holding four lanes of 32-bit elements:

\[
\begin{align*}
\{ V4.4S - V7.4S \} & \quad \text{//standard disassembly} \\
\{ V4.4S, V5.4S, V6.4S, V7.4S \} & \quad \text{//alternative representation}
\end{align*}
\]

SIMD vector element list

Registers in a list can also have a vector element form. For example, the LD4 instruction can load one element into each of four registers, and in this case the index is appended to the list as follows:

\[
\begin{align*}
\{ V4.5 - V7.5 \}[3] & \quad \text{//standard disassembly} \\
\{ V4.4S, V5.4S, V6.4S, V7.4S \}[3] & \quad \text{//alternative with optional number of lanes}
\end{align*}
\]
C1.3 Address generation

The A64 instruction set supports 64-bit virtual addresses (VAs). The valid VA range is determined by the following factors:

- The size of the implemented virtual address space.
- Memory Management Unit (MMU) configuration settings.

Limits on the VA size mean that the most significant bits of the virtual address do not hold valid address bits. These unused bits can hold:

- A tag, see Address tagging in AArch64 state on page D5-2528.
- If FEAT_PAuth is implemented, a Pointer authentication code (PAC), see Pointer authentication in AArch64 state on page D5-2530.

For more information on memory management and address translation, see Chapter D5 The AArch64 Virtual Memory System Architecture.

C1.3.1 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within an index register, followed by optional scaling.

C1.3.2 PC-relative addressing

The A64 instruction set has support for position-independent code and data addressing:

- PC-relative literal loads have an offset range of ± 1MB.
- Process state flag and compare based conditional branches have a range of ± 1MB. Test bit conditional branches have a restricted range of ± 32KB.
- Unconditional branches, including branch and link, have a range of ± 128MB.

PC-relative Load/Store operations, and address generation with a range of ± 4GB can be performed using two instructions.

C1.3.3 Load/Store addressing modes

Load/Store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-6 shows the assembler syntax for the complete set of Load/Store addressing modes.

<table>
<thead>
<tr>
<th>Addressing Mode</th>
<th>Immediate</th>
<th>Register</th>
<th>Extended Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base register only (no offset)</td>
<td>base{, #0}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Base plus offset</td>
<td>base{, #imm}</td>
<td>base, Xm{, LSL #imm}</td>
<td>base, Wm, (S</td>
</tr>
<tr>
<td>Pre-indexed</td>
<td>[base, #imm]!</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-indexed</td>
<td>[base], #imm</td>
<td>[base], Wm</td>
<td>-</td>
</tr>
<tr>
<td>Literal (PC-relative)</td>
<td>label</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Some types of Load/Store instruction support only a subset of the Load/Store addressing modes listed in Table C1-6 on page C1-187. Details of the supported modes are as follows:

- **Base plus offset addressing** means that the address is the value in the 64-bit base register plus an offset.
- **Pre-indexed addressing** means that the address is the sum of the value in the 64-bit base register and an offset, and the address is then written back to the base register.
- **Post-indexed addressing** means that the address is the value in the 64-bit base register, and the sum of the address and the offset is then written back to the base register.
- **Literal addressing** means that the address is the value of the 64-bit program counter for this instruction plus a 19-bit signed word offset. This means that it is a 4 byte aligned address within ±1MB of the address of this instruction with no offset. Literal addressing can only be used for loads of at least 32 bits and for prefetch instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific to individual toolchains.
- **An immediate offset can** be unsigned or signed, and scaled or unscaled, depending on the type of Load/Store instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the assembly language always uses a byte offset, and the assembler or disassembler performs the necessary conversion. The usable byte offsets therefore depend on the type of Load/Store instruction and the transfer size.

Table C1-7 shows the offset and the type of Load/Store instruction.

<table>
<thead>
<tr>
<th>Offset bits</th>
<th>Sign</th>
<th>Scaling</th>
<th>Write-Back</th>
<th>Load/Store type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Exclusive/acquire/release</td>
</tr>
<tr>
<td>7</td>
<td>Signed</td>
<td>Scaled</td>
<td>Optional</td>
<td>Register pair</td>
</tr>
<tr>
<td>9</td>
<td>Signed</td>
<td>Unscaled</td>
<td>Optional</td>
<td>Single register</td>
</tr>
<tr>
<td>12</td>
<td>Unsigned</td>
<td>Scaled</td>
<td>No</td>
<td>Single register</td>
</tr>
</tbody>
</table>

- A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled by the transfer size, in bytes, if \(LSL \#imm \) is present and where \(\#imm \) must be equal to \(\log_2(\text{transfer_size}) \). The SXTX extend/shift option is functionally equivalent to \(LSL \), but the \(LSL \) option is preferred in source code.
- An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm, sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by \(\#imm \), where \(\#imm \) must be equal to \(\log_2(\text{transfer_size}) \). An assembler must accept Wm or Xm as an extended register offset, but Wm is preferred for disassembly.
- Generating an address lower than the value in the base register requires a negative signed immediate offset or a register offset holding a negative value.
- When stack alignment checking is enabled by system software and the base register is the SP, the current stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific Load/Store instruction requires this. SP cannot be used as a register offset.

Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to a general-purpose register or, in most cases, to the current stack pointer.
Table C1-8 shows the arithmetic instructions that can compute addressing modes.

<table>
<thead>
<tr>
<th>Addressing Form</th>
<th>Immediate</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOV Xd</td>
<td>SP, base</td>
</tr>
<tr>
<td>Base register (no offset)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADD Xd</td>
<td>SP, base, #imm</td>
</tr>
<tr>
<td></td>
<td>or SUB Xd</td>
<td>SP, base, #imm</td>
</tr>
<tr>
<td>Base plus offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-indexed</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Post-indexed</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Literal</td>
<td>ADR Xd, label</td>
<td>-</td>
</tr>
<tr>
<td>(PC-relative)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

- For the 64-bit base plus register offset form, the UXTX mnemonic is an alias for the LSL shift option, but LSL is preferred for disassembly. Similarly the SXTX extend/shift option is functionally equivalent to the LSL option, but the LSL option is preferred in source code.
- To calculate a base plus immediate offset the ADD instructions defined in *Arithmetic (immediate)* on page C3-224 accept an unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a single ADD instruction cannot support the full range of byte offsets available to a single register Load/Store with a scaled 12-bit immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To calculate an address with a byte offset that requires more than 12 bits it is necessary to use two ADD instructions. The following example shows this:
  ```
  ADD Xd, base, #(imm & 0xFFF)
  ADD Xd, Xd, #(imm>>12), LSL #12
  ```
- To calculate a base plus extended register offset, the ADD instructions defined in *Arithmetic (extended register)* on page C3-230 provide a superset of the addressing mode that also supports sign-extension or zero-extension of a byte or halfword value with any shift amount between 0 and 4, for example:
  ```
  ADD Xd, base, Wm, SXTW #3   // Xd = base + (SignExtend(Wm) LSL 3)
  ADD Xd, base, Wm, UXTH #4   // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)
  ```
- If the same extended register offset is used by more than one Load/Store instruction, then, depending on the implementation, it might be more efficient to calculate the extended and scaled intermediate result just once, and then reuse it as a simple register offset. The extend and scale calculation can be performed using the SBFIZ and UBFIZ bitfield instructions defined in *Bitfield move* on page C3-226, for example:
  ```
  SBFIZ Xd, Xm, #3, #32   // Xd = “Wm, SXTW #3”
  UBFIZ Xd, Xm, #4, #16   // Xd = “Wm, UXTH #4”
  ```
C1.4 Instruction aliases

Some instructions have an associated *architecture alias* that is used for disassembly of the encoding when the associated conditions are met. Architecture alias instructions are included in the alphabetic lists of instruction types and clearly presented as an alias form in descriptions for the individual instructions.
Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions and Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

It contains the following sections:

• Understanding the A64 instruction descriptions on page C2-192.
• General information about the A64 instruction descriptions on page C2-195.
C2.1 Understanding the A64 instruction descriptions

Each instruction description in Chapter C6 and Chapter C7 has the following content:
1. A title.
2. An introduction to the instruction.
3. The instruction encoding or encodings.
4. Any alias conditions.
5. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.

The following sections describe each of these.

C2.1.1 The title

The title of an instruction description includes the base mnemonic for the instruction.

If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used when an operand is an immediate value in one instruction form, but is a register in another form.

For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:

- ADD (extended register) on page C6-776.
- ADD (immediate) on page C6-779.
- ADD (shifted register) on page C6-781.

C2.1.2 An introduction to the instruction

This briefly describes the function of the instruction. The introduction is not a complete description of the instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows it, the more detailed information takes priority.

C2.1.3 The instruction encoding or encodings

This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows all of the encoding diagrams. Each diagram has a subheading.

For example, for load and store instructions, the subheadings might be:

- Post-index.
- Pre-index.
- Unsigned offset.

Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address A shows, from left to right, the bytes at addresses A+3, A+2, A+1, and A.

There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the distinguishing field value or values in parentheses. For example, in Chapter C6 there are the following subheadings for variants of the ADC instruction encoding:

- 32-bit variant (sf = 0).
- 64-bit variant (sf = 1).

The assembler syntax prototype for an encoding or variant of an encoding shows how to form a complete assembler source code instruction that assembles to the encoding. Unless otherwise stated, the prototype is also the preferred syntax for a disassembler to disassemble the encoding to. Disassemblers are permitted to omit optional symbols that represent the default value of a field or set of fields, to produce more readable disassembled code, provided that the output re-assembles to the same encoding.
Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C2-194.

C2.1.4 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias syntax and the original syntax can be used interchangeably in the assembler source code.

Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C2.1.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains a list of the symbols that the assembler syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

- **< >** Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each symbol, there is a description of what the symbol represents. The description usually also specifies which encoding field or fields encodes the symbol.

- **{ }** Brace brackets. Any symbols enclosed by these are optional. For each optional symbol, there is a description of what the symbol represents and how its presence or absence is encoded. In some assembler syntax prototypes, some brace brackets are mandatory, for example if they surround a register list. When the use of brace brackets is mandatory, they are separated from other syntax items by one or more spaces.

- **#** This usually precedes a numeric constant. All uses of # are optional in A64 assembler source code. Arm recommends that disassemblers output the # where the assembler syntax prototype includes it.

- **+/-** This indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype. Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural assembler syntax for an instruction encoding or alias, but have no architecturally defined significance in the input to an assembler or in the output from a disassembler.

The following symbol conventions are used:

- **<Xn>** The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).
- **<Wn>** The 32-bit name of a general-purpose register (W0-W30) or the zero register (WZR).
- **<Xn|SP>** The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).
- **<Wn|WSP>** The 32-bit name of a general-purpose register (W0-W30) or the current stack pointer (WSP).
- **<Bn>, <Hn>, <Sn>, <Dn>, <Qn>** The 8, 16, 32, 64 or 128-bit name of a SIMD and floating-point register in a scalar context as described in section Register names on page C1-184.
- **<Vn>** The name of a SIMD and floating-point register name in a vector context as described in Register names on page C1-184.

If the description of a symbol specifies that the symbol is a register, the description might also specify that the range of permitted registers is extended or restricted. It also specifies any differences from the default rules for such fields.
C2.1 Understanding the A64 instruction descriptions

Note

Register names on page C1-184 provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates

The Operation subsection of the instruction description contains this pseudocode.

It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For a description of Arm pseudocode, see Appendix K14 Arm Pseudocode Definition. This appendix also describes the execution model for an instruction.

C2.1.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.
C2.2 General information about the A64 instruction descriptions

This section provides general information about the A64 instruction descriptions. Some of this information also applies to System register descriptions, for example the terms defined in Fixed values in AArch64 instruction and System register descriptions apply to the AArch64 descriptions throughout this manual. The following subsections provide this information:

- Execution of instructions in debug state.
- Fixed values in AArch64 instruction and System register descriptions.
- Modified immediate constants in A64 instructions on page C2-196.

C2.2.1 Execution of instructions in debug state

In general, except for the instructions described in Debug state on page C3-202, the A64 instruction descriptions do not indicate any differences in the behavior of the instruction if it is executed in Debug state. For this information, see Executing instructions in Debug state on page H2-7025.

Note

For many instructions, execution is unchanged in Debug state. Executing instructions in Debug state on page H2-7025 identifies these instructions.

C2.2.2 Fixed values in AArch64 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions. The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:

- **RAZ**
 - Read-As-Zero. See Read-As-Zero (RAZ).
 - In diagrams, a RAZ bit can be shown as 0.

- **(0) RES0**
 - Reserved, Should-Be-Zero (SBZ) or RES0.
 - In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:
 - The instruction is UNDEFINED.
 - The instruction is treated as a NOP.
 - The instruction executes as if the value of the bit was 0.
 - Any destination registers of the instruction become UNKNOWN.
 - This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as (000).
 - In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be shown as RES0. See the Glossary definition of RES0 for more information.

- **RAO**
 - Read-As-One. See Read-As-One (RAO).
 - In diagrams, a RAO bit can be shown as 1.

- **(1) RES1**
 - Reserved, Should-Be-One (SBO) or RES1.
In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates a SBO bit. If the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if the value of the bit was 1.
- Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as (111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be shown as RES1. See the Glossary definition of RES1 for more information.

Note: Some of the System instruction descriptions in this chapter are based on the field description of the input value for the instruction. These are register descriptions and therefore can include RES1 fields. The Glossary definitions cover these cases.

C2.2.3 Modified immediate constants in A64 instructions

It contains the following subsections:

- Modified immediate constants in A64 floating-point instructions.

Modified immediate constants in A64 floating-point instructions

Table C2-1 shows the immediate constants available in FMOV (scalar, immediate) and FMOV (vector, immediate) floating-point instructions.

<table>
<thead>
<tr>
<th>Data type</th>
<th>immediate</th>
<th>Constant a</th>
</tr>
</thead>
<tbody>
<tr>
<td>F16</td>
<td>abcd efgh</td>
<td>a8bb cdef gh0000000</td>
</tr>
<tr>
<td>F32</td>
<td>abcd efgh</td>
<td>a8bbbb bc defgh000 000000</td>
</tr>
<tr>
<td>F64</td>
<td>abcd efgh</td>
<td>a8bbbbbb bcdefgh 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

a. In this column, B = NOT(b). The bit pattern represents the floating-point number \((-1)^S \times 2^{\text{exp}} \times \text{mantissa}\), where

\[S = \text{UInt}(a), \text{exp} = \text{UInt}((\text{NOT}(b):c:d)-3) \text{ and } \text{mantissa} = (16+\text{UInt}(e:f:g:h))/16.\]

The immediate value shown in the table is either:

- The value of the imm8 field for an FMOV (scalar, immediate) instruction, see FMMOV (scalar, immediate) on page C7-1689.
- The value obtained by concatenating the a:b:c:d:e:f:g:h fields for an FMOV (vector, immediate) instruction, see FMMOV (vector, immediate) on page C7-1682.
Table C2-2 shows the floating-point constant values encoded in the b:c:d:e:f:g:h fields of the FMOV (vector, immediate) instruction.

Table C2-2 Floating-point constant values

<table>
<thead>
<tr>
<th>bcd</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>2.0</td>
<td>4.0</td>
<td>8.0</td>
<td>16.0</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>001</td>
<td>2.125</td>
<td>4.25</td>
<td>8.5</td>
<td>17.0</td>
<td>0.1328125</td>
<td>0.265625</td>
<td>0.53125</td>
<td>1.0625</td>
</tr>
<tr>
<td>010</td>
<td>2.25</td>
<td>4.5</td>
<td>9.0</td>
<td>18.0</td>
<td>0.140625</td>
<td>0.28125</td>
<td>0.5625</td>
<td>1.125</td>
</tr>
<tr>
<td>011</td>
<td>2.375</td>
<td>4.75</td>
<td>9.5</td>
<td>19.0</td>
<td>0.1484375</td>
<td>0.296875</td>
<td>0.59375</td>
<td>1.1875</td>
</tr>
<tr>
<td>100</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>20.0</td>
<td>0.15625</td>
<td>0.3125</td>
<td>0.625</td>
<td>1.25</td>
</tr>
<tr>
<td>101</td>
<td>2.625</td>
<td>5.25</td>
<td>10.5</td>
<td>21.0</td>
<td>0.1640625</td>
<td>0.328125</td>
<td>0.65625</td>
<td>1.3125</td>
</tr>
<tr>
<td>110</td>
<td>2.75</td>
<td>5.5</td>
<td>11.0</td>
<td>22.0</td>
<td>0.171875</td>
<td>0.34375</td>
<td>0.6875</td>
<td>1.375</td>
</tr>
<tr>
<td>111</td>
<td>2.875</td>
<td>5.75</td>
<td>11.5</td>
<td>23.0</td>
<td>0.1796875</td>
<td>0.359375</td>
<td>0.71875</td>
<td>1.4375</td>
</tr>
<tr>
<td>1000</td>
<td>3.0</td>
<td>6.0</td>
<td>12.0</td>
<td>24.0</td>
<td>0.1875</td>
<td>0.375</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>1001</td>
<td>3.125</td>
<td>6.25</td>
<td>12.5</td>
<td>25.0</td>
<td>0.1953125</td>
<td>0.390625</td>
<td>0.78125</td>
<td>1.5625</td>
</tr>
<tr>
<td>1010</td>
<td>3.25</td>
<td>6.5</td>
<td>13.0</td>
<td>26.0</td>
<td>0.203125</td>
<td>0.40625</td>
<td>0.8125</td>
<td>1.625</td>
</tr>
<tr>
<td>1011</td>
<td>3.375</td>
<td>6.75</td>
<td>13.5</td>
<td>27.0</td>
<td>0.2109375</td>
<td>0.421875</td>
<td>0.84375</td>
<td>1.6875</td>
</tr>
<tr>
<td>1100</td>
<td>3.5</td>
<td>7.0</td>
<td>14.0</td>
<td>28.0</td>
<td>0.21875</td>
<td>0.4375</td>
<td>0.875</td>
<td>1.75</td>
</tr>
<tr>
<td>1101</td>
<td>3.625</td>
<td>7.25</td>
<td>14.5</td>
<td>29.0</td>
<td>0.2265625</td>
<td>0.453125</td>
<td>0.90625</td>
<td>1.8125</td>
</tr>
<tr>
<td>1110</td>
<td>3.75</td>
<td>7.5</td>
<td>15.0</td>
<td>30.0</td>
<td>0.234375</td>
<td>0.46875</td>
<td>0.9375</td>
<td>1.875</td>
</tr>
<tr>
<td>1111</td>
<td>3.875</td>
<td>7.75</td>
<td>15.5</td>
<td>31.0</td>
<td>0.2421875</td>
<td>0.484375</td>
<td>0.96875</td>
<td>1.9375</td>
</tr>
</tbody>
</table>

Operation of modified immediate constants, floating-point instructions

For an A64 floating-point instruction that uses a modified immediate constant, the operation described by the VFPExpandImm() pseudocode function returns the value of the immediate constant.
Chapter C3
A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

- Branches, Exception generating, and System instructions on page C3-200.
- Loads and stores on page C3-207.
- Data processing - immediate on page C3-224.
- Data processing - register on page C3-229.
- Data processing - SIMD and floating-point on page C3-237.

For a structured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.
C3.1 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and System instructions. It contains the following subsections:

- **Conditional branch**
- **Unconditional branch (immediate)**
- **Unconditional branch (register)** on page C3-201.
- **Exception generation and return** on page C3-201.
- **System register instructions** on page C3-202.
- **System instructions** on page C3-202.
- **Hint instructions** on page C3-203.
- **Barriers and CLREX instructions** on page C3-203.
- **Pointer authentication instructions** on page C3-204.

For information about the encoding structure of the instructions in this instruction group, see Branches, Exception Generating and System instructions on page C4-271.

Note

Software must:

- Use only **BLR** or **BL** to perform a nested subroutine call when that subroutine is expected to return to the immediately following instruction, that is, the instruction with the address of the BLR or BL instruction incremented by four.
- Use only **RET** to perform a subroutine return, when that subroutine is expected to have been entered by a BL or BLR instruction.
- Use only **B**, **BR**, or the instructions listed in Table C3-1 to perform a control transfer that is not a subroutine call or subroutine return described in this **Note**.

C3.1.1 Conditional branch

Conditional branches change the flow of execution depending on the current state of the Condition flags or the value in a general-purpose register. See Table C1-1 on page C1-183 for a list of the Condition codes that can be used for `cond`. Table C3-1 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>Branch offset range from the PC</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.cond</td>
<td>Branch conditionally</td>
<td>±1MB</td>
<td>B.cond on page C6-816</td>
</tr>
<tr>
<td>CBNZ</td>
<td>Compare and branch if nonzero</td>
<td>±1MB</td>
<td>CBNZ on page C6-850</td>
</tr>
<tr>
<td>CBZ</td>
<td>Compare and branch if zero</td>
<td>±1MB</td>
<td>CBZ on page C6-851</td>
</tr>
<tr>
<td>TBNZ</td>
<td>Test bit and branch if nonzero</td>
<td>±32KB</td>
<td>TBNZ on page C6-1362</td>
</tr>
<tr>
<td>TBZ</td>
<td>Test bit and branch if zero</td>
<td>±32KB</td>
<td>TBZ on page C6-1363</td>
</tr>
</tbody>
</table>

C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an immediate offset with a range of ±128MB to the value of the program counter that fetched the instruction. The BL instruction also writes the address of the sequentially following instruction to general-purpose register, X30.
Table C3-2 shows the Unconditional branch instructions with an immediate branch offset.

Table C3-2 Unconditional branch instructions (immediate)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>Immediate branch offset range from the PC</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Branch unconditionally</td>
<td>±128MB</td>
<td>B on page C6-817</td>
</tr>
<tr>
<td>BL</td>
<td>Branch with link</td>
<td>±128MB</td>
<td>BL on page C6-830</td>
</tr>
</tbody>
</table>

C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an additional hint to the PE that this is a return from a subroutine. Table C3-3 shows Unconditional branch instructions that jump directly to an address held in a general-purpose register.

Table C3-3 Unconditional branch instructions (register)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLR</td>
<td>Branch with link to register</td>
<td>BLR on page C6-831</td>
</tr>
<tr>
<td>BR</td>
<td>Branch to register</td>
<td>BR on page C6-834</td>
</tr>
<tr>
<td>RET</td>
<td>Return from subroutine</td>
<td>RET on page C6-1169</td>
</tr>
</tbody>
</table>

C3.1.4 Exception generation and return

This section describes the following exceptions:
- **Exception generating.**
- **Exception return on page C3-202.**
- **Debug state on page C3-202.**

Exception generating

Table C3-4 shows the Exception generating instructions.

Table C3-4 Exception generating instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRK</td>
<td>Breakpoint Instruction</td>
<td>BRK on page C6-837</td>
</tr>
<tr>
<td>HLT</td>
<td>Halt Instruction</td>
<td>HLT on page C6-929</td>
</tr>
<tr>
<td>HVC</td>
<td>Generate exception targeting Exception level 2</td>
<td>HVC on page C6-930</td>
</tr>
<tr>
<td>SMC</td>
<td>Generate exception targeting Exception level 3</td>
<td>SMC on page C6-1202</td>
</tr>
<tr>
<td>SVC</td>
<td>Generate exception targeting Exception level 1</td>
<td>SVC on page C6-1347</td>
</tr>
</tbody>
</table>
Exception return

Table C3-5 shows the Exception return instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERET</td>
<td>Exception return using current ELR and SPSR</td>
<td>ERET on page C6-920</td>
</tr>
</tbody>
</table>

Debug state

Table C3-6 shows the Debug state instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCPS1</td>
<td>Debug switch to Exception level 1</td>
<td>DCPS1 on page C6-904</td>
</tr>
<tr>
<td>DCPS2</td>
<td>Debug switch to Exception level 2</td>
<td>DCPS2 on page C6-905</td>
</tr>
<tr>
<td>DCPS3</td>
<td>Debug switch to Exception level 3</td>
<td>DCPS3 on page C6-906</td>
</tr>
<tr>
<td>DRPS</td>
<td>Debug restore PE state</td>
<td>DRPS on page C6-910</td>
</tr>
</tbody>
</table>

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class. Table C3-7 shows the System register instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRS</td>
<td>Move System register to general-purpose register</td>
<td>MRS on page C6-1125</td>
</tr>
<tr>
<td>MSR</td>
<td>Move general-purpose register to System register</td>
<td>MSR (register) on page C6-1129</td>
</tr>
<tr>
<td></td>
<td>Move immediate to PE state field</td>
<td>MSR (immediate) on page C6-1126</td>
</tr>
</tbody>
</table>

C3.1.6 System instructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class. Table C3-8 shows the System instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>System instruction</td>
<td>SYS on page C6-1359</td>
</tr>
<tr>
<td>SYSL</td>
<td>System instruction with result</td>
<td>SYSL on page C6-1361</td>
</tr>
<tr>
<td>IC</td>
<td>Instruction cache maintenance</td>
<td>IC on page C6-931 and Table C5-1 on page C5-377</td>
</tr>
</tbody>
</table>
C3.1.7 Hint instructions

Table C3-9 shows the Hint instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP</td>
<td>No operation</td>
<td>NOP on page C6-1143</td>
</tr>
<tr>
<td>YIELD</td>
<td>Yield hint</td>
<td>YIELD on page C6-1393</td>
</tr>
<tr>
<td>WFE</td>
<td>Wait for event</td>
<td>WFE on page C6-1388</td>
</tr>
<tr>
<td>WFI</td>
<td>Wait for interrupt</td>
<td>WFI on page C6-1390</td>
</tr>
<tr>
<td>SEV</td>
<td>Send event</td>
<td>SEV on page C6-1198</td>
</tr>
<tr>
<td>SEVL</td>
<td>Send event local</td>
<td>SEVL on page C6-1199</td>
</tr>
<tr>
<td>HINT</td>
<td>Unallocated hint</td>
<td>HINT on page C6-926</td>
</tr>
<tr>
<td>DGH</td>
<td>Data Gathering Hint</td>
<td>DGH on page C6-907</td>
</tr>
</tbody>
</table>

C3.1.8 Barriers and CLREX instructions

Table C3-10 shows the barrier and CLREX instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLREX</td>
<td>Clear Exclusives monitor</td>
<td>CLREX on page C6-866</td>
</tr>
<tr>
<td>DMB</td>
<td>Data memory barrier</td>
<td>DMB on page C6-908</td>
</tr>
<tr>
<td>DSB</td>
<td>Data synchronization barrier</td>
<td>DSB on page C6-911</td>
</tr>
<tr>
<td>ISB</td>
<td>Instruction synchronization barrier</td>
<td>ISB on page C6-933</td>
</tr>
</tbody>
</table>

For more information about DSB, DMB, and ISB, see Memory barriers on page B2-134.
Table C3-11 shows the speculation and synchronization barriers. If these instructions are not implemented, then these instructions execute as a NOP.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSDB</td>
<td>Consumption of Speculative Data Barrier</td>
<td>CSDB on page C6-889</td>
</tr>
<tr>
<td>ESB</td>
<td>Error synchronization barrier</td>
<td>ESB on page C6-922</td>
</tr>
<tr>
<td>PSB</td>
<td>Profiling synchronization barrier</td>
<td>PSB CSYNC on page C6-1166</td>
</tr>
<tr>
<td>PSBB</td>
<td>Physical Speculative Store Bypass Barrier</td>
<td>PSBB on page C6-1167</td>
</tr>
<tr>
<td>SB</td>
<td>Speculation Barrier</td>
<td>SB on page C6-1185</td>
</tr>
<tr>
<td>SSBB</td>
<td>Speculative Store Bypass Barrier</td>
<td>SSBB on page C6-1208</td>
</tr>
<tr>
<td>TSB</td>
<td>Trace Synchronization Barrier</td>
<td>TSB CSYNC on page C6-1367</td>
</tr>
</tbody>
</table>

For more information about:
- CSDB, PSBB, SB, SSBB, TSB CSYNC, see *Memory barriers on page B2-134*.
- ESB, see the *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile*.
- PSB CSYNC, see *Chapter D9 The Statistical Profiling Extension*.

C3.1.9 Pointer authentication instructions

FEAT_PAuth adds support for pointer authentication, see *Pointer authentication in AArch64 state on page D5-2530*. This functionality includes the A64 instructions described in this section. These instructions fall into two groups, see:
- **Basic pointer authentication instructions.**
- **Combined instructions that include pointer authentication on page C3-206.**

Basic pointer authentication instructions

Each of these instructions only performs an operation that supports pointer authentication.

Table C3-12 shows the instructions that add a *Pointer Authentication Code* (PAC) to the address in a register.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACIAASP</td>
<td>Add PAC to instruction address using APIAKey_EL1 and SP</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA on page C6-1153</td>
</tr>
<tr>
<td>PACIAZ</td>
<td>Add PAC to instruction address using APIAKey_EL1 and zero</td>
<td></td>
</tr>
<tr>
<td>PACIA1716</td>
<td>Add PAC to instruction address X17 using APIAKey_EL1 and X16</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB on page C6-1156</td>
</tr>
<tr>
<td>PACIBSP</td>
<td>Add PAC to instruction address using APIBKey_EL1 and SP</td>
<td></td>
</tr>
<tr>
<td>PACIBZ</td>
<td>Add PAC to instruction address using APIBKey_EL1 and zero</td>
<td></td>
</tr>
<tr>
<td>PACIB1716</td>
<td>Add PAC to instruction address X17 using APIBKey_EL1 and X16</td>
<td></td>
</tr>
<tr>
<td>PACIA</td>
<td>Add PAC to instruction address using APIAKey_EL1, registers</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA on page C6-1153</td>
</tr>
</tbody>
</table>
Table C3-12 Instructions that add a PAC (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACDA</td>
<td>Add PAC to data address using APDAKey_EL1, registers</td>
<td>PACDA, PACDZA on page C6-1150</td>
</tr>
<tr>
<td>PACIB</td>
<td>Add PAC to instruction address using APIBKey_EL1, registers</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB on page C6-1156</td>
</tr>
<tr>
<td>PACDB</td>
<td>Add PAC to data address using APDBKey_EL1, registers</td>
<td>PACDB, PACDZB on page C6-1151</td>
</tr>
<tr>
<td>PACIZA</td>
<td>Add PAC to instruction address using APIAKey_EL1, register and zero</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA on page C6-1153</td>
</tr>
<tr>
<td>PACDZA</td>
<td>Add PAC to data address using APDAKey_EL1, register and zero</td>
<td>PACDA, PACDZ4 on page C6-1150</td>
</tr>
<tr>
<td>PACIZB</td>
<td>Add PAC to instruction address using APIBKey_EL1, register and zero</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB on page C6-1156</td>
</tr>
<tr>
<td>PACDZB</td>
<td>Add PAC to data address using APDBKey_EL1, register and zero</td>
<td>PACDDB, PADCZB on page C6-1151</td>
</tr>
<tr>
<td>PACGA</td>
<td>Add generic PAC using APGAKey_EL1, registers</td>
<td>PACGA on page C6-1152</td>
</tr>
</tbody>
</table>

Table C3-13 shows the instructions that authenticate a PAC in a register:

Table C3-13 Instructions that authenticate a PAC

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTIA</td>
<td>Authenticate PAC for instruction address using APIAKey_EL1 and SP</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA on page C6-811</td>
</tr>
<tr>
<td>AUTIA1716</td>
<td>Authenticate PAC for instruction address X17 using APIAKey_EL1 and X16</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIBSP</td>
<td>Authenticate PAC for instruction address using APIBKey_EL1 and SP</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIBZ</td>
<td>Authenticate PAC for instruction address using APIBKey_EL1 and zero</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIB1716</td>
<td>Authenticate PAC for instruction address X17 using APIBKey_EL1 and X16</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIA5</td>
<td>Authenticate PAC for instruction address using APIAKey_EL1, registers</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA on page C6-811</td>
</tr>
<tr>
<td>AUTDA</td>
<td>Authenticate PAC for data address using APDAKey_EL1, registers</td>
<td>AUTDA, AUTDZA on page C6-809</td>
</tr>
<tr>
<td>AUTIB</td>
<td>Authenticate PAC for instruction address using APIBKey_EL1, registers</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIBZ</td>
<td>Authenticate PAC for instruction address using APIBKey_EL1, register and zero</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTIZA</td>
<td>Authenticate PAC for instruction address using APIAKey_EL1, register and zero</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA on page C6-811</td>
</tr>
<tr>
<td>AUTDZA</td>
<td>Authenticate PAC for data address using APDAKey_EL1, register and zero</td>
<td>AUTDA, AUTDZA on page C6-809</td>
</tr>
<tr>
<td>AUTIZB</td>
<td>Authenticate PAC for instruction address using APIBKey_EL1, register and zero</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB on page C6-813</td>
</tr>
<tr>
<td>AUTDZB</td>
<td>Authenticate PAC for data address using APDBKey_EL1, register and zero</td>
<td>AUTDB, AUTDZB on page C6-810</td>
</tr>
</tbody>
</table>
Table C3-14 shows the instructions that strip a PAC from a register, without performing any authentication:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPACLRI</td>
<td>Strip instruction address PAC from LR</td>
<td>XPACD, XPACI, XPACLRI on page C6-1392</td>
</tr>
<tr>
<td>XPACI</td>
<td>Strip instruction address PAC, register</td>
<td></td>
</tr>
<tr>
<td>XPACD</td>
<td>Strip data address PAC, register</td>
<td></td>
</tr>
</tbody>
</table>

Combined instructions that include pointer authentication

Each of these instructions combines a pointer authentication with another operation that uses the authenticated pointer. Table C3-15 shows these instructions:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETAA</td>
<td>Authenticate PAC for LR using APIAKey_EL1 and SP, and return</td>
<td>RETAA, RETAB on page C6-1170</td>
</tr>
<tr>
<td>RETAB</td>
<td>Authenticate PAC for LR using APIBKey_EL1 and SP, and return</td>
<td></td>
</tr>
<tr>
<td>BRAA</td>
<td>Authenticate PAC using APIAKey_EL1 (registers), and branch</td>
<td>BRAA, BRAAZ, BRAB, BRABZ on page C6-835</td>
</tr>
<tr>
<td>BRAB</td>
<td>Authenticate PAC using APIBKey_EL1 (registers), and branch</td>
<td></td>
</tr>
<tr>
<td>BLRAA</td>
<td>Authenticate PAC using APIAKey_EL1 (registers), and branch with link</td>
<td>BLRAA, BLRAAZ, BLRAB, BLRABZ on page C6-832</td>
</tr>
<tr>
<td>BLRAB</td>
<td>Authenticate PAC using APIBKey_EL1 (registers), and branch with link</td>
<td></td>
</tr>
<tr>
<td>BRAAZ</td>
<td>Authenticate PAC using APIAKey_EL1 (register and zero), and branch</td>
<td>BRAA, BRAAZ, BRAB, BRABZ on page C6-835</td>
</tr>
<tr>
<td>BRABZ</td>
<td>Authenticate PAC using APIBKey_EL1 (register and zero), and branch</td>
<td></td>
</tr>
<tr>
<td>BLRAAZ</td>
<td>Authenticate PAC using APIAKey_EL1 (register and zero), and branch with link</td>
<td>BLRAA, BLRAAZ, BLRAB, BLRABZ on page C6-832</td>
</tr>
<tr>
<td>BLRABZ</td>
<td>Authenticate PAC using APIBKey_EL1 (register and zero), and branch with link</td>
<td></td>
</tr>
<tr>
<td>ERETTAA</td>
<td>Authenticate PAC for ELR using APIAKey_EL1 and SP, and exception return</td>
<td>ERETTAA, ERETTAB on page C6-921</td>
</tr>
<tr>
<td>ERETTAB</td>
<td>Authenticate PAC for ELR using APIBKey_EL1 and SP, and exception return</td>
<td></td>
</tr>
<tr>
<td>LDRAA</td>
<td>Authenticate PAC for data address using APDAKey_EL1 (register and zero) and Load</td>
<td>LDRAA, LDRAZ on page C6-1004</td>
</tr>
<tr>
<td>LDRAZ</td>
<td>Authenticate PAC for data address using APDBKey_EL1 (register and zero) and Load</td>
<td></td>
</tr>
</tbody>
</table>
C3.2 Loads and stores

This section describes the Load/Store instructions. It contains the following subsections:

- **Load/Store register**
- **Load/Store register (unscaled offset)** on page C3-208.
- **Load/Store Pair** on page C3-209.
- **Load/Store Non-temporal Pair** on page C3-210.
- **Load/Store unprivileged** on page C3-211.
- **Load-Exclusive/Store-Exclusive** on page C3-211.
- **Load-Acquire/Store-Release** on page C3-212.
- **LoadLOAcquire/StoreLORelease** on page C3-214.
- **Load/Store scalar SIMD and floating-point** on page C3-214.
- **Load/Store Vector** on page C3-216.
- **Prefetch memory** on page C3-218.
- **Atomic instructions** on page C3-219.
- **Memory Tagging instructions** on page C3-223.

The requirements for the alignment of data memory accesses are strict, for more information see *Alignment of data accesses* on page B2-148.

The additional control bits SCTL_EL1.EA and SCTL_EL1.SA control whether the stack pointer must be quadword aligned when used as a base register. See *SP alignment checking* on page D1-2327. Using a misaligned stack pointer generates an SP alignment fault exception.

For information about the encoding structure of the instructions in this instruction group, see *Loads and Stores* on page C4-279.

Note

In some cases, Load/Store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See *AArch64 CONSTRAINED UNPREDICTABLE behaviors* on page K1-7965.

C3.2.1 Load/Store register

The Load/Store register instructions support the following addressing modes:

- Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
- Base plus a 64-bit register offset, optionally scaled.
- Base plus a 32-bit extended register offset, optionally scaled.
- Pre-indexed by an unscaled 9-bit signed immediate offset.
- Post-indexed by an unscaled 9-bit signed immediate offset.
- PC-relative literal for loads of 32 bits or more.

See also *Load/Store addressing modes* on page C1-187.

If a Load instruction specifies writeback and the register being loaded is also the base register, then behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

- The instruction is treated as UNDEFINED.
- The instruction is treated as a NOP.
- The instruction performs the load using the specified addressing mode and the base register becomes UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

- The instruction is treated as UNDEFINED.
The instruction is treated as a **NOP**.

- The instruction performs the store to the designated register using the specified addressing mode, but the value stored is **UNKNOWN**.

Table C3-16 shows the Load/Store Register instructions.

Table C3-16 Load/Store register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDR</td>
<td>Load register (register offset)</td>
<td>LDR (register) on page C6-1002</td>
</tr>
<tr>
<td></td>
<td>Load register (immediate offset)</td>
<td>LDR (immediate) on page C6-997</td>
</tr>
<tr>
<td></td>
<td>Load register (PC-relative literal)</td>
<td>LDR (literal) on page C6-1000</td>
</tr>
<tr>
<td>LDRB</td>
<td>Load byte (register offset)</td>
<td>LDRB (register) on page C6-1009</td>
</tr>
<tr>
<td></td>
<td>Load byte (immediate offset)</td>
<td>LDRB (immediate) on page C6-1006</td>
</tr>
<tr>
<td>LDRSB</td>
<td>Load signed byte (register offset)</td>
<td>LDRSB (register) on page C6-1019</td>
</tr>
<tr>
<td></td>
<td>Load signed byte (immediate offset)</td>
<td>LDRSB (immediate) on page C6-1016</td>
</tr>
<tr>
<td>LDRH</td>
<td>Load halfword (register offset)</td>
<td>LDRH (register) on page C6-1014</td>
</tr>
<tr>
<td></td>
<td>Load halfword (immediate offset)</td>
<td>LDRH (immediate) on page C6-1011</td>
</tr>
<tr>
<td>LDRSH</td>
<td>Load signed halfword (register offset)</td>
<td>LDRSH (register) on page C6-1024</td>
</tr>
<tr>
<td></td>
<td>Load signed halfword (immediate offset)</td>
<td>LDRSH (immediate) on page C6-1021</td>
</tr>
<tr>
<td>LDRSW</td>
<td>Load signed word (register offset)</td>
<td>LDRSW (register) on page C6-1030</td>
</tr>
<tr>
<td></td>
<td>Load signed word (immediate offset)</td>
<td>LDRSW (immediate) on page C6-1026</td>
</tr>
<tr>
<td></td>
<td>Load signed word (PC-relative literal)</td>
<td>LDRSW (literal) on page C6-1029</td>
</tr>
<tr>
<td>STR</td>
<td>Store register (register offset)</td>
<td>STR (register) on page C6-1264</td>
</tr>
<tr>
<td></td>
<td>Store register (immediate offset)</td>
<td>STR (immediate) on page C6-1261</td>
</tr>
<tr>
<td>STRB</td>
<td>Store byte (register offset)</td>
<td>STRB (register) on page C6-1269</td>
</tr>
<tr>
<td></td>
<td>Store byte (immediate offset)</td>
<td>STRB (immediate) on page C6-1266</td>
</tr>
<tr>
<td>STRH</td>
<td>Store halfword (register offset)</td>
<td>STRH (register) on page C6-1274</td>
</tr>
<tr>
<td></td>
<td>Store halfword (immediate offset)</td>
<td>STRH (immediate) on page C6-1271</td>
</tr>
</tbody>
</table>

C3.2.2 Load/Store register (unscaled offset)

The Load/Store register instructions with an unscaled offset support only one addressing mode:

- **Base plus an unscaled 9-bit signed immediate offset.**

See *Load/Store addressing modes* on page C1-187.

The Load/Store register (unscaled offset) instructions are required to disambiguate this instruction class from the Load/Store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:

- In the range 0-255, inclusive.
- Naturally aligned to the access size.
Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a Load/Store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-17. Arm recommends that a disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but unambiguous offsets can be output using a Load/Store single register mnemonic, for example, LDR.

Table C3-17 shows the Load/Store register instructions with an unscaled offset.

Table C3-17 Load/Store register (unscaled offset) instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDUR</td>
<td>Load register (unscaled offset)</td>
<td>LDUR on page C6-1079</td>
</tr>
<tr>
<td>LDURB</td>
<td>Load byte (unscaled offset)</td>
<td>LDURB on page C6-1081</td>
</tr>
<tr>
<td>LDURSB</td>
<td>Load signed byte (unscaled offset)</td>
<td>LDURSB on page C6-1081</td>
</tr>
<tr>
<td>LDURH</td>
<td>Load halfword (unscaled offset)</td>
<td>LDURH on page C6-1083</td>
</tr>
<tr>
<td>LDURSH</td>
<td>Load signed halfword (unscaled offset)</td>
<td>LDURSH on page C6-1085</td>
</tr>
<tr>
<td>LDURSW</td>
<td>Load signed word (unscaled offset)</td>
<td>LDURSW on page C6-1087</td>
</tr>
<tr>
<td>STUR</td>
<td>Store register (unscaled offset)</td>
<td>STUR on page C6-1312</td>
</tr>
<tr>
<td>STURB</td>
<td>Store byte (unscaled offset)</td>
<td>STURB on page C6-1314</td>
</tr>
<tr>
<td>STURH</td>
<td>Store halfword (unscaled offset)</td>
<td>STURH on page C6-1315</td>
</tr>
</tbody>
</table>

C3.2.3 Load/Store Pair

The Load/Store Pair instructions support the following addressing modes:

- Base plus a scaled 7-bit signed immediate offset.
- Pre-indexed by a scaled 7-bit signed immediate offset.
- Post-indexed by a scaled 7-bit signed immediate offset.

See also **Load/Store addressing modes on page C1-187**.

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then behavior is **CONSTRAINED UNPREDICTABLE** and one of the following behaviors must occur:

- The instruction is treated as **UNDEFINED**.
- The instruction is treated as a **NOP**.
- The instruction performs all the loads using the specified addressing mode and the register that is loaded takes an **UNKNOWN** value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then behavior is **CONSTRAINED UNPREDICTABLE** and one of the following behaviors must occur:

- The instruction is treated as **UNDEFINED**.
- The instruction is treated as a **NOP**.
- The instruction performs all of the loads using the specified addressing mode, and the base register becomes **UNKNOWN**. In addition, if an exception occurs during the instruction, the base address might be corrupted so that the instruction cannot be repeated.
If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

- The instruction is treated as UNDEFINED.
- The instruction is treated as a NOP.
- The instruction performs all the stores of the registers indicated by the specified addressing mode, but the value stored for the base register is UNKNOWN.

Table C3-18 shows the Load/Store Pair instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDP</td>
<td>Load Pair</td>
<td>LDP on page C6-991</td>
</tr>
<tr>
<td>LDPSW</td>
<td>Load Pair signed words</td>
<td>LDPSW on page C6-994</td>
</tr>
<tr>
<td>STP</td>
<td>Store Pair</td>
<td>STP on page C6-1258</td>
</tr>
</tbody>
</table>

C3.2.4 Load/Store Non-temporal Pair

The Load/Store Non-temporal Pair instructions support only one addressing mode:

- Base plus a scaled 7-bit signed immediate offset.

See Load/Store addressing modes on page C1-187.

The Load/Store Non-temporal Pair instructions provide a hint to the memory system that an access is non-temporal or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However, depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the absence of any other barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observers within the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

- The instruction is treated as UNDEFINED.
- The instruction is treated as a NOP.
- The instruction performs all the loads using the specified addressing mode and the register that is loaded takes an UNKNOWN value.

Table C3-19 shows the Load/Store Non-temporal Pair instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDNP</td>
<td>Load Non-temporal Pair</td>
<td>LDNP on page C6-989</td>
</tr>
<tr>
<td>STNP</td>
<td>Store Non-temporal Pair</td>
<td>STNP on page C6-1256</td>
</tr>
</tbody>
</table>
C3.2.5 Load/Store unprivileged

The Load/Store unprivileged instructions support only one addressing mode:

- Base plus an unscaled 9-bit signed immediate offset.

See Load/Store addressing modes on page C1-187.

The access permissions that apply to accesses made at EL0 apply to the memory accesses made by a Load/Store unprivileged instruction that is executed either:

- At EL1 when the Effective value of PSTATE.UAO is 0.
- At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of PSTATE.UAO is 0.

Otherwise, memory accesses made by a Load/Store unprivileged instruction are subject to the access permissions that apply to the Exception level at which the instruction is executed. These are the permissions that apply to the corresponding Load/Store register instruction, see Load/Store register on page C3-207.

Note

This means that when the value of PSTATE.UAO is 1 the access permissions for a Load/Store unprivileged instruction are always the same as those for the corresponding Load/Store register instruction.

Table C3-20 shows the Load/Store unprivileged instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDTR</td>
<td>Load unprivileged register</td>
<td>LDTR on page C6-1053</td>
</tr>
<tr>
<td>LDTRB</td>
<td>Load unprivileged byte</td>
<td>LDTRB on page C6-1055</td>
</tr>
<tr>
<td>LDTRSB</td>
<td>Load unprivileged signed byte</td>
<td>LDTRSB on page C6-1059</td>
</tr>
<tr>
<td>LDTRH</td>
<td>Load unprivileged halfword</td>
<td>LDTRH on page C6-1057</td>
</tr>
<tr>
<td>LDTRSH</td>
<td>Load unprivileged signed halfword</td>
<td>LDTRSH on page C6-1061</td>
</tr>
<tr>
<td>LDTRSW</td>
<td>Load unprivileged signed word</td>
<td>LDTRSW on page C6-1063</td>
</tr>
<tr>
<td>STTR</td>
<td>Store unprivileged register</td>
<td>STTR on page C6-1294</td>
</tr>
<tr>
<td>STTRB</td>
<td>Store unprivileged byte</td>
<td>STTRB on page C6-1296</td>
</tr>
<tr>
<td>STTRH</td>
<td>Store unprivileged halfword</td>
<td>STTRH on page C6-1298</td>
</tr>
</tbody>
</table>

C3.2.6 Load-Exclusive/Store-Exclusive

The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:

- Base register with no offset.

See Load/Store addressing modes on page C1-187.

The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores on page B2-166.
If `FEAT_LSE2` is not implemented then:

- The Load-Exclusive/Store-Exclusive instructions other than Load-Exclusive pair and Store-Exclusive pair require natural alignment, and an unaligned address generates an Alignment fault.

- Memory accesses generated by Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to the size of the pair, otherwise the access generates an Alignment fault.

For more information on alignment requirements and behaviors see *Load-Exclusive/Store-Exclusive and Atomic instructions on page B2-148*.

When a Store-Exclusive pair succeeds, it causes a single-copy atomic update of the entire memory location being stored to.

Table C3-21 shows the Load-Exclusive/Store-Exclusive instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDXR</td>
<td>Load Exclusive register</td>
<td>LDXR on page C6-1090</td>
</tr>
<tr>
<td>LDXRB</td>
<td>Load Exclusive byte</td>
<td>LDXRB on page C6-1092</td>
</tr>
<tr>
<td>LDXHR</td>
<td>Load Exclusive halfword</td>
<td>LDXHR on page C6-1093</td>
</tr>
<tr>
<td>LDXP</td>
<td>Load Exclusive pair</td>
<td>LDXP on page C6-1088</td>
</tr>
<tr>
<td>STXR</td>
<td>Store Exclusive register</td>
<td>STXR on page C6-1319</td>
</tr>
<tr>
<td>STXRB</td>
<td>Store Exclusive byte</td>
<td>STXRB on page C6-1321</td>
</tr>
<tr>
<td>STXHR</td>
<td>Store Exclusive halfword</td>
<td>STXHR on page C6-1323</td>
</tr>
<tr>
<td>STXP</td>
<td>Store Exclusive pair</td>
<td>STXP on page C6-1316</td>
</tr>
</tbody>
</table>

C3.2.7 Load-Acquire/Store-Release

The Load-Acquire, Load-AcquirePC, and Store-Release instructions support only one addressing mode:

- Base register with no offset.

See *Load/Store addressing modes on page C1-187*.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the explicit DMB memory barrier instruction. For more information about the ordering of Load-Acquire, Load-AcquirePC, and Store-Release, see *Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139*.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions other than Load-Acquire pair and Store-Release pair require natural alignment, and an unaligned address generates an Alignment fault. Memory accesses generated by Load-Acquire pair or Store-Release pair instructions must be aligned to the size of the pair, otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the Release semantics if the store is successful.

Armv8.1 adds more instructions with load-acquire and store-release mechanisms, see *LoadLOAcquire/StoreLORelease on page C3-214*.

`FEAT_LRCPC2` introduces changes to the alignment requirements of Load-Acquire/Store-Release instructions.
Table C3-22 shows the Non-exclusive Load-Acquire/Store-Release instructions.

Table C3-22 Non-exclusive Load-Acquire and Store-Release instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAPR</td>
<td>Load-Acquire RCpc Register</td>
<td>LDAPR on page C6-941</td>
</tr>
<tr>
<td>LDAPRB</td>
<td>Load-Acquire RCpc Register Byte</td>
<td>LDAPRB on page C6-943</td>
</tr>
<tr>
<td>LDAPRH</td>
<td>Load-Acquire RCpc Register Halfword</td>
<td>LDAPRH on page C6-945</td>
</tr>
<tr>
<td>LDAPUR</td>
<td>Load-Acquire RCpc Register (unscaled)</td>
<td>LDAPUR on page C6-947</td>
</tr>
<tr>
<td>LDAPURB</td>
<td>Load-Acquire RCpc Register Byte (unscaled)</td>
<td>LDAPURB on page C6-949</td>
</tr>
<tr>
<td>LDAPURH</td>
<td>Load-Acquire RCpc Register Halfword (unscaled)</td>
<td>LDAPURH on page C6-951</td>
</tr>
<tr>
<td>LDAPURSB</td>
<td>Load-Acquire RCpc Register Signed Byte (unscaled) 32-bit</td>
<td>LDAPURSB on page C6-953</td>
</tr>
<tr>
<td>LDAPURSB</td>
<td>Load-Acquire RCpc Register Signed Byte (unscaled) 64-bit</td>
<td>LDAPURSB on page C6-953</td>
</tr>
<tr>
<td>LDAPURSH</td>
<td>Load-Acquire RCpc Register Signed Halfword (unscaled) 32-bit</td>
<td>LDAPURSH on page C6-955</td>
</tr>
<tr>
<td>LDAPURSH</td>
<td>Load-Acquire RCpc Register Signed Halfword (unscaled) 64-bit</td>
<td>LDAPURSH on page C6-955</td>
</tr>
<tr>
<td>LDAPURSW</td>
<td>Load-Acquire RCpc Register Signed Word (unscaled)</td>
<td>LDAPURSW on page C6-957</td>
</tr>
<tr>
<td>LDAR</td>
<td>Load-Acquire Register</td>
<td>LDAR on page C6-959</td>
</tr>
<tr>
<td>LDARB</td>
<td>Load-Acquire Byte</td>
<td>LDARB on page C6-961</td>
</tr>
<tr>
<td>LDARH</td>
<td>Load-Acquire Halfword</td>
<td>LDARH on page C6-962</td>
</tr>
<tr>
<td>STLR</td>
<td>Store-Release Register</td>
<td>STLR on page C6-1238</td>
</tr>
<tr>
<td>STLRB</td>
<td>Store-Release Byte</td>
<td>STLRB on page C6-1239</td>
</tr>
<tr>
<td>STLRH</td>
<td>Store-Release Halfword</td>
<td>STLRH on page C6-1240</td>
</tr>
<tr>
<td>STLUR</td>
<td>Store-Release Register (unscaled)</td>
<td>STLUR on page C6-1241</td>
</tr>
<tr>
<td>STLRUB</td>
<td>Store-Release Register Byte (unscaled)</td>
<td>STLRUB on page C6-1243</td>
</tr>
<tr>
<td>STLRWH</td>
<td>Store-Release Register Halfword (unscaled)</td>
<td>STLRWH on page C6-1245</td>
</tr>
</tbody>
</table>

Table C3-23 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-23 Exclusive Load-Acquire and Store-Release instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAXR</td>
<td>Load-Acquire Exclusive register</td>
<td>LDAXR on page C6-965</td>
</tr>
<tr>
<td>LDAXRB</td>
<td>Load-Acquire Exclusive byte</td>
<td>LDAXRB on page C6-967</td>
</tr>
<tr>
<td>LDAXRH</td>
<td>Load-Acquire Exclusive halfword</td>
<td>LDAXRH on page C6-968</td>
</tr>
<tr>
<td>LDAXP</td>
<td>Load-Acquire Exclusive pair</td>
<td>LDAXP on page C6-963</td>
</tr>
<tr>
<td>STLXR</td>
<td>Store-Release Exclusive register</td>
<td>STLXR on page C6-1250</td>
</tr>
</tbody>
</table>
C3.2.8 LoadLOAcquire/StoreLORelease

The LoadLOAcquire/StoreLORelease instructions support only one addressing mode:

- Base register with no offset.

See Load/Store addressing modes on page C1-187.

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB memory barrier instruction. For more information about the ordering of LoadLOAcquire/StoreLORelease, see LoadLOAcquire, StoreLORelease on page B2-140.

The LoadLOAcquire/StoreLORelease instructions require natural alignment, and an unaligned address generates an Alignment fault.

Table C3-24 shows the LoadLOAcquire/StoreLORelease instructions.

Table C3-24 LoadLOAcquire and StoreLORelease instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDLARB</td>
<td>LoadLOAcquire byte</td>
<td>LDLARB on page C6-985</td>
</tr>
<tr>
<td>LDLARH</td>
<td>LoadLOAcquire halfword</td>
<td>LDLARH on page C6-986</td>
</tr>
<tr>
<td>LDLAR</td>
<td>LoadLOAcquire register</td>
<td>LDLAR on page C6-987</td>
</tr>
<tr>
<td>STLLRB</td>
<td>StoreLORelease byte</td>
<td>STLLRB on page C6-1234</td>
</tr>
<tr>
<td>STLLRH</td>
<td>StoreLORelease halfword</td>
<td>STLLRH on page C6-1235</td>
</tr>
<tr>
<td>STLLR</td>
<td>StoreLORelease register</td>
<td>STLLR on page C6-1236</td>
</tr>
</tbody>
</table>

C3.2.9 Load/Store scalar SIMD and floating-point

The Load/Store scalar SIMD and floating-point instructions operate on scalar values in the SIMD and floating-point register file as described in SIMD and floating-point scalar register names on page C1-185. The memory addressing modes available, described in Load/Store addressing modes on page C1-187, are identical to the general-purpose register Load/Store instructions, and like those instructions permit arbitrary address alignment unless strict alignment checking is enabled. However, unlike the Load/Store instructions that transfer general-purpose registers, Load/Store scalar SIMD and floating-point instructions make no guarantee of atomicity, even when the address is naturally aligned to the size of the data.

Load/Store scalar SIMD and floating-point register

The Load/Store scalar SIMD and floating-point register instructions support the following addressing modes:

- Base plus a scaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.
- Base plus 64-bit register offset, optionally scaled.
- Base plus 32-bit extended register offset, optionally scaled.
- Pre-indexed by an unscaled 9-bit signed immediate offset.
- Post-indexed by an unscaled 9-bit signed immediate offset.
• PC-relative literal for loads of 32 bits or more.

For more information on the addressing modes, see *Load/Store addressing modes* on page C1-187.

--- Note ---

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see *Load/Store scalar SIMD and floating-point register (unscaled offset)*.

Table C3-25 shows the Load/Store instructions for a single SIMD and floating-point register.

Table C3-25 Load/Store single SIMD and floating-point register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDR</td>
<td>Load scalar SIMD&FP register (register offset)</td>
<td>LDR (register, SIMD&FP) on page C7-1841</td>
</tr>
<tr>
<td></td>
<td>Load scalar SIMD&FP register (immediate offset)</td>
<td>LDR (immediate, SIMD&FP) on page C7-1835</td>
</tr>
<tr>
<td></td>
<td>Load scalar SIMD&FP register (PC-relative literal)</td>
<td>LDR (literal, SIMD&FP) on page C7-1839</td>
</tr>
<tr>
<td>STR</td>
<td>Store scalar SIMD&FP register (register offset)</td>
<td>STR (register, SIMD&FP) on page C7-2154</td>
</tr>
<tr>
<td></td>
<td>Store scalar SIMD&FP register (immediate offset)</td>
<td>STR (immediate, SIMD&FP) on page C7-2150</td>
</tr>
</tbody>
</table>

Load/Store scalar SIMD and floating-point register (unscaled offset)

The Load/Store scalar SIMD and floating-point register instructions support only one addressing mode:

• Base plus an unscaled 9-bit signed immediate offset.

See also *Load/Store addressing modes* on page C1-187.

The Load/Store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate this instruction class from the Load/Store single SIMD and floating-point instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit immediate offset. This is similar to the Load/Store register (unscaled offset) instructions, that disambiguate this instruction class from the Load/Store register instruction, see *Load/Store register (unscaled offset)* on page C3-208.

Table C3-26 shows the Load/Store SIMD and floating-point register instructions with an unscaled offset.

Table C3-26 Load/Store SIMD and floating-point register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDUR</td>
<td>Load scalar SIMD&FP register (unscaled offset)</td>
<td>LDUR (SIMD&FP) on page C7-1844</td>
</tr>
<tr>
<td>STUR</td>
<td>Store scalar SIMD&FP register (unscaled offset)</td>
<td>STUR (SIMD&FP) on page C7-2157</td>
</tr>
</tbody>
</table>

Load/Store SIMD and Floating-point register pair

The Load/Store SIMD and floating-point register pair instructions support the following addressing modes:

• Base plus a scaled 7-bit signed immediate offset.
• Pre-indexed by a scaled 7-bit signed immediate offset.
• Post-indexed by a scaled 7-bit signed immediate offset.

See also *Load/Store addressing modes* on page C1-187.
If a Load pair instruction specifies the same register for the two registers that are being loaded, then behavior is CONstrained UNPREDICTABLE and one of the following behaviors must occur:

- The instruction is treated as UNDEFINED.
- The instruction is treated as a NOP.
- The instruction performs all of the loads using the specified addressing mode and the register being loaded takes an UNKNOWN value.

Table C3-27 shows the Load/Store SIMD and floating-point register pair instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDP</td>
<td>Load pair of scalar SIMD&FP registers</td>
<td>LDP (SIMD&FP) on page C7-1831</td>
</tr>
<tr>
<td>STP</td>
<td>Store pair of scalar SIMD&FP registers</td>
<td>STP (SIMD&FP) on page C7-2147</td>
</tr>
</tbody>
</table>

Load/Store SIMD and Floating-point Non-temporal pair

The Load/Store SIMD and Floating-point Non-temporal pair instructions support only one addressing mode:

- Base plus a scaled 7-bit signed immediate offset.

See also [Load/Store addressing modes on page C1-187](#).

The Load/Store Non-temporal pair instructions provide a hint to the memory system that an access is non-temporal or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However, depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two memory reads, and a Load non-temporal pair instruction generated the second read, then in the absence of any other barrier mechanism to achieve order, those memory accesses can be observed in any order by the other observers within the shareability domain of the memory addresses being accessed.

If a Load Non-temporal pair instruction specifies the same register for the two registers that are being loaded, then behavior is CONstrained UNPREDICTABLE and one of the following behaviors must occur:

- The instruction is treated as UNDEFINED.
- The instruction is treated as a NOP.
- The instruction performs all the loads using the specified addressing mode and the register that is loaded takes an UNKNOWN value.

Table C3-28 shows the Load/Store SIMD and floating-point Non-temporal pair instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDNP</td>
<td>Load pair of scalar SIMD&FP registers</td>
<td>LDNP (SIMD&FP) on page C7-1829</td>
</tr>
<tr>
<td>STNP</td>
<td>Store pair of scalar SIMD&FP registers</td>
<td>STNP (SIMD&FP) on page C7-2145</td>
</tr>
</tbody>
</table>

C3.2.10 Load/Store Vector

The Vector Load/Store structure instructions support the following addressing modes:

- Base register only.
- Post-indexed by a 64-bit register.
• Post-indexed by an immediate, equal to the number of bytes transferred.

Load/Store vector instructions, like other Load/Store instructions, allow any address alignment, unless strict alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the element is performed. However, unlike the Load/Store instructions that transfer general-purpose registers, the Load/Store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of the element.

Load/Store structures

Table C3-29 shows the Load/Store structure instructions. A post-increment immediate offset, if present, must be 8, 16, 24, 32, 48, or 64, depending on the number of elements transferred.

Table C3-29 Load/Store multiple structures instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>Load single 1-element structure to one lane of one register</td>
<td>LD1 (single structure) on page C7-1792</td>
</tr>
<tr>
<td></td>
<td>Load multiple 1-element structures to one register or to two, three, or four consecutive registers</td>
<td>LD1 (multiple structures) on page C7-1788</td>
</tr>
<tr>
<td>LD2</td>
<td>Load single 2-element structure to one lane of two consecutive registers</td>
<td>LD2 (single structure) on page C7-1802</td>
</tr>
<tr>
<td></td>
<td>Load multiple 2-element structures to two consecutive registers</td>
<td>LD2 (multiple structures) on page C7-1799</td>
</tr>
<tr>
<td>LD3</td>
<td>Load single 3-element structure to one lane of three consecutive registers</td>
<td>LD3 (single structure) on page C7-1812</td>
</tr>
<tr>
<td></td>
<td>Load multiple 3-element structures to three consecutive registers</td>
<td>LD3 (multiple structures) on page C7-1809</td>
</tr>
<tr>
<td>LD4</td>
<td>Load single 4-element structure to one lane of four consecutive registers</td>
<td>LD4 (single structure) on page C7-1822</td>
</tr>
<tr>
<td></td>
<td>Load multiple 4-element structures to four consecutive registers</td>
<td>LD4 (multiple structures) on page C7-1819</td>
</tr>
<tr>
<td>ST1</td>
<td>Store single 1-element structure from one lane of one register</td>
<td>ST1 (single structure) on page C7-2120</td>
</tr>
<tr>
<td></td>
<td>Store multiple 1-element structures from one register, or from two, three, or four consecutive registers</td>
<td>ST1 (multiple structures) on page C7-2116</td>
</tr>
<tr>
<td>ST2</td>
<td>Store single 2-element structure from one lane of two consecutive registers</td>
<td>ST2 (single structure) on page C7-2127</td>
</tr>
<tr>
<td></td>
<td>Store multiple 2-element structures from two consecutive registers</td>
<td>ST2 (multiple structures) on page C7-2124</td>
</tr>
<tr>
<td>ST3</td>
<td>Store single 3-element structure from one lane of three consecutive registers</td>
<td>ST3 (single structure) on page C7-2134</td>
</tr>
<tr>
<td></td>
<td>Store multiple 3-element structures from three consecutive registers</td>
<td>ST3 (multiple structures) on page C7-2131</td>
</tr>
<tr>
<td>ST4</td>
<td>Store single 4-element structure from one lane of four consecutive registers</td>
<td>ST4 (single structure) on page C7-2141</td>
</tr>
<tr>
<td>ST4</td>
<td>Store multiple 4-element structures from four consecutive registers</td>
<td>ST4 (multiple structures) on page C7-2138</td>
</tr>
</tbody>
</table>
Load single structure and replicate

Table C3-30 shows the Load single structure and replicate instructions. A post-increment immediate offset, if present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements transferred.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1R</td>
<td>Load single 1-element structure and replicate to all lanes of one register</td>
<td>LD1R on page C7-1796</td>
</tr>
<tr>
<td>LD2R</td>
<td>Load single 2-element structure and replicate to all lanes of two registers</td>
<td>LD2R on page C7-1806</td>
</tr>
<tr>
<td>LD3R</td>
<td>Load single 3-element structure and replicate to all lanes of three registers</td>
<td>LD3R on page C7-1816</td>
</tr>
<tr>
<td>LD4R</td>
<td>Load single 4-element structure and replicate to all lanes of four registers</td>
<td>LD4R on page C7-1826</td>
</tr>
</tbody>
</table>

Prefetch memory

The Prefetch memory instructions support the following addressing modes:
• Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
• Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.
• Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.
• PC-relative literal.

The prefetch memory instructions signal to the memory system that memory accesses from a specified address are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory access when they do occur, such as preloading the specified address into one or more caches. Because these signals are only hints, it is valid for the PE to treat any or all prefetch instructions as a NOP.

Because they are hints to the memory system, the operation of a PRFM instruction cannot cause a synchronous exception. However, a memory operation performed as a result of one of these memory system hints might in exceptional cases trigger an asynchronous event, and thereby influence the execution of the PE. An example of an asynchronous event that might be triggered is an SError interrupt.

A PRFM instruction can only have an effect on software visible structures, such as caches and translation lookaside buffers associated with memory locations that can be accessed by reads, writes, or execution as defined in the translation regime of the current Exception level.

A PRFM instruction is guaranteed not to access Device memory.

A PRFM instruction using a PLI hint must not result in any access that could not be performed by the PE speculatively fetching an instruction. Therefore, if all associated MMUs are disabled, a PLI hint cannot access any memory location that cannot be accessed by instruction fetches.

The PRFM instructions require an additional <prfop> operand to be specified, which must be one of the following:
- PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM
- PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM
- PLIL1KEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM

<prfop> is defined as <type><target><policy>.

Here:
- <type> Is one of:
 - PLD Prefetch for load.
 - PST Prefetch for store.
 - PLI Preload instructions.
- <target> Is one of:
 - L1 Level 1 cache.
C3.2 Loads and stores

L2 Level 2 cache.
L3 Level 3 cache.

<policy> Is one of:
KEEP Retained or temporal prefetch, allocated in the cache normally.
STRM Streaming or non-temporal prefetch, for data that is used only once.

PRFUM explicitly uses the unscaled 9-bit signed immediate offset addressing mode, as described in Load/Store register (unscaled offset) on page C3-208.

Table C3-31 shows the Prefetch memory instructions.

Table C3-31 Prefetch memory instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRFM</td>
<td>Prefetch memory (register offset)</td>
<td>PRFM (register) on page C6-1162</td>
</tr>
<tr>
<td></td>
<td>Prefetch memory (immediate offset)</td>
<td>PRFM (immediate) on page C6-1158</td>
</tr>
<tr>
<td></td>
<td>Prefetch memory (PC-relative offset)</td>
<td>PRFM (literal) on page C6-1160</td>
</tr>
<tr>
<td>PRFUM</td>
<td>Prefetch memory (unscaled offset)</td>
<td>PRFUM on page C6-1164</td>
</tr>
</tbody>
</table>

C3.2.12 Atomic instructions

This section describes the following operations:

• Atomic memory operations.
• Swap on page C3-222.
• Compare and Swap on page C3-222.

Atomic memory operations

The atomic memory operation instructions support only one addressing mode:

• Base register only.

See also Load/Store addressing modes on page C1-187.

For the purpose of permission checking, and for watchpoints, all of the Atomic memory operation instructions are treated as performing both a load and a store.

If FEAT_LSE2 is not implemented then the LD<OP> and ST<OP> instructions require natural alignment, and an unaligned address generates an Alignment fault. For more information on alignment requirements and behaviors see Load-Exclusive/Store-Exclusive and Atomic instructions on page B2-148.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release instructions regarding multi-copy atomicity. These operations map to the acquire and release definitions, and are counted as Load-Acquire and Store-Release operations respectively.

For the LD<OP> instructions, where the source and destination registers are the same, if the instruction generates a synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.
The ST<OP> instructions, and LD<OP> instructions where the destination register is WZR or XZR, are not regarded as doing a read for the purpose of a DMB LD barrier.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDADD</td>
<td>Atomic add</td>
<td>LDADD, LDADDA, LDADDAL, LDADDL on page C6-938</td>
</tr>
<tr>
<td>LDADDB</td>
<td>Atomic add on byte</td>
<td>LDADDB, LDADDB, LDADDBL, LDADDBL on page C6-934</td>
</tr>
<tr>
<td>LDADDH</td>
<td>Atomic add on halfword</td>
<td>LDADDH, LDADDAH, LDADDALH, LDADDLH on page C6-936</td>
</tr>
<tr>
<td>LDCLR</td>
<td>Atomic bit clear</td>
<td>LDCLR, LDCLR, LDCLR, LDCLR on page C6-973</td>
</tr>
<tr>
<td>LDCLRB</td>
<td>Atomic bit clear on byte</td>
<td>LDCLRB, LDCLRB, LDCLRB, LDCLRLB on page C6-969</td>
</tr>
<tr>
<td>LDCLRH</td>
<td>Atomic bit clear on halfword</td>
<td>LDCLRH, LDCLRH, LDCLRH, LDCLRLH on page C6-971</td>
</tr>
<tr>
<td>LDEOR</td>
<td>Atomic exclusive OR</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL on page C6-980</td>
</tr>
<tr>
<td>LDEORB</td>
<td>Atomic exclusive OR on byte</td>
<td>LDEORB, LDEOR, LDEORALB, LDEORLB on page C6-976</td>
</tr>
<tr>
<td>LDEORH</td>
<td>Atomic exclusive OR on halfword</td>
<td>LDEORH, LDEORAH, LDEORALH, LDEORLH on page C6-978</td>
</tr>
<tr>
<td>LDSET</td>
<td>Atomic bit set</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL on page C6-1036</td>
</tr>
<tr>
<td>LDSETB</td>
<td>Atomic bit set on byte</td>
<td>LDSETB, LDSETAB, LDSETALB, LDSETLB on page C6-1032</td>
</tr>
<tr>
<td>LDSETH</td>
<td>Atomic bit set on halfword</td>
<td>LDSETH, LDSETHA, LDSETALH, LDSETLH on page C6-1034</td>
</tr>
<tr>
<td>LDMAX</td>
<td>Atomic signed maximum</td>
<td>LDMAX, LDSMAXA, LDSMAXAL, LDSMAXL on page C6-1043</td>
</tr>
<tr>
<td>LDMAXB</td>
<td>Atomic signed maximum on byte</td>
<td>LDMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB on page C6-1039</td>
</tr>
<tr>
<td>LDMAXH</td>
<td>Atomic signed maximum on halfword</td>
<td>LDMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH on page C6-1041</td>
</tr>
<tr>
<td>LDMIN</td>
<td>Atomic signed minimum</td>
<td>LDMIN, LDSMINA, LDSMINAL, LDSMINL on page C6-1050</td>
</tr>
<tr>
<td>LDMINB</td>
<td>Atomic signed minimum on byte</td>
<td>LDMINB, LDSMINAB, LDSMINALB, LDSMINLB on page C6-1046</td>
</tr>
<tr>
<td>LDMINH</td>
<td>Atomic signed minimum on halfword</td>
<td>LDMINH, LDSMINAH, LDSMINALH, LDSMINLH on page C6-1048</td>
</tr>
<tr>
<td>LDUMAX</td>
<td>Atomic unsigned maximum</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL on page C6-1069</td>
</tr>
<tr>
<td>LDUMAXB</td>
<td>Atomic unsigned maximum on byte</td>
<td>LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB on page C6-1065</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Instruction</td>
<td>See</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>LDUMAXH</td>
<td>Atomic unsigned maximum on halfword</td>
<td>LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH on page C6-1067</td>
</tr>
<tr>
<td>LDUMIN</td>
<td>Atomic unsigned minimum</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL on page C6-1076</td>
</tr>
<tr>
<td>LDUMINB</td>
<td>Atomic unsigned minimum on byte</td>
<td>LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB on page C6-1072</td>
</tr>
<tr>
<td>LDUMINH</td>
<td>Atomic unsigned minimum on halfword</td>
<td>LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH on page C6-1074</td>
</tr>
<tr>
<td>STADD</td>
<td>Atomic add, without return</td>
<td>STADD, STADDL on page C6-1215</td>
</tr>
<tr>
<td>STADDB</td>
<td>Atomic add on byte, without return</td>
<td>STADDB, STADDLB on page C6-1211</td>
</tr>
<tr>
<td>STADDH</td>
<td>Atomic add on halfword, without return</td>
<td>STADDH, STADDLH on page C6-1213</td>
</tr>
<tr>
<td>STCLR</td>
<td>Atomic bit clear, without return</td>
<td>STCLR, STCLRL on page C6-1221</td>
</tr>
<tr>
<td>STCLRB</td>
<td>Atomic bit clear on byte, without return</td>
<td>STCLRB, STCLRLB on page C6-1217</td>
</tr>
<tr>
<td>STCLRH</td>
<td>Atomic bit clear on halfword, without return</td>
<td>STCLRH, STCLRLH on page C6-1219</td>
</tr>
<tr>
<td>STEOR</td>
<td>Atomic exclusive OR, without return</td>
<td>STEOR, STEORL on page C6-1227</td>
</tr>
<tr>
<td>STEORB</td>
<td>Atomic exclusive OR on byte, without return</td>
<td>STEORB, STEORLB on page C6-1223</td>
</tr>
<tr>
<td>STEORH</td>
<td>Atomic exclusive OR on halfword, without return</td>
<td>STEORH, STEORLH on page C6-1225</td>
</tr>
<tr>
<td>STSET</td>
<td>Atomic bit set, without return</td>
<td>STSET, STSETL on page C6-1280</td>
</tr>
<tr>
<td>STSETB</td>
<td>Atomic bit set on byte, without return</td>
<td>STSETB, STSETLB on page C6-1276</td>
</tr>
<tr>
<td>STSETH</td>
<td>Atomic bit set on halfword, without return</td>
<td>STSETH, STSETLH on page C6-1278</td>
</tr>
<tr>
<td>STMAX</td>
<td>Atomic signed maximum, without return</td>
<td>STMAX, STMAXL on page C6-1286</td>
</tr>
<tr>
<td>STMAXB</td>
<td>Atomic signed maximum on byte, without return</td>
<td>STMAXB, STMAXLB on page C6-1282</td>
</tr>
<tr>
<td>STMXH</td>
<td>Atomic signed maximum on halfword, without return</td>
<td>STMAXH, STMAXLH on page C6-1284</td>
</tr>
<tr>
<td>STMIN</td>
<td>Atomic signed minimum, without return</td>
<td>STMIN, STMINL on page C6-1292</td>
</tr>
<tr>
<td>STMINB</td>
<td>Atomic signed minimum on byte, without return</td>
<td>STMINB, STMINLB on page C6-1288</td>
</tr>
<tr>
<td>STMINH</td>
<td>Atomic signed minimum on halfword, without return</td>
<td>STMINH, STMINLH on page C6-1290</td>
</tr>
<tr>
<td>STUMAX</td>
<td>Atomic unsigned maximum, without return</td>
<td>STUMAX, STUMAXL on page C6-1304</td>
</tr>
<tr>
<td>STUMAXB</td>
<td>Atomic unsigned maximum on byte, without return</td>
<td>STUMAXB, STUMAXLB on page C6-1300</td>
</tr>
<tr>
<td>STUMAXH</td>
<td>Atomic unsigned maximum on halfword, without return</td>
<td>STUMAXH, STUMAXLH on page C6-1302</td>
</tr>
<tr>
<td>STUMIN</td>
<td>Atomic unsigned minimum, without return</td>
<td>STUMIN, STUMINL on page C6-1310</td>
</tr>
<tr>
<td>STUMINB</td>
<td>Atomic unsigned minimum on byte, without return</td>
<td>STUMINB, STUMINLB on page C6-1306</td>
</tr>
<tr>
<td>STUMINH</td>
<td>Atomic unsigned minimum on halfword, without return</td>
<td>STUMINH, STUMINLH on page C6-1308</td>
</tr>
</tbody>
</table>
Swap

The swap instructions support only one addressing mode:

• Base register only.

See also Load/Store addressing modes on page C1-187.

For the purpose of permission checking, and for watchpoints, all of the Swap instructions are treated as performing both a load and a store.

If FEAT_LSE2 is not implemented then the SWP instructions require natural alignment, and an unaligned address generates an Alignment fault. For more information on alignment requirements and behaviors see Load-Exclusive/Store-Exclusive and Atomic instructions on page B2-148.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release instructions regarding multi-copy atomicity.

For the SWP instructions, where the source and destination registers are the same, if the instruction generates a synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

Table C3-33 Swap instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP</td>
<td>Swap</td>
<td>SWP, SWPA, SWPAL, SWPL on page C6-1352</td>
</tr>
<tr>
<td>SWPB</td>
<td>Swap byte</td>
<td>SWPB, SWPAB, SWPALB, SWPLB on page C6-1348</td>
</tr>
<tr>
<td>SWPH</td>
<td>Swap halfword</td>
<td>SWPH, SWPAH, SWPALH, SWPLH on page C6-1350</td>
</tr>
</tbody>
</table>

Compare and Swap

The Compare and Swap instructions support only one addressing mode:

• Base register only.

See also Load/Store addressing modes on page C1-187.

For the purpose of permission checking, and for watchpoints, all of the Compare and Swap instructions are treated as performing both a load and a store.

If FEAT_LSE2 is not implemented then:

• The CAS instructions require natural alignment.

• The CASP instructions require alignment to the total size of the memory being accessed.

For more information on alignment requirements and behaviors see Load-Exclusive/Store-Exclusive and Atomic instructions on page B2-148.

All Compare and Swap instructions generate an Alignment fault if the address being accessed is not aligned to the size of the data structure being accessed.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the Armv8-A architecture. If a compare and swap instruction does not perform a store, then the instruction does not have release semantics, regardless of the instruction ordering options.

The atomic instructions with release semantics have the same rules as Store-Release instructions regarding multi-copy atomicity.
For the CAS and CASP instructions, the architecture permits that a data read clears any Exclusives monitors associated with that location, even if the compare subsequently fails. If these instructions generate a synchronous Data Abort, the registers which are compared and loaded are restored to the values held in the registers before the instruction was executed.

C3.2.13 Memory Tagging instructions

If the FEAT_MTE is implemented the following instructions are implemented.

Table C3-34 Compare and swap instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>Compare and swap</td>
<td>CAS, CASA, CASAL, CASL on page C6-848</td>
</tr>
<tr>
<td>CASB</td>
<td>Compare and swap byte</td>
<td>CASB, CASAB, CASALB, CASLB on page C6-841</td>
</tr>
<tr>
<td>CASH</td>
<td>Compare and swap halfword</td>
<td>CASH, CASAH, CASALH, CASLH on page C6-843</td>
</tr>
<tr>
<td>CASP</td>
<td>Compare and swap pair</td>
<td>CASP, CASPA, CASPAL, CASPL on page C6-845</td>
</tr>
</tbody>
</table>

Table C3-35 Tag generation instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDG</td>
<td>Add immediate value to Logical Address Tag</td>
<td>ADDG on page C6-783</td>
</tr>
<tr>
<td>GMI</td>
<td>Tag Mask Insert</td>
<td>GMI on page C6-925</td>
</tr>
<tr>
<td>IRG</td>
<td>Random Logical Address Tag generation</td>
<td>IRG on page C6-932</td>
</tr>
<tr>
<td>SUBG</td>
<td>Subtract immediate value to Logical Address Tag</td>
<td>SUBG on page C6-1337</td>
</tr>
</tbody>
</table>

Table C3-36 Pointer Arithmetic

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBP(S)</td>
<td>Subtract address and set flags</td>
<td>SUBPS on page C6-1339</td>
</tr>
</tbody>
</table>

Table C3-37 Tag setting instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>STG</td>
<td>Store Allocation Tag to granule</td>
<td>STG on page C6-1229</td>
</tr>
<tr>
<td>STZG</td>
<td>Store Allocation Tag to granule Zeroing</td>
<td>STZG on page C6-1237</td>
</tr>
<tr>
<td>ST2G</td>
<td>Store Allocation Tag to two granules</td>
<td>ST2G on page C6-1209</td>
</tr>
<tr>
<td>STZ2G</td>
<td>Store Allocation Tag to two granules Zeroing</td>
<td>STZ2G on page C6-1325</td>
</tr>
<tr>
<td>STGP</td>
<td>Store Allocation Tag to memory</td>
<td>STGP on page C6-1232</td>
</tr>
</tbody>
</table>

Table C3-38 Tag getting instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDG</td>
<td>Load Allocation Tag</td>
<td>LDG on page C6-983</td>
</tr>
</tbody>
</table>

Table C3-39 Bulk Allocation Tag access

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDGM</td>
<td>Load an IMPLEMENTATION DEFINED number of Allocation Tags</td>
<td>LDGM on page C6-984</td>
</tr>
<tr>
<td>STGM</td>
<td>Store an IMPLEMENTATION DEFINED number of Allocation Tags</td>
<td>STGM on page C6-1231</td>
</tr>
</tbody>
</table>
C3.3 Data processing - immediate

This section describes the instruction groups for data processing with immediate operands. It contains the following subsections:

- Arithmetic (immediate).
- Logical (immediate).
- Move (wide immediate) on page C3-225.
- Move (immediate) on page C3-225.
- PC-relative address calculation on page C3-226.
- Bitfield move on page C3-226.
- Bitfield insert and extract on page C3-227
- Extract register on page C3-227.
- Shift (immediate) on page C3-227.
- Sign-extend and Zero-extend on page C3-228.

For information about the encoding structure of the instructions in this instruction group, see Data Processing -- Immediate on page C4-266.

C3.3.1 Arithmetic (immediate)

The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.

The Arithmetic (immediate) instructions that do not set Condition flags can read from and write to the current stack pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.

Table C3-40 shows the Arithmetic instructions with an immediate offset.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add</td>
<td>ADD (immediate) on page C6-779</td>
</tr>
<tr>
<td>ADDS</td>
<td>Add and set flags</td>
<td>ADDS (immediate) on page C6-787</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract</td>
<td>SUB (immediate) on page C6-1333</td>
</tr>
<tr>
<td>SUBS</td>
<td>Subtract and set flags</td>
<td>SUBS (immediate) on page C6-1343</td>
</tr>
<tr>
<td>CMP</td>
<td>Compare</td>
<td>CMP (immediate) on page C6-877</td>
</tr>
<tr>
<td>CMN</td>
<td>Compare negative</td>
<td>CMN (immediate) on page C6-871</td>
</tr>
</tbody>
</table>

C3.3.2 Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern viewed as a vector of identical elements of size $e = 2, 4, 8, 16, 32$ or, 64 bits. Each element contains the same sub-pattern, that is a single run of 1 to $(e - 1)$ nonzero bits from bit 0 followed by zero bits, then rotated by 0 to $(e - 1)$ bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.

Note

Values that consist of only zeros or only ones cannot be described in this way.

The Logical (immediate) instructions that do not set the Condition flags can write to the current stack pointer, for example to align the stack pointer in a function prologue.
Note

Apart from ANDS, and its TST alias, Logical (immediate) instructions do not set the Condition flags. However, the final results of a bitwise operation can be tested by a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-41 shows the Logical immediate instructions.

Table C3-41 Logical immediate instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Bitwise AND</td>
<td>AND (immediate) on page C6-793</td>
</tr>
<tr>
<td>ANDS</td>
<td>Bitwise AND and set flags</td>
<td>ANDS (immediate) on page C6-797</td>
</tr>
<tr>
<td>EOR</td>
<td>Bitwise exclusive OR</td>
<td>EOR (immediate) on page C6-916</td>
</tr>
<tr>
<td>ORR</td>
<td>Bitwise inclusive OR</td>
<td>ORR (immediate) on page C6-1146</td>
</tr>
<tr>
<td>TST</td>
<td>Test bits</td>
<td>TST (immediate) on page C6-1368</td>
</tr>
</tbody>
</table>

C3.3.3 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned position in the destination register. The value of the other bits in the destination register depends on the variant used. The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-42 shows the Move (wide immediate) instructions.

Table C3-42 Move (wide immediate) instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVZ</td>
<td>Move wide with zero</td>
<td>MOVZ on page C6-1123</td>
</tr>
<tr>
<td>MOVN</td>
<td>Move wide with NOT</td>
<td>MOVN on page C6-1121</td>
</tr>
<tr>
<td>MOVK</td>
<td>Move wide with keep</td>
<td>MOVK on page C6-1119</td>
</tr>
</tbody>
</table>

C3.3.4 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register), instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned immediate, as long as its binary representation can be generated using one of these instructions, and an assembler error results if the immediate cannot be generated in this way. On disassembly, it is unspecified whether the immediate is output as a signed or an unsigned value.

If there is a choice between the MOVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with zero register) MOVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

- ORR has an immediate that can be generated by a MOVZ or MOVN instruction.
- A MOVN instruction has an immediate that can be encoded by MOVZ.
- MOVZ #0 or MOVN #0 have a shift amount other than LSL #0.
C3.3.5 PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction, and then writes the result to a general-purpose register. This permits the calculation of any byte address within ±1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or a Load/Store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address within ±4GB of the current PC.

--- Note ---

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual memory translation granule size.

Table C3-44 shows the instructions used for PC-relative address calculations are as follows:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRP</td>
<td>Compute address of 4KB page at a PC-relative offset</td>
<td>ADRP on page C6-792</td>
</tr>
<tr>
<td>ADR</td>
<td>Compute address of label at a PC-relative offset</td>
<td>ADR on page C6-791</td>
</tr>
</tbody>
</table>

C3.3.6 Bitfield move

The Bitfield move instructions copy a field of constant width from bit 0 in the source register to a constant bit position in the destination register, or from a constant bit position in the source register to bit 0 in the destination register. The remaining bits in the destination register are set as follows:

- For BFMOV, the remaining bits are unchanged.
- For UBFMOV the lower bits, if any, and upper bits, if any, are set to zero.
- For SBFMOV, the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the most-significant bit in the copied field.
Table C3-45 shows the Bitfield move instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFM</td>
<td>Bitfield move</td>
<td>BFM on page C6-822</td>
</tr>
<tr>
<td>SBFM</td>
<td>Signed bitfield move</td>
<td>SBFM on page C6-1192</td>
</tr>
<tr>
<td>UBFM</td>
<td>Unsigned bitfield move (32-bit)</td>
<td>UBFM on page C6-1373</td>
</tr>
</tbody>
</table>

C3.3.7 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-46 shows the Bitfield insert and extract aliases.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFC</td>
<td>Bitfield insert clear</td>
<td>BFC on page C6-818</td>
</tr>
<tr>
<td>BFI</td>
<td>Bitfield insert</td>
<td>BFI on page C6-820</td>
</tr>
<tr>
<td>BFXIL</td>
<td>Bitfield extract and insert low</td>
<td>BFXIL on page C6-824</td>
</tr>
<tr>
<td>SBFIZ</td>
<td>Signed bitfield insert in zero</td>
<td>SBFIZ on page C6-1190</td>
</tr>
<tr>
<td>SBFX</td>
<td>Signed bitfield extract</td>
<td>SBFX on page C6-1194</td>
</tr>
<tr>
<td>UBFIZ</td>
<td>Unsigned bitfield insert in zero</td>
<td>UBFIZ on page C6-1371</td>
</tr>
<tr>
<td>UBFX</td>
<td>Unsigned bitfield extract</td>
<td>UBFX on page C6-1375</td>
</tr>
</tbody>
</table>

C3.3.8 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a destination register.

Table C3-47 shows the Extract (immediate) instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTR</td>
<td>Extract register from pair</td>
<td>EXTR on page C6-923</td>
</tr>
</tbody>
</table>

C3.3.9 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction, inclusive.
Table C3-48 shows the aliases that can be used as immediate shift and rotate instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>Arithmetic shift right</td>
<td>ASR (immediate) on page C6-803</td>
</tr>
<tr>
<td>LSL</td>
<td>Logical shift left</td>
<td>LSL (immediate) on page C6-1096</td>
</tr>
<tr>
<td>LSR</td>
<td>Logical shift right</td>
<td>LSR (immediate) on page C6-1102</td>
</tr>
<tr>
<td>ROR</td>
<td>Rotate right</td>
<td>ROR (immediate) on page C6-1179</td>
</tr>
</tbody>
</table>

C3.3.10 Sign-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions. Table C3-49 shows the aliases that can be used as zero-extend and sign-extend instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXTB</td>
<td>Sign-extend byte</td>
<td>SXTB on page C6-1354</td>
</tr>
<tr>
<td>SXTH</td>
<td>Sign-extend halfword</td>
<td>SXTH on page C6-1356</td>
</tr>
<tr>
<td>SXTW</td>
<td>Sign-extend word</td>
<td>SXTW on page C6-1358</td>
</tr>
<tr>
<td>UXTB</td>
<td>Unsigned extend byte</td>
<td>UXTB on page C6-1386</td>
</tr>
<tr>
<td>UXTH</td>
<td>Unsigned extend halfword</td>
<td>UXTH on page C6-1387</td>
</tr>
</tbody>
</table>
C3.4 Data processing - register

This section describes the instruction groups for data processing with all register operands. It contains the following subsections:

- Arithmetic (shifted register).
- Arithmetic (extended register) on page C3-230.
- Arithmetic with carry on page C3-231.
- Flag manipulation instructions on page C3-231.
- Logical (shifted register) on page C3-231.
- Move (register) on page C3-232.
- Shift (register) on page C3-232.
- Multiply and divide on page C3-233.
- CRC32 on page C3-234.
- Bit operation on page C3-235.
- Conditional select on page C3-235.
- Conditional comparison on page C3-236.

For information about the encoding structure of the instructions in this instruction group, see Data Processing -- Register on page C4-310.

C3.4.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value before performing the arithmetic operation. The register width of the instruction controls whether the new bits are fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, and LSR accept an immediate shift amount in the range 0 to one less than the register width of the instruction, inclusive.

Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output LSL #0. However, a disassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended register) on page C3-230 for arithmetic instructions that can operate on the current stack pointer.

Table C3-50 shows the Arithmetic (shifted register) instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add</td>
<td>ADD (shifted register) on page C6-781</td>
</tr>
<tr>
<td>ADDS</td>
<td>Add and set flags</td>
<td>ADDS (shifted register) on page C6-789</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract</td>
<td>SUB (shifted register) on page C6-1335</td>
</tr>
<tr>
<td>SUBS</td>
<td>Subtract and set flags</td>
<td>SUBS (shifted register) on page C6-1345</td>
</tr>
<tr>
<td>CMN</td>
<td>Compare negative</td>
<td>CMN (shifted register) on page C6-873</td>
</tr>
<tr>
<td>CMP</td>
<td>Compare</td>
<td>CMP (shifted register) on page C6-879</td>
</tr>
<tr>
<td>NEG</td>
<td>Negate</td>
<td>NEG (shifted register) on page C6-1135</td>
</tr>
<tr>
<td>NEGS</td>
<td>Negate and set flags</td>
<td>NEGS on page C6-1137</td>
</tr>
</tbody>
</table>
C3.4.2 Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTL, SXTW, UXTB, UXTL, or UXTW. This is followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A disassembler must not output a shift amount of zero.

For 64-bit instruction forms, the additional operators UXTX and SXTX use all 64 bits of the second source register with an optional shift. In that case, Arm recommends UXTX as the operator. If and only if at least one register is SP, Arm recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the operator and the shift amount can be omitted. UXTW and SXTW both use all 32 bits of the second source register with an optional shift. In that case Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the operator and the shift amount can be omitted.

For 32-bit instruction forms, the operators UXTW and SXTW both use all 32 bits of the second source register with an optional shift. In that case, Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either the destination register and the first source register. The flag setting variants only permit the stack pointer to be used as the first source register.

In the 64-bit form of these instructions, the final register operand is written as Wm for all except the UXTX/LSL and SXTX extend operators. For example:

```
CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SUB SP, SP, X1 // SUB SP, SP, XI, UXTX #0
```

Table C3-51 shows the Arithmetic (extended register) instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add</td>
<td>ADD (extended register) on page C6-776</td>
</tr>
<tr>
<td>ADDS</td>
<td>Add and set flags</td>
<td>ADDS (extended register) on page C6-784</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract</td>
<td>SUB (extended register) on page C6-1330</td>
</tr>
<tr>
<td>SUBS</td>
<td>Subtract and set flags</td>
<td>SUBS (extended register) on page C6-1340</td>
</tr>
<tr>
<td>CMN</td>
<td>Compare negative</td>
<td>CMN (extended register) on page C6-869</td>
</tr>
<tr>
<td>CMP</td>
<td>Compare</td>
<td>CMP (extended register) on page C6-875</td>
</tr>
</tbody>
</table>
C3.4.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the calculation. They do not support shifting of the second source register.

Table C3-52 shows the Arithmetic with carry instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Add with carry</td>
<td>ADC on page C6-772</td>
</tr>
<tr>
<td>ADCS</td>
<td>Add with carry and set flags</td>
<td>ADCS on page C6-774</td>
</tr>
<tr>
<td>SBC</td>
<td>Subtract with carry</td>
<td>SBC on page C6-1186</td>
</tr>
<tr>
<td>SBCS</td>
<td>Subtract with carry and set flags</td>
<td>SBCS on page C6-1188</td>
</tr>
<tr>
<td>NGC</td>
<td>Negate with carry</td>
<td>NGC on page C6-1139</td>
</tr>
<tr>
<td>NGCS</td>
<td>Negate with carry and set flags</td>
<td>NGCS on page C6-1141</td>
</tr>
</tbody>
</table>

C3.4.4 Flag manipulation instructions

The Flag manipulation instructions set the value of the NZCV condition flags directly.

The instructions SETF8 and SETF16 accept one source register and set the NZV condition flags based on the value of the input register. The instruction RMIF accepts one source register and two immediate values, rotating the first source register using the first immediate value and setting the NZCV condition flags masked by the second immediate value.

The instructions XAFLAG and AXFLAG convert PSTATE condition flags between the FCMP instruction format and an alternative format. See Table C6-1 on page C6-770 for more information.

Table C3-53 shows the Flag manipulation instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXFLAG</td>
<td>Convert from FCMP comparison format to the alternative format</td>
<td>AXFLAG on page C6-815</td>
</tr>
<tr>
<td>CFINV</td>
<td>Invert value of the PSTATE.C bit</td>
<td>CFINV on page C6-860</td>
</tr>
<tr>
<td>RMIF</td>
<td>Rotate, mask insert flags</td>
<td>RMIF on page C6-1178</td>
</tr>
<tr>
<td>SETF8</td>
<td>Evaluation of 8-bit flags</td>
<td>SETF8, SETF16 on page C6-1197</td>
</tr>
<tr>
<td>SETF16</td>
<td>Evaluation of 16-bit flags</td>
<td>SETF8, SETF16 on page C6-1197</td>
</tr>
<tr>
<td>XAFLAG</td>
<td>Convert from alternative format to FCMP comparison format</td>
<td>XAFLAG on page C6-1391</td>
</tr>
</tbody>
</table>

C3.4.5 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before performing the main operation. The register width of the instruction controls whether the new bits are fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR, and ROR accept a constant immediate shift amount in the range 0 to one less than the register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not output LSL #0. However, a disassembler must output all other shifts by zero.
Note

Apart from ANDS, TST, and BICS the logical instructions do not set the Condition flags, but the final result of a bit operation can usually directly control a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-54 shows the Logical (shifted register) instructions.

Table C3-54 Logical (shifted register) instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Bitwise AND</td>
<td>AND (shifted register) on page C6-795</td>
</tr>
<tr>
<td>ANDS</td>
<td>Bitwise AND and set flags</td>
<td>ANDS (shifted register) on page C6-799</td>
</tr>
<tr>
<td>BIC</td>
<td>Bitwise bit clear</td>
<td>BIC (shifted register) on page C6-826</td>
</tr>
<tr>
<td>BICS</td>
<td>Bitwise bit clear and set flags</td>
<td>BICS (shifted register) on page C6-828</td>
</tr>
<tr>
<td>EON</td>
<td>Bitwise exclusive OR NOT</td>
<td>EON (shifted register) on page C6-914</td>
</tr>
<tr>
<td>EOR</td>
<td>Bitwise exclusive OR</td>
<td>EOR (shifted register) on page C6-918</td>
</tr>
<tr>
<td>ORR</td>
<td>Bitwise inclusive OR</td>
<td>ORR (shifted register) on page C6-1148</td>
</tr>
<tr>
<td>MVN</td>
<td>Bitwise NOT</td>
<td>MVN on page C6-1133</td>
</tr>
<tr>
<td>ORN</td>
<td>Bitwise inclusive OR NOT</td>
<td>ORN (shifted register) on page C6-1144</td>
</tr>
<tr>
<td>TST</td>
<td>Test bits</td>
<td>TST (shifted register) on page C6-1369</td>
</tr>
</tbody>
</table>

C3.4.6 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy a value from a general-purpose register to another general-purpose register or the current stack pointer, or from the current stack pointer to a general-purpose register.

Table C3-55 MOV register instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>Move register</td>
<td>MOV (register) on page C6-1117</td>
</tr>
<tr>
<td></td>
<td>Move register to SP or move SP to register</td>
<td>MOV (to/from SP) on page C6-1110</td>
</tr>
</tbody>
</table>

C3.4.7 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift or rotate at bit[63] or bit[31].

Table C3-56 shows the Shift (register) instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRV</td>
<td>Arithmetic shift right variable</td>
<td>ASRV on page C6-805</td>
</tr>
</tbody>
</table>
However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases described in *Shift (immediate)* on page C3-227.

Table C3-57 shows the aliases for Shift (register) instructions.

Table C3-57 Aliases for Variable shift instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR</td>
<td>Arithmetic right</td>
<td>ASR (register) on page C6-801</td>
</tr>
<tr>
<td>LSL</td>
<td>Logical left</td>
<td>LSL (register) on page C6-1094</td>
</tr>
<tr>
<td>LSR</td>
<td>Logical right</td>
<td>LSR (register) on page C6-1100</td>
</tr>
<tr>
<td>ROR</td>
<td>Rotate right</td>
<td>ROR (register) on page C6-1181</td>
</tr>
</tbody>
</table>

C3.4.8 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following subsections:

- *Multiply.*
- *Divide* on page C3-234.

Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A 64-bit to 128-bit widening multiple can be constructed with two instructions, using *SMULH* or *UMULH* to generate the upper 64 bits. Table C3-58 shows the Multiply instructions.

Table C3-58 Multiply integer instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADD</td>
<td>Multiply-add</td>
<td>MADD on page C6-1106</td>
</tr>
<tr>
<td>MSUB</td>
<td>Multiply-subtract</td>
<td>MSUB on page C6-1130</td>
</tr>
<tr>
<td>MNEG</td>
<td>Multiply-negate</td>
<td>MNEG on page C6-1108</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply</td>
<td>MUL on page C6-1132</td>
</tr>
<tr>
<td>SMADDL</td>
<td>Signed multiply-add</td>
<td>SMADDL on page C6-1200</td>
</tr>
<tr>
<td>SMSUBL</td>
<td>Signed multiply-subtract</td>
<td>SMSUBL on page C6-1204</td>
</tr>
<tr>
<td>SMNEGL</td>
<td>Signed multiply-negate</td>
<td>SMNEGL on page C6-1203</td>
</tr>
<tr>
<td>SMULL</td>
<td>Signed multiply</td>
<td>SMULL on page C6-1207</td>
</tr>
<tr>
<td>SMULH</td>
<td>Signed multiply high</td>
<td>SMULH on page C6-1206</td>
</tr>
</tbody>
</table>
Divide

The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be computed as (numerator - (quotient × denominator)), using the\texttt{MSUB} instruction.

If a signed integer division (\texttt{INT_MIN / -1}) is performed where \texttt{INT_MIN} is the most negative integer value representable in the selected register size, then the result overflows the signed integer range. No indication of this overflow is produced and the result that is written to the destination register is \texttt{INT_MIN}.

A division by zero results in a zero being written to the destination register, without any indication that the division by zero occurred.

Table C3-59 shows the Divide instructions.

Table C3-59 Divide instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDIV</td>
<td>Signed divide</td>
<td>\texttt{SDIV} on page C6-1196</td>
</tr>
<tr>
<td>UDIV</td>
<td>Unsigned divide</td>
<td>\texttt{UDIV} on page C6-1378</td>
</tr>
</tbody>
</table>

C3.4.9 CRC32

The CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an input value comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32, and CRC32C, that support two commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of \texttt{ID_AA64ISAR0_EL1} are set to 0b0001, the CRC instructions are implemented.

These instructions are optional in an Armv8.0 implementation.

All implementations of Armv8.1 architecture and later are required to implement the CRC32 instructions.

Table C3-60 shows the CRC32 instructions.

Table C3-60 CRC32 instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC32B</td>
<td>CRC-32 sum from byte</td>
<td>\texttt{CRC32B, CRC32H, CRC32W, CRC32X} on page C6-885</td>
</tr>
<tr>
<td>CRC32H</td>
<td>CRC-32 sum from halfword</td>
<td>\texttt{CRC32B, CRC32H, CRC32W, CRC32X} on page C6-885</td>
</tr>
<tr>
<td>CRC32W</td>
<td>CRC-32 sum from word</td>
<td>\texttt{CRC32B, CRC32H, CRC32W, CRC32X} on page C6-885</td>
</tr>
<tr>
<td>CRC32X</td>
<td>CRC-32 sum from doubleword</td>
<td>\texttt{CRC32B, CRC32H, CRC32W, CRC32X} on page C6-885</td>
</tr>
</tbody>
</table>
C3.4.10 Bit operation

Table C3-61 shows the Bit operation instructions.

Table C3-61 Bit operation instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS</td>
<td>Count leading sign bits</td>
<td>CLS on page C6-867</td>
</tr>
<tr>
<td>CLZ</td>
<td>Count leading zero bits</td>
<td>CLZ on page C6-868</td>
</tr>
<tr>
<td>RBIT</td>
<td>Reverse bit order</td>
<td>RBIT on page C6-1168</td>
</tr>
<tr>
<td>REV</td>
<td>Reverse bytes in register</td>
<td>REV on page C6-1171</td>
</tr>
<tr>
<td>REV16</td>
<td>Reverse bytes in halfwords</td>
<td>REV16 on page C6-1173</td>
</tr>
<tr>
<td>REV32</td>
<td>Reverse bytes in words</td>
<td>REV32 on page C6-1175</td>
</tr>
<tr>
<td>REV64</td>
<td>Reverse bytes in register</td>
<td>REV64 on page C6-1177</td>
</tr>
</tbody>
</table>

C3.4.11 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state of the Condition flags. When the named condition is true, the first source register is selected and its value is copied without modification to the destination register. When the condition is false the second source register is selected and its value might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional select instructions.

Table C3-62 shows the Conditional select instructions.

Table C3-62 Conditional select instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEL</td>
<td>Conditional select</td>
<td>CSEL on page C6-890</td>
</tr>
<tr>
<td>CSINC</td>
<td>Conditional select increment</td>
<td>CSINC on page C6-896</td>
</tr>
<tr>
<td>CSINV</td>
<td>Conditional select inversion</td>
<td>CSINV on page C6-898</td>
</tr>
<tr>
<td>CSNEG</td>
<td>Conditional select negation</td>
<td>CSNEG on page C6-900</td>
</tr>
<tr>
<td>CSET</td>
<td>Conditional set</td>
<td>CSET on page C6-892</td>
</tr>
<tr>
<td>CSETM</td>
<td>Conditional set mask</td>
<td>CSETM on page C6-894</td>
</tr>
</tbody>
</table>
C3.4.12 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV Condition flags, setting the flags to the result of an arithmetic comparison of its two source register values if the named input condition is true, or to an immediate value if the input condition is false. There are register and immediate forms. The immediate form compares the source register to a small 5-bit unsigned value.

Table C3-63 shows the Conditional comparison instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINC</td>
<td>Conditional increment</td>
<td>CINC on page C6-862</td>
</tr>
<tr>
<td>CINV</td>
<td>Conditional invert</td>
<td>CINV on page C6-864</td>
</tr>
<tr>
<td>CNEG</td>
<td>Conditional negate</td>
<td>CNEG on page C6-882</td>
</tr>
</tbody>
</table>

Table C3-63 Conditional comparison instructions
C3.5 Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

Common features of SIMD instructions gives general information about SIMD instructions.

The following subsections describe the scalar floating-point data processing instructions:

- Floating-point move (register) on page C3-238.
- Floating-point move (immediate) on page C3-238.
- Floating-point conversion on page C3-239.
- Floating-point round to integral value on page C3-240.
- Floating-point multiply-add on page C3-242.
- Floating-point arithmetic (one source) on page C3-242.
- Floating-point arithmetic (two sources) on page C3-242.
- Floating-point minimum and maximum on page C3-243.
- Floating-point comparison on page C3-243.
- Floating-point conditional select on page C3-244.
- BFloat16 floating-point instructions on page C3-244.

The following subsections describe the SIMD data processing instructions:

- SIMD move on page C3-244
- SIMD arithmetic on page C3-245.
- SIMD compare on page C3-248.
- SIMD widening and narrowing arithmetic on page C3-248.
- SIMD table lookup on page C3-257.
- SIMD by element arithmetic on page C3-251.
- SIMD permute on page C3-253.
- SIMD immediate on page C3-253.
- SIMD shift (immediate) on page C3-253.
- SIMD floating-point and integer conversion on page C3-254.
- SIMD reduce (across vector lanes) on page C3-255.
- SIMD pairwise arithmetic on page C3-256.
- SIMD dot product on page C3-257.
- SIMD table lookup on page C3-257.
- SIMD complex number arithmetic on page C3-258.
- SIMD BFloat16 on page C3-258.
- SIMD matrix multiplication on page C3-259.
- The Cryptographic Extension on page C3-259.

For information about the encoding structure of the instructions in this instruction group, see Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

For information about the floating-point exceptions, see Floating-point exceptions and exception traps on page D1-2354.

C3.5.1 Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide
Indicated by the suffix \(\text{W} \). The element width of the destination register and the first source operand is double that of the second source operand.

Long
Indicated by the suffix \(\text{L} \). The element width of the destination register is double that of both source operands.

Narrow
Indicated by the suffix \(\text{N} \). The element width of the destination register is half that of both source operands.
In addition, each vector form of the instruction is part of a pair, with a second and upper half suffix of 2, to identify the variant of the instruction:

- Where a SIMD operation widens or lengthens a 64-bit vector to a 128-bit vector, the instruction provides a second part operation that can extract the source from the upper 64 bits of the source registers.
- Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part operation that can pack the result of a second operation into the upper part of the same destination register.

Note

This is referred to as a *lane set specifier*.

C3.5.2 Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced SIMD instructions **DUP**, **INS**, and **UMOV**. However, Arm recommends using the **FMOV** instructions when operating on scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the Advanced SIMD instruction set.

Table C3-64 shows the Floating-point move (register) instructions.

Table C3-64 Floating-point move (register) instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMOV</td>
<td>Floating-point move register without conversion</td>
<td>FMOV (register) on page C7-1684</td>
</tr>
<tr>
<td></td>
<td>Floating-point move to or from general-purpose register without conversion</td>
<td>FMOV (general) on page C7-1686</td>
</tr>
</tbody>
</table>

C3.5.3 Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a half-precision, single-precision, or double-precision scalar floating-point value in a SIMD and floating-point register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2e1, or as a string beginning with `0x` followed by a hexadecimal representation of the IEEE 754 half-precision, single-precision, or double-precision encoding. Arm recommends that a disassembler uses the decimal notation, provided that this displays the value precisely.

Note

When **FEAT_FP16** is not implemented, the only half-precision instructions that are supported are floating-point conversions between half-precision, single-precision, and double-precision.

The floating-point value must be expressible as $(\pm \frac{n}{16} \times 2^r)$, where n is an integer in the range $16 \leq n \leq 31$ and r is an integer in the range of $-3 \leq r \leq 4$, that is a normalized binary floating-point encoding with one sign bit, four bits of fraction, and a 3-bit exponent.

Table C3-65 shows the Floating-point move (immediate) instruction.

Table C3-65 Floating-point move (immediate) instruction

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMOV</td>
<td>Floating-point move immediate</td>
<td>FMOV (scalar, immediate) on page C7-1689</td>
</tr>
</tbody>
</table>
C3.5.4 Floating-point conversion

The following subsections describe the conversion of floating-point values:

- Convert floating-point precision.
- Convert between floating-point and integer or fixed-point.

Convert floating-point precision

These instructions convert a floating-point scalar with one precision to a floating-point scalar with a different precision, using the current rounding mode as specified by FPCR.RMode.

Table C3-66 shows the Floating-point precision conversion instruction.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVCT</td>
<td>Floating-point convert precision (scalar)</td>
<td>FCVT on page C7-1547</td>
</tr>
</tbody>
</table>

Convert between floating-point and integer or fixed-point

These instructions convert a floating-point scalar in a SIMD and floating-point register to or from a signed or unsigned integer or fixed-point value in a general-purpose register. For a fixed-point value, a final immediate operand indicates that the general-purpose register holds a fixed-point number and fbits indicates the number of bits after the binary point. fbits is in the range 1-32 inclusive for a 32-bit general-purpose register name, and 1-64 inclusive for a 64-bit general-purpose register name.

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs if the floating-point input is a NaN, infinity, or a numerical value that cannot be represented in the destination register. An out of range integer or fixed-point result is saturated to the size of the destination register.

Inexact

Occurs if the numeric result that differs from the input value.

Input Denormal

As Flush-to-zero on page A1-55 describes, when Flush-to-zero mode is enabled, occurs when zero replaces a double-precision or single-precision denormal input.

Note

When FEAT_FP16 is implemented, a half-precision denormal input that is flushed to zero does not generate an Input Denormal exception.

Table C3-67 shows the Floating-point and fixed-point conversion instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCVTAS</td>
<td>Floating-point scalar convert to signed integer, rounding to nearest with ties to away (scalar form)</td>
<td>FCVTAS (scalar) on page C7-1552</td>
</tr>
<tr>
<td>FCVTAU</td>
<td>Floating-point scalar convert to unsigned integer, rounding to nearest with ties to away (scalar form)</td>
<td>FCVTAU (scalar) on page C7-1557</td>
</tr>
<tr>
<td>FCVTMS</td>
<td>Floating-point scalar convert to signed integer, rounding toward minus infinity (scalar form)</td>
<td>FCVTMS (scalar) on page C7-1564</td>
</tr>
</tbody>
</table>
The following subsections describe instructions which round a floating-point number to an integral valued floating-point number in the same format:

- Floating-point round to an integer of the same size as the register
- Floating-point round to 32-bit or 64-bit integer on page C3-241

Floating-point round to an integer of the same size as the register

The following instructions round a floating-point value to an integer floating-point value of the same size.

For these instructions:
- A zero input gives a zero result with the same sign.
- An infinite input gives an infinite result with the same sign.
- A NaN is propagated as in normal floating-point arithmetic.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCVTMU</td>
<td>Floating-point scalar convert to unsigned integer, rounding toward minus infinity (scalar form)</td>
<td>FCVTMU (scalar) on page C7-1569</td>
</tr>
<tr>
<td>FCVTNS</td>
<td>Floating-point scalar convert to signed integer, rounding to nearest with ties to even (scalar form)</td>
<td>FCVTNS (scalar) on page C7-1576</td>
</tr>
<tr>
<td>FCVTNU</td>
<td>Floating-point scalar convert to unsigned integer, rounding to nearest with ties to even (scalar form)</td>
<td>FCVTNU (scalar) on page C7-1581</td>
</tr>
<tr>
<td>FCVTPS</td>
<td>Floating-point scalar convert to signed integer, rounding toward positive infinity (scalar form)</td>
<td>FCVTPS (scalar) on page C7-1586</td>
</tr>
<tr>
<td>FCVTPU</td>
<td>Floating-point scalar convert to unsigned integer, rounding toward positive infinity (scalar form)</td>
<td>FCVTPU (scalar) on page C7-1591</td>
</tr>
<tr>
<td>FCVTZS</td>
<td>Floating-point scalar convert to signed integer, rounding toward zero (scalar form)</td>
<td>FCVTZS (scalar, integer) on page C7-1603</td>
</tr>
<tr>
<td></td>
<td>Floating-point convert to signed fixed-point, rounding toward zero (scalar form)</td>
<td>FCVTZS (scalar, fixed-point) on page C7-1601</td>
</tr>
<tr>
<td>FCVTZU</td>
<td>Floating-point scalar convert to unsigned integer, rounding toward zero (scalar form)</td>
<td>FCVTZU (scalar, integer) on page C7-1613</td>
</tr>
<tr>
<td></td>
<td>Floating-point scalar convert to unsigned fixed-point, rounding toward zero (scalar form)</td>
<td>FCVTZU (scalar, fixed-point) on page C7-1611</td>
</tr>
<tr>
<td>FJCVTZS</td>
<td>Floating-point Javascript convert to signed fixed-point, rounding toward zero</td>
<td>FJCVTZS on page C7-1619</td>
</tr>
<tr>
<td>SCVTF</td>
<td>Signed integer scalar convert to floating-point, using the current rounding mode (scalar form)</td>
<td>SCVTF (scalar, integer) on page C7-1929</td>
</tr>
<tr>
<td></td>
<td>Signed fixed-point convert to floating-point, using the current rounding mode (scalar form)</td>
<td>SCVTF (scalar, fixed-point) on page C7-1927</td>
</tr>
<tr>
<td>UCVTF</td>
<td>Unsigned integer scalar convert to floating-point, using the current rounding mode (scalar form)</td>
<td>UCVTF (scalar, integer) on page C7-2203</td>
</tr>
<tr>
<td></td>
<td>Unsigned fixed-point convert to floating-point, using the current rounding mode (scalar form)</td>
<td>UCVTF (scalar, fixed-point) on page C7-2201</td>
</tr>
</tbody>
</table>

C3.5.5 Floating-point round to integral value

The following subsections describe instructions which round a floating-point number to an integral valued floating-point number in the same format:

- Floating-point round to an integer of the same size as the register
- Floating-point round to 32-bit or 64-bit integer on page C3-241

Table C3-67 Floating-point and integer or fixed-point conversion instructions

- **FCVTMU**: Floating-point scalar convert to unsigned integer, rounding toward minus infinity (scalar form)
- **FCVTNS**: Floating-point scalar convert to signed integer, rounding to nearest with ties to even (scalar form)
- **FCVTNU**: Floating-point scalar convert to unsigned integer, rounding to nearest with ties to even (scalar form)
- **FCVTPS**: Floating-point scalar convert to signed integer, rounding toward positive infinity (scalar form)
- **FCVTPU**: Floating-point scalar convert to unsigned integer, rounding toward positive infinity (scalar form)
- **FCVTZS**: Floating-point scalar convert to signed integer, rounding toward zero (scalar form)
- **FCVTZU**: Floating-point scalar convert to unsigned integer, rounding toward zero (scalar form)
- **FJCVTZS**: Floating-point Javascript convert to signed fixed-point, rounding toward zero
- **SCVTF**: Signed integer scalar convert to floating-point, using the current rounding mode (scalar form)
- **SCVTF (scalar, integer)**: Signed fixed-point convert to floating-point, using the current rounding mode (scalar form)
- **UCVTF**: Unsigned integer scalar convert to floating-point, using the current rounding mode (scalar form)
- **UCVTF (scalar, integer)**: Unsigned fixed-point convert to floating-point, using the current rounding mode (scalar form)

These instructions can cause the following floating-point exceptions:

Invalid Operation

Occurs in response to a floating-point input of a signaling NaN.

Inexact, FRINTX instruction only

Occurs if the result is numeric and does not have the same numerical value as the input.

Input Denormal

As *Flush-to-zero on page A1-55* describes, when Flush-to-zero mode is enabled, occurs when zero replaces a double-precision or single-precision denormal input.

--- Note ---

When FEAT_FP16 is implemented, a half-precision denormal input that is flushed to zero does not generate an Input Denormal exception.

Table C3-68 shows the Floating-point round to integer instructions.

Table C3-68 Floating-point round to integer instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRINTA</td>
<td>Floating-point round to integer, to nearest with ties to away</td>
<td>FRINTA (scalar) on page C7-1744</td>
</tr>
<tr>
<td>FRINTI</td>
<td>Floating-point round to integer, using current rounding mode</td>
<td>FRINTI (scalar) on page C7-1748</td>
</tr>
<tr>
<td>FRINTM</td>
<td>Floating-point round to integer, toward minus infinity</td>
<td>FRINTM (scalar) on page C7-1752</td>
</tr>
<tr>
<td>FRINTN</td>
<td>Floating-point round to integer, to nearest with ties to even</td>
<td>FRINTN (scalar) on page C7-1756</td>
</tr>
<tr>
<td>FRINTP</td>
<td>Floating-point round to integer, toward positive infinity</td>
<td>FRINTP (scalar) on page C7-1760</td>
</tr>
<tr>
<td>FRINTX</td>
<td>Floating-point round to integer exact, using current rounding mode</td>
<td>FRINTX (scalar) on page C7-1764</td>
</tr>
<tr>
<td>FRINTZ</td>
<td>Floating-point round to integer, toward zero</td>
<td>FRINTZ (scalar) on page C7-1768</td>
</tr>
</tbody>
</table>

Floating-point round to 32-bit or 64-bit integer

The following instructions are present if FEAT_FRINTTS is implemented, The instructions round to a value that fits in a 32-bit integer or a 64-bit integer size, and use either round towards zero or the ambient rounding model.

Invalid Operation

Forced to be the most negative integer representable in the target size, and occurs in response to a floating-point input of a signaling NaN, an infinite input, or an out of range input.

Inexact

Occurs if the result is numeric and does not have the same numerical value as the input.

Input Denormal

As *Flush-to-zero on page A1-55* describes, when Flush-to-zero mode is enabled, occurs when zero replaces a double-precision or single-precision denormal input.
Table C3-69 shows the Floating-point round to 32-bit or 64-bit integer instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRINT32X</td>
<td>Floating-point round to 32-bit integer, using current rounding model</td>
<td>FRINT32X (scalar) on page C7-1728</td>
</tr>
<tr>
<td>FRINT32Z</td>
<td>Floating-point round to 32-bit integer, toward zero</td>
<td>FRINT32Z (scalar) on page C7-1732</td>
</tr>
<tr>
<td>FRINT64X</td>
<td>Floating point round to 64-bit integer using current rounding model</td>
<td>FRINT64X (scalar) on page C7-1736</td>
</tr>
<tr>
<td>FRINT64Z</td>
<td>Floating point round to 64-bit integer, toward zero</td>
<td>FRINT64Z (scalar) on page C7-1740</td>
</tr>
</tbody>
</table>

C3.5.6 Floating-point multiply-add

Table C3-70 shows the Floating-point multiply-add instructions that require three source register operands.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMADD</td>
<td>Floating-point scalar fused multiply-add</td>
<td>FMADD on page C7-1620</td>
</tr>
<tr>
<td>FMSUB</td>
<td>Floating-point scalar fused multiply-subtract</td>
<td>FMSUB on page C7-1691</td>
</tr>
<tr>
<td>FNMADD</td>
<td>Floating-point scalar negated fused multiply-add</td>
<td>FNMADD on page C7-1712</td>
</tr>
<tr>
<td>FNMSUB</td>
<td>Floating-point scalar negated fused multiply-subtract</td>
<td>FNMSUB on page C7-1714</td>
</tr>
</tbody>
</table>

C3.5.7 Floating-point arithmetic (one source)

Table C3-71 shows the Floating-point arithmetic instructions that require a single source register operand.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABS</td>
<td>Floating-point scalar absolute value</td>
<td>FABS (scalar) on page C7-1485</td>
</tr>
<tr>
<td>FNEG</td>
<td>Floating-point scalar negate</td>
<td>FNEG (scalar) on page C7-1710</td>
</tr>
<tr>
<td>FSQRT</td>
<td>Floating-point scalar square root</td>
<td>FSQRT (scalar) on page C7-1778</td>
</tr>
</tbody>
</table>

C3.5.8 Floating-point arithmetic (two sources)

Table C3-72 shows the Floating-point arithmetic instructions that require two source register operands.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FADD</td>
<td>Floating-point scalar add</td>
<td>FADD (scalar) on page C7-1497</td>
</tr>
<tr>
<td>FDIV</td>
<td>Floating-point scalar divide</td>
<td>FDIV (scalar) on page C7-1617</td>
</tr>
<tr>
<td>FMUL</td>
<td>Floating-point scalar multiply</td>
<td>FMUL (scalar) on page C7-1699</td>
</tr>
<tr>
<td>FNMUL</td>
<td>Floating-point scalar multiply-negate</td>
<td>FNMUL (scalar) on page C7-1716</td>
</tr>
<tr>
<td>FFSUB</td>
<td>Floating-point scalar subtract</td>
<td>FFSUB (scalar) on page C7-1782</td>
</tr>
</tbody>
</table>
C3.5.9 **Floating-point minimum and maximum**

The \(\min(x,y) \) and \(\max(x,y) \) operations return a quiet NaN when either \(x \) or \(y \) is NaN.

As described in *Flush-to-zero on page A1-55*, in flush-to-zero mode, denormal operands are flushed to zero before comparison, and if the result of the comparison is the flushed value, then a zero value is returned. Where both \(x \) and \(y \) are zero, or denormal values flushed to zero, with different signs, then +0.0 is returned by \(\max() \) and -0.0 by \(\min() \).

The \(\minNum(x,y) \) and \(\maxNum(x,y) \) operations follow the IEEE 754-2008 standard and return the numerical operand when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single quiet NaN the result is then identical to \(\min(x,y) \) and \(\max(x,y) \).

Table C3-73 shows the Floating-point instructions that can perform floating-point minimum and maximum operations.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMAX</td>
<td>Floating-point scalar maximum</td>
<td>FMAX (scalar) on page C7-1624</td>
</tr>
<tr>
<td>FMAXN</td>
<td>Floating-point scalar maximum number</td>
<td>FMAXN (scalar) on page C7-1628</td>
</tr>
<tr>
<td>FMIN</td>
<td>Floating-point scalar minimum</td>
<td>FMIN (scalar) on page C7-1644</td>
</tr>
<tr>
<td>FMINN</td>
<td>Floating-point scalar minimum number</td>
<td>FMINN (scalar) on page C7-1648</td>
</tr>
</tbody>
</table>

C3.5.10 **Floating-point comparison**

These instructions set the NZCV Condition flags in PSTATE, based on the result of a comparison of two operands. If the floating-point comparisons are unordered, where one or both operands are a form of NaN, the C and V bits are set to 1 and the N and Z bits are cleared to 0.

--- **Note** ---

The NZCV flags in the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions do not change the Condition flags in the FPSR.

--- **Note** ---

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction encoding.

The quiet compare instructions generate an Invalid Operation floating-point exception if either of the source operands is a signaling NaN. The signaling compare instructions generate an Invalid Operation floating-point exception if either of the source operands is any type of NaN.

--- **Note** ---

If FEAT_FlagM2 is implemented, instructions AXFLAG and XAFLAG convert between the PSTATE condition flag format used by the FCMP instruction and an alternative format. See *FEAT_FlagM on page A2-85* for more information.
Table C3-74 shows the Floating-point comparison instructions.

Table C3-74 Floating-point comparison instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCMP</td>
<td>Floating-point quiet compare</td>
<td>FCMP on page C7-1541</td>
</tr>
<tr>
<td>FCMPE</td>
<td>Floating-point signaling compare</td>
<td>FCMPE on page C7-1543</td>
</tr>
<tr>
<td>FCCMP</td>
<td>Floating-point conditional quiet compare</td>
<td>FCCMP on page C7-1505</td>
</tr>
<tr>
<td>FCCMPE</td>
<td>Floating-point conditional signaling compare</td>
<td>FCCMPE on page C7-1507</td>
</tr>
</tbody>
</table>

C3.5.11 Floating-point conditional select

Table C3-75 shows the Floating-point conditional select instructions.

Table C3-75 Floating-point conditional select instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCSEL</td>
<td>Floating-point scalar conditional select</td>
<td>FCSEL on page C7-1545</td>
</tr>
</tbody>
</table>

C3.5.12 BFloat16 floating-point instructions

The BFloat16 floating-point instructions are provided by FEAT_BF16. The instructions to convert single-precision floating-point values to BF16 format give a more accurate conversion than a simple truncation of F32 to BF16 by removing the least significant 16 bits of the fraction. They also honour the settings of FPCR.

Table C3-76 shows these instructions.

Table C3-76 BFloat16 floating-point instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFCVT</td>
<td>BFloat16 floating-point convert from single-precision to BFloat16 format (scalar)</td>
<td>BFCVT on page C7-1417</td>
</tr>
</tbody>
</table>

C3.5.13 SIMD move

The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV instructions described in Floating-point move (register) on page C3-238.

Table C3-77 shows the SIMD move instructions.

Table C3-77 SIMD move instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUP</td>
<td>Duplicate vector element to vector or scalar</td>
<td>DUP (element) on page C7-1470</td>
</tr>
<tr>
<td>DUP</td>
<td>Duplicate general-purpose register to vector</td>
<td>DUP (general) on page C7-1473</td>
</tr>
<tr>
<td>INS*</td>
<td>Insert vector element from another vector element</td>
<td>INS (element) on page C7-1784</td>
</tr>
<tr>
<td></td>
<td>Insert vector element from general-purpose register</td>
<td>INS (general) on page C7-1786</td>
</tr>
</tbody>
</table>
Table C3-77 SIMD move instructions (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV</td>
<td>Move vector element to vector element</td>
<td>MOV (element) on page C7-1856</td>
</tr>
<tr>
<td></td>
<td>Move general-purpose register to vector element</td>
<td>MOV (from general) on page C7-1858</td>
</tr>
<tr>
<td></td>
<td>Move vector element to scalar</td>
<td>MOV (scalar) on page C7-1854</td>
</tr>
<tr>
<td></td>
<td>Move vector element to general-purpose register</td>
<td>MOV (to general) on page C7-1861</td>
</tr>
<tr>
<td>UMOV</td>
<td>Unsigned move vector element to general-purpose register</td>
<td>UMOV on page C7-2236</td>
</tr>
<tr>
<td>SMOV</td>
<td>Signed move vector element to general-purpose register</td>
<td>SMOV on page C7-2007</td>
</tr>
</tbody>
</table>

a. Disassembles as MOV.

C3.5.14 SIMD arithmetic

Table C3-78 shows the SIMD arithmetic instructions.

Table C3-78 SIMD arithmetic instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Add (vector and scalar form)</td>
<td>ADD (vector) on page C7-1401</td>
</tr>
<tr>
<td>AND</td>
<td>Bitwise AND (vector form)</td>
<td>AND (vector) on page C7-1415</td>
</tr>
<tr>
<td>BIC</td>
<td>Bitwise bit clear (register) (vector form)</td>
<td>BIC (vector, register) on page C7-1430</td>
</tr>
<tr>
<td>BIF</td>
<td>Bitwise insert if false (vector form)</td>
<td>BIF on page C7-1432</td>
</tr>
<tr>
<td>BIT</td>
<td>Bitwise insert if true (vector form)</td>
<td>BIT on page C7-1434</td>
</tr>
<tr>
<td>BSL</td>
<td>Bitwise select (vector form)</td>
<td>BSL on page C7-1436</td>
</tr>
<tr>
<td>EOR</td>
<td>Bitwise exclusive OR (vector form)</td>
<td>EOR (vector) on page C7-1475</td>
</tr>
<tr>
<td>FABD</td>
<td>Floating-point absolute difference (vector and scalar form)</td>
<td>FABD on page C7-1480</td>
</tr>
<tr>
<td>FADD</td>
<td>Floating-point add (vector form)</td>
<td>FADD (vector) on page C7-1495</td>
</tr>
<tr>
<td>FDIV</td>
<td>Floating-point divide (vector form)</td>
<td>FDIV (vector) on page C7-1615</td>
</tr>
<tr>
<td>FMAX</td>
<td>Floating-point maximum (vector form)</td>
<td>FMAX (vector) on page C7-1638</td>
</tr>
<tr>
<td>FMAXNM</td>
<td>Floating-point maximum number (vector form)</td>
<td>FMAXNM (vector) on page C7-1626</td>
</tr>
<tr>
<td>FMIN</td>
<td>Floating-point minimum (vector form)</td>
<td>FMIN (vector) on page C7-1642</td>
</tr>
<tr>
<td>FMINNM</td>
<td>Floating-point minimum number (vector form)</td>
<td>FMINNM (vector) on page C7-1646</td>
</tr>
<tr>
<td>FMLA</td>
<td>Floating-point fused multiply-add (vector form)</td>
<td>FMLA (vector) on page C7-1666</td>
</tr>
<tr>
<td>FMLAL, FMLAL2</td>
<td>Floating-point fused multiply-add long (vector form)</td>
<td>FMLAL, FMLAL2 (vector) on page C7-1670</td>
</tr>
<tr>
<td>FMLS</td>
<td>Floating-point fused multiply-subtract (vector form)</td>
<td>FMLS (vector) on page C7-1676</td>
</tr>
<tr>
<td>FMLSL, FMLSL2</td>
<td>Floating-point fused multiply-subtract long (vector form)</td>
<td>FMLSL, FMLSL2 (vector) on page C7-1680</td>
</tr>
<tr>
<td>FMUL</td>
<td>Floating-point multiply (vector form)</td>
<td>FMUL (vector) on page C7-1697</td>
</tr>
<tr>
<td>FMULX</td>
<td>Floating-point multiply extended (vector and scalar form)</td>
<td>FMULX on page C7-1705</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Instruction</td>
<td>See</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>FRECPS</td>
<td>Floating-point reciprocal step (vector and scalar form)</td>
<td>FRECPS on page C7-1721</td>
</tr>
<tr>
<td>FRSQRTS</td>
<td>Floating-point reciprocal square root step (vector and scalar form)</td>
<td>FRSQRTS on page C7-1773</td>
</tr>
<tr>
<td>FSUB</td>
<td>Floating-point subtract (vector form)</td>
<td>FSUB (vector) on page C7-1780</td>
</tr>
<tr>
<td>MLA</td>
<td>Multiply-add (vector form)</td>
<td>MLA (vector) on page C7-1848</td>
</tr>
<tr>
<td>MLS</td>
<td>Multiply-subtract (vector form)</td>
<td>MLS (vector) on page C7-1852</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply (vector form)</td>
<td>MUL (vector) on page C7-1868</td>
</tr>
<tr>
<td>MOV</td>
<td>Move vector register (vector form)</td>
<td>MOV (vector) on page C7-1860</td>
</tr>
<tr>
<td>ORN</td>
<td>Bitwise inclusive OR NOT (vector form)</td>
<td>ORN (vector) on page C7-1878</td>
</tr>
<tr>
<td>ORR</td>
<td>Bitwise inclusive OR (register) (vector form)</td>
<td>ORR (vector, register) on page C7-1882</td>
</tr>
<tr>
<td>PMUL</td>
<td>Polynomial multiply (vector form)</td>
<td>PMUL on page C7-1884</td>
</tr>
<tr>
<td>SABA</td>
<td>Signed absolute difference and accumulate (vector form)</td>
<td>SABA on page C7-1903</td>
</tr>
<tr>
<td>SABD</td>
<td>Signed absolute difference (vector form)</td>
<td>SABD on page C7-1907</td>
</tr>
<tr>
<td>SHADD</td>
<td>Signed halving add (vector form)</td>
<td>SHADD on page C7-1953</td>
</tr>
<tr>
<td>SHSUB</td>
<td>Signed halving subtract (vector form)</td>
<td>SHSUB on page C7-1961</td>
</tr>
<tr>
<td>SMAX</td>
<td>Signed maximum (vector form)</td>
<td>SMAX on page C7-1984</td>
</tr>
<tr>
<td>SMIN</td>
<td>Signed minimum (vector form)</td>
<td>SMIN on page C7-1990</td>
</tr>
<tr>
<td>SQADD</td>
<td>Signed saturating add (vector and scalar form)</td>
<td>SQADD on page C7-2016</td>
</tr>
<tr>
<td>SQDMULH</td>
<td>Signed saturating doubling multiply returning high half (vector and scalar form)</td>
<td>SQDMULH (vector) on page C7-2035</td>
</tr>
<tr>
<td>SQRSHL</td>
<td>Signed saturating rounding shift left (register) (vector and scalar form)</td>
<td>SQRSHL on page C7-2060</td>
</tr>
<tr>
<td>SQRDMLAH</td>
<td>Signed saturating rounding doubling multiply accumulate returning high half</td>
<td>SQRDMLAH (vector) on page C7-2048</td>
</tr>
<tr>
<td>SQRDMLSH</td>
<td>Signed saturating rounding doubling multiply subtract returning high half</td>
<td>SQRDMLSH (vector) on page C7-2053</td>
</tr>
<tr>
<td>SQRDMLUH</td>
<td>Signed saturating rounding doubling multiply returning high half (vector and scalar form)</td>
<td>SQRDMLUH (vector) on page C7-2058</td>
</tr>
<tr>
<td>SQSHL</td>
<td>Signed saturating shift left (register) (vector and scalar form)</td>
<td>SQSHL (register) on page C7-2071</td>
</tr>
<tr>
<td>SQSUBL</td>
<td>Signed saturating subtract (vector and scalar form)</td>
<td>SQSUBL on page C7-2082</td>
</tr>
<tr>
<td>SRHADD</td>
<td>Signed rounding halving add (vector form)</td>
<td>SRHADD on page C7-2090</td>
</tr>
<tr>
<td>SRSHL</td>
<td>Signed rounding shift left (register) (vector and scalar form)</td>
<td>SRSHL on page C7-2095</td>
</tr>
<tr>
<td>SSHL</td>
<td>Signed shift left (register) (vector and scalar form)</td>
<td>SSHL on page C7-2101</td>
</tr>
<tr>
<td>SUB</td>
<td>Subtract (vector and scalar form)</td>
<td>SUB (vector) on page C7-2159</td>
</tr>
<tr>
<td>UABA</td>
<td>Unsigned absolute difference and accumulate (vector form)</td>
<td>UABA on page C7-2177</td>
</tr>
</tbody>
</table>
Table C3-78 SIMD arithmetic instructions (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>UABD</td>
<td>Unsigned absolute difference (vector form)</td>
<td>UABD on page C7-2181</td>
</tr>
<tr>
<td>UHADD</td>
<td>Unsigned halving add (vector form)</td>
<td>UHADD on page C7-2209</td>
</tr>
<tr>
<td>UHSUB</td>
<td>Unsigned halving subtract (vector form)</td>
<td>UHSUB on page C7-2211</td>
</tr>
<tr>
<td>UMAX</td>
<td>Unsigned maximum (vector form)</td>
<td>UMAX on page C7-2213</td>
</tr>
<tr>
<td>UMIN</td>
<td>Unsigned minimum (vector form)</td>
<td>UMIN on page C7-2219</td>
</tr>
<tr>
<td>UQADD</td>
<td>Unsigned saturating add (vector and scalar form)</td>
<td>UQADD on page C7-2243</td>
</tr>
<tr>
<td>UQRSHL</td>
<td>Unsigned saturating rounding shift left (register) (vector and scalar form)</td>
<td>UQRSHL on page C7-2245</td>
</tr>
<tr>
<td>UQSHL</td>
<td>Unsigned saturating shift left (register) (vector and scalar form)</td>
<td>UQSHL (register) on page C7-2253</td>
</tr>
<tr>
<td>UQSUB</td>
<td>Unsigned saturating subtract (vector and scalar form)</td>
<td>UQSUB on page C7-2258</td>
</tr>
<tr>
<td>URHADD</td>
<td>Unsigned rounding halving add (vector form)</td>
<td>URHADD on page C7-2264</td>
</tr>
<tr>
<td>URSHL</td>
<td>Unsigned rounding shift left (register) (vector and scalar form)</td>
<td>URSHL on page C7-2266</td>
</tr>
<tr>
<td>USHL</td>
<td>Unsigned shift left (register) (vector and scalar form)</td>
<td>USHL on page C7-2277</td>
</tr>
</tbody>
</table>
C3.5.15 **SIMD compare**

The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the destination vector element to all ones if the condition holds, or to zero if the condition does not hold.

--- Note ---

Some of the comparisons, such as LS, LE, LO, and LT, can be made by reversing the operands and using the opposite comparison, HS, GE, HI, or GT.

Table C3-79 shows that SIMD compare instructions.

Table C3-79 SIMD compare instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMEQ</td>
<td>Compare bitwise equal (vector and scalar form)</td>
<td>CMEQ (register) on page C7-1442</td>
</tr>
<tr>
<td></td>
<td>Compare bitwise equal to zero (vector and scalar form)</td>
<td>CMEQ (zero) on page C7-1444</td>
</tr>
<tr>
<td>CMHS</td>
<td>Compare unsigned higher or same (vector and scalar form)</td>
<td>CMHS (register) on page C7-1459</td>
</tr>
<tr>
<td>CMGE</td>
<td>Compare signed greater than or equal (vector and scalar form)</td>
<td>CMGE (register) on page C7-1447</td>
</tr>
<tr>
<td></td>
<td>Compare signed greater than or equal to zero (vector and scalar form)</td>
<td>CMGE (zero) on page C7-1449</td>
</tr>
<tr>
<td>CMHI</td>
<td>Compare unsigned higher (vector and scalar form)</td>
<td>CMHI (register) on page C7-1457</td>
</tr>
<tr>
<td>CMGT</td>
<td>Compare signed greater than (vector and scalar form)</td>
<td>CMGT (register) on page C7-1452</td>
</tr>
<tr>
<td></td>
<td>Compare signed greater than zero (vector and scalar form)</td>
<td>CMGT (zero) on page C7-1454</td>
</tr>
<tr>
<td>CMLE</td>
<td>Compare signed less than or equal to zero (vector and scalar form)</td>
<td>CMLE (zero) on page C7-1461</td>
</tr>
<tr>
<td>CMLT</td>
<td>Compare signed less than zero (vector and scalar form)</td>
<td>CMLT (zero) on page C7-1464</td>
</tr>
<tr>
<td>CMTST</td>
<td>Compare bitwise test bits nonzero (vector and scalar form)</td>
<td>CMTST on page C7-1466</td>
</tr>
<tr>
<td>FCMEQ</td>
<td>Floating-point compare equal (vector and scalar form)</td>
<td>FCMEQ (register) on page C7-1509</td>
</tr>
<tr>
<td></td>
<td>Floating-point compare equal to zero (vector and scalar form)</td>
<td>FCMEQ (zero) on page C7-1513</td>
</tr>
<tr>
<td>FACGE</td>
<td>Floating-point absolute compare greater than or equal (vector and scalar form)</td>
<td>FACGE on page C7-1487</td>
</tr>
</tbody>
</table>

C3.5.16 **SIMD widening and narrowing arithmetic**

For information about the variants of these instructions, see *Common features of SIMD instructions on page C3-237.*
Table C3-80 shows the SIMD widening and narrowing arithmetic instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDHN, ADDHN2</td>
<td>Add returning high, narrow (vector form)</td>
<td>ADDHN, ADDHN2 on page C7-1403</td>
</tr>
<tr>
<td>PMULL, PMULL2</td>
<td>Polynomial multiply long (vector form)</td>
<td>PMULL, PMULL2 on page C7-1886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See also The Cryptographic Extension on page C3-259</td>
</tr>
<tr>
<td>RADDHN, RADDHN2</td>
<td>Rounding add returning high, narrow (vector form)</td>
<td>RADDHN, RADDHN2 on page C7-1888</td>
</tr>
<tr>
<td>RSUBHN, RSUBHN2</td>
<td>Rounding subtract returning high, narrow (vector form)</td>
<td>RSUBHN, RSUBHN2 on page C7-1901</td>
</tr>
<tr>
<td>SABAL, SABAL2</td>
<td>Signed absolute difference and accumulate long (vector form)</td>
<td>SABAL, SABAL2 on page C7-1905</td>
</tr>
<tr>
<td>SABDL, SABDL2</td>
<td>Signed absolute difference long (vector form)</td>
<td>SABDL, SABDL2 on page C7-1909</td>
</tr>
<tr>
<td>SADDL, SADDL2</td>
<td>Signed add long (vector form)</td>
<td>SADDL, SADDL2 on page C7-1913</td>
</tr>
<tr>
<td>SADDW, SADDW2</td>
<td>Signed add wide (vector form)</td>
<td>SADDW, SADDW2 on page C7-1919</td>
</tr>
<tr>
<td>SMLAL, SMLAL2</td>
<td>Signed multiply-add long (vector form)</td>
<td>SMLAL, SMLAL2 (vector) on page C7-1999</td>
</tr>
<tr>
<td>SMLSL, SMLSL2</td>
<td>Signed multiply-subtract long (vector form)</td>
<td>SMLSL, SMLSL2 (vector) on page C7-2004</td>
</tr>
<tr>
<td>SMULL, SMULL2</td>
<td>Signed multiply long (vector form)</td>
<td>SMULL, SMULL2 (vector) on page C7-2012</td>
</tr>
<tr>
<td>SQDMLAL, SQDMLAL2</td>
<td>Signed saturating doubling multiply-add long (vector and scalar form)</td>
<td>SQDMLAL, SQDMLAL2 (vector) on page C7-2022</td>
</tr>
<tr>
<td>SQDMLSL, SQDMLSL2</td>
<td>Signed saturating doubling multiply-subtract long (vector and scalar form)</td>
<td>SQDMLSL, SQDMLSL2 (vector) on page C7-2029</td>
</tr>
<tr>
<td>SQDMULL, SQDMULL2</td>
<td>Signed saturating doubling multiply long (vector and scalar form)</td>
<td>SQDMULL, SQDMULL2 (vector) on page C7-2040</td>
</tr>
<tr>
<td>SSUBL, SSUBL2</td>
<td>Signed subtract long (vector form)</td>
<td>SSUBL, SSUBL2 on page C7-2112</td>
</tr>
<tr>
<td>SSUBW, SSUBW2</td>
<td>Signed subtract wide (vector form)</td>
<td>SSUBW, SSUBW2 on page C7-2114</td>
</tr>
<tr>
<td>SUBHN, SUBHN2</td>
<td>Subtract returning high, narrow (vector form)</td>
<td>SUBHN, SUBHN2 on page C7-2161</td>
</tr>
<tr>
<td>UABAL, UABAL2</td>
<td>Unsigned absolute difference and accumulate long (vector form)</td>
<td>UABAL, UABAL2 on page C7-2179</td>
</tr>
<tr>
<td>UABDL, UABDL2</td>
<td>Unsigned absolute difference long (vector form)</td>
<td>UABDL, UABDL2 on page C7-2183</td>
</tr>
<tr>
<td>UADDL, UADDL2</td>
<td>Unsigned add long (vector form)</td>
<td>UADDL, UADDL2 on page C7-2187</td>
</tr>
<tr>
<td>UADDW, UADDW2</td>
<td>Unsigned add wide (vector form)</td>
<td>UADDW, UADDW2 on page C7-2193</td>
</tr>
<tr>
<td>UMLAL, UMLAL2</td>
<td>Unsigned multiply-add long (vector form)</td>
<td>UMLAL, UMLAL2 (vector) on page C7-2228</td>
</tr>
<tr>
<td>UMLSL, UMLSL2</td>
<td>Unsigned multiply-subtract long (vector form)</td>
<td>UMLSL, UMLSL2 (vector) on page C7-2233</td>
</tr>
<tr>
<td>UMULL, UMULL2</td>
<td>Unsigned multiply long (vector form)</td>
<td>UMULL, UMULL2 (vector) on page C7-2241</td>
</tr>
<tr>
<td>USUBL, USUBL2</td>
<td>Unsigned subtract long (vector form)</td>
<td>USUBL, USUBL2 on page C7-2291</td>
</tr>
<tr>
<td>USUBW, USUBW2</td>
<td>Unsigned subtract wide (vector form)</td>
<td>USUBW, USUBW2 on page C7-2293</td>
</tr>
</tbody>
</table>
SIMD unary arithmetic

For information about the variants of these instructions, see [Common features of SIMD instructions](#) on page C3-237.

Table C3-81 shows the SIMD unary arithmetic instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Absolute value (vector and scalar form)</td>
<td>ABS on page C7-1399</td>
</tr>
<tr>
<td>CLS</td>
<td>Count leading sign bits (vector form)</td>
<td>CLS (vector) on page C7-1438</td>
</tr>
<tr>
<td>CLZ</td>
<td>Count leading zero bits (vector form)</td>
<td>CLZ (vector) on page C7-1440</td>
</tr>
<tr>
<td>CNT</td>
<td>Population count per byte (vector form)</td>
<td>CNT on page C7-1468</td>
</tr>
<tr>
<td>FABS</td>
<td>Floating-point absolute (vector form)</td>
<td>FABS (vector) on page C7-1483</td>
</tr>
<tr>
<td>FCVTL, FCVTL2</td>
<td>Floating-point convert to higher precision long (vector form)</td>
<td>FCVTL, FCVTL2 on page C7-1559</td>
</tr>
<tr>
<td>FCVTN, FCVTN2</td>
<td>Floating-point convert to lower precision narrow (vector form)</td>
<td>FCVTN, FCVTN2 on page C7-1571</td>
</tr>
<tr>
<td>FCVTXN, FCVTXN2</td>
<td>Floating-point convert to lower precision narrow, rounding to odd (vector and scalar form)</td>
<td>FCVTXN, FCVTXN2 on page C7-1593</td>
</tr>
<tr>
<td>FNEG</td>
<td>Floating-point negate (vector form)</td>
<td>FNEG (vector) on page C7-1708</td>
</tr>
<tr>
<td>FRECPE</td>
<td>Floating-point reciprocal estimate (vector and scalar form)</td>
<td>FRECPE on page C7-1718</td>
</tr>
<tr>
<td>FRECPX</td>
<td>Floating-point reciprocal square root (scalar form)</td>
<td>FRECPX on page C7-1724</td>
</tr>
<tr>
<td>FRINT32X</td>
<td>Floating-point round to 32-bit integer, using current rounding mode (vector form)</td>
<td>FRINT32X (vector) on page C7-1726</td>
</tr>
<tr>
<td>FRINT32Z</td>
<td>Floating-point round to 32-bit integer, toward zero (vector form)</td>
<td>FRINT32Z (vector) on page C7-1730</td>
</tr>
<tr>
<td>FRINT64X</td>
<td>Floating-point round to 64-bit integer, using current rounding mode (vector form)</td>
<td>FRINT64X (vector) on page C7-1734</td>
</tr>
<tr>
<td>FRINT64Z</td>
<td>Floating-point round to 64-bit integer, toward zero (vector form)</td>
<td>FRINT64Z (vector) on page C7-1738</td>
</tr>
<tr>
<td>FRINTA</td>
<td>Floating-point round to integer, to nearest with ties to away (vector form)</td>
<td>FRINTA (vector) on page C7-1742</td>
</tr>
<tr>
<td>FRINTI</td>
<td>Floating-point round to integer, using current rounding mode (vector form)</td>
<td>FRINTI (vector) on page C7-1746</td>
</tr>
<tr>
<td>FRINTM</td>
<td>Floating-point round to integer, toward minus infinity (vector form)</td>
<td>FRINTM (vector) on page C7-1750</td>
</tr>
<tr>
<td>FRINTN</td>
<td>Floating-point round to integer, to nearest with ties to even (vector form)</td>
<td>FRINTN (vector) on page C7-1754</td>
</tr>
<tr>
<td>FRINTP</td>
<td>Floating-point round to integer, toward positive infinity (vector form)</td>
<td>FRINTP (vector) on page C7-1758</td>
</tr>
<tr>
<td>FRINTX</td>
<td>Floating-point round to integer exact, using current rounding mode (vector form)</td>
<td>FRINTX (vector) on page C7-1762</td>
</tr>
<tr>
<td>FRINTZ</td>
<td>Floating-point round to integer, toward zero (vector form)</td>
<td>FRINTZ (vector) on page C7-1766</td>
</tr>
<tr>
<td>FRSQRTE</td>
<td>Floating-point reciprocal square root estimate (vector and scalar form)</td>
<td>*FRSQRTE on page C7-1770</td>
</tr>
<tr>
<td>FSQRT</td>
<td>Floating-point square root (vector form)</td>
<td>FSQRT (vector) on page C7-1776</td>
</tr>
<tr>
<td>MVN</td>
<td>Bitwise NOT (vector form)</td>
<td>MVN on page C7-1870</td>
</tr>
<tr>
<td>Mnemonic</td>
<td>Instruction</td>
<td>See</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>NEG</td>
<td>Negate (vector and scalar form)</td>
<td>NEG (vector) on page C7-1874</td>
</tr>
<tr>
<td>NOT</td>
<td>Bitwise NOT (vector form)</td>
<td>NOT on page C7-1876</td>
</tr>
<tr>
<td>RBIT</td>
<td>Bitwise reverse (vector form)</td>
<td>RBIT (vector) on page C7-1891</td>
</tr>
<tr>
<td>REV16</td>
<td>Reverse elements in 16-bit halfwords (vector form)</td>
<td>REV16 (vector) on page C7-1893</td>
</tr>
<tr>
<td>REV32</td>
<td>Reverse elements in 32-bit words (vector form)</td>
<td>REV32 (vector) on page C7-1895</td>
</tr>
<tr>
<td>REV64</td>
<td>Reverse elements in 64-bit doublewords (vector form)</td>
<td>REV64 on page C7-1897</td>
</tr>
<tr>
<td>SADALP</td>
<td>Signed add and accumulate long pairwise (vector form)</td>
<td>SADALP on page C7-1911</td>
</tr>
<tr>
<td>SADLP</td>
<td>Signed add long pairwise (vector form)</td>
<td>SADLP on page C7-1915</td>
</tr>
<tr>
<td>SQABS</td>
<td>Signed saturating absolute value (vector and scalar form)</td>
<td>SQABS on page C7-2014</td>
</tr>
<tr>
<td>SQNEG</td>
<td>Signed saturating negate (vector and scalar form)</td>
<td>SQNEG on page C7-2043</td>
</tr>
<tr>
<td>SQXTN, SQXTN2</td>
<td>Signed saturating extract narrow (vector form)</td>
<td>SQXTN, SQXTN2 on page C7-2084</td>
</tr>
<tr>
<td>SQXTUN, SQXTUN2</td>
<td>Signed saturating extract unsigned narrow (vector and scalar form)</td>
<td>SQXTUN, SQXTUN2 on page C7-2087</td>
</tr>
<tr>
<td>SUQADD</td>
<td>Signed saturating accumulate of unsigned value (vector and scalar form)</td>
<td>SUQADD on page C7-2165</td>
</tr>
<tr>
<td>SXTL, SXTL2</td>
<td>Signed extend long</td>
<td>SXTL, SXTL2 on page C7-2167</td>
</tr>
<tr>
<td>UADALP</td>
<td>Unsigned add and accumulate long pairwise (vector form)</td>
<td>UADALP on page C7-2185</td>
</tr>
<tr>
<td>UADLP</td>
<td>Unsigned add long pairwise (vector form)</td>
<td>UADLP on page C7-2189</td>
</tr>
<tr>
<td>UQXTN, UQXTN2</td>
<td>Unsigned saturating extract narrow (vector form)</td>
<td>UQXTN, UQXTN2 on page C7-2260</td>
</tr>
<tr>
<td>URECPE</td>
<td>Unsigned reciprocal estimate (vector form)</td>
<td>URECPE on page C7-2263</td>
</tr>
<tr>
<td>URSQRTE</td>
<td>Unsigned reciprocal square root estimate (vector form)</td>
<td>URSQRTE on page C7-2270</td>
</tr>
<tr>
<td>USQADD</td>
<td>Unsigned saturating accumulate of signed value (vector and scalar form)</td>
<td>USQADD on page C7-2286</td>
</tr>
<tr>
<td>UXTL, UXTL2</td>
<td>Unsigned extend long</td>
<td>UXTL, UXTL2 on page C7-2295</td>
</tr>
<tr>
<td>XTN, XTN2</td>
<td>Extract narrow (vector form)</td>
<td>XTN, XTN2 on page C7-2302</td>
</tr>
</tbody>
</table>

C3.5.18 SIMD by element arithmetic

For information about the variants of these instructions, see *Common features of SIMD instructions on page C3-237.*
Table C3-82 shows the SIMD by element arithmetic instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMLA</td>
<td>Floating-point fused multiply-add (vector and scalar form)</td>
<td>FMLA (by element) on page C7-1662</td>
</tr>
<tr>
<td>FMLAL, FMLAL2</td>
<td>Floating-point fused multiply-add long (vector form)</td>
<td>FMLAL, FMLAL2 (by element) on page C7-1668</td>
</tr>
<tr>
<td>FMLS</td>
<td>Floating-point fused multiply-subtract (vector and scalar form)</td>
<td>FMLS (by element) on page C7-1672</td>
</tr>
<tr>
<td>FMLSL, FMLSL2</td>
<td>Floating-point fused multiply-subtract long (vector form)</td>
<td>FMLSL, FMLSL2 (by element) on page C7-1678</td>
</tr>
<tr>
<td>FMUL</td>
<td>Floating-point multiply (vector and scalar form)</td>
<td>FMUL (by element) on page C7-1693</td>
</tr>
<tr>
<td>FMULX</td>
<td>Floating-point multiply extended (vector and scalar form)</td>
<td>FMULX (by element) on page C7-1701</td>
</tr>
<tr>
<td>MLA</td>
<td>Multiply-add (vector form)</td>
<td>MLA (by element) on page C7-1846</td>
</tr>
<tr>
<td>MLS</td>
<td>Multiply-subtract (vector form)</td>
<td>MLS (by element) on page C7-1850</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply (vector form)</td>
<td>MUL (by element) on page C7-1866</td>
</tr>
<tr>
<td>SMLAL, SMLAL2</td>
<td>Signed multiply-add long (vector form)</td>
<td>SMLAL, SMLAL2 (by element) on page C7-1996</td>
</tr>
<tr>
<td>SMLSL, SMLSL2</td>
<td>Signed multiply-subtract long (vector form)</td>
<td>SMLSL, SMLSL2 (by element) on page C7-2001</td>
</tr>
<tr>
<td>SMULL, SMULL2</td>
<td>Signed multiply long (vector form)</td>
<td>SMULL, SMULL2 (by element) on page C7-2009</td>
</tr>
<tr>
<td>SQDMMLAL, SQDMLAL2</td>
<td>Signed saturating doubling multiply-add long (vector and scalar form)</td>
<td>SQDMLAL, SQDMLAL2 (by element) on page C7-2018</td>
</tr>
<tr>
<td>SQDMLSL, SQDMLSL2</td>
<td>Signed saturating doubling multiply-subtract long (vector form)</td>
<td>SQDMLSL, SQDMLSL2 (by element) on page C7-2025</td>
</tr>
<tr>
<td>SQDMULH</td>
<td>Signed saturating doubling multiply returning high half (vector and scalar form)</td>
<td>SQDMULH (by element) on page C7-2032</td>
</tr>
<tr>
<td>SQDMULL, SQDMULL2</td>
<td>Signed saturating doubling multiply long (vector and scalar form)</td>
<td>SQDMULL, SQDMULL2 (by element) on page C7-2037</td>
</tr>
<tr>
<td>SQRDMLAH</td>
<td>Signed saturating rounding doubling multiply accumulate returning high half</td>
<td>SQRDMLAH (by element) on page C7-2050</td>
</tr>
<tr>
<td>SQRDMLSH</td>
<td>Signed saturating rounding doubling multiply subtract returning high half</td>
<td>SQRDMLSH (vector) on page C7-2053</td>
</tr>
<tr>
<td>SQRDMULH</td>
<td>Signed saturating rounding doubling multiply returning high half (vector and scalar form)</td>
<td>SQRDMULH (by element) on page C7-2055</td>
</tr>
<tr>
<td>UMLAL, UMLAL2</td>
<td>Unsigned multiply-add long (vector form)</td>
<td>UMLAL, UMLAL2 (by element) on page C7-2225</td>
</tr>
<tr>
<td>UMLSL, UMLSL2</td>
<td>Unsigned multiply-subtract long (vector form)</td>
<td>UMLSL, UMLSL2 (by element) on page C7-2230</td>
</tr>
<tr>
<td>UMULL, UMULL2</td>
<td>Unsigned multiply long (vector form)</td>
<td>UMULL, UMULL2 (by element) on page C7-2238</td>
</tr>
</tbody>
</table>
C3.5.19 SIMD permute

Table C3-83 shows the SIMD permute instructions.

Table C3-83 SIMD permute instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>Extract vector from a pair of vectors</td>
<td>EXT on page C7-1478</td>
</tr>
<tr>
<td>TRN1</td>
<td>Transpose vectors (primary)</td>
<td>TRN1 on page C7-2173</td>
</tr>
<tr>
<td>TRN2</td>
<td>Transpose vectors (secondary)</td>
<td>TRN2 on page C7-2175</td>
</tr>
<tr>
<td>UZP1</td>
<td>Unzip vectors (primary)</td>
<td>UZP1 on page C7-2297</td>
</tr>
<tr>
<td>UZP2</td>
<td>Unzip vectors (secondary)</td>
<td>UZP2 on page C7-2299</td>
</tr>
<tr>
<td>ZIP1</td>
<td>Zip vectors (primary)</td>
<td>ZIP1 on page C7-2304</td>
</tr>
<tr>
<td>ZIP2</td>
<td>Zip vectors (secondary)</td>
<td>ZIP2 on page C7-2306</td>
</tr>
</tbody>
</table>

C3.5.20 SIMD immediate

Table C3-84 shows the SIMD immediate instructions.

Table C3-84 SIMD immediate instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIC</td>
<td>Bitwise bit clear immediate</td>
<td>BIC (vector, immediate) on page C7-1428</td>
</tr>
<tr>
<td>FMOV</td>
<td>Floating-point move immediate</td>
<td>FMOV (vector, immediate) on page C7-1682</td>
</tr>
<tr>
<td>MOVI</td>
<td>Move immediate</td>
<td>MOVI on page C7-1863</td>
</tr>
<tr>
<td>MVNI</td>
<td>Move inverted immediate</td>
<td>MVNI on page C7-1871</td>
</tr>
<tr>
<td>ORR</td>
<td>Bitwise inclusive OR immediate</td>
<td>ORR (vector, immediate) on page C7-1880</td>
</tr>
</tbody>
</table>

C3.5.21 SIMD shift (immediate)

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-237.

Table C3-85 shows the SIMD shift immediate instructions.

Table C3-85 SIMD shift (immediate) instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSHRN, RSHRN2</td>
<td>Rounding shift right narrow immediate (vector form)</td>
<td>RSHRN, RSHRN2 on page C7-1899</td>
</tr>
<tr>
<td>SHL</td>
<td>Shift left immediate (vector and scalar form)</td>
<td>SHL on page C7-1955</td>
</tr>
<tr>
<td>SHLL, SHLL2</td>
<td>Shift left long (by element size) (vector form)</td>
<td>SHLL, SHLL2 on page C7-1957</td>
</tr>
<tr>
<td>SHRN, SHRN2</td>
<td>Shift right narrow immediate (vector form)</td>
<td>SHRN, SHRN2 on page C7-1959</td>
</tr>
<tr>
<td>SLI</td>
<td>Shift left and insert immediate (vector and scalar form)</td>
<td>SLI on page C7-1963</td>
</tr>
<tr>
<td>SQRSHRN, SQRSHRN2</td>
<td>Signed saturating rounded shift right narrow immediate (vector and scalar form)</td>
<td>SQRSHRN, SQRSHRN2 on page C7-2062</td>
</tr>
</tbody>
</table>
Table C3-85 SIMD shift (immediate) instructions (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQRSRUN, SQRSRUN2</td>
<td>Signed saturating shift right unsigned narrow immediate (vector and scalar form)</td>
<td>SQRSRUN, SQRSRUN2 on page C7-2065</td>
</tr>
<tr>
<td>SQSRL</td>
<td>Signed saturating shift left immediate (vector and scalar form)</td>
<td>SQSRL (immediate) on page C7-2068</td>
</tr>
<tr>
<td>SQSHLU</td>
<td>Signed saturating shift left unsigned immediate (vector and scalar form)</td>
<td>SQSHLU on page C7-2073</td>
</tr>
<tr>
<td>SQSHRN, SQSHRN2</td>
<td>Signed saturating shift right narrow immediate (vector and scalar form)</td>
<td>SQSHRN, SQSHRN2 on page C7-2076</td>
</tr>
<tr>
<td>SQSHRN, SQSHRN2</td>
<td>Signed saturating shift right unsigned narrow immediate (vector and scalar form)</td>
<td>SQSHRN, SQSHRN2 on page C7-2076</td>
</tr>
<tr>
<td>SRI</td>
<td>Shift right and insert immediate (vector and scalar form)</td>
<td>SRI on page C7-2092</td>
</tr>
<tr>
<td>SRSHR</td>
<td>Signed rounding shift right immediate (vector and scalar form)</td>
<td>SRSHR on page C7-2097</td>
</tr>
<tr>
<td>SRSRA</td>
<td>Signed rounding shift right and accumulate immediate (vector and scalar form)</td>
<td>SRSRA on page C7-2099</td>
</tr>
<tr>
<td>SSHLL, SSHLL2</td>
<td>Signed shift left long immediate (vector form)</td>
<td>SSHLL, SSHLL2 on page C7-2104</td>
</tr>
<tr>
<td>SSHR</td>
<td>Signed shift right immediate (vector and scalar form)</td>
<td>SSHR on page C7-2106</td>
</tr>
<tr>
<td>SSRA</td>
<td>Signed integer shift right and accumulate immediate (vector and scalar form)</td>
<td>SSRA on page C7-2109</td>
</tr>
<tr>
<td>SXTL, SXTL2</td>
<td>Signed integer extend (vector only)</td>
<td>SXTL, SXTL2 on page C7-2167</td>
</tr>
<tr>
<td>UQRSRUN, UQRSRUN2</td>
<td>Unsigned saturating rounded shift right narrow immediate (vector and scalar form)</td>
<td>UQRSRUN, UQRSRUN2 on page C7-2247</td>
</tr>
<tr>
<td>UQSSHU</td>
<td>Unsigned saturating shift left immediate (vector and scalar form)</td>
<td>UQSSHU (immediate) on page C7-2250</td>
</tr>
<tr>
<td>UQSHRN, UQSHRN2</td>
<td>Unsigned saturating shift right narrow immediate (vector and scalar form)</td>
<td>UQSHRN, UQSHRN2 on page C7-2255</td>
</tr>
<tr>
<td>URSHR</td>
<td>Unsigned rounding shift right immediate (vector and scalar form)</td>
<td>URSHR on page C7-2268</td>
</tr>
<tr>
<td>URSRA</td>
<td>Unsigned integer rounding shift right and accumulate immediate (vector and scalar form)</td>
<td>URSRA on page C7-2271</td>
</tr>
<tr>
<td>USHLL, USHLL2</td>
<td>Unsigned shift left long immediate (vector form)</td>
<td>USHLL, USHLL2 on page C7-2280</td>
</tr>
<tr>
<td>USHR</td>
<td>Unsigned shift right immediate (vector and scalar form)</td>
<td>USHR on page C7-2282</td>
</tr>
<tr>
<td>USRA</td>
<td>Unsigned shift right and accumulate immediate (vector and scalar form)</td>
<td>USRA on page C7-2288</td>
</tr>
<tr>
<td>UXTL, UXTL2</td>
<td>Unsigned integer extend (vector only)</td>
<td>UXTL, UXTL2 on page C7-2295</td>
</tr>
</tbody>
</table>

C3.5.22 SIMD floating-point and integer conversion

The SIMD floating-point and integer conversion instructions generate the Invalid Operation floating-point exception in response to a floating-point input of NaN, infinity, or a numerical value that cannot be represented within the destination register. An out of range integer or a fixed-point result is saturated to the size of the destination register. A numeric result that differs from the input raises the Inexact floating-point exception.
Table C3-86 shows the SIMD floating-point and integer conversion instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCVTAS</td>
<td>Floating-point convert to signed integer, rounding to nearest with ties to away (vector and scalar form)</td>
<td>FCVTAS (vector) on page C7-1549</td>
</tr>
<tr>
<td>FCVTAU</td>
<td>Floating-point convert to unsigned integer, rounding to nearest with ties to away (vector and scalar form)</td>
<td>FCVTAU (vector) on page C7-1554</td>
</tr>
<tr>
<td>FCVTMS</td>
<td>Floating-point convert to signed integer, rounding toward minus infinity (vector and scalar form)</td>
<td>FCVTMS (vector) on page C7-1561</td>
</tr>
<tr>
<td>FCVTMU</td>
<td>Floating-point convert to unsigned integer, rounding toward minus infinity (vector and scalar form)</td>
<td>FCVTMU (vector) on page C7-1566</td>
</tr>
<tr>
<td>FCVTNS</td>
<td>Floating-point convert to signed integer, rounding to nearest with ties to even (vector and scalar form)</td>
<td>FCVTNS (vector) on page C7-1573</td>
</tr>
<tr>
<td>FCVTNU</td>
<td>Floating-point convert to unsigned integer, rounding to nearest with ties to even (vector and scalar form)</td>
<td>FCVTNU (vector) on page C7-1578</td>
</tr>
<tr>
<td>FCVTPS</td>
<td>Floating-point convert to signed integer, rounding toward positive infinity (vector and scalar form)</td>
<td>FCVTPS (vector) on page C7-1583</td>
</tr>
<tr>
<td>FCVTPU</td>
<td>Floating-point convert to unsigned integer, rounding toward positive infinity (vector and scalar form)</td>
<td>FCVTPU (vector) on page C7-1588</td>
</tr>
<tr>
<td>FCVTZS</td>
<td>Floating-point convert to signed integer, rounding toward zero (vector and scalar form)</td>
<td>FCVTZS (vector, integer) on page C7-1598</td>
</tr>
<tr>
<td></td>
<td>Floating-point convert to signed fixed-point, rounding toward zero (vector and scalar form)</td>
<td>FCVTZS (vector, fixed-point) on page C7-1595</td>
</tr>
<tr>
<td>FCVTZU</td>
<td>Floating-point convert to unsigned integer, rounding toward zero (vector and scalar form)</td>
<td>FCVTZU (vector, integer) on page C7-1608</td>
</tr>
<tr>
<td></td>
<td>Floating-point convert to unsigned fixed-point, rounding toward zero, (vector and scalar form)</td>
<td>FCVTZU (vector, fixed-point) on page C7-1605</td>
</tr>
<tr>
<td>SCVTF</td>
<td>Signed integer convert to floating-point (vector and scalar form)</td>
<td>SCVTF (vector, integer) on page C7-1924</td>
</tr>
<tr>
<td></td>
<td>Signed fixed-point convert to floating-point (vector and scalar form)</td>
<td>SCVTF (vector, fixed-point) on page C7-1921</td>
</tr>
<tr>
<td>UCVTF</td>
<td>Unsigned integer convert to floating-point (vector and scalar form)</td>
<td>UCVTF (vector, integer) on page C7-2198</td>
</tr>
<tr>
<td></td>
<td>Unsigned fixed-point convert to floating-point (vector and scalar form)</td>
<td>UCVTF (vector, fixed-point) on page C7-2195</td>
</tr>
</tbody>
</table>

C3.5.23 SIMD reduce (across vector lanes)

The SIMD reduce (across vector lanes) instructions perform arithmetic operations horizontally, that is across all lanes of the input vector. They deliver a single scalar result.
Table C3-87 shows the SIMD reduce (across vector lanes) instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDV</td>
<td>Add (across vector)</td>
<td>ADDV on page C7-1409</td>
</tr>
<tr>
<td>FMAXNMV</td>
<td>Floating-point maximum number (across vector)</td>
<td>FMAXNMV on page C7-1634</td>
</tr>
<tr>
<td>FMAXV</td>
<td>Floating-point maximum (across vector)</td>
<td>FMAXV on page C7-1640</td>
</tr>
<tr>
<td>FMINNMV</td>
<td>Floating-point minimum number (across vector)</td>
<td>FMINNMV on page C7-1654</td>
</tr>
<tr>
<td>FMINV</td>
<td>Floating-point minimum (across vector)</td>
<td>FMINV on page C7-1660</td>
</tr>
<tr>
<td>SADDLV</td>
<td>Signed add long (across vector)</td>
<td>SADDLV on page C7-1917</td>
</tr>
<tr>
<td>SMAXV</td>
<td>Signed maximum (across vector)</td>
<td>SMAXV on page C7-1988</td>
</tr>
<tr>
<td>SMINV</td>
<td>Signed minimum (across vector)</td>
<td>SMINV on page C7-1994</td>
</tr>
<tr>
<td>UADDLV</td>
<td>Unsigned add long (across vector)</td>
<td>UADDLV on page C7-2191</td>
</tr>
<tr>
<td>UMAXV</td>
<td>Unsigned maximum (across vector)</td>
<td>UMAXV on page C7-2217</td>
</tr>
<tr>
<td>UMINV</td>
<td>Unsigned minimum (across vector)</td>
<td>UMINV on page C7-2223</td>
</tr>
</tbody>
</table>

C3.5.24 SIMD pairwise arithmetic

The SIMD pairwise arithmetic instructions perform operations on pairs of adjacent elements and deliver a vector result.

Table C3-88 shows the SIMD pairwise arithmetic instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDP</td>
<td>Add pairwise (vector and scalar form)</td>
<td>ADDP (vector) on page C7-1407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADDP (scalar) on page C7-1405</td>
</tr>
<tr>
<td>FADDP</td>
<td>Floating-point add pairwise (vector and scalar form)</td>
<td>FADDP (vector) on page C7-1501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FADDP (scalar) on page C7-1499</td>
</tr>
<tr>
<td>FMAXNMP</td>
<td>Floating-point maximum number pairwise (vector and scalar form)</td>
<td>FMAXNMP (vector) on page C7-1632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMAXNMP (scalar) on page C7-1630</td>
</tr>
<tr>
<td>FMAXP</td>
<td>Floating-point maximum pairwise (vector and scalar form)</td>
<td>FMAXP (vector) on page C7-1638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMAXP (scalar) on page C7-1636</td>
</tr>
<tr>
<td>FMINNMP</td>
<td>Floating-point minimum number pairwise (vector and scalar form)</td>
<td>FMINNMP (vector) on page C7-1652</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMINNMP (scalar) on page C7-1650</td>
</tr>
<tr>
<td>FMINP</td>
<td>Floating-point minimum pairwise (vector and scalar form)</td>
<td>FMINP (vector) on page C7-1658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMINP (scalar) on page C7-1656</td>
</tr>
<tr>
<td>SMAXP</td>
<td>Signed maximum pairwise</td>
<td>SMAXP on page C7-1986</td>
</tr>
</tbody>
</table>
C3.5.25 SIMD dot product

FEAT_DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions, each with signed and unsigned versions:

Vector form The dot product is calculated for each element of the first vector with the corresponding element of the second element.

Indexed form The dot product is calculated for each element of the first vector with the element of the second vector that is indicated by the index argument to the instruction.

Note That is, a single element from the second vector is used, and the dot product is calculated between each element of the first vector and this single element from the second vector.

C3.5.26 SIMD table lookup

Table C3-90 shows the SIMD table lookup instructions.

Table C3-90 SIMD table lookup instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBL</td>
<td>Table vector lookup</td>
<td>TBL on page C7-2169</td>
</tr>
<tr>
<td>TBX</td>
<td>Table vector lookup extension</td>
<td>TBX on page C7-2171</td>
</tr>
</tbody>
</table>
C3.5.27 SIMD complex number arithmetic

FEAT_FCMA provides SIMD instructions that perform arithmetic on complex numbers held in element pairs in vector registers, where the less significant element of the pair contains the real component and the more significant element contains the imaginary component.

These instructions provide double-precision and single-precision versions. If FEAT_FP16 is implemented they also provide half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table C3-91 shows the FEAT_FCMA SIMD instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCADD</td>
<td>Floating-point complex add</td>
<td>FCADD on page C7-1503</td>
</tr>
<tr>
<td>FOMLA</td>
<td>Floating-point complex multiply accumulate (vector form)</td>
<td>FCMLA on page C7-1533</td>
</tr>
<tr>
<td>FOMLA</td>
<td>Floating-point complex multiply accumulate (indexed form)</td>
<td>FCMLA (by element) on page C7-1530</td>
</tr>
</tbody>
</table>

A pair of FOMLA instructions can be used to perform a complex number multiplication. This is demonstrated in Complex multiplication on page K10-8068.

C3.5.28 SIMD BFloat16

The SIMD BFloat16 instructions are provided by FEAT_BF16.

These instructions perform an implicit conversion of vectors of BF16 input values to IEEE 754 single-precision floating-point format, combined with an N-way dot product calculation that accumulates the products into a vector of single-precision accumulators.

All of these instructions perform arithmetic with fixed behaviors, irrespective of the values of FPCR. These behaviors are:

- Exceptional floating-point conditions produce the expected IEEE 754 default result, but do not modify the cumulative floating-point exception flags in FPSR, and cannot cause a trapped floating-point exception.
- Multiplication and addition operations are always chained and never fused. Multiplication that overflows cannot be brought back into range by a fused addition.

--- Note ---

The fractional part of the product of two BF16 inputs can be exactly represented in single-precision format, see BFloat16 floating-point format on page A1-48.

Table C3-92 shows these instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFDOT</td>
<td>BFloat16 floating-point dot product (vector and indexed forms)</td>
<td>BFDOT (vector) on page C7-1422</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BFDOT (by element) on page C7-1420</td>
</tr>
<tr>
<td>BFMMMLA</td>
<td>BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix</td>
<td>BFMMMLA on page C7-1427</td>
</tr>
</tbody>
</table>
C3.5.29 SIMD matrix multiplication

These instructions are provided by FEAT_I8MM, and include integer matrix multiply-accumulate instructions. The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each segment:

- The first source vector matrix is organised in row-by-row order.
- The second source vector matrix is organised in a column-by-column order.
- The destination vector matrix is organised in row-by-row order.

One matrix multiplication is performed per segment.

Table C3-93 shows these instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMMLA</td>
<td>Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix</td>
<td>SMMLA (vector) on page C7-2006</td>
</tr>
<tr>
<td>UMMLA</td>
<td>Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix</td>
<td>UMMLA (vector) on page C7-2235</td>
</tr>
<tr>
<td>USMMLA</td>
<td>Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix</td>
<td>USMMLA (vector) on page C7-2285</td>
</tr>
</tbody>
</table>

C3.5.30 The Cryptographic Extension

The instructions provided by the OPTIONAL Armv8.0 Cryptographic Extension use the SIMD and floating-point register file. For more information about the functions they provide see:

- Announcing the Advanced Encryption Standard.
- The Galois/Counter Mode of Operation.
- Announcing the Secure Hash Standard.
Table C3-94 shows the Armv8.0 Cryptographic Extension instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESD</td>
<td>AES single round decryption</td>
<td>AESD on page C7-1411</td>
</tr>
<tr>
<td>AESE</td>
<td>AES single round encryption</td>
<td>AESE on page C7-1412</td>
</tr>
<tr>
<td>AESIMC</td>
<td>AES inverse mix columns</td>
<td>AESIMC on page C7-1413</td>
</tr>
<tr>
<td>AESMC</td>
<td>AES mix columns</td>
<td>AESMC on page C7-1414</td>
</tr>
<tr>
<td>PMULL</td>
<td>Polynomial multiply long</td>
<td>PMULL, PMULL2 on page C7-1886a</td>
</tr>
<tr>
<td>SHA1C</td>
<td>SHA1 hash update (choose)</td>
<td>SHA1C on page C7-1935</td>
</tr>
<tr>
<td>SHA1H</td>
<td>SHA1 fixed rotate</td>
<td>SHA1H on page C7-1936</td>
</tr>
<tr>
<td>SHA1M</td>
<td>SHA1 hash update (majority)</td>
<td>SHA1M on page C7-1937</td>
</tr>
<tr>
<td>SHA1P</td>
<td>SHA1 hash update (parity)</td>
<td>SHA1P on page C7-1938</td>
</tr>
<tr>
<td>SHA1SU0</td>
<td>SHA1 schedule update 0</td>
<td>SHA1SU0 on page C7-1939</td>
</tr>
<tr>
<td>SHA1SU1</td>
<td>SHA1 schedule update 1</td>
<td>SHA1SU1 on page C7-1940</td>
</tr>
<tr>
<td>SHA256H</td>
<td>SHA256 hash update, part 1</td>
<td>SHA256H on page C7-1942</td>
</tr>
<tr>
<td>SHA256H2</td>
<td>SHA256 hash update, part 2</td>
<td>SHA256H2 on page C7-1941</td>
</tr>
<tr>
<td>SHA256SU0</td>
<td>SHA256 schedule update 0</td>
<td>SHA256SU0 on page C7-1943</td>
</tr>
<tr>
<td>SHA256SU1</td>
<td>SHA256 schedule update 1</td>
<td>SHA256SU1 on page C7-1944</td>
</tr>
</tbody>
</table>

Note: The Cryptographic Extension adds the variant of the instruction that operates on two 64-bit polynomials.

See The Armv8 Cryptographic Extension on page A2-67 for information about the permitted implementation options for the Cryptographic Extension.

Armv8.2 extensions to the Cryptographic Extension

Armv8.2 supports the following OPTIONAL extensions to the Cryptographic Extension:

- FEAT_SHA512, SHA2-512 functionality.
- FEAT_SHA3, SHA3 functionality on page C3-261.
- FEAT_SM3, SM3 functionality on page C3-262.
- FEAT_SM4, SM4 functionality on page C3-262.

FEAT_SHA512, SHA2-512 functionality

FEAT_SHA512 provides instructions to accelerate the SHA-2 hash algorithm using a digest that is larger than 256 bits. The relevant standards are SHA-384, SHA-512, SHA-512/224 and SHA-512/256. These are all based on the SHA-512 computation, and therefore this set of instructions is described as the SHA512 instructions.

Implementation of FEAT_SHA512 requires the implementation of the SHA1 and SHA2-256 instructions from the Armv8.0 Cryptographic Extension.

Note

Implementation of FEAT_SHA512 does not require the implementation of the AES instructions, and the 64-bit polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.
When `FEAT_SHA512` is implemented, the value of `ID_AA64ISAR0_EL1.SHA2` is `0b0010`, indicating support for the SHA512 instructions.

Table C3-95 shows the `FEAT_SHA512` instructions:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA512H</td>
<td>SHA512 Hash update part 1</td>
<td>SHA512H on page C7-1946</td>
</tr>
<tr>
<td>SHA512H2</td>
<td>SHA512 Hash update part 2</td>
<td>SHA512H2 on page C7-1948</td>
</tr>
<tr>
<td>SHA512SU0</td>
<td>SHA512 Schedule Update 0</td>
<td>SHA512SU0 on page C7-1950</td>
</tr>
<tr>
<td>SHA512SU1</td>
<td>SHA512 Schedule Update 1</td>
<td>SHA512SU1 on page C7-1951</td>
</tr>
</tbody>
</table>

Use of the SHA512 instructions on page K10-8070 shows an example of the use of these instructions to calculate a SHA512 hash iteration. This example code is not part of the architectural definition of these instructions.

FEAT_SHA3, SHA3 functionality

`FEAT_SHA3` provides instructions to accelerate the SHA-3 hash algorithm. This set of instructions is described as the SHA3 instructions.

Note

Implementation of `FEAT_SHA3` does not require the implementation of the AES instructions, and the 64-bit polynomial variants of the `PMULL` instructions, from the Armv8.0 Cryptographic Extension.

When `FEAT_SHA3` is implemented, the value of `ID_AA64ISAR0_EL1.SHA3` is `0b0001`, indicating support for the SHA3 instructions.

Table C3-96 shows the `FEAT_SHA3` instructions. The SHA-3 hash algorithm is based on a running digest of 1600 bytes, arranged as a five by five array of 64-bit registers. The Arm acceleration of these instructions is based on mapping the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit element in each vector. A series of transformations is performed on these registers as part of a round of the SHA-3 hash calculation.

The SIMD nature of the vector registers means the acceleration can compute two parallel SHA3 hash calculations, where one calculation is performed using the zeroth 64-bit element of each vector, and the other calculation is performed using the first 64-bit element of each vector.

To provide acceleration where the SIMD calculation is not required, the instructions provide variants that operate only on the zeroth 64-bit elements. These are provided as a power optimization.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOR3</td>
<td>Three-way Exclusive OR</td>
<td>EOR3 on page C7-1477</td>
</tr>
<tr>
<td>RAX1</td>
<td>Rotate and Exclusive OR</td>
<td>RAX1 on page C7-1890</td>
</tr>
<tr>
<td>XAR</td>
<td>Exclusive OR and Rotate</td>
<td>XAR on page C7-2301</td>
</tr>
<tr>
<td>BCAX</td>
<td>Bit Clear and Exclusive OR</td>
<td>BCAX on page C7-1416</td>
</tr>
</tbody>
</table>

Use of the SHA3 instructions on page K10-8071 shows an example of the use of these instructions to calculate the combined theta, phi, rho and chi operations of a SHA3 iteration. This example code is not part of the architectural definition of these instructions.
FEAT_SM3, SM3 functionality

FEAT_SM3 provides instructions to accelerate the SM3 hash algorithm, the standard Chinese hash algorithm. These are described as the SM3 instructions.

FEAT_SM3 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and independently of FEAT_SHA512.

Note
This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the FEAT_SM3 functionality.

When FEAT_SM3 is implemented, the value of ID_AA64ISAR0_EL1.SM3 is 0b0001, indicating support for the SM3 instructions.

Table C3-97 shows the FEAT_SM3 instructions. The SM3 algorithm computes a digest of 256 bits, that can be held in two vector registers. The SM3 instructions include instructions to accelerate the computation of the hash and the schedule update.

Note
The SM3 instruction names refer to intermediate variables defined as part of the SM3 Cryptographic Hash Algorithm specification.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM3SS1</td>
<td>SM3 SS1 calculation</td>
<td>SM3SS1 on page C7-1970</td>
</tr>
<tr>
<td>SM3TT1A</td>
<td>SM3 TT1 calculation, part A</td>
<td>SM3TT1A on page C7-1972</td>
</tr>
<tr>
<td>SM3TT1B</td>
<td>SM3 TT1 calculation, part B</td>
<td>SM3TT1B on page C7-1974</td>
</tr>
<tr>
<td>SM3TT2A</td>
<td>SM3 TT2 calculation, part A</td>
<td>SM3TT2A on page C7-1976</td>
</tr>
<tr>
<td>SM3TT2B</td>
<td>SM3 TT2 calculation, part B</td>
<td>SM3TT2B on page C7-1978</td>
</tr>
<tr>
<td>SM3PARTW1</td>
<td>SM3 PARTW calculation, part 1</td>
<td>SM3PARTW1 on page C7-1966</td>
</tr>
<tr>
<td>SM3PARTW2</td>
<td>SM3 PARTW calculation, part 1</td>
<td>SM3PARTW2 on page C7-1968</td>
</tr>
</tbody>
</table>

Use of the SM3 instructions on page K10-8072 shows an example of the use of these instructions to generate an SM3 hash. This example code is not part of the architectural definition of these instructions.

FEAT_SM4, SM4 functionality

FEAT_SM4 provides instruction to accelerate the SM4 encryption algorithm, the standard Chinese encryption algorithm. This set of instructions is described as the SM4 instructions.

FEAT_SM4 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and independently of FEAT_SHA3.

Note
This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the FEAT_SM4 functionality.

When FEAT_SM4 is implemented, the value of ID_AA64ISAR0_EL1.SM4 is 0b0001, indicating support for the SM4 instructions.
Table C3-98 shows the FEAT_SM4 instructions. The SM4 algorithm is 128-bit wide block cipher. The $SM4E$ instruction accelerates a single round of encryption or decryption, and the $SM4EKEY$ instruction accelerates a single round of key generation:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SM4E$</td>
<td>SM4 Encrypt</td>
<td>$SM4E$ on page C7-1980</td>
</tr>
<tr>
<td>$SM4EKEY$</td>
<td>SM4 Key</td>
<td>$SM4EKEY$ on page C7-1982</td>
</tr>
</tbody>
</table>

Use of the SM4 instructions on page K10-8074 shows an example of the use of these instructions to perform SM4 encryption and decryption. This example code is not part of the architectural definition of these instructions.
A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point
Chapter C4
A64 Instruction Set Encoding

This chapter describes the encoding of the A64 instruction set. It contains the following section:
• A64 instruction set encoding on page C4-266.

In this chapter:
• In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.
• In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

The A64 instruction encoding is:

31 29 28	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	09 08	07 06	05 04	03 02	01 00	
op0														

Table C4-1 Main encoding table for the A64 instruction set

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>Reserved</td>
</tr>
<tr>
<td>0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0010</td>
<td>SVE Instructions. See The Scalable Vector Extension (SVE) on page A2-99.</td>
</tr>
<tr>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100x</td>
<td>Data Processing -- Immediate</td>
</tr>
<tr>
<td>101x</td>
<td>Branches, Exception Generating and System instructions on page C4-271</td>
</tr>
<tr>
<td>x10</td>
<td>Loads and Stores on page C4-279</td>
</tr>
<tr>
<td>x110</td>
<td>Data Processing -- Register on page C4-310</td>
</tr>
<tr>
<td>x111</td>
<td>Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320</td>
</tr>
</tbody>
</table>

C4.1.1 Reserved

This section describes the encoding of the Reserved group. The encodings in this section are decoded from *A64 instruction set encoding*.

<table>
<thead>
<tr>
<th>31 29 28</th>
<th>25 24</th>
<th>16 15</th>
<th>14 13</th>
<th>12 11</th>
<th>10 09</th>
<th>08 07</th>
<th>06 05</th>
<th>04 03</th>
<th>02 01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>0000</td>
<td>op1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table C4-2 Encoding table for the Reserved group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>000</td>
<td>000000000000 UDF</td>
</tr>
<tr>
<td>-</td>
<td>!= 00000000 Unallocated.</td>
</tr>
<tr>
<td>!= 000</td>
<td>- Unallocated.</td>
</tr>
</tbody>
</table>

C4.1.2 Data Processing -- Immediate

This section describes the encoding of the Data Processing -- Immediate group. The encodings in this section are decoded from *A64 instruction set encoding*.
C4.1 A64 instruction set encoding

This section describes the encoding of the PC-rel. addressing instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.

```
|31 30 29 28|27 26 25 24|23 22|21 20 19 18|17 16 15|14 13 12|11 10 9 8|7 6 5 4|0 |
```

<table>
<thead>
<tr>
<th>op0</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00x</td>
<td>PC-rel. addressing</td>
</tr>
<tr>
<td>010</td>
<td>Add/subtract (immediate)</td>
</tr>
<tr>
<td>011</td>
<td>Add/subtract (immediate, with tags) on page C4-268</td>
</tr>
<tr>
<td>100</td>
<td>Logical (immediate) on page C4-268</td>
</tr>
<tr>
<td>101</td>
<td>Move wide (immediate) on page C4-269</td>
</tr>
<tr>
<td>110</td>
<td>Bitfield on page C4-270</td>
</tr>
<tr>
<td>111</td>
<td>Extract on page C4-270</td>
</tr>
</tbody>
</table>

PC-rel. addressing

This section describes the encoding of the PC-rel. addressing instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.

```
|31 30 29 28|27 26 25 24|23 22|21 20 19 18|17 16 15|14 13 12|11 10 9 8|5 4 |0 |
```

<table>
<thead>
<tr>
<th>op</th>
<th>immlo</th>
<th>immhi</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add/subtract (immediate)

This section describes the encoding of the Add/subtract (immediate) instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.

```
<table>
<thead>
<tr>
<th>op</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADR</td>
</tr>
<tr>
<td>1</td>
<td>ADRP</td>
</tr>
</tbody>
</table>
Add/subtract (immediate, with tags)

This section describes the encoding of the Add/subtract (immediate, with tags) instruction class. The encodings in this section are decoded from *Data Processing -- Immediate* on page C4-266.

### Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ADD (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ADDS (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SUB (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SUBS (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ADD (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ADDS (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SUB (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SUBS (immediate) - 64-bit variant</td>
</tr>
</tbody>
</table>

### Logical (immediate)

This section describes the encoding of the Logical (immediate) instruction class. The encodings in this section are decoded from *Data Processing -- Immediate* on page C4-266.

### Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ADDG</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>SUBG</td>
</tr>
</tbody>
</table>
Move wide (immediate)

This section describes the encoding of the Move wide (immediate) instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.
Bitfield

This section describes the encoding of the Bitfield instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.

```
<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21</th>
<th>16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf opc 0 0 1 1 0 N</td>
<td>immr</td>
<td>imms</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

Decode fields

<table>
<thead>
<tr>
<th>sf opc N</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 11 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 - 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 00 0</td>
<td>SBFM - 32-bit variant</td>
</tr>
<tr>
<td>0 01 0</td>
<td>BFM - 32-bit variant</td>
</tr>
<tr>
<td>0 10 0</td>
<td>UBFM - 32-bit variant</td>
</tr>
<tr>
<td>1 - 0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 00 1</td>
<td>SBFM - 64-bit variant</td>
</tr>
<tr>
<td>1 01 1</td>
<td>BFM - 64-bit variant</td>
</tr>
<tr>
<td>1 10 1</td>
<td>UBFM - 64-bit variant</td>
</tr>
</tbody>
</table>

Extract

This section describes the encoding of the Extract instruction class. The encodings in this section are decoded from Data Processing -- Immediate on page C4-266.

```
<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf op21 1 0 0 1 1 1 N o0</td>
<td>Rm</td>
<td>imms</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

Decode fields

<table>
<thead>
<tr>
<th>sf op21 N o0 imms</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>- x1 - - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- 00 - 1 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- 1x - - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 - - - 1xxxx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 - 1 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 00 0 0 0xxxx</td>
<td>EXTR - 32-bit variant</td>
</tr>
<tr>
<td>1 - 0 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 00 1 0 -</td>
<td>EXTR - 64-bit variant</td>
</tr>
</tbody>
</table>
C4.1.3 Branches, Exception Generating and System instructions

This section describes the encoding of the Branches, Exception Generating and System instructions group. The encodings in this section are decoded from A64 instruction set encoding on page C4-266.

Table C4-4 Encoding table for the Branches, Exception Generating and System instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>010</td>
<td>0xxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>110</td>
<td>00xxxxxxxxxxxxx</td>
</tr>
<tr>
<td>110</td>
<td>0100000110010</td>
</tr>
<tr>
<td>110</td>
<td>0100000110011</td>
</tr>
<tr>
<td>110</td>
<td>01000000000100</td>
</tr>
<tr>
<td>110</td>
<td>0100x01xxxxxxx</td>
</tr>
<tr>
<td>110</td>
<td>0100x1xxxxxxx</td>
</tr>
<tr>
<td>110</td>
<td>1xxxxxxxxxxxxx</td>
</tr>
<tr>
<td>x00</td>
<td>-</td>
</tr>
<tr>
<td>x01</td>
<td>0xxxxxxxxxxxxx</td>
</tr>
<tr>
<td>x01</td>
<td>1xxxxxxxxxxxxx</td>
</tr>
</tbody>
</table>

Conditional branch (immediate)

This section describes the encoding of the Conditional branch (immediate) instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions.

| | | | | | 5 | 4 | 3 | 0 |
|----------------|----------------|----------------|---------------|----------------|----------------|
| 31 30 29 28 27 26 25 24 23 | | | | | | | | |
| 0 1 0 1 0 1 0 | op1 | imm19 | oo0 | cond |

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>oo1</td>
<td>oo0</td>
</tr>
<tr>
<td>0 0</td>
<td>B.cond</td>
</tr>
<tr>
<td>0 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 -</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
### Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are decoded from *Branches, Exception Generating and System instructions* on page C4-271.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 21 20</th>
<th>5 4</th>
<th>2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0</td>
<td>opc</td>
<td>imm16</td>
<td>op2</td>
<td>LL</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>op2</th>
<th>LL</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>001</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01x</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1xx</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>01</td>
<td>SVC</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>10</td>
<td>HVC</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>11</td>
<td>SMC</td>
</tr>
<tr>
<td>001</td>
<td>000</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>000</td>
<td>00</td>
<td>BRK</td>
</tr>
<tr>
<td>001</td>
<td>000</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>000</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>000</td>
<td>00</td>
<td>HLT</td>
</tr>
<tr>
<td>010</td>
<td>000</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011</td>
<td>000</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011</td>
<td>000</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100</td>
<td>000</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>000</td>
<td>00</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>000</td>
<td>01</td>
<td>DCPS1</td>
</tr>
<tr>
<td>101</td>
<td>000</td>
<td>10</td>
<td>DCPS2</td>
</tr>
<tr>
<td>101</td>
<td>000</td>
<td>11</td>
<td>DCPS3</td>
</tr>
<tr>
<td>110</td>
<td>000</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>111</td>
<td>000</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from *Branches, Exception Generating and System instructions* on page C4-271.
<table>
<thead>
<tr>
<th>CRm</th>
<th>op2</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>000</td>
<td>NOP</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>001</td>
<td>YIELD</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>010</td>
<td>WFE</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>011</td>
<td>WFI</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>100</td>
<td>SEV</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>101</td>
<td>SEVL</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>110</td>
<td>DGH</td>
<td>FEAT_DGH</td>
</tr>
<tr>
<td>0000</td>
<td>111</td>
<td>XPACD, XPACI, XPACLRI</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>000</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA1716 variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>010</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB1716 variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>100</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA1716 variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>110</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB1716 variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0010</td>
<td>000</td>
<td>ESB</td>
<td>FEAT_RAS</td>
</tr>
<tr>
<td>0010</td>
<td>001</td>
<td>PSB CSYNC</td>
<td>FEAT_SPE</td>
</tr>
<tr>
<td>0010</td>
<td>010</td>
<td>TSB CSYNC</td>
<td>FEAT_TRF</td>
</tr>
<tr>
<td>0010</td>
<td>100</td>
<td>CSDB</td>
<td>-</td>
</tr>
<tr>
<td>0011</td>
<td>000</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIAZ variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>001</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIASP variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>010</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBZ variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>011</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBSP variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>100</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIAZ variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>101</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIASP variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>110</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBZ variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0011</td>
<td>111</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBSP variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0100</td>
<td>xx0</td>
<td>BTI</td>
<td>FEAT_BTI</td>
</tr>
</tbody>
</table>
Barriers

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRm op2 Rt</td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001 != 11111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010 11111</td>
<td>CLREX</td>
</tr>
<tr>
<td>101 11111</td>
<td>DMB</td>
</tr>
<tr>
<td>110 11111</td>
<td>ISB</td>
</tr>
<tr>
<td>111 != 11111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>111 11111</td>
<td>SB</td>
</tr>
<tr>
<td>!= 0x00 100 11111</td>
<td>DSB</td>
</tr>
<tr>
<td>0000 100 11111</td>
<td>SSBB</td>
</tr>
<tr>
<td>0001 011 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001x 011 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01xx 011 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0100 100 11111</td>
<td>PSSBB</td>
</tr>
<tr>
<td>1xxx 011 -</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

PSTATE

This section describes the encoding of the PSTATE instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>op1 op2 Rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - != 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 11111</td>
<td>MSR (immediate)</td>
<td>-</td>
</tr>
</tbody>
</table>
System instructions

This section describes the encoding of the System instructions instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>17</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 0 1 0 1 0 0</td>
<td>L 0 1</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Decode fields**
- op1
- op2
- Rt
- Instruction page
- Feature

000	000	11111	CFINV	FEAT_FlagM
000	001	11111	XAFLAG	FEAT_FlagM2
000	010	11111	AXFLAG	FEAT_FlagM2

System register move

This section describes the encoding of the System register move instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>17</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 0 1 0 1 0 0</td>
<td>L 1</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Decode fields**
- L
- Instruction page

| 0 | MSR (register) |
| 1 | MRS |

Unconditional branch (register)

This section describes the encoding of the Unconditional branch (register) instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.
### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>op2</th>
<th>op3</th>
<th>Rn</th>
<th>op4</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>!= 11111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>!= 0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>00000</td>
<td>BR</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>00001</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000010</td>
<td>-</td>
<td>!= 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000010</td>
<td>-</td>
<td>11111</td>
<td>BRAA, BRAAZ, BRAB, BRABZ - Key A, zero modifier variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000011</td>
<td>-</td>
<td>!= 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>000011</td>
<td>-</td>
<td>11111</td>
<td>BRAA, BRAAZ, BRAB, BRABZ - Key B, zero modifier variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>0001xx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>001xxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>01xxxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>11111</td>
<td>1xxxxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>!= 0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>00000</td>
<td>BLR</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000001</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000010</td>
<td>-</td>
<td>!= 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000010</td>
<td>-</td>
<td>11111</td>
<td>BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, zero modifier variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000011</td>
<td>-</td>
<td>!= 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>000011</td>
<td>-</td>
<td>11111</td>
<td>BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, zero modifier variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>0001xx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>001xxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>01xxxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0001</td>
<td>11111</td>
<td>1xxxxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>!= 0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>11111</td>
<td>000000</td>
<td>-</td>
<td>00000</td>
<td>RET</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>11111</td>
<td>000001</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>op2</th>
<th>op3</th>
<th>Rn</th>
<th>op4</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>1111</td>
<td>0000</td>
<td>10</td>
<td>!= 11111 != 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>0000</td>
<td>10</td>
<td>11111</td>
<td>RETAA, RETAB - RETAA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>!= 11111 != 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>11111</td>
<td>RETAA, RETAB - RETAB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>001x</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>01xx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>1111</td>
<td>1xxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0111</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>!= 11111 != 00000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>00000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>!= 11111 00000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0000</td>
<td>11</td>
<td>11111 00000</td>
<td>ERET</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0001</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0001</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>0001</td>
<td>11</td>
<td>!= 11111 != 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1111</td>
<td>1xxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>1xxx</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0011</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>1111</td>
<td>!= 00000</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>1111</td>
<td>!= 00000</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>1111</td>
<td>!= 00000</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>1111</td>
<td>!= 00000</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>1111</td>
<td>1xxx</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>011x</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
Unconditional branch (immediate)

This section describes the encoding of the Unconditional branch (immediate) instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>op 0 0 1 0 1</td>
<td></td>
<td>imm26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>BL</td>
</tr>
</tbody>
</table>
Compare and branch (immediate)
This section describes the encoding of the Compare and branch (immediate) instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

```
|31 30 29 28|27 26 25 24|23 | | | | | 5 4 | 0 |
sf 0 1 1 0 1 0 op imm19 | Rt
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf 0 0</td>
<td>CBZ - 32-bit variant</td>
</tr>
<tr>
<td>0 1</td>
<td>CBNZ - 32-bit variant</td>
</tr>
<tr>
<td>1 0</td>
<td>CBZ - 64-bit variant</td>
</tr>
<tr>
<td>1 1</td>
<td>CBNZ - 64-bit variant</td>
</tr>
</tbody>
</table>

Test and branch (immediate)
This section describes the encoding of the Test and branch (immediate) instruction class. The encodings in this section are decoded from Branches, Exception Generating and System instructions on page C4-271.

```
|31 30 29 28|27 26 25 24|23 |19 18 | | | | 5 4 | 0 |
b5 0 1 1 0 1 1 op b40 imm14 | Rt
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td>TBZ</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TBNZ</td>
</tr>
</tbody>
</table>

C4.1.4   Loads and Stores
This section describes the encoding of the Loads and Stores group. The encodings in this section are decoded from A64 instruction set encoding on page C4-266.
### Table C4-5 Encoding table for the Loads and Stores group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>op4</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>1</td>
<td>00</td>
<td>00000</td>
<td>-</td>
<td>Advanced SIMD load/store multiple structures on page C4-281</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>01</td>
<td>0xxxx</td>
<td>-</td>
<td>Advanced SIMD load/store multiple structures (post-indexed) on page C4-282</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>0x</td>
<td>1xxxx</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>10</td>
<td>x0000</td>
<td>-</td>
<td>Advanced SIMD load/store single structure on page C4-283</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Advanced SIMD load/store single structure (post-indexed) on page C4-286</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>x0</td>
<td>1xxxx</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>x0</td>
<td>xx1xx</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>x0</td>
<td>xxx1x</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x00</td>
<td>1</td>
<td>x0</td>
<td>xxxx1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x00</td>
<td>0</td>
<td>0x</td>
<td>-</td>
<td>-</td>
<td>Load/store memory tags on page C4-289</td>
</tr>
<tr>
<td>0x00</td>
<td>0</td>
<td>0x</td>
<td>00</td>
<td>-</td>
<td>Load/store exclusive on page C4-290</td>
</tr>
<tr>
<td>0x01</td>
<td>0</td>
<td>1x</td>
<td>0xxxx</td>
<td>00</td>
<td>LDAPR/STLR (unscaled immediate) on page C4-292</td>
</tr>
<tr>
<td>0x01</td>
<td>-</td>
<td>0x</td>
<td>-</td>
<td>-</td>
<td>Load register (literal) on page C4-293</td>
</tr>
<tr>
<td>0x10</td>
<td>-</td>
<td>00</td>
<td>-</td>
<td>-</td>
<td>Load/store no-allocate pair (offset) on page C4-294</td>
</tr>
<tr>
<td>0x10</td>
<td>-</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>Load/store register pair (post-indexed) on page C4-294</td>
</tr>
<tr>
<td>0x10</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>Load/store register pair (offset) on page C4-295</td>
</tr>
<tr>
<td>0x10</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Load/store register pair (pre-indexed) on page C4-296</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>0xxxx</td>
<td>00</td>
<td>Load/store register (unscaled immediate) on page C4-296</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>0xxxx</td>
<td>01</td>
<td>Load/store register (immediate post-indexed) on page C4-298</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>0xxxx</td>
<td>10</td>
<td>Load/store register (unprivileged) on page C4-299</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>0xxxx</td>
<td>11</td>
<td>Load/store register (immediate pre-indexed) on page C4-299</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>1xxxx</td>
<td>00</td>
<td>Atomic memory operations on page C4-301</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>1xxxx</td>
<td>10</td>
<td>Load/store register (register offset) on page C4-307</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>0x</td>
<td>1xxxx</td>
<td>x1</td>
<td>Load/store register (pac) on page C4-308</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>1x</td>
<td>-</td>
<td>-</td>
<td>Load/store register (unsigned immediate) on page C4-309</td>
</tr>
</tbody>
</table>
### Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 0 0 0</td>
<td>L 0 0 0 0 0 0 0</td>
<td>opcode</td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>ST4 (multiple structures)</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0010</td>
<td>ST1 (multiple structures) - Four registers variant</td>
</tr>
<tr>
<td>0</td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0100</td>
<td>ST3 (multiple structures)</td>
</tr>
<tr>
<td>0</td>
<td>0101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>ST1 (multiple structures) - Three registers variant</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>ST1 (multiple structures) - One register variant</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>ST2 (multiple structures)</td>
</tr>
<tr>
<td>0</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1010</td>
<td>ST1 (multiple structures) - Two registers variant</td>
</tr>
<tr>
<td>0</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>11xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0000</td>
<td>LD4 (multiple structures)</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
<td>LD1 (multiple structures) - Four registers variant</td>
</tr>
<tr>
<td>1</td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
<td>LD3 (multiple structures)</td>
</tr>
<tr>
<td>1</td>
<td>0101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0110</td>
<td>LD1 (multiple structures) - Three registers variant</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
<td>LD1 (multiple structures) - One register variant</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>LD2 (multiple structures)</td>
</tr>
<tr>
<td>1</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1010</td>
<td>LD1 (multiple structures) - Two registers variant</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>11xx</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Advanced SIMD load/store multiple structures (post-indexed)

This section describes the encoding of the Advanced SIMD load/store multiple structures (post-indexed) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 12 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 0 1 1 0 0 0</td>
<td>Rm 1 0 1 0 0</td>
<td>opcode 1 0 1 0 0</td>
<td>size 1 0 1 0 0</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>Rm</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>11xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 != 11111</td>
<td>0000</td>
<td>ST4 (multiple structures) - Register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>0010</td>
<td>ST1 (multiple structures) - Four registers, register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>0100</td>
<td>ST3 (multiple structures) - Register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>0110</td>
<td>ST1 (multiple structures) - Three registers, register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>0111</td>
<td>ST1 (multiple structures) - One register, register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>1000</td>
<td>ST2 (multiple structures) - Register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 != 11111</td>
<td>1010</td>
<td>ST1 (multiple structures) - Two registers, register offset variant</td>
<td></td>
</tr>
<tr>
<td>0 11111 0000</td>
<td>ST4 (multiple structures) - Immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 0010</td>
<td>ST1 (multiple structures) - Four registers, immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 0100</td>
<td>ST3 (multiple structures) - Immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 0110</td>
<td>ST1 (multiple structures) - Three registers, immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 0111</td>
<td>ST1 (multiple structures) - One register, immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 1000</td>
<td>ST2 (multiple structures) - Immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 11111 1010</td>
<td>ST1 (multiple structures) - Two registers, immediate offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 0001</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 0011</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 0101</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 1001</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 1011</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - 11xx</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structure instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.

<table>
<thead>
<tr>
<th>L Rm opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 != 11111 0000</td>
<td>LD4 (multiple structures) - Register offset variant</td>
</tr>
<tr>
<td>1 != 11111 0010</td>
<td>LD1 (multiple structures) - Four registers, register offset variant</td>
</tr>
<tr>
<td>1 != 11111 0100</td>
<td>LD3 (multiple structures) - Register offset variant</td>
</tr>
<tr>
<td>1 != 11111 0110</td>
<td>LD1 (multiple structures) - Three registers, register offset variant</td>
</tr>
<tr>
<td>1 != 11111 0111</td>
<td>LD1 (multiple structures) - One register, register offset variant</td>
</tr>
<tr>
<td>1 != 11111 1000</td>
<td>LD2 (multiple structures) - Register offset variant</td>
</tr>
<tr>
<td>1 != 11111 1010</td>
<td>LD1 (multiple structures) - Two registers, register offset variant</td>
</tr>
<tr>
<td>1 11111 0000</td>
<td>LD4 (multiple structures) - Immediate offset variant</td>
</tr>
<tr>
<td>1 11111 0010</td>
<td>LD1 (multiple structures) - Four registers, immediate offset variant</td>
</tr>
<tr>
<td>1 11111 0100</td>
<td>LD3 (multiple structures) - Immediate offset variant</td>
</tr>
<tr>
<td>1 11111 0110</td>
<td>LD1 (multiple structures) - Three registers, immediate offset variant</td>
</tr>
<tr>
<td>1 11111 0111</td>
<td>LD1 (multiple structures) - One register, immediate offset variant</td>
</tr>
<tr>
<td>1 11111 1000</td>
<td>LD2 (multiple structures) - Immediate offset variant</td>
</tr>
<tr>
<td>1 11111 1010</td>
<td>LD1 (multiple structures) - Two registers, immediate offset variant</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>Instruction page</th>
<th>L Rm opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD4 (multiple structures) - Register offset variant</td>
<td>1 != 11111 0000</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Four registers, register offset variant</td>
<td>1 != 11111 0010</td>
</tr>
<tr>
<td>LD3 (multiple structures) - Register offset variant</td>
<td>1 != 11111 0100</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Three registers, register offset variant</td>
<td>1 != 11111 0110</td>
</tr>
<tr>
<td>LD1 (multiple structures) - One register, register offset variant</td>
<td>1 != 11111 0111</td>
</tr>
<tr>
<td>LD2 (multiple structures) - Register offset variant</td>
<td>1 != 11111 1000</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Two registers, register offset variant</td>
<td>1 != 11111 1010</td>
</tr>
<tr>
<td>LD4 (multiple structures) - Immediate offset variant</td>
<td>1 11111 0000</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Four registers, immediate offset variant</td>
<td>1 11111 0010</td>
</tr>
<tr>
<td>LD3 (multiple structures) - Immediate offset variant</td>
<td>1 11111 0100</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Three registers, immediate offset variant</td>
<td>1 11111 0110</td>
</tr>
<tr>
<td>LD1 (multiple structures) - One register, immediate offset variant</td>
<td>1 11111 0111</td>
</tr>
<tr>
<td>LD2 (multiple structures) - Immediate offset variant</td>
<td>1 11111 1000</td>
</tr>
<tr>
<td>LD1 (multiple structures) - Two registers, immediate offset variant</td>
<td>1 11111 1010</td>
</tr>
</tbody>
</table>

Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structure instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.
<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>opcode</th>
<th>S</th>
<th>size</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>ST1 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td></td>
<td>00</td>
<td>ST3 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td></td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>ST3 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>000</td>
<td></td>
<td>-</td>
<td>ST2 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>001</td>
<td></td>
<td>-</td>
<td>ST4 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>010</td>
<td></td>
<td>x0</td>
<td>ST2 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>010</td>
<td></td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>011</td>
<td></td>
<td>x0</td>
<td>ST4 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>011</td>
<td></td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td></td>
<td>00</td>
<td>ST2 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td></td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>ST2 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td></td>
<td>00</td>
<td>ST4 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td></td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>ST4 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000</td>
<td></td>
<td>-</td>
<td>LD1 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001</td>
<td></td>
<td>-</td>
<td>LD3 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010</td>
<td></td>
<td>x0</td>
<td>LD1 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010</td>
<td></td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>011</td>
<td></td>
<td>x0</td>
<td>LD3 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>011</td>
<td></td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td></td>
<td>00</td>
<td>LD1 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td></td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>LD1 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>L</td>
<td>R</td>
<td>opcode</td>
<td>S</td>
<td>size</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------</td>
<td>----</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>101</td>
<td>-</td>
<td>00</td>
<td>LD3 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>101</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>LD3 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>-</td>
<td>LD1R</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>110</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>111</td>
<td>0</td>
<td>-</td>
<td>LD3R</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>111</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>000</td>
<td>-</td>
<td>-</td>
<td>LD2 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>-</td>
<td>-</td>
<td>LD4 (single structure) - 8-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>010</td>
<td>-</td>
<td>x0</td>
<td>LD2 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>010</td>
<td>-</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>011</td>
<td>-</td>
<td>x0</td>
<td>LD4 (single structure) - 16-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>011</td>
<td>-</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>-</td>
<td>00</td>
<td>LD2 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>LD2 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>-</td>
<td>00</td>
<td>LD4 (single structure) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>LD4 (single structure) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>0</td>
<td>-</td>
<td>LD2R</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>111</td>
<td>0</td>
<td>-</td>
<td>LD4R</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>111</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Advanced SIMD load/store single structure (post-indexed)

This section describes the encoding of the Advanced SIMD load/store single structure (post-indexed) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>Rm</th>
<th>opcode</th>
<th>S</th>
<th>size</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{x}</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>01\text{0}</td>
<td>-</td>
<td>\text{x1}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>01\text{1}</td>
<td>-</td>
<td>\text{x1}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{00}</td>
<td>-</td>
<td>\text{1x}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{00}</td>
<td>1</td>
<td>\text{01}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{01}</td>
<td>-</td>
<td>\text{10}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{01}</td>
<td>0</td>
<td>\text{11}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1\text{01}</td>
<td>1</td>
<td>\text{x1}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>00\text{0}</td>
<td>-</td>
<td>ST1 (single structure) - 8-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>00\text{1}</td>
<td>-</td>
<td>ST3 (single structure) - 8-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>10\text{0}</td>
<td>-</td>
<td>ST1 (single structure) - 16-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>10\text{1}</td>
<td>-</td>
<td>ST3 (single structure) - 16-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>1\text{11}</td>
<td>1</td>
<td>ST1 (single structure) - 32-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>1\text{11}</td>
<td>0</td>
<td>ST3 (single structure) - 32-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>1\text{11}</td>
<td>0</td>
<td>ST1 (single structure) - 64-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>1\text{11}</td>
<td>0</td>
<td>ST3 (single structure) - 64-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>01\text{0}</td>
<td>-</td>
<td>\text{x1}</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>01\text{1}</td>
<td>-</td>
<td>\text{x1}</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>Rm</th>
<th>opcode</th>
<th>S</th>
<th>size</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>100</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>100</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>101</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>000</td>
<td>-</td>
<td>ST2 (single structure) - 8-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>001</td>
<td>-</td>
<td>ST4 (single structure) - 8-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>010</td>
<td>-</td>
<td>ST2 (single structure) - 16-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>011</td>
<td>-</td>
<td>ST4 (single structure) - 16-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>100</td>
<td>-</td>
<td>ST2 (single structure) - 32-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>100</td>
<td>0</td>
<td>ST2 (single structure) - 64-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>!=</td>
<td>11111</td>
<td>101</td>
<td>-</td>
<td>ST4 (single structure) - 32-bit, register offset variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>000</td>
<td>-</td>
<td>ST2 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>001</td>
<td>-</td>
<td>ST4 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>010</td>
<td>-</td>
<td>ST2 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>011</td>
<td>-</td>
<td>ST4 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>100</td>
<td>-</td>
<td>ST2 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>100</td>
<td>0</td>
<td>ST2 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>101</td>
<td>-</td>
<td>ST4 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>101</td>
<td>0</td>
<td>ST4 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>010</td>
<td>-</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>011</td>
<td>-</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>100</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>101</td>
<td>-</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>101</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>101</td>
<td>1</td>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>110</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>111</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>000</td>
<td>-</td>
<td>LD1 (single structure) - 8-bit, register offset variant</td>
</tr>
<tr>
<td>L</td>
<td>R</td>
<td>Rm</td>
<td>opcode</td>
<td>S</td>
<td>size</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>--------</td>
<td>---</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>001</td>
<td>LD3 (single structure) - 8-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>010</td>
<td>LD1 (single structure) - 16-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>011</td>
<td>LD3 (single structure) - 16-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>100</td>
<td>LD1 (single structure) - 32-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>100</td>
<td>LD1 (single structure) - 64-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>110</td>
<td>LD1 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!=</td>
<td>11111</td>
<td>111</td>
<td>LD1 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>000</td>
<td>-</td>
<td>LD1 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>001</td>
<td>-</td>
<td>LD3 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>010</td>
<td>-</td>
<td>LD1 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>011</td>
<td>-</td>
<td>LD3 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>100</td>
<td>-</td>
<td>LD1 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>100</td>
<td>0</td>
<td>LD1 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>101</td>
<td>-</td>
<td>LD3 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>101</td>
<td>0</td>
<td>LD3 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>110</td>
<td>-</td>
<td>LD1R - Immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>111</td>
<td>-</td>
<td>LD3R - Immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 000</td>
<td>100</td>
<td>0</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100 0</td>
<td>11</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100 1</td>
<td>x1</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
<td>10</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101 0</td>
<td>11</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101 1</td>
<td>x1</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>1</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>111</td>
<td>1</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>000</td>
<td>-</td>
<td>LD2 (single structure) - 8-bit, register offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>-</td>
<td>LD4 (single structure) - 8-bit, register offset variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>010</td>
<td>-</td>
<td>LD2 (single structure) - 16-bit, register offset variant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load/store memory tags

This section describes the encoding of the Load/store memory tags instruction class. The encodings in this section are decoded from *Loads and Stores on page C4-279.*

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1</td>
<td>1 0 1 0 1</td>
<td>opc</td>
<td>1</td>
<td>imm9</td>
<td>op2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

**Decode fields**

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>Rm</th>
<th>opcode</th>
<th>S</th>
<th>size</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>011</td>
<td>-</td>
<td>x0</td>
<td>LD4 (single structure) - 16-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>100</td>
<td>-</td>
<td>00</td>
<td>LD2 (single structure) - 32-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>LD2 (single structure) - 64-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>101</td>
<td>-</td>
<td>00</td>
<td>LD4 (single structure) - 32-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>LD4 (single structure) - 64-bit, register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>110</td>
<td>0</td>
<td>-</td>
<td>LD2R - Register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
<td>111</td>
<td>0</td>
<td>-</td>
<td>LD4R - Register offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>000</td>
<td>-</td>
<td>-</td>
<td>LD2 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>001</td>
<td>-</td>
<td>-</td>
<td>LD4 (single structure) - 8-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>010</td>
<td>-</td>
<td>x0</td>
<td>LD2 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>011</td>
<td>-</td>
<td>x0</td>
<td>LD4 (single structure) - 16-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>100</td>
<td>0</td>
<td>00</td>
<td>LD2 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>100</td>
<td>0</td>
<td>01</td>
<td>LD2 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>101</td>
<td>0</td>
<td>00</td>
<td>LD4 (single structure) - 32-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>101</td>
<td>0</td>
<td>01</td>
<td>LD4 (single structure) - 64-bit, immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>110</td>
<td>0</td>
<td>-</td>
<td>LD2R - Immediate offset variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>111</td>
<td>0</td>
<td>-</td>
<td>LD4R - Immediate offset variant</td>
<td></td>
</tr>
</tbody>
</table>
### Load/store exclusive

This section describes the encoding of the Load/store exclusive instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>imm9</th>
<th>op2</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>-</td>
<td>10</td>
<td>STZG - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>01</td>
<td>-</td>
<td>11</td>
<td>STZG - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>01</td>
<td>ST2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>10</td>
<td>ST2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>11</td>
<td>ST2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>10</td>
<td>!= 00000000</td>
<td>00</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>00000000</td>
<td>00</td>
<td>STGM</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>01</td>
<td>STZ2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>10</td>
<td>STZ2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>11</td>
<td>STZ2G - Encoding</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>11</td>
<td>!= 00000000</td>
<td>00</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>00000000</td>
<td>00</td>
<td>LDGM</td>
<td>FEAT_MTE</td>
</tr>
</tbody>
</table>

#### Instruction page

<table>
<thead>
<tr>
<th>size</th>
<th>o2</th>
<th>L</th>
<th>o1</th>
<th>o0</th>
<th>Rt2</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>! = 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0x</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>! = 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>STXRB</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>STLXRB</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 32-bit CASP variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 32-bit CASPL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>LDXRB</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>LDAXRB</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 32-bit CASPA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 32-bit CASPAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size o2 L o1 o0 Rt2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 0 0 0 -</td>
<td>STLLRB</td>
<td>FEAT_LOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 0 0 1 -</td>
<td>STLRRB</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 0 1 0 11111</td>
<td>CASB, CASAB, CASALB, CASLB - CASB variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 0 1 1 11111</td>
<td>CASB, CASAB, CASALB, CASLB - CASAB variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 1 0 0 -</td>
<td>LDLARRB</td>
<td>FEAT_LOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 1 0 1 -</td>
<td>LDARBB</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 1 1 0 11111</td>
<td>CASB, CASAB, CASALB, CASLB - CASAB variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1 1 1 1 11111</td>
<td>CASB, CASAB, CASALB, CASLB - CASAB variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 0 0 0 0 -</td>
<td>STXRH</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 0 0 1 -</td>
<td>STLXRH</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 0 1 0 11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 0 1 1 11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 1 0 0 -</td>
<td>LDXRH</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 1 0 1 -</td>
<td>LDAXRH</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 1 1 0 11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 0 1 1 1 11111</td>
<td>CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 0 0 0 -</td>
<td>STLLRHB</td>
<td>FEAT_LOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 0 0 1 -</td>
<td>STLRHB</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 0 1 0 11111</td>
<td>CASH, CASAH, CASALH, CASLH - CASH variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 0 1 1 11111</td>
<td>CASH, CASAH, CASALH, CASLH - CASH variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 1 0 0 -</td>
<td>LDLARHB</td>
<td>FEAT_LOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 1 0 1 -</td>
<td>LDARHB</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 1 1 0 11111</td>
<td>CASH, CASAH, CASALH, CASLH - CASH variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 1 1 1 1 11111</td>
<td>CASH, CASAH, CASALH, CASLH - CASH variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 0 0 -</td>
<td>STXR - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 0 1 -</td>
<td>STLXR - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 -</td>
<td>STXP - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 1 -</td>
<td>STLXPP - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 -</td>
<td>LDXR - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 1 -</td>
<td>LDAXRP - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 1 0 -</td>
<td>LDXP - 32-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## LDAPR/STLR (unscaled immediate)

This section describes the encoding of the LDAPR/STLR (unscaled immediate) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>size o2 L o1 o0 Rt2</td>
<td>LDAXP - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10 0 1 1 1 -</td>
<td>STLLR - 32-bit variant</td>
<td>FEAT_LOR</td>
</tr>
<tr>
<td>10 1 0 0 0 -</td>
<td>STLR - 32-bit variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10 1 0 1 0 11111</td>
<td>CAS, CASA, CASAL, CASL - 32-bit CAS variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10 1 0 1 1 11111</td>
<td>CAS, CASA, CASAL, CASL - 32-bit CASL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10 1 1 0 0 -</td>
<td>LDLAR - 32-bit variant</td>
<td>FEAT_LOR</td>
</tr>
<tr>
<td>10 1 1 0 1 -</td>
<td>LDAR - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10 1 1 1 0 11111</td>
<td>CAS, CASA, CASAL, CASL - 32-bit CASA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10 1 1 1 1 11111</td>
<td>CAS, CASA, CASAL, CASL - 32-bit CASAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 0 0 0 -</td>
<td>STXR - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 0 0 0 1 -</td>
<td>STLXR - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 0 0 1 1 -</td>
<td>STXP - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 0 1 0 0 -</td>
<td>LDXP - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 0 1 0 1 -</td>
<td>LDAXP - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 0 1 1 1 -</td>
<td>LDAXR - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 1 0 0 0 -</td>
<td>STLXR - 64-bit variant</td>
<td>FEAT_LOR</td>
</tr>
<tr>
<td>11 1 0 0 1 -</td>
<td>STLR - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 1 0 1 0 11111</td>
<td>CAS, CASA, CASAL, CASL - 64-bit CAS variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 1 0 1 1 11111</td>
<td>CAS, CASA, CASAL, CASL - 64-bit CASL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 1 1 0 0 -</td>
<td>LDLAR - 64-bit variant</td>
<td>FEAT_LOR</td>
</tr>
<tr>
<td>11 1 1 0 1 -</td>
<td>LDAR - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11 1 1 1 0 11111</td>
<td>CAS, CASA, CASAL, CASL - 64-bit CASA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 1 1 1 1 11111</td>
<td>CAS, CASA, CASAL, CASL - 64-bit CASAL variant</td>
<td>FEAT_LSE</td>
</tr>
</tbody>
</table>
Load register (literal)

This section describes the encoding of the Load register (literal) instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.

| 31 30 29 28|27 26 25 24|23 | | | 12|11 10 9 | 5 4 | 0 |
| size | 0 1 1 0 0 | opc | 0 | imm9 | 0 | Rn | Rt |

Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>opc</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00</td>
<td>STLURB</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>00 01</td>
<td>LDAPURB</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>00 10</td>
<td>LDAPURSB - 64-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>00 11</td>
<td>LDAPURSB - 32-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>01 00</td>
<td>STLURH</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>01 01</td>
<td>LDAPURH</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>01 10</td>
<td>LDAPURSH - 64-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>01 11</td>
<td>LDAPURSH - 32-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>10 00</td>
<td>STLUR - 32-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>10 01</td>
<td>LDAPUR - 32-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>10 10</td>
<td>LDAPURSW</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>10 11</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11 00</td>
<td>STLUR - 64-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>11 01</td>
<td>LDAPUR - 64-bit variant</td>
<td>FEAT_LRCPC2</td>
<td></td>
</tr>
<tr>
<td>11 10</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11 11</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Decide fields

<table>
<thead>
<tr>
<th>opc</th>
<th>V</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>LDR (literal) - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>LDR (literal, SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>LDR (literal) - 64-bit variant</td>
</tr>
</tbody>
</table>
Load/store no-allocate pair (offset)

This section describes the encoding of the Load/store no-allocate pair (offset) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>opc</th>
<th>V</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>LDR (literal, SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>LDRSW (literal)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>LDR (literal, SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>PRFM (literal)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Load/store register pair (post-indexed)

This section describes the encoding of the Load/store register pair (post-indexed) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>opc</th>
<th>V</th>
<th>L</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>STNP - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>LDNP - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>STNP (SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>LDNP (SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>STNP (SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>LDNP (SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>STNP - 64-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>LDNP - 64-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>STNP (SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>LDNP (SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Load/store register pair (offset)

This section describes the encoding of the Load/store register pair (offset) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th>opc</th>
<th>V</th>
<th>L</th>
<th>imm7</th>
<th>Rt2</th>
<th>Rn</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decide fields

<table>
<thead>
<tr>
<th>opc</th>
<th>V</th>
<th>L</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>STP - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>LDP - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>STP (SIMD&amp;FP) - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>LDP (SIMD&amp;FP) - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>STGP</td>
<td>FEAT_MTE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>LDPSW</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>0</td>
<td>STP (SIMD&amp;FP) - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>LDP (SIMD&amp;FP) - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>STP - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>LDP - 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>STP (SIMD&amp;FP) - 128-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>LDP (SIMD&amp;FP) - 128-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
Load/store register pair (pre-indexed)

This section describes the encoding of the Load/store register pair (pre-indexed) instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21]</th>
<th>[15 14]</th>
<th>[10 9]</th>
<th>[5 4]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc</td>
<td>V</td>
<td>0</td>
<td>1</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
</tr>
</tbody>
</table>

Load/store register (unscaled immediate)

This section describes the encoding of the Load/store register (unscaled immediate) instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.
### A64 Instruction Set Encoding

#### C4.1 A64 instruction set encoding

<table>
<thead>
<tr>
<th>Instruction page</th>
<th>Decode fields</th>
<th>size</th>
<th>V</th>
<th>opc</th>
</tr>
</thead>
<tbody>
<tr>
<td>STURB</td>
<td>x1 1 1x</td>
<td>Unallocated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURB</td>
<td>00 0 00</td>
<td>STURB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURSB - 64-bit variant</td>
<td>00 0 10</td>
<td>LDURSB - 64-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURSB - 32-bit variant</td>
<td>00 0 11</td>
<td>LDURSB - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR (SIMD&amp;FP) - 8-bit variant</td>
<td>00 1 00</td>
<td>STUR (SIMD&amp;FP) - 8-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR (SIMD&amp;FP) - 8-bit variant</td>
<td>00 1 01</td>
<td>LDUR (SIMD&amp;FP) - 8-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR (SIMD&amp;FP) - 128-bit variant</td>
<td>00 1 10</td>
<td>STUR (SIMD&amp;FP) - 128-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR (SIMD&amp;FP) - 128-bit variant</td>
<td>00 1 11</td>
<td>LDUR (SIMD&amp;FP) - 128-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STURH</td>
<td>01 0 00</td>
<td>STURH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURH</td>
<td>01 0 01</td>
<td>LDURH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURSH - 64-bit variant</td>
<td>01 0 10</td>
<td>LDURSH - 64-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURSH - 32-bit variant</td>
<td>01 0 11</td>
<td>LDURSH - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR (SIMD&amp;FP) - 16-bit variant</td>
<td>01 1 00</td>
<td>STUR (SIMD&amp;FP) - 16-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR (SIMD&amp;FP) - 16-bit variant</td>
<td>01 1 01</td>
<td>LDUR (SIMD&amp;FP) - 16-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR - 32-bit variant</td>
<td>10 0 00</td>
<td>STUR - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR - 32-bit variant</td>
<td>10 0 01</td>
<td>LDUR - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDURSW</td>
<td>10 0 10</td>
<td>LDURSW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR (SIMD&amp;FP) - 32-bit variant</td>
<td>10 1 00</td>
<td>STUR (SIMD&amp;FP) - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR (SIMD&amp;FP) - 32-bit variant</td>
<td>10 1 01</td>
<td>LDUR (SIMD&amp;FP) - 32-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR - 64-bit variant</td>
<td>11 0 00</td>
<td>STUR - 64-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR - 64-bit variant</td>
<td>11 0 01</td>
<td>LDUR - 64-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRFUM</td>
<td>11 0 10</td>
<td>PRFUM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUR (SIMD&amp;FP) - 64-bit variant</td>
<td>11 1 00</td>
<td>STUR (SIMD&amp;FP) - 64-bit variant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUR (SIMD&amp;FP) - 64-bit variant</td>
<td>11 1 01</td>
<td>LDUR (SIMD&amp;FP) - 64-bit variant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load/store register (immediate post-indexed)

This section describes the encoding of the Load/store register (immediate post-indexed) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>1x</td>
<td>Unallocated.</td>
<td>STRB (immediate)</td>
<td>LDRB (immediate)</td>
<td>LDRSB (immediate) - 64-bit variant</td>
<td>LDRSB (immediate) - 32-bit variant</td>
<td>STR (immediate, SIMD&amp;FP) - 8-bit variant</td>
<td>LDR (immediate, SIMD&amp;FP) - 8-bit variant</td>
<td>STR (immediate, SIMD&amp;FP) - 128-bit variant</td>
<td>LDR (immediate, SIMD&amp;FP) - 128-bit variant</td>
<td>STR (immediate, SIMD&amp;FP) - 128-bit variant</td>
<td>LDR (immediate, SIMD&amp;FP) - 128-bit variant</td>
<td>STRH (immediate)</td>
<td>LDRH (immediate)</td>
<td>LDRSH (immediate) - 64-bit variant</td>
<td>LDRSH (immediate) - 32-bit variant</td>
<td>STR (immediate, SIMD&amp;FP) - 16-bit variant</td>
<td>LDR (immediate, SIMD&amp;FP) - 16-bit variant</td>
<td>Unallocated.</td>
<td>Unallocated.</td>
<td>STR (immediate) - 32-bit variant</td>
</tr>
</tbody>
</table>
Load/store register (unprivileged)

This section describes the encoding of the Load/store register (unprivileged) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

```plaintext
| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 12 | 11 10 9 | 5 4 | 0 |
---|---|---|---|---|---|---|---|
| size | 1 | 1 | V | imm9 | Rn | Rt |
```

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
</tbody>
</table>

Load/store register (immediate pre-indexed)

This section describes the encoding of the Load/store register (immediate pre-indexed) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

```plaintext
| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 12 | 11 10 9 | 5 4 | 0 |
---|---|---|---|---|---|---|---|
| size | 1 | 1 | V | imm9 | opc | 0 |
```

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>STTRH</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>01</td>
<td>LDTRH</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>10</td>
<td>LDTRSH - 64-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>11</td>
<td>LDTRSH - 32-bit variant</td>
</tr>
<tr>
<td>1x</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>STTR - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>01</td>
<td>LDTR - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>LDTRSW</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>00</td>
<td>STTR - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>01</td>
<td>LDTR - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
## A64 Instruction Set Encoding

### C4.1 A64 instruction set encoding

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>STRB (immediate)</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>01</td>
<td>LDRB (immediate)</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>10</td>
<td>LDRSB (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>11</td>
<td>LDRSB (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 8-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 8-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>10</td>
<td>STR (immediate, SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>11</td>
<td>LDR (immediate, SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>STRH (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>01</td>
<td>LDRH (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>10</td>
<td>LDRSH (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>11</td>
<td>LDRSH (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 16-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 16-bit variant</td>
</tr>
<tr>
<td>1x</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1x</td>
<td>1</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>STR (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>01</td>
<td>LDR (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>LDRSW (immediate)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>00</td>
<td>STR (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>01</td>
<td>LDR (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
</tbody>
</table>
**Atomic memory operations**

This section describes the encoding of the Atomic memory operations instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15|14|12|11|10|9|5|4|0|
|size|1|1|V|0|0|A|R|1|Rs|o3|opc|0|0|Rn|Rt|
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>size V A R o3 opc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 0 - - 1 11x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0 - 1 100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0 1 1 001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0 1 1 010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0 1 1 011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 0 1 101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 0 1 001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 0 1 100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 0 1 101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 1 1 001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 1 1 101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 1 1 100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 1 1 1 101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 - - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00 0 0 0 0 000</td>
<td>LDADDB, LDADDAB, LDADDLAB, LDADDLB - LDADDB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 001</td>
<td>LDCLRAB, LDCLRAB, LDCLRAB, LDCLRAB - LDCLRAB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 010</td>
<td>LDEORB, LDEORB, LDEORB, LDEORB - LDEORB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 011</td>
<td>LDSETB, LDSETB, LDSETALB, LDSETLB - LDSETB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 100</td>
<td>LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB - LDSMAXB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 101</td>
<td>LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - LDSMINB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 110</td>
<td>LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB - LDUMAXB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 0 111</td>
<td>LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB - LDUMINB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00 0 0 0 1 000</td>
<td>SWPB, SWPAB, SWPALB, SWPLB - SWPB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size</td>
<td>V</td>
<td>A</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>A</th>
<th>R</th>
<th>o3</th>
<th>opc</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>101</td>
<td>LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - LDSMINALB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>LDMAXB, LDMAXAB, LDMAXALB, LDMAXLB - LDMAXALB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>LDMINB, LDMINAB, LDMINALB, LDMINLB - LDMINALB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>000</td>
<td>SWPB, SWPAB, SWPALB, SWPLB - SWPALB variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td>LDADDDH, LDADDAAH, LDADDALH, LDADDLLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>LDCLRH, LDCRLRAH, LDCRLRALH, LDCRLRLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>LDEORRH, LDEORRAH, LDEORRALH, LDEORRLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>LDMAXIH, LDMAXAH, LDMAXALH, LDMAXLH - LDMAXIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>LDMINIH, LDMINIH, LDMINALH, LDMINLH - LDMINIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>LDMAXIH, LDMAXAH, LDMAXALH, LDMAXLH - LDMAXIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>LDMINIH, LDMINIH, LDMINALH, LDMINLH - LDMINIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>SWPH, SWPAH, SWPALH, SWPLH - SWPH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>001</td>
<td>Unallocated</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>010</td>
<td>Unallocated</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>011</td>
<td>Unallocated</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>000</td>
<td>LDADDDH, LDADDAAH, LDADDALH, LDADDLLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>001</td>
<td>LDCLRH, LDCRLRAH, LDCRLRALH, LDCRLRLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>010</td>
<td>LDEORRH, LDEORRAH, LDEORRALH, LDEORRLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>011</td>
<td>LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>LDMAXIH, LDMAXAH, LDMAXALH, LDMAXLH - LDMAXIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>101</td>
<td>LDMINIH, LDMINIH, LDMINALH, LDMINLH - LDMINIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>LDMAXIH, LDMAXAH, LDMAXALH, LDMAXLH - LDMAXIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>LDMINIH, LDMINIH, LDMINALH, LDMINLH - LDMINIH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>010</td>
<td>LDADDDH, LDADDAAH, LDADDALH, LDADDLLH</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size</td>
<td>V</td>
<td>A</td>
<td>R</td>
<td>o3</td>
<td>opc</td>
<td>Instruction page</td>
<td>Feature</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>LDSETH, LDSETAH, LDSETLAH, LDSETLH - LDSETHA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - LDSMAXAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - LDSMINAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - LDUMAXAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - LDUMINAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>SWPH, SWPAH, SWPALH, SWPLH - SWPAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>LDAPRH</td>
<td>FEAT_LRCPC</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>000</td>
<td>LDADDH, LDADDAH, LDADDAHL, LDADDDLH - LDADDDLH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>001</td>
<td>LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRLH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>010</td>
<td>LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORAH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>011</td>
<td>LDSETH, LDSETAH, LDSETLAH, LDSETLH - LDSETHA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - LDSMAXALH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>101</td>
<td>LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - LDSMINALH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - LDUMAXALH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - LDUMINALH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>000</td>
<td>SWPH, SWPAH, SWPALH, SWPLH - SWPALH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td>LDADD, LDADDA, LDADDA, LDADDDL - 32-bit LDADD variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>LDCLRH, LDCLRA, LDCLRAL, LDCLRLH - 32-bit LDCLRH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>LDEORH, LDEORAH, LDEORALH, LDEORLH - 32-bit LDEORH variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>LDSET, LDSETA, LDSETAL, LDSETLH - 32-bit LDSETA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXLH - 32-bit LDSMAX variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINLH - 32-bit LDSMIN variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXLH - 32-bit LDUMAX variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINLH - 32-bit LDUMIN variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>SWP, SWPA, SWPAL, SWPL - 32-bit SWP variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 0 1 000</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 0 1 001</td>
<td>LDADD, LDADDA, LDADDDL, LDADDL - 32-bit LDADDL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 000</td>
<td>LDADD, LDADDA, LDADDDL, LDADDL - 32-bit LDADDL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 001</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 010</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 011</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 101</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit LDUMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 0 111</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit LDUMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 1 000</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit LDUMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 0 1 1 100</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 000</td>
<td>LDADD, LDADDA, LDADDDL, LDADDL - 32-bit LDADDL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 001</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 101</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 110</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 0 111</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 1 000</td>
<td>LDADD, LDADDA, LDADDDL, LDADDL - 32-bit LDADDL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 0 1 100</td>
<td>LDAPR - 32-bit variant</td>
<td>FEAT_LRCPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 1 0 000</td>
<td>LDADD, LDADDA, LDADDDL, LDADDL - 32-bit LDADDL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 0 1 1 0 100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>A</th>
<th>R</th>
<th>o3</th>
<th>opc</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>101</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMINAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit LDUMAXAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit LDUMINAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>000</td>
<td>SWP, SWPA, SWPAL, SWPL - 32-bit SWPAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td>LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADD variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSET variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit LDSMAX variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMIN variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAX variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMIN variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWP variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>000</td>
<td>LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>001</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>010</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>011</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit LDSMAXL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>101</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>111</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMINL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>000</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWPL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>000</td>
<td>LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit LDSMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMINA variant</td>
<td>FEAT_LSE</td>
</tr>
</tbody>
</table>
### Load/store register (register offset)

This section describes the encoding of the Load/store register (register offset) instruction class. The encodings in this section are decoded from *Loads and Stores* on page C4-279.

<table>
<thead>
<tr>
<th></th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 0 1 0 0 0</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 0 0 0</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMINA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 0 0 1</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWPA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 0 1 0</td>
<td>LDAPR - 64-bit variant</td>
<td>FEAT_LRCPC</td>
</tr>
<tr>
<td>11 0 1 0 1</td>
<td>LDADD, LDADDA, LDADDL, LDADDL - 64-bit LDADDL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 0 1</td>
<td>LDCLR, LDCLR, LDCLRL, LDCLRL - 64-bit LDCLRL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 0 1</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 0</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 0</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit LDSMAXAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 0</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 0</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 0</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMINAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>11 0 1 1 1 1</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWPAL variant</td>
<td>FEAT_LSE</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>size V A R o3 opc</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWPA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDAPR - 64-bit variant</td>
<td>FEAT_LRCPC</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDADD, LDADDA, LDADDL, LDADDL - 64-bit LDADDL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDCLR, LDCLR, LDCLRL, LDCLRL - 64-bit LDCLRL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit LDSMAXAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMINL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit LDUMAXA variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit LDUMINAL variant</td>
<td>FEAT_LSE</td>
</tr>
<tr>
<td>size V A R o3 opc</td>
<td>SWP, SWPA, SWPAL, SWPL - 64-bit SWPAL variant</td>
<td>FEAT_LSE</td>
</tr>
</tbody>
</table>

---

### Decode fields

- **size**: 11 bits
- **V**: 0-1 (register variant)
- **A**: 1 bit
- **R**: 1 bit
- **o3**: 0-1 (option)
- **opc**: 1 bit

<table>
<thead>
<tr>
<th>size V A R o3 opc option</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1 1 1x - option</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>00 0 00 != 011</td>
<td>STRB (register) - Extended register variant</td>
</tr>
<tr>
<td>00 0 00 011</td>
<td>STRB (register) - Shifted register variant</td>
</tr>
<tr>
<td>00 0 01 != 011</td>
<td>LDRB (register) - Extended register variant</td>
</tr>
<tr>
<td>00 0 01 011</td>
<td>LDRB (register) - Shifted register variant</td>
</tr>
<tr>
<td>00 0 10 != 011</td>
<td>LDRSB (register) - 64-bit with extended register offset variant</td>
</tr>
<tr>
<td>00 0 10 011</td>
<td>LDRSB (register) - 64-bit with shifted register offset variant</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>option</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>11</td>
<td>!= 011</td>
<td>LDRSB (register) - 32-bit with extended register offset variant</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>11</td>
<td>011</td>
<td>LDRSB (register) - 32-bit with shifted register offset variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>00</td>
<td>!= 011</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>00</td>
<td>011</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>!= 011</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>011</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>10</td>
<td>-</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>11</td>
<td>-</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>-</td>
<td>STRH (register)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>01</td>
<td>-</td>
<td>LDRH (register)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>LDRSH (register) - 64-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>11</td>
<td>-</td>
<td>LDRSH (register) - 32-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>00</td>
<td>-</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>01</td>
<td>-</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>1x</td>
<td>0</td>
<td>11</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1x</td>
<td>1</td>
<td>1x</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>-</td>
<td>STR (register) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>01</td>
<td>-</td>
<td>LDR (register) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>LDRSW (register)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>-</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>01</td>
<td>-</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>00</td>
<td>-</td>
<td>STR (register) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>01</td>
<td>-</td>
<td>LDR (register) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>PRFM (register)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>00</td>
<td>-</td>
<td>STR (register, SIMD&amp;FP)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>01</td>
<td>-</td>
<td>LDR (register, SIMD&amp;FP)</td>
</tr>
</tbody>
</table>

## Load/store register (pac)

This section describes the encoding of the Load/store register (pac) instruction class. The encodings in this section are decoded from *Loads and Stores on page C4-279.*
Load/store register (unsigned immediate)

This section describes the encoding of the Load/store register (unsigned immediate) instruction class. The encodings in this section are decoded from Loads and Stores on page C4-279.

```
| 31 30 29 28|27 26 25 24|23 22 21 20| | 12|11 10 9 | 5 4 | 0 |
size | 1 1 1 V | 0 0 M | S 1 | | imm9 | W 1 | Rn | Rt |
```

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>M</th>
<th>W</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>!= 11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LDRAA, LDRAB - Key A, offset variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>LDRAA, LDRAB - Key A, pre-indexed variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>LDRAA, LDRAB - Key B, offset variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>LDRAA, LDRAB - Key B, pre-indexed variant</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Instruction page

```
| 31 30 29 28|27 26 25 24|23 22 21 | | 12|10 9 | 5 4 | 0 |
size | 1 1 1 V | 0 1 opc | imm12 | Rn | Rt |
```

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>STRB (immediate)</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>01</td>
<td>LDRB (immediate)</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>10</td>
<td>LDRSB (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>11</td>
<td>LDRSB (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 8-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 8-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>10</td>
<td>STR (immediate, SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>11</td>
<td>LDR (immediate, SIMD&amp;FP) - 128-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>STRH (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>01</td>
<td>LDRH (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>10</td>
<td>LDRSH (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>11</td>
<td>LDRSH (immediate) - 32-bit variant</td>
</tr>
</tbody>
</table>
C4.1.5 Data Processing -- Register

This section describes the encoding of the Data Processing -- Register group. The encodings in this section are decoded from A64 instruction set encoding on page C4-266.

<table>
<thead>
<tr>
<th>size</th>
<th>V</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 16-bit variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 16-bit variant</td>
</tr>
<tr>
<td>1x</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1x</td>
<td>1</td>
<td>1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>STR (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>01</td>
<td>LDR (immediate) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>LDRSW (immediate)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 32-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>00</td>
<td>STR (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>01</td>
<td>LDR (immediate) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>10</td>
<td>PRFM (immediate)</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>00</td>
<td>STR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>01</td>
<td>LDR (immediate, SIMD&amp;FP) - 64-bit variant</td>
</tr>
</tbody>
</table>

Table C4-6 Encoding table for the Data Processing -- Register group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0110</td>
<td>-</td>
<td>Data-processing (2 source) on page C4-311</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0110</td>
<td>-</td>
<td>Data-processing (1 source) on page C4-312</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>0xx</td>
<td>-</td>
<td>Logical (shifted register) on page C4-314</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1xx0</td>
<td>-</td>
<td>Add/subtract (shifted register) on page C4-315</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1xx1</td>
<td>-</td>
<td>Add/subtract (extended register) on page C4-316</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0000</td>
<td>00000</td>
<td>Add/subtract (with carry) on page C4-316</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0000</td>
<td>x0001</td>
<td>Rotate right into flags on page C4-317</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Data-processing (2 source) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

31 30 29 28	27 26 25 24	23 22 21 20	16	15	10	9	5	4	0					
sf	0	S	1	1	0	1	0	1	1	0	Rm	opcode	Rn	Rd

Table C4-6 Encoding table for the Data Processing -- Register group (continued)

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf S opcode</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 00001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 011xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1xxxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0011x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 00101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 0011x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 00001x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 0001xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 001xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 01xxxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00010</td>
<td>UDIV - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00011</td>
<td>SDIV - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 0010x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01000</td>
<td>LSLV - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01001</td>
<td>LSRV - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01010</td>
<td>ASRV - 32-bit variant</td>
<td>-</td>
</tr>
</tbody>
</table>
### Data-processing (1 source)

This section describes the encoding of the Data-processing (1 source) instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>S</td>
<td>opcode</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>001011</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>001100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010x11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010001</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010010</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010101</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>010110</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000010</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000011</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000100</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000101</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001001</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001010</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001011</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001100</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010xx0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010xx1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010011</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>010111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>000000</td>
</tr>
<tr>
<td>sf</td>
<td>S</td>
<td>opcode2</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
</tr>
</tbody>
</table>
### Logical (shifted register)

This section describes the encoding of the Logical (shifted register) instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>sf</th>
<th>S</th>
<th>opcode2</th>
<th>opcode</th>
<th>Rn</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>00110</td>
<td>-</td>
<td>AUTDA, AUTDZA - AUTDA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>00111</td>
<td>-</td>
<td>AUTDB, AUTDZB - AUTDB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001000</td>
<td>1111</td>
<td>PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIZA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001001</td>
<td>1111</td>
<td>PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIZB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001010</td>
<td>1111</td>
<td>PACDA, PACDZA - PACDZA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001011</td>
<td>1111</td>
<td>PACDB, PACDZB - PACDZB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001100</td>
<td>1111</td>
<td>AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIZA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001101</td>
<td>1111</td>
<td>AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIZB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001110</td>
<td>1111</td>
<td>AUTDA, AUTDZA - AUTDA variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>001111</td>
<td>1111</td>
<td>AUTDB, AUTDZB - AUTDB variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>010000</td>
<td>1111</td>
<td>XPACD, XPACI, XPACLRI - XPACI variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>010001</td>
<td>1111</td>
<td>XPACD, XPACI, XPACLRI - XPACD variant</td>
<td>FEAT_PAuth</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>01001x</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>0101xx</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00001</td>
<td>011xxx</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>S</th>
<th>opcode2</th>
<th>opcode</th>
<th>Rn</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1xxx</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0</td>
<td>-</td>
<td>AND (shifted register) - 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>1</td>
<td>-</td>
<td>BIC (shifted register) - 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>0</td>
<td>-</td>
<td>ORR (shifted register) - 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>1</td>
<td>-</td>
<td>ORN (shifted register) - 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>EOR (shifted register) - 32-bit variant</td>
<td></td>
</tr>
</tbody>
</table>
This section describes the encoding of the Add/subtract (shifted register) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

### Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>opc</th>
<th>N</th>
<th>imm6</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>EON (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>ANDS (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1</td>
<td>-</td>
<td>BICS (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0</td>
<td>-</td>
<td>AND (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>-</td>
<td>BIC (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>0</td>
<td>-</td>
<td>ORR (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td>-</td>
<td>ORN (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>EOR (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>EON (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
<td>-</td>
<td>ANDS (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1</td>
<td>-</td>
<td>BICS (shifted register) - 64-bit variant</td>
</tr>
</tbody>
</table>

### Add/subtract (shifted register)

This section describes the encoding of the Add/subtract (shifted register) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>op</td>
<td>S</td>
<td>shift</td>
<td>imm6</td>
<td>Rm</td>
<td>imm6</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>shift</th>
<th>imm6</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1xxxx</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ADD (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ADDS (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>SUB (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>SUBS (shifted register) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ADD (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ADDS (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>SUB (shifted register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>SUBS (shifted register) - 64-bit variant</td>
</tr>
</tbody>
</table>
Add/subtract (extended register)

This section describes the encoding of the Add/subtract (extended register) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>op</td>
<td>S</td>
<td>opt</td>
<td>Rm</td>
<td>option</td>
<td>imm3</td>
<td>Rn</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>opt</th>
<th>imm3</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>x1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1x</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ADD (extended register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ADDS (extended register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SUB (extended register) - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SUBS (extended register) - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ADD (extended register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ADDS (extended register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SUB (extended register) - 64-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>SUBS (extended register) - 64-bit variant</td>
</tr>
</tbody>
</table>

Add/subtract (with carry)

This section describes the encoding of the Add/subtract (with carry) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>op</td>
<td>S</td>
<td>Rm</td>
<td>0 0 0 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ADC - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ADCS - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SBC - 32-bit variant</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>SBCS - 32-bit variant</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ADC - 64-bit variant</td>
</tr>
</tbody>
</table>
**Rotate right into flags**

This section describes the encoding of the Rotate right into flags instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>RMIF</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

**Evaluate into flags**

This section describes the encoding of the Evaluate into flags instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>sf</th>
<th>op</th>
<th>S</th>
<th>opcode2</th>
<th>sz</th>
<th>o3</th>
<th>mask</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>!= 00000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>00000</td>
<td>0</td>
<td>!= 1101</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>00000</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>00000</td>
<td>0</td>
<td>0</td>
<td>1101</td>
<td>SETF8, SETF16 - SETF8 variant</td>
</tr>
</tbody>
</table>

Decoding fields:

- **sf**: Sign flag
- **op**: Operation code
- **S**: Immediate
- **o2**: Other operand
- **sz**: Size
- **o3**: Other operand
- **mask**: Masking

**Instruction page**

- **ADCS - 64-bit variant**
- **SBC - 64-bit variant**
- **SBCS - 64-bit variant**
### Conditional compare (register)

This section describes the encoding of the Conditional compare (register) instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf op S opcode2 sz o3 mask</td>
<td>SETF8, SETF16 - SETF16 variant</td>
<td>FEAT_FlagM</td>
</tr>
<tr>
<td>0 0 1 00000 1 0 1101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 - - - - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - - - - - - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

### Conditional compare (immediate)

This section describes the encoding of the Conditional compare (immediate) instruction class. The encodings in this section are decoded from *Data Processing -- Register* on page C4-310.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf op S opcode2 sz o3 mask</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 0</td>
<td>CCMN (register) - 32-bit variant</td>
</tr>
<tr>
<td>0 1 1 0 0</td>
<td>CCMP (register) - 32-bit variant</td>
</tr>
<tr>
<td>1 0 1 0 0</td>
<td>CCMN (register) - 64-bit variant</td>
</tr>
<tr>
<td>1 1 1 0 0</td>
<td>CCMP (register) - 64-bit variant</td>
</tr>
</tbody>
</table>
Conditional select

This section describes the encoding of the Conditional select instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15|12|11|10|9 | 5 | 4 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| sf | op | S | o2 | o3 | Rm | cond | op2 | Rn | Rd |

Data-processing (3 source)

This section describes the encoding of the Data-processing (3 source) instruction class. The encodings in this section are decoded from Data Processing -- Register on page C4-310.
C4.1.6   Data Processing -- Scalar Floating-Point and Advanced SIMD

This section describes the encoding of the Data Processing -- Scalar Floating-Point and Advanced SIMD group. The encodings in this section are decoded from A64 instruction set encoding on page C4-266.
<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 0x x101 0x0xxxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0010 0x x101 0x0xxxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0100 0x x0xx xxx@xxx0</td>
<td>Cryptographic AES on page C4-323</td>
<td>-</td>
</tr>
<tr>
<td>0101 0x x0xx xxx@xxx10</td>
<td>Cryptographic three-register SHA on page C4-323</td>
<td>-</td>
</tr>
<tr>
<td>0101 0x x0xx xxx@xxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0101 0x x101 0x0xxxx10</td>
<td>Cryptographic two-register SHA on page C4-324</td>
<td>-</td>
</tr>
<tr>
<td>0110 0x x101 0x0xxxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x0xx xxx@xxx0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x101 0x0xxxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x0xx xxx@xxx10</td>
<td>Advanced SIMD scalar copy on page C4-325</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x101 0x0xxxx10</td>
<td>Advanced SIMD scalar shift by immediate on page C4-333</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x1xx x1xxxx10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0111 0x x1xx 0xxxxx00</td>
<td>Advanced SIMD scalar three different on page C4-331</td>
<td>-</td>
</tr>
<tr>
<td>0110 0x x1xx 0xxxxx10</td>
<td>Advanced SIMD scalar three same on page C4-331</td>
<td>-</td>
</tr>
<tr>
<td>0111 10 - xxxxxxx1</td>
<td>Advanced SIMD scalar shift by immediate on page C4-333</td>
<td>-</td>
</tr>
<tr>
<td>0111 11 - xxxxxxx1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0110 0x x0xx xxx@xxx0</td>
<td>Advanced SIMD table lookup on page C4-336</td>
<td>-</td>
</tr>
<tr>
<td>0x00 0x x0xx xxx@xxx00</td>
<td>Advanced SIMD permute on page C4-337</td>
<td>-</td>
</tr>
<tr>
<td>op0</td>
<td>op1</td>
<td>op2</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0x10 0x</td>
<td>x0xx</td>
<td>xxx00xxx0</td>
</tr>
<tr>
<td>0xx0 00</td>
<td>00xx</td>
<td>xxx00xxx1</td>
</tr>
<tr>
<td>0xx0 01</td>
<td>00xx</td>
<td>xxx00xxx1</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>0111</td>
<td>00xxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>10xx</td>
<td>xxx00xxx1</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>10xx</td>
<td>xxx01xxx1</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>1111</td>
<td>00xxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x0xx</td>
<td>xxx1xxx0</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x0xx</td>
<td>xxx1xxx1</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x100</td>
<td>00xxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x110</td>
<td>00xxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x1xx</td>
<td>1xxxxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x1xx</td>
<td>x1xxxxxx10</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x1xx</td>
<td>xxxxxxxx0</td>
</tr>
<tr>
<td>0xx0 0x</td>
<td>x1xx</td>
<td>xxxxxxxx1</td>
</tr>
<tr>
<td>0xx0 10</td>
<td>0000</td>
<td>xxxxxxxx1</td>
</tr>
<tr>
<td>0xx0 10</td>
<td>!= 0000</td>
<td>xxxxxxxx1</td>
</tr>
<tr>
<td>0xx0 11</td>
<td>-</td>
<td>xxxxxxxx1</td>
</tr>
<tr>
<td>0xx0 1x</td>
<td>-</td>
<td>xxxxxxxx0</td>
</tr>
<tr>
<td>1100 00</td>
<td>10xx</td>
<td>xxx10xxxx</td>
</tr>
<tr>
<td>1100 00</td>
<td>11xx</td>
<td>xxx1v00xx</td>
</tr>
<tr>
<td>1100 00</td>
<td>-</td>
<td>xxx0xxxx</td>
</tr>
<tr>
<td>1100 01</td>
<td>00xx</td>
<td>-</td>
</tr>
<tr>
<td>1100 01</td>
<td>1000</td>
<td>0001000xx</td>
</tr>
<tr>
<td>1xx0 1x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1xx0 1x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x0xx</td>
<td>-</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x1xx</td>
<td>xxx000000</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x1xx</td>
<td>xxx100000</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x1xx</td>
<td>xxx100000</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x1xx</td>
<td>xxxxxxx10</td>
</tr>
<tr>
<td>x0x1 0x</td>
<td>x1xx</td>
<td>xxxxxxx01</td>
</tr>
</tbody>
</table>
Cryptographic AES

This section describes the encoding of the Cryptographic AES instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 1 1 0</td>
<td>size</td>
<td>1 0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>opcode</td>
</tr>
<tr>
<td>x1xxx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>000xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1xxxx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>x1</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

00	00100	AESE
00	00101	AESD
00	00110	AESMC
00	00111	AESIMC
1x	-	Unallocated.

Cryptographic three-register SHA

This section describes the encoding of the Cryptographic three-register SHA instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.
Cryptographic two-register SHA

This section describes the encoding of the Cryptographic two-register SHA instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.
Advanced SIMD scalar copy

This section describes the encoding of the Advanced SIMD scalar copy instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>op</td>
<td>1 1 1 0 0 0</td>
<td>imm5</td>
<td>0</td>
<td>imm4</td>
<td>1</td>
<td>Rn</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>op</th>
<th>imm4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxx1</td>
</tr>
<tr>
<td>0</td>
<td>xx1x</td>
</tr>
<tr>
<td>0</td>
<td>x1xx</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>0</td>
<td>1xxx</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Advanced SIMD scalar three same FP16

This section describes the encoding of the Advanced SIMD scalar three same FP16 instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>U</td>
<td>1 1 1 0</td>
<td>a</td>
<td>1</td>
<td>0</td>
<td>Rn</td>
<td>0 0</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>a</th>
<th>opcode</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>011</td>
<td>FMULX</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>FCMEQ (register)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>111</td>
<td>FRECPS</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>111</td>
<td>FRSQRTS</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>FCMGE (register)</td>
</tr>
</tbody>
</table>
Advanced SIMD scalar two-register miscellaneous FP16

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous FP16 instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U  a  opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1  0  101</td>
<td>FACGE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  0  111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1  1  010</td>
<td>FABD</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  100</td>
<td>FCMGT (register)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  101</td>
<td>FACGT</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

Advanced SIMD scalar two-register miscellaneous FP16

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous FP16 instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U  a  opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0  1  11110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0  0  11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0  1  01111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0  0  11010</td>
<td>FCVTNS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  0  11011</td>
<td>FCVTMS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  0  11100</td>
<td>FCVTAS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  0  11101</td>
<td>SCVTF (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  1  01100</td>
<td>FCMGT (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  1  01101</td>
<td>FCMEQ (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0  1  01110</td>
<td>FCMLT (zero)</td>
<td>FEAT_FP16</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Advanced SIMD scalar three same extra instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Advanced SIMD scalar three same extra

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 14 11 10 9 5 4 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 U 1 1 1 1 0 size 0 Rm 1 opcode 1 Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>FCVTPS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 1</td>
<td>FCVTZS (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 1</td>
<td>FRECPX</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0</td>
<td>FCVNU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0</td>
<td>FCVTMU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0</td>
<td>FCVTAU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0</td>
<td>UCVTF (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 01100</td>
<td>FCMGE (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 01101</td>
<td>FCMLE (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 01110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 1 11010</td>
<td>FCVTPU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 11011</td>
<td>FCVTZU (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 11101</td>
<td>FRSQRTE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1 11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 001x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 01xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 0000</td>
<td>SQRDMLAH (vector)</td>
<td>FEAT_RDM</td>
</tr>
<tr>
<td>1 0001</td>
<td>SQRDMLSH (vector)</td>
<td>FEAT_RDM</td>
</tr>
</tbody>
</table>
Advanced SIMD scalar two-register miscellaneous

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>U</td>
<td>1 1 1 0</td>
<td>size</td>
<td>1 0 0 0 0</td>
<td>opcode</td>
<td>1 0</td>
<td>Rn</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0000x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>00010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0010x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>00110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>01111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1000x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1100x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>11110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>0x</td>
<td>011xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>0x</td>
<td>11111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1x</td>
<td>10110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1x</td>
<td>11100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>00011</td>
<td>SUQADD</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>00111</td>
<td>SQABS</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>01000</td>
<td>CMGT (zero)</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>01001</td>
<td>CMEQ (zero)</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>01010</td>
<td>CMLT (zero)</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>01011</td>
<td>ABS</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>10010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>10100</td>
<td>SQXTN, SQXTN2</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>10110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11010</td>
<td>FCVTNS (vector)</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x</td>
<td>11011</td>
<td>FCVTMS (vector)</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11100</td>
<td>FCVTAS (vector)</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11101</td>
<td>SCVTF (vector, integer)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01100</td>
<td>FCMGT (zero)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01101</td>
<td>FCMEQ (zero)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01110</td>
<td>FCMLT (zero)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11010</td>
<td>FCVTPS (vector)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11011</td>
<td>FCVTZS (vector, integer)</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11101</td>
<td>FRECPE</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11111</td>
<td>FRECPX</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00011</td>
<td>USQADD</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00111</td>
<td>SQNEG</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01000</td>
<td>CMGE (zero)</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01001</td>
<td>CMLE (zero)</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01011</td>
<td>NEG (vector)</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>10010</td>
<td>SQXTUN, SQXTUN2</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>10100</td>
<td>UQXTN, UQXTN2</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>10110</td>
<td>FCVTXN, FCVTXN2</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>11010</td>
<td>FCVTVN (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>11011</td>
<td>FCVTMU (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>11100</td>
<td>FCVTAN (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>11101</td>
<td>UCVTF (vector, integer)</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>01100</td>
<td>FCMGE (zero)</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>01101</td>
<td>FCMLE (zero)</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>01110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11010</td>
<td>FCVTU (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11011</td>
<td>FCVTZU (vector, integer)</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11101</td>
<td>FRSQRTF</td>
</tr>
</tbody>
</table>
Advanced SIMD scalar pairwise

This section describes the encoding of the Advanced SIMD scalar pairwise instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

The decode fields are as follows:

- **U size opcode**
- **Instruction page**
- **Feature**

<table>
<thead>
<tr>
<th>U size opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- - 00xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 010xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 01110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 10xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 1100x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 11010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 111xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1x 01101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 - 11011</td>
<td>ADDP (scalar)</td>
<td>-</td>
</tr>
<tr>
<td>0 00 01100</td>
<td>FMAXNMP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 00 01101</td>
<td>FADDP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 00 01111</td>
<td>FMAXP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 01 01100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 01 01101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 01 01111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 10 01100</td>
<td>FMINNMP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 10 01111</td>
<td>FMINP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 11 01100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 11 01111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - 11011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 0x 01100</td>
<td>FMAXNMP (scalar) - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0x 01101</td>
<td>FADDP (scalar) - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0x 01111</td>
<td>FMAXP (scalar) - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 1x 01100</td>
<td>FMINNMP (scalar) - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 1x 01111</td>
<td>FMINP (scalar) - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
</tbody>
</table>
Advanced SIMD scalar three different

This section describes the encoding of the Advanced SIMD scalar three different instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>00xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>111x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1001</td>
<td>SQDMLAL, SQDMLAL2 (vector)</td>
</tr>
<tr>
<td>0</td>
<td>1011</td>
<td>SQDMLSL, SQDMLSL2 (vector)</td>
</tr>
<tr>
<td>0</td>
<td>1101</td>
<td>SQDMULL, SQDMULL2 (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1101</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Advanced SIMD scalar three same

This section describes the encoding of the Advanced SIMD scalar three same instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>00000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0001x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>00100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>011xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1001x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>U size</td>
<td>opcode</td>
<td>Instruction page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>- 1x</td>
<td>11011</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>00001</td>
<td>SQADD</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>00101</td>
<td>SQSUB</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>00110</td>
<td>CMGT (register)</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>00111</td>
<td>CMGE (register)</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>01000</td>
<td>SSHL</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>01001</td>
<td>SQSHL (register)</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>01010</td>
<td>SRSHL</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>01011</td>
<td>SQRSHL</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10000</td>
<td>ADD (vector)</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10001</td>
<td>CMTST</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10100</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10101</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10110</td>
<td>SQDMULH (vector)</td>
<td></td>
</tr>
<tr>
<td>0 -</td>
<td>10111</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11000</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11001</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11010</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11011</td>
<td>FMULX</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11100</td>
<td>FCMEQ (register)</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11101</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11110</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>11111</td>
<td>FRECPS</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11000</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11001</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11010</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11100</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11101</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11110</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0 1x</td>
<td>11111</td>
<td>FRSQRTS</td>
<td></td>
</tr>
<tr>
<td>1 -</td>
<td>00001</td>
<td>UQADD</td>
<td></td>
</tr>
<tr>
<td>1 -</td>
<td>00101</td>
<td>UQSUB</td>
<td></td>
</tr>
</tbody>
</table>
## Advanced SIMD scalar shift by immediate

This section describes the encoding of the Advanced SIMD scalar shift by immediate instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>U size Opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 00110</td>
<td>CMHI (register)</td>
</tr>
<tr>
<td>1 00111</td>
<td>CMHS (register)</td>
</tr>
<tr>
<td>1 01000</td>
<td>USHL</td>
</tr>
<tr>
<td>1 01001</td>
<td>UQSHL (register)</td>
</tr>
<tr>
<td>1 01010</td>
<td>URSHL</td>
</tr>
<tr>
<td>1 01011</td>
<td>UQRSHL</td>
</tr>
<tr>
<td>1 10000</td>
<td>SUB (vector)</td>
</tr>
<tr>
<td>1 10001</td>
<td>CMEQ (register)</td>
</tr>
<tr>
<td>1 10100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 10101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 10110</td>
<td>SQRDMULH (vector)</td>
</tr>
<tr>
<td>1 10111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11100</td>
<td>FCMGE (register)</td>
</tr>
<tr>
<td>1 0 11101</td>
<td>FACGE</td>
</tr>
<tr>
<td>1 0 11110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 11111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 11000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 11001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 11010</td>
<td>FABD</td>
</tr>
<tr>
<td>1 1 11100</td>
<td>FCMGT (register)</td>
</tr>
<tr>
<td>1 1 11101</td>
<td>FACGT</td>
</tr>
<tr>
<td>1 1 11110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 11111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>U  immh  opcode</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 0101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 0111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 1101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 1111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 1111x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 11101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- != 0000 11110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0000 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 !≠ 0000 00000</td>
<td>SSHR</td>
</tr>
<tr>
<td>0 !≠ 0000 00010</td>
<td>SSRA</td>
</tr>
<tr>
<td>0 !≠ 0000 00100</td>
<td>SRSHR</td>
</tr>
<tr>
<td>0 !≠ 0000 00110</td>
<td>SRSRA</td>
</tr>
<tr>
<td>0 !≠ 0000 01000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 !≠ 0000 01010</td>
<td>SHL</td>
</tr>
<tr>
<td>0 !≠ 0000 01100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 !≠ 0000 01110</td>
<td>SQSHL (immediate)</td>
</tr>
<tr>
<td>0 !≠ 0000 10000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 !≠ 0000 10001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 !≠ 0000 10010</td>
<td>SQSHRN, SQSHRN2</td>
</tr>
<tr>
<td>0 !≠ 0000 10011</td>
<td>SQRSHRN, SQRSHRN2</td>
</tr>
<tr>
<td>0 !≠ 0000 11100</td>
<td>SCVTF (vector, fixed-point)</td>
</tr>
<tr>
<td>0 !≠ 0000 11111</td>
<td>FCVTZS (vector, fixed-point)</td>
</tr>
<tr>
<td>1 !≠ 0000 00000</td>
<td>USHR</td>
</tr>
</tbody>
</table>
Advanced SIMD scalar x indexed element

This section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

```plaintext
<table>
<thead>
<tr>
<th>U</th>
<th>immh</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>0010</td>
<td>USRA</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>0100</td>
<td>URSHR</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>0110</td>
<td>URSRA</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>1000</td>
<td>SRI</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>1010</td>
<td>SLI</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>1100</td>
<td>SQSHLU</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>1110</td>
<td>UQSHL (immediate)</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>10000</td>
<td>SQSHRUN, SQSHRUN2</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>10001</td>
<td>SQRSHRUN, SQRSHRUN2</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>10010</td>
<td>UQSHRN, UQSHRN2</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>10011</td>
<td>UQRSHRN, UQRSHRN2</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>11100</td>
<td>UCVTF (vector, fixed-point)</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>11111</td>
<td>FCVTZU (vector, fixed-point)</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Decode fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>U size opcode</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>- - 0000</td>
</tr>
<tr>
<td>- - 0010</td>
</tr>
<tr>
<td>- - 0100</td>
</tr>
<tr>
<td>- - 0110</td>
</tr>
<tr>
<td>- - 1000</td>
</tr>
<tr>
<td>- - 1010</td>
</tr>
<tr>
<td>- - 1110</td>
</tr>
<tr>
<td>- 01 0001</td>
</tr>
<tr>
<td>- 01 0101</td>
</tr>
</tbody>
</table>
### Advanced SIMD table lookup

This section describes the encoding of the Advanced SIMD table lookup instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>U size opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 01 1001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 - 0011</td>
<td>SQDMALAL, SQDMALAL2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 0111</td>
<td>SQDMALS, SQDMALS2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 1011</td>
<td>SQDMULL, SQDMULL2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 1100</td>
<td>SQDMULH (by element)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 1101</td>
<td>SRQMULH (by element)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 1111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 00 0001</td>
<td>FMLA (by element) - Scalar, half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 00 0101</td>
<td>FM3 (by element) - Scalar, half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 00 1001</td>
<td>FMUL (by element) - Scalar, half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 1x 0001</td>
<td>FMLA (by element) - Scalar, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 1x 0101</td>
<td>FM3 (by element) - Scalar, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 1x 1001</td>
<td>FMUL (by element) - Scalar, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 - 0011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - 0111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - 1011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - 1100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 - 1101</td>
<td>SRQMULAH (by element)</td>
<td>FEAT_RDM</td>
</tr>
<tr>
<td>1 - 1111</td>
<td>SRQDMULSH (by element)</td>
<td>FEAT_RDM</td>
</tr>
<tr>
<td>1 00 0001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 00 0101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 00 1001</td>
<td>FMULX (by element) - Scalar, half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 1x 0001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 1x 0101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 1x 1001</td>
<td>FMULX (by element) - Scalar, single-precision and double-precision variant</td>
<td>-</td>
</tr>
</tbody>
</table>
Advanced SIMD permute

This section describes the encoding of the Advanced SIMD permute instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.
Advanced SIMD extract

This section describes the encoding of the Advanced SIMD extract instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15 14|11 10 9|5 4|0 |
0 Q 1 0 1 1 0 op2 0 Rn 0 imm4 0 Rn Rd
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op2</td>
<td></td>
</tr>
<tr>
<td>x1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>00</td>
<td>EXT</td>
</tr>
<tr>
<td>1x</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Advanced SIMD copy

This section describes the encoding of the Advanced SIMD copy instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15 14|11 10 9|5 4|0 |
0 Q op 0 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q  op imm5 imm4</td>
<td></td>
</tr>
<tr>
<td>-  - 0000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-  0 0000</td>
<td>DUP (element)</td>
</tr>
<tr>
<td>-  0 0001</td>
<td>DUP (general)</td>
</tr>
<tr>
<td>-  0 0010</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-  0 0100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-  0 0110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-  0 1xxx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0  0 0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0  0 0101</td>
<td>SMOV</td>
</tr>
<tr>
<td>0  0 0111</td>
<td>UMOV</td>
</tr>
<tr>
<td>0  1 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1  0 -</td>
<td>INS (general)</td>
</tr>
</tbody>
</table>
Advanced SIMD three same (FP16)

This section describes the encoding of the Advanced SIMD three same (FP16) instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.
Advanced SIMD two-register miscellaneous (FP16)

This section describes the encoding of the Advanced SIMD two-register miscellaneous (FP16) instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

---

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U  a  opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1  0  100</td>
<td>FCMGE (register)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  0  101</td>
<td>FACGE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  0  110</td>
<td>FMAXP (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  0  111</td>
<td>FDIV (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  000</td>
<td>FMINGNMMP (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  001</td>
<td>Unallocated. -</td>
<td></td>
</tr>
<tr>
<td>1  1  010</td>
<td>FABD</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  100</td>
<td>FCMGT (register)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  101</td>
<td>FACGT</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  110</td>
<td>FMINP (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1  1  111</td>
<td>Unallocated. -</td>
<td></td>
</tr>
</tbody>
</table>

---

Advanced SIMD two-register miscellaneous (FP16)

This section describes the encoding of the Advanced SIMD two-register miscellaneous (FP16) instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

---

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U  a  opcode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 00xxx</td>
<td>Unallocated. -</td>
<td></td>
</tr>
<tr>
<td>0 0 010xx</td>
<td>Unallocated. -</td>
<td></td>
</tr>
<tr>
<td>0 0 10000</td>
<td>FRINTN (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 0 11001</td>
<td>FRINTM (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 0 11010</td>
<td>FCVTNS (vector)</td>
<td>FEAT_FP16</td>
</tr>
</tbody>
</table>
Advanced SIMD three-register extension

This section describes the encoding of the Advanced SIMD three-register extension instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>U</th>
<th>a</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>11011</td>
<td>FCVTMS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11100</td>
<td>FCVTAS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11101</td>
<td>SCVTF (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>01100</td>
<td>FCMGT (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>01101</td>
<td>FCMEQ (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>01110</td>
<td>FCMLT (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>01111</td>
<td>FABS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11000</td>
<td>FRINTP (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11001</td>
<td>FRINTZ (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11100</td>
<td>FCVTPS (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11101</td>
<td>FCVTZS (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11000</td>
<td>FRINTA (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11001</td>
<td>FRINTX (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11100</td>
<td>FCVTNU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>11101</td>
<td>FCVTMU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01100</td>
<td>FCMGE (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01101</td>
<td>FCMLE (zero)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01111</td>
<td>FNEG (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11001</td>
<td>FRINTI (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11010</td>
<td>FCVTPU (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11011</td>
<td>FCVTZU (vector, integer)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11101</td>
<td>FRSQRTE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11111</td>
<td>FSQRT (vector)</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>Q</td>
<td>U</td>
<td>size</td>
<td>opcode</td>
<td>Instruction page</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0x</td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0001</td>
<td>0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>0010</td>
<td>SDOT (vector)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1xxx</td>
<td>1xxx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0011</td>
<td>0011</td>
<td>USDOT (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>SQRDMLAH (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0001</td>
<td>0001</td>
<td>SQRDMLSH (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0010</td>
<td>0010</td>
<td>UDOT (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10xx</td>
<td>10xx</td>
<td>FCMLA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11x0</td>
<td>11x0</td>
<td>FCADD</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1101</td>
<td>1101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1111</td>
<td>1111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>1111</td>
<td>BFDOT (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1x</td>
<td>1101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0x</td>
<td>01xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1x</td>
<td>011x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0100</td>
<td>SMMLA (vector)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0101</td>
<td>USMMLA (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01</td>
<td>1101</td>
<td>BFMMMLA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0100</td>
<td>UMMLA (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0101</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Advanced SIMD two-register miscellaneous

This section describes the encoding of the Advanced SIMD two-register miscellaneous instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>U</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>U size opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- - 1000x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - 10101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0x 011xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1x 10111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1x 11110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 11 10110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00000</td>
<td>REV64</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00001</td>
<td>REV16 (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00010</td>
<td>SADLP</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00011</td>
<td>SUQADD</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00100</td>
<td>CLS (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00101</td>
<td>CNT</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00110</td>
<td>SADALP</td>
<td>-</td>
</tr>
<tr>
<td>0 - 00111</td>
<td>SQABS</td>
<td>-</td>
</tr>
<tr>
<td>0 - 01000</td>
<td>CMGT (zero)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 01001</td>
<td>CMEQ (zero)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 01010</td>
<td>CMLT (zero)</td>
<td>-</td>
</tr>
<tr>
<td>0 - 01011</td>
<td>ABS</td>
<td>-</td>
</tr>
<tr>
<td>0 - 10010</td>
<td>XTN, XTN2</td>
<td>-</td>
</tr>
<tr>
<td>0 - 10011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 - 10100</td>
<td>SQXTN, SQXTN2</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 10110</td>
<td>FCVTN, FCVTN2</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 10111</td>
<td>FCVTL, FCVTL2</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 11000</td>
<td>FRINTN (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 11001</td>
<td>FRINTM (vector)</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>size</td>
<td>opcode</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11010</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11011</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11100</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11101</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11110</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>11111</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01100</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01101</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01110</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>01111</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11000</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11001</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11010</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11011</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11100</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11101</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>11111</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01110</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00000</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00001</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00010</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00011</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00100</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00110</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00111</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01000</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01001</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01010</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01011</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>10010</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>10011</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>10100</td>
</tr>
</tbody>
</table>
### Advanced SIMD across lanes

This section describes the encoding of the Advanced SIMD across lanes instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.
### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0000x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>00010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>001xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0100x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>01011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>01101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>01110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10xxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1100x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>111xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>00011</td>
<td>SADDLV</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>01010</td>
<td>SMAXV</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>11010</td>
<td>SMINV</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>11011</td>
<td>ADDV</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>01100</td>
<td>FMAXNMV - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>01111</td>
<td>FMAXV - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01100</td>
<td>FMINNMV - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01111</td>
<td>FMINV - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00011</td>
<td>UADDLV</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>01010</td>
<td>UMAXV</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>11010</td>
<td>UMINV</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>11011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>01100</td>
<td>FMAXNMV - Single-precision and double-precision variant</td>
<td>-</td>
</tr>
</tbody>
</table>
Advanced SIMD three different

This section describes the encoding of the Advanced SIMD three different instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Advanced SIMD three different

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U size opcode</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 0111</td>
<td>FMAXV - Single-precision and double-precision variant</td>
<td></td>
</tr>
<tr>
<td>1 1x 0111</td>
<td>FMINNMV - Single-precision and double-precision variant</td>
<td></td>
</tr>
<tr>
<td>1 1x 0111</td>
<td>FMINV - Single-precision and double-precision variant</td>
<td></td>
</tr>
</tbody>
</table>

---

### Decode fields

<table>
<thead>
<tr>
<th>U size opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0x 0111</td>
<td>FMAXV - Single-precision and double-precision variant</td>
<td></td>
</tr>
<tr>
<td>1 1x 0111</td>
<td>FMINNMV - Single-precision and double-precision variant</td>
<td></td>
</tr>
<tr>
<td>1 1x 0111</td>
<td>FMINV - Single-precision and double-precision variant</td>
<td></td>
</tr>
</tbody>
</table>

---

### Decode fields

<table>
<thead>
<tr>
<th>U size opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 00 00 00</td>
<td>SADDL, SADDL2</td>
<td></td>
</tr>
<tr>
<td>0 00 01 00</td>
<td>SADDW, SADDW2</td>
<td></td>
</tr>
<tr>
<td>0 00 10 00</td>
<td>SSUBL, SSUBL2</td>
<td></td>
</tr>
<tr>
<td>0 00 11 00</td>
<td>SSUBW, SSUBW2</td>
<td></td>
</tr>
<tr>
<td>0 01 00 00</td>
<td>ADDHN, ADDHN2</td>
<td></td>
</tr>
<tr>
<td>0 01 01 00</td>
<td>SABAL, SABAL2</td>
<td></td>
</tr>
<tr>
<td>0 01 10 00</td>
<td>SUBHN, SUBHN2</td>
<td></td>
</tr>
<tr>
<td>0 01 11 00</td>
<td>SABDL, SABDL2</td>
<td></td>
</tr>
<tr>
<td>0 10 00 00</td>
<td>SMLAL, SMLAL2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 10 01 00</td>
<td>SQDMLAL, SQDMLAL2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 10 10 00</td>
<td>SMLSL, SMLSL2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 10 11 00</td>
<td>SQDMXL, SQDMXL2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 11 00 00</td>
<td>SMULL, SMULL2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 11 01 00</td>
<td>SQDML, SQDML2 (vector)</td>
<td></td>
</tr>
<tr>
<td>0 11 10 00</td>
<td>PMULL, PMULL2</td>
<td></td>
</tr>
<tr>
<td>1 00 00 00</td>
<td>UADDL, UADDL2</td>
<td></td>
</tr>
<tr>
<td>1 00 01 00</td>
<td>UADDW, UADDW2</td>
<td></td>
</tr>
<tr>
<td>1 00 10 00</td>
<td>USUBL, USUBL2</td>
<td></td>
</tr>
<tr>
<td>1 00 11 00</td>
<td>USUBW, USUBW2</td>
<td></td>
</tr>
</tbody>
</table>
Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0100</td>
<td>RADDHN, RADDHN2</td>
</tr>
<tr>
<td>1</td>
<td>0101</td>
<td>UABAL, UABAL2</td>
</tr>
<tr>
<td>1</td>
<td>0110</td>
<td>RSUBHN, RSUBHN2</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
<td>UABDL, UABDL2</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>UMLAL, UMLAL2 (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1010</td>
<td>UMLSL, UMLSL2 (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1100</td>
<td>UMULL, UMULL2 (vector)</td>
</tr>
<tr>
<td>1</td>
<td>1101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1110</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>U size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000</td>
<td>SHADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00001</td>
<td>SQADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00010</td>
<td>SRHADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00100</td>
<td>SHSUB</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00101</td>
<td>SQSUB</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00110</td>
<td>CMGT (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00111</td>
<td>CMGE (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01000</td>
<td>SSHL</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01001</td>
<td>SQSHL (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01010</td>
<td>SRSHL</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01111</td>
<td>SQRSHL</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01100</td>
<td>SMAX</td>
<td>-</td>
</tr>
</tbody>
</table>

The instructions in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.
<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>U size opcode</td>
<td>SMIN</td>
<td>-</td>
</tr>
<tr>
<td>0 01101</td>
<td>SABD</td>
<td>-</td>
</tr>
<tr>
<td>0 01110</td>
<td>SABA</td>
<td>-</td>
</tr>
<tr>
<td>0 01111</td>
<td>ADD (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 10000</td>
<td>CMTST</td>
<td>-</td>
</tr>
<tr>
<td>0 10010</td>
<td>MLA (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 10011</td>
<td>MUL (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 10100</td>
<td>SMAXP</td>
<td>-</td>
</tr>
<tr>
<td>0 10101</td>
<td>SMINP</td>
<td>-</td>
</tr>
<tr>
<td>0 10110</td>
<td>SQDMULH (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 10111</td>
<td>ADDP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01100</td>
<td>FMAXNM (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01101</td>
<td>FMLA (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01110</td>
<td>FADD (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01111</td>
<td>FMULX</td>
<td>-</td>
</tr>
<tr>
<td>0 01110</td>
<td>FCMEQ (register)</td>
<td>-</td>
</tr>
<tr>
<td>0 01111</td>
<td>FMAX (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01111</td>
<td>FRECPS</td>
<td>-</td>
</tr>
<tr>
<td>0 00011</td>
<td>AND (vector)</td>
<td>-</td>
</tr>
<tr>
<td>0 01101</td>
<td>FMLAL, FMLAL2 (vector) - FMLAL variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>0 01001</td>
<td>BIC (vector, register)</td>
<td>-</td>
</tr>
<tr>
<td>0 11101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1x 11000</td>
<td>FMINNM (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1x 11001</td>
<td>FMLS (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1x 11010</td>
<td>FSUB (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1x 11011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1x 11100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1x 11110</td>
<td>FMIN (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1x 11111</td>
<td>FRSQRTS</td>
<td>-</td>
</tr>
<tr>
<td>0 10001</td>
<td>ORR (vector, register)</td>
<td>-</td>
</tr>
<tr>
<td>0 11101</td>
<td>FMLSL, FMLSL2 (vector) - FMLSL variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>0 11111</td>
<td>ORN (vector)</td>
<td>-</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>U size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 11</td>
<td>1101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00000</td>
<td>UHADD</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00001</td>
<td>UQADD</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00010</td>
<td>URHADD</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00100</td>
<td>UHSUB</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00101</td>
<td>UQSUB</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00110</td>
<td>CMHI (register)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>00111</td>
<td>CMHS (register)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01000</td>
<td>USHL</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01001</td>
<td>UQSHL (register)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01010</td>
<td>URSHL</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01011</td>
<td>UQRSHL</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01100</td>
<td>UMAX</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01101</td>
<td>UMIN</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01110</td>
<td>UABD</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>01111</td>
<td>UABA</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10000</td>
<td>SUB (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10001</td>
<td>CMEQ (register)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10010</td>
<td>MLS (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10011</td>
<td>PMUL</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10100</td>
<td>UMXP</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10101</td>
<td>UMINP</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10110</td>
<td>SQRDMULH (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 -</td>
<td>10111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11000</td>
<td>FMAXNMP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11010</td>
<td>FADDP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11011</td>
<td>FMUL (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11100</td>
<td>FCMGE (register)</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11101</td>
<td>FACGE</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11110</td>
<td>FMAXP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 0x</td>
<td>11111</td>
<td>FDIV (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1 00</td>
<td>00011</td>
<td>EOR (vector)</td>
<td>-</td>
</tr>
</tbody>
</table>
Advanced SIMD modified immediate

This section describes the encoding of the Advanced SIMD modified immediate instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>11001</td>
<td>FMLAL, FMLAL2 (vector) - FMLAL2 variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00011</td>
<td>BSL</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11000</td>
<td>FMINNMP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11010</td>
<td>FABD</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11100</td>
<td>FCMGT (register)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11101</td>
<td>FACGT</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11110</td>
<td>FMINP (vector)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>11111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>00011</td>
<td>BIT</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11001</td>
<td>FMLSL, FMLSL2 (vector) - FMLSL2 variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>00011</td>
<td>BIF</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>Q</th>
<th>op</th>
<th>cmode</th>
<th>o2</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>0xx</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>0x0</td>
<td>0</td>
<td>MOVI - 32-bit shifted immediate variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>0x1</td>
<td>0</td>
<td>ORR (vector, immediate) - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1xx</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1x0</td>
<td>0</td>
<td>MOVI - 16-bit shifted immediate variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1x1</td>
<td>0</td>
<td>ORR (vector, immediate) - 16-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>110x</td>
<td>0</td>
<td>MOVI - 32-bit shifting ones variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>110x</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1110</td>
<td>0</td>
<td>MOVI - 8-bit variant</td>
<td>-</td>
</tr>
</tbody>
</table>
## Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

### Decode fields

<table>
<thead>
<tr>
<th>Q</th>
<th>op</th>
<th>cmode</th>
<th>o2</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>1110</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1111</td>
<td>0</td>
<td>FMOV (vector, immediate) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>1111</td>
<td>1</td>
<td>FMOV (vector, immediate) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0xx0</td>
<td>0</td>
<td>MVNI - 32-bit shifted immediate variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0xx1</td>
<td>0</td>
<td>BIC (vector, immediate) - 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>10x0</td>
<td>0</td>
<td>MVNI - 16-bit shifted immediate variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>10x1</td>
<td>0</td>
<td>BIC (vector, immediate) - 16-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>110x</td>
<td>0</td>
<td>MVNI - 32-bit shifting ones variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1110</td>
<td>0</td>
<td>MOVI - 64-bit scalar variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1110</td>
<td>0</td>
<td>MOVI - 64-bit vector variant</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>0</td>
<td>FMOV (vector, immediate) - Double-precision variant</td>
<td>-</td>
</tr>
</tbody>
</table>

### Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

$$
\begin{array}{cccccccc}
|31|30|29|28|27|26|25|24|23|22|19|18|16|15|11|10|9|5|4|0|
\hline
0 & Q & U & 0 & 1 & 1 & 0 & l=0000 & immh & opcode & 1 & Rn & Rd
\end{array}
$$

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>00001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>00011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>00101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>00111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>01111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>10101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>-</td>
<td>1011x</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>U opcode</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>110xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>111001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>11110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 0000</td>
<td>SXHR</td>
</tr>
<tr>
<td>0 0001</td>
<td>SSRA</td>
</tr>
<tr>
<td>0 0010</td>
<td>SRSRA</td>
</tr>
<tr>
<td>0 0011</td>
<td>SRSRA</td>
</tr>
<tr>
<td>0 0100</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 0101</td>
<td>SHL</td>
</tr>
<tr>
<td>0 0110</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 0111</td>
<td>SQSHL (immediate)</td>
</tr>
<tr>
<td>0 1000</td>
<td>SHRN, SHRN2</td>
</tr>
<tr>
<td>0 1001</td>
<td>RSHRN, RSHRN2</td>
</tr>
<tr>
<td>0 1010</td>
<td>SQSHRN, SQSHRN2</td>
</tr>
<tr>
<td>0 1011</td>
<td>SQRSHRN, SQRSHRN2</td>
</tr>
<tr>
<td>0 1100</td>
<td>SSHLL, SSHLL2</td>
</tr>
<tr>
<td>0 1110</td>
<td>SCVTF (vector, fixed-point)</td>
</tr>
<tr>
<td>0 1111</td>
<td>FCVTZS (vector, fixed-point)</td>
</tr>
<tr>
<td>1 0000</td>
<td>USHR</td>
</tr>
<tr>
<td>1 0010</td>
<td>USRA</td>
</tr>
<tr>
<td>1 0010</td>
<td>URSHR</td>
</tr>
<tr>
<td>1 0011</td>
<td>URSRA</td>
</tr>
<tr>
<td>1 0100</td>
<td>SRI</td>
</tr>
<tr>
<td>1 0101</td>
<td>SLI</td>
</tr>
<tr>
<td>1 0110</td>
<td>SQSHLU</td>
</tr>
<tr>
<td>1 0111</td>
<td>UQSHL (immediate)</td>
</tr>
<tr>
<td>1 1000</td>
<td>SQSHRUN, SQSHRUN2</td>
</tr>
<tr>
<td>1 1001</td>
<td>SQRSHRUN, SQRSHRUN2</td>
</tr>
<tr>
<td>1 1010</td>
<td>UQSHRN, UQSHRN2</td>
</tr>
<tr>
<td>1 1011</td>
<td>UQRSHRN, UQRSHRN2</td>
</tr>
</tbody>
</table>
### Advanced SIMD vector x indexed element

This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19</th>
<th>16 15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 Q 0 1 1 1 size L M Rm opcode H 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10100</td>
<td>USHLL, USHLL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11100</td>
<td>UCVTF (vector, fixed-point)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11111</td>
<td>FCVTZU (vector, fixed-point)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>01</td>
<td>1001</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0010</td>
<td>SMLAL, SMLAL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0011</td>
<td>SQDMLAL, SQDMLAL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0110</td>
<td>SMLSL, SMLSL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0111</td>
<td>SQDMLSL, SQDMLSL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1000</td>
<td>MUL (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1010</td>
<td>SMULL, SMULL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1011</td>
<td>SQDMMULL, SQDMMULL2 (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1100</td>
<td>SQDMLUH (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1101</td>
<td>SQRDMULH (by element)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1110</td>
<td>SDOT (by element)</td>
<td>FEAT_DotProd</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0 0x</td>
<td>0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0x</td>
<td>0100</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0 00</td>
<td>0001</td>
<td>FMLA (by element) - Vector, half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 00</td>
<td>0101</td>
<td>FMLS (by element) - Vector, half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 00</td>
<td>1001</td>
<td>FMUL (by element) - Vector, half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 00</td>
<td>1111</td>
<td>SUDOT (by element)</td>
<td>FEAT_I8MM</td>
<td></td>
</tr>
<tr>
<td>0 01</td>
<td>0001</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0 01</td>
<td>0101</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>1111</td>
<td>BFDOT (by element)</td>
<td>FEAT_BF16</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>0001</td>
<td>FMLA (by element) - Vector, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>0101</td>
<td>FMLS (by element) - Vector, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1001</td>
<td>FMUL (by element) - Vector, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0000</td>
<td>FMLAL, FMLAL2 (by element) - FMLAL variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0100</td>
<td>FMLSL, FMLSL2 (by element) - FMLSL variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>1111</td>
<td>USDOT (by element)</td>
<td>FEAT_I8MM</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1111</td>
<td>BFMLALB, BFMLALT (by element)</td>
<td>FEAT_BF16</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0000</td>
<td>MLA (by element)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0010</td>
<td>UMLAL, UMLAL2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0100</td>
<td>MLS (by element)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0110</td>
<td>UMLSLL, UMLSLL2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1010</td>
<td>UMULL, UMULL2 (by element)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1101</td>
<td>SQRDMLAH (by element)</td>
<td>FEAT_RDM</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1110</td>
<td>UDOT (by element)</td>
<td>FEAT_DotProd</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1111</td>
<td>SQRDMLSH (by element)</td>
<td>FEAT_RDM</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1001</td>
<td>FMULX (by element) - Vector, half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00x1</td>
<td>FCMLA (by element)</td>
<td>FEAT_FCMA</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1001</td>
<td>FMULX (by element) - Vector, single-precision and double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>00x1</td>
<td>FCMLA (by element)</td>
<td>FEAT_FCMA</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1000</td>
<td>FMLAL, FMLAL2 (by element) - FMLAL2 variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1100</td>
<td>FMLSL, FMLSL2 (by element) - FMLSL2 variant</td>
<td>FEAT_FHM</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
Cryptographic three-register, imm2

This section describes the encoding of the Cryptographic three-register, imm2 instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1</td>
<td>0 0 0 1 0 1</td>
<td>Rm 1 0 imm2</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cryptographic three-register SHA 512

This section describes the encoding of the Cryptographic three-register SHA 512 instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1</td>
<td>0 0 0 1 0 1</td>
<td>Rm 1 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>opcode</td>
<td>O size opcode</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
### Cryptographic four-register

This section describes the encoding of the Cryptographic four-register instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 11</td>
<td>RAX1</td>
<td>FEAT_SHA3</td>
</tr>
<tr>
<td>1 00</td>
<td>SM3PARTW1</td>
<td>FEAT_SM3</td>
</tr>
<tr>
<td>1 01</td>
<td>SM3PARTW2</td>
<td>FEAT_SM3</td>
</tr>
<tr>
<td>1 10</td>
<td>SM4EKEY</td>
<td>FEAT_SM4</td>
</tr>
<tr>
<td>1 11</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

### Cryptographic two-register SHA 512

This section describes the encoding of the Cryptographic two-register SHA 512 instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>EOR3</td>
<td>FEAT_SHA3</td>
</tr>
<tr>
<td>01</td>
<td>BCAX</td>
<td>FEAT_SHA3</td>
</tr>
<tr>
<td>10</td>
<td>SM3SS1</td>
<td>FEAT_SM3</td>
</tr>
<tr>
<td>11</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
### Conversion between floating-point and fixed-point

This section describes the encoding of the Conversion between floating-point and fixed-point instruction class. The encodings in this section are decoded from `Data Processing -- Scalar Floating-Point and Advanced SIMD` on page C4-320.

<table>
<thead>
<tr>
<th>sf</th>
<th>S</th>
<th>ptype</th>
<th>rmode</th>
<th>opcode</th>
<th>scale</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[1xx]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[00x]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[01x]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[00x]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[01x]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0xxxx]</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00</td>
<td>010</td>
<td></td>
<td>SCVTF (scalar, fixed-point) - 32-bit to single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>00</td>
<td>011</td>
<td></td>
<td>UCVTF (scalar, fixed-point) - 32-bit to single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>11</td>
<td>000</td>
<td></td>
<td>FCVTZS (scalar, fixed-point) - Single-precision to 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>11</td>
<td>001</td>
<td></td>
<td>FCVTZU (scalar, fixed-point) - Single-precision to 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00</td>
<td>010</td>
<td></td>
<td>SCVTF (scalar, fixed-point) - 32-bit to double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00</td>
<td>011</td>
<td></td>
<td>UCVTF (scalar, fixed-point) - 32-bit to double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>11</td>
<td>000</td>
<td></td>
<td>FCVTZS (scalar, fixed-point) - Double-precision to 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>11</td>
<td>001</td>
<td></td>
<td>FCVTZU (scalar, fixed-point) - Double-precision to 32-bit variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00</td>
<td>010</td>
<td></td>
<td>SCVTF (scalar, fixed-point) - 32-bit to half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00</td>
<td>011</td>
<td></td>
<td>UCVTF (scalar, fixed-point) - 32-bit to half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>000</td>
<td></td>
<td>FCVTZS (scalar, fixed-point) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>001</td>
<td></td>
<td>FCVTZU (scalar, fixed-point) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00</td>
<td>00</td>
<td>010</td>
<td></td>
<td>SCVTF (scalar, fixed-point) - 64-bit to single-precision variant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00</td>
<td>00</td>
<td>011</td>
<td></td>
<td>UCVTF (scalar, fixed-point) - 64-bit to single-precision variant</td>
<td></td>
</tr>
</tbody>
</table>
Conversion between floating-point and integer

This section describes the encoding of the Conversion between floating-point and integer instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf S ptype rmode opcode scale</td>
<td>FCVTZS (scalar, fixed-point) - Single-precision to 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 00 11 000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 0 00 11 001</td>
<td>FCVTZU (scalar, fixed-point) - Single-precision to 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 01 00 010</td>
<td>SCVT (scalar, fixed-point) - 64-bit to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 01 00 011</td>
<td>UCVT (scalar, fixed-point) - 64-bit to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 01 11 000</td>
<td>FCVTZS (scalar, fixed-point) - Double-precision to 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 01 11 001</td>
<td>FCVTZU (scalar, fixed-point) - Double-precision to 64-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>1 0 11 00 010</td>
<td>SCVT (scalar, fixed-point) - 64-bit to half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0 11 00 011</td>
<td>UCVT (scalar, fixed-point) - 64-bit to half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0 11 11 000</td>
<td>FCVTZS (scalar, fixed-point) - Half-precision to 64-bit variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 0 11 11 001</td>
<td>FCVTZU (scalar, fixed-point) - Half-precision to 64-bit variant</td>
<td>FEAT_FP16</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>sf S ptype rmode opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- - - x1 01x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - x1 10x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - 1x 01x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - 1x 10x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 10 0xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 0 10 10x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 x1 11x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 00 000</td>
<td>FCVTNS (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>sf</th>
<th>S</th>
<th>ptype</th>
<th>rmode</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001</td>
<td>FCVTNU (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>SCVTF (scalar, integer) - 32-bit to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>011</td>
<td>UCVTF (scalar, integer) - 32-bit to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>FCVTAS (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>101</td>
<td>FCVTAU (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>110</td>
<td>FMOV (general) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>FMOV (general) - 32-bit to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>FCVTPS (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>001</td>
<td>FCVTPU (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1x</td>
<td>11x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>FCVTMS (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>001</td>
<td>FCVTMU (scalar) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>FCVTZS (scalar, integer) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>001</td>
<td>FCVTZU (scalar, integer) - Single-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>010</td>
<td>SCVTF (scalar, integer) - 32-bit to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>011</td>
<td>UCVTF (scalar, integer) - 32-bit to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>FCVTAS (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>101</td>
<td>FCVTAU (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>000</td>
<td>FCVTPS (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>001</td>
<td>FCVTPU (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>FCVTMS (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>101</td>
<td>FCVTMU (scalar) - Double-precision to 32-bit variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>110</td>
<td>FJCVTZS FEAT_JSCVT</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00</td>
<td>000</td>
<td>FCVTNS (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sf S ptype rmode opcode</td>
<td>FCVTNU (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 001</td>
<td>SCVTF (scalar, integer) - 32-bit to half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 010</td>
<td>UCVTF (scalar, integer) - 32-bit to half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 100</td>
<td>FCVTAS (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 101</td>
<td>FCVTAU (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 110</td>
<td>FMOV (general) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00 111</td>
<td>FMOV (general) - 32-bit to half-precision variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 01 000</td>
<td>FCVTPS (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 01 001</td>
<td>FCVTPU (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 10 000</td>
<td>FCVTMS (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 10 001</td>
<td>FCVTMU (scalar) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 11 000</td>
<td>FCVTZS (scalar, integer) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 11 001</td>
<td>FCVTZU (scalar, integer) - Half-precision to 32-bit variant</td>
<td>FEAT_FP16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 - 11x</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 000</td>
<td>FCVTNS (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 001</td>
<td>FCVTNU (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 010</td>
<td>SCVTF (scalar, integer) - 64-bit to single-precision variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 011</td>
<td>UCVTF (scalar, integer) - 64-bit to single-precision variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 100</td>
<td>FCVTAS (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 00 101</td>
<td>FCVTAU (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 01 000</td>
<td>FCVTPS (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 01 001</td>
<td>FCVTPU (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 10 000</td>
<td>FCVTMS (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 10 001</td>
<td>FCVTMU (scalar) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 11 000</td>
<td>FCVTZS (scalar, integer) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 00 11 001</td>
<td>FCVTZU (scalar, integer) - Single-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 x1 11x</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 00 000</td>
<td>FCVTNS (scalar) - Double-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 00 001</td>
<td>FCVTNU (scalar) - Double-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 00 010</td>
<td>SCVTF (scalar, integer) - 64-bit to double-precision variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 00 011</td>
<td>UCVTF (scalar, integer) - 64-bit to double-precision variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 01 00 100</td>
<td>FCVTAS (scalar) - Double-precision to 64-bit variant</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Floating-point data-processing (1 source)

This section describes the encoding of the Floating-point data-processing (1 source) instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.
## A64 Instruction Set Encoding

### C4.1 A64 instruction set encoding

#### Decode fields

<table>
<thead>
<tr>
<th>M</th>
<th>S</th>
<th>ptype</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1xxxxx</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000000</td>
<td>FMOV (register) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000001</td>
<td>FABS (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000010</td>
<td>FNEG (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000111</td>
<td>FSQRT (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000100</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000101</td>
<td>FCVT - Single-precision to double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000110</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>000111</td>
<td>FCVT - Single-precision to half-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001000</td>
<td>FRINTN (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001001</td>
<td>FRINTP (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001010</td>
<td>FRINTM (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001011</td>
<td>FRINTZ (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001100</td>
<td>FRINTA (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001101</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001110</td>
<td>FRINTX (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>001111</td>
<td>FRINTI (scalar) - Single-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>010000</td>
<td>FRINT32Z (scalar) - Single-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>010001</td>
<td>FRINT32X (scalar) - Single-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>010010</td>
<td>FRINT64Z (scalar) - Single-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>010011</td>
<td>FRINT64X (scalar) - Single-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>0101xx</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>011xxx</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>000000</td>
<td>FMOV (register) - Double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>000001</td>
<td>FABS (scalar) - Double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>000010</td>
<td>FNEG (scalar) - Double-precision variant</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>000011</td>
<td>FSQRT (scalar) - Double-precision variant</td>
<td></td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>M</th>
<th>S</th>
<th>ptype</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00100</td>
<td>FCVT - Double-precision to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00101</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00110</td>
<td>BFCVT</td>
<td>FEAT_BF16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00111</td>
<td>FCVT - Double-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00100</td>
<td>FRINTN (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00101</td>
<td>FRINTP (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00102</td>
<td>FRINTM (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00103</td>
<td>FRINTZ (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00110</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00111</td>
<td>FRINTX (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>00112</td>
<td>FRINTI (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>01000</td>
<td>FRINT32Z (scalar) - Double-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>01001</td>
<td>FRINT32X (scalar) - Double-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>01010</td>
<td>FRINT64Z (scalar) - Double-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>01011</td>
<td>FRINT64X (scalar) - Double-precision variant</td>
<td>FEAT_FRINTTS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>0101x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>011xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0xxxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00000</td>
<td>FMOV (register) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00001</td>
<td>FABS (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00010</td>
<td>FNEG (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00011</td>
<td>FSQRT (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00100</td>
<td>FCVT - Half-precision to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00101</td>
<td>FCVT - Half-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0011x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00100</td>
<td>FRINTN (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00101</td>
<td>FRINTP (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00110</td>
<td>FRINTM (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00111</td>
<td>FRINTZ (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00110</td>
<td>FRINTA (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>00111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
### Floating-point compare

This section describes the encoding of the Floating-point compare instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRINTX (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>FRINTI (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>M</th>
<th>S</th>
<th>ptype</th>
<th>opcode</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>001110</td>
<td>FRINTX (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>001111</td>
<td>FRINTI (scalar) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>01xxxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31 30 29 28][27 26 25 24][23 22 21 20]</td>
<td>[16][15 14 13 12][11 10 9]</td>
<td>5 4 0</td>
</tr>
<tr>
<td>M</td>
<td>S</td>
<td>ptype</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- - - - xxxx1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - - xxx1x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - xx1xx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - x1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - 1x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- - - 10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 00 00000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 00 01000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 00 10000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 00 11000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 00 00000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 00 01000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 00 10000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 00 11000</td>
<td>FCMP</td>
<td>-</td>
</tr>
<tr>
<td>0 0 11 00 00000</td>
<td>FCMP</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 0 11 00 01000</td>
<td>FCMP</td>
<td>FEAT_FP16</td>
</tr>
</tbody>
</table>
Floating-point immediate

This section describes the encoding of the Floating-point immediate instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

```
| 31 30 29 28|27 26 25 24|23 22 21 20| | 13 12|11 10 9 | 5 4 | 0 |
M |0 |S |1 |1 |1 |0 |ptype |1 | imm8 | 1 |0 | imm5 | Rd |
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M  S  ptype  imm5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 00 0000</td>
<td>FMOV (scalar, immediate) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0000</td>
<td>FMOV (scalar, immediate) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 11 0000</td>
<td>FMOV (scalar, immediate) - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
</tbody>
</table>

Floating-point conditional compare

This section describes the encoding of the Floating-point conditional compare instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

```
<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M S ptype imm5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 11 00</td>
<td>FCMPE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 0 11 00</td>
<td>FCMPE</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
```
Floating-point data-processing (2 source)

This section describes the encoding of the Floating-point data-processing (2 source) instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.
### Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this section are decoded from *Data Processing -- Scalar Floating-Point and Advanced SIMD* on page C4-320.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M S ptype opcode</td>
<td>FMIN (scalar) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 0101</td>
<td>FMAXNM (scalar) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 0110</td>
<td>FMINNM (scalar) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 0111</td>
<td>FNMLU (scalar) - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 1000</td>
<td>FMUL (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0000</td>
<td>FDIV (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0001</td>
<td>FADD (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0010</td>
<td>FSUB (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0011</td>
<td>FMAX (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0100</td>
<td>FMIN (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0101</td>
<td>FMAXNM (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0110</td>
<td>FMINNM (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0111</td>
<td>FMNUL (scalar) - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 1000</td>
<td>FMUL (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0000</td>
<td>FDIV (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0001</td>
<td>FADD (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0010</td>
<td>FSUB (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0011</td>
<td>FMAX (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0100</td>
<td>FMIN (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0101</td>
<td>FMAXNM (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 0110</td>
<td>FMINNM (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 0 11 1000</td>
<td>FMNUL (scalar) - Half-precision variant FEAT_FP16</td>
<td></td>
</tr>
<tr>
<td>0 11 0011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
Floating-point data-processing (3 source)

This section describes the encoding of the Floating-point data-processing (3 source) instruction class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-320.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M S ptype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - 10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00</td>
<td>FCSEL - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01</td>
<td>FCSEL - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 11</td>
<td>FCSEL - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>1 - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>M S o1 o0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - 10 - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>- 1 - - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 0 0</td>
<td>FMADD - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 0 1</td>
<td>FMSUB - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 00 1 0</td>
<td>FNMADD - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 1 1</td>
<td>FNMSUB - Single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0 0</td>
<td>FMADD - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 0 1</td>
<td>FMSUB - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 1 0</td>
<td>FNMADD - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 01 1 1</td>
<td>FNMSUB - Double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0 0 11 0 0</td>
<td>FMADD - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>0 0 11 0 1</td>
<td>FMSUB - Half-precision variant</td>
<td>FEAT_FP16</td>
</tr>
<tr>
<td>M</td>
<td>S</td>
<td>ptype</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Chapter C5
The A64 System Instruction Class

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a subset of the System registers encoding space. It contains the following sections:

- The System instruction class encoding space on page C5-372.
- Special-purpose registers on page C5-385.
- A64 System instructions for cache maintenance on page C5-471.
- A64 System instructions for address translation on page C5-532.
- A64 System instructions for TLB maintenance on page C5-557.
- A64 System instructions for prediction restriction on page C5-756.

See General information about the A64 instruction descriptions on page C2-195 for information about entries used in the instruction encoding descriptions.
C5.1 The System instruction class encoding space

Part of the A64 instruction encoding space is assigned to instructions that access the System register encoding space. These instructions provide:

- Access to System registers, including the debug registers, that provide system control, and system status information.
- Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process State.
- The cache and TLB maintenance instructions and address translation instructions.
- Barriers and the CLREX instruction.
- Architectural hint instructions.

This section describes the general model for accessing this functionality.

**Note**

- See Fixed values in AArch64 instruction and System register descriptions on page C2-195 for information about abbreviations used in the System instruction descriptions.
- In AArch32 state much of this functionality is provided through the System register interface described in The AArch32 System register interface on page G1-5809. In AArch64 state, the parameters used to characterize the System register encoding space are \{op0, op1, CRn, CRm, op2\}. These are based on the parameters that characterize the AArch32 System register encoding space, which reflect the original implementation of these registers, as described in Background to the System register interface on page G1-5810. In Armv8, there is no particular significance to the naming of these parameters, and no functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding describes some general properties of these encodings. System instruction class encoding overview on page C5-373 then describes the top-level encoding of these instructions, and the following sections then describe the next level of the encoding hierarchy of System instructions and Special-purpose registers:

- \(op0 = 0b00\), architectural hints, barriers and CLREX, and PSTATE access on page C5-374.
- \(op0 = 0b01\), cache maintenance, TLB maintenance, and address translation instructions on page C5-377.
- \(op0 = 0b11\), Moves to and from Special-purpose registers on page C5-383.

For the description of the next level of encoding hierarchy of System registers, see:

- \(op0 = 0b10\), Moves to and from debug and trace System registers on page D12-2845.
- \(op0 = 0b11\), Moves to and from non-debug System registers, Special-purpose registers on page D12-2847.
- Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.

C5.1.1 Principles of the System instruction class encoding

In Armv8, an encoding in the System instruction space is identified by a set of arguments, \{op0, op1, CRn, CRm, op2\}. These form an encoding hierarchy, where:

- \(op0\) Defines the top-level division of the encoding space, see System instruction class encoding overview on page C5-373.
- \(op1\) Identifies the lowest Exception level at which the encoding is accessible, as follows:
  - **Accessible at EL0** \(op1\) has the value 3.
  - **Accessible at EL1** \(op1\) has the value 0, 1, or 2. The value is the same as the \(op1\) value used to access the equivalent AArch32 register.
  - **Accessible at Secure EL1** \(op1\) has the value 7.
The A64 System Instruction Class

C5.1 The System instruction class encoding space

| Accessible at EL2 | op1 has the value 4 or 5. The value 5 is used for the EL12 encodings that access EL1 System registers used when FEAT_VHE is implemented and HCR_EL2.E2H is 1. |
| Accessible at EL3 | op1 has the value 6. |

Arm strongly recommends that implementers adopt this use of op1 when using the IMPLEMENTATION DEFINED regions of the encoding space described in Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.

C5.1.2 System instruction class encoding overview

The encoding of the System instruction class describes each instruction as being either:
• A transfer to a System register. This is a System instruction with the semantics of a write.
• A transfer from a System register. This is a System instruction with the semantics of a read.

A System instruction that initiates an operation operates as if it was making a transfer to a register.

In the AArch64 instruction set, the decode structure for the System instruction class is:

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15</th>
<th>12 11 8 7 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0 L</td>
<td>op0</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
</tr>
</tbody>
</table>
```

The value of L indicates the transfer direction:
0 Transfer to System register.
1 Transfer from System register.

The op0 field is the top level encoding of the System instruction type. Its possible values are:

| 0b00 | These encodings provide:
| | • Instructions with an immediate field for accessing PSTATE, the current PE state.
| | • The architectural hint instructions.
| | • Barriers and the CLREX instruction.
| | For more information about these encodings, see op0==0b00, architectural hints, barriers and CLREX, and PSTATE access on page C5-374. |
| 0b01 | These encodings provide the cache maintenance, TLB maintenance, and address translation instructions.

________ Note ______
These are equivalent to operations in the AArch32 (coproc==@b1111) encoding space.

________
For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377.

| 0b10 | These encodings provide moves to and from:
| | • Legacy AArch32 System registers for execution environments, to provide access to these registers from higher Exception levels that are using AArch64.
| | • Debug and trace registers.

________ Note ______
These are equivalent to the registers in the AArch32 (coproc==@b1110) encoding space.

________
For more information, see op0==0b10, Moves to and from debug and trace System registers on page D12-2845.

| 0b11 | These encodings provide:
| | • Moves to and from Non-debug System registers. The accessed registers provide system control, and system status information.

________
The A64 System Instruction Class

C5.1 The System instruction class encoding space

--- Note ---

The accessed registers are equivalent to the registers in the AArch32 (coproc==0b1111) encoding space.

---

- Access to Special-purpose registers.

For more information, see Instructions for accessing Special-purpose registers on page C5-383 and Instructions for accessing non-debug System registers on page D12-2847.

UNDEFINED behaviors

In the System register instruction encoding space, the following principles apply:

- All unallocated encodings are treated as UNDEFINED.
- All encodings with L==1 and op0==0b0x are UNDEFINED, except for encodings in the area reserved for IMPLEMENTATION DEFINED use, see Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.

For registers and operations that are accessible from a particular Exception level, any attempt to access those registers from a lower Exception level is UNDEFINED.

If a particular Exception level:

- Defines a register to be RO, then any attempt to write to that register, at that Exception level, is UNDEFINED. This means that any access to that register with L==0 is UNDEFINED.
- Defines a register to be WO, then any attempt to read from that register, at that Exception level, is UNDEFINED. This means that any access to that register with L==1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED, but see the recommendation in Principles of the System instruction class encoding on page C5-372.

C5.1.3 op0==0b00, architectural hints, barriers and CLREX, and PSTATE access

The different groups of System register instructions with op0==0b00:

- Are identified by the value of CRn.
- Are always encoded with a value of 0b11111 in the Rt field.

The encoding of these instructions is:

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>op0</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td>op1</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The encoding of the CRn field is as follows:

- 0b0010 See Architectural hint instructions.
- 0b0011 See Barriers and CLREX on page C5-375.
- 0b0100 See Instructions for accessing the PSTATE fields on page C5-376.

Architectural hint instructions

Within the op0==0b00 encodings, the architectural hint instructions are identified by CRn having the value 0b0010. The encoding of these instructions is:

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>op0</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td>Ope<6:0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The value of op<6:0>, formed by concatenating the CRn and op2 fields, determines the hint instruction as follows:

- 0b00000000 NOP instruction.
The A64 System Instruction Class

C5.1 The System instruction class encoding space

0b0000001  YIELD instruction.
0b0000010  WFE instruction.
0b0000011  WFI instruction.
0b0000100  SEV instruction.
0b0000101  SEVL instruction.
0b0000110  DGH instruction.
0b0000111  XPACD, XPACI, XPACLRI instruction.
0b0001000  PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIA1716 variant.
0b0001010  PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIB1716 variant.
0b0001100  AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIA1716 variant.
0b0001110  AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIB1716 variant.
0b0010000  ESB instruction.
0b0010001  PSB CSYNC instruction.
0b0010010  TSB CSYNC instruction.
0b0010100  CSDB instruction.
0b0011000  PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIAZ variant.
0b0011001  PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIASP variant.
0b0011010  PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBZ variant.
0b0011011  PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBSP variant.
0b0011100  AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIAZ variant.
0b0011101  AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIASP variant.
0b0011110  AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBZ variant.
0b0011111  AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBSP variant.
0b0100xx0  BTI instruction.

These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

--- Note ---
- Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.
- The operation of the A64 instructions for architectural hints are identical to the corresponding A32 and T32 instructions.

For more information about:
- The WFE, WFI, SEV, and SEVL instructions, see Mechanisms for entering a low-power state on page D1-2391.
- The YIELD instruction, see Software control features and EL0 on page B1-112.

**Barriers and CLREX**

Within the op0==0b00 encodings, the barriers and CLREX instructions are identified by Crn having the value 0b011. The encoding of these instructions is:

```
+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| 31 30 29 28| 27 26 25 24| 23 22 21 20| 19 18 16 15| 12 11 8| 7| 5| 4| 0
+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| 1| 1| 0| 1| 0| 1| 0| 1| 0| 0| 0| 0| 0| 0| 1| 1| 0| 0| 1| 1| CRn| op2| 1| 1| 1| 1
+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
```

The value of op2 determines the instruction, as follows.
0b010  CLREX instruction.
0b100  DSB instruction.
0b101  DMIB instruction.
0b110  TSB instruction.
0b000, 0b001, 0b011, 0b111
UNDEFINED.
These instructions are described in Chapter C6 A64 Base Instruction Descriptions.

----- Note -----  
- Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.
- The operation of the A64 instructions for barriers and CLREX are identical to the corresponding A32 and T32 instructions.

For more information about:
- The barrier instructions, see Memory barriers on page B2-134.
- The CLREX instruction, see Synchronization and semaphores on page B2-166.

Instructions for accessing the PSTATE fields

Within the op0==0b00 encodings, the instructions that can be used to modify PSTATE fields directly are identified by CRn having the value 0b0100. The encoding of these instructions is:

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15</th>
<th>12</th>
<th>8 7</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td>0 0</td>
<td>0 0</td>
<td>op1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These instructions are:
- CFINV   ; Inverts the value of PSTATE.C
- MSR DAIFSet, #Imm4 ; Used to set any or all of DAIF to 1
- MSR DAIFClr, #Imm4 ; Used to clear any or all of DAIF to 0
- MSR SPSetl, #Imm4 ; Used to select the Stack Pointer, between SP_EL0 and SP_ELx
- MSR UAO, #Imm4 ; Used to set the value of PSTATE.UAO
- MSR PAN, #Imm4 ; Used to set the value of PSTATE.PAN
- MSR DIT, #Imm4 ; Used to set the value of PSTATE.DIT
- MSR SSBS, #Imm4 ; Used to set the value of PSTATE.SSBS
- MSR TCO, #Imm4 ; Used to set the value of PSTATE.TCO

The value of op2 selects the instruction form, which defines the constraints on the values of the op1 and Imm4 arguments, as follows:
- op2 == 0b000  Selects the CFINV instruction.
- op2 == 0b011  Selects the MSR UAO instruction.
- op2 == 0b100  Selects the MSR PAN instruction.
- op2 == 0b101  Selects the MSR SPSetl instruction.
- op2 == 0b001  Selects the MSR SSBS instruction.
- op2 == 0b010  Selects the MSR DIT instruction.
- op2 == 0b100  Selects the MSR TCO instruction.
- op2 == 0b110  Selects the MSR DAIFSet instruction, that sets the specified PSTATE.{D, A, I, F} bits to 1.
- op2 == 0b111  Selects the MSR DAIFClr instruction, that clears the specified PSTATE.{D, A, I, F} bits to 0.

All other combinations of op1 and op2 are reserved, and the corresponding instructions are UNDEFINED.

----- Note -----  
For PSTATE updates, instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.

Writes to PSTATE.{PAN, D, A, I, F} occur in program order without the need for additional synchronization. Changing PSTATE.SPSetl to use SP_EL0 synchronizes any updates to SP_EL0 that have been written by an MSR to SP_EL0, without the need for additional synchronization.
C5.1.4 \( \text{op0} = \text{0b01} \), cache maintenance, TLB maintenance, and address translation instructions

The System instructions are encoded with \( \text{op0} = \text{0b01} \). The different groups of System instructions are identified by the values of \( CRn \) and \( CRm \), except that some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these instructions is:

\[
\begin{array}{cccccccccccc}
\text{31} & \text{30} & \text{29} & \text{28} & \text{27} & \text{26} & \text{25} & \text{24} & \text{23} & \text{22} & \text{21} & \text{20} & \text{19} & \text{18} & \text{16} & \text{15} & \text{12} & \text{11} & \text{8} & \text{7} & \text{5} & \text{4} & \text{0} \\
\text{1} & \text{1} & \text{0} & \text{1} & \text{0} & \text{1} & \text{0} & \text{0} & \text{0} & \text{1} & \text{0} & \text{1} & \text{1} & \text{0} & \text{1} & \text{0} & \text{0} & \text{1} & \text{1} & \text{0} & \text{1} & \text{0} \\
\end{array}
\]

The grouping of these instructions depending on the \( CRn \) and \( CRm \) fields is as follows:

- \( CRn = 7 \):
  - The instruction group is determined by the value of \( CRm \), as follows:
    - \( CRm = \{1, 5\} \):
      - Instruction cache maintenance instructions.
      - See Cache maintenance instructions, and data cache zero operation.
    - \( CRm = 3 \):
      - Prediction restriction instructions.
      - See Prediction restriction instructions on page C5-378.
    - \( CRm = 4 \):
      - Data cache zero operation.
      - See Cache maintenance instructions, and data cache zero operation.
    - \( CRm = \{6, 10, 11, 12, 14\} \):
      - Data cache maintenance instructions.
      - See Cache maintenance instructions, and data cache zero operation.
- \( CRn = 8 \):
  - See TLB maintenance instructions on page C5-379.
- \( CRn = \{11, 15\} \):
  - See Reserved encoding space for IMPLEMENTATION DEFINED instructions on page C5-382.

Cache maintenance instructions, and data cache zero operation

Table C5-1 lists the Cache maintenance instructions and their encodings. Instructions that take an argument include \( Xt \) in the instruction syntax. For instructions that do not take an argument, the \( Xt \) field is encoded as \( \text{0b11111} \). For these instructions, if the \( Xt \) field is not set to \( \text{0b11111} \), it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the \( Xt \) field is set to \( \text{0b11111} \).

Table C5-1 Cache maintenance instructions and data cache zero operation

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction cache maintenance instructions</td>
<td>op0 op1 CRn CRm op2</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>IC IALLUIS</td>
<td>1 0 7 1 0</td>
<td></td>
</tr>
<tr>
<td>IC IALLU</td>
<td>5 0</td>
<td></td>
</tr>
<tr>
<td>IC IVAU, Xt</td>
<td>3 7 5 1</td>
<td>When SCTLR_EL1.UCI == 1, accessible from EL0 or higher. Otherwise, accessible from EL1 or higher.</td>
</tr>
</tbody>
</table>

Data cache maintenance instructions
The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-1 Cache maintenance instructions and data cache zero operation (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC IVAC, Xt</td>
<td>1 0 7 6 1</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>DC ISW, Xt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DC CSW, Xt</td>
<td>10 2</td>
<td></td>
</tr>
<tr>
<td>DC CISW, Xt</td>
<td>14 2</td>
<td></td>
</tr>
<tr>
<td>DC CVAC, Xt</td>
<td>3 7 10 1</td>
<td>When SCTLR_EL1.UCI == 1, accessible from EL0 or higher. Otherwise, accessible from EL1 or higher.</td>
</tr>
<tr>
<td>DC CVAU, Xt</td>
<td>11 1</td>
<td></td>
</tr>
<tr>
<td>DC CVAP, Xt</td>
<td>12 1</td>
<td></td>
</tr>
<tr>
<td>DC CIVAC, Xt</td>
<td>14 1</td>
<td></td>
</tr>
</tbody>
</table>

Data cache zero operation

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC ZVA, Xt</td>
<td>1 3 7 4 1</td>
<td>When SCTLR_EL1.DZE == 1, accessible from EL0 or higher. Otherwise, accessible from EL1 or higher.</td>
</tr>
</tbody>
</table>

For more information about these instructions, see *About cache maintenance in AArch64 state on page D4-2500* and *A64 Cache maintenance instructions on page D4-2504*.

Prediction restriction instructions

Table C5-2 lists the Prediction restriction instructions and their encodings. Instructions that take an argument include Xt in the instruction syntax.

Table C5-2 Prediction restriction instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Prediction restriction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFP RCTX, Xt</td>
<td>1 3 7 3 4</td>
<td>When FEAT_SPECRES is implemented, accessible from EL0 or higher.</td>
</tr>
<tr>
<td>CPP RCTX, Xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DVP RCTX, Xt</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

For more information about these instructions, see *Execution and data prediction restriction System instructions on page D4-2516*.
Address translation instructions

Table C5-3 lists the Address translation instructions and their encodings. The syntax of the instructions includes \(\text{xt}\), that provides the address to be translated.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT S1E1R, xt</td>
<td>1 0 7 8 0</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>AT S1E1W, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AT S1E0R, xt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>AT S1E0W, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AT S1E1RP, xt</td>
<td>9 0</td>
<td></td>
</tr>
<tr>
<td>AT S1E1WP, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AT S1E2R, xt</td>
<td>4 7 8 0</td>
<td>Accessible from EL2 or higher.</td>
</tr>
<tr>
<td>AT S1E2W, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AT S12E1R, xt</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>AT S12E1W, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>AT S12E0R, xt</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>AT S12E0W, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>AT S1E3R, xt</td>
<td>6 7 8 0</td>
<td>Accessible only from EL3.</td>
</tr>
<tr>
<td>AT S1E3W, xt</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

For more information about these instructions, see *Address translation instructions* on page D5-2583.

TLB maintenance instructions

Table C5-4 on page C5-380 lists the TLB maintenance instructions and their encodings. Instructions that take an argument include \(\text{xt}\) in the instruction syntax. For instructions that do not take an argument, the \(\text{xt}\) field is encoded as 0b11111. For these instructions, if the \(\text{xt}\) field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
The instruction behaves as if the Xt field is set to 0b11111.

### Table C5-4 TLB maintenance instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBI VMALLE1OS, xt</td>
<td>1 0 8 1 0</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>TLBI VAE1OS, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLBI ASIDE1OS, xt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TLBI VAAE1OS, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1OS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1OS, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE1IS, xt</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE1IS, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1IS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1IS, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI VMALLE1IS</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>TLBI VA1IS, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLBI ASIDE1IS, xt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TLBI VAAE1IS, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1IS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1IS, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE1OS, xt</td>
<td>5 1</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE1OS, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1OS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1OS, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE1, xt</td>
<td>6 1</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAAE1, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI VMALLE1</td>
<td>7 0</td>
<td></td>
</tr>
<tr>
<td>TLBI VAE1, xt</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
### Table C5-4 TLB maintenance instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBI ASIDE1, xt</td>
<td>1 0 8 7 2</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>TLBI VAAE1, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI VALE1, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI VAALE1, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI IPAS2E1IS, xt</td>
<td>4 8 0 1</td>
<td>Accessible from EL2 or higher.</td>
</tr>
<tr>
<td>TLBI RIPAS2E1IS, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI IPAS2LE1IS, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI RIPAS2LE1IS, xt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLBI ALLE2OS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>TLBI VAE2OS, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLBI ALLE1OS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE2OS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VMALLS12E1OS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE2IS, xt</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>TLBI RVALE2IS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI ALLE2IS</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>TLBI VAE2IS, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLBI ALLE1IS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TLBI VALE2IS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI VMALLS12E1IS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TLBI IPAS2E1OS, xt</td>
<td>4 0</td>
<td></td>
</tr>
<tr>
<td>TLBI IPAS2E1, xt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLBI RIPAS2E1, xt</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TLBI RIPAS2E1OS, xt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TLBI IPAS2LE1OS, xt</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TLBI RIPAS2LE1, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI RIPAS2LE1OS, xt</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE2OS, xt</td>
<td>5 1</td>
<td></td>
</tr>
<tr>
<td>TLBI RVALE2OS, xt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLBI RVAE2, xt</td>
<td>6 1</td>
<td></td>
</tr>
</tbody>
</table>
Reserved encoding space for IMPLEMENTATION DEFINED instructions

The A64 instruction set reserves the following encoding space for IMPLEMENTATION DEFINED instructions:

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

The value of L defines the use of Rt as follows:

- 0: Rt is an argument supplied to the instruction.
- 1: Rt is a result returned by the instruction.

IMPLEMENTATION DEFINED instructions in this encoding space are accessed using the SYS and SYSL instructions, see SYS on page C6-1359 and SYSL on page C6-1361.
### C5.1.5 op0==0b11, Moves to and from Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these instructions is:

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Instructions for accessing Special-purpose registers

The value of CRn provides the next level of decode of these instructions. For Special-purpose registers, the value of CRn is 4.

The A64 instructions for accessing Special-purpose registers are:

- MSR <Special-purpose register>, Xt; Write to Special-purpose register
- MRS Xt, <Special-purpose register>; Read from Special-purpose register

For these accesses, CRn has the value 4. The encoding for Special-purpose register accesses is:

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The full list of Special-purpose registers is in Table C5-5. The characteristic of a Special-purpose register is that all direct and indirect reads and writes to the register appear to occur in program order relative to other instructions, without the need for any explicit synchronization.

Table C5-5 lists the encodings for op1, CRn, and op2 fields for accesses to the Special-purpose registers in AArch64.

### Table C5-5 Special-purpose register accesses

<table>
<thead>
<tr>
<th>Register</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPSR_EL1</td>
<td>op0 0 4 0 0</td>
<td>Accessible from EL1 or higher</td>
</tr>
<tr>
<td>ELR_EL1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SP_EL0</td>
<td>1 0</td>
<td>Accessible from EL1 or higher. If SP_EL0 is the current stack pointer then the access is UNDEFINED.</td>
</tr>
<tr>
<td>SPSel</td>
<td>2 0</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>CurrentEL</td>
<td>2</td>
<td>RO. Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>PAN</td>
<td>3</td>
<td>Accessible from EL1 or higher.</td>
</tr>
<tr>
<td>UAO</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NZCV</td>
<td>3 4 2 0</td>
<td>Accessible from EL0 or higher.</td>
</tr>
<tr>
<td>DAIF</td>
<td>1</td>
<td>Configurable whether accesses at EL0 are permitted.</td>
</tr>
<tr>
<td>DIT</td>
<td>5</td>
<td>Accessible from EL0 or higher.</td>
</tr>
<tr>
<td>SSBS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TCO</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

See also Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.
All direct and indirect reads and writes to Special-purpose registers appear to occur in program order relative to other instructions.

<table>
<thead>
<tr>
<th>Register</th>
<th>Access instruction encoding</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCR</td>
<td>3 3 4 0</td>
<td>Accessible from EL0 or higher.</td>
</tr>
<tr>
<td>FPSR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DSPSR_EL0</td>
<td>5 0</td>
<td>Accessible only in Debug state, from EL0 or higher.</td>
</tr>
<tr>
<td>DLR_EL0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SPSR_EL2</td>
<td>4 4 0 0</td>
<td>Accessible from EL2 or higher.</td>
</tr>
<tr>
<td>ELR_EL2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SP_EL1</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>SPSR_irq</td>
<td>3 0</td>
<td></td>
</tr>
<tr>
<td>SPSR_abt</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SPSR_und</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SPSR_fiq</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>*_EL12</td>
<td>5 4 {0-15} {0-7}</td>
<td>Reserved for EL2 aliases of EL1 Special-purpose registers, see Table D5-48 on page D5-2637.</td>
</tr>
<tr>
<td>SPSR_EL3</td>
<td>6 4 0 0</td>
<td>Accessible from EL3 or higher.</td>
</tr>
<tr>
<td>ELR_EL3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SP_EL2</td>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>
C5.2 Special-purpose registers

This section describes the following Special-purpose registers:

- **CurrentEL**, that holds PSTATE.EL, and that software can read to determine the current Exception level.
- **DAIF**, that holds the current PSTATE.{D, A, I, F} interrupt mask bits.
- **DIT**, that holds the PSTATE.DIT bit.
- **ELR_EL1**, that holds the address to return to for an exception return from EL1.
- **ELR_EL2**, that holds the address to return to for an exception return from EL2.
- **ELR_EL3**, that holds the address to return to for an exception return from EL3.
- **FPCR**, that provides control of floating-point operation.
- **FPSR**, that provides floating-point status information.
- **NZCV**, that holds the PSTATE.{N, Z, C, V} condition flags.
- **PAN**, that holds the PSTATE.PAN state bit.
- **SP_EL0**, that holds the stack pointer for EL0.
- **SP_EL1**, that holds the stack pointer for EL1.
- **SP_EL2**, that holds the stack pointer for EL2.
- **SP_EL3**, that holds the stack pointer for EL3.
- **SPSel**, that holds PSTATE.SP, that at EL1 or higher selects the current SP.
- **SPSR_abt**, that holds process state on taking an exception to AArch32 Abort mode.
- **SPSR_EL1**, that holds process state on taking an exception to AArch64 EL1.
- **SPSR_EL2**, that holds process state on taking an exception to AArch64 EL2.
- **SPSR_EL3**, that holds process state on taking an exception to AArch64 EL3.
- **SPSR_fiq**, that holds process state on taking an exception to AArch32 FIQ mode.
- **SPSR_irq**, that holds process state on taking an exception to AArch32 IRQ mode.
- **SPSR_und**, that holds process state on taking an exception to AArch32 Undefined mode.
- **SSBS**, that holds the PSTATE.SSBS bit.
- **TCO**, that holds the PSTATE.TCO bit.
- **UAO**, that holds the PSTATE.UAO bit.

The following registers are also Special-purpose registers:

- **DLR_EL0**, that holds the address to return to for a return from Debug state.
- **DSPSR_EL0**, that holds process state on entry to Debug state.
C5.2.1 CurrentEL, Current Exception Level

The CurrentEL characteristics are:

**Purpose**

Holds the current Exception level.

**Configurations**

There are no configuration notes.

**Attributes**

CurrentEL is a 64-bit register.

**Field descriptions**

The CurrentEL bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:4]</th>
<th>RES0</th>
<th>EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0</td>
<td></td>
<td>Current Exception level. Possible values of this field are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0b00</td>
<td>EL0</td>
<td></td>
</tr>
<tr>
<td>0b01</td>
<td>EL1</td>
<td></td>
</tr>
<tr>
<td>0b10</td>
<td>EL2</td>
<td></td>
</tr>
<tr>
<td>0b11</td>
<td>EL3</td>
<td></td>
</tr>
</tbody>
</table>

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of 0b10 in this field.

This field resets to the highest implemented Exception Level.

<table>
<thead>
<tr>
<th>Bits [1:0]</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0</td>
<td></td>
</tr>
</tbody>
</table>

**Accessing the CurrentEL**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CurrentEL**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then
        return Zeros(60):'10':Zeros(2);
else
    return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then
    return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then
    return Zeros(60):PSTATE.EL:Zeros(2);
C5.2.2 DAIF, Interrupt Mask Bits

The DAIF characteristics are:

**Purpose**

Allows access to the interrupt mask bits.

**Configurations**

There are no configuration notes.

**Attributes**

DAIF is a 64-bit register.

**Field descriptions**

The DAIF bit assignments are:

```
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
 RES0 D A I F RES0
```

**Bits [63:10]**

Reserved, RES0.

**D, bit [9]**

Process state D mask. The possible values of this bit are:
- `0b0` Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception level are not masked.
- `0b1` Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception level are masked.

When the target Exception level of the debug exception is higher than the current Exception level, the exception is not masked by this bit.

This field resets to 1.

**A, bit [8]**

SError interrupt mask bit. The possible values of this bit are:
- `0b0` Exception not masked.
- `0b1` Exception masked.

This field resets to 1.

**I, bit [7]**

IRQ mask bit. The possible values of this bit are:
- `0b0` Exception not masked.
- `0b1` Exception masked.

This field resets to 1.

**F, bit [6]**

FIQ mask bit. The possible values of this bit are:
- `0b0` Exception not masked.
- `0b1` Exception masked.

This field resets to 1.
Bits [5:0]
Reserved, RES0.

Accessing the DAIF

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, DAIF**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL1 then
  return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL2 then
  return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL3 then
  return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

**MSR DAIF, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      PSTATE.<D,A,I,F> = X[t]<9:6>;
  elsif PSTATE.EL == EL1 then
    PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL2 then
  PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL3 then
  PSTATE.<D,A,I,F> = X[t]<9:6>;
### MSR DAIFSet, #<imm>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b11</td>
<td>0b0100</td>
<td>0b110</td>
</tr>
</tbody>
</table>

### MSR DAIFClr, #<imm>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b11</td>
<td>0b0100</td>
<td>0b111</td>
</tr>
</tbody>
</table>
C5.2.3 DIT, Data Independent Timing

The DIT characteristics are:

**Purpose**

Allows access to the Data Independent Timing bit.

**Configurations**

This register is present only when FEAT_DIT is implemented. Otherwise, direct accesses to DIT are UNDEFINED.

**Attributes**

DIT is a 64-bit register.

**Field descriptions**

The DIT bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td>DIT</td>
</tr>
</tbody>
</table>
```

**Bits [63:25]**

Reserved, RES0.

**DIT, bit [24]**

Data Independent Timing.

- **0b0** The architecture makes no statement about the timing properties of any instructions.
- **0b1** The architecture requires that:
  - The timing of every load and store instruction is insensitive to the value of the data being loaded or stored.
  - For certain data processing instructions, the instruction takes a time which is independent of:
    - The values of the data supplied in any of its registers.
    - The values of the NZCV flags.
  - For certain data processing instructions, the response of the instruction to asynchronous exceptions does not vary based on:
    - The values of the data supplied in any of its registers.
    - The values of the NZCV flags.

The data processing instructions affected by this bit are:

- All cryptographic instructions. These instructions are:
  - AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU8, SHA1SU1, SHA256H, SHA256H2, SHA256SU8, SHA256SU1, SHA512H, SHA512H2, SHA512SU8, SHA512SU1, EOR3, RAX1, XAR, BCAX, SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, SM3PARTW2, SM4E, and SM4EKEY.
A subset of those instructions which use the general-purpose register file. These instructions are:

- ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFIM, BFIXL, BIC, BICS, COM, COM, CFINV, CINC, CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR, LSL, LSLN, LSR, LSRV, MAD, MMAD, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS, NOP, ORN, ORR, RBIT, RET, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFI2, SBFM, SBFX, SETF8, SETF16, SMADDL, SMNEG, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST, UBFI2, UFMM, UBFX, UMADDL, UMNEG, UMSUBL, UMULH, UMULL, UMTL, UXTB, and UXTH.

A subset of those instructions which use the SIMD&FP register file. These instructions are:

- ABS, ADD, ADDH, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMQ, CMQE, CMQG, CMHI, CMHS, CMLE, CMLT, CMTST, CNT, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, CRC32CX, DUP, EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNI, NEG, NOT, ORN, ORR, PMUL, PMULL, PMULL2, RADDH, RADDHN2, RBIT, REV16, REV32, RSHRN, RSHRN2, RSUBHN, RSUBHN2, SABA, SABD, SABAL, SABAL2, SABDL, SADAPL, SADDL, SADDL2, SADLP, SADDLV, SADDW, SADDWN2, SHADD, SHL, SHLL, SHLL2, SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAVX, SMIN, SMINV, SMINV, SMLAL, SMLASL, SMLSL2, SMOV, SMULL, SMULL2, SRI, SSHL, SSHLL, SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB, SUBHN, SUBHN2, SXTL, SXTL2, TBL, TBX, TRN1, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UADAPL, UADDL, UADDL2, UADLP, UADDLV, UADDW, UADWD2, UADDH, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP, UMINS, UMLAL, UMLAL2, UMLSL, UMOV, UMLSL2, UMUL, UMULL, USHL, USHLL, USHLL2, USHR, USRA, USUBL, USUBL2, USUBW, USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIPA, and ZIP2.

--- Note ---

The architecture makes no statement about the timing properties when the PSTATE.DIT bit is not set. However, it is likely that many of these instructions have timing that is invariant of the data in many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer authentication instructions do not have their timing dependent on the key value used in the pointer authentication in all cases, regardless of the PSTATE.DIT bit.

This field resets to 0.

Bits [23:0]

Reserved, RES0.

### Accessing the DIT

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, DIT**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 return Zeros(39) : PSTATE.DIT : Zeros(24);
elsif PSTATE_EL == EL1 then
 return Zeros(39) : PSTATE.DIT : Zeros(24);
elsif PSTATE_EL == EL2 then
 return Zeros(39) : PSTATE.DIT : Zeros(24);
elsif PSTATE_EL == EL3 then
 return Zeros(39) : PSTATE.DIT : Zeros(24);
```
**MSR DIT, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 PSTATE.DIT = X[t]<24>
elsif PSTATE.EL == EL1 then
 PSTATE.DIT = X[t]<24>
elsif PSTATE.EL == EL2 then
 PSTATE.DIT = X[t]<24>
elsif PSTATE.EL == EL3 then
 PSTATE.DIT = X[t]<24>
```
C5.2.4 ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

**Purpose**

When taking an exception to EL1, holds the address to return to.

**Configurations**

There are no configuration notes.

**Attributes**

ELR_EL1 is a 64-bit register.

**Field descriptions**

The ELR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Returns address</th>
</tr>
</thead>
</table>

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN. This field resets to an architecturally UNKNOWN value.

**Accessing the ELR_EL1**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ELR_EL1**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x230];
 else
 return ELR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ELR_EL2;
 else
 return ELR_EL1;
elsif PSTATE.EL == EL3 then
 return ELR_EL1;
```
MSR ELR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNCTIONED;
elsif PSTATE.EL == EL1 then
        if EL2Enabled() & HCR_EL2.<NV2,NV1> == '01' then
            AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
            NVMem[0x230] = X[t];
    else
        ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
            ELR_EL2 = X[t];
        else
            ELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
        ELR_EL1 = X[t];

MRS <Xt>, ELR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNCTIONED;
elsif PSTATE.EL == EL1 then
        if EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '101' then
            return NVMem[0x230];
elsif EL2Enabled() & HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
            return ELR_EL1;
        else
            UNDEFINED;
elsif PSTATE.EL == EL3 then
        if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.E2H == '1' then
            return ELR_EL1;
        else
            UNDEFINED;

MSR ELR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNCTIONED;
elsif PSTATE.EL == EL1 then
        if EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '101' then
            NVMem[0x230] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        ELR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        ELR_EL1 = X[t];
    else
        UNDEFINED;

MRS <Xt>, ELR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return ELR_EL1;
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return ELR_EL2;
elsif PSTATE.EL == EL3 then
    return ELR_EL2;

MSR ELR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        ELR_EL1 = X[t];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    ELR_EL2 = X[t];
C5.2.5 ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose
When taking an exception to EL2, holds the address to return to.

Configurations
AArch64 System register ELR_EL2[31:0] is architecturally mapped to AArch32 System register ELR_hyp[31:0].
This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ELR_EL2 is a 64-bit register.

Field descriptions
The ELR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Return address</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3 and AArch64 execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value that they did before AArch32 execution. Which option is adopted is determined by an implementation, and might vary dynamically within an implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two values.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{rrrrrr}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b100 & 0b0100 & 0b0000 & 0b001 \\
\end{array}
\]

\[
\begin{array}{rrrrrr}
\text{if PSTATE.EL == EL0} & \text{then} & \text{UNDEFINED;} \\
\text{elsif PSTATE.EL == EL1} & \text{then} & \text{if EL2Enabled()} \&\& \text{HCR_EL2.<NV2,NV> == '11'} & \text{then} & \text{return ELR_EL1;} \\
& & \text{elsif EL2Enabled()} \&\& \text{HCR_EL2.NV == '1'} & \text{then} & \text{AArch64.SystemAccessTrap(EL2, 0x18);} \\
& & \text{else} & \text{UNDEFINED;} \\
& & \text{elsif PSTATE.EL == EL2} & \text{then} \\
\end{array}
\]
return ELR_EL2;
elif PSTATE_EL == EL3 then
    return ELR_EL2;

**MSR ELR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        ELR_EL1 = X[t];
elif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elif PSTATE_EL == EL2 then
    ELR_EL2 = X[t];
elif PSTATE_EL == EL3 then
    ELR_EL2 = X[t];

**MRS <Xt>, ELR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x230];
    else
        return ELR_EL1;
elif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return ELR_EL2;
    else
        return ELR_EL1;
elif PSTATE_EL == EL3 then
    return ELR_EL1;

**MSR ELR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x230] = X[t];
else
    ELR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        ELR_EL2 = X[t];
    else
        ELR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
    ELR_EL1 = X[t];
C5.2.6 ELR_EL3, Exception Link Register (EL3)

The ELR_EL3 characteristics are:

**Purpose**

When taking an exception to EL3, holds the address to return to.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to ELR_EL3 are UNDEFINED.

**Attributes**

ELR_EL3 is a 64-bit register.

**Field descriptions**

The ELR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-0</td>
<td>Return address</td>
</tr>
</tbody>
</table>

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN. This field resets to an architecturally UNKNOWN value.

**Accessing the ELR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } \langle Xt \rangle, \text{ELR_EL3}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return ELR_EL3;
**MSR ELR_EL3, <Xt>**

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  ELR_EL3 = X[t];

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
C5.2.7 FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Configurations

The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

FPCR is a 64-bit register.

Field descriptions

The FPCR bit assignments are:

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit:

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is only used for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision format, and ignore the value of this bit.

This field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

0b0 NaN operands propagate through to the output of a floating-point operation.

0b1 Any operation involving one or more NaNs returns the Default NaN.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.
This field resets to an architecturally UNKNOWN value.

**FZ, bit [24]**

Flush-to-zero mode control bit:

0b0  Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.

0b1  Flush-to-zero mode enabled.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

This bit has no effect on half-precision calculations.

This field resets to an architecturally UNKNOWN value.

**RMode, bits [23:22]**

Rounding Mode control field. The encoding of this field is:

0b00  Round to Nearest (RN) mode.

0b01  Round towards Plus Infinity (RP) mode.

0b10  Round towards Minus Infinity (RM) mode.

0b11  Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

This field resets to an architecturally UNKNOWN value.

**Stride, bits [21:20]**

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state. It is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

This field resets to an architecturally UNKNOWN value.

**FZ16, bit [19]**

*When FEAT_FP16 is implemented:*

Flush-to-zero mode control bit on half-precision data-processing instructions:

0b0  Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.

0b1  Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations. A half-precision floating-point number that is flushed to zero as a result of the value of the FZ16 bit does not generate an Input Denormal exception.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

**Len, bits [18:16]**

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state. It is included only for context saving and restoration of the AArch32 FPSCR.Len field.

This field resets to an architecturally UNKNOWN value.

**IDE, bit [15]**

Input Denormal floating-point exception trap enable. Possible values are:

0b0  Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.IDC bit is set to 1.
Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.IDC bit. The trap handling software can decide whether to set the FPSR.IDC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable. Possible values are:

0b0 Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.IXC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.IXC bit. The trap handling software can decide whether to set the FPSR.IXC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable. Possible values are:

0b0 Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.UFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.UFC bit. The trap handling software can decide whether to set the FPSR.UFC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable. Possible values are:

0b0 Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.OFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.OFC bit. The trap handling software can decide whether to set the FPSR.OFC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable. Possible values are:

0b0 Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.DZC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.DZC bit. The trap handling software can decide whether to set the FPSR.DZC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.
If the implementation does not support this exception, this bit is RAZ/WI. This field resets to an architecturally UNKNOWN value.

**IOE, bit [8]**

Invalid Operation floating-point exception trap enable. Possible values are:

- **0b0** Untrapped exception handling selected. If the floating-point exception occurs then the FPSR.IOC bit is set to 1.
- **0b1** Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the FPSR.IOC bit. The trap handling software can decide whether to set the FPSR.IOC bit to 1.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic. If the implementation does not support this exception, this bit is RAZ/WI. This field resets to an architecturally UNKNOWN value.

**Bits [7:0]**

Reserved, RES0.

### Accessing the FPCR

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, FPCR**

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0100</td>
<td>0b011</td>
<td>0b000</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11'
    then
      if EL2Enabled() && !ELUsingAAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x00);  
      else
        AArch64.SystemAccessTrap(EL1, 0x07);  
      endif
      elsif EL2Enabled() && !ELUsingAAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);  
      else
        AArch64.SystemAccessTrap(EL3, 0x07);  
      endif
    else
      if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);  
      elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);  
      else
        return FPCR;  
      endif
    endif
  else
    return FPCR;  
  endif
endif
else
  return FPCR;  
endif
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
  AArch64.SystemAccessTrap(EL3, 0x07);
else
  return FPCR;
elsif PSTATE.EL == EL3 then
  if CPTR_EL3.TFP == '1' then
    AArch64.SystemAccessTrap(EL3, 0x07);
  else
    return FPCR;
elsif PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    else
      AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
      AArch64.SystemAccessTrap(EL3, 0x07);
    else
      FPCR = X[t];
  elsif PSTATE.EL == EL1 then
    if CPACR_EL1.FPEN == 'x0' then
      AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
      AArch64.SystemAccessTrap(EL3, 0x07);
    else
      FPCR = X[t];
  elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
      AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
      AArch64.SystemAccessTrap(EL3, 0x07);
    else
      FPCR = X[t];
  elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TFP == '1' then
      AArch64.SystemAccessTrap(EL3, 0x07);
    else
      FPCR = X[t];

---

**MSR FPCR, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0100</td>
<td>0b011</td>
<td>0b000</td>
<td>0b0100</td>
</tr>
</tbody>
</table>
C5.2.8  FPSR, Floating-point Status Register

The FPSR characteristics are:

**Purpose**

Provides floating-point system status information.

**Configurations**

The named fields in this register map to the equivalent fields in the AArch32 FPSCR.

RW fields in this register reset to architecturally UNKNOWN values.

**Attributes**

FPSR is a 64-bit register.

**Field descriptions**

The FPSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>N, bit [31]</td>
</tr>
<tr>
<td>30</td>
<td>Z, bit [30]</td>
</tr>
</tbody>
</table>

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

- Negative condition flag for AArch32 floating-point comparison operations.
- AArch64 floating-point comparisons set the PSTATE.N flag instead.
- This field resets to an architecturally UNKNOWN value.

**Otherwise:**

- Reserved, RES0.

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

- Zero condition flag for AArch32 floating-point comparison operations.
- AArch64 floating-point comparisons set the PSTATE.Z flag instead.
- This field resets to an architecturally UNKNOWN value.

**Otherwise:**

- Reserved, RES0.
C, bit [29]  
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:
  Carry condition flag for AArch32 floating-point comparison operations.  
  AArch64 floating-point comparisons set the PSTATE.C flag instead.  
  This field resets to an architecturally UNKNOWN value.

Otherwise:  
Reserved, RES0.

V, bit [28]  
When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:  
Overflow condition flag for AArch32 floating-point comparison operations.  
AArch64 floating-point comparisons set the PSTATE.V flag instead.  
This field resets to an architecturally UNKNOWN value.

Otherwise:  
Reserved, RES0.

QC, bit [27]  
Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced  
SIMD integer operation has saturated since 0 was last written to this bit.  
This field resets to an architecturally UNKNOWN value.

Bits [26:8]  
Reserved, RES0.

IDC, bit [7]  
Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input  
Denormal floating-point exception has occurred since 0 was last written to this bit.  
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of  
the FPCR.IDE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.IDE is 0,  
or if trapping software sets it.  
This field resets to an architecturally UNKNOWN value.

Bits [6:5]  
Reserved, RES0.

IXC, bit [4]  
Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact  
exception floating-point has occurred since 0 was last written to this bit.  
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of  
the FPCR.IXE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.IXE is 0,  
or if trapping software sets it.  
This field resets to an architecturally UNKNOWN value.

UFC, bit [3]  
Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow  
floating-point exception has occurred since 0 was last written to this bit.  
How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of  
the FPCR.UFE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.UFE is 0,  
or if trapping software sets it.  
This field resets to an architecturally UNKNOWN value.
OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.OFE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.DZE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit. This bit is only set to 1 to indicate a floating-point exception if FPCR.IOE is 0, or if trapping software sets it.

This field resets to an architecturally UNKNOWN value.

Accessing the FPSR

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, FPSR**

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0100</td>
<td>0b011</td>
<td>0b001</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && ((EL2Enabled()) && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11'
        then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.SystemAccessTrap(EL2, 0x00);
            else
                AArch64.SystemAccessTrap(EL1, 0x07);
            endif
        endif
        else
            EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPACR_EL2.FPEN == 'x0' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.TFP == '1' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
                AArch64.SystemAccessTrap(EL3, 0x07);
            else
                return FPSR;
            endif
        endif
    elseif PSTATE.EL == EL1 then
        if CPACR_EL1.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL1, 0x07);
        elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.TFP == '1' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            return FPSR;
        endif
    else
        return FPSR;
    endif

end if
The A64 System Instruction Class
C5.2 Special-purpose registers

AArch64.SystemAccessTrap(EL3, 0x07);
else
    return FPSR;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPSR;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPSR;
else
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.SystemAccessTrap(EL2, 0x00);
            else
                AArch64.SystemAccessTrap(EL1, 0x00);
            endif
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
        endif
    endif
    if PSTATE.EL == EL1 then
        if CPACR_EL1.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL1, 0x07);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            FPSR = X[t];
        endif
    else
        if PSTATE.EL == EL2 then
            if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
                AArch64.SystemAccessTrap(EL3, 0x07);
            else
                FPSR = X[t];
            endif
        else
            if PSTATE.EL == EL3 then
                if CPTR_EL3.TFP == '1' then
                    AArch64.SystemAccessTrap(EL3, 0x07);
                else
                    return FPSR;
                endif
            endif
        endif
    endif
end if

MSR FPSR, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0100</td>
<td>0b011</td>
<td>0b001</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x00);
        else
            AArch64.SystemAccessTrap(EL1, 0x00);
        endif
    else
        AArch64.SystemAccessTrap(EL3, 0x07);
    endif
elsif PSTATE.EL == EL1 then
    if CPACR_EL1.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL1, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        FPSR = X[t];
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        FPSR = X[t];
    endif
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPSR;
    endif
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TFP == '1' then
        AArch64.SystemAccessTrap(EL3, 0x07);
    else
        return FPSR;
    endif
else
    if PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            return FPSR;
        endif
    elsif PSTATE.EL == EL3 then
        if CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            return FPSR;
        endif
    endif
else
    if PSTATE.EL == EL0 then
        if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
            if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
                AArch64.SystemAccessTrap(EL2, 0x00);
            else
                AArch64.SystemAccessTrap(EL1, 0x00);
            endif
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
        endif
    endif
    if PSTATE.EL == EL1 then
        if CPACR_EL1.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL1, 0x07);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
            AArch64.SystemAccessTrap(EL2, 0x07);
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            FPSR = X[t];
        endif
    else
        if PSTATE.EL == EL2 then
            if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
                AArch64.SystemAccessTrap(EL2, 0x07);
            elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TFP == '1' then
                AArch64.SystemAccessTrap(EL3, 0x07);
            else
                FPSR = X[t];
            endif
        else
            if PSTATE.EL == EL3 then
                if CPTR_EL3.TFP == '1' then
                    AArch64.SystemAccessTrap(EL3, 0x07);
                else
                    return FPSR;
                endif
            endif
        endif
    endif
end if

MSR FPSR, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>CRn</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0100</td>
<td>0b011</td>
<td>0b001</td>
<td>0b0100</td>
</tr>
</tbody>
</table>
else
    FPSR = X[t];
C5.2.9 NZCV, Condition Flags

The NZCV characteristics are:

**Purpose**
Allows access to the condition flags.

**Configurations**
There are no configuration notes.

**Attributes**
NZCV is a 64-bit register.

**Field descriptions**
The NZCV bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>N, bit</td>
</tr>
<tr>
<td>30</td>
<td>Z, bit</td>
</tr>
<tr>
<td>29</td>
<td>C, bit</td>
</tr>
<tr>
<td>28</td>
<td>V, bit</td>
</tr>
<tr>
<td>27-0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Accessing the NZCV**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, NZCV**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL1 then
return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL2 then
    return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);
elsif PSTATE.EL == EL3 then
    return Zeros(32):PSTATE.<N,Z,C,V>:Zeros(28);

MSR NZCV, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
elsif PSTATE.EL == EL1 then
elsif PSTATE.EL == EL2 then
elsif PSTATE.EL == EL3 then
C5.2.10   PAN, Privileged Access Never

The PAN characteristics are:

Purpose

Allows access to the Privileged Access Never bit.

Configurations

This register is present only when FEAT_PAN is implemented. Otherwise, direct accesses to PAN are UNDEFINED.

Attributes

PAN is a 64-bit register.

Field descriptions

The PAN bit assignments are:

```
 63 23 22 21 0
 | | | | |
 RES0 RES0 RES0 RES0 PAN
```

Bits [63:23]

Reserved, RES0.

PAN, bit [22]

Privileged Access Never.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Privileged reads and write are not disabled by this mechanism.</td>
</tr>
<tr>
<td>1</td>
<td>Disables privileged read and write accesses to addresses accessible at EL0 for an enabled stage 1 translation regime that defines the EL0 permissions.</td>
</tr>
</tbody>
</table>

The value of this bit is usually preserved on taking an exception, except in the following situations:

- When the target of the exception is EL1, and the value of the SCTLR_EL1.SPAN bit is 0, this bit is set to 1.
- When the target of the exception is EL2, HCR_EL2.{E2H, TGE} is {1, 1}, and the value of the SCTLR_EL2.SPAN bit is 0, this bit is set to 1.

Bits [21:0]

Reserved, RES0.

Accessing the PAN

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS} <\text{Xt}>, \text{PAN}
\]

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>
```

\[
\text{if PSTATE.EL == EL0 then}
\]

UNDEFINED;

\[
\text{elsif PSTATE.EL == EL1 then}
\]
return Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL2 then
    return Zeros(41):PSTATE.PAN:Zeros(22);
elsif PSTATE.EL == EL3 then
    return Zeros(41):PSTATE.PAN:Zeros(22);

*MSR PAN, <Xt>*

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    PSTATE.PAN = X[t]<22>;
elsif PSTATE.EL == EL2 then
    PSTATE.PAN = X[t]<22>;
elsif PSTATE.EL == EL3 then
    PSTATE.PAN = X[t]<22>;

*MSR PAN, #<imm>*

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b100</td>
<td></td>
</tr>
</tbody>
</table>
C5.2.11   SP_EL0, Stack Pointer (EL0)

The SP_EL0 characteristics are:

**Purpose**
Holds the stack pointer associated with EL0. At higher Exception levels, this is used as the current stack pointer when the value of SPsel.SP is 0.

**Configurations**
There are no configuration notes.

**Attributes**
SP_EL0 is a 64-bit register.

**Field descriptions**
The SP_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

**Accessing the SP_EL0**
When the value of PSTATE.SP is 0, this register is accessible at all Exception levels as the current stack pointer.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SP_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        return SP_EL0;
elsif PSTATE_EL == EL2 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        return SP_EL0;
elsif PSTATE_EL == EL3 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        return SP_EL0;
MSR SP_EL0, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        SP_EL0 = X[t];
elsif PSTATE.EL == EL2 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        SP_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    if PSTATE.SP == '0' then
        UNDEFINED;
    else
        SP_EL0 = X[t];
else
    SP_EL0 = X[t];

---

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
C5.2.12  SP_EL1, Stack Pointer (EL1)

The SP_EL1 characteristics are:

**Purpose**

Holds the stack pointer associated with EL1. When executing at EL1, the value of SPSel.SP determines the current stack pointer:

<table>
<thead>
<tr>
<th>SPSel.SP</th>
<th>Current stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>SP_EL0</td>
</tr>
<tr>
<td>0b1</td>
<td>SP_EL1</td>
</tr>
</tbody>
</table>

**Configurations**

There are no configuration notes.

**Attributes**

SP_EL1 is a 64-bit register.

**Field descriptions**

The SP_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0b0</td>
<td></td>
</tr>
<tr>
<td>0b1</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:0]**

Stack pointer.

This field resets to an architecturally UNKNOWN value.

**Accessing the SP_EL1**

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

--- **Note** ---

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SP_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & & HCR_EL2.<NV2,NV> == '11' then
 return NxMem[0x240];
```
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return SP_EL1;
elsif PSTATE.EL == EL3 then
    return SP_EL1;

\textit{MSR SP\_EL1, <Xt>}

\begin{tabular}{cccccc}
\textbf{op0} & \textbf{op1} & \textbf{CRn} & \textbf{CRm} & \textbf{op2} \\
0b11 & 0b100 & 0b0100 & 0b0001 & 0b000 \\
\end{tabular}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        NVMem[0x240] = X[t];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    SP_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    SP_EL1 = X[t];
C5.2.13 SP_EL2, Stack Pointer (EL2)

The SP_EL2 characteristics are:

**Purpose**

Holds the stack pointer associated with EL2. When executing at EL2, the value of SPSel.SP determines the current stack pointer:

<table>
<thead>
<tr>
<th>SPSel.SP</th>
<th>Current stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>SP_EL0</td>
</tr>
<tr>
<td>0b1</td>
<td>SP_EL2</td>
</tr>
</tbody>
</table>

**Configurations**

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

SP_EL2 is a 64-bit register.

**Field descriptions**

The SP_EL2 bit assignments are:

- Bits [63:0]: Stack pointer.
  This field resets to an architecturally UNKNOWN value.

**Accessing the SP_EL2**

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

- **Note**

  When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SP_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
UNDEFINED;
elsif PSTATE.EL == EL3 then
    return SP_EL2;

**MSR SP_EL2, <Xt>**

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    SP_EL2 = X[t];

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
C5.2.14 SP_EL3, Stack Pointer (EL3)

The SP_EL3 characteristics are:

**Purpose**

Holds the stack pointer associated with EL3. When executing at EL3, the value of SPSel.SP determines the current stack pointer:

<table>
<thead>
<tr>
<th>SPSel.SP</th>
<th>Current stack pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>SP_EL0</td>
</tr>
<tr>
<td>0b1</td>
<td>SP_EL3</td>
</tr>
</tbody>
</table>

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to SP_EL3 are UNDEFINED.

**Attributes**

SP_EL3 is a 64-bit register.

**Field descriptions**

The SP_EL3 bit assignments are:

```
63 0
 Stack pointer
```

**Bits [63:0]**

Stack pointer.

This field resets to an architecturally UNKNOWN value.
C5.2.15  SPSel, Stack Pointer Select

The SPSel characteristics are:

**Purpose**

Allows the Stack Pointer to be selected between SP_EL0 and SP_ELx.

**Configurations**

There are no configuration notes.

**Attributes**

SPSel is a 64-bit register.

**Field descriptions**

The SPSel bit assignments are:

![Diagram of SPSel bit assignments]

**Bits [63:1]**

Reserved, RES0.

**SP, bit [0]**

Stack pointer to use. Possible values of this bit are:

0b0  Use SP_EL0 at all Exception levels.

0b1  Use SP_ELx for Exception level ELx.

This field resets to 1.

**Accessing the SPSel**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SPSel**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  return Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL2 then
  return Zeros(63):PSTATE.SP;
elsif PSTATE.EL == EL3 then
  return Zeros(63):PSTATE.SP;
**MSR SPSel, <Xt>**

\[
\begin{array}{c}
\text{if PSTATE.EL == EL0 then} \\
\quad \text{UNDEFINED;} \\
\text{elsif PSTATE.EL == EL1 then} \\
\quad \text{PSTATE.SP = X[t]<0>;} \\
\text{elsif PSTATE.EL == EL2 then} \\
\quad \text{PSTATE.SP = X[t]<0>;} \\
\text{elsif PSTATE.EL == EL3 then} \\
\quad \text{PSTATE.SP = X[t]<0>;}
\end{array}
\]

**MSR SPSel, #<imm>**

\[
\begin{array}{c|cccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\hline
0b11 & 0b000 & 0b0100 & 0b0010 & 0b000
\end{array}
\]

\[
\begin{array}{c|cccc}
\text{op0} & \text{op1} & \text{CRn} & \text{op2} \\
\hline
0b00 & 0b000 & 0b0100 & 0b101
\end{array}
\]
C5.2.16 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configurations
AArch64 System register SPSR_abt[31:0] is architecturally mapped to AArch32 System register SPSR_abt[31:0].
If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_abt is a 64-bit register.

Field descriptions
The SPSR_abt bit assignments are:

![Bit Assignments Diagram]

Bits [63:32]
Reserved, RES0.

N, bit [31]
Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

Z, bit [30]
Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

C, bit [29]
Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

V, bit [28]
Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

Q, bit [27]
Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to PSTATE.Q on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to PSTATE.SSBS on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to PSTATE.PAN on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to PSTATE.DIT on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to PSTATE.GE on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKONWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to
PSTATE.E on executing an exception return operation in Abort mode.
If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the
implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an
exception return operation in Abort mode, if the implementation does not support big-endian
operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation
does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is
RES1.
This field resets to an architecturally UNKONWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and
copied to PSTATE.A on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKONWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied
to PSTATE.I on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKONWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied
to PSTATE.F on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKONWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and
copied to PSTATE.T on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKONWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to
PSTATE.M[4:0] on executing an exception return operation in Abort mode.
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.
Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in Abort mode is an illegal
return event, as described in Illegal return events from AArch32 state on page G1-5766.
This field resets to an architecturally UNKONWN value.

Accessing the SPSR_abt

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, SPSR_abt

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return SPSR_abt;
elsif PSTATE.EL == EL3 then
  return SPSR_abt;

MSR SPSR_abt, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  SPSR_abt = X[t];
elsif PSTATE.EL == EL3 then
  SPSR_abt = X[t];
C5.2.17 SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

**Purpose**

Holds the saved process state when an exception is taken to EL1.

**Configurations**

AArch64 System register SPSR_EL1[31:0] is architecturally mapped to AArch32 System register SPSR_svc[31:0].

**Attributes**

SPSR_EL1 is a 64-bit register.

**Field descriptions**

The SPSR_EL1 bit assignments are:

**When AArch32 is supported at any Exception level and exception taken from AArch32 state:**

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

**Bits [63:32]**

Reserved, RES0.

**N, bit [31]**

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**Z, bit [30]**

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**C, bit [29]**

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**V, bit [28]**

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.
Q, bit [27]
Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and
 copied to PSTATE.Q on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL1, and copied to
 PSTATE.IT[1:0] on executing an exception return operation in EL1.

On executing an exception return operation in EL1 SPSR_EL1.IT must contain a value that is valid
for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and
 copied to PSTATE.DIT on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and
 copied to PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and
 copied to PSTATE.PAN on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

SS, bit [21]
Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally
 copied to PSTATE.SS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to
 PSTATE.IL on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and
 copied to PSTATE.GE on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.
IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL1, and copied to
PSTATE.IT[7:2] on executing an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E
on executing an exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the
implementation does not support little-endian operation, SPSR_EL1.E is RES1. On executing an
exception return operation in EL1, if the implementation does not support big-endian operation at
the Exception level being returned to, SPSR_EL1.E is RES0, and if the implementation does not
support little-endian operation at the Exception level being returned to, SPSR_EL1.E is RES1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to
PSTATE.A on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to
PSTATE.I on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to
PSTATE.F on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied
to PSTATE.T on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32
state, and copied to PSTATE.nRW on executing an exception return operation in EL1.

0b1 AArch32 execution state.
This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to
PSTATE.M[3:0] on executing an exception return operation in EL1.

0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1011 Undefined.
0b1111 System.
Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in EL1 is an illegal return event, as described in Illegal return events from AArch64 state on page D1-2345.

This field resets to an architecturally UNKNOWN value.

**When exception taken from AArch64 state:**

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

**Bits [63:32]**

Reserved, RES0.

**N, bit [31]**

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**Z, bit [30]**

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**C, bit [29]**

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**V, bit [28]**

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

**Bits [27:26]**

Reserved, RES0.

**TCO, bit [25]**

*When FEAT_MTE is implemented:*

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied to PSTATE.TCO on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.
DIT, bit [24]

*When FEAT_DIT is implemented:*

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to PSTATE.DIT on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

UAO, bit [23]

*When FEAT_UAO is implemented:*

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

PAN, bit [22]

*When FEAT_PAN is implemented:*

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to PSTATE.SS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

*When FEAT_SSBS is implemented:*

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

BTYPE, bits [11:10]

*When FEAT_BTI is implemented:*

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and copied to PSTATE.BTYPE on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.
D, bit [9]
Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to PSTATE.D on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

M[4], bit [4]
Execution state. Set to $0b0$, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64 state, and copied to PSTATE.nRW on executing an exception return operation in EL1.
$0b0$  AArch64 execution state.
This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]
AArch64 Exception level and selected Stack Pointer.
$0b0000$  EL0t.
$0b0100$  EL1t.
$0b0101$  EL1h.
Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in EL1 is an illegal return event, as described in *Illegal return events from AArch64 state on page D1-2345*.
The bits in this field are interpreted as follows:
•  M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to PSTATE.EL on executing an exception return operation in EL1.
•  M[1] is unused and is 0 for all non-reserved values.
•  M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to PSTATE.SP on executing an exception return operation in EL1.
This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SPSR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x160];
    else
        return SPSR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return SPSR_EL2;
    else
        return SPSR_EL1;
elsif PSTATE.EL == EL3 then
    return SPSR_EL1;

**MSR SPSR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x160] = X[t];
    else
        SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SPSR_EL2 = X[t];
    else
        SPSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    SPSR_EL1 = X[t];

**MRS <Xt>, SPSR_EL12**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '101' then
        return NVMem[0x160];
else
    SPSR_EL12 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SPSR_EL12 = X[t];
    else
        SPSR_EL1 = X[t];
else
    SPSR_EL12 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return SPSR_EL1;
    else
        UNDEFINED;
elsif PSTATE_EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        return SPSR_EL1;
    else
        UNDEFINED;

MSR SPSR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x160] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SPSR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE_EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        SPSR_EL1 = X[t];
    else
        UNDEFINED;

MRS <Xt>, SPSR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return SPSR_EL1;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    return SPSR_EL2;
elsif PSTATE_EL == EL3 then
    return SPSR_EL2;
**MSR SPSR_EL2, <Xt>**

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    SPSR_EL1 = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  SPSR_EL2 = X[t];
else
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  SPSR_EL2 = X[t];

C5.2.18   SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

**Purpose**
Holds the saved process state when an exception is taken to EL2.

**Configurations**
AAArch64 System register SPSR_EL2[31:0] is architecturally mapped to AArch32 System register SPSR_hyp[31:0].
This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**
SPSR_EL2 is a 64-bit register.

**Field descriptions**
The SPSR_EL2 bit assignments are:

*When AArch32 is supported at any Exception level and exception taken from AArch32 state:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>32</td>
<td>N, bit [31]</td>
</tr>
<tr>
<td>31</td>
<td>Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on executing an exception return operation in EL2. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>30</td>
<td>Z, bit [30]</td>
</tr>
<tr>
<td>29</td>
<td>Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing an exception return operation in EL2. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>28</td>
<td>C, bit [29]</td>
</tr>
<tr>
<td>27</td>
<td>Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on executing an exception return operation in EL2. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>26</td>
<td>V, bit [28]</td>
</tr>
<tr>
<td>25</td>
<td>Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on executing an exception return operation in EL2. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>
Q, bit [27]
Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and
copied to PSTATE.Q on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL2, and copied to
PSTATE.IT[1:0] on executing an exception return operation in EL2.
On executing an exception return operation in EL2 SPSR_EL2.IT must contain a value that is valid
for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

DIT, bit [24]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to
PSTATE.DIT on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to
PSTATE.PAN on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

SS, bit [21]
Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to
PSTATE.IL on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and copied to
PSTATE.GE on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.
IT[7:2], bits \([15:10]\)  
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL2, and copied to PSTATE.IT[7:2] on executing an exception return operation in EL2.  
SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.  
This field resets to an architecturally UNKNOWN value.

E, bit \([9]\)  
Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E on executing an exception return operation in EL2.  
If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the implementation does not support little-endian operation, SPSR_EL2.E is RES1. On executing an exception return operation in EL2, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL2.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_EL2.E is RES1.  
This field resets to an architecturally UNKNOWN value.

A, bit \([8]\)  
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on executing an exception return operation in EL2.  
This field resets to an architecturally UNKNOWN value.

I, bit \([7]\)  
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on executing an exception return operation in EL2.  
This field resets to an architecturally UNKNOWN value.

F, bit \([6]\)  
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on executing an exception return operation in EL2.  
This field resets to an architecturally UNKNOWN value.

T, bit \([5]\)  
T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied to PSTATE.T on executing an exception return operation in EL2.  
This field resets to an architecturally UNKNOWN value.

M[4], bit \([4]\)  
Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32 state, and copied to PSTATE.nRW on executing an exception return operation in EL2.  
0b1  
AArch32 execution state.  
This field resets to an architecturally UNKNOWN value.

M[3:0], bits \([3:0]\)  
AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to PSTATE.M[3:0] on executing an exception return operation in EL2.  
0b0000  
User.  
0b0001  
FIQ.  
0b0010  
IRQ.  
0b0011  
Supervisor.  
0b0111  
Abort.  
0b1010  
Hyp.  
0b1011  
Undefined.
Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in EL2 is an illegal return event, as described in *Illegal return events from AArch64 state* on page D1-2345.

This field resets to an architecturally UNKNOWN value.

**When exception taken from AArch64 state:**

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

**Bits [63:32]**

Reserved, RES0.

**N, bit [31]**

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

**Z, bit [30]**

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

**C, bit [29]**

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

**V, bit [28]**

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

**Bits [27:26]**

Reserved, RES0.

**TCO, bit [25]**

*When FEAT_MTE is implemented:*

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied to PSTATE.TCO on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.
DIT, bit [24]

When `FEAT_DIT` is implemented:

Data Independent Timing. Set to the value of `PSTATE.DIT` on taking an exception to EL2, and copied to `PSTATE.DIT` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When `FEAT_UAO` is implemented:

User Access Override. Set to the value of `PSTATE.UAO` on taking an exception to EL2, and copied to `PSTATE.UAO` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When `FEAT_PAN` is implemented:

Privileged Access Never. Set to the value of `PSTATE.PAN` on taking an exception to EL2, and copied to `PSTATE.PAN` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of `PSTATE.SS` on taking an exception to EL2, and conditionally copied to `PSTATE.SS` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of `PSTATE.IL` on taking an exception to EL2, and copied to `PSTATE.IL` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When `FEAT_SSBS` is implemented:

Speculative Store Bypass. Set to the value of `PSTATE.SSBS` on taking an exception to EL2, and copied to `PSTATE.SSBS` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When `FEAT_BTI` is implemented:

Branch Type Indicator. Set to the value of `PSTATE.BTYPE` on taking an exception to EL2, and copied to `PSTATE.BTYPE` on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RES0.

D, bit [9]
Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to
PSTATE.D on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to
PSTATE.A on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to
PSTATE.I on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to
PSTATE.F on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

M[4], bit [4]
Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64
state, and copied to PSTATE.nRW on executing an exception return operation in EL2.
0b0 AArch64 execution state.
This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]
AArch64 Exception level and selected Stack Pointer.
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an
unimplemented Exception level, executing an exception return operation in EL2 is an illegal return
event, as described in Illegal return events from AArch64 state on page D1-2345.
The bits in this field are interpreted as follows:
• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to
PSTATE.EL on executing an exception return operation in EL2.
• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to
PSTATE.SP on executing an exception return operation in EL2.
This field resets to an architecturally UNKNOWN value.
Accessing the SPSR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SPSR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return SPSR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 return SPSR_EL2;
 elsif PSTATE.EL == EL3 then
 return SPSR_EL2;

MSR SPSR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    SPSR_EL1 = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  elsif PSTATE.EL == EL2 then
    SPSR_EL2 = X[t];
  elsif PSTATE.EL == EL3 then
    SPSR_EL2 = X[t];

**MRS <Xt>, SPSR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() || HCR_EL2.<NV2,NV1,NV> == '111' then
    ```
return NVMem[0x160];
else
    return SPSR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return SPSR_EL2;
    else
        return SPSR_EL1;
elsif PSTATE.EL == EL3 then
    return SPSR_EL1;

**MSR SPSR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x160] = X[t];
    else
        SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SPSR_EL2 = X[t];
    else
        SPSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    SPSR_EL1 = X[t];
C5.2.19 SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

Configurations

AArch64 System register SPSR_EL3[31:0] can be mapped to AArch32 System register SPSR_mon[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3 are UNDEFINED.

Attributes

SPSR_EL3 is a 64-bit register.

Field descriptions

The SPSR_EL3 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from AArch32 state:

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.
Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and copied to PSTATE.Q on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL3, and copied to PSTATE.IT[1:0] on executing an exception return operation in EL3.

On executing an exception return operation in EL3 SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and copied to PSTATE.GE on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.
IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL3, and copied to PSTATE.IT[7:2] on executing an exception return operation in EL3.
SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]
Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E on executing an exception return operation in EL3.
If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL3, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_EL1.E is RES1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on executing an exception return operation in EL3.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing an exception return operation in EL3.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing an exception return operation in EL3.
This field resets to an architecturally UNKNOWN value.

T, bit [5]
T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied to PSTATE.T on executing an exception return operation in EL3.
This field resets to an architecturally UNKNOWN value.

M[4], bit [4]
Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32 state, and copied to PSTATE.nRW on executing an exception return operation in EL3.
0b1 AArch32 execution state.
This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]
AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to PSTATE.M[3:0] on executing an exception return operation in EL3.
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
The A64 System Instruction Class
C5.2 Special-purpose registers

ID072120
Non-Confidential

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1011</td>
<td>Undefined.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0b1111</td>
<td>System.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in EL3 is an illegal return event, as described in Illegal return events from AArch64 state on page D1-2345.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>32-31</td>
<td>N, Z, C, V</td>
<td>Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>28</td>
<td>SS, IL</td>
<td>Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>25</td>
<td>TCO, DIT, UAO, PAN</td>
<td>Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>20-19</td>
<td>D, A, I, F</td>
<td>Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>9</td>
<td>BTYPE</td>
<td>Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied to PSTATE.TCO on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>2-0</td>
<td>M[3:0]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied to PSTATE.TCO on executing an exception return operation in EL3. This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and copied to PSTATE.BTYPE on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to PSTATE.D on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64 state, and copied to PSTATE.nRW on executing an exception return operation in EL3.

0b0       AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>EL0t.</td>
</tr>
<tr>
<td>0b0100</td>
<td>EL1t.</td>
</tr>
<tr>
<td>0b101</td>
<td>EL1h.</td>
</tr>
<tr>
<td>0b100</td>
<td>EL2t.</td>
</tr>
<tr>
<td>0b101</td>
<td>EL2h.</td>
</tr>
<tr>
<td>0b1100</td>
<td>EL3t.</td>
</tr>
<tr>
<td>0b1101</td>
<td>EL3h.</td>
</tr>
</tbody>
</table>

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in EL3 is an illegal return event, as described in Illegal return events from AArch64 state on page D1-2345.
The bits in this field are interpreted as follows:

- M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to PSTATE.EL on executing an exception return operation in EL3.
- M[1] is unused and is 0 for all non-reserved values.
- M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to PSTATE.SP on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

**Accessing the SPSR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS \(<Xt>\), SPSR_EL3**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SPSR_EL3;
```

**MSR SPSR_EL3, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SPSR_EL3 = X[t];
```
### SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

**Purpose**

Holds the saved process state when an exception is taken to FIQ mode.

**Configurations**

AArch64 System register SPSR_fiq[31:0] is architecturally mapped to AArch32 System register SPSR_fiq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

**Attributes**

SPSR_fiq is a 64-bit register.

**Field descriptions**

The SPSR_fiq bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>N, Negative Condition flag.</td>
</tr>
<tr>
<td>30</td>
<td>Z, Zero Condition flag.</td>
</tr>
<tr>
<td>29</td>
<td>C, Carry Condition flag.</td>
</tr>
<tr>
<td>28</td>
<td>V, Overflow Condition flag.</td>
</tr>
<tr>
<td>27</td>
<td>Q, Overflow or saturation flag.</td>
</tr>
<tr>
<td>26</td>
<td>J</td>
</tr>
<tr>
<td>25</td>
<td>IL</td>
</tr>
<tr>
<td>24</td>
<td>GE</td>
</tr>
<tr>
<td>19:16</td>
<td>IT[7:2]</td>
</tr>
<tr>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>I</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
</tr>
<tr>
<td>4:0</td>
<td>M[4:0]</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

- **Reserved, RES0.**
- **N, bit [31]**
  - Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on executing an exception return operation in FIQ mode.
  - This field resets to an architecturally UNKNOWN value.
- **Z, bit [30]**
  - Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on executing an exception return operation in FIQ mode.
  - This field resets to an architecturally UNKNOWN value.
- **C, bit [29]**
  - Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on executing an exception return operation in FIQ mode.
  - This field resets to an architecturally UNKNOWN value.
- **V, bit [28]**
  - Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on executing an exception return operation in FIQ mode.
  - This field resets to an architecturally UNKNOWN value.
- **Q, bit [27]**
  - Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q on executing an exception return operation in FIQ mode.
  - This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in FIQ mode.

On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the \{J, T\} bits determined the AArch32 Instruction set state. Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

*When FEAT_SSBS is implemented:*

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to PSTATE.SSBS on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

PAN, bit [22]

*When FEAT_PAN is implemented:*

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to PSTATE.PAN on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

DIT, bit [21]

*When FEAT_DIT is implemented:*

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to PSTATE.DIT on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to PSTATE.IL on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to PSTATE.GE on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

**E, bit [9]**

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is RES1.

This field resets to an architecturally UNKNOWN value.

**A, bit [8]**

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

**I, bit [7]**

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

**F, bit [6]**

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

**T, bit [5]**

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

**M[4:0], bits [4:0]**

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on executing an exception return operation in FIQ mode.

- 0b10000: User.
- 0b10001: FIQ.
- 0b10010: IRQ.
- 0b10011: Supervisor.
- 0b10111: Abort.
- 0b11011: Undefined.
- 0b11111: System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in FIQ mode is an illegal return event, as described in illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

**Accessing the SPSR_fiq**

Accesses to this register use the following encodings in the System instruction encoding space:
**MRS <Xt>, SPSR_fiq**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SPSR_fiq;
elsif PSTATE.EL == EL3 then
 return SPSR_fiq;
```

**MSR SPSR_fiq, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SPSR_fiq = X[t];
elsif PSTATE.EL == EL3 then
 SPSR_fiq = X[t];
```
C5.2.21 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

**Purpose**

Holds the saved process state when an exception is taken to IRQ mode.

**Configurations**

AArch64 System register SPSR_irq[31:0] is architecturally mapped to AArch32 System register SPSR_irq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

**Attributes**

SPSR_irq is a 64-bit register.

**Field descriptions**

The SPSR_irq bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

- **Bits [63:32]**
  - Reserved, RES0.

- **N, bit [31]**
  - Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N on executing an exception return operation in IRQ mode.
  - This field resets to an architecturally UNKNOWN value.

- **Z, bit [30]**
  - Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on executing an exception return operation in IRQ mode.
  - This field resets to an architecturally UNKNOWN value.

- **C, bit [29]**
  - Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on executing an exception return operation in IRQ mode.
  - This field resets to an architecturally UNKNOWN value.

- **V, bit [28]**
  - Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on executing an exception return operation in IRQ mode.
  - This field resets to an architecturally UNKNOWN value.

- **Q, bit [27]**
  - Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to PSTATE.Q on executing an exception return operation in IRQ mode.
  - This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to
PSTATE.IT[1:0] on executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is
valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]
RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]
 When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
RES0.

PAN, bit [22]
 When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and
copied to PSTATE.PAN on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
RES0.

DIT, bit [21]
 When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode,
and copied to PSTATE.DIT on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:
RES0.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and
copied to PSTATE.IL on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode,
and copied to PSTATE.GE on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to
PSTATE.IT[7:2] on executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on executing an exception return operation in IRQ mode.

0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in IRQ mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, SPSR_irq

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return SPSR_irq;
elsif PSTATE.EL == EL3 then
  return SPSR_irq;

MSR SPSR_irq, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  SPSR_irq = X[t];
elsif PSTATE.EL == EL3 then
  SPSR_irq = X[t];
C5.2.22   SPSR_und, Saved Program Status Register (Undefined mode)

The SPSR_und characteristics are:

**Purpose**
Holds the saved process state when an exception is taken to Undefined mode.

**Configurations**
AArch64 System register SPSR_und[31:0] is architecturally mapped to AArch32 System register SPSR_und[31:0].
If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

**Attributes**
SPSR_und is a 64-bit register.

**Field descriptions**
The SPSR_und bit assignments are:

![Diagram of SPSR_und]

**Bits [63:32]**
Reserved, RES0.

**N, bit [31]**
Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to PSTATE.N on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

**Z, bit [30]**
Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

**C, bit [29]**
Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

**V, bit [28]**
Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to PSTATE.V on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

**Q, bit [27]**
Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to PSTATE.Q on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state. Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to PSTATE.SSBS on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to PSTATE.PAN on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to PSTATE.DIT on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to PSTATE.IL on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to PSTATE.GE on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Undefined mode.
SPSR_und.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

**E, bit [9]**

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_und.E is RES1.

This field resets to an architecturally UNKNOWN value.

**A, bit [8]**

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to PSTATE.A on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

**I, bit [7]**

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

**F, bit [6]**

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

**T, bit [5]**

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to PSTATE.T on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

**M[4:0], bits [4:0]**

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Undefined mode.

- 0b10000  User.
- 0b10001  FIQ.
- 0b10010  IRQ.
- 0b10011  Supervisor.
- 0b10111  Abort.
- 0b11011  Undefined.
- 0b11111  System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Undefined mode is an illegal return event, as described in *Illegal return events from AArch32 state on page G1-5766*. This field resets to an architecturally UNKNOWN value.

**Accessing the SPSR_und**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, SPSR_und

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return SPSR_und;
elsif PSTATE.EL == EL3 then
  return SPSR_und;

MSR SPSR_und, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  SPSR_und = X[t];
elsif PSTATE.EL == EL3 then
  SPSR_und = X[t];
C5.2.23 SSBS, Speculative Store Bypass Safe

The SSBS characteristics are:

**Purpose**

Allows access to the Speculative Store Bypass Safe bit.

**Configurations**

This register is present only when FEAT_SSBS is implemented. Otherwise, direct accesses to SSBS are UNDEFINED.

**Attributes**

SSBS is a 64-bit register.

**Field descriptions**

The SSBS bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:13]</td>
<td>Reserved, RES0</td>
<td>ssbs-field-res</td>
</tr>
<tr>
<td>[12]</td>
<td>SSBS, Speculative Store Bypass Safe</td>
<td>ssbs-field-ssbs</td>
</tr>
<tr>
<td>[11:0]</td>
<td>Reserved, RES0</td>
<td>ssbs-field-res</td>
</tr>
</tbody>
</table>
Accessing the SSBS

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SSBS**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE_EL == EL1 then
  return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE_EL == EL2 then
  return Zeros(51):PSTATE.SSBS:Zeros(12);
elsif PSTATE_EL == EL3 then
  return Zeros(51):PSTATE.SSBS:Zeros(12);

**MSR SSBS, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL1 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL2 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL3 then
  PSTATE.SSBS = X[t]<12>;

**MSR SSBS, #<imm>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL1 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL2 then
  PSTATE.SSBS = X[t]<12>;
elsif PSTATE_EL == EL3 then
  PSTATE.SSBS = X[t]<12>;
C5.2.24 TCO, Tag Check Override

The TCO characteristics are:

Purpose
When FEAT_MTE is implemented, this register allows tag checks to be disabled globally.

Configurations
This register is present only when FEAT_MTE is implemented. Otherwise, direct accesses to TCO are UNDEFINED.

Attributes
TCO is a 64-bit register.

Field descriptions
The TCO bit assignments are:

Bits [63:26]	Reserved, RES0.
TCO, bit [25]	Allows memory tag checks to be globally disabled.
0b0	Loads and Stores are not affected by this control.
0b1	Loads and Stores are unchecked.
Bits [24:0]	Reserved, RES0.

Accessing the TCO

For details on the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System instruction encoding space:

| MRS <Xt>, TCO |
|---|---|---|---|---|
| op0 | op1 | CRn | CRm | op2 |
| 0b11 | 0b011 | 0b0100 | 0b0010 | 0b111 |

if PSTATE.EL == EL0 then
  return Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL1 then
  return Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL2 then
  return Zeros(38):PSTATE.TCO:Zeros(25);
elsif PSTATE.EL == EL3 then
  return Zeros(38):PSTATE.TCO:Zeros(25);
**MSR TCO, <Xt>**

```
if PSTATE.EL == EL0 then
 PSTATE.TCO = X[t]<25>
elsif PSTATE.EL == EL1 then
 PSTATE.TCO = X[t]<25>
elsif PSTATE.EL == EL2 then
 PSTATE.TCO = X[t]<25>
elsif PSTATE.EL == EL3 then
 PSTATE.TCO = X[t]<25>
```
C5.2.25 UAO, User Access Override

The UAO characteristics are:

**Purpose**

Allows access to the User Access Override bit.

**Configurations**

This register is present only when FEAT_UAO is implemented. Otherwise, direct accesses to UAO are UNDEFINED.

**Attributes**

UAO is a 64-bit register.

**Field descriptions**

The UAO bit assignments are:

![UAO Bit Assignments Diagram]

**Bits [63:24]**

Reserved, RES0.

**UAO, bit [23]**

User Access Override.

- **0b0**: The behavior of LDTR* and STTR* instructions is as defined in the base Armv8 architecture.
- **0b1**: When executed at EL1, or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1}, LDTR* and STTR* instructions behave as the equivalent LDR* and STR* instructions.

When executed at EL3, or at EL2 with HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the LDTR* and STTR* instructions behave as the equivalent LDR* and STR* instructions, regardless of the setting of the PSTATE.UAO bit.

**Bits [22:0]**

Reserved, RES0.

**Accessing the UAO**

For details on the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, UAO**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then

UNDEFINED;

elsif PSTATE.EL == EL1 then

...
return Zeros(40):PSTATE.UAO:Zeros(23); 
elsif PSTATE.EL == EL2 then 
  return Zeros(40):PSTATE.UAO:Zeros(23); 
elsif PSTATE.EL == EL3 then 
  return Zeros(40):PSTATE.UAO:Zeros(23); 

**MSR UAO, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  PSTATE.UAO = X[t]<23>;
elsif PSTATE.EL == EL2 then
  PSTATE.UAO = X[t]<23>;
elsif PSTATE.EL == EL3 then
  PSTATE.UAO = X[t]<23>;

**MSR UAO, #<imm>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b000</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>
C5.3 A64 System instructions for cache maintenance

This section lists the A64 System instructions for cache maintenance.
C5.3.1 DC CGDSW, Clean of Data and Allocation Tags by Set/Way

The DC CGDSW characteristics are:

**Purpose**
Clean data and Allocation Tags in data cache by set/way.

**Configurations**
This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC CGDSW are UNDEFINED.

**Attributes**
DC CGDSW is a 64-bit System instruction.

**Field descriptions**
The DC CGDSW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
</tr>
<tr>
<td>32 31</td>
</tr>
<tr>
<td>4 3 1 0</td>
</tr>
<tr>
<td>RES0</td>
</tr>
</tbody>
</table>

**Bits [63:32]**
Reserved, RES0.

**SetWay, bits [31:4]**
Contains two fields:
- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

**Level, bits [3:1]**
Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**
Reserved, RES0.

**Executing the DC CGDSW instruction**
If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CGDSW, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TSW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CGDSW(X[t]);
    end if;
elsif PSTATE.EL == EL2 then
    DC_CGDSW(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGDSW(X[t]);
C5.3.2 DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC

The DC CGDVAC characteristics are:

Purpose

Clean data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CGDVAC are UNDEFINED.

Attributes

DC CGDVAC is a 64-bit System instruction.

Field descriptions

The DC CGDVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
</table>

Executing the DC CGDVAC instruction

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CGDVAC, <Xt>**

```
if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.UCI == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGITR_EL2.DCCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CGDVAC(X[t]);
 endif
 DC_CGDVAC<X[t]>;
else
 if EL2Enabled() & HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 DC_CGDVAC<X[t]>;
 endif
```
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTKen == '1') && HFGITR_EL2.DCCVAC == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  DC_CGDVAC(X[t]);
elsif PSTATE.EL == EL2 then
  DC_CGDVAC(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CGDVAC(X[t]);
C5.3.3 DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP

The DC CGDVADP characteristics are:

**Purpose**

Clean Allocation Tags and data in data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CGDVAP.

**Configurations**

This instruction is present only when FEAT_DPB2 is implemented and FEAT_MTE is implemented. Otherwise, direct accesses to DC CGDVADP are **UNDEFINED**.

**Attributes**

DC CGDVADP is a 64-bit System instruction.

**Field descriptions**

The DC CGDVADP input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use. No alignment restrictions apply to this VA.</td>
</tr>
</tbody>
</table>
```

**Executing the DC CGDVADP instruction**

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see **Permission fault** on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see **The data cache maintenance instruction (DC)** on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1101</td>
<td>0b101</td>
</tr>
</tbody>
</table>
```

```
if PSTATE_EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif (!(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0') && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 if HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CGDVADP(X[t]);
 else
 DC_CGDVADP(X[t]);
```
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CGDVADP(X[t]);
    end
elsif PSTATE.EL == EL2 then
    DC_CGDVADP(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGDVADP(X[t]);

C5.3.4 DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP

The DC CGDVAP characteristics are:

**Purpose**

Clean data and Allocation Tags in data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CGDVA.

**Configurations**

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CGDVAP are UNDEFINED.

**Attributes**

DC CGDVAP is a 64-bit System instruction.

**Field descriptions**

The DC CGDVAP input value bit assignments are:

| Bits [63:0] | Virtual address to use | No alignment restrictions apply to this VA. |

**Executing the DC CGDVAP instruction**

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see *Permission fault* on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *The data cache maintenance instruction (DC)* on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CGDVAP, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
    HFGITR_EL2.DCCVAP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CGDVAP(X[t]);

if EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see *Permission fault* on page D5-2646.
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCITR_EL2.DCCVAP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CGDVAP(X[t]);
    endforeach;
elsif PSTATE.EL == EL2 then
    DC_CGDVAP(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGDVAP(X[t]);
C5.3.5   DC CGSW, Clean of Allocation Tags by Set/Way

The DC CGSW characteristics are:

Purpose

Clean Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC CGSW are UNDEFINED.

Attributes

DC CGSW is a 64-bit System instruction.

Field descriptions

The DC CGSW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>32-31</td>
<td>SetWay</td>
</tr>
<tr>
<td>4-3</td>
<td>Level</td>
</tr>
<tr>
<td>1-0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DC CGSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ DC \text{ CGSW, } \langle X_t \rangle \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.TSW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() \&\& (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') \&\& HFGITR_EL2.DCCSW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
    DC_CGWS(X[t]);
elsif PSTATE.EL == EL2 then
    DC_CGWS(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGWS(X[t]);
C5.3.6 DC CGVAC, Clean of Allocation Tags by VA to PoC

The DC CGVAC characteristics are:

**Purpose**
Clean Allocation Tags in data cache by address to Point of Coherency.

**Configurations**
This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CGVAC are UNDEFINED.

**Attributes**
DC CGVAC is a 64-bit System instruction.

**Field descriptions**
The DC CGVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bitwise description</th>
<th>Bitwise value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use</td>
<td>[63:0]</td>
</tr>
</tbody>
</table>

**Executing the DC CGVAC instruction**
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CGVAC, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b1011</td>
<td>0b1010</td>
<td>0b011</td>
</tr>
</tbody>
</table>
```

```c
if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.UCI == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGITR_EL2.DCVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CGVAC(X[t]);
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.TPCP == '1' then
```
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  DC_CGVAC(X[t]);
elsif PSTATE.EL == EL2 then
  DC_CGVAC(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CGVAC(X[t]);
C5.3.7   DC CGVADP, Clean of Allocation Tags by VA to PoDP

The DC CGVADP characteristics are:

**Purpose**

Clean Allocation tags by address to Point of Deep Persistence.
If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CGVAP.

**Configurations**

This instruction is present only when FEAT_DP2 is implemented and FEAT_MTE is implemented. Otherwise, direct accesses to DC CGVADP are UNDEFINED.

**Attributes**

DC CGVADP is a 64-bit System instruction.

**Field descriptions**

The DC CGVADP input value bit assignments are:

Bits [63:0] Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CGVADP instruction**

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{ccccccc}
\text{DC CGVADP, } & \text{<Xt>} & \\
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b01 & 0b011 & 0b0111 & 0b1101 & 0b011 \\
\end{array}
\]

```c
if PSTATE_EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == ’1’) && SCTLR_EL1.UCI == ’0’ then
 if EL2Enabled() && HCR_EL2.TGE == ’1’ then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != ’11’ && HCR_EL2.TPCP == ’1’ then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == ’11’ && HFGITR_EL2.DCCVADP == ’1’ then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CGVADP(X[t]);
 endif
 endif
 endif
else
 DC_CGVADP(X[t]);
endif
```
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CGVADP(X[t]);
    end
elsif PSTATE.EL == EL2 then
    DC_CGVADP(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGVADP(X[t]);
C5.3.8 DC CGVAP, Clean of Allocation Tags by VA to PoP

The DC CGVAP characteristics are:

**Purpose**
Clean Allocation Tags in data cache by address to Point of Persistence.
If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CGVAC.

**Configurations**
This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CGVAP are UNDEFINED.

**Attributes**
DC CGVAP is a 64-bit System instruction.

**Field descriptions**
The DC CGVAP input value bit assignments are:

Virtual address to use

Bits [63:0]
Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CGVAP instruction**
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CGVAP, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CGVAP(X[t]);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CGVAP(X[t]);
    end
elsif PSTATE.EL == EL2 then
    DC_CGVAP(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CGVAP(X[t]);
C5.3.9 DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way

The DC CIGDSW characteristics are:

**Purpose**
Clean and Invalidate data and Allocation Tags in data cache by set/way.

**Configurations**
This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC CIGDSW are UNDEFINED.

**Attributes**
DC CIGDSW is a 64-bit System instruction.

**Field descriptions**
The DC CIGDSW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits [31:4]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetWay</td>
<td>Contains two fields:</td>
</tr>
<tr>
<td></td>
<td>• Way, bits[31:32-A], the number of the way to operate on.</td>
</tr>
<tr>
<td></td>
<td>• Set, bits[B-1:L], the number of the set to operate on.</td>
</tr>
<tr>
<td></td>
<td>Bits[L-1:4] are RES0.</td>
</tr>
<tr>
<td></td>
<td>A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).</td>
</tr>
<tr>
<td></td>
<td>ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits [3:1]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit [0]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0.</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Executing the DC CIGDSW instruction**
If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
— Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CIGDSW, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TSW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CIGDSW(X[t]);
  endif
elsif PSTATE.EL == EL2 then
  DC_CIGDSW(X[t]);
else
  DC_CIGDSW(X[t]);
eendif
C5.3.10   DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC

The DC CIGDVAC characteristics are:

Purpose
Clean and Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations
This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CIGDVAC are UNDEFINED.

Attributes
DC CIGDVAC is a 64-bit System instruction.

Field descriptions
The DC CIGDVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
</table>

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGDVAC instruction

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CIGDVAC, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      DC_CIGDVAC(X[t]);
  elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (£HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  DC_CIGDVAC(X[t]);
elsif PSTATE.EL == EL2 then
  DC_CIGDVAC(X[t]);
elif PSTATE.EL == EL3 then
  DC_CIGDVAC(X[t]);
C5.3.11 DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way

The DC CIGSW characteristics are:

**Purpose**

Clean and Invalidate Allocation Tags in data cache by set/way.

**Configurations**

This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC CIGSW are UNDEFINED.

**Attributes**

DC CIGSW is a 64-bit System instruction.

**Field descriptions**

The DC CIGSW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>32-31</td>
<td>SetWay</td>
</tr>
<tr>
<td>4-3</td>
<td>Level</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**SetWay, bits [31:4]**

Contains two fields:

- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = \(\log_2(\text{ASSOCIATIVITY})\), L = \(\log_2(\text{LINELEN})\), B = \((L + S)\), S = \(\log_2(\text{NSETS})\).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**

Reserved, RES0.

**Executing the DC CIGSW instruction**

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
— Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CIGSW, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TSW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CIGSW(X[t]);
  endif
elsif PSTATE.EL == EL2 then
  DC_CIGSW(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CIGSW(X[t]);
C5.3.12 DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

The DC CIGVAC characteristics are:

**Purpose**

Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

**Configurations**

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC CIGVAC are UNDEFINED.

**Attributes**

DC CIGVAC is a 64-bit System instruction.

**Field descriptions**

The DC CIGVAC input value bit assignments are:

- **Bits [63:0]**
  - Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CIGVAC instruction**

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *The data cache maintenance instruction (DC)* on page D4-2505.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in *Permission fault* on page D5-2646.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CIGVAC, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b011</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '1' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '1' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '1' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CIGVAC(X[t]);
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
```

C5-494 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    DC_CIGVAC(X[t]);
elsif PSTATE.EL == EL2 then
    DC_CIGVAC(X[t]);
elif PSTATE.EL == EL3 then
    DC_CIGVAC(X[t]);
C5.3.13 DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

The DC CISW characteristics are:

**Purpose**

Clean and Invalidate data cache by set/way.

When FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from caches.

**Configurations**

AArch64 System instruction DC CISW performs the same function as AArch32 System instruction DCCISW.

**Attributes**

DC CISW is a 64-bit System instruction.

**Field descriptions**

The DC CISW input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31:4</td>
<td>SetWay</td>
</tr>
<tr>
<td>3:1</td>
<td>Level</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>
```

**Bits [63:32]**

Reserved, RES0.

**SetWay, bits [31:4]**

Contains two fields:

- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log₂(ASSOCIATIVITY), L = Log₂(LINELEN), B = (L + S), S = Log₂(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**

Reserved, RES0.

**Executing the DC CISW instruction**

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:
  — No cache lines.
  — A single arbitrary cache line.
  — Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CISW, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TSW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CISW(X[t]);
  endif
elsif PSTATE.EL == EL2 then
  DC_CISW(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CISW(X[t]);
C5.3.14 DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

The DC CIVAC characteristics are:

**Purpose**
Clean and Invalidate data cache by address to Point of Coherency.
When FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from caches.

**Configurations**
AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

**Attributes**
DC CIVAC is a 64-bit System instruction.

**Field descriptions**
The DC CIVAC input value bit assignments are:

Bits [63:0]
Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CIVAC instruction**
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CIVAC, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CIVAC(X[t]);
elsif PSTATE.EL == EL2 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CIVAC(X[t]);
    endif PSTATE.EL == EL2 then
        DC_CIVAC(X[t]);
    elsif PSTATE.EL == EL3 then
        DC_CIVAC(X[t]);
C5.3.15 DC CSW, Data or unified Cache line Clean by Set/Way

The DC CSW characteristics are:

**Purpose**

Clean data cache by set/way.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

**Configurations**

AArch64 System instruction DC CSW performs the same function as AArch32 System instruction DCCSW.

**Attributes**

DC CSW is a 64-bit System instruction.

**Field descriptions**

The DC CSW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>32-31</td>
<td>SetWay</td>
</tr>
<tr>
<td>4-3</td>
<td>Level</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**SetWay, bits [31:4]**

Contains two fields:

- **Way**, bits[31:32-A], the number of the way to operate on.
- **Set**, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = \(\log_2(\text{ASSOCIATIVITY})\), \(L = \log_2(\text{LINELEN})\), \(B = (L + S)\), \(S = \log_2(\text{NSETS})\).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**

Reserved, RES0.

**Executing the DC CSW instruction**

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
  - No cache lines.
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{DC CSW, } <\text{Xt}>
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b01 & 0b000 & 0b0111 & 0b1010 & 0b010 \\
\end{array}
\]

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CSW(X[t]);
 endif
else
 if PSTATE.EL == EL2 then
 DC_CSW(X[t]);
 elseif PSTATE.EL == EL3 then
 DC_CSW(X[t]);
 endif
endif
```
C5.3.16 DC CVAC, Data or unified Cache line Clean by VA to PoC

The DC CVAC characteristics are:

**Purpose**
Clean data cache by address to Point of Coherency.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

**Configurations**
AArch64 System instruction DC CVAC performs the same function as AArch32 System instruction DCCMVAC.

**Attributes**
DC CVAC is a 64-bit System instruction.

**Field descriptions**
The DC CVAC input value bit assignments are:

- **Bits [63:0]**
  Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CVAC instruction**
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CVAC, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      DC_CVAC(X[t]);
  else
    if PSTATE.EL == EL1 then
      AArch64.SystemAccessTrap(EL1, 0x18);
if EL2Enabled() && HCR_EL2.TPCP == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  DC_CVAC(X[t]);
elsif PSTATE.EL == EL2 then
  DC_CVAC(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CVAC(X[t]);
C5.3.17 DC CVADP, Data or unified Cache line Clean by VA to PoDP

The DC CVADP characteristics are:

**Purpose**

Clean data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CVAP.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

**Configurations**

This instruction is present only when FEAT_DP2 is implemented. Otherwise, direct accesses to DC CVADP are UNDEFINED.

**Attributes**

DC CVADP is a 64-bit System instruction.

**Field descriptions**

The DC CVADP input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual address to use</th>
<th>No alignment restrictions apply to this VA.</th>
</tr>
</thead>
</table>

**Executing the DC CVADP instruction**

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CVADP, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.TGE == '1' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 endif
endif
```
else
    DC_CVADP(X[t]);
elif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CVADP(X[t]);
    endif PSTATE.EL == EL2 then
    DC_CVADP(X[t]);
    elsif PSTATE.EL == EL3 then
    DC_CVADP(X[t]);
C5.3.18 DC CVAP, Data or unified Cache line Clean by VA to PoP

The DC CVAP characteristics are:

**Purpose**

Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CVAC.

When FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

**Configurations**

This instruction is present only when FEAT_DP is implemented. Otherwise, direct accesses to DC CVAP are UNDEFINED.

**Attributes**

DC CVAP is a 64-bit System instruction.

**Field descriptions**

The DC CVAP input value bit assignments are:

Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CVAP instruction**

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, see Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CVAP, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCLR_EL1.UCI == '0' then
    if EL2Enabled() & HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &
      HFGITR_EL2.DCCVAP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCLR_EL2.UCI == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
  endif
endif
else
  DC_CVAP(X[t]);
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    DC_CVAP(X[t]);
  endif
elsif PSTATE.EL == EL2 then
  DC_CVAP(X[t]);
elsif PSTATE.EL == EL3 then
  DC_CVAP(X[t]);
C5.3.19 DC CVAU, Data or unified Cache line Clean by VA to PoU

The DC CVAU characteristics are:

**Purpose**
Clean data cache by address to Point of Unification.

**Configurations**
AArch64 System instruction DC CVAU performs the same function as AArch32 System instruction DCCMVAU.

**Attributes**
DC CVAU is a 64-bit System instruction.

**Field descriptions**
The DC CVAU input value bit assignments are:

```
63 62 61 60 59 58 ... 0
```

Virtual address to use

- **Bits [63:0]**
  - Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DC CVAU instruction**
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC CVAU, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b1011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.DCCVAU == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_CVAU(X[t]);
```
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_CVAU(X[t]);
    endif
elsif PSTATE.EL == EL2 then
    DC_CVAU(X[t]);
elsif PSTATE.EL == EL3 then
    DC_CVAU(X[t]);
C5.3.20 DC GVA, Data Cache set Allocation Tag by VA

The DC GVA characteristics are:

**Purpose**

Write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

**Configurations**

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC GVA are UNDEFINED.

**Attributes**

DC GVA is a 64-bit System instruction.

**Field descriptions**

The DC GVA input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use</td>
<td>Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.</td>
</tr>
</tbody>
</table>

**Executing the DC GVA instruction**

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being modified is any type of Device memory, this instruction can give an alignment fault that is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of stores to each Allocation Tag within the block being accessed, and so it:

- Generates a Permission Fault if the translation system does not permit writes to the locations.
- Requires the same considerations for ordering and the management of coherency as any other store instructions.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC GVA, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>
```

if PSTATE_EL == EL0 then
    if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x1B);
        else
            AArch64.SystemAccessTrap(EL1, 0x1B);
    else
        AArch64.SystemAccessTrap(EL0, 0x1B);
```
AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 DC_GVA(X[t]);
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_GVA(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 DC_GVA(X[t]);
elsif PSTATE.EL == EL3 then
 DC_GVA(X[t]);
C5.3.21 DC GZVA, Data Cache set Allocation Tags and Zero by VA

The DC GZVA characteristics are:

Purpose

Zero data and write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is identified in DCZID_EL0. The Allocation Tag used is determined by the input address.

Configurations

This instruction is present only when FEAT_MTE is implemented. Otherwise, direct accesses to DC GZVA are UNDEFINED.

Attributes

DC GZVA is a 64-bit System instruction.

Field descriptions

The DC GZVA input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
```

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC GZVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte and Allocation tag within the block being accessed, and so it:

- Generates a Permission Fault if the translation system does not permit writes to the locations.
- Requires the same considerations for ordering and the management of coherency as any other store instructions.

Accesses to this register use the following encodings in the System instruction encoding space:

```
DC GZVA, <Xt>
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
    if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.DZE == '0' then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
```

Field descriptions

The DC GZVA input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC GZVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is not set.

If the memory region being zeroed is any type of Device memory, this instruction can give an alignment fault which is prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte and Allocation tag within the block being accessed, and so it:

- Generates a Permission Fault if the translation system does not permit writes to the locations.
- Requires the same considerations for ordering and the management of coherency as any other store instructions.

Accesses to this register use the following encodings in the System instruction encoding space:

```
DC GZVA, <Xt>
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
    if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.DZE == '0' then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
```
AArch64.SystemAccessTrap(EL1, 0x18);
elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 DC_GZVA(X[t]);
elseif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TDZ == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DC_GZVA(X[t]);
 endif
elseif PSTATE.EL == EL2 then
 DC_GZVA(X[t]);
elseif PSTATE.EL == EL3 then
 DC_GZVA(X[t]);
C5.3.22 DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way

The DC IGDSW characteristics are:

Purpose
Invalidates data and Allocation Tags in data cache by set/way.

Configurations
This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC IGDSW are UNDEFINED.

Attributes
DC IGDSW is a 64-bit System instruction.

Field descriptions
The DC IGDSW input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SetWay</td>
<td>Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:32]
Reserved, RES0.

SetWay, bits [31:4]
Contains two fields:
- Way, bits [31:32-A], the number of the way to operate on.
- Set, bits [B-1:L], the number of the set to operate on.

Bits [L-1:4] are RES0.

A = \(\log_2(\text{ASSOCIATIVITY}) \), L = \(\log_2(\text{LINELEN}) \), B = (L + S), S = \(\log_2(\text{NSETS}) \).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the nearest integer.

Level, bits [3:1]
Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]
Reserved, RES0.

Executing the DC IGDSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
 - No cache lines.
 - A single arbitrary cache line.
Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{DC IGDSW, } \langle Xt \rangle
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b110</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TSW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCISW == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.SWIO == '1' then
        DC_CIGDSW(X[t]);
    elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
        DC_CIGDSW(X[t]);
    else
        DC_IGDSW(X[t]);
    end
elsif PSTATE.EL == EL2 then
    DC_IGDSW(X[t]);
elsif PSTATE.EL == EL3 then
    DC_IGDSW(X[t]);
```
C5.3.23 DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC

The DC IGDVAC characteristics are:

Purpose

Invalidate data and Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC IGDVAC are UNDEFINED.

Attributes

DC IGDVAC is a 64-bit System instruction.

Field descriptions

The DC IGDVAC input value bit assignments are:

| Bits [63:0] | Virtual address to use. No alignment restrictions apply to this VA. |

Executing the DC IGDVAC instruction

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

DC IGDVAC, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TPCP == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
 DC_CIGDVAC(X[t]);
 else
 DC_IGDVAC(X[t]);
elsif PSTATE.EL == EL2 then
 DC_IGDVAC(X[t]);
elsif PSTATE.EL == EL3 then
 DC_IGDVAC(X[t]);
C5.3.24 DC IGSW, Invalidate of Allocation Tags by Set/Way

The DC IGSW characteristics are:

Purpose

Invalidate Allocation Tags in data cache by set/way.

Configurations

This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC IGSW are UNDEFINED.

Attributes

DC IGSW is a 64-bit System instruction.

Field descriptions

The DC IGSW input value bit assignments are:

```
+---------------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| 63                             | 32 31                           | 4 3 1 0                         | 63                             |
| RES0                           | SetWay                         | Level                          | RES0                           |
```

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log₂(ASSOCIATIVITY), L = Log₂(LINELEN), B = (L + S), S = Log₂(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]

Reserved, RES0.

Executing the DC IGSW instruction

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
 - No cache lines.
 - A single arbitrary cache line.
Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{DC IGSW, } \langle Xt \rangle
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& HCR_EL2.TSW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() \&\& (!HaveEL(EL3) \|\| SCR_EL3.FGTEn == '1') \&\& HFGITR_EL2.DCISW == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() \&\& HCR_EL2.SWIO == '1' then
 DC_CIGSW(X[t]);
 elsif EL2Enabled() \&\& HCR_EL2.<DC,VM> != '00' then
 DC_CIGSW(X[t]);
 else
 DC_IGSW(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 DC_IGSW(X[t]);
elsif PSTATE.EL == EL3 then
 DC_IGSW(X[t]);
C5.3.25 DC IGVAC, Invalidate of Allocation Tags by VA to PoC

The DC IGVAC characteristics are:

Purpose

Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configurations

This instruction is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to DC IGVAC are UNDEFINED.

Attributes

DC IGVAC is a 64-bit System instruction.

Field descriptions

The DC IGVAC input value bit assignments are:

```
63  0
```

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC IGVAC instruction

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in Permission fault on page D5-2646.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see The data cache maintenance instruction (DC) on page D4-2505.

Accesses to this register use the following encodings in the System instruction encoding space:

```
DC IGVAC, <Xt>
```

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1011</td>
<td>0b110</td>
<td>0b111</td>
</tr>
</tbody>
</table>
```
elsif PSTATE.EL == EL3 then
 DC_IOVAC(X[t]);
C5.3.26 DC ISW, Data or unified Cache line Invalidate by Set/Way

The DC ISW characteristics are:

Purpose
Invalidate data cache by set/way.
When FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches. When it invalidates Allocation Tags from caches, it also cleans them.

Configurations
AArch64 System instruction DC ISW performs the same function as AArch32 System instruction DCISW.

Attributes
DC ISW is a 64-bit System instruction.

Field descriptions
The DC ISW input value bit assignments are:

```
+----------------------------------+
| 63  | 32  | 4  | 3  | 1  | 0  |
+----------------------------------+
|    | RES0| SetWay | Level |    |
+----------------------------------+

Bits [63:32]
Reserved, RES0.

SetWay, bits [31:4]
Contains two fields:
• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.
Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).
ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]
Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

Bit [0]
Reserved, RES0.

Executing the DC ISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:
• The instruction is UNDEFINED.
The instruction performs cache maintenance on one of:

- No cache lines.
- A single arbitrary cache line.
- Multiple arbitrary cache lines.

Accesses to this register use the following encodings in the System instruction encoding space:

**DC ISW, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() & HCR_EL2.TSW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGITR_EL2.DCISW == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & HCR_EL2.SWIO == '1' then
DC_CISW(X[t]);
elsif EL2Enabled() & HCR_EL2.<DC,VM> != '00' then
DC_CISW(X[t]);
else
DC_ISW(X[t]);
elsif PSTATE.EL == EL2 then
DC_ISW(X[t]);
elif PSTATE.EL == EL3 then
DC_ISW(X[t]);
C5.3.27 DC IVAC, Data or unified Cache line Invalidate by VA to PoC

The DC IVAC characteristics are:

**Purpose**

Invalidate data cache by address to Point of Coherency.

When FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches. When it invalidates Allocation Tags from caches, it also cleans them.

**Configurations**

AArch64 System instruction DC IVAC performs the same function as AArch32 System instruction DCIMVAC.

**Attributes**

DC IVAC is a 64-bit System instruction.

**Field descriptions**

The DC IVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual address to use. No alignment restrictions apply to this VA.</th>
</tr>
</thead>
</table>

**Executing the DC IVAC instruction**

When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the constraints described in *Permission fault on page D5-2646.*

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *The data cache maintenance instruction (DC) on page D4-2505.*

Accesses to this register use the following encodings in the System instruction encoding space:

**DC IVAC, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TPCP == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
    DC_CIVAC(X[t]);
  else
    DC_IVAC(X[t]);
elsif PSTATE.EL == EL2 then
DC_IVAC(X[t]);
eelsif PSTATE_EL == EL3 then
  DC_IVAC(X[t]);
C5.3.28  DC ZVA, Data Cache Zero by VA

The DC ZVA characteristics are:

Purpose

Zero data cache by address. Zeroes a naturally aligned block of N bytes, where the size of N is identified in DCZID_EL0.

Configurations

There are no configuration notes.

Attributes

DC ZVA is a 64-bit System instruction.

Field descriptions

The DC ZVA input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.</td>
<td></td>
</tr>
</tbody>
</table>

Executing the DC ZVA instruction

When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 0.

If the memory region being zeroed is any type of Device memory, this instruction can give an Alignment fault which is prioritized in the same way as other Alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of Stores to each byte within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.

• Requires the same considerations for ordering and the management of coherency as any other store instructions.

Accesses to this register use the following encodings in the System instruction encoding space:

DC ZVA, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.DZE == '0' then
if EL2Enabled() & HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2HTGE> != '11' && HCR_EL2.TDZ == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2HTGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
    HFGITR_EL2.DCZVA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2HTGE> == '11' && SCTLR_EL2.DZE == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    DC_ZVA(X[t]);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TDZ == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        DC_ZVA(X[t]);
    endif
elsif PSTATE.EL == EL2 then
    DC_ZVA(X[t]);
elsif PSTATE.EL == EL3 then
    DC_ZVA(X[t]);
C5.3.29 IC IALLU, Instruction Cache Invalidate All to PoU

The IC IALLU characteristics are:

**Purpose**
Invalidate all instruction caches to Point of Unification.

**Configurations**
AArch64 System instruction IC IALLU performs the same function as AArch32 System instruction IC IALLU.

**Attributes**
IC IALLU is a 64-bit System instruction.

**Field descriptions**
This instruction has no applicable fields.
The value in the register specified by <Xt> is ignored.

**Executing the IC IALLU instruction**
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{IC IALLU\{, <Xt>\}}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TPU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIALLU == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.FB == '1' then
IC_IALLUIS();
else
IC_IALLU();
elsif PSTATE.EL == EL2 then
IC_IALLU();
elsif PSTATE.EL == EL3 then
IC_IALLU();
C5.3.30 IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The IC IALLUIS characteristics are:

Purpose
Invalidate all instruction caches in Inner Shareable domain to Point of Unification.

Configurations
AArch64 System instruction IC IALLUIS performs the same function as AArch32 System instruction ICIALLUIE.

Attributes
IC IALLUIS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.
The value in the register specified by <Xt> is ignored.

Executing the IC IALLUIS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.
• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>IC IALLUIS{, &lt;Xt&gt;}</th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0b0</td>
<td>0b00</td>
<td>0b01</td>
<td>0b00</td>
<td>0b00</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TPU == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.TICAB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIALLUIE == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    IC_IALLUIS();
  elsif PSTATE.EL == EL2 then
    IC_IALLUIS();
  elsif PSTATE.EL == EL3 then
    IC_IALLUIS();
C5.3.31 IC IVAU, Instruction Cache line Invalidate by VA to PoU

The IC IVAU characteristics are:

**Purpose**
Invalidates instruction cache by address to Point of Unification.

**Configurations**
AArch64 System instruction IC IVAU performs the same function as AArch32 System instruction ICIIMVAU.

**Attributes**
IC IVAU is a 64-bit System instruction.

**Field descriptions**
The IC IVAU input value bit assignments are:

```
63 0
```

Virtual address to use

Bits [63:0]
Virtual address to use. No alignment restrictions apply to this VA.

**Executing the IC IVAU instruction**

Execution of the instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *The instruction cache maintenance instruction (IC)* on page D4-2505.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise it is IMPLEMENTATION DEFINED whether it generates a Permission Fault, see *Permission fault* on page D5-2646.

Accesses to this register use the following encodings in the System instruction encoding space:

```
IC IVAU{, <Xt>}
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPU == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TOCU == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
  if EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
IC_IVAU(X[t]);
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TPU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TOCU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ICIVAU == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        IC_IVAU(X[t]);
    endif
else
    IC_IVAU(X[t]);
endif
else if PSTATE.EL == EL2 then
    IC_IVAU(X[t]);
else if PSTATE.EL == EL3 then
    IC_IVAU(X[t]);
endif
C5.4 A64 System instructions for address translation

This section lists the A64 System instructions for address translation.
C5.4.1 AT S12E0R, Address Translate Stages 1 and 2 EL0 Read

The AT S12E0R characteristics are:

**Purpose**

Performs stage 1 and 2 address translations from EL0, with permissions as if reading from the given virtual address from EL0, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.
- Otherwise, the EL1&0 translation regime.

**Configurations**

There are no configuration notes.

**Attributes**

AT S12E0R is a 64-bit System instruction.

**Field descriptions**

The AT S12E0R input value bit assignments are:

![Input address for translation](image)

**Bits [63:0]**

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S12E0R instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**AT S12E0R, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() & HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  if HCR_EL2,<E2H,TGE> == '11' || HCR_EL2,<DC,VM> == '00' then
    AT_S1E0R(X[t]);
  else
    AT_S12E0R(X[t]);
elsif PSTATE_EL == EL3 then...
if !EL2Enabled() then
    AT_S1E0R(X[t]);
elsif EL2Enabled() \&\&(HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
    AT_S1E0R(X[t]);
else
    AT_S12E0R(X[t]);
C5.4.2 AT S12E0W, Address Translate Stages 1 and 2 EL0 Write

The AT S12E0W characteristics are:

**Purpose**

Performs stage 1 and 2 address translations from EL0, with permissions as if writing to the given virtual address from EL0, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the EL2&0 translation regime.
- Otherwise, the EL1&0 translation regime.

**Configurations**

There are no configuration notes.

**Attributes**

AT S12E0W is a 64-bit System instruction.

**Field descriptions**

The AT S12E0W input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Input address for translation</th>
<th>V A[63:32] is RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 CRn CRm op2</td>
<td>0b01 0b100 0b1011 0b1000 0b110</td>
<td>0b01 0b100 0b0111 0b1000 0b111</td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S12E0W instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**AT S12E0W, <XI>**
if !EL2Enabled() then
    AT_S1E0W(X[t]);
elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
    AT_S1E0W(X[t]);
else
    AT_S12E0W(X[t]);
C5.4.3 AT S12E1R, Address Translate Stages 1 and 2 EL1 Read

The AT S12E1R characteristics are:

Purpose
Performs stage 1 and 2 address translation, with permissions as if reading from the given virtual
address from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using
the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value
  of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from
    EL1.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from
    EL2.
- Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations
There are no configuration notes.

Attributes
AT S12E1R is a 64-bit System instruction.

Field descriptions
The AT S12E1R input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input address for translation. The resulting address can be read from the PAR_EL1.</td>
</tr>
</tbody>
</table>

If the address translation instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1R instruction
Accesses to this register use the following encodings in the System instruction encoding space:

**AT S12E1R, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b10</td>
<td>0b1011</td>
<td>0b1000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00' then
    AT_S1E1R(X[t]);
else
    AT_S12E1R(X[t]);
elsif PSTATE_EL == EL3 then
    if !EL2Enabled() then
        AT_S1E1R(X[t]);
    elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
        AT_S1E1R(X[t]);
    else
        AT_S12E1R(X[t]);
C5.4.4 AT S12E1W, Address Translate Stages 1 and 2 EL1 Write

The AT S12E1W characteristics are:

Purpose

Performs stage 1 and 2 address translation, with permissions as if writing to the given virtual address from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.
- Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S12E1W is a 64-bit System instruction.

Field descriptions

The AT S12E1W input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S12E1W instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{AT S12E1W, } \langle Xt \rangle
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.{E2H, TGE} == '11' || HCR_EL2.<DC, VM> == '00' then
        AT_S1E1W(X[t]);
else
    AT_S12E1W(X[t]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        AT_S12E1W(X[t]);
    elsif EL2Enabled() && (HCR_EL2.<E2H,TGE> == '11' || HCR_EL2.<DC,VM> == '00') then
        AT_S12E1W(X[t]);
    else
        AT_S12E1W(X[t]);

C5.4.5 AT S1E0R, Address Translate Stage 1 EL0 Read

The AT S1E0R characteristics are:

Purpose

Performs stage 1 address translation from EL0, with permissions as if reading from the given virtual address from EL0, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.
- Otherwise, the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

AT S1E0R is a 64-bit System instruction.

Field descriptions

The AT S1E0R input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 0</td>
<td>??</td>
</tr>
</tbody>
</table>

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E0R instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{AT S1E0R, <Xt>}
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b01 & 0b000 & 0b0111 & 0b1000 & 0b010 \\
\end{array}
\]
elsif PSTATE.EL == EL3 then
    AT_SIEBR(X[t]);
C5.4.6 AT S1E0W, Address Translate Stage 1 EL0 Write

The AT S1E0W characteristics are:

**Purpose**

Performs stage 1 address translation from EL0, with permissions as if writing to the given virtual address from EL0, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime.
- Otherwise, the EL1&0 translation regime.

**Configurations**

There are no configuration notes.

**Attributes**

AT S1E0W is a 64-bit System instruction.

**Field descriptions**

The AT S1E0W input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input address for translation</td>
</tr>
</tbody>
</table>

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S1E0W instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**AT S1E0W, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b111</td>
<td>0b1000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.AT == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E0W == '1') then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
  AT_S1E0W(X[t]);
elsif PSTATE.EL == EL2 then
  AT_S1E0W(X[t]);
else
  AT_S1E0W(X[t]);
elsif PSTATE.EL == EL3 then
    AT_SIEBW(X[t]);
C5.4.7 AT S1E1R, Address Translate Stage 1 EL1 Read

The AT S1E1R characteristics are:

**Purpose**

Performs stage 1 address translation, with permissions as if reading from the given virtual address from EL1, or from EL2 if the Effective value of HCR_EL2.[E2H, TGE] is {1, 1}, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.[E2H, TGE] is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
  - If HCR_EL2.[E2H, TGE] is {1, 1}, the EL2&0 translation regime, accessed from EL2.
- Otherwise, the EL1&0 translation regime, accessed from EL1.

**Configurations**

There are no configuration notes.

**Attributes**

AT S1E1R is a 64-bit System instruction.

**Field descriptions**

The AT S1E1R input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 0</td>
<td></td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S1E1R instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

`AT S1E1R, <X>`

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.AT == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1R == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    AT_S1E1R(X[t]);
  elsif PSTATE.EL == EL2 then
AT_SIE1R(X[t]);
elsif PSTATE.EL == EL3 then
  AT_SIE1R(X[t]);
C5.4.8 AT S1E1RP, Address Translate Stage 1 EL1 Read PAN

The AT S1E1RP characteristics are:

Purpose

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a read from a location will generate a permission fault for a privileged access, using the following translation regime:

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  — If HCR_EL2.{E2H, TGE} is not {1, 1}, the EL1&0 translation regime, accessed from EL1.
  — If HCR_EL2.{E2H, TGE} is {1, 1}, the EL2&0 translation regime, accessed from EL2.
• Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to AT S1E1RP are UNDEFINED.

Attributes

AT S1E1RP is a 64-bit System instruction.

Field descriptions

The AT S1E1RP input value bit assignments are:

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1RP instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{AT S1E1RP, } \langle Xt \rangle
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b01 & 0b000 & 0b0111 & 0b1001 & 0b000 \\
\end{array}
\]

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.AT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1RP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AT_S1E1RP(X[t]);

\]
elsif PSTATE.EL == EL2 then
  AT_S1E1RP(X[t]);
elsif PSTATE.EL == EL3 then
  AT_S1E1RP(X[t]);
C5.4.9  AT S1E1W, Address Translate Stage 1 EL1 Write

The AT S1E1W characteristics are:

Purpose

Performs stage 1 address translation, with permissions as if writing to the given virtual address from EL1, or from EL2 if the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the EL1&0 translation regime, accessed from EL1.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the EL2&0 translation regime, accessed from EL2.
- Otherwise, the EL1&0 translation regime, accessed from EL1.

Configurations

There are no configuration notes.

Attributes

AT S1E1W is a 64-bit System instruction.

Field descriptions

The AT S1E1W input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E1W instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{AT S1E1W, } <Xt> \\
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b01 & 0b000 & 0b0111 & 0b1000 & 0b001 \\
\end{array}
\]

\[
\text{if PSTATE.EL == EL0 then}
\text{UNDEFINED;}
\text{elsif PSTATE.EL == EL1 then}
\text{if EL2Enabled() \&\& HCR_EL2,AT == '1' then}
\text{AArch64.SystemAccessTrap(EL2, 0x18);}
\text{elsif EL2Enabled() \&\& (HaveEL(EL3) \| SCR_EL3.FGTEn == '1') \&\& HFCITR_EL2.ATS1E1W == '1' then}
\text{AArch64.SystemAccessTrap(EL2, 0x18);}
\text{else}
\text{AT_S1E1W(X[t]);}
\text{elsif PSTATE.EL == EL2 then}
\]
AT_S1E1W(X[t]);
elsif PSTATE.EL == EL3 then
    AT_S1E1W(X[t]);
C5.4.10 AT S1E1WP, Address Translate Stage 1 EL1 Write PAN

The AT S1E1WP characteristics are:

**Purpose**

Performs a stage 1 address translation, where the value of PSTATE.PAN determines if a write to a location will generate a permission fault for a privileged access, using the following translation regime:

- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the EL1&0 translation regime, accessed from EL1.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the EL2&0 translation regime, accessed from EL2.
- Otherwise, the EL1&0 translation regime, accessed from EL1.

**Configurations**

This instruction is present only when FEAT_PAN2 is implemented. Otherwise, direct accesses to AT S1E1WP are UNDEFINED.

**Attributes**

AT S1E1WP is a 64-bit System instruction.

**Field descriptions**

The AT S1E1WP input value bit assignments are:

**Bits [63:0]**

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S1E1WP instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**AT S1E1WP, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.AT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ATS1E1WP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AT_S1E1WP(X[t]);
elsif PSTATE.EL == EL2 then
    AT_S1E1WP(X[t]);
elsif PSTATE.EL == EL3 then
    AT_S1E1WP(X[t]);
C5.4.11   AT S1E2R, Address Translate Stage 1 EL2 Read

The AT S1E2R characteristics are:

**Purpose**

Performs stage 1 address translation as defined for EL2, with permissions as if reading from the given virtual address.

**Configurations**

There are no configuration notes.

**Attributes**

AT S1E2R is a 64-bit System instruction.

**Field descriptions**

The AT S1E2R input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S1E2R instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**AT S1E2R, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 AT_S1E2R(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 AT_S1E2R(X[t]);
```
C5.4.12  AT S1E2W, Address Translate Stage 1 EL2 Write

The AT S1E2W characteristics are:

**Purpose**

Performs stage 1 address translation as defined for EL2, with permissions as if writing to the given virtual address.

**Configurations**

There are no configuration notes.

**Attributes**

AT S1E2W is a 64-bit System instruction.

**Field descriptions**

The AT S1E2W input value bit assignments are:

```
+-----------------+-----------------+
| 63 | 0 |
+-----------------+-----------------+
| Input address for translation | |
```

**Bits [63:0]**

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

**Executing the AT S1E2W instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

```
AT S1E2W, <Xt>
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() & & HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  AT_S1E2W(X[t]);
elsif PSTATE_EL == EL3 then
  if !EL2Enabled() then
    UNDEFINED;
  else
    AT_S1E2W(X[t]);
```
C5.4.13 AT S1E3R, Address Translate Stage 1 EL3 Read

The AT S1E3R characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if reading from the given virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3R is a 64-bit System instruction.

Field descriptons

The AT S1E3R input value bit assignments are:

```
63 0
```

Bits [63:0]

Input address for translation. The resulting address can be read from the PAR_EL1.

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E3R instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```
AT S1E3R, <Xt>
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  AT_S1E3R(X[t]);
```
C5.4.14 AT S1E3W, Address Translate Stage 1 EL3 Write

The AT S1E3W characteristics are:

Purpose

Performs stage 1 address translation as defined for EL3, with permissions as if writing to the given virtual address.

Configurations

There are no configuration notes.

Attributes

AT S1E3W is a 64-bit System instruction.

Field descriptions

The AT S1E3W input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input address for translation</td>
<td></td>
</tr>
</tbody>
</table>

If the address translation instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then VA[63:32] is RES0.

Executing the AT S1E3W instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{AT S1E3W, } \langle X \rangle
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

\[
\text{if } \text{PSTATE.EL} == \text{EL0 then UNDEFINED;}
\text{elsif PSTATE.EL} == \text{EL1 then UNDEFINED;}
\text{elsif PSTATE.EL} == \text{EL2 then UNDEFINED;}
\text{elsif PSTATE.EL} == \text{EL3 then AT_S1E3W}(X[t]);
\]
C5.5 A64 System instructions for TLB maintenance

This section lists the A64 System instructions for TLB maintenance.

For more information about these instructions see *TLB maintenance instructions* on page D5-2664. In particular, for the full description of the scope of each instruction see *Scope of the A64 TLB maintenance instructions* on page D5-2669.
C5.5.1 TLBI ALLE1, TLB Invalidate All, EL1

The TLBI ALLE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0 translation regime.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this System instruction.

--- **Note** ---

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1 is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1 instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONstrained UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        TLBI_ALLE1();
```
elsif PSTATE.EL == EL3 then
 TLBI_ALLE1();
C5.5.2 TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable

The TLBI ALLE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0 translation regime.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.
The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE1IS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.
The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1IS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONstrained UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI ALLE1IS({, <Xt>})

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
TLBI_ALLE1IS();
ellif PSTATE.EI == EL3 then
 TLBI_ALLE1IS();
C5.5.3 TLBI ALLE1OS, TLB Invalidate All, EL1, Outer Shareable

The TLBI ALLE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0 translation regime.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0 translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE1OS are UNDEFINED.

Attributes

TLBI ALLE1OS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1OS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI ALLE1OS(, <Xt>**)**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_ALLE1OS();
elsif PSTATE.EL == EL3 then
 TLBI_ALLE1OS();
C5.5.4 TLBI ALLE2, TLB Invalidate All, EL2

The TLBI ALLE2 characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or Non-secure EL2&0 translation regime.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure EL2&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2 is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2 instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>TLBI ALLE2{, <Xt>}</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
</tr>
<tr>
<td>0b01</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        TLBI_ALLE2();
    elsif PSTATE.EL == EL3 then
        if !EL2Enabled() then
            UNDEFINED;
        else
            TLBI_ALLE2();
    end
```
C5.5.5 TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable

The TLBI ALLE2IS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or Non-secure EL2&0 translation regime.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE2IS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2IS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>TLBI ALLE2IS(, <Xt>)</th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 CRn CRm op2</td>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_ALLE2IS();
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_ALLE2IS();

C5.5.6 TLBI ALLE2OS, TLB Invalidate All, EL2, Outer Shareable

The TLBI ALLE2OS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or Non-secure EL2&0 translation regime.
- If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure EL2&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE2OS are UNDEFINED.

Attributes

TLBI ALLE2OS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2OS instruction

When executing this instruction Xt should be encoded as 0b111111. If the Xt field is not set to 0b111111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b111111.

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI ALLE2OS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```python
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        TLBI_ALLE2OS();
    elsif PSTATE.EL == EL3 then
        if !EL2Enabled() then
            UNDEFINED;
        else
            TLBI_ALLE2OS();
```
C5.5.7 TLBI ALLE3, TLB Invalidate All, EL3

The TLBI ALLE3 characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3 is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE3 instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI ALLE3}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TLBI_ALLE3();

C5.5.8 TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable

The TLBI ALLE3IS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ALLE3IS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by \(<Xt>\) is ignored.

Executing the TLBI ALLE3IS instruction

When executing this instruction \(Xt\) should be encoded as \(0b11111\). If the \(Xt\) field is not set to \(0b11111\), it is CONSTRANGED UNPREDIBLE whether:

• The instruction is UNDEFINED.
• The instruction behaves as if the \(Xt\) field is set to \(0b11111\).

Accesses to this register use the following encodings in the System instruction encoding space:

\[TLBI_ALLE3IS\{, \ <Xt>\} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TLBI_ALLE3IS();
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

C5.5.9 TLBI ALLE3OS, TLB Invalidate All, EL3, Outer Shareable

The TLBI ALLE3OS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE3OS are UNDEFINED.

Attributes

TLBI ALLE3OS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE3OS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b10</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TLBI_ALLE3OS();
C5.5.10 TLBI ASIDE1, TLB Invalidate by ASID, EL1

The TLBI ASIDE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
 - Is from a level of lookup above the final level.
 - Is a non-global entry from the final level of lookup.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would be required to translate an address using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate an address using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1 is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1 input value bit assignments are:

```
       63  48  47          0
       |   |   |            |
       ASID |   RES0
```

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI ASIDE1(<Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && HCR_EL2.FB == '1' then
 TLBI_ASIDE1IS(X[t]);
 else
 TLBI_ASIDE1(X[t]);
eelif PSTATE.EL == EL2 then
 TLBI_ASIDE1(X[t]);
eelif PSTATE.EL == EL3 then
 TLBI_ASIDE1(X[t]);
C5.5.11 TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable

The TLBI ASIDE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
 - Is from a level of lookup above the final level.
 - Is a non-global entry from the final level of lookup.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would be required to translate an address using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate an address using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI ASIDE1IS is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1IS input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI ASIDE1IS(<Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_ASIDE1IS(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 TLBI_ASIDE1IS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_ASIDE1IS(X[t]);
C5.5.12 TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer Shareable

The TLBI ASIDE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
 - Is from a level of lookup above the final level.
 - Is a non-global entry from the final level of lookup.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would be required to translate an address using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate an address using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ASIDE1OS are UNDEFINED.

Attributes

TLBI ASIDE1OS is a 64-bit System instruction.

Field descriptions

The TLBI ASIDE1OS input value bit assignments are:

```
63 48 47 0
```

<table>
<thead>
<tr>
<th>63:48</th>
<th>47:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>RES0</td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI ASIDE1OS(<Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLB0S == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_ASIDE1OS(X[t]);
 endif;
elsif PSTATE.EL == EL2 then
 TLBI_ASIDE1OS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_ASIDE1OS(X[t]);
C5.5.13 TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

The TLBI IPAS2E1 characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1 is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2E1 input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>NS</td>
</tr>
<tr>
<td>62</td>
<td>RES0</td>
</tr>
<tr>
<td>48</td>
<td>TTL</td>
</tr>
<tr>
<td>47</td>
<td>RES0</td>
</tr>
<tr>
<td>44</td>
<td>IPA[47:12]</td>
</tr>
<tr>
<td>43</td>
<td>IPA[51:48]</td>
</tr>
<tr>
<td>40</td>
<td>IPA[47:12]</td>
</tr>
<tr>
<td>39</td>
<td>IPA[51:48]</td>
</tr>
<tr>
<td>36</td>
<td>IPA[47:12]</td>
</tr>
<tr>
<td>35</td>
<td>IPA[51:48]</td>
</tr>
<tr>
<td>0</td>
<td>IPA[51:48]</td>
</tr>
</tbody>
</table>

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

- 0: IPA is in the Secure IPA space.
- 1: IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:
Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b10 : Level 2.
 0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

Bits [43:40]
Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:
Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:
Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

TLBI_IPAS2E1(, <X[t]>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
else if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
else if PSTATE.EL == EL2 then
 TLBI_IPAS2E1(X[t]);
else if PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_IPAS2E1(X[t]);
C5.5.14 TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

The TLBI IPAS2E1IS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see Invalidation of TLB entries from stage 2 translations on page D5-2673.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2E1IS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2E1IS input value bit assignments are:

```
+--------+--------+--------+--------+--------+--------+
| 63     | 62     | 48     | 47     | 44     | 43     | 40     | 39     | 36     | 35     | 0       |
| NS     | RES0   | TTL    | RES0   | IPA[47:12] | IPA[51:48] |
+--------+--------+--------+--------+--------+--------+
```

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:
Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- 0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- 0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
- 0b10xx: The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10: Level 2.
 - 0b11: Level 3.
- 0b11xx: The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

Bits [43:40]
Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:
Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:
Reserved, RES0.

IPA[47:12], bits [35:0]
Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1IS instruction
Accesses to this register use the following encodings in the System instruction encoding space:
TLBI IPAS2E1IS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_IPAS2E1IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_IPAS2E1IS(X[t]);
C5.5.15 TLBI IPAS2EOS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

The TLBI IPAS2EOS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI IPAS2EOS are UNDEFINED.

Attributes

TLBI IPAS2EOS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2EOS input value bit assignments are:

```
   63 62    48 47    44 43    40 39    36 35    0
   NS  RES0   TTL  RES0   IPA[47:12]  
  IPA[51:48]  
```

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

- 0b0 IPA is in the Secure IPA space.
- 0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When *FEAT_SEL2* is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.
Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Level 1.
 - **0b10**: Level 2.
 - **0b11**: Level 3.
- **0b10xx** The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Level 1.
 - **0b10**: Level 2.
 - **0b11**: Level 3.
- **0b11xx** The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Level 1.
 - **0b10**: Level 2.
 - **0b11**: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. See IPA[47:12] for more details.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI_IPAS2E1OS{<X[t]>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 end if;
elsif PSTATE.EL == EL2 then
 TLBI_IPAS2E1OS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_IPAS2E1OS(X[t]);
 end if;
C5.5.16 TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

The TLBI IPAS2LE1 characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1 is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2LE1 input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>40</th>
<th>39</th>
<th>36</th>
<th>35</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>RES0</td>
<td>TTL</td>
<td>RES0</td>
<td>IPA[47:12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

IPA[51:48]

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx**: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx**: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
- **0b10xx**: The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10: Level 2.
 - 0b11: Level 3.
- **0b11xx**: The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI IPAS2LE1(, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 end if
elsif PSTATE.EL == EL2 then
 TLBI_IPAS2LE1(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_IPAS2LE1(X[t]);
 end if
end if
C5.5.17 TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable

The TLBI IPAS2LE1IS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see Invalidation of TLB entries from stage 2 translations on page D5-2673.

Configurations

There are no configuration notes.

Attributes

TLBI IPAS2LE1IS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2LE1IS input value bit assignments are:

```
63 62 48 47 44 43 40 39 36 35 0
| NS | RES0 | TTL | RES0 | IPA[47:12] |

IPA[51:48]
```

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.
Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
- **0b10xx** The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10: Level 2.
 - 0b11: Level 3.
- **0b11xx** The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. See IPA[47:12] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI IPAS2LE1IS\{<Xt>\}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_IPAS2LE1IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 // no operation
 else
 TLBI_IPAS2LE1IS(X[t]);
C5.5.18 TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

The TLBI IPAS2LE1OS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see Invalidation of TLB entries from stage 2 translations on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI IPAS2LE1OS are UNDEFINED.

Attributes

TLBI IPAS2LE1OS is a 64-bit System instruction.

Field descriptions

The TLBI IPAS2LE1OS input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63]</td>
<td>NS, bit 63</td>
</tr>
<tr>
<td>[49]</td>
<td>RES0</td>
</tr>
<tr>
<td>[48]</td>
<td>TTL</td>
</tr>
<tr>
<td>[47]</td>
<td>RES0</td>
</tr>
<tr>
<td>[39]</td>
<td>IPA[47:12]</td>
</tr>
</tbody>
</table>
```

When FEAT_SEL2 is implemented:

- Not Secure. Specifies the IPA space.
 - 0b0: IPA is in the Secure IPA space.
 - 0b1: IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

- Reserved, RES0.
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

Bits [62:48]
Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:
Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

\[\text{0b00xx} \]
No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, \(\text{TTL}<1:0> \) is RES0.

\[\text{0b01xx} \]
The entry comes from a 4KB translation granule. The level of walk for the leaf level \(\text{0bxx} \) is encoded as:
- \(\text{0b00} \): Reserved. Treat as if \(\text{TTL}<3:2> \) is \(\text{0b00} \).
- \(\text{0b01} \): Level 1.
- \(\text{0b10} \): Level 2.
- \(\text{0b11} \): Level 3.

\[\text{0b10xx} \]
The entry comes from a 16KB translation granule. The level of walk for the leaf level \(\text{0bxx} \) is encoded as:
- \(\text{0b00} \): Reserved. Treat as if \(\text{TTL}<3:2> \) is \(\text{0b00} \).
- \(\text{0b01} \): Reserved. Treat as if \(\text{TTL}<3:2> \) is \(\text{0b00} \).
- \(\text{0b10} \): Level 2.
- \(\text{0b11} \): Level 3.

\[\text{0b11xx} \]
The entry comes from a 64KB translation granule. The level of walk for the leaf level \(\text{0bxx} \) is encoded as:
- \(\text{0b00} \): Reserved. Treat as if \(\text{TTL}<3:2> \) is \(\text{0b00} \).
- \(\text{0b01} \): Level 1.
- \(\text{0b10} \): Level 2.
- \(\text{0b11} \): Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

Bits [43:40]
Reserved, RES0.

IPA[51:48], bits [39:36]
Extension to IPA[47:12]. See IPA[47:12] for more details.

IPA[47:12], bits [35:0]

Bits [47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI IPAS2LE1OS{, <Xt>}

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBI_IPAS2LE1OS(X[t]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        //no operation
    else
        TLBI_IPAS2LE1OS(X[t]);
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>
C5.5.19 TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

The TLBI RIPAS2E1 characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula [BaseADDR <= VA <= BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RIPAS2E1 are UNDEFINED.

Attributes

TLBI RIPAS2E1 is a 64-bit System instruction.

Field descriptions

The TLBI RIPAS2E1 input value bit assignments are:

```
       63 62  48 47 46 45 44 43  39 38 37 36
       NS  RES0  TG  NUM  TTL  BaseADDR

       SCALE
```
NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

0b0 IPA is in the Secure IPA space.

0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
```
TLBI RIPAS2E1{, <Xt>}  

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  TLBI_RIPAS2E1(X[t]);
elsif PSTATE.EL == EL3 then
  if !EL2Enabled() then
    //no operation
  else
    TLBI_RIPAS2E1(X[t]);
```
C5.5.20 TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

The TLBI RIPAS2E1IS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{5 \times \text{SCALE} +1} \times \text{Translation_Granule_Size})\].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granularity:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granularity:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granularity:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RIPAS2E1IS are UNDEFINED.

Attributes

TLBI RIPAS2E1IS is a 64-bit System instruction.

Field descriptions

The TLBI RIPAS2E1IS input value bit assignments are:
NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.
- 0b0 IPA is in the Secure IPA space.
- 0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:
Reserved, RES0.

Bits [62:48]
Reserved, RES0.

TG, bits [47:46]
Translation granule size.
- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00 The entries in the range can be using any level for the translation table entries.
- 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.
- 0b10 All entries to invalidate are Level 2 translation table entries.
- 0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RIPAS2E1IS(, <Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RIPAS2E1IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 // no operation
 else
 TLBI_RIPAS2E1IS(X[t]);
C5.5.21 TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

The TLBI RIPAS2E1OS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granularity:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granularity:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granularity:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

For more information about the architectural requirements for this System instruction, see Invalidation of TLB entries from stage 2 translations on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBROS is implemented. Otherwise, direct accesses to TLBI RIPAS2E1OS are UNDEFINED.

Attributes

TLBI RIPAS2E1OS is a 64-bit System instruction.

Field descriptions

The TLBI RIPAS2E1OS input value bit assignments are:
NS, bit [63]

Not Secure. Specifies the IPA space.
- 0b0: IPA is in the Secure IPA space.
- 0b1: IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.
- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.
- 0b10: All entries to invalidate are Level 2 translation table entries.
- 0b11: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RIPAS2E1OS(⟨X[<t⟩]⟩)

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RIPAS2E1OS(X[<t>]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_RIPAS2E1OS(X[<t>]);

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
C5.5.22 TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

The TLBI RIPAS2LE1 characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula $[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1)\times 2^{(5\times \text{SCALE} +1)} \times \text{Translation_Granule_Size})]$.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

For more information about the architectural requirements for this System instruction, see Invalidation of TLB entries from stage 2 translations on page D5-2673.

Configurations
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1 are UNDEFINED.

Attributes
TLBI RIPAS2LE1 is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2LE1 input value bit assignments are:
NS, bit [63]

When FEAT_SEL2 is implemented:

- Not Secure. Specifies the IPA space.
 - 0b0: IPA is in the Secure IPA space.
 - 0b1: IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.
- 0b10: All entries to invalidate are Level 2 translation table entries.
- 0b11: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

- When using a 4KB translation granule, this field is BaseADDR[48:12].
- When using a 16KB translation granule, this field is BaseADDR[50:14].
- When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RIPAS2LE1\{, <X[t]>\}

The A64 System Instruction Class

C5.5 A64 System instructions for TLB maintenance

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RIPAS2LE1(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 //no operation
 else
 TLBI_RIPAS2LE1(X[t]);
The TLBI RIPAS2LE1IS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1)\times2^{(5\times\text{SCALE} +1)} \times \text{Translation Granule Size}])\).

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 0000000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1IS are UNDEFINED.

Attributes

TLBI RIPAS2LE1IS is a 64-bit System instruction.

Field descriptions

The TLBI RIPAS2LE1IS input value bit assignments are:
NS, bit [63]

When FEAT_SEL2 is implemented:
Not Secure. Specifies the IPA space.
- 0b0 IPA is in the Secure IPA space.
- 0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.
When FEAT_SEL2 is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:
Reserved, RES0.

Bits [62:48]
Reserved, RES0.

TG, bits [47:46]
Translation granule size.
- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00 The entries in the range can be using any level for the translation table entries.
- 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.
- 0b10 All entries to invalidate are Level 2 translation table entries.
- 0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.
When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

TLBI RIPAS2LE1IS(, <X[t]>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 TLBI_RIPAS2LE1IS(X[t]);
elsif PSTATE_EL == EL3 then
 if !EL2Enabled() then
 // no operation
 else
 TLBI_RIPAS2LE1IS(X[t]);
C5.5.24 TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable

The TLBI RIPAS2LE1OS characteristics are:

Purpose

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- One of the following applies:
 - SCR_EL3.NS==1 and the entry would be required to translate the specified IPA using the Non-secure EL1&0 translation regime.
 - SCR_EL3.NS==0 and the entry would be required to translate the specified IPA using the Secure EL1&0 translation regime.
- The entry would be used with the current VMID.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1)2^{(5*\text{SCALE} + 1)} \times \text{Translation_Granule_Size})]\).

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is **unpredictable** when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 0000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 00000000000000000000.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOSS is implemented. Otherwise, direct accesses to TLBI RIPAS2LE1OS are **undefined**.
Attributes

TLBI RIPAS2LE1OS is a 64-bit System instruction.

Field descriptions

The TLBI RIPAS2LE1OS input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>48</th>
<th>47</th>
<th>46</th>
<th>45</th>
<th>44</th>
<th>43</th>
<th>39</th>
<th>38</th>
<th>37</th>
<th>36</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>RES0</td>
<td>TG</td>
<td>NUM</td>
<td>TTL</td>
<td>BaseADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

- **0b0**: IPA is in the Secure IPA space.
- **0b1**: IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-secure IPA space.

When **FEAT_SEL2** is not implemented or is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- **0b00**: Reserved.
- **0b01**: 4K translation granule.
- **0b10**: 16K translation granule.
- **0b11**: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- **0b00**: The entries in the range can be using any level for the translation table entries.
- **0b01**: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved. Hardware should treat this field as 0b00.
All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RIPAS2LE1OS}(\langle Xt \rangle)
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b11</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBI_RIPAS2LE1OS(X[t]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        //no operation
    else
        TLBI_RIPAS2LE1OS(X[t]);
```
C5.5.25 TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1

The TLBI RVAAE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \(\text{BaseADDR} \leq V A < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{(5 \times \text{SCALE} + 1)} \times \text{Translation_Granule_Size})\).

The invalidation applies to the PE that executes this System instruction.

_____ Note _____

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 64K translation granule:
 - If TTL==10 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAAE1 are UNDEFINED.

Attributes

TLBI RVAAE1 is a 64-bit System instruction.

Field descriptions

The TLBI RVAAE1 input value bit assignments are:
Bits [63:48]

Reserved, RES0.

TG, bits [47:46]
Translation granule size.
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.
When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVAAE1, <X[t]>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.FB == '1' then
 TLBI_RVAAE1IS(X[t]);
 else
 TLBI_RVAAE1(X[t]);
 end if;
elsif PSTATE.EL == EL2 then
 TLBI_RVAAE1(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVAAE1(X[t]);
endif;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b011</td>
</tr>
</tbody>
</table>
C5.5.26 TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI RVAAE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of `SCR_EL3.NS`:
 - If `HCR_EL2.{E2H, TGE}` is not `1, 1`, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If `HCR_EL2.{E2H, TGE}` is `1, 1`, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula $[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1)\times2^{(5\times\text{SCALE} +1)} \times \text{Translation_Granule_Size})]$.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if `SCR_EL3.EEL2==1`, then:

- A PE with `SCR_EL3.EEL2==1` is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with `SCR_EL3.EEL2==0`.
- A PE with `SCR_EL3.EEL2==0` is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with `SCR_EL3.EEL2==1`.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If `TTL==01` and `BaseADDR[29:12]` is not equal to `00000000000000000000000000`.
 - If `TTL==10` and `BaseADDR[20:12]` is not equal to `00000000000000000000000000`.
- For the 16K translation granule:
 - If `TTL==10` and `BaseADDR[24:14]` is not equal to `00000000000000000000000000`.
- For the 64K translation granule:
 - If `TTL==01` and `BaseADDR[41:16]` is not equal to `00`.
 - If `TTL==10` and `BaseADDR[28:16]` is not equal to `00`.

Configurations

This instruction is present only when `FEAT_TLBIRANGE` is implemented. Otherwise, direct accesses to TLBI RVAAE1IS are UNDEFINED.
Attributes

TLBI RVAAE1IS is a 64-bit System instruction.

Field descriptions

The TLBI RVAAE1IS input value bit assignments are:

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].
Executing the TLBI RVAAE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVAAE1IS}(<Xt>)
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVAAE1IS(X[t]);
 endif
else
 TLBI_RVAAE1IS(X[t]);
endif

C5.5.27 TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI RVAAE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1)\times2^\text{(5*SCALE +1)} \times \text{Translation_Granule_Size})]\).

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 0000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 00000000000000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVAAE1OS are UNDEFINED.
Attributes

TLBI RVAAE1OS is a 64-bit System instruction.

Field descriptions

The TLBI RVAAE1OS input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bits [63:48]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>000</td>
<td>Reserved.</td>
</tr>
<tr>
<td>001</td>
<td>4K translation granule.</td>
</tr>
<tr>
<td>010</td>
<td>16K translation granule.</td>
</tr>
<tr>
<td>011</td>
<td>64K translation granule.</td>
</tr>
</tbody>
</table>

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

<table>
<thead>
<tr>
<th>SCALE, bits [45:44]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM, bits [43:39]</td>
<td>The exponent element of the calculation that is used to produce the upper range.</td>
</tr>
<tr>
<td>TTL, bits [38:37]</td>
<td>TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.</td>
</tr>
<tr>
<td>BaseADDR, bits [36:0]</td>
<td>The starting address for the range of the maintenance instruction.</td>
</tr>
</tbody>
</table>
```

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- 000: Reserved.
- 001: 4K translation granule.
- 010: 16K translation granule.
- 011: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 000: The entries in the range can be using any level for the translation table entries.
- 001: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 000.
- 010: All entries to invalidate are Level 2 translation table entries.
- 011: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].
Executing the TLBI RVAAE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVAAE1OS, } \langle X[t]\rangle
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elseif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() && HCR_EL2.TTLB0S == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAEE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 TLBI_RVAEE1OS(X[t]);
elseif PSTATE.EL == EL2 then
 TLBI_RVAEE1OS(X[t]);
elself PSTATE.EL == EL3 then
 TLBI_RVAEE1OS(X[t]);
C5.5.28 TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1

The TLBI RVAALE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \(\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1)2^{5\text{SCALE} + 1} \times \text{Translation Granule Size}) \).

The invalidation applies to the PE that executes this System instruction.

--- **Note** ---

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAALE1 are **UNDEFINED**.

Attributes

TLBI RVAALE1 is a 64-bit System instruction.

Field descriptions

The TLBI RVAALE1 input value bit assignments are:
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

Bits [63:48]
Reserved, RES0.

TG, bits [47:46]
Translation granule size.
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.

 When using a 4KB translation granule, this field is BaseADDR[48:12].
 When using a 16KB translation granule, this field is BaseADDR[50:14].
 When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1 instruction
Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVAALE1(, <Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b111</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCITR_EL2.TLBIRVAALE1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FB == '1' then
        TLBI_RVAALE1IS(X[t]);
    else
        TLBI_RVAALE1(X[t]);
    endif
elseif PSTATE.EL == EL2 then
    TLBI_RVAALE1(X[t]);
elseif PSTATE.EL == EL3 then
    TLBI_RVAALE1(X[t]);
```

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

C5-623

ID072120

Non-Confidential
The TLBI RVAALEIS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula

 \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1) \times \text{Translation_Granule_Size}}) \]

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is **UNPREDICTABLE** when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 00000000000000000000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAALEIS are **UNDEFINED**.
Attributes

TLBI RVAALE1IS is a 64-bit System instruction.

Field descriptions

The TLBI RVAALE1IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved (RES0)</td>
</tr>
<tr>
<td>47-46</td>
<td>Translation granule size</td>
</tr>
<tr>
<td>45-44</td>
<td>The exponent element</td>
</tr>
<tr>
<td>43-39</td>
<td>The base element</td>
</tr>
<tr>
<td>38-37</td>
<td>TTL Level hint</td>
</tr>
<tr>
<td>36-0</td>
<td>The starting address</td>
</tr>
</tbody>
</table>

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.
- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 - When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10: All entries to invalidate are Level 2 translation table entries.
- 0b11: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.
- When using a 4KB translation granule, this field is BaseADDR[48:12].
- When using a 16KB translation granule, this field is BaseADDR[50:14].
- When using a 64KB translation granule, this field is BaseADDR[52:16].
Executing the TLBI RVAALE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAALE1IS{, <Xt>])

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVAALE1IS(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 TLBI_RVAALE1IS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVAALE1IS(X[t]);
C5.5.30 TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

The TLBI RVAALE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1)} \times \text{Translation Granule Size})\].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 0000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVAALE1OS are UNDEFINED.
Attributes

TLBI RVAALE1OS is a 64-bit System instruction.

Field descriptions

The TLBI RVAALE1OS input value bit assignments are:

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].
Executing the TLBI RVAALE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVAALE1OS}_{<Xt>}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVAALE1OS(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 TLBI_RVAALE1OS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVAALE1OS(X[t]);
C5.5.31 TLBI RVAE1, TLB Range Invalidate by VA, EL1

The TLBI RVAE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is from a level of lookup above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM +1)*2^(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is **UNPREDICTABLE** when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1 are **UNDEFINED**.

Attributes

TLBI RVAE1 is a 64-bit System instruction.

Field descriptions

The TLBI RVAE1 input value bit assignments are:
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVAE1(<Xt>)

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TTLB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.FB == '1' then
    TLBI_RVAE1IS(X[t]);
  else
    TLBI_RVAE1(X[t]);
  elsif PSTATE.EL == EL2 then
    TLBI_RVAE1(X[t]);
  elsif PSTATE.EL == EL3 then
    TLBI_RVAE1(X[t]);
```

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```
C5.5.32 TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable

The TLBI RVAE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is from a level of lookup above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{(5 \times \text{SCALE} + 1)} \times \text{Translation Granule Size})\].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1IS are **UNDEFINED**.

Attributes

TLBI RVAE1IS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE1IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 48 47 46 45 44 43 39 38 37 36 0</td>
<td>ASID TG NUM TTL BaseADDR</td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.

- 0b10: All entries to invalidate are Level 2 translation table entries.

- 0b11: All entries to invalidate are Level 3 translation table entries.
BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.
When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1IS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAE1IS(<Xt>*)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGITR_EL2.TLBIRVAE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVAE1IS(X[t]);
 elsif PSTATE.EL == EL2 then
 TLBI_RVAE1IS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVAE1IS(X[t]);
C5.5.33 TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable

The TLBI RVAE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is from a level of lookup above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{5 \times \text{SCALE} + 1}) \times \text{Translation Granule Size}\].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

--- **Note** ---

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 000000000000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000000000000000000000000.
Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVAE1OS are UNDEFINED.

Attributes

TLBI RVAE1OS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE1OS input value bit assignments are:

ASID, bits [63:48]
ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]
Translation granule size.
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.
BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction. When using a 4KB translation granule, this field is BaseADDR[48:12]. When using a 16KB translation granule, this field is BaseADDR[50:14]. When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1OS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAE10S{, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.ELO == EL0 then
 UNDEFINED;
elsif PSTATE.ELO == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVAE1OS(X[t]);
elsif PSTATE.ELO == EL2 then
 TLBI_RVAE10S(X[t]);
elsif PSTATE.ELO == EL3 then
 TLBI_RVAE10S(X[t]);
C5.5.34 TLBI RVAE2, TLB Range Invalidate by VA, EL2

The TLBI RVAE2 characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{5 \times \text{SCALE} + 1} \times \text{Translation Granule Size})]\), using the EL2 or EL2&0 translation regime.
- If \(\text{HCR_EL2.E2H} = 0\), the entry is from any level of the translation table walk.
- If \(\text{HCR_EL2.E2H} = 1\), one of the following applies:
 - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If \(\text{TTL} = 01\) and \(\text{BaseADDR}[29:12]\) is not equal to \(0000000000000000\).
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[20:12]\) is not equal to \(00000000\).
- For the 16K translation granule:
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[24:14]\) is not equal to \(00000000000\).
- For the 64K translation granule:
 - If \(\text{TTL} = 01\) and \(\text{BaseADDR}[41:16]\) is not equal to \(00000000000000000000\).
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[28:16]\) is not equal to \(00000000000\).

Configurations

This instruction is present only when \(\text{FEAT_TLBIRANGE}\) is implemented. Otherwise, direct accesses to TLBI RVAE2 are UNDEFINED.

Attributes

TLBI RVAE2 is a 64-bit System instruction.

Field descriptions

The TLBI RVAE2 input value bit assignments are:

![Bit assignments diagram]

ASID, bits [63:48]

When \(\text{HCR_EL2.E2H} = 1\):

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.
- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00 The entries in the range can be using any level for the translation table entries.
- 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10 All entries to invalidate are Level 2 translation table entries.
- 0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAE2{, <Xt>}

<table>
<thead>
<tr>
<th></th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b001</td>
<td></td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RVAE2(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_RVAE2(X[t]);
C5.5.35 TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable

The TLBI RVAE2IS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times (5 \times \text{SCALE} + 1) \times \text{TranslationGranuleSize})]\), using the EL2 or EL2&0 translation regime.
- If \(HCR_{EL2}.E2H == 0\), the entry is from any level of the translation table walk.
- If \(HCR_{EL2}.E2H == 1\), one of the following applies:
 - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is **UNPREDICTABLE** when:

- For the 4K translation granule:
 - If \(TTL=01\) and \(\text{BaseADDR}[29:12]\) is not equal to \(0000000000000000\).
 - If \(TTL=10\) and \(\text{BaseADDR}[20:12]\) is not equal to \(00000000\).
- For the 16K translation granule:
 - If \(TTL=10\) and \(\text{BaseADDR}[24:14]\) is not equal to \(000000000\).
- For the 64K translation granule:
 - If \(TTL=01\) and \(\text{BaseADDR}[41:16]\) is not equal to \(000000000000000000000000\).
 - If \(TTL=10\) and \(\text{BaseADDR}[28:16]\) is not equal to \(00000000000\).

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE2IS are **UNDEFINED**.

Attributes

TLBI RVAE2IS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE2IS input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>46</th>
<th>45</th>
<th>44</th>
<th>43</th>
<th>39</th>
<th>38</th>
<th>37</th>
<th>36</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>TG</td>
<td>NUM</td>
<td>TTL</td>
<td>BaseADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

SCALE
ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.

0b01 4K translation granule.

0b10 16K translation granule.

0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.

0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.

0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVAE2IS(, <X[t]>)

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RVAE2IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_RVAE2IS(X[t]);

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>
C5.5.36 TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable

The TLBI RVAE2OS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula
 \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{(5 \times \text{SCALE} + 1)} \times \text{Translation Granule Size}) \], using the EL2 or EL2&0 translation regime.
- If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.
- If HCR_EL2.E2H == 1, one of the following applies:
 - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVAE2OS are UNDEFINED.

Attributes

TLBI RVAE2OS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE2OS input value bit assignments are:

```
  63 48 47 46 45 44 43 39 38 37 36 0
  +---+---+---+---+---+---+---+---+---+---+
  | ASID | TG | NUM | TTL | BaseADDR |
  +---+---+---+---+---+---+---+---+---+---+
    | SCALE |
```
ASID, bits [63:48]

When HCR_EL2.E2H == 1:

- ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
- Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
- If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

- Reserved, RES0.

TG, bits [47:46]

- Translation granule size.
 - 0b00: Reserved.
 - 0b01: 4K translation granule.
 - 0b10: 16K translation granule.
 - 0b11: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

- The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

- The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

- TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
 - 0b00: The entries in the range can be using any level for the translation table entries.
 - 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 - When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
 - 0b10: All entries to invalidate are Level 2 translation table entries.
 - 0b11: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

- The starting address for the range of the maintenance instruction.
 - When using a 4KB translation granule, this field is BaseADDR[48:12].
 - When using a 16KB translation granule, this field is BaseADDR[50:14].
 - When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVAE2OS(<Xt>)

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBI_RVAE2OS(X[t]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        UNDEFINED;
    else
        TLBI_RVAE2OS(X[t]);
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>
C5.5.37 TLBI RVAE3, TLB Range Invalidate by VA, EL3

The TLBI RVAE3 characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1)\times 2^{(5\times \text{SCALE} + 1)} \times \text{Translation_Granule_Size})]\).

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is **UNPREDICTABLE** when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3 are **UNDEFINED**.

Attributes

TLBI RVAE3 is a 64-bit System instruction.

Field descriptions

The TLBI RVAE3 input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
<th>Assigned Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0</td>
<td>00</td>
</tr>
</tbody>
</table>
| TG | Translation granule size | 0b00: Reserved.
| | | 0b01: 4K translation granule. |
| | | 0b10: 16K translation granule. |
| | | 0b11: 64K translation granule. |

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- **0b00** The entries in the range can be using any level for the translation table entries.
- **0b01** When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- **0b10** All entries to invalidate are Level 2 translation table entries.
- **0b11** All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.
When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3 instruction
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAE3(<Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
UNDEFINED;
elif PSTATE_EL == EL1 then
UNDEFINED;
elif PSTATE_EL == EL2 then
UNDEFINED;
elif PSTATE_EL == EL3 then
TLBI_RVAE3(X[t]);
The TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable

The TLBI RVAE3IS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula $[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{(5 \times \text{SCALE} + 1) \times \text{TranslationGranuleSize}})$.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3IS are UNDEFINED.

Attributes

TLBI RVAE3IS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE3IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:48]</td>
<td>RESERVED, RES0</td>
</tr>
<tr>
<td>[47:46]</td>
<td>TG</td>
</tr>
<tr>
<td>[39:36]</td>
<td>NUM</td>
</tr>
<tr>
<td>[38:37]</td>
<td>TTL</td>
</tr>
<tr>
<td>[36:0]</td>
<td>BaseADDR</td>
</tr>
</tbody>
</table>

TG, bits [47:46]

Translation granule size.

- 0b00: Reserved.
- 0b01: 4K translation granule.
- 0b10: 16K translation granule.
- 0b11: 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- **0b00**: The entries in the range can be using any level for the translation table entries.
- **0b01**: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- **0b10**: All entries to invalidate are Level 2 translation table entries.
- **0b11**: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.
When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3IS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVAE3IS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  TLBI RVAE3IS(X[t]);
```
C5.5.39 TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable

The TLBI RVAE3OS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula $[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^{(5 \times \text{SCALE} + 1) \times \text{Translation_Granule_Size}}]$.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If $\text{TTL}==01$ and $\text{BaseADDR}[29:12]$ is not equal to 0000000000000000.
 - If $\text{TTL}==10$ and $\text{BaseADDR}[20:12]$ is not equal to 00000000.
- For the 16K translation granule:
 - If $\text{TTL}==10$ and $\text{BaseADDR}[24:14]$ is not equal to 0000000000.
- For the 64K translation granule:
 - If $\text{TTL}==01$ and $\text{BaseADDR}[41:16]$ is not equal to $00000000000000000000000000$.
 - If $\text{TTL}==10$ and $\text{BaseADDR}[28:16]$ is not equal to 000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVAE3OS are UNDEFINED.

Attributes

TLBI RVAE3OS is a 64-bit System instruction.

Field descriptions

The TLBI RVAE3OS input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>46</th>
<th>45</th>
<th>44</th>
<th>43</th>
<th>39</th>
<th>38</th>
<th>37</th>
<th>36</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>TG</td>
<td>NUM</td>
<td>TTL</td>
<td>BaseADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE</td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- $0b00$: Reserved.
- $0b01$: 4K translation granule.
- $0b10$: 16K translation granule.
- $0b11$: 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- **0b00** The entries in the range can be using any level for the translation table entries.
- **0b01** When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- **0b10** All entries to invalidate are Level 2 translation table entries.
- **0b11** All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```
TLBI RVAE3OS{, <Xt>}  
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```text
if PSTATE_EL == EL0 then
UNDEFINED;
elsif PSTATE_EL == EL1 then
UNDEFINED;
elsif PSTATE_EL == EL2 then
UNDEFINED;
elsif PSTATE_EL == EL3 then
    TLBI_RVAE3OS(X[t]);
```

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential
The TLBI RVALE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1)} \times \text{Translation_Granule Size})]\).

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 0000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

For more information about the architectural requirements for this System instruction, see *Invalidation of TLB entries from stage 2 translations on page D5-2673*.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE1 are UNDEFINED.

Attributes

TLBI RVALE1 is a 64-bit System instruction.

Field descriptions

The TLBI RVALE1 input value bit assignments are:
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI RVALE1{<X[t]>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && HCR_EL2.FB == '1' then
 TLBI_RVALE1IS(X[t]);
else
 TLBI_RVALE1(X[t]);
elif PSTATE.EL == EL2 then
 TLBI_RVALE1(X[t]);
elif PSTATE.EL == EL3 then
 TLBI_RVALE1(X[t]);
C5.5.41 TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI RVALE1IS characteristics are:

Purpose

Invalidate cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula [BaseADDR \leq VA $<$ BaseADDR + ((NUM +1)\times2$^{(5\times$SCALE $+$1) + Translation_Granule_Size})].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is **UNPREDICTABLE** when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000000000000000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 00000000000000000000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00.
 - If TTL==10 and BaseADDR[28:16] is not equal to 00.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE1IS are **UNDEFINED**.
Attributes

TLBI RVAE111S is a 64-bit System instruction.

Field descriptions

The TLBI RVAE111S input value bit assignments are:

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

0b00 The entries in the range can be using any level for the translation table entries.
0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVALE1IS}(\text{<Xt>})
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVALE1IS(X[t]);
elsif PSTATE.EL == EL2 then
 TLBI_RVALE1IS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVALE1IS(X[t]);
C5.5.42 TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI RVALE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The entry is within the address range determined by the formula $\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1)} \times \text{Translation_Granule_Size})$.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 0000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVALE1OS are UNDEFINED.
Attributes

TLBI RVALE1OS is a 64-bit System instruction.

Field descriptions

The TLBI RVALE1OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>[63:48]</td>
<td>ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction. Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field. If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.</td>
</tr>
<tr>
<td>TG</td>
<td>[47:46]</td>
<td>Translation granule size. 0b00 reserved. 0b01 4K translation granule. 0b10 16K translation granule. 0b11 64K translation granule. The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.</td>
</tr>
<tr>
<td>NUM</td>
<td>[43:39]</td>
<td>The exponent element of the calculation that is used to produce the upper range.</td>
</tr>
<tr>
<td>TTL</td>
<td>[38:37]</td>
<td>TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint. 0b00 The entries in the range can be using any level for the translation table entries. 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00. 0b10 All entries to invalidate are Level 2 translation table entries. 0b11 All entries to invalidate are Level 3 translation table entries.</td>
</tr>
<tr>
<td>BaseADDR</td>
<td>[36:0]</td>
<td>The starting address for the range of the maintenance instruction. When using a 4KB translation granule, this field is BaseADDR[48:12].</td>
</tr>
</tbody>
</table>
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVALE1OS}, \ <Xt> \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_RVALE1OS(X[t]);
elsif PSTATE.EL == EL2 then
 TLBI_RVALE1OS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_RVALE1OS(X[t]);
C5.5.43 TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2

The TLBI RVALE2 characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula \[\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1)} \times \text{Translation_Granule_Size})\] using the EL2 or EL2&0 translation regime.
- If \(\text{HCR_EL2_E2H} = 0\), the entry is from the final level of the translation table walk.
- If \(\text{HCR_EL2_E2H} = 1\), one of the following applies:
 - The entry is a global entry from the final level of translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If \(\text{TTL}==01\) and BaseADDR[29:12] is not equal to 0000000000000000.
 - If \(\text{TTL}==10\) and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If \(\text{TTL}==10\) and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If \(\text{TTL}==01\) and BaseADDR[41:16] is not equal to 000000000000000000.
 - If \(\text{TTL}==10\) and BaseADDR[28:16] is not equal to 00000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE2 are UNDEFINED.

Attributes

TLBI RVALE2 is a 64-bit System instruction.

Field descriptions

The TLBI RVALE2 input value bit assignments are:

```
+-----+-----+-----+-----+-----+-----+-----+-----+
| 63  | 48  | 47  | 46  | 45  | 44  | 43  | 39  |
| ASID| TG  | NUM | TTL | BaseADDR |
|     |     |     |     |          |
+-----+-----+-----+-----+-----+-----+-----+-----+
| 38  | 37  | 36  | 0   |
```

ASID, bits [63:48]

When \(\text{HCR_EL2_E2H} = 1\):

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- **0b00**: Reserved.
- **0b01**: 4K translation granule.
- **0b10**: 16K translation granule.
- **0b11**: 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- **0b00**: The entries in the range can be using any level for the translation table entries.
- **0b01**: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

 When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- **0b10**: All entries to invalidate are Level 2 translation table entries.
- **0b11**: All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

- When using a 4KB translation granule, this field is BaseADDR[48:12].
- When using a 16KB translation granule, this field is BaseADDR[50:14].
- When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI RVALE2{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b10</td>
<td>0b100</td>
<td>0b010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RVALE2(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_RVALE2(X[t]);
C5.5.44 TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI RVALE2IS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} + 1) \times 2^\text{Translation_Granule_Size})]\) using the EL2 or EL2&0 translation regime.
- If \(\text{HCR_EL2_E2H} = 0\), the entry is from the final level of the translation table walk.
- If \(\text{HCR_EL2_E2H} = 1\), one of the following applies:
 - The entry is a global entry from the final level of translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If \(\text{TTL} = 01\) and \(\text{BaseADDR}[29:12]\) is not equal to 000000000000000000.
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[20:12]\) is not equal to 00000000.
- For the 16K translation granule:
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[24:14]\) is not equal to 0000000000.
- For the 64K translation granule:
 - If \(\text{TTL} = 01\) and \(\text{BaseADDR}[41:16]\) is not equal to 00000000000000000000000000.
 - If \(\text{TTL} = 10\) and \(\text{BaseADDR}[28:16]\) is not equal to 0000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE2IS are UNDEFINED.

Attributes

TLBI RVALE2IS is a 64-bit System instruction.

Field descriptions

The TLBI RVALE2IS input value bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| ASID | TG | NUM | TTL | BaseADDR |
```

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:
Reserved, RES0.

TG, bits [47:46]
Translation granule size.

- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 0b00 The entries in the range can be using any level for the translation table entries.
- 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10 All entries to invalidate are Level 2 translation table entries.
- 0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2IS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVALE2IS}(\text{<Xt>})
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RVAE2IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_RVAE2IS(X[t]);
 endif
C5.5.45 TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI RVALE2OS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA in the specified range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM }+1) \times 2^{(5 \times \text{SCALE }+1)} \times \text{Translation_Granule_Size})]\) using the EL2 or EL2&0 translation regime.
- If \(\text{HCR_EL2_E2H} == 0\), the entry is from the final level of the translation table walk.
- If \(\text{HCR_EL2_E2H} == 1\), one of the following applies:
 - The entry is a global entry from the final level of translation table walk.
 - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If \(\text{TTL}==01\) and \(\text{BaseADDR\[29:12\]}\) is not equal to 000000000000000000.
 - If \(\text{TTL}==10\) and \(\text{BaseADDR\[20:12\]}\) is not equal to 000000000.
- For the 16K translation granule:
 - If \(\text{TTL}==10\) and \(\text{BaseADDR\[24:14\]}\) is not equal to 0000000000.
- For the 64K translation granule:
 - If \(\text{TTL}==01\) and \(\text{BaseADDR\[41:16\]}\) is not equal to 000000000000000000000000.
 - If \(\text{TTL}==10\) and \(\text{BaseADDR\[28:16\]}\) is not equal to 0000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVALE2OS are UNDEFINED.

Attributes

TLBI RVALE2OS is a 64-bit System instruction.

Field descriptions

The TLBI RVALE2OS input value bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 39 38 37 36 0
ASID  TG  NUM  TTL  BaseADDR
```

ASID, bits [63:48]

When \(\text{HCR_EL2_E2H} == 1\):

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]
Translation granule size.
- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]
The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]
The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]
TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.
- 0b00 The entries in the range can be using any level for the translation table entries.
- 0b01 When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
- When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10 All entries to invalidate are Level 2 translation table entries.
- 0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]
The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2OS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI RVALE2OS}\{, <X>\}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_RVALE2OS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI_RVALE2OS(X[t]);
C5.5.46 TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3

The TLBI RVALE3 characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula \([\text{BaseADDR} \leq \text{VA} < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5\times\text{SCALE} +1}) \times \text{Translation_Granule_Size})]\).

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 0000000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 00000000000000000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE3 are UNDEFINED.

Attributes

TLBI RVALE3 is a 64-bit System instruction.

Field descriptions

The TLBI RVALE3 input value bit assignments are:

![Field description diagram]

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

- 0b00 Reserved.
- 0b01 4K translation granule.
- 0b10 16K translation granule.
- 0b11 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- **0b00** The entries in the range can be using any level for the translation table entries.
- **0b01** When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.

 When using a 16KB translation granule, this value is reserved and hardware should treat this field as **0b00**.
- **0b10** All entries to invalidate are Level 2 translation table entries.
- **0b11** All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
TLBI\ RVALE3\{, <Xt>\}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  TLBI_RVALE3(X[t]);
```
C5.5.47 TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI RVALE3IS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula [BaseADDR ≤ VA < BaseADDR + ((NUM +1) × 2^(5*SCALE +1) × Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
 - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
 - If TTL==10 and BaseADDR[20:12] is not equal to 00000000.
- For the 16K translation granule:
 - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
 - If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.
 - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE3IS are UNDEFINED.

Attributes

TLBI RVALE3IS is a 64-bit System instruction.

Field descriptions

The TLBI RVALE3IS input value bit assignments are:

```
  Bits [63:48]  Reserved, RES0.

    0b00  Reserved.
    0b01  4K translation granule.
    0b10  16K translation granule.
    0b11  64K translation granule.
```

```
  SCALE

  NUM

  TTL

  BaseADDR

  TG

  RES0
```

```
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

**SCALE, bits [45:44]**

The exponent element of the calculation that is used to produce the upper range.

**NUM, bits [43:39]**

The base element of the calculation that is used to produce the upper range.

**TTL, bits [38:37]**

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
  When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10: All entries to invalidate are Level 2 translation table entries.
- 0b11: All entries to invalidate are Level 3 translation table entries.

**BaseADDR, bits [36:0]**

The starting address for the range of the maintenance instruction.

- When using a 4KB translation granule, this field is BaseADDR[48:12].
- When using a 16KB translation granule, this field is BaseADDR[50:14].
- When using a 64KB translation granule, this field is BaseADDR[52:16].

**Executing the TLBI RVALE3IS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ TLBI\ RVALE3IS(\text{<Xt>}) \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
UNDEFINED;
elsif PSTATE.EL == EL2 then
UNDEFINED;
elsif PSTATE.EL == EL3 then
TLBI_RVALE3IS(X[t]);
```
C5.5.48    TLBI RVALE3OS: TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI RVALE3OS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.
- The entry is within the address range determined by the formula \[\text{BaseADDR} \leq V A < \text{BaseADDR} + ((\text{NUM} +1) \times 2^{(5 \times \text{SCALE} +1)} \times \text{Translation Granule Size})\].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

- For the 4K translation granule:
  - If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.
  - If TTL==10 and BaseADDR[20:12] is not equal to 0000000000.
- For the 16K translation granule:
  - If TTL==10 and BaseADDR[24:14] is not equal to 0000000000.
- For the 64K translation granule:
  - If TTL==01 and BaseADDR[41:16] is not equal to 000000000000000000.
  - If TTL==10 and BaseADDR[28:16] is not equal to 000000000000.

Configurations

This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI RVALE3OS are UNDEFINED.

Attributes

TLBI RVALE3OS is a 64-bit System instruction.

Field descriptions

The TLBI RVALE3OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
</tr>
<tr>
<td>48</td>
<td>TG</td>
</tr>
<tr>
<td>39</td>
<td>NUM</td>
</tr>
<tr>
<td>38</td>
<td>TTL</td>
</tr>
<tr>
<td>0</td>
<td>BaseADDR</td>
</tr>
</tbody>
</table>

RES0
Reserved, RES0.

TG, bits [47:46]
Translation granule size.
- \(000\) Reserved.
- \(001\) 4K translation granule.
- \(010\) 16K translation granule.
- \(011\) 64K translation granule.
The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

**SCALE, bits [45:44]**

The exponent element of the calculation that is used to produce the upper range.

**NUM, bits [43:39]**

The base element of the calculation that is used to produce the upper range.

**TTL, bits [38:37]**

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the TTL hint.

- 0b00: The entries in the range can be using any level for the translation table entries.
- 0b01: When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries. When using a 16KB translation granule, this value is reserved and hardware should treat this field as 0b00.
- 0b10: All entries to invalidate are Level 2 translation table entries.
- 0b11: All entries to invalidate are Level 3 translation table entries.

**BaseADDR, bits [36:0]**

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].
When using a 16KB translation granule, this field is BaseADDR[50:14].
When using a 64KB translation granule, this field is BaseADDR[52:16].

**Executing the TLBI RVALE3OS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI RVALE3OS{, <Xt>}**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TLBI_RVALE3OS(X[t]);
```
C5.5.49 TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1

The TLBI VAAE1 characteristics are:

**Purpose**
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

**Note**
For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**
There are no configuration notes.

**Attributes**
TLBI VAAE1 is a 64-bit System instruction.

**Field descriptions**
The TLBI VAAE1 input value bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>48</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RES0</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TTL</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>VA[55:12]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:48]**
Reserved, RES0.

**TTL, bits [47:44]**

*When FEAT_TTL is implemented:*
Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- 0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- 0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
  - 0b10: Level 2.
  - 0b11: Level 3.
The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
0b00: Reserved. Treat as if TTL<3:2> is 0b00.
0b01: Reserved. Treat as if TTL<3:2> is 0b00.
0b10: Level 2.
0b11: Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
0b00: Reserved. Treat as if TTL<3:2> is 0b00.
0b01: Level 1.
0b10: Level 2.
0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be
affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
when the instruction is executed, because VA[13:12] have no effect on the operation of the
instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
when the instruction is executed, because VA[15:12] have no effect on the operation of the
instruction.

Executing the TLBI VAAE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI VAAE1{, <X>}**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b100</td>
<td>0b111</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() & HCR_EL2.TTLB == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HCR_EL2.TTLB == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & HCR_EL2.FB == '1' then
TLBI_VAAE1IS(X[t]);
else
TLBI_VAAE1(X[t]);
elsif PSTATE.EL == EL2 then
TLBI_VAAE1(X[t]);
elsif PSTATE.EL == EL3 then
  TLB1_VAAE1(X[t]);
C5.5.50 TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI VAAE1IS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.
- The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Note**

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAAE1IS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAAE1IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td><strong>RES0</strong></td>
</tr>
<tr>
<td>47-44</td>
<td><strong>TTL</strong></td>
</tr>
<tr>
<td>43-0</td>
<td><strong>VA[55:12]</strong></td>
</tr>
</tbody>
</table>

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx  The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Level 1.
  0b10 : Level 2.
  0b11 : Level 3.

0b10xx  The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Level 1.
  0b10 : Level 2.
  0b11 : Level 3.

0b11xx  The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Level 1.
  0b10 : Level 2.
  0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

TLBI VAAE1IS(\texttt{<X>})

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() \&\& HCR_EL2.TTLB == '1'
   AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() \&\& HCR_EL2.TTLBIS == '1'
   AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() \&\& (!HaveEL(EL3) \| SCR_EL3.FGTEn == '1') \&\& HFGITR_EL2.TLBIVAAE1IS == '1'
   AArch64.SystemAccessTrap(EL2, 0x18);
  else
    TLBI_VAAE1IS(X[t]);
  endif
elsif PSTATE.EL == EL2 then
  TLBI_VAAE1IS(X[t]);
elsif PSTATE.EL == EL3 then
  TLBI_VAAE1IS(X[t]);
C5.5.51 TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI VAAE1OS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

_____ Note _____

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAAE1OS are UNDEFINED.

**Attributes**

TLBI VAAE1OS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAAE1OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:48]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>47-44</td>
<td>TTL</td>
</tr>
<tr>
<td>43-0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

---

The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx  The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Level 1.
          0b10 : Level 2.
          0b11 : Level 3.

0b10xx  The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b10 : Level 2.
          0b11 : Level 3.

0b11xx  The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Level 1.
          0b10 : Level 2.
          0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

V A[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI VAAE1OS({<Xt>})

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TTLB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.TTLB0S == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTen == '1') && HFCITR_EL2.TLBVAAE1OS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    TLBI_VAAE1OS(X[t]);
elsif PSTATE.EL == EL2 then
  TLBI_VAAE1OS(X[t]);
elsif PSTATE.EL == EL3 then
  TLBI_VAAE1OS(X[t]);
C5.5.52 TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1

The TLBI VAALE1 characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

**Note**

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAALE1 is a 64-bit System instruction.

**Field descriptions**

The TLBI VAALE1 input value bit assignments are:

![Bits Diagram]

**Reserved, RES0.**

**TTL, bits [47:44]**

*When FEAT_TTL is implemented:*

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b0 : Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b1 : Level 1.
  - 0b10 : Level 2.
  - 0b11 : Level 3.
The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:

- 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
- 0b01: Level 2.
- 0b10: Level 3.

The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:

- 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
- 0b01: Level 1.
- 0b10: Level 2.
- 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

**Otherwise:**

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI VAALE1{, <Xt>]**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TTLB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCR_EL2.TTLB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.FB == '1' then
    TLBI_VAALE1IS(X[t]);
else
  TLBI_VAALE1(X[t]);
elsif PSTATE.EL == EL2 then
  TLBI_VAALE1(X[t]);
elsif PSTATE.EL == EL3 then
    TLBI_VALEI(X[t]);
C5.5.53 TLBI VAALE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

The TLBI VAALE1IS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Note**

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAALE1IS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAALE1IS input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>47-44</td>
<td>TTL</td>
</tr>
<tr>
<td>43-0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>
```

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx  The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx  The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx  The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:

0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
### TLBI VAALE1IS( <Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1IS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TLBI_VAALE1IS(X[t]);
    endif
elsif PSTATE.EL == EL2 then
    TLBI_VAALE1IS(X[t]);
elsif PSTATE.EL == EL3 then
    TLBI_VAALE1IS(X[t]);
else
    TLBI_VAALE1IS(X[t]);
C5.5.54 TLBI VAALE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

The TLBI VAALE1OS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

**Note**

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

**Configurations**

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAALE1OS are UNDEFINED.

**Attributes**

TLBI VAALE1OS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAALE1OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>47-44</td>
<td>TTL</td>
</tr>
<tr>
<td>43-0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  
No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx  
The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx  
The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx  
The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI VAAL1E10S(, <X[t]>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1OS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TLBI_VAALE1OS(X[t]);
    elsif PSTATE.EL == EL2 then
        TLBI_VAALE1OS(X[t]);
    elsif PSTATE.EL == EL3 then
        TLBI_VAALE1OS(X[t]);
    else
        TLBI_VAALE1OS(X[t]);

C5.5.55 TLBI VAE1, TLB Invalidate by VA, EL1

The TLBI VAE1 characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE1 is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE1 input value bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>TTL</td>
<td></td>
<td></td>
<td></td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>
```

**ASID, bits [63:48]**

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx**: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx**: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
  - 0b10: Level 2.
  - 0b11: Level 3.
- **0b10xx**: The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b10: Level 2.
  - 0b11: Level 3.
- **0b11xx**: The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
  - 0b10: Level 2.
  - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1 instruction

Accesses to this register use the following encodings in the System instruction encoding space:
TLBI VAE1(<X[t]>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FB == '1' then
        TLBI_VAE1IS(X[t]);
    else
        TLBI_VAE1(X[t]);
    elsif PSTATE.EL == EL2 then
        TLBI_VAE1(X[t]);
    elsif PSTATE.EL == EL3 then
        TLBI_VAE1(X[t]);
else
    TLBI_VAE1(X[t]);
C5.5.56 TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable

The TLBI VAE1IS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

--- Note ---

Note: From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE1IS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE1IS input value bit assignments are:
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are res0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are res0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI VAE1IS}(, \langle Xt \rangle)
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsi[ PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsi[ EL2Enabled() && HCR_EL2.TTLBIS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsi[ EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1IS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TLBI_VAE1IS(X[t]);
elsi[ PSTATE_EL == EL2 then
        TLBI_VAE1IS(X[t]);
elsi[ PSTATE_EL == EL3 then
        TLBI_VAE1IS(X[t]);
The TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable

The TLBI VAE1OS characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

**Note**

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

**Configurations**

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE1OS are UNDEFINED.

**Attributes**

TLBI VAE1OS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE1OS input value bit assignments are:
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is res0.

0b01xx  The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
            0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
            0b01 : Level 1.
            0b10 : Level 2.
            0b11 : Level 3.

0b10xx  The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
            0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
            0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
            0b10 : Level 2.
            0b11 : Level 3.

0b11xx  The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
            0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
            0b01 : Level 1.
            0b10 : Level 2.
            0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, res0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as res0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are \texttt{RES0} and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are \texttt{RES0} and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

### Executing the TLBI VAE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI VAE1OS}(, <Xt>)
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
defining
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_VAE1OS(X[t]);
 endif
elsif PSTATE.EL == EL2 then
 TLBI_VAE1OS(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_VAE1OS(X[t]);
```
The TLBI VAE2 characteristics are:

**Purpose**

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.
- If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.
- If HCR_EL2.E2H == 1 one of the following applies:
  - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of the translation table walk.
  - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE2 is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE2 input value bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA[55:12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ASID, bits [63:48]**

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

**TTL, bits [47:44]**

*When FEAT_TTL is implemented:*

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- 0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- 0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b0: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
The entry comes from a 16KB translation granule. The level of walk for the leaf level is encoded as:

- 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
- 0b01: Level 2.
- 0b10: Level 3.
- 0b11: Level 3.

The entry comes from a 64KB translation granule. The level of walk for the leaf level is encoded as:

- 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
- 0b01: Level 1.
- 0b10: Level 2.
- 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

**Otherwise:**

Reserved, RES0.

**VA[55:12], bits [43:0]**

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

**Executing the TLBI VAE2 instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI VAE2{, <Xt>}**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
   UNDEFINED;
elsif PSTATE_EL == EL1 then
   if EL2Enabled() and HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      UNDEFINED;
   endif
elsif PSTATE_EL == EL2 then
   TLBI_VAE2(X[t]);
elseif PSTATE_EL == EL3 then
   if !EL2Enabled() then
      UNDEFINED;
   endif
endif
UNDEFINED;
else
    TLBI_VAE2(X[t]);
C5.5.59 TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable

The TLBI VAE2IS characteristics are:

**Purpose**

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.
- If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.
- If HCR_EL2.E2H == 1 one of the following applies:
  - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of the translation table walk.
  - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE2IS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE2IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>ASID</td>
<td>ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction. Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field. If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.</td>
</tr>
<tr>
<td>4</td>
<td>TTL</td>
<td>Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated. No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL&lt;1:0&gt; is RES0. The entry comes from a 4KB translation granule. The level of walk for the leaf level 0xxx is encoded as: 000: Reserved. Treat as if TTL&lt;3:2&gt; is 0b00. 0b01: Level 1.</td>
</tr>
<tr>
<td>32</td>
<td>VA[55:12]</td>
<td>VA value to be invalidated.</td>
</tr>
</tbody>
</table>
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0xxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0xxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.
If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.
The treatment of the low-order bits of this field depends on the translation granule size, as follows:
• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
  when the instruction is executed, because VA[13:12] have no effect on the operation of the
  instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
  when the instruction is executed, because VA[15:12] have no effect on the operation of the
  instruction.

Executing the TLBI VAE2IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VAE2IS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  TLBI_VAE2IS(X[t]);
elif PSTATE.EL == EL3 then
  if !EL2Enabled() then
UNDEFINED;
else
    TLBI_VAE2IS(X[t]);
The TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable

The TLBI VAE2OS characteristics are:

**Purpose**

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime.
- If `HCR_EL2.E2H` == 0, the entry is from any level of the translation table walk.
- If `HCR_EL2.E2H` == 1 one of the following applies:
  - The entry is from a level of the translation table walk above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of the translation table walk.
  - The entry is a non-global entry from the final level of the translation table walk and matches the specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE2OS are **UNDEFINED**.

**Attributes**

TLBI VAE2OS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE2OS input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>TTL</td>
<td>VA[55:12]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ASID, bits [63:48]**

*When HCR_EL2.E2H == 1:*

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

*Otherwise:*

Reserved, RES0.
TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx  No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx  The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Level 1.
          0b10 : Level 2.
          0b11 : Level 3.

0b10xx  The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b10 : Level 2.
          0b11 : Level 3.

0b11xx  The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
          0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
          0b01 : Level 1.
          0b10 : Level 2.
          0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
**TLBI VAE2OS(, <X[t]>)**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBI_VAE2OS(X[t]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        UNDEFINED;
    else
        TLBI_VAE2OS(X[t]);
C5.5.61   TLBI VAE3, TLB Invalidate by VA, EL3

The TLBI VAE3 characteristics are:

**Purpose**

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE3 is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE3 input value bit assignments are:

```
<table>
<thead>
<tr>
<th>Bits [63:48]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 48</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>47 44</td>
<td>TTL</td>
</tr>
<tr>
<td>43 0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>
```

**TTL, bits [47:44]**

*When FEAT_TTL is implemented:*

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level is encoded as:
  - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
  - **0b01**: Level 1.
  - **0b10**: Level 2.
  - **0b11**: Level 3.
- **0b10xx** The entry comes from a 16KB translation granule. The level of walk for the leaf level is encoded as:
  - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
  - **0b01**: Reserved. Treat as if TTL<3:2> is 0b00.
  - **0b10**: Level 2.
  - **0b11**: Level 3.
- **0b11xx** The entry comes from a 64KB translation granule. The level of walk for the leaf level is encoded as:
  - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
  - **0b01**: Level 1.
  - **0b10**: Level 2.
  - **0b11**: Level 3.
If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VAE3{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b11</td>
<td>0b100</td>
<td>0b01</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```lisp
define-state (PSTATE.EL) when
 if (PSTATE.EL == EL0) then
 UNDEFINED;
 elsif (PSTATE.EL == EL1) then
 UNDEFINED;
 elsif (PSTATE.EL == EL2) then
 UNDEFINED;
 elsif (PSTATE.EL == EL3) then
 TLBI_VAE3(X[t]);
```
C5.5.62 TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable

The TLBI VAE3IS characteristics are:

**Purpose**

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VAE3IS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE3IS input value bit assignments are:

```
Bits [63:48]
 RES0

TTL, bits [47:44]
 Reserved, RES0.

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b10 : Level 2.
 0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
```
0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI VAE3IS}, \text{<Xt>}
\]

<table>
<thead>
<tr>
<th></th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b001</td>
<td></td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    TLBI_VAE3IS(X[t]);
C5.5.63 TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable

The TLBI VAE3OS characteristics are:

**Purpose**

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE3OS are UNDEFINED.

**Attributes**

TLBI VAE3OS is a 64-bit System instruction.

**Field descriptions**

The TLBI VAE3OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:48]</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>[47:44]</td>
<td>TTL, bits [47:44]</td>
</tr>
<tr>
<td>[43:0]</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

**Bits [63:48]**

Reserved, RES0.

**TTL, bits [47:44]**

*When FEAT_TTL is implemented:*

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
  - 0b10: Level 2.
  - 0b11: Level 3.
- **0b10xx** The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b10: Level 2.
  - 0b11: Level 3.
- **0b11xx** The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
  - 0b01: Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

**Otherwise:**
Reserved, RES0.

**VA[55:12], bits [43:0]**

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

**Executing the TLBI VAE3OS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI VAE3OS{, <Xt>}**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  TLBI_VAE3OS(X[t]);
The TLBI VALE1 characteristics are:

**Purpose**

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
  - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
  - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

**Configurations**

There are no configuration notes.

**Attributes**

TLBI VALE1 is a 64-bit System instruction.

**Field descriptions**

The TLBI VALE1 input value bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
<td>TTL</td>
<td></td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

*When FEAT_TTL is implemented:*

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Level 1.
  0b10 : Level 2.
  0b11 : Level 3.

The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b10 : Level 2.
  0b11 : Level 3.

The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
  0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
  0b01 : Level 1.
  0b10 : Level 2.
  0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

**Otherwise:**

Reserved, RES0.

**VA[55:12], bits [43:0]**

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

**Executing the TLBI VALE1 instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

```
TLBI VALE1{, <Xt>}
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TTLB == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1 == '1' then
```
AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && HCR_EL2.FB == '1' then
 TLBI_VALEIS(X[t]);
else
 TLBI_VALE1(X[t]);
elsif PSTATE.EL == EL2 then
 TLBI_VALE1(X[t]);
elsif PSTATE.EL == EL3 then
 TLBI_VALE1(X[t]);
C5.5.65 TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI VALE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

Configurations

There are no configuration notes.

Attributes

TLBI VALE1IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE1IS input value bit assignments are:

```
+--------+--------+--------+--------+
| 63     | 48 47  | 44 43  | 0       |
+--------+--------+--------+--------+
| ASID   | TTL    | VA[55:12]|        |
+--------+--------+--------+--------+
```
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- `0b00xx`: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- `0b01xx`: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
- `0b10xx`: The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10: Level 2.
 - 0b11: Level 3.
- `0b11xx`: The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.
Executing the TLBI VALE1IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE1IS(, <X[t]>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 TLBI_VALEISIS(X[t]);
 elsi if PSTATE.EL == EL2 then
 TLBI_VALEISIS(X[t]);
 elsi if PSTATE.EL == EL3 then
 TLBI_VALEISIS(X[t]);
C5.5.66 TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI VALE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA, and one of the following applies:
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \(\{1, 1\} \), the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \(\{1, 1\} \), the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE1OS are **UNDEFINED**.

Attributes

TLBI VALE1OS is a 64-bit System instruction.

Field descriptions

The TLBI VALE1OS input value bit assignments are:

```
63 48 47 44 43 0
| ASID | TTL | VA[55:12] |
```
ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- 0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- 0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
- 0b10xx: The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10: Level 2.
 - 0b11: Level 3.
- 0b11xx: The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.
Executing the TLBI VALE1OS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE1OS(, <Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_VALE1OS(X[t]);
 elsif PSTATE.EL == EL2 then
 TLBI_VALE1OS(X[t]);
 elsif PSTATE.EL == EL3 then
 TLBI_VALE1OS(X[t]);
C5.5.67 TLBI VALE2, TLB Invalidate by VA, Last level, EL2

The TLBI VALE2 characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.
- If \(\text{HCR}_{-} \text{EL2.E2H} = 0 \), the entry is from the final level of the translation table walk.
- If \(\text{HCR}_{-} \text{EL2.E2H} = 1 \), one of the following applies:
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of translation table walk that matches the specified ASID.

The invalidation applies to the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2 is a 64-bit System instruction.

Field descriptions

The TLBI VALE2 input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID [63:48]</td>
<td>ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction. Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field. If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.</td>
</tr>
<tr>
<td>TTL [47:44]</td>
<td>Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.</td>
</tr>
<tr>
<td>VA[55:12]</td>
<td>No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0. The entry comes from a 4KB translation granule. The level of walk for the leaf level is encoded as: 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.</td>
</tr>
</tbody>
</table>

When \(\text{HCR}_{-} \text{EL2.E2H} = 1 \):

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

When \(\text{FEAT}_-\text{TTL} \) is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.

0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level is encoded as:

0b00: Reserved. Treat as if TTL<3:2> is 0b00.
The A64 System Instruction Class
C5.5 A64 System instructions for TLB maintenance

0b01: Level 1.
0b10: Level 2.
0b11: Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 0b01: Reserved. Treat as if TTL<3:2> is 0b00.
 0b10: Level 2.
 0b11: Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 0b01: Level 1.
 0b10: Level 2.
 0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
 when the instruction is executed, because VA[13:12] have no effect on the operation of the
 instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
 when the instruction is executed, because VA[15:12] have no effect on the operation of the
 instruction.

Executing the TLBI VALE2 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE2{, <Xt>}
if !EL2Enabled() then
 UNDEFINED;
else
 TLBI_VALE2(X[t]);
C5.5.68 TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI VALE2IS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.
- If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.
- If HCR_EL2.E2H == 1, one of the following applies:
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of translation table walk that matches the specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI VALE2IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE2IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Locations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>ASID</td>
</tr>
<tr>
<td>47-44</td>
<td>TTL</td>
</tr>
<tr>
<td>43-0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- 0b00xx: No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- 0b01xx: The entry comes from a 4KB translation granule. The level of walk for the leaf level 0b00 is encoded as:
 - 0b00: Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01: Level 1.
 - 0b10: Level 2.
 - 0b11: Level 3.
0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b10 : Level 2.
 0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
 Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:
 • Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
 • Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
 • Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE2IS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_VALE2IS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
else
 TLBI_VALE2IS(X[t]);
C5.5.69 TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI VALE2OS characteristics are:

Purpose

When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime.
- If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.
- If HCR_EL2.E2H == 1, one of the following applies:
 - The entry is a global entry from the final level of the translation table walk.
 - The entry is a non-global entry from the final level of translation table walk that matches the specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE2OS are UNDEFINED.

Attributes

TLBI VALE2OS is a 64-bit System instruction.

Field descriptions

The TLBI VALE2OS input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>44</th>
<th>43</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>TTL</td>
<td>VA[55:12]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

0b00xx No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
0b01xx The entry comes from a 4KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b10 : Level 2.
 0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of walk for the leaf level
0bxx is encoded as:
 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 0b01 : Level 1.
 0b10 : Level 2.
 0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction,
then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]
Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value
(if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and
so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:
• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored
 when the instruction is executed, because VA[13:12] have no effect on the operation of the
 instruction.
• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored
 when the instruction is executed, because VA[15:12] have no effect on the operation of the
 instruction.

Executing the TLBI VALE2OS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

\textbf{TLBI VALE2OS}(\texttt{<Xt>})

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

\begin{verbatim}
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
\end{verbatim}
UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI VALE2OS(X[t]);
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 UNDEFINED;
 else
 TLBI VALE2OS(X[t]);
C5.5.70 TLBI VALE3, TLB Invalidate by VA, Last level, EL3

The TLBI VALE3 characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3 is a 64-bit System instruction.

Field descriptions

The TLBI VALE3 input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>47-44</td>
<td>TTL, bits</td>
</tr>
<tr>
<td>43-0</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

- **RES0**

- **TTL**
 - No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
 - The entry comes from a 4KB translation granule. The level of walk for the leaf level is encoded as:
 - 00: Reserved.
 - 0b01 : Level 1.
 - 0b10 : Level 2.
 - 0b11 : Level 3.
 - The entry comes from a 16KB translation granule. The level of walk for the leaf level is encoded as:
 - 0b00 : Reserved.
 - 0b01 : Level 2.
 - 0b11 : Level 3.
 - The entry comes from a 64KB translation granule. The level of walk for the leaf level is encoded as:
 - 0b00 : Reserved.
 - 0b01 : Level 1.
 - 0b10 : Level 2.
 - 0b11 : Level 3.

RES0 63 48 47 44 43 0

TTL VA[55:12]
If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3 instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE3{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  TLBI_VALE3(X[t]);
```
C5.5.71 TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI VALE3IS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

There are no configuration notes.

Attributes

TLBI VALE3IS is a 64-bit System instruction.

Field descriptions

The TLBI VALE3IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:48]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[47:44]</td>
<td>TTL, bits</td>
</tr>
<tr>
<td>[43:0]</td>
<td>VA[55:12]</td>
</tr>
</tbody>
</table>

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00xx** No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0.
- **0b01xx** The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01 : Level 1.
 - 0b10 : Level 2.
 - 0b11 : Level 3.
- **0b10xx** The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01 : Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b10 : Level 2.
 - 0b11 : Level 3.
- **0b11xx** The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as:
 - 0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
 - 0b01 : Level 1.
 - 0b10 : Level 2.
0b11: Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3IS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE3IS\(^{<X>t}>\)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b110</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then UNDEFINED;
elsif PSTATE.EL == EL1 then UNDEFINED;
elsif PSTATE.EL == EL2 then UNDEFINED;
elsif PSTATE.EL == EL3 then
TLBI_VALE3IS(X[t]);
C5.5.72 TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI VALE3OS characteristics are:

Purpose

If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE3OS are **UNDEFINED**.

Attributes

TLBI VALE3OS is a 64-bit System instruction.

Field descriptions

The TLBI VALE3OS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:48]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being invalidated.

- **0b00** The entry comes from a 4KB translation granule. The level of walk for the leaf level
 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Level 1.
 - **0b10**: Level 2.
 - **0b11**: Level 3.

- **0b10** The entry comes from a 16KB translation granule. The level of walk for the leaf level
 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b10**: Level 2.
 - **0b11**: Level 3.

- **0b11** The entry comes from a 64KB translation granule. The level of walk for the leaf level
 0bxx is encoded as:
 - **0b00**: Reserved. Treat as if TTL<3:2> is 0b00.
 - **0b01**: Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.

Otherwise:
Reserved, RES0.

VA[55:12], bits [43:0]
Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only 32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

- Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
- Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
- Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3OS instruction
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VALE3OS{, <Xt>}
C5.5.73 TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1

The TLBI VMALLE1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:
- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to the PE that executes this System instruction.

--- Note ---

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1 is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by \(<Xt>\) is ignored.

Executing the TLBI VMALLE1 instruction

When executing this instruction \(Xt\) should be encoded as \(0b11111\). If the \(Xt\) field is not set to \(0b11111\), it is CONSTRAINED UNPREDICTABLE whether:
- The instruction is UNDEFINED.
- The instruction behaves as if the \(Xt\) field is set to \(0b11111\).

Accesses to this register use the following encodings in the System instruction encoding space:

\[TLBI VMALLE1{, <Xt>} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TTLB == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALEE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.FB == '1' then
 TLBI_VMALLE1IS();
else
 TLBI_VMALLE1();
elsif PSTATE_EL == EL2 then
 TLBI_VMALLE1();
elsif PSTATE_EL == EL3 then
 TLBI_VMALLE1();
The TLBI VMALLE1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not \{1, 1\}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is \{1, 1\}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLE1IS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by \langle Xt\rangle is ignored.

Executing the TLBI VMALLE1IS instruction

When executing this instruction Xt should be encoded as \(0b11111\). If the Xt field is not set to \(0b11111\), it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to \(0b11111\).
Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VMALLE1IS(, <Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBI_VMALLE1IS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_VMALLE1IS();
 elsif PSTATE.EL == EL2 then
 TLBI_VMALLE1IS();
 elsif PSTATE.EL == EL3 then
 TLBI_VMALLE1IS();
 else
 TLBI_VMALLE1IS();
 endif
elsif PSTATE.EL == EL2 then
 TLBI_VMALLE1IS();
else
 TLBI_VMALLE1IS();
endif
C5.5.75 TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

The TLBI VMALLE1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:
 - If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would be required to translate the specified VA using the EL1&0 translation regime.
 - If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using the EL2&0 translation regime.
- When EL2 is not implemented or is disabled in the current Security state, the entry would be required to translate the specified VA using the EL1&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VMALLE1OS are UNDEFINED.

Attributes

TLBI VMALLE1OS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLE1OS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{TLBI VMALLE1OS(, <Xt>)}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
else
 if PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TTLB == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.TTLBOS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1OS == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TLBI_VMALLE1OS();
 elseif PSTATE_EL == EL2 then
 TLBI_VMALLE1OS();
 elseif PSTATE_EL == EL3 then
 TLBI_VMALLE1OS();
C5.5.76 TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

The TLBI VMALLS12E1 characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0, then
 - The entry would be required to translate an address using the Secure EL1&0 translation regime.
 - If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.
- If SCR_EL3.NS is 1, then:
 - The entry would be required to translate an address using the Non-secure EL1&0 translation regime.
 - If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLS12E1 is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLS12E1 instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

TLBI VMALLS12E1 (<Xt>)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_VMALLS12E1();
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 TLBI_VMALLE1();
 else
 TLBI_VMALLS12E1();
 endif
else
 UNDEFINED;
endif
TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

The TLBI VMALLS12E1IS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0, then
 - The entry would be required to translate an address using the Secure EL1&0 translation regime.
 - If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.
- If SCR_EL3.NS is 1, then:
 - The entry would be required to translate an address using the Non-secure EL1&0 translation regime.
 - If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMIID argument, or would be defined to pass a VMIID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

There are no configuration notes.

Attributes

TLBI VMALLS12E1IS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLS12E1IS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
The instruction behaves as if the Xt field is set to \texttt{0b11111}.

Accesses to this register use the following encodings in the System instruction encoding space:

\textit{TLBI VMALLS12E1I\texttt{S}, \texttt{<Xt>}}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.\texttt{EL} == \texttt{EL0} then
 UNDEFINED;
elsif PSTATE.\texttt{EL} == \texttt{EL1} then
 if EL2Enabled() && HCR.\texttt{EL2.NV} == \texttt{'1'} then
 AArch64.SystemAccessTrap(\texttt{EL2, 0x18});
 else
 UNDEFINED;
elsif PSTATE.\texttt{EL} == \texttt{EL2} then
 TLBI.\texttt{VMALLS12E1I\texttt{S}}();
elsif PSTATE.\texttt{EL} == \texttt{EL3} then
 if !EL2Enabled() then
 TLBI.\texttt{VMALLEI\texttt{S}}();
 else
 TLBI.\texttt{VMALLS12E1I\texttt{S}}();
C5.5.78 TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

The TLBI VMALLS12E1OS characteristics are:

Purpose

Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.
- If SCR_EL3.NS is 0, then
 - The entry would be required to translate an address using the Secure EL1&0 translation regime.
 - If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.
- If SCR_EL3.NS is 1, then:
 - The entry would be required to translate an address using the Non-secure EL1&0 translation regime.
 - If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0 translation regime and is defined to pass a VMID argument, or would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

- A PE with SCR_EL3.EEL2==1 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==0.
- A PE with SCR_EL3.EEL2==0 is not architecturally required to invalidate any entries in the Secure EL1&0 translation of a PE in the same required shareability domain with SCR_EL3.EEL2==1.
- A PE is architecturally required to invalidate all relevant entries in the Secure EL1&0 translation of a System MMU in the same required shareability domain with a VMID of 0.

For the EL1&0 translation regimes, the invalidation applies to both global entries, and non-global entries with any ASID.

Configurations

This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VMALLS12E1OS are UNDEFINED.

Attributes

TLBI VMALLS12E1OS is a 64-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.
Executing the TLBI VMALLS12E1OS instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE whether:

- The instruction is UNDEFINED.
- The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

**TLBI VMALLS12E1OS{, <Xt>}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b100</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TLBI_VMALLS12E1OS();
elsif PSTATE.EL == EL3 then
 if !EL2Enabled() then
 TLBI_VMALLE1OS();
 else
 TLBI_VMALLS12E1OS();
C5.6 A64 System instructions for prediction restriction

This section lists the A64 System instructions for prediction restriction.
C5.6.1 CFP RCTX, Control Flow Prediction Restriction by Context

The CFP RCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution based on information gathered within the target execution context or contexts. When this instruction is complete and synchronized, control flow prediction does not permit later speculative execution within the target execution context to be observable through side channels. This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

——— Note ———

This instruction does not require the invalidation of prediction structures so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute. This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to CFP RCTX are UNDEFINED.

Attributes

CFP RCTX is a 64-bit System instruction.

Field descriptions

The CFP RCTX input value bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>49</th>
<th>48</th>
<th>47</th>
<th>32</th>
<th>31</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>VMID</td>
<td>RES0</td>
<td>NS</td>
<td>EL</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GVMID

RES0

VMID

RES0

NS

EL

RES0

ASID

GASID

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

0b0 Applies to specified VMID for an EL0 or EL1 target execution context.

0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:

• EL1.
The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction

- EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).
 Otherwise this field is RES0.

 When the instruction is executed at EL1, this field is treated as the current VMID.
 When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the current VMID.
 When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.

 If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [31:27]
Reserved, RES0.

NS, bit [26]
Security State
0b0 Secure state
0b1 Non-secure state

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]
Exception Level. Indicates the Exception level of the target execution context.
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]
Reserved, RES0.

GASID, bit [16]
Execution of this instruction applies to all ASIDs or a specified ASID.
0b0 Applies to specified ASID for an EL0 target execution context.
0b1 Applies to all ASIDs for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.
If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]
Only applies for an EL0 target execution context and when bit[16] is 0.
Otherwise, this field is RES0.
When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the CFP RCTX instruction

Accesses to this register use the following encodings in the System instruction encoding space:
CFP RCTX, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CFP_RCTX(X[t]);
 end
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CFPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CFP_RCTX(X[t]);
 end
elsif PSTATE.EL == EL2 then
 CFP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then
 CFP_RCTX(X[t]);

C5.6.2 CPP RCTX, Cache Prefetch Prediction Restriction by Context

The CPP RCTX characteristics are:

Purpose

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache allocations based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, cache prefetch prediction does not permit later speculative execution within the target execution context to be observable through side channels.

This instruction applies to all:

- Instruction caches.
- Data caches.
- TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

--- Note ---

This instruction does not require the invalidation of Cache Allocation Resources so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute. This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to CPP RCTX are UNDEFINED.

Attributes

CPP RCTX is a 64-bit System instruction.

Field descriptions

The CPP RCTX input value bit assignments are:

```
    63  49  48  47  32  31  27  26  25  24  17  16  15  16
       RES0  VMID  RES0  NS  EL  RES0  ASID
```

Bits [63:49]

Reserved, RES0.

GVMID, bit [48]

Execution of this instruction applies to all VMIDs or a specified VMID.

- 0 Applies to specified VMID for an EL0 or EL1 target execution context.
- 1 Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 and EL1, this field is RES0.
If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.
If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

VMID, bits [47:32]

Only applies when bit[48] is 0 and the target execution context is either:
- EL1.
- EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0).
Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.
When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0), this field is treated as the current VMID.
When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1), this field is ignored.
If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

Bits [31:27]

Reserved, RES0.

NS, bit [26]

Security State.
0b0 Secure state.
0b1 Non-secure state.
If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]

Exception Level. Indicates the Exception level of the target execution context.
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.
If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]

Reserved, RES0.

GASID, bit [16]

Execution of this instruction applies to all ASIDs or a specified ASID.
0b0 Applies to specified ASID for an EL0 target execution context.
0b1 Applies to all ASID for an EL0 target execution context.
For target execution contexts other than EL0, this field is RES0.
If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]

Only applies for an EL0 target execution context and when bit[16] is 0.
Otherwise, this field is RES0.
When the instruction is executed at EL0, this field is treated as the current ASID.

Executing the CPP RCTX instruction

Accesses to this register use the following encodings in the System instruction encoding space:
CPP RCTX, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b011</td>
<td>0b0111</td>
<td>0b0011</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPP_RCTX(X[t]);
 end if
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.CPPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPP_RCTX(X[t]);
 end if
elsif PSTATE.EL == EL2 then
 CPP_RCTX(X[t]);
elsif PSTATE.EL == EL3 then
 CPP_RCTX(X[t]);
C5.6.3 DVP RCTX, Data Value Prediction Restriction by Context

The DVP RCTX characteristics are:

Purpose

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, data value prediction does not permit later speculative execution within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

--- **Note**

This instruction does not require the invalidation of prediction structures so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute. This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

Configurations

This instruction is present only when FEAT_SPECRES is implemented. Otherwise, direct accesses to DVP RCTX are **UNDEFINED**.

Attributes

DVP RCTX is a 64-bit System instruction.

Field descriptions

The DVP RCTX input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>VMID</td>
<td>Only applies when bit[48] is 0 and the target execution context is either:</td>
</tr>
<tr>
<td></td>
<td>• EL1.</td>
</tr>
<tr>
<td>GVMID</td>
<td>Execution of this instruction applies to all VMIDs or a specified VMID.</td>
</tr>
<tr>
<td></td>
<td>0b0 Applies to specified VMID for an EL0 or EL1 target execution context.</td>
</tr>
<tr>
<td></td>
<td>0b1 Applies to all VMIDs for an EL0 or EL1 target execution context.</td>
</tr>
<tr>
<td>NS</td>
<td>For target execution contexts other than EL0 or EL1, this field is RES0.</td>
</tr>
<tr>
<td>EL</td>
<td>If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.</td>
</tr>
<tr>
<td>ASID</td>
<td>If EL2 is not implemented or not enabled for the target Security state, this field is RES0.</td>
</tr>
<tr>
<td>GASID</td>
<td>GVMID, bit [48]</td>
</tr>
<tr>
<td></td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>VMID, bits [47:32]</td>
<td>Only applies when bit[48] is 0 and the target execution context is either:</td>
</tr>
<tr>
<td></td>
<td>• EL1.</td>
</tr>
</tbody>
</table>
The A64 System Instruction Class
C5.6 A64 System instructions for prediction restriction

- EL0 when \(\text{HCR_EL2.E2H}=0 \) or \(\text{HCR_EL2.TGE}=0 \).
 Otherwise this field is \text{RES0}.

When the instruction is executed at EL1, this field is treated as the current VMID.
When the instruction is executed at EL0 and \(\text{HCR_EL2.E2H}=0 \) or \(\text{HCR_EL2.TGE}=0 \), this field is treated as the current VMID.
When the instruction is executed at EL0 and \(\text{HCR_EL2.E2H}=1 \) and \(\text{HCR_EL2.TGE}=1 \), this field is ignored.
If EL2 is not implemented or not enabled for the target Security state, this field is \text{RES0}.

Bits [31:27]
Reserved, \text{RES0}.

NS, bit [26]
Security State.
\[00\] Secure state.
\[01\] Non-secure state.
If the instruction is executed in Non-secure state, this field has an Effective value of 1.

EL, bits [25:24]
Exception Level. Indicates the Exception level of the target execution context.
\[000\] EL0.
\[001\] EL1.
\[010\] EL2.
\[011\] EL3.
If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

Bits [23:17]
Reserved, \text{RES0}.

GASID, bit [16]
Execution of this instruction applies to all ASIDs or a specified ASID.
\[0\] Applies to specified ASID for an EL0 target execution context.
\[1\] Applies to all ASIDs for an EL0 target execution context.
For target execution contexts other than EL0, this field is \text{RES0}.
If the instruction is executed at EL0, this field has an Effective value of 0.

ASID, bits [15:0]
Only applies for an EL0 target execution context and when bit[16] is 0.
Otherwise this field is \text{RES0}.
When the instruction is executed at EL0, this field is treated as the current ASID.

\textbf{Executing the DVP RCTX instruction}

Accesses to this register use the following encodings in the System instruction encoding space:
DVP RCTX, <X[t]>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b01</td>
<td>0b011</td>
<td>0b011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DVP_RCTX(X[t]);
 endif;
 endif;
else
 AArch64.SystemAccessTrap(EL1, 0x18);
endif;
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && HFGITR_EL2.DVPRCTX == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DVP_RCTX(X[t]);
 endif;
 endif;
endif;
else
 if PSTATE.EL == EL2 then
 DVP_RCTX(X[t]);
 endif;
else
 if PSTATE.EL == EL3 then
 DVP_RCTX(X[t]);
 endif;
endif;
Chapter C6
A64 Base Instruction Descriptions

This chapter describes the A64 base instructions.

It contains the following sections:
• About the A64 base instructions on page C6-768.
• Alphabetical list of A64 base instructions on page C6-771.
C6.1 About the A64 base instructions

Alphabetical list of A64 base instructions on page C6-771 gives full descriptions of the A64 instructions that are in the following instruction groups:

- Branch, Exception generation, and System instructions.
- Loads and stores associated with the general-purpose registers.
- Data processing (immediate).
- Data processing (register).

A64 instruction set encoding on page C4-266 provides an overview of the instruction encodings as well as of the instruction classes within their functional groups.

The rest of this section is general description of the base instructions. It contains the following subsections:

- Register size.
- Use of the PC.
- Use of the stack pointer on page C6-769.
- Condition flags and related instructions on page C6-769.

C6.1.1 Register size

Most data processing, comparison, and conversion instructions that use the general-purpose registers as the source or destination operand have two instruction variants that operate on either a 32-bit or a 64-bit value.

Where a 32-bit instruction form is selected, the following holds:

- The upper 32 bits of the source registers are ignored.
- The upper 32 bits of the destination register are set to zero.
- Right shifts and right rotates inject at bit[31], not at bit[63].
- The Condition flags, where set by the instruction, are computed from the lower 32 bits.

This distinction applies even when the results of a 32-bit instruction form are indistinguishable from the lower 32 bits computed by the equivalent 64-bit instruction form. For example, a 32-bit bitwise ORR could be performed using a 64-bit ORR and simply ignoring the top 32 bits of the result. However, the A64 instruction set includes separate 32-bit and 64-bit forms of the ORR instruction.

As well as distinct sign-extend or zero-extend instructions, the A64 instruction set also provides the ability to extend and shift the final source register of an ADD, SUB, ADDS, or SUBS instruction and the index register of a Load/Store instruction. This enables array index calculations involving a 64-bit array pointer and a 32-bit array index to be implemented efficiently.

The assembly language notation enables the distinct identification of registers holding 32-bit values and registers holding 64-bit values. See Register names on page C1-184 and Register indexed addressing on page C1-187.

C6.1.2 Use of the PC

A64 instructions have limited access to the PC. The only instructions that can read the PC are those that generate a PC relative address:

- ADR and ADRP.
- The Load register (literal) instruction class.
- Direct branches that use an immediate offset.
- The unconditional branch with link instructions, BL and BLR, that use the PC to create the return link address.

Only explicit control flow instructions can modify the PC:

- Conditional and unconditional branch and return instructions.
- Exception generation and exception return instructions.
For more details of instructions that can modify the PC, see Branches, Exception generating, and System instructions on page C3-200.

C6.1.3 Use of the stack pointer

A64 instructions can use the stack pointer only in a limited number of cases:

- Load/Store instructions use the current stack pointer as the base address:
 - When stack alignment checking is enabled by system software and the base register is SP, the current stack pointer must be initially quadword aligned. That is, it must be aligned to 16 bytes. Misalignment generates an SP alignment fault. See SP alignment checking on page D1-2327 for more information.

- Add and subtract data processing instructions in their immediate and extended register forms, use the current stack pointer as a source register or the destination register or both.

- Logical data processing instructions in their immediate form use the current stack pointer as the destination register.

C6.1.4 Condition flags and related instructions

The A64 base instructions that use the Condition flags as an input are:

- Conditional branch. The conditional branch instruction is B.cond.

- Add or subtract with carry. These instruction types include instructions to perform multi-precision arithmetic and calculate checksums. The add or subtract with carry instructions are ADC, ADCS, SBC, and SBCS, or an architectural alias for these instructions.

- Conditional select with increment, negate, or invert. This instruction type conditionally selects between one source register and a second, incremented, negated, inverted, or unmodified source register. The conditional select with increment, negate, or invert instructions are CSINC, CSINV, and CSNEG. These instructions also implement:
 - Conditional select or move. The Condition flags select one of two source registers as the destination register. Short conditional sequences can be replaced by unconditional instructions followed by a conditional select, CSEL.
 - Conditional set. Conditionally selects between 0 and 1, or 0 and -1. This can be used to convert the Condition flags to a Boolean value or mask in a general-purpose register, for example. These instructions include CSET and CSETM.

- Conditional compare. This instruction type sets the Condition flags to the result of a comparison if the original condition is true, otherwise it sets the Condition flags to an immediate value. It permits the flattening of nested conditional expressions without using conditional branches or performing Boolean arithmetic within the general-purpose registers. The conditional compare instructions are COMP and CON.

The A64 base instructions that update the Condition flags as an output are:

- Flag-setting data processing instructions, such as ADCS, ADDS, ANDS, BICS, RMIF, SBCS, SETF8, SETF16, and SUBS, and the aliases CMN, CMP, and TST.

- Conditional compare instructions such as CON, COMP.

- The random number generation instructions MRS RNDR and MRS RNDRRS, see Effect of random number generation instructions on Condition flags on page C6-770.

The A64 base instructions that manipulate the Condition flags are:

- The flag manipulation instruction CFINV, which inverts the value of the Carry flag.
• If FEAT_FlagM2 is implemented, the base instructions \texttt{AXFLAG} and \texttt{XAFLAG}. These instructions convert between the Arm floating point comparison PSTATE condition flag format and an alternative format shown in Table C6-1.

<table>
<thead>
<tr>
<th>Table C6-1 Relationship between ARM format and alternative format PSTATE condition flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm format</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Result</td>
</tr>
<tr>
<td>Greater than</td>
</tr>
<tr>
<td>Less than</td>
</tr>
<tr>
<td>Equal</td>
</tr>
<tr>
<td>Unordered</td>
</tr>
</tbody>
</table>

The flags can be directly accessed for a read/write using the \textit{NZCV, Condition Flags} on page C5-412.

The A64 base instructions also include conditional branch instructions that do not use the Condition flags as an input:
• Compare and branch if a register is zero or nonzero, \texttt{CBZ} and \texttt{CBNZ}.
• Test a single bit in a register and branch if the bit is zero or nonzero, \texttt{TBZ} and \texttt{TBNZ}.

\textbf{Effect of random number generation instructions on Condition flags}

If FEAT_RNG is implemented, then:
• When a valid random number is returned, the PSTATE.NZCV flags are set to 0b0000.
• If the random number hardware is not capable of returning a random number in a reasonable period of time, the PSTATE.NZCV flags are set to 0b0100, and the random number generation instructions return the value 0.

\textbf{Note}

The definition of “reasonable period of time” is IMPLEMENTATION DEFINED. The expectation is that software might use this as an opportunity to reschedule or run a different routine, perhaps after a small number of retries have failed to return a valid value.
C6.2 Alphabetical list of A64 base instructions

This section lists every instruction in the base category of the A64 instruction set. For details of the format used, see Understanding the A64 instruction descriptions on page C2-192.
C6.2.1 ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

```
[31 30 29 28][27 26 25 24][23 22 21 20]  [15 14 13 12][11 10 9]  [5 4]  0
   sf 0 0 1 1 0 1 0 0 0 |  Rm 0 0 0 0 0 0 |  Rn  |  Rd |
   op S
```

32-bit variant

Applies when `sf == 0`.

`ADC <Wd>, <Wn>, <Wm>`

64-bit variant

Applies when `sf == 1`.

`ADC <Xd>, <Xn>, <Xm>`

Decode for all variants of this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
```

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `< Xm>` Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

```
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

(result, -) = AddWithCarry(operand1, operand2, PSTATE.C);
X[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C6.2.2 ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the
destination register. It updates the condition flags based on the result.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when sf == 0.

ADCS <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

ADCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.3 ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount, and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword.

32-bit variant

Applies when $sf == 0$.

$$ADD <Wd|WSP>, <Wn|WSP>, <Wm>\{, <extend> \{#<amount>\}\}$$

64-bit variant

Applies when $sf == 1$.

$$ADD <Xd|SP>, <Xn|SP>, <R><m>\{, <extend> \{#<amount>\}\}$$

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;
```

Assembler symbols

- `<Wd|WSP>` Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- `<Wn|WSP>` Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xd|SP>` Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- `<Xn|SP>` Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- `<R>` Is a width specifier, encoded in the "option" field. It can have the following values:
 - `W` when option = 00x
 - `W` when option = 010
 - `X` when option = x11
 - `W` when option = 10x
 - `W` when option = 110
- `<m>` Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- LSL|UXTW when option = 010
- UTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted
when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is
'010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the
"option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- UXTW when option = 010
- LSL|UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UTX when "option" is
'011'.

Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL,
and is optional when <extend> is present but not LSL.

Operation

\[
\text{bits(datasize) result;} \\
\text{bits(datasize) operand1 = if n == 31 then SP[] else X[n];} \\
\text{bits(datasize) operand2 = ExtendReg(m, extend_type, shift);} \\
\text{(result, -) = AddWithCarry(operand1, operand2, '0');} \\
\text{if d == 31 then} \\
\text{SP[] = result;} \\
\text{else} \\
\text{X[d] = result;} \\
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
The values of the NZCV flags.
C6.2.4 ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the destination register.

This instruction is used by the alias MOV (to/from SP). See Alias conditions for details of when each alias is preferred.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when \(sf = 0 \).

\[
\text{ADD} <Wd|WSP>, <Wn|WSP>, \#<imm>{, <shift>}
\]

64-bit variant

Applies when \(sf = 1 \).

\[
\text{ADD} <Xd|SP>, <Xn|SP>, \#<imm>{, <shift>}
\]

Decode for all variants of this encoding

\[
\text{integer } d = \text{UInt}(Rd);
\text{integer } n = \text{UInt}(Rn);
\text{integer } \text{datasize} = \text{if } sf = '1' \text{ then } 64 \text{ else } 32;
\text{bits}(ext{datasize}) \text{ imm};
\]

\[
\text{case } \text{sh of}
\]

\[
\text{when } '0' \text{ imm } = \text{ZeroExtend}(\text{imm12}, \text{datasize});
\text{when } '1' \text{ imm } = \text{ZeroExtend}(\text{imm12} : \text{Zeros}(12), \text{datasize});
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (to/from SP)</td>
<td>(sh = '0' && \text{imm12} = '000000000000' && (Rd == '11111') && Rn == '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<Wd|WSP> \) Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

\(<Wn|WSP> \) Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

\(<Xd|SP> \) Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

\(<Xn|SP> \) Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

\(<\text{imm}> \) Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

\(<\text{shift}> \) Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh" field. It can have the following values:

\[
\text{LSL } \#0 \text{ when } \text{sh} = 0
\]
LSL #12 when sh = 1

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];

(result, -) = AddWithCarry(operand1, imm, '0');

if d == 31 then
 SP[] = result;
else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.5 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the destination register.

32-bit variant
Applies when \(sf == 0 \).

\[\text{ADD} \ <Wd>, \ <Wn>, \ <Wm>\{, \ <shift> \ #<amount>\} \]

64-bit variant
Applies when \(sf == 1 \).

\[\text{ADD} \ <Xd>, \ <Xn>, \ <Xm>\{, \ <shift> \ #<amount>\} \]

Decode for all variants of this encoding

integer \(d = \text{UInt}(Rd) \);
integer \(n = \text{UInt}(Rn) \);
integer \(m = \text{UInt}(Rm) \);
integer \(\text{datasize} = \) if \(sf == '1' \) then 64 else 32;
if \(\text{shift} == '11' \) then UNDEFINED;
if \(sf == '0' \ && \text{imm6}<5> == '1' \) then UNDEFINED;
\(\text{ShiftType} \: \text{shift_type} = \text{DecodeShift}(\text{shift}); \)
integer \(\text{shift_amount} = \text{UInt}(\text{imm6}); \)

Assembler symbols

\(<Wd>\)
Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Wn>\)
Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<Wm>\)
Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

\(<Xd>\)
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xn>\)
Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<Xm>\)
Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

\(<shift>\)
Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- LSL when \(\text{shift} = 00 \)
- LSR when \(\text{shift} = 01 \)
- ASR when \(\text{shift} = 10 \)

The encoding \(\text{shift} = 11 \) is reserved.

\(<amount>\)
For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

bits(datasize) result;
basis(datasize) operand1 = X[n];
basis(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

(result, -) = AddWithCarry(operand1, operand2, '0');
X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.6 ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>16</th>
<th>15 14 13</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Encoding

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

Decode for this encoding

```c
if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);
```

Assembler symbols

- `<Xd|SP>` Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd" field.
- `<Xn|SP>` Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<uimm6>` Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.
- `<uimm4>` Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

```c
bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
bits(16) exclude = GCR_EL1.Exclude;
bits(64) result;
bits(4) rtag;
if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
    rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
else
    rtag = '0000';
(result, -) = AddWithCarry(operand1, offset, '0');
result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);
if d == 31 then
    SP[] = result;
else
    X[d] = result;
```
C6.2.7 ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by
an optional left shift amount, and writes the result to the destination register. The argument that is extended from
the \(<Rm>\) register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.
This instruction is used by the alias CMN (extended register). See Alias conditions for details of when each alias is
preferred.

32-bit variant
Applies when \(sf == 0\).

\[
\text{ADD} <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
\]

64-bit variant
Applies when \(sf == 1\).

\[
\text{ADD} <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d & = \text{UInt}(Rd); \\
\text{integer } n & = \text{UInt}(Rn); \\
\text{integer } m & = \text{UInt}(Rm); \\
\text{integer } \text{datasize} & = \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{ExtendType } \text{extend_type} & = \text{DecodeRegExtend}(option); \\
\text{integer } \text{shift} & = \text{UInt}(\text{imm3}); \\
\text{if } \text{shift} > 4 & \text{ then UNDEFINED;}
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN (extended register)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
\(<Wn|WSP>\) Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
\(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
\(<Xn|SP>\) Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.
\(<R>\) Is a width specifier, encoded in the "option" field. It can have the following values:
\(W\) when \(\text{option} = 00x\)
\(W\) when \(\text{option} = 010\)
X when option = x11
W when option = 10x
W when option = 110

<rm> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:
UXTB when option = 000
UXTH when option = 001
LSL|UXTW when option = 010
UXTX when option = 011
SXTB when option = 100
SXTH when option = 101
SXTW when option = 110
SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:
UXTB when option = 000
UXTH when option = 001
UXTW when option = 010
LSL|UXTX when option = 011
SXTB when option = 100
SXTH when option = 101
SXTW when option = 110
SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not LSL.

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, '0');
PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.8 ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate). See Alias conditions for details of when each alias is preferred.

<table>
<thead>
<tr>
<th>sf</th>
<th>imm12</th>
<th>Rn</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when sf == 0.

ADD <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit variant

Applies when sf == 1.

ADD <Xd>, <Xn|SP>, #<imm>{, <shift>}

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case sh of
 when '0' imm = ZeroExtend(imm12, datasize);
 when '1' imm = ZeroExtend(imm12:Zeros(12), datasize);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN (immediate)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh" field. It can have the following values:
 LSL #0 when sh = 0
 LSL #12 when sh = 1
Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, imm, '0');
PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.9 ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register). See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when $sf == 0$.

```
ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
```

64-bit variant

Applies when $sf == 1$.

```
ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
```

Decode for all variants of this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
```

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN (shifted register)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- LSL when shift = 00
- LSR when shift = 01
- ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

```plaintext
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, '0');
PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.10 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result to the destination register.

31 30 29 28	27 26 25 24	23					5 4	0	
0	immlo	1	0	0	0	0	immhi		Rd

Encoding

ADR <Xd>, <label>

Decode for this encoding

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo, 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction, in the range +/-1MB, is encoded in "immhi:immlo".

Operation

bits(64) base = PC[];

X[d] = base + imm;
C6.2.11 ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to form a PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>immhi</td>
<td>immlo</td>
</tr>
</tbody>
</table>

Encoding

ADR P <Xd>, <label>

Decode for this encoding

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

bits(64) base = PC[];
base<11:6> = Zeros(12);
X[d] = base + imm;
C6.2.12 **AND (immediate)**

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register.

![AND instruction format](image)

32-bit variant

Applies when \(sf == 0 \) \&\& \(N == 0 \).

\[
\text{AND} \ <Wd|WSP>, <Wn>, #<imm>
\]

64-bit variant

Applies when \(sf == 1 \).

\[
\text{AND} \ <Xd|SP>, <Xn>, #<imm>
\]

Decode for all variants of this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

bits(datasize) imm;
if sf == '0' && N != '0' then UNDEFINED;
(imm, _) = DecodeBitMasks(N, imms, immr, TRUE);
```

Assembler symbols

- `<Wd|WSP>`: Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- `<Wn>`: Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<Xd|SP>`: Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- `<Xn>`: Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<imm>`: For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
 For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

```
bits(datasize) result;
bits(datasize) operand1 = X[n];

result = operand1 AND imm;
if d == 31 then
    SP[] = result;
else
    X[d] = result;
```
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.13 **AND (shifted register)**

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when \(sf == 0 \).

\[\text{AND} \; <Wd>, \; <Wn>, \; <Wm>\{, \; <shift> \; #\text{<amount>}\} \]

64-bit variant

Applies when \(sf == 1 \).

\[\text{AND} \; <Xd>, \; <Xn>, \; <Xm>\{, \; <shift> \; #\text{<amount>}\} \]

Decode for all variants of this encoding

- integer \(d = \text{UInt}(Rd) \);
- integer \(n = \text{UInt}(Rn) \);
- integer \(m = \text{UInt}(Rm) \);
- integer \(\text{datasize} = \) if \(sf == '1' \) then 64 else 32;
 if \(sf == '0' \) & & \(\text{imm6} <5> == '1' \) then UNDEFINED;

\[\text{ShiftType shift_type = DecodeShift(shift);} \]
\[\text{integer shift_amount = UInt(imm6);} \]

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}>\) Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when \(shift = 00 \)
 - LSR when \(shift = 01 \)
 - ASR when \(shift = 10 \)
 - ROR when \(shift = 11 \)

- \(<\text{amount}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
result = operand1 AND operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.14 ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when $sf == 0 \&\& N == 0$.

ANDS <Wd>, <Wn>, #<imm>

64-bit variant
Applies when $sf == 1$.

ANDS <Xd>, <Xn>, #<imm>

Decode for all variants of this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

bits(datasize) imm;
if sf == '0' \&\& N != '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);
```

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>TST (immediate)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<imm>` For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
 For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

```
bites(datasize) result;
bites(datasize) operand1 = X[n];
```
result = operand1 AND imm;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.15 ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register). See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when $sf == 0$.

\[
\text{ANDS} <\text{Wd}>, <\text{Wn}>, <\text{Wm}>{{, <\text{shift} > <\text{amount}>}}
\]

64-bit variant

Applies when $sf == 1$.

\[
\text{ANDS} <\text{Xd}>, <\text{Xn}>, <\text{Xm}>{{, <\text{shift} > <\text{amount}>}}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(\text{Rd}); \\
\text{integer } n &= \text{UInt}(\text{Rn}); \\
\text{integer } m &= \text{UInt}(\text{Rm}); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{if } sf == '0' && \text{imm6}<5> == '1' \text{ then UNDEFINED}; \\
\text{ShiftType } \text{shift_type} &= \text{DecodeShift}(\text{shift}); \\
\text{integer } \text{shift_amount} &= \text{UInt}(\text{imm6});
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias Conditions</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>TST (shifted register)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- $<\text{Wd}>$ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<\text{Wn}>$ Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<\text{Wm}>$ Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $<\text{Xd}>$ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<\text{Xn}>$ Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<\text{Xm}>$ Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $<\text{shift}>$ Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when shift = 00
LSR when shift = 01
ASR when shift = 10
ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

\[
\text{bits(\text{datasize}) operand1} = X[n]; \\
\text{bits(\text{datasize}) operand2} = \text{ShiftReg}(m, \text{shift_type}, \text{shift_amount}); \\
\text{result} = \text{operand1} \text{ AND operand2}; \\
P\text{STATE.<N,Z,C,V>} = \text{result<\text{datasize}-1>:IsZeroBit(result):'00'}; \\
X[d] = \text{result};
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.16 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the ASRV instruction. This means that:

- The encodings in this description are named to match the encodings of ASRV.
- The description of ASRV gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{ASR} \ <Wd>, <Wn>, <Wm> \quad \text{is equivalent to} \quad \text{ASRV} \ <Wd>, <Wn>, <Wm>
\]

and is always the preferred disassembly.

64-bit variant

Applies when \(sf = 1 \).

\[
\text{ASR} \ <Xd>, <Xn>, <Xm> \quad \text{is equivalent to} \quad \text{ASRV} \ <Xd>, <Xn>, <Xm>
\]

and is always the preferred disassembly.

Assembler symbols

- \(<Wd>\) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
- \(<Xd>\) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.17 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

- The encodings in this description are named to match the encodings of SBFM.
- The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf == 0 && N == 0 && \text{imms} == 011111 \).

\[
\text{ASR} \ <Wd>, \ <Wn>, \ #<shift> \\
\text{is equivalent to} \\
\text{SBFM} \ <Wd>, \ <Wn>, \ #<shift>, \ #31 \\
\text{and is always the preferred disassembly.}
\]

64-bit variant

Applies when \(sf == 1 && N == 1 && \text{imms} == 111111 \).

\[
\text{ASR} \ <Xd>, \ <Xn>, \ #<shift> \\
\text{is equivalent to} \\
\text{SBFM} \ <Xd>, \ <Xn>, \ #<shift>, \ #63 \\
\text{and is always the preferred disassembly.}
\]

Assembler symbols

- \(<Wd>\)
 Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\)
 Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<Xd>\)
 Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\)
 Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{shift}>\)
 For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.
 For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.18 ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register). The alias is always the preferred disassembly.

32-bit variant
Applies when `sf == 0`.
ASRV `<Wd>`, `<Wn>`, `<Wm>`

64-bit variant
Applies when `sf == 1`.
ASRV `<Xd>`, `<Xn>`, `<Xm>`

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);
```

Assembler symbols

```plaintext
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.
```

Operation

```plaintext
bits(datasize) result;
bits(datasize) operand2 = X[m];
result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;
```
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.19 AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

```
Encoding
AT <at_op>, <Xt>

is equivalent to
SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.
```

Assembler symbols

- `<at_op>` is an AT instruction name, as listed for the AT system instruction group, encoded in the "op1:CRm<0>:op2" field. It can have the following values:
 - S1E1R when op1 = 000, CRm<0> = 0, op2 = 000
 - S1E1W when op1 = 000, CRm<0> = 0, op2 = 001
 - S1E0R when op1 = 000, CRm<0> = 0, op2 = 010
 - S1E0W when op1 = 000, CRm<0> = 0, op2 = 011
 - S1E2R when op1 = 100, CRm<0> = 0, op2 = 000
 - S1E2W when op1 = 100, CRm<0> = 0, op2 = 001
 - S1E1R when op1 = 100, CRm<0> = 0, op2 = 100
 - S1E1W when op1 = 100, CRm<0> = 0, op2 = 101
 - S1E0R when op1 = 100, CRm<0> = 0, op2 = 110
 - S1E0W when op1 = 100, CRm<0> = 0, op2 = 111
 - S1E3R when op1 = 110, CRm<0> = 0, op2 = 000
 - S1E3W when op1 = 110, CRm<0> = 0, op2 = 001

When FEAT_PAN2 is implemented, the following values are also valid:
 - S1E1RP when op1 = 000, CRm<0> = 1, op2 = 000
 - S1E1WP when op1 = 000, CRm<0> = 1, op2 = 001

- `<op1>` is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
- `<Cm>` is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
- `<op2>` is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
- `<Xt>` is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.
Operation

The description of SYS gives the operational pseudocode for this instruction.
C6.2.20 AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A. The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

- In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.
- The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AUTDA variant

Applies when \(Z = 0 \).

AUTDA <Xd>, <Xn|SP>

AUTDZA variant

Applies when \(Z = 1 \) && \(Rn = 11111 \).

AUTDZA <Xd>

Decode for all variants of this encoding

```plaintext
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
    UNDEFINED;

if Z == '0' then // AUTDA
    if n == 31 then source_is_sp = TRUE;
else // AUTDZA
    if n != 31 then UNDEFINED;
```

Assembler symbols

- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

```plaintext
if HavePACExt() then
    if source_is_sp then
        X[d] = AuthDA(X[d], SP[], FALSE);
    else
        X[d] = AuthDA(X[d], X[n], FALSE);
```
C6.2.21 AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B. The address is in the general-purpose register that is specified by \(<Xd>\).

The modifier is:

- In the general-purpose register or stack pointer that is specified by \(<Xn|SP>\) for AUTDB.
- The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AUTDB variant

Applies when \(Z = 0\).

AUTDB <Xd>, <Xn|SP>

AUTDZB variant

Applies when \(Z = 1 \&\& Rn = 1111\).

AUTDZB <Xd>

Decode for all variants of this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HavePACExt() then
    UNDEFINED;
if Z == '0' then // AUTDB
    if n == 31 then source_is_sp = TRUE;
else // AUTDZB
    if n != 31 then UNDEFINED;
```

Assembler symbols

- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn|SP>\) Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

```c
if HavePACExt() then
    if source_is_sp then
        X[d] = AuthDB(X[d], SP[], FALSE);
    else
        X[d] = AuthDB(X[d], X[n], FALSE);
```
C6.2.22 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier and key A.

The address is:
- In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.
- In X17, for AUTIA1716.
- In X30, for AUTIASP and AUTIAZ.

The modifier is:
- In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.
- The value zero, for AUTIZA and AUTIAZ.
- In X16, for AUTIA1716.
- In SP, for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

ARMv8.3

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 ]
 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 Z 1 1 0 1 0 Rd Rn
```

AUTIA variant

Applies when Z == 0.

AUTIA <Xd>, <Xn|SP>

AUTIZA variant

Applies when Z == 1 && Rn == 11111.

AUTIZA <Xd>

Decode for all variants of this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HavePACExt() then
  UNDEFINED;
if Z == '0' then // AUTIA
  if n == 31 then source_is_sp = TRUE;
else // AUTIZA
  if n != 31 then UNDEFINED;
```

System

ARMv8.3
AUTIA1716 variant
Applies when CRm == 0001 && op2 == 100.

AUTIASP

AUTIAZ variant
Applies when CRm == 0011 && op2 == 100.

Decode for all variants of this encoding

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
 when '0011 100' // AUTIAZ
 d = 30;
 n = 31;
 when '0011 101' // AUTIASP
 d = 30;
 source_is_sp = TRUE;
 when '0001 100' // AUTIA1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 010' SEE "PACIB";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 01x' SEE "PACIB";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

if HavePACExt() then
 if source_is_sp then
 X[d] = AuthIA(X[d], SP[], FALSE);
 else
 X[d] = AuthIA(X[d], X[n], FALSE);
C6.2.23 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier and key B.

The address is:
- In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.
- In X17, for AUTIB1716.
- In X30, for AUTIBSP and AUTIBZ.

The modifier is:
- In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.
- The value zero, for AUTIZB and AUTIBZ.
- In X16, for AUTIB1716.
- In SP, for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer

ARMv8.3

| [31 30 29 28]| [27 26 25 24]| [23 22 21 20]| [19 18 17 16]| [15 14 13 12]| [11 10 9] | 5 4 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Z | 1 | 0 | 1 |

AUTIB variant

Applies when $Z == 0$.

AUTIB <Xd>, <Xn|SP>

AUTIZB variant

Applies when $Z == 1$ && $Rn == 11111$.

AUTIZB <Xd>

Decode for all variants of this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
    UNDEFINED;

if Z == '0' then // AUTIB
    if n == 31 then source_is_sp = TRUE;
    else // AUTIZB
        if n != 31 then UNDEFINED;

System

ARMv8.3
```
AUTIB1716 variant
Applies when CRm == 0001 && op2 == 110.

AUTIB1716

AUTIBSP variant
Applies when CRm == 0011 && op2 == 111.

AUTIBSP

AUTIBZ variant
Applies when CRm == 0011 && op2 == 110.

AUTIBZ

Decode for all variants of this encoding

integer d;
integer n;
boolean source_is_sp = FALSE;
case CRm:op2 of
 when '0011 110' // AUTIBZ
 d = 30;
 n = 31;
 when '0011 111' // AUTIBSP
 d = 30;
 source_is_sp = TRUE;
 when '0001 110' // AUTIB1716
 d = 17;
 n = 16;
 when '0001 100' // AUTIA
 X[d] = AuthIB(X[d], X[n], FALSE);
 when '0001 110' // AUTIB1716
 d = 17;
 n = 16;
 when '0001 000' // PACIA
 X[n|SP] = AuthIB(X[n|SP], SP[n], FALSE);
 when '0001 010' // PACIB
 X[n|SP] = AuthIB(X[n|SP], X[n], FALSE);
 when '0011 100' // AUTIA
 X[n|SP] = AuthIB(X[n|SP], X[n], FALSE);
 when '0011 10x' // AUTIA
 X[n|SP] = AuthIB(X[n|SP], X[n], FALSE);
 when '0000 111' // XPACLRI
 X[n|SP] = AuthIB(X[n|SP], X[n], FALSE);
 otherwise SEE "HINT";

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings

if HavePACExt() then
 if source_is_sp then
 X[d] = AuthIB(X[d], SP[n], FALSE);
 else
 X[d] = AuthIB(X[d], X[n], FALSE);
C6.2.24 AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction
to an alternative representation required by some software.

ARMv8.5

```
| CRm | 31 30 29 28|31 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 6 5 4 3 2 1 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
|     | 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

Encoding

```
AXFLAG
```

Decode for this encoding

```
if !HaveFlagFormatExt() then UNDEFINED;
```

Operation

```
bit Z = PSTATE.Z OR PSTATE.V;
b \bit C = \text{PSTATE.C AND NOT(PSTATE.V)};

\text{PSTATE.N} = '0';
\text{PSTATE.Z} = Z;
\text{PSTATE.C} = C;
\text{PSTATE.V} = '0';
```
C6.2.25 **B.cond**

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

```
[31 30 29 28|27 26 25 24|23]  |  |  |  | 5 4 3 0 |
  0 1 0 1 0 1 0 0  |  | imm19  | 0  | cond  |
```

Encoding

B.<cond> <label>

Decode for this encoding

```c
bits(64) offset = SignExtend(imm19:'00', 64);
```

Assemble symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

```c
if ConditionHolds(cond) then
    BranchTo(PC[] + offset, BranchType_DIR);
```
Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>imm26</td>
</tr>
</tbody>
</table>
```

Encoding

B `<label>`

Decode for this encoding

```
bits(64) offset = SignExtend(imm26:'00', 64);
```

Assembler symbols

`<label>` Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB, is encoded as "imm26" times 4.

Operation

```
BranchTo(PC[] + offset, BranchType_DIR);
```
C6.2.27 BFC

Bitfield Clear sets a bitfield of \(<width>\) bits at bit position \(<\text{lsb}>\) of the destination register to zero, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

- The encodings in this description are named to match the encodings of BFM.
- The description of BFM gives the operational pseudocode for this instruction.

ARMv8.2

![Instruction Format](image)

32-bit variant

Applies when \(sf = 0 \&\& N = 0\).

BFC \(<Wd>, \#<\text{lsb}>, \#<width>\) is equivalent to

BFM \(<Wd>, WZR, \#(-<\text{lsb}> \text{ MOD 32}), \#(<width>-1)\)

and is the preferred disassembly when \(\text{UInt}(\text{imms}) < \text{UInt}(\text{immr})\).

64-bit variant

Applies when \(sf = 1 \&\& N = 1\).

BFC \(<Xd>, \#<\text{lsb}>, \#<width>\) is equivalent to

BFM \(<Xd>, XZR, \#(-<\text{lsb}> \text{ MOD 64}), \#(<width>-1)\)

and is the preferred disassembly when \(\text{UInt}(\text{imms}) < \text{UInt}(\text{immr})\).

Assembler symbols

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<\text{lsb}>\) For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

\(<width>\) For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.28 BFI

Bitfield Insert copies a bitfield of width bits from the least significant bits of the source register to bit position lsb of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

- The encodings in this description are named to match the encodings of BFM.
- The description of BFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0 && N == 0.

BFI <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit variant

Applies when sf == 1 && N == 1.

BFI <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler symbols

- <Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- <lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
 For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.
- <width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32,<lsb>.
 For the 64-bit variant: is the width of the bitfield, in the range 1 to 64,<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.29 BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If \(<\text{imms}>\) is greater than or equal to \(<\text{immr}>\), this copies a bitfield of \((<\text{imms}>-<\text{immr}>+1)\) bits starting from bit position \(<\text{immr}>\) in the source register to the least significant bits of the destination register.

If \(<\text{imms}>\) is less than \(<\text{immr}>\), this copies a bitfield of \((<\text{imms}>+1)\) bits from the least significant bits of the source register to bit position \(\text{regsize}-<\text{immr}>\) of the destination register, where \(\text{regsize}\) is the destination register size of 32 or 64 bits.

In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL. See Alias conditions on page C6-823 for details of when each alias is preferred.

32-bit variant

Applies when \(sf == 0 \&\& N == 0\).

\(\text{BFM } <\text{Wd}>, <\text{Wn}>, #<\text{immr}>, #<\text{imms}>\)

64-bit variant

Applies when \(sf == 1 \&\& N == 1\).

\(\text{BFM } <\text{Xd}>, <\text{Xn}>, #<\text{immr}>, #<\text{imms}>\)

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{integer } R; \\
\text{bits}(\text{datasize}) \text{ wmask}; \\
\text{bits}(\text{datasize}) \text{ tmask}; \\
\text{if } sf == '1' \&\& N != '1' \text{ then UNDEFINED; } \\
\text{if } sf == '0' \&\& (N != '0' \text{ || immr<5> != '0' || imms<5> != '0'}) \text{ then UNDEFINED; } \\
R &= \text{UInt}(\text{immr}); \\
(\text{wmask}, \text{tmask}) &= \text{DecodeBitMasks}(N, \text{imms}, \text{immr}, \text{FALSE});
\end{align*}
\]
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFC</td>
<td>Rn == ‘11111’ & Uint(imms) < Uint(immr)</td>
</tr>
<tr>
<td>BFI</td>
<td>Rn != ‘11111’ & Uint(imms) < Uint(immr)</td>
</tr>
<tr>
<td>BFXII</td>
<td>Uint(imms) >= Uint(immr)</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<immr>` For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field. For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.
- `<imms>` For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms" field. For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms" field.

Operation

```
bits(datasize) dst = X[d];
bites(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// combine extension bits and result bits
X[d] = (dst AND NOT(tmask)) OR (bot AND tmask);
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.30 BFXIL

Bitfield Extract and Insert Low copies a bitfield of \(<width>\) bits starting from bit position \(<\text{lsb}>\) in the source register to the least significant bits of the destination register, leaving the other destination bits unchanged.

This instruction is an alias of the BFM instruction. This means that:

- The encodings in this description are named to match the encodings of BFM.
- The description of BFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(\text{sf} == 0 \&\& \text{N} == 0\).

BFXIL \(<\text{Wd}>\), \(<\text{Wn}>\), \#<\text{lsb}>, \#<width>

is equivalent to

BFM \(<\text{Wd}>\), \(<\text{Wn}>\), \#<\text{lsb}>, \#(<\text{lsb}>+<width>-1)

and is the preferred disassembly when \(\text{ UInt(imms)} \geq \text{ UInt(immr)}\).

64-bit variant

Applies when \(\text{sf} == 1 \&\& \text{N} == 1\).

BFXIL \(<\text{Xd}>\), \(<\text{Xn}>\), \#<\text{lsb}>, \#<width>

is equivalent to

BFM \(<\text{Xd}>\), \(<\text{Xn}>\), \#<\text{lsb}>, \#(<\text{lsb}>+<width>-1)

and is the preferred disassembly when \(\text{ UInt(imms)} \geq \text{ UInt(immr)}\).

Assembler symbols

- \(<\text{Wd}>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{Wn}>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{Xd}>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{Xn}>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{lsb}>\) For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.
 For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.
- \(<\text{width}>\) For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
 For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.31 BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{BIC} \ <Wd>, \ <Wn>, \ <Wm>\{, \ <shift> \ #\text{amount}\}\]

64-bit variant

Applies when \(sf = 1 \).

\[
\text{BIC} \ <Xd>, \ <Xn>, \ <Xm>\{, \ <shift> \ #\text{amount}\}\]

Decode for all variants of this encoding

\[
\text{integer} \ d = \text{UInt}(Rd);
\text{integer} \ n = \text{UInt}(Rn);
\text{integer} \ m = \text{UInt}(Rm);
\text{integer} \ \text{datasize} = \text{if} \ sf = '1' \ \text{then} \ 64 \ \text{else} \ 32;
\text{if} \ sf = '0' \ \&\& \ \text{imm6}<5> = '1' \ \text{then} \ \text{UNDEFINED};
\]

\[
\text{ShiftType} \ \text{shift_type} = \text{DecodeShift}(\text{shift});
\text{integer} \ \text{shift_amount} = \text{UInt}(\text{imm6});
\]

Assembler symbols

- \(<Wd>\) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}>\) is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when \(\text{shift} = 00 \)
 - LSR when \(\text{shift} = 01 \)
 - ASR when \(\text{shift} = 10 \)
 - ROR when \(\text{shift} = 11 \)
- \(<\text{amount}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

 For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

\[
\begin{align*}
\text{bits(datasize)} \text{ operand1} &= X[n]; \\
\text{bits(datasize)} \text{ operand2} &= \text{ShiftReg}(m, \text{shift_type}, \text{shift_amount}); \\
\text{operand2} &= \text{NOT}(\text{operand2}); \\
\text{result} &= \text{operand1 AND operand2}; \\
X[d] &= \text{result};
\end{align*}
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based on the result.

32-bit variant

Applies when sf == 0.

BICS <Wd>, <Wn>, {<Wm>}, {<shift> #<amount>}

64-bit variant

Applies when sf == 1.

BICS <Xd>, <Xn>, {<Xm>}, {<shift> #<amount>}

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
LSL when shift = 00
LSR when shift = 01
ASR when shift = 10
ROR when shift = 11
(amount) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
operand2 = NOT(operand2);
result = operand1 AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';
X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.33 BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a subroutine call.

Encoding
BL <label>

Decode for this encoding
bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols
<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB, is encoded as "imm26" times 4.

Operation
X[30] = PC[] + 4;
BranchTo(PC[] + offset, BranchType_DIRCALL);
C6.2.34 BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 1 0</td>
<td>0 0 1 1 1 1 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>Rn</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

BLR <Xn>

Decode for this encoding

integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits(64) target = X[n];

X[30] = PC[] + 4;

BranchTo(target, BranchType_INDCALL);
C6.2.35 BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is specified by \(<Xn>\), using a modifier and the specified key, and calls a subroutine at the authenticated address, setting register X30 to PC+4.

The modifier is:

- In the general-purpose register or stack pointer that is specified by \(<Xm|SP>\) for BLRAA and BLRAB.
- The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1</td>
<td>1 1 1 1 1 1</td>
<td>0 0 0</td>
<td>1</td>
<td>M</td>
<td>Rn</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

Key A, zero modifier variant

Applies when \(Z = 0 \land M = 0 \land Rm = 11111\).

BLRAAZ \(<Xn>\)

Key A, register modifier variant

Applies when \(Z = 1 \land M = 0\).

BLRAA \(<Xn>, <Xm|SP>\)

Key B, zero modifier variant

Applies when \(Z = 0 \land M = 1 \land Rm = 11111\).

BLRABZ \(<Xn>\)

Key B, register modifier variant

Applies when \(Z = 1 \land M = 1\).

BLRAB \(<Xn>, <Xm|SP>\)

Decode for all variants of this encoding

```java
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') \&\& (m == 31));
if !HavePACExt() then
    UNDEFINED;
if Z == '0' \&\& m != 31 then
    UNDEFINED;
```
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

Operation

bits(64) target = X[n];

bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
 target = AuthIA(target, modifier, TRUE);
else
 target = AuthIB(target, modifier, TRUE);

X[30] = PC[] + 4;

BranchTo(target, BranchType_INDCALL);
C6.2.36 BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

Electrical encoding

| Target field 48:0 | 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Value | 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 Rn | 0 0 0 0 0 0 0 0 |

Encoding

BR <Xn>

Decode for this encoding

integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits(64) target = X[n];

BranchTo(target, BranchType_INDIR);
C6.2.37 BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is specified by \(<Xn>\), using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

- In the general-purpose register or stack pointer that is specified by \(<Xm|SP>\) for BRAA and BRAB.
- The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

ARMv8.3

<table>
<thead>
<tr>
<th>1101011</th>
<th>0x0</th>
<th>Z0</th>
<th>00</th>
<th>11111</th>
<th>00001</th>
<th>M</th>
<th>Rn</th>
<th>Rm</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101</td>
<td>01</td>
<td>01</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Key A, zero modifier variant

Applies when \(Z == 0 \&\& M == 0 \&\& Rm == 11111\).

BRAAZ \(<Xn>\)

Key A, register modifier variant

Applies when \(Z == 1 \&\& M == 0\).

BRAA \(<Xn>\), \(<Xm|SP>\)

Key B, zero modifier variant

Applies when \(Z == 0 \&\& M == 1 \&\& Rm == 11111\).

BRABZ \(<Xn>\)

Key B, register modifier variant

Applies when \(Z == 1 \&\& M == 1\).

BRAB \(<Xn>\), \(<Xm|SP>\)

Decode for all variants of this encoding

integer n = UInt(Rn);
integer m = UInt(Rm);
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') \&\& (m == 31));
if !HavePACExt() then
 UNDEFINED;
if Z == '>0' \&\& m != 31 then
 UNDEFINED;
Assembler symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

Operation

bits(64) target = X[n];

bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
 target = AuthIA(target, modifier, TRUE);
else
 target = AuthIB(target, modifier, TRUE);

BranchTo(target, BranchType_INDIR);
C6.2.38 BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the exception in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in ESR_ELx.ISS.

```
|31 30 29 28|27 26 25 24|23 22 21 20|   |   |5 4 3 2 1 0|
|------------|------------|------------|---|---|---|---|
|1 1 0 1 0 0|0 0 0 1     |imm16       |   |   |0 0 0 0|
```

Encoding

BRK #<imm>

Decode for this encoding

if HaveBTIExt() then
 SetBTypeCompatible(TRUE);

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.SoftwareBreakpoint(imm16);
C6.2.39 BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions which are not the intended target of a branch.

Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region while PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate a Branch Target Exception and will allow execution of subsequent instructions within the memory region.

The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE which the BTI instruction is compatible with.

Note
Within a guarded memory region, while PSTATE.BTYPE != 0b00, all instructions will generate a Branch Target Exception, other than BRK, BTI, HLT, PACIASP, and PACIBSP, which may not. See the individual instructions for details.

ARmv8.5

```
1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1
```

Encoding

BTI {<targets>}

Decode for this encoding

```
SystemHintOp op;
if CRm:op2 == '0100 xx0' then
    op = SystemHintOp_BTI;
    // Check branch target compatibility between BTI instruction and PSTATE.BTYPE
    SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
else
    EndOfInstruction();
```

Assembler symbols

<targets> is the type of indirection, encoded in the "op2<2:1>" field. It can have the following values:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(omitted)</td>
<td>when op2<2:1> = 00</td>
</tr>
<tr>
<td>c</td>
<td>when op2<2:1> = 01</td>
</tr>
<tr>
<td>j</td>
<td>when op2<2:1> = 10</td>
</tr>
<tr>
<td>jc</td>
<td>when op2<2:1> = 11</td>
</tr>
</tbody>
</table>

Operation

```
case op of
    when SystemHintOp_YIELD
        Hint_Yield();
    when SystemHintOp_DGH
```

Hint_DGH();

when SystemHintOp_WFE
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 trap = FALSE;
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 if HaveTWEDExt() then
 -- = SCTLR[];
 trap = sctlr.nTWE == '0';
 target_el = EL1;
 else
 AArch64.CheckForWfXTrap(EL1, TRUE);

 if !trap & PSTATE.EL IN {EL0, EL1} & EL2Enabled() & !IsInHost() then
 // Check for traps described by the Hypervisor.
 if HaveTWEDExt() then
 trap = NCR_EL2.TWE == '1';
 target_el = EL2;
 else
 AArch64.CheckForWfXTrap(EL2, TRUE);

 if !trap & HaveEl(EL3) & PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 if HaveTWEDExt() then
 trap = SCR_EL3.TWE == '1';
 target_el = EL3;
 else
 AArch64.CheckForWfXTrap(EL3, TRUE);

 if HaveTWEDExt() & trap & PSTATE.EL != EL3 then
 (delay_enabled, delay) = WFETrapDelay(target_el); // (If trap delay is enabled, Delay amount)
 if !WaitForEventUntilDelay(delay_enabled, delay) then
 // Event did not arrive before delay expired
 AArch64.WFXTap(target_el, TRUE); // Trap WFE
 else
 WaitForEvent();

when SystemHintOp_WFI
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 AArch64.CheckForWfXTrap(EL1, FALSE);
 if PSTATE.EL IN {EL0, EL1} & EL2Enabled() & !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWfXTrap(EL2, FALSE);
 if HaveEL(EL3) & PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWfXTrap(EL3, FALSE);
 WaitForInterrupt();

when SystemHintOp_SEV
 SendEvent();

when SystemHintOp_SEVL
 SendEventLocal();

when SystemHintOp_ESB
 SynchronizeErrors();
 AArch64.ESBOperation();
 if PSTATE.EL IN {EL0, EL1} & EL2Enabled() then
 AArch64.vESBOperation();
 TakeUnmaskedErrorInterrupts();

when SystemHintOp_PSB
 ProfilingSynchronizationBarrier();
when SystemHintOp_TSB
 TraceSynchronizationBarrier();

when SystemHintOp_CSD8
 ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
 SetBTypeNext('00');

otherwise // do nothing
C6.2.40 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that no other modification of the memory location can take place between the read and write.

- CASAB and CASALB load from memory with acquire semantics.
- CASLB and CASALB store to memory with release semantics.
- CASB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is \(<w_s>\), is restored to the values held in the register before the instruction was executed.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 0 0 1</td>
<td>0 1 1 1 1</td>
<td>Rs</td>
<td>o0 1 1 1 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

CASAB variant

Applies when \(L = 1 && o0 = 0\).

CASAB \(<w_s>\), \(<w_t>\), \([<Xn|SP>{,#0}]\)

CASALB variant

Applies when \(L = 1 && o0 = 1\).

CASALB \(<w_s>\), \(<w_t>\), \([<Xn|SP>{,#0}]\)

CASB variant

Applies when \(L = 0 && o0 = 0\).

CASB \(<w_s>\), \(<w_t>\), \([<Xn|SP>{,#0}]\)

CASLB variant

Applies when \(L = 0 && o0 = 1\).

CASLB \(<w_s>\), \(<w_t>\), \([<Xn|SP>{,#0}]\)

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);
AccType ldacctype = if L == '1' then AccType.ORDERED_ATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType.ORDERED_ATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) comparevalue;
bits(8) newvalue;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
 CheckSPA1ignment();
 address = SP[];
else
 address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

X[s] = ZeroExtend(data, 32);
C6.2.41 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that no other modification of the memory location can take place between the read and write.

- CASAH and CASALH load from memory with acquire semantics.
- CASLH and CASALH store to memory with release semantics.
- CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is restored to the values held in the register before the instruction was executed.

ARMv8.1

| [31 30 29 28|27 26 25 24|23 22 21 20] | 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|---|---|---|---|---|---|
| 0 1 | 0 0 1 0 0 1 | L 1 | Rs | 00 | 1 1 1 1 | Rn | Rt |

CASAH variant

Applies when \(L == 1 \land o0 == 0 \).

CASH <Ws>, <Wt>, [Xn|SP>{,#0}]

CASALH variant

Applies when \(L == 1 \land o0 == 1 \).

CASALH <Ws>, <Wt>, [Xn|SP>{,#0}]

CASLH variant

Applies when \(L == 0 \land o0 == 0 \).

CASLH <Ws>, <Wt>, [Xn|SP>{,#0}]

CASH variant

Applies when \(L == 0 \land o0 == 0 \).

CASH <Ws>, <Wt>, [Xn|SP>{,#0}]

CASLH variant

Applies when \(L == 0 \land o0 == 1 \).

CASLH <Ws>, <Wt>, [Xn|SP>{,#0}]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);
AccType ldacctype = if L == '1' then AccType_ORDERED_ATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDERED_ATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) comparevalue;
bits(16) newvalue;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);
X[s] = ZeroExtend(data, 32);
C6.2.42 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords from memory, and compares them against the values held in the first pair of registers. If the comparison is equal, the values in the second pair of registers are written to memory. If the writes are performed, the reads and writes occur atomically such that no other modification of the memory location can take place between the reads and writes.

- CASA and CASPL load from memory with acquire semantics.
- CASPA and CASPAL store to memory with release semantics.
- CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and <W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was executed.

ARMv8.1

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15 14|10 9 |5 4|0 |
0 sz 0 0 1 0 0 0 0 0 1 L 1 Rs 0 1 1 1 1 Rn Rt

32-bit CASP variant
Applies when sz == 0 && L == 0 && o0 == 0.
CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPA variant
Applies when sz == 0 && L == 1 && o0 == 0.
CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPAL variant
Applies when sz == 0 && L == 1 && o0 == 1.
CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPL variant
Applies when sz == 0 && L == 0 && o0 == 1.
CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit CASP variant
Applies when sz == 1 && L == 0 && o0 == 0.
CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]
```
64-bit CASPA variant

Applies when \(sz == 1 && L == 1 && o0 == 0 \).
\[\text{CASPA} <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] \]

64-bit CASPAL variant

Applies when \(sz == 1 && L == 1 && o0 == 1 \).
\[\text{CASPAL} <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] \]

64-bit CASPL variant

Applies when \(sz == 1 && L == 0 && o0 == 1 \).
\[\text{CASPL} <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] \]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;
if Rs<0> == '1' then UNDEFINED;
if Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 32 << UInt(sz);
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(2*datasize) comparevalue;
bits(2*datasize) newvalue;
bits(2*datasize) data;

bits(datasize) s1 = X[s];
bits(datasize) s2 = X[s+1];
bits(datasize) t1 = X[t];
bits(datasize) t2 = X[t+1];
comparevalue = if BigEndian() then s1:s2 else s2:s1;
newvalue = if BigEndian() then t1:t2 else t2:t1;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

if BigEndian() then
 X[s] = ZeroExtend(data<2*datasize-1:datasize>, datasize);
 X[s+1] = ZeroExtend(data<datasize-1:0>, datasize);
else
 X[s] = ZeroExtend(data<datasize-1:0>, datasize);
 X[s+1] = ZeroExtend(data<2*datasize-1:datasize>, datasize);
C6.2.43 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and compares it against the value held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that no other modification of the memory location can take place between the read and write.

- CASA and CASAL load from memory with acquire semantics.
- CASL and CASAL store to memory with release semantics.
- CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is \(<Ws>\), or \(<Xs>\), is restored to the value held in the register before the instruction was executed.

ARMv8.1

32-bit CAS variant
Applies when size == 10 && L == 0 && o0 == 0.

CAS \(<Ws>\), \(<Wt>\), \([<Xn|SP>{,#0}]\)

32-bit CASA variant
Applies when size == 10 && L == 1 && o0 == 0.

CASA \(<Ws>\), \(<Wt>\), \([<Xn|SP>{,#0}]\)

32-bit CASAL variant
Applies when size == 10 && L == 1 && o0 == 1.

CASAL \(<Ws>\), \(<Wt>\), \([<Xn|SP>{,#0}]\)

32-bit CASL variant
Applies when size == 10 && L == 0 && o0 == 1.

CASL \(<Ws>\), \(<Wt>\), \([<Xn|SP>{,#0}]\)

64-bit CAS variant
Applies when size == 11 && L == 0 && o0 == 0.

CAS \(<Xs>\), \(<Xt>\), \([<Xn|SP>{,#0}]\)

64-bit CASA variant
Applies when size == 11 && L == 1 && o0 == 0.
CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL variant
Applies when size == 11 && L == 1 && o0 == 1.

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL variant
Applies when size == 11 && L == 0 && o0 == 1.

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) comparevalue;
bits(datasize) newvalue;
bits(datasize) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

X[s] = ZeroExtend(data, regsize);
C6.2.44 CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect the condition flags.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0 1 1 0 1 0 1</td>
<td>imm19</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant
Applies when \(sf = 0 \).
CBNZ \(<Wt>, <\text{label}>\)

64-bit variant
Applies when \(sf = 1 \).
CBNZ \(<Xt>, <\text{label}>\)

Decode for all variants of this encoding

integer \(t \) = UInt(Rt);
integer datasize = if \(sf == '1' \) then 64 else 32;
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

\(<Wt>\) Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
\(<Xt>\) Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
\(<\text{label}>\) Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(datasize) operand1 = X\([t] \);

if IsZero(operand1) == FALSE then
 BranchTo(PC[] + offset, BranchType_DIR);
C6.2.45 CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect condition flags.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>imm19</td>
<td>Rt</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when \(sf = 0 \).

CBZ <Wt>, <label>

64-bit variant

Applies when \(sf = 1 \).

CBZ <Xt>, <label>

Decode for all variants of this encoding

```
integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;
bis(64) offset = SignExtend(imm19:'00', 64);
```

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
- `<Xt>` Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
- `<label>` Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

```
bis(datasize) operand1 = X[t];
if IsZero(operand1) == TRUE then
    BranchTo(PC[] + offset, BranchType_DIR);
```
C6.2.46 CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of a register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant
Applies when sf == 0.

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit variant
Applies when sf == 1.

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

Decode for all variants of this encoding

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags, encoded in the "nzcv" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) operand1 = X[n];
if ConditionHolds(cond) then
 (-, flags) = AddWithCarry(operand1, imm, '0');
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when \(sf = 0 \).

\[\text{CCMN} <Wn>, <Wm>, #<nzcv>, <cond> \]

64-bit variant

Applies when \(sf = 1 \).

\[\text{CCMN} <Xn>, <Xm>, #<nzcv>, <cond> \]

Decode for all variants of this encoding

```plaintext
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
```

Assembler symbols

- \(<Wn>\): Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\): Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xn>\): Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\): Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<nzcv>\): Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags, encoded in the "nzcv" field.
- \(<cond>\): Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

```plaintext
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
if ConditionHolds(cond) then
    (-, flags) = AddWithCarry(operand1, operand2, '0');
PSTATE.<N,Z,C,V> = flags;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

- The values of the data supplied in any of its registers.
- The values of the NZCV flags.
C6.2.48 CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register value and an immediate value if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{COMP <Wn>, \#<imm>, \#<nzcv>, <cond>}
\]

64-bit variant

Applies when \(sf = 1 \).

\[
\text{COMP <Xn>, \#<imm>, \#<nzcv>, <cond>}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } \text{datasize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{bits(4) } \text{flags} &= \text{nzcv}; \\
\text{bits(datasize) } \text{imm} &= \text{ZeroExtend}(\text{imm5}, \text{datasize});
\end{align*}
\]

Assembler symbols

\(<\text{Wn}>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<\text{Xn}>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<\text{imm}>\) Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

\(<\text{nzcv}>\) Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags, encoded in the "nzcv" field.

\(<\text{cond}>\) Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

\[
\begin{align*}
\text{bits(datasize) } \text{operand1} &= X[n]; \\
\text{bits(datasize) } \text{operand2}; \\
\text{if } \text{ConditionHolds}(\text{cond}) \text{ then} \\
\text{operand2} &= \text{NOT}(\text{imm}); \\
(\text{,-, flags}) &= \text{AddWithCarry}(\text{operand1}, \text{operand2}, '1'); \\
\text{PSTATE.<N,Z,C,V> } &= \text{flags};
\end{align*}
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C6.2.49 CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers if the condition is TRUE, and an immediate value otherwise.

32-bit variant

Applies when $sf = 0$.

```
CCMP <Wn>, <Wm>, #<nzcv>, <cond>
```

64-bit variant

Applies when $sf = 1$.

```
CCMP <Xn>, <Xm>, #<nzcv>, <cond>
```

Decode for all variants of this encoding

```
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
```

Assembler symbols

- `<Wn>` Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<nzcv>` Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags, encoded in the "nzcv" field.
- `<cond>` Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

```
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
if ConditionHolds(cond) then
    operand2 = NOT(operand2);
    (~, flags) = AddWithCarry(operand1, operand2, '1');
PSTATE.<N,Z,C,V> = flags;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.50 CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

ARMv8.4

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 6 5 4 3 2 1 0 |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 1 1 0 1 0 1 0 0| 0 0 0 0 0 0 1 0 0| 0 0 0 0 0 0 0 0 0| 0 1 0 0 0 0 0 0 0| 0 0 0 0 1 1 1 1 1 1| 0 0 0 0 0 0 0 0 0 0|

CRm

Encoding

CFINV

Decode for this encoding

if !HaveFlagManipulateExt() then UNDEFINED;

Operation

PSTATE.C = NOT(PSTATE.C);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.51 CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses, based on information gathered from earlier execution within a particular execution context, from allowing later speculative execution within that context to be observable through side-channels.

For more information, see CFP RCTX.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td>op1</td>
<td></td>
<td>CRn</td>
<td></td>
<td>CRm</td>
<td></td>
<td>op2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

CFP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler symbols

<xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
C6.2.52 CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINC instruction. This means that:

- The encodings in this description are named to match the encodings of CSINC.
- The description of CSINC gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{CINC} \langle \text{Wd} \rangle, \langle \text{Wn} \rangle, \langle \text{cond} \rangle
\]

is equivalent to

\[
\text{CSINC} \langle \text{Wd} \rangle, \langle \text{Wn} \rangle, \langle \text{Wn} \rangle, \text{invert}(<\text{cond}>)
\]

and is the preferred disassembly when \(Rn = Rm \).

64-bit variant

Applies when \(sf = 1 \).

\[
\text{CINC} \langle \text{Xd} \rangle, \langle \text{Xn} \rangle, \langle \text{cond} \rangle
\]

is equivalent to

\[
\text{CSINC} \langle \text{Xd} \rangle, \langle \text{Xn} \rangle, \langle \text{Xn} \rangle, \text{invert}(<\text{cond}>)
\]

and is the preferred disassembly when \(Rn = Rm \).

Assembler symbols

- \(\langle \text{Wd} \rangle \) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle \text{Wn} \rangle \) is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(\langle \text{Xd} \rangle \) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle \text{Xn} \rangle \) is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(\langle \text{cond} \rangle \) is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.53 CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSINV instruction. This means that:

- The encodings in this description are named to match the encodings of CSINV.
- The description of CSINV gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{CINV} \ <\mathit{Wd}> , \ <\mathit{Wn}> , \ <\mathit{cond}> \\
\]

is equivalent to

\[
\text{CSINV} \ <\mathit{Wd}> , \ <\mathit{Wn}> , \ <\mathit{Wn}> , \ \text{invert}(<\mathit{cond}>)
\]

and is the preferred disassembly when \(\mathit{Rn} = \mathit{Rm} \).

64-bit variant

Applies when \(sf = 1 \).

\[
\text{CINV} \ <\mathit{Xd}> , \ <\mathit{Xn}> , \ <\mathit{cond}> \\
\]

is equivalent to

\[
\text{CSINV} \ <\mathit{Xd}> , \ <\mathit{Xn}> , \ <\mathit{Xn}> , \ \text{invert}(<\mathit{cond}>)
\]

and is the preferred disassembly when \(\mathit{Rn} = \mathit{Rm} \).

Assembler symbols

- \(<\mathit{Wd}>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\mathit{Wn}>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(<\mathit{Xd}>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\mathit{Xn}>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(<\mathit{cond}>\) Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.54 CLREX

Clear Exclusive clears the local monitor of the executing PE.

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 6 5 4 3 2 1 0 |
| 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 |

Encoding
CLREX {<imm>}

Decode for this encoding
// CRm field is ignored

Assembler symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the "CRm" field.

Operation

ClearExclusiveLocal(ProcessorID());
C6.2.55  CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the most significant bit of the register, and writes the result to the destination register. This count does not include the most significant bit of the source register.

32-bit variant
Applies when \( sf = 0 \).

\[ \text{CLS} \ <Wd>, \ <Wn> \]

64-bit variant
Applies when \( sf = 1 \).

\[ \text{CLS} \ <Xd>, \ <Xn> \]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{integer } & d = \text{UInt}(Rd); \\
\text{integer } & n = \text{UInt}(Rn); \\
\text{integer } & \text{datasize} = \text{if } sf = '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

**Assembler symbols**

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Wn>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

**Operation**

\[
\begin{align*}
\text{integer } & \text{result}; \\
\text{bits}(\text{datasize}) & \text{operand1} = X[n]; \\
\text{result} &= \text{CountLeadingSignBits}(\text{operand1}); \\
X[d] &= \text{result}\cdot\text{datasize}-1:0;
\end{align*}
\]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.56  CLZ

Count Leading Zeros counts the number of binary zero bits before the first binary one bit in the value of the source register, and writes the result to the destination register.

32-bit variant
Applies when \( sf = 0 \).

CLZ \(<Wd>, <Wn>\)

64-bit variant
Applies when \( sf = 1 \).

CLZ \(<Xd>, <Xn>\)

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

Assembler symbols

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Wn>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

\[
\begin{align*}
\text{integer } \text{result}; \\
\text{bits(datasize)} \text{ operand1} &= X[n]; \\
\text{result} &= \text{CountLeadingZeroBits(operand1)}; \\
X[d] &= \text{result} \cdot \text{datasize-1:0};
\end{align*}
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.57  CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount. The argument that is extended from the \(<Rm>\) register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (extended register) instruction. This means that:

- The encodings in this description are named to match the encodings of ADDS (extended register).
- The description of ADDS (extended register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf == 0\).

\[
\text{CMN} <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
\]

is equivalent to

\[
\text{ADDS} WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
\]

and is always the preferred disassembly.

64-bit variant

Applies when \(sf == 1\).

\[
\text{CMN} <Xn|SP>, <R><m>{, <extend> {#<amount>}}
\]

is equivalent to

\[
\text{ADDS} XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}
\]

and is always the preferred disassembly.

Assembler symbols

- \(<Wn|WSP>\) Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xn|SP>\) Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<R>\) Is a width specifier, encoded in the "option" field. It can have the following values:
  - \(w\) when option = 00x
  - \(w\) when option = 010
  - \(x\) when option = x11
  - \(w\) when option = 10x
  - \(w\) when option = 110
- \(<m>\) Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
<extend>

For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- **UXTB** when option = 000
- **UXTH** when option = 001
- **LSL|UXTW** when option = 010
- **UXTX** when option = 011
- **SXTB** when option = 100
- **SXTH** when option = 101
- **SXTW** when option = 110
- **SXTX** when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- **UXTB** when option = 000
- **UXTH** when option = 001
- **UXTW** when option = 010
- **LSL|UXTX** when option = 011
- **SXTB** when option = 100
- **SXTH** when option = 101
- **SXTW** when option = 110
- **SXTX** when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount>

Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not LSL.

### Operation

The description of **ADDS (extended register)** gives the operational pseudocode for this instruction.

### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.58   CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of ADDS (immediate).
- The description of ADDS (immediate) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( \text{sf} = 0 \).

\[
\text{CMN \text{<Wn|WSP>}, \#<imm>\{, <shift>\}}
\]

is equivalent to

\[
\text{ADDS WZR, \text{<Wn|WSP>}, \#<imm>\{, <shift>\}}
\]

and is always the preferred disassembly.

### 64-bit variant

Applies when \( \text{sf} = 1 \).

\[
\text{CMN \text{<Xn|SP>}, \#<imm>\{, <shift>\}}
\]

is equivalent to

\[
\text{ADDS XZR, \text{<Xn|SP>}, \#<imm>\{, <shift>\}}
\]

and is always the preferred disassembly.

### Assembler symbols

- \(<\text{Wn|WSP}>\) is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<\text{Xn|SP}>\) is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<\text{imm}>\) is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
- \(<\text{shift}>\) is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh" field. It can have the following values:
  - LSL #0 when \( \text{sh} = 0 \)
  - LSL #12 when \( \text{sh} = 1 \)

### Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.59  CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ADDS (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of ADDS (shifted register).
- The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when $sf == 0$.

\[
\text{CMN} <Wn>, <Wm>{, <shift> #<amount>}
\]

is equivalent to

\[
\text{ADDS} WZR, <Wn>, <Wm> {, <shift> #<amount>}
\]

and is always the preferred disassembly.

64-bit variant

Applies when $sf == 1$.

\[
\text{CMN} <Xn>, <Xm>{, <shift> #<amount>}
\]

is equivalent to

\[
\text{ADDS} XZR, <Xn>, <Xm> {, <shift> #<amount>}
\]

and is always the preferred disassembly.

Assembler symbols

- $<Wn>$: Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Wm>$: Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $<Xn>$: Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Xm>$: Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $<\text{shift}>$: Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:
  - LSL when shift = 00
  - LSR when shift = 01
  - ASR when shift = 10

The encoding $shift = 11$ is reserved.

- $<\text{amount}>$: For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
  - For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.60 CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (extended register) instruction. This means that:

- The encodings in this description are named to match the encodings of SUBS (extended register).
- The description of SUBS (extended register) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf == 0 \).

\[
\text{CMP} \ <Wn|WSP>, \ <Wm>{, \ <\text{extend}\ {\#<\text{amount}>}}} \\
\text{is equivalent to} \\
\text{SUBS} \ WZR, \ <Wn|WSP>, \ <Wm>{, \ <\text{extend}\ {\#<\text{amount}>}}}
\]

and is always the preferred disassembly.

### 64-bit variant

Applies when \( sf == 1 \).

\[
\text{CMP} \ <Xn|SP>, \ <R><m>{, \ <\text{extend}\ {\#<\text{amount}>}}} \\
\text{is equivalent to} \\
\text{SUBS} \ XZR, \ <Xn|SP>, \ <R><m>{, \ <\text{extend}\ {\#<\text{amount}>}}}
\]

and is always the preferred disassembly.

### Assembler symbols

- \(<\text{Wn}|WSP>\) Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<\text{Wm}>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{Xn}|SP>\) Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<\text{R}>\) Is a width specifier, encoded in the "option" field. It can have the following values:
  \[\begin{align*}
  W & \text{ when option} = 00x \\
  W & \text{ when option} = 010 \\
  X & \text{ when option} = x11 \\
  W & \text{ when option} = 10x \\
  W & \text{ when option} = 110 \\
  \end{align*}\]
- \(<\text{m}>\) Is the number [0-30] of the second general-purpose register or the name ZR (31), encoded in the "Rm" field.
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- LSL|UXTW when option = 010
- UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- UXTW when option = 010
- LSL|UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not LSL.

**Operation**

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.61   CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (immediate) instruction. This means that:

• The encodings in this description are named to match the encodings of SUBS (immediate).
• The description of SUBS (immediate) gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( sf = 0 \).

\[
\text{CMP} \ <Wn|WSP>, \ #<imm>{, <shift>} \]

is equivalent to

\[
\text{SUBS} \ WZR, \ <Wn|WSP>, \ #<imm> \ {, <shift>} \]

and is always the preferred disassembly.

64-bit variant

Applies when \( sf = 1 \).

\[
\text{CMP} \ <Xn|SP>, \ #<imm>{, <shift>} \]

is equivalent to

\[
\text{SUBS} \ XZR, \ <Xn|SP>, \ #<imm> \ {, <shift>} \]

and is always the preferred disassembly.

Assembler symbols

\(<Wn|WSP>\) Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

\(<Xn|SP>\) Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

\(<imm>\) Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

\(<shift>\) Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh" field. It can have the following values:

- LSL #0 when \( sh = 0 \)
- LSL #12 when \( sh = 1 \)

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.62  CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of SUBS (shifted register).
- The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf = 0 \).

CMP \(<Wn>, <Wm>{, <shift> \#<amount>}\)

is equivalent to

SUBS WZR, \(<Wn>, <Wm>{, <shift> \#<amount>}\)

and is always the preferred disassembly.

### 64-bit variant

Applies when \( sf = 1 \).

CMP \(<Xn>, <Xm>{, <shift> \#<amount>}\)

is equivalent to

SUBS XZR, \(<Xn>, <Xm>{, <shift> \#<amount>}\)

and is always the preferred disassembly.

### Assembler symbols

- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}>\) Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:
  - LSL when \( \text{shift} = 00 \)
  - LSR when \( \text{shift} = 01 \)
  - ASR when \( \text{shift} = 10 \)
  - The encoding \( \text{shift} = 11 \) is reserved.
- \(<\text{amount}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
  - For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
**Operation**

The description of **SUBS (shifted register)** gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.63 CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This instruction is an alias of the SUBPS instruction. This means that:

- The encodings in this description are named to match the encodings of SUBPS.
- The description of SUBPS gives the operational pseudocode for this instruction.

ARMv8.5

\[
\begin{array}{cccccccccccccccc}
\text{31} & \text{30} & \text{29} & \text{28} & \text{27} & \text{26} & \text{25} & \text{24} & \text{23} & \text{22} & \text{21} & \text{20} & \text{15} & \text{14} & \text{13} & \text{12} & \text{11} & \text{10} & \text{9} & \text{5} & \text{4} & \text{0} \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \text{Xn} & 0 & 0 & 0 & 0 & \text{Xn} & 1 & 1 & 1 & 1 & \text{Xd} \\
\end{array}
\]

**Encoding**

CMPP `<Xn|SP>, <Xm|SP>`

is equivalent to

SUBPS XZR, `<Xn|SP>, <Xm|SP>`

and is always the preferred disassembly.

**Assembler symbols**

- `<Xn|SP>` is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<Xm|SP>` is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm" field.

**Operation**

The description of SUBPS gives the operational pseudocode for this instruction.
C6.2.64  CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is TRUE, and otherwise returns the value of the source register.

This instruction is an alias of the CSNEG instruction. This means that:

- The encodings in this description are named to match the encodings of CSNEG.
- The description of CSNEG gives the operational pseudocode for this instruction.

32-bit variant

Applies when $sf == 0$.

CNEG $<Wd>$, $<Wn>$, $<cond>$

is equivalent to

CSNEG $<Wd>$, $<Wn>$, $<Wn>$, invert($<cond>$)

and is the preferred disassembly when $Rn == Rm$.

64-bit variant

Applies when $sf == 1$.

CNEG $<Xd>$, $<Xn>$, $<cond>$

is equivalent to

CSNEG $<Xd>$, $<Xn>$, $<Xn>$, invert($<cond>$)

and is the preferred disassembly when $Rn == Rm$.

Assembler symbols

$<Wd>$  Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Wn>$  Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

$<Xd>$  Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Xn>$  Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

$<cond>$  Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.65   CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions, based on information gathered from earlier execution within a particular execution context, from allowing later speculative execution within that context to be observable through side-channels.

For more information, see CPP RCTX.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

**ARMv8.5**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Encoding**

CPP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

**Assembler symbols**

<Xt>    Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

**Operation**

The description of SYS gives the operational pseudocode for this instruction.
C6.2.66  **CRC32B, CRC32H, CRC32W, CRC32X**

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.

--- Note ---

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

---

**CRC32B variant**

Applies when \( sf = 0 \land sz = 00 \).

\[
\text{CRC32B } \langle Wd \rangle, \langle Wn \rangle, \langle Xm \rangle
\]

**CRC32H variant**

Applies when \( sf = 0 \land sz = 01 \).

\[
\text{CRC32H } \langle Wd \rangle, \langle Wn \rangle, \langle Xm \rangle
\]

**CRC32W variant**

Applies when \( sf = 0 \land sz = 10 \).

\[
\text{CRC32W } \langle Wd \rangle, \langle Wn \rangle, \langle Xm \rangle
\]

**CRC32X variant**

Applies when \( sf = 1 \land sz = 11 \).

\[
\text{CRC32X } \langle Wd \rangle, \langle Wn \rangle, \langle Xm \rangle
\]

**Decode for all variants of this encoding**

```plaintext
if !HaveCRCExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' & sz != '11' then UNDEFINED;
if sf == '0' & sz == '11' then UNDEFINED;
integer size = 8 << UInt(sz);```

Assembler symbols

- \(<\text{Wd}>\) Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
- \(<\text{Wn}>\) Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.
- \(<\text{Xm}>\) Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
Operation

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits(32) poly = 0x04C11DB7<31:0>;

bits(32+size) tempacc = BitReverse(acc):Zeros(size);
bits(size+32) tempval = BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

<hm> is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.
C6.2.67 CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.

--- Note ---
ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

CRC32CB variant
Applies when sf == 0 && sz == 00.
CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH variant
Applies when sf == 0 && sz == 01.
CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW variant
Applies when sf == 0 && sz == 10.
CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX variant
Applies when sf == 1 && sz == 11.
CRC32CX <Wd>, <Wn>, <Xm>

Decode for all variants of this encoding
if !HaveCRCExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' && sz != '11' then UNDEFINED;
if sf == '0' && sz == '11' then UNDEFINED;
integer size = 8 << UInt(sz);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
<Rm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

\[
\begin{align*}
\text{bits(32) acc = } \text{X}[n]; & \quad // \text{accumulator} \\
\text{bits(size) val = } \text{X}[m]; & \quad // \text{input value} \\
\text{bits(32) poly = 0x1EDC6F41<31:0>;} & \\
\text{bits(32+size) tempacc = BitReverse(acc):Zeros(size);} & \\
\text{bits(size+32) tempval = BitReverse(val):Zeros(32);} & \\
\end{align*}
\]

// Poly32Mod2 on a bitstring does a polynomial Modulus over \{0,1\} operation
\[
\text{X}[d] = \text{BitReverse(Poly32Mod2(tempacc EOR tempval, poly))};
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.68 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value prediction.

No instruction other than branch instructions appearing in program order after the CSDB can be speculatively executed using the results of any:

- Data value predictions of any instructions.
- PSTATE.\{N,Z,C,V\} predictions of any instructions other than conditional branch instructions appearing in program order before the CSDB that have not been architecturally resolved.
- Predictions of SVE predication state for any SVE instructions.

____ Note ______

For purposes of the definition of CSDB, PSTATE.\{N,Z,C,V\} is not considered a data value. This definition permits:

- Control flow speculation before and after the CSDB.
- Speculative execution of conditional data processing instructions after the CSDB, unless they use the results of data value or PSTATE.\{N,Z,C,V\} predictions of instructions appearing in program order before the CSDB that have not been architecturally resolved.

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 | 7  5 4 3 2 1 0 ]
| 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 |
CRm   op2
```

Encoding

CSDB

Decode for this encoding

// Empty.

Operation

ConsumptionOfSpeculativeDataBarrier();
C6.2.69 CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If the condition is false, it writes the value of the second source register to the destination register.

32-bit variant

Applies when sf == 0.

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit variant

Applies when sf == 1.

CSEL <Xd>, <Xn>, <Xm>, <cond>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Asmmler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
 result = operand1;
else
 result = operand2;

X[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.70 CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This instruction is an alias of the CSINC instruction. This means that:

- The encodings in this description are named to match the encodings of CSINC.
- The description of CSINC gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

CSET \(<Wd>, <\text{cond}>\)

is equivalent to

CSINC \(<Wd>, WZR, WZR, \text{invert(<\text{cond}>)}\)

and is always the preferred disassembly.

64-bit variant

Applies when \(sf = 1 \).

CSET \(<Xd>, <\text{cond}>\)

is equivalent to

CSINC \(<Xd>, XZR, XZR, \text{invert(<\text{cond}>)}\)

and is always the preferred disassembly.

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{cond}>\) Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.71 CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits to 0.

This instruction is an alias of the CSINV instruction. This means that:

• The encodings in this description are named to match the encodings of CSINV.
• The description of CSINV gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

CSETM <Wd>, <cond>

is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit variant

Applies when sf == 1.

CSETM <Xd>, <cond>

is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<cond>` Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.72 CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC and CSET. See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when $sf == 0$.

CSINC $\langle Wd \rangle$, $\langle Wn \rangle$, $\langle Wm \rangle$, $\langle \text{cond} \rangle$

64-bit variant
Applies when $sf == 1$.

CSINC $\langleXd \rangle$, $\langleXn \rangle$, $\langle Xm \rangle$, $\langle \text{cond} \rangle$

Decode for all variants of this encoding

integer $d = \text{UInt}(Rd)$;
integer $n = \text{UInt}(Rn)$;
integer $m = \text{UInt}(Rm)$;
integer $\text{datasize} = \text{if} \; sf == '1' \; \text{then} \; 64 \; \text{else} \; 32$;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINC</td>
<td>$Rm != '11111' && \text{cond} != '111x' && Rn != '11111' && Rn == Rm$</td>
</tr>
<tr>
<td>CSET</td>
<td>$Rm == '11111' && \text{cond} != '111x' && Rn == '11111'$</td>
</tr>
</tbody>
</table>

Assembler symbols

$\langle Wd \rangle$ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

$\langle Wn \rangle$ Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

$\langle Wm \rangle$ Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

$\langleXd \rangle$ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

$\langle Xn \rangle$ Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

$\langle Xm \rangle$ Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

$\langle \text{cond} \rangle$ Is one of the standard conditions, encoded in the "cond" field in the standard way.
Operation

```
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
    result = operand1;
else
    result = operand2 + 1;

X[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.73 CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV and CSETM. See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when $sf == 0$.

\[
\text{CSINV } \langle Wd \rangle, \langle Wn \rangle, \langle Wm \rangle, \langle \text{cond} \rangle
\]

64-bit variant
Applies when $sf == 1$.

\[
\text{CSINV } \langleXd \rangle, \langleXn \rangle, \langleXm \rangle, \langle \text{cond} \rangle
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } datasize &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINV</td>
<td>$\text{Rm} == '11111' && \text{cond} != '111x' && \text{Rn} != '11111' && \text{Rn} == \text{Rm}$</td>
</tr>
<tr>
<td>CSETM</td>
<td>$\text{Rm} == '11111' && \text{cond} != '111x' && \text{Rn} == '11111'$</td>
</tr>
</tbody>
</table>

Assembler symbols

- $\langle Wd \rangle$: Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $\langle Wn \rangle$: Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $\langle Wm \rangle$: Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $\langleXd \rangle$: Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $\langleXn \rangle$: Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $\langleXm \rangle$: Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- $\langle \text{cond} \rangle$: Is one of the standard conditions, encoded in the "cond" field in the standard way.
Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
 result = operand1;
else
 result = NOT(operand2);

X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.74 CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{CSNEG} \ <Wd>, \ <Wn>, \ <Wm>, \ <\text{cond}>
\]

64-bit variant

Applies when \(sf = 1 \).

\[
\text{CSNEG} \ <Xd>, \ <Xn>, \ <Xm>, \ <\text{cond}>
\]

Decode for all variants of this encoding

\[
\text{integer } d = \text{UInt}(Rd);
\text{integer } n = \text{UInt}(Rn);
\text{integer } m = \text{UInt}(Rm);
\text{integer } \text{datasize} = \text{if } sf = '1' \text{ then } 64 \text{ else } 32;
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNEG</td>
<td>(\text{cond} != '111x' && Rn == Rm)</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{cond}>\) Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

\[
\text{bits(datasize) result};
\text{bits(datasize) operand1} = X[n];
\text{bits(datasize) operand2} = X[m];
\text{if ConditionHolds(cond) then}
\]

result = operand1;
else
 result = NOT(operand2);
result = result + 1;

X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.75 DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

Encoding

DC <dc_op>, <Xt>

is equivalent to

SYS #<op1>, C7, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in the "op1:CRm:op2" field. It can have the following values:

- IVAC when op1 = 000, CRm = 0110, op2 = 001
- ISW when op1 = 000, CRm = 0110, op2 = 010
- CSW when op1 = 000, CRm = 1010, op2 = 010
- CISW when op1 = 000, CRm = 1110, op2 = 010
- ZVA when op1 = 011, CRm = 0100, op2 = 001
- CVAC when op1 = 011, CRm = 1010, op2 = 001
- CVAU when op1 = 011, CRm = 1010, op2 = 001
- CIVAC when op1 = 011, CRm = 1110, op2 = 001
- GVA when op1 = 011, CRm = 0100, op2 = 011
- GZVA when op1 = 011, CRm = 0100, op2 = 100
- CGVAC when op1 = 011, CRm = 1010, op2 = 101
- CGDVAC when op1 = 011, CRm = 1010, op2 = 110
- CGSW when op1 = 000, CRm = 1010, op2 = 100
- CGDSW when op1 = 000, CRm = 1110, op2 = 110
- CIGSW when op1 = 000, CRm = 1110, op2 = 100
- CIGDSW when op1 = 000, CRm = 1110, op2 = 110

When FEAT_MTE is implemented, the following values are also valid:

- IGVAC when op1 = 000, CRm = 0110, op2 = 011
- IGSW when op1 = 000, CRm = 0110, op2 = 100
- IGDVAC when op1 = 000, CRm = 0110, op2 = 101
- IGDSW when op1 = 000, CRm = 0110, op2 = 110
- CGSW when op1 = 000, CRm = 1010, op2 = 100
- CGDSW when op1 = 000, CRm = 1110, op2 = 110
- GVA when op1 = 011, CRm = 0100, op2 = 011
- GZVA when op1 = 011, CRm = 0100, op2 = 100
- CGVAC when op1 = 011, CRm = 1010, op2 = 011
- CGDVAC when op1 = 011, CRm = 1010, op2 = 101
CGVAP when op1 = 011, CRm = 1100, op2 = 011
CGDVAP when op1 = 011, CRm = 1100, op2 = 101
CGVADP when op1 = 011, CRm = 1101, op2 = 011
CGDVADP when op1 = 011, CRm = 1101, op2 = 101
CIGVAC when op1 = 011, CRm = 1110, op2 = 011
CIGDVAC when op1 = 011, CRm = 1110, op2 = 101

When FEAT_DPB is implemented, the following value is also valid:
CVAP when op1 = 011, CRm = 1100, op2 = 001

When FEAT_DPB2 is implemented, the following value is also valid:
CVADP when op1 = 011, CRm = 1101, op2 = 001

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.
C6.2.76 DCPS1

Debug Change PE State to EL1, when executed in Debug state:

- If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.
- Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

- EL1 if the instruction is executed at EL0.
- Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:

- ELR_ELx becomes UNKNOWN.
- SPSR_ELx becomes UNKNOWN.
- ESR_ELx becomes UNKNOWN.
- DLR_EL0 and DSPSR_EL0 become UNKNOWN.
- The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see *DCPS<n>* on page H2-7042.

| 31 30 29 28|27 26 25 24|23 22 21 20| 5 4 |3 2 1 0 | imm16 | 0 0 0 |0 1 | LL |
|------------------|------------------|------------------|---|---|---|---|---|
| 1 1 0 1 0 1 0 0 | 1 0 1 | imm16 | 0 0 0 0 1 |

Encoding

DCPS1 {#<imm>}

Decode for this encoding

if !Halted() then UNDEFINED;

Assembler symbols

<iimm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction(LL);
C6.2.77 DCPS2

Debug Change PE State to EL2, when executed in Debug state:

- If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.
- Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

- EL2 if the instruction is executed at an exception level that is not EL3.
- EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

- ELR_ELx becomes UNKNOWN.
- SPSR_ELx becomes UNKNOWN.
- ESR_ELx becomes UNKNOWN.
- DLR_EL0 and DSPSR_EL0 become UNKNOWN.
- The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:

- All exception levels if EL2 is not implemented.
- At EL0 and EL1 if EL2 is disabled in the current Security state.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS<n> on page H2-7042.

Encoding

DCPS2 {<imm>}

Decode for this encoding

if !Halted() then UNDEFINED;

Assembler symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction(LL);
C6.2.78 DCPS3

Debug Change PE State to EL3, when executed in Debug state:

- If executed at EL3 selects SP_EL3.
- Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

- ELR_EL3 becomes UNKNOWN.
- SPSR_EL3 becomes UNKNOWN.
- ESR_EL3 becomes UNKNOWN.
- DLR_EL0 and DSPSR_EL0 become UNKNOWN.
- The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

- EDSR.SDD == 1.
- EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS<n> on page H2-7042.

```
   |31 30 29 28|27 26 25 24|23 22 21 20|   |   | 5 4 3 2 1 0 |
   |1 1 0 1 0 1 0 0 |1 0 1 |imm16| 0 0 0 |1 1 |

Encoding
DCPS3 {#imm}

Decode for this encoding
if !Halted() then UNDEFINED;

Assembler symbols
<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation
DCPSInstruction(LL);
C6.2.79   DGH

DGH is a hint instruction. A DGH instruction is not expected to be performance optimal to merge memory accesses with Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint instruction with any memory accesses appearing after the hint instruction into a single memory transaction on an interconnect.

ARMv8.6

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 5 4 3 2 1 0]
 1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1
```

Encoding

DGH

Decode for this encoding

```c
if !HaveDGHExt() then EndOfInstruction();
```

Operation

```c
Hint_DGH();
```
C6.2.80   DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data Memory Barrier (DMB) on page B2-135.

Encoding

DMB <option>|#<imm>

Decode for this encoding

case CRm<3:2> of
  when '00' domain = MBReqDomain_OuterShareable;
  when '01' domain = MBReqDomain_Nonshareable;
  when '10' domain = MBReqDomain_InnerShareable;
  when '11' domain = MBReqDomain_FullSystem;

case CRm<1:0> of
  when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
  when '01' types = MBReqTypes_Reads;
  when '10' types = MBReqTypes_Writes;
  when '11' types = MBReqTypes_All;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY     Full system is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = 0b1111.

ST     Full system is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = 0b1110.

LD     Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1101.

ISH    Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST  Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD  Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1001.

NSH    Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST  Non-shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD  Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0101.

OSH    Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.
OSHST  Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB) on page B2-135 or see Data Synchronization Barrier (DSB) on page B2-138.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

**Operation**

```
DataMemoryBarrier(domain, types);
```
C6.2.81 DRPS

Debug restore process state

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |
 1 1 0 1 0 1 1 |0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 |0 0 0 0 0
```

**Encoding**

DRPS

**Decode for this encoding**

```
if !Halted() || PSTATE.EL == EL0 then UNDEFINED;
```

**Operation**

```
DRPSInstruction();
```
C6.2.82 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data Synchronization Barrier (DSB) on page B2-138.

![encoding](image)

Encoding

DSB \langle option|\#\langle imm\rangle\rangle

Decode for this encoding

case CRm<3:2> of
  when '00' domain = MBReqDomain_OuterShareable;
  when '01' domain = MBReqDomain_Nonshareable;
  when '10' domain = MBReqDomain_InnerShareable;
  when '11' domain = MBReqDomain_FullSystem;

  case CRm<1:0> of
    when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
    when '01' types = MBReqTypes_Reads;
    when '10' types = MBReqTypes_Writes;
    when '11' types = MBReqTypes_All;

Assembler symbols

\langle option\rangle Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = \texttt{0b1111}.

ST Full system is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = \texttt{0b1110}.

LD Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = \texttt{0b1101}.

ISH Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as CRm = \texttt{0b1011}.

ISHST Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = \texttt{0b1010}.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = \texttt{0b1001}.

NSH Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier instruction. Encoded as CRm = \texttt{0b0111}.

NSHST Non-shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = \texttt{0b0110}.

NSHLD Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = \texttt{0b0101}.

OSH Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as CRm = \texttt{0b0011}.
OSHST  Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD  Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 0b0100, that are not listed above are reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB) on page B2-135 or see Data Synchronization Barrier (DSB) on page B2-138.

Note
The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

<imm>  Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataSynchronizationBarrier(domain, types);
C6.2.83   DVP

Data Value Prediction Restriction by Context prevents data value predictions, based on information gathered from earlier execution within an particular execution context, from allowing later speculative execution within that context to be observable through side-channels.

For more information, see DVP RCTX.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

ARMv8.5

```
| | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 12 | 11 | 8 | 7 | 5 | 4 | 0 | | | | |
|---|
| L | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| op1 |
| CRn |
| CRm |
| op2 |
| Rt |
```

**Encoding**

DVP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

**Assembler symbols**

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

**Operation**

The description of SYS gives the operational pseudocode for this instruction.
C6.2.84 EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an optionally-shifted register value, and writes the result to the destination register.

32-bit variant

Applies when \( sf = 0 \).

\[
\text{EON} \ <Wd>, \ <Wn>, \ <Wm>\{, \ <\text{shift}> \ #\text{amount}\} \\
\]

64-bit variant

Applies when \( sf = 1 \).

\[
\text{EON} \ <Xd>, \ <Xn>, \ <Xm>\{, \ <\text{shift}> \ #\text{amount}\} \\
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
&\quad \text{if } sf = '0' \& \& \text{imm6<5>} == '1' \text{ then UNDEFINED}; \\
\text{ShiftType } &\text{shift}_\text{type} = \text{DecodeShift}(\text{shift}); \\
\text{integer } &\text{shift}_\text{amount} = \text{UInt}(\text{imm6});
\end{align*}
\]

Assembler symbols

- \( <Wd> \): Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( <Wn> \): Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \( <Wm> \): Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \( <Xd> \): Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( <Xn> \): Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \( <Xm> \): Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \( <\text{shift}> \): Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
  - LSL when \( \text{shift} = 00 \)
  - LSR when \( \text{shift} = 01 \)
  - ASR when \( \text{shift} = 10 \)
  - ROR when \( \text{shift} = 11 \)
- \( <\text{amount}> \): For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
  For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
operand2 = NOT(operand2);
result = operand1 EOR operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.85 EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes the result to the destination register.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>16</th>
<th>15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when \( sf == 0 \&\& N == 0 \).

\[ \text{EOR} \ <Wd|WSP>, \ <Wn>, \ #<imm> \]

64-bit variant

Applies when \( sf == 1 \).

\[ \text{EOR} \ <Xd|SP>, \ <Xn>, \ #<imm> \]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } datasize &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{bits}(\text{datasize}) \ imm; \\
\text{if } sf == '0' \&\& N != '0' \text{ then UNDEFINED}; \\
(\text{imm}, -) &= \text{DecodeBitMasks}(N, \text{imms}, \text{immr}, \text{TRUE});
\end{align*}
\]

Assembler symbols

\(<Wd|WSP>\) Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

\(<\text{imm}>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

\(<Xd|SP>\) Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

\(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

\(<\text{imm}>\) For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

\[
\begin{align*}
&\text{bits}(\text{datasize}) \ result; \\
&\text{bits}(\text{datasize}) \ \text{operand1} = X[n]; \\
&\text{result} = \text{operand1} \ \text{EOR} \ \text{imm}; \\
&\text{if } d == 31 \text{ then} \\
&\quad \text{SP}[\] = result; \\
&\text{else} \\
&\quad X[d] = \text{result};
\end{align*}
\]
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
## C6.2.86  EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value, and writes the result to the destination register.

### 32-bit variant

Applies when \( sf == 0 \).

\[
\text{EOR } <Wd>, <Wn>, <Wm\{, <shift> \#<amount>}\]

### 64-bit variant

Applies when \( sf == 1 \).

\[
\text{EOR } <Xd>, <Xn>, <Xm\{, <shift> \#<amount}>\]

### Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then 64 else 32; } \\
&\text{if } sf == '0' \&\& \text{imm6}{5} == '1' \text{ then UNDEFINED; } \\
\text{ShiftType } \text{shift_type} &= \text{DecodeShift(shift)}; \\
\text{integer } \text{shift_amount} &= \text{UInt}(\text{imm6});
\end{align*}
\]

### Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

\(<\text{shift}>\) Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- \(\text{LSL}\) when \(\text{shift} = 00\)
- \(\text{LSR}\) when \(\text{shift} = 01\)
- \(\text{ASR}\) when \(\text{shift} = 10\)
- \(\text{ROR}\) when \(\text{shift} = 11\)

\(<\text{amount}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

\[
\text{bits}(\text{datasize}) \text{ operand}_1 = X[n]; \\
\text{bits}(\text{datasize}) \text{ operand}_2 = \text{ShiftReg}(m, \text{shift\_type}, \text{shift\_amount}); \\
\text{result} = \text{operand}_1 \text{ EOR} \text{ operand}_2; \\
X[d] = \text{result};
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.87   ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from AArch64 state on page D1-2345.

ERET is UNDEFINED at EL0.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 1</td>
<td>0 1 0 0</td>
<td>1 1 1 1 1</td>
<td>0 0 0 0</td>
<td>0 0 1 1 1</td>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

ERET

Decode for this encoding

```c
if PSTATE.EL == EL0 then UNDEFINED;
```

Operation

```c
AArch64.CheckForERetTrap(FALSE, TRUE);
bits(64) target = ELR[];
AArch64.ExceptionReturn(target, SPSR[]);
```
C6.2.88   ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches to the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from AArch64 state on page D1-2345.

ERETAA and ERETAB are UNDEFINED at EL0.

ARMv8.3

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 0 1 1 | 0 1 0 1 1 1 1 1 0 0 0 0 1 | M 1 1 1 1 1 |
A  Rn  op4

**ERETAA variant**

Applies when M == 0.

ERETAA

**ERETAB variant**

Applies when M == 1.

ERETAB

**Decode for all variants of this encoding**

```plaintext
if PSTATE.E == EL0 then UNDEFINED;
boolean use_key_a = (M == '0');
if !HavePACExt() then
 UNDEFINED;
```

**Operation**

```plaintext
AArch64.CheckForERetTrap(TRUE, use_key_a);
bits(64) target;
if use_key_a then
 target = AuthIA(ELR[], SP[], TRUE);
else
 target = AuthIB(ELR[], SP[], TRUE);
AArch64.ExceptionReturn(target, SPSR[]);
```
C6.2.89   ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and VDISR_EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

ARMv8.2

\[
\begin{array}{ccccccccc}
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Encoding

ESB

Decode for this encoding

if !HaveRASExt() then EndOfInstruction();

Operation

SynchronizeErrors();
AArch64.ESB0peration();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESB0peration();
TakeUnmaskedSErrorInterrupts();
C6.2.90 EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when $sf == 0 \&\& N == 0 \&\& imms == 0xxxxx$.

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit variant
Applies when $sf == 1 \&\& N == 1$.

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

**Decode for all variants of this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
integer lsb;

if N != sf then UNDEFINED;
if sf == '0' \&\& imms<5> == '1' then UNDEFINED;
lsb = UInt(imms);
```

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROR (immediate)</td>
<td>Rn == Rm</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `< Xm>` Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<lsb>` For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31, encoded in the "imms" field.
  For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63, encoded in the "imms" field.
Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(2*datasize) concat = operand1:operand2;
result = concat<lsb+datasize-1:lsb>;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.91   GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source register, writing the new excluded set to the destination register.

ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 1 0 1 0 1 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Encoding**

GMI: `<Xd>`, `<Xn|SP>`, `<Xm>`

**Decode for this encoding**

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

**Assembler symbols**

- `<Xd>` is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.
- `<Xn|SP>` is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<Xm>` is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

**Operation**

bits(64) address = if n == 31 then SP[] else X[n];
bits(64) mask = X[m];
bits(4) tag = AArch64.AllocationTagFromAddress(address);
mask<UInt(tag)> = '1';
X[d] = mask;
C6.2.92   HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must not be used by software.

Encoding

HINT #<imm>

Decode for this encoding

SystemHintOp op;

case CRm:op2 of
    when '0000 000' op = SystemHintOp_NOP;
    when '0000 001' op = SystemHintOp_YIELD;
    when '0000 010' op = SystemHintOp_WFE;
    when '0000 011' op = SystemHintOp_WFI;
    when '0000 100' op = SystemHintOp_SEV;
    when '0000 101' op = SystemHintOp_SEVL;
    when '0000 110'
        if !HaveDGHExt() then EndOfInstruction();    // Instruction executes as NOP
        op = SystemHintOp_DGH;
    when '0000 111' SEE "XPACLRI";
    when '0001 xxx'
        case op2 of
            when '000' SEE "PACIA1716";
            when '010' SEE "PACIB1716";
            when '100' SEE "AUTIA1716";
            when '110' SEE "AUTIB1716";
            otherwise EndOfInstruction();
        end;
    when '0010 000'
        if !HaveRASExt() then EndOfInstruction();    // Instruction executes as NOP
        op = SystemHintOp_ESB;
    when '0010 001'
        if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
        op = SystemHintOp_PSb;
    when '0010 010'
        if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
        op = SystemHintOp_TSB;
    when '0010 100'
        op = SystemHintOp_CSDB;
    when '0011 xxx'
        case op2 of
            when '000' SEE "PACIAZ";
            when '001' SEE "PACIASP";
            when '010' SEE "PACIBZ";
            when '011' SEE "PACIBSP";
            when '100' SEE "AUTIAZ";
            when '101' SEE "AUTHASP";
            when '110' SEE "AUTIBZ";
            when '111' SEE "AUTIBSP";
        end;
        if '0100 xx0' then
            op = SystemHintOp_BTI;
        else
            EndOfInstruction(); // Instruction executes as NOP
        end;
/ Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));
otherwise EndOfInstruction();

Assembler symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127 encoded in the "CRm:op2" field.
The encodings that are allocated to architectural hint functionality are described in the "Hints" table in the "Index by Encoding".

Note For allocated encodings of "CRm:op2":
- A disassembler will disassemble the allocated instruction, rather than the HINT instruction.
- An assembler may support assembly of allocated encodings using HINT with the corresponding <imm> value, but it is not required to do so.

Operation
case op of
  when SystemHintOp_YIELD
      Hint_Yield();
  when SystemHintOp_DGH
      Hint_DGH();
  when SystemHintOp_WFE
      if IsEventRegisterSet() then
          ClearEventRegister();
      else
          trap = FALSE;
      if PSTATE.EL == EL0 then
          // Check for traps described by the OS which may be EL1 or EL2.
          if HaveTWEDExt() then
              - = SCTLR[];
              trap = sctlr.nTWE == '0';
              target_el = EL1;
          else
              AArch64.CheckForWfxTrap(EL1, TRUE);
      if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
          // Check for traps described by the Hypervisor.
          if HaveTWEDExt() then
              trap = HCR_EL2.TWE == '1';
              target_el = EL2;
          else
              AArch64.CheckForWfxTrap(EL2, TRUE);
      if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
          // Check for traps described by the Secure Monitor.
          if HaveTWEDExt() then
              trap = SCR_EL3.TWE == '1';
              target_el = EL3;
          else
              AArch64.CheckForWfxTrap(EL3, TRUE);
      if HaveTWEDExt() && trap && PSTATE.EL != EL3 then
          (delay_enabled, delay) = WFETrapDelay(target_el);    // (If trap delay is enabled, Delay
          amount)
          if !WaitForEventUntilDelay(delay_enabled, delay) then
              // Event did not arrive before delay expired
              AArch64.WFxTrap(target_el, TRUE);    // Trap WFE
          else
              WaitForEvent();

when SystemHintOp_WFI
    if !InterruptPending() then
        if PSTATE.EL == EL0 then
            // Check for traps described by the OS which may be EL1 or EL2.
            AArch64.CheckForWFXTrap(EL1, FALSE);
        if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
            // Check for traps described by the Hypervisor.
            AArch64.CheckForWFXTrap(EL2, FALSE);
        if HaveEL(EL3) && PSTATE.EL != EL3 then
            // Check for traps described by the Secure Monitor.
            AArch64.CheckForWFXTrap(EL3, FALSE);
        WaitForInterrupt();
    when SystemHintOp_SEV
        SendEvent();
    when SystemHintOp_SEVL
        SendEventLocal();
    when SystemHintOp_ESB
        SynchronizeErrors();
        AArch64.ESBOperation();
        if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
        TakeUnmaskedSErrorInterrupts();
    when SystemHintOp_PS8
        ProfilingSynchronizationBarrier();
    when SystemHintOp_TS8
        TraceSynchronizationBarrier();
    when SystemHintOp_CSDB
        ConsumptionOfSpeculativeDataBarrier();
    when SystemHintOp_BTI
        SetBTypeNext("00");
    otherwise    // do nothing
C6.2.93   HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug state.

```
|31 30 29 28|27 26 25 24|23 22 21 20| | | 5 4 3 2 1 0 |
| 1 1 0 1 0 1 0 0|0 1 0| imm16 0 0 0 0 0|
```

**Encoding**

HLT #<imm>

**Decode for this encoding**

if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
if HaveBTIExt() then
  SetBTypeCompatible(TRUE);

**Assembler symbols**

<imm>   Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

**Operation**

Halt(DebugHalt_HaltInstruction);
C6.2.94 HVC

Hypervisor Call causes an exception to EL2. Non-secure software executing at EL1 can use this instruction to call
the hypervisor to request a service.

The HVC instruction is UNDEFINED:

• At EL0.
• At EL1 if EL2 is not enabled in the current Security state.
• When SCR_EL3.HCE is set to 0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using
the EC value 0x16, and the value of the immediate argument.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 0 0 0</td>
<td>imm16</td>
<td>0 0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

HVC #<imm>

Decode for this encoding

// Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

```c
if !HaveEL(EL2) || PSTATE_EL == EL0 || (PSTATE_EL == EL1 && (!IsSecureEL2Enabled() && IsSecure())) then
 UNDEFINED;

hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);
if hvc_enable == '0' then
 UNDEFINED;
else
 AArch64.CallHypervisor(imm16);
```
C6.2.95   IC

Instruction Cache operation. For more information, see \textit{op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377.}

This instruction is an alias of the SYS instruction. This means that:
- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

\textbf{Encoding}

\begin{verbatim}
IC <ic_op>{, <Xt>}
\end{verbatim}

is equivalent to

\begin{verbatim}
SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}
\end{verbatim}

and is the preferred disassembly when \text{SysOp}(op1,'0111',CRm,op2) == Sys_IC.

\textbf{Assembler symbols}

\begin{itemize}
  \item <ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in the "op1:CRm:op2" field. It can have the following values:
    \begin{itemize}
      \item IALLUIS when \text{op1} = 000, \text{CRm} = 0001, \text{op2} = 000
      \item IALLU when \text{op1} = 000, \text{CRm} = 0101, \text{op2} = 000
      \item IVAU when \text{op1} = 011, \text{CRm} = 0101, \text{op2} = 001
    \end{itemize}
  \item <op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
  \item <Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
  \item <op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
  \item <Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.
\end{itemize}

\textbf{Operation}

The description of SYS gives the operational pseudocode for this instruction.
C6.2.96 IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude are excluded from the selection of the random Logical Address Tag.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Xm | 0 | 0 | 1 | 1 | 0 | Xn | Xd |
```

Encoding

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

Assembler symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field. Defaults to XZR if absent.

Operation

bits(64) operand = if n = 31 then SP[] else X[n];
bits(64) exclude_reg = X[m];
bits(16) exclude = exclude_reg<15:0> OR GCR_EL1.Exclude;

if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
  if GCR_EL1.RRND == '1' then
    rtag = _ChooseRandomNonExcludedTag(exclude);
  else
    bits(4) start = RGSR_EL1.TAG;
    bits(4) offset = AArch64.RandomTag();

    rtag = AArch64.ChooseNonExcludedTag(start, offset, exclude);

    RGSR_EL1.TAG = rtag;
  else
    rtag = '0000';

bits(64) result = AArch64.AddressWithAllocationTag(operand, AccType_NORMAL, rtag);

if d == 31 then
  SP[] = result;
else
  X[d] = result;
C6.2.97   ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more information, see Instruction Synchronization Barrier (ISB) on page B2-135.

Encoding

ISB {<option>|#<imm>}

Decode for this encoding

// No additional decoding required

Assembler symbols

<option> Specifies an optional limitation on the barrier operation. Values are:
SY Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of CRm are reserved. The corresponding instructions execute as full system barrier operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the "CRm" field.

Operation

InstructionSynchronizationBarrier();
C6.2.98   LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not \texttt{WZR}, \texttt{LDADDAB} and \texttt{LDADDALB} load from memory with acquire semantics.
- \texttt{LDADDB} and \texttt{LDADDLB} store to memory with release semantics.
- \texttt{LDADDAB} has neither acquire nor release semantics.

For more information about memory ordering semantics see \textit{Load-Acquire, Load-AcquirePC, and Store-Release} on page B2-139.

For information about memory accesses see \textit{Load/Store addressing modes} on page C1-187.

This instruction is used by the alias \texttt{STADDB}, \texttt{STADDLB}. See \textit{Alias conditions} on page C6-935 for details of when each alias is preferred.

ARMv8.1

\begin{verbatim}
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 12|11 10 9 | 5 4 | 0  |
\hline
0  0  1  1  0  0  0  A  R  1 | Rs  0  0  0  0  0  Rn | Rt  \\
\end{verbatim}

\textit{LDADDAB variant}

Applies when \texttt{A} == 1 && \texttt{R} == 0.

\texttt{LDADDAB \langleWs\rangle, \langleWt\rangle, \langleXn\rangle|SP\rangle}

\textit{LDADDALB variant}

Applies when \texttt{A} == 1 && \texttt{R} == 1.

\texttt{LDADDALB \langleWs\rangle, \langleWt\rangle, \langleXn\rangle|SP\rangle}

\textit{LDADDB variant}

Applies when \texttt{A} == 0 && \texttt{R} == 0.

\texttt{LDADDB \langleWs\rangle, \langleWt\rangle, \langleXn\rangle|SP\rangle}

\textit{LDADDLB variant}

Applies when \texttt{A} == 0 && \texttt{R} == 1.

\texttt{LDADDLB \langleWs\rangle, \langleWt\rangle, \langleXn\rangle|SP\rangle}

\textit{Decode for all variants of this encoding}

\begin{verbatim}
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
bool tag_checked = n != 31;
\end{verbatim}
**Alias conditions**

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STADDB, STADDLB</td>
<td>A = '0' &amp; Rt = '1111'</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- `<Ws>` Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>` Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

```plaintext
bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.99 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.
- LDADDLH and LDADDALH store to memory with release semantics.
- LDADDH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STADDH, STADDLH. See Alias conditions on page C6-937 for details of when each alias is preferred.

ARMv8.1

LDADDAH variant

Applies when \(A = 1 \) \&\& \(R = 0 \).
LDADDAH \(<Ws>, <Wt>, [<Xn|SP>]\)

LDADDALH variant

Applies when \(A = 1 \) \&\& \(R = 1 \).
LDADDALH \(<Ws>, <Wt>, [<Xn|SP>]\)

LDADDH variant

Applies when \(A = 0 \) \&\& \(R = 0 \).
LDADDH \(<Ws>, <Wt>, [<Xn|SP>]\)

LDADDLH variant

Applies when \(A = 0 \) \&\& \(R = 1 \).
LDADDLH \(<Ws>, <Wt>, [<Xn|SP>]\)

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' \&\& Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STADDH, STADDLH</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Ws>` Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>` Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```c
bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);

if t != 31 then
    X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire semantics.
- LDADDL and LDADDDL store to memory with release semantics.
- LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics see *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is used by the alias STADD, STADDL. See *Alias conditions* on page C6-939 for details of when each alias is preferred.

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 12|11 10 9 | 5 4 | 0 ]
[1 x 1 1 1 0 0 0 A R 1 ] Rs 0 0 0 0 | Rn | Rt
size opc
```

32-bit LDADD variant

Applies when size == 10 && A == 0 && R == 0.

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA variant

Applies when size == 10 && A == 1 && R == 0.

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL variant

Applies when size == 10 && A == 1 && R == 1.

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL variant

Applies when size == 10 && A == 0 && R == 1.

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD variant

Applies when size == 11 && A == 0 && R == 0.

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA variant

Applies when size == 11 && A == 1 && R == 0.

LDADDA <Xs>, <Xt>, [<Xn|SP>]
64-bit LDADDAL variant

Applies when \(\text{size} == 11 \) && \(A == 1 \) && \(R == 1 \).

LDADDAL \(<Xs>, <Xt>, [<Xn|SP>]\)

64-bit LDADDL variant

Applies when \(\text{size} == 11 \) && \(A == 0 \) && \(R == 1 \).

LDADDL \(<Xs>, <Xt>, [<Xn|SP>]\)

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer \(t = \text{UInt}(Rt) \);
integer \(n = \text{UInt}(Rn) \);
integer \(s = \text{UInt}(Rs) \);

integer \(\text{datasize} = 8 \ll \text{UInt}(\text{size}) \);
integer \(\text{regsize} = \text{datasize} == 64 \) then 64 else 32;

\(\text{AccType ldacctype} = \) if \(A == '1' \) && \(Rt != '11111' \) then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
\(\text{AccType stacctype} = \) if \(R == '1' \) then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;

boolean \(\text{tag_checked} = n != 31 \);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STADD, STADDL</td>
<td>(A == '0') && (Rt == '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<Ws>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Wt>\) Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<Xs>\) Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Xt>\) Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = \(X[s] \);
if \(n == 31 \) then
 CheckSPAlignment();
 address = \(SP[\] \);
else
 address = \(X[n] \);

data = MemAtomic(address, MemAtomicOp_ADD, value, ldacctype, stacctype);
if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.101 LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-139, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
 created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

size Rs

32-bit variant

Applies when size == 10.

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit variant

Applies when size == 11.

LDAPR <Xt>, [<Xn|SP> {,#0}]

Decode for all variants of this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

data = Mem[address, dbytes, AccType_ORDERED];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.102 LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in *Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139*, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see *Load/Store addressing modes on page C1-187.*

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>1 1</td>
<td>0 0</td>
<td>0 1</td>
<td>0 1</td>
<td>1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDAPRB <Wt>, ![Xn|SP> {,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = Mem[address, 1, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.103 LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-139, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.3

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15 14 13 12|11 10 9| 5 4 | 0 |
size  Rn   Rt
```  

Encoding

LDAPRH <Wt>, [<Xn|SP> {,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.104 LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.4

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th></th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when size == 10.

LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;
regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;
boolean tag_checked = n != 31;
Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, AccType_ORDERED];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.105 LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.4

31 30 29 28	27 26 25 24	23 22 21 20		12	11	10	9	8 7	6	4	0		
0	0	0	1	1	0	0	1	0	0	1	0		
size	opc	imm9	0	0	Rn	Rt							

Encoding

LDAPURB <Wt>, [<Xn|SP>\{{, #<simm>\}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

- <Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- <Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- <simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else

address = X[n];
address = address + offset;

data = Mem[address, 1, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.106 LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a halfword from memory, zero-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
on page B2-139, except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
 created by having a Store-Release followed by a Load-AcquirePC instruction.
• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.4

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

size opc imm9 0 0 Rn Rt

Encoding

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else

address = X[n];
address = address + offset;

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.107 LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a signed byte from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.4

32-bit variant

Applies when opc == 11.

LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;
if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;
else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;
if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;
case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, AccType_ORDERED] = data;
 when MemOp_LOAD
 data = Mem[address, 1, AccType_ORDERED];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.108 LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

ARMv8.4

32-bit variant

Applies when opc == 11.

LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wr> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if (opc==1) == '0' then
 // store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, AccType_ORDERED] = data;
 when MemOp_LOAD
 data = Mem[address, 2, AccType_ORDERED];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.109 LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a signed word from memory, sign-extends it, and writes it to a register.

The instruction has memory ordering semantics as described in *Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139*, except that:

- There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release, created by having a Store-Release followed by a Load-AcquirePC instruction.
- The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see *Load/Store addressing modes on page C1-187*.

ARMv8.4

Encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>imm9</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bv<32> data;

if n == 31 then
 CheckSPA(!alignment);
 address = SP[];
else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType.ORDERED];
X[t] = SignExt(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.110 LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

32-bit variant

Applies when size == 10.

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];
data = Mem[address, dbytes, AccType_ORDERED];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.111 LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Note

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

Encoding

LDARB <Wt>, <Xn|SP>{,#0}

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAilment();
 address = SP[];
else
 address = X[n];

data = Mem[address, 1, AccType.Ordered];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.112 LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in "Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses, see "Load/Store addressing modes on page C1-187."

---- Note -----

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

--- Encoding ---

```
LDARH <Wt>, [<Xn|SP>{,#0}]
```

--- Decode for this encoding ---

```
integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;
```

--- Assembler symbols ---

```
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
```

--- Operation ---

```
bits(64) address;
bits(16) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if n == 31 then
    CheckSPA1ignment();
    address = SP[];
else
    address = X[n];

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);
```

--- Operational information ---

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.113 LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be quadword aligned and is single-copy atomic for each doubleword at doubleword granularity. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when $sz == 0$.

LDAXP $<Wt1>$, $<Wt2>$, $<Xn|SP>{,#0}$

64-bit variant

Applies when $sz == 1$.

LDAXP $<Xt1>$, $<Xt2>$, $<Xn|SP>{,#0}$

Decode for all variants of this encoding

integer $n = $UInt$(Rn)$;
integer $t = $UInt$(Rt)$;
integer $t2 = $UInt$(Rt2)$;

integer $elsifze = 32 << $UInt$(sz)$;
integer $datasize = elsifze * 2$;
boolean $tag_checked = n != 31$;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDAXP on page K1-7972.

Assembler symbols

$<Wt1>$ Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

$<Wt2>$ Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

$<Xt1>$ Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

$<Xt2>$ Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

$<Xn|SP>$ Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 CheckSPAilignment();
 address = SP[];
else
 address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt_unknown then
 // ConstrainedUNPREDICTABLE case
 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
else if elsize == 32 then
 // 32-bit load exclusive pair (atomic)
 data = Mem[address, dbytes, AccType_ORDEREDATOMIC];
 if BigEndian() then
 X[t] = data<datasize-1:elsize>;
 X[t2] = data<elsize-1:0>;
 else
 X[t] = data<elsize-1:0>;
 X[t2] = data<datasize-1:elsize>;
else // elsize == 64
 // 64-bit load exclusive pair (not atomic),
 // but must be 128-bit aligned
 if address != Align(address, dbytes) then
 AArch64.Abort(address, AArch64.AlignmentFault(AccType_ORDEREDATOMIC, FALSE, FALSE));
 X[t] = Mem[address, 8, AccType_ORDEREDATOMIC];
 X[t2] = Mem[address+8, 8, AccType_ORDEREDATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.114 LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores on page B2-166. The instruction also has memory ordering
semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information
about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when size == 10.
LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant
Applies when size == 11.
LDAXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding
integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag_checked = n != 31;

Assembler symbols
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else
 address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

data = Mem[address, dbytes, AccType_ORDEREDATOMIC];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.115 LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

Encoding

LDAXRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 1);

data = Mem[address, 1, AccType.ORDEREDATOMIC];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.116 LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

Encoding

LDAXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bites(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

AArch64.SetExclusiveMonitors(address, 2);

data = Mem[address, 2, AccType_ORDERED_ATOMIC];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.117 LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

- If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.
- LDCLRLB and LDCLRALB store to memory with release semantics.
- LDCLRAB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STCLRB, STCLRLB. See Alias conditions on page C6-970 for details of when
each alias is preferred.

ARMv8.1

LDCLRAB variant
Applies when A == 1 && R == 0.
LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

LDCLRALB variant
Applies when A == 1 && R == 1.
LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

LDCLRB variant
Applies when A == 0 && R == 0.
LDCLRB <Ws>, <Wt>, [<Xn|SP>]

LDCLRLB variant
Applies when A == 0 && R == 1.
LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCLRB, STCLRLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPathAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.118 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.
- LDCLRH and LDCLRALH store to memory with release semantics.
- LDCLRH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STCLRH, STCLRLH. See Alias conditions on page C6-972 for details of when each alias is preferred.

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 | 12|11 10  9 |  5 4 |  0 ]
size          0  1  1  1  0  0  0  A  R  1 | Rs  0  0  1  0  0 | Rn | Rt  
```

LDCLRAH variant

Applies when A == 1 && R == 0.

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

LDCLRALH variant

Applies when A == 1 && R == 1.

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

LDCLRH variant

Applies when A == 0 && R == 0.

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

LDCLRLH variant

Applies when A == 0 && R == 1.

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

```c
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCLR RH, STCLR LH</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.119 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire semantics.
- LDCLRL and LDCLRAL store to memory with release semantics.
- LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STCLR, STCLRL. See Alias conditions on page C6-974 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0</td>
<td>A</td>
<td>R</td>
<td>1</td>
<td>Rs</td>
<td>0 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

size opc

32-bit LDCLR variant

Applies when `size == 10 && A == 0 && R == 0`.

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA variant

Applies when `size == 10 && A == 1 && R == 0`.

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL variant

Applies when `size == 10 && A == 1 && R == 1`.

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL variant

Applies when `size == 10 && A == 0 && R == 1`.

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR variant

Applies when `size == 11 && A == 0 && R == 0`.

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA variant

Applies when `size == 11 && A == 1 && R == 0`.

LDCLRA <Xs>, <Xt>, [<Xn|SP>]
64-bit LDCLRAL variant

Applies when size == 11 && A == 1 && R == 1.

LDCLRAL <Xs>, <Xt>, [<Xn]|SP>

64-bit LDCLRL variant

Applies when size == 11 && A == 0 && R == 1.

LDCLRL <Xs>, <Xt>, [<Xn]|SP>

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

boolean tag_checked = n != 31;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCLR, STCLRL</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_BIC, value, ldacctype, stacctype);
if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.120 **LDEORB, LDEORAB, LDEORALB, LDEORLB**

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.
- LDEORLB and LDEORALB store to memory with release semantics.
- LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics see *Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.*

For information about memory accesses see *Load/Store addressing modes on page C1-187.*

This instruction is used by the alias STEORB, STEORLB. See *Alias conditions on page C6-977* for details of when each alias is preferred.

ARMv8.1

```
[31 30 29 28] [27 26 25 24] [23 22 21 20]  [16] [15] [14] [12] [11] [10] [ 9] [ 5] [ 4] [ 0]
  0  0  1  1  1  0  0  0  A  R  1  Rs  0  0  1  0  0  0  Rn  Rt
size   opc
```

LDEORAB variant

Applies when \(A = 1 \) && \(R = 0 \).

LDEORAB \(<\text{Ws}>, <\text{Wt}>, [<\text{Xn}|\text{SP}>]\)

LDEORALB variant

Applies when \(A = 1 \) && \(R = 1 \).

LDEORALB \(<\text{Ws}>, <\text{Wt}>, [<\text{Xn}|\text{SP}>]\)

LDEORB variant

Applies when \(A = 0 \) && \(R = 0 \).

LDEORB \(<\text{Ws}>, <\text{Wt}>, [<\text{Xn}|\text{SP}>]\)

LDEORLB variant

Applies when \(A = 0 \) && \(R = 1 \).

LDEORLB \(<\text{Ws}>, <\text{Wt}>, [<\text{Xn}|\text{SP}>]\)

Decode for all variants of this encoding

```
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEORB, STEORLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Ws>`: is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>`: is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>`: is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```plaintext
bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_EOR, value, ldacctype, stacctype);

if t != 31 then
    X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.121 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.
- LDEORLH and LDEORALH store to memory with release semantics.
- LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STEORH, STEORLH. See Alias conditions on page C6-979 for details of when each alias is preferred.

ARMv8.1

| [31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 12|11 10 9 | 5 4 | 0] |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 1 1 1 0 0 0 A R 1 | Rs 0 0 1 0 0 0 | Rn | Rt |

LDEORAH variant

Applies when A == 1 && R == 0.

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

LDEORALH variant

Applies when A == 1 && R == 1.

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

LDEORH variant

Applies when A == 0 && R == 0.

LDEORH <Ws>, <Wt>, [<Xn|SP>]

LDEORLH variant

Applies when A == 0 && R == 1.

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEORH, STEORLH</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
SetTagCheckedInstruction(tag_checked);

value = X<s>;
if n == 31 then
CheckSPAlignment();
address = SP[];
else
address = X<n>;

data = MemAtomic(address, MemAtomicOp_EOR, value, ldacctype, stacctype);

if t != 31 then
X<t> = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.122 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
 semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STEOR, STEORL. See Alias conditions on page C6-981 for details of when
each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0 A</td>
<td>R</td>
<td>1</td>
<td>Rs</td>
<td>0 0 1 0 0</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

32-bit LDEOR variant

Applies when size == 10 && A == 0 && R == 0.

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA variant

Applies when size == 10 && A == 1 && R == 0.

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL variant

Applies when size == 10 && A == 1 && R == 1.

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL variant

Applies when size == 10 && A == 0 && R == 1.

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR variant

Applies when size == 11 && A == 0 && R == 0.

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA variant

Applies when size == 11 && A == 1 && R == 0.

LDEORA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORAL variant

Applies when size == 11 && A == 1 && R == 1.

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL variant

Applies when size == 11 && A == 0 && R == 1.

LDEORL <Xs>, <Xt>, [<Xn|SP>]
64-bit LDEORAL variant

Applies when \(\text{size} == 11 \land A == 1 \land R == 1 \).

\[
\text{LDEORAL} \ <Xs>, \ <Xt>, \ [<Xn|SP>]
\]

64-bit LDEORL variant

Applies when \(\text{size} == 11 \land A == 0 \land R == 1 \).

\[
\text{LDEORL} \ <Xs>, \ <Xt>, \ [<Xn|SP>]
\]

Decode for all variants of this encoding

if !\(\text{HaveAtomicExt()} \) then UNDEFINED;

integer \(t = \text{UInt}(Rt) \);
integer \(n = \text{UInt}(Rn) \);
integer \(s = \text{UInt}(Rs) \);

integer \(\text{datasize} = 8 \ll \text{UInt}(\text{size}) \);
integer \(\text{regsize} = 64 \) if \(\text{datasize} = 64 \) else \(32 \);
\(\text{AccType ldacctype} = \) if \(A == '1' \land Rt != '11111' \) then \(\text{AccType_ORDEREDATOMICRW} \) else \(\text{AccType_ATOMICRW} \);
\(\text{AccType stacctype} = \) if \(R == '1' \) then \(\text{AccType_ORDEREDATOMICRW} \) else \(\text{AccType_ATOMICRW} \);
boolean \(\text{tag_checked} = n != 31 \);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEOR, STEORL</td>
<td>(A == '0' \land Rt == '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<Ws> \) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Wt> \) Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<Xs> \) Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Xt> \) Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<Xn|SP> \) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if \(\text{HaveMTEExt()} \) then
\(\text{SetTagCheckedInstruction}(\text{tag_checked}) \);

value = \(X[s] \);
if \(n == 31 \) then
\(\text{CheckSPA_alignment}() \);
\(\text{address} = \text{SP}[] \);
else
\(\text{address} = X[n] \);

data = \(\text{MemAtomic}(\text{address}, \text{MemAtomicOp_EOR}, \text{value}, \text{ldacctype}, \text{stacctype}) \);
if \(t \neq 31 \) then
\[
X[t] = \text{ZeroExtend}(\text{data}, \text{regsize});
\]

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.123 LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base register and an immediate signed offset scaled by the Tag granule.

ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 1 0 0 1 0 1 1</td>
<td>imm9</td>
<td>0 0</td>
<td>Xn</td>
</tr>
<tr>
<td></td>
<td>Xt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDG <Xt>, [<Xn|SP>[#, #<simm>]]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and encoded in the "imm9" field.

Operation

bits(64) address;
bits(4) tag;
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
adddress = address + offset;
adddress = Align(address, TAG_GRANULE);
tag = AArch64.MemTag[address, AccType_NORMAL];
X[t] = AArch64.AddressWithAllocationTag(X[t], AccType_NORMAL, tag);
C6.2.124 LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in GMID_EL1.BS, and writes the Allocation Tag read from address A to the destination register at 4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

ARMv8.5

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 0 1 0 1 | 1 1 1 0 0 0 0 0 | 0 0 0 0 0 0 0 0 |

Encoding

LDGM <Xt>, [<Xn|SP>]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

if PSTATE.EL == EL0 then
 UNDEFINED;

bits(64) data = Zeros(64);
bits(64) address;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
address = Align(address, size);
integer count = size >> LOG2_TAG_GRANULE;
integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);

for i = 0 to count-1
 bits(4) tag = AArch64.MemTag[address, AccType_NORMAL];
 data(index*4)+3:index*4 = tag;
 address = address + TAG_GRANULE;
 index = index + 1;

X[t] = data;
C6.2.125 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-140. For information about memory accesses, see Load/Store addressing modes on page C1-187.

--- Note ---

For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

ARMv8.1

Encoding

LDLARB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = Mem[address, 1, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.126 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-140. For information about memory accesses, see Load/Store addressing modes on page C1-187.

--- Note ---
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

ARMv8.1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 0 0 0</td>
<td>0 1 1 0</td>
<td>(1)(1)(1)(1)(1)</td>
<td>0</td>
<td>(1)(1)(1)(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

size L Rs o0 Rt2
```

Encoding

LDLARH `<Wt>`, `[<Xn|SP>{,#0}]`

Decode for this encoding

```
integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;
```

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```
bits(64) address;
bits(16) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if n == 31 then
    CheckSPAlignment();
    address = SP[;];
else
    address = X[n];

data = Mem[address, 2, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.127 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-140. For information about memory accesses, see Load/Store addressing modes on page C1-187.

--- Note ---
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire semantic other than its effect on the arrival at endpoints.

ARMv8.1

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 | 10 9 | 5 4 | 0 |
| size | L | Rs | o0 | Rt |

32-bit variant
Applies when size == 10.
LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit variant
Applies when size == 11.
LDLAR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding
integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag_checked = n != 31;

Assembler symbols
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else
 address = X[n];
data = Mem[address, dbytes, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.128 LDNP

load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/Store addressing modes on page C1-187. For information about
Non-temporal pair instructions, see Load/Store Non-temporal Pair on page C3-210.

32-bit variant
Applies when opc == 00.
LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant
Applies when opc == 10.
LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding
// Empty.

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP on page K1-7972.

Assembler symbols
<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.
<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256
to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512
to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc<0> == '1' then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bites(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = n != 31;

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
address = address + offset;
data1 = Mem[address, dbytes, AccType_STREAM];
data2 = Mem[address+dbytes, dbytes, AccType_STREAM];
if rt_unknown then
 data1 = bits(datasize) UNKNOWN;
 data2 = bits(datasize) UNKNOWN;
X[t] = data1;
X[t2] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.129 LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
32-bit variant

Applies when opc == 00.

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 10.

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

boolean wback = FALSE;
boolean postindex = FALSE;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDP on page K1-7973.

Assembler symbols

<Wt1>
Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2>
Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1>
Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2>
Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP>
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm>
For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
boolean signed = (opc<0> != '0');
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

Operation for all encodings

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

boolean wb_unknown = FALSE;

if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

data1 = Mem[address, dbytes, AccType_NORMAL];
data2 = Mem[address+dbytes, dbytes, AccType_NORMAL];
if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;
if signed then
 X[t] = SignExtend(data1, 64);
 X[t2] = SignExtend(data2, 64);
else
 X[t] = data1;
 X[t2] = data2;

if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.130 LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

Post-index

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10  9</th>
<th>5  4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1 0 0 1 1</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

```java
boolean wback = TRUE;
boolean postindex = TRUE;
```

Pre-index

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10  9</th>
<th>5  4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1 0 0 1 1</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]

Decode for this encoding

```java
boolean wback = TRUE;
boolean postindex = FALSE;
```

Signed offset

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10  9</th>
<th>5  4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 1 0 0 1 0</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

LDPSW <Xt1>, <Xt2>, [Xn|SP>{, #<imm>}

Decode for this encoding

```java
boolean wback = FALSE;
boolean postindex = FALSE;
```

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*, and particularly *LDPSW* on page K1-7974.
Assembler symbols

<\textit{Xt1}> is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<\textit{Xt2}> is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<\textit{Xn}|SP> is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<\textit{imm}> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <\textit{imm}>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <\textit{imm}>/4.

Shared decode for all encodings

\begin{verbatim}
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
bits(64) offset = LSL(SignExtend(imm7, 64), 2);
boolean tag_checked = wback || n != 31;
\end{verbatim}

Operation for all encodings

\begin{verbatim}
bits(64) address;
bits(32) data1;
bits(32) data2;
boolean rt_unknown = FALSE;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
boolean wb_unknown = FALSE;
if wback && (t == n || t2 == n) && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
if !postindex then
 address = address + offset;
data1 = Mem[address, 4, AccType_NORMAL];
data2 = Mem[address+4, 4, AccType_NORMAL];
if rt_unknown then
 data1 = bits(32) UNKNOWN;
data2 = bits(32) UNKNOWN;
\end{verbatim}
X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);
if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.131 LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187. The Unsigned offset variant scales the immediate offset value by the size of the value accessed before adding it to the base register value.

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0 1 0</td>
<td>imm9</td>
<td>0 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0 1 0</td>
<td>imm9</td>
<td>1 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when size == 10.

LDR <Wt>, [<Xn|SP>, #<simm>]

64-bit variant

Applies when size == 11.

LDR <Xt>, [<Xn|SP>, #<simm>]

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);
Unsigned offset

32-bit variant
Applies when size == 10.
LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant
Applies when size == 11.
LDR <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding
boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDR (immediate) on page K1-7974.

Assembler symbols
<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared decode for all encodings
integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;
regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;
boolean tag_checked = wback || n != 31;

Operation for all encodings
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
bits(64) address;
bdata;
boolean wb_unknown = FALSE;
if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];
if !postindex then
 address = address + offset;

data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);
if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
if n == 31 then
 SP[] = address;
else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.132 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when \(\text{opc} == 00 \).

\[
\text{LDR } <Wt>, <\text{label}>
\]

64-bit variant

Applies when \(\text{opc} == 01 \).

\[
\text{LDR } <Xt>, <\text{label}>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } t &= \text{UInt}(Rt); \\
\text{MemOp } \text{memop} &= \text{MemOp_LOAD}; \\
\text{boolean } \text{signed} &= \text{FALSE}; \\
\text{integer } \text{size}; \\
\text{bits(64) } \text{offset}; \\
\text{case } \text{opc} \text{ of} \\
&\quad \text{when } '00' \rightarrow \text{size} = 4; \\
&\quad \text{when } '01' \rightarrow \text{size} = 8; \\
&\quad \text{when } '10' \rightarrow \text{size} = 4; \\
&\quad \text{signed} = \text{TRUE}; \\
&\quad \text{when } '11' \rightarrow \text{memop} = \text{MemOp_PREFETCH}; \\
\text{offset} &= \text{SignExtend}(\text{imm19}\cdot'00', 64);
\end{align*}
\]

Assembler symbols

\(<Wt>\) Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<Xt>\) Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<\text{label}>\) Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

\[
\begin{align*}
\text{bits(64) } &\text{address} = \text{PC}[\cdot] + \text{offset}; \\
\text{bits(size\cdot8) } &\text{data}; \\
\text{if } \text{HaveMTEExt()} \text{ then} \\
&\quad \text{SetTagCheckedInstruction}(\text{FALSE}); \\
\text{case } \text{memop} \text{ of}
\end{align*}
\]
when MemOp_LOAD
 data = Mem[address, size, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, 64);
 else
 X[t] = data;

when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.133 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when size == 10.
LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant
Applies when size == 11.
LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted, encoded in the "option" field. It can have the following values:
UXTW when option = 010
LSL when option = 011
SXTW when option = 110
SXTX when option = 111
<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:
#0 when S = 0
#2 when S = 1
For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0
#3 when S = 1

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
 SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(datasize) data;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.134 LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit doubleword from memory at this resulting address into a register.

Key A is used for LDRAA, and key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction is used. In this case, the address that is written back to the base register does not include the pointer authentication code.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.3

Key A, offset variant
Applies when M == 0 && W == 0.
LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed variant
Applies when M == 0 && W == 1.
LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset variant
Applies when M == 1 && W == 0.
LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed variant
Applies when M == 1 && W == 1.
LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

Decode for all variants of this encoding
if !HavePACExt() then UNDEFINED;
integer t = UInt(Rt);
integer n = UInt(Rn);
boolean wback = (W == '1');
boolean use_key_A = (M == '0');
bits(10) S10 = S:imm9;
bits(64) offset = LSL(SignExtend(S10, 64), 3);
boolean tag_checked = wback || n != 31;

Assembler symbols
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting to 0 and encoded in the "S:imm9" field as <simm>/8.

Operation

```c
bits(64) address;
bits(64) data;
boolean wb_unknown = FALSE;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if wback && n == t && n != 31 then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
        when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    address = SP[];
else
    address = X[n];

if use_key_a then
    address = AuthDA(address, X[31], TRUE);
else
    address = AuthDB(address, X[31], TRUE);

if n == 31 then
    CheckSPAlignment();

address = address + offset;
data = Mem[address, 8, AccType_NORMAL];
X[t] = data;

if wback then
    if wb_unknown then
        address = bits(64) UNKNOWN;
    if n == 31 then
        SP[] = address;
    else
        X[n] = address;
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.135 LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 0 1 0</td>
<td>imm9</td>
<td>0 1</td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 0 1 0</td>
<td>imm9</td>
<td>1 1</td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>12</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 1 0 1</td>
<td>imm12</td>
<td></td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRB (immediate) on page K1-7974.

Assembler symbols

<Wr> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = wback || n != 31;

Operation for all encodings

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.136 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Extended register variant

Applies when option ≠ 011.

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register variant

Applies when option = 011.

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decide for all variants of this encoding

if option<3> = '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Xm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:
 UXTW when option = 010
 SXTW when option = 110
 SXTX when option = 111
<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, 0);
if HaveMTEExt() then
 SetTagCheckedInstruction(TRUE);
bits(64) address;
bits(8) data;

if n == 31 then
 CheckSPA[alignment()];
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.137 LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

| [31 30 29 28|27 26 25 24|23 22 21 20] | 12|11 10 9 | 5 4 | 0 |
|---|---|---|---|---|
| 0 1 1 1 1|0 0 0 1 0 | imm9 0 1 | Rn | Rt |
| size | opc |

Encoding

LDRH <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

| [31 30 29 28|27 26 25 24|23 22 21 20] | 12|11 10 9 | 5 4 | 0 |
|---|---|---|---|---|
| 0 1 1 1 1|0 0 0 1 0 | imm9 1 1 | Rn | Rt |
| size | opc |

Encoding

LDRH <Wt>, [<Xn|SP>, #<simm>]

Decode for this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

| [31 30 29 28|27 26 25 24|23 22 21 20] | 10 9 | 5 4 | 0 |
|---|---|---|---|
| 0 1 1 1|0 0 1 0 1 | imm12 | Rn | Rt |
| size | opc |

Encoding

LDRH <Wt>, [<Xn|SP>{, #<pimm}>]

Decode for this encoding

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRH (immediate) on page K1-7975.

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<simm>` Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
- `<pimm>` Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as `<pimm>/2`.

Shared decode for all encodings

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = wback || n != 31;
```

Operation for all encodings

```plaintext
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
        when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

if !postindex then
    address = address + offset;

data = Mem[address, 2, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
    if wb_unknown then
        address = bits(64) UNKNOWN;
    elsif postindex then
        address = address + offset;
    if n == 31 then
        SP[] = address;
    else
        X[n] = address;
```
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.138 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes on page C1-187.

Encoding

LDRH \texttt{<Wt>}, \{\texttt{<Xn}\mid \texttt{SP}>, \{\texttt{<Wm}>\mid \texttt{<Xm>}\}\}, \{\texttt{<extend> \{<amount>\}}\}

Decode for this encoding

if \texttt{option<1>} == '0' then UNDEFINED; // sub-word index
\texttt{ExtendType extend_type} = DecodeRegExtend(\texttt{option});
\texttt{integer shift} = if \texttt{S} == '1' then 1 else 0;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\texttt{<Wt>} Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
\texttt{<Xn}\mid \texttt{SP>} Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
\texttt{<Wm>} When \texttt{option<0>} is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.
\texttt{<Xm>} When \texttt{option<0>} is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.
\texttt{<extend>} Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when \texttt{<amount>} is omitted. encoded in the "option" field. It can have the following values:
\texttt{UXTW} when \texttt{option} = 010
\texttt{LSL} when \texttt{option} = 011
\texttt{SXTW} when \texttt{option} = 110
\texttt{SXTX} when \texttt{option} = 111
\texttt{<amount>} Is the index shift amount, optional only when \texttt{<extend>} is not LSL. Where it is permitted to be
optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:
#0 when \texttt{S} = 0
#1 when \texttt{S} = 1

Shared decode for all encodings

\texttt{integer n} = UInt(\texttt{Rn});
\texttt{integer t} = UInt(\texttt{Rt});
\texttt{integer m} = UInt(\texttt{Rm});
Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
 SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(16) data;

if n == 31 then
 CheckS PALignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 2, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.139 LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see "Load/Store addressing modes on page C1-187."

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 0 1 x 0</td>
<td>imm9</td>
<td>0 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>], #<simm>

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 0 1 x 0</td>
<td>imm9</td>
<td>1 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 1 x</td>
<td>imm12</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
32-bit variant

Applies when opc == 11.

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

```plaintext
boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);
```

Notes for all encodings

For information about the constrained unpredictable behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSB (immediate) on page K1-7975.

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xt>` Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<simm>` Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
- `<pimm>` Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

Shared decode for all encodings

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;
if opc<1> == '0' then
  // store or zero-extending load
  memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
  regsize = 32;
  signed = FALSE;
else
  // sign-extending load
  memop = MemOp_LOAD;
  regsize = if opc<0> == '1' then 32 else 64;
  signed = TRUE;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);
```

Operation for all encodings

```plaintext
if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);
```

```plaintext
bits(64) address;
bits(8) data;
```
boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

 case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;
 when MemOp_LOAD
 data = Mem[address, 1, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

 if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.140 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

32-bit with extended register offset variant
Applies when opc == 11 && option != 011.
LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), (extend) {<amount>}]

32-bit with shifted register offset variant
Applies when opc == 11 && option == 011.
LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset variant
Applies when opc == 10 && option != 011.
LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), (extend) {<amount>}]

64-bit with shifted register offset variant
Applies when opc == 10 && option == 011.
LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

Decode for all variants of this encoding
if option<3> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rn" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:
UXTW when option = 010
SXTW when option = 110
SXTX when option = 111
<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.
Shared decode for all encodings

```cpp
integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop;
boolean signed;
integer regsize;
if opc<1> == '0' then
    // store or zero-extending load
    memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
    regsize = 32;
    signed = FALSE;
else
    // sign-extending load
    memop = MemOp_LOAD;
    regsize = if opc<0> == '1' then 32 else 64;
    signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH;
```

Operation

```cpp
bits(64) offset = ExtendReg(m, extend_type, 0);
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;
if n == 31 then
    if memop != MemOp_PREFETCH then CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

case memop of
    when MemOp_STORE
        data = X[t];
        Mem[address, 1, AccType_NORMAL] = data;
    when MemOp_LOAD
        data = Mem[address, 1, AccType_NORMAL];
        if signed then
            X[t] = SignExtend(data, regsize);
        else
            X[t] = ZeroExtend(data, regsize);
    when MemOp_PREFETCH
        Prefetch(address, t<4:0>);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.141 LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see *Load/Store addressing modes on page C1-187*.

Post-index

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 11.

`LDRSH <Wt>, [<Xn|SP>], #<simm>`

64-bit variant

Applies when opc == 10.

`LDRSH <Xt>, [<Xn|SP>], #<simm>`

Decode for all variants of this encoding

```java
boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);
```

Pre-index

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 11.

`LDRSH <Wt>, [<Xn|SP>], #<simm>`!

64-bit variant

Applies when opc == 10.

`LDRSH <Xt>, [<Xn|SP>], #<simm>`!

Decode for all variants of this encoding

```java
boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);
```

Unsigned offset

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21]</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>
32-bit variant

Applies when opc == 11.

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit variant

Applies when opc == 10.

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSH (immediate) on page K1-7976.

Assembler symbols

<Wr> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;
if opc<3> == '0' then
// store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
else
// sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bias(16) data;
boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 endcase;

if memop == MemOp_STORE && wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
 endcase;

if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];
endif

if !postindex then
 address = address + offset;
endif

case memop of
 when MemOp_STORE
 if rt_unknown then
 data = bits(16) UNKNOWN;
 else
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;
 endif
 when MemOp_LOAD
 data = Mem[address, 2, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 endif
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);
if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 endif
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
 endif

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.142 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when opc == 11.
LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>)], <extend> {<amount>}}

64-bit variant
Applies when opc == 10.
LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>)], <extend> {<amount>}}

Decode for all variants of this encoding
if option<3> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:

UXTW when option = 010
LSL when option = 011
SXTW when option = 110
SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0 when S = 0
#1 when S = 1
Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
else
// sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, AccType_NORMAL] = data;
 when MemOp_LOAD
 data = Mem[address, 2, AccType_NORMAL];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.143 LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see **Load/Store addressing modes** on page C1-187.

Post-index

```
| 31 30 29 28|27 26 25 24|23 22 21 20|  | 12|11 10 9 | 5 4 | 0 |
| 1 0 | 1 1 | 1 0 | 0 0 | 1 0 | 0 | imm9 | 0 1 | Rn | Rt |
```

Encoding

LDRSW <Xt>, [Xn|SP>, #<simm>

Decode for this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
bites(64) offset = SignExtend(imm9, 64);

Pre-index

```
| 31 30 29 28|27 26 25 24|23 22 21 20|  | 12|11 10 9 | 5 4 | 0 |
| 1 0 | 1 1 | 1 0 | 0 0 | 1 0 | 0 | imm9 | 1 1 | Rn | Rt |
```

Encoding

LDRSW <Xt>, [Xn|SP>, #<simm>]

Decode for this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
bites(64) offset = SignExtend(imm9, 64);

Unsigned offset

```
| 31 30 29 28|27 26 25 24|23 22 21|  | 10 9 | 5 4 | 0 |
| 1 0 | 1 1 | 1 0 | 0 1 | 1 0 | 0 | imm12 | Rn | Rt |
```

Encoding

LDRSW <Xt>, [Xn|SP>{, #<pimm}]

Decode for this encoding

boolean wback = FALSE;
boolean postindex = FALSE;
bites(64) offset = LSL(ZeroExtend(imm12, 64), 2);
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDRSW (immediate) on page K1-7976.

Assembler symbols

<\textit{Xt}> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<\textit{Xn}|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<\textit{simm}> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<\textit{pimm}> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <\textit{pimm}>/4.

Shared decode for all encodings

\begin{verbatim}
integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = wback || n != 31;
\end{verbatim}

Operation for all encodings

\begin{verbatim}
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(32) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);
if wback then
 if wb_unknown then
 address = bits(64) UNKNOWN;
 elsif postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
\end{verbatim}
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.144 LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

![Opcode Diagram]

Encoding

LDRSW <Xt>, <label>

Decode for this encoding

integer t = UInt(Rt);
bits(64) offset;
offset = SignExtend(imm19:’00’, 64);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(32) data;
if HaveMTEExt() then
 SetTagCheckedInstruction(FALSE);
data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.145 LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value, loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>)\{, <extend> {<amount>}}]

Decode for this encoding

if option<0> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 2 else 0;

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:
UXTW when option = 010
LSL when option = 011
SXTW when option = 110
SXTX when option = 111

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:
#0 when S = 0
#2 when S = 1

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
 SetTagCheckedInstruction(TRUE);
bits(64) address;
bits(32) data;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.146 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.
- LDSETLB and LDSETALB store to memory with release semantics.
- LDSETB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSETB, STSETLB. See Alias conditions on page C6-1033 for details of when each alias is preferred.

ARMv8.1

LDSETAB variant

Applies when A == 1 && R == 0.
LDSETAB <Ws>, <Wt>, [<Xn|SP>]

LDSETALB variant

Applies when A == 1 && R == 1.
LDSETALB <Ws>, <Wt>, [<Xn|SP>]

LDSETB variant

Applies when A == 0 && R == 0.
LDSETB <Ws>, <Wt>, [<Xn|SP>]

LDSETLB variant

Applies when A == 0 && R == 1.
LDSETLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt !='11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSETB, STSETLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- <Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- <Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- <Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

\[
\text{bits(64) address; bits(8) value; bits(8) data;}
\]
\[
\text{if HaveMTEExt() then}
\]
\[
\text{SetTagCheckedInstruction(tag_checked);}
\]
\[
\text{value = X[s];}
\]
\[
\text{if n == 31 then}
\]
\[
\text{CheckSPAlignment();}
\]
\[
\text{address = SP[];}
\]
\[
\text{else}
\]
\[
\text{address = X[n];}
\]
\[
\text{data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);}
\]
\[
\text{if t != 31 then}
\]
\[
\text{X[t] = ZeroExtend(data, 32);}
\]

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.147 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.
- LDSETLH and LDSETALH store to memory with release semantics.
- LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSETH, STSETLH. See Alias conditions on page C6-1035 for details of when each alias is preferred.

ARMv8.1

\[
\begin{array}{cccccccc|ccc|c|}
\text{size} & 0 & 1 & 1 & 1 & 0 & 0 & 0 & A & R & 1 & 1 & 0 & 0 & 0 & 0 & Rn & Rt & 1
\end{array}
\]

LDSETAH variant

Applies when \(A == 1 \) && \(R == 0 \).

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

LDSETALH variant

Applies when \(A == 1 \) && \(R == 1 \).

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

LDSETH variant

Applies when \(A == 0 \) && \(R == 0 \).

LDSETH <Ws>, <Wt>, [<Xn|SP>]

LDSETLH variant

Applies when \(A == 0 \) && \(R == 1 \).

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSETH, STSETLH</td>
<td>A == '0' && Rt == '1111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.148 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire semantics.
- LDSETL and LDSETAL store to memory with release semantics.
- LDSET has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSET, STSETL. See Alias conditions on page C6-1037 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>Rs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

32-bit LDSET variant

Applies when size == 10 && A == 0 && R == 0.

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA variant

Applies when size == 10 && A == 1 && R == 0.

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL variant

Applies when size == 11 && A == 0 && R == 1.

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET variant

Applies when size == 11 && A == 0 && R == 0.

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA variant

Applies when size == 11 && A == 1 && R == 0.

LDSETA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL variant

Applies when size == 12 && A == 0 && R == 1.
64-bit LDSETAL variant

Applies when \(\text{size} == 11 \land A == 1 \land R == 1 \).

\[
\text{LDSETAL } \langle \text{Xs} \rangle, \langle \text{Xt} \rangle, [\langle \text{Xn} | \text{SP} \rangle]
\]

64-bit LDSETL variant

Applies when \(\text{size} == 11 \land A == 0 \land R == 1 \).

\[
\text{LDSETL } \langle \text{Xs} \rangle, \langle \text{Xt} \rangle, [\langle \text{Xn} | \text{SP} \rangle]
\]

Decode for all variants of this encoding

```c
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSET, STSETL</td>
<td>(A == '0' \land Rt == '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(\langle \text{Ws} \rangle \): Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(\langle \text{Wt} \rangle \): Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- \(\langle \text{Xs} \rangle \): Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(\langle \text{Xt} \rangle \): Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- \(\langle \text{Xn} | \text{SP} \rangle \): Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```c
bits(64) address;
bite(datasize) value;
bite(datasize) data;
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAAttachment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_ORR, value, ldacctype, stacctype);
```
if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
6.2.149 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDSMAXB and LDSMAXALB load from memory with acquire semantics.
- LDSMAXLB and LDSMAXALB store to memory with release semantics.
- LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMAXB, STSMAXLB. See Alias conditions on page C6-1040 for details of when each alias is preferred.

ARMv8.1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 1 1 0 0 0</td>
<td>A R 1</td>
<td>Rs 0 1 0 0 0</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

LDSMAXAB variant

Applies when \(A == 1 && R == 0 \).

LDSMAXAB \(<\text{ls}>, <\text{lt}>, [<\text{Xn}|\text{SP}]>\)

LDSMAXALB variant

Applies when \(A == 1 && R == 1 \).

LDSMAXALB \(<\text{ls}>, <\text{lt}>, [<\text{Xn}|\text{SP}]>\)

LDSMAXB variant

Applies when \(A == 0 && R == 0 \).

LDSMAXB \(<\text{ls}>, <\text{lt}>, [<\text{Xn}|\text{SP}]>\)

LDSMAXLB variant

Applies when \(A == 0 && R == 1 \).

LDSMAXLB \(<\text{ls}>, <\text{lt}>, [<\text{Xn}|\text{SP}]>\)

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

```
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMAXB, STSMAXLB</td>
<td>A == '0' & Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Ws>`: Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>`: Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>`: Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```c
bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[ ];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);

if t != 31 then
    X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.150 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXALH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not \(\text{WZR} \), LDSMAXAH and LDSMAXALH load from memory with acquire semantics.
- LDSMAXLH and LDSMAXALH store to memory with release semantics.
- LDSMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMAXH, STSMAXLH. See Alias conditions on page C6-1042 for details of when each alias is preferred.

ARMv8.1

```
<table>
<thead>
<tr>
<th>0 1 1 1 0 0 0</th>
<th>A</th>
<th>R</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs</td>
<td>0 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>Rs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

LDSMAXAH variant

Applies when \(A = 1 \) && \(R = 0 \).
LDSMAXAH <\text{ds}>, <\text{dt}>, [\langle Xn|SP\rangle]

LDSMAXALH variant

Applies when \(A = 1 \) && \(R = 1 \).
LDSMAXALH <\text{ds}>, <\text{dt}>, [\langle Xn|SP\rangle]

LDSMAXH variant

Applies when \(A = 0 \) && \(R = 0 \).
LDSMAXH <\text{ds}>, <\text{dt}>, [\langle Xn|SP\rangle]

LDSMAXLH variant

Applies when \(A = 0 \) && \(R = 1 \).
LDSMAXLH <\text{ds}>, <\text{dt}>, [\langle Xn|SP\rangle]

Decode for all variants of this encoding

```java
if !HaveAtomicExt() then UNDEFINED;
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMAXH, STSMAXLH</td>
<td>A == '0' & Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Ws>` Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>` Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```plaintext
bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];
data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);
if t != 31 then
  X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.151 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire semantics.
- LDSMAXL and LDSMAXAL store to memory with release semantics.
- LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMAX, STSMAXL. See Alias conditions on page C6-1044 for details of when each alias is preferred.

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 12|11 10 9 | 5 4 | 0 |  ]
```

32-bit LDSMAX variant

Applies when size == 10 && A == 0 && R == 0.

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA variant

Applies when size == 10 && A == 1 && R == 0.

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL variant

Applies when size == 10 && A == 1 && R == 1.

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL variant

Applies when size == 10 && A == 0 && R == 1.

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX variant

Applies when size == 11 && A == 0 && R == 0.

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA variant

Applies when size == 11 && A == 1 && R == 0.

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]
64-bit LDSMAXAL variant

Applies when size == 11 && A == 1 && R == 1.

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL variant

Applies when size == 11 && A == 0 && R == 1.

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMAX, STSMAXL</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_SMAX, value, ldacctype, stacctype);
if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.152 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.
- LDSMINLB and LDSMINALB store to memory with release semantics.
- LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMINB, STSMINLB. See Alias conditions on page C6-1047 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LDSMINAB variant

Applies when A == 1 && R == 0.

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

LDSMINALB variant

Applies when A == 1 && R == 1.

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

LDSMINB variant

Applies when A == 0 && R == 0.

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

LDSMINLB variant

Applies when A == 0 && R == 1.

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMINB, STSMINLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Rs>`: Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Rt>`: Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>`: Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```c
bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);

if t != 31 then
    X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.153 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.
- LDSMINLH and LDSMINAH store to memory with release semantics.
- LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMINH, STSMINLH. See Alias conditions on page C6-1049 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>Rs</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rn</td>
<td>Rs</td>
<td></td>
<td>Rt</td>
</tr>
</tbody>
</table>

LDSMINAH variant

Applies when \(A == 1 \) \&\& \(R == 0 \).

LDSMINAH <Ws>, <Wt>, [Xn|SP]

LDSMINALH variant

Applies when \(A == 1 \) \&\& \(R == 1 \).

LDSMINALH <Ws>, <Wt>, [Xn|SP]

LDSMINH variant

Applies when \(A == 0 \) \&\& \(R == 0 \).

LDSMINH <Ws>, <Wt>, [Xn|SP]

LDSMINLH variant

Applies when \(A == 0 \) \&\& \(R == 1 \).

LDSMINLH <Ws>, <Wt>, [Xn|SP]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' \&\& Rt != '11111' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType.ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMINH, STSMINLH</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.154 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire semantics.
- LDSMINL and LDSMINAL store to memory with release semantics.
- LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STSMIN, STSMINL. See Alias conditions on page C6-1051 for details of when each alias is preferred.

ARMv8.1

32-bit LDSMIN variant
Applies when size == 10 && A == 0 && R == 0.
LDSMIN <Ws>, <Wt>, [Xn|SP>

32-bit LDSMINA variant
Applies when size == 10 && A == 1 && R == 0.
LDSMINA <Ws>, <Wt>, [Xn|SP>

32-bit LDSMINAL variant
Applies when size == 10 && A == 1 && R == 1.
LDSMINAL <Ws>, <Wt>, [Xn|SP>

32-bit LDSMINL variant
Applies when size == 10 && A == 0 && R == 1.
LDSMINL <Ws>, <Wt>, [Xn|SP>

64-bit LDSMIN variant
Applies when size == 11 && A == 0 && R == 0.
LDSMIN <Xs>, <Xt>, [Xn|SP>

64-bit LDSMINA variant
Applies when size == 11 && A == 1 && R == 0.
LDSMINA <Xs>, <Xt>, [Xn|SP>
64-bit LDSMINAL variant
Applies when size == 11 && A == 1 && R == 1.
LDSMINAL \(<Xs>, <Xt>, [<Xn|SP>]\)

64-bit LDSMINL variant
Applies when size == 11 && A == 0 && R == 1.
LDSMINL \(<Xs>, <Xt>, [<Xn|SP>]\)

Decode for all variants of this encoding
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType.ORDERED_ATOMIC_RW else AccType_ATOMIC_RW;
AccType stacctype = if R == '1' then AccType.ORDERED_ATOMIC_RW else AccType_ATOMIC_RW;
boolean tag_checked = n != 31;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STSMIN, STSMINL</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation
bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPA1ignment();
 address = SP[];
else
 address = X[n];
data = MemAtomic(address, MemAtomicOp_SMIN, value, ldacctype, stacctype);
if t != 31 then
 X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when size == 10.

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveWEExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVaultExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;
integer regsize;
regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;
boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.156 LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.E2H, TGE is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding
LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && (EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 1, acctype];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.157 **LDTRH**

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see *Load/Store addressing modes on page C1-187*.

Encoding

LDTRH $<Wt>$, $[<Xn|SP>{, #<simm>}]$

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

$<Wt>$ Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

$<Xn|SP>$ Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

$<simm>$ Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !EL2Enabled() && HaveNVExt() && HCR_EL2.{NV,NV1} == '11';
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.{E2H,TGE} == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 2, acctype];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.158 LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when \(\text{opc} == 11 \).

LDTRSB \(<Wt>, [<Xn|SP>{, #<simm}>] \)

64-bit variant

Applies when \(\text{opc} == 10 \).

LDTRSB \(<Xt>, [<Xn|SP>{, #<simm}>] \)

Decode for all variants of this encoding

\[
\text{bits(64) offset} = \text{SignExtend}(\text{imm9, 64});
\]

Assembler symbols

- \(<Wt>\) Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Xt>\) Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- \(<\text{simm}>\) Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

\[
\text{integer n = UInt(Rn);}
\text{integer t = UInt(Rt);}
\]

\[
\text{unpriv_at_el1 = PSTATE.EL == EL1 \&\& !(EL2Enabled() \&\& HaveNVExt() \&\& HCR_EL2.\textlangle AV,NV\rangle == '11');}
\text{unpriv_at_el2 = PSTATE.EL == EL2 \&\& HaveVirtHostExt() \&\& HCR_EL2.\textlangle E2H,TGE\rangle == '11';}
\]

\[
\text{user_access_override = HaveUAOExt() \&\& PSTATE.UAO == '1';}
\text{if !user_access_override \&\& (unpriv_at_el1 \| unpriv_at_el2) then}
\text{acctype = AccType_UNPRIV;}
\text{else}
\text{acctype = AccType_NORMAL;}
\]

MemOp memop;
boolean signed;
integer regsize;
if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;
if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 1, acctype] = data;
 when MemOp_LOAD
 data = Mem[address, 1, acctype];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.159 LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

The address used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when opc == 11.

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

- **<Wt>** Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- **<Xt>** Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- **<Xn|SP>** Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- **<simm>** Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
 // store or zero-extending load
 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
 regsize = 32;
 signed = FALSE;
else
 // sign-extending load
 memop = MemOp_LOAD;
 regsize = if opc<0> == '1' then 32 else 64;
 signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
 if memop != MemOp_PREFETCH then CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

case memop of
 when MemOp_STORE
 data = X[t];
 Mem[address, 2, acctype] = data;
 when MemOp_LOAD
 data = Mem[address, 2, acctype];
 if signed then
 X[t] = SignExtend(data, regsize);
 else
 X[t] = ZeroExtend(data, regsize);
 when MemOp_PREFETCH
 Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.160 LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

```
[31 30 29 28][27 26 25 24][23 22 21 20] | 12|11 10  9 |  5 4 |  0 |
 1 0 1 1 1 0 0 1 0 0 |  imm9 | 1 0  | Rn  |  Rt |
size opc
```

Encoding

```
LDTRSW <Xt>, [<Xn|SP>{, #<simm>}
```

Decode for this encoding

```
bits(64) offset = SignExtend(imm9, 64);
```

Assembler symbols

- `<Xt>` Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<simm>` Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

```
integer n = UInt(Rn);
n = UInt(Rt);
unpriv_at_el1 = PSTATE.EL == EL1 && !(ELZEnabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '1');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '1';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !(user_access_override && (unpriv_at_el1 || unpriv_at_el2)) then
    acctype = AccType_UNPRIV;
else
    acctype = AccType_NORMAL;

boolean tag_checked = n != 31;
```

Operation

```
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(32) data;
```
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = Mem[address, 4, actype];
X[t] = SignExtend(data, 64);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.161 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.
• LDUMAXLB and LDUMAXALB store to memory with release semantics.
• LDUMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STUMAXB, STUMAXLB. See Alias conditions on page C6-1066 for details
of when each alias is preferred.

ARMv8.1

LDUMAXAB variant
Applies when $A == 1 && R == 0$.
LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALB variant
Applies when $A == 1 && R == 1$.
LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXB variant
Applies when $A == 0 && R == 0$.
LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLB variant
Applies when $A == 0 && R == 1$.
LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMAXB, STUMAXLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<\text{Ws}>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<\text{Wt}>\) Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

\(<\text{Xn}|\text{SP}>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

```c
bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);

if t != 31 then
    X[t] = ZeroExtend(data, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.162 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.
- LDUMAXLH and LDUMAXALH store to memory with release semantics.
- LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STUMAXH, STUMAXLH. See Alias conditions on page C6-1068 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>0 0 0</td>
<td>A R</td>
<td>1</td>
<td>Rs 0 1 0 0</td>
<td>0</td>
<td>Rn 0 0</td>
</tr>
</tbody>
</table>

LDUMAXAH variant

Applies when A == 1 && R == 0.
LDUMAXAH <ds>, <wt>, [<Xn|SP>]

LDUMAXALH variant

Applies when A == 1 && R == 1.
LDUMAXALH <ds>, <dt>, [<Xn|SP>]

LDUMAXH variant

Applies when A == 0 && R == 0.
LDUMAXH <ds>, <dt>, [<Xn|SP>]

LDUMAXLH variant

Applies when A == 0 && R == 1.
LDUMAXLH <ds>, <dt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMAXH, STUMAXLH</td>
<td>A == '0' && Rt == '1111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSRAliasment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.163 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire semantics.
- LDUMAX and LDUMAXAL store to memory with release semantics.
- LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STUMAX, STUMAXL. See Alias conditions on page C6-1070 for details of when each alias is preferred.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0</td>
<td>A</td>
<td>R</td>
<td>1</td>
<td>Rs 0 1 1 0 0</td>
<td>Rn</td>
</tr>
</tbody>
</table>

32-bit LDUMAX variant
Applies when size == 10 && A == 0 && R == 0.
LDUMAX <ws>, <wt>, [<Xn|SP>]

32-bit LDUMAXA variant
Applies when size == 10 && A == 1 && R == 0.
LDUMAXA <ws>, <wt>, [<Xn|SP>]

32-bit LDUMAXAL variant
Applies when size == 10 && A == 1 && R == 1.
LDUMAXAL <ws>, <wt>, [<Xn|SP>]

32-bit LDUMAXL variant
Applies when size == 10 && A == 0 && R == 1.
LDUMAXL <ws>, <wt>, [<Xn|SP>]

64-bit LDUMAX variant
Applies when size == 11 && A == 0 && R == 0.
LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA variant
Applies when size == 11 && A == 1 && R == 0.
LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXAL variant
Applies when size == 11 && A == 1 && R == 1.
LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL variant
Applies when size == 11 && A == 0 && R == 1.
LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. C6-1069
ID072120 Non-Confidential
64-bit LDUMAXAL variant
Applies when size == 11 && A == 1 && R == 1.
LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL variant
Applies when size == 11 && A == 0 && R == 1.
LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

Decode for all variants of this encoding
if !HaveAtomicExt() then UNDEFINED;
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMAX, STUMAXL</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation
bits(64) address;
bits(datasize) value;
bits(datasize) data;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
value = X[s];
if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else
 address = X[n];
data = MemAtomic(address, MemAtomicOp_UMAX, value, ldacctype, stacctype);
if \(t \neq 31 \) then
\[X[t] = \text{ZeroExtend}(\text{data}, \text{regsize}); \]

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.164 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.
- LDUMINLB and LDUMINALB store to memory with release semantics.
- LDUMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STUMINB, STUMINLB. See Alias conditions on page C6-1073 for details of
when each alias is preferred.

ARMv8.1

LDUMINAB variant
Applies when A == 1 && R == 0.
LDUMINAB <ds>, <wt>, [<Xn|SP>]

LDUMINALB variant
Applies when A == 1 && R == 1.
LDUMINALB <ds>, <wt>, [<Xn|SP>]

LDUMINB variant
Applies when A == 0 && R == 0.
LDUMINB <ds>, <wt>, [<Xn|SP>]

LDUMINLB variant
Applies when A == 0 && R == 1.
LDUMINLB <ds>, <wt>, [<Xn|SP>]

Decode for all variants of this encoding
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMINB, STUMINLB</td>
<td>A == '0' && Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Rs> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;

if HaveMTEEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.165 **LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH**

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.
- LDUMINLH and LDUMINALH store to memory with release semantics.
- LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is used by the alias STUMINH, STUMINLH. See *Alias conditions* on page C6-1075 for details of when each alias is preferred.

ARMv8.1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LDUMINAH variant

Applies when A == 1 && R == 0.
LDUMINAH <Ws>, <Wt>, [Xn\|SP]

LDUMINALH variant

Applies when A == 1 && R == 1.
LDUMINALH <Ws>, <Wt>, [Xn\|SP]

LDUMINH variant

Applies when A == 0 && R == 0.
LDUMINH <Ws>, <Wt>, [Xn\|SP]

LDUMINLH variant

Applies when A == 0 && R == 1.
LDUMINLH <Ws>, <Wt>, [Xn\|SP]

**Decode for all variants of this encoding**

if !HaveAtomicExt() then UNDEFINED;

integer t = Uint(Rt);
integer n = Uint(Rn);
integer s = Uint(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
### Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMINH, STUMINLH</td>
<td>A == '0' &amp; Rt == '11111'</td>
</tr>
</tbody>
</table>

### Assembler symbols

- `<Ws>`: Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Wt>`: Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>`: Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

### Operation

```plaintext
bits(64) address;
bits(16) value;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);

if t != 31 then
 X[t] = ZeroExtend(data, 32);
```

### Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.166   LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire semantics.
- LDUMINL and LDUMINAL store to memory with release semantics.
- LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is used by the alias STUMIN, STUMINL. See Alias conditions on page C6-1077 for details of when each alias is preferred.

ARMv8.1

32-bit LDUMIN variant
Applies when size == 10 && A == 0 && R == 0.
LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA variant
Applies when size == 10 && A == 1 && R == 0.
LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL variant
Applies when size == 10 && A == 1 && R == 1.
LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINL variant
Applies when size == 10 && A == 0 && R == 1.
LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN variant
Applies when size == 11 && A == 0 && R == 0.
LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA variant
Applies when size == 11 && A == 1 && R == 0.
LDUMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINAL variant
Applies when size == 11 && A == 1 && R == 1.
LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL variant
Applies when size == 11 && A == 0 && R == 1.
LDUMINL <Xs>, <Xt>, [<Xn|SP>]

31 30 29 28|27 26 25 24|23 22 21 20| 16 15 14 12 11 10 9 | 5 4 | 0 |
1 x 1 1 1 0 0 0 | A | R | 1 | Rs 0 1 1 0 0 | Rn | Rt |
64-bit LDUMINAL variant
Applies when size == 11 && A == 1 && R == 1.
LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL variant
Applies when size == 11 && A == 0 && R == 1.
LDUMINL <Xs>, <Xt>, [<Xn|SP>]

 Decode for all variants of this encoding
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

boolean tag_checked = n != 31;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUMIN, STUMINL</td>
<td>A == '0' &amp;&amp; Rt == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

data = MemAtomic(address, MemAtomicOp_UMIN, value, ldacctype, stacctype);
if t != 31 then
    X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.167  LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when \(size == 10\).

LDUR \(<Wt>, [<Xn|SP>{, #<simm>}]\)

64-bit variant

Applies when \(size == 11\).

LDUR \(<Xt>, [<Xn|SP>{, #<simm>}]\)

Decode for all variants of this encoding

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

\(<Wt>\) Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Xt>\) Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<\text{simm}>\) Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;
regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;
boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAAlignment();
    address = SP[];
else
address = X[n];
address = address + offset;
data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.168  LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding
LDURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];

address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.169  LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

\[
\begin{array}{cccccccccc}
| & | & | & 12|11 10 9 | 5 4 | 0 | \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
size & opc & imm9 & 0 & 0 & Rn & Rt
\end{array}
\]

**Encoding**

LDURH <Wt>, [<Xn|SP>{, #<simm}>]

**Decode for this encoding**

bits(64) offset = \( \text{SignExtend}(\text{imm}9, 64) \);

**Assembler symbols**

- \(<Wt>\) Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- \(<\text{simm}>\) Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

**Shared decode for all encodings**

\[
\begin{align*}
\text{integer } n & = \text{UInt}(Rn); \\
\text{integer } t & = \text{UInt}(Rt); \\
\text{boolean } tag\_checked & = n \neq 31;
\end{align*}
\]

**Operation**

\[
\begin{align*}
\text{if } & \text{HaveMTEExt()} \text{ then} \\
\text{SetTagCheckedInstruction}(tag\_checked); \\
\text{bits}(64) & \text{ address;} \\
\text{bits}(16) & \text{ data;} \\
\text{if } n & = 31 \text{ then} \\
\text{CheckSPAlignment}(); \\
\text{address} & = \text{SP}[]; \\
\text{else} \\
\text{address} & = X[n]; \\
\text{address} & = \text{address} + \text{offset}; \\
\text{data} & = \text{Mem}[\text{address}, 2, \text{AccType_NORMAL}]; \\
\text{X}[t] & = \text{ZeroExtend}(\text{data}, 32);
\end{align*}
\]

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.170   LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1</td>
<td>0 0 1 x 0</td>
<td>imm9</td>
<td>0 0</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**32-bit variant**

Applies when opc == 11.

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

**64-bit variant**

Applies when opc == 10.

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

*Decode for all variants of this encoding*

bits(64) offset = SignExtend(imm9, 64);

*Asmbluer symbols*

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

*Shared decode for all encodings*

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;
if opc<1> == '0' then
  // store or zero-extending load
  memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
  regsize = 32;
  signed = FALSE;
else
  // sign-extending load
  memop = MemOp_LOAD;
  regsize = if opc<0> == '1' then 32 else 64;
  signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);
Operation

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

if n == 31 then
    if memop != MemOp_PREFETCH then CheckSPAlignment();
    address = SP[ ];
else
    address = X[n];

address = address + offset;

case memop of
    when MemOp_STORE
        data = X[t];
        Mem[address, 1, AccType_NORMAL] = data;
    when MemOp_LOAD
        data = Mem[address, 1, AccType_NORMAL];
        if signed then
            X[t] = SignExtend(data, regsize);
        else
            X[t] = ZeroExtend(data, regsize);
    when MemOp_PREFETCH
        Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.171   LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

32-bit variant

Applies when opc == 11.

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when opc == 10.

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

*Decode for all variants of this encoding*

bits(64) offset = SignExtend(imm9, 64);

*Assembler symbols*

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

*Shared decode for all encodings*

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if opc<3> == '0' then
  // store or zero-extending load
  memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
  regsize = 32;
  signed = FALSE;
else
  // sign-extending load
  memop = MemOp_LOAD;
  regsize = if opc<0> == '1' then 32 else 64;
  signed = TRUE;

boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);
Operation

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
    if memop != MemOp_PREFETCH then CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

case memop of
    when MemOp_STORE
        data = X[t];
        Mem[address, 2, AccType_NORMAL] = data;
    when MemOp_LOAD
        data = Mem[address, 2, AccType_NORMAL];
        if signed then
            X[t] = SignExtend(data, regsize);
        else
            X[t] = ZeroExtend(data, regsize);
    when MemOp_PREFETCH
        Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

31 30 29 28	27 26 25 24	23 22 21 20		12	11 10 9	5 4	0								
1	0	1	1	1	0	0	0	1	0	0	imm9	0	0	Rn	Rt

**Encoding**

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

**Assembler symbols**

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

**Shared decode for all encodings**

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

**Operation**

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(32) data;

if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];

address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.173   LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be doubleword
aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be quadword
aligned and is single-copy atomic at doubleword granularity. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores on page B2-166. For information about memory accesses see
Load/Store addressing modes on page C1-187.

32-bit variant

Applies when \( sz = 0 \).

\[
\text{LDXP } <Wt1>, <Wt2>, \ [<Xn|SP>\{,#0}\]
\]

64-bit variant

Applies when \( sz = 1 \).

\[
\text{LDXP } <Xt1>, <Xt2>, \ [<Xn|SP>\{,#0}\]
\]

Decode for all variants of this encoding

integer \( n = \) UInt(Rn);
integer \( t = \) UInt(Rt);
integer \( t2 = \) UInt(Rt2);

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag_checked = \( n \neq 31 \);

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDXP on page K1-7976.

Assembler symbols

\(<Wt1>\)\n\ Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

\(<Wt2>\)\n\ Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

\(<Xt1>\)\n\ Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

\(<Xt2>\)\n\ Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

\(<Xn|SP>\)\n\ Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if HaveMTEExt() then
   SetTagCheckedInstruction(tag_checked);

if t == t2 then
   Constraint c = ConstrainUnpredictable();
   assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
   case c of
      when Constraint_UNKNOWN rt_unknown = TRUE;  // result is UNKNOWN
      when Constraint_UNDEF   UNDEFINED;
      when Constraint_NOP     EndOfInstruction();

if n == 31 then
   CheckSPAlignment();
   address = SP[];
else
   address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt_unknown then
   // ConstrainedUNPREDICTABLE case
   X[t] = bits(datasize) UNKNOWN;  // In this case t = t2
elseif elsize == 32 then
   // 32-bit load exclusive pair (atomic)
   data = Mem[address, dbytes, AccType_ATOMIC];
   if BigEndian() then
      X[t] = data<datasize-1:elsize>;
      X[t2] = data<elsize-1:0>;
   else
      X[t] = data<elsize-1:0>;
      X[t2] = data<datasize-1:elsize>;
else // elsize == 64
   // 64-bit load exclusive pair (not atomic),
   // but must be 128-bit aligned
   if address != Align(address, dbytes) then
      AArch64.Abort(address, AArch64.AlignmentFault(AccType_ATOMIC, FALSE, FALSE));
      X[t] = Mem[address, 8, AccType_ATOMIC];
      X[t2] = Mem[address+8, 8, AccType_ATOMIC];

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.174  LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when size == 10.

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit variant

Applies when size == 11.

LDXR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(size) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);
if n == 31 then
  CheckSPAInAlignment();
  address = SP[];
else
  address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

AArch64.SetExclusiveMonitors(address, dbytes);

data = Mem[address, dbytes, AccType_ATOMIC];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.175   LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. For information about memory accesses see Load/Store addressing modes on page C1-187.

Encoding

LDXRB \textless Wt\textgreater, \{<Xn|SP>{,#0}\}

Decode for this encoding

\begin{align*}
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } t &= \text{UInt}(Rt); \\
\text{boolean } tag\_checked &= n \neq 31;
\end{align*}

Assembler symbols

\textless Wt\textgreater \quad \text{Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.} \\
\text{<Xn|SP>} \quad \text{Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.}

Operation

\begin{align*}
\text{bits(64) address; } \\
\text{bits(8) data; } \\
\text{if HaveMTEExt() then } \\
\text{SetTagCheckedInstruction(tag\_checked);} \\
\text{if } n = 31 \text{ then } \\
\text{CheckSPAlignment(); } \\
\text{address = SP[]; } \\
\text{else } \\
\text{address = X[n]; } \\
\text{// Tell the Exclusives monitors to record a sequence of one or more atomic } \\
\text{// memory reads from virtual address range [address, address+dbytes-1]. } \\
\text{// The Exclusives monitor will only be set if all the reads are from the } \\
\text{// same dbytes-aligned physical address, to allow for the possibility of } \\
\text{// an atomicity break if the translation is changed between reads. } \\
\text{AArch64.SetExclusiveMonitors(address, 1);} \\
\text{data = Mem[address, 1, AccType\_ATOMIC]; } \\
\text{X[t] = ZeroExtend(data, 32);} \\
\end{align*}

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.176   LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores on page B2-166. For information about memory accesses see Load/Store addressing modes on page C1-187.

Encoding

LDXRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the same dbytes-aligned physical address, to allow for the possibility of an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 2);

data = Mem[address, 2, AccType_ATOMIC];
X[t] = ZeroExtend(data, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.177    LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is left-shifted.

This instruction is an alias of the LSLV instruction. This means that:

- The encodings in this description are named to match the encodings of LSLV.
- The description of LSLV gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf = 0 \).

\[
\text{LSL} \ <Wd>, \ <Wn>, \ <Wm> \\
\text{is equivalent to} \\
\text{LSLV} \ <Wd>, \ <Wn>, \ <Wm>
\]

and is always the preferred disassembly.

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{LSL} \ <Xd>, \ <Xn>, \ <Xm> \\
\text{is equivalent to} \\
\text{LSLV} \ <Xd>, \ <Xn>, \ <Xm>
\]

and is always the preferred disassembly.

### Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

### Operation

The description of LSLV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.178   LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

- The encodings in this description are named to match the encodings of UBFM.
- The description of UBFM gives the operational pseudocode for this instruction.

| 31 30 29 28|27 26 25 24|23 22 21 | 16|15 | 10 9 | 5 4 | 0 |
|-----------------|--|--|--|---|--|--|--|---|
| sf 1 0 1 0 0 1 0 | N | immr | imms | Rn | Rd |

**32-bit variant**

Applies when \( sf = 0 \) \&\& \( N = 0 \) \&\& \( \text{imms} \neq 011111 \).

\[
\text{LSL} <Wd>, <Wn>, \#<shift>
\]

is equivalent to

\[
\text{UBFM} <Wd>, <Wn>, \#(-<shift> \mod 32), \#(31-<shift>)
\]

and is the preferred disassembly when \( \text{imms} + 1 = \text{immr} \).

**64-bit variant**

Applies when \( sf = 1 \) \&\& \( N = 1 \) \&\& \( \text{imms} \neq 111111 \).

\[
\text{LSL} <Xd>, <Xn>, \#<shift>
\]

is equivalent to

\[
\text{UBFM} <Xd>, <Xn>, \#(-<shift> \mod 64), \#(63-<shift>)
\]

and is the preferred disassembly when \( \text{imms} + 1 = \text{immr} \).

**Assembler symbols**

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{shift}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31.
  For the 64-bit variant: is the shift amount, in the range 0 to 63.

**Operation**

The description of UBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.179   LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register). The alias is always the preferred disassembly.

32-bit variant
Applies when \( sf == 0 \).
LSLV <Wd>, <Wn>, <Wm>

64-bit variant
Applies when \( sf == 1 \).
LSLV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

integer \( d = UInt(Rd) \);
integer \( n = UInt(Rn) \);
integer \( m = UInt(Rm) \);
integer datasize = if \( sf == '1' \) then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<\( \text{Wd} \)> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<\( \text{Wn} \)> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<\( \text{Wm} \)> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
<\( \text{Xd} \)> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<\( \text{Xn} \)> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<\( \text{Xm} \)> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.180   LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the LSRV instruction. This means that:

- The encodings in this description are named to match the encodings of LSRV.
- The description of LSRV gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when $sf == 0$.

$$\text{LSR} \ <Wd>, <Wn>, <Wm>$$

is equivalent to

$$\text{LSRV} \ <Wd>, <Wn>, <Wm>$$

and is always the preferred disassembly.

### 64-bit variant

Applies when $sf == 1$.

$$\text{LSR} \ <Xd>, <Xn>, <Xm>$$

is equivalent to

$$\text{LSRV} \ <Xd>, <Xn>, <Xm>$$

and is always the preferred disassembly.

### Assembler symbols

- $<Wd>$: Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<Wn>$: Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Wm>$: Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
- $<Xd>$: Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<Xn>$: Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Xm>$: Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

### Operation

The description of LSRV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.181   LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

- The encodings in this description are named to match the encodings of UBFM.
- The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( sf == 0 \&\& N == 0 \&\& \text{imms} == 011111 \).

\[
\text{LSR} <Wd>, <Wn>, \#<shift>
\]
is equivalent to

\[
\text{UBFM} <Wd>, <Wn>, \#<shift>, \#31
\]

and is always the preferred disassembly.

64-bit variant

Applies when \( sf == 1 \&\& N == 1 \&\& \text{imms} == 111111 \).

\[
\text{LSR} <Xd>, <Xn>, \#<shift>
\]
is equivalent to

\[
\text{UBFM} <Xd>, <Xn>, \#<shift>, \#63
\]

and is always the preferred disassembly.

Assembler symbols

- \(<Wd>\) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<Xd>\) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{shift}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.
  For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.182   LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes the result to the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register). The alias is always the preferred disassembly.

32-bit variant

Applies when sf == 0.

LSRV <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf == 1.

LSRV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];
result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
## C6.2.183  MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination register.

This instruction is used by the alias MUL. See Alias conditions for details of when each alias is preferred.

### 32-bit variant

Applies when \( sf = 0 \).

\[
\text{MADD} \ <Wd>, <Wn>, <Wm>, <Wa>
\]

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{MADD} \ <Xd>, <Xn>, <Xm>, <Xa>
\]

#### Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } a &= \text{UInt}(Ra); \\
\text{integer } destsize &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

#### Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUL</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

#### Assembler symbols

- \( <Wd> \) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( <Wn> \) Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- \( <Wm> \) Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
- \( <Wa> \) Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.
- \( <Xd> \) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( <Xn> \) Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- \( < Xm> \) Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

**Operation**

```c
bits(destsize) operand1 = X[n];
bits(destsize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;
result = UInt(operand3) + (UInt(operand1) * UInt(operand2));
X[d] = result<destsize-1:0>;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.184   MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This instruction is an alias of the MSUB instruction. This means that:

- The encodings in this description are named to match the encodings of MSUB.
- The description of MSUB gives the operational pseudocode for this instruction.

32-bit variant

Applies when $sf = 0$.

MNEG $<Wd>$, $<Wn>$, $<Wm>$
is equivalent to

MSUB $<Wd>$, $<Wn>$, $<Wm>$, WZR
and is always the preferred disassembly.

64-bit variant

Applies when $sf = 1$.

MNEG $<Xd>$, $<Xn>$, $<Xm>$
is equivalent to

MSUB $<Xd>$, $<Xn>$, $<Xm>$, XZR
and is always the preferred disassembly.

Assembler symbols

$<Wd>$ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Wn>$ Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

$<Wm>$ Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

$<Xd>$ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Xn>$ Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

$<Xm>$ Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.185 MOV (to/from SP)

Move between register and stack pointer: \( Rd = Rn \)

This instruction is an alias of the ADD (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of ADD (immediate).
- The description of ADD (immediate) gives the operational pseudocode for this instruction.

**32-bit variant**

Applies when \( sf = 0 \).

\[
\text{MOV} \ <Wd|WSP>, <Wn|WSP> \\
\]

is equivalent to

\[
\text{ADD} \ <Wd|WSP>, <Wn|WSP>, #0 \\
\]

and is the preferred disassembly when \( (Rd == '11111' || Rn == '11111') \).

**64-bit variant**

Applies when \( sf = 1 \).

\[
\text{MOV} \ <Xd|SP>, <Xn|SP> \\
\]

is equivalent to

\[
\text{ADD} \ <Xd|SP>, <Xn|SP>, #0 \\
\]

and is the preferred disassembly when \( (Rd == '11111' || Rn == '11111') \).

**Assembler symbols**

- \(<Wd|WSP>\) Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- \(<Wn|WSP>\) Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<Xd|SP>\) Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
- \(<Xn|SP>\) Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

**Operation**

The description of ADD (immediate) gives the operational pseudocode for this instruction.
C6.2.186 MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This instruction is an alias of the MOVN instruction. This means that:

- The encodings in this description are named to match the encodings of MOVN.
- The description of MOVN gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf = 0 \) \&\& \( hw = 0x \).

\[
\text{MOV} \ <Wd>, \ #\langle \text{imm} \rangle \\
\] is equivalent to

\[
\text{MOVN} \ <Wd>, \ #\langle \text{imm16} \rangle, \ LSL \ #\langle \text{shift} \rangle \\
\]

and is the preferred disassembly when \( ! (\text{IsZero}(\text{imm16}) \ \&\& \ hw \neq '00') \) \&\& \( ! \text{IsOnes}(\text{imm16}) \).

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{MOV} \ <Xd>, \ #\langle \text{imm} \rangle \\
\]

is equivalent to

\[
\text{MOVN} \ <Xd>, \ #\langle \text{imm16} \rangle, \ LSL \ #\langle \text{shift} \rangle \\
\]

and is the preferred disassembly when \( ! (\text{IsZero}(\text{imm16}) \ \&\& \ hw \neq '00') \).

### Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{imm}>\)
  - For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in "imm16:hw", but excluding 0xffff0000 and 0x0000ffff.
  - For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in "imm16:hw".
- \(<\text{shift}>\)
  - For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw" field as \(<\text{shift}>/16\).
  - For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the "hw" field as \(<\text{shift}>/16\).

### Operation

The description of MOVN gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.187  MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This instruction is an alias of the MOVZ instruction. This means that:

- The encodings in this description are named to match the encodings of MOVZ.
- The description of MOVZ gives the operational pseudocode for this instruction.

<table>
<thead>
<tr>
<th>opcode</th>
<th>sf</th>
<th>hw</th>
<th>imm16</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

### 32-bit variant

Applies when \( sf = 0 && hw = 0 \times \).

\[
\text{MOV} \ <Wd>, \ #<imm>
\]

is equivalent to

\[
\text{MOVZ} \ <Wd>, \ #<imm16>, \ LSL \ <shift>
\]

and is the preferred disassembly when \( ! (\text{IsZero(<imm16>)} && hw != '00') \).

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{MOV} \ <Xd>, \ #<imm>
\]

is equivalent to

\[
\text{MOVZ} \ <Xd>, \ #<imm16>, \ LSL \ <shift>
\]

and is the preferred disassembly when \( ! (\text{IsZero(<imm16>)} && hw != '00') \).

### Assembler symbols

- \(<Wd>\) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xd>\) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<imm>\) for the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".
  
  For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

- \(<shift>\) for the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw" field as \(<shift>/16\).
  
  For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the "hw" field as \(<shift>/16\).

### Operation

The description of MOVZ gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.188  MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This instruction is an alias of the **ORR (immediate)** instruction. This means that:

- The encodings in this description are named to match the encodings of **ORR (immediate)**.
- The description of **ORR (immediate)** gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf = 0 \land N = 0 \).

\[
\text{MOV } \langle Wd|WSP \rangle, \#<\text{imm}>
\]

is equivalent to

\[
\text{ORR } \langle Wd|WSP \rangle, \text{WZR}, \#<\text{imm}>
\]

and is the preferred disassembly when \(! \text{MoveWidePreferred}(sf, N, imms, immr)\).

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{MOV } \langle Xd|SP \rangle, \#<\text{imm}>
\]

is equivalent to

\[
\text{ORR } \langle Xd|SP \rangle, \text{XZR}, \#<\text{imm}>
\]

and is the preferred disassembly when \(! \text{MoveWidePreferred}(sf, N, imms, immr)\).

### Assembler symbols

- \( \langle Wd|WSP \rangle \) is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

- \( \langle Xd|SP \rangle \) is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

- \( <\text{imm}> \) is the bitmask immediate, encoded in "imms:immr", but excluding values which could be encoded by MOVZ or MOVN.

For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values which could be encoded by MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values which could be encoded by MOVZ or MOVN.

### Operation

The description of **ORR (immediate)** gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.189   MOV (register)

Move (register) copies the value in a source register to the destination register.

This instruction is an alias of the ORR (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of ORR (shifted register).
- The description of ORR (shifted register) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf = 0 \).

\[
\text{MOV } \langle \text{Wd} \rangle, \langle \text{Wm} \rangle
\]

is equivalent to

\[
\text{ORR } \langle \text{Wd} \rangle, \text{WZR}, \langle \text{Wm} \rangle
\]

and is always the preferred disassembly.

### 64-bit variant

Applies when \( sf = 1 \).

\[
\text{MOV } \langle \text{Xd} \rangle, \langle \text{Xm} \rangle
\]

is equivalent to

\[
\text{ORR } \langle \text{Xd} \rangle, \text{XZR}, \langle \text{Xm} \rangle
\]

and is always the preferred disassembly.

### Assembler symbols

- \(<\text{Wd}>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{Wm}>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(<\text{Xd}>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{Xm}>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

### Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C6.2.190   MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits unchanged.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th></th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>imm16</td>
</tr>
<tr>
<td>hw</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Rd</td>
<td></td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**32-bit variant**

Applies when `sf == 0 && hw == 0x`.  

MOVK <Wd>, #<imm>{, LSL #<shift>}

**64-bit variant**

Applies when `sf == 1`.  

MOVK <Xd>, #<imm>{, LSL #<shift>}

**Decode for all variants of this encoding**

```c
integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;
if sf == '0' && hw<1> == '1' then UNDEFINED;
pos = UInt(hw:'0000');
```

**Assembler symbols**

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<imm>` Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.
- `<shift>` For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw" field as `<shift>/16.`

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the "hw" field as `<shift>/16.`

**Operation**

```c
bits(datasize) result;
result = X[d];
result<pos+15:pos> = imm16;
X[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

- The values of the data supplied in any of its registers.
- The values of the NZCV flags.
C6.2.191   MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate). See Alias conditions for details of when each alias is preferred.

31 30 29 28	27 26 25 24	23 22 21 20					5 4	0	
sf	0	0	1	0	0	1	0	1	hw
opc									
imm16									
Rd									

**32-bit variant**

Applies when \( sf == 0 \&\& \ hw == 0x \).

MOV \(<Wd>\), \#<imm>{, LSL \#<shift>}

**64-bit variant**

Applies when \( sf == 1 \).

MOV \(<Xd>\), \#<imm>{, LSL \#<shift>}

**Decode for all variants of this encoding**

```plaintext
integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;
if sf == '0' \&\& hw<1> == '1' then UNDEFINED;
pos = UInt(hw:'0000');
```

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (inverted wide immediate)</td>
<td>64-bit ! (IsZero(imm16) &amp;&amp; hw != '00')</td>
</tr>
<tr>
<td>MOV (inverted wide immediate)</td>
<td>32-bit ! (IsZero(imm16) &amp;&amp; hw != '00') &amp;&amp; ! IsOnes(imm16)</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<imm>\) Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.
- \(<shift>\) For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw" field as \( <shift>/16 \).
  For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the "hw" field as \( <shift>/16 \).

**Operation**

```plaintext
bits(datasize) result;
result = Zeros();
```
result<pos+15:pos> = imm16;
result = NOT(result);
X[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.192  MOVE

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate). See Alias conditions for details of when each alias is preferred.

[1 0 1 0 0 1 0 1 | hw | imm16 | Rd]

32-bit variant
Applies when sf == 0 && hw == 0x.

MOV <Wd>, #<imm>{, LSL #<shift>}

64-bit variant
Applies when sf == 1.

MOV <Xd>, #<imm>{, LSL #<shift>}

Decode for all variants of this encoding

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;
if sf == '0' && hw<1> == '1' then UNDEFINED;
   pos = UInt(hw:'0000');

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (wide immediate)</td>
<td>!(IsZero(imm16) &amp;&amp; hw != '00')</td>
</tr>
</tbody>
</table>

Assembler symbols

<Wd>  Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd>  Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm>  Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift>  For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the "hw" field as <shift>/16.

Operation

bits(datasize) result;
result = Zeros();
result<pos+15:pos> = imm16;
X[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.193   MRS

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

```
MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)
```

**Encoding**

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

**Decode for this encoding**

```
AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);
integer t = UInt(Rt);
integer sys_op0 = 2 + UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys.crm = UInt(CRm);
```

**Assembler symbols**

- `<Xt>` is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.
- `<systemreg>` is a System register name, encoded in the "o0:op1:CRn:CRm:op2".
  
  The System register names are defined in Chapter D13 AArch64 System Register Descriptions.
- `<op0>` is an unsigned immediate, encoded in the "o0" field. It can have the following values:
  
  - 2 when o0 = 0
  - 3 when o0 = 1
- `<op1>` is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
- `<Cn>` is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.
- `<Cm>` is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
- `<op2>` is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

**Operation**

```
X[t] = AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys.crm, sys.op2);
```
C6.2.194   MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more information, see PSTATE.

The bits that can be written by this instruction are:

- PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.
- If FEAT_SSBS is implemented, PSTATE.SSBS.
- If FEAT_PAN is implemented, PSTATE.PAN.
- If FEAT_UAO is implemented, PSTATE.UAO.
- If FEAT_DIT is implemented, PSTATE.DIT.
- If FEAT_MTE is implemented, PSTATE.TCO.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 8 7 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0</td>
<td>0 0</td>
<td>op1</td>
<td>0 1 0 0</td>
<td>CRm</td>
<td>op2</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>
```

**Encoding**

MSR <pstatefield>, #<imm>

**Decode for this encoding**

if op1 == '000' && op2 == '000' then SEE "CFINV";
if op1 == '000' && op2 == '001' then SEE "XAFLAG";
if op1 == '000' && op2 == '010' then SEE "AXFLAG";

AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');

PSTATEField field;
case op1:op2 of
  when '000 011' if !HaveUAOExt() then UNDEFINED;
    field = PSTATEField_UAO;
  when '000 100' if !HavePANExt() then UNDEFINED;
    field = PSTATEField_PAN;
  when '000 101' field = PSTATEField_SP;
  when '011 010' if !HaveDITExt() then UNDEFINED;
    field = PSTATEField_DIT;
  when '011 100' if !HaveMTEExt() then UNDEFINED;
    field = PSTATEField_TCO;
  when '011 110' field = PSTATEField_DAIFSet;
  when '011 111' field = PSTATEField_DAIFClr;
  when '011 001' if !HaveSSBSExt() then UNDEFINED;
    field = PSTATEField_SSBS;
  otherwise UNDEFINED;
```
// Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
if PSTATE_EL == EL0 && field in {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then
 if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0')
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);

Assembler symbols

<statefield> is a PSTATE field name, encoded in the "op1:op2" field. It can have the following values:

- SPSel when op1 = 000, op2 = 101
- DAIFSet when op1 = 011, op2 = 110
- DAIFClr when op1 = 011, op2 = 111

When FEAT_UAO is implemented, the following value is also valid:

- UAO when op1 = 000, op2 = 011

When FEAT_PAN is implemented, the following value is also valid:

- PAN when op1 = 000, op2 = 100

When FEAT_SSBS is implemented, the following value is also valid:

- SSBS when op1 = 011, op2 = 001

When FEAT_DIT is implemented, the following value is also valid:

- DIT when op1 = 011, op2 = 010

When FEAT_MTE is implemented, the following value is also valid:

- TCO when op1 = 011, op2 = 100

See PSTATE on page C4-274 when op1 = 000, op2 = 00x.

See PSTATE on page C4-274 when op1 = 000, op2 = 010.

The following encodings are reserved:

- op1 = 000, op2 = 11x.
- op1 = 001, op2 = xxx.
- op1 = 010, op2 = xxx.
- op1 = 011, op2 = 000.
- op1 = 011, op2 = 011.
- op1 = 011, op2 = 101.
- op1 = 1xx, op2 = xxx.

<imm> is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

case field of
 when PSTATEField_SSBS
 PSTATE.SSBS = CRm<0>;
 when PSTATEField_SP
 PSTATE.SP = CRm<0>;
 when PSTATEField_DAIFSet
 PSTATE.D = PSTATE.D OR CRm<3>;
 PSTATE.A = PSTATE.A OR CRm<2>;
 PSTATE.I = PSTATE.I OR CRm<1>;
 PSTATE.F = PSTATE.F OR CRm<0>;
 when PSTATEField_DAIFClr
 PSTATE.D = PSTATE.D AND NOT(CRm<3>);
 PSTATE.A = PSTATE.A AND NOT(CRm<2>);
 PSTATE.I = PSTATE.I AND NOT(CRm<1>);
PSTATE.F = PSTATE.F AND NOT(CRm<0>);
when PSTATEField_PAN
 PSTATE.PAN = CRm<0>;
when PSTATEField_UAO
 PSTATE.UAO = CRm<0>;
when PSTATEField_DIT
 PSTATE.DIT = CRm<0>;
when PSTATEField_TCO
 PSTATE.TCO = CRm<0>;
C6.2.195 MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a general-purpose register.

Encoding

MSR (<systemreg>|<op0>|<op1>|<Cn>|<Cm>|<op2>|<Xt>), <Xt>

Decode for this encoding

AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 2 * UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);

Assembler symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".
 The System register names are defined in Chapter D13 AArch64 System Register Descriptions.
<op0> Is an unsigned immediate, encoded in the "o0" field. It can have the following values:
 2 when o0 = 0
 3 when o0 = 1
<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);
C6.2.196 MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the result to the destination register.

This instruction is used by the alias MNEG. See *Alias conditions* for details of when each alias is preferred.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0 0</td>
<td>1 1 0 1 1 0 0</td>
<td>Rm</td>
<td>1</td>
<td>Ra</td>
<td>Rn</td>
<td>Rd</td>
</tr>
<tr>
<td>o0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when $sf = 0$.

MSUB `<Wd>, <Wn>, <Wm>, <Wa>`

64-bit variant

Applies when $sf = 1$.

MSUB `<Xd>, <Xn>, <Xm>, <Xa>`

Decode for all variants of this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- integer a = UInt(Ra);
- integer destsize = if sf == '1' then 64 else 32;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEG</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
- `<Wa>` Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation

\[
\begin{align*}
\text{bits(destsize) operand1} &= X[n]; \\
\text{bits(destsize) operand2} &= X[m]; \\
\text{bits(destsize) operand3} &= X[a]; \\
\text{integer result} &= \text{ UInt(operand3) - (UInt(operand1) \times UInt(operand2))}; \\
X[d] &= \text{result<destsize-1:0>};
\end{align*}
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.197 MUL

Multiply: \(Rd = Rn \times Rm \)

This instruction is an alias of the MADD instruction. This means that:

- The encodings in this description are named to match the encodings of MADD.
- The description of MADD gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

\[\text{MUL } \langle Wd \rangle, \langle Wn \rangle, \langle Wm \rangle \]

is equivalent to

\[\text{MADD } \langle Wd \rangle, \langle Wm \rangle, \langle Wn \rangle, WZR \]

and is always the preferred disassembly.

64-bit variant

Applies when \(sf = 1 \).

\[\text{MUL } \langle Xd \rangle, \langle Xn \rangle, \langle Xm \rangle \]

is equivalent to

\[\text{MADD } \langle Xd \rangle, \langle Xm \rangle, \langle Xn \rangle, XZR \]

and is always the preferred disassembly.

Assembler symbols

- \(\langle Wd \rangle \): Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle Wn \rangle \): Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- \(\langle Wm \rangle \): Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
- \(\langle Xd \rangle \): Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle Xn \rangle \): Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- \(\langle Xm \rangle \): Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.
C6.2.198 MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This instruction is an alias of the ORN (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of ORN (shifted register).
- The description of ORN (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf = 0 \).

\[
\text{MVN} <Wd>, <Wm>{, <shift> #<amount>}
\]

is equivalent to

\[
\text{ORN} <Wd>, WZR, <Wm>{, <shift> #<amount>}
\]

and is always the preferred disassembly.

64-bit variant

Applies when \(sf = 1 \).

\[
\text{MVN} <Xd>, <Xm>{, <shift> #<amount>}
\]

is equivalent to

\[
\text{ORN} <Xd>, XZR, <Xm>{, <shift> #<amount>}
\]

and is always the preferred disassembly.

Assembler symbols

- \(<Wd> \) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wm> \) is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(<Xd> \) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xm> \) is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}> \) is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - \(\text{LSL} \) when \(\text{shift} = 00 \)
 - \(\text{LSR} \) when \(\text{shift} = 01 \)
 - \(\text{ASR} \) when \(\text{shift} = 10 \)
 - \(\text{ROR} \) when \(\text{shift} = 11 \)
- \(<\text{amount}> \) is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 - For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 - For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

The description of **ORN (shifted register)** gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.199 NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This instruction is an alias of the SUB (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of SUB (shifted register).
- The description of SUB (shifted register) gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf == 0 \).

\[
\text{NEG } \langle \text{Wd} \rangle, \langle \text{Wm} \rangle \{, \langle \text{shift} \rangle \#\langle \text{amount} \rangle \}
\]

is equivalent to

\[
\text{SUB } \langle \text{Wd} \rangle, \text{WZR}, \langle \text{Wm} \rangle \{, \langle \text{shift} \rangle \#\langle \text{amount} \rangle \}
\]

and is always the preferred disassembly.

64-bit variant

Applies when \(sf == 1 \).

\[
\text{NEG } \langle \text{Xd} \rangle, \langle \text{ Xm} \rangle \{, \langle \text{shift} \rangle \#\langle \text{amount} \rangle \}
\]

is equivalent to

\[
\text{SUB } \langle \text{Xd} \rangle, \text{XZR}, \langle \text{Xm} \rangle \{, \langle \text{shift} \rangle \#\langle \text{amount} \rangle \}
\]

and is always the preferred disassembly.

Assembler symbols

- \(\langle \text{Wd} \rangle \) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle \text{Wm} \rangle \) is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(\langle \text{Xd} \rangle \) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(\langle \text{Xm} \rangle \) is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(\langle \text{shift} \rangle \) is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when \(\text{shift} = 00 \)
 - LSR when \(\text{shift} = 01 \)
 - ASR when \(\text{shift} = 10 \)
 - The encoding \(\text{shift} = 11 \) is reserved.
- \(\langle \text{amount} \rangle \) is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 - For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 - For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.200 NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is an alias of the SUBS (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of SUBS (shifted register).
- The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

32-bit variant
Applies when \(sf = 0 \).
NEGS <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to
SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit variant
Applies when \(sf = 1 \).
NEGS <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to
SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wm>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xm>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}>\) Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when \(\text{shift} = 00 \)
 - LSR when \(\text{shift} = 01 \)
 - ASR when \(\text{shift} = 10 \)
 - The encoding \(\text{shift} = 11 \) is reserved.
- \(<\text{amount}>\) For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
 For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.201 NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to the destination register.

This instruction is an alias of the SBC instruction. This means that:

• The encodings in this description are named to match the encodings of SBC.
• The description of SBC gives the operational pseudocode for this instruction.

32-bit variant

Applies when `sf == 0`.

`NGC <Wd>, <Wm>`

is equivalent to

`SBC <Wd>, WZR, <Wm>`

and is always the preferred disassembly.

64-bit variant

Applies when `sf == 1`.

`NGC <Xd>, <Xm>`

is equivalent to

`SBC <Xd>, XZR, <Xm>`

and is always the preferred disassembly.

Assembler symbols

- `<Wd>`: Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wm>`: Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.
- `<Xd>`: Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xm>`: Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.202 NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is an alias of the SBCS instruction. This means that:

• The encodings in this description are named to match the encodings of SBCS.
• The description of SBCS gives the operational pseudocode for this instruction.

32-bit variant

Applies when $sf = 0$.

NGCS $<Wd>, <Wm>$

is equivalent to

SBCS $<Wd>, WZR, <Wm>$

and is always the preferred disassembly.

64-bit variant

Applies when $sf = 1$.

NGCS $<Xd>, <Xm>$

is equivalent to

SBCS $<Xd>, XZR, <Xm>$

and is always the preferred disassembly.

Assembler symbols

$<Wd>$ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Wm>$ Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

$<Xd>$ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Xm>$ Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.203 NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time, leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

Encoding

NOP

Decode for this encoding

// Empty.

Operation

// do nothing

Operational information

If PSTATE.ĐT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.204 ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN. See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when \(sf = 0 \).

\[\text{ORN} \:<Wd>, \:<Wn>, \:<Wm>\{, <\text{shift}> \:#\text{amount}\}\]

64-bit variant

Applies when \(sf = 1 \).

\[\text{ORN} \:<Xd>, \:<Xn>, \:<Xm>\{, <\text{shift}> \:#\text{amount}\}\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(\text{Rd}); \\
\text{integer } n &= \text{UInt}(\text{Rn}); \\
\text{integer } m &= \text{UInt}(\text{Rm}); \\
\text{integer } \text{datasize} &= \begin{cases}
32 & \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{UNDEFINED} & \text{if } sf = '0' \&\& \text{imm6<5>} = '1'
\end{cases}; \\
\text{ShiftType } \text{shift_type} &= \text{DecodeShift}(\text{shift}); \\
\text{integer } \text{shift_amount} &= \text{UInt}(\text{imm6});
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVN</td>
<td>(\text{Rn} = '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<\text{shift}>\) Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
 - LSL when \(\text{shift} = 00 \)
 - LSR when \(\text{shift} = 01 \)
ASR when shift = 10
ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

```
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
operand2 = NOT(operand2);
result = operand1 OR operand2;
X[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.205 ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate). See Alias conditions for details of when each alias is preferred.

32-bit variant

Applies when \(sf = 0 \) \&\& \(N = 0 \).

\[
\text{ORR <Wd|WSP>, <Wn>, #<imm>}
\]

64-bit variant

Applies when \(sf = 1 \).

\[
\text{ORR <Xd|SP>, <Xn>, #<imm>}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d & = \text{UInt}(Rd); \\
\text{integer } n & = \text{UInt}(Rn); \\
\text{integer } \text{datasize} & = \text{if } sf \text{ == '1' then 64 else 32; } \\
\text{bits(datasize) imm} & ; \\
\text{if } sf \text{ == '0' \&\& } N \text{ != '0' then UNDEFINED; } \\
(\text{imm, -}) & = \text{DecodeBitMasks}(N, \text{imms, immr, TRUE});
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (bitmask immediate)</td>
<td>(Rn = '11111' && \neg \text{MoveWidePreferred}(sf, N, imms, immr)</td>
</tr>
</tbody>
</table>

Assembler symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Wd</td>
<td>WSP></td>
</tr>
<tr>
<td><Wn></td>
<td>Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.</td>
</tr>
<tr>
<td><Xd</td>
<td>SP></td>
</tr>
<tr>
<td><Xn></td>
<td>Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.</td>
</tr>
<tr>
<td><imm></td>
<td>For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr". For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".</td>
</tr>
</tbody>
</table>
Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
result = operand1 OR imm;
if d == 31 then
 SP[] = result;
else
 X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.206 ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MOV (register). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when \(sf = 0 \).

\[
\text{ORR } <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
\]

64-bit variant
Applies when \(sf = 1 \).

\[
\text{ORR } <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
\]

Decode for all variants of this encoding

\[
\begin{array}{l}
\text{integer } d = \text{UInt}(Rd);
\text{integer } n = \text{UInt}(Rn);
\text{integer } m = \text{UInt}(Rm);
\text{integer } datasize = \text{if } sf = '1' \text{ then } 64 \text{ else } 32;
\text{if } sf = '0' \&\& \text{imm6}<5> = '1' \text{ then UNDEFINED;}
\end{array}
\]

\text{ShiftType } shift_\text{type} = \text{DecodeShift(shift)};
\text{integer } shift_\text{amount} = \text{UInt(imm6)};

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (register)</td>
<td>shift == '00' && imm6 == '000000' && Rn == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

\(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

\(<\text{shift}>\) Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- \(\text{LSL} \) when shift = 00
- \(\text{LSR} \) when shift = 01
ASR when shift = 10
ROR when shift = 11

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
b bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

result = operand1 OR operand2;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.207 PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer authentication code for a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

- In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.
- The value zero, for PACDZA.

ARMv8.3

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9  |  5  4  |  0 |
| 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 | Z | 0 1 0 |
```

PACDA variant

Applies when Z == 0.

PACDA <Xd>, <Xn|SP>

PACDZA variant

Applies when Z == 1 && Rn == 11111.

PACDZA <Xd>

Decode for all variants of this encoding

```java
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
    UNDEFINED;

if Z == '0' then // PACDA
    if n == 31 then source_is_sp = TRUE;
else // PACDZA
    if n != 31 then UNDEFINED;
```

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

```java
if source_is_sp then
    X[d] = AddPACDA(X[d], SP[]);
else
    X[d] = AddPACDA(X[d], X[n]);
```
C6.2.208 PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer authentication code for a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

- In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.
- The value zero, for PACDZB.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PACDB variant

Applies when Z == 0.

PACDB <Xd>, <Xn|SP>

PACDZB variant

Applies when Z == 1 && Rn == 11111.

PACDZB <Xd>

Decode for all variants of this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HavePACExt() then
   UNDEFINED;
if Z == '0' then // PACDB
   if n == 31 then source_is_sp = TRUE;
else // PACDZB
   if n != 31 then UNDEFINED;
```

Assembler symbols

- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

```c
if source_is_sp then
   X[d] = AddPACDB(X[d], SP[]);
else
   X[d] = AddPACDB(X[d], X[n]);
```
C6.2.209 PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for an address in the first source register, using a modifier in the second source register, and the Generic key. The computed pointer authentication code is returned in the upper 32 bits of the destination register.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Encoding

PACGA <Xd>, <Xn>, <Xm|SP>

Decode for this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if !HavePACExt() then 
    UNDEFINED;

if m == 31 then source_is_sp = TRUE;
```

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Xm|SP>` Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Rm" field.

Operation

```c
if source_is_sp then 
    X[d] = AddPACGA(X[n], SP[]);
else 
    X[d] = AddPACGA(X[n], X[m]);
```
C6.2.210 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer authentication code for an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by \langle Xd \rangle for PACIA and PACIZA.
• In X17, for PACIA1716.
• In X30, for PACIASP and PACIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by \langle Xn|SP \rangle for PACIA.
• The value zero, for PACIZA and PACIAZ.
• In X16, for PACIA1716.
• In SP, for PACIASP.

Integer

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

PACIA variant

Applies when \(Z = 0 \).

PACIA \langle Xd \rangle, \langle Xn|SP \rangle

PACIZA variant

Applies when \(Z = 1 \land Rn = 11111 \).

PACIZA \langle Xd \rangle

Decode for all variants of this encoding

```c
boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
    UNDEFINED;

if Z == '0' then // PACIA
    if n == 31 then source_is_sp = TRUE;
else // PACIZA
    if n != 31 then UNDEFINED;
```

System

ARMv8.3
PACIA1716 variant
Applies when CRm == 0001 && op2 == 000.

PACIASP variant
Applies when CRm == 0011 && op2 == 001.

PACIAZ variant
Applies when CRm == 0011 && op2 == 000.

Decode for all variants of this encoding

\begin{verbatim}
integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
 when '0011 000' // PACIAZ
 d = 30;
 n = 31;
 when '0011 001' // PACIASP
 d = 30;
 source_is_sp = TRUE;
 if HaveBTIExt() then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIASP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIXSP());
 when '0001 000' // PACIA1716
 d = 17;
 n = 16;
 when '0001 010' SEE "PACIB";
 when '0001 100' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 01x' SEE "PACIB";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";
\end{verbatim}

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation for all encodings

if HavePACExt() then
 if source_is_sp then
 X[d] = AddPACIA(X[d], SP[]);
 else
 X[d] = AddPACIA(X[d], X[n]);
C6.2.211 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer authentication code for an instruction address, using a modifier and key B.

The address is:

- In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.
- In X17, for PACIB1716.
- In X30, for PACIBSP and PACIBZ.

The modifier is:

- In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.
- The value zero, for PACIZB and PACIBZ.
- In X16, for PACIB1716.
- In SP, for PACIBSP.

Integer

ARMv8.3

```
<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

PACIB variant

Applies when \(Z == 0\).

PACIB <Xd>, <Xn|SP>

PACIZB variant

Applies when \(Z == 1 \&\& Rn == 11111\).

PACIZB <Xd>

Decode for all variants of this encoding

```java
    boolean source_is_sp = FALSE;
    integer d = UInt(Rd);
    integer n = UInt(Rn);
    if !HavePACExt() then
        UNDEFINED;
    if Z == '0' then // PACIB
        if n == 31 then source_is_sp = TRUE;
        else // PACIZB
            if n != 31 then UNDEFINED;
```

System

ARMv8.3
PACIB1716 variant
Applies when CRm == 0011 && op2 == 010.

PACIB1716

PACIBSP variant
Applies when CRm == 0011 && op2 == 011.

PACIBSP

PACIBZ variant
Applies when CRm == 0011 && op2 == 010.

PACIBZ

Decode for all variants of this encoding
integer d;
integer n;
boolean source_is_sp = FALSE;
case CRm:op2 of
 when '0011 010' // PACIBZ
 d = 30;
 n = 31;
 when '0011 011' // PACIBSP
 d = 30;
 source_is_sp = TRUE;
 if HaveBTIExt() then
 // Check for branch target compatibility between PSTATE.BTYPE
 // and implicit branch target of PACIBSP instruction.
 SetBTypeCompatible(BTypeCompatible_PACIBSP());
 when '0001 010' // PACIB1716
 d = 17;
 n = 16;
 when '0001 000' SEE "PACIA";
 when '0001 001' SEE "AUTIA";
 when '0001 110' SEE "AUTIB";
 when '0011 00x' SEE "PACIA";
 when '0011 10x' SEE "AUTIA";
 when '0011 11x' SEE "AUTIB";
 when '0000 111' SEE "XPACLRI";
 otherwise SEE "HINT";

Assembler symbols
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation for all encodings
if HavePACExt() then
 if source_is_sp then
 X[d] = AddPACIB(X[d], SP[1]);
 else
 X[d] = AddPACIB(X[d], X[n]);
C6.2.212 PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on page C3-218.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21]</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0</td>
<td>imm12</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

PRFM (<prfop> | #<imm5>), [<Xn|SP>{{, #<pimm>}}]

Decode for this encoding

bits(64) offset = LSL(ZeroExtend(imm12, 64), 3);

Assembler symbols

- **<prfop>** Is the prefetch operation, defined as <type><target><policy>.
 - **<type>** is one of:
 - PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.
 - PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.
 - PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.
 - **<target>** is one of:
 - L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
 - L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
 - L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
 - **<policy>** is one of:
 - KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.
 - STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-218.

For other encodings of the "Rt" field, use <imm5>.

- **<imm5>** Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field. This syntax is only for encodings that are not accessible using <prfop>.

- **<Xn|SP>** Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

- **<pimm>** Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.
Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(FALSE);

bits(64) address;

if n == 31 then
 address = SP[];
else
 address = X[n];

address = address + offset;

Prefetch(address, t<4:0>);

PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on page C3-218.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

PRFM (<prfop>|#<imm5>), <label>

Decode for this encoding

integer t = UInt(Rt);
bits(64) offset;
offset = SignExtend(imm19:'00', 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.
PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.
PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.
<target> is one of:
L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:
KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.
STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-218.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field. This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.
Operation

bits(64) address = PC[] + offset;

if HaveMTEExt() then
 SetTagCheckedInstruction(FALSE);

 Prefetch(address, t<4:0>);
C6.2.214 PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on page C3-218.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

31 30 29 28	27 26 25 24	23 22 21 20	16	15	13	12	11	10	9	5	4	0			
1	1	1	1	0	0	1	0	1	Rm	option	S	1	0	Rn	Rt

size opc

Decode for this encoding

if option1 == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 3 else 0;

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:
PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.
PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.
PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:
L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.
STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-218.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field. This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<dm> When option0 is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<@> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>UXTW</td>
<td>010</td>
</tr>
<tr>
<td>LSL</td>
<td>011</td>
</tr>
<tr>
<td>SXTW</td>
<td>110</td>
</tr>
<tr>
<td>SXTX</td>
<td>111</td>
</tr>
</tbody>
</table>

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>0</td>
</tr>
<tr>
<td>#3</td>
<td>1</td>
</tr>
</tbody>
</table>

Shared decode for all encodings

```c
integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
```

Operation

```c
bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
    SetTagCheckedInstruction(FALSE);

bits(64) address;
if n == 31 then
    address = SP[);
else
    address = X[n];
address = address + offset;
Prefetch(address, t<4:0>);
```
C6.2.215 PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into one or more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory on page C3-218.

For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

PRFUM (<prfop>|#<imm5>), [<Xn|SP>], #<simm>]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
 PLD Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.
 PLI Preload instructions, encoded in the "Rt<4:3>" field as 0b01.
 PST Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.
<target> is one of:
 L1 Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.
 L2 Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.
 L3 Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:
 KEEP Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.
 STRM Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory on page C3-218.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.
Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation

 if HaveMTEExt() then
 SetTagCheckedInstruction(FALSE);

 bits(64) address;

 if n == 31 then
 address = SP[];
 else
 address = X[n];

 address = address + offset;

 Prefetch(address, t<4:0>);
C6.2.216 PSB CSYNC

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the profiling buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 8 7 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

CRm op2

Encoding

PSB CSYNC

Decode for this encoding

if !HaveStatisticalProfiling() then EndOfInstruction();

Operation

ProfilingSynchronizationBarrier();
C6.2.217 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 — The store is to the same location as the load.
 — The store appears in program order before the PSSBB.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
 — The store is to the same location as the load.
 — The store appears in program order after the PSSBB.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 8 7 6 5 4 3 2 1 0																					
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8	7	6	5	4	3	2	1	0
1 1 0 1 0 1 0 0 0 0 0 1 1	0 0 1 0	1 0 0 1 1 1 1																								

Encoding

PSSBB

Decode for this encoding

// No additional decoding required

Operation

SpeculativeStoreBypassBarrierToPA();
C6.2.218 RBIT

Reverse Bits reverses the bit order in a register.

32-bit variant
Applies when \(sf = 0\).

\[
\text{RBIT} \ <Wd>, \ <Wn>
\]

64-bit variant
Applies when \(sf = 1\).

\[
\text{RBIT} \ <Xd>, \ <Xn>
\]

Operation

\[
\begin{align*}
\text{bits}(
\text{datasize}) \ \& \ \text{operand} &= X[n]; \\
\text{bits}(
\text{datasize}) \ \& \ \text{result} &= ; \\
\text{for} \ i &= 0 \ \text{to} \ \text{datasize} - 1 \\
\text{result}<\text{datasize} - 1 - i> &= \text{operand}<i>; \\
X[d] &= \text{result};
\end{align*}
\]

Operational information
If \text{PSTATE.DIT} is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.219 RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine return.

Encoding

RET \{<Xn>\}

Decode for this encoding

integer n = UInt(Rn);

Assembler symbols

\(<Xn>\) Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field. Defaults to X30 if absent.

Operation

bits(64) target = X[n];

BranchTo(target, BranchType_RET);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.220 RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR, using SP as the modifier and the specified key, branches to the authenticated address, with a hint that this instruction is a subroutine return.

Key A is used for RETAA, and key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to LR.

ARMv8.3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 1</td>
<td>0 0 1 0 1 1 1</td>
<td>0 0 0 0 1</td>
<td>M</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RETAA variant

Applies when \(M = 0 \).

RETAA

RETAB variant

Applies when \(M = 1 \).

RETAB

Decode for all variants of this encoding

```java
boolean use_key_a = (M == '0');
if !HavePACExt() then
    UNDEFINED;
```

Operation

```java
bits(64) target = X[30];
bits(64) modifier = SP[];
if use_key_a then
    target = AuthIA(target, modifier, TRUE);
else
    target = AuthIB(target, modifier, TRUE);
BranchTo(target, BranchType_RET);
```
C6.2.221 REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64. The pseudo-instruction is never the preferred disassembly.

32-bit variant

Applies when \(sf = 0 \) \&\& \(opc = 10 \).

\(\text{REV} \ <Wd>, \ <Wn> \)

64-bit variant

Applies when \(sf = 1 \) \&\& \(opc = 11 \).

\(\text{REV} \ <Xd>, \ <Xn> \)

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;

case opc of
  when '00' then
    Unreachable();
  when '01' then
    container_size = 16;
  when '10' then
    container_size = 32;
  when '11' then
    container_size = 64;
  else
    Unreachable();
end;
```

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

```plaintext
bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
```
for c = 0 to containers-1
 rev_index = index + ((elements_per_container - 1) * 8);
 for e = 0 to elements_per_container-1
 result<rev_index+7:rev_index> = operand<index+7:index>;
 index = index + 8;
 rev_index = rev_index - 8;

X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

32-bit variant
Applies when $sf == 0$.

```
REV16 <Wd>, <Wn>
```

64-bit variant
Applies when $sf == 1$.

```
REV16 <Xd>, <Xn>
```

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;

case opc of
    when '00'
        Unreachable();
    when '01'
        container_size = 16;
    when '10'
        container_size = 32;
    when '11'
        if sf == '0' then UNDEFINED;
        container_size = 64;
```

Assembler symbols

- `<Wd>` is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<Xd>` is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

```plaintext
bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1
    rev_index = index + ((elements_per_container - 1) * 8);
    for e = 0 to elements_per_container-1
        ...
```
result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.223 REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

REV32 `<Xd>`, `<Xn>`

Decode for this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;

case opc of
  when '00'
    Unreachable();
  when '01'
    container_size = 16;
  when '10'
    container_size = 32;
  when '11'
    if sf == '0' then UNDEFINED;
    container_size = 64;
```

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

```c
bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1
  rev_index = index + ((elements_per_container - 1) * 8);
  for e = 0 to elements_per_container-1
    result<rev_index+7:rev_index> = operand<index+7:index>;
    index = index + 8;
    rev_index = rev_index - 8;

X[d] = result;
```
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This instruction is a pseudo-instruction of the REV instruction. This means that:

- The encodings in this description are named to match the encodings of REV.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of REV gives the operational pseudocode for this instruction.

64-bit variant

REV64 <Xd>, <Xn>

is equivalent to

REV <Xd>, <Xn>

and is never the preferred disassembly.

Assembler symbols

- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.225 RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second immediate mask.

ARMv8.4

Encoding

RMIF <Xn>, #<shift>, #<mask>

Decode for this encoding

if !HaveFlagManipulateExt() then UNDEFINED;
integer lsb = UInt(imm6);
integer n = UInt(Rn);

Assembler symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into the NZCV condition flags, encoded in the "mask" field.

Operation

bits(4) tmp;
bits(64) tmpreg = X[n];
tmp = (tmpreg:tmpreg)<lsb+3:lsb>;
if mask<3> == '1' then PSTATE.N = tmp<3>;
if mask<2> == '1' then PSTATE.Z = tmp<2>;
if mask<1> == '1' then PSTATE.C = tmp<1>;
if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.226 ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the EXTR instruction. This means that:

- The encodings in this description are named to match the encodings of EXTR.
- The description of EXTR gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf == 0 \&\& N == 0 \&\& \text{imms} == 0xxxxx \).

\[
\text{ROR} <Wd>, <Ws>, \#<shift>
\]

is equivalent to

\[
\text{EXTR} <Wd>, <Ws>, <Ws>, \#<shift>
\]

and is the preferred disassembly when \(Rn == Rm \).

64-bit variant

Applies when \(sf == 1 \&\& N == 1 \).

\[
\text{ROR} <Xd>, <Xs>, \#<shift>
\]

is equivalent to

\[
\text{EXTR} <Xd>, <Xs>, <Xs>, \#<shift>
\]

and is the preferred disassembly when \(Rn == Rm \).

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Ws>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xs>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
- \(<\text{shift}>\) For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms" field.

 For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms" field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.227 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is an alias of the RORV instruction. This means that:

- The encodings in this description are named to match the encodings of RORV.
- The description of RORV gives the operational pseudocode for this instruction.

32-bit variant
Applies when $sf == 0$.

$ROR <Wd>, <Wn>, <Wm>$
is equivalent to

$RORV <Wd>, <Wn>, <Wm>$
and is always the preferred disassembly.

64-bit variant
Applies when $sf == 1$.

$ROR <Xd>, <Xn>, <Xm>$
is equivalent to

$RORV <Xd>, <Xn>, <Xm>$
and is always the preferred disassembly.

Assembler symbols

- $<Wd>$ is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<Wn>$ is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Wm>$ is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
- $<Xd>$ is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- $<Xn>$ is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- $<Xm>$ is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

Operation
The description of RORV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.228 RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ROR (register). The alias is always the preferred disassembly.

32-bit variant
Applies when sf == 0.
RORV <Wd>, <Wn>, <Wm>

64-bit variant
Applies when sf == 1.
RORV <Xd>, <Xn>, < Xm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Rd> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits, encoded in the "Rm" field.
<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];
result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.229 SB

Speculation Barrier is a barrier that controls speculation.

The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that appears later in the program order than the barrier:

- Cannot be performed speculatively to the extent that such speculation can be observed through side-channels as a result of control flow speculation or data value speculation.
- Can be speculatively executed as a result of predicting that a potentially exception generating instruction has not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative allocation into any caching structure where the allocation of that entry could be indicative of any data value present in memory or in the registers.

The SB instruction:

- Cannot be speculatively executed as a result of control flow speculation or data value speculation.
- Can be speculatively executed as a result of predicting that a potentially exception generating instruction has not generated an exception. The potentially exception generating instruction can complete once it is known not to be speculative, and all data values generated by instructions appearing in program order before the SB instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 6 5 4 3 2 1 0 ]
  1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1

Encoding

SB

Decode for this encoding

if !HaveSBExt() then UNDEFINED;

Operation

SpeculationBarrier();
```
C6.2.230 SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the result to the destination register.

This instruction is used by the alias NGC. See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when \(sf = 0 \).

\[
\text{SBC } <Wd>, <Wn>, <Wm>
\]

64-bit variant
Applies when \(sf = 1 \).

\[
\text{SBC } <Xd>, <Xn>, < Xm>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC</td>
<td>(Rn == '11111')</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(<Wd> \) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn> \) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm> \) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd> \) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn> \) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm> \) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

\[
\begin{align*}
\text{bits(datasize) result;} \\
\text{bits(datasize) operand1} &= X[n]; \\
\text{bits(datasize) operand2} &= X[m]; \\
\text{operand2} &= \text{NOT(operand2)};
\end{align*}
\]
(result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.231 SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS. See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when sf == 0.
SBCS <Wd>, <Wn>, <Wm>

64-bit variant
Applies when sf == 1.
SBCS <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGCS</td>
<td>Rn == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;
operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.232 SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of \(<\text{width}\>\) bits from the least significant bits of the source register to bit position \(<\text{lsb}\>\) of the destination register, setting the destination bits below the bitfield to zero, and the bits above the bitfield to a copy of the most significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

- The encodings in this description are named to match the encodings of SBFM.
- The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \(sf == 0 \&\& N == 0\).

\[
\text{SBFIZ} \,<\text{Wd}, \,<\text{Wn}, \, #<\text{lsb}, \, #<\text{width}\>
\]

is equivalent to

\[
\text{SBFM} \,<\text{Wd}, \,<\text{Wn}, \, #(-<\text{lsb} \mod 32), \, #(<\text{width}-1)
\]

and is the preferred disassembly when \(\text{UInt}(\text{imms}) < \text{UInt}(\text{immr})\).

64-bit variant

Applies when \(sf == 1 \&\& N == 1\).

\[
\text{SBFIZ} \,<\text{Xd}, \,<\text{Xn}, \, #<\text{lsb}, \, #<\text{width}\>
\]

is equivalent to

\[
\text{SBFM} \,<\text{Xd}, \,<\text{Xn}, \, #(-<\text{lsb} \mod 64), \, #(<\text{width}-1)
\]

and is the preferred disassembly when \(\text{UInt}(\text{imms}) < \text{UInt}(\text{immr})\).

Assembler symbols

<\text{Wd}> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\text{Wn}> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<\text{Xd}> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\text{Xn}> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<\text{lsb}> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<\text{width}> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<\text{lsb}>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<\text{lsb}>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.233 SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If \(<iimms>\) is greater than or equal to \(<immr>\), this copies a bitfield of (\(<iimms>-<immr>+1\)) bits starting from bit position \(<immr>\) in the source register to the least significant bits of the destination register.

If \(<iimms>\) is less than \(<immr>\), this copies a bitfield of (\(<iimms>+1\)) bits from the least significant bits of the source register to bit position (regsize-\(<immr>\)) of the destination register, where regsize is the destination register size of 32 or 64 bits.

In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy of the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW. See Alias conditions on page C6-1193 for details of when each alias is preferred.

32-bit variant

Applies when \(sf == 0 \&\& N == 0\).

SBFM \(<Wd>, <Wn>, #<immr>, #<iimms>\)

64-bit variant

Applies when \(sf == 1 \&\& N == 1\).

SBFM \(<Xd>, <Xn>, #<immr>, #<iimms>\)

Decode for all variants of this encoding

\[
\begin{align*}
\text{decode for all variants of this encoding:} \\
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } datasize &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{integer } R &= \text{UInt}(immr); \\
\text{integer } S &= \text{UInt}(imms); \\
\text{bits}\text{(datasize)} \text{ wmask; } \\
\text{bits}\text{(datasize)} \text{ tmask; }
\end{align*}
\]

\[
\begin{align*}
\text{if } sf == '1' \&\& N != '1' \text{ then UNDEFINED;} \\
\text{if } sf == '0' \&\& (N != '0' \text{ || immr<5> != '0' \text{ || imms<5> != '0'}) then UNDEFINED; } \\
\text{R} &= \text{UInt}(immr); \\
\text{S} &= \text{UInt}(imms); \\
\text{(wmask, tmask)} &= \text{DecodeBitMasks}(N, imms, immr, FALSE); \\
\end{align*}
\]
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR (immediate)</td>
<td>32-bit</td>
<td>imms == '011111'</td>
</tr>
<tr>
<td>ASR (immediate)</td>
<td>64-bit</td>
<td>imms == '111111'</td>
</tr>
<tr>
<td>SBFIZ</td>
<td>-</td>
<td>UInt(imms) < UInt(immr)</td>
</tr>
<tr>
<td>SBFX</td>
<td>-</td>
<td>BFXPreferred(sf, opc<1>, imms, immr)</td>
</tr>
<tr>
<td>SXTB</td>
<td>-</td>
<td>immr == '000000' && imms == '001111'</td>
</tr>
<tr>
<td>SXTH</td>
<td>-</td>
<td>immr == '000000' && imms == '001111'</td>
</tr>
<tr>
<td>SXTW</td>
<td>-</td>
<td>immr == '000000' && imms == '011111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Wd>` Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- `<immr>` For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field. For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.
- `<imms>` For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms" field. For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms" field.

Operation

bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = ROR(src, R) AND wmask;

// determine extension bits (sign, zero or dest register)
bits(datasize) top = Replicate(src<S>);

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.234 SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most significant bit of the bitfield.

This instruction is an alias of the SBFM instruction. This means that:

- The encodings in this description are named to match the encodings of SBFM.
- The description of SBFM gives the operational pseudocode for this instruction.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21</th>
<th>16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when sf == 0 && N == 0.

SBFX <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit variant

Applies when sf == 1 && N == 1.

SBFX <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler symbols

- <Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- <lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.
 For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.
- <width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
 For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.235 SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result to the destination register. The condition flags are not affected.

32-bit variant
Applies when \(sf = 0 \).
SDIV <Wd>, <Wn>, <Wm>

64-bit variant
Applies when \(sf = 1 \).
SDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding
\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32;
\end{align*}
\]

Assembler symbols
\[
\begin{align*}
<Wd> & \text{ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.} \\
<Xn> & \text{ Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.} \\
<Xm> & \text{ Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.} \\
<Xd> & \text{ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.} \\
<Xn> & \text{ Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.} \\
<Xm> & \text{ Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.}
\end{align*}
\]

Operation
\[
\begin{align*}
\text{bits(}\text{datasize}\text{)} \text{ operand1} &= X[n]; \\
\text{bits(}\text{datasize}\text{)} \text{ operand2} &= X[m]; \\
\text{integer result}; \\
\text{if IsZero(operand2) then} \\
\quad \text{result} &= 0; \\
\text{else} \\
\quad \text{result} &= \text{RoundTowardsZero(Real(Int(operand1, FALSE)) / Real(Int(operand2, FALSE)))}; \\
X[d] &= \text{result}<\text{datasize}-1:0>;
\end{align*}
\]
C6.2.236 SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an 8 bit value, and SETF16 treats the value as an 16 bit value.

The PSTATE.C flag is not affected by these instructions.

ARMv8.4

| | 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 3 2 1 0 |
|-------|-----------|-----------|-----------|-----------|-----------|--------|-----------|-------|
| sz | 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 | sz | 0 0 1 0 | Rn | 0 1 1 0 1 |

SETF8 variant

Applies when sz == 0.

SETF16 variant

Applies when sz == 1.

Decode for all variants of this encoding

if !HaveFlagManipulateExt() then UNDEFINED;
integer msb = if sz == '1' then 15 else 7;
integer n = UInt(Rn);

Assembler symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(32) tmpreg = X[n];
PSTATE.N = tmpreg<msb>;
PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb + 1)) then '1' else '0';
PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;
//PSTATE.C unchanged;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.237 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more information, see *Wait for Event mechanism and Send event* on page D1-2391.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11  8  7  5  4  3  2  1  0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0</td>
<td>0 0 0 1 1 0 1 0</td>
<td>0 0 0 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

SEV

Decode for this encoding

// Empty.

Operation

SendEvent();
C6.2.238 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11| 8 | 7 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
```

Encoding

SEVL

Decode for this encoding

// Empty.

Operation

SendEventLocal();
C6.2.239 SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to the 64-bit destination register.

This instruction is used by the alias SMULL. See Alias conditions for details of when each alias is preferred.

Encoding

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMULL</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];
integer result;
result = Int(operand3, FALSE) + (Int(operand1, FALSE) * Int(operand2, FALSE));
X[d] = result<63:0>;}
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.

If the value of HCR_EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction at EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD. For more information, see Traps to EL2 of EL1 execution of SMC instructions on page D1-2379.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

Encoding

SMC #<imm>

Decode for this encoding

// Empty.

Assembler symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CheckForSMCUndefOrTrap(imm16);
AArch64.CallSecureMonitor(imm16);
C6.2.241 SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the 64-bit destination register.

This instruction is an alias of the SMSUBL instruction. This means that:

- The encodings in this description are named to match the encodings of SMSUBL.
- The description of SMSUBL gives the operational pseudocode for this instruction.

```
| 31 30 29 28 27 26 25 24 23 22 21 20 | 16 15 14 | 10 9  | 5 4  | 0 |
+-------------------------------------+---------+-------+-----+---+
| 1 0 0 1 1 0 1 0 0 1 | Rm       | 1 1 1 1 |
| 0 1                       | Rd       |
+--------------------------+---------+-------+-----+---+
```

Encoding

SMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.242 SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value, and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL. See Alias conditions for details of when each alias is preferred.

Encoding

`SMSUBL <Xd>, <Wn>, <Wm>, <Xa>`

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
```

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMNEGL</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
- `<Xa>` Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation

```plaintext
bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, FALSE) - (Int(operand1, FALSE) * Int(operand2, FALSE));
X[d] = result<63:0>;
```
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.243 SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit destination register.

Encoding

SMULH <Xd>, <Xn>, <Xm>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

bits(64) operand1 = X[n];
bits(64) operand2 = X[m];

integer result;

result = Int(operand1, FALSE) * Int(operand2, FALSE);

X[d] = result<127:64>;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C6.2.244 SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the SMADDL instruction. This means that:

• The encodings in this description are named to match the encodings of SMADDL.
• The description of SMADDL gives the operational pseudocode for this instruction.

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15|14|10| 9| 5| 4| 0 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |

| U | Rm | 0 | 1 | 1 | 1 | 1 | Rn | Rd |
| Uo | Ra |

Encoding

SMULL <Xd>, <Wn>, <Wm>

is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C6.2.245 SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the SSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order before the SSBB.

- When a load to a location appears in program order before the SSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order after the SSBB.

Encoding

SSBB

Decode for this encoding

// No additional decoding required

Operation

SpeculativeStoreBypassBarrierToVA();
C6.2.246 ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index
ARMv8.5

| 31 30 29 28|27 26 25 24|23 22 21 20| | 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 1 0 0 1 | 1 0 1 | imm9 | 0 1 | Xn | Xt |

Encoding
ST2G <Xt|SP>, [<Xn|SP>], #<imm>

Decode for this encoding
if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

Pre-index
ARMv8.5

| 31 30 29 28|27 26 25 24|23 22 21 20| | 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 1 0 0 1 | 1 0 1 | imm9 | 1 1 | Xn | Xt |

Encoding
ST2G <Xt|SP>, [<Xn|SP>], #<imm>!

Decode for this encoding
if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

Signed offset
ARMv8.5

| 31 30 29 28|27 26 25 24|23 22 21 20| | 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 1 0 0 1 | 1 0 1 | imm9 | 1 0 | Xn | Xt |
Encoding

ST2G <Xt|SP>, [<Xn|SP>{, #<simm}>]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and encoded in the "imm9" field.

Operation for all encodings

bits(64) address;
bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);

SetTagCheckedInstruction(FALSE);

if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

AArch64.MemTag[address, AccType_NORMAL] = tag;
AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;

if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6.2.247 STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in a register to it, and stores the result back to memory.

- STADDB does not have release semantics.
- STADDLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDADDB, LDADDAB, LDADDALB, LDADDLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDADDB, LDADDAB, LDADDALB, LDADDLB.
- The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \(R = 0 \).

STADDB \(<\text{ws}>, [<\text{xn}|\text{SP}>]\)

is equivalent to

LDADDB \(<\text{ws}>, \text{WZR}, [<\text{xn}|\text{SP}>]\)

and is always the preferred disassembly.

Release variant

Applies when \(R = 1 \).

STADDLB \(<\text{ws}>, [<\text{xn}|\text{SP}>]\)

is equivalent to

LDADDLB \(<\text{ws}>, \text{WZR}, [<\text{xn}|\text{SP}>]\)

and is always the preferred disassembly.

Assembler symbols

- \(<\text{ws}>\) is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<\text{xn} | \text{SP}>\) is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.248 STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value held in a register to it, and stores the result back to memory.

- STADDH does not have release semantics.
- STADDLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDADDH, LDADDAH, LDADDALH, LDADDLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDADDH, LDADDAH, LDADDALH, LDADDLH.
- The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when $R == 0$.

STADDH $<Ws>$, $[<Xn|SP>]$
is equivalent to

LDADDH $<Ws>$, WZR, $[<Xn|SP>]$
and is always the preferred disassembly.

Release variant

Applies when $R == 1$.

STADDLH $<Ws>$, $[<Xn|SP>]$
is equivalent to

LDADDLH $<Ws>$, WZR, $[<Xn|SP>]$
and is always the preferred disassembly.

Assembler symbols

- $<Ws>$ Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- $<Xn|SP>$ Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.249 **STADD, STADDL**

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, adds the value held in a register to it, and stores the result back to memory.

- **STADD** does not have release semantics.
- **STADDL** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the LDADD, LDADDA, LDADDAL, LDADDL instruction. This means that:

- The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL, LDADDL.
- The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this instruction.

ARMv8.1

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14	12	11 10 9	5 4	0					
1	x	1	1	1	0	0	0	R	1				
size	A	opc						Rn	1	1	1	1	1

32-bit LDADD alias variant

Applies when \(size == 10 \&\& R == 0\).

STADD <Ws>, [Xn|SP]

is equivalent to

LDADD <Ws>, WZR, [Xn|SP]

and is always the preferred disassembly.

32-bit LDADDL alias variant

Applies when \(size == 10 \&\& R == 1\).

STADDL <Ws>, [Xn|SP]

is equivalent to

LDADDL <Ws>, WZR, [Xn|SP]

and is always the preferred disassembly.

64-bit LDADD alias variant

Applies when \(size == 11 \&\& R == 0\).

STADD <Xs>, [Xn|SP]

is equivalent to

LDADD <Xs>, XZR, [Xn|SP]

and is always the preferred disassembly.
64-bit LDADDL alias variant

Applies when size == 11 && R == 1.

STADDL <Xs>, [<Xn|SP>]

is equivalent to

LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.250 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

- STCLRB does not have release semantics.
- STCLRLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB.
- The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \(R = 0 \).

STCLRB \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDCLRB \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Release variant

Applies when \(R = 1 \).

STCLRLB \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDCLRLB \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Assembler symbols

\(<Ws>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.251 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

- STCLRH does not have release semantics.
- STCLRLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH.
- The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \(R == 0 \).

STCLRH \(<Ws>, [<Xn]\) is equivalent to

LDCLRH \(<Ws>, WZR, [<Xn]\)

and is always the preferred disassembly.

Release variant

Applies when \(R == 1 \).

STCLRLH \(<Ws>, [<Xn]\) is equivalent to

LDCLRLH \(<Ws>, WZR, [<Xn]\)

and is always the preferred disassembly.

Assembler symbols

- \(<Ws>\) is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<Xn|SP>\) is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.252 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

- STCLR does not have release semantics.
- STCLRL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDCLR, LDCLRA, LDCLRAL, LDCLRL instruction. This means that:

- The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL, LDCLRL.
- The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

ARMv8.1

32-bit LDCLR alias variant

Applies when size == 10 && R == 0.

STCLR <Ws>, [<Xn|SP>]

is equivalent to

LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDCLRL alias variant

Applies when size == 10 && R == 1.

STCLRL <Ws>, [<Xn|SP>]

is equivalent to

LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLR alias variant

Applies when size == 11 && R == 0.

STCLR <Xs>, [<Xn|SP>]

is equivalent to

LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.
64-bit LDCLRL alias variant

Applies when size == 11 && R == 1.

STCLRL <Xs>, [<Xn|SP>]

is equivalent to

LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.253 STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

- STEORB does not have release semantics.
- STEORLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDEORB, LDEORAB, LDEORALB, LDEORLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB, LDEORLB.
- The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \(R = 0 \).

STEORB \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDEORB \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Release variant

Applies when \(R = 1 \).

STEORLB \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDEORLB \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Assembler symbols

\(<Ws>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.254 STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

- **STEORH** does not have release semantics.
- **STEORLH** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes on page C1-187*.

This instruction is an alias of the LDEORH, LDEORAH, LDEORALH, LDEORLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDEORH, LDEORAH, LDEORALH, LDEORLH.
- The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \(R = 0 \).

STEORH \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDEORH \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Release variant

Applies when \(R = 1 \).

STEORLH \(<Ws>, [<Xn|SP>]\)

is equivalent to

LDEORLH \(<Ws>, WZR, [<Xn|SP>]\)

and is always the preferred disassembly.

Assembler symbols

- \(<Ws>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.255 STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEOR does not have release semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDEOR, LDEORA, LDEORAL, LDEORL instruction. This means that:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL, LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>size</td>
<td>A</td>
<td>opc</td>
<td>Rn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

32-bit LDEOR alias variant

Applies when size == 10 && R == 0.
STEOR <Ws>, [<Xn|SP>]
is equivalent to
LDEOR <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

32-bit LDEORL alias variant

Applies when size == 10 && R == 1.
STEORL <Ws>, [<Xn|SP>]
is equivalent to
LDEORL <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

64-bit LDEOR alias variant

Applies when size == 11 && R == 0.
STEOR <Xs>, [<Xn|SP>]
is equivalent to
LDEOR <Xs>, XZR, [<Xn|SP>]
and is always the preferred disassembly.
64-bit LDEORL alias variant

Applies when size == 11 && R == 1.

STEORL <Xs>, [<Xn|SP>]

is equivalent to

LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.256 STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index
ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 1 0 0 1</td>
<td>0 0 1</td>
<td>imm9</td>
<td>0 1</td>
<td>Xn</td>
<td>Xt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding
STG <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

Pre-index
ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 1 0 0 1</td>
<td>0 0 1</td>
<td>imm9</td>
<td>1 1</td>
<td>Xn</td>
<td>Xt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding
STG <Xt|SP>, [<Xn|SP>, #<simm>]

Decode for this encoding

integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

Signed offset
ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 1 0 0 1</td>
<td>0 0 1</td>
<td>imm9</td>
<td>1 0</td>
<td>Xn</td>
<td>Xt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding
STG <Xt|SP>, [<Xn|SP>{, #<simm>}]
Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and encoded in the "imm9" field.

Operation for all encodings

bits(64) address;
SetTagCheckedInstruction(FALSE);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);
AArch64.MemTag[address, AccType_NORMAL] = tag;

if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6.2.257 STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and the Allocation Tag written to address A is taken from the source register at

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

ARmv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn</td>
<td>Xt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

STGM <Xt>, [<Xn|SP>]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

if PSTATE.EL == EL0 then
 UNDEFINED;
bits(64) data = X[t];
bits(64) address;
if n == 31 then
 CheckSPAlignment();
 address = SP[0];
else
 address = X[n];
integer size = 4 * (2 ^ (UInt(GMID_EL1.BS)));
address = Align(address, size);
integer count = size >> LOG2_TAG_GRANULE;
integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);
for i = 0 to count-1
 bits(4) tag = data<(index*4)+3:index*4>;
 AArch64_MemTag[address, AccType_NORMAL] = tag;
 address = address + TAG_GRANULE;
 index = index + 1;
C6.2.258 STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from two registers. The address used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.

This instruction generates an Unchecked access.

Post-index

ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

Decode for this encoding

integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

Pre-index

ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>!

Decode for this encoding

integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

Signed offset

ARMv8.5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th></th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Encoding

STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;

Assembler symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range -1024 to 1008, encoded in the "simm7" field.

For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation for all encodings

bits(64) address;
bits(64) data1;
bits(64) data2;
SetTagCheckedInstruction(FALSE);

if n == 31 then
 CheckSPAlignment();
else
 address = X[n];

data1 = X[t];
data2 = X[t2];
if !postindex then
 address = address + offset;

Mem[address, 8, AccType_NORMAL] = data1;
Mem[address+8, 8, AccType_NORMAL] = data2;

AArch64.MemTag[address, AccType_NORMAL] = AArch64.AlignmentTagFromAddress(address);

if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
C6.2.259 STLLRB

Store LORelase Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-140. For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0</td>
<td>1 0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>size</td>
<td>L</td>
<td>Rs</td>
<td>o0</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Encoding

STLLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Asmblerner symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = X[t];
Mem[address, 1, AccType_LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.260 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also has memory ordering semantics as described in *LoadLOAcquire, StoreLORelease on page B2-140*. For information about memory accesses, see *Load/Store addressing modes on page C1-187*.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14</th>
<th>13 12 11 10</th>
<th>9 8 7 6</th>
<th>5 4 3 2</th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 0 0</td>
<td>1 0 0</td>
<td>1 0</td>
<td>1 0</td>
<td>(1)(1)(1)(1)(1)</td>
<td>0</td>
<td>(1)(1)(1)(1)</td>
<td>Rn</td>
<td>Rt</td>
</tr>
<tr>
<td>size</td>
<td>L</td>
<td>Rs</td>
<td>00</td>
<td>R12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

STLLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = X[t];
Mem[address, 2, AccType_LIMITEDORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.261 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The instruction also has memory ordering semantics as described in LoadLOAcquire, StoreLORelease on page B2-140. For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.1

32-bit variant
Applies when size == 10.
STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant
Applies when size == 11.
STLLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding
integer n = Uint(Rn);
integer t = Uint(Rt);
integer elsize = 8 << Uint(size);
boolean tag_checked = n != 31;

Assembler symbols
<\texttt{Wt}> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "\texttt{Rt}" field.
<\texttt{Xt}> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "\texttt{Rt}" field.
<Xn\texttt{|SP}> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "\texttt{Rn}" field.

Operation
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAalignment();
 address = SP[];
else
 address = X[n];
data = X[t];
Mem[address, dbytes, AccType\textunderscore LIMITEDORDERED] = data;
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.262 STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when size == 10.
STLR <Wt>, [<Xn|SP>{,#0}]

64-bit variant
Applies when size == 11.
STLR <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding
integer n = UInt(Rn);
integer t = UInt(Rt);
integer elsize = 8 << UInt(size);
boolean tag_checked = n != 31;

Assemble symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
data = X[t];
Mem[address, dbytes, AccType_ORDERED] = data;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.263 STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.
For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

STLRB <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = X[t];
Mem[address, 1, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.264 STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Encoding

STLRH <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

data = X[t];
Mem[address, 2, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.265 STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139

For information about memory accesses, see Load/Store addressing modes on page C1-187.

ARMv8.4

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 0 1 1 0 0 1 0 0 0</td>
<td>imm9</td>
<td>0 0</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when size == 10.

STLUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit variant

Applies when size == 11.

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

integer datasize = 8 << scale;
boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, AccType_ORDERED] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.266 STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores a byte to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139

For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

ARMv8.4

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

size  opc  imm9  0 0  Rn  Rt
```

Encoding

STLURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

```
bits(64) offset = SignExtend(imm9, 64);
```

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<simm>` Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

```java
integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;
```

Operation

```java
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

if n == 31 then
    CheckSPAignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType_ORDERED] = data;
```
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.267 STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and stores a halfword to the calculated address, from a 32-bit register.

The instruction has memory ordering semantics as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses, see *Load/Store addressing modes* on page C1-187.

ARMv8.4

| 31 30 29 28| 27 26 25 24| 23 22 21 20 | 19 18 17 16 | 15 14 13 12 | 11 10 9 | 5 4 | 0 |
| 0 1 1 0 1 0 0 0 | imm9 | 0 0 | Rn | Rt |

Encoding

STLURH <wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
 CheckSPAIlignment();
 address = SP[];
else
 address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType_ORDERED] = data;
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.268 STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location being updated. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant

 Applies when sz == 0.

 STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit variant

 Applies when sz == 1.

 STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

```java
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);  // ignored by load/store single register
integer s = UInt(Rs);    // ignored by all loads and store-release

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;
boolean tag_checked = n != 31;
```

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXP on page K1-7977.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:
0 If the operation updates memory.
1 If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if s == t || (s == t2) then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_NONE rt_unknown = FALSE; // store original value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_NONE rn_unknown = FALSE; // address is original base
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 CheckSPAlignment();
 address = SP[];
elsif rn_unknown then
 address = bits(64) UNKNOWN;
else
 address = X[n];

if rt_unknown then
 data = bits(datasize) UNKNOWN;
else
 bits(datasize DIV 2) el1 = X[t];
 bits(datasize DIV 2) el2 = X[t2];
 data = if BigEndian() then el1:el2 else el2:el1;
 bit status = '1';
 // Check whether the Exclusives monitors are set to include the
 // physical memory locations corresponding to virtual address
 // range [address, address+dbytes-1].
 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ORDEREDATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.269 STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. The memory access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when size == 10.

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit variant
Applies when size == 11.

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

Decode for all variants of this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 8 << UInt(size);
boolean tag_checked = n != 31;

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXR on page K1-7977.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:
0 If the operation updates memory.
1 If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<dt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:
• Memory is not updated.
• <Ws> is not updated.
Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If `AArch64.ExclusiveMonitorsPass()` returns `TRUE`, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If `AArch64.ExclusiveMonitorsPass()` returns `FALSE` and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

```plaintext
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if s == t then
    Constraint c = ConstranUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
        when Constraint_NONE rt_unknown = FALSE; // store original value
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
    Constraint c = ConstranUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
        when Constraint_NONE rn_unknown = FALSE; // address is original base
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
elsif rn_unknown then
    address = bits(64) UNKNOWN;
else
    address = X[n];

if rt_unknown then
    data = bits(elsize) UNKNOWN;
else
    data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
    // This atomic write will be rejected if it does not refer
    // to the same physical locations after address translation.
    Mem[address, dbytes, AccType_ORDERED_ATOMIC] = data;
    status = ExclusiveMonitorsStatus();
    X[s] = ZeroExtend(status, 32);
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.270 STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. The memory access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

Encoding

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

boolean tag_checked = n != 31;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRB on page K1-7977.

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:

0 If the operation updates memory.
1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(8) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
SetTagCheckedInstruction(tag_checked);

if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_NONE rt_unknown = FALSE; // store original value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_NONE rn_unknown = FALSE; // address is original base
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();
if n == 31 then
 CheckSPAlignment();
 address = SPI[];
elsif rn_unknown then
 address = bits(64) UNKNOWN;
else
 address = X[n];
if rt_unknown then
 data = bits(8) UNKNOWN;
else
 data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 1) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, 1, AccType_ORDEREDATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.271 STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. The memory access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139. For information about memory accesses see Load/Store addressing modes on page C1-187.

```plaintext
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>L</td>
<td>0</td>
<td>0</td>
<td>Rt2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

boolean tag_checked = n != 31;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STLXRH on page K1-7978.

Assembler symbols

<Ws>  Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:
        0   If the operation updates memory.
        1   If the operation fails to update memory.

<Wt>  Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP>  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.
Operation

bits(64) address;
bits(16) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if s == t then
    Constraint c = ConstrainUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rt_unknown = TRUE;    // store UNKNOWN value
        when Constraint_NONE rt_unknown = FALSE;    // store original value
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
    Constraint c = ConstrainUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rn_unknown = TRUE;    // address is UNKNOWN
        when Constraint_NONE rn_unknown = FALSE;    // address is original base
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
elsif rn_unknown then
    address = bits(64) UNKNOWN;
else
    address = X[n];

if rt_unknown then
    data = bits(16) UNKNOWN;
else
    data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 2) then
    // This atomic write will be rejected if it does not refer
    // to the same physical locations after address translation.
    Mem[address, 2, AccType_ORDEREDATOMIC] = data;
    status = ExclusiveMonitorsStatus();
    X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.272 STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about memory accesses, see Load/Store addressing modes on page C1-187. For information about Non-temporal pair instructions, see Load/Store Non-temporal Pair on page C3-210.

32-bit variant
Applies when opc == 00.

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant
Applies when opc == 10.

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding
// Empty.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc<0> == 1 then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
biteb(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = n != 31;
Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

if n == 31 then
  CheckSPAOffset();
  address = SP[];
else
  address = X[n];

address = address + offset;

data1 = X[t];
data2 = X[t2];
Mem[address, dbytes, AccType_STREAM] = data1;
Mem[address+dbytes, dbytes, AccType_STREAM] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.273   STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0 1 0 1 0 0 0 1 0</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**32-bit variant**

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn]|SP|], #<imm>

**64-bit variant**

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn]|SP|], #<imm>

**Decode for all variants of this encoding**

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0 1 0 1 0 0 1 1 0</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**32-bit variant**

Applies when opc == 00.

STP <Wt1>, <Wt2>, [<Xn]|SP|], #<imm>

**64-bit variant**

Applies when opc == 10.

STP <Xt1>, <Xt2>, [<Xn]|SP|], #<imm>

**Decode for all variants of this encoding**

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0 1 0 1 0 0 1 0 0</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
32-bit variant
Applies when opc == 00.
STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit variant
Applies when opc == 10.
STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding
boolean wback = FALSE;
boolean postindex = FALSE;

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STP on page K1-7976.

Assembler symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

Operation for all encodings

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if wback && (t == n || t2 == n) && n != 31 then
    Constraint c = ConstrainUnpredictable();
    assert c IN (Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP);
    case c of
        when Constraint_NONE      rt_known = FALSE;     // value stored is pre-writeback
        when Constraint_UNKNOWN   rt_known = TRUE;      // value stored is UNKNOWN
        when Constraint_UNDEF     UNDEFINED;
        when Constraint_NOP       EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

if !postindex then
    address = address + offset;

if rt_unknown && t == n then
    data1 = bits(datasize) UNKNOWN;
else
    data1 = X[t];
if rt_unknown && t2 == n then
    data2 = bits(datasize) UNKNOWN;
else
    data2 = X[t2];
Mem[address, dbytes, AccType_NORMAL] = data1;
Mem[address+dbytes, dbytes, AccType_NORMAL] = data2;

if wback then
    if postindex then
        address = address + offset;
        if n == 31 then
            SP[] = address;
        else
            X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.274   STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for the store is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

```
|31 30 29 28|27 26 25 24|23 22 21 20| 12|11 10 9 | 5 4 | 0 |
1 x 1 1 | 1 0 0 0 0 0 | imm9 | 0 1 | Rn | Rt |
```

**32-bit variant**

Applies when size == 10.

STR <Wt>, [<Xn|SP>], #<simm>

**64-bit variant**

Applies when size == 11.

STR <Xt>, [<Xn|SP>], #<simm>

**Decode for all variants of this encoding**

```java
boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);
```

Pre-index

```
|31 30 29 28|27 26 25 24|23 22 21 20| 12|11 10 9 | 5 4 | 0 |
1 x 1 1 | 1 0 0 0 0 0 | imm9 | 1 1 | Rn | Rt |
```

**32-bit variant**

Applies when size == 10.

STR <Wt>, [<Xn|SP>, #<simm>]

**64-bit variant**

Applies when size == 11.

STR <Xt>, [<Xn|SP>, #<simm>]!

**Decode for all variants of this encoding**

```java
boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);
```
### Unsigned offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

#### 32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>{, #<pimm}>]

#### 64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>{, #<pimm>}]

#### Decode for all variants of this encoding

```plaintext
boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);
```

#### Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xt>` Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<simm>` Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
- `<pimm>` For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as `<pimm>/4`.
- For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as `<pimm>/8`.

#### Shared decode for all encodings

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);
integer datasize = 8 << scale;
boolean tag_checked = wback || n != 31;
```

#### Operation for all encodings

```plaintext
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

boolean rt_unknown = FALSE;
if wback && n == t && n != 31 then
 c = ConstrinUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
```
when Constraint_UNKNOWN rt_unknown = TRUE;    // value stored is UNKNOWN
when Constraint_UNDEF   UNDEFINED;
when Constraint_NOP     EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

if !postindex then
    address = address + offset;

if rt_unknown then
    data = bits(datasize) UNKNOWN;
else
    data = X[t];
    Mem[address, datasize DIV 8, AccType_NORMAL] = data;

if wback then
    if postindex then
        address = address + offset;
        if n == 31 then
            SP[] = address;
        else
            X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.275   STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset register value. The offset can be optionally shifted and extended.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Rm</td>
<td>option</td>
<td>S</td>
<td>1</td>
</tr>
</tbody>
</table>

size opc

32-bit variant

Applies when size == 10.

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit variant

Applies when size == 11.

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:
UXTW when option = 010
LSL when option = 011
SXTW when option = 110
SXTX when option = 111

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:
#0 when S = 0
#2 when S = 1
For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

#0    when S = 0  
#3    when S = 1

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

integer datasize = 8 << scale;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
    SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAlignment();
else
    address = X[n];
address = address + offset;
data = X[t];
Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.276 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is used for the store is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 12|11 10 9| 5 4 | 0 |
| 0 0 1 1 1|0 0 0 0 0 0| imm9 0 1 |Rn |Rt |
```

Encoding

STRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

```java
boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);
```

Pre-index

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 12|11 10 9| 5 4 | 0 |
| 0 0 1 1 1|0 0 0 0 0 0| imm9 1 1 |Rn |Rt |
```

Encoding

STRB <Wt>, [<Xn|SP>, #<simm>]

Decode for this encoding

```java
boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);
```

Unsigned offset

```
| 31 30 29 28|27 26 25 24|23 22 21| 10 9 | 5 4 | 0 |
| 0 0 1 1 1|0 0 1 0 0 | imm12 |Rn |Rt |
```

Encoding

STRB <Wt>, [<Xn|SP>{, #<pimm>}

Decode for this encoding

```java
boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);
```
Notes for all encodings

For information about the constrained unpredictable behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRB (immediate) on page K1-7978.

Assembler symbols

<Wr> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = wback || n != 31;

Operation for all encodings

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;

boolean rt_unknown = FALSE;

if wback && n == t && n != 31 then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_NONE rt_unknown = FALSE; // value stored is original value
        when Constraint_UNKNOWN rt Unknown = TRUE; // value stored is UNKNOWN
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

if !postindex then
    address = address + offset;

if rt_unknown then
    data = bits(8) UNKNOWN;
else
    data = X[t];
    Mem[address, 1, AccType_NORMAL] = data;

if wback then
    if postindex then
        address = address + offset;
    if n == 31 then
        SP[] = address;
    else
        X[n] = address;
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.277 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/Store addressing modes on page C1-187.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset register value. The offset can be optionally shifted and extended.

Extended register variant
Applies when option != 011.
STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]"param sublime
decode for all variants of this encoding

if option<2> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
<extend> Is the index extend specifier, encoded in the "option" field. It can have the following values:
  UXTW when option = 010
  SXTW when option = 110
  SXTX when option = 111
<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
**Operation**

bits(64) offset = ExtendReg(m, extend_type, 0);
if HaveMTEExt() then
    SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(8) data;

if n == 31 then
    CheckSAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.278 STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The address that is used for the store is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes on page C1-187.

Post-index

```
<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21 20]</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0 0 0</td>
<td>imm9</td>
<td>0 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Encoding**

STRH <Wt>, [<Xn|SP>], #<simm>

**Decode for this encoding**

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

```
<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21 20]</th>
<th></th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0 0 0</td>
<td>imm9</td>
<td>1 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Encoding**

STRH <Wt>, [<Xn|SP>, #<simm>]

**Decode for this encoding**

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

```
<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21]</th>
<th></th>
<th>12</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0 0</td>
<td>imm12</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Encoding**

STRH <Wt>, [<Xn|SP>{, #<pimm}>]

**Decode for this encoding**

boolean wback = FALSE;
boolean postindex = FALSE;
b bits(64) offset = LSL(ZeroExt end(imm12, 64), 1);
Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STRH (immediate) on page K1-7979.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = wback || n != 31;

Operation for all encodings

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

boolean rt_unknown = FALSE;

if wback && n == t && n != 31 then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_NONE    rt_unknown = FALSE;    // value stored is original value
        when Constraint_UNKNOWN rt_unknown = TRUE;    // value stored is UNKNOWN
        when Constraint_UNDEF   UNDEFINED;
        when Constraint_NOP     EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

if !postindex then
    address = address + offset;

if rt_unknown then
    data = bits(16) UNKNOWN;
else
    data = X[t];
    Mem[address, 2, AccType_NORMAL] = data;

if wback then
    if postindex then
        address = address + offset;
    if n == 31 then
        SP[] = address;
    else
        X[n] = address;
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.279 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see Load/Store addressing modes on page C1-187.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset register value. The offset can be optionally shifted and extended.

Encoding

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 13 12|11 10 9 | 5 4 | 0 |
|---|---|---|---|
|addr| opc |
```

Decoding for this encoding

```
if option[3] == '0' then UNDEFINED; // sub-word index
Extendype extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;
```

Assembler symbols

- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<Wm>` When option[0] is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.
- `<Xm>` When option[0] is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.
- `<extend>` Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when `<amount>` is omitted. encoded in the "option" field. It can have the following values:
  - `UXTW` when option = 010
  - `LSL` when option = 011
  - `SXTW` when option = 110
  - `SXTX` when option = 111
- `<amount>` Is the index shift amount, optional only when `<extend>` is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:
  - #0 when S = 0
  - #1 when S = 1

Shared decode for all encodings

```
integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
```
Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
  SetTagCheckedInstruction(TRUE);

bits(64) address;
bits(16) data;

if n == 31 then
  CheckSPAilgnment();
  address = SP[];
else
  address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.280   STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

- STSETB does not have release semantics.
- STSETLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDSETB, LDSETAB, LDSETALB, LDSETLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB, LDSETLB.
- The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this instruction.

ARMv8.1

| [31 30 29 28|27 26 25 24|23 22 21 20] | 16|15 14 | 12|11 10 9 | 5 4 | 0 |
| 0 0 1 1 1 0 0 0 0 | Rs 0 0 1 1 0 0 | Rn 1 1 1 1 |

size A opc Rt

**No memory ordering variant**

Applies when \( R = 0 \).

STSETB \( <Ws> \), \[<Xn|SP>\]

is equivalent to

LDSETB \( <Ws> \), WZR, \[<Xn|SP>\]

and is always the preferred disassembly.

**Release variant**

Applies when \( R = 1 \).

STSETLB \( <Ws> \), \[<Xn|SP>\]

is equivalent to

LDSETLB \( <Ws> \), WZR, \[<Xn|SP>\]

and is always the preferred disassembly.

**Assembler symbols**

- \( <Ws> \) is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \( <Xn|SP> \) is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.281 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

- STSETH does not have release semantics.
- STSETLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDSETH, LDSETAH, LDSETALH, LDSETLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH, LDSETLH.
- The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this instruction.

**ARMv8.1**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 12 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 0 0 0 0</td>
<td>1</td>
<td>Rs 0 0 1 1 0 0</td>
<td>Rn 1 1 1 1 1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

**No memory ordering variant**

Applies when \( R = 0 \).

STSETH \(<Ws>\), \([<Xn>|SP>]\)

is equivalent to

LDSETH \(<Ws>\), WZR, \([<Xn>|SP>]\)

and is always the preferred disassembly.

**Release variant**

Applies when \( R = 1 \).

STSETLH \(<Ws>\), \([<Xn>|SP>]\)

is equivalent to

LDSETLH \(<Ws>\), WZR, \([<Xn>|SP>]\)

and is always the preferred disassembly.

**Assembler symbols**

- \(<Ws>\) is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

- \(<Xn>|SP>\) is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.282   STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

- **STSET** does not have release semantics.
- **STSETL** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the LDSET, LDSETA, LDSETAL, LDSETL instruction. This means that:

- The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL, LDSETL.
- The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

**ARMv8.1**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td>A</td>
<td>opc</td>
<td>Rn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

**32-bit LDSET alias variant**

Applies when `size == 10 && R == 0`.

STSET `<Ws>`, `[<Xn|SP>]`

is equivalent to

LDSET `<Ws>`, WZR, `[<Xn|SP>]`

and is always the preferred disassembly.

**32-bit LDSETL alias variant**

Applies when `size == 10 && R == 1`.

STSETL `<Ws>`, `[<Xn|SP>]`

is equivalent to

LDSETL `<Ws>`, WZR, `[<Xn|SP>]`

and is always the preferred disassembly.

**64-bit LDSET alias variant**

Applies when `size == 11 && R == 0`.

STSET `<Xs>`, `[<Xn|SP>]`

is equivalent to

LDSET `<Xs>`, XZR, `[<Xn|SP>]`

and is always the preferred disassembly.
64-bit LDSETL alias variant

Applies when size == 11 && R == 1.

STSETL <Xs>, [<Xn|SP>]

is equivalent to

LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.283  STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers.

- **STSMAXB** does not have release semantics.
- **STSMAXLB** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB.
- The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for this instruction.

**ARMv8.1**

No memory ordering variant

Applies when \( R = 0 \).

STSMAXB \(<\text{ws}>, \ [<Xn|SP>]\)

is equivalent to

LDSMAXB \(<\text{ws}>, \ \text{WZR}, \ [<Xn|SP>]\)

and is always the preferred disassembly.

Release variant

Applies when \( R = 1 \).

STSMAXLB \(<\text{ws}>, \ [<Xn|SP>]\)

is equivalent to

LDSMAXLB \(<\text{ws}>, \ \text{WZR}, \ [<Xn|SP>]\)

and is always the preferred disassembly.

Assembler symbols

- \(<\text{ws}>\)  Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<Xn|SP>\)  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation
The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for this instruction.

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.284 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers.

- STSMAXH does not have release semantics.
- STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH.
- The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \( R = 0 \).

STSMAXH \(<\text{Ws}>, [<\text{Xn}\mid\text{SP}>]\)

is equivalent to

LDSMAXH \(<\text{Ws}>, \text{WZR}, [<\text{Xn}\mid\text{SP}>]\)

and is always the preferred disassembly.

Release variant

Applies when \( R = 1 \).

STSMAXLH \(<\text{Ws}>, [<\text{Xn}\mid\text{SP}>]\)

is equivalent to

LDSMAXLH \(<\text{Ws}>, \text{WZR}, [<\text{Xn}\mid\text{SP}>]\)

and is always the preferred disassembly.

Assembler symbols

- \(<\text{Ws}>\) is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<\text{Xn}\mid\text{SP}>\) is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.285  **STSMAX, STSMAXL**

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers.

- **STSMAX** does not have release semantics.
- **STSMAXL** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the **LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL** instruction. This means that:

- The encodings in this description are named to match the encodings of **LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL**.
- The description of **LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL** gives the operational pseudocode for this instruction.

**ARMv8.1**

<table>
<thead>
<tr>
<th>size A opc Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 30 29 28</td>
</tr>
<tr>
<td>1 x 1 1 1</td>
</tr>
</tbody>
</table>

**32-bit LDSMAX alias variant**

Applies when `size == 10 && R == 0`.

STSMAX `<Ws>`, `<Xn|SP>`

is equivalent to

LDSMAX `<Ws>`, WZR, `<Xn|SP>`

and is always the preferred disassembly.

**32-bit LDSMAXL alias variant**

Applies when `size == 10 && R == 1`.

STSMAXL `<Ws>`, `<Xn|SP>`

is equivalent to

LDSMAXL `<Ws>`, WZR, `<Xn|SP>`

and is always the preferred disassembly.

**64-bit LDSMAX alias variant**

Applies when `size == 11 && R == 0`.

STSMAX `<Xs>`, `<Xn|SP>`

is equivalent to

LDSMAX `<Xs>`, XZR, `<Xn|SP>`

and is always the preferred disassembly.
**64-bit LDSMAXL alias variant**

Applies when `size == 11 && R == 1`.

STSMAXL `<Xs>`, `[<Xn|SP>]`

is equivalent to

LDSMAXL `<Xs>`, XZR, `[<Xn|SP>]`

and is always the preferred disassembly.

**Assembler symbols**

- `<Ws>` Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Xs>` Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.286  STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

- **STSMINB** does not have release semantics.
- **STSMINLB** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB.
- The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this instruction.

**ARMv8.1**

No memory ordering variant

Applies when \( R = 0 \).

STSMINB <Ws>, [<Xn|SP>]  
is equivalent to  
LDSMINB <Ws>, WZR, [<Xn|SP>]  
and is always the preferred disassembly.

Release variant

Applies when \( R = 1 \).

STSMINLB <Ws>, [<Xn|SP>]  
is equivalent to  
LDSMINLB <Ws>, WZR, [<Xn|SP>]  
and is always the preferred disassembly.

Assembler symbols

- `<Ws>` Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.287  STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

- STSMINH does not have release semantics.
- STSMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH.
- The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when $R == 0$.

STSMINH $<\text{Rs}>$, [<$Xn$|SP>]

is equivalent to

LDSMINH $<\text{Rs}>$, WZR, [<$Xn$|SP>]

and is always the preferred disassembly.

Release variant

Applies when $R == 1$.

STSMINLH $<\text{Rs}>$, [<$Xn$|SP>]

is equivalent to

LDSMINLH $<\text{Rs}>$, WZR, [<$Xn$|SP>]

and is always the preferred disassembly.

Assembler symbols

$<\text{Rs}>$  Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

$<\text{Xn}\mid\text{SP}>$  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.288  STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

- STSMIN does not have release semantics.
- STSMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDSMIN, LDSMINA, LDSMINAL, LDSMINL instruction. This means that:

- The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL, LDSMINL.
- The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this instruction.

ARMv8.1

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 12|11 10 9 | 5 4 | 0 |
| 1 x 1 1 1|0 0 0 0 R 1 | Rs 0 1 0 1 0 0 | Rn | 1 1 1 1 | 1 |

32-bit LDSMIN alias variant

Applies when size == 10 && R == 0.

STSMIN <Ws>, [<Xn|SP>] is equivalent to
LDSMIN <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

32-bit LDSMINL alias variant

Applies when size == 10 && R == 1.

STSMINL <Ws>, [<Xn|SP>] is equivalent to
LDSMINL <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

64-bit LDSMIN alias variant

Applies when size == 11 && R == 0.

STSMIN <Xs>, [<Xn|SP>] is equivalent to
LDSMIN <Xs>, XZR, [<Xn|SP>]
and is always the preferred disassembly.
64-bit LDSMINL alias variant

Applies when size == 11 & R == 1.

STSMINL <Xs>, [<Xn|SP>]

is equivalent to

LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.289   STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is \{1, 1\}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when size == 10.

STTR \<Wt>, \[<Xn|SP>{, #<simm>}\]

64-bit variant

Applies when size == 11.

STTR \<Xt>, \[<Xn|SP>{, #<simm>}\]

Decode for all variants of this encoding

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

\<Wt>  Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
\<Xt>  Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
\<Xn|SP>  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
\<simm>  Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
           in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVEExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
    acctype = AccType_UNPRIV;
else
    acctype = AccType_NORMAL;

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 18 17 16]</th>
<th>[15 14 13 12]</th>
<th>[11 10 9 ]</th>
<th>[ 8 7 6 5]</th>
<th>[ 4 3 2 1]</th>
<th>[ 0 ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0 0 0 0</td>
<td>imm9</td>
<td>1 0</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
integer datasize = 8 << scale;
boolean tag_checked = n != 31;

**Operation**

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, acctype] = data;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.290  STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

```
[31 30 29 28][27 26 25 24][23 22 21 20] | 12|11 10 9 | 5 4 | 0 |
0 0 1 1 1 0 0 0 0 0 | imm9 | 1 0 | Rn | Rt |
```

**Encoding**

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

**Decode for this encoding**

bits(64) offset = SignExtend(imm9, 64);

**Assembler symbols**

- <Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- <Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- <simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

**Shared decode for all encodings**

```
integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11';
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;

boolean tag_checked = n != 31;
```

**Operation**

```
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(8) data;
```
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, acctype] = data;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.291  STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

- The instruction is executed at EL1.
- The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the instruction is executed. For information about memory accesses, see Load/Store addressing modes on page C1-187.

### Encoding

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

### Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

### Assembler symbols

- <Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- <Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- <simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

### Shared decode for all encodings

```c
integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
 acctype = AccType_UNPRIV;
else
 acctype = AccType_NORMAL;

boolean tag_checked = n != 31;
```

### Operation

```c
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;
```
if n == 31 then
  CheckSPA\text{Alignment}();
  address = SP[];
else
  address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, acctype] = data;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.292 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

- STUMAXB does not have release semantics.
- STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB.
- The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when R == 0.

STUMAXB <Rs>, [<Xn|SP>]
is equivalent to

LDUMAXB <Rs>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

Release variant

Applies when R == 1.

STUMAXLB <Rs>, [<Xn|SP>]
is equivalent to

LDUMAXLB <Rs>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

Assembler symbols

<Rs> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.293   STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

- STUMAXH does not have release semantics.
- STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH.
- The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \( R = 0 \).

STUMAXH <ws>, [<Xn|SP>]

is equivalent to

LDUMAXH <ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when \( R = 1 \).

STUMAXLH <ws>, [<Xn|SP>]

is equivalent to

LDUMAXLH <ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.294  STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

- **STUMAX** does not have release semantics.
- **STUMAXL** stores to memory with release semantics, as described in *Load-Acquire, Load-AcquirePC, and Store-Release* on page B2-139.

For information about memory accesses see *Load/Store addressing modes* on page C1-187.

This instruction is an alias of the LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL.
- The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this instruction.

### 32-bit LDUMAX alias variant

Applies when \(\text{size} = 10 \&\& R = 0\).

**STUMAX <Ws>, [Xn|SP]**

is equivalent to

**LDUMAX <Ws>, WZR, [Xn|SP]**

and is always the preferred disassembly.

### 32-bit LDUMAXL alias variant

Applies when \(\text{size} = 10 \&\& R = 1\).

**STUMAXL <Ws>, [Xn|SP]**

is equivalent to

**LDUMAXL <Ws>, WZR, [Xn|SP]**

and is always the preferred disassembly.

### 64-bit LDUMAX alias variant

Applies when \(\text{size} = 11 \&\& R = 0\).

**STUMAX <Xs>, [Xn|SP]**

is equivalent to

**LDUMAX <Xs>, XZR, [Xn|SP]**

and is always the preferred disassembly.
64-bit LDUMAXL alias variant

Applies when size == 11 & R == 1.

STUMAXL <Xs>, [<Xn|SP>]

is equivalent to

LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.295   STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers.

- STUMINB does not have release semantics.
- STUMINLB stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB.
- The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for this instruction.

ARMv8.1

No memory ordering variant

Applies when \( R = 0 \).

STUMINB <\( \text{<Ws>} \)>, [<Xn|SP>]

is equivalent to

LDUMINB <\( \text{<Ws>} \)>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release variant

Applies when \( R = 1 \).

STUMINLB <\( \text{<Ws>} \)>, [<Xn|SP>]

is equivalent to

LDUMINLB <\( \text{<Ws>} \)>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler symbols

- \(<\text{<Ws>}>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<\text{Xn}|\text{SP}>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.296  STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers.

- STUMINH does not have release semantics.
- STUMINLH stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH.
- The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for this instruction.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 1 1</td>
<td>0 0 0 0</td>
<td>R 1</td>
<td>Rs</td>
<td>0 1 1 1</td>
<td>0 0</td>
<td>Rn</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

size A opc Rn

---

**No memory ordering variant**

Applies when \( R = 0 \).

STUMINH \(<W>/<X>\), \([<X>|SP>]\)
is equivalent to

LDUMINH \(<W>/<X>\), WZR, \([<X>|SP>]\)
and is always the preferred disassembly.

**Release variant**

Applies when \( R = 1 \).

STUMINLH \(<W>/<X>\), \([<X>|SP>]\)
is equivalent to

LDUMINLH \(<W>/<X>\), WZR, \([<X>|SP>]\)
and is always the preferred disassembly.

**Assembler symbols**

- \(<W>\) Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.
- \(<X>|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.297  STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as unsigned numbers.

- STUMIN does not have release semantics.
- STUMINL stores to memory with release semantics, as described in Load-Acquire, Load-AcquirePC, and
  Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

This instruction is an alias of the LDUMIN, LDUMINA, LDUMINAL, LDUMINL instruction. This means that:

- The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
  LDUMINL.
- The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for
  this instruction.

ARMv8.1

<table>
<thead>
<tr>
<th>[31 30 29 28][27 26 25 24][23 22 21 20]</th>
<th>16</th>
<th>15 14</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 1 1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R 1</td>
<td>Rs</td>
</tr>
<tr>
<td>size</td>
<td>A</td>
<td>opc</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit LDUMIN alias variant

Applies when size == 10 && R == 0.

STUMIN <Ws>, [<Xn|SP>]
is equivalent to
LDUMIN <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

32-bit LDUMINL alias variant

Applies when size == 10 && R == 1.

STUMINL <Ws>, [<Xn|SP>]
is equivalent to
LDUMINL <Ws>, WZR, [<Xn|SP>]
and is always the preferred disassembly.

64-bit LDUMIN alias variant

Applies when size == 11 && R == 0.

STUMIN <Xs>, [<Xn|SP>]
is equivalent to
LDUMIN <Xs>, XZR, [<Xn|SP>]
and is always the preferred disassembly.
64-bit LDUMINL alias variant

Applies when \texttt{size == 11 && R == 1}.

\texttt{STUMINL <Xs>, [<Xn|SP>]} 

is equivalent to 

\texttt{LDUMINL <Xs>, XZR, [<Xn|SP>]} 

and is always the preferred disassembly.

Assembler symbols

\texttt{<Ws>} is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\texttt{<Xs>} is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory location, encoded in the "Rs" field.

\texttt{<Xn|SP>} is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.298   STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

32-bit variant
Applies when size == 10.
STUR <Wt>, [<Xn|SP>{, #<simm>}]  

64-bit variant
Applies when size == 11.
STUR <Xt>, [<Xn|SP>{, #<simm>}]  

Decode for all variants of this encoding
integer scale = UInt(size);  
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols
<Wt>  
Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt>  
Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP>  
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm>  
Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings
integer n = UInt(Rn);  
integer t = UInt(Rt);

integer datasize = 8 << scale;  
boolean tag_checked = n != 31;

Operation
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];
address = address + offset;

data = X[t];

Mem[address, datasize DIV 8, AccType_NORMAL] = data;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.299   STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores a byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/Store addressing modes on page C1-187.

[31 30 29 28|27 26 25 24|23 22 21 20] | 12|11 10 9 | 5 4 | 0 |
0 0 1 1 1 0 0 0 0 0 0 | imm9 0 0 | Rn | Rt |
size     opc

Encoding

STURB <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bites(8) data;

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.300   STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see
Load/Store addressing modes on page C1-187.

Encoding

STURH <Wt>, [<Xn|SP>{, #<simm>}]

Decode for this encoding

bits(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded
in the "imm9" field.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);

boolean tag_checked = n != 31;

Operation

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

bits(64) address;
bits(16) data;

if n == 31 then
    CheckSPAAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.301 STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location being updated. For information about memory accesses see Load/Store addressing modes on page C1-187.

32-bit variant

Applies when $sz == 0$.

STXP $<Ws>$, $<Wt1>$, $<Wt2>$, [$<Xn|SP>{$#,0}]

64-bit variant

Applies when $sz == 1$.

STXP $<Ws>$, $<Xt1>$, $<Xt2>$, [$<Xn|SP>{$#,0}]

Decode for all variants of this encoding

\[
\begin{align*}
&\text{integer } n = \text{UInt}(Rn) ; \\
&\text{integer } t = \text{UInt}(Rt) ; \\
&\text{integer } t2 = \text{UInt}(Rt2) ; \quad / / \text{ignored by load/store single register} \\
&\text{integer } s = \text{UInt}(Rs) ; \quad / / \text{ignored by all loads and store-release} \\
&\text{integer } elsize = 32 \times \text{UInt}(sz) ; \\
&\text{integer } datasize = elsize \times 2 ; \\
&\text{boolean } tag\_checked = n \neq 31 ;
\end{align*}
\]

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXP on page K1-7979.

Assembler symbols

\[
\begin{align*}
&Ws \quad \text{Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:} \\
&\quad 0 \quad \text{If the operation updates memory.} \\
&\quad 1 \quad \text{If the operation fails to update memory.} \\
&Xt1 \quad \text{Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.} \\
&Xt2 \quad \text{Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt1" field.} \\
&Wt1 \quad \text{Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.} \\
&Wt2 \quad \text{Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.}
\end{align*}
\]
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);
if s == t || (s == t2) then
    Constraint c = ConstrainUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
        when Constraint_NONE rt_unknown = FALSE; // store original value
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
    Constraint c = ConstrainUnpredictable();
    assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
    case c of
        when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
        when Constraint_NONE rn_unknown = FALSE; // address is original base
        when Constraint_UNDEF UNDEFINED;
        when Constraint_NOP EndOfInstruction();

if n == 31 then
    CheckSPAlignment();
    address = SP[];
elsif rn_unknown then
    address = bits(64) UNKNOWN;
else
    address = X[n];
if rt_unknown then
    data = bits(datasize) UNKNOWN;
else
    bits(datasize DIV 2) e11 = X[t];
    bits(datasize DIV 2) e12 = X[t2];
    data = if BigEndian() then e11:e12 else e12:e11;
    bit status = '1';
    // Check whether the Exclusives monitors are set to include the
    // physical memory locations corresponding to virtual address
    // range [address, address+dbytes-1].
    if AArch64.ExclusiveMonitorsPass(address, dbytes) then
// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ATOMIC] = data;
status = ExclusiveMonitorsStatus();
X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.302 STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. For information about memory access see Load/Store addressing modes on page C1-187.

### 32-bit variant

Applies when `size == 10`.

\[
\text{STXR} \ <Ws>, \ <Wt>, \ [\langle Xn|SP\rangle\{,#0\}]
\]

### 64-bit variant

Applies when `size == 11`.

\[
\text{STXR} \ <Ws>, \ <Xt>, \ [\langle Xn|SP\rangle\{,#0\}]
\]

**Decode for all variants of this encoding**

```plaintext
decode = \begin{aligned}
\text{integer } n &= \text{ UInt}(Rn); \\
\text{integer } t &= \text{ UInt}(Rt); \\
\text{integer } s &= \text{ UInt}(Rs); \quad \text{// ignored by all loads and store-release} \\
\text{integer } elsize &= 8 \ll \text{ UInt}(size); \\
\text{boolean } tag_\text{checked} &= n \neq 31;
\end{aligned}
```

### Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXR on page K1-7979.

**Assembler symbols**

- `<Ws>` Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:
  - 0 If the operation updates memory.
  - 1 If the operation fails to update memory.
- `<Xt>` Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Wt>` Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Aborts and alignment**

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- `<Ws>` is not updated.
Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

**Operation**

```plaintext
bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if s == t then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
 when Constraint_NONE rt_unknown = FALSE; // store original value
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
 when Constraint_NONE rn_unknown = FALSE; // address is original base
 when Constraint_UNDEF UNDEFINED;
 when Constraint_NOP EndOfInstruction();

if n == 31 then
 CheckSPAlignment();
 address = SP[];
elsif rn_unknown then
 address = bits(64) UNKNOWN;
else
 address = X[n];

if rt_unknown then
 data = bits(elsize) UNKNOWN;
else
 data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then
 // This atomic write will be rejected if it does not refer
 // to the same physical locations after address translation.
 Mem[address, dbytes, AccType_ATOMIC] = data;
 status = ExclusiveMonitorsStatus();
 X[s] = ZeroExtend(status, 32);
```

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.303   STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores on page B2-166. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes on page C1-187.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>Rs 0 1(1)(1)(1)(1)</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoding

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);    // ignored by all loads and store-release

boolean tag_checked = n != 31;

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly STXRB on page K1-7980.

Assembler symbols

<Ws>    Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the "Rs" field. The value returned is:
0       If the operation updates memory.
1       If the operation fails to update memory.

<Wt>    Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP>  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- <Ws> is not updated.

If AAarch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(8) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if HaveMTEExt() then
SetTagCheckedInstruction(tag_checked);

if s == t then
  Constraint c = ConstrainUnpredictable();
  assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
  case c of
    when Constraint_UNKNOWN rt_unknown = TRUE;   // store UNKNOWN value
    when Constraint_NONE rt_unknown = FALSE;     // store original value
    when Constraint_UNDEF UNDEFINED;
    when Constraint_NOP   EndOfInstruction();
if s == n && n != 31 then
  Constraint c = ConstrainUnpredictable();
  assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
  case c of
    when Constraint_UNKNOWN rn_unknown = TRUE;   // address is UNKNOWN
    when Constraint_NONE    rn_unknown = FALSE;   // address is original base
    when Constraint_UNDEF   UNDEFINED;
    when Constraint_NOP     EndOfInstruction();
if n == 31 then
  CheckSPAlignment();
  address = SP[ ];
elsif rn_unknown then
  address = bits(64) UNKNOWN;
else
  address = X[n];
if rt_unknown then
  data = bits(8) UNKNOWN;
else
  data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 1) then
  // This atomic write will be rejected if it does not refer
  // to the same physical locations after address translation.
  Mem[address, 1, AccType_ATOMIC] = data;
  status = ExclusiveMonitorsStatus();
  X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.304  STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores on page B2-166. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes on page C1-187.

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 | 10 9 | 5 4 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Rs | 0 | 1 | 1 | 1 | 1 | 1 | Rn | Rt |

Encoding

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Decode for this encoding

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);  // ignored by all loads and store-release

boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive
is written, encoded in the "Rs" field. The value returned is:
0 If the operation updates memory.
1 If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

bits(64) address;
bits(16) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

if s == t then
  Constraint c = ConstrainUnpredictable();
  assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
  case c of
    when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
    when Constraint_NONE rt_unknown = FALSE; // store original value
    when Constraint_UNDEF UNDEFINED;
    when Constraint_NOP EndOfInstruction();
if s == n && n != 31 then
  Constraint c = ConstrainUnpredictable();
  assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
  case c of
    when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
    when Constraint_NONE rn_unknown = FALSE; // address is original base
    when Constraint_UNDEF UNDEFINED;
    when Constraint_NOP EndOfInstruction();

if n == 31 then
  CheckSPAlignment();
  address = SP[];
elif rn_unknown then
  address = bits(64) UNKNOWN;
else
  address = X[n];

if rt_unknown then
  data = bits(16) UNKNOWN;
else
  data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 2) then
  // This atomic write will be rejected if it does not refer
  // to the same physical locations after address translation.
  Mem[address, 2, AccType_ATOMIC] = data;
  status = ExclusiveMonitorsStatus();
  X[s] = ZeroExtend(status, 32);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C6.2.305 STZ2G

Store Allocation Tags. Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the associated data locations. The address used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

Post-index

ARMv8.5

Encoding

STZ2G <Xt|SP>, [<Xn|SP>], #<simm>

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

Pre-index

ARMv8.5

Encoding

STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

Signed offset

ARMv8.5
Encoding

STZ2G <Xt|SP>, [<Xn|SP>{, #<simm>}]  

Decode for this encoding

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;

Assembler symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and encoded in the "imm9" field.

Operation for all encodings

bits(64) address;
bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);
SetTagCheckedInstruction(FALSE);
if n == 31 then
    CheckSPAlignment();
else
    address = X[n];
if !postindex then
    address = address + offset;
if address != Align(address, TAG_GRANULE) then
    AArch64.Abort(address, AArch64.AlignmentFault(AccType_NORMAL, TRUE, FALSE));
Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);
Mem[address+TAG_GRANULE, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);
AArch64.MemTag[address, AccType_NORMAL] = tag;
AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;
if writeback then
    if postindex then
        address = address + offset;
        if n == 31 then
            SP[] = address;
        else
            X[n] = address;
C6.2.306  **STZG**

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location. The address used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.

This instruction generates an Unchecked access.

**Post-index**

ARMv8.5

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] | 12 | 10 9 | 5 4 | 0 |
1 1 0 1 1 0 0 1 0 1 1 imm9 0 1 Xn Xt
```

**Encoding**

STZG <Xt|SP>, [<Xn|SP>], #<imm>

**Decode for this encoding**

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
broadcast(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

**Pre-index**

ARMv8.5

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] | 12 | 10 9 | 5 4 | 0 |
1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xt
```

**Encoding**

STZG <Xt|SP>, [<Xn|SP>], #<imm>!

**Decode for this encoding**

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
broadcast(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

**Signed offset**

ARMv8.5

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] | 12 | 10 9 | 5 4 | 0 |
1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xt
```
**Encoding**

STZG \(<Xt|SP>, [<Xn|SP>\{, #<simm>\}]

**Decode for this encoding**

```c
if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;
```

**Assembler symbols**

- \(<Xt|SP>\) Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
- \(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.
- \(<simm>\) Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and encoded in the "imm9" field.

**Operation for all encodings**

```c
bits(64) address;
SetTagCheckedInstruction(FALSE);

if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];

if !postindex then
 address = address + offset;

if address != Align(address, TAG_GRANULE) then
 AArch64.Abort(address, AArch64.AlignmentFault(AccType_NORMAL, TRUE, FALSE));

Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);
AArch64.MemTag[address, AccType_NORMAL] = tag;

if writeback then
 if postindex then
 address = address + offset;

 if n == 31 then
 SP[] = address;
 else
 X[n] = address;
```
C6.2.307 STZGM

Store Tag and Zero Multiple writes a naturally aligned block of $N$ Allocation Tags and stores zero to the associated data locations, where the size of $N$ is identified in DCZID_EL0.BS, and the Allocation Tag written to address $A$ is taken from the source register bits<3:0>.

This instruction is UNDEFINED at EL0.

This instruction generates an Unchecked access.

If ID_AA64PFR1_EL1 != 0b0010, this instruction is UNDEFINED.

ARMv8.5

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | Xn | Xt |

Encoding
STZGM <Xt>, [<Xn|SP>]

Decode for this encoding
if !HaveMTEExt() then UNDEFINED;
integer $t = \text{UInt}(Xt)$;
integer $n = \text{UInt}(Xn)$;

Assembler symbols
<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation
if PSTATE.EL == EL0 then
    UNDEFINED;
bits(64) data = X[t];
bits(4) tag = data<3:0>;
bits(64) address;
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];
in integer size = 4 * (2 ^ (UInt(DCZID_EL0.BS)));
address = Align(address, size);
integer count = size >> LOG2_TAG_GRANULE;
for $i = 0$ to count-1
    AArch64.MemTag[address, AccType_NORMAL] = tag;
    Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(8 * TAG_GRANULE);
    address = address + TAG_GRANULE;
C6.2.308   SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value, and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword.

|31 30 29 28|27 26 25 24|23 22 21 20| 16|15 12| 10 9 | 5 4 | 0 |
|---|---|---|---|---|---|---|---|---|
|sf | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
|op | S |

**32-bit variant**
Applies when \( sf = 0 \).

\[
\text{SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}}
\]

**64-bit variant**
Applies when \( sf = 1 \).

\[
\text{SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}}
\]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{ExtendType } \text{extend}_\text{type} &= \text{DecodeRegExtend}(\text{option}); \\
\text{integer } \text{shift} &= \text{UInt}(\text{imm}3); \\
\text{if } \text{shift} > 4 \text{ then } \text{UNDEFINED};
\end{align*}
\]

**Assembler symbols**

\[
\begin{align*}
&Wd|WSP> & \text{Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.} \\
&Wn|WSP> & \text{Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.} \\
&Wm> & \text{Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.} \\
&Xd|SP> & \text{Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.} \\
&Xn|SP> & \text{Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.} \\
&R> & \text{Is a width specifier, encoded in the "option" field. It can have the following values:} \\
&W & \text{when option } = 00x \\
&W & \text{when option } = 010 \\
&X & \text{when option } = 111 \\
&W & \text{when option } = 10x \\
&W & \text{when option } = 110 \\
<m> & \text{Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.}
\end{align*}
\]
For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- LSL|UXTW when option = 010
- UTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:

- UXTB when option = 000
- UXTH when option = 001
- UXTW when option = 010
- LSL|UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not LSL.

**Operation**

```
bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
operand2 = NOT(operand2);
(result, -) = AddWithCarry(operand1, operand2, '1');
if d == 31 then
 SP[] = result;
else
 X[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.309   SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to the destination register.

32-bit variant

Applies when \( sf = 0 \).

\[
\text{SUB} <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}
\]

64-bit variant

Applies when \( sf = 1 \).

\[
\text{SUB} <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } \text{datasize} &= \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{bits(}\text{datasize}) \text{ imm} &; \\
\text{case } \text{sh} \text{ of} \\
\text{when } '0' \text{ imm } &= \text{ZeroExtend}(imm12, \text{datasize}); \\
\text{when } '1' \text{ imm } &= \text{ZeroExtend}(imm12:Zeros(12), \text{datasize});
\end{align*}
\]

Assembler symbols

\[
<Wd|WSP> \quad \text{Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.}
\]

\[
<Wn|WSP> \quad \text{Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.}
\]

\[
<Xd|SP> \quad \text{Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.}
\]

\[
<Xn|SP> \quad \text{Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.}
\]

\[
<\text{imm}> \quad \text{Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.}
\]

\[
<\text{shift}> \quad \text{Is the optional left shift to apply to the immediate, defaulting to LSL \#0 and encoded in the "sh" field. It can have the following values:}
\]
\[
\text{LSL \#0 \quad when sh = 0}
\]
\[
\text{LSL \#12 \quad when sh = 1}
\]

Operation

\[
\begin{align*}
\text{bits(}\text{datasize}) \text{ result}; \\
\text{bits(}\text{datasize}) \text{ operand1 } &= \text{if } n == 31 \text{ then } SP[] \text{ else } X[n]; \\
\text{bits(}\text{datasize}) \text{ operand2}; \\
\text{operand2} &= \text{NOT}(\text{imm}); \\
\text{(result, -)} &= \text{AddWithCarry}(\text{operand1}, \text{operand2}, '1');
\end{align*}
\]
if d == 31 then
    SP[] = result;
else
    X[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.310 SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result to the destination register.

This instruction is used by the alias NEG (shifted register). See Alias conditions for details of when each alias is preferred.

### 32-bit variant

Applies when \( sf == 0 \).

\[
\text{SUB} \ <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
\]

### 64-bit variant

Applies when \( sf == 1 \).

\[
\text{SUB} \ <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
\]

#### Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d & = \text{UInt}(Rd); \\
\text{integer } n & = \text{UInt}(Rn); \\
\text{integer } m & = \text{UInt}(Rm); \\
\text{integer } \text{datasize} & = \text{if } sf == '1' \text{ then } 64 \text{ else } 32; \\
\text{if } \text{shift} == '11' & \text{ then } \text{UNDEFINED}; \\
\text{if } \text{shift} == '00' & \text{imm6<5>} == '1' & \text{then } \text{UNDEFINED}; \\
\text{ShiftType } \text{shift_type} & = \text{DecodeShift(shift)}; \\
\text{integer } \text{shift_amount} & = \text{UInt}(\text{imm6});
\end{align*}
\]

#### Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG (shifted register)</td>
<td>( \text{Rn} == '11111' )</td>
</tr>
</tbody>
</table>

#### Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>\) Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Wm>\) Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>\) Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- \(<Xm>\) Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- LSL when shift = 00
- LSR when shift = 01
- ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

**Operation**

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);
(result, -) = AddWithCarry(operand1, operand2, '1');

X[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.311  SUBG

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source register, modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>16</th>
<th>15 14 13</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1</td>
<td>0 0 0 1</td>
<td>1 0</td>
<td>uimm8</td>
<td>(0)(0)</td>
<td>uimm4</td>
<td>Xn</td>
<td>Xd</td>
</tr>
</tbody>
</table>

op3
```

**Encoding**

SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

**Decode for this encoding**

```
if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
blob offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);
```

**Assembler symbols**

- `<Xd|SP>`: Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd" field.
- `<Xn|SP>`: Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<uimm6>`: Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.
- `<uimm4>`: Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

**Operation**

```
blob operand1 = if n == 31 then SP[] else X[n];
blob start_tag = AArch64.AllocationTagFromAddress(operand1);
blob exclude = GCR_EL1.Exclude;
blob result;
blob rtag;
if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
 rtag = AArch64.ChooseNonExcludedTag(start_tag, uimm4, exclude);
else
 rtag = '0000';
(result, -) = AddWithCarry(operand1, NOT(offset), '1');
result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);
if d == 31 then
 SP[] = result;
else
 X[d] = result;
```
C6.2.312   SUBP

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register.

ARMv8.5

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 | |
|-------------|-------------|-------------| |-------------|-------------| | |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |

Xm 0 0 0 0 0 0 0
Xn
Xd
```

**Encoding**

SUBP <Xd>, <Xn|SP>, <Xm|SP>

**Decode for this encoding**

```plaintext
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);
```

**Assembler symbols**

- `<Xd>` is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.
- `<Xn|SP>` is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<Xm|SP>` is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm" field.

**Operation**

```plaintext
bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) operand2 = if m == 31 then SP[] else X[m];
operand1 = SignExtend(operand1<55:0>, 64);
operand2 = SignExtend(operand2<55:0>, 64);

bits(64) result;
operand2 = NOT(operand2);
(result, -) = AddWithCarry(operand1, operand2, '1');
X[d] = result;
```
C6.2.313 SUBPS

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-bit address held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register. It updates the condition flags based on the result of the subtraction.

This instruction is used by the alias CMPP. See Alias conditions for details of when each alias is preferred.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

**Encoding**

SUBPS <Xd>, <Xn|SP>, <Xm|SP>

**Decode for this encoding**

integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPP</td>
<td>S == '1' &amp;&amp; Xd == '11111'</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.
- `<Xn|SP>` Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn" field.
- `<Xm|SP>` Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm" field.

**Operation**

```plaintext
bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) operand2 = if m == 31 then SP[] else X[m];
operand1 = SignExtend(operand1<55:0>, 64);
operand2 = SignExtend(operand2<55:0>, 64);

bits(64) result;
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');
PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;
```
C6.2.314  SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value, and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMP (extended register). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when sf == 0.
SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit variant
Applies when sf == 1.
SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

Decode for all variants of this encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 13 12</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf 1</td>
<td>1</td>
<td>0 1 0 1 1 0 0 1</td>
<td>Rm</td>
<td>option</td>
<td>imm3</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

op S

Alias conditions

<table>
<thead>
<tr>
<th>Alias is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP (extended register) Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- <Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- <Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
- <R> Is a width specifier, encoded in the "option" field. It can have the following values:
  W when option = 00x
W when option = 010
X when option = x11
W when option = 10x
W when option = 110

<extend>
Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend>
For the 32-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:
- UXTB when option = 000
- UXTH when option = 001
- LSL|UXTW when option = 010
- UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:
- UXTB when option = 000
- UXTH when option = 001
- UXTW when option = 010
- LSL|UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in the "option" field. It can have the following values:
- UXTB when option = 000
- UXTH when option = 001
- UXTW when option = 010
- LSL|UXTX when option = 011
- SXTB when option = 100
- SXTH when option = 101
- SXTW when option = 110
- SXTX when option = 111

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount>
Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not LSL.

### Operation

```plaintext
bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;
operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');
PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;
```
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.315 SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when \( sf = 0 \).

\[
\text{SUBS } <Wd>, <Wn|WSP>, \#<imm>{, <shift>}
\]

64-bit variant
Applies when \( sf = 1 \).

\[
\text{SUBS } <Xd>, <Xn|SP>, \#<imm>{, <shift>}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } \text{datasize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{bits}(\text{datasize}) \text{ imm}; \\
\text{case } \text{sh} \text{ of} \\
&\quad \text{when } '0' \text{ imm } = \text{ZeroExtend}(\text{imm12}, \text{datasize}); \\
&\quad \text{when } '1' \text{ imm } = \text{ZeroExtend}(\text{imm12}:\text{Zeros}(12), \text{datasize});
\end{align*}
\]

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP (immediate)</td>
<td>Rd == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn|WSP>\) Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn|SP>\) Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
- \(<\text{imm}>\) Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
- \(<\text{shift}>\) Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in the "sh" field. It can have the following values:
  - LSL #0 when \( sh = 0 \)
  - LSL #12 when \( sh = 1 \)
Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2;
bits(4) nzcv;

operand2 = NOT(imm);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.316  SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register) and NEGS. See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when sf == 0.
SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant
Applies when sf == 1.
SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;
ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP (shifted register)</td>
<td>Rd == '11111'</td>
</tr>
<tr>
<td>NEGS</td>
<td>Rn == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in the "shift" field. It can have the following values:

- LSL when shift = 00
- LSR when shift = 01
- ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

**Operation**

```c
bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = nzcv;
X[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.317 SVC

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the EC value 0x15, and the value of the immediate argument.

```
|31 30 29 28|27 26 25 24|23 22 21 20| | | | 5 4 3 2 1 0 |
|1 1 0 1 0 1 0 0 0 0 0| imm16| | 0 0 0 0 1|
```

**Encoding**

SVC #<imm>

**Decode for this encoding**

// Empty.

**Assembler symbols**

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

**Operation**

```c
AArch64.CheckForSVCTrap(imm16);
AArch64.CallSupervisor(imm16);
```
C6.2.318    SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register back to the same memory location. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.
- SWPLB and SWPALB store to memory with release semantics.
- SWPB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

ARMv8.1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1</td>
<td>0 0</td>
<td>A</td>
<td>R</td>
<td>1</td>
<td>1 0 0 0 0</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

**SWPAB variant**

Applies when A == 1 && R == 0.

SWPAB <Ws>, <Wt>, [<Xn|SP>]

**SWPALB variant**

Applies when A == 1 && R == 1.

SWPALB <Ws>, <Wt>, [<Xn|SP>]

**SWPB variant**

Applies when A == 0 && R == 0.

SWPB <Ws>, <Wt>, [<Xn|SP>]

**SWPLB variant**

Applies when A == 0 && R == 1.

SWPLB <Ws>, <Wt>, [<Xn|SP>]

Decode for all variants of this encoding

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.
<Rt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

```
bites(64) address;
bites(8) data;
bites(8) store_value;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPA1ignment();
 address = SP[];
else
 address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, 32);
```
C6.2.319  **SWPH, SWPAH, SWPALH, SWPLH**  
Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in a register back to the same memory location. The value initially loaded from memory is returned in the destination register.

- If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.
- SWPLH and SWPALH store to memory with release semantics.
- SWPH has neither acquire nor release semantics.

For more information about memory ordering semantics see *Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.*

For information about memory accesses see *Load/Store addressing modes on page C1-187.*

**ARMv8.1**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 2423 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>0 0 0 A R 1</td>
<td>Rs 1 0 0 0 0</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SWPAH variant**

Applies when \( A = 1 && R = 0 \).

SWPAH \(<Ws>, <Wt>, [<Xn|SP>]\)

**SWPALH variant**

Applies when \( A = 1 && R = 1 \).

SWPALH \(<Ws>, <Wt>, [<Xn|SP>]\)

**SWPH variant**

Applies when \( A = 0 && R = 0 \).

SWPH \(<Ws>, <Wt>, [<Xn|SP>]\)

**SWPLH variant**

Applies when \( A = 0 && R = 1 \).

SWPLH \(<Ws>, <Wt>, [<Xn|SP>]\)

*Decode for all variants of this encoding*

```c
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```

**Assembler symbols**

\(<Ws>\)  Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.
<Rt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

```plaintext
bits(64) address;
bits(16) data;
bits(16) store_value;

if HaveMTEEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, 32);
```
C6.2.320   SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location, and stores the value held in a register back to the same memory location. The value initially loaded from memory is returned in the destination register.

- If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.
- SWPL and SWPAL store to memory with release semantics.
- SWP has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

For information about memory accesses see Load/Store addressing modes on page C1-187.

ARMv8.1

<table>
<thead>
<tr>
<th>size</th>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 x 1 1 1</td>
<td>0 0 0 A</td>
<td>R 1</td>
<td>Rs</td>
<td>1 0 0 0 0</td>
<td>0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit SWP variant

Applies when size == 10 && A == 0 && R == 0.

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPA variant

Applies when size == 10 && A == 1 && R == 0.

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPAL variant

Applies when size == 10 && A == 1 && R == 1.

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPL variant

Applies when size == 10 && A == 0 && R == 1.

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit SWP variant

Applies when size == 11 && A == 0 && R == 0.

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPA variant

Applies when size == 11 && A == 1 && R == 0.

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPAL variant

Applies when size == 11 && A == 1 && R == 1.
**SWPL <Xs>, <Xt>, [<Xn|SP>]**

**64-bit SWPL variant**

Applies when `size == 11 && A == 0 && R == 1`.

**SWPL <Xs>, <Xt>, [<Xn|SP>]**

**Decode for all variants of this encoding**

```c
if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;
```

**Assembler symbols**

- `<Ws>`: Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.
- `<Wt>`: Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xs>`: Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.
- `<Xt>`: Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.
- `<Xn|SP>`: Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

**Operation**

```c
bits(64) address;
bits(datasize) data;
bits(datasize) store_value;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAAlignment();
 address = SP[];
else
 address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, regsize);
```
C6.2.321   SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( sf = 0 \) \&\& \( N = 0 \).

\( \text{SXTB} \ <Wd>, \ <Wn> \)

is equivalent to

\( \text{SBFM} \ <Wd>, \ <Wn>, \ #0, \ #7 \)

and is always the preferred disassembly.

64-bit variant

Applies when \( sf = 1 \) \&\& \( N = 1 \).

\( \text{SXTB} \ <Xd>, \ <Xn> \)

is equivalent to

\( \text{SBFM} \ <Xd>, \ <Xn>, \ #0, \ #7 \)

and is always the preferred disassembly.

Assembler symbols

\(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

\(<Xn>\) Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

\(<Wn>\) Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If \( \text{PSTATE.DIT} \) is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.322  SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the destination register.

This instruction is an alias of the SBFM instruction. This means that:

- The encodings in this description are named to match the encodings of SBFM.
- The description of SBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( sf == 0 \) && \( N == 0 \).

\[ \text{SXTH} \langle \text{Wd} \rangle, \langle \text{Wn} \rangle \]

is equivalent to

\[ \text{SBFM} \langle \text{Wd} \rangle, \langle \text{Wn} \rangle, \#0, \#15 \]

and is always the preferred disassembly.

64-bit variant

Applies when \( sf == 1 \) && \( N == 1 \).

\[ \text{SXTH} \langle \text{Xd} \rangle, \langle \text{Wn} \rangle \]

is equivalent to

\[ \text{SBFM} \langle \text{Xd} \rangle, \langle \text{Xn} \rangle, \#0, \#15 \]

and is always the preferred disassembly.

Assembler symbols

- \( \langle \text{Wd} \rangle \) is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( \langle \text{Xd} \rangle \) is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \( \langle \text{Xn} \rangle \) is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \( \langle \text{Wn} \rangle \) is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.323   SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register. This instruction is an alias of the SBFM instruction. This means that:

- The encodings in this description are named to match the encodings of SBFM.
- The description of SBFM gives the operational pseudocode for this instruction.

**Operation**

The description of SBFM gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.324   SYS

System instruction. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377 for the encodings of System instructions.

This instruction is used by the aliases AT, CFP, CPP, DC, DVP, IC, and TLBI. See Alias conditions for details of when each alias is preferred.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>L</td>
</tr>
</tbody>
</table>

**Encoding**

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

**Decode for this encoding**

AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

integer \( t = \text{UInt}(Rt) \);

integer \( \text{sys\_op1} = \text{UInt}(\text{op1}) \);

integer \( \text{sys\_op2} = \text{UInt}(\text{op2}) \);

integer \( \text{sys\_crn} = \text{UInt}(\text{CRn}) \);

integer \( \text{sys\_crm} = \text{UInt}(\text{CRm}) \);

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>CRn == '0111' &amp;&amp; CRm == '100x' &amp;&amp; SysOp(op1,'0111',CRm,op2) == Sys_AT</td>
</tr>
<tr>
<td>CFP</td>
<td>op1 == '011' &amp;&amp; CRn == '0111' &amp;&amp; CRm == '0011' &amp;&amp; op2 == '100'</td>
</tr>
<tr>
<td>CPP</td>
<td>op1 == '011' &amp;&amp; CRn == '0111' &amp;&amp; CRm == '0011' &amp;&amp; op2 == '111'</td>
</tr>
<tr>
<td>DC</td>
<td>CRn == '0111' &amp;&amp; SysOp(op1,'0111',CRm,op2) == Sys_DC</td>
</tr>
<tr>
<td>DVP</td>
<td>op1 == '011' &amp;&amp; CRn == '0111' &amp;&amp; CRm == '0011' &amp;&amp; op2 == '101'</td>
</tr>
<tr>
<td>IC</td>
<td>CRn == '0111' &amp;&amp; SysOp(op1,'0111',CRm,op2) == Sys_IC</td>
</tr>
<tr>
<td>TLBI</td>
<td>CRn == '1000' &amp;&amp; SysOp(op1,'1000',CRm,op2) == Sys_TLBI</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- **<op1>** Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
- **<Cn>** Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.
- **<Cm>** Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
- **<op2>** Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
- **<Xt>** Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.
Operation

```
AArch64.SysInstr(1, sys_op1, sys_crn, syscrm, sys_op2, X[t]);
```
### C6.2.325 SYSL

System instruction with result. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377 for the encodings of System instructions.

#### Encoding

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

#### Decode for this encoding

```c
AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);
integer t = UInt(Rt);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);
```

#### Assembler symbols

- `<Xt>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.
- `<op1>` Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
- `<Cn>` Is a name 'Cn', with ‘n’ in the range 0 to 15, encoded in the "CRn" field.
- `<Cm>` Is a name 'Cm', with ‘m’ in the range 0 to 15, encoded in the "CRm" field.
- `<op2>` Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

#### Operation

// No architecturally defined instructions here.
```c
X[t] = AArch64.SysInstrWithResult(1, sys_op1, sys_crn, sys_crm, sys_op2);
```
C6.2.326  TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect condition flags.

Encoding

TBNZ <R><t>, #<imm>, <label>

Decode for this encoding

integer t = UInt(Rt);
integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bits(64) offset = SignExtend(imm14:'00', 64);

Assembler symbols

<R>  Is a width specifier, encoded in the "b5" field. It can have the following values:
W   when b5 = 0
X   when b5 = 1
In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when the bit number is less than 32.
<tt>  Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the "Rt" field.
<imm>  Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".
<label>  Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-32KB, is encoded as "imm14" times 4.

Operation

bits(datasize) operand = X[t];
if operand<bit_pos> == op then
    BranchTo(PC[] + offset, BranchType_DIR);
C6.2.327   TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a PC-relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect condition flags.

```
[31 30 29 28][27 26 25 24][23]
|19 18 | | | 5 4 | 0 |

b5 0 1 1 0 1 1 0 b40

|imm14| Rt|
```

**Encoding**

TBZ <R><t>, #<imm>, <label>

**Decode for this encoding**

integer t = UInt(Rt);

integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bits(64) offset = SignExtend(imm14:'00', 64);

**Assembler symbols**

- **<R>** Is a width specifier, encoded in the "b5" field. It can have the following values:
  - 'W' when b5 = 0
  - 'X' when b5 = 1
  - In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when the bit number is less than 32.
- **<t>** Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the "Rt" field.
- **<imm>** Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".
- **<label>** Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-32KB, is encoded as "imm14" times 4.

**Operation**

bits(datasize) operand = X[t];

if operand<bit_pos> == op then
    BranchTo(PC[] + offset, BranchType_DIR);
C6.2.328 TLBI

TLB Invalidate operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-377.

This instruction is an alias of the SYS instruction. This means that:

- The encodings in this description are named to match the encodings of SYS.
- The description of SYS gives the operational pseudocode for this instruction.

**Encoding**

TLBI <tlbi_op>{, <Xt>}

is equivalent to

SYS #<op1>, C8, #<Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'1000',CRm,op2) == Sys_TLBI.

**Assembler symbols**

- **<op1>** Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
- **<Cm>** Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
- **<op2>** Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
- **<tlbi_op>** Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in the "op1:CRm:op2" field. It can have the following values:
  - VMALLE1IS when op1 = 000, CRm = 0011, op2 = 000
  - VAE1IS when op1 = 000, CRm = 0011, op2 = 001
  - ASIDE1IS when op1 = 000, CRm = 0011, op2 = 010
  - VAAE1IS when op1 = 000, CRm = 0011, op2 = 011
  - VALE1IS when op1 = 000, CRm = 0011, op2 = 101
  - VAALE1IS when op1 = 000, CRm = 0011, op2 = 111
  - VMALLE1 when op1 = 000, CRm = 0111, op2 = 000
  - VAE1 when op1 = 000, CRm = 0111, op2 = 001
  - ASIDE1 when op1 = 000, CRm = 0111, op2 = 010
  - VAAE1 when op1 = 000, CRm = 0111, op2 = 011
  - VALE1 when op1 = 000, CRm = 0111, op2 = 101
  - VAALE1 when op1 = 000, CRm = 0111, op2 = 111
  - IPAS2E1IS when op1 = 100, CRm = 0000, op2 = 001
  - IPAS2LE1IS when op1 = 100, CRm = 0000, op2 = 101
  - ALLE2IS when op1 = 100, CRm = 0011, op2 = 000
  - VAE2IS when op1 = 100, CRm = 0011, op2 = 001
  - ALLE1IS when op1 = 100, CRm = 0011, op2 = 100
VALE2IS when op1 = 100, CRm = 0011, op2 = 101
VMALLS12E1IS when op1 = 100, CRm = 0011, op2 = 110
IPAS2E1 when op1 = 100, CRm = 0100, op2 = 001
IPAS2LE1 when op1 = 100, CRm = 0100, op2 = 101
ALLE2 when op1 = 100, CRm = 0111, op2 = 000
VAE2 when op1 = 100, CRm = 0111, op2 = 001
ALLE1 when op1 = 100, CRm = 0111, op2 = 100
VALE2 when op1 = 100, CRm = 0111, op2 = 101
VMALLS12E1 when op1 = 100, CRm = 0111, op2 = 110
ALLE3IS when op1 = 110, CRm = 0011, op2 = 000
VAE3IS when op1 = 110, CRm = 0011, op2 = 001
VALE3IS when op1 = 110, CRm = 0011, op2 = 100
ALLE3 when op1 = 110, CRm = 0111, op2 = 000
VAE3 when op1 = 110, CRm = 0111, op2 = 001
VALE3 when op1 = 110, CRm = 0111, op2 = 101

When FEAT_TLBIOS is implemented, the following values are also valid:
VMALLE1OS when op1 = 000, CRm = 0001, op2 = 000
VAE1OS when op1 = 000, CRm = 0001, op2 = 001
ASIDE1OS when op1 = 000, CRm = 0001, op2 = 010
VAAE1OS when op1 = 000, CRm = 0001, op2 = 011
VALE1OS when op1 = 000, CRm = 0001, op2 = 100
VAAE1OS when op1 = 000, CRm = 0001, op2 = 101
ALLE1OS when op1 = 000, CRm = 0001, op2 = 100
VALE1OS when op1 = 000, CRm = 0001, op2 = 101
VMALLS12E1OS when op1 = 100, CRm = 0001, op2 = 110
IPAS2E1OS when op1 = 100, CRm = 0100, op2 = 000
IPAS2LE1OS when op1 = 100, CRm = 0100, op2 = 100
ALLE3OS when op1 = 110, CRm = 0001, op2 = 000
VAE3OS when op1 = 110, CRm = 0001, op2 = 001
VALE3OS when op1 = 110, CRm = 0001, op2 = 100
VAALE1OS when op1 = 000, CRm = 0001, op2 = 110
VAE2OS when op1 = 000, CRm = 0001, op2 = 001
ALLE1OS when op1 = 000, CRm = 0001, op2 = 100
VALE2OS when op1 = 000, CRm = 0001, op2 = 101
VMALLS12E1OS when op1 = 100, CRm = 0001, op2 = 110
IPAS2E1OS when op1 = 100, CRm = 0100, op2 = 000
IPAS2LE1OS when op1 = 100, CRm = 0100, op2 = 100
ALLE3OS when op1 = 110, CRm = 0001, op2 = 000
VAE3OS when op1 = 110, CRm = 0001, op2 = 001
VALE3OS when op1 = 110, CRm = 0001, op2 = 100
VAALE1OS when op1 = 000, CRm = 0001, op2 = 110
VAE1 when op1 = 000, CRm = 0110, op2 = 000
VAAE1 when op1 = 000, CRm = 0110, op2 = 001
VAALE1 when op1 = 000, CRm = 0110, op2 = 101

When FEAT_TLBIRANGE is implemented, the following values are also valid:
RVAE1IS when op1 = 000, CRm = 0010, op2 = 001
RVAEE1IS when op1 = 000, CRm = 0010, op2 = 001
RVALE1IS when op1 = 000, CRm = 0010, op2 = 101
RVAALE1IS when op1 = 000, CRm = 0010, op2 = 111
RVAE1OS when op1 = 000, CRm = 0101, op2 = 000
RVAEE1OS when op1 = 000, CRm = 0101, op2 = 001
RVALE1OS when op1 = 000, CRm = 0101, op2 = 100
RVAALE1OS when op1 = 000, CRm = 0101, op2 = 111
RVAE1 when op1 = 000, CRm = 0110, op2 = 000
RVAE1 when op1 = 000, CRm = 0110, op2 = 001
RVALE1 when op1 = 000, CRm = 0110, op2 = 101
RVAALE1 when op1 = 000, CRm = 0110, op2 = 111
RIPAS2E1IS when op1 = 100, CRm = 0000, op2 = 010
RIPAS2LE1IS when op1 = 100, CRm = 0000, op2 = 110
RAE2IS when op1 = 100, CRm = 0010, op2 = 001
RALE2IS when op1 = 100, CRm = 0010, op2 = 101
RIPAS2E1 when op1 = 100, CRm = 0100, op2 = 010
RIPAS2E1OS when op1 = 100, CRm = 0100, op2 = 110
RIPAS2LE1 when op1 = 100, CRm = 0100, op2 = 110
RIPAS2LE1OS when op1 = 100, CRm = 0100, op2 = 111
RVAE2OS when op1 = 100, CRm = 0101, op2 = 001
RVALE2OS when op1 = 100, CRm = 0101, op2 = 101
RVAE2 when op1 = 100, CRm = 0110, op2 = 001
RVALE2 when op1 = 100, CRm = 0110, op2 = 101
RVAE3IS when op1 = 110, CRm = 0010, op2 = 001
RVALE3IS when op1 = 110, CRm = 0010, op2 = 101
RVAE3OS when op1 = 110, CRm = 0101, op2 = 001
RVALE3OS when op1 = 110, CRm = 0101, op2 = 101
RVAE3 when op1 = 110, CRm = 0110, op2 = 001
RVALE3 when op1 = 110, CRm = 0110, op2 = 101

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.

**Operation**

The description of SYS gives the operational pseudocode for this instruction.
C6.2.329   TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions. If FEAT_TRF is not implemented, this instruction executes as a NOP.

ARMv8.4

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8|7|5|4|3|2|1|0 |
|1 |1 |0 |1 |0 |1 |0 |0 |0 |0 |1 |1 |0 |0 |1 |0 |0 |1 |0 |1 |0 |1 |1 |1 |1 |

CRm op2
```

**Encoding**

TSB  CSYNC

**Decode for this encoding**

if !HaveSelfHostedTrace() then EndOfInstruction();

**Operation**

TraceSynchronizationBarrier();
C6.2.330   TST (immediate)

Test bits (immediate), setting the condition flags and discarding the result: \( Rn \ AND \ imm \)

This instruction is an alias of the ANDS (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of ANDS (immediate).
- The description of ANDS (immediate) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when \( sf == 0 && N == 0 \).

\[
\text{TST } <\text{n}>, \ #<\text{imm}>
\]

is equivalent to

\[
\text{ANDS } \text{WZR}, \ <\text{n}>, \ #<\text{imm}>
\]

and is always the preferred disassembly.

### 64-bit variant

Applies when \( sf == 1 \).

\[
\text{TST } <\text{n}>, \ #<\text{imm}>
\]

is equivalent to

\[
\text{ANDS } \text{XZR}, \ <\text{n}>, \ #<\text{imm}>
\]

and is always the preferred disassembly.

### Assembler symbols

- \(<\text{n}>\): Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{n}>\): Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{imm}>\): For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
  For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

### Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.
C6.2.331  TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

This instruction is an alias of the ANDS (shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of ANDS (shifted register).
- The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

### 32-bit variant

Applies when sf == 0.

TST <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

### 64-bit variant

Applies when sf == 1.

TST <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

### Assembler symbols

- `<Wn>` Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Wm>` Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
- `<shift>` Is the optional shift to be applied to the final source, defaulting to LSL and encoded in the "shift" field. It can have the following values:
  - LSL when shift = 00
  - LSR when shift = 01
  - ASR when shift = 10
  - ROR when shift = 11
- `<amount>` For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
  For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.332 UBFIZ

Unsigned Bitfield Insert in Zeros copies a bitfield of &lt;width&gt; bits from the least significant bits of the source register to bit position &lt;lsb&gt; of the destination register, setting the destination bits above and below the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

- The encodings in this description are named to match the encodings of UBFM.
- The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( sf = 0 \land N = 0 \).

\[
\text{UBFIZ} <Wd>, <Wn>, #<lsb>, #<width>
\]

is equivalent to

\[
\text{UBFM} <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)
\]

and is the preferred disassembly when \( \text{UInt}(\text{immr}) < \text{UInt}(\text{imms}) \).

64-bit variant

Applies when \( sf = 1 \land N = 1 \).

\[
\text{UBFIZ} <Xd>, <Xn>, #<lsb>, #<width>
\]

is equivalent to

\[
\text{UBFM} <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)
\]

and is the preferred disassembly when \( \text{UInt}(\text{imms}) < \text{UInt}(\text{immr}) \).

Assembler symbols

- \(<Wd>&gt;\): Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Wn>&gt;\): Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<Xd>&gt;\): Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xn>&gt;\): Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<lsb>&gt;\): For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
  For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.
- \(<width>&gt;\): For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
  For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

\[
\begin{array}{cccc|cccccccc}
\text{sf} & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & N & \text{immr} & \text{imms} & \text{Rn} & \text{Rd} \\
o pc
\end{array}
\]
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.333   UBFM

Unsigned Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.

If \(<\text{imms}>\) is greater than or equal to \(<\text{immr}>\), this copies a bitfield of \((<\text{imms}>-<\text{immr}>+1)\) bits starting from bit position \(<\text{immr}>\) in the source register to the least significant bits of the destination register.

If \(<\text{imms}>\) is less than \(<\text{immr}>\), this copies a bitfield of \((<\text{imms}>+1)\) bits from the least significant bits of the source register to bit position \((\text{regsize}-<\text{immr}>)\) of the destination register, where \(\text{regsize}\) is the destination register size of 32 or 64 bits.

In both cases the destination bits below and above the bitfield are set to zero.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH. See Alias conditions on page C6-1374 for details of when each alias is preferred.

32-bit variant

Applies when \(sf == 0 \&\& N == 0\).

UBFM \(<Wd>, <Wn>, #<immr>, #<imms>\)

64-bit variant

Applies when \(sf == 1 \&\& N == 1\).

UBFM \(<Xd>, <Xn>, #<immr>, #<imms>\)

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer data} & = \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{integer } R; \\
\text{bits(data)} &= \text{w} \text{mask}; \\
\text{bits(data)} &= \text{t} \text{mask}; \\
\text{if } sf &= '1' \&\& N != '1' \text{ then UNDEFINED; } \\
\text{if } sf &= '0' \&\& \left(N != '0' || \text{immr}<5> != '0' || \text{imms}<5> != '0' \right) \text{ then UNDEFINED; } \\
R &= \text{UInt}(\text{immr}); \\
(\text{w} \text{mask}, \text{t} \text{mask}) &= \text{DecodeBitMasks}(\text{N}, \text{imms}, \text{immr}, \text{false});
\end{align*}
\]
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL (immediate)</td>
<td>32-bit</td>
<td>imms != '011111' &amp; imms + 1 == immr</td>
</tr>
<tr>
<td>LSL (immediate)</td>
<td>64-bit</td>
<td>imms != '111111' &amp; imms + 1 == immr</td>
</tr>
<tr>
<td>LSR (immediate)</td>
<td>32-bit</td>
<td>imms = '011111'</td>
</tr>
<tr>
<td>LSR (immediate)</td>
<td>64-bit</td>
<td>imms = '111111'</td>
</tr>
<tr>
<td>UBFIZ</td>
<td>-</td>
<td>UInt(imms) &lt; UInt(immr)</td>
</tr>
<tr>
<td>UBFX</td>
<td>-</td>
<td>BFXPreferred(sf, opc&lt;1&gt;, imms, immr)</td>
</tr>
<tr>
<td>UXTB</td>
<td>-</td>
<td>immr == '000000' &amp; imms == '000111'</td>
</tr>
<tr>
<td>UXTH</td>
<td>-</td>
<td>immr == '000000' &amp; imms == '001111'</td>
</tr>
</tbody>
</table>

Assembler symbols

- \(<\text{ld}>)\ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{ln}>)\ Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{xd}>)\ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{xn}>)\ Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
- \(<\text{imm}>\)\ For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field. For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.
- \(<\text{imms}>\)\ For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms" field. For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms" field.

Operation

\[
\text{bits(datasize)} \, \text{src} = \text{X}[\text{n}];
\]

// perform bitfield move on low bits
\[
\text{bits(datasize)} \, \text{bot} = \text{ROR}(\text{src}, \text{R}) \, \text{AND} \, \text{wmask};
\]

// combine extension bits and result bits
\[
\text{X}[\text{d}] = \text{bot} \, \text{AND} \, \text{tmask};
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.334   UBFX

Unsigned Bitfield Extract copies a bitfield of $<\text{width}>$ bits starting from bit position $<\text{lsb}>$ in the source register to the least significant bits of the destination register, and sets destination bits above the bitfield to zero.

This instruction is an alias of the UBFM instruction. This means that:

- The encodings in this description are named to match the encodings of UBFM.
- The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

Applies when $sf == 0 \&\& N == 0$.

UBFX $<Wd>$, $<Wn>$, $#<\text{lsb}>$, $#<\text{width}>$

is equivalent to

UBFM $<Wd>$, $<Wn>$, $#<\text{lsb}>$, $#(<\text{lsb}>+<\text{width}>-1)$

and is the preferred disassembly when $\text{BFXPreferred}(sf, opc, imms, immr)$.

64-bit variant

Applies when $sf == 1 \&\& N == 1$.

UBFX $<Xd>$, $<Xn>$, $#<\text{lsb}>$, $#<\text{width}>$

is equivalent to

UBFM $<Xd>$, $<Xn>$, $#<\text{lsb}>$, $#(<\text{lsb}>+<\text{width}>-1)$

and is the preferred disassembly when $\text{BFXPreferred}(sf, opc, imms, immr)$.

Assembler symbols

$<Wd>$ Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Wn>$ Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

$<Xd>$ Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

$<Xn>$ Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

$<\text{lsb}>$ For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

$<\text{width}>$ For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-$<\text{lsb}>$.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-$<\text{lsb}>$.

Operation

The description of UBFM gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.335  UDF

Permanently Undefined generates an Undefined Instruction exception (ESR_ELx.EC = 0b000000). The encodings for UDF used in this section are defined as permanently UNDEFINED in the Armv8-A architecture.

![Instruction Encoding](attachment:image.png)

**Encoding**

UDF #<imm>

**Decode for this encoding**

// The imm16 field is ignored by hardware.
UNDEFINED;

**Assembler symbols**

<imm> is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field. The PE ignores the value of this constant.

**Operation**

// No operation.
C6.2.336   UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes
the result to the destination register. The condition flags are not affected.

32-bit variant
Applies when sf == 0.
UDIV <Wd>, <Wn>, <Wm>

64-bit variant
Applies when sf == 1.
UDIV <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler symbols
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
integer result;
if IsZero(operand2) then
  result = 0;
else
  result = RoundTowardsZero(Real(Int(operand1, TRUE)) / Real(Int(operand2, TRUE)));
X[d] = result<datasize-1:0>;
C6.2.337  UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMULL. See Alias conditions for details of when each alias is preferred.

Encoding

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMULL</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;
result = Int(operand3, TRUE) + (Int(operand1, TRUE) * Int(operand2, TRUE));
X[d] = result<63:0>;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.338  UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the 64-bit destination register.

This instruction is an alias of the UMSUBL instruction. This means that:

- The encodings in this description are named to match the encodings of UMSUBL.
- The description of UMSUBL gives the operational pseudocode for this instruction.

Encoding

<table>
<thead>
<tr>
<th>Uo 0 R a</th>
</tr>
</thead>
</table>

UMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler symbols

- `<Xd>` is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Wn>` is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Wm>` is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.339   UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMNGL. See Alias conditions for details of when each alias is preferred.

Encoding

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMNGL</td>
<td>Ra == '11111'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Xd>     Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn>    Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Wm>    Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Xa>    Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, TRUE) - (Int(operand1, TRUE) * Int(operand2, TRUE));
X[d] = result<63:0>;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.340   UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit destination register.

Encoding

```
UMULH <Xd>, <Xn>, <Xm>
```

Decode for this encoding

```python
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
```

Assembler symbols

- `<Xd>` Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- `<Xn>` Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

```python
bits(64) operand1 = X[n];
bits(64) operand2 = X[m];

integer result;

result = Int(operand1, TRUE) * Int(operand2, TRUE);

X[d] = result<127:64>;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.341 UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This instruction is an alias of the UMADDL instruction. This means that:

- The encodings in this description are named to match the encodings of UMADDL.
- The description of UMADDL gives the operational pseudocode for this instruction.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 1 0 1 1 0 1</td>
<td>Rm 0 1 1 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Encoding**

UMULL <Xd>, <Wn>, <Wm>

is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

**Assembler symbols**

- <Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- <Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

**Operation**

The description of UMADDL gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.342   UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

UXTB <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler symbols

<Wd>               Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn>               Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C6.2.343  UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and writes the result to the destination register.

This instruction is an alias of the UBFM instruction. This means that:

- The encodings in this description are named to match the encodings of UBFM.
- The description of UBFM gives the operational pseudocode for this instruction.

32-bit variant

UXTH <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler symbols

- <Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- <Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C6.2.344   WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any
PE in the multiprocessor system. For more information, see Wait for Event mechanism and Send event on
page D1-2391.

As described in Wait for Event mechanism and Send event on page D1-2391, the execution of a WFE instruction that
would otherwise cause entry to a low-power state can be trapped to a higher Exception level. See:

- Traps to EL1 of EL0 execution of WFE and WFI instructions on page D1-2371.
- Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions on page D1-2380.
- Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions on page D1-2387.

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 5 4 3 2 1 0]
1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1
```

**Encoding**

WFE

**Decode for this encoding**

// Empty.

**Operation**

if IsEventRegisterSet() then
  ClearEventRegister();
else
  trap = FALSE;
  if PSTATE.EL == EL0 then
    // Check for traps described by the OS which may be EL1 or EL2.
    if HaveTWEExt() then
      - = SCTLR[];
      trap = sctlr.nTWE == '0';
      target_el = EL1;
    else
      AArch64.CheckForWFxTrap(EL1, TRUE);
    if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
      // Check for traps described by the Hypervisor.
      if HaveTWEExt() then
        trap = HCR_EL2.TWE == '1';
        target_el = EL2;
      else
        AArch64.CheckForWFxTrap(EL2, TRUE);
    if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
      // Check for traps described by the Secure Monitor.
      if HaveTWEExt() then
        trap = SCR_EL3.TWE == '1';
        target_el = EL3;
      else
        AArch64.CheckForWFxTrap(EL3, TRUE);
    if HaveTWEExt() && trap && PSTATE.EL != EL3 then
      (delay_enabled, delay) = WFETrapDelay(target_el);    // (If trap delay is enabled, Delay amount)
      if !WaitForEventUntilDelay(delay_enabled, delay) then
```

`11010101000`
// Event did not arrive before delay expired
AArch64.WFxTrap(target_el, TRUE); // Trap WFE
else
WaitForEvent();
C6.2.345 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until
a wakeup event occurs. For more information, see Wait For Interrupt on page D1-2394.

As described in Wait For Interrupt on page D1-2394, the execution of a WFI instruction that would otherwise cause
entry to a low-power state can be trapped to a higher Exception level. See:

- Traps to EL1 of EL0 execution of WFE and WFI instructions on page D1-2371.
- Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions on page D1-2380.
- Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions on page D1-2387.

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 5 4 3 2 1 0]
| 1 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 1 |
CRm   op2
```

Encoding

WFI

Decode for this encoding

// Empty.

Operation

if !InterruptPending() then
 if !PSTATE_EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 AArch64.CheckForWxFxTrap(EL1, FALSE);
 if PSTATE_EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWxFxTrap(EL2, FALSE);
 if HaveEL(EL3) && PSTATE_EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWxFxTrap(EL3, FALSE);
 WaitForInterrupt();
C6.2.346 XAFLAG

Convert floating-point condition flags from external format to Arm format. This instruction converts the state of the PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a form representing the result of an Arm floating-point scalar compare instruction.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 1 0 0</td>
<td>0 (0) (0) (0)</td>
</tr>
</tbody>
</table>

CRm
```

Encoding

XAFLAG

Decode for this encoding

if !HaveFlagFormatExt() then UNDEFINED;

Operation

bit N = NOT(PSTATE.C) AND NOT(PSTATE.Z);
bit Z = PSTATE.Z AND PSTATE.C;
bit C = PSTATE.C OR PSTATE.Z;
bit V = NOT(PSTATE.C) AND PSTATE.Z;

PSTATE.N = N;
PSTATE.Z = Z;
PSTATE.C = C;
PSTATE.V = V;
C6.2.347 XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The address is in the specified general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction addresses.

Integer

ARMv8.3

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 |5 4 |0 |
|1|1|0|1|1|0|1|0|0|0|0|0|1|0|1|0|0|1|D|1|1|1|1|1|Rd|
```

XPACD variant

Applies when \(D = 1 \).

XPACD \(<X_d>\)

XPACI variant

Applies when \(D = 0 \).

XPACI \(<X_d>\)

Decode for all variants of this encoding

```java
boolean data = (D == '1');
integer d = UInt(Rd);
if !HavePACExt() then
    UNDEFINED;
```

System

ARMv8.3

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 |7 6 5 4 |3 2 1 0 |
|1|1|0|1|0|1|0|0|0|0|0|1|0|1|0|0|0|0|1|1|1|1|1|1|
```

Encoding

XPACLRI

Decode for this encoding

```java
integer d = 30;
boolean data = FALSE;
```

Assembler symbols

\(<X_d>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Operation for all encodings

```java
if HavePACExt() then
    X[d] = Strip(X[d], data);
```
C6.2.348 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction, see *The YIELD instruction on page B1-112.*

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 8 7 5 4 3 2 1 0 |
| 1 1 0 1 0 1 0 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

Encoding

YIELD

Decode for this encoding

// Empty.

Operation

```
Hint_Yield();
```
Chapter C7
A64 Advanced SIMD and Floating-point Instruction Descriptions

This chapter describes the A64 Advanced SIMD and floating-point instructions.

It contains the following sections:

• About the A64 SIMD and floating-point instructions on page C7-1396.
• Alphabetical list of A64 Advanced SIMD and floating-point instructions on page C7-1398.
C7.1 About the A64 SIMD and floating-point instructions

Alphabetical list of A64 Advanced SIMD and floating-point instructions on page C7-1398 gives full descriptions of the A64 instructions that are in the following instruction groups:

• Loads and store instructions associated with the SIMD and floating-point registers.
• Data processing instructions with SIMD and floating-point registers.

A64 instruction set encoding on page C4-266 in the A64 Instruction Encodings chapter provides an overview of the instruction encodings as part of an instruction class within a functional group.

The rest of this section is a general description of the SIMD and floating-point instructions. It contains the following subsections:

• Register size.
• Data types.
• Condition flags and related instructions on page C7-1397.

C7.1.1 Register size

A64 provides a comprehensive set of packed Single Instruction Multiple Data (SIMD) and scalar operations using data held in the 32 entry 128-bit wide SIMD and floating-point register file.

Each SIMD and floating-point register can be used to hold:

• A single scalar value of the floating-point or integer type.
• A 64-bit wide vector containing one or more elements.
• A 128-bit wide vector containing two or more elements.

Where the entire 128-bit wide register is not fully utilized, the vector or scalar quantity is held in the least significant bits of the register, with the most significant bits being cleared to zero on a write, see Vector formats on page A1-41.

The following instructions can insert data into individual elements within a SIMD and floating-pointer register without clearing the remaining bits to zero:

• Insert vector element from another vector element or general-purpose register, INS.
• Load structure into a single lane, for example LD3.
• All second-part narrowing operations, for example SHR2.

C7.1.2 Data types

The A64 instruction set provides support for arithmetic, conversion, and bitwise operations on:

• Half-precision, single-precision, and double-precision floating-points.
• Signed and unsigned integers.
• Polynomials over \{0, 1\}.
• When FEAT_FCMA is implemented, complex numbers.

For all AArch64 floating-point operations, including SIMD operations, the rounding mode and exception trap handling are controlled by the FPCR.

Note

• AArch32 Advanced SIMD operations always use Arm standard floating-point arithmetic, regardless of the rounding mode specified by the AArch64 FPCR or the AArch32 FPSCR.

• In AArch64 state, floating-point multiply-add operations are always performed as fused operations, but AArch32 state provides both fused and chained multiply-add instructions.
In addition to operations that consume and produce values of the same width and type, the A64 instruction set supports SIMD and scalar operations that produce a wider or narrower vector result:

- Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the A64 instruction set provides a second-part operation, for example SHRN2, that can pack the result of a second operation into the upper part of the same destination register.

- Where a SIMD operation widens a 64-bit vector to a 128-bit vector, the A64 instruction set provides a second-part operation, for example SMAL2, that can extract the source from the upper 64 bits of the source registers.

All SIMD operations that could produce side-effects that are not limited to the destination SIMD and floating-point register, for example a potential update of FPSR.Q or FPSR.IDC, have a dedicated scalar variant to support the use of SIMD with loops requiring specialised head or tail handling, or both.

C7.1.3 Condition flags and related instructions

The A64 instruction set provides support for flag setting and conditional operations on the SIMD and floating-point register file:

- Floating-point FCSEL and FCMP instructions are equivalent to the integer CSEL and CMP instructions.

- Floating-point FOE, FOEO, FCMP, and FCMP instructions set the PSTATE.[N, Z, C, V] flags based on the result of the floating-point comparison.

- Floating-point FJCVTZS instruction sets the PSTATE.Z flag if the result of the conversion, when converted back to a double-precision floating-point number, gives precisely the same value as the original. Other PSTATE flags are cleared by this instruction.

- Floating-point and integer instructions provide a means of producing either a scalar or a vector mask based on a comparison in a SIMD and floating-point register, for example FOEO.

Note

FOE and FOEO differ from the A32/T32 VOE and VOEO instructions, which use the dedicated FPSCR.NZCV field for the result. A64 instructions store the result of an FOE or FOEO operation in the PSTATE.[N, Z, C, V] field.

If FEAT_FlagM2 is implemented, base instructions XAFLAG and AXFLAG convert between the PSTATE condition flag format used by the FCMP instruction and an alternative format. See Table C6-1 on page C6-770.
C7.2 Alphabetical list of A64 Advanced SIMD and floating-point instructions

This section lists every section in the Advanced SIMD and floating-point categories of the A64 instruction set. For details of the format used, see Structure of the A64 assembler language on page C1-181.
C7.2.1 ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register, puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 |  5  4 |  0  ]
  0  1  0  1  1  1  0 | size 1 0 0 0 0 0 1 0 1 1 1 0 | Rn | Rd
```

Scalar variant

ABS <V><d>, <V><n>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if size != '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean neg = (U == '1');

Vector

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 |  5  4 |  0  ]
  0  Q  0  0  1  1  1  0 | size 1 0 0 0 0 0 1 0 1 1 1 0 | Rn | Rd
```

Vector variant

ABS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean neg = (U == '1');

Assembler symbols

- <V> Is a width specifier, encoded in the "size" field. It can have the following values:
 - D when size = 11
 - The following encodings are reserved:
 - size = 0x.
 - size = 10.
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;

for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.2 ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 1 1 1 0</td>
<td>size 1</td>
<td>Rm</td>
<td>1 0 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

ADD \(<V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size !='11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 1 1 1 0</td>
<td>size 1</td>
<td>Rm</td>
<td>1 0 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

ADD \(<Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler symbols

\(<V>\)

Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11

The following encodings are reserved:

- size = 0x.
- size = 10.
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
</d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1
 The encoding size = 11, Q = 0 is reserved.

</n> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

</m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  element2 = Elem[operand2, e, esize];
  if sub_op then
    Elem[result, e, esize] = element1 - element2;
  else
    Elem[result, e, esize] = element1 + element2;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.3 ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the corresponding vector element in the second source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are truncated. For rounded results, see RADDHN, RADDHN2.

The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the ADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

ADDHN(2) <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

\[
\begin{array}{c|c|c|c|c|c|c|c}
| & | & | & | & | Rm & \ \ \ \ \ \ \ \ \ \ | \ \ \ \ \ \ \ \ \ \ | Rd \ | \ \ \ \ \ \ \ \ \ | \\
| Q | & 0 & 0 & 1 & 1 & 0 & size | 1 | 10 & 1 & 9 | 5 & 4 | 0 | \\
\end{array}
\]

Integer encoding: [31 30 29 28] [27 26 25 24] [23 22 21 20] [16 15 14 13] [12 11 10 9] [5 4] 0

Uo 1

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
 [absent] when Q = 0
 [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
- 8H when size = 00
- 4S when size = 01
- 2D when size = 10
The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bias(2*datasize) operand1 = V[n];
bias(2*datasize) operand2 = V[m];
bias(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bias(2*esize) element1;
bias(2*esize) element2;
bias(2*esize) sum;

for e = 0 to elements-1
    element1 = Elem[operand1, e, 2*esize];
    element2 = Elem[operand2, e, 2*esize];
    if sub_op then
        sum = element1 - element2;
    else
        sum = element1 + element2;
    sum = sum + round_const;
    Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.4 ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes the scalar result into the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

ADDP <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize * 2;

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:
0 when size = 11
The following encodings are reserved:
• size = 0x.
• size = 10.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the source arrangement specifier, encoded in the "size" field. It can have the following values:
2D when size = 11
The following encodings are reserved:
• size = 0x.
• size = 10.

Operation

CheckFPAdvSIMDEnabled64();
bias(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_ADD, operand, esize);
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.5 ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, adds each pair of values together, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
 2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdjSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 Elem[result, e, esize] = element1 + element2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.6 ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

ADDV <V><d>, <Vn>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
```

Assembler symbols

- `<V>` Is the destination width specifier, encoded in the "size" field. It can have the following values:
 - B when size = 00
 - H when size = 01
 - S when size = 10
 - The encoding size = 11 is reserved.

- `<d>` Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.

- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - 8B when size = 00, Q = 0
 - 16B when size = 00, Q = 1
 - 4H when size = 01, Q = 0
 - 8H when size = 01, Q = 1
 - 4S when size = 10, Q = 1
 - The following encodings are reserved:
 - size = 10, Q = 0.
 - size = 11, Q = x.
```

### Operation

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_ADD, operand, esize);
```
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.7 AESD

AES single round decryption.

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 0 0 1 1 1 0 | 0 0 1 0 1 0 0 0 | 0 1 0 1 1 0 | Rn | Rd |
```

**Advanced SIMD variant**

AESD <Vd>.16B, <Vn>.16B

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```c
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
result = operand1 EOR operand2;
result = AESInvSubBytes(AESInvShiftRows(result));
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.8  AESE

AES single round encryption.

![Instruction Format](https://example.com/instruction_format.png)

**Advanced SIMD variant**

AESE <Vd>.16B, <Vn>.16B

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
```

**Assembler symbols**

- `<Vd>`: Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>`: Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```plaintext
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bis(128) operand2 = V[n];
bis(128) result;
result = operand1 EOR operand2;
result = AESSubBytes(AESShiftRows(result));
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.9   AESIMC

AES inverse mix columns.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 1 0</td>
<td>0 0 1 0 1 0 0 0</td>
<td>0 0 1 1</td>
<td>1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Advanced SIMD variant

AESIMC <Vd>.16B, <Vn>.16B

#### Decode for this encoding

```cpp
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
```

#### Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.

#### Operation

```cpp
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand = V[n];
bits(128) result;
result = AESInvMixColumns(operand);
V[d] = result;
```

#### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.10   AESMC

AES mix columns.

![Instruction Format](image)

**Advanced SIMD variant**

AESMC <Vd>.16B, <Vn>.16B

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand = V[n];
bits(128) result;
result = AESMixColumns(operand);
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.11 AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Three registers of the same type variant

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
result = operand1 AND operand2;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.12   BCAX

Bit Clear and Exclusive OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the complement of the vector in another source SIMD&FP register, then performs a bitwise exclusive OR of the resulting vector and the vector in a third source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Advanced SIMD variant**

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

**Decode for this encoding**

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

**Operation**

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR (Vm AND NOT(Va));

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.13 BFCVT

Floating-point convert from single-precision to BFloat16 format (scalar) converts the single-precision floating-point value in the 32-bit SIMD&FP source register to BFloat16 format and writes the result in the 16-bit SIMD&FP destination register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPCR that apply to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception that causes a cumulative exception bit in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 0</td>
<td>0 1 1 0 0 1 1 0</td>
<td>1 1 0 0 0 0 0</td>
<td>1 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Single-precision to BFloat16 variant**

BFCVT <Hd>, <Sn>

**Decode for this encoding**

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);

**Assembler symbols**

<Hd>  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn>  Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bits(32) operand = V[n];
bits(16) result;
result = FPConvertBF(operand, FPCR);
V[d] = result;
C7.2.14  BFCVTN, BFCVTN2

Floating-point convert from single-precision to BFloat16 format (vector) reads each single-precision element in the SIMD&FP source vector, converts each value to BFloat16 format, and writes the results in the lower or upper half of the SIMD&FP destination vector. The result elements are half the width of the source elements.

The BFCVTN instruction writes the half-width results to the lower half of the destination vector and clears the upper half to zero, while the BFCVTN2 instruction writes the results to the upper half of the destination vector without affecting the other bits in the register.

Unlike the BFloat16 multiplication instructions, this instruction honors all of the control bits in the FPCR that apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPCR.

ARMv8.6

Vector single-precision and BFloat16 variant

BFCVTN(2) <Vd>,<Ta>, <Vn>.4S

Decode for this encoding

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);
integer part = UInt(Q);
integer elements = 64 DIV 16;

Assembler symbols

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand = V[n];
bits(64) result;
for e = 0 to elements-1
\texttt{Elem[result, e, 16] = FPConvertBF(Elem[operand, e, 32], FPCR);} \\
\texttt{Vpart[d, part] = result;}

C7.2.15 BFDOT (by element)

BF16 floating-point dot product (vector, by element). This instruction delimits the source vectors into pairs of 16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the specified pair of elements in the second source vector. The resulting single-precision products are then summed and added destructively to the single-precision element of the destination vector that aligns with the pair of BF16 values in the first source vector. The instruction ignores the FPCR and does not update the FPSR exception status.

The BF16 pair within the second source vector is specified using an immediate index. The index range is from 0 to 3 inclusive. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

ARMv8.6

```
<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21 20]</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>L</td>
<td>M</td>
<td>Rm</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

**Vector variant**

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.2H[<index>]

**Decode for this encoding**

```
if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ta>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2S when Q = 0
  - 4S when Q = 1
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 4H when Q = 0
  - 8H when Q = 1
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
- `<index>` Is the immediate index of a pair of 16-bit elements in the range 0 to 3, encoded in the "H:L" fields.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
 bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
```

bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
bits(16) elt2_a = Elem[operand2, 2*i+0, 16];
bits(16) elt2_b = Elem[operand2, 2*i+1, 16];

bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
Elem[result, e, 32] = BFAdd(Elem[operand3, e, 32], sum);

V[d] = result;
C7.2.16  BFDOT (vector)

BFloat16 floating-point dot product (vector). This instruction delimits the source vectors into pairs of 16-bit BF16 elements. Within each pair, the elements in the first source vector are multiplied by the corresponding elements in the second source vector. The resulting single-precision products are then summed and added destructively to the single-precision element of the destination vector that aligns with the pair of BF16 values in the first source vector. The instruction ignores the FPCR and does not update the FPSR exception status.

ARMv8.6

Vector variant

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
    2S when Q = 0
    4S when Q = 1
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
    4H when Q = 0
    8H when Q = 1
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
for e = 0 to elements-1
    bits(16) elt1_a = Elem[operand1, 2*e+0, 16];
    bits(16) elt1_b = Elem[operand1, 2*e+1, 16];
    bits(16) elt2_a = Elem[operand2, 2*e+0, 16];
    bits(16) elt2_b = Elem[operand2, 2*e+1, 16];
    bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
Elem[result, e, 32] = BFAdd(Elem[operand3, e, 32], sum);
V[d] = result;
C7.2.17   BFMLALB, BFMLALT (by element)

BFLOAT16 floating-point widening multiply-add long (by element) widens the even-numbered (bottom) or odd-numbered (top) 16-bit elements in the first source vector, and the indexed element in the second source vector from BFloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination vector.

This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR that apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPCR. ID_A164ISAR1_EL1.BF16 indicates whether this instruction is supported.

ARMv8.6

Vector variant

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.H[<index>]

Decode for this encoding

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt('0':Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:
B when Q = 0
T when Q = 1
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.
<index> Is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) operand3 = V[d];
bits(128) result;
bits(32) element2 = Elem(operand2, index, 16):Zeros(16);
for e = 0 to elements-1
    bits(32) element1 = Elem[operand1, 2*e+sel, 16]:Zeros(16);
    bits(32) addend = Elem[operand3, e, 32];
    Elem[result, e, 32] = FPMulAdd(addend, element1, element2, FPCR);
    V[d] = result;
C7.2.18  BFMLALB, BFMLALT (vector)

BFLOAT16 floating-point widening multiply-add long (vector) widens the even-numbered (bottom) or odd-numbered (top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination vector.

This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR that apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

ARMv8.6

Vector variant
BFMLA<bt>.<Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding
if !HaveBF16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler symbols
<bt>  Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:
    B  when Q = 0
    T  when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation
CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) operand3 = V[d];
bits(128) result;

for e = 0 to elements-1
    bits(32) element1 = Elem[operand1, 2*e+sel, 16]:Zeros(16);
    bits(32) element2 = Elem[operand2, 2*e+sel, 16]:Zeros(16);
    bits(32) addend = Elem[operand3, e, 32];
    Elem[result, e, 32] = FPMulAdd(addend, element1, element2, FPCR);
V[d] = result;
C7.2.19  BFMMLA

BFLOAT16 floating-point matrix multiply-accumulate into 2x2 matrix. This instruction multiplies the 2x4 matrix of BFLOAT16 values held in the first 128-bit source vector by the 4x2 BFLOAT16 matrix in the second 128-bit source vector. The resulting 2x2 single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit destination vector. This is equivalent to performing a 4-way dot product per destination element. The instruction ignores the FPCR and does not update the FPSR exception status.

--- Note ---

Arm expects that the BFMMLA instruction will deliver a peak BFLOAT16 multiply throughput that is at least as high as can be achieved using two BFDOT instructions, with a goal that it should have significantly higher throughput.

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Vector variant

BFMMLA <Vd>.4S, <Vn>.8H, <Vm>.8H

Decode for this encoding

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler symbols

<Vd>  Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) op1 = V[n];
bits(128) op2 = V[m];
bits(128) acc = V[d];

V[d] = BFMatMulAdd(acc, op1, op2);
C7.2.20 BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP register, performs a bitwise AND between each result and the complement of an immediate constant, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

16-bit variant
Applies when \( \text{cmode} == 10x1 \).

\[ \text{BIC} <Vd>.<T>, \#<imm8>{, \text{LSL} #<amount>} \]

32-bit variant
Applies when \( \text{cmode} == 0xx1 \).

\[ \text{BIC} <Vd>.<T>, \#<imm8>{, \text{LSL} #<amount>} \]

**Decode for all variants of this encoding**

\[
\text{integer } rd = \text{UInt}(Rd);
\]

\[
\text{integer } \text{datasize} = \text{if } Q == '1' \text{ then } 128 \text{ else } 64;
\]

\[
\text{bits} (\text{datasize}) \text{ imm};
\]

\[
\text{bits} (64) \text{ imm64};
\]

\[
\text{ImmediateOp } \text{operation};
\]

\[
\text{case } \text{cmode} : \text{op of}
\]

\[
\text{when } '0xx01' \text{ operation = ImmediateOp_MVNI;}
\]

\[
\text{when } '0xx11' \text{ operation = ImmediateOp_BIC;}
\]

\[
\text{when } '10x01' \text{ operation = ImmediateOp_MVNI;}
\]

\[
\text{when } '10x11' \text{ operation = ImmediateOp_BIC;}
\]

\[
\text{when } '110x1' \text{ operation = ImmediateOp_MVNI;}
\]

\[
\text{when } '1110x' \text{ operation = ImmediateOp_MOVI;}
\]

\[
\text{when } '11111' \text{ operation = ImmediateOp_MOVI;}
\]

\[
// \text{FMOV Dn,#imm is in main FP instruction set}
\text{if } Q == '0' \text{ then UNDEFINED;}
\text{operation = ImmediateOp_MOVI;}
\]

\[
\text{imm64} = \text{AdvSIMDExpandImm} (\text{op}, \text{cmode}, a:b:c:d:e:f:g:h);
\]

\[
\text{imm} = \text{Replicate} (\text{imm64}, \text{datasize DIV } 64);
\]

**Assembler symbols**

\( <Vd> \)
Is the name of the SIMD&FP register, encoded in the "Rd" field.

\( <T> \)
For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

\[
4H \quad \text{when } Q = 0
\]

\[
8H \quad \text{when } Q = 1
\]
For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0
4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the following values:

0 when cmode<1> = 0
8 when cmode<1> = 1
defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the following values:

0 when cmode<2:1> = 00
8 when cmode<2:1> = 01
16 when cmode<2:1> = 10
24 when cmode<2:1> = 11
defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bias(datasize) operand;
bias(datasize) result;

case operation of
  when ImmediateOp_MOVI
      result = imm;
  when ImmediateOp_MVNI
      result = NOT(imm);
  when ImmediateOp_ORR
      operand = V[rd];
      result = operand OR imm;
  when ImmediateOp_BIC
      operand = V[rd];
      result = operand AND NOT(imm);
V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.21  BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP register and the complement of the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Three registers of the same type variant

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

### Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;
```

### Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - `8B` when `Q = 0`
  - `16B` when `Q = 1`
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "Rm" field.

### Operation

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
operand2 = NOT(operand2);
result = operand1 AND operand2;
V[d] = result;
```

### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination SIMD&FP register if the corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

![Instruction Format](image)

**Three registers of the same type variant**

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;
```

**Assembler symbols**

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 8B when Q = 0
  - 16B when Q = 1
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];
operand1 = V[d];
operand3 = NOT(V[m]);
V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.23 BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP destination register if the corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>Bit 31 30 29 28</th>
<th>Bit 27 26 25 24</th>
<th>Bit 23 22 21 20</th>
<th>Bit 16 15 14 13 12</th>
<th>Bit 11 10 9</th>
<th>Bit 5 4</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1</td>
<td>0 1 1 1 0</td>
<td>0 0 1 1 1</td>
<td>Rm</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Three registers of the same type variant

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
88 when Q = 0
168 when Q = 1
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];
operand1 = V[d];
operand3 = V[m];
V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C7.2.24   **BSL**

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the first source SIMD&FP register when the original destination bit was 1, otherwise from the second source SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;
```

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 8B when Q = 0
- 16B when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];
operand1 = V[m];
operand3 = V[d];
V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C7.2.25   CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most significant bit that are the same as the most significant bit in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. The count does not include the most significant bit itself.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Vector variant**

CLS <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B  when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H  when size = 01, Q = 0
- 8H  when size = 01, Q = 1
- 2S  when size = 10, Q = 0
- 4S  when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1
  if countop == CountOp_CLS then
    count = CountLeadingSignBits(Elem[operand, e, esize]);
  else

count = CountLeadingZeroBits(Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.26   CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most significant bit, in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q=1</td>
<td>1 1 1</td>
<td>0</td>
<td>1 0 0 0 0</td>
<td>0 1 0</td>
<td>0 1</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

CLZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 2S when size = 10, Q = 0
  - 4S when size = 10, Q = 1
  - The encoding size = 11, Q = x is reserved.
- `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer count;
for e = 0 to elements-1
 if countop == CountOp_CLS then
 count = CountLeadingSignBits(Elem[operand, e, esize]);
 else
```
count = CountLeadingZeroBits(Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.27  CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP register with the corresponding vector element from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-----------|-----------|-----------|---|---------|---------|---|---|---|
| 0 1 1 1 1 1 0 | size 1 | Rm 1 0 0 1 1 | Rn | Rd |
```

Scalar variant

CMEQ <V><d>, <V><n>, <V><m>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size != '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean and_test = (U == '0');

Vector

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-----------|-----------|-----------|---|---------|---------|---|---|---|
| 0 Q 1 0 1 1 1 0 | size 1 | Rm 1 0 0 1 1 | Rn | Rd |
```

Vector variant

CMEQ <V>d.<T>, <V>n.<T>, <V>m.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean and_test = (U == '0');

Assembler symbols

<

Is a width specifier, encoded in the "size" field. It can have the following values:

- D when size = 11

The following encodings are reserved:

- size = 0x.
• size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.28  CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the value is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

![Scalar encoding](image)

**Scalar variant**

CMEQ <V><d>, <V><n>, #0

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if size /= '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

case op:U of
  when '00' comparison = CompareOp_GT;
  when '01' comparison = CompareOp_GE;
  when '10' comparison = CompareOp_EQ;
  when '11' comparison = CompareOp_LE;

**Vector**

![Vector encoding](image)

**Vector variant**

CMEQ <Vd>.<T>, <Vn>.<T>, #0

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
  when '00' comparison = CompareOp_GT;
Assembler symbols

<V>  Is a width specifier, encoded in the "size" field. It can have the following values:

D     when size = 11

The following encodings are reserved:

• size = 0x.
• size = 10.

<d>  Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n>  Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B    when size = 00, Q = 0
16B   when size = 00, Q = 1
4H    when size = 01, Q = 0
8H    when size = 01, Q = 1
2S    when size = 10, Q = 0
4S    when size = 10, Q = 1
2D    when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
    element = SInt(Elem[operand, e, esize]);
    case comparison of
        when CompareOp_GT test_passed = element > 0;
        when CompareOp_EQ test_passed = element == 0;
        when CompareOp_LT test_passed = element < 0;
        when CompareOp_GE test_passed = element >= 0;
        when CompareOp_EQ test_passed = element == 0;
        when CompareOp_LE test_passed = element <= 0;
        when CompareOp_LT test_passed = element < 0;
        Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.29 CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than or equal to the second signed integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>0 1 1 1 1 1</td>
<td>Rm 0 1 1 1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

CMGE <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>0 Q 0 1 1 1</td>
<td>Rm 0 1 1 1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11
The following encodings are reserved:
  •  size = 0x.
  •  size = 10.

<\d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<\n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<\m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<\T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
  2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<\Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<\Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
b bits(datasize) operand1 = V[n];
b bits(datasize) operand2 = V[m];
b bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
  Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;

Operational information

If PSTATE.DIT is 1:
  •  The execution time of this instruction is independent of:
    — The values of the data supplied in any of its registers.
    — The values of the NZCV flags.
  •  The response of this instruction to asynchronous exceptions does not vary based on:
    — The values of the data supplied in any of its registers.
    — The values of the NZCV flags.
C7.2.30 CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Scalar variant

CMGE <V><d>, <V><n>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
  when '00' comparison = CompareOp_GT;
  when '01' comparison = CompareOp_GE;
  when '10' comparison = CompareOp_EQ;
  when '11' comparison = CompareOp_LE;

Vector

Vector variant

CMGE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
  when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D     when size = 11

The following encodings are reserved:

•  size = 0x
•  size = 10

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B     when size = 00, Q = 0
16B    when size = 00, Q = 1
4H     when size = 01, Q = 0
8H     when size = 01, Q = 1
2S     when size = 10, Q = 0
4S     when size = 10, Q = 1
2D     when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
    element = SInt(Elem[operand, e, esize]);
    case comparison of
    when CompareOp_GT test_passed = element > 0;
    when CompareOp_GE test_passed = element >= 0;
    when CompareOp_EQ test_passed = element == 0;
    when CompareOp_LE test_passed = element <= 0;
    when CompareOp_LT test_passed = element < 0;
    when CompareOp_LT test_passed = element < 0;
        Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:

•  The execution time of this instruction is independent of:
  —  The values of the data supplied in any of its registers.
  —  The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.31 CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than the second signed integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 1 0 1 1 1 0 | size 1 | Rm 0 0 1 1 0 1 | Rn | Rd
 U eq
```

Scalar variant

CMGT <V><d>, <V><n>, <V><m>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');
```

Vector

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 0 0 1 1 1 0 | size 1 | Rm 0 0 1 1 0 1 | Rn | Rd
 U eq
```

Vector variant

CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');
```

Assembler symbols

```
<V> Is a width specifier, encoded in the "size" field. It can have the following values:
 D when size = 11
```
The following encodings are reserved:
- size = 0x.
- size = 10.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
    Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.32   CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0</td>
<td>size 1 0 0 0 0 1 0 0</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

CMGT <V><d>, <V><n>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 0</td>
<td>size 1 0 0 0 0 1 0 0</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

CMGT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
  when '00' comparison = CompareOp_GT;
  when '01' comparison = CompareOp_GE;
  when '10' comparison = CompareOp_EQ;
  when '11' comparison = CompareOp_LE;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

&lt;V&gt; Is a width specifier, encoded in the "size" field. It can have the following values:
  D when size = 11
The following encodings are reserved:
  • size = 0x.
  • size = 10.

&lt;d&gt; Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

&lt;n&gt; Is the number of the SIMD&FP source register, encoded in the "Rn" field.

&lt;Vd&gt; Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

&lt;T&gt; Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
  2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

&lt;Vn&gt; Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;
for e = 0 to elements-1
  element = SInt(Elem[operand, e, esize]);
case comparison of
  when CompareOp_GT test_passed = element > 0;
  when CompareOp_GE test_passed = element >= 0;
  when CompareOp_EQ test_passed = element == 0;
  when CompareOp_LE test_passed = element <= 0;
  when CompareOp_LT test_passed = element < 0;
    Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.33 CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than the second unsigned integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 0 1 1 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U eq
```

**Scalar variant**

CMHI <V><d>, <V><n>, <V><m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size != '11' then UNDEFINED;
- integer esize = 8 * UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean unsigned = (U == '1');
- boolean cmp_eq = (eq == '1');

**Vector**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 0 1 1 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

U eq
```

**Vector variant**

CMHI <Vd>.<T>, <Vm>.<T>, <Vn>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 * UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');
- boolean cmp_eq = (eq == '1');

**Assembler symbols**

- <V> Is a width specifier, encoded in the "size" field. It can have the following values:
  - D when size = 11
The following encodings are reserved:

- size = 0x.
- size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.34 CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than or equal to the second unsigned integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 | |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | size | 1 |
| U | 2 | Rm | 0 | 0 | 1 | 1 | 1 | eq |
```

**Scalar variant**

CMHS <V><d>, <V><m>, <V><m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size != '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean unsigned = (U == '1');
- boolean cmp_eq = (eq == '1');

**Vector**

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | size | 1 |
| U | 2 | Rm | 0 | 0 | 1 | 1 | 1 | eq |
```

**Vector variant**

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');
- boolean cmp_eq = (eq == '1');

**Assembler symbols**

- <V> Is a width specifier, encoded in the "size" field. It can have the following values:
  - D when size = 11
The following encodings are reserved:
- size = 0x.
- size = 10.

<d> is the number of the SIMD&FP destination register, in the "Rd" field.
<n> is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

<Vn> is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> is the name of the second SIMD&FP source register, encoded in the "Rm" field.

### Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bv:<size> operand1 = V[n];
bv:<size> operand2 = V[m];
bv:<size> result;
integer element1;
integer element2;
boolean test_passed;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
```

### Operational information

If PSTATE.DIT is 1:
- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.35 CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>1 0 0 0 0 0 1 0 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

CMLE <V><d>, <V><n>, #0

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;
```

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0</td>
<td>1 0 0 0 0 0 1 0 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

CMLE <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
```
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

<\V> Is a width specifier, encoded in the "size" field. It can have the following values:
    D when size = 11

The following encodings are reserved:
    • size = 0x.
    • size = 10.

<\d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<\n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<\T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
    8B when size = 00, Q = 0
    16B when size = 00, Q = 1
    4H when size = 01, Q = 0
    8H when size = 01, Q = 1
    2S when size = 10, Q = 0
    4S when size = 10, Q = 1
    2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<\Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;
for e = 0 to elements-1
    element = SInt(Elem[operand, e, esize]);
    case comparison of
        when CompareOp_GT test_passed = element > 0;
        when CompareOp_GE test_passed = element >= 0;
        when CompareOp_EQ test_passed = element == 0;
        when CompareOp_LE test_passed = element <= 0;
        when CompareOp_LT test_passed = element < 0;
        when CompareOp_EQ test_passed = element < 0;
        when CompareOp_LT test_passed = element < 0;
        Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.36 CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer value is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0</td>
<td>size 1 0 0 0 0 1 0 1 0</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

CMLT <V><d>, <V><n>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 0</td>
<td>size 1 0 0 0 0 1 0 1 0</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

CMLT <Vd>.<T>, <Vn>.<T>, #0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

D when size = 11
The following encodings are reserved:

- \( \text{size} = 0x \).
- \( \text{size} = 10 \).

\( <d> \) Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\( <n> \) Is the number of the SIMD&FP source register, encoded in the "Rn" field.

\( <V_d> \) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\( <T> \) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- \( 8B \) when \( \text{size} = 00 \), \( Q = 0 \)
- \( 16B \) when \( \text{size} = 00 \), \( Q = 1 \)
- \( 4H \) when \( \text{size} = 01 \), \( Q = 0 \)
- \( 8H \) when \( \text{size} = 01 \), \( Q = 1 \)
- \( 2S \) when \( \text{size} = 10 \), \( Q = 0 \)
- \( 4S \) when \( \text{size} = 10 \), \( Q = 1 \)
- \( 2D \) when \( \text{size} = 11 \), \( Q = 1 \)

The encoding \( \text{size} = 11 \), \( Q = 0 \) is reserved.

\( <V_n> \) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

\[
\text{CheckFPAdvSIMDEnabled64();}
\]

\[
\text{bits(datasize) operand = V[n];}
\]

\[
\text{bits(datasize) result;}
\]

\[
\text{integer element;}
\]

\[
\text{boolean test_passed;}
\]

\[
\text{for e = 0 to elements-1}
\]

\[
\text{element = SInt(Elem[operand, e, esize]);}
\]

\[
\text{case comparison of}
\]

\[
\text{when CompareOp_GT test_passed = element > 0;}
\]

\[
\text{when CompareOp_GE test_passed = element >= 0;}
\]

\[
\text{when CompareOp_EQ test_passed = element == 0;}
\]

\[
\text{when CompareOp_LE test_passed = element <= 0;}
\]

\[
\text{when CompareOp_LT test_passed = element < 0;}
\]

\[
\text{Elem[result, e, esize] = if test_passed then Ones() else Zeros();}
\]

\[
V[d] = result;
\]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.37  CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP register, performs an AND with the corresponding vector element in the second source SIMD&FP register, and if the result is not zero, sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
</tr>
</tbody>
</table>

Scalar variant

CMTST <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 * UInt(size);
integer datasize = esize;
integer elements = 1;
boolean and_test = (U == '0');

Vector

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
</tr>
</tbody>
</table>

Vector variant

CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 * UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean and_test = (U == '0');

Assembler symbols

<V>  Is a width specifier, encoded in the "size" field. It can have the following values:

D  when size = 11

The following encodings are reserved:

• size = 0x.
• size = 10.

<\d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<\n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<\m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<\T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
  2D when size = 11, Q = 1
  The encoding size = 11, Q = 0 is reserved.

<\Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if and_test then
 test_passed = !IsZero(element1 AND element2);
 else
 test_passed = (element1 == element2);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.38 CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

CNT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt}(Rd); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{if size } \neq '00' \text{ then UNDEFINED}; \\
\text{integer } esize &= 8; \\
\text{integer } datasize &= \text{if } Q = '1' \text{ then } 128 \text{ else } 64; \\
\text{integer } elements &= \text{datasize DIV } 8;
\end{align*}
\]

Assembler symbols

\(<V_d>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- \(8B\) when \(size = 00, Q = 0\)
- \(16B\) when \(size = 00, Q = 1\)

The following encodings are reserved:

- \(\text{size } = 01, Q = x\).
- \(\text{size } = 1x, Q = x\).

\(<V_n>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

\[
\begin{align*}
\text{CheckFPAdvSIMDEnabled64}(); \\
\text{bits(datasize) operand } &= \text{V}[n]; \\
\text{bits(datasize) result}; \\
\text{integer } count; \\
\text{for } e = 0 \text{ to elements-1} \\
\hspace{1em} \text{count } &= \text{BitCount(\text{Elem}[\text{operand}, e, esize]);} \\
\hspace{1em} \text{\text{Elem}[\text{result}, e, esize] } &= \text{count<esize-1:0>}; \\
\hspace{1em} \text{V}[d] &= \text{result};
\end{align*}
\]
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.39  DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element index in the source SIMD&FP register into a scalar or each element in a vector, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar). The alias is always the preferred disassembly.

Scalar

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 1 0 1 1 1 1 0 0 0 0 |imm5 0 0 0 0 0 1| Rd Rd
```

Scalar variant

DUP <V><d>, <Vn>.<T>[<index>]

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

integer esize = 8 << size;
integer datasize = esize;
integer elements = 1;

Vector

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 0 0 0 0 0 0 0 1 0 1 1 |imm5 0 0 0 0 0 1| Rd Rd
```

Vector variant

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

if size == 3 && Q == '0' then UNDEFINED;
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
Assembler symbols

<T>
For the scalar variant: is the element width specifier, encoded in the "imm5" field. It can have the following values:

- B when imm5 = xxxx1
- H when imm5 = xx10
- S when imm5 = xx100
- D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

For the vector variant: is an arrangement specifier, encoded in the "imm5:Q" field. It can have the following values:

- 8B when imm5 = xxxx1, Q = 0
- 16B when imm5 = xxxx1, Q = 1
- 4H when imm5 = xx10, Q = 0
- 8H when imm5 = xx10, Q = 1
- 2S when imm5 = xx100, Q = 0
- 4S when imm5 = xx100, Q = 1
- 2D when imm5 = x1000, Q = 1

The following encodings are reserved:
- imm5 = x0000, Q = x.
- imm5 = x1000, Q = 0.

<Ts>
Is an element size specifier, encoded in the "imm5" field. It can have the following values:

- B when imm5 = xxxx1
- H when imm5 = xx10
- S when imm5 = xx100
- D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<V>
Is the destination width specifier, encoded in the "imm5" field. It can have the following values:

- B when imm5 = xxxx1
- H when imm5 = xx10
- S when imm5 = xx100
- D when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<Vn>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index>
Is the element index encoded in the "imm5" field. It can have the following values:

- imm5<4:1> when imm5 = xxxx1
- imm5<4:2> when imm5 = xx10
- imm5<4:3> when imm5 = xx100
- imm5<4> when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<d>
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
Operation for all encodings

```
CheckFPAdvSIMDEnabled64();
baby(idx, size) operand = V[n];
baby(data size) result;
baby(element size) element;

element = Elem[operand, index, esize];
for e = 0 to elements-1
 Elem[result, e, esize] = element;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.40   DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose register into a scalar or each element in a vector, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

DUP <Vd>.<T>, <R><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;
// imm5<4:size+1> is IGNORED
if size == 3 && Q == '0' then UNDEFINED;
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "imm5:Q" field. It can have the following values:
8B when imm5 = xxxx1, Q = 0
16B when imm5 = xxxx1, Q = 1
4H when imm5 = xxx10, Q = 0
8H when imm5 = xxx10, Q = 1
2S when imm5 = xx100, Q = 0
4S when imm5 = xx100, Q = 1
2D when imm5 = x1000, Q = 1
The following encodings are reserved:
• imm5 = x0000, Q = x.
• imm5 = x1000, Q = 0.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can have the following values:
W when imm5 = xxxx1
W when imm5 = xx10
W when imm5 = xx100
X when imm5 = x1000
The encoding imm5 = x0000 is reserved. Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) element = X[n];
bits(datasize) result;

for e = 0 to elements-1
    Elem[result, e, esize] = element;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.41   EOR (vector)

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the two source SIMD&FP registers, and places the result in the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

\[
\text{integer } d = \text{UInt}(Rd); \\
\text{integer } n = \text{UInt}(Rn); \\
\text{integer } m = \text{UInt}(Rm); \\
\text{integer } \text{datasize} = \text{if } Q == '1' \text{ then 128 else 64};
\]

Assembler symbols

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<T>\) Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
- 8B when \(Q = 0\)
- 16B when \(Q = 1\)
\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

\[
\text{CheckFPAdvSIMDEnabled64();} \\
\text{bits(dataSize)} \text{ operand1;} \\
\text{bits(dataSize)} \text{ operand2;} \\
\text{bits(dataSize)} \text{ operand3;} \\
\text{bits(dataSize)} \text{ operand4} = V[n]; \\
\text{operand1} = V[m]; \\
\text{operand2} = \text{Zeros();} \\
\text{operand3} = \text{Ones();} \\
V[d] = \text{operand1 EOR ((operand2 EOR operand4) AND operand3);}
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
The values of the NZCV flags.
C7.2.42 EOR3

Three-way Exclusive OR performs a three-way exclusive OR of the values in the three source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20]| 16|15 14 | 10 9 | 5 4 | 0 |
 1 1 0 0 1 1 1 0 | 0 0 | Rm 0 | Ra | Rn | Rd
```

**Advanced SIMD variant**

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

**Decode for this encoding**

```
if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
```

**Assembler symbols**

- `<Vd>`  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Vn>`  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>`  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<Va>`  Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR Vm EOR Va;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.43 EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source SIMD&FP register and the highest vector elements from the first source SIMD&FP register, concatenates the results into a vector, and writes the vector to the destination SIMD&FP register vector. The index value specifies the lowest vector element to extract from the first source register, and consecutive elements are extracted from the first, then second, source registers until the destination vector is filled.

The following figure shows the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.

![Diagram showing the operation of EXT](image)

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15 14 |11 10 9 | 5 4 | 0 |
 0 Q 1 0 1 1 0 0 0 0 Rm 0 imm4 0 Rn Rd
```

---

**Advanced SIMD variant**

EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if Q == '0' & imm4<3> == '1' then UNDEFINED;

integer datasize = if Q == '1' then 128 else 64;
integer position = UInt(imm4) << 3;

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 8B when Q = 0
  - 16B when Q = 1
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<index>` Is the lowest numbered byte element to be extracted, encoded in the "Q:imm4" field. It can have the following values:
  - imm4<2:0> when Q = 0, imm4<3> = 0
  - imm4 when Q = 1, imm4<3> = x
The encoding Q = 0, imm4<3> = 1 is reserved.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
b_bits(datasize) hi = V[m];
b_bits(datasize) lo = V[n];
b_bits(datasize*2) concat = hi:lo;
V[d] = concat<position:datasize-1:position>;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.44   FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of the second source SIMD&FP register, from the corresponding floating-point values in the elements of the first source SIMD&FP register, places the absolute value of each result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

[31 30 29 28][27 26 25 24][23 22 21 20] 16[15 14 13 12][11 10 9 | 5 4 | 0 |
0 1 | 1 1 1 1 0 1 1 0 | Rm 0 0 0 1 0 1 | Rn Rd |

Scalar half precision variant

FABD <Hd>, <Hn>, <Hm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;

Scalar single-precision and double-precision

[31 30 29 28][27 26 25 24][23 22 21 20] 16[15 14 13 12][11 10 9 | 5 4 | 0 |
0 1 | 1 1 1 1 0 1 1 0 | Rm 1 1 0 1 0 1 | Rn Rd |

Scalar single-precision and double-precision variant

FABD <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;
Vector half precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	16	15	14	13	12	11	10	9	5	4	0					
0	Q	1	0	1	1	1	0	1	1	0	Rm	0	0	1	0	1	Rn	Rd

Vector half precision variant

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Vector single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	16	15	14	13	12	11	10	9	5	4	0				
0	Q	1	0	1	1	0	1	sz	1	Rm	1	1	0	1	0	Rn	Rd

Vector single-precision and double-precision variant

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1
<db> Is the number of the SIMD&FP destination register, in the "Rd" field.
<bn> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) diff;

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    diff = FPSub(element1, element2, FPCR);
    Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;
C7.2.45  FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

ARMv8.2

| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Rn | Rd |

**Half-precision variant**

FABS <Vd>.<T>, <Vn>.<T>

*Decode for this encoding*

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

**Single-precision and double-precision**

| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Rn | Rd |

**Single-precision and double-precision variant**

FABS <Vd>.<T>, <Vn>.<T>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

**Assembler symbols**

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- **2S** when \(\text{sz} = 0, Q = 0\)
- **4S** when \(\text{sz} = 0, Q = 1\)
- **2D** when \(\text{sz} = 1, Q = 1\)

The encoding \(\text{sz} = 1, Q = 0\) is reserved.

\(<Vn>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element);
 else
 element = FPAbs(element);
 Elem[result, e, esize] = element;
V[d] = result;
```
C7.2.46  FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source register and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FABS <Hd>, <Hn>

Single-precision variant
Applies when ftype == 00.
FABS <Sd>, <Sn>

Double-precision variant
Applies when ftype == 01.
FABS <Dd>, <Dn>

Decode for all variants of this encoding

```plaintext
d = UInt(Rd);
n = UInt(Rn);

datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;
```

Assembler symbols

- <Dd>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- <Dn>  Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
- <Hd>  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- <Hn>  Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
- <Sd>  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- <Sn>  Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
**Operation**

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPAbs(operand);
V[d] = result;
```
C7.2.47 FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of each floating-point value in the first source SIMD&FP register with the absolute value of the corresponding floating-point value in the second source SIMD&FP register and if the first value is greater than or equal to the second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1</td>
<td>0 0 1 0</td>
<td>Rn</td>
<td>0 0 1 0</td>
<td>1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar half precision variant

FACGE <Hd>, <Hn>, <Hm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
    when '000' cmp = CompareOp_EQ; abs = FALSE;
    when '010' cmp = CompareOp_GE; abs = FALSE;
    when '011' cmp = CompareOp_GE; abs = TRUE;
    when '110' cmp = CompareOp_GT; abs = FALSE;
    when '111' cmp = CompareOp_GT; abs = TRUE;
    otherwise UNDEFINED;

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1</td>
<td>0 0</td>
<td>sz</td>
<td>1</td>
<td>Rn</td>
<td>1 1 0</td>
<td>1 1</td>
<td>Rn</td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FACGE <V><d>, <V><n>, <V><m>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision

ARMv8.2

Vector half precision variant

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Vector single-precision and double-precision variant

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
Decoding for this encoding:

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
```

```plaintext
case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;
```

Assembler symbols:
- `<Hd>` is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Hm>` is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<V>` is a width specifier, encoded in the "sz" field. It can have the following values:
  - `S` when `sz = 0`
  - `D` when `sz = 1`
- `<d>` is the number of the SIMD&FP destination register, in the "Rd" field.
- `<n>` is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- `<m>` is the number of the second SIMD&FP source register, encoded in the "Rm" field.
- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` is the number of the SIMD&FP destination register, in the "Rd" field.
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings:

```plaintext
CheckFPAdvSIMDEnabled64();
bites(datasize) operand1 = V[n];
bites(datasize) operand2 = V[m];
bites(datasize) result;
```
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  element2 = Elem[operand2, e, esize];
  if abs then
    element1 = FPAbs(element1);
    element2 = FPAbs(element2);
  case cmp of
    when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
    when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
    when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
    Elem[result, e, esize] = if test_passed then Ones() else Zeros();
  end case

V[d] = result;
C7.2.48 FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector element in the first source SIMD&FP register with the absolute value of the corresponding vector element in the second source SIMD&FP register and if the first value is greater than the second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 0 1 1 0</td>
<td>Rm 0 0 1 0 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar half precision variant

FACGT <Hd>, <Hn>, <Hm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0 1 sz 1</td>
<td>Rm 1 1 0 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FACGT <V><d>, <V><n>, <V><m>
### Decode for this encoding

```plaintext
type d = UInt(Rd);
type n = UInt(Rn);
type m = UInt(Rm);
type esize = 32 << UInt(sz);
type datasize = esize;
type elements = 1;
type cmp = CompareOp;

\[
\text{case E:U:ac of}
\begin{array}{l}
\text{when '000' cmp = CompareOp_EQ; abs = FALSE;}
\text{when '010' cmp = CompareOp_GE; abs = TRUE;}
\text{when '011' cmp = CompareOp_GT; abs = TRUE;}
\text{when '110' cmp = CompareOp_GT; abs = TRUE;}
\text{when '111' cmp = CompareOp_GT; abs = TRUE;}
\text{otherwise UNDEFINED;}
\end{array}
\]
```

### Vector half precision

**ARMv8.2**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>ac</td>
<td>Rm</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### Vector half precision variant

FACGT `<Vd>.<T>, <Vn>.<T>, <Vm>.<T>`

### Decode for this encoding

```plaintext
\text{if !HaveFP16Ext() then UNDEFINED;}
```

```plaintext
type d = UInt(Rd);
type n = UInt(Rn);
type m = UInt(Rm);
type esize = 16;
type datasize = if Q == '1' then 128 else 64;
type elements = datasize DIV esize;
type cmp = CompareOp;

\[
\text{case E:U:ac of}
\begin{array}{l}
\text{when '000' cmp = CompareOp_EQ; abs = FALSE;}
\text{when '010' cmp = CompareOp_GE; abs = TRUE;}
\text{when '011' cmp = CompareOp_GT; abs = TRUE;}
\text{when '110' cmp = CompareOp_GT; abs = TRUE;}
\text{when '111' cmp = CompareOp_GT; abs = TRUE;}
\text{otherwise UNDEFINED;}
\end{array}
\]
```

### Vector single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>ac</td>
<td>Rm</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### Vector single-precision and double-precision variant

FACGT `<Vd>.<T>, <Vn>.<T>, <Vm>.<T>`
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
  S when sz = 0
  D when sz = 1
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  4H when Q = 0
  8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
  2S when sz = 0, Q = 0
  4S when sz = 0, Q = 1
  2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bounds(datasize) operand1 = V[n];
bounds(datasize) operand2 = V[m];
bounds(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  element2 = Elem[operand2, e, esize];
  if abs then
    element1 = FPAbs(element1);
    element2 = FPAbs(element2);
  case cmp of
    when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
    when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
    when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
    Elem[result, e, esize] = if test_passed then Ones() else Zeros();
  V[d] = result;
C7.2.49  FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP registers, writes the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rm Rn Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision variant

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>sz</td>
</tr>
<tr>
<td>Rm Rn Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

V[d] = result;
```
C7.2.50  **FADD (scalar)**

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see [Floating-point exceptions and exception traps on page D1-2354](#).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Half-precision variant

Applies when \( \text{ftype} == 11 \).

\[
\text{FADD} \ <\text{Hd}\>, \ <\text{Hn}\>, \ <\text{Hm}\>
\]

### Single-precision variant

Applies when \( \text{ftype} == 00 \).

\[
\text{FADD} \ <\text{Sd}\>, \ <\text{Sn}\>, \ <\text{Sm}\>
\]

### Double-precision variant

Applies when \( \text{ftype} == 01 \).

\[
\text{FADD} \ <\text{Dd}\>, \ <\text{Dn}\>, \ <\text{Dm}\>
\]

### Decode for all variants of this encoding

```markdown
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;
endcase
```

### Assembler symbols

- \(<\text{Dd}\>)  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- \(<\text{Dn}\>)  Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- \(<\text{Dm}\>)  Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
- \(<\text{Hd}\>)  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- \(<\text{Hn}\>)  Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bias(2) result;
bias(2) operand1 = V[n];
bias(2) operand2 = V[m];

result = FPAdd(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.51  FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source SIMD&FP register and writes the scalar result into the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0																
0	1	0	1	1	1	1	0	0	0	1	1	0	0	0	1	1	0	1	1	0	0	Rn	Rd

Half-precision variant

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0														
0	1	1	1	1	0	0	sz	1	1	0	0	0	1	1	0	1	1	0	0	Rn	Rd

Single-precision and double-precision variant

FADDP <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler symbols

<V>

For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

H when sz = 0

The encoding sz = 1 is reserved.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- S when \( sz = 0 \)
- D when \( sz = 1 \)

\(<d>\)
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<\backslash n>\)
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<\backslash t>\)
For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2H when \( sz = 0 \)
- The encoding \( sz = 1 \) is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2S when \( sz = 0 \)
- 2D when \( sz = 1 \)

**Operation for all encodings**

- \( \text{CheckFPAdvSIMDEnabled64}() \);
- \( \text{bits(datasize)} \) \( \text{operand} = V[n] \);
- \( V[d] = \text{Reduce(ReduceOp_FADD, operand, esize);} \)
C7.2.52 FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, adds each pair of values together, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

U

Half-precision variant

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

U

Single-precision and double-precision variant

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
Assembler symbols

\(<V_d>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
- \(4H\) when \(Q = 0\)
- \(8H\) when \(Q = 1\)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
- \(2S\) when \(sz = 0, Q = 0\)
- \(4S\) when \(sz = 0, Q = 1\)
- \(2D\) when \(sz = 1, Q = 1\)

The encoding \(sz = 1, Q = 0\) is reserved.

\(<V_n>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<V_m>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{CheckFPAdvSIMDEnabled64();}
\]
\[
\text{bits(datasize) operand1 = V[n];}
\]
\[
\text{bits(datasize) operand2 = V[m];}
\]
\[
\text{bits(datasize) result;}
\]
\[
\text{bits(2*datasize) concat = operand2:operand1;}
\]
\[
\text{bits(esize) element1;}
\]
\[
\text{bits(esize) element2;}
\]
\[
\text{for } e = 0 \text{ to elements-1}
\]
\[
\text{if pair then}
\]
\[
\text{element1 = Elem[concat, 2*e, esize];}
\]
\[
\text{element2 = Elem[concat, (2*e)+1, esize];}
\]
\[
\text{else}
\]
\[
\text{element1 = Elem[operand1, e, esize];}
\]
\[
\text{element2 = Elem[operand2, e, esize];}
\]
\[
\text{Elem[result, e, esize] = FPAdd(element1, element2, FPCR);}
\]
\[
V[d] = result;
\]
C7.2.53 FCADD

Floating-point Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number. Each element holds a floating-point value. It performs the following computation on the corresponding complex number element pairs from the two source registers:

- Considering the complex number from the second source register on an Argand diagram, the number is rotated counterclockwise by 90 or 270 degrees.
- The rotated complex number is added to the complex number from the first source register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.3

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Vector variant

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

If !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then UNDEFINED;
if Q == '0' && size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4H</td>
<td>when size = 01, Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>when size = 01, Q = 1</td>
</tr>
<tr>
<td>2S</td>
<td>when size = 10, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>when size = 10, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>when size = 11, Q = 1</td>
</tr>
</tbody>
</table>

The following encodings are reserved:
- size = 00, Q = x.
- size = 11, Q = 0.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>when rot = 0</td>
</tr>
<tr>
<td>270</td>
<td>when rot = 1</td>
</tr>
</tbody>
</table>

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element3;

for e = 0 to (elements DIV 2)-1
 case rot of
 when '0'
 element1 = FPNeg(Elem[operand2, e*2+1, esize]);
 element3 = Elem[operand2, e*2, esize];
 when '1'
 element1 = Elem[operand2, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize]);
 Elem[result, e*2, esize] = FPAdd(Elem[operand1, e*2, esize], element1, FPCR);
 Elem[result, e*2+1, esize] = FPAdd(Elem[operand1, e*2+1, esize], element3, FPCR);
 V[d] = result;
```
C7.2.54  FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result to the PSTATE, {N, Z, C, V} flags. If the condition does not pass then the PSTATE, {N, Z, C, V} flags are set to the flag bit specifier.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FCCMP <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision variant

Applies when ftype == 00.

FCCMP <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision variant

Applies when ftype == 01.

FCCMP <Dn>, <Dm>, #<nzcv>, <cond>

Decode for all variants of this encoding

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
    if HaveFP16Ext() then
datasize = 16;
else
    UNDEFINED;

bits(4) flags = nzcv;

Assembler symbols

<Dn>  Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm>  Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hn>  Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm>  Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sm>  Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm>  Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv>  Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
         NZCV condition flags, encoded in the "nzcv" field.

<cond>  Is one of the standard conditions, encoded in the "cond" field in the standard way.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either
or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 ==
Operand2) and (Operand1 > Operand2) are false. This case results in the FPSCR flags being set to N=0, Z=0, C=1,
and V=1.

Operation

    CheckFPAdvSIMDEnabled64();

    bits(datasize) operand1 = V[n];
    bits(datasize) operand2;
    operand2 = V[m];

    if ConditionHolds(cond) then
        flags = FPCompare(operand1, operand2, FALSE, FPCR);
        PSTATE.<N,Z,C,V> = flags;
C7.2.55   FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Type</td>
<td>1</td>
<td>Rm</td>
<td>cond</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Half-precision variant**

Applies when ftype == 11.

FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>

**Single-precision variant**

Applies when ftype == 00.

FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>

**Double-precision variant**

Applies when ftype == 01.

FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>

**Decode for all variants of this encoding**

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
  when "00" datasize = 32;
  when "01" datasize = 64;
  when "10" UNDEFINED;
  when "11"
    if HaveFP16Ext() then
data size = 16;
    else
        UNDEFINED;
    end

bits(4) flags = nzcv;

**Assembler symbols**

<\texttt{Dn}>  Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<\texttt{Dm}>  Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

FCOMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and other predicates that raise an exception when the operands are unordered.

Operation

CheckFPADVSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;
operand2 = V[m];

if ConditionHolds(cond) then
    flags = FPCompare(operand1, operand2, TRUE, FPCR);
PSTATE.<N,Z,C,V> = flags;
C7.2.56   FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source SIMD&FP register, with the corresponding floating-point value from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>E</td>
<td>ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar half precision variant

FCMEQ <Hd>, <Hn>, <Hm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
  otherwise UNDEFINED;

Scalar single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>E</td>
<td>ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar single-precision and double-precision variant

FCMEQ <V><d>, <V><n>, <V><m>
Decode for this encoding

```plaintext
type d = UInt(Rd);
type n = UInt(Rn);
type m = UInt(Rm);
type esize = 32 << UInt(sz);
type datasize = esize;
type elements = 1;
CompareOp cmp;
boolean abs;
```
case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision

ARMv8.2

![Binary format](image)

Vector half precision variant

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
if !HaveFP16Ext() then UNDEFINED;
```
type d = UInt(Rd);
type n = UInt(Rn);
type m = UInt(Rm);
type esize = 16;
type datasize = if Q == '1' then 128 else 64;
type elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
```
case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

```plaintext
![Binary format](image)
```

Vector single-precision and double-precision variant

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
  otherwise UNDEFINED;
```

Assembler symbols

- `<Hd>`: Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>`: Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Hm>`: Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<V>`: Is a width specifier, encoded in the "sz" field. It can have the following values:
 - `S` when `sz = 0`
 - `D` when `sz = 1`
- `<d>`: Is the number of the SIMD&FP destination register, in the "Rd" field.
- `<n>`: Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- `<m>`: Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
- `<Vd>`: Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>`: For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - `4H` when `Q = 0`
 - `8H` when `Q = 1`

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- `<Vn>`: Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>`: Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
```
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;
C7.2.57 FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is equal to zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```

```

Scalar half precision variant

FCMEQ <Hd>, <Hn>, #0.0

Decode for this encoding

```

```

Scalar single-precision and double-precision

```

Scalar single-precision and double-precision variant

FCMEQ <V><d>, <V><n>, #0.0

Decode for this encoding

```

```

```
integer elements = 1;

` CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0]
| U | op |
```

Vector half precision variant

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

` CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0]
| U | op |
```

Vector single-precision and double-precision variant

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

` CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

<hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
?v> Is a width specifier, encoded in the "sz" field. It can have the following values:
 S when sz = 0
 D when sz = 1
<db> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<dn> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
 8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
 2S when sz = 0, Q = 0
 4S when sz = 0, Q = 1
 2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
 V[d] = result;
C7.2.58 FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first source SIMD&FP register and if the value is greater than or equal to the corresponding floating-point value in the second source SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U E a c</td>
<td>Rm 0 0 1 0 Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar half precision variant

FCMGE <Hd>, <Hn>, <Hm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Scalar single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 0 0 sz 1 0 1 1 0 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U E ac</td>
<td>Rm 1 1 0 1 Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar single-precision and double-precision variant

FCMGE <V<d>, <V<n>, <V<m>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Vector half precision variant

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vector single-precision and double-precision variant

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
 S when sz = 0
 D when sz = 1
<cd> Is the number of the SIMD&FP destination register, in the "Rd" field.
<cn> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<cm> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
 8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded
in the "sz:Q" field. It can have the following values:
 2S when sz = 0, Q = 0
 4S when sz = 0, Q = 1
 2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;
C7.2.59 FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value is greater than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	5	4	0						
0	1	1	1	1	1	0	1	1	1	1	0	0	0	1	1	0	0	1	0	Rn	Rd										

Scalar half precision variant

FCMGE <Hd>, <Hn>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	5	4	0						
0	1	1	1	1	1	0	1	1	1	1	0	0	0	0	1	1	0	0	1	0	Rn	Rd									

Scalar single-precision and double-precision variant

FCMGE <V<d>, <V<n>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0												
0	0	1	1	1	0	1	1	1	0	0	0	1	1	0	0	1	0	Rn	Rd

Vector half precision variant

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0												
0	0	1	1	1	0	1	sz	1	0	0	0	0	1	1	0	1	0	Rn	Rd

Vector single-precision and double-precision variant

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bv<datasize> operand = V[n];
bv<datasize> result;
bv<esize> zero = FPZero('0');
bv<esize> element;
boolean test_passed;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareLE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareLT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
 V[d] = result;
C7.2.60 FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source SIMD&FP register and if the value is greater than the corresponding floating-point value in the second source SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-------------|-------------|-------------|---|-------------|-------------|---|---|---|
| 0 1 1 1 1 1 0 1 1 0 | Rm 0 0 1 0 0 1 | Rn | Rd |
| U  E     | ac          |
```

Scalar half precision variant

FCMGTHd, Hn, Hm

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

```
case E:U:ac of
  when '000' cmp = CompareOp_EQ; abs = FALSE;
  when '010' cmp = CompareOp_GE; abs = FALSE;
  when '011' cmp = CompareOp_GE; abs = TRUE;
  when '110' cmp = CompareOp_GT; abs = FALSE;
  when '111' cmp = CompareOp_GT; abs = TRUE;
  otherwise UNDEFINED;
```

Scalar single-precision and double-precision

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-------------|-------------|-------------|---|-------------|-------------|---|---|---|
| 0 1 1 1 1 1 0 1 sz 1 | Rm 1 1 1 0 0 1 | Rn | Rd |
| U  E     | ac          |
```

Scalar single-precision and double-precision variant

FCMGTV<eh>, V<n, m>, V
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vector half precision variant

FCMG <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
 otherwise UNDEFINED;

Vector single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Vector single-precision and double-precision variant

FCMG <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
 when '000' cmp = CompareOp_EQ; abs = FALSE;
 when '010' cmp = CompareOp_GE; abs = FALSE;
 when '011' cmp = CompareOp_GE; abs = TRUE;
 when '110' cmp = CompareOp_GT; abs = FALSE;
 when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
 S when sz = 0
 D when sz = 1
<cd> Is the number of the SIMD&FP destination register, in the "Rd" field.
<cn> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<cm> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
 8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
 2S when sz = 0, Q = 0
 4S when sz = 0, Q = 1
 2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
b bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if abs then
 element1 = FPAbs(element1);
 element2 = FPAbs(element2);
 case cmp of
 when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
 when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
 end case

V[d] = result;
C7.2.61 FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPSCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 0</td>
<td>0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar half precision variant

FCMGT <Hd>, <Hn>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0 1 0 1 1 1 0 1</td>
<td>1 0 0 0 0 0 1 1 0 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar single-precision and double-precision variant

FCMGT <V><d>, <V><n>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

```
CompareOp comparison;
case op:U of
  when '00' comparison = CompareOp_GT;
  when '01' comparison = CompareOp_GE;
  when '10' comparison = CompareOp_EQ;
  when '11' comparison = CompareOp_LE;
```

Vector half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector half precision variant

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
  when '00' comparison = CompareOp_GT;
  when '01' comparison = CompareOp_GE;
  when '10' comparison = CompareOp_EQ;
  when '11' comparison = CompareOp_LE;
```

Vector single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>sz</td>
</tr>
<tr>
<td>U</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector single-precision and double-precision variant

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
  when '00' comparison = CompareOp_GT;
```
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;
C7.2.62 FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number. Each element holds a floating-point value. It performs the following computation on complex numbers from the first source register and the destination register with the specified complex number from the second source register:

- Considering the complex number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90, 180, or 270 degrees.
- The two elements of the transformed complex number are multiplied by:
 - The real element of the complex number from the first source register, if the transformation was a rotation by 0 or 180 degrees.
 - The imaginary element of the complex number from the first source register, if the transformation was a rotation by 90 or 270 degrees.
- The complex number resulting from that multiplication is added to the complex number from the destination register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.3

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16 15 14|13 12 11 10 9 | 5 4 | 0 |
| Q | 1 | 0 | 1 | 1 | 1 | size | L | M | Rm | 0 | rot | 1 | H | 0 | Rn | Rd |
```

Encoding

Applies when size == 01.

FOMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Encoding

Applies when size == 10.

FOMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

Decode for all variants of this encoding

```
if !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
if size == '00' || size == '11' then UNDEFINED;
if size == '01' then index = UInt(H:L);
if size == '10' then index = UInt(H);
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
```
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
if size == '10' && (L == '1' || Q == '0') then UNDEFINED;
if size == '01' && H == '1' && Q == '0' then UNDEFINED;

Assembler symbols

<\vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 4S when size = 10, Q = 1

The following encodings are reserved:
 • size = 00, Q = x.
 • size = 10, Q = 0.
 • size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:
 H when size = 01
 S when size = 10

The following encodings are reserved:
 • size = 00.
 • size = 11.

<index> Is the element index, encoded in the "size:H:L" field. It can have the following values:
 H:L when size = 01
 H when size = 10

The following encodings are reserved:
 • size = 00.
 • size = 11.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:
 0 when rot = 00
 90 when rot = 01
 180 when rot = 10
 270 when rot = 11

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2, index*2, esize];
 element2 = Elem[operand1, e*2, esize];
element3 = Elem[operand2, index*2+1, esize];
element4 = Elem[operand1, e*2, esize];
when '01'
 element1 = FPNeg(Elem[operand2, index*2+1, esize]);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, index*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
when '10'
 element1 = FPNeg(Elem[operand2, index*2, esize]);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, index*2+1, esize]);
 element4 = Elem[operand1, e*2, esize];
when '11'
 element1 = Elem[operand2, index*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, index*2, esize]);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

 V[d] = result;
C7.2.63 FCMLA

Floating-point Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number. Each element holds a floating-point value. It performs the following computation on the corresponding complex number element pairs from the two source registers and the destination register:

- Considering the complex number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90, 180, or 270 degrees.
- The two elements of the transformed complex number are multiplied by:
 - The real element of the complex number from the first source register, if the transformation was a rotation by 0 or 180 degrees.
 - The imaginary element of the complex number from the first source register, if the transformation was a rotation by 90 or 270 degrees.
- The complex number resulting from that multiplication is added to the complex number from the destination register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.3

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
</tbody>
</table>
```

Vector variant

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

Decode for this encoding

```c
if !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then UNDEFINED;
if Q == '0' && size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Assembler symbols

```c
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
```
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The following encodings are reserved:

- size = 00, Q = x
- size = 11, Q = 0

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in the "rot" field. It can have the following values:

- 0 when rot = 00
- 90 when rot = 01
- 180 when rot = 10
- 270 when rot = 11

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) element3;
bits(esize) element4;

for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2, e*2, esize];
 element2 = Elem[operand1, e*2, esize];
 element3 = Elem[operand2, e*2+1, esize];
 element4 = Elem[operand1, e*2, esize];
 when '01'
 element1 = FPNeg(Elem[operand2, e*2+1, esize]);
 element2 = Elem[operand1, e*2+1, esize];
 element3 = Elem[operand2, e*2, esize];
 element4 = Elem[operand1, e*2+1, esize];
 when '10'
 element1 = FPNeg(Elem[operand2, e*2, esize]);
 element2 = Elem[operand1, e*2, esize];
 element3 = FPNeg(Elem[operand2, e*2+1, esize]);
 element4 = Elem[operand1, e*2, esize];
 when '11'
 element1 = Elem[operand2, e*2+1, esize];
 element2 = Elem[operand1, e*2+1, esize];
 element3 = FPNeg(Elem[operand2, e*2, esize]);
 element4 = Elem[operand1, e*2+1, esize];

 Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
 Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

 V[d] = result;
C7.2.64 FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar half precision variant

FCMLE <Hd>, <Hn>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FCMLE <V>d>, <V>n>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n =UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector half precision

```plaintext
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10  9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Vector half precision variant

FOMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
 when '01' comparison = CompareOp_GE;
 when '10' comparison = CompareOp_EQ;
 when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

```plaintext
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10  9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>sz</td>
</tr>
</tbody>
</table>
```

Vector single-precision and double-precision variant

FOMLE <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
 when '00' comparison = CompareOp_GT;
when '01' comparison = \texttt{CompareOp_GE};
when '10' comparison = \texttt{CompareOp_EQ};
when '11' comparison = \texttt{CompareOp_LE};

\textbf{Assembler symbols}

\texttt{<Hd>} Is the 16-bit name of the SIMD\&FP destination register, encoded in the "Rd" field.

\texttt{<Hn>} Is the 16-bit name of the SIMD\&FP source register, encoded in the "Rn" field.

\texttt{<V>} Is a width specifier, encoded in the "sz" field. It can have the following values:

\begin{itemize}
 \item \texttt{S} when \texttt{sz = 0}
 \item \texttt{D} when \texttt{sz = 1}
\end{itemize}

\texttt{<d>} Is the number of the SIMD\&FP destination register, encoded in the "Rd" field.

\texttt{<n>} Is the number of the SIMD\&FP source register, encoded in the "Rn" field.

\texttt{<Vd>} Is the name of the SIMD\&FP destination register, encoded in the "Rd" field.

\texttt{<T>} For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

\begin{itemize}
 \item \texttt{4H} when \texttt{Q = 0}
 \item \texttt{8H} when \texttt{Q = 1}
\end{itemize}

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

\begin{itemize}
 \item \texttt{2S} when \texttt{sz = 0}, \texttt{Q = 0}
 \item \texttt{4S} when \texttt{sz = 0}, \texttt{Q = 1}
 \item \texttt{2D} when \texttt{sz = 1}, \texttt{Q = 1}
\end{itemize}

The encoding \texttt{sz = 1}, \texttt{Q = 0} is reserved.

\texttt{<Vn>} Is the name of the SIMD\&FP source register, encoded in the "Rn" field.

\textbf{Operation for all encodings}

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 case comparison of
 when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
 when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
 when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
 when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
 when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);
 Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
\end{verbatim}
C7.2.65 FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 14 13 12] [11 10 9] | 5 4 | 0 |
0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd
```

Scalar half precision variant

FCMLT <Hd>, <Hn>, #0.0

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;
```

Scalar single-precision and double-precision

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 14 13 12] [11 10 9] | 5 4 | 0 |
0 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 0 Rn Rd
```

Scalar single-precision and double-precision variant

FCMLT <V><d>, <V><n>, #0.0

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;
```
Vector half precision

ARMv8.2

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 | Q | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | Rn | Rd
```

Vector half precision variant

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

```plaintext
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;
```

Vector single-precision and double-precision

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 | Q | 0 | 1 | 1 | 1 | 0 | 1 | sz | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | Rn | Rd
```

Vector single-precision and double-precision variant

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;
```

Assembler symbols

```
<Hd>    Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<hn>    Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V>     Is a width specifier, encoded in the "sz" field. It can have the following values:
        S   when sz = 0
        D   when sz = 1
<db>    Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<nb>    Is the number of the SIMD&FP source register, encoded in the "Rn" field.
```
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
- 8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;
for e = 0 to elements-1
    element = Elem[operand, e, esize];
    case comparison of
        when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);  
        when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);  
        when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);  
        when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);  
        when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);  
    Elem[result, e, esize] = if test_passed then Ones() else Zeros();
V[d] = result;
```
C7.2.66 FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

0	0	0	1	1	1	1	0	ftype	1							Rm	0	0	1	0	0	0								opc			

Half-precision variant

Applies when ftype == 11 \&\& opc == 00.

FOMP <Hn>, <Hm>

Half-precision, zero variant

Applies when ftype == 11 \&\& Rm == (00000) \&\& opc == 01.

FOMP <Hn>, #0.0

Single-precision variant

Applies when ftype == 00 \&\& opc == 00.

FOMP <Sn>, <Sm>

Single-precision, zero variant

Applies when ftype == 00 \&\& Rm == (00000) \&\& opc == 01.

FOMP <Sn>, #0.0

Double-precision variant

Applies when ftype == 01 \&\& opc == 00.

FOMP <Dn>, <Dm>

Double-precision, zero variant

Applies when ftype == 01 \&\& Rm == (00000) \&\& opc == 01.

FOMP <Dn>, #0.0

Decode for all variants of this encoding

```plaintext
integer n = UInt(Rn);
integer m = UInt(Rm); // ignored when opc<6> == '1'

integer datasize;
case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
```
when '10' UNDEFINED;
when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

- `<Dn>`
 - For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
 - For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

- `<Dm>`
 - Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

- `<Hn>`
 - For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
 - For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

- `<Hm>`
 - Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

- `<Sn>`
 - For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
 - For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

- `<Sm>`
 - Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

Operation

```plaintext
CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;
operand2 = if cmp_with_zero then FPZero('0') else V[m];

PSTATE.<N,Z,C,V> = FPCMPare(operand1, operand2, signal_all_nans, FPCR);
```
C7.2.67 FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source register value and zero. It writes the result to the PSTATE.\{N, Z, C, V\} flags.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when \texttt{ftype == 11 && opc == 10}.

\texttt{FCMPE <Hn>, <Hm>}

Half-precision, zero variant

Applies when \texttt{ftype == 11 && Rm == (00000) && opc == 11}.

\texttt{FCMPE <Hn>, #0.0}

Single-precision variant

Applies when \texttt{ftype == 00 && opc == 10}.

\texttt{FCMPE <Sn>, <Sm>}

Single-precision, zero variant

Applies when \texttt{ftype == 00 && Rm == (00000) && opc == 11}.

\texttt{FCMPE <Sn>, #0.0}

Double-precision variant

Applies when \texttt{ftype == 01 && opc == 10}.

\texttt{FCMPE <Dn>, <Dm>}

Double-precision, zero variant

Applies when \texttt{ftype == 01 && Rm == (00000) && opc == 11}.

\texttt{FCMPE <Dn>, #0.0}

Decode for all variants of this encoding

```plaintext
integer n = UInt(Rn);
integer m = UInt(Rm);    // ignored when opc<0> == '1'

integer datasize;
case ftype of
    when '00' datasize = 32;
```

Integer representation:

```
$\begin{array}{cccccccccccccccc|cccccc}
<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ftype</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>opc</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\end{array}$
```
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
 if HaveFP16Ext() then
datasize = 16;
else
 UNDEFINED;

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

Assembler symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case results in the FPCR flags being set to N=0, Z=0, C=1, and V=1.

FCMP raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and other predicates that raise an exception when the operands are unordered.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;
operand2 = if cmp_with_zero then FPZero('0') else V[m];
PSTATE.<N,Z,C,V> = FPCMP(operand1, operand2, signal_all_nans, FPCR);
C7.2.68 FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the value from either one or the other of two SIMD&FP source registers. If the condition passes, the first SIMD&FP source register value is taken, otherwise the second SIMD&FP source register value is taken.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 r registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ftype</td>
<td>1</td>
<td>Rm</td>
<td>cond</td>
<td>1</td>
</tr>
</tbody>
</table>

Half-precision variant

Applies when ftype == 11.

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision variant

Applies when ftype == 00.

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision variant

Applies when ftype == 01.

FCSEL <Dd>, <Dn>, <Dm>, <cond>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

Assembler symbols

<Od> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<On> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Om> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
result = if ConditionHolds(cond) then V[n] else V[m];
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.69 FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source register to the precision for the destination register data type using the rounding mode that is determined by the FPCR and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 0</td>
<td>type</td>
<td>1 0 0 1</td>
<td>opc</td>
<td>1 0 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Half-precision to single-precision variant

Applies when ftype == 11 && opc == 00.

FCVT <Sd>, <Hn>

Half-precision to double-precision variant

Applies when ftype == 11 && opc == 01.

FCVT <Dd>, <Hn>

Single-precision to half-precision variant

Applies when ftype == 00 && opc == 11.

FCVT <Hd>, <Sn>

Single-precision to double-precision variant

Applies when ftype == 00 && opc == 01.

FCVT <Db>, <Sn>

Double-precision to half-precision variant

Applies when ftype == 01 && opc == 11.

FCVT <Hd>, <Dn>

Double-precision to single-precision variant

Applies when ftype == 01 && opc == 00.

FCVT <Sd>, <Dn>

Decode for all variants of this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
integer srsize;
integer dstsize;

if ftype == opc then UNDEFINED;

case ftype of
when '00' srsize = 32;
when '01' srsize = 64;
when '10' UNDEFINED;
when '11' srsize = 16;
```
case opc of
 when '00' dstsize = 32;
 when '01' dstsize = 64;
 when '10' UNDEFINED;
 when '11' dstsize = 16;

Assembler symbols

<\texttt{Dd}> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<\texttt{Hd}> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<\texttt{Sn}> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\texttt{Sd}> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<\texttt{Hn}> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\texttt{Dn}> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```c
CheckFPAdvSIMDEnabled64();

bit dstsize) result;
bit srcsize) operand = \texttt{V[n]};

result = FPConvert(operand, FPCR);
\texttt{V[d]} = result;
```
C7.2.70 FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector from a floating-point value to a signed integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 0</td>
<td>1 1 1 0 0 1 1 0</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar half precision variant

FCVTAS <Hd>, <Hn>

Decode for this encoding

```c
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');
```

Scalar single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 0</td>
<td>0 1 0 0 0 1 1 0</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar single-precision and double-precision variant

FCVTAS <V><d>, <V><n>

Decode for this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');
```
Vector half precision

ARMv8.2

[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 | Rn | Rd
U

Vector half precision variant

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

ing integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 | Rn | Rd
U

Vector single-precision and double-precision variant

FCVTAS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1
<\d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the SIMD&FP source register, encoded in the "Rn" field.

\(V_d \)

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(T \)

For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- \(4H \) when \(Q = 0 \)
- \(8H \) when \(Q = 1 \)

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- \(2S \) when \(sz = 0, Q = 0 \)
- \(4S \) when \(sz = 0, Q = 1 \)
- \(2D \) when \(sz = 1, Q = 1 \)

The encoding \(sz = 1, Q = 0 \) is reserved.

\(V_n \)

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.71 FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when \(sf = 0 \) \&\& \(ftype = 11 \).

\[\text{FCVTAS } <Wd>, <Hn> \]

Half-precision to 64-bit variant

Applies when \(sf = 1 \) \&\& \(ftype = 11 \).

\[\text{FCVTAS } <Xd>, <Hn> \]

Single-precision to 32-bit variant

Applies when \(sf = 0 \) \&\& \(ftype = 00 \).

\[\text{FCVTAS } <Wd>, <Sn> \]

Single-precision to 64-bit variant

Applies when \(sf = 1 \) \&\& \(ftype = 00 \).

\[\text{FCVTAS } <Xd>, <Sn> \]

Double-precision to 32-bit variant

Applies when \(sf = 0 \) \&\& \(ftype = 01 \).

\[\text{FCVTAS } <Wd>, <Dn> \]

Double-precision to 64-bit variant

Applies when \(sf = 1 \) \&\& \(ftype = 01 \).

\[\text{FCVTAS } <Xd>, <Dn> \]

Decode for all variants of this encoding

Integer: \(d = \text{UInt}(\text{Rd}) \);

Integer: \(n = \text{UInt}(\text{Rn}) \);

- integer intsize = if \(sf = '1' \) then 64 else 32;
- integer fltsize;
- case ftype of

| sf | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Rn | Rd |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 14 | 12 | 11 | 10 | 9 | 5 | 4 | 0 |
|----|
| rmode | opcode |
when '00'
 fltsize = 32;
when '01'
 fltsize = 64;
when '10'
 UNDEFINED;
when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(fltsize) fltval;
bits(intsize) intval;
fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, FPRounding_TIEAWAY);
X[d] = intval;
C7.2.72 FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
}|      5 |     4 |     0 |
| 0  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |    |
```

U

Scalar half precision variant

FCVTAU <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

```
}|      5 |     4 |     0 |
| 0  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 0  |    |
```

U

Scalar single-precision and double-precision variant

FCVTAU <V>d>, <V>n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | Rn | Rd |

Vector half precision variant

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 1 | 0 | 1 | 1 | 0 | 0 | sz| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | Rn | Rd |

Vector single-precision and double-precision variant

FCVTAU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0

D when sz = 1

<db> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
   element = Elem[operand, e, esize];
   Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;
```
C7.2.73 FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant
Applies when sf == 0 && ftype == 11.
FCVTAU <Wd>, <Hn>

Half-precision to 64-bit variant
Applies when sf == 1 && ftype == 11.
FCVTAU <Xd>, <Hn>

Single-precision to 32-bit variant
Applies when sf == 0 && ftype == 00.
FCVTAU <Wd>, <Sn>

Single-precision to 64-bit variant
Applies when sf == 1 && ftype == 00.
FCVTAU <Xd>, <Sn>

Double-precision to 32-bit variant
Applies when sf == 0 && ftype == 01.
FCVTAU <Wd>, <Dn>

Double-precision to 64-bit variant
Applies when sf == 1 && ftype == 01.
FCVTAU <Xd>, <Dn>

Decode for all variants of this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;

integer case ftype of
when '00'
  fltsize = 32;
when '01'
  fltsize = 64;
when '10'
  UNDEFINED;
when '11'
  if HaveFP16Ext() then
    fltsize = 16;
  else
    UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, FPRounding_TIEAWAY);
X[d] = intval;
C7.2.74  FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the SIMD&FP source register, converts each value to double the precision of the source element using the rounding mode that is determined by the FPCR, and writes each result to the equivalent element of the vector in the SIMD&FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the elements in the top 64 bits of the source register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision variant

FCVTL[(2]<Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler symbols

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

4S when sz = 0
2D when sz = 1

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

4H when sz = 0, Q = 0
8H when sz = 0, Q = 1
2S when sz = 1, Q = 0
4S when sz = 1, Q = 1
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(2*datasize) result;

for e = 0 to elements-1
    Elem[result, e, 2*esize] = FPConvert(Elem[operand, e, esize], FPCR);

V[d] = result;
C7.2.75 FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a vector from a floating-point value to a signed integer value using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 0</td>
<td>1 1 1 0 0</td>
<td>1 1 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar half precision variant

FCVTMS <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 0</td>
<td>0 1 0 0 0 1 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar single-precision and double-precision variant

FCVTMS <V<d>, <V<n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

U o2 o1

Vector half precision variant

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

U o2 o1

Vector single-precision and double-precision variant

FCVTMS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0
D when sz = 1

<#> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   4H when Q = 0
   8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
   2S when sz = 0, Q = 0
   4S when sz = 0, Q = 1
   2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;
```
C7.2.76 FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Half-precision to 32-bit variant**

Applies when sf == 0 && ftype == 11.

FCVTMS <Wd>, <Hn>

**Half-precision to 64-bit variant**

Applies when sf == 1 && ftype == 11.

FCVTMS <Xd>, <Hn>

**Single-precision to 32-bit variant**

Applies when sf == 0 && ftype == 00.

FCVTMS <Wd>, <Sn>

**Single-precision to 64-bit variant**

Applies when sf == 1 && ftype == 00.

FCVTMS <Xd>, <Sn>

**Double-precision to 32-bit variant**

Applies when sf == 0 && ftype == 01.

FCVTMS <Wd>, <Dn>

**Double-precision to 64-bit variant**

Applies when sf == 1 && ftype == 01.

FCVTMS <Xd>, <Dn>

**Decode for all variants of this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
  when '00'
    fltsize = 32;
  when '01'
    fltsize = 64;
  when '10'
    UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  rounding = FPDecodeRounding(rmode);

**Assembler symbols**

<\Id> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;
C7.2.77 FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Scalar half precision variant

FCVTMU <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FCVTMU <V>d>, <V>n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector half precision variant

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector single-precision and double-precision variant

FCVTMU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
    S when sz = 0
    D when sz = 1
<cb> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.78   FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Minus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant
Applies when sf == 0 && ftype == 11.
FCVTMU <Wd>, <Hn>

Half-precision to 64-bit variant
Applies when sf == 1 && ftype == 11.
FCVTMU <Xd>, <Hn>

Single-precision to 32-bit variant
Applies when sf == 0 && ftype == 00.
FCVTMU <Wd>, <Sn>

Single-precision to 64-bit variant
Applies when sf == 1 && ftype == 00.
FCVTMU <Xd>, <Sn>

Double-precision to 32-bit variant
Applies when sf == 0 && ftype == 01.
FCVTMU <Wd>, <Dn>

Double-precision to 64-bit variant
Applies when sf == 1 && ftype == 01.
FCVTMU <Xd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
  when '00'
    fltsize = 32;
  when '01'
    fltsize = 64;
  when '10'
    UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  rounding = FPDecodeRounding(rmode);

Assembler symbols

<ld> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;
C7.2.79  FCVTN, FCVTN2

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the SIMD&FP source register, converts each result to half the precision of the source element, writes the final result to a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. The rounding mode is determined by the FPCR.

The FCVTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the FCVTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Vector single-precision and double-precision variant**

FCVTN(2) <Vd>.<Tb>, <Vn>.<Ta>

**Decode for this encoding**

```plaintext
type d = UInt(Rd);
type n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer data_size = 64;
integer part = UInt(Q);
integer elements = data_size DIV esize;
```

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 4H when sz = 0, Q = 0
- 8H when sz = 0, Q = 1
- 2S when sz = 1, Q = 0
- 4S when sz = 1, Q = 1

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>  Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

- 4S when sz = 0
2D when sz = 1

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
    Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR);

Vpart[d, part] = result;
C7.2.80 FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a vector from a floating-point value to a signed integer value using the Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

| [31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-------------|
| 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 0 |
| U o2 o1 Rn Rd |

Scalar half precision variant

FCVTNS <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

| [31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-------------|
| 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 |
| U o2 o1 Rn Rd |

Scalar single-precision and double-precision variant

FCVTNS <V><d>, <V><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

Vector half precision variant

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

Vector single-precision and double-precision variant

FCVTNS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1
<db> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
C7.2.81 FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15 14 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0 0 1 1 1 0</td>
<td>ftype</td>
<td>1 0 0 0 0 0 0 0 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

**Half-precision to 32-bit variant**

Applies when \( sf = 0 \) \&\& \( ftype = 11 \).

FCVTNS <Wd>, <Hn>

**Half-precision to 64-bit variant**

Applies when \( sf = 1 \) \&\& \( ftype = 11 \).

FCVTNS <Xd>, <Hn>

**Single-precision to 32-bit variant**

Applies when \( sf = 0 \) \&\& \( ftype = 00 \).

FCVTNS <Wd>, <Sn>

**Single-precision to 64-bit variant**

Applies when \( sf = 1 \) \&\& \( ftype = 00 \).

FCVTNS <Xd>, <Sn>

**Double-precision to 32-bit variant**

Applies when \( sf = 0 \) \&\& \( ftype = 01 \).

FCVTNS <Wd>, <Dn>

**Double-precision to 64-bit variant**

Applies when \( sf = 1 \) \&\& \( ftype = 01 \).

FCVTNS <Xd>, <Dn>

**Decode for all variants of this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
```
case ftype of
    when '00'
        fltsize = 32;
    when '01'
        fltsize = 64;
    when '10'
        UNDEFINED;
    when '11'
        if HaveFP16Ext() then
            fltsize = 16;
        else
            UNDEFINED;
    rounding = FPDecodeRounding(rmode);

Assembler symbols

<Id> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;
C7.2.82   FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 0</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>0 0</td>
<td>0 0</td>
<td>1 1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Scalar half precision variant

FCVTNU <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 0</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>0 0</td>
<td>0 0</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FCVTNU <V<d>, <V<n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
## Vector half precision

**ARMv8.2**

### Vector half precision variant

FCVTNU <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```plaintext
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

## Vector single-precision and double-precision

### Vector single-precision and double-precision variant

FCVTNU <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

## Assembler symbols

- `<Hd>` Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
- `<V>` Is a width specifier, encoded in the "sz" field. It can have the following values:
  - S when `sz = 0`
  - D when `sz = 1`
- `<d>` Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Rn> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bins(datasize) operand = V[n];
bins(datasize) result;
bins(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.83  FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 16	15 14 13 12	11 10 9	5 4	0												
sf	0	0	1	1	1	0	fltype	1	0	0	0	1	0	0	0	0	0	Rn	Rd

**Half-precision to 32-bit variant**

Applies when sf == 0 && ftype == 11.

FCVTNU <Wb>, <Hn>

**Half-precision to 64-bit variant**

Applies when sf == 1 && ftype == 11.

FCVTNU <Xd>, <Hn>

**Single-precision to 32-bit variant**

Applies when sf == 0 && ftype == 00.

FCVTNU <Wd>, <Sn>

**Single-precision to 64-bit variant**

Applies when sf == 1 && ftype == 00.

FCVTNU <Xd>, <Sn>

**Double-precision to 32-bit variant**

Applies when sf == 0 && ftype == 01.

FCVTNU <Wd>, <Dn>

**Double-precision to 64-bit variant**

Applies when sf == 1 && ftype == 01.

FCVTNU <Xd>, <Dn>

**Decode for all variants of this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
    when '00'
        fltsize = 32;
    when '01'
        fltsize = 64;
    when '10'
        UNDEFINED;
    when '11'
        if HaveFP16Ext() then
            fltsize = 16;
        else
            UNDEFINED;
    rounding = FPDecodeRounding(rmode);

**Assembler symbols**

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;
C7.2.84 FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector from a floating-point value to a signed integer value using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0

 U o2 o1
```

**Scalar half precision variant**

FCVTPS <Hd>, <Hn>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0

 U o2 o1
```

**Scalar single-precision and double-precision variant**

FCVTPS <V<d>, <V<n>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector half precision variant

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

Vector single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector single-precision and double-precision variant

FCVTPS <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

Assembler symbols

<hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<v> Is a width specifier, encoded in the "sz" field. It can have the following values:

- S when sz = 0
- D when sz = 1

<db> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   4H when Q = 0
   8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
   2S when sz = 0, Q = 0
   4S when sz = 0, Q = 1
   2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
   element = Elem[operand, e, esize];
   Elem[result, e, esize] = FPtoFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;
C7.2.85   FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>sf 11</td>
</tr>
</tbody>
</table>

**Half-precision to 32-bit variant**

Applies when sf == 0 && ftype == 11.

FCVTPS <Wd>, <Hn>

**Half-precision to 64-bit variant**

Applies when sf == 1 && ftype == 11.

FCVTPS <Xd>, <Hn>

**Single-precision to 32-bit variant**

Applies when sf == 0 && ftype == 00.

FCVTPS <Wd>, <Sn>

**Single-precision to 64-bit variant**

Applies when sf == 1 && ftype == 00.

FCVTPS <Xd>, <Sn>

**Double-precision to 32-bit variant**

Applies when sf == 0 && ftype == 01.

FCVTPS <Wd>, <Dn>

**Double-precision to 64-bit variant**

Applies when sf == 1 && ftype == 01.

FCVTPS <Xd>, <Dn>

**Decode for all variants of this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
    when '00'
        fltsize = 32;
    when '01'
        fltsize = 64;
    when '10'
        UNDEFINED;
    when '11'
        if HaveFP16Ext() then
            fltsize = 16;
        else
            UNDEFINED;
    rounding = FPDecodeRounding(rmode);

Assembler symbols

<ld> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;
C7.2.86  FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0 |
|---------------------------|-------------------|
| 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 Rn Rd |

Scalar half precision variant

FCVTPU <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 5 4 0 |
|---------------------------|-------------------|
| 0 1 1 1 1 1 0 1 sz 1 0 0 0 1 1 0 1 0 1 0 Rn Rd |

Scalar single-precision and double-precision variant

FCVTPU <V><d>, <V><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

![Instruction Encoding](image)

**Vector half precision variant**

FCVTUP <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

![Instruction Encoding](image)

**Vector single-precision and double-precision variant**

FCVTUP <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

**Assembler symbols**

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
C7.2.87   FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Plus Infinity rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision to 32-bit variant

Applies when \( sf = 0 \) & \( ftype = 11 \).

FCVTPU \(<Wd>, <Hn>\)

Half-precision to 64-bit variant

Applies when \( sf = 1 \) & \( ftype = 11 \).

FCVTPU \(<Xd>, <Hn>\)

Single-precision to 32-bit variant

Applies when \( sf = 0 \) & \( ftype = 00 \).

FCVTPU \(<Wd>, <Sn>\)

Single-precision to 64-bit variant

Applies when \( sf = 1 \) & \( ftype = 00 \).

FCVTPU \(<Xd>, <Sn>\)

Double-precision to 32-bit variant

Applies when \( sf = 0 \) & \( ftype = 01 \).

FCVTPU \(<Wd>, <Dn>\)

Double-precision to 64-bit variant

Applies when \( sf = 1 \) & \( ftype = 01 \).

FCVTPU \(<Xd>, <Dn>\)

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \text{U} \text{Int}(Rd); \\
\text{integer } n &= \text{U} \text{Int}(Rn); \\
\text{integer } \text{intsize} &= \text{if } sf = '1' \text{ then } 64 \text{ else } 32; \\
\text{integer } \text{fltsize}; \\
\text{FPRounding } \text{rounding};
\end{align*}
\]
case ftype of
  when '00'
    fltsize = 32;
  when '01'
    fltsize = 64;
  when '10'
    UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  rounding = FPDodeRound(rmode);

Assembler symbols

<Rd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;
C7.2.88   FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector element in the source SIMD&FP register, narrows each value to half the precision of the source element using the Round to Odd rounding mode, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

--- Note ---

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This rounding mode ensures that if the result of the conversion is inexact the least significant bit of the mantissa is forced to 1. This rounding mode enables a floating-point value to be converted to a lower precision format via an intermediate precision format while avoiding double rounding errors. For example, a 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit value and then using another instruction with the wanted rounding mode to convert the 32-bit value to the final 16-bit floating-point value.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while the FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 1 1 1 1 0 0 | sz 1 0 0 0 1 0 1 1 0 1 0 | Rn | Rd |
```

**Scalar variant**

FCVTXN <Vb><d>, <Va><n>

**Decode for this encoding**

```python
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz == '0' then UNDEFINED;
integer esize = 32;
integer datasize = esize;
integer elements = 1;
integer part = 0;
```

**Vector**

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 Q 1 0 1 1 0 0 | sz 1 0 0 0 1 0 1 1 0 1 0 | Rn | Rd |
```

**Vector variant**

FCVTXN{2} <Vb>.<Tb>, <Vn>.<Ta>
**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then UNDEFINED;
integer esize = 32;
integer datasize = 64;
integer elements = 2;
integer part = UInt(Q);

**Assembler symbols**

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 1, Q = 0
4S when sz = 1, Q = 1

The encoding sz = 0, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "sz" field. It can have the following values:

2D when sz = 1

The encoding sz = 0 is reserved.

<Vb> Is the destination width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 1

The encoding sz = 0 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "sz" field. It can have the following values:

D when sz = 1

The encoding sz = 0 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
    Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR, FPRounding_ODD);

Vpart[d, part] = result;
C7.2.89   FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from floating-point to fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

```
| 31 30 29 28|27 26 25 24|23 22 | 19 18 | 16|15 | 14 | 13 | 12| 11 | 10 | 9 | 5 | 4 | 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | !=0000 | immh | 1 | 1 | 1 | 1 | 1 | 1 | Rn | Rd |
```

**Scalar variant**

FCVTZS &V;<d>, &V;<n>, #<fbits>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if immh == '000x' || (immh == '001x' && !HaveFPI6Ext()) then UNDEFINED;
- integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
- integer datasize = esize;
- integer elements = 1;
- integer fracbits = (esize * 2) - UInt(immh:immb);
- boolean unsigned = (U == '1');
- FPRounding rounding = FPRounding_ZERO;

Vector

```
| 31 30 29 28|27 26 25 24|23 22 | 19 18 | 16|15 | 14 | 13 | 12| 11 | 10 | 9 | 5 | 4 | 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | Q | 0 | 0 | 1 | 1 | 1 | 0 | !=0000 | immh | 1 | 1 | 1 | 1 | 1 | 1 | Rn | Rd |
```

**Vector variant**

FCVTZS &Vd;<T>, &Vn;<T>, #<fbits>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if imm == '0000' then SEE "Advanced SIMD modified immediate";
- if imm == '000x' || (imm == '001x' && !HaveFPI6Ext()) then UNDEFINED;
- if immh<3>:Q == '10' then UNDEFINED;
- integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
integer fracbits = (esize + 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
H when immh = 001x
S when immh = 01xx
D when immh = 1xxx
The encoding immh = 000x is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<r> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1
2D when immh = 1xxx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The following encodings are reserved:
• immh = 0001, Q = x.
• immh = 1xxx, Q = 0.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in the "immh:immb" field. It can have the following values:
(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx
(128-UInt(immh:immb)) when immh = 1xxx
The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in the "immh:immb" field. It can have the following values:
(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx
(128-UInt(immh:immb)) when immh = 1xxx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);
V[d] = result;
C7.2.90  FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a floating-point value to a signed integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 Rn Rd
 U o2 o1
```

Scalar half precision variant

FCVTZS <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 Rn Rd
 U o2 o1
```

Scalar single-precision and double-precision variant

FCVTZS <V><d>, <V><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 Q 0 | 0 1 1 1 | 0 1 1 1 | 0 1 1 0 | 0 1 0 1 | 1 1 0 | Rn | Rd |

U o2 o1
```

Vector half precision variant

FCVTZS <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

Vector single-precision and double-precision

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 Q 0 | 0 1 1 1 | 0 1 1 1 | 0 1 1 0 | 0 1 0 1 | 1 1 0 | Rn | Rd |

U o2 o1
```

Vector single-precision and double-precision variant

FCVTZS <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

**Assembler symbols**

- **<Hd>** Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- **<Hn>** Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
- **<V>** Is a width specifier, encoded in the "sz" field. It can have the following values:
  - S when sz = 0
  - D when sz = 1
- **<d>** Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4H</td>
<td>Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>Q = 1</td>
</tr>
</tbody>
</table>

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2S</td>
<td>sz = 0, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>sz = 0, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>sz = 1, Q = 1</td>
</tr>
</tbody>
</table>

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bite(datasize) operand = V[n];
bite(datasize) result;
bite(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.91 **FCVTZS (scalar, fixed-point)**

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

### Half-precision to 32-bit variant

Applies when `sf == 0 && ftype == 11`.

**FCVTZS <Wd>, <Hn>, #<fbits>**

### Half-precision to 64-bit variant

Applies when `sf == 1 && ftype == 11`.

**FCVTZS <Xd>, <Hn>, #<fbits>**

### Single-precision to 32-bit variant

Applies when `sf == 0 && ftype == 00`.

**FCVTZS <Wd>, <Sn>, #<fbits>**

### Single-precision to 64-bit variant

Applies when `sf == 1 && ftype == 00`.

**FCVTZS <Xd>, <Sn>, #<fbits>**

### Double-precision to 32-bit variant

Applies when `sf == 0 && ftype == 01`.

**FCVTZS <Wd>, <Dn>, #<fbits>**

### Double-precision to 64-bit variant

Applies when `sf == 1 && ftype == 01`.

**FCVTZS <Xd>, <Dn>, #<fbits>**

### Decode for all variants of this encoding

```haskell
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer ftype =

case ftype of
```

---

<table>
<thead>
<tr>
<th>sf</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>ftype</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>scale</th>
<th>Rn</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

mode opcode
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

Assembler symbols

<\text{Wd}> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\text{Xd}> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<\text{Sn}> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\text{Hn}> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\text{Dn}> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<\text{fbits}> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, FALSE, FPCR, FPRounding_ZERO);
X[d] = intval;
C7.2.92 FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

| sf | 0 | 0 | 1 | 1 | 1 | 1 | 0 | fltype | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Rn | Rd |

Half-precision to 32-bit variant
Applies when `sf == 0` && `ftype == 11`.
FCVTZS <Wd>, <Hn>

Half-precision to 64-bit variant
Applies when `sf == 1` && `ftype == 11`.
FCVTZS <Xd>, <Hn>

Single-precision to 32-bit variant
Applies when `sf == 0` && `ftype == 00`.
FCVTZS <Wd>, <Sn>

Single-precision to 64-bit variant
Applies when `sf == 1` && `ftype == 00`.
FCVTZS <Xd>, <Sn>

Double-precision to 32-bit variant
Applies when `sf == 0` && `ftype == 01`.
FCVTZS <Wd>, <Dn>

Double-precision to 64-bit variant
Applies when `sf == 1` && `ftype == 01`.
FCVTZS <Xd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;
 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wr> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xr> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sr> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hr> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dr> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;
C7.2.93 FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from floating-point to fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

\[
\begin{array}{ccccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
U & \text{immh} & \text{Rn} & \text{Rd} \\
\end{array}
\]

Scalar variant

FCVTZU <V><d>, <V><n>, #<fbits>

Decode for this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt(Rd)}; \\
\text{integer } n &= \text{UInt(Rn)}; \\
\text{if } \text{immh} \text{ is '0000' or '001x'} \text{ and !HaveFP16Ext() then UNDEFINED; } \\
\text{integer esize} &= \text{if } \text{immh} = '1xxx' \text{ then 64 else if } \text{immh} = '01xx' \text{ then 32 else 16; } \\
\text{integer datasize} &= \text{esize; } \\
\text{integer elements} &= 1; \\
\text{integer fracbits} &= (\text{esize} \times 2) - \text{UInt(immh:immb); } \\
\text{boolean unsigned} &= (U = '1'); \\
\text{FPRounding rounding} &= \text{FPRounding_ZERO};
\end{align*}
\]

Vector

\[
\begin{array}{ccccccccccc}
0 & Q & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
U & \text{immh} & \text{Rn} & \text{Rd} \\
\end{array}
\]

Vector variant

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

\[
\begin{align*}
\text{integer } d &= \text{UInt(Rd)}; \\
\text{integer } n &= \text{UInt(Rn)}; \\
\text{if } \text{immh} \text{ is '0000' then SEE "Advanced SIMD modified immediate"; } \\
\text{if } \text{immh} \text{ is '0000' or '001x'} \text{ and !HaveFP16Ext() then UNDEFINED; } \\
\text{if } \text{immh} = '10' \text{ then UNDEFINED; } \\
\text{integer esize} &= \text{if } \text{immh} = '1xxx' \text{ then 64 else if } \text{immh} = '01xx' \text{ then 32 else 16; } \\
\text{integer datasize} &= \text{if } Q = '1' \text{ then 128 else 64; } \\
\text{integer elements} &= \text{datasize DIV esize; }
\end{align*}
\]
integer frachbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler symbols

<V> is a width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 001x
S when immh = 01xx
D when immh = 1xxx

The encoding immh = 000x is reserved.

<d> is the number of the SIMD&FP destination register, in the "Rd" field.

<n> is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1
2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The following encodings are reserved:

- immh = 0001, Q = x.
- immh = 1xxx, Q = 0.

<Vn> is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in the "immh:immb" field. It can have the following values:

(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx
(128-UInt(immh:immb)) when immh = 1xxx

The encoding immh = 000x is reserved.

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in the "immh:immb" field. It can have the following values:

(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx
(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 0001 is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;
C7.2.94 FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 14 13 12] [11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0</td>
<td>Rn</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
</tr>
</tbody>
</table>

Scalar half precision variant

FCVTZU <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 14 13 12] [11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0</td>
<td>Rn</td>
</tr>
<tr>
<td>U</td>
<td>o2</td>
<td>o1</td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

FCVTZU <V>d>, <V>n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
Vector half precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
  0 Q | 1 0 1 1 1 0 | 1 1 1 1 0 0 1 1 0 1 1 0 Rn | Rd
    U o2          o1
```

Vector half precision variant

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

Vector single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
  0 Q | 1 0 1 1 1 0 | 1 sz 0 0 0 1 1 0 1 1 0 Rn | Rd
    U o2          o1
```

Vector single-precision and double-precision variant

FCVTZU <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');
```

Assembler symbols

- `<Hd>` Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
- `<V>` Is a width specifier, encoded in the "sz" field. It can have the following values:
 - `S` when `sz = 0`
 - `D` when `sz = 1`
- `<d>` Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);
V[d] = result;
C7.2.95 FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11.

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11.

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00.

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit variant

Applies when sf == 1 && ftype == 00.

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit variant

Applies when sf == 0 && ftype == 01.

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit variant

Applies when sf == 1 && ftype == 01.

FCVTZU <Xd>, <Dn>, #<fbits>

Decode for all variants of this encoding

```plaintext
d = UInt(Rd);
n = UInt(Rn);
intsize = if sf == '1' then 64 else 32;
fitsize =
case ftype of
```

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".
For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bite(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, TRUE, FPCR, FPRounding_ZERO);
X[d] = intval;
C7.2.96 FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 16	15 14 13 12	11 10 9	5 4	0								
sf	0	0	1	1	1	1 0	ftype	1	1	1	0	0	0	0	0

Half-precision to 32-bit variant
Applies when \(sf = 0 \) \&\& \ ftype == 11.

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit variant
Applies when \(sf = 1 \) \&\& \ ftype == 11.

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit variant
Applies when \(sf = 0 \) \&\& \ ftype == 00.

FCVTZU <Wd>, <Sn>

Single-precision to 64-bit variant
Applies when \(sf = 1 \) \&\& \ ftype == 00.

FCVTZU <Xd>, <Sn>

Double-precision to 32-bit variant
Applies when \(sf = 0 \) \&\& \ ftype == 01.

FCVTZU <Wd>, <Dn>

Double-precision to 64-bit variant
Applies when \(sf = 1 \) \&\& \ ftype == 01.

FCVTZU <Xd>, <Dn>

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
```
case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;
 rounding = FPDecodeRounding(rmode);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;
C7.2.97 FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source SIMD&FP register, by the floating-point values in the corresponding elements in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

Half-precision variant

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

Single-precision and double-precision variant

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    Elem[result, e, esize] = FPDiv(element1, element2, FPCR);

V[d] = result;
```
C7.2.98 FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP register by the floating-point value of the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FDIV <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FDIV <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FDIV <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;

case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Do> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Om> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
result = FPDiv(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.99 FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the double-precision floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero rounding mode, and writes the result to the general-purpose destination register. If the result is too large to be accommodated as a signed 32-bit integer, then the result is the integer modulo 2^{32}, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.3

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 16|15 14 13 12|11 10 9 5 4 | 0 | sf ftype rmode opcode
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double-precision to 32-bit variant

FJCVTZS <Wd>, <Dn>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveFJCVTZSExt() then UNDEFINED;

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(64) fltval;
bits(32) intval;

bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, FPCR, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;
C7.2.100 FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, adds the product to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant
Applies when ftype == 00.
FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant
Applies when ftype == 01.
FMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
datasize = 16;
 else
 UNDEFINED;

Assembler symbols

<Od> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<On> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Db> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMulAdd(operanda, operand1, operand2, FPCR);

V[d] = result;
C7.2.101 FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, places the larger of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

U                           o1
```

Half-precision variant

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

U                           o1
```

Single-precision and double-precision variant

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
 8H when Q = 1

 For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
 2S when sz = 0, Q = 0
 4S when sz = 0, Q = 1
 2D when sz = 1, Q = 1
 The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

 CheckFPAdvSIMDEnabled64();
 bits(datasize) operand1 = V[n];
 bits(datasize) operand2 = V[m];
 bits(datasize) result;
 bits(2*datasize) concat = operand2:operand1;
 bits(esize) element1;
 bits(esize) element2;
 for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];

 if minimum then
 Elem[result, e, esize] = FPMin(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMax(element1, element2, FPCR);

 V[d] = result;
C7.2.102 FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the larger of the two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when $ftype == 11$.

FMAX $<Hd>, <Hn>, <Hm>

Single-precision variant

Applies when $ftype == 00$.

FMAX $<Sd>, <Sn>, <Sm>

Double-precision variant

Applies when $ftype == 01$.

FMAX $<Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

integer $d = \text{UInt}(Rd)$;
integer $n = \text{UInt}(Rn)$;
integer $m = \text{UInt}(Rm)$;

integer datasize;

\[
\begin{array}{c}
\text{case } ftype \\
\text{of } \\
\text{when '00' } \text{datasize} = 32; \\
\text{when '01' } \text{datasize} = 64; \\
\text{when '10' UNDEFINED; } \\
\text{when '11' } \\
\text{if HaveFP16Ext() then } \\
\text{datasize} = 16; \\
\text{else } \\
\text{UNDEFINED; }
\end{array}
\]

Assembler symbols

$<Dd>$ Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

$<Dn>$ Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

$<Dm>$ Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

$<Hd>$ Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

$<Hn>$ Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
result = FPMax(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.103 FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two
source SIMD&FP registers, writes the larger of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	19	18	17	16	15	14	13	12	11	10	9	5	4	0		
0	Q	0	0	1	1	1	0	0	1	0	Rm	0	0	0	0	1	Rn	Rd

Half-precision variant

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	19	18	17	16	15	14	13	12	11	10	9	5	4	0		
0	Q	0	0	1	1	1	0	0	sz	1	Rm	1	1	0	0	1	Rn	Rd

Single-precision and double-precision variant

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4H</td>
<td>when Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>when Q = 1</td>
</tr>
</tbody>
</table>

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2S</td>
<td>when sz = 0, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>when sz = 0, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>when sz = 1, Q = 1</td>
</tr>
</tbody>
</table>

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);
V[d] = result;
C7.2.104 FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the larger of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMAXNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

```plaintext
type = Rm[5:4];
Rd = UInt(Rd);
Rn = UInt(Rn);
if HaveFP16Ext() then
  if type == '00' then
    datasize = 32;
  elseif type == '01' then
    datasize = 64;
  else
    datasize = 16;
else
  datasize = 16;
```

Assembler symbols

- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bv[dataSize] result;
bv[dataSize] operand1 = V[n];
bv[dataSize] operand2 = V[m];

result = FPMaxNum(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.105 FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

\[
\begin{array}{cccccccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & Rn & Rd
\end{array}
\]

Half-precision variant

FMAXNMP <V><d>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

\[
\begin{array}{cccccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & sz & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & Rn & Rd
\end{array}
\]

Single-precision and double-precision variant

FMAXNMP <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler symbols

<\V>

For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

H when sz = 0

The encoding sz = 1 is reserved.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- S when sz = 0
- D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2H when sz = 0
- The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2S when sz = 0
- 2D when sz = 1

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize);
```
C7.2.106 FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
[31 30 29 28][27 26 25 24][23 22 21 20]  16|15 14 13 12|11 10 9 |  5 4 |  0 |
0 Q 1 0 1 1 1 0 0 1 0  Rm  0 0 0 0 1  Rn  Rd
```

Half-precision variant

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

```
[31 30 29 28][27 26 25 24][23 22 21 20]  16|15 14 13 12|11 10 9 |  5 4 |  0 |
0 Q 1 0 1 1 1 0 0 0 1  0  Rm  1 1 0 0 1  Rn  Rd
```

Single-precision and double-precision variant

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
 if pair then
 element1 = Elem[concat, 2*e, esize];
 element2 = Elem[concat, (2*e)+1, esize];
 else
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if minimum then
 Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
 else
 Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);
V[d] = result;
C7.2.107 FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```plaintext
|[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0  Q  0  0  1  1  1  0  0  0  1  1  0  0  1  0  0  1  0 | Rn | Rd |
```

Half-precision variant

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

```plaintext
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
```

Single-precision and double-precision

```plaintext
|[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0  Q  1  0  1  1  0  0  0  1  1  0  0  1  1  0  0  1  0 | Rn | Rd |
```

Single-precision and double-precision variant

FMAXNMV <V><d>, <Vn>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;    // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
```
Assembler symbols

\(<V>\)
For the half-precision variant: is the destination width specifier, H.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- S when \(sz = 0 \)
- H when \(sz = 1 \)

The encoding \(sz = 1 \) is reserved.

\(<d>\)
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<n>\)
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<T>\)
For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when \(Q = 0 \)
- 8H when \(Q = 1 \)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:

- 4S when \(Q = 1, sz = 0 \)

The following encodings are reserved:

- \(Q = 0, sz = x \)
- \(Q = 1, sz = 1 \).

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize);
C7.2.108 FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 | Rn | Rd |
```

Half-precision variant

FMAXP <V><d>, <Vn>.<T>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = 32;
```

Single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 | Rn | Rd |
```

Single-precision and double-precision variant

FMAXP <V><d>, <Vn>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 32;
integer datasize = 64;
```

Assembler symbols

```
<V>
For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:
H when sz = 0
The encoding sz = 1 is reserved.
```
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- S when \(sz = 0 \)
- D when \(sz = 1 \)

\(<d>\) Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<n>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<T>\) For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2H when \(sz = 0 \)
- The encoding \(sz = 1 \) is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:

- 2S when \(sz = 0 \)
- 2D when \(sz = 1 \)

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAX, operand, esize);
```
C7.2.109 FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, writes the larger of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
[31 30 29 28]  [27 26 25 24]  [23 22 21 20]  16 15 14 13 12 | 11 10  9  |  5  4  |  0  
| Q  Q  Q  Q |  1  1  1  1 |  0  0  1  0 |  0  0  1  0 |  Rm  |  Rn  |  Rd  |
0  0  1  0  1  1  1  0  0  1  0  0  0  1  1  1  1  0  1  0  0  1  0  0  0  1  0  1  0  1  0  0  1  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  1  0  0  1  0  0  0  1  0  0
U o1
```

Half-precision variant

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if ! HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

```
[31 30 29 28]  [27 26 25 24]  [23 22 21 20]  16 15 14 13 12 | 11 10  9  |  5  4  |  0  
| Q  Q  Q  Q |  1  1  1  1 |  0  0  1  0 |  0  0  1  0 |  Rm  |  Rn  |  Rd  |
0  0  1  0  1  1  1  0  0  1  0  0  0  1  1  1  1  0  1  0  0  1  0  0  0  1  0  1  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0  0  1  0
boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
  if pair then
    element1 = Elem[concat, 2*e, esize];
    element2 = Elem[concat, (2*e)+1, esize];
  else
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
  if minimum then
    Elem[result, e, esize] = FPMin(element1, element2, FPCR);
  else
    Elem[result, e, esize] = FPMax(element1, element2, FPCR);
V[d] = result;
C7.2.110  FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision variant

FMAXV <V><d>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FMAXV <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

For the half-precision variant: is the destination width specifier, H.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- \( S \) when \( sz = 0 \)
- The encoding \( sz = 1 \) is reserved.

\(<d>\)

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<Vn>\)

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<T>\)

For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- \( 4H \) when \( Q = 0 \)
- \( 8H \) when \( Q = 1 \)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:

- \( 4S \) when \( Q = 1, sz = 0 \)

The following encodings are reserved:

- \( Q = 0, sz = x \).
- \( Q = 1, sz = 1 \).

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAX, operand, esize);
```
C7.2.111  FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the smaller of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Half-precision variant**

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

**Single-precision and double-precision**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Single-precision and double-precision variant**

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
- 4H when Q = 0
- 8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
    if pair then
        element1 = Elem[concat, 2*e, esize];
        element2 = Elem[concat, (2*e)+1, esize]
    else
        element1 = Elem[operand1, e, esize];
        element2 = Elem[operand2, e, esize];
    if minimum then
        Elem[result, e, esize] = FPMin(element1, element2, FPCR);
    else
        Elem[result, e, esize] = FPMax(element1, element2, FPCR);
V[d] = result;
C7.2.112  FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the smaller of the two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FMIN <Hd>, <Hn>, <Hm>

Single-precision variant
Applies when ftype == 00.
FMIN <Sd>, <Sn>, <Sm>

Double-precision variant
Applies when ftype == 01.
FMIN <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

int d = Uint(Rd);
int n = Uint(Rn);
int m = Uint(Rm);

int datasize;
case ftype of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
    if HaveFP16Ext() then
data-size = 16;
else
    UNDEFINED;

Assembler symbols

<Dd>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn>  Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm>  Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd>  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn>  Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMin(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.113  FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, writes the smaller of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15|14|13|12|11|10|9 |5 |4 |0 |
0 |0 |0 |1 |1 |1 |0 |0 |1 |0 |Rm |0 |0 |0 |0 |1 |Rn |Rd |
```

Hybrid-precision variant

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;
 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
 integer esize = 16;
 integer datasize = if Q == '1' then 128 else 64;
 integer elements = datasize DIV esize;
 boolean pair = (U == '1'));
 boolean minimum = (a == '1');
```

Single-precision and double-precision

```
|31 30 29 28|27 26 25 24|23 22 21 20|16|15|14|13|12|11|10|9 |5 |4 |0 |
0 |0 |0 |1 |1 |1 |0 |1 |0 |1|sz|1 |Rm |1 |0 |0 |0 |1 |Rn |Rd |
```

Single-precision and double-precision variant

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```
boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembling symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bias(datasize) operand1 = V[n];
bias(datasize) operand2 = V[m];
bias(datasize) result;
bias(2*datasize) concat = operand2:operand1;
bias(esize) element1;
bias(esize) element2;
for e = 0 to elements-1
  if pair then
    element1 = Elem[concat, 2*e, esize];
    element2 = Elem[concat, (2*e)+1, esize];
  else
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
  if minimum then
    Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
  else
    Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);
V[d] = result;
C7.2.114  FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the smaller of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 1 0</td>
<td>Type</td>
<td>1</td>
<td>Rm</td>
<td>0 1 1 1 1 0</td>
</tr>
</tbody>
</table>

Half-precision variant

Applies when ftype == 11.

FMINNM <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMINNM <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMINNM <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;

<table>
<thead>
<tr>
<th>ftype of</th>
</tr>
</thead>
<tbody>
<tr>
<td>'00' datasize = 32;</td>
</tr>
<tr>
<td>'01' datasize = 64;</td>
</tr>
<tr>
<td>'10' UNDEFINED;</td>
</tr>
<tr>
<td>'11'</td>
</tr>
<tr>
<td>if HaveFP16Ext() then</td>
</tr>
<tr>
<td>datasize = 16;</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>UNDEFINED;</td>
</tr>
</tbody>
</table>

Assembler symbols

<Od>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<On>  Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Om>  Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
result = FPMinNum(operand1, operand2, FPCR);
V[d] = result;
```
C7.2.115  FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision variant

FMINNMP <V><d>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 1 0</td>
<td>1 sz</td>
<td>1 1 0 0 0 0 1 1 0 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FMINNMP <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler symbols

<V>  

For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

H  when sz = 0

The encoding sz = 1 is reserved.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
</n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
</t> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:
2H when sz = 0
The encoding sz = 1 is reserved.
For the single-precision and double-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:
2S when sz = 0
2D when sz = 1

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMINNUM, operand, esize);
C7.2.116 FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of floating-point values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0 1 1 0</td>
<td>Rm 0 0 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0 1 1 0</td>
<td>sz 1</td>
<td>Rm 1 1 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Single-precision and double-precision variant**

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
    4H when Q = 0
    8H when Q = 1
For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
    2S when sz = 0, Q = 0
    4S when sz = 0, Q = 1
    2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
    if pair then
        element1 = Elem[concat, 2*e, esize];
        element2 = Elem[concat, (2*e)+1, esize];
    else
        element1 = Elem[operand1, e, esize];
        element2 = Elem[operand2, e, esize];
    if minimum then
        Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);
    else
        Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);
V[d] = result;
C7.2.117  FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Half-precision variant**

FMINNMV <V><d>, <Vn>.<T>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Single-precision and double-precision variant**

FMINNMV <V><d>, <Vn>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;    // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
Assembler symbols

\(<V>\) For the half-precision variant: is the destination width specifier, H.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

- \(S\) when \(sz = 0\)
- The encoding \(sz = 1\) is reserved.

\(<d>\) Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<n>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<T>\) For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- \(4H\) when \(Q = 0\)
- \(8H\) when \(Q = 1\)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:

- \(4S\) when \(Q = 1, sz = 0\)

The following encodings are reserved:

- \(Q = 0, sz = x\).
- \(Q = 1, sz = 1\).

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMINNUM, operand, esize);
C7.2.118   FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>1 1 0 0 0 0 1 1 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Half-precision variant**

FMINP <V><d>, <Vn>.<T>

*Decode for this encoding*

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

**Single-precision and double-precision**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 0</td>
<td>1 sz 1 1 0 0 0 0 1 1 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Single-precision and double-precision variant**

FMINP <V><d>, <Vn>.<T>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

**Assembler symbols**

<V> For the half-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

H when sz = 0

The encoding sz = 1 is reserved.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:
2H when sz = 0
The encoding sz = 1 is reserved.

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in the "sz" field. It can have the following values:
2S when sz = 0
2D when sz = 1

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMIN, operand, esize);
C7.2.119  FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, writes the smaller of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>Q</th>
<th>Rm</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>64</th>
</tr>
</thead>
</table>
0 | 0 | 0 | 1 | 1 | 1 |
```

**Half-precision variant**

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

```
<table>
<thead>
<tr>
<th>Q</th>
<th>Rm</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>64</th>
</tr>
</thead>
</table>
0 | 0 | 0 | 1 | 1 | 1 |
```

**Single-precision and double-precision variant**

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1');
boolean minimum = (o1 == '1');

**Assemble symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
    if pair then
        element1 = Elem[concat, 2*e, esize];
        element2 = Elem[concat, (2*e)+1, esize];
    else
        element1 = Elem[operand1, e, esize];
        element2 = Elem[operand2, e, esize];
    if minimum then
        Elem[result, e, esize] = FPMin(element1, element2, FPCR);
    else
        Elem[result, e, esize] = FPMax(element1, element2, FPCR);
V[d] = result;
C7.2.120  FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

| 0 | 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 | Rn | Rd |
| 0 | Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |

Half-precision variant

FMINV <V><d>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

| 0 | 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 | Rn | Rd |
| 0 | Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |

Single-precision and double-precision variant

FMINV <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<V>  For the half-precision variant: is the destination width specifier, H.
For the single-precision and double-precision variant: is the destination width specifier, encoded in the "sz" field. It can have the following values:

5 when sz = 0

The encoding sz = 1 is reserved.

Rd Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

Rn Is the name of the SIMD&FP source register, encoded in the "Rn" field.

T For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0

8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:

4S when Q = 1, sz = 0

The following encodings are reserved:

• Q = 0, sz = x.
• Q = 1, sz = 1.

Operation for all encodings

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMIN, operand, esize);
```
C7.2.121   FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in
the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates
the results in the vector elements of the destination SIMD&FP register. All the values in this instruction are
floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 1 1 | 0 0 | L M Rm | 0 0 0 1 | H 0 | Rn | Rd |

Scalar, half-precision variant

FMLA <Hb>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 1 1 | 0 0 | sz L M Rm | 0 0 0 1 | H 0 | Rn | Rd |

Scalar, single-precision and double-precision variant

FMLA <V>b>, <V>n>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
in integer elements = 1;
boolean sub_op = (o2 == '1');

Vector, half-precision

ARMv8.2

Vector, half-precision variant

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
in integer datasize = if Q == '1' then 128 else 64;
in integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

Vector, single-precision and double-precision variant

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
in integer index;
bit Rmhi = M;
case sz:L of
    when '0x' index = UInt(H:L);
    when '10' index = UInt(H);
    when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
in integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
    S when sz = 0
    D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
    4H when Q = 0
    8H when Q = 1
For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:
    2S when Q = 0, sz = 0
    4S when Q = 1, sz = 0
    2D when Q = 1, sz = 1
The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in the "sz" field. It can have the following values:
    S when sz = 0
    D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.
For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H" field. It can have the following values:
    H:L when sz = 0, L = x
    H when sz = 1, L = 0
The encoding sz = 1, L = 1 is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxs) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
   element1 = Elem[operand1, e, esize];
   if sub_op then element1 = FPMeg(element1);
   Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);
   V[d] = result;
C7.2.122  FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors in the two source SIMD&FP registers, adds the product to the corresponding vector element of the destination SIMD&FP register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0		
0	Q	0	0	1	1	0	0	1	0
Rm	0	0	0	0	1	1	Rn	Rd	

Decoding for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0		
0	Q	0	0	1	1	0	0	sz	1
Rm	1	1	0	0	1	1	Rn	Rd	

Decoding for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');
Assembler symbols

<\textit{Vd}> Is the name of the SIMD\&FP destination register, encoded in the "Rd" field.

<\textit{T}> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- \texttt{4H} when \( Q = 0 \)
- \texttt{8H} when \( Q = 1 \)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- \texttt{2S} when \( sz = 0, Q = 0 \)
- \texttt{4S} when \( sz = 0, Q = 1 \)
- \texttt{2D} when \( sz = 1, Q = 1 \)

The encoding \( sz = 1, Q = 0 \) is reserved.

<\textit{Vn}> Is the name of the first SIMD\&FP source register, encoded in the "Rn" field.

<\textit{Vm}> Is the name of the second SIMD\&FP source register, encoded in the "Rm" field.

Operation for all encodings

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  element2 = Elem[operand2, e, esize];
  if sub_op then element1 = FPNeg(element1);
  Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
\end{verbatim}
C7.2.123 FMLAL, FMLAL2 (by element)

Floating-point fused Multiply-Add Long to accumulator (by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an optional instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

ARMv8.2

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>L</td>
<td>M</td>
<td>Rm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FMLAL variant

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16%uNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 0;

FMLAL2

ARMv8.2

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>L</td>
<td>M</td>
<td>Rm</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sz</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FMLAL2 variant

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]
**Decode for this encoding**

```plaintext
if !HaveFP10MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 1;
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ta>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2S when Q = 0
  - 4S when Q = 1
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2H when Q = 0
  - 4H when Q = 1
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<index>` Is the element index, encoded in the "H:L:M" fields.

**Operation for all encodings**

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n, part];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
```
C7.2.124 FMLAL, FMLAL2 (vector)

Floating-point fused Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding half-precision floating-point values in the vectors in the two source SIMD&FP registers, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLAL

ARMv8.2

\[
\begin{array}{cccccccccccccccccccccccc}
0 & 0 & Q & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & Rn & Rn & Rd & S & sz
\end{array}
\]

FMLAL variant

FMLAL \(<Vd>.Ta>, \(<Vn>.Tb>, \(<Vm>.Tb>\)

Decode for this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 0;

FMLAL2

ARMv8.2

\[
\begin{array}{cccccccccccccccccccccccc}
0 & 0 & Q & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & Rn & Rn & Rd & S & sz
\end{array}
\]

FMLAL2 variant

FMLAL2 \(<Vd>.Ta>, \(<Vn>.Tb>, \(<Vm>.Tb>\)
**Decode for this encoding**

```c
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 1;
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ta>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - `2S` when Q = 0
  - `4S` when Q = 1
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - `2H` when Q = 0
  - `4H` when Q = 1
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n, part];
bits(datasize DIV 2) operand2 = Vpart[m, part];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
```
C7.2.125 FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results from the vector elements of the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Rm 0 1 0 1 1 0 | H 0 |

Rn Rd

Scalar, half-precision variant

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

sz L M Rm 0 1 0 1 | H 0 |

Rn Rd

Scalar, single-precision and double-precision variant

FMLS <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
  when '0x' index = UInt(H:L);
  when '10' index = UInt(H);
  when '11' UNDEFINED;

010 11111 00 L M Rm 0 1 0 1 H 0 Rn Rd

010 111111 0x sz L M Rm 0 1 0 1 H 0 Rn Rd
Vector, half-precision

ARMv8.2

Vector, half-precision variant

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]  

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]  

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler symbols

<Hd>  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn>  Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V>  Is a width specifier, encoded in the "sz" field. It can have the following values:
S  when sz = 0
D  when sz = 1

<d>  Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n>  Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  For the vector, half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
4H  when Q = 0
8H  when Q = 1
For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:
2S  when Q = 0, sz = 0
4S  when Q = 1, sz = 0
2D  when Q = 1, sz = 1
The encoding Q = 0, sz = 1 is reserved.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm>  For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts>  Is an element size specifier, encoded in the "sz" field. It can have the following values:
S  when sz = 0
D  when sz = 1

<index>  For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.
For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H" field. It can have the following values:
H:L  when sz = 0, L = x
H  when sz = 1, L = 0
The encoding sz = 1, L = 1 is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxsizdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    if sub_op then element1 = FPMeg(element1);
    Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
C7.2.126  FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors in the two source SIMD&FP registers, negates the product, adds the result to the corresponding vector element of the destination SIMD&FP register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPSCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0	
0	Q	0	0	1	1	1	0	Rm
0	0	0	0	1	1	Rn		
Rd								

Half-precision variant

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0	
0	Q	0	0	1	1	0	1	Rm
1	1	0	0	1	1	Rn		
Rd								

Single-precision and double-precision variant

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');
Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    if sub_op then element1 = FPNeg(element1);
    Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
C7.2.127  FMLSL, FMLSL2 (by element)

Floating-point fused Multiply-Subtract Long from accumulator (by element). This instruction multiplies the negated vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

______ Note ________
ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

FMLSL

ARMv8.2

31 30 29 28 27 26 25 24 23 22 21 20 19	16 15 14 13 12 11 10 9	5 4	0															
0	0	0	0	1	1	1	1	0	L	M	Rm	0	1	0	H	0	Rn	Rd

FMLSL variant

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]}

Decode for this encoding

if !HaveFP16uINoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 0;

FMLSL2

ARMv8.2

31 30 29 28 27 26 25 24 23 22 21 20 19	16 15 14 13 12 11 10 9	5 4	0															
0	0	1	1	1	1	1	0	L	M	Rm	1	1	0	0	H	0	Rn	Rd

FMLSL2 variant

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]
Decode for this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm);    // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 1;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
      2S when Q = 0
      4S when Q = 1
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
      2H when Q = 0
      4H when Q = 1
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<index> Is the element index, encoded in the "H:L:M" fields.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n, part];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

for e = 0 to elements-1
   element1 = Elem[operand1, e, esize DIV 2];
   if sub_op then element1 = FPNeg(element1);
   Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
C7.2.128 FMLSL, FMLSL2 (vector)

Floating-point fused Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an optional instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---

ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

---

FMLSL

ARMv8.2

```
[31 30 29 28 27 26 25 24 23 22 21 20 | 16 15 14 13 12 11 10 9 | 5 4 | 0 | 0 0 0 1 1 0 1 0 1]
S sz
```

FMLSL variant

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 0;

FMLSL2

ARMv8.2

```
[31 30 29 28 27 26 25 24 23 22 21 20 | 16 15 14 13 12 11 10 9 | 5 4 | 0 | 0 1 1 1 0 1 0 1]
S sz
```

FMLSL2 variant

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>
Decode for this encoding

```cpp
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 1;
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ta>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2S when Q = 0
  - 4S when Q = 1
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2H when Q = 0
  - 4H when Q = 1
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```cpp
CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n, part];
bits(datasize DIV 2) operand2 = Vpart[m, part];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize DIV 2];
 element2 = Elem[operand2, e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FMulAddH(Elem[operand3, e, esize], element1, element2, FPCR);
V[d] = result;
```
C7.2.129  FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every element of the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 18 17 16]</th>
<th>[15 14 13 12]</th>
<th>[11 10 9 8]</th>
<th>[7 6 5 4]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision variant

FMOV <Vd>.<T>, #<imm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;

imm8 = a:b:c:d:e:f:g:h;
imm16 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 2):imm8<5:0>:Zeros(6);

imm = Replicate(imm16, datasize DIV 16);

Single-precision and double-precision

[31 30 29 28]	[27 26 25 24]	[23 22 21 20]	[19 18 17 16]	15	14	13	12	11	10	9	8	7	6	5	4	0		
0	Q	op	0	1	1	1	1	0	0	0	0	a	b	c	1	1	1	Rd

Single-precision variant

Applies when op == 0.

FMOV <Vd>.<T>, #<imm>

Double-precision variant

Applies when Q == 1 && op == 1.

FMOV <Vd>.2D, #<imm>

Decode for all variants of this encoding

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;

bits(64) imm64;

if cmode:op == '11111' then
  // FMOV Dn,#imm is in main FP instruction set

//
if Q == '0' then UNDEFINED;

imm64 = AdvSIMDEndimm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the single-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0
4S when Q = 1

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h". For details of the range of constants available and the encoding of <imm>, see Modified immediate constants in A64 floating-point instructions on page C2-196.

Operation for all encodings

CheckFPAdvSIMDEnabled64();

V[rd] = imm;
C7.2.130  FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP source register to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FMOV <Hd>, <Hn>

Single-precision variant
Applies when ftype == 00.
FMOV <Sd>, <Sn>

Double-precision variant
Applies when ftype == 01.
FMOV <Dd>, <Dn>

Decode for all variants of this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
datasize = 16;
 else
 UNDEFINED;
 end_case
```

Assembler symbols

<d> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<h> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<h> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<s> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<s> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand = V[n];

V[d] = operand;
C7.2.131  FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents of a SIMD&FP register to a general-purpose register, or the contents of a general-purpose register to a SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>sf</th>
<th>ftype</th>
<th>rmode</th>
<th>opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Half-precision to 32-bit variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Hn>

Half-precision to 64-bit variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 110.

FMOV <Xd>, <Hn>

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Wn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 111.

FMOV <Sd>, <Wn>

Single-precision to 32-bit variant

Applies when sf == 0 && ftype == 00 && rmode == 00 && opcode == 110.

FMOV <Wd>, <Sn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11 && rmode == 00 && opcode == 111.

FMOV <Hd>, <Xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01 && rmode == 00 && opcode == 111.

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit variant

Applies when sf == 1 && ftype == 10 && rmode == 01 && opcode == 111.

FMOV <Vd>.D[1], <Xn>
**Double-precision to 64-bit variant**

Applies when $sf == 1$ && $ftype == 01$ && $rmode == 00$ && $opcode == 110$.

FMOV $<Xd>$, $<Dn>$

**Top half of 128-bit to 64-bit variant**

Applies when $sf == 1$ && $ftype == 10$ && $rmode == 01$ && $opcode == 110$.

FMOV $<Xd>$, $<Vn>.D[1]$

**Decode for all variants of this encoding**

integer $d = $UInt($Rd)$;
integer $n = $UInt($Rn)$;

integer intsize = if $sf == '1'$ then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
  when '00'
    fltsize = 32;
  when '01'
    fltsize = 64;
  when '10'
    if $opcode<2:1>:rmode != '11 01'$ then UNDEFINED;
    fltsize = 128;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;

case opcode<2:1>:rmode of
  when '00 xx'    // FCVT[NPMZ][US]
    rounding = FPDecodeRounding(rmode);
    unsigned = (opcode<0> == '1');
    op = FPConvOp_CVT_FtoI;
  when '01 00'    // [US]CVTF
    rounding = FPRoundingMode(FPCR);
    unsigned = (opcode<0> == '1');
    op = FPConvOp_CVT_ItoF;
  when '10 00'    // FCVTA[US]
    rounding = FPRounding_TIEAWAY;
    unsigned = (opcode<0> == '1');
    op = FPConvOp_CVT_FtoI;
  when '11 00'    // FMOV
    if fltsize != 16 && fltsize != intsize then UNDEFINED;
    op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
    part = 0;
  when '11 01'    // FMOV D[1]
    if intsize != 64 || fltsize != 128 then UNDEFINED;
    op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
    part = 1;
    fltsize = 64; // size of D[1] is 64
  when '11 11'    // FJCVTZS
    if !HaveFJCVTZSExt() then UNDEFINED;
    rounding = FPRounding_ZERO;
    unsigned = (opcode<0> == '1');
    op = FPConvOp_CVT_FtoI_JS;
  otherwise
    UNDEFINED;

otherwise
Assembler symbols

\(<D_d>\)  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<H_d>\)  Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<S_d>\)  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<W_n>\)  Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
\(<V_d>\)  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<X_n>\)  Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
\(<W_d>\)  Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
\(<S_n>\)  Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
\(<X_d>\)  Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
\(<V_n>\)  Is the name of the SIMD&FP source register, encoded in the "Rn" field.
\(<H_n>\)  Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
\(<D_n>\)  Is the 64-bit name of the SIMD&FP source register, encoded in the "Rd" field.

Operation

\(\text{CheckFPAdvSIMDEnabled64}()\);

\(\text{bits(fltsize) fltval;}\)
\(\text{bits(intsize) intval;}\)

\(\text{case op of}\)
\(\text{when FPConvOp\_CVT\_FtoI}\)
\(\text{fltval} = V[n];\)
\(\text{intval} = \text{FPToFixed(fltval, 0, unsigned, FPCR, rounding);}\)
\(\text{X}[d] = \text{intval;}\)
\(\text{when FPConvOp\_CVT\_ItoF}\)
\(\text{intval} = X[n];\)
\(\text{fltval} = \text{FixedToFP(intval, 0, unsigned, FPCR, rounding);}\)
\(\text{V}[d] = \text{fltval;}\)
\(\text{when FPConvOp\_MOV\_FtoI}\)
\(\text{fltval} = \text{Vpart}[n, part];\)
\(\text{intval} = \text{ZeroExtend(fltval, intsize);}\)
\(\text{X}[d] = \text{intval;}\)
\(\text{when FPConvOp\_MOV\_ItoF}\)
\(\text{intval} = X[n];\)
\(\text{fltval} = \text{intval<fltsize-1:0>;}\)
\(\text{Vpart}[d, part] = \text{fltval;}\)
\(\text{when FPConvOp\_CVT\_FtoI\_JS}\)
\(\text{bit Z;}\)
\(\text{fltval} = V[n];\)
\(\text{(intval, Z) = FPToFixedJS(fltval, FPCR, TRUE);}\)
\(\text{PSTATE.<N,Z,C,V> = '0':'00'};\)
\(\text{X}[d] = \text{intval;}\)
C7.2.132 FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Half-precision variant**

Applies when `ftype == 11`.

FMOV <Hd>, #<imm>

**Single-precision variant**

Applies when `ftype == 00`.

FMOV <Sd>, #<imm>

**Double-precision variant**

Applies when `ftype == 01`.

FMOV <Dd>, #<imm>

**Decode for all variants of this encoding**

```c
integer d = UInt(Rd);
integer datasize;

case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;
 bits(datasize) imm = VFPExpandImm(imm8);
```

**Assembler symbols**

- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<imm>` Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in the "imm8" field. For details of the range of constants available and the encoding of `<imm>`, see [Modified immediate constants in A64 floating-point instructions](on page C2-196).
Operation

CheckFPAdvSIMDEnabled64();

V[d] = imm;
C7.2.133 FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, negates the product, adds that to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

 Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ftype 0</td>
</tr>
<tr>
<td>Rm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision variant

Applies when ftype == 11.

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant

Applies when ftype == 00.

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant

Applies when ftype == 01.

FMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;

 case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
    when '10' UNDEFINED;
    when '11'
        if HaveFP16Ext() then
            datasize = 16;
        else
            UNDEFINED;

Assembler symbols

<Di> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Di> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operand1 = FPNeg(operand1);
result = FPMulAdd(operanda, operand1, operand2, FPCR);
V[d] = result;
```
C7.2.134 FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

ARMv8.2

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 16][15 14 13 12][11 10 9][5 4][0]
0 1 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
```

Scalar, half-precision variant

FMUL <Hd>, <Hm>, <Vm>.H[<index>]

Decode for this encoding

```c
if (!HaveFP16Ext()) then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

type esize = 16;
type datatype = esize;
type elements = 1;
bool mulx_op = (U == '1');
```

Scalar, single-precision and double-precision

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 16][15 14 13 12][11 10 9][5 4][0]
0 1 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
```

Scalar, single-precision and double-precision variant

FMUL <V>d>, <V>m>, <Vm>.<Ts>[<index>]

Decode for this encoding

```c
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
 when '11' UNDEFINED;

integer d = UInt(Rd);
```
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Vector, half-precision
ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vector, half-precision variant

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>sz</td>
</tr>
</tbody>
</table>

Vector, single-precision and double-precision variant

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bite Rmhi = M;
case sz:L of
  when '0x' index = UInt(H:L);
  when '10' index = UInt(H);
  when '11' UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

**Assembler symbols**

- `<Hd>` is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<V>` is a width specifier, encoded in the "sz" field. It can have the following values:
  - `S` when `sz = 0`
  - `D` when `sz = 1`
- `<d>` is the number of the SIMD&FP destination register, encoded in the "Rd" field.
- `<n>` is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` for the vector, half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - `4H` when `Q = 0`
  - `8H` when `Q = 1`
  For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:
    - `2S` when `Q = 0, sz = 0`
    - `4S` when `Q = 1, sz = 0`
    - `2D` when `Q = 1, sz = 1`
  The encoding `Q = 0, sz = 1` is reserved.
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` for the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.
  For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
- `<Ts>` is an element size specifier, encoded in the "sz" field. It can have the following values:
  - `S` when `sz = 0`
  - `D` when `sz = 1`
- `<index>` for the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.
  For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H" field. It can have the following values:
    - `H:L` when `sz = 0, L = x`
    - `H` when `sz = 1, L = 0`
  The encoding `sz = 1, L = 1` is reserved.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  if mulx_op then
    Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
  else
    Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;
C7.2.135 FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision variant

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when $Q = 0$
- 8H when $Q = 1$

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when $sz = 0, Q = 0$
- 4S when $sz = 0, Q = 1$
- 2D when $sz = 1, Q = 1$

The encoding $sz = 1, Q = 0$ is reserved.

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;
```
C7.2.136  FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FMUL <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FMUL <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FMUL <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize;
case ftype of
  when '00' datasize = 32;
  when '01' datasize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      datasize = 16;
    else
      UNDEFINED;

Assembler symbols

<Dd> is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm>  Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd>  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn>  Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm>  Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bias(datasize) result;
bias(datasize) operand1 = V[n];
bias(datasize) operand2 = V[m];

result = FPMul(operand1, operand2, FPCR);

V[d] = result;
C7.2.137  FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector elements in the first source SIMD&FP register by the specified floating-point value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar, half-precision

ARMv8.2

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd U
```

Scalar, half-precision variant

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

Decode for this encoding

```c
if !HaveFP16Ext() then UNDEFINED;
integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);
```

Scalar, single-precision and double-precision

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 1 1 1 1 1 1 L M Rm 1 0 0 1 H 0 Rn Rd U
```

Scalar, single-precision and double-precision variant

FMULX <V<n>, <V<m>, <Vm>.<Ts>[<index>]

Decode for this encoding

```c
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
 when '0x' index = UInt(H:L);
 when '10' index = UInt(H);
```
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Vector, half-precision

ARMv8.2

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer idxdsze = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsze = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
  when '0x' index = UInt(H:L);
  when '10' index = UInt(H);
  when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulp_op = (U == '1');

**Assembler symbols**

<Hp> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
   S when sz = 0
   D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   4H when Q = 0
   8H when Q = 1

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in the "Q:sz" field. It can have the following values:
   2S when Q = 0, sz = 0
   4S when Q = 1, sz = 0
   2D when Q = 1, sz = 1

The encoding Q = 0, sz = 1 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Vs> Is an element size specifier, encoded in the "sz" field. It can have the following values:
   S when sz = 0
   D when sz = 1

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in the "sz:L:H" field. It can have the following values:
   H:L when sz = 0, L = x
   H when sz = 1, L = 0

The encoding sz = 1, L = 1 is reserved.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxsdata) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    if mulx_op then
        Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
    else
        Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;
C7.2.138  **FMULX**

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of the two source SIMD&FP registers, places the resulting floating-point values in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative, otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see *Floating-point exceptions and exception traps* on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar half precision**

ARMv8.2

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0 1 0 1 1 1 1 0 0 1 0 | Rm 0 0 0 1 1 | Rn | Rd
```

**Scalar half precision variant**

FMULX <Hd>, <Hn>, <Hm>

*Decode for this encoding*

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

**Scalar single-precision and double-precision**

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 | 0 1 0 1 1 1 0 0 0 1 0 | Rm 1 1 0 1 1 | Rn | Rd
```

**Scalar single-precision and double-precision variant**

FMULX <V<d>, <V<n>, <V<m>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

**Vector half precision**

ARMv8.2
Vector half precision variant

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Vector single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

**Assembler symbols**

- `<Hd>` Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Hm>` Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
- `<V>` Is a width specifier, encoded in the "sz" field. It can have the following values:
  - `S` when `sz = 0`
  - `D` when `sz = 1`
- `<d>` Is the number of the SIMD&FP destination register, in the "Rd" field.
- `<n>` Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- `<m>` Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
- 8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
b bits(datasize) operand1 = V[n];
b bits(datasize) operand2 = V[m];
b bits(datasize) result;
b bits(esize) element1;
b bits(esize) element2;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
V[d] = result;
```
C7.2.139  FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

ARMv8.2

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
U
```

**Half-precision variant**

FNEG <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```c
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');
```

**Single-precision and double-precision**

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | 1 | sz | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
U
```

**Single-precision and double-precision variant**

FNEG <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');
```

**Assembler symbols**

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H  when Q = 0
For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- **2S** when \( sz = 0, Q = 0 \)
- **4S** when \( sz = 0, Q = 1 \)
- **2D** when \( sz = 1, Q = 1 \)

The encoding \( sz = 1, Q = 0 \) is reserved.

\(<Vn>\) is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 if neg then
 element = FPNeg(element);
 else
 element = FPAbs(element);
 Elem[result, e, esize] = element;
V[d] = result;
```
C7.2.140   FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FNEG <Hd>, <Hn>

Single-precision variant
Applies when ftype == 00.
FNEG <Sd>, <Sn>

Double-precision variant
Applies when ftype == 01.
FNEG <Dd>, <Dn>

Decode for all variants of this encoding
integer d =UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
    when '10' UNDEFINED;
    when '11'
        if HaveFP16Ext() then
datasize = 16;
        else
UNDEFINED;

Assembler symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPNeg(operand);
V[d] = result;
C7.2.141 FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, negates the product, subtracts the value of the third SIMD&FP source register, and
writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant
Applies when ftype == 00.

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant
Applies when ftype == 01.

FNMADD <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
  when '00' datasize = 32;
  when '01' datasize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
dataSize = 16;
    else
      UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the
"Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operanda = FPNeg(operanda);
operand1 = FPNeg(operand1);
result = FPMulAdd(operanda, operand1, operand2, FPCR);
V[d] = result;
```
C7.2.142 FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, subtracts the value of the third SIMD&FP source register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when ftype == 11.
FNMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision variant
Applies when ftype == 00.
FNMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision variant
Applies when ftype == 01.
FNMSUB <Dd>, <Dn>, <Dm>, <Da>

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer a = UInt(Ra);
integer n =UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
when '00' datasize =32;
when '01' datasize =64;
when '10' UNDEFINED;
when '11'
 if HaveFP16Ext() then
datasize =16;
 else
 UNDEFINED;
end;
```

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operand = FPNeg(operand);
result = FPMulAdd(operand, operand1, operand2, FPCR);
V[d] = result;
```
C7.2.143 FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes the negation of the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

 decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
if HaveFP16Ext() then
datasize = 16;
else
UNDEFINED;

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bias(datasize) result;
bias(datasize) operand1 = V[n];
bias(datasize) operand2 = V[m];

result = FPMul(operand1, operand2, FPCR);

result = FPNeg(result);

V[d] = result;
```
C7.2.144   FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 1 0 | 1 1 1 0 0 | 1 1 0 1 0 | 0 |
```

Rd  Rn

Scalar half precision variant

FRECPE <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 1 0 | sz 1 0 0 0 | 1 1 1 0 1 | 1 0 |
```

Rd  Rn

Scalar single-precision and double-precision variant

FRECPE <V><d>, <V><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision

ARMv8.2
Vector half precision variant
FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding
if !HaveFP16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

Vector single-precision and double-precision variant
FRECPE <Vd>.<T>, <Vn>.<T>

Decode for this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hz> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
  S when sz = 0
  D when sz = 1
<db> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<dn> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<tn> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  4H when Q = 0
  8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- \texttt{2S} when \( sz = 0, Q = 0 \)
- \texttt{4S} when \( sz = 0, Q = 1 \)
- \texttt{2D} when \( sz = 1, Q = 1 \)

The encoding \( sz = 1, Q = 0 \) is reserved.

<Long> \texttt{Vn} \end{Long} is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = \texttt{V}[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
 element = \texttt{Elem}[operand, e, esize];
 \texttt{Elem}[result, e, esize] = \texttt{FPRecipEstimate}(element, FPCR);

\texttt{V}[d] = result;
```
C7.2.145 FRECPS

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the vectors of the two source SIMD&FP registers, subtracts each of the products from 2.0, places the resulting floating-point values in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar half precision**

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Scalar half precision variant**

FRECPS <Hd>, <Hn>, <Hm>

*Decode for this encoding*

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

**Scalar single-precision and double-precision**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>sz</td>
</tr>
</tbody>
</table>

**Scalar single-precision and double-precision variant**

FRECPS <V<d>, <V<n>, <V<m>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

**Vector half precision**

ARMv8.2
Vector half precision variant

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

.Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

<table>
<thead>
<tr>
<th>V</th>
<th>when sz = 0</th>
<th>when sz = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<id> Is the number of the SIMD&FP destination register, in the "Rd" field.

<in> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<im> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
- 8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, esize] = FPRecipStepFused(element1, element2);

V[d] = result;
```
C7.2.146 FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for each vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Half-precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>1 1 1 1 0 0</td>
<td>1 1 1 1 1</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

### Half-precision variant

FRECPX <Hd>, <Hn>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

### Single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0</td>
<td>0 1</td>
<td>sz</td>
<td>0 0 0</td>
<td>0 1 1 1 1</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

### Single-precision and double-precision variant

FRECPX <Vd>, <Vn>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

### Assembler symbols

- `<Hd>` is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Hn>` is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
S when sz = 0
D when sz = 1
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPRcpX(element, FPCR);

V[d] = result;
C7.2.147  FRINT32X (vector)

Floating-point Round to 32-bit Integer, using current rounding mode (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the instruction returns for the corresponding result value the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

Vector single-precision and double-precision variant

FRINT32X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S  when sz = 0, Q = 0
4S  when sz = 0, Q = 1
2D  when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

V[d] = result;
C7.2.148    FRINT32X (scalar)

Floating-point Round to 32-bit Integer, using current rounding mode (scalar). This instruction rounds a
floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer
size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination
register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for
the corresponding result value} the most negative integer representable in the destination size, and an Invalid
Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

Single-precision variant

Applies when ftype == 00.
FRINT32X <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.
FRINT32X <Dd>, <Dn>

Decode for all variants of this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = Uint(Rd);
integer n = Uint(Rn);

integer datasize;

case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
    when '1x' UNDEFINED;

FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd>    Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sd>    Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn>    Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sn>    Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundIntN(operand, FPCR, rounding, 32);

V[d] = result;
C7.2.149   FRINT32Z (vector)

Floating-point Round to 32-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the instruction returns for the corresponding result value the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

Vector single-precision and double-precision variant

FRINT32Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>  Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
    2S  when sz = 0, Q = 0
    4S  when sz = 0, Q = 1
    2D  when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);
V[d] = result;
C7.2.150  FRINT32Z (scalar)
Floating-point Round to 32-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the corresponding input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

Single-precision variant
Applies when $ftype == 00$.

FRINT32Z <Sd>, <Sn>

Double-precision variant
Applies when $ftype == 01$.

FRINT32Z <Dd>, <Dn>

Decode for all variants of this encoding
if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case $ftype$ of
  when '00' datasize = 32;
  when '01' datasize = 64;
  when '1x' UNDEFINED;

Assembler symbols

$<Dd>$  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
$<Dn>$  Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
$<Sd>$  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
$<Sn>$  Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundIntN(operand, FPCR, FPRounding_ZERO, 32);

V[d] = result;
C7.2.151 FRINT64X (vector)

Floating-point Round to 64-bit Integer, using current rounding mode (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the instruction returns for the corresponding result value the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

Vector single-precision and double-precision variant

FRINT64X <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.
<Vn> is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

V[d] = result;
C7.2.152  FRINT64X (scalar)

Floating-point Round to 64-bit Integer, using current rounding mode (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for the corresponding result value} the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 18 17 16]</th>
<th>[15 14 13 12]</th>
<th>[11 10 9 ]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 1 0 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Single-precision variant**

Applies when ftype == 00.

FRINT64X <Sd>, <Sn>

**Double-precision variant**

Applies when ftype == 01.

FRINT64X <Dd>, <Dn>

**Decode for all variants of this encoding**

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
    when '1x' UNDEFINED;

    FPRounding rounding = FPRoundingMode(FPCR);

**Assembler symbols**

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundIntN(operand, FPCR, rounding, 64);

V[d] = result;
C7.2.153   FRINT64Z (vector)

Floating-point Round to 64-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the instruction returns for the corresponding result value the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

vector single-precision and double-precision variant

FRINT64Z <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
b bits(datasize) operand = V[n];
b bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundIntN(element, FPCR, rounding, intsize);

V[d] = result;
C7.2.154   FRINT64Z (scalar)

Floating-point Round to 64-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input returns a zero result with the same sign. When the result value is not numerically equal to the corresponding input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns for the corresponding result value the most negative integer representable in the destination size, and an Invalid Operation floating-point exception is raised.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

ARMv8.5

<table>
<thead>
<tr>
<th>[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 1 1 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Single-precision variant

Applies when ftype == 00.
FRINT64Z <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.
FRINT64Z <Dd>, <Dn>

Decode for all variants of this encoding

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
    when '00' datasize = 32;
    when '01' datasize = 64;
    when '1x' UNDEFINED;

Assembler symbols

<Do> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Do> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundIntN(operand, FPCR, FPRounding.ZERO, 64);

V[d] = result;
C7.2.155   FRINTA (vector)

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Half-precision variant**

FRINTA <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '001' rounding = FPRounding_TIEAWAY;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);

**Single-precision and double-precision**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Single-precision and double-precision variant**

FRINTA <Vd>.<T>, <Vn>.<T>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FPDecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  4H when Q = 0
  8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
  2S when sz = 0, Q = 0
  4S when sz = 0, Q = 1
  2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;
C7.2.156   FRINTA (scalar)

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest with Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ftype</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rd</td>
</tr>
<tr>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Half-precision variant**

Applies when ftype == 11.

FRINTA <Hd>, <Hn>

**Single-precision variant**

Applies when ftype == 00.

FRINTA <Sd>, <Sn>

**Double-precision variant**

Applies when ftype == 01.

FRINTA <Dd>, <Dn>

**Decode for all variants of this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
  when '00' datasize = 32;
  when '01' datasize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
datasize = 16;
    else
      UNDEFINED;

**Assembler symbols**

<Db>       Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Db>       Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Db>       Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```c
CheckFPAvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, FPRounding_TIEAWAY, FALSE);
V[d] = result;
```
C7.2.157 FRINTI (vector)

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision variant

FRINTI <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FPDecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FRINTI <Vd>.<T>, <Vn>.<T>
**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);
```

**Assembler symbols**

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` for the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 4H when Q = 0
  - 8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

- `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;
```
C7.2.158   FRINTI (scalar)

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

\[
| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 18 17 | 16 15 14 13 12 11 10 9 | 5 4 | 0 |
0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 | Rn | Rd |
\]

**Half-precision variant**

Applies when ftype == 11.
FRINTI <Hd>, <Hn>

**Single-precision variant**

Applies when ftype == 00.
FRINTI <Sd>, <Sn>

**Double-precision variant**

Applies when ftype == 01.
FRINTI <Dd>, <Dn>

**Decode for all variants of this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
  when '00' datasize = 32;
  when '01' datasize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
datasize = 16;
    else
      UNDEFINED;
  FPRounding rounding;
  rounding = FPRoundingMode(FPCR);

**Assembler symbols**

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;
C7.2.159    FRINTM (vector)

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Half-precision**

**ARMv8.2**

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 Q 0 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 | Rn | Rd |

Half-precision variant

FRINTM <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 Q 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 | Rn | Rd |
```

Single-precision and double-precision variant

FRINTM <Vd>.<T>, <Vn>.<T>
Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FP DecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 4H when Q = 0
 - 8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

- `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;
```
C7.2.160 FRINTM (scalar)

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the Round towards Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTM <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTM <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTM <Dd>, <Dn>

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);

 integer datasize;
 case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 datasize = 16;
 else
 UNDEFINED;
 end;

 FPRounding rounding;
 rounding = FPDecodeRounding('10');

Assembler symbols

<DD> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Rn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];
result = FPRoundInt(operand, FPCR, rounding, FALSE);
V[d] = result;
```
FRINTN (vector)

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0														
0	Q	0	1	1	1	0	0	1	1	1	0	0	1	1	0	0	0	1	0	Rn	Rd

Half-precision variant

FRINTN <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '000' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9	5 4	0														
0	Q	0	1	1	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	Rn	Rd

Single-precision and double-precision variant

FRINTN <Vd>.<T>, <Vn>.<T>
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
 8H when Q = 1
For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
 2S when sz = 0, Q = 0
 4S when sz = 0, Q = 1
 2D when sz = 1, Q = 1
The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);
V[d] = result;
C7.2.162 FRINTN (scalar)

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTN <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTN <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTN <Dd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
dataize = 16;
 else
 UNDEFINED;
 FPRounding rounding;
 rounding = FPDecodeRounding('00');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
b bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;
C7.2.163 FRINTP (vector)

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Half-precision variant

FRINTP <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datatype = if Q == '1' then 128 else 64;
integer elements = datatype DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FRINTP <Vd>.<T>, <Vn>.<T>
Decode for this encoding

```cpp
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FPDecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);
```

Assembler symbols

`<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

`<T>` For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- `4H` when Q = 0
- `8H` when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- `2S` when sz = 0, Q = 0
- `4S` when sz = 0, Q = 1
- `2D` when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

`<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```cpp
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;
```
C7.2.164 FRINTP (scalar)

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTP <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTP <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTP <Dd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
datasize = 16;
 else
 UNDEFINED;
 end if

FPRounding rounding;
rounding = FPDekodeRounding('01');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;
C7.2.165 FRINTX (vector)

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When a result value is not numerically equal to the corresponding input value, an Inexact exception is raised. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN
is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q O1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U o2 o1

Half-precision variant

FRINTX <Vd:.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0xx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q O1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U o2 o1

Single-precision and double-precision variant

FRINTX <Vd:.<T>, <Vn>.<T>
Decode for this encoding

```plaintext
decimal d = UInt(Rd);
decimal n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
decimal esize = 32 << UInt(sz);
decimal datasize = if Q == '1' then 128 else 64;
decimal elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FPDecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;
```
C7.2.166 FRINTX (scalar)

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.

When the result value is not numerically equal to the input value, an Inexact exception is raised. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.
FRINTX <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.
FRINTX <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.
FRINTX <Dd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case ftype of
 when '00' datasize = 32;
 when '01' datasize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
dataize = 16;
 else
 UNDEFINED;
 end
 FPRounding rounding;
 rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, TRUE);

V[d] = result;
```
C7.2.167 FRINTZ (vector)

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|0 Q 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn | Rd |

U  o2 o1
```

Half-precision variant

FRINTZ <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
 when '0bx' rounding = FPDecodeRounding(o1:o2);
 when '100' rounding = FPRounding_TIEAWAY;
 when '101' UNDEFINED;
 when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
 when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|0 Q 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 Rn | Rd |

U  o2 o1
```

Single-precision and double-precision variant

FRINTZ <Vd>.<T>, <Vn>.<T>
Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of
  when '0xx' rounding = FPDecodeRounding(o1:o2);
  when '100' rounding = FPRounding_TIEAWAY;
  when '101' UNDEFINED;
  when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
  when '111' rounding = FPRoundingMode(FPCR);
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 4H when Q = 0
 - 8H when Q = 1
 For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
 - 2S when sz = 0, Q = 0
 - 4S when sz = 0, Q = 1
 - 2D when sz = 1, Q = 1
 The encoding sz = 1, Q = 0 is reserved.
- `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);
V[d] = result;
```
C7.2.168 FRINTZ (scalar)

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an integral floating-point value of the same size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FRINTZ <Hd>, <Hn>

Single-precision variant

Applies when ftype == 00.

FRINTZ <Sd>, <Sn>

Double-precision variant

Applies when ftype == 01.

FRINTZ <Dd>, <Dn>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;

case ftype of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
if HaveFP16Ext() then
datasize = 16;
else
UNDEFINED;

FPScaling rounding;
rounding = FPDetectRounding('11');

Assembler symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];
result = FPRoundInt(operand, FPCR, rounding, FALSE);
V[d] = result;
```
C7.2.169 FRSQRTE

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root for each vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 1 1 1 1 1 0 1 | 1 1 1 1 0 0 1 1 1 0 1 1 0 | Rn | Rd |

Scalar half precision variant

FRSQRTE <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 1 1 1 1 1 0 1 | 1 0 0 0 0 1 1 1 0 1 1 0 | Rn | Rd |

Scalar single-precision and double-precision variant

FRSQRTE <V><d>, <V><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision

ARMv8.2
Vector half precision variant

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = Uint(Rd);
integer n = Uint(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

Both the vector half precision and single-precision and double-precision variants of the FRSQRTE instruction are defined in this section. The differences lie in the encoding of the data size and the arrangement specifier.

Vector single-precision and double-precision variant

FRSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = Uint(Rd);
integer n = Uint(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << Uint(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<t> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>sz</th>
<th>Q</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2S</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>4S</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2D</td>
</tr>
</tbody>
</table>

The encoding \(sz = 1, Q = 0 \) is reserved.

\(<Vn>\) is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = FPRSqrtEstimate(element, FPCR);

V[d] = result;
```
C7.2.170 FRSQRTS

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point values in the vectors of the two source SIMD&FP registers, subtracts each of the products from 3.0, divides these results by 2.0, places the results into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

![Encoding](image)

Scalar half precision variant

FRSQRTS <Hd>, <Hn>, <Hm>

Decode for this encoding

```plaintext
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
```

Scalar single-precision and double-precision

![Encoding](image)

Scalar single-precision and double-precision variant

FRSQRTS <V><d>, <V><n>, <V><m>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
```

Vector half precision

ARMv8.2
Vector half precision variant

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
 S when sz = 0
 D when sz = 1
<db> Is the number of the SIMD&FP destination register, in the "Rd" field.
<dn> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<dm> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
- 8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    Elem[result, e, esize] = FPRSqrtStepFused(element1, element2);
V[d] = result;
```
C7.2.171 FSQRT (vector)

Floating-point Square Root (vector). This instruction calculates the square root for each vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Half-precision variant

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Single-precision and double-precision

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Single-precision and double-precision variant

FSQRT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when Q = 0
- 8H when Q = 1

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when sz = 0, Q = 0
- 4S when sz = 0, Q = 1
- 2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FPSqrt(element, FPCR);

V[d] = result;
```
C7.2.172 FSQRT (scalar)

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD&FP source register and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant
Applies when \(ftype = 11 \).

FSQRT \(<Hd>, <Hn>\)

Single-precision variant
Applies when \(ftype = 00 \).

FSQRT \(<Sd>, <Sn>\)

Double-precision variant
Applies when \(ftype = 01 \).

FSQRT \(<Dd>, <Dn>\)

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
\( \text{case } ftype \text{ of} \)
\( \quad \text{when '00' } \text{datasize} = 32; \)
\( \quad \text{when '01' } \text{datasize} = 64; \)
\( \quad \text{when '10' UNDEFINED;} \)
\( \quad \text{when '11'} \)
\( \quad \quad \text{if HaveFP16Ext()} \text{ then} \)
\( \quad \quad \quad \text{datasize} = 16; \)
\( \quad \quad \text{else} \)
\( \quad \quad \quad \text{UNDEFINED;} \)
```

Assembler symbols

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<Dn>\) Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

\(<Hd>\) Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<Hn>\) Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

\(<Sd>\) Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<s>n</s> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPSqrt(operand, FPCR);
V[d] = result;
```
C7.2.173 FSUB (vector)

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second source
SIMD&FP register, from the corresponding elements in the vector in the first source SIMD&FP register, places each
result into elements of a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results
in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Half-precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision variant

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer data-size = if Q == '1' then 128 else 64;
integer elements = data-size DIV esize;
boolean abs = (U == '1');

Single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Single-precision and double-precision variant

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer data-size = if Q == '1' then 128 else 64;
integer elements = data-size DIV esize;
boolean abs = (U == '1');
Assembler symbols

<\textit{Vd}> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<\textit{T}> For the half-precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 4H when \(Q = 0 \)
- 8H when \(Q = 1 \)

For the single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

- 2S when \(sz = 0, Q = 0 \)
- 4S when \(sz = 0, Q = 1 \)
- 2D when \(sz = 1, Q = 1 \)

The encoding \(sz = 1, Q = 0 \) is reserved.

<\textit{Vn}> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\textit{Vm}> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) diff;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 diff = FPSub(element1, element2, FPCR);
 Elem[result, e, esize] = if abs then FPAbs(diff) else diff;
V[d] = result;
\end{verbatim}
C7.2.174 FSUB (scalar)

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source SIMD&FP register from the floating-point value of the first source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Half-precision variant

Applies when ftype == 11.

FSUB <Hd>, <Hn>, <Hm>

Single-precision variant

Applies when ftype == 00.

FSUB <Sd>, <Sn>, <Sm>

Double-precision variant

Applies when ftype == 01.

FSUB <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
switch ftype of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'
    if HaveFP16Ext() then
datasize = 16;
    else
        UNDEFINED;
```

Assembler symbols

- <Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
- <Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
- <Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
- <Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPSub(operand1, operand2, FPCR);
V[d] = result;
C7.2.175 **INS (element)**

Insert vector element from another vector element. This instruction copies the vector element of the source SIMD&FP register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias **MOV (element)**. The alias is always the preferred disassembly.

Advanced SIMD variant

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer dst_index = UInt(imm5<4:size+1>);
integer src_index = UInt(imm4<3:size>);
integer idxdsizes = if imm4<3> == '1' then 128 else 64;
// imm4<size-1:0> is IGNORED

integer esize = 8 << size;
```

Assembler symbols

- **<Vd>** Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- **<Ts>** Is an element size specifier, encoded in the "imm5" field. It can have the following values:
 - B when imm5 = xxxx1
 - H when imm5 = xxx10
 - S when imm5 = xx100
 - D when imm5 = x1000
 The encoding imm5 = x0000 is reserved.
- **<index1>** Is the destination element index encoded in the "imm5" field. It can have the following values:
 - imm5<4:3> when imm5 = xxxx1
 - imm5<4:2> when imm5 = xxx10
 - imm5<4:3> when imm5 = xx100
 - imm5<4> when imm5 = x1000
 The encoding imm5 = x0000 is reserved.
- **<Vn>** Is the name of the SIMD&FP source register, encoded in the "Rn" field.
```
<index2> Is the source element index encoded in the "imm5:imm4" field. It can have the following values:

- \(imm4<3:0>\) when \(imm5 = xxxx1\)
- \(imm4<3:1>\) when \(imm5 = xxx10\)
- \(imm4<3:2>\) when \(imm5 = xx100\)
- \(imm4<3>\) when \(imm5 = x1000\)

The encoding \(imm5 = x0000\) is reserved.

Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bhits(idxsize) operand = V[n];
bhits(128) result;

result = V[d];
Elem[result, dst_index, esize] = Elem[operand, src_index, esize];
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.176   INS (general)

Insert vector element from general-purpose register. This instruction copies the contents of the source
general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (from general). The alias is always the preferred disassembly.

Advanced SIMD variant

INS <Vd>.<Ts>[<index>], <R><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;

Assembler symbols

<Vd>     Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ts>     Is an element size specifier, encoded in the "imm5" field. It can have the following values:
        B when imm5 = xxxx1
        H when imm5 = xxx10
        S when imm5 = xx100
        D when imm5 = x1000
        The encoding imm5 = x0000 is reserved.
<index>  Is the element index encoded in the "imm5" field. It can have the following values:
        imm5<4:1> when imm5 = xxxx1
        imm5<4:2> when imm5 = xxx10
        imm5<4:3> when imm5 = xx100
        imm5<4> when imm5 = x1000
        The encoding imm5 = x0000 is reserved.
<R>      Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can
        have the following values:
        W when imm5 = xxxx1
        W when imm5 = xxx10
\[ W \] when \(\text{imm5} = \text{xx100}\)
\[ X \] when \(\text{imm5} = \text{x1000}\)

The encoding \(\text{imm5} = \text{x0000}\) is reserved.

The number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

**Operation**

\[
\text{CheckFPAdvSIMDEnabled64();}
\text{bits(\text{esize}) element} = \text{X}[n];
\text{bits(128) result;}
\]

\[
\text{result} = \text{V}[d];
\text{Elem[result, index, esize]} = \text{element};
\text{V}[d] = \text{result};
\]

**Operational information**

If \(\text{PSTATE.DIT}\) is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.177  LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple single-element structures from memory and writes the result to one, two, three, or four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

L  opcode

| 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | x  | x  | 1  | x  | size | Rn | Rt |

One register variant

 Applies when opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>]

Two registers variant

 Applies when opcode == 1010.

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers variant

 Applies when opcode == 0110.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers variant

 Applies when opcode == 0010.

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

L  opcode

| 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | x  | x  | 1  | x  | size | Rn | Rt |

One register, immediate offset variant

 Applies when Rm == 11111 && opcode == 0111.

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset variant

 Applies when Rm != 11111 && opcode == 0111.
LD1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

**Two registers, immediate offset variant**
Applies when \( Rm = 11111 \) \&\& \( \text{opcode} = 1010 \).

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

**Two registers, register offset variant**
Applies when \( Rm 
eq 11111 \) \&\& \( \text{opcode} = 1010 \).

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

**Three registers, immediate offset variant**
Applies when \( Rm = 11111 \) \&\& \( \text{opcode} = 0110 \).

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

**Three registers, register offset variant**
Applies when \( Rm 
eq 11111 \) \&\& \( \text{opcode} = 0110 \).

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

**Four registers, immediate offset variant**
Applies when \( Rm = 11111 \) \&\& \( \text{opcode} = 0010 \).

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

**Four registers, register offset variant**
Applies when \( Rm 
eq 11111 \) \&\& \( \text{opcode} = 0010 \).

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

**Decode for all variants of this encoding**

integer \( t = \text{UInt}(Rt) \);
integer \( n = \text{UInt}(Rn) \);
integer \( m = \text{UInt}(Rm) \);
boolean wback = TRUE;
boolean tag_checked = wback || n \neq 31;

**Assembler symbols**

\(<Vt>\) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- \( 8B \) when \( \text{size} = 00, Q = 0 \)
- \( 16B \) when \( \text{size} = 00, Q = 1 \)
- \( 4H \) when \( \text{size} = 01, Q = 0 \)
- \( 8H \) when \( \text{size} = 01, Q = 1 \)
- \( 2S \) when \( \text{size} = 10, Q = 0 \)
- \( 4S \) when \( \text{size} = 10, Q = 1 \)
- \( 1D \) when \( \text{size} = 11, Q = 0 \)
- \( 2D \) when \( \text{size} = 11, Q = 1 \)

\(<Vt2>\) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

\(<Vt3>\) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<Vt4>  Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm>  For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#8     when Q = 0
#16    when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16    when Q = 0
#32    when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24    when Q = 0
#48    when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32    when Q = 0
#64    when Q = 1

<Xm>   Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt;    // number of iterations
integer selem;    // structure elements

case opcode of
    when '0000' rpt = 1; selem = 4;    // LD/ST4 (4 registers)
    when '0010' rpt = 4; selem = 1;    // LD/ST1 (4 registers)
    when '0100' rpt = 1; selem = 3;    // LD/ST3 (3 registers)
    when '0110' rpt = 3; selem = 1;    // LD/ST1 (3 registers)
    when '0111' rpt = 1; selem = 1;    // LD/ST1 (1 register)
    when '1000' rpt = 1; selem = 2;    // LD/ST2 (2 registers)
    when '1010' rpt = 2; selem = 1;    // LD/ST1 (2 registers)
    otherwise UNDEFINED;

    // .1D format only permitted with LD1 & ST1
    if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);
if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

offs = Zeros();
for r = 0 to rpt-1
    for e = 0 to elements-1
        tt = (t + r) MOD 32;
        for s = 0 to selem-1
            rval = V[tt];
            if memop == MemOp_LOAD then
                Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
                V[tt] = rval;
            else // memop == MemOp_STORE
                Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
                offs = offs + ebytes;
        tt = (tt + 1) MOD 32;
    if wback then
        if m != 31 then
            offs = X[m];
        if n == 31 then
            SP[] = address + offs;
        else
            X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.178  LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure from memory and writes the result to the specified lane of the SIMD&FP register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant
Applies when opcode == 000.
LD1 { <Vt>.B }[<index>],[<Xn|SP>]

16-bit variant
Applies when opcode == 010 && size == x0.
LD1 { <Vt>.H }[<index>],[<Xn|SP>]

32-bit variant
Applies when opcode == 100 && size == 00.
LD1 { <Vt>.S }[<index>],[<Xn|SP>]

64-bit variant
Applies when opcode == 100 && S == 0 && size == 01.
LD1 { <Vt>.D }[<index>],[<Xn|SP>]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 000.
LD1 { <Vt>.B }[<index>],[<Xn|SP>], #1

8-bit, register offset variant
Applies when Rm != 11111 && opcode == 000.
LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

**16-bit, immediate offset variant**

Applies when \( Rm == 11111 \) \&\& \( \text{opcode} == 010 \) \&\& \( \text{size} == 00 \).

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2

**16-bit, register offset variant**

Applies when \( Rm != 11111 \) \&\& \( \text{opcode} == 010 \) \&\& \( \text{size} == 00 \).

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

**32-bit, immediate offset variant**

Applies when \( Rm == 11111 \) \&\& \( \text{opcode} == 100 \) \&\& \( \text{size} == 00 \).

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4

**32-bit, register offset variant**

Applies when \( Rm != 11111 \) \&\& \( \text{opcode} == 100 \) \&\& \( \text{size} == 00 \).

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

**64-bit, immediate offset variant**

Applies when \( Rm == 11111 \) \&\& \( \text{opcode} == 100 \) \&\& \( S == 0 \) \&\& \( \text{size} == 01 \).

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8

**64-bit, register offset variant**

Applies when \( Rm != 11111 \) \&\& \( \text{opcode} == 100 \) \&\& \( S == 0 \) \&\& \( \text{size} == 01 \).

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{integer } t &= \text{UInt}(Rt); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{boolean } wback &= \text{TRUE}; \\
\text{boolean } tag\_checked &= wback \text{ || } n != 31;
\end{align*}
\]

**Assembler symbols**

- `<Vt>` Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
- `<index>` For the 8-bit variant: is the element index, encoded in "Q:S:size".
  For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
  For the 32-bit variant: is the element index, encoded in "Q:S".
  For the 64-bit variant: is the element index, encoded in "Q".
- `<Xn|SP>` Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
- `<Xm>` Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

**Shared decode for all encodings**

\[
\begin{align*}
\text{integer } scale &= \text{UInt}(%opcode<2:1>); \\
\text{integer } selem &= \text{UInt}(%opcode<0>:R) + 1; \\
\text{boolean } replicate &= \text{FALSE};
\end{align*}
\]
integer index;

case scale of
    when 3
        // load and replicate
        if L == '0' || S == '1' then UNDEFINED;
        scale = UInt(size);
        replicate = TRUE;
    when 0
        index = UInt(Q:S:size); // B[0-15]
    when 1
        if size<0> == '1' then UNDEFINED;
        index = UInt(Q:S:size<1>); // H[0-7]
    when 2
        if size<1> == '1' then UNDEFINED;
        if size<0> == '0' then
            index = UInt(Q:S); // S[0-3]
        else
            if S == '1' then UNDEFINED;
            index = UInt(Q); // D[0-1]
            scale = 3;
    else
        MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
        integer datasize = if Q == '1' then 128 else 64;
        integer esize = 8 << scale;

    Operation for all encodings
    if HaveMTEExt() then
        SetTagCheckedInstruction(tag_checked);
    CheckFPAdvSIMDEnabled64();

    bits(64) address;
    bits(64) offs;
    bits(128) rval;
    bits(esize) element;
    constant integer ebytes = esize DIV 8;
    if n == 31 then
        CheckSPAlignment();
        address = SP[];
    else
        address = X[n];
    offs = Zeros();
    if replicate then
        // load and replicate to all elements
        for s = 0 to selem-1
            element = Mem[address+offs, ebytes, AccType_VEC];
            // replicate to fill 128- or 64-bit register
            V[t] = Replicate(element, datasize DIV esize);
            offs = offs + ebytes;
            t = (t + 1) MOD 32;
    else
        // load/store one element per register
        for s = 0 to selem-1
            rval = V[t];
            if memop == MemOp_LOAD then
                // insert into one lane of 128-bit register
                Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
                V[t] = rval;
            else // memop == MemOp_STORE
                // extract from one lane of 128-bit register
                Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
                offs = offs + ebytes;
                t = (t + 1) MOD 32;
if wback then
    if m != 31 then
        offs = X[m];
    if n == 31 then
        SP[] = address + offs;
    else
        X[n] = address + offs;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.179   LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element structure from memory and replicates the structure to all the lanes of the SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**No offset**

![Instruction Format Diagram](image)

### No offset variant

LD1R { <Vt>.<T> }, [<Xn|SP>]

#### Decode for this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

#### Post-index

![Instruction Format Diagram](image)

### Immediate offset variant

Applies when Rm == 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <imm>

### Register offset variant

Applies when Rm != 11111.

LD1R { <Vt>.<T> }, [<Xn|SP>], <Xm>

#### Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

### Assembler symbols

**<Vt>**

Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

**<T>**

Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **8B** when size = 00, Q = 0
- **16B** when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
1D when size = 11, Q = 0
2D when size = 11, Q = 1

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:
#1 when size = 00
#2 when size = 01
#4 when size = 10
#8 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selm = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
  when 3
    // load and replicate
    if L == '0' || S == '1' then UNDEFINED;
    scale = UInt(size);
    replicate = TRUE;
  when 0
    index = UInt(Q:S:size);    // B[0-15]
  when 1
    if size<0> == '1' then UNDEFINED;
    index = UInt(Q:S:size<1>);    // H[0-7]
  when 2
    if size<1> == '1' then UNDEFINED;
    if size<0> == '0' then
      index = UInt(Q:S);    // S[0-3]
    else
      if S == '1' then UNDEFINED;
      index = UInt(Q);    // D[0-1]
      scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;
if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];
offs = Zeros();
if replicate then
  // load and replicate to all elements
  for s = 0 to selem-1
    element = Mem[address+offs, ebytes, AccType_VEC];
    // replicate to fill 128- or 64-bit register
    V[t] = Replicate(element, datasize DIV esize);
    offs = offs + ebytes;
    t = (t + 1) MOD 32;
else
  // load/store one element per register
  for s = 0 to selem-1
    rval = V[t];
    if memop == MemOp_LOAD then
      // insert into one lane of 128-bit register
      Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
      V[t] = rval;
    else // memop == MemOp_STORE
      // extract from one lane of 128-bit register
      Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
      offs = offs + ebytes;
      t = (t + 1) MOD 32;
if wback then
  if m != 31 then
    offs = X[m];
  if n == 31 then
    SP[] = address + offs;
  else
    X[n] = address + offs;

Operational information
If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.180  LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from
memory and writes the result to the two SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 0 1 1 0 0 0</td>
<td>1 0 0 0 0 0 0 1</td>
<td>0 0 0</td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

**No offset variant**

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

**Decode for this encoding**

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

**Post-index**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 0 1 1 0 0 1</td>
<td>1 0</td>
<td>0 0</td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

**Immediate offset variant**

Applies when Rm == 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

**Register offset variant**

Applies when Rm != 11111.

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

**Decode for all variants of this encoding**

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

**Assembler symbols**

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

| 8B | when size = 00, Q = 0 |
16B  when size = 00, Q = 1
4H   when size = 01, Q = 0
8H   when size = 01, Q = 1
2S   when size = 10, Q = 0
4S   when size = 10, Q = 1
2D   when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:
#16  when Q = 0
#32  when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt;  // number of iterations
integer selem;  // structure elements

case opcode of
when '0000' rpt = 1; selem = 4;  // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1;  // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3;  // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1;  // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1;  // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2;  // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1;  // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];
offs = Zeros();
for r = 0 to rpt-1
    for e = 0 to elements-1
        tt = (t + r) MOD 32;
        for s = 0 to selem-1
            rval = V[tt];
            if memop == MemOp_LOAD then
                Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
                V[tt] = rval;
            else // memop == MemOp_STORE
                Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
                offs = offs + ebytes;
                tt = (tt + 1) MOD 32;
        end for
        if wbac then
            if m != 31 then
                offs = X[m];
            end if
            if n == 31 then
                SP[] = address + offs;
            else
                X[n] = address + offs;
            end if
        end if
    end for
end for

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.181  LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from memory and writes the result to the corresponding elements of the two SIMD&FP registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

\[
\begin{array}{ccccccccccccccc}
0 & Q & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & x & x & 0 & S & size & Rn & Rt
\end{array}
\]

L R opcode

8-bit variant

Applies when opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit variant

Applies when opcode == 010 && size == x0.

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 100 && size == 00.

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

\[
\begin{array}{cccccccccccccccc}
0 & Q & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & x & x & 0 & S & size & Rn & Rt
\end{array}
\]

L R opcode

8-bit, immediate offset variant

Applies when Rm == 11111 & opcode == 000.

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset variant

Applies when Rm != 11111 & opcode == 000.
LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 010 && size == x0.
LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset variant
Applies when Rm != 11111 && opcode == 010 && size == x0.
LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 100 && size == 00.
LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset variant
Applies when Rm != 11111 && opcode == 100 && size == 00.
LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.
LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset variant
Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.
LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
  when 3
    // load and replicate
    if L == '0' || S == '1' then UNDEFINED;
    scale = UInt(size);
    replicate = TRUE;
  when 0
    index = UInt(Q:S:size);    // B[0-15]
  when 1
    if size<0> == '1' then UNDEFINED;
    index = UInt(Q:S:size<1>);    // H[0-7]
  when 2
    if size<1> == '1' then UNDEFINED;
    if size<0> == '0' then
      index = UInt(Q:S);    // S[0-3]
    else
      if S == '1' then UNDEFINED;
      index = UInt(Q);    // D[0-1]
      scale = 3;

  MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datatype = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
  CheckSPAAlignment();
  address = SP[];
else
  address = X[n];

offs = Zeros();
if replicate then
  // load and replicate to all elements
  for s = 0 to selem-1
    element = Mem[address+offs, ebytes, AccType_VEC];
    // replicate to fill 128- or 64-bit register
    V[t] = Replicate(element, datatype DIV esize);
    offs = offs + ebytes;
    t = (t + 1) MOD 32;
  else
    // load/store one element per register
    for s = 0 to selem-1
      rval = V[t];
      if memop == MemOp_LOAD then
        // insert into one lane of 128-bit register
        Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
        V[t] = rval;'
else // memop == MemOp_STORE
    // extract from one lane of 128-bit register
    Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
    offs = offs + ebytes;
    t = (t + 1) MOD 32;

    if wback then
        if m != 31 then
            offs = X[m];
        if n == 31 then
            SP[] = address + offs;
        else
            X[n] = address + offs;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.182   LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element structure from memory and replicates the structure to all the lanes of the two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 13 12|11 10 9 | 5 4 | 0 |
| Q | 0 0 1 1 0 1 0 1 | 0 0 0 0 0 1 1 0 0 | size | Rn | Rt |

L R opcode S

No offset variant

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

|31 30 29 28|27 26 25 24|23 22 21 20|16|15 13 12|11 10 9 | 5 4 | 0 |
| Q | 0 0 1 1 0 1 1 | 1 1 0 0 | size | Rn | Rt |

L R opcode S

Immediate offset variant

Applies when Rm == 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
1D when size = 11, Q = 0
2D when size = 11, Q = 1

<VT2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:

  #2 when size = 00
  #4 when size = 01
  #8 when size = 10
  #16 when size = 11

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

**Shared decode for all encodings**

```c
integer scale = UInt(opcode<2:1>);
integer selen = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
 when 3
 // Load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings
```

```c
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
```
bits(size) element;
constant integer ebytes = size DIV 8;

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];
offs = Zeros();
if replicate then
    // load and replicate to all elements
    for s = 0 to selem-1
        element = Mem[address+offs, ebytes, AccType_VEC];
        // replicate to fill 128- or 64-bit register
        V[t] = Replicate(element, datasize DIV size);
        offs = offs + ebytes;
        t = (t + 1) MOD 32;
else
    // load/store one element per register
    for s = 0 to selem-1
        rval = V[t];
        if memop == MemOp_LOAD then
            // insert into one lane of 128-bit register
            Elem[rval, index, size] = Mem[address+offs, ebytes, AccType_VEC];
            V[t] = rval;
        else // memop == MemOp_STORE
            // extract from one lane of 128-bit register
            Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, size];
            offs = offs + ebytes;
            t = (t + 1) MOD 32;
if wbback then
    if m != 31 then
        offs = X[m];
    if n == 31 then
        SP[] = address + offs;
    else
        X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.183 LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from memory and writes the result to the three SIMD&FP registers, with de-interleaving.

The following figure shows the operation of de-interleaving of a LD3.16 (multiple 3-element structures) instruction:

![Diagram showing the operation of de-interleaving of a LD3.16 instruction]

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### No offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**L opcode**

#### No offset variant

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

**Decode for this encoding**

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

#### Post-index

| 31 30 29 28|27 26 25 24|23 22 21 20|16|15 |12|11|10|9 | 5 |4 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | size | Rn | Rt |

**L opcode**

#### Immediate offset variant

Applies when Rm == 11111.

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

#### Register offset variant

Applies when Rm != 11111.
LD3 { <Vt>,<T>, <Vt2>,<T>, <Vt3>,<T> }, [<Xn|SP>], <Xm>

**Decode for all variants of this encoding**

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

**Assembler symbols**

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:
- #24 when Q = 0
- #48 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

**Shared decode for all encodings**

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;
integer rpt;    // number of iterations
integer selem;    // structure elements

case opcode of
when '0000' rpt = 1; selem = 4;  // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1;  // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3;  // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1;  // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1;  // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2;  // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1;  // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;
Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n[;
offs = Zeros();
for r = 0 to rpt-1
  for e = 0 to elements-1
    tt = (t + r) MOD 32;
    for s = 0 to selem-1
      rval = V[tt];
      if memop == MemOp_LOAD then
        Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
        V[tt] = rval;
      else // memop == MemOp_STORE
        Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
        offs = offs + ebytes;
      tt = (tt + 1) MOD 32;
    if wback then
      if m != 31 then
        offs = X[m[;
      if n == 31 then
        SP[] = address + offs;
      else
        X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.184   LD3 (single structure)

Load single 3-element structure to one lane of three registers. This instruction loads a 3-element structure from
memory and writes the result to the corresponding elements of the three SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

\[
\begin{array}{cccccccccccccc}
\text{L} & \text{R} & \text{opcode} & \text{Rn} & \text{Rt} & \hline \\
\end{array}
\]

8-bit variant

Applies when opcode == 001.


16-bit variant

Applies when opcode == 011 && size == x0.

LD3 \{ <Vt>.H, <Vt2>.H, <Vt3>.H \} [<index>], [<Xn|5P>]

32-bit variant

Applies when opcode == 101 && size == 00.

LD3 \{ <Vt>.S, <Vt2>.S, <Vt3>.S \} [<index>], [<Xn|5P>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

LD3 \{ <Vt>.D, <Vt2>.D, <Vt3>.D \} [<index>], [<Xn|5P>]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } t &= \text{UInt}(Rt); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{integer UNKNOWN}; \\
\text{boolean } wback &= \text{FALSE}; \\
\text{boolean } tag\_checked &= wback \| n != 31;
\end{align*}
\]

Post-index

\[
\begin{array}{cccccccccccccc}
\text{L} & \text{R} & \text{opcode} & \text{Rm} & \text{Rn} & \text{Rt} & \hline \\
\end{array}
\]

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

LD3 \{ <Vt>.B, <Vt2>.B, <Vt3>.B \} [<index>], [<Xn|5P>], #3

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.
LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>  

16-bit, immediate offset variant
Applies when \( Rm == 11111 \) && \( \text{opcode} == 011 \) && \( \text{size} == x0 \).

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6  

16-bit, register offset variant
Applies when \( Rm != 11111 \) && \( \text{opcode} == 011 \) && \( \text{size} == x0 \).

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>  

32-bit, immediate offset variant
Applies when \( Rm == 11111 \) && \( \text{opcode} == 101 \) && \( \text{size} == 00 \).

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12  

32-bit, register offset variant
Applies when \( Rm != 11111 \) && \( \text{opcode} == 101 \) && \( \text{size} == 00 \).

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>  

64-bit, immediate offset variant
Applies when \( Rm == 11111 \) && \( \text{opcode} == 101 \) && \( S == 0 \) && \( \text{size} == 01 \).

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24  

64-bit, register offset variant
Applies when \( Rm != 11111 \) && \( \text{opcode} == 101 \) && \( S == 0 \) && \( \text{size} == 01 \).

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>  

Decode for all variants of this encoding

\[
\begin{align*}
t &= \text{UInt}(Rt); \\
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm); \\
wback &= \text{TRUE}; \\
tag\_checked &= wback | | n != 31;
\end{align*}
\]

Assembler symbols

\(<Vt>\) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

\(<Vt2>\) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

\(<Vt3>\) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

\(<\text{index}>\) For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

\(<\text{Xn}|\text{SP}>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<\text{Xm}>\) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
  when 3
    // load and replicate
    if L == '0' || S == '1' then UNDEFINED;
    scale = UInt(size);
    replicate = TRUE;
  when 0
    index = UInt(Q:S:size);    // B[0-15]
  when 1
    if size<0> == '1' then UNDEFINED;
    index = UInt(Q:S:size<1>);    // H[0-7]
  when 2
    if size<1> == '1' then UNDEFINED;
    if size<0> == '0' then
      index = UInt(Q:S);    // S[0-3]
    else
      if S == '1' then UNDEFINED;
      index = UInt(Q);    // D[0-1]
      scale = 3;
  MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
  integer datasize = if Q == '1' then 128 else 64;
  integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);
  CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
  CheckSPAAlignment();
  address = SP[ ];
else
  address = X[n];

offs = Zeros();
if replicate then
  // load and replicate to all elements
  for s = 0 to selem-1
    element = Mem[address+offs, ebytes, AccType_VEC];
    // replicate to fill 128- or 64-bit register
    V[t] = Replicate(element, datasize DIV esize);
    offs = offs + ebytes;
    t = (t + 1) MOD 32;
else
  // load/store one element per register
  for s = 0 to selem-1
    rval = V[t];
    if memop == MemOp_LOAD then
      // insert into one lane of 128-bit register
      Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
      V[t] = rval;
```
else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.185 LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element structure from memory and replicates the structure to all the lanes of the three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q 0 1 1 0 0 1 0</td>
<td>0 0 0 0 0 1 1 1</td>
<td>0</td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>
```

L R
opcode
S

No offset variant

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;
```

Post-index

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q 0 1 1 0 1 1 0</td>
<td>1 1 1 0</td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

L R
opcode
S

Immediate offset variant

Applies when Rm == 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;
```

Assembler symbols

\(<Vt>\) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **88** when size = 00, Q = 0
- **168** when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
1D when size = 11, Q = 0
2D when size = 11, Q = 1

\(<Vt2>\) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

\(<Vt3>\) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<imm>\) Is the post-index immediate offset, encoded in the "size" field. It can have the following values:
- #3 when size = 00
- #6 when size = 01
- #12 when size = 10
- #24 when size = 11

\(<Xm>\) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

```plaintext
integer scale = UInt(opcode<2:1>);
integer selm = UInt(opcode<0>R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3
  // load and replicate
  if L == '0' || S == '1' then UNDEFINED;
  scale = UInt(size);
  replicate = TRUE;
when 0
  index = UInt(Q:S:size);  // B[0-15]
when 1
  if size<0> == '1' then UNDEFINED;
  index = UInt(Q:S:size<1>);  // H[0-7]
when 2
  if size<1> == '1' then UNDEFINED;
  if size<0> == '0' then
    index = UInt(Q:S);  // S[0-3]
  else
    if S == '1' then UNDEFINED;
    index = UInt(Q);  // D[0-1]
  scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;
```

Operation for all encodings

```plaintext
if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
```
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

offs = Zeros();
if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else if memop == MemOp_STORE then
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.186 LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from memory and writes the result to the four SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

LD4 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> \}, \[<Xn|SP>\]

Decode for this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

LD4 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> \}, \[<Xn|SP>, <imm>\]

Immediate offset variant

Applies when Rm == 11111.

LD4 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> \}, \[<Xn|SP>, <imm>\]

Register offset variant

Applies when Rm != 11111.

LD4 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> \}, \[<Xn|SP>, <Xm>\]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

\(<Vt>\) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

<\Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<\Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<\Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<\imm> Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:
#32 when Q = 0
#64 when Q = 1
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements
case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

 // .1D format only permitted with LD1 & ST1
 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSAPAlignment();
 address = SP[];
else
 address = X[n];
offs = Zeros();
for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;
 endif
 endfor
 endfor
endif
if wback then
 if m != 31 then
 offs = X[m];
 endif
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;
 endif
endif

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.187 LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from memory and writes the result to the corresponding elements of the four SIMD&FP registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 13 12 11] [10 9  |  5 4 |  0 ]
0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 x x 1 | S size | Rn | Rt
L R  opcode
```

8-bit variant

Applies when opcode == 001.

16-bit variant

Applies when opcode == 011 && size == x0.

32-bit variant

Applies when opcode == 101 && size == 00.

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

Decode for all variants of this encoding

- integer t = UInt(Rt);
- integer n = UInt(Rn);
- integer m = integer UNKNOWN;
- boolean wback = FALSE;
- boolean tag_checked = wback || n != 31;

Post-index

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 13 12 11] [10 9 |  5 4 |  0 ]
0 Q 0 0 1 1 0 1 1 1 1 | Rm x x 1 | S size | Rn | Rt
L R  opcode
```

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.

16-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 011 && size == x0.

16-bit, register offset variant
Applies when Rm != 11111 && opcode == 011 && size == x0.

32-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 101 && size == 00.

32-bit, register offset variant
Applies when Rm != 11111 && opcode == 101 && size == 00.

64-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.

64-bit, register offset variant
Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

```c
integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
  when 3
    // load and replicate
    if L == '0' || S == '1' then UNDEFINED;
    scale = UInt(size);
    replicate = TRUE;
  when 0
    index = UInt(Q:S:size);    // B[0-15]
  when 1
    if size<0> == '1' then UNDEFINED;
    index = UInt(Q:S:size<1>);    // H[0-7]
  when 2
    if size<1> == '1' then UNDEFINED;
    if size<0> == '0' then
      index = UInt(Q:S);    // S[0-3]
    else
      if S == '1' then UNDEFINED;
      index = UInt(Q);    // D[0-1]
      scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;
```

Operation for all encodings

```c
if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];

offs = Zeros();
if replicate then
  // load and replicate to all elements
  for s = 0 to selem-1
    element = Mem[address+offs, ebytes, AccType_VEC];
    // replicate to fill 128- or 64-bit register
    V[t] = Replicate(element, datasize DIV esize);
    offs = offs + ebytes;
    t = (t + 1) MOD 32;
else
  // load/store one element per register
  for s = 0 to selem-1
    rval = V[t];
    if memop == MemOp_LOAD then
      // insert into one lane of 128-bit register
      Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
      V[t] = rval;
```

```
else // memop == MemOp_STORE
    // extract from one lane of 128-bit register
    Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
    offs = offs + ebytes;
    t = (t + 1) MOD 32;

    if wback then
        if m != 31 then
            offs = X[m];
        if n == 31 then
            SP[] = address + offs;
        else
            X[n] = address + offs;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.188   LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element structure from memory and replicates the structure to all the lanes of the four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 13 12|11 10 9 | 5 4 | 0 |
0 Q 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 size Rn Rt
```

No offset variant


Decode for this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;
```

Post-index

```
|31 30 29 28|27 26 25 24|23 22 21 20|16 15|13 12|11 10 9 | 5 4 | 0 |
0 Q 0 0 1 1 0 1 1 1 0 size Rn Rt
```

Immediate offset variant

Applies when Rm == 11111.


Register offset variant

Applies when Rm != 11111.

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;
```

Assembler symbols

- `<Vt>` Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
1D when size = 11, Q = 0
2D when size = 11, Q = 1

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> Is the post-index immediate offset, encoded in the "size" field. It can have the following values:
#4 when size = 00
#8 when size = 01
#16 when size = 10
#32 when size = 11
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;
case scale of
  when 3
    // load and replicate
    if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
    replicate = TRUE;
  when 0
    index = UInt(Q:S:size); // B[0-15]
    when 1
      if size<0> == '1' then UNDEFINED;
    index = UInt(Q:S:size<1>); // H[0-7]
  when 2
    if size<1> == '1' then UNDEFINED;
    if size<0> == '0' then
      index = UInt(Q:S); // S[0-3]
    else
      if S == '1' then UNDEFINED;
      index = UInt(Q); // D[0-1]
scale = 3;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
textsize size = if Q == '1' then 128 else 64;
textsize esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);
  CheckFPAvSIMDEnabled64();
bits(64) address;
bits(64) offs;
b bits(128) rval;
b bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];
offs = Zeros();
if replicate then
  // load and replicate to all elements
  for s = 0 to selem-1
    element = Mem[address+offs, ebytes, AccType_VEC];
    // replicate to fill 128- or 64-bit register
    V[t] = Replicate(element, datasize DIV esize);
    offs = offs + ebytes;
    t = (t + 1) MOD 32;
else
  // load/store one element per register
  for s = 0 to selem-1
    rval = V[t];
    if memop == MemOp_LOAD then
      // insert into one lane of 128-bit register
      Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
      V[t] = rval;
    else // memop == MemOp_STORE
      // extract from one lane of 128-bit register
      Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
      offs = offs + ebytes;
      t = (t + 1) MOD 32;
if wback then
  if m != 31 then
    offs = X[m];
  if n == 31 then
    SP[] = address + offs;
  else
    X[n] = address + offs;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.189   LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers from memory, issuing a hint to the memory system that the access is non-temporal. The address that is used for the load is calculated from a base register value and an optional immediate offset.

For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair on page C3-216.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant
Applies when \( \text{opc} == 00 \).

\[
\text{LDNP} <\text{St}1>, <\text{St}2>, [<\text{Xn}|\text{SP}>{{, #<\text{imm}>}}]
\]

64-bit variant
Applies when \( \text{opc} == 01 \).

\[
\text{LDNP} <\text{Dt}1>, <\text{Dt}2>, [<\text{Xn}|\text{SP}>{{, #<\text{imm}>}}]
\]

128-bit variant
Applies when \( \text{opc} == 10 \).

\[
\text{LDNP} <\text{Qt}1>, <\text{Qt}2>, [<\text{Xn}|\text{SP}>{{, #<\text{imm}>}}]
\]

Decode for all variants of this encoding
// Empty.

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly LDNP (SIMD&FP) on page K1-7973.

Assembler symbols

- \(<\text{Dt}1>\)  
  Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

- \(<\text{Dt}2>\)  
  Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

- \(<\text{Qt}1>\)  
  Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

- \(<\text{Qt}2>\)  
  Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

- \(<\text{St}1>\)  
  Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

- \(<\text{St}2>\)  
  Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

- \(<\text{Xn}|\text{SP}>\)  
  Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

- \(<\text{imm}>\)  
  For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as \(<\text{imm}>/4\).
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = n != 31;
```

Operation

```plaintext
CheckFPAdvSIMDEnabled64();
```

```plaintext
bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if t == t2 then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
 when Constraint_UNDEF undefined;
 when Constraint_NOP EndOfInstruction();
if n == 31 then
 CheckSPAlignment();
else
 address = X[n];
address = address + offset;
data1 = Mem[address, dbytes, AccType_VECSTREAM];
data2 = Mem[address+dbytes, dbytes, AccType_VECSTREAM];
if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;
V[t] = data1;
V[t2] = data2;
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.190 LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc</td>
<td>1 0 1 1 0 0 1</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc</td>
<td>1 0 1 1 0 1 1</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 00.

LDP <St1>, <St2>, [<Xn|SP>], #<imm>!

64-bit variant

Applies when opc == 01.

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>!

128-bit variant

Applies when opc == 10.

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>!
Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

<table>
<thead>
<tr>
<th>opc</th>
<th>imm7</th>
<th>Rt2</th>
<th>Rn</th>
<th>Rt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant
Applies when opc == 00.
LDP <St1>, <St2>, [<Xn|SP>{, #<imm}>]

64-bit variant
Applies when opc == 01.
LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm}>]

128-bit variant
Applies when opc == 10.
LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm}>]

Notes for all encodings
For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see LDP (SIMD&FP) on page K1-7973, and particularly LDNP (SIMD&FP) on page K1-7973.

Assembler symbols
<br><Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.<br><Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.<br><Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.<br><Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.<br><St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.<br><St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.<br><Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.<br><imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

\[
\begin{align*}
\text{integer } n &= \text{UInt(Rn)}; \\
\text{integer } t &= \text{UInt(Rt)}; \\
\text{integer } t2 &= \text{UInt(Rt2)}; \\
\text{if } \text{opc} == '11' \text{ then UNDEFINED}; \\
\text{integer } scale &= 2 + \text{UInt(opc)}; \\
\text{integer } \text{datasize} &= 8 \ll scale; \\
\text{bits(64) offset} &= \text{LSL(SignExtend(imm7, 64), scale)}; \\
\text{boolean } \text{tag_checked} &= \text{wback || n} \neq 31;
\end{align*}
\]

Operation for all encodings

\[
\begin{align*}
\text{CheckFPAdvSIMDEnabled64}(); \\
\text{bits(64) address}; \\
\text{bits(\text{datasize}) data1}; \\
\text{bits(\text{datasize}) data2}; \\
\text{constant integer } \text{dbytes} &= \text{datasize \text{DIV} 8}; \\
\text{boolean } \text{rt\_unknown} &= \text{FALSE}; \\
\text{if } \text{HaveMTEExt}() \text{ then} \\
\text{SetTagCheckedInstruction}(\text{tag\_checked}); \\
\text{if } t == t2 \text{ then} \\
\text{Constraint } c &= \text{ConstrainUnpredictable}(); \\
\text{assert } c \text{ IN \{Constraint\_UNKNOWN, Constraint\_UNDEF, Constraint\_NOP\};} \\
\text{case } c \text{ of} \\
&\text{when } \text{Constraint\_UNKNOWN} \text{ rt\_unknown} = \text{TRUE}; \quad // \text{result is UNKNOWN} \\
&\text{when } \text{Constraint\_UNDEF} \text{ UNDEFINED}; \\
&\text{when } \text{Constraint\_NOP} \text{ EndOfInstruction}(); \\
\text{if } n == 31 \text{ then} \\
\text{CheckSPAlignment}(); \\
\text{address} &= \text{SP}[\text{];} \\
\text{else} \\
\text{address} &= \text{X}[n]; \\
\text{if } \text{!postindex} \text{ then} \\
\text{address} &= \text{address} + \text{offset}; \\
\text{data1} &= \text{Mem}[\text{address}, \text{dbytes, AccType\_VEC}]; \\
\text{data2} &= \text{Mem}[\text{address+dbytes}, \text{dbytes, AccType\_VEC}]; \\
\text{if } \text{rt\_unknown} \text{ then} \\
\text{data1} &= \text{bits(\text{datasize}) UNKNOWN}; \\
\text{data2} &= \text{bits(\text{datasize}) UNKNOWN}; \\
V[t] &= \text{data1}; \\
V[t2] &= \text{data2}; \\
\text{if } \text{wback} \text{ then} \\
\text{if } \text{postindex} \text{ then} \\
\text{address} &= \text{address} + \text{offset}; \\
\text{if } n == 31 \text{ then} \\
\text{SP[\text{]} = address}; \\
\text{else} \\
\text{X}[n] &= \text{address};
\end{align*}
\]
Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.191   LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result as a scalar to the SIMD&FP register. The address that is used for the load is calculated from a base register value, a signed immediate offset, and an optional offset that is a multiple of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Post-index**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size 1 1 1 0 0 x 1 0</td>
<td>imm9 0 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**8-bit variant**

Applies when `size == 00 && opc == 01`.

LDR <Bt>, [Xn|SP], #<simm>

**16-bit variant**

Applies when `size == 01 && opc == 01`.

LDR <Ht>, [Xn|SP], #<simm>

**32-bit variant**

Applies when `size == 10 && opc == 01`.

LDR <St>, [Xn|SP], #<simm>

**64-bit variant**

Applies when `size == 11 && opc == 01`.

LDR <Dt>, [Xn|SP], #<simm>

**128-bit variant**

Applies when `size == 00 && opc == 11`.

LDR <Qt>, [Xn|SP], #<simm>

**Decode for all variants of this encoding**

```c
boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);
```

**Pre-index**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size 1 1 1 0 0 x 1 0</td>
<td>imm9 1 1</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**8-bit variant**

Applies when `size == 00 && opc == 01`. 

LDR <Bt>, [<Xn|SP>, #<simm>]!

**16-bit variant**

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, #<simm>]!

**32-bit variant**

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, #<simm>]!

**64-bit variant**

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, #<simm>]!

**128-bit variant**

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, #<simm>]!

**Decode for all variants of this encoding**

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

**Unsigned offset**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1 1 1</td>
<td>0 1</td>
<td>x</td>
<td>1</td>
<td>imm12</td>
</tr>
</tbody>
</table>
| opc

**8-bit variant**

Applies when size == 00 && opc == 01.

LDR <Bt>, [<Xn|SP>{, #<pimm>}]

**16-bit variant**

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>{, #<pimm>}]

**32-bit variant**

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>{, #<pimm>}]

**64-bit variant**

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>{, #<pimm>}]
128-bit variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<It> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.
For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.
For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings

if HaveMTEExt() then
  SetTagCheckedInstruction(tag_checked);
CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;
if n == 31 then
  CheckSPAlignment();
  address = SP[];
else
  address = X[n];
if !postindex then
    address = address + offset;

case memop of
    when MemOp_STORE
        data = V[t];
        Mem[address, datasize DIV 8, AccType_VEC] = data;
    when MemOp_LOAD
        data = Mem[address, datasize DIV 8, AccType_VEC];
        V[t] = data;

if wback then
    if postindex then
        address = address + offset;
        if n == 31 then
            SP[] = address;
        else
            X[n] = address;

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.192 LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The address that is used for the load is calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant
Applies when \( \text{opc} == 00 \).
\[
\text{LDR} \ <\text{St}> , \ <\text{label}>
\]

64-bit variant
Applies when \( \text{opc} == 01 \).
\[
\text{LDR} \ <\text{Dt}> , \ <\text{label}>
\]

128-bit variant
Applies when \( \text{opc} == 10 \).
\[
\text{LDR} \ <\text{Qt}> , \ <\text{label}>
\]

Decode for all variants of this encoding

\[
\begin{array}{cccccccc}
| & | & | & 5 & 4 & 0 & \\
\hline
\text{opc} & 0 & 1 & 1 & 0 & 0 & \text{imm19} & \text{Rt}
\end{array}
\]

Integer \( t = \text{UInt}(\text{Rt}) \);
Integer \( \text{size} \);
Bits(64) \( \text{offset} \);

Case \( \text{opc} \) of
\[
\begin{align*}
\text{when } '00' & : \text{size} = 4; \\
\text{when } '01' & : \text{size} = 8; \\
\text{when } '10' & : \text{size} = 16; \\
\text{when } '11' & : \text{UNDEFINED};
\end{align*}
\]

\( \text{offset} = \text{SignExtend}(\text{imm19}:'00', 64); \)

Assembler symbols

\(<\text{Dt}>\) is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

\(<\text{Qt}>\) is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

\(<\text{St}>\) is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

\(<\text{label}>\) is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB, is encoded as "imm19" times 4.
Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTEExt() then
    SetTagCheckedInstruction(FALSE);

CheckFPAdvSIMDEnabled64();

data = Mem[address, size, AccType_VEC];
V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address that is used for the load is calculated from a base register value and an offset register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

8-fsreg,LDR-8-fsreg variant

Applies when size == 00 && opc == 01 && option != 011.

LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-fsreg,LDR-8-fsreg variant

Applies when size == 00 && opc == 01 && option == 011.

LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount}>]

16-fsreg,LDR-16-fsreg variant

Applies when size == 01 && opc == 01.

LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>) {, <extend> {<amount>}}]

32-fsreg,LDR-32-fsreg variant

Applies when size == 10 && opc == 01.

LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,LDR-64-fsreg variant

Applies when size == 11 && opc == 01.

LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,LDR-128-fsreg variant

Applies when size == 00 && opc == 11.

LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding

integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler symbols

<dt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<st> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<hm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the following values:

- UXTW when option = 010
- SXTW when option = 110
- SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:

- UXTW when option = 010
- LSL when option = 011
- SXTW when option = 110
- SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #4 when S = 1
Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMT1Ext() then
    SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

case memop of
    when MemOp_STORE
        data = V[t];
        Mem[address, datasize DIV 8, AccType_VEC] = data;
    when MemOp_LOAD
        data = Mem[address, datasize DIV 8, AccType_VEC];
        V[t] = data;

Operational information

If PSTATE.D1T is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.194   LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant
Applies when \( \text{size} == 00 && \text{opc} == 01 \).
LDUR \( \langle Bt \rangle, \langle Xn|SP \rangle\{, \#<\text{simm}>\} \)

16-bit variant
Applies when \( \text{size} == 01 && \text{opc} == 01 \).
LDUR \( \langle Ht \rangle, \langle Xn|SP \rangle\{, \#<\text{simm}>\} \)

32-bit variant
Applies when \( \text{size} == 10 && \text{opc} == 01 \).
LDUR \( \langle St \rangle, \langle Xn|SP \rangle\{, \#<\text{simm}>\} \)

64-bit variant
Applies when \( \text{size} == 11 && \text{opc} == 01 \).
LDUR \( \langle Dt \rangle, \langle Xn|SP \rangle\{, \#<\text{simm}>\} \)

128-bit variant
Applies when \( \text{size} == 00 && \text{opc} == 11 \).
LDUR \( \langle Qt \rangle, \langle Xn|SP \rangle\{, \#<\text{simm}>\} \)

Decode for all variants of this encoding
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Assembler symbols
\(<Bt>\) Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<Dt>\) Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<Ht>\) Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<Qt>\) Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<St>\) Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
\(<\langle Xn|SP \rangle>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

**Shared decode for all encodings**

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);
```

**Operation**

```plaintext
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
address = address + offset;
```

```plaintext
case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;
 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;
```

**Operational information**

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.195   MLA (by element)

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the results with the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
    4H when size = 01, Q = 0
    8H when size = 01, Q = 1
    2S when size = 10, Q = 0
    4S when size = 10, Q = 1
The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
0:Rm when size = 01
M:Rm when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Restricted to V0-V15 when element size $<Ts>$ is H.

$<Ts>$ Is an element size specifier, encoded in the "size" field. It can have the following values:

- H when size = 01
- S when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

$<index>$ Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
 element1 = UInt(Elem[operand1, e, esize]);
 product = (element1*element2)<esize-1:0>;
 if sub_op then
 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
 else
 Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.196 MLA (vector)

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;
for e = 0 to elements-1
  element1 = Elem[operand1, e, esize];
  element2 = Elem[operand2, e, esize];
  product = (UInt(element1)*UInt(element2))<esize-1:0>;
  if sub_op then
    Elem[result, e, esize] = Elem[operand3, e, esize] - product;
  else
    Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.197 MLS (by element)

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results from the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 16 15 14 13 12][11 10 9 5 4 0]
0 | Q | 1 | 0 | 1 | 1 | 1 | size | L | M | Rm | 0 | 1 | 0 | H | 0 | Rn | Rd | 02
```

**Vector variant**

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

**Decode for this encoding**

integer idxdsize = if H == '1' then 128 else 64;
ingitter index;
bit Rmhi;
case size of
    when '01' index = UInt(H:L:M); Rmhi = '0';
    when '10' index = UInt(H:L); Rmhi = M;
    otherwise UNDEFINED;

integer d = UInt(Rd);
ingitter n = UInt(Rn);
ingitter m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
ingitter datasize = if Q == '1' then 128 else 64;
ingitter elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:

- size = 00, Q = x.
- size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

0:Rm when size = 01
M:Rm  when size = 10
The following encodings are reserved:
•  size = 00.
•  size = 11.
Restricted to V0-V15 when element size <Ts> is H.

<Ts>  Is an element size specifier, encoded in the "size" field. It can have the following values:
H  when size = 01
S  when size = 10
The following encodings are reserved:
•  size = 00.
•  size = 11.

<index>  Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
H:L:M  when size = 01
H:L  when size = 10
The following encodings are reserved:
•  size = 00.
•  size = 11.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
  element1 = UInt(Elem[operand1, e, esize]);
  product = (element1*element2)<esize-1:0>;
  if sub_op then
    Elem[result, e, esize] = Elem[operand3, e, esize] - product;
  else
    Elem[result, e, esize] = Elem[operand3, e, esize] + product;
V[d] = result;

Operational information
If PSTATE.DIT is 1:
•  The execution time of this instruction is independent of:
  —  The values of the data supplied in any of its registers.
  —  The values of the NZCV flags.
•  The response of this instruction to asynchronous exceptions does not vary based on:
  —  The values of the data supplied in any of its registers.
  —  The values of the NZCV flags.
C7.2.198   MLS (vector)

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the vectors of
the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;
for e = 0 to elements-1
    element1 = Elem[operand1, e, esize];
    element2 = Elem[operand2, e, esize];
    product = (UInt(element1)*UInt(element2))<esize-1:0>;
    if sub_op then
        Elem[result, e, esize] = Elem[operand3, e, esize] - product;
    else
        Elem[result, e, esize] = Elem[operand3, e, esize] + product;

    V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.199   MOV (scalar)

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD&FP source register into a scalar, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the DUP (element) instruction. This means that:

- The encodings in this description are named to match the encodings of DUP (element).
- The description of DUP (element) gives the operational pseudocode for this instruction.

Scalar variant

MOV <V><d>, <Vn>.<T>[<index>]

is equivalent to

DUP  <V><d>, <Vn>.<T>[<index>]

and is always the preferred disassembly.

Assembler symbols

<V>     Is the destination width specifier, encoded in the "imm5" field. It can have the following values:
    B when imm5 = xxxx1
    H when imm5 = xxx10
    S when imm5 = xx100
    D when imm5 = x1000

    The encoding imm5 = x0000 is reserved.

<d>     Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn>    Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T>     Is the element width specifier, encoded in the "imm5" field. It can have the following values:
    B when imm5 = xxxx1
    H when imm5 = xxx10
    S when imm5 = xx100
    D when imm5 = x1000

    The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:
    imm5<4:1> when imm5 = xxxx1
    imm5<4:2> when imm5 = xxx10
    imm5<4:3> when imm5 = xx100
    imm5<4> when imm5 = x1000

    The encoding imm5 = x0000 is reserved.
Operation
The description of **DUP (element)** gives the operational pseudocode for this instruction.

Operational information
If `PSTATE.DIT` is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.200 MOV (element)

Move vector element to another vector element. This instruction copies the vector element of the source SIMD&FP register to the specified vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (element) instruction. This means that:

- The encodings in this description are named to match the encodings of INS (element).
- The description of INS (element) gives the operational pseudocode for this instruction.

**Advanced SIMD variant**

MOV <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

is equivalent to

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

and is always the preferred disassembly.

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ts>` Is an element size specifier, encoded in the "imm5" field. It can have the following values:
  - B when imm5 = xxxx1
  - H when imm5 = xxx10
  - S when imm5 = xx100
  - D when imm5 = x1000
  - The encoding imm5 = x0000 is reserved.
- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.
- `<index1>` Is the destination element index encoded in the "imm5" field. It can have the following values:
  - imm5<4:1> when imm5 = xxxx1
  - imm5<4:2> when imm5 = xxx10
  - imm5<4:3> when imm5 = xx100
  - imm5<4> when imm5 = x1000
  - The encoding imm5 = x0000 is reserved.
- `<index2>` Is the source element index encoded in the "imm5:imm4" field. It can have the following values:
  - imm4<3:0> when imm5 = xxxx1
  - imm4<3:1> when imm5 = xxx10
  - imm4<3:2> when imm5 = xx100
imm4<3> when imm5 = x1000
The encoding imm5 = x0000 is reserved.
Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation
The description of INS (element) gives the operational pseudocode for this instruction.

Operational information
If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.201  MOV (from general)

Move general-purpose register to a vector element. This instruction copies the contents of the source general-purpose register to the specified vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the INS (general) instruction. This means that:

• The encodings in this description are named to match the encodings of INS (general).
• The description of INS (general) gives the operational pseudocode for this instruction.

Advanced SIMD variant

MOV <Vd>.<Ts>[<index>], <R><n>

is equivalent to

INS  <Vd>.<Ts>[<index>], <R><n>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ts> Is an element size specifier, encoded in the "imm5" field. It can have the following values:

B	when imm5 = xxxx1
H	when imm5 = xxx10
S	when imm5 = xx100
D	when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<index> Is the element index encoded in the "imm5" field. It can have the following values:

imm5<4:1>	when imm5 = xxxx1
imm5<4:2>	when imm5 = xxx10
imm5<3>	when imm5 = xx100
imm5<4>	when imm5 = x1000

The encoding imm5 = x0000 is reserved.

<R> Is the width specifier for the general-purpose source register, encoded in the "imm5" field. It can have the following values:

W	when imm5 = xxxx1
W	when imm5 = xxx10
W	when imm5 = xx100
X	when imm5 = x1000
The encoding imm5 = x0000 is reserved.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

**Operation**

The description of INS (general) gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.202  MOV (vector)

Move vector. This instruction copies the vector in the source SIMD&FP register into the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the ORR (vector, register) instruction. This means that:

- The encodings in this description are named to match the encodings of ORR (vector, register).
- The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Assembly symbols

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>Q</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>Rn</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV &lt;Vd&gt;.&lt;T&gt;, &lt;Vn&gt;.&lt;T&gt;</td>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Rn</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Three registers of the same type variant

MOV <Vd>.<T>, <Vn>.<T>

is equivalent to

ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>

and is the preferred disassembly when Rm == Rn.

Assembler symbols

- <Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- <T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 8B when Q = 0
  - 16B when Q = 1
- <Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.203 MOV (to general)

Move vector element to general-purpose register. This instruction reads the unsigned integer from the source SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the UMOV instruction. This means that:

- The encodings in this description are named to match the encodings of UMOV.
- The description of UMOV gives the operational pseudocode for this instruction.

32-bit variant

Applies when \( Q = 0 \) \&\& \( \text{imm5} = \text{xx100} \).

\[
\text{MOV} \ <Wd>, \ <Vn>.S[<index>] \\
\text{is equivalent to} \\
\text{UMOV} \ <Wd>, \ <Vn>.S[<index>]
\]

and is always the preferred disassembly.

64-reg,UMOV-64-reg variant

Applies when \( Q = 1 \) \&\& \( \text{imm5} = \text{x1000} \).

\[
\text{MOV} \ <Xd>, \ <Vn>.D[<index>] \\
\text{is equivalent to} \\
\text{UMOV} \ <Xd>, \ <Vn>.D[<index>]
\]

and is always the preferred disassembly.

Assembler symbols

- \(<Wd>\) Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Xd>\) Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
- \(<Vn>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.
- \(<\text{index}>\) For the 32-bit variant: is the element index encoded in "\text{imm5}<4:3>".
  For the 64-reg,UMOV-64-reg variant: is the element index encoded in "\text{imm5}<4>".

Operation

The description of UMOV gives the operational pseudocode for this instruction.
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
### C7.2.204 MOVI

Move Immediate (vector). This instruction places an immediate constant into every vector element of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

#### 8-bit variant
Applies when \( \text{op} == 0 \&\& \text{cmode} == 1110 \).

\[
\text{MOVI} \ <Vd>.<T>, \ #<imm8>{, \ LSL \ #0}\]

#### 16-bit shifted immediate variant
Applies when \( \text{op} == 0 \&\& \text{cmode} == 10x0 \).

\[
\text{MOVI} \ <Vd>.<T>, \ #<imm8>{, \ LSL \ #<amount>}\]

#### 32-bit shifted immediate variant
Applies when \( \text{op} == 0 \&\& \text{cmode} == 0xx0 \).

\[
\text{MOVI} \ <Vd>.<T>, \ #<imm8>{, \ LSL \ #<amount>}\]

#### 32-bit shifting ones variant
Applies when \( \text{op} == 0 \&\& \text{cmode} == 110x \).

\[
\text{MOVI} \ <Vd>.<T>, \ #<imm8>, \ MSL \ #<amount>\]

#### 64-bit scalar variant
Applies when \( Q == 0 \&\& \text{op} == 1 \&\& \text{cmode} == 1110 \).

\[
\text{MOVI} \ <Dd>, \ #<imm>\]

#### 64-bit vector variant
Applies when \( Q == 1 \&\& \text{op} == 1 \&\& \text{cmode} == 1110 \).

\[
\text{MOVI} \ <Vd>.2D, \ #<imm>\]

#### Decode for all variants of this encoding

```plaintext
text_integer rd = UInt(Rd);
text_integer datasize = if Q == '1' then 128 else 64;
binary(datasize) imm;
binary(64) imm64;

ImmediateOp operation;
case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '0xx11' operation = ImmediateOp_BIC;
 when '0xx1l' operation = ImmediateOp_BIC;
 when '10x00' operation = ImmediateOp_MOVI;
```
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'
   // FMOV Dn,#imm is in main FP instruction set
   if Q == '0' then UNDEFINED;
   operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler symbols

<DD>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a 64-bit immediate 'aaaaaaaaabbbbbbcdddddddeeeeffffgggggggghhhhhhh', encoded in "a:b:c:d:e:f:g:h".

<T>  For the 8-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   8B  when Q = 0
   16B when Q = 1

For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   4H  when Q = 0
   8H  when Q = 1

For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
   2S  when Q = 0
   4S  when Q = 1

<immB>  Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount>  For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It can have the following values:
   0  when cmode<1> = 0
   8  when cmode<1> = 1
defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the following values:
   0  when cmode<2:1> = 00
   8  when cmode<2:1> = 01
   16 when cmode<2:1> = 10
   24 when cmode<2:1> = 11
defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can have the following values:
   8  when cmode<0> = 0
   16 when cmode<0> = 1
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
    when ImmediateOp_MOVI
        result = imm;
    when ImmediateOp_MVNI
        result = NOT(imm);
    when ImmediateOp_ORR
        operand = V[rd];
        result = operand OR imm;
    when ImmediateOp_BIC
        operand = V[rd];
        result = operand AND NOT(imm);

V[rd] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.205  MUL (by element)

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
  0:Rm when size = 01
  M:Rm when size = 10
The following encodings are reserved:
• size = 00.
• size = 11.
Restricted to V0-V15 when element size <Ts> is H.

<Ts>
Is an element size specifier, encoded in the "size" field. It can have the following values:

H when size = 01
S when size = 10

The following encodings are reserved:
• size = 00.
• size = 11.

<index>
Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

H:L:M when size = 01
H:L when size = 10

The following encodings are reserved:
• size = 00.
• size = 11.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
   element1 = UInt(Elem[operand1, e, esize]);
   product = (element1*element2)<esize-1:0>;
   Elem[result, e, esize] = product;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.206   MUL (vector)

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>0</th>
<th>Q</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>size</th>
<th>1</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rm</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three registers of the same type variant

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean poly = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;
for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if poly then
  product = PolynomialMult(element1, element2)<esize-1:0>;
else
  product = (UInt(element1)*UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.207 MVN

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the NOT instruction. This means that:

- The encodings in this description are named to match the encodings of NOT.
- The description of NOT gives the operational pseudocode for this instruction.

Vector variant

MVN <Vd>.<T>, <Vn>.<T>

is equivalent to

NOT  <Vd>.<T>, <Vn>.<T>

and is always the preferred disassembly.

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>when Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>when Q = 1</td>
</tr>
</tbody>
</table>

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of NOT gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.208   MVNI

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into every vector element of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

16-bit shifted immediate variant

Applies when cmode == 10x0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate variant

Applies when cmode == 0xx0.

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones variant

Applies when cmode == 110x.

MVNI <Vd>.<T>, #<imm8>, MSL #<amount>

Decode for all variants of this encoding

```
integer rd = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of
 when '0xx01' operation = ImmediateOp_MVNI;
 when '0xx11' operation = ImmediateOp_BIC;
 when '10x01' operation = ImmediateOp_MVNI;
 when '10x11' operation = ImmediateOp_BIC;
 when '110x1' operation = ImmediateOp_MVNI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11111'
 // FMOV Dn,#imm is in main FP instruction set
 if Q == '0' then UNDEFINED;
 operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:gh);
imm = Replicate(imm64, datasize DIV 64);
```

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` For the 16-bit variant: an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 4H when Q = 0
For the 32-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

- 2S when Q = 0
- 4S when Q = 1

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in the "cmode<1>" field. It can have the following values:

- 0 when cmode<1> = 0
- 8 when cmode<1> = 1

defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the following values:

- 0 when cmode<2:1> = 00
- 8 when cmode<2:1> = 01
- 16 when cmode<2:1> = 10
- 24 when cmode<2:1> = 11

defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in the "cmode<0>" field. It can have the following values:

- 8 when cmode<0> = 0
- 16 when cmode<0> = 1

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;
case operation of
 when ImmediateOp_MOVI
 result = imm;
 when ImmediateOp_MVNI
 result = NOT(imm);
 when ImmediateOp_ORR
 operand = V[rd];
 result = operand OR imm;
 when ImmediateOp_BIC
 operand = V[rd];
 result = operand AND NOT(imm);
V[rd] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C7.2.209   NEG (vector)

Negate (vector). This instruction reads each vector element from the source SIMD&FP register, negates each value, puts the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

\[
\begin{array}{ccccccccc|cc}
0 & 1 & 1 & 1 & 1 & 1 & 0 & \text{size} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & \text{Rn} & \text{Rd} \\
0 & 1 & 1 & 1 & 1 & 0 & \text{size} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & \text{Rn} & \text{Rd} \\
\end{array}
\]

Scalar variant

NEG <V><d>, <V><n>

Decode for this encoding

\[
\begin{align*}
\text{integer } d &= \text{ UInt(Rd)}; \\
\text{integer } n &= \text{ UInt(Rn)}; \\
\text{if size} \neq '11' \text{ then UNDEFINED; } \\
\text{integer esize} &= 8 \times \text{ UInt(size)}; \\
\text{integer datasize} &= \text{ esize}; \\
\text{integer elements} &= 1; \\
\text{boolean neg} &= (U == '1');
\end{align*}
\]

Vector

\[
\begin{array}{ccccccccc|cc}
0 & Q & 1 & 0 & 1 & 1 & 0 & \text{size} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & \text{Rn} & \text{Rd} \\
0 & Q & 1 & 0 & 1 & 1 & 0 & \text{size} & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & \text{Rn} & \text{Rd} \\
\end{array}
\]

Vector variant

NEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

\[
\begin{align*}
\text{integer } d &= \text{ UInt(Rd)}; \\
\text{integer } n &= \text{ UInt(Rn)}; \\
\text{if size}:Q \neq '110' \text{ then UNDEFINED; } \\
\text{integer esize} &= 8 \times \text{ UInt(size)}; \\
\text{integer datasize} &= \text{ if } Q == '1' \text{ then 128 else 64}; \\
\text{integer elements} &= \text{ datasize DIV esize}; \\
\text{boolean neg} &= (U == '1');
\end{align*}
\]

Assembler symbols

<\textstyle{V}>  

Is a width specifier, encoded in the "size" field. It can have the following values:

\[
\begin{align*}
D & \text{ when size} = 11 \\
\text{The following encodings are reserved: } \\
\bullet & \text{ size} = 0x. \\
\bullet & \text{ size} = 10.
\end{align*}
\]
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n>
Is the number of the SIMD&FP source register, encoded in the "Rn" field.

</d>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>
Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

</n>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bias(datasize) result;
integer element;

for e = 0 to elements-1
 element = SInt(Elem[operand, e, esize]);
 if neg then
 element = -element;
 else
 element = Abs(element);
 Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.210   NOT

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MVN. The alias is always the preferred disassembly.

Vector variant

NOT <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  8B when Q = 0
  16B when Q = 1
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
  element = Elem[operand, e, esize];
  Elem[result, e, esize] = NOT(element);

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.211  ORN (vector)

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
0 Q 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd
size
```

Three registers of the same type variant

ORN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decoding for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler symbols

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
operand2 = NOT(operand2);
result = operand1 OR operand2;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C7.2.212  **ORR (vector, immediate)**

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the destination SIMD&FP register, performs a bitwise OR between each result and an immediate constant, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**16-bit variant**

Applies when \( \text{cmode} == 10x1 \).

\[
\text{ORR} <\text{Vd}.T>, #<\text{imm8}>, LSL #\text{amount}
\]

**32-bit variant**

Applies when \( \text{cmode} == 0xx1 \).

\[
\text{ORR} <\text{Vd}.T>, #<\text{imm8}>, LSL #\text{amount}
\]

**Decode for all variants of this encoding**

```c
integer rd = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of
 when '0xx00' operation = ImmediateOp_MOVI;
 when '0xx10' operation = ImmediateOp_ORR;
 when '10x00' operation = ImmediateOp_MOVI;
 when '10x10' operation = ImmediateOp_ORR;
 when '110x0' operation = ImmediateOp_MOVI;
 when '1110x' operation = ImmediateOp_MOVI;
 when '11110' operation = ImmediateOp_MOVI;
imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);
```

**Assembler symbols**

- `<Vd>`  Is the name of the SIMD&FP register, encoded in the "Rd" field.
- `<T>`  For the 16-bit variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 4H  when \( Q = 0 \)
  - 8H  when \( Q = 1 \)

- `<imm8>`  Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

---

[0x0] Q0 0111100000 a b c x x x 1 0 1 d e f g h  Rd

\[
0 | Q | 0 1 1 1 1 0 0 0 0 | a b c x x x 1 0 1 d e f g h | 0 |
\]

\[\text{op} \quad \text{cmode}\]
<amount>  For the 16-bit variant: is the shift amount encoded in the "cmode<1>" field. It can have the following values:
  0     when cmode<1> = 0
  8     when cmode<1> = 1
defaulting to 0 if LSL is omitted.
For the 32-bit variant: is the shift amount encoded in the "cmode<2:1>" field. It can have the following values:
  0     when cmode<2:1> = 00
  8     when cmode<2:1> = 01
  16    when cmode<2:1> = 10
  24    when cmode<2:1> = 11
defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;
case operation of
  when ImmediateOp_MOVI
    result = imm;
  when ImmediateOp_MVNI
    result = NOT(imm);
  when ImmediateOp_ORR
    operand = V[rd];
    result = operand OR imm;
  when ImmediateOp_BIC
    operand = V[rd];
    result = operand AND NOT(imm);
V[rd] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.213 ORR (vector, register)

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source SIMD&FP registers, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (vector). See Alias conditions for details of when each alias is preferred.

### Three registers of the same type variant

ORR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

### Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

### Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (vector)</td>
<td>Rm == Rn</td>
</tr>
</tbody>
</table>

### Assembler symbols

- \(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- \(<T>\) Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - \(8B\) when \(Q = 0\)
  - \(16B\) when \(Q = 1\)
- \(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- \(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

### Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
result = operand1 OR operand2;
V[d] = result;
```
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.214   PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

For information about multiplying polynomials see *Polynomial arithmetic over \( \{0, 1\} \) on page A1-50.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three registers of the same type variant

PMUL \(<Vd>.<T>, <Vn>.<T>, <Vm>.<T>\)

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean poly = (U == '1');

Assembler symbols

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is the arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>8B</th>
<th>16B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
</tr>
</tbody>
</table>

The following encodings are reserved:

- size = 01, Q = x.
- size = 1x, Q = x.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;
for e = 0 to elements-1
   element1 = Elem(operand1, e, esize);
element2 = Elem[operand2, e, esize];
if poly then
  product = PolynomialMult(element1, element2)<esize-1:0>;
else
  product = (UInt(element1)*UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.215  PMULL, PMULL2

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half of the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

For information about multiplying polynomials see *Polynomial arithmetic over \{0, 1\}* on page A1-50.

The PMULL instruction extracts each source vector from the lower half of each source register, while the PMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 0 | 0 | 1 | 1 | 1 | 0 | size | 1 | Rm | 1 | 1 | 1 | 0 | 0 | Rn | Rd |

Three registers, not all the same type variant

PMULL{2} <Vd>,<Ta>, <Vn>,<Tb>, <Vm>,<Tb>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '01' || size == '10' then UNDEFINED;
if size == '11' && !HaveBit128PMULLExt() then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
```

Assembler symbols

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when \( Q = 0 \)
- [present] when \( Q = 1 \)

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8H when size = 00
- 1Q when size = 11

The following encodings are reserved:

- size = 01.
- size = 10.

The '1Q' arrangement is only allocated in an implementation that includes the Cryptographic Extension, and is otherwise RESERVED.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>when size = 00, Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>when size = 00, Q = 1</td>
</tr>
<tr>
<td>1D</td>
<td>when size = 11, Q = 0</td>
</tr>
<tr>
<td>2D</td>
<td>when size = 11, Q = 1</td>
</tr>
</tbody>
</table>

The following encodings are reserved:

- size = 01, Q = x.
- size = 10, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 Elem[result, e, 2*esize] = PolynomialMult(element1, element2);

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.216  RADDHN, RADDHN2

Rounding Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the corresponding vector element in the second source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The results are rounded. For truncated results, see ADDHN, ADDHN2.

The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the RADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

RADDHN[2] <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler symbols

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[a]absent] when Q = 0
[present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B  when size = 00, Q = 0
16B  when size = 00, Q = 1
4H  when size = 01, Q = 0
8H  when size = 01, Q = 1
2S  when size = 10, Q = 0
4S  when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8H</td>
<td>when size = 00</td>
</tr>
<tr>
<td>4S</td>
<td>when size = 01</td>
</tr>
<tr>
<td>2D</td>
<td>when size = 10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bids(2*datasize) operand2 = V[m];
bids(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bids(2*esize) element1;
bids(2*esize) element2;
bids(2*esize) sum;
for e = 0 to elements-1
 element1 = Elem[operand1, e, 2*esize];
 element2 = Elem[operand2, e, 2*esize];
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 sum = sum + round_const;
 Elem[result, e, esize] = sum<2*esize-1:esize>;
Vpart[d, part] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
**C7.2.217  RAX1**

Rotate and Exclusive OR rotates each 64-bit element of the 128-bit vector in a source SIMD&FP register left by 1, performs a bitwise exclusive OR of the resulting 128-bit vector and the vector in another source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when `FEAT_SHA3` is implemented.

**Advanced SIMD variant**

RAX1 `<Vd>.2D, <Vn>.2D, <Vm>.2D`

**Decode for this encoding**

```
if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
V[d] = Vn EOR (ROL(Vm<127:64>, 1):ROL(Vm<63:0>, 1));
```
**C7.2.218 RBIT (vector)**

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD&FP register, reverses the bits of the element, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Vector variant**

RBIT <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
bits(esize) rev;
for e = 0 to elements-1
   element = Elem[operand, e, esize];
   for i = 0 to esize-1
      rev<esize-1-i> = element<i>;
      Elem[result, e, esize] = rev;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.219  REV16 (vector)

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in each halfword of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

REV16 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=size:  B(0),  H(1),  S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
//    64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
//    32+B = 2, 32+H = 1, 32+S = X, 32+D = X
//    16+B = 1, 16+H = X, 16+S = X, 16+D = X
//    8+B = X,  8+H = X,  8+S = X,  8+D = X
// => 3-(op+size) (index bits in group)
//    64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
//    32+B = 2, 32+H = 1, 32+S = X, 32+D = X
//    16+B = 1, 16+H = X, 16+S = X, 16+D = X
//    8+B = X,  8+H = X,  8+S = X,  8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of
    when '10' container_size = 16;
    when '01' container_size = 32;
    when '00' container_size = 64;
endcase

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>value</th>
<th>size:Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>00</td>
</tr>
<tr>
<td>16B</td>
<td>00</td>
</tr>
</tbody>
</table>
The following encodings are reserved:

- \( \text{size} = 01, Q = x \)
- \( \text{size} = 1x, Q = x \)

\(<Vn>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[operand, element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.220  REV32 (vector)

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements in each word of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

REV32 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=size:  B(0),  H(1),  S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
//    64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
//    32+B = 1, 32+H = 2, 32+S = X, 32+D = X
//    16+B = 2, 16+H = X, 16+S = X, 16+D = X
//    8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
//    64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
//    32+B = 2, 32+H = 1, 32+S = X, 32+D = X
//    16+B = 1, 16+H = X, 16+S = X, 16+D = X
//    8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of
    when '10' container_size = 16;
    when '01' container_size = 32;
    when '00' container_size = 64;
endcase

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B  when size = 00, Q = 0
16B when size = 00, Q = 1
4H  when size = 01, Q = 0
8H when size = 01, Q = 1

The encoding size = 1x, Q = x is reserved.

<\textit{Vn}> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

\[
\text{CheckFPAdvSIMDEnabled64();}
\text{bits(datasize) operand = V[n];}
\text{bits(datasize) result;}
\text{integer element = 0;}
\text{integer rev\_element;}
\text{for c = 0 to containers-1}
\text{ \quad \text{rev\_element = element + elements\_per\_container - 1;}}
\text{ \text{for e = 0 to elements\_per\_container-1}}
\text{ \quad \text{Elem[result, rev\_element, esize] = Elem[operand, element, esize];}}
\text{ \quad \text{element = element + 1;}}
\text{ \text{rev\_element = rev\_element - 1;}}
\text{V[d] = result;}
\]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.221 REV64

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

REV64 <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=size:  B(0),  H(1),  S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
//    64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
//    32+B = 1, 32+H = 2, 32+S = X, 32+D = X
//    16+B = 2, 16+H = X, 16+S = X, 16+D = X
//    8+B = X,  8+H = X,  8+S = X,  8+D = X
// => 3-(op+size) (index bits in group)
//    64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
//    32+B = 2, 32+H = 1, 32+S = X, 32+D = X
//    16+B = 1, 16+H = X, 16+S = X, 16+D = X
//    8+B = X,  8+H = X,  8+S = X,  8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of
  when '10' container_size = 16;
  when '01' container_size = 32;
  when '00' container_size = 64;
endcase

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<\text{Vn}> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1
    rev_element = element + elements_per_container - 1;
    for e = 0 to elements_per_container-1
        Elem[result, rev_element, esize] = Elem[operand, element, esize];
        element = element + 1;
        rev_element = rev_element - 1;
V[d] = result;
\end{verbatim}

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the vector in the source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. The results are rounded. For truncated results, see SHRN, SHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

RSHRN(2) <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Assembler symbols

2 is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8 B when immh = 0001, Q = 0
16 B when immh = 0001, Q = 1
4 H when immh = 001x, Q = 0
8 H when immh = 001x, Q = 1
2 S when immh = 01xx, Q = 0
4 S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding $\text{immh} = 1\text{xxx}$, $Q = x$ is reserved.

<Vn>  
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>  
Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

- 8H when $\text{immh} = 0001$
- 4S when $\text{immh} = 001x$
- 2D when $\text{immh} = 01xx$

See Advanced SIMD modified immediate on page C4-351 when $\text{immh} = 0000$.

The encoding $\text{immh} = 1\text{xxx}$ is reserved.

<shift>  
Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- $(16-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 0001$
- $(32-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 001x$
- $(64-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 01xx$

See Advanced SIMD modified immediate on page C4-351 when $\text{immh} = 0000$.

The encoding $\text{immh} = 1\text{xxx}$ is reserved.

**Operation**

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
for e = 0 to elements-1
 element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 Elem[result, e, esize] = element<esize-1:0>;
Vpart[d, part] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.223 RSUBHN, RSUBHN2

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.

The results are rounded. For truncated results, see SUBHN, SUBHN2.

The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the RSUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>[size][Q]</th>
<th>Rd</th>
<th>Rn</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Three registers, not all the same type variant
RSUBHN(2) <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');
```

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

| [absent] | when Q = 0 |
| [present] | when Q = 1 |

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:

8B	when size = 00, Q = 0
16B	when size = 00, Q = 1
4H	when size = 01, Q = 0
8H	when size = 01, Q = 1
2S	when size = 10, Q = 0
4S	when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<\Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8H</td>
<td>00</td>
</tr>
<tr>
<td>4S</td>
<td>01</td>
</tr>
<tr>
<td>2D</td>
<td>10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<\Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

\[
\text{CheckFPAdvSIMDEnabled64()};
\text{bits}(2\times\text{datasize})\ \text{operand1} = \text{V}[n];
\text{bits}(2\times\text{datasize})\ \text{operand2} = \text{V}[m];
\text{bits(\text{datasize})}\ \text{result};
\text{integer}\ \text{round\_const} = \text{if}\ \text{round} \text{then} 1 \ll (\text{esize} - 1) \text{else} 0;
\text{bits}(2\times\text{esize})\ \text{element1};
\text{bits}(2\times\text{esize})\ \text{element2};
\text{bits}(2\times\text{esize})\ \text{sum};
\]

\[
\text{for}\ e = 0\ \text{to}\ \text{elements-1}
\text{element1} = \text{Elem}[(\text{operand1}, e, 2\times\text{esize})];
\text{element2} = \text{Elem}[(\text{operand2}, e, 2\times\text{esize})];
\text{if}\ \text{sub\_op}\ \text{then}
\text{sum} = \text{element1} - \text{element2};
\text{else}
\text{sum} = \text{element1} + \text{element2};
\text{sum} = \text{sum} + \text{round\_const};
\text{Elem}[(\text{result}, e, \text{esize})] = \text{sum}\ll(2\times\text{esize}-1:\text{esize});
\]

\text{Vpart}[d, \text{part}] = \text{result};

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.224 SABA

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Three registers of the same type variant**

SABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```plaintext
d = UInt(Rd);
n = UInt(Rn);
m = UInt(Rm);
if size == '11' then UNDEFINED;
esize = 8 << UInt(size);
datasize = if Q == '1' then 128 else 64;
elements = datasize DIV esize;
unsigned = (U == '1');
accumulate = (ac == '1');
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 2S when size = 10, Q = 0
  - 4S when size = 10, Q = 1
  - The encoding size = 11, Q = x is reserved.
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;
```
result = if accumulate then $V[d]$ else $Zeros()$
for $e = 0$ to elements-1
  element1 = Int(operand1, e, esize), unsigned);
  element2 = Int(operand2, e, esize), unsigned);
  absdiff = $Abs(element1-element2)$<esize-1:0>;
  Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
$V[d] = result$;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.225 SABAL, SABAL2

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or upper half of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABAL instruction extracts each source vector from the lower half of each source register, while the SABAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant
SABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
</tbody>
</table>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
8H when size = 00
4S when size = 01
2D when size = 10
The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

### Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
binary(2*datasize) result;
integer element1;
integer element2;
binary(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<<2*esize-1:0;
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
V[d] = result;
```

### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.226   SABD

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, places the absolute values of the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
SABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decoding for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler symbols

<Vd>   Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>    Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B   when size = 00, Q = 0
  16B  when size = 00, Q = 1
  4H   when size = 01, Q = 0
  8H   when size = 01, Q = 1
  2S   when size = 10, Q = 0
  4S   when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn>   Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>   Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;
result = if accumulate then V[d] else Zeros();
for e = 0 to elements–1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  absdiff = Abs(element1–element2)<esize–1:0>;
  Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.227  SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of the results into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABDL instruction writes the vector to the lower half of the destination register and clears the upper half, while the SABDL2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

SABDL\{2\} \( <Vd> \cdot <Ta> \cdot <Vn> \cdot <Tb> \cdot <Vm> \cdot <Tb> \)

Decode for this encoding

\[
\begin{align*}
\text{integer } d & = \text{UInt}(Rd); \\
\text{integer } n & = \text{UInt}(Rn); \\
\text{integer } m & = \text{UInt}(Rm); \\
\text{if } \text{size} & = '11' \text{ then UNDEFINED}; \\
\text{integer esize} & = 8 << \text{UInt(size)}; \\
\text{integer datasize} & = 64; \\
\text{integer part} & = \text{UInt}(Q); \\
\text{integer elements} & = \text{datasize DIV esize}; \\
\text{boolean accumulate} & = (op == '0'); \\
\text{boolean unsigned} & = (U == '1');
\end{align*}
\]

Assembler symbols

\[
\begin{align*}
2 & \quad \text{Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:} \\
& \quad \text{[absent] when } Q = 0 \\
& \quad \text{[present] when } Q = 1 \\
\langle Vd \rangle & \quad \text{Is the name of the SIMD&FP destination register, encoded in the "Rd" field.} \\
\langle Ta \rangle & \quad \text{Is an arrangement specifier, encoded in the "size" field. It can have the following values:} \\
& \quad 8H \quad \text{when } \text{size} = 00 \\
& \quad 4S \quad \text{when } \text{size} = 01 \\
& \quad 2D \quad \text{when } \text{size} = 10 \\
& \quad \text{The encoding size = 11 is reserved.} \\
\langle Vn \rangle & \quad \text{Is the name of the first SIMD&FP source register, encoded in the "Rn" field.} \\
\langle Tb \rangle & \quad \text{Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:} \\
& \quad 88 \quad \text{when } \text{size} = 00, Q = 0
\end{align*}
\]
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\rm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    absdiff = Abs(element1-element2)<<esize-1:0;
    Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
V[d] = result;
\end{verbatim}

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.228 SADALP

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the source SIMD&FP register and accumulates the results into the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

SADALP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  4H  when size = 00, Q = 0
  8H  when size = 00, Q = 1
  2S  when size = 01, Q = 0
  4S  when size = 01, Q = 1
  1D  when size = 10, Q = 0
  2D  when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B  when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H  when size = 01, Q = 0
  8H  when size = 01, Q = 1
  2S  when size = 10, Q = 0
  4S  when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
Operation

`CheckFPAdvSIMDEnabled64();`

```
bits(datasize) operand = V[n];
bits(datasize) operand = V[n];

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
else
 Elem[result, e, 2*esize] = sum;
```  

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.229  SADDL, SADDL2

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SADDL instruction extracts each source vector from the lower half of each source register, while the SADDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

SADDL[2]  <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler symbols

<table>
<thead>
<tr>
<th></th>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 Q 0 1 1 0</td>
<td>size 1</td>
<td>Rm 0 0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent]  when Q = 0
[present]  when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H  when size = 00
4S  when size = 01
2D  when size = 10

The encoding size = 11 is reserved.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B  when size = 00, Q = 0
16B  when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bitdatasize operand1 = Vpart[n, part];
bitdatasize operand2 = Vpart[m, part];
bitstr2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.230  SADDLP

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

![Binary representation of SADDLP instruction]

**Vector variant**

SADDLP <Vd>.<Ta>, <Vn>.<Tb>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

**Assembler symbols**

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H  when size = 00, Q = 0
- 8H  when size = 00, Q = 1
- 2S  when size = 01, Q = 0
- 4S  when size = 01, Q = 1
- 1D  when size = 10, Q = 0
- 2D  when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B  when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H  when size = 01, Q = 0
- 8H  when size = 01, Q = 1
- 2S  when size = 10, Q = 0
- 4S  when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.
Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bounds(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1
 op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
 op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.231  SADDLV

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as the source vector elements. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 8 4 | 0 |
0 O 0 1 1 1 0 | size | 1 1 0 0 0 0 0 1 1 1 0 | Rd |
```

**Advanced SIMD variant**

SADDLV <V><d>, <Vn>.<T>

**Decode for this encoding**

```plaintext
type integer d = UInt(Rd);
type integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
```

**Assembler symbols**

- `<V>` Is the destination width specifier, encoded in the "size" field. It can have the following values:
  - H when size = 00
  - S when size = 01
  - D when size = 10

  The encoding size = 11 is reserved.

- `<d>` Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.

- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 4S when size = 10, Q = 1

  The following encodings are reserved:
  - size = 10, Q = 0.
  - size = 11, Q = x.
Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
 sum = sum + Int(Elem[operand, e, esize], unsigned);
V[d] = sum<2*esize-1:0>;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.232 SADDW, SADDW2

Signed Add Wide. This instruction adds vector elements of the first source SIMD&FP register to the corresponding vector elements in the lower or upper half of the second source SIMD&FP register, places the results in a vector, and writes the vector to the SIMD&FP destination register.

The SADDW instruction extracts the second source vector from the lower half of the second source register, while the SADDW2 instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant
SADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
   [absent] when Q = 0
   [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
   8H when size = 00
   4S when size = 01
   2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   88 when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, 2*esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    if sub_op then
        sum = element1 - element2;
    else
        sum = element1 + element2;
    Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.233  SCVTF (vector, fixed-point)

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>1 1 1 0 1</td>
</tr>
</tbody>
</table>

Scalar variant

SCVT <V>d, <V>n, #<fbits>

Decode for this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;
integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);
```

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>1 1 1 0 1</td>
</tr>
</tbody>
</table>

Vector variant

SCVT <V>d.<T>, <V>n.<T>, #<fbits>

Decode for this encoding

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '000x' then SEE "Advanced SIMD modified immediate";
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```
integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

<V>  Is a width specifier, encoded in the "immh" field. It can have the following values:
    H    when immh = 001x
    S    when immh = 01xx
    D    when immh = 1xxx

    The encoding immh = 000x is reserved.

<d>  Is the number of the SIMD&FP destination register, in the "Rd" field.

<n>  Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
    4H    when immh = 001x, Q = 0
    8H    when immh = 001x, Q = 1
    2S    when immh = 01xx, Q = 0
    4S    when immh = 01xx, Q = 1
    2D    when immh = 1xxx, Q = 1

    See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

    The following encodings are reserved:
    •   immh = 0001, Q = x.
    •   immh = 1xxx, Q = 0.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded
    in the "immh:immb" field. It can have the following values:
    (32-UInt(immh:immb)) when immh = 001x
    (64-UInt(immh:immb)) when immh = 01xx
    (128-UInt(immh:immb)) when immh = 1xxx

    The encoding immh = 000x is reserved.

    For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded
    in the "immh:immb" field. It can have the following values:
    (32-UInt(immh:immb)) when immh = 001x
    (64-UInt(immh:immb)) when immh = 01xx
    (128-UInt(immh:immb)) when immh = 1xxx

    See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

    The encoding immh = 0001 is reserved.

Operation for all encodings

    CheckFPAdvSIMDEnabled64();
    bits(datasize) operand = V[n];
    bits(datasize) result;
    bits(esize) element;

    for e = 0 to elements-1
element = Elem[operand, e, esize];
          Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;
C7.2.234  SCVTF (vector, integer)

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector from signed integer to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 | Rn | Rd
U
```

Scalar half precision variant

SCVT <Hd>, <Hn>

Decode for this encoding

```
if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
```

Scalar single-precision and double-precision

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 1 0 1 1 1 1 0 0 sz 1 0 0 0 1 1 0 1 1 0 | Rn | Rd
U
```

Scalar single-precision and double-precision variant

SCVT <V>d>, <V>n>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
```

Vector half precision

ARMv8.2
Vector half precision variant

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

SCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in the "sz" field. It can have the following values:

S when sz = 0
D when sz = 1

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:

4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
FPRounding rounding = FPRoundingMode(FPCR);
bits(esize) element;
for e = 0 to elements-1
 element = Elem[operand, e, esize];
 Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.235 SCVTF (scalar, fixed-point)

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the 32-bit or 64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant
Applies when sf == 0 && ftype == 11.
SCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision variant
Applies when sf == 0 && ftype == 00.
SCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision variant
Applies when sf == 0 && ftype == 01.
SCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision variant
Applies when sf == 1 && ftype == 11.
SCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision variant
Applies when sf == 1 && ftype == 00.
SCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision variant
Applies when sf == 1 && ftype == 01.
SCVTF <Dd>, <Xn>, #<fbits>

Decode for all variants of this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
  when '00' fltsize = 32;
  when '01' fltsize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  if sf == '0' && scale<5> == '0' then UNDEFINED;
  integer fracbits = 64 - UInt(scale);
  rounding = FPRoundingMode(FPCR);

Assembler symbols

<Db> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as 64 minus "scale".
  For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as 64 minus "scale".

Operation

case ftype of
  when '00' fltsize = 32;
  when '01' fltsize = 64;
  when '10' UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  if sf == '0' && scale<5> == '0' then UNDEFINED;
  integer fracbits = 64 - UInt(scale);
  rounding = FPRoundingMode(FPCR);

checkFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, fracbits, FALSE, FPCR, rounding);
V[d] = fltval;
C7.2.236   SCVTF (scalar, integer)

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant
Applies when sf == 0 && ftype == 11.
SCVTF <Hd>, <Wn>

32-bit to single-precision variant
Applies when sf == 0 && ftype == 00.
SCVTF <Sd>, <Wn>

32-bit to double-precision variant
Applies when sf == 0 && ftype == 01.
SCVTF <Dd>, <Wn>

64-bit to half-precision variant
Applies when sf == 1 && ftype == 11.
SCVTF <Hd>, <Xn>

64-bit to single-precision variant
Applies when sf == 1 && ftype == 00.
SCVTF <Sd>, <Xn>

64-bit to double-precision variant
Applies when sf == 1 && ftype == 01.
SCVTF <Dd>, <Xn>

Decoding for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
case ftype of
  when '00'
    fltsize = 32;
  when '01'
    fltsize = 64;
  when '10'
    UNDEFINED;
  when '11'
    if HaveFP16Ext() then
      fltsize = 16;
    else
      UNDEFINED;
  rounding = FPRoundingMode(FPCR);

Assembler symbols

<DD> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<HD> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<SD> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<XN> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<WN> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, 0, FALSE, FPCR, rounding);
V[d] = fltval;
SDOT (by element)

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an optional instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 0 1 1 1</td>
<td>size</td>
<td>L</td>
<td>M</td>
<td>Rm</td>
<td>1 1 1 0</td>
<td>H 0</td>
<td>Rn</td>
</tr>
</tbody>
</table>

Vector variant

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[index]

Decode for this encoding

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U == '0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

2S when Q = 0
4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

8B when Q = 0
16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

[index] Is the element index, encoded in the "H:L" fields.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1
    integer res = 0;
    integer element1, element2;
    for i = 0 to 3
        if signed then
            element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
            element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
        else
            element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
            element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
        res = res + element1 * element2;
        Elem[result, e, esize] = Elem[result, e, esize] + res;
V[d] = result;
C7.2.238  SDOT (vector)

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four signed 8-bit elements in each 32-bit element of the first source register with the four signed 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

ARMv8.2

Vector variant

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U == '0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
in integer elements = datasize DIV esize;

Assembler symbols

<Vd>    Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
<Ta>    Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
        2S when Q = 0
        4S when Q = 1
<Vn>    Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb>    Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
        8B when Q = 0
        16B when Q = 1
<Vm>    Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1
  integer res = 0;
  integer element1, element2;
  for i = 0 to 3
    if signed then
      element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
      element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
    else
      element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
      element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
    res = res + element1 * element2;
    Elem[result, e, esize] = Elem[result, e, esize] + res;
  V[d] = result;
C7.2.239 SHA1C

SHA1 hash update (choose).

Advanced SIMD variant

SHA1C <Qd>, <Sn>, <Vm>.45

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) X = V[d];
bits(32) Y = V[n];  // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;
for e = 0 to 3
  t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
  Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
  X<63:32> = ROL(X<63:32>, 30);
  <Y, X> = ROL(Y:X, 32);
V[d] = X;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.240   SHA1H

SHA1 fixed rotate.

[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 ]
0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0  Rn   Rd

Advanced SIMD variant

SHA1H <Sd>, <Sn>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(32) operand = V[n]; // read element [0] only, [1-3] zeroed
V[d] = ROL(operand, 30);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.241 SHA1M

SHA1 hash update (majority).

```
[31 30 29 28|27 26 25 24|23 22 21 20]| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 0 1 1 | 1 0 0 0 | Rm 0 0 1 0 | 0 0 | Rn | Rd
```

**Advanced SIMD variant**

SHA1M <Qd>, <Sn>, <Vm>.4S

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;
```

**Assembler symbols**

<Qd>	Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.
<Sn>	Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm>	Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
 t = SHAmajority(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
V[d] = X;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.242 SHA1P

SHA1 hash update (parity).

```
[31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 1 0 1 1 1 0 0 0 | 0 0 1 0 0 | Rn | Rd |
```

**Advanced SIMD variant**

SHA1P <Qd>, <Sn>, <Vm>.4S

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if !HaveSHA1Ext() then UNDEFINED;

**Assembler symbols**

- <Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.
- <Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
- <Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

**Operation**

- AArch64.CheckFPAdvSIMDEnabled();
- bits(128) X = V[d];
- bits(32) Y = V[n]; // Note: 32 not 128 bits wide
- bits(128) W = V[m];
- bits(32) t;
- for e = 0 to 3
  - t = SHA1parity(X<63:32>, X<95:64>, X<127:96>);
  - Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
  - X<63:32> = ROL(X<63:32>, 30);
  - <Y, X> = ROL(Y:X, 32);
- V[d] = X;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.243  SHA1SU0

SHA1 schedule update 0.

Advanced SIMD variant
SHA1SU0 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding
int d = UInt(Rd);
int n = UInt(Rn);
int m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler symbols
<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) operand3 = V[m];
bits(128) result;

result = operand2<63:0>:operand1<127:64>;
result = result EOR operand1 EOR operand3;
V[d] = result;

Operational information
If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.244 SHA1SU1

SHA1 schedule update 1.

```
<Vd>.4S, <Vn>.4S
```

**Advanced SIMD variant**

SHA1SU1 <Vd>.4S, <Vn>.4S

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA1Ext() then UNDEFINED;
```

**Assembler symbols**

```
<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
```

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand1 EOR LSR(operand2, 32);
result<31:0> = ROL(T<31:0>, 1);
result<63:32> = ROL(T<63:32>, 1);
result<95:64> = ROL(T<95:64>, 1);
result<127:96> = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.245   SHA256H2

SHA256 hash update (part 2).

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1</td>
<td>1 1 0</td>
<td>0 0</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>0 1</td>
<td>0 0</td>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Advanced SIMD variant**

SHA256H2 <Qd>, <Qn>, <Vm>.4S

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;
```

**Assembler symbols**

- <Qd> is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.
- <Qn> is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
- <Vm> is the name of the third SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) result;
result = SHA256hash(V[n], V[d], V[m], FALSE);
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.246   SHA256H

SHA256 hash update (part 1).

```
| [31 30 29 28] | [27 26 25 24] | [23 22 21 20] | [16|15 14 13 12|11 10 9 | 5 4 | 0 | 0]
| 0 1 0 1 1 1 0 0 0 | Rm 0 1 0 0 0 | Rn | Rd |
```

**Advanced SIMD variant**

SHA256H <Qd>, <Qn>, <Vm>.4S

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;
```

**Assembler symbols**

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.
<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) result;
result = SHA256hash(V[d], V[n], V[m], TRUE);
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.247 SHA256SU0

SHA256 schedule update 0.

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 18 17 16]</th>
<th>[15 14 13 12]</th>
<th>[11 10 9]</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 0 1 0 0</td>
<td>0 0 1 0 0 0 1 0</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Advanced SIMD variant**

SHA256SU0 <Vd>.4S, <Vn>.4S

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA256Ext() then UNDEFINED;

**Assembler symbols**

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

**Operation**

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand2<31:0>:operand1<127:32>;
bits(32) elt;
for e = 0 to 3
    elt = Elem[T, e, 32];
    elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
    Elem[result, e, 32] = elt + Elem[operand1, e, 32];
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.248   SHA256SU1

SHA256 schedule update 1.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 0 0</td>
<td>Rm 0 1 1 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Advanced SIMD variant**

SHA256SU1 <Vd>.4S, <Vn>.4S, <Vm>.4S

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;
```

**Assembler symbols**

- `<Vd>` is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>` is the name of the second SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` is the name of the third SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
binary(128) operand2 = V[n];
binary(128) operand3 = V[m];
binary(128) result;
binary(128) T0 = operand3<31:0>:operand2<127:32>;
binary(64) T1;
binary(32) elt;
T1 = operand3<127:64>;
for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;
T1 = result<63:0>;
for e = 2 to 3
 elt = Elem[T1, e-2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;
V[d] = result;
```
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.249  SHA512H

SHA512 Hash update part 1 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit output value that combines the sigma1 and chi functions of two iterations of the SHA512 computation. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD variant

SHA512H <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assemble symbols

<Qd>  Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Qn>  Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm>  Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vtmp;
bits(64) MSigma1;
bits(64) tmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

MSigma1 = ROR(Y<127:64>, 14) EOR ROR(Y<127:64>, 18) EOR ROR(Y<127:64>, 41);
Vtmp<127:64> = (Y<127:64> AND X<63:0>) EOR (NOT(Y<127:64>) AND X<127:64>);
Vtmp<127:64> = (Vtmp<127:64> + MSigma1 + W<127:64>);
tmp = Vtmp<127:64> + Y<63:0>;
MSigma1 = ROR(tmp, 14) EOR ROR(tmp, 18) EOR ROR(tmp, 41);
Vtmp<63:0> = (tmp AND Y<127:64>) EOR (NOT(tmp) AND X<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + MSigma1 + W<63:0>);
V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
- The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.250   SHA512H2

SHA512 Hash update part 2 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit output value that combines the sigma0 and majority functions of two iterations of the SHA512 computation. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

ARMv8.2

[1 1 0 0 1 1 1 0 0 1 1] Rn | [1 0 0 0 0 1] Rn | [0] Rd

Advanced SIMD variant

SHA512H2 <Qd>, <Qn>, <Vm>.2D

Decode for this encoding

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vtmp;
bits(64) NSigma0;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];
NSigma0 = ROR(Y<63:0>, 28) EOR ROR(Y<63:0>, 34) EOR ROR(Y<63:0>, 39);
Vtmp<127:64> = (X<63:0> AND Y<127:64>) EOR (X<63:0> AND Y<63:0>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<127:64> = (Vtmp<127:64> + NSigma0 + W<127:64>);
NSigma0 = ROR(Vtmp<127:64>, 28) EOR ROR(Vtmp<127:64>, 34) EOR ROR(Vtmp<127:64>, 39);
Vtmp<63:0> = (Vtmp<127:64> AND Y<63:0>) EOR (Vtmp<127:64> AND Y<127:64>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + NSigma0 + W<63:0>);
V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.251 SHA512SU0

SHA512 Schedule Update 0 takes the values from the two 128-bit source SIMD&FP registers and produces a 128-bit output value that combines the gamma0 functions of two iterations of the SHA512 schedule update that are performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA512 is implemented.

ARMv8.2

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0|
```

**Advanced SIMD variant**

SHA512SU0: <Vd>.2D, <Vn>.2D

**Decode for this encoding**

```
if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(64) sig0;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) W = V[d];
sig0 = ROR(W<127:64>, 1) EOR ROR(W<127:64>, 8) EOR ('0000000':W<127:71>);
Vtmp<63:0> = W<63:0> + sig0;
sig0 = ROR(X<63:0>, 1) EOR ROR(X<63:0>, 8) EOR ('0000000':X<63:7>);
Vtmp<127:64> = W<127:64> + sig0;
V[d] = Vtmp;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.252 SHA512SU1

SHA512 Schedule Update 1 takes the values from the three source SIMD&FP registers and produces a 128-bit output value that combines the gamma1 functions of two iterations of the SHA512 schedule update that are performed after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register. This instruction is implemented only when FEAT_SHA512 is implemented.

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20| 16 15 14 13 12|11 10 9 | 5 4 | 0 |
| 1 1 0 0 1 1 1 0 0 1 1 | Rn | 1 0 0 1 0 | Rn | Rd |

Advanced SIMD variant
SHA512SU1 <Vd>.2D, <Vn>.2D, <Vm>.2D

Decode for this encoding
if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols
<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation
AArch64.CheckFPAdvSIMDEnabled();
bits(64) sig1;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];
sig1 = ROR(X<127:64>, 19) EOR ROR(X<127:64>, 61) EOR ('000000':X<127:70>);
Vtmp<127:64> = W<127:64> + sig1 + Y<127:64>;
sig1 = ROR(X<63:0>, 19) EOR ROR(X<63:0>, 61) EOR ('000000':X<63:6>);
Vtmp<63:0> = W<63:0> + sig1 + Y<63:0>;
V[d] = Vtmp;

Operational information
If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
C7.2.253   SHADD

Signed Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SRHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

SHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The encoding size = 11, Q = 'X' is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    sum = element1 + element2;
    Elem[result, e, esize] = sum<esize:1>;
    V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.254 SHL

Shift Left (immediate). This instruction reads each value from a vector, left shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>00000</td>
<td>immb 0 1 0 1 0 1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SHL <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if imm<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 1 0</td>
<td>00000</td>
<td>immb 0 1 0 1 0 1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>.Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx

The encoding immh = 0xxx is reserved.
<db> Is the number of the SIMD&FP destination register, in the "Rd" field.
</db>

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
</n>

<d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
</d>

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>when immh = 0001, Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>when immh = 0001, Q = 1</td>
</tr>
<tr>
<td>4H</td>
<td>when immh = 001x, Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>when immh = 001x, Q = 1</td>
</tr>
<tr>
<td>2S</td>
<td>when immh = 01xx, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>when immh = 01xx, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>when immh = 1xxx, Q = 1</td>
</tr>
</tbody>
</table>

See [Advanced SIMD modified immediate](#) on page C4-351 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
</vn>

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb" field. It can have the following values:

( UInt(immh:immb)-64) when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:

( UInt(immh:immb)-8) when immh = 0001
( UInt(immh:immb)-16) when immh = 001x
( UInt(immh:immb)-32) when immh = 01xx
( UInt(immh:immb)-64) when immh = 1xxx

See [Advanced SIMD modified immediate](#) on page C4-351 when immh = 0000.

---

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bidx(datasize) operand = V[n];
bidx(datasize) result;
for e = 0 to elements-1
 Elem[result, e, esize] = LSL(Elem[operand, e, esize], shift);
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.255  SHLL, SHLL2

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half of the source SIMD&FP register, left shifts each result by the element size, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SHLL instruction extracts vector elements from the lower half of the source register, while the SHLL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

SHLL[2] <Vd>,<Ta>, <Vn>,<Tb>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = esize;
boolean unsigned = FALSE;    // Or TRUE without change of functionality

Assembler symbols

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
   [absent] when Q = 0
   [present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:
   8H  when size = 00
   4S  when size = 01
   2D  when size = 10
   The encoding size = 11 is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   8B  when size = 00, Q = 0
   16B when size = 00, Q = 1
4H when size = 0, Q = 0
8H when size = 0, Q = 1
2S when size = 1, Q = 0
4S when size = 1, Q = 1
The encoding size = 11, Q = x is reserved.

<shift> Is the left shift amount, which must be equal to the source element width in bits, encoded in the
"size" field. It can have the following values:
8 when size = 00
16 when size = 01
32 when size = 10
The encoding size = 11 is reserved.

Operation

```
CheckFPAdvSIMDEnabled64();
bite(datasize) operand = Vpart[n, part];
bits(2*datasize) result;
integer element;

for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.256   SHRN, SHRN2

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source SIMD&FP register, right shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. The results are truncated. For rounded results, see RSHRN, RSHRN2.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>l=0000</td>
</tr>
</tbody>
</table>

**Vector variant**

SHRN[2] <Vd>,<Tb>, <Vn>,<Ta>, #<shift>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

-absent when Q = 0
-present when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B  when immh = 0001, Q = 0
16B  when immh = 0001, Q = 1
4H  when immh = 001x, Q = 0
8H  when immh = 01x, Q = 1
2S  when immh = 01xx, Q = 0
4S  when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

- 8H when immh = 0001
- 4S when immh = 001x
- 2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- (16-UInt(immh:immb)) when immh = 0001
- (32-UInt(immh:immb)) when immh = 001x
- (64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
for e = 0 to elements-1
   element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
   Elem[result, e, esize] = element<esize-1:0>;
Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.257 SHSUB

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD&FP register from the corresponding elements in the vector in the first source SIMD&FP register, shifts each result right one bit, places each result into elements of a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

-three registers of the same type variant-

**SHSUB** <Vd>..<T>, <Vn>..<T>, <Vm>..<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
for e = 0 to elements-1
   element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, left shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their existing value. Bits shifted out of the left of each vector element in the source register are lost.

The following figure shows the operation of shift left by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

![Scalar operation diagram]

**Scalar variant**

SLI <V><d>, <V><n>, #<shift>

**Decode for this encoding**

integer d = Uint(Rd);
integer n = Uint(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;
integer shift = Uint(immh:immb) - esize;

**Vector**

![Vector operation diagram]

**Vector variant**

SLI <Vd>.<T>, <Vn>.<T>, #<shift>
Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer shift = UInt(immh:immb) - esize;
```

Assembler symbols

<\V> Is a width specifier, encoded in the "immh" field. It can have the following values:
    D when immh = 1xxx
The encoding immh = 0xxx is reserved.
<\d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<\n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<\vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
    8B when immh = 0001, Q = 0
    16B when immh = 0001, Q = 1
    4H when immh = 001x, Q = 0
    8H when immh = 001x, Q = 1
    2S when immh = 01xx, Q = 0
    4S when immh = 01xx, Q = 1
    2D when immh = 1xxx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = 0 is reserved.
<\vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<\shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in the "immh:immb" field. It can have the following values:
    (UInt(immh:immb)-64) when immh = 1xxx
The encoding immh = 0xxx is reserved.
For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:
    (UInt(immh:immb)-8) when immh = 0001
    (UInt(immh:immb)-16) when immh = 001x
    (UInt(immh:immb)-32) when immh = 01xx
    (UInt(immh:immb)-64) when immh = 1xxx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();
biteas(datasize) operand = V[n];
biteas(datasize) operand2 = V[d];
biteas(datasize) result;
```
bits(esize) mask = LSL(Ones(esize), shift);
bites(esize) shifted;

for e = 0 to elements-1
    shifted = LSL(Elem[operand, e, esize], shift);
    Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
    V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.259  SM3PARTW1

SM3PARTW1 takes three 128-bit vectors from the three source SIMD&FP registers and returns a 128-bit result in the destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the input vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD variant

SM3PARTW1 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;
result<95:0> = (Vd EOR Vn)<95:0> EOR (ROL(Vm<127:96>, 15):ROL(Vm<95:64>, 15):ROL(Vm<63:32>, 15));

for i = 0 to 3
if i == 3 then
result<127:96> = (Vd EOR Vn)<127:96> EOR (ROL(result<31:0>, 15));
result<(32+i):31:(32+i)> = result<(32+i):31:(32+i)> EOR ROL(result<(32+i):31:(32+i)>, 15) EOR ROL(result<(32+i):31:(32+i)>, 23);
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.260  SM3PARTW2

SM3PARTW2 takes three 128-bit vectors from three source SIMD&FP registers and returns a 128-bit result in the destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the input vectors with some fixed rotations, see the Operation pseudocode for more information.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

<table>
<thead>
<tr>
<th>32</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Advanced SIMD variant

SM3PARTW2 <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;
bits(128) tmp;
bits(32) tmp2;
tmp<127:0> = Vn EOR (ROL(Vm<127:96>, 7):ROL(Vm<95:64>, 7):ROL(Vm<63:32>, 7):ROL(Vm<31:0>, 7));
result<127:0> = Vd<127:0> EOR tmp<127:0>;
tmp2 = ROL(tmp<31:0>, 15);
tmp2 = tmp2 EOR ROL(tmp2, 15) EOR ROL(tmp2, 23);
result<127:96> = result<127:96> EOR tmp2;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.261 SM3SS1

SM3SS1 rotates the top 32 bits of the 128-bit vector in the first source SIMD&FP register by 12, and adds that 32-bit value to the two other 32-bit values held in the top 32 bits of each of the 128-bit vectors in the second and third source SIMD&FP registers, rotating this result left by 7 and writing the final result into the top 32 bits of the vector in the destination SIMD&FP register, with the bottom 96 bits of the vector being written to 0.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1 1 0</td>
<td>0</td>
<td>1 0</td>
<td>Ra</td>
<td>Rm</td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Advanced SIMD variant**

SM3SS1 <Vd>.4S, <Vn>.4S, <Vm>.4S, <Va>.4S

**Decode for this encoding**

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

**Assembler symbols**

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

**Operation**

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) Va = V[a];
Vd<127:96> = ROL((ROL(Vn<127:96>, 12) + Vm<127:96> + Va<127:96>), 7);  
Vd<95:0> = Zeros();
V[d] = Vd;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.262   SM3TT1A

SM3TT1A takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

- The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
- The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by 12 of the top 32-bit element of the first source vector.
- A 32-bit element indexed out of the third source vector,Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 0 0 | Rn | Rd |
```

**Advanced SIMD variant**

SM3TT1A \(<Vd>.4S, <Vn>.4S, <Vm>.5[<imm2>]\)

**Decode for this encoding**

```c
if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);
```

**Assembler symbols**

\(<Vd>\) Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

\(<Vn>\) Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

\(<imm2>\) Is a 32-bit element indexed out of \(<Vm>\), encoded in "imm2".

**Operation**

```c
AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) WjPrime;
bits(128) result;
bites(32) TT1;
bites(32) SS2;
WjPrime = Elem[Vm, i, 32];
```
SS2 = Vn<127:96> EOR ROL(Vd<95:64>, 9);
TT1 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.263   SM3TT1B

SM3TT1B takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

- The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
- The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by 12 of the top 32-bit element of the first source vector.
- A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] | 16 15 14 13 | 12 | 11 | 10 | 9 | 5 | 4 | 0

1 1 0 0 1 1 1 0 1 0 1 0 | Rm 1 0 | imm2 0 1 | Rn | Rd
```

Advanced SIMD variant

SM3TT1B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

Decode for this encoding

```
if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);
```

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the third SIMD&FP source register, encoded in the "Rm" field.
- `<imm2>` Is a 32-bit element indexed out of `<Vm>`, encoded in "imm2".

Operation

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V(d);
bits(32) WjPrime;
bits(128) result;
bits(32) TT1;
bits(32) SS2;
WjPrime = Elem[Vm, i, 32];
```
SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
TT1 = (Vd<127:96> AND Vd<63:32>) OR (Vd<127:96> AND Vd<95:64>) OR (Vd<63:32> AND Vd<95:64>);
TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.264   SM3TT2A

SM3TT2A takes three 128-bit vectors from three source SIMD&FP register and a 2-bit immediate index value, and returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

- The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
- The 32-bit element held in the top 32 bits of the second source vector, Vn.
- A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the returned result. The other elements of this result are taken from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0	
1	1	0	0	1	1	0	0	1
Rm	1	0	imm2	1	0	Rd		

**Advanced SIMD variant**

SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

**Decode for this encoding**

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);

**Assembler symbols**

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

**Operation**

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT2;
Wj = Elem[Vm, i, 32];
TT2 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.265  SM3TT2B

SM3TT2B takes three 128-bit vectors from three source SIMD&FP registers, and a 2-bit immediate index value, and returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the three 32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

- The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
- The 32-bit element held in the top 32 bits of the second source vector, Vn.
- A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the returned result. The other elements of this result are taken from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when FEAT_SM3 is implemented.

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1 1</td>
<td>0 0 1 0 1</td>
<td>Rm</td>
<td>1 0</td>
<td>imm2</td>
<td>1 1</td>
<td>Rn</td>
</tr>
</tbody>
</table>
```

**Advanced SIMD variant**

SM3TT2B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

**Decode for this encoding**

```
if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the third SIMD&FP source register, encoded in the "Rm" field.
- `<imm2>` Is a 32-bit element indexed out of `<Vm>`, encoded in "imm2".

**Operation**

```
AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT2;
Wj = Elem[Vm, i, 32];
```
TT2 = (Vd<127:96> AND Vd<95:64>) OR (NOT(Vd<127:96>) AND Vd<63:32>);
TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.266   SM4E

SM4 Encode takes input data as a 128-bit vector from the first source SIMD&FP register, and four iterations of the round key held as the elements of the 128-bit vector in the second source SIMD&FP register. It encrypts the data by four rounds, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SM4 is implemented.

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9  | 5 4 | 0 |
| 1 1 0 0 1 | 1 1 0 1 0 | 0 0 0 0 0 | 0 1 0 0 0 | 1 | Rn | Rd |

Advanced SIMD variant

SM4E <Vd>.4S, <Vn>.4S

Decode for this encoding

if !HaveSM4Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

Assembler symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vn = V[n];
bits(32) intval;
bits(8) sboxout;
bits(128) roundresult;
bits(32) roundkey;

roundresult = V[d];
for index = 0 to 3
    roundkey = Elem[Vn, index, 32];
    intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;
    for i = 0 to 3
        Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);
    intval = intval EOR ROL(intval, 2) EOR ROL(intval, 10) EOR ROL(intval, 18) EOR ROL(intval, 24);
   (roundresult<31:0> = roundresult<63:32>);
    roundresult<63:32> = roundresult<95:64>;
    roundresult<95:64> = roundresult<127:96>;
    roundresult<127:96> = intval;
V[d] = roundresult;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.267   SM4EKEY

SM4 Key takes an input as a 128-bit vector from the first source SIMD&FP register and a 128-bit constant from the second SIMD&FP register. It derives four iterations of the output key, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SM4 is implemented.

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9  5 4 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1 1 0 0 1 1</td>
<td>Rm 1 1 0 0 1 0</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Advanced SIMD variant

SM4EKEY <Vd>.4S, <Vn>.4S, <Vm>.4S

Decode for this encoding

if !HaveSM4Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Vd>    Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn>    Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>    Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(32) intval;
bits(8)oboxout;
bits(128) result;
bits(32) const;
bits(128) roundresult;

roundresult = V[n];
for index = 0 to 3
  const = Elem[Vm, index, 32];
  intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;
  for i = 0 to 3
    Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);
  intval = intval EOR ROL(intval, 13) EOR ROL(intval, 23);
  intval = intval EOR roundresult<31:0>;
  roundresult<31:0> = roundresult<63:32>;
  roundresult<63:32> = roundresult<95:64>;
  roundresult<95:64> = roundresult<127:96>;
  roundresult<127:96> = intval;
V[d] = roundresult;
Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.268  SMAX

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the larger of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 0 | 1 | 1 | 1 | 1 | | Rm | 0 | 1 | 0 | 0 | 1 | | Rn | | | | | | | | Rd |
| U | | o1 |
```

Three registers of the same type variant

SMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');
```

Assembler symbols

```plaintext
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
```

Operation

```plaintext
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;
```
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
  Elem[result, e, esize] = maxmin<esize-1:0>;
  V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.269 SMAXP

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Three registers of the same type variant

```
SMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
```

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');
```

**Assembler symbols**

```
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
```

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
```
integer maxmin;
for e = 0 to elements-1
    element1 = Int(Elem[concat, 2*e, esize], unsigned);
    element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
    maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
    Elem[result, e, esize] = maxmin<esize-1:0>;
V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.270 SMAXV

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|-----------|-----------|-----------|-----------|-----------|-----------| |
| 0 | Q | 0 | 1 | 1 | 1 | 0 | size | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
 | Rn | Rd
```

**Advanced SIMD variant**

SMAXV <V><d>, <Vn>.<T>

**Decode for this encoding**

```plaintext```
integer d = UInt(Rd);
integer n = UInt(Rn);
if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean min = (op == '1');
```

**Assembler symbols**

<\V> Is the destination width specifier, encoded in the "size" field. It can have the following values:
- B when size = 00
- H when size = 01
- S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 4S when size = 10, Q = 1

The following encodings are reserved:
- size = 10, Q = 0.
- size = 11, Q = x.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
  element = Int(Elem[operand, e, esize], unsigned);
  maxmin = if min then Min(maxmin, element) else Max(maxmin, element);
V[d] = maxmin-esize-1:0;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.271 SMIN

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the smaller of each of the two signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

SMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
  Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.272  SMINP

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

SMINP <Vd>,<T>, <Vn>,<T>, <Vm>,<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
     8B  when size = 00, Q = 0
     16B when size = 00, Q = 1
     4H  when size = 01, Q = 0
     8H  when size = 01, Q = 1
     2S  when size = 10, Q = 0
     4S  when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;
for e = 0 to elements-1
  element1 = Int(Elem[concat, 2*e, esize], unsigned);
  element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
  maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
  Elem[result, e, esize] = maxmin<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.273  SMINV

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Q</td>
<td>0 1 1 1 0</td>
<td>size</td>
<td>1 1 0 0 0</td>
<td>1 1 0 1 0</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Advanced SIMD variant**

SMINV <V><d>, <Vn>.<T>

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');
```

**Assembler symbols**

< V >  Is the destination width specifier, encoded in the "size" field. It can have the following values:

- B  when size = 00
- H  when size = 01
- S  when size = 10

The encoding size = 11 is reserved.

< d >  Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

< Vn > Is the name of the SIMD&FP source register, encoded in the "Rn" field.

< T >  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B  when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H  when size = 01, Q = 0
- 8H  when size = 01, Q = 1
- 4S  when size = 10, Q = 1

The following encodings are reserved:

- size = 10, Q = 0.
- size = 11, Q = x.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
    element = Int(Elem[operand, e, esize], unsigned);
    maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin-size-1:0;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element in the second source SIMD&FP register, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this instruction are signed integer values.

The SMLAL instruction extracts vector elements from the lower half of the first source register, while the SMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>size</td>
<td>L</td>
</tr>
<tr>
<td>Rm</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>H</td>
<td>0</td>
</tr>
<tr>
<td>Rd</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>o2</td>
</tr>
</tbody>
</table>

Vector variant

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

```plaintext
integer idxsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');
```

Assembler symbols

2       Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd>    Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta>    Is an arrangement specifier, encoded in the "size" field. It can have the following values:
        4S    when size = 01
        2D    when size = 10
The following encodings are reserved:
- size = 00.
- size = 11.

\(<Vn>\)
Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Tb>\)
Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 4H  when size = 01, Q = 0
- 8H  when size = 01, Q = 1
- 2S  when size = 10, Q = 0
- 4S  when size = 10, Q = 1

The following encodings are reserved:
- size = 00, Q = x.
- size = 11, Q = x.

\(<Vm>\)
Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
- 0:Rm  when size = 01
- M:Rm  when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

Restricted to V0-V15 when element size \(<Ts>\) is H.

\(<Ts>\)
Is an element size specifier, encoded in the "size" field. It can have the following values:
- H  when size = 01
- S  when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

\(<index>\)
Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
- H:L:M  when size = 01
- H:L  when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
```
if sub_op then
  \( \text{Elem[result, e, 2*esize]} = \text{Elem[operand3, e, 2*esize]} - \text{product} \); 
else
  \( \text{Elem[result, e, 2*esize]} = \text{Elem[operand3, e, 2*esize]} + \text{product} \); 

\( V[d] = \text{result} \);

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.275  SMLAL, SMLAL2 (vector)

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the two source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMLAL instruction extracts each source vector from the lower half of each source register, while the SMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

- \(2\) is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
  - [absent] when \(Q = 0\)
  - [present] when \(Q = 1\)

- \(<Vd>\) is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- \(<Ta>\) is an arrangement specifier, encoded in the "size" field. It can have the following values:
  - \(8H\) when \(size = 00\)
  - \(4S\) when \(size = 01\)
  - \(2D\) when \(size = 10\)

The encoding \(size = 11\) is reserved.

- \(<Vn>\) is the name of the first SIMD&FP source register, encoded in the "Rn" field.

- \(<Tb>\) is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - \(8B\) when \(size = 00, Q = 0\)
  - \(16B\) when \(size = 00, Q = 1\)
When size = 01, \( Q = 0 \)

When size = 01, \( Q = 1 \)

2S when size = 10, \( Q = 0 \)

4S when size = 10, \( Q = 1 \)

The encoding size = 11, \( Q = x \) is reserved.

\(<\text{Vm}>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<<2*esize-1:0>
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.276  SMLSL, SMLSL2 (by element)

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts vector elements from the lower half of the first source register, while the SMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Vector variant**

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[@index]

**Decode for this encoding**

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
- [absent] when Q = 0
- [present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:
- 4S when size = 01
- 2D when size = 10

The following encodings are reserved:
- size = 00.
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

\[\begin{align*}
4H & \quad \text{when size = 01, Q = 0} \\
8H & \quad \text{when size = 01, Q = 1} \\
2S & \quad \text{when size = 10, Q = 0} \\
4S & \quad \text{when size = 10, Q = 1}
\end{align*}\]

The following encodings are reserved:

- size = 00, Q = x.
- size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

\[\begin{align*}
0:Rm & \quad \text{when size = 01} \\
M:Rm & \quad \text{when size = 10}
\end{align*}\]

The following encodings are reserved:

- size = 00.
- size = 11.

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

\[\begin{align*}
H & \quad \text{when size = 01} \\
S & \quad \text{when size = 10}
\end{align*}\]

The following encodings are reserved:

- size = 00.
- size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

\[\begin{align*}
H:L:M & \quad \text{when size = 01} \\
H:L & \quad \text{when size = 10}
\end{align*}\]

The following encodings are reserved:

- size = 00.
- size = 11.

Operation

CheckFPAdvSIMDEnabled64();
binary (datasize) operand1 = Vpart[n, part];
binary (idxdsiz) operand2 = V[m];
binary (2*datasize) operand3 = V[d];
binary (2*datasize) result;
integer element1;
integer element2;
binary (2*esize) product;

\[
\text{element2} = \text{Int}(\text{Elem}[\text{operand2}, \text{index}, \text{esize}], \text{unsigned});
\]

for e = 0 to elements-1

\[
\text{element1} = \text{Int}(\text{Elem}[\text{operand1}, e, \text{esize}], \text{unsigned});
\]

\[
\text{product} = (\text{element1} \times \text{element2}) \times 2^{\text{esize}-1};\text{unsigned};
\]

if sub_op then

\[
\text{Elem}[\text{result}, e, 2^{\text{esize}}] = \text{Elem}[\text{operand3}, e, 2^{\text{esize}}] - \text{product};
\]

else
\[
\text{Elem}[\text{result}, e, 2\times\text{esize}] = \text{Elem}[\text{operand3}, e, 2\times\text{esize}] + \text{product};
\]

\[
V[d] = \text{result};
\]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.277    SMLSL, SMLSL2 (vector)

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts each source vector from the lower half of each source register, while the SMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant
SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

2    Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>absent</th>
<th>present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q = 0</td>
<td>Q = 1</td>
</tr>
</tbody>
</table>

<Vd>    Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>    Is an arrangement specifier, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>8H</th>
<th>4S</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>size = 00</td>
<td>size = 01</td>
<td>size = 10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<Vn>    Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb>    Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>8B</th>
<th>16B</th>
</tr>
</thead>
<tbody>
<tr>
<td>size = 00, Q = 0</td>
<td>size = 00, Q = 1</td>
</tr>
</tbody>
</table>
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;
 Elem[result, e, 2*esize] = accum;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.278   SMMLA (vector)

Signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of signed 8-bit integer values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vector variant

SMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

if !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler symbols

<Vd>    Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
<Vn>    Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>    Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];
V[d] = MatMulAdd(addend, operand1, operand2, FALSE, FALSE);
C7.2.279 SMOV

Signed Move vector element to general-purpose register. This instruction reads the signed integer from the source SIMD&FP register, sign-extends it to form a 32-bit or 64-bit value, and writes the result to destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant
Applies when \( Q = 0 \).

\[
\text{SMOV} \ <Wd>, <Vn>.<Ts>[<index>]
\]

64-reg, SMOV-64-reg variant
Applies when \( Q = 1 \).

\[
\text{SMOV} \ <Xd>, <Vn>.<Ts>[<index>]
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } & \ d = \text{UInt}(Rd); \\
\text{integer } & \ n = \text{UInt}(Rn); \\
\text{integer } & \ size; \\
\text{case } & \text{Q:imm5 of} \\
\text{when } & 'xxxxx1' \ 0; \quad \text{SMOV } [WX]d, Vn.B \\
\text{when } & 'xxxx10' \ 1; \quad \text{SMOV } [WX]d, Vn.H \\
\text{when } & '1xx100' \ 2; \quad \text{SMOV } Xd, Vn.S \\
\text{otherwise } & \text{UNDEFINED}; \\
\end{align*}
\]

\[
\begin{align*}
\text{integer } & \ idxdsize = \text{if imm5<4> == '1' then 128 else 64}; \\
\text{integer } & \ index = \text{UInt}(\text{imm5}<4:\text{size+1}>); \\
\text{integer } & \ esize = 8 << \text{size}; \\
\text{integer } & \ datasize = \text{if Q == '1' then 64 else 32};
\end{align*}
\]

Assembler symbols

\[
\begin{align*}
<Wd> & \quad \text{Is the 32-bit name of the general-purpose destination register, encoded in the } "Rd" \text{ field.} \\
<Xd> & \quad \text{Is the 64-bit name of the general-purpose destination register, encoded in the } "Rd" \text{ field.} \\
<Vn> & \quad \text{Is the name of the SIMD&FP source register, encoded in the } "Rn" \text{ field.} \\
<Ts> & \quad \text{For the 32-bit variant: is an element size specifier, encoded in the } "\text{imm5}" \text{ field. It can have the following values:} \\
 & \quad \text{B} \quad \text{when imm5 = xxxx1} \\
 & \quad \text{H} \quad \text{when imm5 = xxxx10} \\
 & \quad \text{The encoding imm5 = xxx00 is reserved.} \\
 & \quad \text{For the 64-reg, SMOV-64-reg variant: is an element size specifier, encoded in the } "\text{imm5}" \text{ field. It can have the following values:} \\
 & \quad \text{B} \quad \text{when imm5 = xxxx1}
\end{align*}
\]
H     when imm5 = xxx10
S     when imm5 = xx100

The encoding imm5 = xx000 is reserved.

For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following values:
imm5<4:1> when imm5 = xxxx1
imm5<4:2> when imm5 = xxx10
imm5<4:3> when imm5 = xx100

The encoding imm5 = xxx00 is reserved.

For the 64-reg,SMOV-64-reg variant: is the element index encoded in the "imm5" field. It can have the following values:
imm5<4:1> when imm5 = xxxx1
imm5<4:2> when imm5 = xxx10
imm5<4:3> when imm5 = xx100
imm5<4:4> when imm5 = xx000

The encoding imm5 = xx000 is reserved.

Operation

CheckFPAdvSIMDEnabled64();
bites(idxdsize) operand = V[n];
X[d] = SignExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.280  **SMULL, SMULL2 (by element)**

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts vector elements from the lower half of the first source register, while the SMULL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Vector variant**

```
SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]
```

**Decode for this encoding**

```
vector idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
```

**Assembler symbols**

- **2**  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
  - [absent] when Q = 0
  - [present] when Q = 1

- **<Vd>**  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- **<Ta>**  Is an arrangement specifier, encoded in the "size" field. It can have the following values:
  - 45  when size = 01
  - 20  when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.
<\textit{Vn}> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\textit{Tb}> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

\begin{align*}
4H & \text{ when size = 01, } Q = 0 \\
8H & \text{ when size = 01, } Q = 1 \\
2S & \text{ when size = 10, } Q = 0 \\
4S & \text{ when size = 10, } Q = 1 \\
\end{align*}

The following encodings are reserved:
\begin{itemize}
  \item size = 00, Q = x.
  \item size = 11, Q = x.
\end{itemize}

<\textit{Vm}> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

\begin{align*}
0:Rm & \text{ when size = 01} \\
M:Rm & \text{ when size = 10} \\
\end{align*}

The following encodings are reserved:
\begin{itemize}
  \item size = 00.
  \item size = 11.
\end{itemize}

Restricted to \text{V0-V15} when element size <\textit{Ts}> is H.

<\textit{Ts}> Is an element size specifier, encoded in the "size" field. It can have the following values:

\begin{align*}
H & \text{ when size = 01} \\
S & \text{ when size = 10} \\
\end{align*}

The following encodings are reserved:
\begin{itemize}
  \item size = 00.
  \item size = 11.
\end{itemize}

<\textit{index}> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

\begin{align*}
H:L:M & \text{ when size = 01} \\
H:L & \text{ when size = 10} \\
\end{align*}

The following encodings are reserved:
\begin{itemize}
  \item size = 00.
  \item size = 11.
\end{itemize}

\textbf{Operation}

\begin{verbatim}
CheckFPAdvsIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  product = (element1*element2)[2*esize-1:0];
  Elem[result, e, 2*esize] = product;

V[d] = result;
\end{verbatim}
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.281  SMULL, SMULL2 (vector)

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts each source vector from the lower half of each source register, while the SMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [16 15 14 13] [12 11 10 9] [5 4] [0]
 0 Q 0 1 1 1 0 | size 1 | Rn 1 1 0 0 0 0 | Rm | Rd
```

Three registers, not all the same type variant

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

**Assembler symbols**

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

   [absent] when Q = 0
   [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

   8H when size = 00
   4S when size = 01
   2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

   88 when size = 00, Q = 0
   168 when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<<esize-1:0;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.282 SQABS

Signed saturating absolute value. This instruction reads each vector element from the source SIMD&FP register, puts the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0</td>
<td>size 1 0 0 0 0 0 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Scalar variant**

SQABS <V><d>, <V><n>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

**Vector**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 0</td>
<td>size 1 0 0 0 0 0 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Vector variant**

SQABS <Vd>.<T>, <Vn>.<T>

*Decode for this encoding*

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

**Assembler symbols**

<

Is a width specifier, encoded in the "size" field. It can have the following values:

- B when size = 00
- H when size = 01
- S when size = 10
D

In the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n>

Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

T

Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn>

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bm(data) operand = V[n];
bm(data) result;
integer element;
boolean sat;

for e = 0 to elements-1
  element = SInt(Elem[operand, e, esize]);
  if neg then
    element = -element;
  else
    element = Abs(element);
  (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
  if sat then FPR.SC = '1';

V[d] = result;
C7.2.283  SQADD

Signed saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Scalar variant**

SQADD <V><d>, <V><n>, <V><m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean unsigned = (U == '1');

**Vector**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Vector variant**

SQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');

**Assembler symbols**

- <V> Is a width specifier, encoded in the "size" field. It can have the following values:
  - B when size = 00
  - H when size = 01
  - S when size = 10
D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;

for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  sum = element1 + element2;
  (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
  if sat then FPSR.QC = '1';
V[d] = result;
C7.2.284   SQDMLAL, SQDMLAL2 (by element)

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, and accumulates the final results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register, while the SQDMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```plaintext
010 11111 16 15 14 13 12 11 10 9 | 5 4 | 0 |
0 1 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 | Rn Rd |
```

Scalar variant

SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

```plaintext
integer idxsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;
boolean sub_op = (o2 == '1');
```

Vector

```plaintext
010 11111 16 15 14 13 12 11 10 9 | 5 4 | 0 |
0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 | Rn Rd |
```

Vector variant

SQDMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]
Decode for this encoding

integer idxsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:
  [absent] when Q = 0
  [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
  4S when size = 01
  2D when size = 10
The following encodings are reserved:
  • size = 00.
  • size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:
  S when size = 01
  D when size = 10
The following encodings are reserved:
  • size = 00.
  • size = 11.
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

Is the source width specifier, encoded in the "size" field. It can have the following values:

- H when size = 01
- S when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

- 0:Rm when size = 01
- M:Rm when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Restricted to V0-V15 when element size <Ts> is H.

Is an element size specifier, encoded in the "size" field. It can have the following values:

- H when size = 01
- S when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Operation for all encodings

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxsizesize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
 if sub_op then
 accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
 else
```
accum = \text{SInt(Elem(operand3, e, 2*esize)) + SInt(product)};
(Elem[result, e, 2*esize], sat2) = \text{SignedSatQ}(\text{accum}, 2 * \text{esize});
\text{if sat1 || sat2 then FPSR.QC = '1';}

V[d] = result;
## C7.2.285  SQDMLAL, SQDMLAL2 (vector)

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and accumulates the final results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register, while the SQDMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 0 size 1</td>
<td>Rm 1 0 0 1 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Scalar variant

SQDMLAL <Va><d>, <Vb><n>, <Vb><m>

### Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o1 == '1');
```

### Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 0 size 1</td>
<td>Rm 1 0 0 1 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Vector variant

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

### Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
```
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
   [absent]  when Q = 0
   [present]  when Q = 1

<vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:
   4S  when size = 01
   2D  when size = 10

The following encodings are reserved:
   *  size = 00.
   *  size = 11.

<n>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   4H  when size = 01, Q = 0
   8H  when size = 01, Q = 1
   2S  when size = 10, Q = 0
   4S  when size = 10, Q = 1

The following encodings are reserved:
   *  size = 00, Q = x.
   *  size = 11, Q = x.

<m>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<va>  Is the destination width specifier, encoded in the "size" field. It can have the following values:
   S  when size = 01
   D  when size = 10

The following encodings are reserved:
   *  size = 00.
   *  size = 11.

<d>  Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<vb>  Is the source width specifier, encoded in the "size" field. It can have the following values:
   H  when size = 01
   S  when size = 10

The following encodings are reserved:
   *  size = 00.
   *  size = 11.

<n>  Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m>  Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
  element1 = SInt(Elem[operand1, e, esize]);
  element2 = SInt(Elem[operand2, e, esize]);
  (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
  if sub_op then
    accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
  else
    accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
  (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
  if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;
C7.2.286  SQDMLSL, SQDMLSL2 (by element)

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, and subtracts the final results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register, while the SQDMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

31 30 29 28	27 26 25 24	23 22 21 20	19 16	15 14 13 12	11 10 9	5 4	0			
0 1 0	1 1 1 1	size	L	M	Rm	0 1 1	H	0	Rn	Rd

Scalar variant

SQDMLSL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsizen = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
in
teger esize = 8 << UInt(size);
integer datasize = esize;
in
teger elements = 1;
in
teger part = 0;

boolean sub_op = (o2 == '1');

Vector

31 30 29 28	27 26 25 24	23 22 21 20	19 16	15 14 13 12	11 10 9	5 4	0			
0 O	0 1 1 1	size	L	M	Rm	0 1 1	H	0	Rn	Rd

Vector variant

SQDMLSL{2} <Vd>.<Ta>, <Vm>.<Tb>, <Vm>.<Ts>[<index>]
Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:
  [absent] when Q = 0
  [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
  4S when size = 01
  2D when size = 10

The following encodings are reserved:
  • size = 00.
  • size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1

The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:
  5 when size = 01
  D when size = 10

The following encodings are reserved:
  • size = 00.
  • size = 11.
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

\[ \begin{align*}
    &H &\text{when size = 01} \\
    &S &\text{when size = 10}
\end{align*} \]

The following encodings are reserved:

\[ \begin{align*}
    &\text{size = 00.} \\
    &\text{size = 11.}
\end{align*} \]

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

\[ \begin{align*}
    &0:Rm &\text{when size = 01} \\
    &M:Rm &\text{when size = 10}
\end{align*} \]

The following encodings are reserved:

\[ \begin{align*}
    &\text{size = 00.} \\
    &\text{size = 11.}
\end{align*} \]

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

\[ \begin{align*}
    &H &\text{when size = 01} \\
    &S &\text{when size = 10}
\end{align*} \]

The following encodings are reserved:

\[ \begin{align*}
    &\text{size = 00.} \\
    &\text{size = 11.}
\end{align*} \]

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

\[ \begin{align*}
    &H:L:M &\text{when size = 01} \\
    &H:L &\text{when size = 10}
\end{align*} \]

The following encodings are reserved:

\[ \begin{align*}
    &\text{size = 00.} \\
    &\text{size = 11.}
\end{align*} \]

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
    element1 = SInt(Elem[operand1, e, esize]);
    (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
    if sub_op then
        accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
    else
```c
accum = SInt(Elem[operand3, e, 2+esize]) + SInt(product);
(Elem[result, e, 2+esize], sat2) = SignedSatQ(accum, 2 + esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;
```
C7.2.287  SQDMLSL, SQDMLSL2 (vector)

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and subtracts the final results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register, while the SQDMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 | 01
0 1 0 1 1 1 0 | size 1 | Rm 1 0 1 1 0 0 | Rn | Rd
```

Scalar variant

SQDMLSL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;
boolean sub_op = (o1 == '1');
```

Vector

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 | 01
0 0 Q 0 1 1 1 0 | size 1 | Rm 1 0 1 1 0 0 | Rn | Rd
```

Vector variant

SQDMLSL{2} <Vd>..<Ta>, <Vn>..<Tb>, <Vm>..<Tb>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
```
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');

**Assembler symbols**

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 4S when size = 01
- 2D when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:

- size = 00, Q = x.
- size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in the "size" field. It can have the following values:

- S when size = 01
- D when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<vb> Is the source width specifier, encoded in the "size" field. It can have the following values:

- H when size = 01
- S when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
  element1 = SInt(Elem[operand1, e, esize]);
  element2 = SInt(Elem[operand2, e, esize]);
  (product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
  if sub_op then
    accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
  else
    accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
  (Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
  if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;
C7.2.288 SQDMULH (by element)

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each vector element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (by element).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 size L M</td>
<td>Rm 1 1 0 H 0 Rn Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar variant

SQDMULH <V><d>, <V><n>, <Vm>.<Ts>[
INDEX]

Decode for this encoding

integer idxdsize = if H = '1' then 128 else 64;
integer index;
bite Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean round = (op = '1');

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 1 size L M</td>
<td>Rm 1 1 0 H 0 Rn Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector variant

SQDMULH <Vd>.<T>, <Vm>.<T>, <Vm>.<Ts>[
INDEX]

Decode for this encoding

integer idxdsize = if H = '1' then 128 else 64;
integer index;
bite Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

**Assembler symbols**

<\textbf{V}> Is a width specifier, encoded in the "size" field. It can have the following values:
H when size = 01
S when size = 10

The following encodings are reserved:
  • size = 00.
  • size = 11.

<\textbf{d}> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<\textbf{n}> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<\textbf{Vd}> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<\textbf{T}> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.

<\textbf{N}> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\textbf{M}> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
0:Rm when size = 01
M:Rm when size = 10

The following encodings are reserved:
  • size = 00.
  • size = 11.

Restricted to V0-V15 when element size <\textbf{Ts}> is H.

<\textbf{Ts}> Is an element size specifier, encoded in the "size" field. It can have the following values:
H when size = 01
S when size = 10

The following encodings are reserved:
  • size = 00.
  • size = 11.
<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:
- size = 00
- size = 11

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bhits(datasize) operand1 = V[n];
bhits(idxsiz)= operand2 = V[m];
bhits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = (2 * element1 * element2) + round_const;
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.289   SQDMULH (vector)

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of corresponding elements of the two source SIMD&FP registers, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
|1|1|1|1|1|1|0|size 1| 16|15|14|13|12|11|10| 9 | 5 | 4 | 0 |
|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | size 1 | Rm | 1 | 0 | 1 | 1 | 0 | 1 | Rn | Rd |
```

**Scalar variant**

SQDMULH <V><d>, <V><n>, <V><m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size == '11' || size == '00' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer data-size = esize;
- integer elements = 1;
- boolean rounding = (U == '1');

**Vector**

```
|1|1|1|1|1|1|0|size 1| 16|15|14|13|12|11|10| 9 | 5 | 4 | 0 |
|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | size 1 | Rm | 1 | 0 | 1 | 1 | 0 | 1 | Rn | Rd |
```

**Vector variant**

SQDMULH <Vd>.<T>, <Vm>.<T>, <Vm>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size == '11' || size == '00' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer data-size = esize;
- integer elements = data-size DIV esize;
- boolean rounding = (U == '1');

**Assembler symbols**

- **<V>** Is a width specifier, encoded in the "size" field. It can have the following values:
  - H when size = 01
The following encodings are reserved:
• size = 00.
• size = 11.

<\d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The following encodings are reserved:
• size = 00, Q = x.
• size = 11, Q = x.

<n> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvsIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = (2 * element1 * element2) + round_const;
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.290 SQDMULL, SQDMULL2 (by element)

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the final results in a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register, while the SQDMULL2 instruction extracts the first source vector from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 1 | size L M Rm 1 0 1 1 H 0 | Rn | Rd |
```

Scalar variant

SQDMULL <Va><d>, <Vb><n>, <Vm><Ts>[<index>]

Decode for this encoding

```
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;
```

Vector

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 0 0 1 1 1 | size L M Rm 1 0 1 1 H 0 | Rn | Rd |
```

Vector variant

SQDMULL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

```
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
```
when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

**Assembler symbols**

2       Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
- [absent] when Q = 0
- [present] when Q = 1

\( \langle V_d \rangle \)       Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\( \langle T_a \rangle \)       Is an arrangement specifier, encoded in the "size" field. It can have the following values:
- 4S when size = 01
- 2D when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

\( \langle V_n \rangle \)       Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\( \langle T_b \rangle \)       Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:
- size = 00, Q = x.
- size = 11, Q = x.

\( \langle V_a \rangle \)       Is the destination width specifier, encoded in the "size" field. It can have the following values:
- S when size = 01
- D when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

\( \langle d \rangle \)       Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\( \langle V_b \rangle \)       Is the source width specifier, encoded in the "size" field. It can have the following values:
- H when size = 01
- S when size = 10
The following encodings are reserved:
- size = 00.
- size = 11.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
- 0:Rm when size = 01
- M:Rm when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:
- H when size = 01
- S when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = Vpart[n, part];
bits(idxsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
    element1 = SInt(Elem[operand1, e, esize]);
    (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
    Elem[result, e, 2*esize] = product;
    if sat then FPSR.QC = '1';

V[d] = result;
C7.2.291   SQDMULL, SQDMULL2 (vector)

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in the lower or upper half of the two source SIMD&FP registers, doubles the results, places the final results in a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register, while the SQDMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 0 | size 1 | Rm 1 1 0 1 0 0 | Rn | Rd |

Scalar variant

SQDMULL <Va><d>, <Vb><n>, <Vb><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 & UInt(size);
integer datashize = esize;
integer elements = 1;
integer part = 0;

Vector

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 Q 0 0 1 1 1 0 | size 1 | Rm 1 1 0 1 0 0 | Rn | Rd |

Vector variant

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 & UInt(size);
integer datashize = 64;
integer part = UInt(Q);
integer elements = datashize DIV esize;
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
   [absent] when Q = 0
   [present] when Q = 1

\(<vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<ta>\) Is an arrangement specifier, encoded in the "size" field. It can have the following values:
   4S when size = 01
   2D when size = 10

The following encodings are reserved:
   • size = 00.
   • size = 11.

\(<vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<tb>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   4H when size = 01, Q = 0
   8H when size = 01, Q = 1
   2S when size = 10, Q = 0
   4S when size = 10, Q = 1

The following encodings are reserved:
   • size = 00, Q = x.
   • size = 11, Q = x.

\(<vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

\(<va>\) Is the destination width specifier, encoded in the "size" field. It can have the following values:
   S when size = 01
   D when size = 10

The following encodings are reserved:
   • size = 00.
   • size = 11.

\(<d>\) Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<vb>\) Is the source width specifier, encoded in the "size" field. It can have the following values:
   H when size = 01
   S when size = 10

The following encodings are reserved:
   • size = 00.
   • size = 11.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 (product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
 Elem[result, e, 2*esize] = product;
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.292 SQNEG

Signed saturating Negate. This instruction reads each vector element from the source SIMD&FP register, negates each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 0</td>
<td>1 0 0 0 0</td>
<td>0 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar variant

SQNEG <V><d>, <V><n>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean neg = (U == '1');

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0</td>
<td>1 0 0 0 0</td>
<td>0 0 1 1 1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector variant

SQNEG <Vd>.<T>, <Vn>.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean neg = (U == '1');

Assembler symbols

- <V> is a width specifier, encoded in the "size" field. It can have the following values:
  - B when size = 00
  - H when size = 01
  - S when size = 10
D when size = 11

<\texttt{d}> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

</d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:

- \texttt{8B} when size = 00, Q = 0
- \texttt{16B} when size = 00, Q = 1
- \texttt{4H} when size = 01, Q = 0
- \texttt{8H} when size = 01, Q = 1
- \texttt{2S} when size = 10, Q = 0
- \texttt{4S} when size = 10, Q = 1
- \texttt{2D} when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

</n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
browse(result);
integer element;
boolean sat;

for \( e = 0 \) to elements-1
  element = SInt(Elem[operand, e, esize]);
  if neg then
    element = -element;
  else
    element = Abs(element);
  (Elem[result, e, esize], sat) = SignedSatQ(element, esize);
  if sat then FPSR.QC = '1';

V[d] = result;
\end{verbatim}
C7.2.293  SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

Scalar variant

SQRMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;

case size of
    when '01' index = UInt(H:L:M); Rmhi = '0';
    when '10' index = UInt(H:L); Rmhi = M;
    otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector

ARMv8.1

Vector variant

SQRMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]
Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsiz = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
    when '01' index = UInt(H:L:M); Rmhi = '0';
    when '10' index = UInt(H:L); Rmhi = M;
    otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << (size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:
    H  when size = 01
    S  when size = 10

The following encodings are reserved:
    • size = 00.
    • size = 11.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
    4H  when size = 01, Q = 0
    8H  when size = 01, Q = 1
    2S  when size = 10, Q = 0
    4S  when size = 10, Q = 1

The following encodings are reserved:
    • size = 00, Q = x.
    • size = 11, Q = x.

<Rn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
    0:Rm  when size = 01
    M:Rm  when size = 10

The following encodings are reserved:
    • size = 00.
    • size = 11.

Restricted to V0-V15 when element size <Ts> is H.
<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:
- H when size = 01
- S when size = 10

The following encodings are reserved:
- size = 00
- size = 11

@index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:
- size = 00
- size = 11

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
    element1 = SInt(Elem[operand1, e, esize]);
    element3 = SInt(Elem[operand3, e, esize]);
    if sub_op then
        accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
    else
        accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
    (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
    if sat then FPSR.QC = '1';
V[d] = result;
C7.2.294  SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction multiplies the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

ARMv8.1

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 1 1 1 1 0 | Rm 1 0 0 0 0 1 | Rn | Rd |
```

**Scalar variant**

SQRDMLAH <V><d>, <V><n>, <V><m>

**Decode for this encoding**

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

**Vector**

ARMv8.1

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 0 1 1 1 1 0 | size 0 | Rm 1 0 0 0 0 1 | Rn | Rd |
```

**Vector variant**

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler symbols

<V>  Is a width specifier, encoded in the "size" field. It can have the following values:
H    when size = 01
S    when size = 10
The following encodings are reserved:
• size = 00.
• size = 11.

<d>  Is the number of the SIMD&FP destination register, in the "Rd" field.

<n>  Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m>  Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
4H   when size = 01, Q = 0
8H   when size = 01, Q = 1
2S   when size = 10, Q = 0
4S   when size = 10, Q = 1
The following encodings are reserved:
• size = 00, Q = x.
• size = 11, Q = x.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
binary datasize operand1 = V[n];
binary datasize operand2 = V[m];
binary datasize operand3 = V[d];
binary datasize result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;
for e = 0 to elements-1
  element1 = SInt(Elem[operand1, e, esize]);
  element2 = SInt(Elem[operand2, e, esize]);
  element3 = SInt(Elem[operand3, e, esize]);
  if sub_op then
    accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
  else
    accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
  (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
  if sat then FPSR.QC = '1';

V[d] = result;
C7.2.295  SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 16 15 14 13 12] [11 10 9] 5 4 0
0 1 1 1 1 1 | size L M | Rm 1 1 1 | H 0 Rn | Rd
```

Scalar variant

SQRDMFLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector

ARMv8.1

```
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 16 15 14 13 12] [11 10 9] 5 4 0
0 1 0 1 1 1 | size L M | Rm 1 1 1 | H 0 Rn | Rd
```

Vector variant

SQRDMFLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]
Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler symbols

<\V> Is a width specifier, encoded in the "size" field. It can have the following values:
  H when size = 01
  S when size = 10
The following encodings are reserved:
  • size = 00.
  • size = 11.

<\d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<\n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<\T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The following encodings are reserved:
  • size = 00, Q = x.
  • size = 11, Q = x.

<\Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
  0:Rm when size = 01
  M:Rm when size = 10
The following encodings are reserved:
  • size = 00.
  • size = 11.
Restricted to V0-V15 when element size <Ts> is H.
<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:
   H when size = 01
   S when size = 10
   The following encodings are reserved:
   • size = 00.
   • size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
   H:L:M when size = 01
   H:L when size = 10
   The following encodings are reserved:
   • size = 00.
   • size = 11.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
   element1 = SInt(Elem[operand1, e, esize]);
   element3 = SInt(Elem[operand3, e, esize]);
   if sub_op then
      accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
   else
      accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
   (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
   if sat then FPSR.QC = '1';
V[d] = result;
C7.2.296   SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second source SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 1 1 1 1 1 0 | size | 0 | Rm | 1 0 0 0 | 1 1 | Rn | Rd |
```

Scalar variant

SQRDMLSH <V><d>, <V><n>, <V><m>

Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20] 16|15 14 13 12|11 10 9 | 5 4 | 0 |
0 Q 1 0 1 1 1 0 | size | 0 | Rm | 1 0 0 0 | 1 1 | Rn | Rd |
```

Vector variant

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

**Assembler symbols**

- `<V>` is a width specifier, encoded in the "size" field. It can have the following values:
  - `H` when size = 01
  - `S` when size = 10

The following encodings are reserved:
- size = 00
- size = 11

- `<d>` is the number of the SIMD&FP destination register, in the "Rd" field.
- `<n>` is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- `<m>` is the number of the second SIMD&FP source register, encoded in the "Rm" field.

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- `<T>` is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - `4H` when size = 01, Q = 0
  - `8H` when size = 01, Q = 1
  - `2S` when size = 10, Q = 0
  - `4S` when size = 10, Q = 1

The following encodings are reserved:
- size = 00, Q = x
- size = 11, Q = x

- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;
for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 element3 = SInt(Elem[operand3, e, esize]);
 if sub_op then
 accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
 else
 accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
 (Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
 if sat then FPSR.QC = '1';
V[d] = result;
```
C7.2.297 SQRDMULH (by element)

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction multiplies each vector element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH (by element).

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

Scalar variant

SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean round = (op == '1');

Vector

Vector variant

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

Decode for this encoding

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

**Assembler symbols**

**<V>**

Is a width specifier, encoded in the "size" field. It can have the following values:

- **H** when size = 01
- **S** when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

**<d>** Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

**<n>** Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

**<Vd>** Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

**<T>** Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **4H** when size = 01, Q = 0
- **8H** when size = 01, Q = 1
- **2S** when size = 10, Q = 0
- **4S** when size = 10, Q = 1

The following encodings are reserved:

- size = 00, Q = x.
- size = 11, Q = x.

**<Vn>** Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

**<Vm>** Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

- **0:Rm** when size = 01
- **M:Rm** when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

Restricted to V0-V15 when element size <Ts> is H.

**<Ts>** Is an element size specifier, encoded in the "size" field. It can have the following values:

- **H** when size = 01
- **S** when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.
<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxsize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 product = (2 * element1 * element2) + round_const;
 // The following only saturates if element1 and element2 equal -(2^(esize-1))
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';

V[d] = result;
```
# SQRDMULH (vector)

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the values of corresponding elements of the two source SIMD&FP registers, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQRDMULH (vector).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

## Scalar

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 | size | 1 |

Scalar variant

SQRDMULH `<V>`<d>, `<V>`<n>, `<V>`<m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size == '11' || size == '00' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean rounding = (U == '1');

## Vector

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | size | 1 |

Vector variant

SQRDMULH `<V>`<dT>, `<V>`<nT>, `<V>`<mT>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size == '11' || size == '00' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean rounding = (U == '1');

**Assembler symbols**

- `<V>` is a width specifier, encoded in the "size" field. It can have the following values:
  - H when size = 01
S when size = 10

The following encodings are reserved:

- size = 00.
- size = 11.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:

- size = 00, Q = x.
- size = 11, Q = x.

<n> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;
for e = 0 to elements-1
 element1 = SInt(Elem[operand1, e, esize]);
 element2 = SInt(Elem[operand2, e, esize]);
 product = (2 * element1 * element2) + round_const;
 (Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
 if sat then FPSR.QC = '1';
V[d] = result;
```
C7.2.299   **SQRSHL**

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first source SIMD&FP register, shifts it by a value from the least significant byte of the corresponding vector element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For truncated results, see SQSHL (register).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 16 15 14 13 12 | 11 10 9 | 5 4 | 0 |
| U | Rm | 0 1 0 1 1 1 | Rn | Rd |

**Scalar variant**

SQRSHL `<V>d>, <V>n>, <V>m>`

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;
```

**Vector**

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 16 15 14 13 12 | 11 10 9 | 5 4 | 0 |
| U | Rm | 0 1 0 1 1 1 | Rn | Rd |

**Vector variant**

SQRSHL `<Vd>.<T>, <Vn>.<T>, <Vm>.<T>`

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
```
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:
- B when size = 00
- H when size = 01
- S when size = 10
- D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
    shift = SInt(Elem[operand2, e, esize]<7:0>);
    if rounding then
        round_const = 1 << (-shift - 1);  // 0 for left shift, 2^(n-1) for right shift
        element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
        if saturating then
            (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
            if sat then FPSR.QC = '1';
        else
            Elem[result, e, esize] = element<esize-1:0>;

    V[d] = result;
C7.2.300  SQRSHRN, SQRSHRN2

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector elements are half as long as the source vector elements. The results are rounded. For truncated results, see SQRSHRN, SQRSHRN2.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
| 31 30 29 28| 27 26 25 24| 23 22 | 19 18 | 16|15|14|13|12|11|10|9 | 5 | 4 | 0 |
|-------------|-----------|------|-----|---|---|---|---|---|---|---|---|--|--|--|--|
| U | immh | op |
```

**Scalar variant**

SQRSHRN <Vb><d>, <Va><n>, #<shift>

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;
integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');
```

**Vector**

```
| 31 30 29 28| 27 26 25 24| 23 22 | 19 18 | 16|15|14|13|12|11|10|9 | 5 | 4 | 0 |
|-------------|-----------|------|-----|---|---|---|---|---|---|---|---|--|--|--|--|
| U | immh | op |
```

**Vector variant**

SQRSHRN[2] <Vd>< Tb>, <Vn><Ta>, #<shift>

**Decode for this encoding**

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
```
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Assembler symbols

2
Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>
Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
8B when immh = 0001, Q = 0
16B when immh = 0001, Q = 1
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>
Is an arrangement specifier, encoded in the "immh" field. It can have the following values:
8H when immh = 0001
4S when immh = 001x
2D when immh = 01xx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb>
Is the destination width specifier, encoded in the "immh" field. It can have the following values:
B when immh = 0001
H when immh = 001x
S when immh = 01xx
The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.

<d>
Is the number of the SIMD&FP destination register, in the "Rd" field.

</a>
Is the source width specifier, encoded in the "immh" field. It can have the following values:
H when immh = 0001
S when immh = 001x
D when immh = 01xx
The following encodings are reserved:

- \( \text{immh} = 0000 \).
- \( \text{immh} = 1xxx \).

\(<n>\)

Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<shift>\)

For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:

- \( (16-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 0001 \)
- \( (32-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 001x \)
- \( (64-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 01xx \)

The following encodings are reserved:

- \( \text{immh} = 0000 \).
- \( \text{immh} = 1xxx \).

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- \( (16-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 0001 \)
- \( (32-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 001x \)
- \( (64-\text{UInt}(\text{immh:immb})) \) when \( \text{immh} = 01xx \)

See *Advanced SIMD modified immediate* on page C4-351 when \( \text{immh} = 0000 \).

The encoding \( \text{immh} = 1xxx \) is reserved.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bis(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;
for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
Vpart[d, part] = result;
```

C7.2.301 SQRSHRUN, SQRSHRUN2

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to the destination SIMD&FP register. The results are rounded. For truncated results, see SQRSHRUN, SQRSHRUN2.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQRSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 1</td>
<td>!=0000</td>
<td>immh</td>
<td>1 0 0</td>
<td>0 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SQRSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 <<HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>1 0 0</td>
<td>0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SQRSHRUN(2) <Vb>.<Tb>, <Vn>.<Ta>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 <<HighestSetBit(immh);
integer datasize = 64;
integer part = Uint(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - Uint(immh:immb);
boolean round = (op == '1');

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
   [absent] when Q = 0
   [present] when Q = 1

<vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
   8B  when immh = 0001, Q = 0
   16B when immh = 0001, Q = 1
   4H  when immh = 001x, Q = 0
   8H  when immh = 001x, Q = 1
   2S  when immh = 01xx, Q = 0
   4S  when immh = 01xx, Q = 1

See *Advanced SIMD modified immediate* on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>  Is an arrangement specifier, encoded in the "immh" field. It can have the following values:
   8H  when immh = 0001
   4S  when immh = 001x
   2D  when immh = 01xx

See *Advanced SIMD modified immediate* on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb>  Is the destination width specifier, encoded in the "immh" field. It can have the following values:
   B   when immh = 0001
   H   when immh = 001x
   S   when immh = 01xx

The following encodings are reserved:
   • immh = 0000.
   • immh = 1xxx.

<d>  Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va>  Is the source width specifier, encoded in the "immh" field. It can have the following values:
   H   when immh = 0001
   S   when immh = 001x
   D   when immh = 01xx

The following encodings are reserved:
   • immh = 0000.
   • immh = 1xxx.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift>
For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001
(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx

The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001
(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
    element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
    (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
    if sat then FPSR.QC = '1';

Vpart[d, part] = result;
C7.2.302   SQSHL (immediate)

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD&FP
register, shifts each result by an immediate value, places the final result in a vector, and writes the vector to the
destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>immh</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
  when '00' UNDEFINED;
  when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
  when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
  when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>immh</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
  when '00' UNDEFINED;
  when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
  when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
  when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
  B  when immh = 0001
  H  when immh = 001x
  S  when immh = 01xx
  D  when immh = 1xxx
The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
  8B  when immh = 0001, Q = 0
  16B when immh = 0001, Q = 1
  4H  when immh = 001x, Q = 0
  8H  when immh = 001x, Q = 1
  2S  when immh = 01xx, Q = 0
  4S  when immh = 01xx, Q = 1
  2D  when immh = 1xxx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = 0 is reserved.

<vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:
  (UInt(immh:immb)-8) when immh = 0001
  (UInt(immh:immb)-16) when immh = 001x
  (UInt(immh:immb)-32) when immh = 01xx
  (UInt(immh:immb)-64) when immh = 1xxx
The encoding immh = 0000 is reserved.
For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in the "immh:immb" field. It can have the following values:
  (UInt(immh:immb)-8) when immh = 0001
  (UInt(immh:immb)-16) when immh = 001x
  (UInt(immh:immb)-32) when immh = 01xx
  (UInt(immh:immb)-64) when immh = 1xxx
See *Advanced SIMD modified immediate on page C4-351* when immh = 0000.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.303  SQSHL (register)

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts each element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For rounded results, see SQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 0 1 1 1 0 | size 1 | Rm 0 1 0 0 1 1 | Rn | Rd |

U R S
```

**Scalar variant**

SQSHL <V><d>, <V><n>, <V><m>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;
```

**Vector**

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 Q 0 0 1 1 1 0 | size 1 | Rm 0 1 0 0 1 1 | Rn | Rd |

U R S
```

**Vector variant**

SQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
```
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "size" field. It can have the following values:
- B when size = 00
- H when size = 01
- S when size = 10
- D when size = 11

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<t>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bias(datasize) operand1 = V[n];
bias(datasize) operand2 = V[m];
bias(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;
for e = 0 to elements-1
    shift = SInt(Elem[operand2, e, esize]<7:0>);
    if rounding then
        round Const = 1 << (-shift - 1);  // 0 for left shift, 2^(n-1) for right shift
        element = (Int(Elem[operand1, e, esize], unsigned) + round Const) << shift;
    if saturating then
        (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
    if sat then FPSR.QC = '1';
    else
        Elem[result, e, esize] = element<<size-1:0>;
V[d] = result;
C7.2.304 SQSHLU

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in the vector of the source SIMD&FP register, shifts each value by an immediate value, saturates the shifted result to an unsigned integer value, places the result in a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 1</td>
<td>0=0000</td>
<td>immb 0 1 1 0</td>
<td>0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Scalar variant**

SQSHLU <V><d>, <V><n>, #<shift>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
  when '00' UNDEFINED;
  when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
  when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
  when '11' src_unsigned = TRUE; dst_unsigned = TRUE;
endcase;

**Vector**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immb 0 1 1 0</td>
<td>0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Vector variant**

SQSHLU <Vd>.<T>, <Vn>.<T>, #<shift>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer shift = UINT(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
    when '00': UNDEFINED;
    when '01': src_unsigned = FALSE; dst_unsigned = TRUE;
    when '10': src_unsigned = FALSE; dst_unsigned = FALSE;
    when '11': src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
    B when immh = 0001
    H when immh = 001x
    S when immh = 01xx
    D when immh = 1xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
    8B when immh = 0001, Q = 0
    16B when immh = 0001, Q = 1
    4H when immh = 001x, Q = 0
    8H when immh = 001x, Q = 1
    2S when immh = 01xx, Q = 0
    4S when immh = 01xx, Q = 1
    2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:
    (UINT(immh:immb)-8) when immh = 0001
    (UINT(immh:immb)-16) when immh = 001x
    (UINT(immh:immb)-32) when immh = 01xx
    (UINT(immh:immb)-64) when immh = 1xxx

The encoding immh = 0000 is reserved.

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:
    (UINT(immh:immb)-8) when immh = 0001
    (UINT(immh:immb)-16) when immh = 001x
    (UINT(immh:immb)-32) when immh = 01xx
    (UINT(immh:immb)-64) when immh = 1xxx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

**Operation for all encodings**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.305 SQSHRN, SQSHRN2

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts and truncates each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector elements are half as long as the source vector elements. For rounded results, see SQRSHRN, SQRSHRN2.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
| 31 30 29 28 27 26 25 24 23 22 | 19 18 16 15 14 13 12 11 10 9 | 5 4 0 |
| 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 | immh op |
```

**Scalar variant**

SQSHRN <Vb><cb>, <Va><n>, #<shift>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if (immh == '0000') then UNDEFINED;
if (immh<3> == '1') then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;
integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');
```

**Vector**

```
| 31 30 29 28 27 26 25 24 23 22 | 19 18 16 15 14 13 12 11 10 9 | 5 4 0 |
| 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 | immh op |
```

**Vector variant**

SQSHRN{2} <Vb>.<Tb>, <Vn>.<Ta>, #<shift>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if (immh == '0000') then SEE "Advanced SIMD modified immediate";
if (immh<3> == '1') then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
```
integer datasize = 64;
integer part = UInt(0);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Assembler symbols

2
Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>
Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
8B when immh = 0001, Q = 0
16B when immh = 0001, Q = 1
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>
Is an arrangement specifier, encoded in the "immh" field. It can have the following values:
8H when immh = 0001
4S when immh = 001x
2D when immh = 01xx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb>
Is the destination width specifier, encoded in the "immh" field. It can have the following values:
B when immh = 0001
H when immh = 001x
S when immh = 01xx
The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.

<d>
Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va>
Is the source width specifier, encoded in the "immh" field. It can have the following values:
H when immh = 0001
S when immh = 001x
D when immh = 01xx
The following encodings are reserved:

- $\text{immh} = 0000$.
- $\text{immh} = 1xxx$.

$n$ is the number of the first SIMD&FP source register, encoded in the "Rn" field.

$\text{shift}$ for the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:

- $(16-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 0001$
- $(32-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 001x$
- $(64-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 01xx$

The following encodings are reserved:

- $\text{immh} = 0000$.
- $\text{immh} = 1xxx$.

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- $(16-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 0001$
- $(32-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 001x$
- $(64-\text{UInt}(\text{immh:immb}))$ when $\text{immh} = 01xx$

See Advanced SIMD modified immediate on page C4-351 when $\text{immh} = 0000$.

The encoding $\text{immh} = 1xxx$ is reserved.

### Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (\text{shift} - 1)) else 0;
integer element;
boolean sat;
for e = 0 to elements-1
 element = (\text{Int}(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
Vpart[d, part] = result;
```
C7.2.306 SQSHRUN, SQSHRUN2

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see SQRSRUN, SQRSRUN2.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 0</td>
<td>! = 0000</td>
<td>immh</td>
<td>op</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SQSHRUN <Vb><d>, <Va><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;
integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 1 0</td>
<td>! = 0000</td>
<td>immh</td>
<td>op</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SQSHRUN[2] <Vb><Tb>, <Vn><Ta>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
integer shift = (2 * esize) - Uint(immh:immb);
boolean round = (op == '1');

Assembler symbols

2
Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1
</d>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>
Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0
16B when immh = 0001, Q = 1
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

</n>
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>
Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001
4S when immh = 001x
2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb>
Is the destination width specifier, encoded in the "immh" field. It can have the following values:

B when immh = 0001
H when immh = 001x
S when immh = 01xx

The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.

<db>
Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va>
Is the source width specifier, encoded in the "immh" field. It can have the following values:

H when immh = 0001
S when immh = 001x
D when immh = 01xx

The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:

- \((16-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 0001\)
- \((32-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 001x\)
- \((64-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 01xx\)

The following encodings are reserved:
- \(\text{immh} = 0000\).
- \(\text{immh} = 1xxx\).

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- \((16-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 0001\)
- \((32-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 001x\)
- \((64-\text{UInt}(\text{immh}:\text{immb}))\) when \(\text{immh} = 01xx\)

See Advanced SIMD modified immediate on page C4-351 when \(\text{immh} = 0000\).

The encoding \(\text{immh} = 1xxx\) is reserved.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bv<datasize*2> operand = V[n];
bv<datasize> result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;
for e = 0 to elements-1
 element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
 (Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
 if sat then FPSR.QC = '1';
Vpart[d, part] = result;
```
C7.2.307 SQSUB

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15|14|13|12|11|10| 9 | 5 | 4 | 0 |
 0 | 1 | 0 | 1 | 1 | 1 | 0 | size | 1 | Rm | 0 | 0 | 1 | 0 | 1 | 1 | Rn | Rd
```

Scalar variant

SQSUB <V><d>, <V><n>, <V><m>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean unsigned = (U == '1');

Vector

```
[31 30 29 28][27 26 25 24][23 22 21 20] 16|15|14|13|12|11|10| 9 | 5 | 4 | 0 |
 0 | U | 0 | 1 | 1 | 1 | 0 | size | 1 | Rm | 0 | 0 | 1 | 0 | 1 | 1 | Rn | Rd
```

Vector variant

SQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

- B when size = 00
- H when size = 01
- S when size = 10
D when size = 11

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';
V[d] = result;
```

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  C7-2083
ID072120 Non-Confidential
C7.2.308  SQXTN, SQXTN2

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register, saturates the value to half the original width, places the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|0 1 0 1 1 1 1 0 | 1 0 0 0 0 1 0 1 0 1 0 1 0 | Rn | Rd |
```

Scalar variant

SQXTN <Vb><d>, <Va><n>

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;
boolean unsigned = (U == '1');
```

Vector

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|0 0 1 1 1 0 | 1 0 0 0 0 1 0 1 0 0 1 0 | Rn | Rd |
```

Vector variant

SQXTN[2] <Vb><Tb>, <Vn><Ta>

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
```
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

**Assembler symbols**

2
Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- **[absent]** when \( Q = 0 \)
- **[present]** when \( Q = 1 \)

\(<Vd>\)
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<Tb>\)
Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **0B** when \( size = 00, Q = 0 \)
- **16B** when \( size = 00, Q = 1 \)
- **4H** when \( size = 01, Q = 0 \)
- **8H** when \( size = 01, Q = 1 \)
- **2S** when \( size = 10, Q = 0 \)
- **4S** when \( size = 10, Q = 1 \)

The encoding \( size = 11, Q = x \) is reserved.

\(<Vn>\)
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<Ta>\)
Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- **8H** when \( size = 00 \)
- **4S** when \( size = 01 \)
- **2D** when \( size = 10 \)

The encoding \( size = 11 \) is reserved.

\(<Vb>\)
Is the destination width specifier, encoded in the "size" field. It can have the following values:

- **B** when \( size = 00 \)
- **H** when \( size = 01 \)
- **S** when \( size = 10 \)

The encoding \( size = 11 \) is reserved.

\(<d>\)
Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<Va>\)
Is the source width specifier, encoded in the "size" field. It can have the following values:

- **H** when \( size = 00 \)
- **S** when \( size = 01 \)
- **D** when \( size = 10 \)

The encoding \( size = 11 \) is reserved.

\(<n>\)
Is the number of the SIMD&FP source register, encoded in the "Rn" field.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;
for e = 0 to elements-1
    element = Elem[operand, e, 2*esize];
    (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
    if sat then FPSR.QC = '1';

Vpart[d, part] = result;
C7.2.309  SQXTUN, SQXTUN2

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector of the source SIMD&FP register, saturates the value to an unsigned integer value that is half the original width, places the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SQXTUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 1 1 1 1 1 0|size| 1 0 0 0| 0 1 0 1 0| 1 0 |Rn| Rd |
```

Scalar variant

SQXTUN <Vb><cb>, <Va><n>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;
```

Vector

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| 0 0 1 1 1 0|size| 1 0 0 0| 0 1 0 1 0| 1 0 |Rn| Rd |
```

Vector variant

SQXTUN2{2} <Vb>, <Tb>, <Vn>,<Ta>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
```
Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8H when size = 00
- 4S when size = 01
- 2D when size = 10

The encoding size = 11 is reserved.

<Vb> Is the destination width specifier, encoded in the "size" field. It can have the following values:

- B when size = 00
- H when size = 01
- S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in the "size" field. It can have the following values:

- H when size = 00
- S when size = 01
- D when size = 10

The encoding size = 11 is reserved.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;
for e = 0 to elements-1
    element = Elem[operand, e, 2*esize];
    (Elem[result, e, esize], sat) = UnsignedSatQ(SInt(element), esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;
**C7.2.310 SRHADD**

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|0 | Q | 0 | 1 | 1 | 0 | size | 1 | Rm | 0 | 0 | 0 | 1 | 0 | 1 | Rn | Rd |

Three registers of the same type variant

SRHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size == '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - 8B when size = 00, Q = 0
 - 16B when size = 00, Q = 1
 - 4H when size = 01, Q = 0
 - 8H when size = 01, Q = 1
 - 2S when size = 10, Q = 0
 - 4S when size = 10, Q = 1
- The encoding size = 11, Q = x is reserved.
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, esize] = (element1+element2+1)<esize:1>;

V[d] = result;
C7.2.311 SRI

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their existing value. Bits shifted out of the right of each vector element of the source register are lost.

The following figure shows the operation of shift right by 3 for an 8-bit vector element.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 1 1</td>
<td>0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 1 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar variant

SRI `<V><d>, <V><n>, #<shift>`

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh[3] != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;
integer shift = (esize * 2) - UInt(immh:immb);
```

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 1 0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector variant

SRI `<Vd>.<T>, <Vn>.<T>, #<shift>`
Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
 D when immh = 1xxx
 The encoding immh = 0xxx is reserved.
<\> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<\/d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
 8B when immh = 0001, Q = 0
 16B when immh = 0001, Q = 1
 4H when immh = 001x, Q = 0
 8H when immh = 001x, Q = 1
 2S when immh = 01xx, Q = 0
 4S when immh = 01xx, Q = 1
 2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = 0 is reserved.
<\n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb"
field. It can have the following values:
 (128-UInt(immh:immb)) when immh = 1xxx
 The encoding immh = 0xxx is reserved.
For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded
in the "immh:immb" field. It can have the following values:
 (16-UInt(immh:immb)) when immh = 0001
 (32-UInt(immh:immb)) when immh = 001x
 (64-UInt(immh:immb)) when immh = 01xx
 (128-UInt(immh:immb)) when immh = 1xxx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2 = V[d];
bits(datasize) result;
bits(esize) mask = LSR(Ones(esize), shift);
bits(esize) shifted;
for e = 0 to elements-1
 shifted = LSR(Elem[operand, e, esize], shift);
 Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.312 SRSHL

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of the first source SIMD&FP register, shifts it by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift, see SSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 1 1 1 0</td>
<td>size</td>
<td>1</td>
<td>0 1 0 1</td>
<td>0 1</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

```plaintext
goingue d = UInt(Rd);
ingue n = UInt(Rn);
ingue m = UInt(Rm);
ingue esize = 8 << UInt(size);
ingue datasize = esize;
ingue elements = 1;
ingue unsigned = (U == '1');
ingue rounding = (R == '1');
ingue saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;
```

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 1 1 1 0</td>
<td>size</td>
<td>1</td>
<td>0 1 0 1</td>
<td>0 1</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Vector variant

SRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
goingue d = UInt(Rd);
goingue n = UInt(Rn);
goingue m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
goingue esize = 8 << UInt(size);
goingue datasize = if Q == '1' then 128 else 64;
goingue elements = datasize DIV esize;
goingue unsigned = (U == '1');
goingue rounding = (R == '1');
goingue saturating = (S == '1');
```
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "size" field. It can have the following values:

\[D \quad \text{when size = 11} \]

The following encodings are reserved:

\[\begin{align*}
&\text{size = 0x} \\
&\text{size = 10}
\end{align*} \]

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

\[\begin{align*}
8B &\quad \text{when size = 00, Q = 0} \\
16B &\quad \text{when size = 00, Q = 1} \\
4H &\quad \text{when size = 01, Q = 0} \\
8H &\quad \text{when size = 01, Q = 1} \\
2S &\quad \text{when size = 10, Q = 0} \\
4S &\quad \text{when size = 10, Q = 1} \\
2D &\quad \text{when size = 11, Q = 1}
\end{align*} \]

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

\begin{verbatim}
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;
\end{verbatim}
C7.2.313 SRSHR

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, places the final result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are rounded. For truncated results, see SSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th></th>
<th>18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immb</td>
<td>0 0 1 1 0</td>
<td></td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SRSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;
n
integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th></th>
<th>18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immb</td>
<td>0 0 1 0 1</td>
<td></td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SRSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh== '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

- D when immh = 1xxx
- X when immh = 0xxx

The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- 8B when immh = 0001, Q = 0
- 16B when immh = 0001, Q = 1
- 4H when immh = 001x, Q = 0
- 8H when immh = 001x, Q = 1
- 2S when immh = 01xx, Q = 0
- 4S when immh = 01xx, Q = 1
- 2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = 0.

The encoding immh = 0xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:

- (128-UInt(immh:immb)) when immh = 1xxx
- (16-UInt(immh:immb)) when immh = 0001
- (32-UInt(immh:immb)) when immh = 001x
- (64-UInt(immh:immb)) when immh = 01xx
- (128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
C7.2.314 SRSRA

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are rounded. For truncated results, see SSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>!=0000</td>
<td>immb</td>
</tr>
</tbody>
</table>
```

Scalar variant

SRSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>!=0000</td>
</tr>
</tbody>
</table>
```

Vector variant

SRSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

- `<V>` is a width specifier, encoded in the "immh" field. It can have the following values:
 - D when `immh = 1xxx`
 - The encoding `immh = 0xxx` is reserved.

- `<d>` is the number of the SIMD&FP destination register, in the "Rd" field.

- `<n>` is the number of the first SIMD&FP source register, encoded in the "Rn" field.

- `<Vd>` is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- `<T>` is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
 - 8B when `immh = 0001`, `Q = 0`
 - 16B when `immh = 0001`, `Q = 1`
 - 4H when `immh = 001x`, `Q = 0`
 - 8H when `immh = 001x`, `Q = 1`
 - 2S when `immh = 01xx`, `Q = 0`
 - 4S when `immh = 01xx`, `Q = 1`
 - 2D when `immh = 1xxx`, `Q = 1`

 See Advanced SIMD modified immediate on page C4-351 when `immh = 0000, Q = x`. The encoding `immh = 1xxx, Q = 0` is reserved.

- `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

- `<shift>` For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:
 - `(128-UInt(immh:immb))` when `immh = 1xxx`
 - The encoding `immh = 0xxx` is reserved.

 For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:
 - `(16-UInt(immh:immb))` when `immh = 0001`
 - `(32-UInt(immh:immb))` when `immh = 001x`
 - `(64-UInt(immh:immb))` when `immh = 01xx`
 - `(128-UInt(immh:immb))` when `immh = 1xxx`

 See Advanced SIMD modified immediate on page C4-351 when `immh = 0000`.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bite(datasetsize) operand = V[n];
bite(datasetsize) operand2;
bite(datasetsize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
    Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
```
Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first source SIMD&FP register, shifts each value by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a rounding shift, see SRSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>U</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;
```

Vector

```
<table>
<thead>
<tr>
<th>U</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
```
Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:
 0 when size = 11
 - size = 0x.
 - size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
 2D when size = 11, Q = 1
 - The encoding size = 11, Q = 0 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = 0;
integer shift;
integer element;
boolean sat;
for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;
V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.316 SSHLL, SSHLL2

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD&FP register, left shifts each vector element by the specified shift amount, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SSHLL instruction extracts vector elements from the lower half of the source register, while the SSHLL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias SXTL, SXTL2. See Alias conditions for details of when each alias is preferred.

[Binary representation]

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13</th>
<th>12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>immh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SSHLL[2] <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');
```

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXTL, SXTL2</td>
<td>immh == '000' & BitCount(immh) == 1</td>
</tr>
</tbody>
</table>

Assembler symbols

2

Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>value</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>absent</td>
</tr>
<tr>
<td>1</td>
<td>present</td>
</tr>
</tbody>
</table>

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>

Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

<table>
<thead>
<tr>
<th>value</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8H</td>
<td>immh == 0001</td>
</tr>
<tr>
<td>4S</td>
<td>immh == 001x</td>
</tr>
</tbody>
</table>
2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

</n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

8B when immh = 0001, Q = 0
16B when immh = 0001, Q = 1
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = x is reserved.

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:

(UInt(immh:immb)-8) when immh = 0001
(UInt(immh:immb)-16) when immh = 001x
(UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;
for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.317 SSHR

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, places the final result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are truncated. For rounded results, see SRSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 0 0 0 0</td>
<td>0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;
integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 1 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 0 0 0 0</td>
<td>0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> == '0000' then SEE “Advanced SIMD modified immediate”;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

<V> Is a width specifier, encoded in the "imph" field. It can have the following values:
 D when imph = 1xxx
 The encoding imph = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "imph:Q" field. It can have the following values:
 8B when imph = 0001, Q = 0
 16B when imph = 0001, Q = 1
 4H when imph = 001x, Q = 0
 8H when imph = 001x, Q = 1
 2S when imph = 01xx, Q = 0
 4S when imph = 01xx, Q = 1
 2D when imph = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when imph = 0000, Q = x.
 The encoding imph = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "imph:imm" field. It can have the following values:
 (128-UInt(imph:imm)) when imph = 1xxx
 The encoding imph = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "imph:imm" field. It can have the following values:
 (16-UInt(imph:imm)) when imph = 0001
 (32-UInt(imph:imm)) when imph = 001x
 (64-UInt(imph:imm)) when imph = 01xx
 (128-UInt(imph:imm)) when imph = 1xxx

See Advanced SIMD modified immediate on page C4-351 when imph = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
 element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
 Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.318 SSRA

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are truncated. For rounded results, see SRSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22</th>
<th>19 18 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>immh</td>
<td>o1 o0</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

SSRA <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22</th>
<th>19 18 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>immh</td>
<td>o1 o0</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SSRA <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

\(<\text{V}>\)
Is a width specifier, encoded in the "immh" field. It can have the following values:

- D
 when immh = 1xxx

The encoding immh = 0xxx is reserved.

\(<\text{d}>\)
Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<\text{n}>\)
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<\text{Vd}>\)
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<\text{T}>\)
Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- 8B
 when immh = 0001, Q = 0
- 16B
 when immh = 0001, Q = 1
- 4H
 when immh = 001x, Q = 0
- 8H
 when immh = 001x, Q = 1
- 2S
 when immh = 01xx, Q = 0
- 4S
 when immh = 01xx, Q = 1
- 2D
 when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

\(<\text{Vn}>\)
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<\text{shift}>\)
For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:

\((128-\text{UInt}(\text{immh:immb}))\)
when immh = 1xxx

The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:

\((16-\text{UInt}(\text{immh:immb}))\)
when immh = 0001
\((32-\text{UInt}(\text{immh:immb}))\)
when immh = 001x
\((64-\text{UInt}(\text{immh:immb}))\)
when immh = 01xx
\((128-\text{UInt}(\text{immh:immb}))\)
when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

```c
CheckFPAdSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
  element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
  Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
```
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.319 SSUBL, SSUBL2

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector elements are twice as long as the source vector elements.

The SSUBL instruction extracts each source vector from the lower half of each source register, while the SSUBL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

SSUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

```plaintext
derg = UInt(Rd);
n = UInt(Rn);
m = UInt(Rm);

if size == '11' then UNDEFINED;

esize = 8 << UInt(size);
data = 64;
part = UInt(Q);
elements = datasize DIV esize;

sub_op = (o1 == '1');
unsigned = (U == '1');
```

Assembler symbols

<table>
<thead>
<tr>
<th>Register</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd</td>
<td>Rn</td>
<td>Rm</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>O0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
</tbody>
</table>

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- **absent** when Q = 0
- **present** when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- **8H** when size = 00
- **4S** when size = 01
- **2D** when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **88** when size = 00, Q = 0
- **168** when size = 00, Q = 1
The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
b bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    if sub_op then
        sum = element1 - element2;
    else
        sum = element1 + element2;
    Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.320 SSUBW, SSUBW2

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are signed integer values.

The SSUBW instruction extracts the second source vector from the lower half of the second source register, while the SSUBW2 instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

SSUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00
4S when size = 01
2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, 2*esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    if sub_op then
        sum = element1 - element2;
    else
        sum = element1 + element2;
    Elem[result, e, 2*esize] = sum<2*esize-1:0>;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.321 ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to
memory from one, two, three, or four SIMD&FP registers, without interleaving. Every element of each register is
stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 | 5 4 | 0 |
0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 x x 1 x size Rn Rt|
```

L opcode

One register variant

Applies when opcode == 0111.

ST1 \{ <Vt>.<T> \}, [<Xn|SP>]

Two registers variant

Applies when opcode == 1010.

ST1 \{ <Vt>.<T>, <Vt2>.<T> \}, [<Xn|SP>]

Three registers variant

Applies when opcode == 0110.

ST1 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> \}, [<Xn|SP>]

Four registers variant

Applies when opcode == 0010.

ST1 \{ <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> \}, [<Xn|SP>]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 | 5 4 | 0 |
0 Q 0 0 1 1 0 0 1 0 0 0 x x 1 x size Rn Rt|
```

L opcode

One register, immediate offset variant

Applies when \(Rm == 11111 \) \&\& opcode == 0111.

ST1 \{ <Vt>.<T> \}, [<Xn|SP>], <imm>

One register, register offset variant

Applies when \(Rm != 11111 \) \&\& opcode == 0111.
ST1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset variant
Applies when \(Rm == 11111 \) \& opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset variant
Applies when \(Rm != 11111 \) \& opcode == 1010.

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset variant
Applies when \(Rm == 11111 \) \& opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset variant
Applies when \(Rm != 11111 \) \& opcode == 0110.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset variant
Applies when \(Rm == 11111 \) \& opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset variant
Applies when \(Rm != 11111 \) \& opcode == 0010.

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

```plaintext
t = UInt(Rt);
n = UInt(Rn);
m = UInt(Rm);

wback = TRUE;
tag_checked = wback || n != 31;
```

Assembler symbols

- `<Vt>` is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
- `<T>` is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - `8B` when `size = 00, Q = 0`
 - `16B` when `size = 00, Q = 1`
 - `4H` when `size = 01, Q = 0`
 - `8H` when `size = 01, Q = 1`
 - `2S` when `size = 10, Q = 0`
 - `4S` when `size = 10, Q = 1`
 - `1D` when `size = 11, Q = 0`
 - `2D` when `size = 11, Q = 1`
- `<Vt2>` is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
- `<Vt3>` is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#8 when Q = 0
#16 when Q = 1

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0
#32 when Q = 1

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#24 when Q = 0
#48 when Q = 1

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#32 when Q = 0
#64 when Q = 1

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
 otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
if n == 31 then
 CheckSPAignment();
 address = SP[];
else
 address = X[n];
offs = Zeros();
for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;
if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.322 **ST1 (single structure)**

Store a single-element structure from one lane of one register. This instruction stores the specified element of a SIMD&FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

8-bit variant

Applies when opcode == 000.

```
ST1 { <Vt>.B }[<index>], [Xn|SP]
```

16-bit variant

Applies when opcode == 010 && size == x0.

```
ST1 { <Vt>.H }[<index>], [Xn|SP]
```

32-bit variant

Applies when opcode == 100 && size == 00.

```
ST1 { <Vt>.S }[<index>], [Xn|SP]
```

64-bit variant

Applies when opcode == 100 && S == 0 && size == 01.

```
ST1 { <Vt>.D }[<index>], [Xn|SP]
```

Decode for all variants of this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;
```

Post-index

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

```
ST1 { <Vt>.B }[<index>], [Xn|SP], #1
```

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.
ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant
Applies when \(Rm == 11111 \) \&\& \(\text{opcode} == 010 \) \&\& \(\text{size} == x0 \).
ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset variant
Applies when \(Rm != 11111 \) \&\& \(\text{opcode} == 010 \) \&\& \(\text{size} == x0 \).
ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant
Applies when \(Rm == 11111 \) \&\& \(\text{opcode} == 100 \) \&\& \(\text{size} == 00 \).
ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset variant
Applies when \(Rm != 11111 \) \&\& \(\text{opcode} == 100 \) \&\& \(\text{size} == 00 \).
ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant
Applies when \(Rm == 11111 \) \&\& \(\text{opcode} == 100 \) \&\& \(S == 0 \) \&\& \(\text{size} == 01 \).
ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset variant
Applies when \(Rm != 11111 \) \&\& \(\text{opcode} == 100 \) \&\& \(S == 0 \) \&\& \(\text{size} == 01 \).
ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

integer \(t = \text{UInt(Rt)} \);
integer \(n = \text{UInt(Rn)} \);
integer \(m = \text{UInt(Rm)} \);
boolean \(\text{wback} = \text{TRUE} \);
boolean \(\text{tag_checked} = \text{wback} || n != 31 \);

Assembler symbols

\(<Vt>\) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

\(<\text{index}>\) For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

\(<Xn|\text{SP}>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<Xm>\) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

integer \(\text{scale} = \text{UInt(opcode<2:1>)} \);
integer \(\text{selem} = \text{UInt(opcode<0>:R}) + 1 \);
boolean \(\text{replicate} = \text{FALSE} \);
integer index;

case scale of
when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
when 0
 index = UInt(Q:S:size); // B[0-15]
when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
 CheckSPAblignment();
 address = SP[];
else
 address = X[n];

offs = Zeros();
if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else
 // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.323 ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from two SIMD&FP registers to memory, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

No offset variant

ST2 {<Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Decode for this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;
```

Post-index

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td>Rm</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Immediate offset variant

Applies when Rm == 11111.

ST2 {<Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST2 {<Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

```
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;
```

Assembler symbols

<VT> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 08 when size = 00, Q = 0
- 16 when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<Vt2> is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

#16 when Q = 0
#32 when Q = 1

<Xm> is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
 when '1000' rpt = 2; selem = 1; // LD/ST2 (2 registers)
 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
offs = Zeros();
 for r = 0 to rpt-1
for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.324 ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to memory from corresponding elements of two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

Apply when

8-bit variant

Applies when opcode == 000.

16-bit variant

Applies when opcode == 010 && size == x0.

32-bit variant

Applies when opcode == 100 && size == 00.

64-bit variant

Applies when opcode == 100 && s == 0 && size == 01.

Decode for all variants of this encoding

integer t = Uint(Rt);
integer n = Uint(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

Apply when

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 000.

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 000.
ST2 { <Vt>.B, <Vt2>.B][<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 010 && size == x0.
ST2 { <Vt>.H, <Vt2>.H][<index>], [<Xn|SP>], #4

16-bit, register offset variant
Applies when Rm != 11111 && opcode == 010 && size == x0.
ST2 { <Vt>.H, <Vt2>.H][<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 100 && size == 00.
ST2 { <Vt>.S, <Vt2>.S][<index>], [<Xn|SP>], #8

32-bit, register offset variant
Applies when Rm != 11111 && opcode == 100 && size == 00.
ST2 { <Vt>.S, <Vt2>.S][<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 100 && S == 0 && size == 01.
ST2 { <Vt>.D, <Vt2>.D][<index>], [<Xn|SP>], #16

64-bit, register offset variant
Applies when Rm != 11111 && opcode == 100 && S == 0 && size == 01.
ST2 { <Vt>.D, <Vt2>.D][<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
 For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
 For the 32-bit variant: is the element index, encoded in "Q:S".
 For the 64-bit variant: is the element index, encoded in "Q".
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

integer scale = Uint(opcode<2:1>);
integer selem = Uint(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
scale = Uint(size);
replicate = TRUE;
when 0
 index = Uint(Q:S:size); // B[0-15]
when 1
 index = Uint(Q:S:size<1>); // H[0-7]
when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = Uint(Q:S); // S[0-3]
 else
 index = Uint(Q); // D[0-1]
 scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
 CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

offs = Zeros();
if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.325 ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to memory from three SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 0 1 1 0 0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

L

opcode

No offset variant

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Decode for this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0 0 1 1 0 0 1</td>
<td>0 0</td>
<td></td>
<td>size</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

L

opcode

Immediate offset variant

Applies when Rm == 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset variant

Applies when Rm != 11111.

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
The encoding size = 11, Q = 0 is reserved.

\(<Vt2>\) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

\(<Vt3>\) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

\(<Xn|SP>\) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<imm>\) Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

- \(\#24\) when Q = 0
- \(\#48\) when Q = 1

\(<Xm>\) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

\[\text{MemOp memop = if } L == \text{'1'} \text{ then MemOp_LOAD else MemOp_STORE;}\]
\[\text{integer datasize = if } Q == \text{'1'} \text{ then 128 else 64;}\]
\[\text{integer esize = 8 \times \text{UInt(size);}}\]
\[\text{integer elements = datasize DIV esize;}\]

\[\text{integer rpt; // number of iterations}\]
\[\text{integer selem; // structure elements}\]

Operation for all encodings

\[\text{CheckFPAdvSIMDEnabled64();}\]
\[\text{bits(64) address;}\]
\[\text{bits(64) offs;}\]
\[\text{bits(datasize) rval;}\]
\[\text{integer tt;}\]
\[\text{constant integer ebytes = esize DIV 8;}\]

\[\text{if HaveMTEExt() then}\]
\[\text{SetTagCheckedInstruction(tag_checked);}\]

\[\text{if n == 31 then}\]
\[\text{CheckSPAlignment();}\]
\[\text{address = SP();}\]
\[\text{else}\]
\[\text{address = X[n];}\]
offs = Zeros();
for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;

if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.326 ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to memory from corresponding elements of three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant

Applies when opcode == 001.

16-bit variant

Applies when opcode == 011 && size == x0.

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit variant

Applies when opcode == 101 && size == 00.

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit variant

Applies when opcode == 101 && S == 0 && size == 01.

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant

Applies when Rm == 11111 && opcode == 001.

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset variant

Applies when Rm != 11111 && opcode == 001.
ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 011 && size == x0.
ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset variant
Applies when Rm != 11111 && opcode == 011 && size == x0.
ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 101 && size == 00.
ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset variant
Applies when Rm != 11111 && opcode == 101 && size == 00.
ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 101 && S == 0 && size == 01.
ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset variant
Applies when Rm != 11111 && opcode == 101 && S == 0 && size == 01.
ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

Decode for all variants of this encoding
integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
<vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
 CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];

offs = Zeros();
if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else
 // store one element per register
 Mem[address+offs, ebytes, AccType_VEC] = element;
 offs = offs + ebytes;

 t = (t + 1) MOD 32;

 offs = offs + ebytes;
 t = (t + 1) MOD 32;

else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
 else
 // store one element per register
 Mem[address+offs, ebytes, AccType_VEC] = element;
 offs = offs + ebytes;

 t = (t + 1) MOD 32;

 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

 if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.327 ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to
memory from four SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

No offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

L opcode

No offset variant

Decode for this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

L opcode

Immediate offset variant

Applies when Rm == 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|5P>], <imm>

Register offset variant

Applies when Rm != 11111.

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|5P>], <Xm>

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

| 8B | when size = 00, Q = 0 |
| 16B | when size = 00, Q = 1 |
When size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vt2> \) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

\(<Vt3> \) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

\(<Vt4> \) Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

\(<Xn|SP> \) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

\(<imm> \) Is the post-index immediate offset, encoded in the "Q" field. It can have the following values:

\[\begin{align*}
#32 & \text{ when } Q = 0 \\
#64 & \text{ when } Q = 1
\end{align*} \]

\(<Xm> \) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared decode for all encodings

\[
\text{MemOp memop = if } L == '1' \text{ then MemOp_LOAD else MemOp_STORE;} \\
\text{integer datasize = if } Q == '1' \text{ then 128 else 64;} \\
\text{integer esize = 8 \times \text{UInt}(size);} \\
\text{integer elements = datasize DIV esize;} \\
\text{integer rpt; // number of iterations} \\
\text{integer selem; // structure elements}
\]

case opcode of

\[
\text{when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)} \\
\text{when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)} \\
\text{when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)} \\
\text{when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)} \\
\text{when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)} \\
\text{when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)} \\
\text{when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)} \\
\text{otherwise UNDEFINED;}
\]

// .1D format only permitted with LD1 & ST1
\[
\text{if size:Q == '110' && selem != 1 then UNDEFINED;}
\]

Operation for all encodings

\[
\text{CheckFPAdjSIMDEnabled64();}
\]

\[
\text{bits(64) address;}
\text{bits(64) offs;}
\text{bits(datasize) rval;}
\text{integer tt;}
\text{constant integer ebytes = esize DIV 8;}
\]

if HaveMTEExt() then

\[
\text{SetTagCheckedInstruction(tag_checked);} \\
\text{if n == 31 then CheckSPAlignment();}
\]

else
address = X[n];
offs = Zeros();
for r = 0 to rpt-1
 for e = 0 to elements-1
 tt = (t + r) MOD 32;
 for s = 0 to selem-1
 rval = V[tt];
 if memop == MemOp_LOAD then
 Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[tt] = rval;
 else // memop == MemOp_STORE
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
 offs = offs + ebytes;
 tt = (tt + 1) MOD 32;
 endif
 endfor
endfor
if wback then
 if m != 31 then
 offs = X[m];
 else
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;
 endif
 endif
endif

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.328 ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to memory from corresponding elements of four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

No offset

8-bit variant
Applies when opcode == 001.

16-bit variant
Applies when opcode == 011 && size == x0.

32-bit variant
Applies when opcode == 101 && size == 00.

64-bit variant
Applies when opcode == 101 && S == 0 && size == 01.

Decode for all variants of this encoding

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

8-bit, immediate offset variant
Applies when Rm == 11111 && opcode == 001.

8-bit, register offset variant
Applies when Rm != 11111 && opcode == 001.
ST4 \{ \langle Vt \rangle.B, \langle Vt2 \rangle.B, \langle Vt3 \rangle.B, \langle Vt4 \rangle.B \}[\langle index \rangle], [\langle Xn \mid SP \rangle], \langle Xm \rangle

16-bit, immediate offset variant
Applies when \(Rm == 11111 \) \& \& \(\text{opcode} == 011 \) \& \& \(\text{size} == x0 \).
ST4 \{ \langle Vt \rangle.H, \langle Vt2 \rangle.H, \langle Vt3 \rangle.H, \langle Vt4 \rangle.H \}[\langle index \rangle], [\langle Xn \mid SP \rangle], #8

16-bit, register offset variant
Applies when \(Rm != 11111 \) \& \& \(\text{opcode} == 011 \) \& \& \(\text{size} == x0 \).
ST4 \{ \langle Vt \rangle.H, \langle Vt2 \rangle.H, \langle Vt3 \rangle.H, \langle Vt4 \rangle.H \}[\langle index \rangle], [\langle Xn \mid SP \rangle], \langle Xm \rangle

32-bit, immediate offset variant
Applies when \(Rm == 11111 \) \& \& \(\text{opcode} == 101 \) \& \& \(\text{size} == 00 \).
ST4 \{ \langle Vt \rangle.S, \langle Vt2 \rangle.S, \langle Vt3 \rangle.S, \langle Vt4 \rangle.S \}[\langle index \rangle], [\langle Xn \mid SP \rangle], #16

32-bit, register offset variant
Applies when \(Rm != 11111 \) \& \& \(\text{opcode} == 101 \) \& \& \(\text{size} == 00 \).
ST4 \{ \langle Vt \rangle.S, \langle Vt2 \rangle.S, \langle Vt3 \rangle.S, \langle Vt4 \rangle.S \}[\langle index \rangle], [\langle Xn \mid SP \rangle], \langle Xm \rangle

64-bit, immediate offset variant
Applies when \(Rm == 11111 \) \& \& \(\text{opcode} == 101 \) \& \& \(S == 0 \) \& \& \(\text{size} == 01 \).
ST4 \{ \langle Vt \rangle.D, \langle Vt2 \rangle.D, \langle Vt3 \rangle.D, \langle Vt4 \rangle.D \}[\langle index \rangle], [\langle Xn \mid SP \rangle], #32

64-bit, register offset variant
Applies when \(Rm != 11111 \) \& \& \(\text{opcode} == 101 \) \& \& \(S == 0 \) \& \& \(\text{size} == 01 \).
ST4 \{ \langle Vt \rangle.D, \langle Vt2 \rangle.D, \langle Vt3 \rangle.D, \langle Vt4 \rangle.D \}[\langle index \rangle], [\langle Xn \mid SP \rangle], \langle Xm \rangle

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } t &= \text{UInt}(Rt); \\
\text{integer } n &= \text{UInt}(Rn); \\
\text{integer } m &= \text{UInt}(Rm); \\
\text{boolean } wback &= \text{TRUE}; \\
\text{boolean } tag_checked &= wback \mid\mid n != 31;
\end{align*}
\]

Assembler symbols

\(\langle Vt \rangle \) Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.
\(\langle Vt2 \rangle \) Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.
\(\langle Vt3 \rangle \) Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.
\(\langle Vt4 \rangle \) Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.
\(\langle index \rangle \) For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".
\(\langle Xn \mid SP \rangle \) Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
\(\langle Xm \rangle \) Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.
Shared decode for all encodings

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
 when 3
 // load and replicate
 if L == '0' || S == '1' then UNDEFINED;
 scale = UInt(size);
 replicate = TRUE;
 when 0
 index = UInt(Q:S:size); // B[0-15]
 when 1
 if size<0> == '1' then UNDEFINED;
 index = UInt(Q:S:size<1>); // H[0-7]
 when 2
 if size<1> == '1' then UNDEFINED;
 if size<0> == '0' then
 index = UInt(Q:S); // S[0-3]
 else
 if S == '1' then UNDEFINED;
 index = UInt(Q); // D[0-1]
 scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

Operation for all encodings

if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
 CheckSPAlignment();
 address = SP[0];
else
 address = X[n];

offs = Zeros();
if replicate then
 // load and replicate to all elements
 for s = 0 to selem-1
 element = Mem[address+offs, ebytes, AccType_VEC];
 // replicate to fill 128- or 64-bit register
 V[t] = Replicate(element, datasize DIV esize);
 offs = offs + ebytes;
 t = (t + 1) MOD 32;
else
 // load/store one element per register
 for s = 0 to selem-1
 rval = V[t];
 if memop == MemOp_LOAD then
 // insert into one lane of 128-bit register
 Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
 V[t] = rval;
else // memop == MemOp_STORE
 // extract from one lane of 128-bit register
 Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
 offs = offs + ebytes;
 t = (t + 1) MOD 32;

if wback then
 if m != 31 then
 offs = X[m];
 if n == 31 then
 SP[] = address + offs;
 else
 X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.329 STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to memory, issuing a hint to the memory system that the access is non-temporal. The address used for the store is calculated from an address from a base register value and an immediate offset. For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair on page C3-216.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

32-bit variant

Applies when $opc == 00$.

$\text{STNP} \ <St1>, \ <St2>, \ [<Xn|SP>{, \ #<imm>}]$

64-bit variant

Applies when $opc == 01$.

$\text{STNP} \ <Dt1>, \ <Dt2>, \ [<Xn|SP>{, \ #<imm>}]$

128-bit variant

Applies when $opc == 10$.

$\text{STNP} \ <Qt1>, \ <Qt2>, \ [<Xn|SP>{, \ #<imm>}]$

Decode for all variants of this encoding

// Empty.

Assembler symbols

$<Dt1>$ Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

$<Dt2>$ Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

$<Qt1>$ Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

$<Qt2>$ Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

$<St1>$ Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

$<St2>$ Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4. For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8. For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.
Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bflags(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = n != 31;

Operation

CheckFPAdvSIMDEnabled64();

bflags(64) address;
bflags(datasize) data1;
bflags(datasize) data2;
constant integer dbytes = datasize DIV 8;
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

if n == 31 then
 CheckSPAilignment();
 address = SP[];
else
 address = X[n];

address = address + offset;
data1 = V[t];
data2 = V[t2];
Mem[address, dbytes, AccType_VECSTREAM] = data1;
Mem[address+dbytes, dbytes, AccType_VECSTREAM] = data2;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.330 STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Post-index

32-bit variant
Applies when opc == 00.

STP <St1>, <St2>, [Xn|SP], #imm

64-bit variant
Applies when opc == 01.

STP <Dt1>, <Dt2>, [Xn|SP], #imm

128-bit variant
Applies when opc == 10.

STP <Qt1>, <Qt2>, [Xn|SP], #imm

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

32-bit variant
Applies when opc == 00.

STP <St1>, <St2>, [Xn|SP], #imm

64-bit variant
Applies when opc == 01.

STP <Dt1>, <Dt2>, [Xn|SP], #imm

128-bit variant
Applies when opc == 10.

STP <Qt1>, <Qt2>, [Xn|SP], #imm
Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>15 14</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc 1 0 1 1 0 0</td>
<td>imm7</td>
<td>Rt2</td>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32-bit variant

Applies when opc == 00.

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit variant

Applies when opc == 01.

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit variant

Applies when opc == 10.

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

Decode for all variants of this encoding

boolean wback = FALSE;
boolean postindex = FALSE;

Assembler symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.
<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.
<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.
<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.
<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.
<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.
For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.
For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared decode for all encodings

```plaintext
integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;
```

Operation for all encodings

```plaintext
CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);
else
    address = X[n];

if !postindex then
    address = address + offset;

data1 = V[t];
data2 = V[t2];
Mem[address, dbytes, AccType_VEC] = data1;
Mem[address+dbytes, dbytes, AccType_VEC] = data2;

if wback then
    if postindex then
        address = address + offset;
    if n == 31 then
        SP[] = address;
    else
        X[n] = address;
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.331 STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The address that is used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Post-index

| size | 1 | 1 | 1 | 0 | 0 | x | 0 | 0 | | imm9 | 0 | 1 | Rn | Rt |
|------|---|---|---|---|---|---|---|---| | | 5 | 4 | 0 |
| opc |

8-bit variant

Applies when size == 00 && opc == 00.

STR <Bt>, [Xn|SP], #<simm>

16-bit variant

Applies when size == 01 && opc == 00.

STR <Ht>, [Xn|SP], #<simm>

32-bit variant

Applies when size == 10 && opc == 00.

STR <St>, [Xn|SP], #<simm>

64-bit variant

Applies when size == 11 && opc == 00.

STR <Dt>, [Xn|SP], #<simm>

128-bit variant

Applies when size == 00 && opc == 10.

STR <Qt>, [Xn|SP], #<simm>

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bites(64) offset = SignExtend(imm9, 64);

Pre-index

| size | 1 | 1 | 1 | 1 | 0 | 0 | x | 0 | 0 | | imm9 | 1 | 1 | Rn | Rt |
|------|---|---|---|---|---|---|---|---| | | 5 | 4 | 0 |
| opc |

8-bit variant

Applies when size == 00 && opc == 00.
STR <Bt>, [<Xn|SP>, #<simm>]!

16-bit variant
Applies when size == 01 && opc == 00.
STR <Ht>, [<Xn|SP>, #<simm>]!

32-bit variant
Applies when size == 10 && opc == 00.
STR <St>, [<Xn|SP>, #<simm>]!

64-bit variant
Applies when size == 11 && opc == 00.
STR <Dt>, [<Xn|SP>, #<simm>]!

128-bit variant
Applies when size == 00 && opc == 10.
STR <Qt>, [<Xn|SP>, #<simm>]!

Decode for all variants of this encoding

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc < 1>: size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>1 1 1 1</td>
<td>0 1 x 0</td>
<td>imm12</td>
<td>Rn</td>
<td>Rt</td>
</tr>
<tr>
<td>opc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-bit variant
Applies when size == 00 && opc == 00.
STR <Bt>, [<Xn|SP>{, #pimm}]

16-bit variant
Applies when size == 01 && opc == 00.
STR <Ht>, [<Xn|SP>{, #pimm}]

32-bit variant
Applies when size == 10 && opc == 00.
STR <St>, [<Xn|SP>{, #pimm}]

64-bit variant
Applies when size == 11 && opc == 00.
STR <Dt>, [<Xn|SP>{, #pimm}]
128-bit variant
Applies when size == 00 && opc == 10.
STR <Qt>, [<Xn|SP>{, #<pimm>}]

Decode for all variants of this encoding
boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler symbols
<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<S> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.
<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.
For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.
For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared decode for all encodings
integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

Operation for all encodings
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);
CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
if !postindex then
 address = address + offset;

case memop of
 when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;
 when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

if wbback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.332 STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The address that is used for the store is calculated from a base register value and an offset register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

8-fsreg,STR-8-fsreg variant
Applies when size == 00 && opc == 00 && option != 011.
STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]}

8-fsreg,STR-8-fsreg variant
Applies when size == 00 && opc == 00 && option == 011.
STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]}

16-fsreg,STR-16-fsreg variant
Applies when size == 01 && opc == 00.
STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-fsreg,STR-32-fsreg variant
Applies when size == 10 && opc == 00.
STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,STR-64-fsreg variant
Applies when size == 11 && opc == 00.
STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,STR-128-fsreg variant
Applies when size == 00 && opc == 10.
STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

Decode for all variants of this encoding
\[
\begin{array}{c}
\text{integer scale} = \text{UInt}(\text{opc}<1>:\text{size}); \\
\text{if scale} > 4 \text{ then UNDEFINED}; \\
\text{if option}<1> = '0' \text{ then UNDEFINED}; \quad \text{// sub-word index} \\
\text{ExtendType extend_type} = \text{DecodeRegExtend}(\text{option}); \\
\text{integer shift} = \text{if S} = '1' \text{ then scale} else 0;
\end{array}
\]

Assembler symbols

<8t> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<6t> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xn> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in the "option" field. It can have the following values:

- UXTW when option = 010
- SXTW when option = 110
- SXTX when option = 111

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded in the "option" field. It can have the following values:

- UXTW when option = 010
- LSL when option = 011
- SXTW when option = 110
- SXTX when option = 111

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #1 when S = 1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #2 when S = 1

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #3 when S = 1

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is encoded in the "S" field. It can have the following values:

- #0 when S = 0
- #4 when S = 1
Shared decode for all encodings

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
if HaveMTEExt() then
 SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;
if n == 31 then
 CheckSPAlignment();
 address = SP[];
else
 address = X[n];
address = address + offset;
case memop of
when MemOp_STORE
 data = V[t];
 Mem[address, datasize DIV 8, AccType_VEC] = data;
when MemOp_LOAD
 data = Mem[address, datasize DIV 8, AccType_VEC];
 V[t] = data;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.333 STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state
and Exception level, an attempt to execute the instruction might be trapped.

8-bit variant
Applies when size == 00 && opc == 00.
STUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit variant
Applies when size == 01 && opc == 00.
STUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit variant
Applies when size == 10 && opc == 00.
STUR <St>, [<Xn|SP>{, #<simm>}]

64-bit variant
Applies when size == 11 && opc == 00.
STUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit variant
Applies when size == 00 && opc == 10.
STUR <Qt>, [<Xn|SP>{, #<simm>}]

Decode for all variants of this encoding

integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bites(64) offset = SignExtend(imm9, 64);

Assembler symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared decode for all encodings

```plaintext
ingeger n = UInt(Rn);
ingeger t = UInt(Rt);
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
ingeger datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (n != 31);
```

Operation

```plaintext
if HaveMTEExt() then
    SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if n == 31 then
    CheckSPAlignment();
    address = SP[];
else
    address = X[n];

address = address + offset;

case memop of
    when MemOp_STORE
        data = V[t];
        Mem[address, datasize DIV 8, AccType_VEC] = data;
    when MemOp_LOAD
        data = Mem[address, datasize DIV 8, AccType_VEC];
        V[t] = data;
```

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
C7.2.334 SUB (vector)

Subtract (vector). This instruction subtracts each vector element in the second source SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size 1</td>
<td>Rm</td>
<td>1 0 0 0 0 1</td>
</tr>
</tbody>
</table>

U

Scalar variant

SUB <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size 1</td>
<td>Rm</td>
</tr>
</tbody>
</table>

U

Vector variant

SUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:
D when size = 11

The following encodings are reserved:
• size = 0x.
• size = 10.
Is the number of the SIMD&FP destination register, in the "Rd" field.

<n>
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m>
Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<d>
Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T>
Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>when size = 00, Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>when size = 00, Q = 1</td>
</tr>
<tr>
<td>4H</td>
<td>when size = 01, Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>when size = 01, Q = 1</td>
</tr>
<tr>
<td>2S</td>
<td>when size = 10, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>when size = 10, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>when size = 11, Q = 1</td>
</tr>
</tbody>
</table>

The encoding size = 11, Q = 0 is reserved.

<n>
Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<m>
Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
for e = 0 to elements-1
 element1 = Elem[operand1, e, esize];
 element2 = Elem[operand2, e, esize];
 if sub_op then
 Elem[result, e, esize] = element1 - element2;
 else
 Elem[result, e, esize] = element1 + element2;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.335 SUBHN, SUBHN2

Subtract returning High Narrow. This instruction subtracts each vector element in the second source SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer values.

The results are truncated. For rounded results, see RSUBHN, RSUBHN2.

The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the SUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
0  Q 0  0 1 1 0  size 1  Rd  0 1 1 0 0  Rn  0 1 0 0  Rm
```

Three registers, not all the same type variant

SUBHN(2) <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);

- if size == '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = 64;
- integer part = UInt(Q);
- integer elements = datasize DIV esize;

- boolean sub_op = (o1 == '1');
- boolean round = (U == '1');

Assembler symbols

<table>
<thead>
<tr>
<th>2</th>
<th>Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[absent] when Q = 0</td>
</tr>
<tr>
<td></td>
<td>[present] when Q = 1</td>
</tr>
</tbody>
</table>

- <Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- <Tb> Is an arrangement specifier, encoded in the "size-Q" field. It can have the following values:

 | 8B | when size = 00, Q = 0 |
 | 16B | when size = 00, Q = 1 |
 | 4H | when size = 01, Q = 0 |
 | 8H | when size = 01, Q = 1 |
 | 2S | when size = 10, Q = 0 |
 | 4S | when size = 10, Q = 1 |
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>8H</td>
<td>when size = 00</td>
</tr>
<tr>
<td>01</td>
<td>4S</td>
<td>when size = 01</td>
</tr>
<tr>
<td>10</td>
<td>2D</td>
<td>when size = 10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bv<2*datasize> operand1 = V[n];
bv<2*datasize> operand2 = V[m];
bv<datasize> result;
integer round_const = if round then 1 << (esize - 1) else 0;
bv<2*esize> element1;
bv<2*esize> element2;
bv<2*esize> sum;

for e = 0 to elements-1
  element1 = Elem[operand1, e, 2*esize];
  element2 = Elem[operand2, e, 2*esize];
  if sub_op then
    sum = element1 - element2;
  else
    sum = element1 + element2;
  sum = sum + round_const;
  Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.336 SUDOT (by element)

Dot product index form with signed and unsigned integers. This instruction performs the dot product of the four signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination vector.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.18MM indicates whether this instruction is supported.

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>19 16 15 14 13 12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

SUDOT <Vd>..<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

Decode for this encoding

if !HaveInt8MatMulExt() then UNDEFINED;
boolean op1_unsigned = (US == '1');
boolean op2_unsigned = (US == '0');
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 2S when Q = 0
 4S when Q = 1
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 8B when Q = 0
 16B when Q = 1
<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
<index> Is the immediate index of a quadtuplet of four 8-bit elements in the range 0 to 3, encoded in the "H:L" fields.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
for e = 0 to elements-1
 bits(32) res = Elem[operand3, e, 32];
 for b = 0 to 3
 integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
 integer element2 = Int(Elem[operand2, 4*i+b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
V[d] = result;
C7.2.337 SUQADD

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of the vector elements in the source SIMD&FP register to corresponding signed integer values of the vector elements in the destination SIMD&FP register, and writes the resulting signed integer values to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 1 0 1 1 1 1 0 | size 1 0 0 0 0 0 0 1 1 0 | Rd 5 | Rn 4 | 0 0
```

Scalar variant

SUQADD <V><d>, <V><n>

Decode for this encoding

```java
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');
```

Vector

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | 5 4 | 0 |
0 1 0 1 1 1 0 | size 1 0 0 0 0 0 1 1 0 | Rd 5 | Rn 4 | 0 0
```

Vector variant

SUQADD <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```java
integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
```

Assembler symbols

```markdown
<V>
Is a width specifier, encoded in the "size" field. It can have the following values:

- 8 when size = 00
```
when size = 01
S when size = 10
D when size = 11

\(<d>\) Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

\(<n>\) Is the number of the SIMD&FP source register, encoded in the "Rn" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
integer op1;
integer op2;
boolean sat;

for e = 0 to elements-1
    op1 = Int(Elem[operand, e, esize], !unsigned);
    op2 = Int(Elem[operand2, e, esize], unsigned);
    (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
    if sat then FPSR.QC = '1';
V[d] = result;
```
C7.2.338 SXTL, SXTL2

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the source SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SXTL instruction extracts the source vector from the lower half of the source register, while the SXTL2 instruction extracts the source vector from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the SSHLL, SSHLL2 instruction. This means that:

- The encodings in this description are named to match the encodings of SSHLL, SSHLL2.
- The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Vector variant

\[
\text{\texttt{SXTL}\{2\} <Vd>.<Ta>, <Vn>.<Tb>}
\]

is equivalent to

\[
\text{\texttt{SSHLL}\{2\} <Vd>.<Ta>, <Vn>.<Tb>, #0}
\]

and is the preferred disassembly when \(\text{BitCount(immh)} = 1\).

Assembler symbols

- \(2\) is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
 - \([\text{absent}]\) when \(Q = 0\)
 - \([\text{present}]\) when \(Q = 1\)

- \(<Vd>\) is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- \(<Ta>\) is an arrangement specifier, encoded in the "immh" field. It can have the following values:
 - \(8H\) when \(\text{immh} = 0001\)
 - \(4S\) when \(\text{immh} = 001x\)
 - \(2D\) when \(\text{immh} = 01xx\)

 See Advanced SIMD modified immediate on page C4-351 when \(\text{immh} = 0000\).

 The encoding \(\text{immh} = 1xxx\) is reserved.

- \(<Vn>\) is the name of the SIMD&FP source register, encoded in the "Rn" field.

- \(<Tb>\) is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
 - \(8B\) when \(\text{immh} = 0001, Q = 0\)
 - \(16B\) when \(\text{immh} = 0001, Q = 1\)
 - \(4H\) when \(\text{immh} = 001x, Q = 0\)
 - \(8H\) when \(\text{immh} = 001x, Q = 1\)
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

Operation
The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Operational information
If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.339 TBL

Table vector Lookup. This instruction reads each value from the vector elements in the index source SIMD&FP register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four source table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination SIMD&FP register. If an index is out of range for the table, the result for that lookup is 0. If more than one source register is used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant
Applies when len == 01.
TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table variant
Applies when len == 10.
TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table variant
Applies when len == 11.
TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table variant
Applies when len == 00.
TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

Decode for all variants of this encoding

\[
\begin{array}{cccccccccccccccc}
\hline
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & Rm & 0 & len & 0 & 0 & Rn & 0 & Rd
\end{array}
\]

Assembler symbols

</Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>16B</th>
<th>8B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

</Vn> For the four register table, three register table and two register table variant: is the name of the first SIMD&FP table register, encoded in the "Rn" field.
For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn" field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) indices = V[m];
bits(128*regs) table = Zeros();
bits(datasize) result;
integer index;

// Create table from registers
for i = 0 to regs-1
 table<128*i+127:128*i> = V[n];
 n = (n + 1) MOD 32;
result = if is_tbl then Zeros() else V[d];
for i = 0 to elements-1
 index = UInt(Elem[indices, i, 8]);
 if index < 16 * regs then
 Elem[result, i, 8] = Elem[table, index, 8];
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.340 TBX

Table vector lookup extension. This instruction reads each value from the vector elements in the index source SIMD&FP register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four source table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination SIMD&FP register. If an index is out of range for the table, the existing value in the vector element of the destination register is left unchanged. If more than one source register is used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Two register table variant
Applies when \(\text{len} = 01 \).

\[
\text{TBX} \ <V_d>.<Ta>, \ \{ \ <V_n>.16B, \ <V_{n+1}>.16B \} \ , \ <V_m>.<Ta>
\]

Three register table variant
Applies when \(\text{len} = 10 \).

\[
\text{TBX} \ <V_d>.<Ta>, \ \{ \ <V_n>.16B, \ <V_{n+1}>.16B, \ <V_{n+2}>.16B \} \ , \ <V_m>.<Ta>
\]

Four register table variant
Applies when \(\text{len} = 11 \).

\[
\text{TBX} \ <V_d>.<Ta>, \ \{ \ <V_n>.16B, \ <V_{n+1}>.16B, \ <V_{n+2}>.16B, \ <V_{n+3}>.16B \} \ , \ <V_m>.<Ta>
\]

Single register table variant
Applies when \(\text{len} = 00 \).

\[
\text{TBX} \ <V_d>.<Ta>, \ \{ \ <V_n>.16B \} \ , \ <V_m>.<Ta>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{integer } d &= \ \text{UInt}(Rd); \\
\text{integer } n &= \ \text{UInt}(Rn); \\
\text{integer } m &= \ \text{UInt}(Rm); \\
\text{integer } \text{datasize} &= \text{if } Q == '1' \text{ then } 128 \text{ else } 64; \\
\text{integer } \text{elements} &= \text{datasize DIV } 8; \\
\text{integer } \text{regs} &= \ \text{UInt}(\text{len}) + 1; \\
\text{boolean } \text{is_tbl} &= (\text{op} == '0');
\end{align*}
\]

Assembler symbols

\(<V_d>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
\(<Ta>\) Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 \(8B\) when \(Q = 0 \)
 \(16B\) when \(Q = 1 \)
<Vn> For the four register table, three register table and two register table variant: is the name of the first SIMD&FP table register, encoded in the "Rn" field.
For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn" field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
b_bits(datasize) indices = V[m];
b_bits(128*regs) table = Zeros();
b_bits(datasize) result;
integer index;

// Create table from registers
for i = 0 to regs-1
    table<128*i+127:128*i> = V[n];
    n = (n + 1) MOD 32;

result = if is_tbl then Zeros() else V[d];
for i = 0 to elements-1
    index = UInt(Elem[indices, i, 8]);
    if index < 16 * regs then
        Elem[result, i, 8] = Elem[table, index, 8];

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.341 TRN1

Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source SIMD&FP registers, starting at zero, places each result into consecutive elements of a vector, and writes the vector to the destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered elements of the destination vector, starting at zero, while vector elements from the second source register are placed into odd-numbered elements of the destination vector.

--- Note ---

By using this instruction with TRN2, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

![Figure showing operation of TRN1 and TRN2 halfword operations](image)

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

TRN1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;
```

Assembler symbols

```plaintext
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  88 when size = 00, Q = 0
  168 when size = 00, Q = 1
```
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

for p = 0 to pairs-1
    Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
    Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.342 TRN2

Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source SIMD&FP registers, places each result into consecutive elements of a vector, and writes the vector to the destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered elements of the destination vector, starting at zero, while vector elements from the second source register are placed into odd-numbered elements of the destination vector.

--- Note ---
By using this instruction with TRN1, a 2 x 2 matrix can be transposed.

The following figure shows the operation of TRN1 and TRN2 halfword operations where Q = 0.

![Figure showing operation of TRN1 and TRN2 halfword operations](image)

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

TRN2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```cpp
type integer d = UInt(Rd);
type integer n = UInt(Rn);
type integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
type integer esize = 8 << UInt(size);
type integer datasize = if Q == '1' then 128 else 64;
type integer elements = datasize DIV esize;
type integer part = UInt(op);
type integer pairs = elements DIV 2;
```

Assembler symbols

\(<Vd>\) is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

\[
\text{CheckFPAdvSIMDEnabled64();} \\
\text{bits(datasize) operand1 = V[n];} \\
\text{bits(datasize) operand2 = V[m];} \\
\text{bits(datasize) result;} \\
\text{for p = 0 to pairs-1} \\
\text{\hspace{1em}Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];} \\
\text{\hspace{1em}Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];} \\
\text{V[d] = result;} \\
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.343 UABA

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the elements of the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
UABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;
result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.344 UABAL, UABAL2

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or upper half of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are unsigned integer values.

The UABAL instruction extracts each source vector from the lower half of each source register, while the UABAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant
UABAL{2} <Vd>..<Ta>, <Vn>..<Tb>, <Vm>..<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
 8H when size = 00
 4S when size = 01
 2D when size = 10
The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bites(datasize) operand1 = Vpart[n, part];
bites(datasize) operand2 = Vpart[m, part];
bites(2*datasize) result;
integer element1;
integer element2;
bite(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    absdiff = Abs(element1-element2)<<2*esize-1:0;
    Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.345 UABD

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the second source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, places the absolute values of the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>01 01 01 0</th>
<th>16 15 14 13 12</th>
<th>11 10 09</th>
<th>04 05 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three registers of the same type variant

UABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 8B when size = 00, Q = 0
 16B when size = 00, Q = 1
 4H when size = 01, Q = 0
 8H when size = 01, Q = 1
 2S when size = 10, Q = 0
 4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bond(datasize) operand1 = V[n];
bond(datasize) operand2 = V[m];
bond(datasize) result;
integer element1;
integer element2;
bond(esize) absdiff;
result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 absdiff = Abs(element1-element2)<esize-1:0>;
 Elem[result, e, esize] = Elem[result, e, esize] + absdiff;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.346 UABDL, UABDL2

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are unsigned integer values.

The UABDL instruction extracts each source vector from the lower half of each source register, while the UABDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13</th>
<th>12 11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0</td>
<td>size</td>
<td>1</td>
<td>Rm 0 1 1 0</td>
<td>0</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

Three registers, not all the same type variant

UABDL[2] <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

- boolean accumulate = (op == '0');
- boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8H when size = 00
- 4S when size = 01
- 2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 88 when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\m>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    absdiff = Abs(element1-element2)<<esize-1:0;
    Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.347 UADALP

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the source SIMD&FP register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant

UADALP <Vd>,<Ta>, <Vn>,<Tb>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
if size == '11' then UNDEFINED;
integer esize = 8 * UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Ta>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - `4H` when `size = 00, Q = 0`
 - `8H` when `size = 00, Q = 1`
 - `2S` when `size = 01, Q = 0`
 - `4S` when `size = 01, Q = 1`
 - `1D` when `size = 10, Q = 0`
 - `2D` when `size = 10, Q = 1`
 The encoding `size = 11, Q = x` is reserved.
- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - `8B` when `size = 00, Q = 0`
 - `16B` when `size = 00, Q = 1`
 - `4H` when `size = 01, Q = 0`
 - `8H` when `size = 01, Q = 1`
 - `2S` when `size = 10, Q = 0`
 - `4S` when `size = 10, Q = 1`
 The encoding `size = 11, Q = x` is reserved.
Operation

\[
\text{CheckFPAdvSIMDEnabled64();}
\]

\[
\text{bits(datasize)\ operand = V[n];}
\]

\[
\text{bits(datasize)\ result;}
\]

\[
\text{bits(2*esize)\ sum;}
\]

\[
\text{integer\ op1;}
\]

\[
\text{integer\ op2;}
\]

\[
\text{if\ acc\ then\ result = V[d];}
\]

\[
\text{for\ e = 0\ to\ elements-1}
\]

\[
\text{op1 = Int(Elem[operand, 2*e+0, esize], unsigned);}\\
\text{op2 = Int(Elem[operand, 2*e+1, esize], unsigned);}\\
\text{sum = (op1+op2)<<(2*esize-1);}
\]

\[
\text{if\ acc\ then}
\]

\[
\text{Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;}
\]

\[
\text{else}
\]

\[
\text{Elem[result, e, 2*esize] = sum;}
\]

\[
V[d] = result;
\]

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.348 UADDL, UADDL2

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are unsigned integer values.

The UADDL instruction extracts each source vector from the lower half of each source register, while the UADDL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

UADDL\{2\} <Vd>,<Ta>, <Vn>,<Tb>, <Vm>,<Tb>

Decode for this encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
</tbody>
</table>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8H when size = 00
- 4S when size = 01
- 2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    element2 = Int(Elem[operand2, e, esize], unsigned);
    if sub_op then
        sum = element1 - element2;
    else
        sum = element1 + element2;
    Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.349 UADDP

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9] | [5 4] [0]
  0   Q  1  0  1  1  0 | size  1  0  0  0  0  0  0  1  0  1  0  | Rn  Rd
  U  op
```

Vector variant
UADDP <Vd>.<Ta>, <Vn>.<Tb>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

```
<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   4H  when size = 00, Q = 0
   8H  when size = 00, Q = 1
   2S  when size = 01, Q = 0
   4S  when size = 01, Q = 1
   1D  when size = 10, Q = 0
   2D  when size = 10, Q = 1
   The encoding size = 11, Q = x is reserved.
<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   8B  when size = 00, Q = 0
  16B  when size = 00, Q = 1
   4H  when size = 01, Q = 0
   8H  when size = 01, Q = 1
   2S  when size = 10, Q = 0
   4S  when size = 10, Q = 1
   The encoding size = 11, Q = x is reserved.
```
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1
 op1 = IntElem[operand, 2*e+0, esize], unsigned);
 op2 = IntElem[operand, 2*e+1, esize], unsigned);
 sum = (op1+op2)<2*esize-1:0>;
 if acc then
 Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
 else
 Elem[result, e, 2*esize] = sum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.350 UADDLV

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as the source vector elements. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 | 5 4 | 0 | | | | | | | | | | |
| 0 | Q | 1 | 0 | 1 | 1 | 1 | 0 | size | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
|    | Rd |    |
```

Advanced SIMD variant

UADDLV <V><d>, <Vn>.<T>

Decode for this encoding

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if size:Q == '100' then UNDEFINED;
- if size == '11' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');

Assembler symbols

- <V> Is the destination width specifier, encoded in the "size" field. It can have the following values:
 - H when size = 00
 - S when size = 01
 - D when size = 10

 The encoding size = 11 is reserved.

- <d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

- <Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

- <T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - 8B when size = 00, Q = 0
 - 16B when size = 00, Q = 1
 - 4H when size = 01, Q = 0
 - 8H when size = 01, Q = 1
 - 4S when size = 10, Q = 1

 The following encodings are reserved:
 - size = 10, Q = 0.
 - size = 11, Q = x.
Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
    sum = sum + int(Elem[operand, e, esize], unsigned);

V[d] = sum<2*esize-1:0>;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.351 UADDW, UADDW2

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD&FP register to the corresponding vector elements in the lower or upper half of the second source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP destination register. The vector elements of the destination register and the first source register are twice as long as the vector elements of the second source register. All the values in this instruction are unsigned integer values.

The UADDW instruction extracts vector elements from the lower half of the second source register, while the UADDW2 instruction extracts vector elements from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

\[UADDW2 \{Vd\} \cdot <Ta>, <Vn> \cdot <Ta>, <Vm> \cdot <Tb> \]

Decode for this encoding

- \(d = \text{UInt}(Rd) \)
- \(n = \text{UInt}(Rn) \)
- \(m = \text{UInt}(Rm) \)

\[
\text{if } \text{size} = '11' \text{ then UNDEFINED;}
\]

- \(\text{esize} = 8 \ll \text{UInt}(\text{size}) \)
- \(\text{datasize} = 64 \)
- \(\text{part} = \text{UInt}(Q) \)
- \(\text{elements} = \text{datasize} \div \text{esize} \)

- \(\text{sub_op} = (o1 = '1') \)
- \(\text{unsigned} = (U = '1') \)

Assembler symbols

- \(2 \)
- It is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
 - [absent] when \(Q = 0 \)
 - [present] when \(Q = 1 \)

- \(\langle Vd \rangle \)
- It is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- \(\langle Ta \rangle \)
- It is an arrangement specifier, encoded in the "size" field. It can have the following values:
 - \(8H \) when \(\text{size} = 00 \)
 - \(4S \) when \(\text{size} = 01 \)
 - \(2D \) when \(\text{size} = 10 \)

 The encoding \(\text{size} = 11 \) is reserved.

- \(\langle Vn \rangle \)
- It is the name of the first SIMD&FP source register, encoded in the "Rn" field.

- \(\langle Vm \rangle \)
- It is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

Operation

```c
CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, 2*esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  if sub_op then
    sum = element1 - element2;
  else
    sum = element1 + element2;
  Elem[result, e, 2*esize] = sum<2*esize-1:0>;
V[d] = result;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.352 UCVTF (vector, fixed-point)

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th></th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>1 1 0 0</td>
<td>1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Scalar variant

UCVTF <V><d>, <V><n>, #<fbits>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer data size = esize;
integer elements = 1;
integer fracbits = (esize - 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);
```

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th></th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1</td>
<td>1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>1 1 0 0</td>
<td>1</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Vector variant

UCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer data size = if Q == '1' then 128 else 64;
integer elements = data size DIV esize;
```
integer frachbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Assembler symbols

\(<V>\) Is a width specifier, encoded in the "immh" field. It can have the following values:

- **H** when \(immh = 001x\)
- **S** when \(immh = 01xx\)
- **D** when \(immh = 1xxx\)

The encoding \(immh = 000x\) is reserved.

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- **4H** when \(immh = 001x, Q = 0\)
- **8H** when \(immh = 001x, Q = 1\)
- **2S** when \(immh = 01xx, Q = 0\)
- **4S** when \(immh = 01xx, Q = 1\)
- **2D** when \(immh = 1xxx, Q = 1\)

See *Advanced SIMD modified immediate* on page C4-351 when \(immh = 0000, Q = x\).

The following encodings are reserved:

- \(immh = 0001, Q = x\).
- \(immh = lxxx, Q = 0\).

\(<Vn>\) Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<fbits>\) For the scalar variant: the number of fractional bits, in the range 1 to the operand width, encoded in the "immh:immb" field. It can have the following values:

- \((32-\text{UInt}(immh:immb))\) when \(immh = 001x\)
- \((64-\text{UInt}(immh:immb))\) when \(immh = 01xx\)
- \((128-\text{UInt}(immh:immb))\) when \(immh = 1xxx\)

The encoding \(immh = 000x\) is reserved.

For the vector variant: the number of fractional bits, in the range 1 to the element width, encoded in the "immh:immb" field. It can have the following values:

- \((32-\text{UInt}(immh:immb))\) when \(immh = 001x\)
- \((64-\text{UInt}(immh:immb))\) when \(immh = 01xx\)
- \((128-\text{UInt}(immh:immb))\) when \(immh = 1xxx\)

See *Advanced SIMD modified immediate* on page C4-351 when \(immh = 0000\).

The encoding \(immh = 0001\) is reserved.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
for e = 0 to elements-1
element = $\text{Elem}[$\text{operand}$, e, esize];
$\text{Elem}[$\text{result}$, e$, esize] = \text{FixedToFP}(element, fracbits, unsigned, FPCR, rounding);

$V[d] = \text{result}$;
C7.2.353 UCVTF (vector, integer)

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector from an
unsigned integer value to a floating-point value using the rounding mode that is specified by the FPCR, and writes
the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

Scalar half precision

ARMv8.2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Scalar half precision variant

UCVTF <Hd>, <Hn>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Scalar single-precision and double-precision variant

UCVTF <V>d>, <V>n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector half precision

ARMv8.2
Vector half precision variant

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

UCVTF <Vd>.<T>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in the "sz" field. It can have the following values:
 S when sz = 0
 D when sz = 1
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> For the vector half precision variant: is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 4H when Q = 0
8H when Q = 1

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:

2S when sz = 0, Q = 0
4S when sz = 0, Q = 1
2D when sz = 1, Q = 1

The encoding sz = 1, Q = 0 is reserved.

<Vn> is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
FPRounding rounding = FPRoundingMode(FPCR);
bits(esize) element;
for e = 0 to elements-1
    element = Elem[operand, e, esize];
    Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding);
V[d] = result;
```
C7.2.354 UCVTF (scalar, fixed-point)

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in the 32-bit or 64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

32-bit to half-precision variant

Applies when \(sf = 0 \) \&\& \(ftype = 11 \).

\[
UCVTF <Hd>, <Wn>, #<fbits>
\]

32-bit to single-precision variant

Applies when \(sf = 0 \) \&\& \(ftype = 00 \).

\[
UCVTF <Sd>, <Wn>, #<fbits>
\]

32-bit to double-precision variant

Applies when \(sf = 0 \) \&\& \(ftype = 01 \).

\[
UCVTF <Dd>, <Wn>, #<fbits>
\]

64-bit to half-precision variant

Applies when \(sf = 1 \) \&\& \(ftype = 11 \).

\[
UCVTF <Hd>, <Xn>, #<fbits>
\]

64-bit to single-precision variant

Applies when \(sf = 1 \) \&\& \(ftype = 00 \).

\[
UCVTF <Sd>, <Xn>, #<fbits>
\]

64-bit to double-precision variant

Applies when \(sf = 1 \) \&\& \(ftype = 01 \).

\[
UCVTF <Dd>, <Xn>, #<fbits>
\]

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
```
case ftype of
 when '00' fltsize = 32;
 when '01' fltsize = 64;
 when '10' UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;
if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);
rounding = FPRoundingMode(FPCR);

Assembler symbols

<Dr> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as 64 minus "scale".
For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();
bits(fltsize) fltval;
bits(intsize) intval;
intval = X[n];
fltval = FixedToFP(intval, fracbits, TRUE, FPCR, rounding);
V[d] = fltval;
C7.2.355 **UCVTF (scalar, integer)**

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value in the general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see *Floating-point exceptions and exception traps* on page D1-2354.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>sf</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ftype</td>
</tr>
</tbody>
</table>

32-bit to half-precision variant

Applies when sf == 0 && ftype == 11.

UCVTF <Hd>, <dn>

32-bit to single-precision variant

Applies when sf == 0 && ftype == 00.

UCVTF <Sd>, <dn>

32-bit to double-precision variant

Applies when sf == 0 && ftype == 01.

UCVTF <Dd>, <dn>

64-bit to half-precision variant

Applies when sf == 1 && ftype == 11.

UCVTF <Hd>, <xn>

64-bit to single-precision variant

Applies when sf == 1 && ftype == 00.

UCVTF <Sd>, <xn>

64-bit to double-precision variant

Applies when sf == 1 && ftype == 01.

UCVTF <Dd>, <xn>

Decode for all variants of this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;
```
case ftype of
 when '00'
 fltsize = 32;
 when '01'
 fltsize = 64;
 when '10'
 UNDEFINED;
 when '11'
 if HaveFP16Ext() then
 fltsize = 16;
 else
 UNDEFINED;

 rounding = FPRoundingMode(FPCR);

Assembler symbols

<DD> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<HD> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<SD> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<XN> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, 0, TRUE, FPCR, rounding);
V[d] = fltval;
C7.2.356 UDOT (by element)

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

ARMv8.2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>size</td>
</tr>
</tbody>
</table>
```

Vector variant

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B<[index]>

Decode for this encoding

```c
if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U == '0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Assembler symbols

- `<Vd>` is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
- `<Ta>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 2S when Q = 0
 - 4S when Q = 1
- `<Vn>` is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>` is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 8B when Q = 0
 - 16B when Q = 1
- `<Vm>` is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
- `<index>` is the element index, encoded in the "H:L" fields.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
V[d] = result;
C7.2.357 UDOT (vector)

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four unsigned 8-bit elements in each 32-bit element of the first source register with the four unsigned 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0 |
| Q | 1 | 0 | 1 | 1 | 0 | size | 0 | Rm | 1 | 0 | 1 | 0 | 1 | Rn | Rd |

Vector variant

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U == '0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler symbols

- <Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
- <Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 2S when Q = 0
 - 4S when Q = 1
- <Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- <Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
 - 8B when Q = 0
 - 16B when Q = 1
- <Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1
 integer res = 0;
 integer element1, element2;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 V[d] = result;
C7.2.358 UHADD

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see URHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

UHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Vd> is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 sum = element1 + element2;
 Elem[result, e, esize] = sum<esize:1>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
C7.2.359 UHSUB

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD&FP register from the corresponding vector elements in the first source SIMD&FP register, shifts each result right one bit, places each result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
UHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>size:Q</th>
<th>8B</th>
<th>16B</th>
<th>4H</th>
<th>8H</th>
<th>2S</th>
<th>4S</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>01</td>
<td>00</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.360 UMAX

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the larger of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

UMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.361 UMAXP

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
UMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
 element1 = Int(Elem[concat, 2*e, esize], unsigned);
 element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
 maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
 Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
C7.2.362 UMAXV

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

- **Advanced SIMD variant**
 - **UMAXV** `<V><d>, <Vn>.<T>`

- **Decode for this encoding**

  ```
  integer d = UInt(Rd);
  integer n = UInt(Rn);
  if size:Q == '100' then UNDEFINED;
  if size == '11' then UNDEFINED;
  integer esize = 8 << UInt(size);
  integer datasize = if Q == '1' then 128 else 64;
  integer elements = datasize DIV esize;
  boolean unsigned = (U == '1');
  boolean min = (op == '1');
  ```

- **Assembler symbols**

 - `<V>` is the destination width specifier, encoded in the "size" field. It can have the following values:
 - B when size = 00
 - H when size = 01
 - S when size = 10

 The encoding size = 11 is reserved.

 - `<d>` is the number of the SIMD&FP destination register, encoded in the "Rd" field.

 - `<Vn>` is the name of the SIMD&FP source register, encoded in the "Rn" field.

 - `<T>` is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
 - 8B when size = 00, Q = 0
 - 16B when size = 00, Q = 1
 - 4H when size = 01, Q = 0
 - 8H when size = 01, Q = 1
 - 4S when size = 10, Q = 1

 The following encodings are reserved:

 - `size = 10, Q = 0`.
 - `size = 11, Q = x`.
  ```
Operation

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
 element = Int(Elem[operand, e, esize], unsigned);
 maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;
```

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.363  UMIN

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, places the smaller of each of the two unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

UMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
b condensed(size) operand1 = V[n];
b condensed(size) operand2 = V[m];
b condensed(size) result;
integer element1;
integer element2;
integer maxmin;
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
  Elem[result, e, esize] = maxmin<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.364  UMINP

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant
UMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H when size = 01, Q = 0
  8H when size = 01, Q = 1
  2S when size = 10, Q = 0
  4S when size = 10, Q = 1
The encoding size = 11, Q = x is reserved.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
    element1 = Int(Elem[concat, 2*e, esize], unsigned);
    element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
    maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
    Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.365 UMINV

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

UMINV <V><d>, <Vn>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler symbols

<V> Is the destination width specifier, encoded in the "size" field. It can have the following values:
   B when size = 00
   H when size = 01
   S when size = 10

The encoding size = 11 is reserved.

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
   8B when size = 00, Q = 0
   16B when size = 00, Q = 1
   4H when size = 01, Q = 0
   8H when size = 01, Q = 1
   4S when size = 10, Q = 1

The following encodings are reserved:
   • size = 10, Q = 0.
   • size = 11, Q = x.
Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1
    element = Int(Elem[operand, e, esize], unsigned);
    maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.366  **UMLAL, UMLAL2 (by element)**

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The **UMLAL** instruction extracts vector elements from the lower half of the first source register, while the **UMLAL2** instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Vector variant

\[ \text{UMLAL}\{2\}<Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>] \]

### Decode for this encoding

```
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');
```

### Assembler symbols

- **2**  
  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
  - [absent] when \( Q = 0 \)
  - [present] when \( Q = 1 \)

- **<Vd>**  
  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- **<Ta>**  
  Is an arrangement specifier, encoded in the "size" field. It can have the following values:
    - 4S when size = 01
    - 2D when size = 10

The following encodings are reserved:
- size = 00.
size = 11.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Tb>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

\(4H\) when \(size = 01, Q = 0\)

\(8H\) when \(size = 01, Q = 1\)

\(2S\) when \(size = 10, Q = 0\)

\(4S\) when \(size = 10, Q = 1\)

The following encodings are reserved:

- \(size = 00, Q = x\).
- \(size = 11, Q = x\).

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

\(0:Rm\) when \(size = 01\)

\(M:Rm\) when \(size = 10\)

The following encodings are reserved:

- \(size = 00\).
- \(size = 11\).

Restricted to V0-V15 when element size \(<Ts>\) is H.

\(<Ts>\) Is an element size specifier, encoded in the "size" field. It can have the following values:

\(H\) when \(size = 01\)

\(S\) when \(size = 10\)

The following encodings are reserved:

- \(size = 00\).
- \(size = 11\).

\(<index>\) Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

\(H:L:M\) when \(size = 01\)

\(H:L\) when \(size = 10\)

The following encodings are reserved:

- \(size = 00\).
- \(size = 11\).

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxsized) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
```

```c
```
\[
\text{Elem}[\text{result}, e, 2\times \text{esize}] = \text{Elem}[\text{operand3}, e, 2\times \text{esize}] + \text{product};
\]

\[V[d] = \text{result};\]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.367   UMLAL, UMLAL2 (vector)

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or upper half of the first source SIMD&FP register by the corresponding vector elements of the second source SIMD&FP register, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register, while the UMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

UMLAL\{2\} <Vd>,<Ta>, <Vn>,<Tb>, <Vm>,<Tb>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
8H when size = 00
4S when size = 01
2D when size = 10
The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H  when size = 01, Q = 0
8H  when size = 01, Q = 1
2S  when size = 10, Q = 0
4S  when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

\(<Vm>\)  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bias(datasize) operand1 = Vpart[n, part];
bias(datasize) operand2 = Vpart[m, part];
bias(2*datasize) operand3 = V[d];
bias(2*datasize) result;
integer element1;
integer element2;
bias(2*esize) product;
bias(2*esize) accum;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*esize] - product;
 else
 accum = Elem[operand3, e, 2*esize] + product;

 Elem[result, e, 2*esize] = accum;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.368  UMLSL, UMLSL2 (by element)

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMLSL instruction extracts vector elements from the lower half of the first source register, while the UMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Vector variant

\[ \text{UMLSL} \{2\} \begin{array}{c} \langle Vd \rangle, \langle Ta \rangle, \langle Vn \rangle, \langle Tb \rangle, \langleVm \rangle, \langle Ts \rangle \end{array}[\langle index \rangle] \]

### Decode for this encoding

```plaintext
integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
 when '01' index = UInt(H:L:M); Rmhi = '0';
 when '10' index = UInt(H:L); Rmhi = M;
 otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');
```

### Assembler symbols

- **2**: Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
  - [absent] when Q = 0
  - [present] when Q = 1

- **<Vd>**: Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

- **<Ta>**: Is an arrangement specifier, encoded in the "size" field. It can have the following values:
  - 4S when size = 01
  - 2D when size = 10

The following encodings are reserved:
- size = 00.
• size = 11.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:
• size = 00, Q = x.
• size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:

- 0:Rm when size = 01
- M:Rm when size = 10

The following encodings are reserved:
• size = 00.
• size = 11.

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:

- H when size = 01
- S when size = 10

The following encodings are reserved:
• size = 00.
• size = 11.

<index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:

- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:
• size = 00.
• size = 11.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
b bits(datasize) operand1 = Vpart[n, part];
b bits(idxdsize) operand2 = V[m];
b bits(2*datasize) operand3 = V[d];
b bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 product = (element1*element2)<2*esize-1:0>;
 if sub_op then
 Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
 else
```

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential
\[ \text{Elem}[\text{result}, e, 2\times \text{esize}] = \text{Elem}[\text{operand3}, e, 2\times \text{esize}] + \text{product}; \]

\[ V[d] = \text{result}; \]

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.369  **UMLSL, UMLSL2 (vector)**

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in the lower or upper half of the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMLSL instruction extracts each source vector from the lower half of each source register, while the UMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

UMLSL{2} <Vd>-.<Ta>, <Vn>-.<Tb>, <Vm>-.<Tb>

**Decode for this encoding**

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');
```

**Assembler symbols**

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8H when size = 00
- 4S when size = 01
- 2D when size = 10

The encoding size = 11 is reserved.

<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<\vm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bias(diasize) operand1 = Vpart[n, part];
bias(diasize) operand2 = Vpart[m, part];
bias(2* biassize) operand3 = V[d];
bias(2* biassize) result;
integer element1;
integer element2;
bias(2*biasize) product;
bias(2*biasize) accum;
for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, biasize], unsigned);
 element2 = Int(Elem[operand2, e, biasize], unsigned);
 product = (element1*element2)<2*biasize-1:0>;
 if sub_op then
 accum = Elem[operand3, e, 2*biasize] - product;
 else
 accum = Elem[operand3, e, 2*biasize] + product;
 Elem[result, e, 2*biasize] = accum;
V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.370 UMMLA (vector)

Unsigned 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned 8-bit integer values in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

ARMv8.6

Vector variant

UMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

Decode for this encoding

if !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];
V[d] = MatMulAdd(addend, operand1, operand2, TRUE, TRUE);
C7.2.371 UMOV

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer from the source SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (to general). See Alias conditions for details of when each alias is preferred.

32-bit variant
Applies when Q == 0.
UMOV <Wd>, <Vn>.<Ts>[<index>]

64-reg, UMOV-64-reg variant
Applies when Q == 1 && imm5 == x1000.
UMOV <Xd>, <Vn>.<Ts>[<index>]

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size;
case Q:imm5 of
  when '0xxxx1' size = 0;    // UMOV Wd, Vn.B
  when '0xxx10' size = 1;    // UMOV Wd, Vn.H
  when '0xx100' size = 2;    // UMOV Wd, Vn.S
  when '1x1000' size = 3;    // UMOV Xd, Vn.D
  otherwise UNDEFINED;

integer idxdsiz = if imm5<4> == '1' then 128 else 64;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;
integer datasize = if Q == '1' then 64 else 32;

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV (to general)</td>
<td>imm5 == 'x1000'</td>
</tr>
<tr>
<td>MOV (to general)</td>
<td>imm5 == 'xx100'</td>
</tr>
</tbody>
</table>

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in the "imm5" field. It can have the following values:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>imm5 = xxxx1</td>
</tr>
<tr>
<td>H</td>
<td>imm5 = xx10</td>
</tr>
<tr>
<td>S</td>
<td>imm5 = xx100</td>
</tr>
</tbody>
</table>

The encoding imm5 = xx000 is reserved.

For the 64-reg, UMOV-64-reg variant: is an element size specifier, encoded in the "imm5" field. It can have the following values:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>imm5 = x1000</td>
</tr>
</tbody>
</table>

The following encodings are reserved:

- imm5 = x0000
- imm5 = xxxx1
- imm5 = xxx10
- imm5 = xx100

@index> For the 32-bit variant: is the element index encoded in the "imm5" field. It can have the following values:

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>imm5&lt;4:1&gt;</td>
<td>imm5 = xxxx1</td>
</tr>
<tr>
<td>imm5&lt;4:2&gt;</td>
<td>imm5 = xx10</td>
</tr>
<tr>
<td>imm5&lt;4:3&gt;</td>
<td>imm5 = xx100</td>
</tr>
</tbody>
</table>

The encoding imm5 = xx000 is reserved.

For the 64-reg, UMOV-64-reg variant: is the element index encoded in "imm5<4>".

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];

X[d] = ZeroExtend(Elem[operand, index, esize], datasize);
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.372 UMULL, UMULL2 (by element)

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMULL instruction extracts vector elements from the lower half of the first source register, while the UMULL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant
UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

Decode for this encoding

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 16 15 14 13 12]</th>
<th>[11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1 1 1</td>
<td>size</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td>Rmhi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>index</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of
  when '01' index = UInt(H:L:M); Rmhi = '0';
  when '10' index = UInt(H:L); Rmhi = M;
  otherwise UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
  [absent] when Q = 0
  [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
  45 when size = 01
  20 when size = 10
The following encodings are reserved:
  • size = 00.
  • size = 11.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1

The following encodings are reserved:
- size = 00, Q = x.
- size = 11, Q = x.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "size:M:Rm" field. It can have the following values:
- 0:Rm when size = 01
- M:Rm when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in the "size" field. It can have the following values:
- H when size = 01
- S when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

:index> Is the element index, encoded in the "size:L:H:M" field. It can have the following values:
- H:L:M when size = 01
- H:L when size = 10

The following encodings are reserved:
- size = 00.
- size = 11.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1
    element1 = Int(Elem[operand1, e, esize], unsigned);
    product = (element1*element2)<2*esize-1:0>;
    Elem[result, e, 2*esize] = product;

V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.373 UMULL, UMULL2 (vector)

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower or upper half of the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMULL instruction extracts each source vector from the lower half of each source register, while the UMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

UMULL\{2\} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
<td>Rm</td>
</tr>
</tbody>
</table>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

-absent when Q = 0
-present when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

-8H when size = 00
-4S when size = 01
-2D when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

-8B when size = 00, Q = 0
-16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<rm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.374   UQADD

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
<tr>
<td>Rd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

UQADD <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>1</td>
</tr>
<tr>
<td>Rd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

UQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<V> Is a width specifier, encoded in the "size" field. It can have the following values:

B when size = 00
H when size = 01
S when size = 10
D  when size = 11
<\text{d}> Is the number of the SIMD&FP destination register, in the "Rd" field.
<\text{n}> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<\text{m}> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<\text{Vd}> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<\text{T}> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  8B  when size = 00, Q = 0
  16B when size = 00, Q = 1
  4H  when size = 01, Q = 0
  8H  when size = 01, Q = 1
  2S  when size = 10, Q = 0
  4S  when size = 10, Q = 1
  2D  when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.
<\text{Vn}> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<\text{Vm}> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  sum = element1 + element2;
  (Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
  if sat then FPSR.QC = '1';
V[d] = result;
C7.2.375   UQRSHL

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first source SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding vector element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For truncated results, see UQSHL (immediate).

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

| 31 30 29 28|27 26 25 24|23 22 21 20 | 16|15 14 13 12|11 10 9 | 5 4 | 0 |
|----------|----------|----------|--------|--------|--------|----|----|----|
| 0 1 1 1 1 1 0 | size | 1 | Rm 0 1 0 | 1 | 1 | Rn | Rd |

Scalar variant

UQRSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28	27 26 25 24	23 22 21 20	16	15 14 13 12	11 10 9	5 4	0			
0	Q	1	0 1 1 1 0	size	1	Rm 0 1 0	1	1	Rn	Rd

Vector variant

UQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "size" field. It can have the following values:

- **B** when size = 00
- **H** when size = 01
- **S** when size = 10
- **D** when size = 11

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **8B** when size = 00, Q = 0
- **16B** when size = 00, Q = 1
- **4H** when size = 01, Q = 0
- **8H** when size = 01, Q = 1
- **2S** when size = 10, Q = 0
- **4S** when size = 10, Q = 1
- **2D** when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```c
CheckFPAdSimDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 else
 element = (Int(Elem[operand1, e, esize], unsigned) << shift);
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;
V[d] = result;
```

### C7.2.376  **UQRSHRN, UQRSHRN2**

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are rounded. For truncated results, see **UQSHRN, UQSHRN2**.

The **UQRSHRN** instruction writes the vector to the lower half of the destination register and clears the upper half, while the **UQRSHRN2** instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit **FPSR.QC** is set.

Depending on the settings in the **CPACR_EL1, CPTR_EL2, and CPTR_EL3** registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

#### Scalar

```
31 30 29 28|27 26 25 24|23 22 |19 18 |16|15|14 13 12|11 10 9 | 5 4 | 0 |
0 1 1 1 1 1 1 0 | !=0000 | immb 1 0 0 1 1 | Rd |
```

**Scalar variant**

UQRSHRN <Vb><d>, <Va><n>, #<shift>

**Decode for this encoding**

```c
integer d = Uint(Rd);
integer n = Uint(Rn);
if imm == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer elements = 1;
integer part = 0;
integer shift = (2 * esize) - Uint(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');
```

#### Vector

```
31 30 29 28|27 26 25 24|23 22 |19 18 |16|15|14 13 12|11 10 9 | 5 4 | 0 |
0 Q 1 0 1 1 1 0 | !=0000 | immb 1 0 0 1 1 | Rd |
```

**Vector variant**


**Decode for this encoding**

```c
integer d = Uint(Rd);
integer n = Uint(Rn);
if imm == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
```
integer datasize = 64;
integer part = UINT(0);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UINT(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:
[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
8B when immh = 0001, Q = 0
16B when immh = 0001, Q = 1
4H when immh = 001x, Q = 0
8H when immh = 001x, Q = 1
2S when immh = 01xx, Q = 0
4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:
8H when immh = 0001
4S when immh = 001x
2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb> Is the destination width specifier, encoded in the "immh" field. It can have the following values:
B when immh = 0001
H when immh = 001x
S when immh = 01xx

The following encodings are reserved:
• immh = 0000.
• immh = 1xxx.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in the "immh" field. It can have the following values:
H when immh = 0001
S when immh = 001x
D when immh = 01xx
The following encodings are reserved:

- \( \text{immh} = 0000. \)
- \( \text{immh} = 1xxx. \)

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<\text{shift}>\) For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:

- \( \text{immb} = 0001 \):
  - \(16-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 0001\)
- \( \text{immb} = 001x \):
  - \(32-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 001x\)
- \( \text{immb} = 01xx \):
  - \(64-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 01xx\)

The following encodings are reserved:

- \( \text{immh} = 0000. \)
- \( \text{immh} = 1xxx. \)

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:

- \( \text{immb} = 0001 \):
  - \(16-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 0001\)
- \( \text{immb} = 001x \):
  - \(32-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 001x\)
- \( \text{immb} = 01xx \):
  - \(64-\text{UInt}(\text{immh:immb}) \) when \( \text{immh} = 01xx\)

See Advanced SIMD modified immediate on page C4-351 when \( \text{immh} = 0000. \)

The encoding \( \text{immh} = 1xxx \) is reserved.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;
for e = 0 to elements-1
 element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
Vpart[d, part] = result;
```
C7.2.377  UQSHL (immediate)

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source SIMD&FP register, shifts it by an immediate value, places the results in a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1 1</td>
<td>1 0</td>
</tr>
<tr>
<td>l=0000</td>
<td>immh</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

Scalar variant

UQSHL <V><d>, <V><n>, #<shift>

Decode for this encoding

```java
integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
 when '00' UNDEFINED;
 when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
 when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
 when '11' src_unsigned = TRUE; dst_unsigned = TRUE;
```

Vector

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 1</td>
<td>0 1 1 1</td>
<td>0</td>
</tr>
<tr>
<td>!=0000</td>
<td>immh</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

Vector variant

UQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

```java
integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
```
integer elements = datasize DIV esize;
integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of
  when '00' UNDEFINED;
  when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
  when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
  when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
  B when immh = 0001
  H when immh = 001x
  S when immh = 01xx
  D when immh = 1xxx
The encoding immh = 0000 is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
  8B when immh = 0001, Q = 0
  16B when immh = 0001, Q = 1
  4H when immh = 001x, Q = 0
  8H when immh = 001x, Q = 1
  2S when immh = 01xx, Q = 0
  4S when immh = 01xx, Q = 1
  2D when immh = 1xxx, Q = 1
See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:
  (UInt(immh:immb)-8) when immh = 0001
  (UInt(immh:immb)-16) when immh = 001x
  (UInt(immh:immb)-32) when immh = 01xx
  (UInt(immh:immb)-64) when immh = 1xxx
The encoding immh = 0000 is reserved.
For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:
  (UInt(immh:immb)-8) when immh = 0001
  (UInt(immh:immb)-16) when immh = 001x
  (UInt(immh:immb)-32) when immh = 01xx
  (UInt(immh:immb)-64) when immh = 1xxx
Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], src_unsigned) << shift;
 (Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
 if sat then FPSR.QC = '1';

V[d] = result;
```

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
C7.2.378  UQSHL (register)

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts the element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 1 0</td>
<td>0 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

UQSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 1 0</td>
<td>0 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

UQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "size" field. It can have the following values:

- \(B\) when size = 00
- \(H\) when size = 01
- \(S\) when size = 10
- \(D\) when size = 11

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- \(8B\) when size = 00, Q = 0
- \(16B\) when size = 00, Q = 1
- \(4H\) when size = 01, Q = 0
- \(8H\) when size = 01, Q = 1
- \(2S\) when size = 10, Q = 0
- \(4S\) when size = 10, Q = 1
- \(2D\) when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = 0;
integer shift;
integer element;
boolean sat;
for e = 0 to elements-1
 shift = SInt(Elem[operand2, e, esize]<7:0>);
 if rounding then
 round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
 element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
 if saturating then
 (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
 else
 Elem[result, e, esize] = element<esize-1:0>;
 V[d] = result;
```

---

As a helpful assistant, I can provide you with a summary or specific information from the document. Please let me know how I can assist you further.
C7.2.379 UQSHRN, UQSHRN2
Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For rounded results, see UQRSHRN, UQRSHRN2.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th></th>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22]</th>
<th>[19 18]</th>
<th>[16 15 14 13]</th>
<th>[12]</th>
<th>[11 10 9]</th>
<th>[5 4]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>immh</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant
UQSHRN <Vb><cb>, <Va><n>, #<shift>

Decode for this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;
integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

<table>
<thead>
<tr>
<th></th>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22]</th>
<th>[19 18]</th>
<th>[16 15 14 13]</th>
<th>[12]</th>
<th>[11 10 9]</th>
<th>[5 4]</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>immh</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

Decode for this encoding
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Assembler symbols

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have
the following values:
[absent]  when Q = 0
[present]  when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
  8B  when immh = 0001, Q = 0
  16B when immh = 0001, Q = 1
  4H  when immh = 001x, Q = 0
  8H  when immh = 001x, Q = 1
  2S  when immh = 01xx, Q = 0
  4S  when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>  Is an arrangement specifier, encoded in the "immh" field. It can have the following values:
  8H  when immh = 0001
  4S  when immh = 001x
  2D  when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

<Vb>  Is the destination width specifier, encoded in the "immh" field. It can have the following values:
  B  when immh = 0001
  H  when immh = 001x
  S  when immh = 01xx

The following encodings are reserved:
  • immh = 0000.
  • immh = 1xxx.

<d>  Is the number of the SIMD&FP destination register, in the "Rd" field.

<va> Is the source width specifier, encoded in the "immh" field. It can have the following values:
  H  when immh = 0001
  S  when immh = 001x
  D  when immh = 01xx
The following encodings are reserved:
- \( \text{immh} = 0000 \).
- \( \text{immh} = 1xxx \).

\(<n>\) Is the number of the first SIMD\&FP source register, encoded in the "Rn" field.

\(<\text{shift}>\) For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in the "immh:immb" field. It can have the following values:
- \(16\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 0001\)
- \(32\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 001x\)
- \(64\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 01xx\)

The following encodings are reserved:
- \( \text{immh} = 0000 \).
- \( \text{immh} = 1xxx \).

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in the "immh:immb" field. It can have the following values:
- \(16\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 0001\)
- \(32\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 001x\)
- \(64\text{-UInt}(\text{immh}:\text{immb})\) when \(\text{immh} = 01xx\)

See Advanced SIMD modified immediate on page C4-351 when \(\text{immh} = 0000\).

The encoding \( \text{immh} = 1xxx \) is reserved.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bounds(datasize) result;
integer round_const = if round then \(1 << (\text{shift} - 1)\) else 0;
integer element;
boolean sat;
for e = 0 to elements-1
 element = \(\text{Int}([\text{operand}, e, 2\times esize], \text{unsigned}) + \text{round}_{\text{const}}\) >> \text{shift};
 ([result, e, esize], sat) = SatQ(element, esize, unsigned);
 if sat then FPSR.QC = '1';
Vpart[d, part] = result;
```
C7.2.380  UQSUB

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 0 1 0 1</td>
<td>Rn 0 1 0 1</td>
<td>Rd 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Scalar variant**

UQSUB <V><d>, <V><n>, <V><m>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- integer esize = 8 << UInt(size);
- integer datasize = esize;
- integer elements = 1;
- boolean unsigned = (U == '1');

**Vector**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0</td>
<td>size 1</td>
<td>Rm 0 0 1 0 1</td>
<td>Rn 0 1 0 1</td>
<td>Rd 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Vector variant**

UQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- integer m = UInt(Rm);
- if size:Q == '110' then UNDEFINED;
- integer esize = 8 << UInt(size);
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;
- boolean unsigned = (U == '1');

**Assembler symbols**

- <V>  Is a width specifier, encoded in the "size" field. It can have the following values:
  - B when size = 00
  - H when size = 01
  - S when size = 10
\[ D \quad \text{when size} = 11 \]

- \(<d>\) is the number of the SIMD&FP destination register, in the "Rd" field.
- \(<n>\) is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- \(<m>\) is the number of the second SIMD&FP source register, encoded in the "Rm" field.
- \(<Vd>\) is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- \(<T>\) is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 2S when size = 10, Q = 0
  - 4S when size = 10, Q = 1
  - 2D when size = 11, Q = 1
  - The encoding size = 11, Q = 0 is reserved.
- \(<Vn>\) is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- \(<Vm>\) is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation for all encodings**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 diff = element1 - element2;
 (Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSR.QC = '1';

V[d] = result;
```
C7.2.381 UQXTN, UQXTN2

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register, saturates each value to half the original width, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the UQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 0</td>
<td>size 1 0 0 0</td>
<td>1 0 1 0 0</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

UQXTN <Vb><d>, <Va><n>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 0</td>
<td>size 1 0 0 0</td>
<td>1 0 1 0 0</td>
<td>1 0</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

UQXTN(2) <Vb>.<Tb>, <Vn>.<Ta>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
Assembler symbols

2

Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when $Q = 0$
[present] when $Q = 1$

$<Vd>$

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

$<Tb>$

Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when $\text{size} = 00, Q = 0$
16B when $\text{size} = 00, Q = 1$
4H when $\text{size} = 01, Q = 0$
8H when $\text{size} = 01, Q = 1$
2S when $\text{size} = 10, Q = 0$
4S when $\text{size} = 10, Q = 1$

The encoding $\text{size} = 11, Q = x$ is reserved.

$<Vn>$

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

$<Ta>$

Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when $\text{size} = 00$
4S when $\text{size} = 01$
2D when $\text{size} = 10$

The encoding $\text{size} = 11$ is reserved.

$<Vb>$

Is the destination width specifier, encoded in the "size" field. It can have the following values:

B when $\text{size} = 00$
H when $\text{size} = 01$
S when $\text{size} = 10$

The encoding $\text{size} = 11$ is reserved.

$<d>$

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

$<Va>$

Is the source width specifier, encoded in the "size" field. It can have the following values:

H when $\text{size} = 00$
S when $\text{size} = 01$
D when $\text{size} = 10$

The encoding $\text{size} = 11$ is reserved.

$<n>$

Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
  element = Elem[operand, e, 2*esize];
  (Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;
**C7.2.382 URECPE**

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD&FP register, calculates an approximate inverse for the unsigned integer value, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rn Rd
```

**Vector variant**

URECPE <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

- integer d = UInt(Rd);
- integer n = UInt(Rn);
- if sz == '1' then UNDEFINED;
- integer esize = 32;
- integer datasize = if Q == '1' then 128 else 64;
- integer elements = datasize DIV esize;

**Assembler symbols**

- <Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- <T> Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
  - 2S when sz = 0, Q = 0
  - 4S when sz = 0, Q = 1
  - The encoding sz = 1, Q = x is reserved.
- <Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;
for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRecipEstimate(element);
V[d] = result;
```
C7.2.383  URHADD

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the two source SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see UHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers of the same type variant

URHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler symbols

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn>  Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm>  Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  Elem[result, e, esize] = (element1+element2+1)\<esize:1>;

V[d] = result;
C7.2.384 URSHL

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>size</td>
</tr>
<tr>
<td>U</td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

URSHL <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>U</td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

URSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "size" field. It can have the following values:

- \(D\) when size = 11

The following encodings are reserved:

- size = 0x.
- size = 10.

\(<d>\) Is the number of the SIMD&FP destination register, in the "Rd" field.

\(<n>\) Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

\(<m>\) Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

\(<Vd>\) Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

\(<T>\) Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- \(8B\) when size = 00, Q = 0
- \(16B\) when size = 00, Q = 1
- \(4H\) when size = 01, Q = 0
- \(8H\) when size = 01, Q = 1
- \(2S\) when size = 10, Q = 0
- \(4S\) when size = 10, Q = 1
- \(2D\) when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

\[
\begin{align*}
\text{CheckFPAdvSIMDEnabled64}(); \\
\text{bits(datasize) operand1} &= V[n]; \\
\text{bits(datasize) operand2} &= V[m]; \\
\text{bits(datasize) result}; \\
\text{integer round\_const} &= 0; \\
\text{integer shift}; \\
\text{integer element}; \\
\text{boolean sat}; \\
\text{for e = 0 to elements-1} \\
\text{shift} &= \text{SInt(Elem[operand2, e, esize]<7:0>);} \\
\text{if rounding then} \\
\text{round\_const} &= 1 \ll (-\text{shift} - 1); \quad / / 0 \text{ for left shift, } 2^{(n-1)} \text{ for right shift} \\
\text{element} &= (\text{Int(Elem[operand1, e, esize], unsigned)} + \text{round\_const}) \ll \text{shift}; \\
\text{if saturating then} \\
\text{(Elem[result, e, esize], sat)} &= \text{SatQ(element, esize, unsigned)}; \\
\text{if sat then FPSR.QC} &= '1'; \\
\text{else} \\
\text{Elem[result, e, esize]} &= \text{element<esize-1:0>}; \\
\text{V[d]} &= \text{result};
\end{align*}
\]
C7.2.385  URSHR

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are rounded. For truncated results, see USHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>!=0000</td>
<td>immh</td>
</tr>
</tbody>
</table>

Scalar variant

URSHR <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>!=0000</td>
</tr>
</tbody>
</table>

Vector variant

URSHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

<\V> Is a width specifier, encoded in the "immh" field. It can have the following values:

D when immh = 1xxx
The encoding immh = 0xxx is reserved.

<\d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<\n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>immh = 0001, Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>immh = 0001, Q = 1</td>
</tr>
<tr>
<td>4H</td>
<td>immh = 001x, Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>immh = 001x, Q = 1</td>
</tr>
<tr>
<td>2S</td>
<td>immh = 01xx, Q = 0</td>
</tr>
<tr>
<td>4S</td>
<td>immh = 01xx, Q = 1</td>
</tr>
<tr>
<td>2D</td>
<td>immh = 1xxx, Q = 1</td>
</tr>
</tbody>
</table>

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.

The encoding immh = 1xxx, Q = 0 is reserved.

<\Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:

(128-UInt(immh:immb)) when immh = 1xxx
The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:

(16-UInt(immh:immb)) when immh = 0001
(32-UInt(immh:immb)) when immh = 001x
(64-UInt(immh:immb)) when immh = 01xx
(128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
  element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
  Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;
C7.2.386 URSQRTE

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source SIMD&FP register, calculates an approximate inverse square root for each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant
URSQRTE <Vd>.<T>, <Vn>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
```

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the SIMD&FP source register, encoded in the "Rn" field.
- `<T>` Is an arrangement specifier, encoded in the "sz:Q" field. It can have the following values:
  - 25 when sz = 0, Q = 0
  - 45 when sz = 0, Q = 1
  - The encoding sz = 1, Q = x is reserved.

Operation

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;

for e = 0 to elements-1
 element = Elem[operand, e, 32];
 Elem[result, e, 32] = UnsignedRSqrtEstimate(element);
V[d] = result;
```
### C7.2.387 URSRA

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are rounded. For truncated results, see USRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

#### Scalar

![Scalar encoding](image)

**Scalar variant**

URSRA <V>d>, <V>n>, #<shift>

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;
integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
```

#### Vector

![Vector encoding](image)

**Vector variant**

URSRA <Vd>.<T>, <Vn>.<T>, #<shift>

**Decode for this encoding**

```c
integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
```
Assembler symbols

\(<V>\) Is a width specifier, encoded in the "immh" field. It can have the following values:
- D when immh = 1xxx
  The encoding immh = 0xxx is reserved.
- <d> Is the number of the SIMD&FP destination register, in the "Rd" field.
- <n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
- <Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- <T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
  - 8B when immh = 0001, Q = 0
  - 16B when immh = 0001, Q = 1
  - 4H when immh = 001x, Q = 0
  - 8H when immh = 001x, Q = 1
  - 2S when immh = 01xx, Q = 0
  - 4S when immh = 01xx, Q = 1
  - 2D when immh = 1xxx, Q = 1
  See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
  The encoding immh = 1xxx, Q = 0 is reserved.
- <Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
- <shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:
  - (128-UInt(immh:immb)) when immh = 1xxx
  The encoding immh = 0xxx is reserved.
  For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:
  - (16-UInt(immh:immb)) when immh = 0001
  - (32-UInt(immh:immb)) when immh = 001x
  - (64-UInt(immh:immb)) when immh = 01xx
  - (128-UInt(immh:immb)) when immh = 1xxx
See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
  element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
  Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
C7.2.388 USDOT (vector)

Dot Product vector form with unsigned and signed integers. This instruction performs the dot product of the four unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in the corresponding 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Vector variant
USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

Decode for this encoding
if !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
2S when Q = 0
4S when Q = 1

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
8B when Q = 0
16B when Q = 1

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
for e = 0 to elements-1
  bits(32) res = Elem[operand3, e, 32];
  for b = 0 to 3
    integer element1 = UInt(Elem[operand1, 4*e+b, 8]);
    integer element2 = SInt(Elem[operand2, 4*e+b, 8]);
    res = res + element1 * element2;
\[ \text{Elem[result, e, 32]} = \text{res}; \]

\[ V[d] = \text{result}; \]
C7.2.389 USDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

ARMv8.6

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Vector variant

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B<[index]>

Decode for this encoding

```
if !HaveInt8MatMulExt() then UNDEFINED;
boolean op1_unsigned = (US == '1');
boolean op2_unsigned = (US == '0');
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;
```

Assembler symbols

- `<Vd>`: Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
- `<Ta>`: Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 2S when Q = 0
  - 4S when Q = 1
- `<Vn>`: Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Tb>`: Is an arrangement specifier, encoded in the "Q" field. It can have the following values:
  - 8B when Q = 0
  - 16B when Q = 1
- `<Vm>`: Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
- `<index>`: Is the immediate index of a quadruplet of four 8-bit elements in the range 0 to 3, encoded in the "H:L" fields.

Operation

```
CheckFPAdvSIMDEnabled64();
b bits(datasize) operand1 = V[n];
b bits(128) operand2 = V[m];
b bits(datasize) operand3 = V[d];
b bits(datasize) result;
```
for e = 0 to elements-1
    bits(32) res = Elem[operand3, e, 32];
    for b = 0 to 3
        integer element1 = Int(Elem[operand1, 4*e+b, 8], op1_unsigned);
        integer element2 = Int(Elem[operand2, 4*e+b, 8], op2_unsigned);
        res = res + element1 * element2;
        Elem[result, e, 32] = res;
    V[d] = result;
C7.2.390  USHL

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts each element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a rounding shift, see URSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

USHL <V><d>, <V><n>, <V><m>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

USHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
instruction datasize = if Q == '1' then 128 else 64;
instruction elements = instruction datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
Assembler symbols

<v> Is a width specifier, encoded in the "size" field. It can have the following values:

- D when size = 11

The following encodings are reserved:

- size = 0x.
- size = 10.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<r> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
- 2D when size = 11, Q = 1

The encoding size = 11, Q = 0 is reserved.

<n> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation for all encodings

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
    shift = SInt(Elem[operand2, e, esize]<7:0>);
    if rounding then
        round_const = 1 << (-shift - 1);  // 0 for left shift, 2^(n-1) for right shift
        element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
    if saturating then
        (Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
        if sat then FPSR.QC = '1';
    else
        Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.391 USHLL, USHLL2

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper half of the source SIMD&FP register, shifts the unsigned integer value left by the specified number of bits, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The USHLL instruction extracts vector elements from the lower half of the source register, while the USHLL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias UXTL, UXTL2. See Alias conditions for details of when each alias is preferred.

Vector variant

USHLL[2] <Vd>.<Ta>, <Vn>.<Tb>,="#shift"

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE "Advanced SIMD modified immediate";
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>UXTL, UXTL2</td>
<td>immb == '000' &amp; BitCount(immh) == 1</td>
</tr>
</tbody>
</table>

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

8H when immh = 0001
4S when immh = 001x
2D when immh = 01xx
See Advanced SIMD modified immediate on page C4-351 when imm = 0000.
The encoding immh = 1xxx is reserved.

\(<\text{n}>\)

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

\(<\text{Tb}>\)

Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- 8B when immh = 0001, Q = 0
- 16B when immh = 0001, Q = 1
- 4H when immh = 001x, Q = 0
- 8H when immh = 001x, Q = 1
- 2S when immh = 01xx, Q = 0
- 4S when immh = 01xx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

\(<\text{shift}>\)

Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in the "immh:immb" field. It can have the following values:

- (UInt(immh:immb)-8) when immh = 0001
- (UInt(immh:immb)-16) when immh = 001x
- (UInt(immh:immb)-32) when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.
The encoding immh = 1xxx is reserved.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;

for e = 0 to elements-1
 element = Int(Elem[operand, e, esize], unsigned) << shift;
 Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.392 USHR

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For rounded results, see URSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 0 0</td>
<td>0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Scalar variant

USHR <V><d>, <V><n>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22</th>
<th>19 18</th>
<th>16 15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 0 1 1 1 0</td>
<td>!=0000</td>
<td>immh</td>
<td>0 0 0</td>
<td>0 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

Vector variant

USHR <Vd>.<T>, <Vn>.<T>, #<shift>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
if immh<3> != '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:

- D when immh = 1xxx
- The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- 8B when immh = 0001, Q = 0
- 16B when immh = 0001, Q = 1
- 4H when immh = 001x, Q = 0
- 8H when immh = 001x, Q = 1
- 2S when immh = 01xx, Q = 0
- 4S when immh = 01xx, Q = 1
- 2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
- The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:

- (128-UInt(immh:immb)) when immh = 1xxx
- The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:

- (16-UInt(immh:immb)) when immh = 0001
- (32-UInt(immh:immb)) when immh = 001x
- (64-UInt(immh:immb)) when immh = 01xx
- (128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
    Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.393   **USMMLA (vector)**

Unsigned and signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned 8-bit integer values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2 to Armv8.5, this is an optional instruction. From Armv8.6 it is mandatory for implementations that include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

**ARMv8.6**

```
[31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 13 12|11 10 9 | 5 4 | 0]
0 | 1 0 1 1 0 1 0 0 | Rm | 1 0 1 0 1 1 | Rn | Rd |
```

**Vector variant**

USMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

**Decode for this encoding**

```
if !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
```

**Assembler symbols**

- `<Vd>` Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.
- `<Vn>` Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
- `<Vm>` Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];
V[d] = MatMulAdd(addend, operand1, operand2, TRUE, FALSE);
```
C7.2.394  USQADD

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the vector elements in the source SIMD&FP register to corresponding unsigned integer values of the vector elements in the destination SIMD&FP register, and accumulates the resulting unsigned integer values with the vector elements of the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

### Scalar

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 0</td>
<td>1 0 0 0 0 0 0 1 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Scalar variant**

USQADD <V><db>, <V><n>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');

### Vector

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Q 1 0 1 1 1 0</td>
<td>1 0 0 0 0 0 0 1 1 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Vector variant**

USQADD <Vd>.<T>, <Vn>.<T>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

**Assembler symbols**

<V>  Is a width specifier, encoded in the "size" field. It can have the following values:

B  when size = 00
H  when size = 01
S  when size = 10
D  when size = 11

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
</d> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
</n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
</T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
8B  when size = 00, Q = 0
16B when size = 00, Q = 1
4H  when size = 01, Q = 0
8H  when size = 01, Q = 1
2S  when size = 10, Q = 0
4S  when size = 10, Q = 1
2D  when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.
</n> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation for all encodings

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
ingeger op1;
ingeger op2;
boolean sat;

for e = 0 to elements-1
 op1 = Int(Elem[operand, e, esize], !unsigned);
 op2 = Int(Elem[operand2, e, esize], unsigned);
 (Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
 if sat then FPSR.QC = '1';
V[d] = result;
```


C7.2.395 USRA

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For rounded results, see URSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

**Scalar**

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22]</th>
<th>[19 18]</th>
<th>[16 15 14 13 12]</th>
<th>[11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 1 1 1 0</td>
<td>!0000</td>
<td>immb 0 0 0 1 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Scalar variant**

USRA <V><d>, <V<n>, #<shift>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

**Vector**

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22]</th>
<th>[19 18]</th>
<th>[16 15 14 13 12]</th>
<th>[11 10 9]</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1 1 1 0</td>
<td>!0000</td>
<td>immb 0 0 0 1 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Vector variant**

USRA <Vd>.<T>, <V<n>.<T>, #<shift>

**Decode for this encoding**

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '0000' then SEE "Advanced SIMD modified immediate";
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');
Assembler symbols

<V> Is a width specifier, encoded in the "immh" field. It can have the following values:
   D when immh = 1xxx
   The encoding immh = 0xxx is reserved.

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:
   8B when immh = 0001, Q = 0
   16B when immh = 0001, Q = 1
   4H when immh = 001x, Q = 0
   8H when immh = 001x, Q = 1
   2S when immh = 01xx, Q = 0
   4S when immh = 01xx, Q = 1
   2D when immh = 1xxx, Q = 1

See Advanced SIMD modified immediate on page C4-351 when immh = 0000, Q = x.
   The encoding immh = 1xxx, Q = 0 is reserved.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in the "immh:immb" field. It can have the following values:
   (128-UInt(immh:immb)) when immh = 1xxx
   The encoding immh = 0xxx is reserved.

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in the "immh:immb" field. It can have the following values:
   (16-UInt(immh:immb)) when immh = 0001
   (32-UInt(immh:immb)) when immh = 001x
   (64-UInt(immh:immb)) when immh = 01xx
   (128-UInt(immh:immb)) when immh = 1xxx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

Operation for all encodings

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1
    element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
    Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;
V[d] = result;
Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.396 USUBL, USUBL2

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The destination vector elements are twice as long as the source vector elements.

The USUBL instruction extracts each source vector from the lower half of each source register, while the USUBL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Three registers, not all the same type variant

USUBL(2) <Vd>,<Ta>, <Vn>,<Tb>, <Vm>,<Tb>

Decode for this encoding

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0</td>
<td>0 0 0 0</td>
<td>Rm 0 1 0</td>
<td>Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:
- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:
- 8H when size = 00
- 4S when size = 01
- 2D when size = 10
The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
  element1 = Int(Elem[operand1, e, esize], unsigned);
  element2 = Int(Elem[operand2, e, esize], unsigned);
  if sub_op then
    sum = element1 - element2;
  else
    sum = element1 + element2;
  Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.397 USUBW, USUBW2

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD&FP register from the corresponding vector element in the lower or upper half of the first source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are signed integer values.

The vector elements of the destination register and the first source register are twice as long as the vector elements of the second source register.

The USUBW instruction extracts vector elements from the lower half of the first source register, while the USUBW2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Three registers, not all the same type variant

USUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');
```

Assembler symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in the "size" field. It can have the following values:

- 8 when size = 00
- 4 when size = 01
- 2 when size = 10

The encoding size = 11 is reserved.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Tb> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- **8B** when \(size = 00, Q = 0\)
- **16B** when \(size = 00, Q = 1\)
- **4H** when \(size = 01, Q = 0\)
- **8H** when \(size = 01, Q = 1\)
- **2S** when \(size = 10, Q = 0\)
- **4S** when \(size = 10, Q = 1\)

The encoding \(size = 11, Q = x\) is reserved.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
 element1 = Int(Elem[operand1, e, 2*esize], unsigned);
 element2 = Int(Elem[operand2, e, esize], unsigned);
 if sub_op then
 sum = element1 - element2;
 else
 sum = element1 + element2;
 Elem[result, e, 2*esize] = sum<2*esize-1:0>:

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.398 UXTL, UXTL2

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the source SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The UXTL instruction extracts vector elements from the lower half of the source register, while the UXTL2 instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

This instruction is an alias of the USHLL, USHLL2 instruction. This means that:

- The encodings in this description are named to match the encodings of USHLL, USHLL2.
- The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

Vector variant

UXTL2 {2} <Vd>.<Ta>, <Vn>.<Tb>

is equivalent to

USHLL2 {2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler symbols

2

Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

- [absent] when Q = 0
- [present] when Q = 1

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta>

Is an arrangement specifier, encoded in the "immh" field. It can have the following values:

- 8H when immh = 0001
- 4S when immh = 001x
- 2D when immh = 01xx

See Advanced SIMD modified immediate on page C4-351 when immh = 0000.

The encoding immh = 1xxx is reserved.

<Vn>

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb>

Is an arrangement specifier, encoded in the "immh:Q" field. It can have the following values:

- 8B when immh = 0001, Q = 0
- 16B when immh = 0001, Q = 1
- 4H when immh = 001x, Q = 0
- 8H when immh = 001x, Q = 1
25 when immh = 01xx, Q = 0
45 when immh = 01xx, Q = 1

See *Advanced SIMD modified immediate* on page C4-351 when immh = 0000, Q = x.
The encoding immh = 1xxx, Q = x is reserved.

**Operation**

The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.399   UZP1

Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source SIMD&FP registers, starting at zero, places the result from the first source register into consecutive elements in the lower half of a vector, and the result from the second source register into consecutive elements in the upper half of a vector, and writes the vector to the destination SIMD&FP register.

--- Note ---

This instruction can be used with UZP2 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

```
Vn
A7 A6 A5 A4 A3 A2 A1 A0
Vm
B7 B6 B5 B4 B3 B2 B1 B0

UZP1.8, doubleword

Vd B6 B4 B2 B0 A8 A6 A4 A2 A0

UZP2.8, doubleword

Vd B7 B5 B3 B1 A7 A5 A3 A1
```

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

UZP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
```

Assembler symbols

<\Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

- 8B when size = 00, Q = 0
- 16B when size = 00, Q = 1
- 4H when size = 01, Q = 0
- 8H when size = 01, Q = 1
- 2S when size = 10, Q = 0
- 4S when size = 10, Q = 1
2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

<\vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<\vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1
    Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];
V[d] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
C7.2.400 UZP2

Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source SIMD&FP registers, places the result from the first source register into consecutive elements in the lower half of a vector, and the result from the second source register into consecutive elements in the upper half of a vector, and writes the vector to the destination SIMD&FP register.

--- Note ---

This instruction can be used with UZP1 to de-interleave two vectors.

The following figure shows the operation of UZP1 and UZP2 with the arrangement specifier 8B.

```
Vn
A7 A6 A5 A4 A3 A2 A1 A0
Vm
B7 B6 B5 B4 B3 B2 B1 B0
```

```
UZP1.8, doubleword
```

```
Vd
B6 B4 B2 B0 A6 A4 A2 A0
```

```
UZP2.8, doubleword
```

```
Vd
B7 B5 B3 B1 A7 A5 A3 A1
```

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

UZP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
```

Assembler symbols

- **<Vd>** Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- **<T>** Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 2S when size = 10, Q = 0
  - 4S when size = 10, Q = 1
2D when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

<vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1
    Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

V[d] = result;

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.401   XAR

Exclusive OR and Rotate performs a bitwise exclusive OR of the 128-bit vectors in the two source SIMD&FP registers, rotates each 64-bit element of the resulting 128-bit vector right by the value specified by a 6-bit immediate value, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when FEAT_SHA3 is implemented.

ARMv8.2

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>27 26 25 24</th>
<th>[23 22 21 20]</th>
<th>16 15</th>
<th>10 9</th>
<th>5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1 1 1 0 1 0 0</td>
<td>Rm</td>
<td>imm6</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced SIMD variant

XAR <Vd>.2D, <Vn>.2D, <Vm>.2D, #<imm6>

Decode for this encoding

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<imm6> Is a rotation right, encoded in "imm6".

Operation

AArch64.CheckFPAdvSIMDEnabled();
bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) tmp;
tmp = Vn EOR Vm;
V[d] = ROR(tmp<127:64>, UInt(imm6))::ROR(tmp<63:0>, UInt(imm6));

Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.402  XTN, XTN2

Extract Narrow. This instruction reads each vector element from the source SIMD&FP register, narrows each value to half the original width, places the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.

The XTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the XTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Vector variant


Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler symbols

2  Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in the "Q" field. It can have the following values:

[absent] when Q = 0
[present] when Q = 1

<Vd>  Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb>  Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

8B when size = 00, Q = 0
16B when size = 00, Q = 1
4H when size = 01, Q = 0
8H when size = 01, Q = 1
2S when size = 10, Q = 0
4S when size = 10, Q = 1

The encoding size = 11, Q = x is reserved.

<Vn>  Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta>  Is an arrangement specifier, encoded in the "size" field. It can have the following values:

8H when size = 00
when size = 01
20 when size = 10

The encoding size = 11 is reserved.

### Operation

```plaintext
checkFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;

for e = 0 to elements-1
 element = Elem[operand, e, 2*esize];
 Elem[result, e, esize] = element<esize-1:0>;
Vpart[d, part] = result;
```

### Operational information

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.403 ZIP1

Zip vectors (primary). This instruction reads adjacent vector elements from the lower half of two source SIMD&FP registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with subsequent pairs taken alternately from each source register.

--- Note ---

This instruction can be used with ZIP2 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

![Vector Diagram]

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

ZIP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8B</td>
<td>when size = 00, Q = 0</td>
</tr>
<tr>
<td>16B</td>
<td>when size = 00, Q = 1</td>
</tr>
<tr>
<td>4H</td>
<td>when size = 01, Q = 0</td>
</tr>
<tr>
<td>8H</td>
<td>when size = 01, Q = 1</td>
</tr>
<tr>
<td>2S</td>
<td>when size = 10, Q = 0</td>
</tr>
</tbody>
</table>
45 when size = 10, Q = 1
20 when size = 11, Q = 1
The encoding size = 11, Q = 0 is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

**Operation**

```c
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part * pairs;

for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;
```

**Operational information**

If PSTATE.DIT is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
C7.2.404 ZIP2

Zip vectors (secondary). This instruction reads adjacent vector elements from the upper half of two source SIMD&FP registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with subsequent pairs taken alternately from each source register.

___ Note ___

This instruction can be used with ZIP1 to interleave two vectors.

The following figure shows the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

```
| Vn | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
| Vm | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
```

```
ZIP1.8, doubleword
```

```
ZIP2.8, doubleword
```

```
| Vd | B3 | A3 | B2 | A2 | B1 | A1 | B0 | A0 |
| Vm | B7 | A7 | B6 | A6 | B5 | A5 | B4 | A4 |
```

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

Advanced SIMD variant

ZIP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

Decode for this encoding

```plaintext
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;
```

Assembler symbols

- `<Vd>` Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
- `<T>` Is an arrangement specifier, encoded in the "size:Q" field. It can have the following values:
  - 8B when size = 00, Q = 0
  - 16B when size = 00, Q = 1
  - 4H when size = 01, Q = 0
  - 8H when size = 01, Q = 1
  - 2S when size = 10, Q = 0
The encoding \( \text{size} = 11, Q = 0 \) is reserved.

\(<Vn>\) Is the name of the first SIMD&FP source register, encoded in the \( \text{"Rn"} \) field.

\(<Vm>\) Is the name of the second SIMD&FP source register, encoded in the \( \text{"Rm"} \) field.

**Operation**

```
CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part \times pairs;

for p = 0 to pairs-1
 Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
 Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;
```

**Operational information**

If \( \text{PSTATE.DIT} \) is 1:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
Part D

The AArch64 System Level Architecture
Chapter D1
The AArch64 System Level Programmers’ Model

This chapter describes the AArch64 system level programmers’ model. It contains the following sections:

• Exception levels on page D1-2312.
• Exception terminology on page D1-2313.
• Execution state on page D1-2315.
• Security state on page D1-2316.
• Virtualization on page D1-2318.
• Registers for instruction processing and exception handling on page D1-2321.
• Process state, PSTATE on page D1-2324.
• Program counter and stack pointer alignment on page D1-2327.
• Reset on page D1-2329.
• Exception entry on page D1-2333.
• Exception return on page D1-2344.
• Synchronous exception types, routing and priorities on page D1-2348.
• Asynchronous exception types, routing, masking and priorities on page D1-2357.
• Configurable instruction enables and disables, and trap controls on page D1-2367.
• System calls on page D1-2390.
• Mechanisms for entering a low-power state on page D1-2391.
• Self-hosted debug on page D1-2397.
• Event monitors on page D1-2399.
• Interprocessing on page D1-2400.
• The effect of implementation choices on the programmers’ model on page D1-2413.
D1.1 Exception levels

The Armv8-A architecture defines a set of Exception levels, EL0 to EL3, where:

- If ELn is the Exception level, increased values of n indicate increased software execution privilege.
- Execution at EL0 is called unprivileged execution.
- EL2 provides support for virtualization.
- EL3 provides support for switching between two Security states, Secure state and Non-secure state.

An implementation might not include all of the Exception levels. All implementations must include EL0 and EL1. EL2 and EL3 are optional.

--- Note ---
A PE is not required to implement a contiguous set of Exception levels. For example, it is permissible for an implementation to include only EL0, EL1, and EL3.

The effect of implementation choices on the programmers’ model on page D1-2413 shows some example implementations.

When executing in AArch64 state, execution can move between Exception levels only on taking an exception or on returning from an exception:

- On taking an exception, the Exception level can only increase or remain the same.
- On returning from an exception, the Exception level can only decrease or remain the same.

The Exception level that execution changes to or remains in on taking an exception is called the target Exception level of the exception.

Each exception type has a target Exception level that is either:

- Implicit in the nature of the exception.
- Defined by configuration bits in the System registers.

An exception cannot target EL0.

Exception levels exist within a particular Security state. The Armv8-A security model on page D1-2316 describes this. When executing at an Exception level, the PE can access both of the following:

- The resources that are available for the combination of the current Exception level and the current Security state.

- The resources that are available at all lower Exception levels, provided that those resources are available to the current Security state.

This means that if the implementation includes EL3, then when execution is at EL3, the PE can access all resources available at all Exception levels, for both Security states.

Each Exception level other than EL0 has its own translation regime and associated control registers. For information on the translation regimes, see Chapter D5 The AArch64 Virtual Memory System Architecture.

D1.1.1 Typical Exception level usage model

The architecture does not specify what software uses which Exception level. Such choices are outside the scope of the architecture. However, the following is a common usage model for the Exception levels:

<table>
<thead>
<tr>
<th>Exception Level</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>Applications</td>
</tr>
<tr>
<td>EL1</td>
<td>OS kernel and associated functions that are typically described as privileged.</td>
</tr>
<tr>
<td>EL2</td>
<td>Hypervisor</td>
</tr>
<tr>
<td>EL3</td>
<td>Secure monitor</td>
</tr>
</tbody>
</table>
D1.2 Exception terminology

The following subsections define the terms used when describing exceptions:

- Terminology for taking an exception.
- Terminology for returning from an exception.
- Exception levels.
- Definition of a precise exception.
- Definitions of synchronous and asynchronous exceptions on page D1-2314.

D1.2.1 Terminology for taking an exception

An exception is generated when the PE first responds to an exceptional condition. The PE state at this time is the state the exception is taken from. The PE state immediately after taking the exception is the state the exception is taken to.

D1.2.2 Terminology for returning from an exception

To return from an exception, the PE must execute an exception return instruction. The PE state when an exception return instruction is committed for execution is the state the exception returns from. The PE state immediately after the execution of that instruction is the state the exception returns to.

D1.2.3 Exception levels

An Exception level, EL\(_n\), with a larger value of \(n\) than another Exception level, is described as being a higher Exception level than the other Exception level. For example, EL3 is a higher Exception level than EL1.

An Exception level with a smaller value of \(n\) than another Exception level is described as being a lower Exception level than the other Exception level. For example, EL0 is a lower Exception level than EL1.

An Exception level is described as:

- Using AArch64 when execution in that Exception level is in the AArch64 Execution state.
- Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

D1.2.4 Definition of a precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state that is consistent with the PE having executed all of the instructions up to but not including the point in the instruction stream where the exception was taken, and none afterwards.

Other than the SError interrupt, all exceptions taken to AArch64 state are required to be precise. For each occurrence of an SError interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

Where a synchronous exception that is taken to AArch64 state is generated as part of an instruction that performs more than one single-copy atomic memory access, the definition of precise permits that the values in registers or memory affected by the instructions can be UNKNOWN, provided that:

- The accesses affecting those registers or memory locations do not, themselves, generate exceptions.
- The registers are not involved in the calculation of the memory address used by the instruction.

Also, for synchronous Data Aborts and Watchpoints from load or store instructions executed in AArch64 state:

- If the load or store instruction specifies writeback of a new base address, the base address is restored to the original value on taking the exception.
- If the instruction was a load to either the base address register or the offset register, that register is restored to the original value. Any other destination registers become UNKNOWN.
- If the instruction was a load that does not load the base address register or the offset register, then the destination registers become UNKNOWN.
Examples of instructions that perform more than one single-copy atomic memory access are the AArch32 LDM and STM instructions and the AArch64 LDP and STP instructions.

--- Note ---
For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on page B2-120.

**D1.2.5 Definitions of synchronous and asynchronous exceptions**

An exception is described as *synchronous* if all of the following apply:

- The exception is generated as a result of direct execution or attempted execution of an instruction.
- The return address presented to the exception handler is guaranteed to indicate the instruction that caused the exception.
- The exception is precise.

For more information about synchronous exceptions, see Synchronous exception types, routing and priorities on page D1-2348.

An exception is described as *asynchronous* if any of the following apply:

- The exception is not generated as a result of direct execution or attempted execution of the instruction stream.
- The return address presented to the exception handler is not guaranteed to indicate the instruction that caused the exception.
- The exception is imprecise.

For more information about asynchronous exceptions, see Asynchronous exception types, routing, masking and priorities on page D1-2357.
D1.3 Execution state

The Execution states are:

- **AArch64** The 64-bit Execution state.
- **AArch32** The 32-bit Execution state. Operation in this state is compatible with Armv7-A operation.

*Execution state on page A1-37* gives more information about them.

Exception levels use Execution states. For example, EL0, EL1 and EL2 might all be using AArch32, under EL3 using AArch64.

This means that:

- Different software layers, such as an application, an operating system kernel, and a hypervisor, executing at different Exception levels, can execute in different Execution states.
- The PE can change Execution states only either:
  - At reset.
  - On a change of Exception level.

--- Note ---

- *Typical Exception level usage model on page D1-2312* shows which Exception levels different software layers might typically use.
- *The effect of implementation choices on the programmers’ model on page D1-2413* gives information on supported configurations of Exception levels and Execution states.

The interaction between the AArch64 and AArch32 Execution states is called *interprocessing*. For more information on *interprocessing*, see *Interprocessing on page D1-2400*. 
D1.4 Security state

The Armv8-A architecture provides two Security states, each with an associated physical memory address space, as follows:

**Secure state**
When in this state, the PE can access both the Secure physical address space and the Non-secure physical address space.

**Non-secure state**
When in this state, the PE:
- Can access only the Non-secure physical address space.
- Cannot access the Secure system control resources.

For information on how virtual addresses translate onto Secure physical and Non-secure addresses, see *About the Virtual Memory System Architecture (VMSA)* on page D5-2526.

D1.4.1 The Armv8-A security model

The principles of the Armv8-A security model are:

- If the implementation includes EL3, then it has two Security states, Secure and Non-secure, and:
  - EL3 exists only in Secure state.
  - A change from Non-secure state to Secure state can only occur on taking an exception to EL3.
  - A change from Secure state to Non-secure state can only occur on an exception return from EL3.
  - If FEAT_SEL2 is not implemented, EL2 exists only in Non-secure state.
  - If FEAT_SEL2 is implemented, EL2 can exist in Secure state. It is enabled when the value of SCR_EL3.EEL2 is 1.

- If the implementation does not include EL3, it has one Security state, that is:
  - IMPLEMENTATION DEFINED, if the implementation does not include EL2 or if FEAT_SEL2 is implemented.
  - Non-secure state, if the implementation includes EL2 and FEAT_SEL2 is not implemented.

**Security model when EL3 is using AArch64 state**

Figure D1-1 on page D1-2317 shows the security model when EL3 is using AArch64 state. The figure shows how instances of EL0 and EL1 are present in both Security states. It also shows the expected software usage of the different Exception levels.
For an overview of the Security model when EL3 is using AArch32, see Figure G1-1 on page G1-5720.
D1.5 Virtualization

The support for virtualization described in this section applies only to an implementation that includes EL2.

When enabled in the current Security state, EL2 provides a set of features that support virtualizing an Armv8-A implementation. The basic model of a virtualized system involves:

- A hypervisor, running in EL2, that is responsible for switching between virtual machines. A virtual machine comprises EL1 and EL0.
- A number of Guest operating systems. A Guest OS runs on a virtual machine in EL1.
- For each Guest operating system, applications, that run on the virtual machine of that Guest OS, usually in EL0.

Note

In some systems, a Guest OS is unaware that it is running on a virtual machine, and is unaware of any other Guest OS. In other systems, a hypervisor makes the Guest OS aware of these facts. The Armv8-A architecture supports both of these models.

The hypervisor assigns a VMID to each virtual machine.

EL2 supports Guest OS management and provides controls to:

- Provide virtual values for the contents of a small number of identification registers. A read of one of these registers by a Guest OS or the applications for a Guest OS returns the virtual value.

- Trap various operations, including memory management operations and accesses to many other registers. A trapped operation generates an exception that is taken to EL2. See Configurable instruction enables and disables, and trap controls on page D1-2367.

- Route interrupts to the appropriate one of:
  - The current Guest OS.
  - A Guest OS that is not currently running.
  - The hypervisor.

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for Type 2 hypervisors. For more information, see Virtualization Host Extensions on page D5-2632.

In an implementation that includes EL2:

- The implementation provides an independent translation regime for memory accesses from EL2, the EL2 translation regime. An implementation that includes FEAT_VHE also supports an alternative EL2&0 translation regime.

Note

An implementation that includes FEAT_VHE can be configured so that the EL2&0 translation regime is used both for accesses from EL2 and for accesses from EL0.

- For the EL1&0 translation regime, address translation occurs in two stages:
  - Stage 1 maps the virtual address (VA) to an intermediate physical address (IPA). This is managed at EL1, usually by a Guest OS. The Guest OS believes that the IPA is the physical address (PA).
  - Stage 2 maps the IPA to the PA. This is managed at EL2. The Guest OS might be completely unaware of this stage.

- When FEAT_NV is implemented, a Guest Hypervisor can be run at EL1. For more information on how this affects address translation, see Nested virtualization on page D5-2638.
When FEAT_NV2 is implemented, then accesses of EL1 and EL2 registers that would be trapped are instead transformed into memory accesses. For more information, see Enhanced support for nested virtualization on page D5-2640.

For more information on the translation regimes, see Chapter D5 The AArch64 Virtual Memory System Architecture.

D1.5.1 The effect of implementing EL2 on the Exception model

An implementation that includes EL2 implements the following exceptions:

• *HVC* on page C6-930.
• Traps to EL2. *EL2 configurable controls* on page D1-2372, describes these.
• All of the virtual interrupts:
  — Virtual SError.
  — Virtual IRQ.
  — Virtual FIQ.

All virtual interrupts are always taken to EL1, and can only be taken from EL1 or EL0.

Each of the virtual interrupts can be independently enabled using controls at EL2.

Each of the virtual interrupts has a corresponding physical interrupt. See *Virtual interrupts*.

When a virtual interrupt is enabled, its corresponding physical exception is taken to EL2, unless EL3 has configured that physical exception to be taken to EL3.

For more information, see *Asynchronous exception types, routing, masking and priorities* on page D1-2357.

An implementation that includes EL2 also:

• Provides controls that can be used to route some synchronous exceptions. For more information, see:
  — *Routing exceptions from EL0 to EL2* on page D1-2348.
  — *Routing debug exceptions* on page D2-2423.

• Provides mechanisms to trap PE operations to EL2. For more information, see *EL2 configurable controls* on page D1-2372.

When an operation is trapped to EL2, the hypervisor typically either:

— Emulates the required operation. The application running in the Guest OS is unaware of the trap.
— Returns an error to the Guest OS.

### Virtual interrupts

The virtual interrupts have names that correspond to the physical interrupts, as shown in Table D1-1.

<table>
<thead>
<tr>
<th>Physical interrupt</th>
<th>Corresponding virtual interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SError</td>
<td>Virtual SError</td>
</tr>
<tr>
<td>IRQ</td>
<td>Virtual IRQ</td>
</tr>
<tr>
<td>FIQ</td>
<td>Virtual FIQ</td>
</tr>
</tbody>
</table>

Software executing in EL2 can use virtual interrupts to signal physical interrupts to EL1 and EL0. Example D1-1 on page D1-2320 shows a usage model for virtual interrupts.
Example D1-1 Virtual interrupt usage model

A virtual interrupt usage model is as follows:

1. Software executing at EL2 routes a physical interrupt to EL2.

2. When a physical interrupt of that type occurs, the exception handler executing in EL2 determines whether the interrupt can be handled in EL2 or requires routing to a Guest OS in EL1. If the interrupt requires routing to a Guest OS:
   • If the Guest OS is currently running, the hypervisor uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.
   • If the Guest OS is not currently running, the physical interrupt is marked as pending for the guest OS. When the hypervisor next switches to the virtual machine that is running that Guest OS, the hypervisor uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.

A hypervisor can prevent EL1 and EL0 from distinguishing a virtual interrupt from a physical interrupt.
D1.6 Registers for instruction processing and exception handling

In the Arm architecture, registers fall into two main categories:

- Registers that provide system control or status reporting. These are described in Chapter D13 AArch64 System Register Descriptions.
- Registers that are used in instruction processing, for example to accumulate a result, and in handling exceptions. This section introduces these registers, for execution in AArch64 state.

This section contains the following subsections:

- The general-purpose registers, R0-R30.
- The stack pointer registers.
- The SIMD and floating-point registers, V0-V31 on page D1-2322.
- Saved Program Status Registers (SPSRs) on page D1-2322.
- Exception Link Registers (ELRs) on page D1-2323.

D1.6.1 The general-purpose registers, R0-R30

The general-purpose register bank is used when processing instructions in the base instruction set. It comprises 31 general-purpose registers, R0-R30.

These registers can be accessed as 31 64-bit registers, X0-X30, or 31 32-bit registers, W0-W30. See Register size on page C6-768.

For information on the format of these registers, see Registers in AArch64 state on page B1-107.

D1.6.2 The stack pointer registers

In AArch64 state, in addition to the general-purpose registers, a dedicated stack pointer register is implemented for each implemented Exception level. The stack pointer registers are:

- SP_EL0 and SP_EL1.
- If the implementation includes EL2, SP_EL2.
- If the implementation includes EL3, SP_EL3.

Note

The four stack pointer register names define an architecture state requirement for four registers. For information on how to access these registers, and access restrictions, see Special-purpose registers on page C5-385.

For information on stack pointer alignment restrictions, see SP alignment checking on page D1-2327.

Stack pointer register selection

When executing at EL0, the PE uses the EL0 stack pointer, SP_EL0.

When executing at any other Exception level, the PE can be configured to use either SP_EL0 or the stack pointer for that Exception level, SP_ELx.

By default, taking an exception selects the stack pointer for the target Exception level, SP_ELx. For example, taking an exception to EL1 selects SP_EL1. Software executing at the target Exception level can then choose to change the stack pointer to SP_EL0 by updating PSTATE.SP.

This applies even if taking the exception does not change the Exception level. For example, if the PE is executing at EL1 and the PE is using the SP_EL0 stack pointer, then on taking an exception that targets EL1, the stack pointer changes to SP_EL1.

The selected stack pointer can be indicated by a suffix to the Exception level:

- t Indicates use of the SP_EL0 stack pointer.
- h Indicates use of the SP_ELx stack pointer.
D1.6 Registers for instruction processing and exception handling

D1.6.3 The SIMD and floating-point registers, V0-V31

The SIMD and floating-point instructions share a common bank of registers for floating-point, vector, and other SIMD-related scalar operations.

The SIMD and floating-point register bank comprises 32 quadword (128-bit) registers, V0-V31.

These registers can be accessed as:
- 32 doubleword (64-bit) registers, D0-D31.
- 32 word (32-bit) registers, S0-S31.
- 32 halfword (16-bit) registers, H0-H31.
- 32 byte (8-bit) registers, B0-B31.

For information on the format of these registers, see Registers in AArch64 state on page B1-107.

D1.6.4 Saved Program Status Registers (SPSRs)

The Saved Program Status Registers (SPSRs) are used to save PE state on taking exceptions.

In AArch64 state, there is an SPSR at each Exception level exceptions can be taken to, as follows:
- SPSR_EL1, for exceptions taken to EL1 using AArch64.
- If EL2 is implemented, SPSR_EL2, for exceptions taken to EL2 using AArch64.
- If EL3 is implemented, SPSR_EL3, for exceptions taken to EL3 using AArch64.

Exceptions cannot be taken to EL0.

When the PE takes an exception, the PE state is saved from PSTATE in the SPSR at the Exception level the exception is taken to. For example, if the PE takes an exception to EL1, the PE state is saved in SPSR_EL1. For more information on PSTATE, see Process state, PSTATE on page D1-2324.

Saving the PE state means the exception handler can:
- On return from the exception, restore the PE state to the state stored in the SPSR at the Exception level the exception is returning from. For example, on returning from EL1, the PE state is restored to the state stored in SPSR_EL1.
- Examine the value that PSTATE had when the exception was taken, for example to determine the Execution state and Exception level in which the instruction that caused an exception was executed.
NOTE

- All PSTATE fields are saved, including those which have no direct read and write access, and those that are meaningful only in AArch32 state.
- Those PSTATE fields that are meaningful only in AArch32 state are saved when an exception is taken from AArch32 state to AArch64 state.

The SPSRs are UNKNOWN on reset.

SPSR bits that are defined as RES0 on an exception are ignored:
- If taken from AArch32 state, on any exception return to AArch32 state.
- If taken from AArch64 state, on any exception return to AArch64 state.

Pseudocode description of SPSR operations

The SPSR[] pseudocode function accesses the current SPSR, and is common to AArch32 and AArch64 operations. The SetPSTATEFromPSR() pseudocode function updates PSTATE from an SPSR.

D1.6.5 Exception Link Registers (ELRs)

Exception Link Registers hold preferred exception return addresses.

Whenever the PE takes an exception, the preferred return address is saved in the ELR at the Exception level the exception is taken to. For example, whenever the PE takes an exception to EL1, the preferred return address is saved in ELR_EL1.

On an exception return, the PC is restored to the address stored in the ELR. For example, on returning from EL1, the PC is restored to the address stored in ELR_EL1.

AArch64 state provides an ELR for each Exception level exceptions can be taken to. The ELRs that AArch64 state provides are:
- ELR_EL1, for exceptions taken to EL1.
- If EL2 is implemented, ELR_EL2, for exceptions taken to EL2.
- If EL3 is implemented, ELR_EL3, for exceptions taken to EL3.

On taking an exception from AArch32 state to AArch64 state, bits[63:32] of the ELR are set to zero.

The preferred return address depends on the nature of the exception. For more information, see Preferred exception return address on page D1-2335.
D1.7 Process state, PSTATE

In the Armv8-A architecture, Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide instructions that operate on elements of PSTATE.

PSTATE includes all of the following:
- Fields that are meaningful only in AArch32 state.
- Fields that are meaningful only in AArch64 state.
- Fields that are meaningful in both Execution states.

PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState. ProcState is defined in Chapter J1 Armv8 Pseudocode.

The PSTATE fields that are meaningful in AArch64 state are:

The Condition flags
- N Negative Condition flag.
- Z Zero Condition flag.
- C Carry Condition flag.
- V Overflow Condition flag.

Process state, PSTATE on page B1-108 gives more information about these flags.

The Execution state controls
- SS Software Step bit, see Software Step exceptions on page D2-2466. On a reset or taking an exception to AArch64 state, this bit is set to 0.
- IL Illegal Execution state bit, see The Illegal Execution state exception on page D1-2347. On a reset or taking an exception to AArch64 state, this bit is set to 0.
- nRW Current Execution state, see Execution state on page D1-2315. This bit is 0 when the current Execution state is AArch64. This bit is set to 0:
  - On reset into an Exception level that is using AArch64.
  - On taking an exception to an Exception level that is using AArch64.
- EL Current Exception level, see Exception levels on page D1-2312. On a reset to AArch64 state, this field holds the encoding for the highest implemented Exception level.

  Note
  The Arm architecture requires that a PE resets into the highest implemented Exception level.

- SP Stack pointer register selection bit, see Stack pointer register selection on page D1-2321. On a reset or taking an exception to AArch64 state, this bit is set to 1, meaning that SP_ELx is selected.

The exception mask bits
- D Debug exception mask bit, see The PSTATE debug mask bit, D on page D1-2397. On a reset or taking an exception to AArch64 state, this bit is set to 1.
- A, I, F Asynchronous exception mask bits:
  - A SError interrupt mask bit.
  - I IRQ interrupt mask bit.
  - F FIQ interrupt mask bit.

See Asynchronous exception types, routing, masking and priorities on page D1-2357.

On a reset or taking an exception to AArch64 state, each of these bits is set to 1.

Access control bits
- PAN Privileged Access Never (PAN) state bit. For more information, see About PSTATE.PAN on page D5-2601.

This bit is implemented only when FEAT_PAN is implemented.
The AArch64 System Level Programmers' Model

D1.7 Process state, PSTATE

UAO  User Access Override (UAO) bit. For more information, see About PSTATE.UAO on page D5-2602.
This bit is implemented only when FEAT_UAO is implemented.

TCO  Tag Check Override (TCO) bit. For more information, see Chapter D6 Memory Tagging Extension.
This bit is implemented only when FEAT_MTE is implemented.

BTYPE Branch target identification bit. For more information, see About PSTATE.BTYPE on page D5-2602.
This bit is implemented only when FEAT_BTI is implemented.

Timing control bits

DIT  Data Independent Timing (DIT) bit. For more information, see About PSTATE.DIT on page B1-113.
This bit is implemented only when FEAT_DIT is implemented.
On a reset to AArch64 state, this bit is set to 0.

Speculation control bits

SSBS Speculative Store Bypass Safe (SSBS) bit. For more information, see Speculative Store Bypass Safe (SSBS) on page B2-133.
This bit is implemented only when FEAT_SSBS is implemented.
On reset, this bit is set to an IMPLEMENTATION DEFINED value.

D1.7.1 Accessing PSTATE fields

In AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly read using the MRS instruction, and directly written using the MSR (register) instructions. Table D1-3 shows the Special-purpose registers that access the PSTATE fields that hold AArch64 state, when the PE is in AArch64 state. All other PSTATE fields do not have direct read and write access.

Table D1-3 Accessing PSTATE fields using MRS and MSR (register)

<table>
<thead>
<tr>
<th>Special-purpose register</th>
<th>PSTATE fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZCV</td>
<td>N, Z, C, V</td>
</tr>
<tr>
<td>DAIF</td>
<td>D, A, I, F</td>
</tr>
<tr>
<td>CurrentEL</td>
<td>EL</td>
</tr>
<tr>
<td>SPSel</td>
<td>SP</td>
</tr>
<tr>
<td>PAN</td>
<td>PAN</td>
</tr>
<tr>
<td>UAO</td>
<td>UAO</td>
</tr>
<tr>
<td>DIT</td>
<td>DIT</td>
</tr>
<tr>
<td>SSBS</td>
<td>SSBS</td>
</tr>
<tr>
<td>TCO</td>
<td>TCO</td>
</tr>
</tbody>
</table>
Software can also use the **MSR (immediate)** instruction to directly write to PSTATE.\{D, A, I, F, SP, PAN, UAO, SSBS, TCO\}. Table D1-4 shows the **MSR (immediate)** operands that can directly write to these PSTATE fields when the PE is in AArch64 state.

<table>
<thead>
<tr>
<th>Operand</th>
<th>PSTATE fields</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAIFSet</td>
<td>D, A, I, F</td>
<td>Directly sets any of the PSTATE.{D,A,I,F} bits to 1</td>
</tr>
<tr>
<td>DAIFClr</td>
<td>D, A, I, F</td>
<td>Directly clears any of the PSTATE.{D,A,I,F} bits to 0</td>
</tr>
<tr>
<td>SPSel</td>
<td>SP</td>
<td>Directly sets PSTATE.SP to either 1 or 0</td>
</tr>
<tr>
<td>PAN</td>
<td>PAN</td>
<td>Directly sets PSTATE.PAN to either 1 or 0</td>
</tr>
<tr>
<td>UAO</td>
<td>UAO</td>
<td>Directly sets PSTATE.UAO to either 1 or 0</td>
</tr>
<tr>
<td>DIT</td>
<td>DIT</td>
<td>Directly sets PSTATE.DIT to either 1 or 0</td>
</tr>
<tr>
<td>SSBS</td>
<td>SSBS</td>
<td>Directly sets PSTATE.SSBS to either 1 or 0</td>
</tr>
<tr>
<td>TCO</td>
<td>TCO(^a)</td>
<td>Directly sets PSTATE.TCO to either 1 or 0</td>
</tr>
</tbody>
</table>

\(^a\) PSTATE.TCO can also be accessed by an **MSR Xt** instruction.

PSTATE.\{N, Z, C, V, TCO\} can be accessed at EL0. Access to PSTATE.\{D, A, I, F\} at EL0 using AArch64 depends on `SCTLR_EL1.UMA`, see [Traps to EL1 of EL0 accesses to the PSTATE.\{D, A, I, F\} interrupt masks on page D1-2371](#). All other PSTATE access instructions can be executed at EL1 or higher and are UNDEFINED at EL0.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects are guaranteed:
- Not to be visible to earlier instructions in the execution stream.
- To be visible to later instructions in the execution stream.

### D1.7.2 The Saved Program Status Registers (SPSRs)

On taking an exception, PSTATE is preserved in the SPSR of the Exception level the exception is taken to. The SPSRs are described in [Saved Program Status Registers (SPSRs) on page D1-2322](#).
D1.8 Program counter and stack pointer alignment

This section contains the following:

- **PC alignment checking.**
- **SP alignment checking.**

D1.8.1 PC alignment checking

PC alignment checking generates a PC alignment fault exception associated with the instruction fetch if, in AArch64 state, there is an attempt to architecturally execute an instruction that was fetched with a misaligned PC. A misaligned PC is when bits[1:0] of the PC are not 0b00.

---

**Note**

As with Instruction Aborts, speculative fetching of an instruction does not generate an exception. An exception occurs only on an attempt to architecturally execute the instruction.

---

If an exception is generated as a result of an instruction fetch at EL0, it is taken to EL1. If an exception occurs when HCR_EL2.TGE bit is 1 and EL2 is enabled in the current Security state, it is taken to EL2. If an exception is generated as a result of an instruction fetch at any other Exception level, the Exception level is unchanged.

A PC misalignment sets the EC field in the *Exception Syndrome Register* (ESR) to 0x22, for the ESR associated with the target Exception level.

When the exception is taken to an Exception level using AArch64, the associated Exception Link Register holds the entire PC in its misaligned form, as does the FAR_ELx for the Exception level that the exception is taken to.

*Exception return and PC alignment on page D1-2345* gives more information on PC alignment checking associated with exception returns.

---

**Note**

A misalignment of the PC is a common indication of a serious error, for example software corruption of an address.

---

The pseudocode function `AArch64.CheckPCAlignment()` performs PC alignment checking in AArch64 state. When necessary it calls `AArch64.PCAlignmentFault()` to generate an exception.

D1.8.2 SP alignment checking

A *misaligned stack pointer* is where bits[3:0] of the stack pointer are not 0b0000, when the stack pointer is used as the base address of the calculation, regardless of any offset applied by the instruction.

The PE can be configured so that if a load or store instruction uses a misaligned stack pointer, the PE generates an SP alignment fault exception on the attempt to execute the instruction. In this configuration, `CheckSPAlignment()` performs the stack pointer check, and calls `AArch64.SPAlignmentFault()` if a misaligned stack pointer is found.

---

**Note**

- As with Data Aborts, a speculative data access to memory using the stack pointer does not generate the exception. The exception occurs only on an attempt to architecturally execute the instruction.

- Prefetch memory abort instructions do not cause synchronous exceptions. See *Prefetch memory on page C3-218.*

---

Stack pointer alignment checking is only performed in AArch64 state, and can be enabled for each Exception level as follows:

- `SCTLR_EL1.{SA0, SA}` controls EL0 and EL1, respectively.
- `SCTLR_EL2.SA` controls EL2.
- `SCTLR_EL3.SA` controls EL3.
If an exception is generated as a result of a load or store at EL0, it is taken as an exception to EL1. If an exception occurs when the HCR_EL2.TGE bit is set and EL2 is enabled in the current Security state, it is taken to EL2. If an exception is generated as a result of a load or store at any other Exception level, the Exception level is unchanged.

A stack pointer misalignment sets the EC field to 0x26, in the ESR associated with the target Exception level. If memory alignment checking and stack pointer alignment checking are enabled, then an SP alignment fault has priority in setting the value of the EC field, in the ESR associated with the target Exception level.

The pseudocode function CheckSPAlignment() performs the stack pointer alignment check. When necessary it calls AArch64.SPAlignmentFault() to generate an exception.
D1.9 Reset

The Armv8-A architecture supports the following resets:

**Cold reset**
Reset all of the logic on which the PE executes, including the integrated debug functionality.
In some contexts, this logic is described as belonging to the *Cold reset domain*.

**Warm reset**
Reset some of the logic on which the PE executes. However, some state is purposefully unchanged by a Warm reset.
In some contexts, this logic is described as belonging to the *Warm reset domain*.

All logic on the which the PE executes that is reset by a Warm reset is also reset by a Cold reset.

--- Note ---
The Armv8-A architecture also supports an external debug reset. See *External debug register resets on page H8-7158*.

---

If an RMR_ELx register is implemented:
- A Warm reset permits debugging across a reset of the PE logic.
- Writing 1 to RMR_ELx.RR requests a Warm reset.

The mechanisms, other than RMR_ELx.RR, to assert these resets are IMPLEMENTATION DEFINED. It is IMPLEMENTATION DEFINED whether:
- It is possible to independently assert an External Debug reset and a Cold reset.
- It is possible to assert a Warm reset, as opposed to asserting a Cold reset, other than by the use of RMR_ELx.RR.

--- Note ---
Arm recommends that:
- If separate Core and Debug power domains are implemented, as described in *Reset and debug on page H6-7129*, then a Cold reset can be asserted independently of External Debug reset.
- A Warm reset can be asserted to permit debugging across a reset of the PE logic.

This means that an implementation can define other resets according to the requirements the implementation or system must fulfil. These other resets are outside the scope of the Armv8-A architecture. However, they can be mapped onto the resets described here.

In the description that follows, the term *reset* is used in contexts where there is no difference between the effect of a Cold reset and the effect of a Warm reset.

On a reset, the PE enters the highest implemented Exception level.

If the highest implemented Exception level can use either Execution state, then:
- The implementation must include a *Reset Management Register* (RMR). Only one RMR is implemented. The RMR implemented is the RMR is associated with the highest Exception level.
- On a Cold reset, the Execution state entered is determined by a configuration input signal.
- On a Warm reset, the Execution state entered is determined by RMR_ELx.AA64.

If the highest implemented Exception level is configured to use AArch64 state, then on reset:
- The stack pointer for the highest implemented Exception level, SP_ELx, is selected.
- Execution starts at an IMPLEMENTATION DEFINED address, anywhere in the physical address range. The RVBAR associated with the highest implemented Exception level, RVBAR_EL1, RVBAR_EL2, or RVBAR_EL3, holds this address.
The remainder of this section contains the following:

- **PE state on reset to AArch64 state.**
- **Code sequence to use RMR_ELx.RR to request a Warm reset on page D1-2332.**

For more information about reset, see:

- **Behavior of caches at reset on page D4-2499.**
- **TLB behavior at reset on page D5-2659.**
- **Reset and debug on page H6-7129.**

### D1.9.1 PE state on reset to AArch64 state

**Note**

See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 for the reset requirements for GIC System registers.

Immediately after a reset, much of the PE state is **UNKNOWN**. However, some of the PE state is defined. If the PE resets to AArch64 state using either a Cold or a Warm reset, the PE state that is defined is as follows:

- Each of the `PSTATE.{D, A, I, F}` interrupt masks is set to 1.
- The Software step control bit, `PSTATE.SS`, is set to 0.
- The IL process state bit, `PSTATE.IL`, is set to 0.
- All general-purpose, and SIMD and floating-point registers are **UNKNOWN**.
- The ELR and SPSR for each Exception level are **UNKNOWN**.
- The stack pointer register for each Exception level is **UNKNOWN**.
- The global exclusive monitor and local exclusive monitor for the PE are **UNKNOWN**.
- Unless explicitly defined in this subsection, each System register at each Exception level is in an architecturally **UNKNOWN** state.
- The TLBs and caches are in an **IMPLEMENTATION DEFINED** state. This means that the TLBs, the caches, or both, might require invalidation using **IMPLEMENTATION DEFINED** invalidation sequences before the memory management system is enabled or Normal memory accesses are permitted to be Cacheable.

**Note**

- On reset, System register Cacheability control fields force all Normal memory accesses to be treated as Non-cacheable. This applies only for the translation regime used by the Exception level and Security state entered on reset. For information about these controls see *Enabling and disabling the caching of memory accesses on page D4-2497.*
- The implementation might include **IMPLEMENTATION DEFINED** resets. If it does, each of these resets might treat the cache and TLB state differently. The Armv8-A architecture permits this.
- Different **IMPLEMENTATION DEFINED** invalidation sequences might be required for different **IMPLEMENTATION DEFINED** resets.
- In some implementations, the **IMPLEMENTATION DEFINED** invalidation sequence might be a NOP.

- In the `SCTLR_ELx` for the highest implemented Exception level:
  - Each of the `{M, C, I}` bits is set to 0
  - The EE bit is set to an **IMPLEMENTATION DEFINED** value, typically defined by a configuration input.
- If an RMR is implemented, `RMR_ELx.RR` is set to 0. ELx in this context is the highest implemented Exception level.
• The enables for the counter event stream are set to 0. This means that the following bits are set to 0:
  — CNTKCTL_EL1.EVNTEN.
  — If the implementation includes EL2, CNTHCTL_EL2.EVNTEN.

• PMCR_EL0.E is set to 0.

  — Note
  This means the Performance Monitors cannot assert interrupts at reset.

• OSDLR_EL1.DLK bit is set to 0.
• Each of MDCCINT_EL1.{TX, RX} is set to 0.
• EDPRCR.CWRR is set to 0.
• EDPRSR.SR is set to 1.
• If the implementation includes EL3, then each of MDCR_EL3.{EPMAD, EDAD, SPME} is set to 0.
• If the implementation includes EL2, then MDCR_EL2.HPMN is set to the value of PMCR_EL0.N.
• EDESR.OSUC is set to 0.
• If FEAT_DoPD is not implemented, EDESR.SS is set to the value of EDECR.SS.
• If FEAT_DoPD is implemented, EDESR.RC is set to the value of CTIDEVCTL.RCE. Otherwise EDESR.RC is set to the value of EDECR.RCE.

  — Note
  On an External debug reset, EDECR.{SS, RCE} are set to 0. If FEAT_DoPD is implemented, CTIDEVCTL.{OSUC, RCE} are set to 0.

Additionally, for a Cold reset into AArch64 state:

• If an RMR is implemented, RMR_ELx.AA64 is set to 1. ELx in this context is the highest implemented Exception level.
• Each of MDCCSR_EL0.{TXfull, RXfull} is set to 0.
• If FEAT_DoPD is not implemented, DBGPRCR_EL1.CORENPDRQ is set to the value of EDPRCR.COREPURQ.

  — Note
  An External Debug reset sets EDPRCR.COREPURQ to 0, see External debug register resets on page H8-7158. If an External Debug reset and a Cold reset coincide, both DBGPRCR_EL1.CORENPDRQ and EDPRCR.COREPURQ are reset to 0.

  — Note
  If FEAT_DoPD is implemented, DBGPRCR_EL1.CORENPDRQ is set to an IMPLEMENTATION DEFINED choice of 0 or 1 if the powerup request is implemented and asserted, otherwise is set to 0.

• The debug CLAIM bits are reset to 0.

  — Note
  These are the bits that are set to 1 by writing to DBGCLAIMSET_EL1.CLAIM, and cleared to 0 by writing to DBGCLAIMCLR_EL1.CLAIM.

• Each of EDSCR.{RXO, TXU, INTdis, TDA, MA, HDE, ERR, RXfull, TXfull} is set to 0.
• Each of EDECCR.{NSE, SE} is set to 0.
• If FEAT_DoPD is implemented, EDECR.SS is set to 0.
• **OSLR_EL1.OSLK** is set to 1.

• In the **EDPRSR**:
  — The SPMAD, SDAD fields are set to 0.
  — The SPD field is set to 1.

• Each field of **AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, and AMCNTENSET1_EL0** is set to 0.

• Each of the implemented architected activity monitor counters **AMEVCNTR0<n>_EL0** and each of the implemented auxiliary activity monitor counters **AMEVCNTR1<n>_EL0** are set to 0.

For more information about resets in AArch64 System registers, see Chapter D13 *AArch64 System Register Descriptions*.

### D1.9.2 Code sequence to use RMR_ELx.RR to request a Warm reset

The following assembler sequence uses **RMR_ELx.RR** to request a Warm reset:

```assembly
; in addition, interrupts and debug requests for this PE should be disabled
; in the system before running this sequence to ensure the WFI suspends execution
MOV Wy, #3 ; for AArch64, #2 for AArch32; y is any register
DSB ; ensure all stores etc are complete
MSR RMR_ELx, Wy ; request the reset
ISB ; synchronise change to the RMR
Loop
 WFI ; enter a quiescent state
 B Loop
```

### D1.9.3 Pseudocode description of reset

The **AArch64.TakeReset()** pseudocode function performs a reset into AArch64 state.

**AArch64.TakeReset()** calls the functions **AArch64.ResetGeneralRegisters(), AArch64.ResetSIMDFPRegisters(), AArch64.ResetSpecialRegisters(), AArch64.ResetSystemRegisters(), and ResetExternalDebugRegisters().**

**AArch64.ResetSystemRegisters()** resets all System registers to their reset state as defined in the register descriptions in *PE state on reset to AArch64 state* on page D1-2330 and Chapter D13 *AArch64 System Register Descriptions*.

**Note**

The **AArch64.ResetSystemRegisters()** function only resets the System registers.

**ResetExternalDebugRegisters()** resets all external debug registers to their reset state as defined in the register descriptions in Chapter H9 *External Debug Register Descriptions*. 
D1.10 Exception entry

Exceptions are targeted at particular Exception levels. The Exception level that an exception targets is either programmed by software, or is determined by the nature of the exception.

Under no circumstances do exceptions cause execution to move to a lower Exception level.

If an asynchronous exception targets a lower Exception level, the exception is not taken and remains pending. See Asynchronous exception routing on page D1-2358 and Asynchronous exception masking on page D1-2361.

Note
The construction of the architecture means that usually, it is impossible for an exception to target a lower Exception level.

The Security state can only change on taking an exception if taken from Non-secure state to EL3.

Note
Taking an exception to EL3 from any Exception level has no effect on the value of the SCR_EL3.NS bit.

On taking an exception to AArch64 state:

- The PE state is saved in the SPSR_ELx at the target Exception level. See Saved Program Status Registers (SPSRs) on page D1-2322.
- The preferred return address is saved in the ELR_ELx at the target Exception level. See Exception Link Registers (ELRs) on page D1-2323.
- All of PSTATE.{D, A, I, F} are set to 1. See Process state, PSTATE on page D1-2324.
- PSTATE.SSBS is set to the value of SCTLR_ELx.DSSBS.
- If FEAT_UAO is implemented, PSTATE.UAO is set to 0. See Process state, PSTATE on page D1-2324.
- If the exception is a synchronous exception or an SError interrupt, information characterizing the reason for the exception is saved in the ESR_ELx at the target Exception level. See Use of the ESR_EL1, ESR_EL2, and ESR_EL3 on page D1-2336.
- If FEAT_MTE is implemented:
  - PSTATE.TCO is set to 1. See Process state, PSTATE on page D1-2324.
  - A synchronous exception due to a Tag Check Fault is reported to as a Data Abort with a Data Fault Status Code of Synchronous Tag Check Fault and the faulting virtual address is reported in FAR_ELx. For more information, see PE handling of Tag Check Fault on page D6-2690.
- If FEAT_BTI is implemented, on taking an asynchronous exception from AArch64 to AArch64, PSTATE.BTYPE is copied to SPSR_ELx.BTYPE and then set to 0.
- If FEAT_BTI is implemented, on taking certain types of synchronous exception from AArch64 to AArch64, PSTATE.BTYPE is copied to SPSR_ELx.BTYPE and then set to 0. These types of synchronous exceptions are:
  - Software Step exception.
  - PC alignment fault exception.
  - Instruction Abort exception.
  - Breakpoint exceptions or Address Matching Vector Catch exception.
  - Illegal Execution state exception.
  - Software Breakpoint exception.
  - Branch Target exception.
On taking any other synchronous exception from AArch64 to AArch64, it is CONSTRAINED UNPREDICTABLE whether:

- SPSR_ELx.BTYPE is set to the value of PSTATE.BTYPE.
- SPSR_ELx.BTYPE is set to 0.

PSTATE.BTYPE is then set to 0.

- The stack pointer register selected is the dedicated stack pointer register for the target Exception level. See The stack pointer registers on page D1-2321.

- For a physical SError interrupt exception, the pending state of the physical SError is cleared when any of:
  - The SError interrupt is edge-triggered.
  - FEAT_DoubleFault is implemented.
  - If The Reliability, Availability, and Serviceability Extension is implemented, and on taking the SError interrupt, the syndrome recorded in ESR_ELx indicates an SError other than IMPLEMENTATION DEFINED or uncategorized SError interrupt syndrome.

Otherwise, it is IMPLEMENTATION DEFINED whether the pending state of the physical SError is cleared.

This IMPLEMENTATION DEFINED behavior might vary according to the nature of the SError interrupt.

- For a virtual SError interrupt exception, the pending state of the virtual SError, held in the HCR_EL2.VSE bit, is cleared to zero. See Virtual interrupts on page D1-2363.

- If FEAT_IESB is implemented, when the Effective value of the SCTLR_ELx.IESB bit at the target Exception level is 1, the PE inserts an error synchronization event. See ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

- Execution moves to the target Exception level, and starts at the address defined by the exception vector. Which exception vector is used is also an indicator of whether the exception came from a lower Exception level or the current Exception level. See Exception vectors on page D1-2335.

- If an Instruction Abort exception, Data Abort exception, PC alignment fault exception, or a Watchpoint exception is taken to an Exception level using AArch64, the faulting virtual address is saved in FAR_ELx. For more information, see Validity of FAR_ELx on page D1-2342.

- If an Instruction Abort exception, or Data Abort exception is taken to EL2 and the fault is one connected with stage 2 translation, the faulting IPA is saved in HPFAR_EL2. For more information, see Validity of HPFAR_EL2 on page D1-2343.

If FEAT_ExS is implemented and SCTLR_ELx.EIS is 0, though exception entry is not a context synchronization event, the indirect writes to ESR_ELx, FAR_ELx, SPSR_ELx, ELR_ELx, and HPFAR_EL2 due to exception entry are synchronized so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.

--- Note ---

On exception entry, the memory transactions, including instruction fetches, from an exception level always use the translation resources associated with that translation regime.

The remainder of this section contains the following:

- Preferred exception return address on page D1-2335.
- Exception vectors on page D1-2335.
- Pseudocode description of exception entry to AArch64 state on page D1-2336.
- Exception classes and the ESR_ELx syndrome registers on page D1-2336.
- Summary of register updates on faults taken to an Exception level that is using AArch64 on page D1-2342.
D1.10.1 Preferred exception return address

For an exception taken to an Exception level using AArch64, the Exception Link Register for that Exception level, ELR_ELx, holds the preferred exception return address. The preferred exception return address depends on the nature of the exception, as follows:

- For asynchronous exceptions, it is the address of the instruction following the instruction boundary at which the interrupt occurs. Therefore, it is the address of the first instruction that did not execute, or did not complete execution, as a result of taking the interrupt.
- For synchronous exceptions other than system calls, it is the address of the instruction that generates the exception.
- For exception generating instructions, it is the address of the instruction that follows the exception generating instruction.

Note

If an exception generating instruction is trapped, disabled, or is UNDEFINED because the Exception level has insufficient privilege to execute the instruction, the preferred exception return address is the address of the exception generating instruction.

When an exception is taken from an Exception level using AArch32 to an Exception level using AArch64, the top 32 bits of the modified ELR_ELx are 0.

D1.10.2 Exception vectors

When the PE takes an exception to an Exception level that is using AArch64, execution is forced to an address that is the exception vector for the exception. The exception vector exists in a vector table at the Exception level the exception is taken to.

A vector table occupies a number of word-aligned addresses in memory, starting at the vector base address.

Each Exception level has an associated Vector Base Address Register (VBAR), that defines the exception base address for the table at that Exception level.

For exceptions taken to AArch64 state, the vector table provides the following information:

- Whether the exception is one of the following:
  - Synchronous exception.
  - SError.
  - IRQ.
  - FIQ.

- Information about the Exception level that the exception came from, combined with information about the stack pointer in use, and the state of the register file.
Table D1-5 shows this.

<table>
<thead>
<tr>
<th>Exception taken from</th>
<th>Offset for exception type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Exception level with SP_EL0.</td>
<td>Synchronous</td>
</tr>
<tr>
<td></td>
<td>0x000</td>
</tr>
<tr>
<td>Current Exception level with SP_ELx, x&gt;0.</td>
<td>0x200</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch64.</td>
<td>0x400</td>
</tr>
<tr>
<td>Lower Exception level, where the implemented level immediately lower than the target level is using AArch32.</td>
<td>0x600</td>
</tr>
</tbody>
</table>

- When FEAT_DoubleFault is implemented, SCR_EL3.EASE is set to 1, and the exception is a synchronous External abort taken to EL3, the exception is routed to the offset in the SError or vError column.
- For exceptions taken to EL3, if EL2 is implemented, the level immediately lower than the target level is EL2 if the exception was taken from Non-secure state, but EL1 if the exception was taken from Secure EL1 or EL0.

Reset is treated as a special vector for the highest implemented Exception level. This special vector uses an IMPLEMENTATION DEFINED address that is typically set either by a hardwired configuration of the PE or by configuration input signals. The RVBAR_ELx register contains this reset vector address, where x is the number of the highest implemented Exception level.

### D1.10.3  Pseudocode description of exception entry to AArch64 state

The `AArch64.TakeException()` pseudocode function describes the behavior when the PE takes an exception to an Exception level that is using AArch64. The `AArch64.ExceptionClass()` function determines the EC (Exception class) and IL (Instruction length) values required to report the exception, and `AArch64.ReportException()` reports the exception.

The pseudocode functions `AArch64.TakeException()`, `AArch64.ExceptionClass()`, and `AArch64.ReportException()` are described in Chapter J1  Armv8 Pseudocode.

### D1.10.4  Exception classes and the ESR_ELx syndrome registers

If the exception is a synchronous exception or an SError interrupt, information characterizing the reason for the exception is saved in the ESR_ELx at the Exception level the exception is taken to. The information saved is determined at the time the exception is taken, and is not changed as a result of the explicit synchronization that takes place at the start of taking the exception. See Synchronization requirements for AArch64 System registers on page D13-2863. The following sections give more information:

- **Use of the ESR_EL1, ESR_EL2, and ESR_EL3.**
- **The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1 on page D1-2341.**

#### Use of the ESR_EL1, ESR_EL2, and ESR_EL3

An ESR_ELx holds the syndrome information for an exception that is taken to AArch64 state.

---

This use of a syndrome is also the reporting model used for exceptions taken to Hyp mode when they are taken to EL2 using AArch32.

Figure D1-2 on page D1-2337 shows the general format of the ESR_ELx registers.
The ESR_ELx fields are:

**EC, bits[31:26]**  The Exception class field, that indicates the cause of the exception.

**IL, bit[25]**  The Instruction length bit, for synchronous exceptions, that indicates whether a trapped instruction was a 16-bit or a 32-bit instruction.

**ISS, bits[24:0]**  The Instruction specific syndrome field. Architecturally, this field can be defined independently for each defined Exception class. However, in practice, some ISS encodings are used for more than one Exception class.

Table D1-6 shows the encoding of the ESR_ELx.EC field, the Exception class field. For each EC value, the table references a subsection of the ESR_ELx register definition that describes the ISS format, with links to descriptions of possible causes of the exception, for example the configuration required to enable a trap.

![Figure D1-2 Overall format of the ESR_ELx registers](image-url)
<table>
<thead>
<tr>
<th>EC</th>
<th>Exception class</th>
<th>From, state</th>
<th>To, Exception level</th>
<th>ISS encoding description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000111</td>
<td>Access to SVE, Advanced SIMD or floating-point functionality trapped by</td>
<td>Yes</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps on page D13-2977</strong></td>
</tr>
<tr>
<td></td>
<td>CPACR_EL1.FPEN or CPTR_ELx.TFP control</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>001000</td>
<td>Trapped VMRS access, from ID group traps, that is not reported using EC 0b000111</td>
<td>Yes</td>
<td>No</td>
<td><strong>ISS encoding for an exception from an MCR or MRC access on page D13-2970</strong></td>
</tr>
<tr>
<td>001001</td>
<td>Trapped access to an FEAT_PAuth instruction</td>
<td>No</td>
<td>Yes</td>
<td>**ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0</td>
</tr>
<tr>
<td>001100</td>
<td>Trapped MRRC access with (coproc==0b1110)</td>
<td>Yes</td>
<td>No</td>
<td><strong>ISS encoding for an exception from an MCRR or MRRC access on page D13-2973</strong></td>
</tr>
<tr>
<td>011010</td>
<td>Illegal Execution state</td>
<td>Yes</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-2979</strong></td>
</tr>
<tr>
<td>010001</td>
<td>SVC instruction execution in AArch32 state</td>
<td>Yes</td>
<td>No</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch32 state</strong></td>
</tr>
<tr>
<td>010010</td>
<td>SVC instruction execution in AArch32 state, when SVC is not disabled</td>
<td>Yes</td>
<td>No</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch32 state</strong></td>
</tr>
<tr>
<td>010011</td>
<td>SVC instruction execution in AArch32 state, when SVC is not disabled</td>
<td>Yes</td>
<td>No</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch32 state</strong></td>
</tr>
<tr>
<td>010100</td>
<td>SVC instruction execution in AArch64 state</td>
<td>No</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch64 state</strong></td>
</tr>
<tr>
<td>010110</td>
<td>SVC instruction execution in AArch64 state, when SVC is not disabled</td>
<td>No</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch64 state</strong></td>
</tr>
<tr>
<td>011011</td>
<td>SVC instruction execution in AArch64 state, when SVC is not disabled</td>
<td>No</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from SVC instruction execution in AArch64 state</strong></td>
</tr>
<tr>
<td>011000</td>
<td>Trapped MSR, MRS, or System instruction execution, that is not reported using EC</td>
<td>No</td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state on page D13-2981</strong></td>
</tr>
<tr>
<td></td>
<td>0x00, 0x0L, or 0x07 When FEAT_IDST is implemented, trapped ID registers</td>
<td></td>
<td>Yes</td>
<td><strong>ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state on page D13-2982</strong></td>
</tr>
<tr>
<td>EC</td>
<td>Exception class</td>
<td>From, state</td>
<td>AArch32a</td>
<td>AArch64</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------------------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>011001</td>
<td>Trapped access to SVE functionality, that is not reported using EC 0b000000i</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>011010</td>
<td>Trapped ERET, ERETA or ERETAB instruction executionj</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>011100</td>
<td>Exception from a pointer authentication instruction authentication failure</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>011111</td>
<td>IMPLEMENTATION DEFINED exception taken to EL3</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>100000</td>
<td>Instruction Abort from a lower Exception levelk</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100001</td>
<td>Instruction Abort taken without a change in Exception levelk</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100010</td>
<td>PC alignment fault</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100100</td>
<td>Data Abort from a lower Exception level, excluding Data Aborts taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested virtualization supportl</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100101</td>
<td>Data Abort taken without a change in Exception level, or Data Aborts taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested virtualization supportl</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100110</td>
<td>SP alignment fault</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
## Table D1-6 ESR_ELx.EC field encoding (continued)

<table>
<thead>
<tr>
<th>EC</th>
<th>Exception class</th>
<th>From, state</th>
<th>To, Exception level</th>
<th>ISS encoding description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>Trapped floating-point exception taken from AArch32 state</td>
<td>Yes</td>
<td>No</td>
<td>ISS encoding for an exception from a trapped floating-point exception on page D13-2992</td>
</tr>
<tr>
<td>101100</td>
<td>Trapped floating-point exception taken from AArch64 state</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>101111</td>
<td>SError interrupt</td>
<td>Yes</td>
<td>Yes</td>
<td>ISS encoding for an SError interrupt on page D13-2994</td>
</tr>
<tr>
<td>110000</td>
<td>Breakpoint exception from a lower Exception level</td>
<td>Yes</td>
<td>Yes</td>
<td>ISS encoding for an exception from a Breakpoint or Vector Catch debug exception on page D13-2995</td>
</tr>
<tr>
<td>110001</td>
<td>Breakpoint exception taken without a change in Exception level</td>
<td>Yes</td>
<td>Yes</td>
<td>ISS encoding for an exception from a Software Step exception on page D13-2996</td>
</tr>
<tr>
<td>110010</td>
<td>Software Step exception from a lower Exception level</td>
<td>Yes</td>
<td>Yes</td>
<td>Iss encoding for an exception from a Software Step exception on page D13-2996</td>
</tr>
<tr>
<td>110011</td>
<td>Software Step exception taken without a change in Exception level</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>110100</td>
<td>Watchpoint exception from a lower Exception level, excluding watchpoint exceptions taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested virtualization support</td>
<td>Yes</td>
<td>Yes</td>
<td>ISS encoding for an exception from a Watchpoint exception on page D13-2996</td>
</tr>
<tr>
<td>110101</td>
<td>Watchpoint exception taken without a change in Exception level, or Watchpoint exceptions taken to EL2 as a result of accesses generated associated with the VNCR_EL2 as part of nested virtualization support</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>111000</td>
<td>BKPT instruction execution in AArch32 state</td>
<td>Yes</td>
<td>No</td>
<td>ISS encoding for an exception from a Breakpoint or Vector Catch debug exception on page D13-2995</td>
</tr>
<tr>
<td>111010</td>
<td>Vector Catch exception from AArch32 state</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>111100</td>
<td>BRK instruction execution in AArch64 state</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

a. See also Reporting AArch32 synchronous exceptions taken to an Exception level using AArch64 on page D1-2341.

b. Exceptions caused by configurable traps, enables, or disables.

c. See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

d. Only for MCRR or MRRC accesses to the PMCCNTR_EL0 or PMCCNTR.
Reserved EC values

For EC values not shown in Table D1-6 on page D1-2337:

- Unused EC values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved by Arm for future use for synchronous exceptions.
- Unused EC values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved by Arm for future use, and might be used for synchronous or asynchronous exceptions.

The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1

When an exception is taken from EL0 to EL2 because the value of HCR_EL2.TGE is 1, the exception is reported in ESR_EL2. The EC value and corresponding ISS encoding used to report the exception in ESR_EL2 depend on how an exception of the same class would be reported in ESR_EL1 when the value of HCR_EL2.{TGE, RW} is {0, 1}:

- If the exception would have been reported in ESR_EL1 using the EC value 0x07 then it is reported in ESR_EL2 using the EC value 0x00 and corresponding ISS encoding.
- Otherwise, the exception is reported in ESR_EL2 using the EC value and ISS encoding that would have been used to report the exception ESR_EL1.

Reporting AArch32 synchronous exceptions taken to an Exception level using AArch64

Although possible exception causes are generally similar for AArch32 state and AArch64 state, AArch32 state has additional exception taxonomy that is not present in AArch64 state. The following sections described named AArch32 exceptions that can, in some contexts, be taken to an Exception level that is using AArch64:

- *Undefined Instruction exception* on page G1-5778.
- *Supervisor Call (SVC) exception* on page G1-5782.
- *Secure Monitor Call (SMC) exception* on page G1-5783.
- *Hypervisor Call (HVC) exception* on page G1-5784.
- *Prefetch Abort exception* on page G1-5785.
- *Data Abort exception* on page G1-5789.
When EL2 is using AArch64 and the value of HCR_EL2.TGE is 1, these exceptions are routed to EL2, and reported in the ESR_EL2. Table D1-7 shows how they are reported.

Table D1-7 Syndrome reporting in ESR_EL2 of HCR_EL2 routing of exceptions

<table>
<thead>
<tr>
<th>AArch32 exception</th>
<th>Pseudocode</th>
<th>EC value used to report exception in ESR_ELx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined Instruction</td>
<td>AArch32.UndefnedFault()</td>
<td>0x00, Exception for an unknown reason</td>
</tr>
<tr>
<td>Supervisor Call</td>
<td>AArch32.CallSupervisor()</td>
<td>0x11, Exception from SVC instruction executed in AArch32 state</td>
</tr>
<tr>
<td>Secure Monitor Call</td>
<td>See SMC on page F5-4732a</td>
<td>0x13, Exception from SMC instruction executed in AArch32 state</td>
</tr>
<tr>
<td>Hypervisor Call</td>
<td>AArch32.CallHypervisor()</td>
<td>0x12, Exception from SVC instruction executed in AArch32 state</td>
</tr>
<tr>
<td>Prefetch Abort</td>
<td>AArch32.Abort()</td>
<td>0x20, Exception from an Instruction abort at a lower Exception level</td>
</tr>
<tr>
<td>Data Abort</td>
<td>AArch32.Abort()</td>
<td>0x24, Exception from a Data abort at a lower Exception level</td>
</tr>
</tbody>
</table>

a. The pseudocode in Operation for all encodings on page F5-4733 identifies when the execution of an SMC instruction in AArch32 state generates an exception that is taken to EL3 using AArch64.

D1.10.5 Summary of register updates on faults taken to an Exception level that is using AArch64

For all exceptions taken to an Exception level using AArch64 that are not listed in Validity of FAR_ELx, the FAR_ELx for the Exception level the exception is taken to is UNKNOWN.

For all exceptions taken to EL2 using AArch64 that are not listed in Validity of HPFAR_EL2 on page D1-2343, the HPFAR_EL2 is UNKNOWN.

The following sections give more information:
- Validity of FAR_ELx.
- Validity of HPFAR_EL2 on page D1-2343.

Validity of FAR_ELx

The faulting virtual address is saved in FAR_ELx for the Exception level the exception is taken to if an exception is one of:
- An Instruction Abort exception.
- A Data Abort exception.
- A PC alignment fault exception.
- A Watchpoint exception.

The architecture permits that the FAR_ELx is UNKNOWN for synchronous External aborts other than synchronous External aborts on translation table walks. In this case, the ISS.FnV bit returned in ESR_ELx indicates whether FAR_ELx is valid.

If an exception is taken from an Exception level using AArch32 into an Exception level using AArch64, and that exception writes the FAR_ELx at the Exception level the exception is taken to, the most significant 32 bits of FAR_ELx are all zero, unless both of the following apply, in which case the most significant 32 bits of FAR_ELx are 0x00000001:
- The faulting address was generated by a load or store that sequentially incremented from address 0xFFFFFFFF. Such a load or store instruction is CONstrained UNpredictable, see Out of range VA on page K1-7950.
- The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

The FAR_ELx for an Exception level is made UNKNOWN as a result of an exception return from that Exception level.
Validity of HPFAR_EL2

The faulting IPA is saved in HPFAR_EL2 if the exception is an Instruction Abort or Data Abort taken to EL2 and the fault is one of:

• A Translation or Access Flag fault on a stage 2 translation.
• A stage 2 Address Size fault.
• A fault on the stage 2 translation of an address accessed in a stage 1 translation table walk.

HPFAR_EL2 is made UNKNOWN as a result of an exception return from EL2.
### D1.11 Exception return

In the Armv8-A architecture, an exception return is always to the same Exception level or a lower Exception level. An exception return is used for:

- A return to a previously executing thread.
- Entry to a new execution thread. For example:
  - The initialization of a hypervisor by a Secure monitor.
  - The initialization of an operating system by a hypervisor.
  - Application entry from an operating system or hypervisor.

If FEAT_ExS is not implemented, or if FEAT_ExS is implemented and the SCTLR_ELx.EOS field is set, exception return from ELx is a context synchronization event.

An exception return requires the simultaneous restoration of the PC and PSTATE to values that are consistent with the desired state of execution on returning from the exception. The indirect write of the PSTATE information and the PC is synchronized even if the return is not a context synchronization event.

In AArch64 state, an ERET, ERETAa, or ERETAB instruction causes an exception return, see *ERET* on page C6-920, and *ERE TAa, ERETAB* on page C6-921.

If FEAT_IESB is implemented, when the SCTLR_ELx.IESB bit at the Exception level the exception is returning from is 1, the PE inserts an error synchronization event before the Exception return instruction. See *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile*.

On executing an Exception return instruction at ELx:

- The PC is restored with the value held in ELR_ELx.
- PSTATE is restored by using the contents of SPSR_ELx.

ELR_ELx and SPSR_ELx are the ELR_ELx and SPSR_ELx at the Exception level the exception is returning from. The exception return makes this ELR_ELx and SPSR_ELx UNKNOWN.

See *Address tagging in AArch64 state* on page D5-2528 for details of how tagged addresses are handled in an Exception return from an Exception level using AArch64 to an Exception level using AArch64.

**Note**

When returning from an Exception level using AArch64 to an Exception level using AArch32, the top 32 bits of the ELR_ELx are ignored.

An Exception return instruction also:

- Sets the Event Register for the PE executing the Exception return instruction. See *Mechanisms for entering a low-power state* on page D1-2391.
- Resets the local Exclusives monitor for the PE executing the Exception return instruction. This removes the risk of errors that might be caused when a path to an exception return fails to include a CLREX instruction.

**Note**

This behavior prevents self-hosted debug from software stepping through a Load-Exclusive/Store-Exclusive pair. However, when self-hosted debug is using software step, it is highly probable that the Exclusives monitor state would be lost anyway, for other reasons. *Stepping code that uses Exclusives monitors* on page D2-2477 describes this.

It is IMPLEMENTATION DEFINED whether the resetting of the local Exclusives monitor also resets the global Exclusives monitor.

The Exception return instruction is UNDEFINED in EL0.

When returning from an Exception level using AArch64 to an Exception level using AArch32, the AArch32 context is restored. The Armv8-A architecture defines the relationship between AArch64 state and AArch32 state, for:

- General-purpose registers.
- Special-purpose registers.
• System registers.

In an implementation that includes EL3, the Security state can only change on returning from an exception if the return is from EL3 to a lower Exception level.

The following sections give more information:
• Exception return and PC alignment.
• Illegal return events from AArch64 state.
• Legal returns that set PSTATE.IL to 1 on page D1-2347.
• The Illegal Execution state exception on page D1-2347.
• Pseudocode description of exception return on page D1-2347.

D1.11.1 Exception return and PC alignment

When SPSR_ELx.M[4] == 0, indicating an Exception return to AArch64 state, the value of ELR_ELx is transferred to the PC. If this value is misaligned, subsequent execution results in a PC alignment fault exception.

When SPSR_ELx.M[4] == 1, indicating an Exception return to AArch32 state, the value of ELR_ELx is transferred to the PC except that, for a legal exception return:
• If SPSR_ELx.T is 0, ELR_ELx[1:0] are treated as being 0 for restoring the PC.
• If SPSR_ELx.T is 1, ELR_ELx[0] is treated as being 0 for restoring the PC.

This means that a PC alignment fault exception cannot occur following a legal exception return from AArch64 state to AArch32 state. However, where the Exception return with SPSR_ELx.M[4] == 1 is an illegal exception return then it is IMPLEMENTATION DEFINED whether a misaligned value in ELR_ELx is aligned when it is restored to the PC.

Note

In an implementation that forces the alignment of the PC value restored from SPSR_ELx on an illegal exception return with SPSR_ELx.M[4] == 1, if SPSR_ELx.T == 1 the restored PC value might give rise to a PC alignment fault exception, because the PE remains in AArch64 state and only ELR_ELx[0] is treated as being 0 for restoring the PC.

For more information about the illegal exception return cases, see Illegal return events from AArch64 state.

D1.11.2 Illegal return events from AArch64 state

In this section:
Return
• Execution of an Exception return instruction.
• Execution of a DRPS instruction in Debug state.
• Exit from Debug state.

Saved process state value
• The value held in the SPSR_ELx for an Exception return instruction.
• The value held in the SPSR_ELx for a DRPS instruction executed in Debug state.
• The value held in the DSPSR_EL0 for a Debug state exit.

Link address
• The address held in ELR_ELx for an Exception return instruction.
• The address held in DLR_EL0 for a Debug state exit.

Configured from reset
Indicates the state determined on powerup or reset by a configuration input signal, or by another IMPLEMENTATION DEFINED mechanism.
The Armv8 architecture has a generic mechanism for handling returns to a mode or state that is illegal. In AArch64 state, this can occur as the result of any of the following situations:

- A return where the Exception level being returned to is higher than the current Exception level.
- A return where the Exception level being returned to is not implemented. For example a return to EL2 when EL2 is not implemented.
- A return to EL2 when EL3 is implemented and the value of the SCR_EL3.NS bit is 0 if FEAT_SEL2 is not implemented.
- A return to EL1 when EL2 is implemented and the value of the HCR_EL2.TGE bit is 1.
- A return where the value of the saved process state M[4] bit is 0, indicating a return to AArch64 state, and one of the following is true:
  - The M[3:0] bits are 0b0001.
  - The Exception level being returned to is using AArch32 state, as programmed by the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
- A return where the value of the saved process state M[4] bit is 1, indicating a return to AArch32 state, and one of the following is true:
  - The M field value is not a valid AArch32 state PE mode. Table G1-5 on page G1-5726 shows the valid encoding values for AArch32 state PE modes. This includes the case where M is 0b10000, indicating User mode, and EL0 does not support AArch32 state.
  - The Exception level being returned to is using AArch64 state as determined by the SCR_EL3.RW or HCR_EL2.RW field or the configuration from reset. This includes the case where the Exception level being returned to does not support AArch32 state.

**Note**

This means that, in an implementation that supports only AArch64 state, any attempt to return to AArch32 state is an illegal exception return.

- A Debug state exit from EL0 using AArch64 state, to EL0 using AArch32 state.

In these cases:

- **PSTATE.IL** is set to 1, to indicate an illegal return.
- **PSTATE. {EL, nRW, SP}** are unchanged. This means the Exception level, Execution state, and stack pointer selection do not change as a result of the return.
- The following **PSTATE** bits are restored from the saved process state value:
  - The D, A, I, F exception mask bits.
- If the illegal return is an illegal exception return, the **PSTATE.SS** bit is handled as normal for a return. That is, the SS bit is handled in the same way as an exception return that is not an illegal exception return. See **Software Step exceptions on page D2-2466**.
  
  In all these cases the **PSTATE.SS** bit is handled as it would be for a normal return, as described in **Entering the active-not-pending state on page D2-2468** and **Exiting Debug state on page H2-7051**. DRPS never sets the SS bit. This is indicated in **Entering the active-not-pending state on page D2-2468**.
- If the illegal return is not a DRPS instruction executed in Debug state, the PC is restored from the link address. However, if the value of the M[4] bit of the saved process state is 1, indicating a return to AArch32 state, then:
  - Bits[31:2] of the PC are restored from the link address.
  - Bits[63:32, 1:0] of the PC are **UNKNOWN**.
When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state exception. See The Illegal Execution state exception.

All aspects of the illegal return, other than the effects described in this section, occur as they do for a legal return.

D1.11.3 Legal returns that set PSTATE.IL to 1

In this section, return, saved process state value, and link address have the same meaning as defined in Illegal return events from AArch64 state on page D1-2345.

If the value of the IL bit in the saved process state is 1, then it is copied to PSTATE by a return, meaning that PSTATE.IL is set to 1. In this case, if the return is not an illegal return, and targets AArch32 state, then the PSTATE.\{IT, T\} bits are either:
• Set to 0.
• Copied from the saved process state value.

The choice between these two options is determined by an implementation, and might vary dynamically within the implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two values.

The PSTATE.\{IT, T\} bits are only valid in AArch32 state, see Process state, PSTATE on page G1-5735.

When the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state exception. See The Illegal Execution state exception.

D1.11.4 The Illegal Execution state exception

When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state exception. In AArch64 state, the PSTATE.IL bit can be set to 1 by any of:
• An illegal return, as described in Illegal return events from AArch64 state on page D1-2345.
• A legal return that sets PSTATE.IL to 1, as described in Legal returns that set PSTATE.IL to 1.

If an Illegal Execution state exception is generated at EL0, it is taken to EL1. If the exception occurs when EL2 is implemented and enabled in the current Security state, and HCR_EL2.TGE == 1, then it is taken to EL2. If an Illegal Execution state exception is generated at any other Exception level, the Exception level is unchanged.

An Illegal Execution state exception sets ESR_ELx.EC for the target Exception level to the value of 0x0E.

On taking any exception to an Exception level that is using AArch64 state:

1. The value of the PSTATE.IL bit is copied into the SPSR_ELx.IL bit for the Exception level to which the exception is taken.
2. The PSTATE.IL bit is cleared to 0.

    Note

This means that it is not possible for software to observe the value of PSTATE.IL.

For the priority of this exception class, see Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

D1.11.5 Pseudocode description of exception return

The AArch64.ExceptionReturn() pseudocode function transfers the return address to the PC, and restores PSTATE to its saved value by calling SetPSTATEFromPSR().

The IllegalExceptionReturn() function checks for an Illegal Execution state exception.
Synchronous exception types, routing and priorities

Synchronous exceptions are:

- Any exception generated by attempting to execute an instruction that is UNDEFINED, including:
  - Attempts to execute instructions at an inappropriate Exception level.
  - Attempts to execute instructions when they are disabled.
  - Attempts to execute instruction bit patterns that have not been allocated.
- Illegal Execution state exceptions. These are caused by attempts to execute an instruction when the value of PSTATE.IL is 1, see Illegal return events from AArch64 state on page D1-2345.
- Exceptions caused by the use of a misaligned SP.
- Exceptions caused by attempting to execute an instruction with a misaligned PC.
- Exceptions caused by the exception-generating instructions SVC, HVC, or SMC.
- Traps on attempts to execute instructions that the System registers define as instructions that are trapped to a higher Exception level. See Configurable instruction enables and disables, and trap controls on page D1-2367.
- Instruction Aborts generated by the memory address translation system that are associated with attempts to execute instructions from areas of memory that generate faults.
- Data Aborts generated by the memory address translation system that are associated with attempts to read or write memory that generate faults.
- Data Aborts caused by a misaligned address.
- Data Aborts caused by a Tag Check Fault if FEAT_MTE is implemented. For more information, see Chapter D6 Memory Tagging Extension.
- All of the debug exceptions:
  - Breakpoint Instruction exceptions.
  - Breakpoint exceptions.
  - Watchpoint exceptions.
  - Vector Catch exceptions.
  - Software Step exceptions.
- In an implementation that supports the trapping of floating-point exceptions, exceptions caused by trapped IEEE floating-point exceptions, see Floating-point exceptions and exception traps on page D1-2354.
- In some implementations, External aborts. External aborts are failed memory accesses, and include accesses to those parts of the memory system that occur during the address translation. The Armv8 architecture permits, but does not require, implementations to treat such exceptions synchronously. See External aborts on page D4-2519.

This remainder of this section contains the following:

- Routing exceptions from EL0 to EL2.
- Routing debug exceptions to EL2 on page D1-2349.
- Routing synchronous External aborts on page D1-2349.
- Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.
- Effect of Data Aborts and Watchpoints on page D1-2353.
- Floating-point exceptions and exception traps on page D1-2354.

Routing exceptions from EL0 to EL2

When EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1, any exception taken from EL0 that would otherwise be taken to EL1 is, instead, routed to EL2. This means that an application can execute at EL0 without using any functionality at EL1.
D1.12 Synchronous exception types, routing and priorities

--- Note ---

- When EL2 is using AArch64 state, the HCR_EL2.TGE control applies regardless of whether EL0 is using AArch32 state or AArch64 state.
- Implementations typically use the following Exception level and software hierarchy:
  
  **EL2**  
  Hypervisor.

  **EL1**  
  Operating system.

  **EL0**  
  Application.

  In such an implementation, setting HCR_EL2.TGE to 1 means that an application can run at EL0 under the direct control of a hypervisor executing at EL2, with no operating system involvement.

---

**D1.12.2 Routing debug exceptions to EL2**

When EL2 is enabled in the current Security state and the value of MDCR_EL2.TDE is 1, debug exceptions are routed to EL2. For more information, see *Routing debug exceptions* on page D2-2423.

When the value of MDCR_EL2.TDE is 1, each of the MDCR_EL2.TDRA, TDOSA, TDA bits is treated as 1 for all purposes other than direct reads of the MDCR_EL2.

**D1.12.3 Routing synchronous External aborts**

When the value of SCR_EL3.EA is 1, synchronous external aborts are taken to EL3.

When the RAS Extension is implemented, EL2 is enabled in the current Security state, and the value of HCR_EL2.TEA is 1, synchronous external aborts from EL0 and EL1 that are not routed to EL3 are routed to EL2.

**D1.12.4 Synchronous exception prioritization for exceptions taken to AArch64 state**

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching of the instruction, its decode, and eventual execution. For exceptions taken to an Exception level that is using AArch64, these are prioritized as follows, where 1 is the highest priority.

--- Note ---

The priority numbering in this list correlates with the equivalent AArch32 state list in *Synchronous exception prioritization for exceptions taken to AArch32 state* on page G1-5747 and the list in *Debug state entry and debug event prioritization* on page H2-7017.

1-3 These priority numbers represent debug events.

4 Software Step exceptions. See *Software Step exceptions* on page D2-2466.

5 This priority number represents debug events.

6 PC alignment fault exceptions. See *PC alignment checking* on page D1-2327.

7 Instruction Abort exceptions. See *AArch64 state prioritization of synchronous aborts from a single stage of address translation* on page D5-2652.

8 Breakpoint exceptions or Address Matching Vector Catch exceptions. See:

  - *Breakpoint exceptions* on page D2-2433.
  - *Vector Catch exceptions* on page D2-2465.

Vector Catch exceptions are only taken from AArch32 state.
Note

An Exception Trapping Vector Catch exception is generated on exception entry for an exception that has been prioritized as described in "Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747." This means that it is outside the scope of the description of this section.

9

Illegal Execution state exceptions. See "Illegal return events from AArch64 state on page D1-2345."

10

Software Breakpoint exceptions caused by the execution of a Breakpoint instruction:

- For exceptions taken from AArch64 state, BRK.
- For exceptions taken from AArch32 state, BKPT.

11

Branch Target exceptions. See "About PSTATE.BTYPE on page D5-2602."

12

Exceptions taken from EL1 to EL2 because of one of the following configuration settings:

- HSTR_EL2.Tn.
- HCR_EL2.TIDCP.
- If FEAT_NV is implemented, HCR_EL2.NV or HCR_EL2.NV1.

Note

If FEAT_NV2 is implemented and HCR_EL2.\{NV, NV1, NV2\} are set such that register accesses to EL1 are transformed into memory accesses, then HCR_EL2.\{NV, NV1\} do not generate exceptions to EL2.

13

Exceptions that occur as a result of attempting to execute an instruction that is UNDEFINED for one or more of the following reasons:

- Attempting to execute an unallocated instruction encoding, including an encoding for an instruction that is not implemented in the PE implementation.
- Attempting to execute an instruction that is defined never to be accessible at the current Exception level regardless of any enables or traps.
- Debug state execution of an instruction encoding that is not accessible in Debug state.
- Non-debug state execution of an instruction encoding that is not accessible in Non-debug state.
- Execution of an HVC instruction, when HVC instructions are disabled by SCR_EL3.HCE or HCR_EL2.HCD.
- Execution of an MSR or MRS instruction to SP_EL0 when the value of SP Sel is 0.
- Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE or halting is prohibited.
- In Debug state:
  - Execution of a DCPS1 instruction in Non-secure EL0 when HCR_EL2.TGE is 1.
  - Execution of a DCPS2 instruction in EL1 or EL0 when EL2 is disabled in the current Security state or is not implemented.
  - Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not implemented.
  - When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction that is configured by EL3 control registers to trap to EL3. It is IMPLEMENTATION DEFINED whether this type of exception is prioritized at this level or has the priority of the original trap exception.
- When executing in AArch32 state, execution of an instruction that is UNDEFINED as a result of any of:
  - Being in an IT block when SCTLR_EL1.ITD is 1.
  - Executing a SETEND instruction executed when SCTLR_EL1.SED is 1.
— Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when SCTL_EL1.CP15BEN is 0.

Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state the equivalent controls are SCTL. {ITD, SED, CP15BEN}, with additional controls HSCTLR. {ITD, SED, CP15BEN}.

See Disabling or enabling EL0 use of AArch32 deprecated functionality on page D1-2371

• When executing in AArch32 state, execution of an instruction that is UNDEFINED because at least one of FPCR. {Stride, Len} is nonzero, when programming these bits to nonzero values is supported. See Floating-point exceptions and exception traps on page G1-5816.

Note

— This case applies only when EL0 is using AArch32 and EL1 is using AArch64. The exception generated by the attempted execution at EL0 of the UNDEFINED instruction is taken to EL1 using AArch64.

— When EL1 is using AArch32, the corresponding controls are FPSCR. {Stride, Len}, and any exception generated by the attempted execution at EL0 or EL1 of an instruction that is UNDEFINED because of a nonzero {Stride, Len} value is taken to EL1 using AArch32.

14

Exceptions taken to EL1, or taken to EL2 because the value of HCR_EL2.TGE is 1, that are generated because of configurable access to instructions, and that are not covered by any of priorities 4-13.

Note

When EL2 is using AArch32, the equivalent control for routing exceptions to EL2 is HCR.TGE.

15

Exceptions taken from EL0 to EL2 because of one of the following configuration settings:

• HSTR_EL2.Tn.
• HCR_EL2.TIDCP.

Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state the equivalent controls are HSTR.Tn and HCR.TIDCP.

16

Exceptions taken to EL2 because of configuration settings in CPTR_EL2.

Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state, the equivalent controls are in HCPTR.

17

Exceptions taken to EL2 because of one of the following configuration settings:

• Any setting in HCR_EL2 other than the {TIDCP, NV} fields.
• Any setting in CNTHCTL_EL2.
• Any setting in MDCR_EL2.
• Any of the fine-grained traps in HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGRTR_EL2, HFGWTR_EL2.

Note

These are the controls for exceptions taken to AArch64 state. For exceptions taken to AArch32 state, equivalent controls are:

• Settings in HCR, other than the TIDCP bit.
For exceptions taken to AArch32 state there is no control equivalent to HCR_EL2.NV.
- Any setting in CNTHCTL or HDCR.
- If EL1 is using AArch64 state, any of the fine-grained traps in HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGRT_EL2, HFGWTR_EL2.

18

Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by any of priorities 4-17.

19

Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR_EL3.SMD is 1.

20

Exceptions caused by the execution of an Exception generating instruction not covered by priority 10:
- For exceptions taken from AArch64 state, Branches, Exception generating, and System instructions on page C3-200 defines these and the priority 10 instructions.
- When executing in AArch32 state, the exception-generating instructions are SVC, HVC, and SMC.

21

Exceptions taken to EL3 because of configuration settings in the CPTR_EL3.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0 that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

22

Exceptions taken to EL3 from Secure EL1 using AArch32, because of execution of the instructions listed in Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

23

Exceptions taken to EL3 from EL0, EL1, or EL2 because of configuration settings in the MDCR_EL3.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0 that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

24

Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by any of priorities 4-23.

Note

When in Debug state and the value of EDSCR.SDD is 1, instructions executed at EL2, EL1 or EL0 that are configured by EL3 control registers to trap to EL3 are treated as UNDEFINED and generate an exception taken to EL2 or EL1. It is IMPLEMENTATION DEFINED whether these exceptions are prioritized as an UNDEFINED instruction or have the priority of the original trap exception.

25

If FEAT_FPAC is implemented, exceptions generated from a pointer authentication instruction authorization failure. See Faulting on pointer authentication on page D5-2533.

26

Trapped floating-point exceptions, if supported. See Floating-point exceptions and exception traps on page D1-2354.

27

This priority number represents debug events.

28

SP alignment faults. See SP alignment checking on page D1-2327.
Data Abort exceptions other than a Data Abort exception generated by a synchronous External abort that was not generated by a translation table walk or the update of a page table entry. That is, any Data Abort exception that is not covered by item 31. See AArch64 state prioritization of synchronous aborts from a single stage of address translation on page D5-2652. It is IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 31.

Watchpoint exceptions. See Watchpoint exceptions on page D2-2451.

Data Abort exception:

- Generated by a synchronous External abort that was not generated by a translation table walk or the update of a page table entry, see External aborts on page D4-2519.
- If FEAT_MTE is implemented and enabled, Tag Check Faults are prioritized as Data Abort. For more information, see PE handling of Tag Check Fault on page D6-2690.
- It is IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 29.

For items 29-31, if an instruction results in more than one single-copy atomic memory access, the prioritization between synchronous exceptions generated on each of those different memory accesses is not defined by the architecture.

--- Note ---

Exceptions generated by a translation table walk are reported and prioritized as either an Instruction Abort exception, priority 7 in this list, or a Data Abort exception, priority 29 in this list. See also AArch64 state prioritization of synchronous aborts from a single stage of address translation on page D5-2652.

---

**D1.12.5 Effect of Data Aborts and Watchpoints**

If an instruction that stores to memory generates a Data Abort or Watchpoint, the value of each memory location that instruction stores to is either:

- Unchanged for any location for which one of the following applies:
  - An Alignment fault is generated.
  - An MMU fault is generated.
  - A Watchpoint exception or Watchpoint debug event is generated.
  - An External abort is generated, if that External abort is taken synchronously.

--- Note ---

If an External abort is taken asynchronously, using the SError interrupt, it is outside the scope of the architecture to define the effect of the store on the memory location, because it depends on the system-specific nature of the External abort. However, in general, Arm recommends that such memory locations are not updated.

---

- UNKNOWN for any location for which no exception and no debug event is generated.

For External aborts and Watchpoint exceptions, the size of a memory location is defined as being the size for which a memory access is single-copy atomic.

--- Note ---

For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on page B2-120.

---

An External abort might signal a data corruption to the PE. For example a memory location might have been corrupted. The error that caused the External abort might have been propagated. The RAS Extension provides mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more information, see the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.
For Data Aborts from load or store instructions executed in AArch64 state, if the:

**Data Abort is taken synchronously**

- If the load or store instruction specifies writeback of a new base address, the base address is restored to the original value on taking the exception.
- If the instruction was a load to either the base address register or the offset register, that register is restored to the original value. Any other destination registers become UNKNOWN.
- If the instruction was a load that does not load the base address register or the offset register, then the destination registers become UNKNOWN.

**Data Abort is taken asynchronously, using the SError interrupt**

If the instruction was a load, the destination registers of the load take an UNKNOWN value if the SError interrupt is taken at a point in the instruction stream after the load.

---

**D1.12.6 Floating-point exceptions and exception traps**

Execution of a floating-point instruction, or an Advanced SIMD instruction that performs floating-point operations, can generate an exceptional condition, called a floating-point exception.

**Note**

In AArch64 state, a floating-point instruction performs only a single floating-point operation. However, an Advanced SIMD instruction that operates on floating-point values can perform multiple floating-point operations. Therefore, this section describes the handling of a floating-point exception on an operation, rather than on an instruction.

The Armv8-A architecture supports synchronous exception generation in the event of any or all of the following floating-point exceptions:

- Input Denormal.
- Inexact.
- Underflow.
- Overflow.
- Divide by Zero.
- Invalid Operation.

Whether an implementation includes synchronous exception generation for these floating-point exceptions is IMPLEMENTATION DEFINED:

- For an implementation that does provide this capability, FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} are the control bits that enable synchronous exception generation for each of the different floating-point exceptions.
- For an implementation that does not provide this capability, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits are RAZ/WI.

**Note**

- An Input Denormal floating-point exception is generated when a single-precision or double-precision floating-point value is flushed-to-zero because the value of FPCR.FZ is 1. However, no Input Denormal exception is generated when a half-precision floating-point value is flushed-to-zero because the value of FPCR.FZ16 is 1.
- The Armv8-A architecture does not support asynchronous reporting of floating-point exceptions.

When generating synchronous exceptions for one or more floating-point exceptions is enabled, the synchronous exceptions generated by the floating-point exception traps are taken to the lowest Exception level that can handle such an exception, while adhering to the rule that an exception can never be taken to a lower Exception level.

The exception is reported in the ESR_ELx for the Exception level to which it is taken.
In an implementation that includes synchronous exception generation for floating-point exceptions in AArch64 state:

- The registers that are presented to the exception handler are consistent with the state of the PE immediately before the instruction that caused the exception. An implementation is permitted not to restore the cumulative exception bits in the event of such an exception. For more information, see [Combinations of floating-point exceptions](#).

- When the execution of separate operations in separate SIMD elements causes multiple floating-point exceptions, the ESR_ELx reports only the exceptions that occur in a single element that the instruction uses. The architecture does not specify which element is reported.

The AArch64.FPTrappedException() and FPProcessException() pseudocode functions describe the handling of trapped floating-point exceptions generated in AArch64 state.

### Combinations of floating-point exceptions

Many pseudocode functions perform floating-point operations, including FixedToFP(), FPAdd(), FPCmpare(), FCmpareEQ(), FCmpareGE(), FCmpareGT(), FPDiv(), FPMax(), FPMin(), FMul(), FMulAdd(), FPrecipEstimate(), FPrecipStepFused(), FPRSqrtEstimate(), FPRSqrtStepFused(), FPSqrt(), FPSqr(), FSub(), and FPToFixed(). All of these operations can generate floating-point exceptions.

**Note**

FPAbs() and FPNeg() are not classified as floating-point operations because:

- They cannot generate floating-point exceptions.
- The floating-point operation behavior described in the following sections does not apply to them:
  - [Flush-to-zero on page A1-55](#).
  - [NaN handling and the Default NaN on page A1-56](#).

More than one floating-point exception can occur on the same operation. The only combinations of floating-point exceptions that can occur are:

- Overflow with Inexact.
- Underflow with Inexact.
- Input Denormal with other floating-point exceptions.

The priority order of these floating-point exceptions is that the Inexact exception is treated as lowest priority, and the Input Denormal exception is treated as highest priority.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode descriptions of the instruction. In such cases, a floating-point exception on one operation is treated as higher priority than a floating-point exception on another operation if the occurrence of the second floating-point exception depends on the result of the first operation. Otherwise, it is [CONstrained UnPREDictable](#) which floating-point exception is treated as higher priority, where the exception prioritized might differ between different instances of the same two floating-point exceptions being generated on the same operation during execution of the instruction.

When none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that occurs causes the associated cumulative bit in the FPSR to be set to 1.

When a floating-point exception is trapped:

- It is IMPLEMENTATION DEFINED whether the FPSR is restored when the trapped floating-point exception is taken. If the FPSR is not restored then, then it is CONstrained UnPREDictable which untrapped floating-point exception, if any, are indicated by the corresponding FPSR cumulative exception bits having the value 1.

- In the ESR_ELx for the Exception level to which the trapped exception is taken, the value of the floating-point exception trapped bit for the highest priority trapped floating-point exception must be 1.
In this ESR_ELx:

— The value of the floating-point exception trapped bit for any other untrapped floating-point exception generated by the same operation must be 0. This applies to both higher priority and lower priority untrapped floating point exceptions.

— The value of the floating-point exception trapped bit for any lower priority trapped floating-point exception generated by the same operation might be 1, but the architecture does not require this.

For trapped floating-point exceptions from Advanced SIMD instructions, the architecture does not define the floating-point exception prioritization between different elements of the instruction. The architectural requirements for floating-point exception prioritization apply only to multiple floating-point exceptions generated on the same element of an Advanced SIMD operation.

**Note**

An implementation might provide information about a lower priority or untrapped floating-point exceptions in an IMPLEMENTATION DEFINED way, for example using an IMPLEMENTATION DEFINED register.
D1.13 Asynchronous exception types, routing, masking and priorities

In the Armv8-A architecture, asynchronous exceptions that are taken to AArch64 state are also known as interrupts.

There are two types of interrupts:

**Physical interrupts**
- Are signals sent to the PE from outside the PE. They are:
  - SError. System Error.
  - IRQ.
  - FIQ.

**Virtual interrupts**
- Are interrupts that software executing at EL2 can enable and make pending. A virtual interrupt is taken from EL0 or EL1 to EL1.
- Virtual interrupts have names that correspond to the physical interrupts:
  - vSError.
  - vIRQ.
  - vFIQ.

---

**Note**

- For information about how virtual interrupts might be used, see *Virtual interrupt usage model* on page D1-2320.
- The SError interrupt replaces the Armv7 asynchronous abort. The new name better describes the nature of the exception, and means that, in AArch64 state, it is categorized as a unique exception class, with EC encoding 0x2F.

An External abort generated by the memory system might be taken asynchronously using the SError interrupt. These SError interrupts always behave as edge-triggered interrupts. An implementation might include other sources of SError interrupt. It is IMPLEMENTATION DEFINED whether these other sources are edge-triggered or level-sensitive. See also *External aborts on page D4-2519.*

Each physical interrupt type can be assigned a target Exception level of EL1, EL2 or EL3, as shown in *Asynchronous exception routing on page D1-2358.*

When an interrupt occurs:

- On taking an SError or a vSError interrupt to an Exception level using AArch64, the Exception Syndrome register for that Exception level is updated to describe an SError interrupt.
  - When the RAS Extension is implemented, the exception syndrome for the vSError interrupt is taken from the values in the VSESR_EL2 register. See *Exception classes and the ESR_ELx syndrome registers on page D1-2336,* and the *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.*
- On taking an IRQ, vIRQ, FIQ or vFIQ interrupt to an Exception level using AArch64, the Exception Syndrome register for that Exception level is not updated.

The remainder of this section contains the following:

- *Asynchronous exception routing on page D1-2358.*
- *Asynchronous exception masking on page D1-2361.*
- *Virtual interrupts on page D1-2363.*
- *Prioritization and recognition of interrupts on page D1-2365.*
- *Taking an interrupt or other exception during a multi-access load or store on page D1-2366.*
### D1.13.1 Asynchronous exception routing

The following tables show the routing of physical interrupts when the highest implemented Exception level is using AArch64:

- For implementations that include both EL2 and EL3, see Table D1-8.
- For implementations that include EL3 but not EL2, see Table D1-9 on page D1-2359.
- For implementations that include EL2 but not EL3, see Table D1-10 on page D1-2360.

When the highest implemented Exception level is using AArch32, see Table G1-19 on page G1-5776.

In the tables:

**SCR**
- This is the *Effective value* of a field in SCR.

**FIQ IRQ EA**
- The *Effective value* of the field that handles the asynchronous exception type in SCR, if the highest EL is using AArch32, or SCR\_EL3, if the highest EL is using AArch64.

**HCR**
- This is the *Effective value* of a field in HCR, if EL2 is using AArch32 or HCR\_EL2 if EL2 is using AArch64.

  - When the value of the TGE is 1, the virtual exceptions are disabled.

  - When the *Effective value* of HCR.\{E2H, TGE\} is:
    - \{0, 1\} The *Effective value* of each of the HCR.\{AMO, IMO, FMO\} fields is 1.
    - \{1, 1\} The *Effective value* of each of the HCR.\{AMO, IMO, FMO\} fields is 0.

**FMO IMO AMO**
- The *Effective value* of the mask override field for the asynchronous exception type in HCR, if EL2 is using AArch32 or HCR\_EL2 if EL2 is using AArch64.

**EL2**
- The exception is taken to EL2 using AArch64.

**EL3**
- The exception is taken to EL3 using AArch64.

**C**
- The interrupt is not taken and remains pending, regardless of the PSTATE.\{A, I, F\} interrupt masks.

**FIQ IRQ Abt**
- The exception is taken to the FIQ mode, the IRQ mode or the Abort mode according to the type of asynchronous exception.

**Hyp**
- The exception is taken to AArch32 Hyp mode.

**Mon**
- The exception is taken to AArch32 Monitor mode.

**n/a**
- Not applicable. The field does not exist in the register in this configuration or the Exception level is not accessible in this configuration.

#### Table D1-8 Routing when both EL3 and EL2 are implemented

<table>
<thead>
<tr>
<th>SCR</th>
<th>HCR</th>
<th>Target when taken from EL0</th>
<th>Target when taken from EL1</th>
<th>Target when taken from EL2</th>
<th>Target when taken from EL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>EEL2*</td>
<td>EA</td>
<td>IRQ</td>
<td>FIQ</td>
<td>RW</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table D1-8 Routing when both EL3 and EL2 are implemented (continued)

<table>
<thead>
<tr>
<th>SCR</th>
<th>NS</th>
<th>EEL2a</th>
<th>EA</th>
<th>IRQ</th>
<th>FIQ</th>
<th>TGE</th>
<th>AMO</th>
<th>IMO</th>
<th>FMO</th>
<th>E2H</th>
<th>RW</th>
<th>Target when taken from EL0</th>
<th>Target when taken from EL1</th>
<th>Target when taken from EL2</th>
<th>Target when taken from EL3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EL1</td>
<td>EL1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>EL1</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>Hyp</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>EL1</td>
<td>EL1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>EL1</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>EL3</td>
</tr>
</tbody>
</table>

a. When the implementation does not include FEAT_SEL2, the SCR_EL3.EEL2 field is not implemented and the Effective value of EEL2 is 0.

Table D1-9 Routing when EL3 is implemented and EL2 is not implemented

<table>
<thead>
<tr>
<th>SCR_EL3</th>
<th>Target Exception level when executing at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EL0</td>
</tr>
<tr>
<td>EA IRQ F IQ</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>EL1</td>
</tr>
<tr>
<td>1</td>
<td>EL3</td>
</tr>
</tbody>
</table>
### Table D1-10 Routing when EL3 is not implemented and EL2 is implemented

<table>
<thead>
<tr>
<th>HCR_EL2</th>
<th>Target Exception level when executing at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TGE</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>
D1.13.2 Asynchronous exception masking

When an interrupt is masked, it means that it cannot be taken. Instead, it remains pending.

When executing in AArch64 state, interrupts are masked implicitly when the target Exception level of the interrupt is lower than the current Exception level.

In addition, interrupts can be masked when the target Exception level is the current Exception level. The controls for this are:

- **SError**: PSTATE.A
- **IRQ**: PSTATE.I
- **FIQ**: PSTATE.F

When the target Exception level is higher than the current Exception level:

- If the target Exception level is EL3, the interrupt cannot be masked by the PSTATE.{A, I, F} bits.
- If the target Exception level is EL2, and either HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, the interrupt cannot be masked by the PSTATE.{A, I, F} bits.
- If the target Exception level is EL2, HCR_EL2.E2H is 1, and HCR_EL2.TGE is 1, the interrupt can be masked by the PSTATE.{A, I, F} bits.
- If the target Exception level is EL1, the interrupt can be masked by the PSTATE.{A, I, F} bits.

**Note**

- The ability to execute in EL0 with interrupts to EL1 masked is required by some user level driver code.
- The PSTATE.{A, I, F} bits can mask both physical interrupts and virtual interrupts.
- The Armv8-A architecture does not support Non-maskable FIQ (NMFI) operations. This means that it does not provide a configuration option to override the masking of FIQs by PSTATE.F.

On taking any exception to an Exception level using AArch64, all of PSTATE.{A, I, F} are set to 1, masking all interrupts that target that Exception level.

The following tables show the masking of physical interrupts when the highest implemented Exception level is using AArch64:

- For implementations that include both EL2 and EL3, see Table D1-11 on page D1-2362.
- For implementations that include EL3 but not EL2, see Table D1-12 on page D1-2363.
- For implementations that include EL2 but not EL3, see Table D1-13 on page D1-2363.

For the masking of interrupts when the highest implemented Exception level is using AArch32, see Table G1-20 on page G1-5777.

For the masking of virtual interrupts, see Virtual interrupts on page D1-2363.

In the tables:

- **SCR**: This is the Effective value of a field in SCR.
- **FIQ IRQ EA**: The Effective value of the field that handles the asynchronous exception type in SCR, if the highest EL is using AArch32, or SCR_EL3, if the highest EL is using AArch64.
- **HCR**: This is the Effective value of a field in HCR.
- **FMO IMO AMO**: The Effective value of the mask override field for the asynchronous exception type in HCR, if EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.
- **A**: When the interrupt is asserted it is taken regardless of the value of the PSTATE.{A, I, F} interrupt masks.
When the interrupt is asserted it is subject to the corresponding Process state mask. If the value of the mask is 1 then the interrupt is not taken. If the value of the mask is 0 the interrupt is taken.

A/B

When FEAT_DoubleFault is implemented, the interrupt is an SError interrupt, and SCR_EL3.NMEA is 1, then the interrupt behaves as A. Otherwise, the interrupt behaves as B.

C

When the interrupt is asserted it is not taken, regardless of the value of the PSTATE.{A, I, F} interrupt masks.

n/a

Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR and SCR_EL3.

### Table D1-11 Physical interrupt target and masking when both EL3 and EL2 are implemented

<table>
<thead>
<tr>
<th>SCR</th>
<th>HCR</th>
<th>Effect of the interrupt mask when executing at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EL0</td>
</tr>
<tr>
<td>NS</td>
<td>EEL2a</td>
<td>EA</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>n/a</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

a. When the implementation does not include FEAT_SEL2, the SCR_EL3.EEL2 field is not implemented and the Effective value of EEL2 is 0.

b. When the implementation does not include FEAT_VHE, the HCR_EL2.E2H field is not implemented and the Effective value of E2H is 0.
### D1.13.3 Virtual interrupts

When the value of HCR_EL2.TGE is 0, setting an HCR_EL2.{FMO, IMO, AMO} routing control bit to 1 enables the corresponding virtual interrupt. When the value of HCR_EL2.TGE is 1 all virtual interrupts are disabled.

When execution is at EL2 or EL3, all types of virtual interrupt are always masked. If EL2 is not enabled in the current Security state, all types of virtual interrupts are always masked.

Virtual interrupts can only be taken from EL0 or EL1 to EL1. When a virtual interrupt type is enabled, that type of interrupt can be generated by:

- Software setting the corresponding virtual interrupt pending bit, HCR_EL2.{VSE, VI, VF}, to 1.
- For a vIRQ or a vFIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from an interrupt controller. See, for example, the ARM Generic Interrupt Controller Architecture Specification.

**Note**

For a usage model for virtual interrupts, see *Virtual interrupt usage model on page D1-2320*.

When a virtual interrupt is disabled:

- It cannot be taken.
- It cannot be seen in the ISR_EL1.

Each virtual interrupt type can be masked when execution is in EL1 or EL0, by using the same Process State mask bits that mask the physical interrupts, PSTATE.{A, I, F}.

---

**Table D1-12 Physical interrupt target and masking when EL3 is implemented and EL2 is not implemented**

<table>
<thead>
<tr>
<th>SCR_EL3</th>
<th>Target Exception level</th>
<th>Effect of the interrupt mask when executing at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>EA</td>
<td>EL0</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>EL1</td>
</tr>
<tr>
<td>1</td>
<td>EL3</td>
<td>A</td>
</tr>
</tbody>
</table>

**Table D1-13 Physical interrupt target and masking when EL3 is not implemented and EL2 is implemented**

<table>
<thead>
<tr>
<th>HCR_EL2</th>
<th>Target Exception level</th>
<th>Effect of the interrupt mask when executing at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2Ha</td>
<td>AMO</td>
<td>EL0</td>
</tr>
<tr>
<td>TGE</td>
<td>IMO</td>
<td>NS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>EL1</td>
</tr>
<tr>
<td>1</td>
<td>EL2</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>

a. If the implementation does not include FEAT_VHE, the HCR.E2H field is not implemented and behavior is as if the value of E2H is 0.
Table D1-14 summarizes the bits that enable virtual interrupts and the bits that cause virtual interrupts to be pending.

### Table D1-14 HCR_EL2 interrupt control bits

<table>
<thead>
<tr>
<th>Virtual interrupt type</th>
<th>Enable controla</th>
<th>Cause a virtual interrupt to be pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSError</td>
<td>HCR_EL2.AMO</td>
<td>HCR_EL2.VSE</td>
</tr>
<tr>
<td>vIRQ</td>
<td>HCR_EL2.IMO</td>
<td>HCR_EL2.VI</td>
</tr>
<tr>
<td>vFIQ</td>
<td>HCR_EL2.FMO</td>
<td>HCR_EL2.VF</td>
</tr>
</tbody>
</table>

a. Applies only when the value of HCR_EL2.TGE is 0, otherwise the virtual interrupts are disabled.

On taking a vIRQ or a vFIQ interrupt, the corresponding virtual interrupt pending bit in the HCR_EL2 retains its state.

On taking a vSError interrupt, HCR_EL2.VSE is cleared to 0.

Note

This means that if the virtual interrupt pending bits are used, the vIRQ or vFIQ exception handler must cause software executing at EL2 or EL3 to set their corresponding virtual interrupt pending bits to 0.

Taking a vSError interrupt to an Exception level using AArch64 updates ESR_EL1 with the encoding for an SError interrupt. For the encoding, see *Exception classes and the ESR_ELx syndrome registers on page D1-2336*. When the RAS Extension is implemented, the exception syndrome for the vSError interrupt is taken from the values in the VSESR_EL2 register, see the *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile*. Taking a vIRQ or a vFIQ interrupt to an Exception level using AArch64 does not update the ESR_EL1.

The following table shows the masking of virtual interrupts when the highest implemented Exception level is using AArch64. In the table:

- **B** When the interrupt is asserted it is subject to the corresponding Process state mask. If the value of the mask is 1 then the interrupt is taken. If the value of the mask is 0 the interrupt is taken.
- **C** When the interrupt is asserted it is not taken, regardless of the value of the Process state mask.
- **n/a** Not applicable. The PE cannot be executing at this Exception level for the specified state of HCR and SCR_EL3.
- **HCR** In Table D1-15, including in the table footnote:
  - When EL2 is using AArch64 HCR refers to the AArch64 register HCR_EL2.
  - When EL2 is using AArch32 HCR refers to the AArch32 register HCR.

When the value of HCR.TGE is 1, the virtual exceptions are disabled.

When the *Effective value* of HCR.\{E2H, TGE\} is:

- \{0, 1\} The *Effective value* of each of the HCR.\{AMO, IMO, FMO\} fields is 1.
- \{1, 1\} The *Effective value* of each of the HCR.\{AMO, IMO, FMO\} fields is 0.

### Table D1-15 Virtual interrupt masking

<table>
<thead>
<tr>
<th>SCR_EL3</th>
<th>HCR</th>
<th>Effect of the interrupt mask when executing at:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEL2</td>
<td>NS</td>
<td>EA</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
</tbody>
</table>
D1.13.4 Prioritization and recognition of interrupts

The prioritization of interrupts, including virtual interrupts, is IMPLEMENTATION DEFINED.

Note

As indicated at the start of Asynchronous exception types, routing, masking and priorities on page D1-2357, in AArch64 state all possible asynchronous exceptions are defined as interrupts.

Any interrupt that is pending before a Context synchronization event in the following list, is taken before the first instruction after the context synchronizing event, provided that the pending interrupt is not masked:

- Execution of an ISB instruction.
- Exception entry, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EIS bit is set.
- Exception return, if FEAT_ExS is not implemented or if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EOS bit is set.
- Exit from Debug state.

Note

If the first instruction after the context synchronizing event generates a synchronous exception, then the architecture does not define whether the PE takes the interrupt or the synchronous exception first.

- The ISR_EL1 identifies any pending interrupts.
- Interrupts are masked when the PE is in Debug state, and therefore this list of context synchronizing events does not include the DCPS and DRPS instructions.

An error synchronization event defines additional requirements for taking an SError interrupt, see the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

In the absence of a specific requirement to take an interrupt, the architecture only requires that unmasked pending interrupts are taken in finite time.

If an unmasked interrupt was pending but is changed to not pending before it is taken, then the architecture permits the interrupt to be taken, but does not require this to happen. If the interrupt is taken then it must be taken before the first Context synchronization event after the interrupt was changed to not pending.
D1.13.5 Taking an interrupt or other exception during a multi-access load or store

In AArch64 state, interrupts can be taken during a sequence of memory accesses caused by a single load or store instruction. This is true regardless of the memory type being accessed.

If an interrupt, or another exception, is taken from AArch64 during the execution of an instruction that performs a sequence of memory accesses, rather than a single single-copy atomic access, then:

• For a load, any register being loaded by the instruction other than ones used in the generation of the address by the instruction, can contain an UNKNOWN value. Registers used in the generation of the address are restored to their initial value.

• For a store, any data location being stored to by the instruction can contain an UNKNOWN value.

• For either a load or a store, if the instruction specifies writeback of the base address, then that register is restored to its initial value.

__Note__

• This interrupt behavior is in contrast to behavior in AArch32 state, when interrupts cannot be taken during a sequence of memory accesses caused by a single load or store instruction.

• In both Execution states, synchronous data abort exceptions can be taken during the execution of an instruction that performs a sequence of memory accesses.

• Software must avoid using multiple-register load and store instructions for accesses to Device memory, particularly to Device memory with the non-Gathering attribute, because an exception taken during the load or store can result in repeated accesses.
D1.14 Configurable instruction enables and disables, and trap controls

This section describes the controls provided by AArch64 state for enabling, disabling, and trapping particular instructions. Each control is categorized as an instruction enable, an instruction disable, or a trap control.

Instruction enables and instruction disables

Enable or disable the use of one or more particular instructions at a particular Exception level and Security state.

When an instruction is disabled as a result of an instruction enable or disable, it is UNDEFINED.

Trap controls

A trap control determines whether one or more particular instructions, whenever executed at a particular Exception level, are trapped.

A trapped instruction generates a Trap exception.

For trap controls provided by:

- **EL1** Trap exceptions are taken to EL1, unless routed from EL0 to EL2 because HCR_EL2.TGE is 1, as described in Routing exceptions from EL0 to EL2 on page D1-2348. For descriptions of these controls, see EL1 configurable controls on page D1-2368.
- **EL2** Trap exceptions are taken to EL2. For descriptions of these controls, see EL2 configurable controls on page D1-2372.
- **EL3** Trap exceptions are taken to EL3. For descriptions of these controls, see EL3 configurable controls on page D1-2383.

--- Note ---

The definitions of traps and enables and disables overlap, and the classification of some controls is historical. In AArch64 state, the most significant characteristic of an exception report is the ESR_ELx.EC value with which it is reported. Describing a register control field as an instruction enable, an instruction disable, or a trap control, gives no indication of how an exception that is generated as a consequence of the value of that field is handled or reported.

An exception generated as a result of an instruction enable or disable, or a trap control, is only taken if both of the following apply:

- The instruction generating the exception does not also generate a higher priority exception. Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 defines the prioritization of different exceptions on the same instruction.
- The instruction is not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in the PE state it is executed in. UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions can generate exceptions as a result of these controls, but the architecture does not require them to do so.

Exceptions generated as a result of these controls are synchronous exceptions.

Exceptions are reported in the ESR_ELx, with an EC value that indicates the Exception class, and:

- Many cases, including all traps, are reported with a non-zero EC value and an associated syndrome.
- Some cases where an instruction is UNDEFINED are reported with an EC value 0x00, the value for an exception for an unknown or uncategorized reason, and in these cases no syndrome is provided. ISS encoding for exceptions with an unknown reason on page D13-2967 identifies the cases that are reported with EC value 0x00.

Table D1-6 on page D1-2337 lists the EC values that are used for exceptions that result from traps, enables, and disables.

--- Note ---

- A particular control might have a mnemonic that suggests it is different type of control to the control type it is categorized as. For example, SCTLR_EL1.DZE is a trap control even though DZE means DC ZVA Enable.
• In addition to the controls described in this section, a routing control, HCR_EL2.TGE, can be used to route exceptions from EL0 to EL2. See Routing exceptions from EL0 to EL2 on page D1-2348.

• An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide control of trapping of IMPLEMENTATION DEFINED features.

This section is organized as follows:

• Traps on instructions.
• EL1 configurable controls.
• EL2 configurable controls on page D1-2372.
• EL3 configurable controls on page D1-2383.

D1.14.1 Traps on instructions

When an instruction is disabled or trapped, the exception is taken before execution of the instruction. This means the preferred exception return of the exception is the instruction that is trapped.

If a conditional instruction is trapped, in AArch32 state, the Armv8-A architecture permits, but does not require the trap to apply to conditional AArch32 instructions that fail their Condition code check. For more information, see:

• Conditional execution of undefined instructions on page G1-5780.
• EL2 configurable controls on page G1-5827.
• EL3 configurable controls on page G1-5846.
• Limitations of the instruction pseudocode on page K14-8132.

If the instruction is a register access instruction:

• No access is made before the exception is taken.
• Side-effects that are normally associated with the access do not occur before the exception is taken.

D1.14.2 EL1 configurable controls

These controls are in _EL0 and _EL1 System registers. The resulting exceptions might be taken from either Execution state. SPSR_EL1.M[4] indicates which Execution state the exception was taken from.

If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, these Trap exceptions are routed to EL2 instead of EL1, see Routing exceptions from EL0 to EL2 on page D1-2348.

Table D1-16 shows the _EL0 and _EL1 System registers that contain these controls.

Table D1-16 _EL1 registers that contain instruction enables and disables, and trap controls

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMUSERENR_EL0</td>
<td>Activity Monitors User Enable Register</td>
</tr>
<tr>
<td>CPACR_EL1</td>
<td>Architectural Feature Access Control Register</td>
</tr>
<tr>
<td>MDSCR_EL1</td>
<td>Monitor System Debug Control Register</td>
</tr>
<tr>
<td>PMUSERENR_EL0</td>
<td>Performance Monitors User Enable Register</td>
</tr>
<tr>
<td>SCTLR_EL1</td>
<td>System Control Register (EL1)</td>
</tr>
<tr>
<td>TCR_EL1</td>
<td>Translation Control Register (EL1)</td>
</tr>
</tbody>
</table>
Table D1-17 summarizes the controls.

### Table D1-17 Instruction enables and disables, and trap controls, provided by EL1

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMUSERENR_EL0.EN</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to Activity Monitors registers</td>
</tr>
<tr>
<td>CNTKCTL_EL1.{EL0PTEN,</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to the Generic Timer registers on page D1-2370</td>
</tr>
<tr>
<td>EL0VTEN, EL0PCTEN, EL0VCTEN}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPACR_EL1.TTA</td>
<td>T</td>
<td>Traps to EL1 of EL0 and EL1 System register accesses to the trace registers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page D1-2370</td>
</tr>
<tr>
<td>CPACR_EL1.FPEN</td>
<td>T</td>
<td>Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on page D1-2370</td>
</tr>
<tr>
<td>MDSCR_EL1.TDCC</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>registers on page D1-2370</td>
</tr>
<tr>
<td>PMUSERENR_EL0.{ER, CR,</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to Performance Monitors registers on page D1-2370</td>
</tr>
<tr>
<td>SW, EN}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTLR_EL1.{EnDA, EnDB,</td>
<td>E</td>
<td>Enabling use of the Pointer authentication instructions, EL1&amp;0 translation</td>
</tr>
<tr>
<td>EnIA, EnIB}</td>
<td></td>
<td>regime on page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.UI</td>
<td>T</td>
<td>Traps to EL1 of EL0 execution of cache maintenance instructions on page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.{nTWE, nTWI}</td>
<td>T</td>
<td>Traps to EL1 of EL0 execution of WFE and WFI instructions on page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.UCT</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to the CTR_EL0 on page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.DZE</td>
<td>T</td>
<td>Traps to EL1 of EL0 execution of DC ZVA instructions on page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.UMA</td>
<td>T</td>
<td>Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.{SED, ITD}</td>
<td>D</td>
<td>Disable or enabling EL0 use of AArch32 deprecated functionality on page D1-2371</td>
</tr>
<tr>
<td>SCTLR_EL1.CP15BEN</td>
<td>E</td>
<td>Disabling or enabling EL0 use of AArch32 deprecated functionality on page D1-2371</td>
</tr>
<tr>
<td>TCR_EL1.{TBID0, TBID1}</td>
<td>D</td>
<td>Disabling Address tagging for instruction accesses, EL1&amp;0 translation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regime on page D1-2372</td>
</tr>
</tbody>
</table>

*a. See Table D1-18.

---

### Table D1-18 Control types, for exceptions taken to EL1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page D1-2367</td>
</tr>
</tbody>
</table>

---

### Traps to EL1 of EL0 accesses to Activity Monitors registers

AMUSERENR_EL0.EN traps EL0 accesses to the Activity Monitors registers to EL1.
Traps to EL1 of EL0 accesses to the Generic Timer registers

CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} trap EL0 accesses to the Generic Timer registers to EL1, as follows:

- CNTKCTL_EL1.EL0PTEN traps EL0 accesses to the physical timer registers.
- CNTKCTL_EL1.EL0VTEN traps EL0 accesses to the virtual timer registers.
- CNTKCTL_EL1.EL0PCTEN traps EL0 accesses to the frequency register and physical counter register.
- CNTKCTL_EL1.EL0VCTEN traps EL0 accesses to the frequency register and virtual counter register.

Accesses to the frequency register, CNTFRQ_EL0 or CNTFRQ, are only trapped if CNTKCTL_EL1.EL0PCTEN and CNTKCTL_EL1.EL0VCTEN are both 0.

Traps to EL1 of EL0 and EL1 System register accesses to the trace registers

CPACR_EL1.TTA traps EL0 and EL1 System register accesses to the trace registers to EL1.

--- Note ---

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and the resulting exception is higher priority than a CPACR_EL1.TTA Trap exception.
- The Armv8-A architecture does not provide traps on trace register accesses through the optional Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see Traps on instructions on page D1-2368.

Traps to EL1 of EL0 and EL1 accesses to SIMD and floating-point functionality

When EL1 is using AArch64, CPACR_EL1.FPEN traps EL0 and EL1 accesses of the following registers to EL1:

- FPCR, FPSR, and any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-S31 registers. See The SIMD and floating-point registers, V0-V31 on page D1-2322.
- FPSCR, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See Advanced SIMD and floating-point System registers on page G1-5814.

The value of CPACR_EL1.FPEN determines whether the trap applies to accesses from both EL0 and EL1 using AArch64, or only to accesses from EL0 accesses from both Execution states.

Traps to EL1 of EL0 accesses to the Debug Communications Channel (DCC) registers

MDSCR_EL1.TDCC traps EL0 accesses to the DCC registers to EL1.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

Traps to EL1 of EL0 accesses to Performance Monitors registers

PMUSERENR_EL0.{ER, CR, SW, EN} trap EL0 accesses to the Performance Monitors registers to EL1.

For those Performance Monitors registers that more than one PMUSERENR_EL0.{ER, CR, SW, EN} control applies to, accesses are only trapped if all controls that apply are set to 0.

The accesses that these trap controls trap might be reads, writes, or both.

PMUSERENR_EL0.EN traps EL0 access only if the corresponding EL1 accesses is permitted. For example, the PMSWINC_EL0 and PMSWINC registers are WO at EL1, and therefore are not trapped.
Enabling use of the Pointer authentication instructions, EL1&0 translation regime

This control is implemented when FEAT_PAuth is implemented.

Each of the SCTLR_EL1.{EnDA, EnDB, EnIA, EnIB} fields enables the pointer authentication functionality for the corresponding Pointer authentication instructions for the EL1&0 translation regime. For more information, see System register control of pointer authentication on page D5-2533.

--- Note ---
These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be generated.

Traps to EL1 of EL0 execution of cache maintenance instructions

SCTLR_EL1.UCI traps EL0 execution using AArch64 of cache maintenance instructions to EL1.

Traps to EL1 of EL0 execution of \texttt{WFE} and \texttt{WFI} instructions

SCTLR_EL1.{nTWE, nTWI} trap EL0 execution of \texttt{WFE} and \texttt{WFI} instructions to EL1 if the instruction would otherwise have caused the PE to enter a low-power state.

--- Note ---
Since a \texttt{WFE} or \texttt{WFI} can complete at any time, even without a Wakeup event, the traps on \texttt{WFE} of \texttt{WFI} are not guaranteed to be taken, even if the \texttt{WFE} or \texttt{WFI} is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

- \textit{Wait for Event mechanism and Send event} on page D1-2391.
- \textit{Wait For Interrupt} on page D1-2394.

Traps to EL1 of EL0 accesses to the CTR_EL0

SCTLR_EL1.UCT traps EL0 accesses using AArch64 to the CTR_EL0 to EL1.

Traps to EL1 of EL0 execution of \texttt{DC ZVA} instructions

SCTLR_EL1.DZE traps EL0 execution of \texttt{DC ZVA} instructions to EL1. If the trap is enabled, reading the DCZID_EL0 returns a value that indicates that \texttt{DC ZVA} instructions are not implemented.

Traps to EL1 of EL0 accesses to the PSTATE.{D, A, I, F} interrupt masks

SCTLR_EL1.UMA traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to EL1. If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, these Trap exceptions are routed to EL2.

Disabling or enabling EL0 use of AArch32 deprecated functionality

Table D1-19 on page D1-2372 shows the deprecated AArch32 functionality that might have disable controls in the SCTLR_EL1:

- The SED control is always implemented.
- Whether each of the ITD, CP15BEN controls is implemented is IMPLEMENTATION DEFINED. If a control is not implemented then the associated functionality cannot be disabled.
These SCTLR_EL1 controls apply only to execution at EL0 using AArch32. When an instruction is disabled by one of these controls, it is UNDEFINED at EL0 using AArch32. Table D1-19 shows how the exceptions are reported in ESR_EL1:

Table D1-19 EL1 controls for disabling and enabling EL0 use of AArch32 deprecated functionality

<table>
<thead>
<tr>
<th>Deprecated AArch32 functionality</th>
<th>Instruction enable or disable in the SCTLR_EL1</th>
<th>Disabled instructions</th>
<th>Syndrome reporting in ESR_EL1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETEND instructions</td>
<td>SEDb</td>
<td>SETEND instructions</td>
<td>Exception for an unknown reason, using EC value 0x00</td>
</tr>
<tr>
<td>Some uses of IT instructions</td>
<td>ITDc</td>
<td>See the SCTLR_EL1.IT description</td>
<td></td>
</tr>
<tr>
<td>Accesses to the CP15DMB, CP15DSB, and CP15ISB barrier instructions</td>
<td>CP15BEND</td>
<td>MCR accesses to the CP15DMB, CP15DSB, and CP15ISB instructions</td>
<td></td>
</tr>
</tbody>
</table>

- a. If HCR_EL2.TGE is 1 and EL2 is enabled in the current Security state, the exception is routed to EL2 and reported in ESR_EL2 using the EC value shown in the table.
- b. SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.
- c. IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.
- d. System register (coproc == 0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when the value of CP15BEN is 0.

---

**Note**

- The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are deprecated for performance reasons.
- The SCTLR provides similar controls that apply when EL1 is using AArch32, and the HSCTLR provides similar controls that apply when EL2 is using AArch32.

---

**Disabling Address tagging for instruction accesses, EL1&0 translation regime**

This control is implemented when FEAT_PAuth is implemented.

When a TCR_EL1.{TBI0, TBI1} field enables the use of address tagging for the EL1&0 translation regime, the corresponding TCR_EL1.{TBID0, TBID1} field determines whether address tagging is used for both data and instruction addresses, or only for data addresses. For more information, see *Address tagging in AArch64 state* on page D5-2528.

---

**Note**

These controls determine the scope of address tagging. They never cause an exception to be generated.

---

**D1.14.3 EL2 configurable controls**

These controls are in _EL2 System registers. The resulting exceptions might be taken from either Execution state. SPSR_EL2.M[4] indicates which Execution state the exception was taken from.

These controls are ignored in Secure state.

FEAT_FGT provides fine-grained traps for architected system registers. Where implementations have IMPLEMENTATION DEFINED registers accessible from EL1 or EL0, Arm recommends that EL2 accessible fine-grained traps are provided for these registers using a control register held in IMPLEMENTATION DEFINED space.
Table D1-20 shows the _EL2 System registers that contain these controls.

Table D1-20 _EL2 registers that contain instruction disables and trap controls

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPTR_EL2</td>
<td>Architectural Feature Trap Register, EL2</td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>Hypervisor Activity Monitors Fine-Grained Read Trap Register</td>
</tr>
<tr>
<td>HCR_EL2</td>
<td>Hypervisor Configuration Register</td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>Hypervisor Debug Fine-Grained Read Trap Register</td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>Hypervisor Debug Fine-Grained Write Trap Register</td>
</tr>
<tr>
<td>HFGITR_EL2</td>
<td>Hypervisor Fine-Grained Instruction Trap Register</td>
</tr>
<tr>
<td>HFGWR_EL2</td>
<td>Hypervisor Fine-Grained Write Trap Register</td>
</tr>
<tr>
<td>HSTR_EL2</td>
<td>Hypervisor System Trap Register</td>
</tr>
<tr>
<td>MDCR_EL2</td>
<td>Monitor Debug Configuration Register, EL2</td>
</tr>
<tr>
<td>SCTLR_EL2</td>
<td>System Control Register, EL2</td>
</tr>
<tr>
<td>TCR_EL2</td>
<td>Translation Control Register, EL2</td>
</tr>
</tbody>
</table>

Table D1-21 summarizes the controls.

**Note**
For completeness, Table D1-21 includes the routing control described in *Routing exceptions from EL0 to EL2 on page D1-2348*.

Table D1-21 Instruction disables and trap controls provided by EL2

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTHCTL_EL2, {EL1PCEN, EL1PCTEN}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 accesses to the Generic Timer registers on page D1-2375</td>
</tr>
<tr>
<td>CPTR_EL2.TCPAC</td>
<td>T</td>
<td>Trapping to EL2 of EL1 accesses to the CPACR_EL1 or CPACR on page D1-2375</td>
</tr>
<tr>
<td>CPTR_EL2.TAM</td>
<td>T</td>
<td>Traps to EL2 of EL1 and EL0 accesses to Activity Monitors registers on page D1-2375</td>
</tr>
<tr>
<td>CPTR_EL2.TTA</td>
<td>T</td>
<td>Traps to EL2 of System register accesses to the trace registers on page D1-2376</td>
</tr>
<tr>
<td>CPTR_EL2.TFP</td>
<td>T</td>
<td>General trapping to EL2 of accesses to the SIMD and floating-point registers on page D1-2376</td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>T</td>
<td>Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers on page D1-2376</td>
</tr>
<tr>
<td>HCR_EL2.FIEN</td>
<td>T</td>
<td>Traps to EL2 of EL1 accesses to the RAS error record registers on page D1-2376</td>
</tr>
<tr>
<td>HCR_EL2.AT</td>
<td>T</td>
<td>Trap to EL2 of EL1 accesses to AT S1E* instructions on page D1-2376</td>
</tr>
</tbody>
</table>
### Table D1-21 Instruction disables and trap controls provided by EL2 (continued)

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR_EL2.{NV, NV1}</td>
<td>T</td>
<td>Traps to EL2 for Nested virtualization on page D1-2376</td>
</tr>
<tr>
<td>HCR_EL2.API</td>
<td>T</td>
<td>Trap to EL2 of EL0 accesses to Pointer authentication instructions on page D1-2377</td>
</tr>
<tr>
<td>HCR_EL2.APK</td>
<td>T</td>
<td>Trap to EL2 of EL1 accesses to Pointer authentication key registers on page D1-2377</td>
</tr>
<tr>
<td>HCR_EL2.TERR</td>
<td>T</td>
<td>Traps to EL2 of EL1 accesses to the RAS error record registers on page D1-2376</td>
</tr>
<tr>
<td>HCR_EL2.{TRVM, TVM}</td>
<td>T</td>
<td>Traps to EL2 of EL1 accesses to virtual memory control registers on page D1-2377</td>
</tr>
<tr>
<td>HCR_EL2.HCD</td>
<td>D</td>
<td>Disabling Non-secure state execution of HVC instructions on page D1-2378</td>
</tr>
<tr>
<td>HCR_EL2.TDZ</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 execution of DC ZVA instructions on page D1-2378</td>
</tr>
<tr>
<td>HCR_EL2.TGE</td>
<td>R</td>
<td>Routing exceptions from EL0 to EL2 on page D1-2348</td>
</tr>
<tr>
<td>HCR_EL2.TTLB</td>
<td>T</td>
<td>Traps to EL2 of EL1 execution of TLB maintenance instructions on page D1-2378</td>
</tr>
<tr>
<td>HCR_EL2.{TSW, TPC, TPU}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 execution of cache maintenance instructions on page D1-2378</td>
</tr>
<tr>
<td>HCR_EL2.TACR</td>
<td>T</td>
<td>Traps to EL2 of EL1 accesses to the Auxiliary Control Register on page D1-2379</td>
</tr>
<tr>
<td>HCR_EL2.TIDCP</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 accesses to lock, DMA, and TCM operations on page D1-2379</td>
</tr>
<tr>
<td>HCR_EL2.TSC</td>
<td>T</td>
<td>Traps to EL2 of EL1 execution of SMC instructions on page D1-2379</td>
</tr>
<tr>
<td>HCR_EL2.{TID0, TID1, TID2, TID3}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 accesses to the ID registers on page D1-2380</td>
</tr>
<tr>
<td>HCR_EL2.{TWI, TWE}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions on page D1-2380</td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>T</td>
<td>Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU registers on page D1-2381</td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>T</td>
<td>Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers on page D1-2381</td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>T</td>
<td>Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions on page D1-2381</td>
</tr>
<tr>
<td>HFGITR_EL2</td>
<td>T</td>
<td>General trapping to EL2 of EL0 and EL1 accesses to System registers, from AArch32 state only on page D1-2381</td>
</tr>
<tr>
<td>MDCR_EL2.TDCC</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers on page D1-2383</td>
</tr>
<tr>
<td>MDCR_EL2.TTRF</td>
<td>T</td>
<td>Traps to EL2 of System register accesses to the trace filter control registers on page D1-2382</td>
</tr>
<tr>
<td>MDCR_EL2.{TDRA, TDOSA, TDA}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 System register accesses to debug registers on page D1-2382</td>
</tr>
</tbody>
</table>
Table D1-21 Instruction disables and trap controls provided by EL2 (continued)

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCR_EL2, {TPM, TPMCR}</td>
<td>T</td>
<td>Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers on page D1-2383</td>
</tr>
<tr>
<td>SCTLR_EL2, {EnDA, EnDB, EnIA, EnIB}</td>
<td>E</td>
<td>Enabling use of the Pointer authentication instructions, EL2 translation regime on page D1-2383</td>
</tr>
<tr>
<td>TCR_EL2, {TBID0, TBID1}</td>
<td>D</td>
<td>Disabling Address tagging for instruction accesses, EL2 translation regime on page D1-2383</td>
</tr>
</tbody>
</table>

a. See Table D1-22.

Table D1-22 Control types, for exceptions taken to EL1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>R</td>
<td>Routing control</td>
<td>Routing exceptions from EL0 to EL2 on page D1-2348</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page D1-2367</td>
</tr>
</tbody>
</table>

Also see the following for more general information about traps to EL2:

- *Traps on instructions on page D1-2368.*
- For traps from an Exception level using AArch32:
  - *Instructions that fail their Condition code check on page G1-5829.*
  - *Trapping to EL2 of instructions that are UNPREDICTABLE on page G1-5829.*

Traps to EL2 of EL0 and EL1 accesses to the Generic Timer registers

CNTHCTL_EL2, {EL1PCEN, EL1PCTEN} trap EL0 and EL1 accesses to the Generic Timer registers to EL2 if enabled for the current Security state, as follows:

- CNTHCTL_EL2.EL1PCEN traps EL0 and EL1 accesses to the physical timer registers.
- CNTHCTL_EL2.EL1PCTEN traps EL0 and EL1 accesses to the physical counter register.

Trapping to EL2 of EL1 accesses to the CPACR_EL1 or CPACR

CPTR_EL2.TCPAC traps EL1 accesses to the CPACR_EL1 or CPACR to EL2:

Note

- The CPACR_EL1 or CPACR is not accessible at EL0.
- In Armv7 and earlier versions of the Arm architecture, one function of the CPACR is as an ID register that identifies what coprocessor or conceptual coprocessor functionality is implemented. Legacy software might use this identification mechanism, and a hypervisor can use this trap to emulate this mechanism. For more information about this coprocessor model, see *Background to the System register interface on page G1-5810.*

Traps to EL2 of EL1 and EL0 accesses to Activity Monitors registers

CPTR_EL2.TAM traps EL1 and EL0 accesses to the Activity Monitor registers to EL2.
Traps to EL2 of System register accesses to the trace registers

**CPTR_EL2.TTA** traps System register accesses to the trace registers to EL2.

--- **Note** ---

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than a **CPTR_EL2.TTA** Trap exception.

- EL2 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see *Traps on instructions* on page D1-2368.

General trapping to EL2 of accesses to the SIMD and floating-point registers

**CPTR_EL2.TFP** traps accesses to the following SIMD and floating-point registers to EL2:

- **FPCR, FPSR, FPEXC32_EL2**, and any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-S31 registers. See *The SIMD and floating-point registers, V0-V31* on page D1-2322.

- **FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC**, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See *Advanced SIMD and floating-point System registers* on page G1-5814. Permitted VMSR accesses to the FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

Fine-grained traps to EL2 of EL0 and EL1 read accesses to Activity Monitors registers

The fields in **HAFGRTR_EL2** trap read accesses to individual or pairs of Activity Monitors registers to EL2 if enabled in the current Security state. The values of the register are treated as 0 for all purposes other than direct reads of the register when **HCR_EL2.{E2H, TGE}** is \{1,1\}.

EL1 accesses are trapped from AArch64. When EL1 is using AArch64 and the functionality is accessible from EL0, EL0 accesses are trapped from AArch64 or AArch32.

If the Activity monitors extension is not implemented, **HAFGRTR_EL2** is not implemented. If an Activity monitor auxiliary counter is not implemented, the corresponding field in **HAFGRTR_EL2** is RES0.

Traps to EL2 of EL1 accesses to the RAS error record registers

**HCR_EL2.TERR** traps EL1 accesses to the RAS ER* registers to EL2 if enabled in the current Security state.

**HCR_EL2.FIEN** traps EL1 accesses to the RAS ER* registers to EL2 if enabled in the current Security state.

Trap to EL2 of EL1 accesses to **AT S1E*<sup>+</sup> instructions**

This control is implemented when **FEAT_NV** is implemented.

**HCR_EL2.AT** traps to EL2, if enabled in the current Security state, from EL1 accesses to some Address translation instructions. Because nested virtualization is supported only in AArch64 state this control only traps from AArch64 state.

For more information, see *Effect of HCR_EL2.{NV, NV1}* on page D5-2638.

Traps to EL2 for Nested virtualization

These controls are implemented when **FEAT_NV** is implemented.
Note

When FEAT_NV2 is implemented and HCR_EL2.NV2 is 1, the redirection of register accesses to memory accesses has priority over the trapping of register accesses by HCR_EL2.{NV, NV1}, see Enhanced support for nested virtualization on page D5-2640.

HCR_EL2.NV traps the following to EL2, if enabled in the current Security state, from EL1:

- Some System register, System instruction, and Special-purpose register accesses that are UNDEFINED at EL1 when FEAT_NV is not implemented.
- Only accesses that are not UNDEFINED at EL2 are trapped.

Note

This means that, for a register that is RO at EL2, and UNDEFINED at Non-secure EL1 when FEAT_NV is not implemented, when FEAT_NV is implemented and this trap is enabled:

- Read accesses to the register from EL1 are trapped to EL2.
- Write accesses to the register from EL1 remain UNDEFINED.

- The execution of some instructions that are UNDEFINED at EL1 when FEAT_NV is not implemented.

Because nested virtualization is supported only in AArch64 state this control only traps from AArch64 state.

Note

In addition, when the value of HCR_EL2.NV is 1, a read of CurrentEL returns the value 0b10 for bits[3:2].

HCR_EL2.NV1 traps to EL2, if enabled in the current Security state, from EL1 accesses to some System registers and Special-purpose registers. Because nested virtualization is supported only in AArch64 state this control only traps from AArch64 state.

For more information, see Effect of HCR_EL2.{NV, NV1} on page D5-2638.

Trap to EL2 of EL0 accesses to Pointer authentication instructions

This control is implemented when FEAT_PAuth is implemented.

HCR_EL2.API traps, to EL2 if enabled in the current Security state, accesses to any of the Pointer authentication instructions for which pointer authentication is enabled, for instructions executed either:

- At EL1.
- If the Effective value of HCR_EL2.{TGE, E2H} is not {1, 1}, at EL0.

Because pointer authentication is supported only in AArch64 state, this control only traps from AArch64 state.

For more information, including the description of when pointer authentication is enabled for an instruction, see System register control of pointer authentication on page D5-2533.

Trap to EL2 of EL1 accesses to Pointer authentication key registers

This control is implemented when FEAT_PAuth is implemented.

HCR_EL2.APK traps, to EL2 if enabled in the current Security state, accesses to the Pointer authentication key registers from EL1 to EL2. Because pointer authentication is supported only in AArch64 state this control only traps from AArch64 state.

For more information, see System register control of pointer authentication on page D5-2533.

Traps to EL2 of EL1 accesses to virtual memory control registers

HCR_EL2.{TRVM, TVM} trap EL1 accesses to the virtual memory control registers to EL2, if enabled in the current Security state.
EL2 provides a second stage of address translation, that a hypervisor can use to remap the address map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to the registers that control the Non-secure memory system. A hypervisor might use this trap as part of its virtualization of memory management.

Disabling Non-secure state execution of \texttt{HVC} instructions

\texttt{HCR\_EL2.HCD} disables execution of \texttt{HVC} instructions at EL2 and EL1, and any resulting exception is taken from the current Exception level to the current Exception level.

Note

\texttt{HVC} instructions are always \texttt{UNDEFINED} at EL0.

\texttt{HCR\_EL2.HCD} is only implemented if EL3 is not implemented. Otherwise, it is \texttt{RES0}.

Traps to EL2 of EL0 and EL1 execution of \texttt{DC ZVA} instructions

\texttt{HCR\_EL2.TDZ} traps EL0 and EL1 execution of \texttt{DC ZVA} instructions to EL2 if enabled in the current Security state, and reading the \texttt{DCZID\_EL0} returns a value that indicates that \texttt{DC ZVA} instructions are not implemented.

Traps to EL2 of EL1 execution of TLB maintenance instructions

In the Armv8-A architecture, the System instruction encoding space includes TLB maintenance instructions.

\texttt{HCR\_EL2.TTLB} traps EL1 execution of TLB maintenance instructions to EL2 if enabled in the current Security state:

Note

These instructions are always \texttt{UNDEFINED} at EL0.

For more information about these instructions, see:

- \texttt{TLB maintenance instructions} on page D5-2664, for the AArch64 state instructions.
- \texttt{The scope of TLB maintenance instructions} on page G5-6044, for the AArch32 state instructions.

Traps to EL2 of EL0 and EL1 execution of cache maintenance instructions

\texttt{HCR\_EL2.{TSW, TPC, TPU}} trap cache maintenance instructions to EL2, if enabled in the current Security state. Execution is trapped from EL1, or from EL0 if permitted by \texttt{SCTLR\_EL1.UCI}.

\texttt{HCR\_EL2.TSW} traps data or unified cache maintenance by set/way instructions.

Note

These instructions are always \texttt{UNDEFINED} at EL0.

\texttt{HCR\_EL2.TPC} traps data or unified cache maintenance to point of coherency instructions.

Note

\texttt{DC IVAC} is always \texttt{UNDEFINED} at EL0 using AArch64.

\texttt{DCIMVAC}, \texttt{DCCIMVAC}, and \texttt{DCCMVAC} are always \texttt{UNDEFINED} at EL0 using AArch32.

\texttt{HCR\_EL2.TPU} traps cache maintenance to point of unification instructions.
Note

IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
ICIMVAU, ICIALLU, ICIALLUI, and DCCMVAU are always UNDEFINED at EL0 using AArch32.

For more information about these instructions, see:
- Cache maintenance instructions, and data cache zero operation on page C5-377 for the AArch64 instructions.
- Cache maintenance system instructions on page K15-8185 for the AArch32 instructions.

Traps to EL2 of EL1 accesses to the Auxiliary Control Register

HCR_EL2.TACR traps EL1 accesses to the Auxiliary Control Registers to EL2 if enabled in the current Security state:

Note

- The ACTLR_EL1, ACTLR, and ACTLR2 are not accessible at EL0.
- The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement global control bits for the PE.

Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations

The lockdown, DMA, and TCM features of the Armv8-A architecture are IMPLEMENTATION DEFINED. The architecture reserves the encodings of a number of System registers for control of these features.

HCR_EL2.TIDCP traps the execution of System register access instructions that access any of the encodings described in Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860 and any of the following AArch32 encodings:
- CRn==c9, opc1=={0-7}, CRm=={c0-c2, c5-c8}, opc2=={0-7}.
- CRn==c10, opc1=={0-7}, CRm=={c0, c1, c4, c8}, opc2=={0-7}.
- CRn==c11, opc1=={0-7}, CRm=={c0-c8, c15}, opc2=={0-7}.

Execution at EL1 is trapped to EL2 if enabled in the current Security state. Execution at EL1 is an IMPLEMENTATION DEFINED choice between either a trap to EL2, or UNDEFINED with any resulting exception taken to EL1.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

- Arm expects the trapping of EL0 accesses to these functions to EL2 to be unusual, and used only when the hypervisor is virtualizing EL0 operation. Arm strongly recommends that unless the hypervisor must virtualize EL0 operation, a EL0 access to any of these functions is UNDEFINED, as it would be if the implementation did not include EL2. The PE then takes any resulting exception to EL1.
- The trapping of accesses to these registers from EL1 is higher priority than an exception resulting from the register access being UNDEFINED.

Traps to EL2 of EL1 execution of SMC instructions

HCR_EL2.TSC traps EL1 execution of SMC instructions to EL2 if enabled in the current Security state. the value of SCR_EL3.SMD is ignored.

If EL3 is not implemented, HCR_EL2.TSC is RES0.

For more information about SMC instructions, see SMC on page C6-1202.
Note

- This trap is implemented only if the implementation includes EL3.
- SMC instructions are UNDEFINED at EL0.
- HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Trap exceptions and SMC exceptions have different preferred return addresses.

Traps to EL2 of EL0 and EL1 accesses to the ID registers

Other than the MIDR_EL1, MPIDR_EL1, and PMCR_EL0.N, the ID registers are divided into groups, with a trap control in the HCR_EL2 for each group.

HCR_EL2.TID0 traps accesses to primary device identification registers at EL1 and EL0 to EL2 if enabled in the current Security state. HCR_EL2.TID1 traps accesses to implementation identification registers at EL1 to EL2 if enabled in the current Security state. HCR_EL2.TID2 traps accesses to cache identification registers at EL1 and EL0 to EL2 if enabled in the current Security state. HCR_EL2.TID3 traps accesses to detailed feature identification registers at EL1 to EL2 if enabled in the current Security state.

Note

In AArch32 state, the detailed feature identification registers are called the CPUID registers. There is no requirement for this trap to apply to those registers that the CPUID Identification Scheme defines as reserved. See The CPUID identification scheme on page G8-6135.

For the MIDR_EL1 and MPIDR_EL1, and for PMCR_EL0.N, the architecture provides read/write aliases. The original register becomes accessible only from EL2 or Secure state, and an EL0 or EL1 read of the original register returns the value of the read/write alias. This substitution is invisible to the EL0 or EL1 software reading the register.

Table D1-23 ID register substitution

<table>
<thead>
<tr>
<th>Register</th>
<th>Original</th>
<th>Alias, EL2 using AArch64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main ID</td>
<td>MIDR_EL1</td>
<td>VPIDR_EL2</td>
</tr>
<tr>
<td>Multiprocessor Affinity</td>
<td>MPIDR_EL1</td>
<td>VMPIDR_EL2</td>
</tr>
<tr>
<td>Performance Monitors Control Register</td>
<td>PMCR_EL0.N</td>
<td>MDCR_EL2.HPMN</td>
</tr>
</tbody>
</table>

Note

- If the OPTIONAL Performance Monitors Extension is not implemented, MDCR_EL2.HPMN is RES0 and PMCR_EL0 is reserved.
- MDCR_EL2.HPMN also affects whether a Performance Monitors counter can be accessed from EL0 or EL1. See the register description of MDCR_EL2 for more information.
- PMCR_EL0 contains other fields that identify the implementation. For more information about trapping accesses to the PMCR_EL0, see Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers on page D1-2383.

Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions

HCR_EL2.[TWE, TWI] trap EL0 and EL1 execution of WFE and WFI instructions to EL2 if the instruction would otherwise have caused the PE to enter a low-power state.
--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE or WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

---

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:
- Wait for Event mechanism and Send event on page D1-2391.
- Wait For Interrupt on page D1-2394.

**Fine-grained traps to EL2 of EL0 and EL1 accesses to the debug, trace, and PMU registers**

The fields in HDFGRTR_EL2 and HDFGWTR_EL2 trap read and write accesses to individual and groups of related debug and trace registers to EL2 if enabled in the current Security state. The values of the registers are treated as 0 for all purposes other than direct reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

Most RW registers have fine-grained traps for read and write accesses. However, PMCR_EL0 has a trap for write accesses only. For more details, see HDFGRTR_EL2 and HDFGWTR_EL2.

If a fine-grained trap selects a breakpoint or watchpoint that is not implemented, the access is UNDEFINED. Accesses to unimplemented registers and unimplemented event counters are UNDEFINED.

When FEAT_FGT is implemented, access to an implemented Performance Monitors counter <n> when n is greater than, or equal to MDCR_EL2.HPMN is always trapped to EL2, and the value of the corresponding fine-grained trap field in HDFGRTR_EL2 or HDFGWTR_EL2 is ignored. If FEAT_FGT is not implemented, access to an implemented Performance Monitors counter <n> when n is greater than or equal to MDCR_EL2.HPMN has CONSTRAINED UNPREDICTABLE behavior.

**Fine-grained traps to EL2 of EL0 and EL1 accesses to System registers**

The fields in HFGRTR_EL2 and HFGWTR_EL2 trap read or write accesses to individual or small groups of system registers to EL2 if enabled in the current Security state. The values of the register are treated as 0 for all purposes other than direct reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

EL1 accesses are trapped from AArch64. When EL1 is using AArch64 and the functionality is accessible from EL0, EL0 accesses are trapped from AArch64 or AArch32.

If a register is not implemented, the corresponding field is RES0.

**Fine-grained Traps to EL2 of EL0 and EL1 accesses to instructions**

The fields in HFGITR_EL2 trap specific system instructions to EL2 if enabled in the current Security state. The values of the register are treated as 0 for all purposes other than direct reads of the register when HCR_EL2.{E2H, TGE} is {1,1}.

If an instruction is not implemented and behaves as an unallocated instruction, the corresponding field in HFGITR_EL2 is RES0.

For cache maintenance instructions to a PoC, PoU, PoP, or PoDP, if no caches are defined to be affected in the implementation before that point in the memory system, it is IMPLEMENTATION DEFINED whether the instruction is trapped when the corresponding trap enable field is set.

**General trapping to EL2 of EL0 and EL1 accesses to System registers, from AArch32 state only**

HISTR_EL2.{T0-T3, T5-T13, T15} trap accesses to the AArch32 System registers in the coproc==0b1111 encoding space, by the register number, {c0-c3, c5-c13, c15} used for:
- The Cn argument used when accessing the register using an MCR or MRC instruction.
- The Cn argument used when accessing the register using an MCRR or MRRC instruction.
These traps are from AArch32 state only. They are from both:

- EL1 using AArch32.
- EL0 using AArch32.

--- Note ---

HSTR_EL2[4, 14] is reserved, RES0. Although the Generic Timer AArch32 System registers are implemented in the coproc==0b1111 encoding space and accessed using a CRn or CRm value of c14, EL2 does not provide a trap on accesses to the Generic Timer System registers.

--- System registers in the (coproc==0b1111) encoding space with IMPLEMENTATION DEFINED access permission from EL0 ---

For an AArch32 System register in the (coproc==0b1111) encoding space, which is accessed using a CRn or CRm value that can be trapped by a HSTR_EL2.Tn control, if an access to the register from EL0 is UNDEFINED when the value of the corresponding HSTR_EL2.Tn trap control is 0, then when that HSTR_EL2.Tn trap control is 1, it is IMPLEMENTATION DEFINED whether an access from Non-secure EL0 using AArch32:

- Generates a Trap exception that is taken to EL2.
- Is UNDEFINED and generates an exception that is taken to Non-secure EL1.

If the instruction is treated as UNDEFINED and generates an exception that is taken to Non-secure EL1, and Non-secure EL1 is using AArch64, the exception is reported in ESR_EL1 as an exception for an unknown reason, using EC value 0x00.

--- Note ---

Arm expects that trapping to EL2 of Non-secure EL0 accesses to AArch32 System register in the (coproc==0b1111) encoding space will be unusual, and used only when the hypervisor must virtualize EL0 operation. Arm recommends that, whenever possible, Non-secure EL0 accesses to the System registers behave as they would if the implementation did not include EL2. This means that, if the architecture does not support the Non-secure EL0 access, then the register access instruction is treated as UNDEFINED and generates an exception that is taken to Non-secure EL1.

--- Traps to EL2 of System register accesses to the trace filter control registers ---

MDCR_EL2.TTRF traps System register accesses to the trace filter control registers to EL2, if enabled in the current Security state.

--- Traps to EL2 of EL0 and EL1 System register accesses to debug registers ---

MDCR_EL2.{TDRA, TDOSA, TDA} trap System register accesses to the debug registers to EL2 if enabled in the current Security state, as follows:

- MDCR_EL2.TDRA traps EL0 and EL1 accesses to the Debug ROM registers to EL2 if enabled in the current Security state. This trap applies to Non-secure EL0 only if it is using AArch32. If MDCR_EL2.TDE or HCR_EL2.TGE is 1, behavior is as if MDCR_EL2.TDRA is 1 other than for the purpose of a direct read.
- MDCR_EL2.TDOSA traps EL1 accesses to powerdown debug registers to EL2 if enabled in the current Security state. These registers are not accessible at EL0. If MDCR_EL2.TDE or HCR_EL2.TGE is 1, behavior is as if MDCR_EL2.TDOSA is 1 other than for the purpose of a direct read.
- MDCR_EL2.TDA traps EL0 and EL1 accesses to those debug System registers that are not trapped by MDCR_EL2.TDRA and MDCR_EL2.TDOSA. The MDCR_EL2.TDA traps are to EL2 if enabled in the current Security state. If MDCR_EL2.TDE or HCR_EL2.TGE is 1, behavior is as if MDCR_EL2.TDA is 1 other than for the purpose of a direct read.

--- Note ---

EL2 does not provide traps on debug register accesses through the optional memory-mapped external debug interfaces.
System register accesses to the debug registers can have side-effects. When a System register access is trapped to EL2, no side-effects occur before the exception is taken to EL2. See Traps on instructions on page D1-2368.

**Traps to EL2 of EL0 and EL1 accesses to the Debug Communications Channel registers**

If the PE is not in Debug state, MDCR_EL2.TDCC traps EL0 and EL1 accesses to DCC registers to EL2 if enabled for the current Security state.

If the PE is in Debug state, MDCR_EL2.TDCC does not trap accesses to DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0, DBGDTRRXint, and DBGDTRTXint that would otherwise be trapped. See MDCR_EL2.TDCC for more information.

**Traps to EL2 of EL0 and EL1 accesses to Performance Monitors registers**

MDCR_EL2.{TPM, TPMCR} trap EL0 and EL1 accesses to the Performance Monitors registers to EL2 if enabled in the current Security state:

--- Note ---

EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.

MDCR_EL2.HPMN affects whether a counter can be accessed from Non-secure EL0 or EL1. See the register description of MDCR_EL2 for more information.

--- Note ---

Enabling use of the Pointer authentication instructions, EL2 translation regime

This control is implemented when FEAT_PAuth is implemented.

Each of the SCTLR_EL2.{EnDA, EnDB, EnIA, EnIB} fields enables the pointer authentication functionality for the corresponding Pointer authentication instructions for the EL2 or EL2&0 translation regime. For more information, see System register control of pointer authentication on page D5-2533.

--- Note ---

These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be generated.

--- Note ---

Disabling Address tagging for instruction accesses, EL2 translation regime

This control is implemented when FEAT_PAuth is implemented.

When a TCR_EL2.TBI or TCR_EL2.{TBI0, TBI1} field enables the use of address tagging for the EL2 translation regime, the corresponding TCR_EL2.TBID or TCR_EL2.{TBID0, TBID1} field determines whether address tagging is used for both data and instruction addresses, or only for data addresses. For more information, see Address tagging in AArch64 state on page D5-2528.

--- Note ---

These controls determine the scope of address tagging. They never cause an exception to be generated.

--- D1.14.4 EL3 configurable controls ---

These controls are in EL3 System registers. The resulting exceptions might be taken from either Execution state. SPSR_EL3.M[4] indicates which Execution state the exception was taken from.
Table D1-24 shows the _EL3 System registers that contain these controls.

**Table D1-24 _EL3 registers that contain instruction enables and disables, and trap controls**

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTLR_EL3</td>
<td>System Control Register, EL3</td>
</tr>
<tr>
<td>SCR_EL3</td>
<td>Secure Configuration Register</td>
</tr>
<tr>
<td>CPTR_EL3</td>
<td>Architectural Feature Trap Register, EL3</td>
</tr>
<tr>
<td>MDCR_EL3</td>
<td>Monitor Debug Configuration Register, EL3</td>
</tr>
<tr>
<td>TCR_EL3</td>
<td>Translation Control Register, EL3</td>
</tr>
</tbody>
</table>

Table D1-25 summarizes the controls.

**Table D1-25 Instruction enables and disables, and trap controls, provided by EL3**

<table>
<thead>
<tr>
<th>Control</th>
<th>Control typea</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPTR_EL3.TCPAC</td>
<td>T</td>
<td>Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR on page D1-2385</td>
</tr>
<tr>
<td>CPTR_EL3.TAM</td>
<td>T</td>
<td>Traps to EL3 of EL2, EL1, and EL0 accesses to Activity Monitors registers on page D1-2386</td>
</tr>
<tr>
<td>CPTR_EL3.TTA</td>
<td>T</td>
<td>Traps to EL3 of System register accesses to the trace registers on page D1-2386</td>
</tr>
<tr>
<td>CPTR_EL3.TFP</td>
<td>T</td>
<td>Traps to EL3 of all accesses to the SIMD and floating-point registers on page D1-2386</td>
</tr>
<tr>
<td>MDCR_EL3.TDCC</td>
<td>T</td>
<td>Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers on page D1-2386</td>
</tr>
<tr>
<td>MDCR_EL3.TTRF</td>
<td>T</td>
<td>Traps to EL3 of System register accesses to the trace registers on page D1-2386</td>
</tr>
<tr>
<td>MDCR_EL3.{TDOSA, TDA}</td>
<td>T</td>
<td>Traps to EL3 of EL2, EL1, and EL0 System register accesses to debug registers on page D1-2387</td>
</tr>
<tr>
<td>MDCR_EL3.TPM</td>
<td>T</td>
<td>Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.FGTEn</td>
<td>E</td>
<td>Traps to EL3 of EL2 accesses to fine-grained trap registers on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.FIEN</td>
<td>T</td>
<td>Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.API</td>
<td>T</td>
<td>Trap to EL3 accesses to Pointer authentication instructions on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.APK</td>
<td>T</td>
<td>Trap to EL3 accesses to Pointer authentication key registers on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.TERR</td>
<td>T</td>
<td>Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.{TWE, TWI}</td>
<td>T</td>
<td>Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions on page D1-2387</td>
</tr>
<tr>
<td>SCR_EL3.ST</td>
<td>T</td>
<td>Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer registers on page D1-2388</td>
</tr>
<tr>
<td>SCR_EL3.HCE</td>
<td>E</td>
<td>Enabling EL3, EL2, and Non-secure EL1 execution of HVC instructions on page D1-2388</td>
</tr>
</tbody>
</table>
Table D1-25 Instruction enables and disables, and trap controls, provided by EL3 (continued)

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR_EL3.SMD</td>
<td>D</td>
<td>Disabling EL3, EL2, and EL1 execution of SMC instructions on page D1-2388</td>
</tr>
<tr>
<td>SCTLR_EL3.{EnDA, EnDB, EnIA, EnIB}</td>
<td>E</td>
<td>Enabling use of the Pointer authentication instructions, EL3 translation regime on page D1-2388</td>
</tr>
<tr>
<td>TCR_EL3.TBID</td>
<td>D</td>
<td>Disabling Address tagging for instruction accesses, EL3 translation regime on page D1-2389</td>
</tr>
</tbody>
</table>

<sup>a</sup> See Table D1-26.

Table D1-26 Control types, for exceptions taken to EL1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page D1-2367</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page D1-2367</td>
</tr>
</tbody>
</table>

Also see the following for more general information about traps to EL3:

- Traps on instructions on page D1-2368.
- Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32.

Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32

If EL1 is using AArch32, all of the following are trapped to EL3:

- Secure EL1 reads and writes to any of the SCR, NSACR, MVBAR or SDCR.
- Any attempt at Secure EL1 to execute any of the following:
  - ATS12NSO** instructions.
  - SRS instructions that use the R13_mon banked register.
  - MSR or MSR instructions that access any of the SPSR_mon, R13_mon or R14_mon banked registers.

In addition, if EL1 is using AArch32:

- Secure EL1 write accesses to the CNTFRQ register are UNDEFINED. They are not trapped to EL3.
- Any attempt at Secure EL1 to change the PE mode to Monitor mode, by using a CPS or an MSR instruction, or by performing an exception return, is treated as an illegal change of the CPSR.M field. See Illegal changes to PSTATE.M on page G1-5739.

--- Note ---

- Reads of the NSACR from either Non-secure EL1 using AArch32 or Non-secure EL2 using AArch32 return the value 0x000000C0. See Restricted access System registers on page G5-6093.
- These operations are not available at EL0.

Trapping to EL3 of EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR

CPTR_EL3.TCPAC traps all of the following to EL3:

- EL2 accesses to the CPTR_EL2 or HCPTR.
- EL2 and EL1 accesses to the CPACR_EL1 or CPACR.
When CPTR_EL3.TCPAC is:

For EL1, this trap control applies to accesses from both Security states.

Traps to EL3 of EL2, EL1, and EL0 accesses to Activity Monitors registers

CPTR_EL3.TAM traps EL2, EL1, and EL0 accesses to the Activity Monitor registers to EL3.

Traps to EL3 of System register accesses to the trace registers

CPTR_EL3.TTA traps System register accesses to the trace registers, from all Exception levels, to EL3:

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than a CPTR_EL3.TTA Trap exception.</td>
<td></td>
</tr>
<tr>
<td>• EL3 does not provide traps on trace register accesses through the Memory-mapped interface.</td>
<td></td>
</tr>
</tbody>
</table>

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see Traps on instructions on page D1-2368.

For EL0 and EL1, this trap control applies to accesses from both Security states.

Traps to EL3 of all accesses to the SIMD and floating-point registers

CPTR_EL3.TFP traps all accesses to the following SIMD and floating-point registers, from all Exception levels, to EL3:

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-S31 registers. See The SIMD and floating-point registers, V0-V31 on page D1-2322.</td>
<td></td>
</tr>
<tr>
<td>FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See Advanced SIMD and floating-point System registers on page G1-5814. Permitted VMSR accesses to the FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher is an access to a SIMD and floating-point register.</td>
<td></td>
</tr>
</tbody>
</table>

For EL0 and EL1, this trap control applies to accesses from both Security states.

<table>
<thead>
<tr>
<th>Note</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FPEXC32_EL2 is not accessible from EL0 using AArch64.</td>
<td></td>
</tr>
<tr>
<td>FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.</td>
<td></td>
</tr>
</tbody>
</table>

Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers

MDCR_EL3.TDCC traps EL2, EL1, and EL0 accesses to DCC registers to EL3.

If the PE is in Debug state, MDCR_EL3.TDCC does not trap accesses to DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0, DBGDTRRXint, and DBGDTRTXint that would otherwise be trapped. See MDCR_EL3.TDCC for more information.

Traps to EL3 of all System register accesses to the filter trace control registers

MDCR_EL3.TTRF traps System register accesses to the trace registers, from all Exception levels, to EL3:

For EL0 and EL1, this trap control applies to accesses from both Security states.
Traps to EL3 of EL2, EL1, and EL0 System register accesses to debug registers

MDCR_EL3.TDOSA traps EL2, EL1, and EL0 System register accesses to the powerdown debug registers to EL3, from both Security states. For EL1, this trap control applies to accesses from both Security states.

MDCR_EL3.TDA traps EL2, EL1, and EL0 System register accesses to the debug registers that are not trapped by MDCR_EL3.TDOSA, to EL3, from both Security states.

——— Note ————
EL3 does not provide traps on debug register accesses through the Memory-mapped or External debug interfaces.

System register accesses to the debug registers can have side-effects. When a System register access is trapped to EL3, no side-effects occur before the exception is taken to EL3. See Traps on instructions on page D1-2368.

Traps to EL3 of EL2, EL1, and EL0 accesses to Performance Monitors registers

MDCR_EL3.TPM traps EL2, EL1, and EL0 accesses to the Performance Monitors registers to EL3:
For EL0 and EL1, this trap control applies to accesses from both Security states.

Traps to EL3 of EL2 accesses to fine-grained trap registers

If SCR_EL3.FGTEn is set to 0, EL2 accesses to the following fine-grained trap registers are trapped to EL3:
• HFRGRTR_EL2, HFGWTR_EL2 for System register traps.
• HFGITR_EL2 for System instruction traps.
• HDFGRTR_EL2, HDFGWTR_EL2 for debug and trace register traps.
• HAFGRTR_EL2 for activity monitor register traps.

Traps to EL3 of EL1 and EL2 accesses to the RAS error record registers

SCR_EL3.FIEN traps EL1 and EL2 accesses to the RAS ERXP* registers to EL3.
SCR_EL3.TERR traps EL1 and EL2 read accesses to the RAS ER* registers that are not trapped by SCR_EL3.FIEN, to EL3.

Trap to EL3 accesses to Pointer authentication instructions

This control is implemented when FEAT_PAuth is implemented.
SCR_EL3.API traps, to EL3, accesses to any of the Pointer authentication instructions for which pointer authentication is enabled, for instructions executed at an Exception level lower than EL3, in either Security state.
Because pointer authentication is supported only in AArch64 state this control only traps from AArch64 state.
For more information, including the description of when pointer authentication is enabled for an instruction, see System register control of pointer authentication on page D5-2533.

Trap to EL3 accesses to Pointer authentication key registers

This control is implemented when FEAT_PAuth is implemented.
SCR_EL3.APK traps, to EL3, accesses to the Pointer authentication key registers from EL2 or from Secure or Non-secure EL1. Because pointer authentication is supported only in AArch64 state this control only traps from AArch64 state.
For more information, see System register control of pointer authentication on page D5-2533.

Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions

SCR_EL3.{TWE, TWI} trap EL2, EL1, and EL0 execution of WFE and WFI instructions to EL3.
Note

Since a `WFE` or `WFI` can complete at any time, even without a Wakeup event, the traps on `WFE` of `WFI` are not guaranteed to be taken, even if the `WFE` or `WFI` is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:
- *Wait for Event mechanism and Send event* on page D1-2391.
- *Wait For Interrupt* on page D1-2394.

Traps to EL3 of Secure EL1 accesses to the Counter-timer Physical Secure timer registers

`SCR_EL3.ST` traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3.

Note

- Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3.
- These registers are not accessible at EL0.

Enabling EL3, EL2, and Non-secure EL1 execution of `HVC` instructions

`SCR_EL3.HCE` enables `HVC` instruction execution at EL1 and above. Otherwise, `HVC` instructions are UNDEFINED at EL1, EL2, and EL3, and any resulting exception is taken from the current Exception level to the current Exception level.

For EL1, this enable control applies to `HVC` instructions in Non-secure state only.

If EL2 is not implemented, this bit is RES0.

Note

`HVC` instructions are always UNDEFINED at EL0.

Disabling EL3, EL2, and EL1 execution of `SMC` instructions

`SCR_EL3.SMD` disables `SMC` instruction execution at EL1 and above. `SMC` instructions are UNDEFINED at EL1 and above, and any resulting exception is taken from the current Exception level to the current Exception level.

For EL1, this disable control applies to `SMC` instructions in both Security states.

Note

`SMC` instructions are always UNDEFINED at EL0.

If `HCR_EL2.TSC` or `HCR.TSC` traps attempted EL1 execution of `SMC` instructions to EL2, that trap has priority over this disable.

Enabling use of the Pointer authentication instructions, EL3 translation regime

This control is implemented when `FEAT_PAuth` is implemented.

Each of the `SCTLR_EL3.{EnDA, EnDB, EnIA, EnIB}` fields enables the pointer authentication functionality for the corresponding Pointer authentication instructions for the EL3 translation regime. For more information, see *System register control of pointer authentication* on page D5-2533.
Note

These controls cause the pointer authentication instructions to execute as NOPs. They never cause an exception to be generated.

Disabling Address tagging for instruction accesses, EL3 translation regime

This control is implemented when FEAT_PAuth is implemented.

When the TCR_EL3.TBI field enables the use of address tagging for the EL3 translation regime, the TCR_EL3.TBID field determines whether address tagging is used for both data and instruction addresses, or only for data addresses. For more information, see Address tagging in AArch64 state on page D5-2528.

Note

This control determines the scope of address tagging. It never causes an exception to be generated.
D1.15 System calls

A system call is generated by the execution of an SVC, HVC, or SMC instruction:

- By default, the execution of an SVC instruction generates a Supervisor Call, a synchronous exception that targets EL1. This provides a mechanism for software executing at EL0 to make a call to an operating system or other software executing at EL1.

- In an implementation that includes EL2, the execution of an HVC instruction generates a Hypervisor Call, a synchronous exception that targets EL2 by default.
  
  The HVC instruction is UNDEFINED:
  
  — At EL0.
  
  — At EL1 in Secure state.

  Note

  Software executing at EL0 cannot directly generate a Hypervisor Call.

- In an implementation that includes EL3, by default the execution of an SMC instruction generates a Secure Monitor Call, a synchronous exception that targets EL3.

  The SMC instruction is UNDEFINED at EL0, meaning software executing at EL0 cannot directly generate a Secure Monitor Call.

The default behavior applies when the instruction is not UNDEFINED and both of the following are true:

- The instruction is executed at an Exception level that is the same as or lower than the target Exception level.
- The instruction is not trapped to a different Exception level.

If an SVC or HVC instruction is executed at an Exception level that is higher than the target Exception then it generates a synchronous exception that is taken to the current Exception level.

EL2 and EL3 can disable Hypervisor Call exceptions, see:

- Disabling Non-secure state execution of HVC instructions on page D1-2378.
- Enabling EL3, EL2, and Non-secure EL1 execution of HVC instructions on page D1-2388.

EL2 can trap use of the SMC instruction, see Traps to EL2 of EL1 execution of SMC instructions on page D1-2379.

EL3 can disable Secure Monitor Call exceptions, see Disabling EL3, EL2, and EL1 execution of SMC instructions on page D1-2388.

D1.15.1 Pseudocode description of system calls

The AArch64.CallSupervisor() pseudocode function performs an SVC call in AArch64 state.

The AArch64.CallHypervisor() pseudocode function performs an HVC call in AArch64 state.

The AArch64.CallSecureMonitor() pseudocode function performs an SMC call in AArch64 state.

The AArch64.CallSupervisor(), AArch64.CallHypervisor(), and AArch64.CallSecureMonitor() functions are described in Chapter J1 Armv8 Pseudocode.
D1.16 Mechanisms for entering a low-power state

The Arm architecture provides mechanisms that software can use to indicate that the PE can enter a low-power state, if it supports that state. The following sections describe those mechanisms:

- **Wait for Event mechanism and Send event**.
- **Wait For Interrupt on page D1-2394**.

D1.16.1 Wait for Event mechanism and Send event

A PE can use the **Wait for Event** (WFE) mechanism to enter a low-power state, depending on the value of the Event Register for that PE. To enter the low-power state, the PE executes a Wait For Event instruction, WFE, and if the Event Register is clear, the PE can enter the low-power state.

If the PE does enter the low-power state, it remains in that low-power state until it receives a **WFE wake-up event**.

The architecture does not define the exact nature of the low-power state, except that the execution of a WFE instruction must not cause a loss of memory coherency.

WFE mechanism behavior depends on the interaction of all of the following, that are described in the subsections that follow:

- The Event Register for the PE. See subsection *The Event Register* on page D1-2392.
- The Wait For Event instruction, WFE. See subsection *The Wait For Event instruction* on page D1-2392.
- **WFE wake-up events**. See subsection *WFE wake-up events in AArch64 state* on page D1-2393.
- The Send Event instructions, SEV and SEVL that can cause WFE wake-up events. See subsection *The Send Event instructions* on page D1-2393.

--- Note ---

Because the Wait for Event mechanism is associated with suspending execution on a PE for the purpose of power saving, Arm recommends that the Event Register is set only infrequently. However, software must only use the setting of the Event Register as a hint, and must not assume that any particular message is sent as a result of the setting of the Event Register.

---

Example D1-2 describes how a spinlock implementation might use the WFE mechanism to save energy.

--- Example D1-2 Spinlock as an example of using Wait For Event and Send Event ---

A multiprocessor operating system requires locking mechanisms to protect data structures from being accessed simultaneously by multiple PEs. These mechanisms prevent the data structures becoming inconsistent or corrupted if different PEs try to make conflicting changes. If a lock is busy, because a data structure is being used by one PE, it might not be practical for another PE to do anything except wait for the lock to be released. For example, if a PE is handling an interrupt from a device, it might need to add data received from the device to a queue. If another PE is removing data from the same queue, it will have locked the memory area that holds the queue. The first PE cannot add the new data until the queue is in a consistent state and the second PE has released the lock. The first PE cannot return from the interrupt handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is used in these circumstances:

- A PE requiring access to the protected data attempts to obtain the lock using single-copy atomic synchronization primitives such as the Load-Exclusive and Store-Exclusive operations described in *Synchronization and semaphores* on page B2-166.
- If the PE obtains the lock it performs its memory operation and then releases the lock.
- If the PE cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock becomes available. When the lock becomes available, the PE again attempts to obtain it.
A spin-lock mechanism is not ideal for all situations:

- In a low-power system the tight read loop is undesirable because it uses energy to no effect.
- In a multiprocessor system the execution of spin-locks by multiple waiting PEs can degrade overall performance.

Using the Wait For Event and Send Event mechanism can improve the energy efficiency of a spinlock:

- A PE that fails to obtain a lock executes a WFE instruction to request entry to a low-power state, at the time when the Exclusives monitor is set holding the address of the location holding the lock.
- When a PE releases a lock, the write to the lock location causes the Exclusives monitor of any PE monitoring the lock location to be cleared. This clearing of the Exclusives monitors generates a WFE wake-up event for each of those PEs. Then, these PEs can attempt to obtain the lock again.

For large systems, more advanced locking systems, such as ticket locks, can avoid unfairness caused by having multiple PEs simultaneously reading the lock. In such systems, the WFE mechanism can be used in a similar way to monitor the next ticket value.

---

### The Event Register

The Event Register is a single bit register for each PE. When set, an Event Register indicates that an event has occurred since the register was last cleared, that might require some action by the PE. Therefore, when the Event Register is set, the PE must not suspend operation on executing a WFE instruction.

The reset value of the Event Register is UNKNOWN.

The Event Register for a PE is set by any of the following:

- A Send Event instruction, SEV, executed by any PE in the system.
- A Send Event Local instruction, SEVL, executed by the PE.
- An exception return.
- The clearing of the global monitor for the PE.
- An event from a Generic Timer event stream, see [Event streams on page D11-2839](#).
- An event sent by some IMPLEMENTATION DEFINED mechanism.

The Event Register is cleared only by a Wait For Event instruction.

---

**Note**

Software cannot read or write the value of the Event Register directly.

---

### The Wait For Event instruction

The action of the Wait For Event instruction, WFE, depends on the state of the Event Register:

- If the Event Register is set, the instruction clears the register and completes immediately.
- If the Event Register is clear the PE can suspend execution and enter a low-power state. It remains in that state until the PE detects a WFE wake-up event, or earlier if the implementation chooses, or until a reset. When the PE detects a WFE wake-up event, or earlier if chosen, the WFE instruction completes. If the wake-up event sets the Event Register, it is IMPLEMENTATION DEFINED whether on restarting execution, the Event Register is cleared.

---

**Note**

Software using the Wait For Event mechanism must tolerate spurious wake-up events, including multiple wake-ups.
Trapping of WFE

The WFE instruction is available at all Exception levels. Attempts to enter a low-power state made by software executing at EL0, EL1, or EL2 might be trapped to a higher Exception level. See:

- Traps to EL1 of EL0 execution of WFE and WFI instructions on page D1-2371.
- Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions on page D1-2380.
- Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions on page D1-2387.

If FEAT_TWED is implemented, the delay for taking a WFE trap is configurable.

The delay on the trap does not effect the priority of the traps. In particular, if execution is subject to a trap at EL1 as a result of SCTLR_EL1.nTWE==0 and HCR_EL2.TWE==1, the only trap that will be taken is a trap to EL1, even if the delay at EL1 is longer than the delay at EL2.

WFE wake-up events in AArch64 state

The following are WFE wake-up events:

- The execution of an SEV instruction on any PE in the multiprocessor system.
- Any physical SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is not disabled by EDSCR.INTdis and:
  - Is marked as A in the tables in Asynchronous exception masking on page D1-2361, regardless of the value of the corresponding PSTATE.{A, I, F} mask bit.
  - Is marked as B in the tables in Asynchronous exception masking on page D1-2361, if the value of the corresponding PSTATE.{A, I, F} mask bit is 0.

  —— Note ——
  Any physical SError interrupt, IRQ interrupt, or FIQ interrupt that is marked as A/B behaves as A or B. See A/B on page D1-2362.

  —— Note ——
  In EL1 or EL0, any virtual SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is not disabled by EDSCR.INTdis and is marked as B in Table D1-15 on page D1-2364 in Virtual interrupts on page D1-2363, if the value of the corresponding PSTATE.{A, I, F} mask bit is 0.

- An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is allowed see Halting allowed and halting prohibited on page H2-7015.
  
  See also External Debug Request debug event on page H3-7071.

- An event sent by the timer event stream for the PE. See Event streams on page D11-2839.
  
- An event caused by the clearing of the global monitor for the PE.
  
- An event sent by some IMPLEMENTATION DEFINED mechanism.

Not all of these wake-up events set the Event Register.

  —— Note ——
  The disabling of interrupts, and WFE wake-up events, by EDSCR.INTdis is possible only when external debug is enabled.

  —— Note ——

The Send Event instructions

The Send Event instructions are:

SEV, Send Event
This causes an event to be signaled to all PEs in the multiprocessor system.

SEVL, Send Event Local
This must set the local Event Register.
D1.16 Mechanisms for entering a low-power state

Note

It might signal an event to other PEs by some IMPLEMENTATION DEFINED mechanism, but is not required to do so.

The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED. The PE is not required to guarantee the ordering of this event with respect to the completion of memory accesses by instructions before the SEV instruction. Therefore, Arm recommends that software includes a DSB instruction before any SEV instruction.

Note

A DSB instruction ensures that no instructions, including any SEV instructions, that appear in program order after the DSB instruction, can execute until the DSB instruction has completed. See Data Synchronization Barrier (DSB) on page B2-138.

The SEVL instruction appears to execute in program order relative to any subsequent WFE instruction executed on the same PE, without the need for any explicit insertion of barrier instructions.

The receipt of a signaled SEV or SEVL event by a PE sets the Event Register on that PE.

The SEV and SEVL instructions are available at all Exception levels.

Pseudocode description of the Wait For Event mechanism

This section identifies pseudocode functions that describe the behavior of the Wait For Event mechanism.

The ClearEventRegister() pseudocode function clears the Event Register of the current PE.

The IsEventRegisterSet() pseudocode function returns TRUE if the Event Register of the current PE is set and FALSE if it is clear.

The WaitForEvent() pseudocode function optionally suspends execution until a WFE wake-up event or reset occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED whether restarting execution after the period of suspension causes ClearEventRegister() to be called.

The SendEvent() pseudocode function sets the Event Register of every PE in the multiprocessor system.

The SendEventLocal() pseudocode function sets the event register for the local PE.

D1.16.2 Wait For Interrupt

Software can use the Wait for Interrupt (WFI) instruction to cause the PE to enter a low-power state. The PE then remains in that low-power state until it receives a WFI wake-up event, or until some other IMPLEMENTATION DEFINED reason causes it to leave the low-power state. The architecture permits a PE to leave the low-power state for any reason, but requires that it must leave the low-power state on receipt of any architected WFI wake-up event.

Note

Because the architecture permits a PE to leave the low-power state for any reason, it is permissible for a PE to treat WFI as a NOP, but this is not recommended for lowest power operation.

When the PE leaves a low-power state that was entered as a result of a WFI instruction, that WFI instruction completes.

The architecture does not define the exact nature of the low-power state, except that the execution of a WFI instruction must not cause a loss of memory coherency.

Attempts to enter a low-power state made by software executing at EL0, EL1, or EL2 might be trapped to a higher Exception level. See:

- Traps to EL1 of EL0 execution of WFE and WFI instructions on page D1-2371.
- Traps to EL2 of EL0 and EL1 execution of WFE and WFI instructions on page D1-2380.
- Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions on page D1-2387.
WFI wake-up events

The following are WFI wake-up events:

- Any physical SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is marked as A, Bor A/B in the tables in Asynchronous exception masking on page D1-2361, regardless of the value of the corresponding PSTATE. {A, I, F} mask bit.

- In EL1 or EL0, any virtual SError interrupt, IRQ interrupt, or FIQ interrupt received by the PE, that is marked as B in Table D1-15 on page D1-2364 in Virtual interrupts on page D1-2363, regardless of the value of the corresponding PSTATE. {A, I, F} mask bit.

- An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is allowed see Halting allowed and halting prohibited on page H2-7015.

  See also External Debug Request debug event on page H3-7071.

- An event sent by some IMPLEMENTATION DEFINED mechanism.

**Note**

- WFI wake-up events are never disabled by EDSCR.INTdis, and are never masked by the PSTATE. {A, I, F} mask bits. If wake-up is invoked by an interrupt that is disabled or masked the interrupt is not taken.

- Because debug events are WFI wake-up events, Arm recommends that Wait For Interrupt is used as part of an idle loop rather than waiting for a single specific interrupt event to occur and then moving forward. This ensures that the intervention of debug while waiting does not significantly change the function of the program being debugged.

- Some implementations of the WFI mechanism drain down any pending memory activity before suspending execution. This increases power saving, by increasing the area over which clocks can be stopped. The architecture does not require this operation, therefore software must not rely on the WFI mechanism operating in this way.

Using WFI to indicate an idle state on bus interfaces

Software can use the WFI mechanism to force quiescence on a PE, and, combined with preventing any possible WFI wakeup events, this can be used to complete an entry into a powerdown state.

Because mechanisms for entering powerdown states are inherently IMPLEMENTATION DEFINED, whether an implementation uses the WFI mechanism is IMPLEMENTATION DEFINED. If it does, the WFI instruction forces the suspension of execution, and of all associated bus activity.

The control logic that does this also tracks the activity on the bus interfaces of the PE, so that when the PE has completed all current operations and any associated bus activity has completed, it can signal to an external power controller that there is no ongoing bus activity.

However, the PE must continue to process memory-mapped and external debug interface accesses to debug registers when in the WFI state. The indication of idle state to the system normally only applies to the non-debug functional interfaces used by the PE, not the debug interfaces.

If the OS Double Lock control is implemented and OSDLR_EL1.DLK is 1, the PE must not signal this idle state to the control logic unless it can also guarantee that the debug interface is idle. For more information about the OS Double Lock, see Debug behavior when the OS Double Lock is locked on page H6-7127.

**Note**

In a PE that implements separate Core and Debug power domains, the debug interface referred to in this section is the interface between the Core and Debug power domains, since the signal to the power controller indicates that the Core power domain is idle. For more information about the power domains, see Power domains and debug on page H6-7117.
The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only architecturally-defined mechanism that completely suspends execution makes it very suitable as the preferred powerdown entry mechanism.

**Pseudocode description of Wait For Interrupt**

The `WaitForInterrupt()` pseudocode function optionally suspends execution until a WFI wake-up event or reset occurs, or until some earlier time if the implementation chooses.
D1.17  Self-hosted debug

The Armv8-A architecture supports both of the following:

Self-hosted debug

The PE itself hosts a debugger. The debugger programs the PE to generate *debug exceptions*. Debug exceptions are accommodated in the Armv8-A Exception model.

External debug

The PE is controlled by an external debugger. The debugger programs the PE to generate *debug events*, that cause the PE to enter *Debug state*. In Debug state, the PE is halted.

This section describes self-hosted debug. It includes:

- Debug exceptions.
- The PSTATE debug mask bit, D.

For external debug, see Part H *External Debug*.

D1.17.1  Debug exceptions

Debug exceptions occur during normal program flow, if a debugger has programmed the PE to generate them.

For example, a software developer might use a debugger contained in an operating system to debug an application. To do this, the debugger might enable one or more debug exceptions.

The possible debug exceptions are:

- Breakpoint Instruction exceptions.
- Breakpoint exceptions.
- Watchpoint exceptions.
- Vector Catch exceptions.
- Software Step exceptions.

Chapter D2 *AArch64 Self-hosted Debug* describes these in detail for AArch64.

For the PE to generate a debug exception requires that:

- The debug exception is enabled. The debug exception enable controls on page D2-2422 gives the controls for the different debug exceptions.
- Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug exceptions from the current Exception level on page D2-2425.

Debug exceptions are synchronous exceptions, and are accommodated in the Armv8 Exception model.

---

**Note**

Breakpoints and Watchpoints can cause entry to Debug state instead of causing debug exceptions. See Chapter H1 *About External Debug*.

---

D1.17.2  The PSTATE debug mask bit, D

As with all other exceptions, when a debug exception is taken, software must take care to avoid generating another instance of an exception within the exception handler, to avoid recursive entry into the exception handler and loss of return state.

To help avoid this, the Armv8 architecture provides a debug exception mask bit, PSTATE.D, that can mask Watchpoint, Breakpoint, and Software Step exceptions when the target Exception level is the current Exception level.
PSTATE.D is set to 1 on taking an exception. This means that while handling an exception in AArch64 state, Watchpoint, Breakpoint, and Software Step exceptions are masked. This prevents recursive entry at the Exception level that debug exceptions are targeted to.

When execution is in AArch64 state, debug exceptions are also masked implicitly when the target Exception level is lower than the current Exception level.

When the target Exception level is higher than the current Exception level, debug exceptions cannot be masked by PSTATE.D.

Because debug exceptions are synchronous, the architecture requires that debug exceptions are not generated when PSTATE.D is 1. By preventing debug exception generation, debug exceptions cannot be taken at a subsequent time when the Process state D mask bit is cleared to 0.

Note
This differs from the behavior for interrupts, where the PSTATE.{A, I, F} mask has the effect of preventing the interrupt from being taken, but instead the interrupt remains pending.
D1.18 Event monitors

The Armv8-A architecture supports the following non-invasive architectural components that allow for event monitoring:

Performance Monitors

The Performance Monitors have a wide feature set, flexible selection of counted events, and are read/write in operation. See The Performance Monitors Extension.

Activity Monitors

The Activity Monitors have a narrow feature set, limited selection of counted events, and are read-only in operation. See The Activity Monitors Extension.

D1.18.1 The Performance Monitors Extension

The System registers provide access to a Performance Monitors Unit (PMU), defined as the OPTIONAL Performance Monitors Extension to the architecture, a non-invasive debug resource that provides information about the operation of the PE. The PMU provides:

• A 64-bit cycle counter.
• An IMPLEMENTATION DEFINED number of event counters. If FEAT_PMUv3p5 is implemented, the event counters are 64-bit unsigned counters, otherwise the event counters are 32-bit event counters.

Each event counter can be configured to count occurrences of a specified event. The events that can be counted are:

— Architectural and microarchitectural events that are likely to be consistent across many microarchitectures. The PMU architecture uses event numbers to identify an event, and the PMU specification defines which event number must be used for each of these architectural and microarchitectural events.
— Implementation-specific events. The PMU specification reserves event numbers for implementation-specific events. See Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events.

For more information, see Chapter D7 The Performance Monitors Extension.

D1.18.2 The Activity Monitors Extension

When the OPTIONAL Activity Monitors Extension is implemented, the System registers provide access to controls and counters for the Activity Monitors Unit (AMU). For more information, see Chapter D8 The Activity Monitors Extension.
D1.19 Interprocessing

Interprocessing is the term used to describe moving between the AArch64 and AArch32 Execution states.

The Execution state can change only on a change of Exception level. This means that the Execution state can change only on taking an exception to a higher Exception level, or returning from an exception to a lower Exception level.

On taking an exception to a higher Exception level, the Execution state either:
• Remains unchanged.
• Changes from AArch32 state to AArch64 state.

On returning from an exception to a lower Exception level, the Execution state either:
• Remains unchanged.
• Changes from AArch64 state to AArch32 state.

Note
If, on taking or returning from an exception, the Exception level remains the same, the Execution state cannot change.

For the description of:
• Exception entry to an Exception level using AArch64, see Exception entry on page D1-2333.
• Exception return from an Exception level using AArch64 state, see Exception return on page D1-2344.
• Exception return to AArch32 state, see Exception return to an Exception level using AArch32 on page G1-5765.

Note
The description in Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743 is outside the scope of interprocessing, because such exceptions must have been taken from an Exception level that is using AArch32, and therefore there is no change of Execution state.

The following sections describe the behavior associated with interprocessing.
• Register mappings between AArch32 state and AArch64 state.
• State of the general-purpose registers on taking an exception to AArch64 state on page D1-2410.
• SPSR, ELR, and AArch64 SP relationships on changing Execution state on page D1-2412.

D1.19.1 Register mappings between AArch32 state and AArch64 state

This section defines the architectural mappings between AArch32 state registers and AArch64 state registers.

The mappings describe:
• For exceptions taken from AArch32 state to AArch64 state, where the AArch32 register content is found.
• For exception returns from AArch64 state to AArch32 state, how the AArch32 register content is derived.

The general model is:
• The AArch32 register contents are situated in the bottom 32 bits of the AArch64 registers.
• In AArch32 state, the upper 32 bits of AArch64 registers are inaccessible and are ignored.

Note
System software that executes in AArch64 state, such as an OS or Hypervisor, can use these mappings for context save and restore, or to interpret and modify the AArch32 registers of an application or virtual machine.

For more information, see the following subsections:
• Mapping of the general-purpose registers between the Execution states on page D1-2401.
• Mapping of the SIMD and floating-point registers between the Execution states on page D1-2402.
Mapping of the general-purpose registers between the Execution states

Table D1-27 shows how each of the AArch32 general-purpose registers, R0-R12, SP, and LR, including the banked copies of these registers, maps to an AArch64 general-purpose register. A register in the AArch64 register column of the table provides the AArch64 view of the corresponding register in the AArch32 register column.

--- Note ---
For some exceptions, the exception syndrome given in the ESR_ELx identifies one or more register numbers from the issued instruction that generated the exception. Where the exception is taken from an Exception level using AArch32, these register numbers give the AArch64 view of the register. For example, if an exception is taken from AArch32 Abort mode, and the faulting instruction specified R14, the ESR_ELx.ISS field would report this using the EC value 0b10100, because register X20 provides the AArch64 view of LR_abt, which is the copy of R14 used in Abort mode.

### Table D1-27 General-purpose register mapping between AArch32 state and AArch64 state

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>AArch64 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>X0</td>
</tr>
<tr>
<td>R1</td>
<td>X1</td>
</tr>
<tr>
<td>R2</td>
<td>X2</td>
</tr>
<tr>
<td>R3</td>
<td>X3</td>
</tr>
<tr>
<td>R4</td>
<td>X4</td>
</tr>
<tr>
<td>R5</td>
<td>X5</td>
</tr>
<tr>
<td>R6</td>
<td>X6</td>
</tr>
<tr>
<td>R7</td>
<td>X7</td>
</tr>
<tr>
<td>R8_usr</td>
<td>X8</td>
</tr>
<tr>
<td>R9_usr</td>
<td>X9</td>
</tr>
<tr>
<td>R10_usr</td>
<td>X10</td>
</tr>
<tr>
<td>R11_usr</td>
<td>X11</td>
</tr>
<tr>
<td>R12_usr</td>
<td>X12</td>
</tr>
<tr>
<td>SP_usr</td>
<td>X13</td>
</tr>
<tr>
<td>LR_usr</td>
<td>X14</td>
</tr>
<tr>
<td>SP_hyp</td>
<td>X15</td>
</tr>
<tr>
<td>LR_irq</td>
<td>X16</td>
</tr>
<tr>
<td>SP_irq</td>
<td>X17</td>
</tr>
<tr>
<td>LR_svc</td>
<td>X18</td>
</tr>
<tr>
<td>SP_svc</td>
<td>X19</td>
</tr>
<tr>
<td>LR_abt</td>
<td>X20</td>
</tr>
</tbody>
</table>
Table D1-27 General-purpose register mapping between AArch32 state and AArch64 state

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>AArch64 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP_abt</td>
<td>X21</td>
</tr>
<tr>
<td>LR_und</td>
<td>X22</td>
</tr>
<tr>
<td>SP_und</td>
<td>X23</td>
</tr>
<tr>
<td>R8_fiq</td>
<td>X24</td>
</tr>
<tr>
<td>R9_fiq</td>
<td>X25</td>
</tr>
<tr>
<td>R10_fiq</td>
<td>X26</td>
</tr>
<tr>
<td>R11_fiq</td>
<td>X27</td>
</tr>
<tr>
<td>R12_fiq</td>
<td>X28</td>
</tr>
<tr>
<td>SP_fiq</td>
<td>X29</td>
</tr>
<tr>
<td>LR_fiq</td>
<td>X30</td>
</tr>
</tbody>
</table>

--- Note ---
For a description of the banking of AArch32 general-purpose registers R8-R12, SP, and LR, see *AArch32 general-purpose registers, the PC, and the Special-purpose registers* on page G1-5731.

Mapping of the SIMD and floating-point registers between the Execution states

Table D1-28 shows the mapping between the AArch64 V registers and the AArch32 Q registers.

Table D1-28  SIMD and floating-point register mapping between AArch64 state and AArch32 state

<table>
<thead>
<tr>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Q0</td>
</tr>
<tr>
<td>V1</td>
<td>Q1</td>
</tr>
<tr>
<td>V2</td>
<td>Q2</td>
</tr>
<tr>
<td>V15</td>
<td>Q15</td>
</tr>
</tbody>
</table>

The AArch64 registers V16-V31 are not accessible from AArch32 state.

The mapping between the V, D, and S registers in AArch64 state is not the same as the mapping between the Q, D, and S registers in AArch32 state:

- In AArch64 state, there are:
  - 32 64-bit D registers, D0-D31.
  - 32 32-bit S registers, S0-S31.

A smaller register occupies the least-significant bytes of the corresponding larger register. For example, S5 is the least-significant word of D5 and V5. Figure D1-3 on page D1-2403 shows this mapping.
In AArch32 state, there are:

- 16 128-bit Q registers, Q0-Q15.
- 32 64-bit D registers, D0-D31.
- 32 32-bit S registers, S0-S31.

Smaller registers are packed into larger registers. Figure D1-4 shows this mapping.

In AArch32 state:

- There are no S registers that correspond to Q8-Q15.
- D16-D31 pack into Q8-Q15. For example, D16 and D17 pack into Q8.

**Note**

A consequence of this mapping is that if software executing in AArch64 state interprets D or S registers from AArch32 state, it must unpack the D or S registers from the V registers before it uses them.

**Mapping of the System registers between the Execution states**

Armv8 architecturally defines the relationship between the AArch64 System registers and the AArch32 System registers, to allow supervisory code such as a hypervisor, that is executing in AArch64 state, to save, restore, and interpret the System registers belonging to a lower Exception level that is using AArch32.

Any modifications made to AArch32 System registers affects only those parts of those AArch64 registers that are mapped to the AArch32 System registers. Bits[63:32] of AArch64 registers, where they are not mapped to AArch32 registers, are unchanged by AArch32 state execution.

**Note**

This model is different to the model for the general-purpose registers described in *Mapping of the general-purpose registers between the Execution states* on page D1-2401. In this model, there are several cases where two AArch32 System registers are packed into a single AArch64 System register.

When EL3 is implemented and is using AArch32, some System registers are banked between the two Security states. When a register is banked in this way, there is an instance of the register in Secure state, and another instance of the register in Non-secure state. In Table D1-29 on page D1-2404 these banked registers are identified by footnote. This banking is not supported when EL3 is using AArch64 or if EL3 is not implemented. This means that when EL3 is implemented and is using AArch64, exactly the same registers are accessed in the following states:

- Secure EL1 with EL1 using AArch32.
- Non-secure EL1 with EL1 using AArch32.
This means that, architecturally, it is not possible to determine whether an AArch64 register is mapped onto the Secure instance of the corresponding AArch32 register, or onto the Non-secure instance of that register. When EL3 is using AArch64, the interrupt asserted by the AArch64 CNTP_* timer is the same interrupt as is asserted by the Non-secure AArch32 CNTP_* timer when EL3 is using AArch32.

Note
Although the architecture does not require this, because it is not architecturally visible, Arm expects that implementations will map many of the AArch64 registers for use by EL3 to the Secure instances of the banked AArch32 registers, and will map many of the AArch64 registers for use by EL1 to the Non-secure instances of the banked AArch32 registers. However, if EL2 and EL3 are implemented and both support use of AArch32, this is not possible for the following registers:

- **IFAR** This is because when EL3 is using AArch32, HIFAR is an alias of the Secure IFAR.
- **DFAR** This is because when EL3 is using AArch32, HDFAR is an alias of the Secure DFAR.

Table D1-29 shows the mappings between the writable AArch64 System registers and the AArch32 System registers.

### Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

<table>
<thead>
<tr>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTLR_EL1[31:0]</td>
<td>ACTLR</td>
</tr>
<tr>
<td>ACTLR_EL1[63:32]</td>
<td>ACTLR2 if implemented</td>
</tr>
<tr>
<td>AFSR_EL1[31:0]</td>
<td>ADFSR</td>
</tr>
<tr>
<td>AFSR_EL1[63:32]</td>
<td>AIFS</td>
</tr>
<tr>
<td>AMAIR_EL1[31:0]</td>
<td>AMAIR0</td>
</tr>
<tr>
<td>AMAIR_EL1[63:32]</td>
<td>AMAIR1</td>
</tr>
<tr>
<td>CONTEXTIDR_EL1[31:0]</td>
<td>CONTEXTIDR</td>
</tr>
<tr>
<td>CPACR_EL1[31:0]</td>
<td>CPACR</td>
</tr>
<tr>
<td>CSSEL_EL1[31:0]</td>
<td>CSSEL</td>
</tr>
<tr>
<td>DACR_EL2[31:0]</td>
<td>DACR</td>
</tr>
<tr>
<td>FAR_EL1[31:0]</td>
<td>DFAR</td>
</tr>
<tr>
<td>ESR_EL1[31:0]</td>
<td>DFSR</td>
</tr>
<tr>
<td>HACR_EL2[31:0]</td>
<td>HACR</td>
</tr>
<tr>
<td>ACTLR_EL2[31:0]</td>
<td>HACTLR</td>
</tr>
<tr>
<td>ACTLR_EL2[63:32]</td>
<td>HACTLR2 if implemented</td>
</tr>
<tr>
<td>AFSR_EL2[31:0]</td>
<td>HADFSR</td>
</tr>
<tr>
<td>AFSR_EL2[63:32]</td>
<td>HAIFSR</td>
</tr>
<tr>
<td>AMAIR_EL2[31:0]</td>
<td>HAMAIR0</td>
</tr>
<tr>
<td>AMAIR_EL2[63:32]</td>
<td>HAMAIR1</td>
</tr>
<tr>
<td>CPTR_EL2[31:0]</td>
<td>HCPTR</td>
</tr>
<tr>
<td>HCR_EL2[31:0]</td>
<td>HCR</td>
</tr>
<tr>
<td>AArch64 register</td>
<td>AArch32 register</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>HCR_EL2[63:32]</td>
<td>HCR2</td>
</tr>
<tr>
<td>MDCR_EL2[31:0]</td>
<td>HDCR</td>
</tr>
<tr>
<td>FAR_EL2[31:0]</td>
<td>HDFAR</td>
</tr>
<tr>
<td>FAR_EL2[63:32]</td>
<td>HIFAR</td>
</tr>
<tr>
<td>MAIR_EL2[31:0]</td>
<td>HMAIR0</td>
</tr>
<tr>
<td>MAIR_EL2[63:32]</td>
<td>HMAIR1</td>
</tr>
<tr>
<td>HPFAR_EL2[31:0]</td>
<td>HPFAR</td>
</tr>
<tr>
<td>SCTLR_EL2[31:0]</td>
<td>HSCTLR</td>
</tr>
<tr>
<td>ESR_EL2[31:0]</td>
<td>HSR</td>
</tr>
<tr>
<td>HSTR_EL2[31:0]</td>
<td>HSTR</td>
</tr>
<tr>
<td>TCR_EL2[31:0]</td>
<td>HTCR</td>
</tr>
<tr>
<td>TPIDR_EL2[31:0]</td>
<td>HTPIDR</td>
</tr>
<tr>
<td>TTBR0_EL2[47:1]</td>
<td>HTTTBR</td>
</tr>
<tr>
<td>VBAR_EL2[31:0]</td>
<td>HVBAR</td>
</tr>
<tr>
<td>FAR_EL1[63:32]</td>
<td>IFAR\textsuperscript{a}</td>
</tr>
<tr>
<td>IFSR32_EL2[31:0]</td>
<td>IFSR\textsuperscript{a}</td>
</tr>
<tr>
<td>MAIR_EL1[63:32]</td>
<td>NMRR or MAIR\textsuperscript{a}</td>
</tr>
<tr>
<td>PAR_EL1[63:0]</td>
<td>PAR\textsuperscript{a}</td>
</tr>
<tr>
<td>MAIR_EL1[31:0]</td>
<td>PRRR or MAIR0\textsuperscript{a}</td>
</tr>
<tr>
<td>RMR_EL1[31:0]</td>
<td>RMR (at EL1)</td>
</tr>
<tr>
<td>RMR_EL2[31:0]</td>
<td>HRMR</td>
</tr>
<tr>
<td>RMR_EL3[31:0]</td>
<td>RMR (at EL3)</td>
</tr>
<tr>
<td>SCTLR_EL1[31:0]</td>
<td>SCTLR\textsuperscript{a}</td>
</tr>
<tr>
<td>SDER32_EL3[31:0]</td>
<td>SDER</td>
</tr>
<tr>
<td>TPIDR_EL1[31:0]</td>
<td>TPIDRPRW\textsuperscript{a}</td>
</tr>
<tr>
<td>TPIDRRO_EL0[31:0]</td>
<td>TPIDRUR0\textsuperscript{a}</td>
</tr>
<tr>
<td>TPIDR_EL0[31:0]</td>
<td>TPIDRURW\textsuperscript{a}</td>
</tr>
<tr>
<td>TCR_EL1[31:0]</td>
<td>TTBCR\textsuperscript{a}</td>
</tr>
<tr>
<td>TCR_EL1[63:32]</td>
<td>TTBCR2\textsuperscript{a} if implemented</td>
</tr>
<tr>
<td>TTBR0_EL1[63:0]</td>
<td>TTBR0\textsuperscript{a}</td>
</tr>
<tr>
<td>TTBR1_EL1[63:0]</td>
<td>TTBR1\textsuperscript{a}</td>
</tr>
<tr>
<td>VBAR_EL1[31:0]</td>
<td>VBAR\textsuperscript{a}</td>
</tr>
<tr>
<td>AArch64 register</td>
<td>AArch32 register</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>VMPIDR_EL2[31:0]</td>
<td>VMPIDR</td>
</tr>
<tr>
<td>VPIDR_EL2[31:0]</td>
<td>VPIDR</td>
</tr>
<tr>
<td>VTCR_EL2[31:0]</td>
<td>VTCR</td>
</tr>
<tr>
<td>VTTBR_EL2[63:0]</td>
<td>VTTBR</td>
</tr>
<tr>
<td>Timer registers</td>
<td></td>
</tr>
<tr>
<td>CNTFRQ_EL0[31:0]</td>
<td>CNTFRQ</td>
</tr>
<tr>
<td>CNTHCTL_EL2[31:0]</td>
<td>CNTHCTL</td>
</tr>
<tr>
<td>CNTHP_CTL_EL2[31:0]</td>
<td>CNTHP_CTL</td>
</tr>
<tr>
<td>CNTHP_CVAL_EL2[63:0]</td>
<td>CNTHP_CVAL</td>
</tr>
<tr>
<td>CNTHP_TVAL_EL2[31:0]</td>
<td>CNTHP_TVAL</td>
</tr>
<tr>
<td>CNTHPS_CTL_EL2[31:0]</td>
<td>CNTHPS_CTL</td>
</tr>
<tr>
<td>CNTHPS_CVAL_EL2[31:0]</td>
<td>CNTHPS_CVAL</td>
</tr>
<tr>
<td>CNTHPS_TVAL_EL2[31:0]</td>
<td>CNTHPS_TVAL</td>
</tr>
<tr>
<td>CNTKCTL_EL1[31:0]</td>
<td>CNTKCTL</td>
</tr>
<tr>
<td>CNTP_CTL_EL0[31:0]</td>
<td>CNTP_CTL*</td>
</tr>
<tr>
<td>CNTP_CVAL_EL0[63:0]</td>
<td>CNTP_CVAL*</td>
</tr>
<tr>
<td>CNTP_TVAL_EL0[31:0]</td>
<td>CNTP_TVAL*</td>
</tr>
<tr>
<td>CNTPCT_EL0[63:0]</td>
<td>CNTPCT</td>
</tr>
<tr>
<td>CNTV_CTL_EL0[31:0]</td>
<td>CNTV_CTL</td>
</tr>
<tr>
<td>CNTV_CVAL_EL0[63:0]</td>
<td>CNTV_CVAL</td>
</tr>
<tr>
<td>CNTV_TVAL_EL0[31:0]</td>
<td>CNTV_TVAL</td>
</tr>
<tr>
<td>CNTHV_CTL_EL2[63:0]</td>
<td>CNTHV_CTL</td>
</tr>
<tr>
<td>CNTHV_CVAL_EL2[63:0]</td>
<td>CNTHV_CVAL</td>
</tr>
<tr>
<td>CNTHV_TVAL_EL2[63:0]</td>
<td>CNTHV_TVAL</td>
</tr>
<tr>
<td>CNTHVS_CTL_EL2[31:0]</td>
<td>CNTHVS_CTL</td>
</tr>
<tr>
<td>CNTHVS_CVAL_EL2[63:0]</td>
<td>CNTHVS_CVAL</td>
</tr>
<tr>
<td>CNTHVS_TVAL_EL2[63:0]</td>
<td>CNTHVS_TVAL</td>
</tr>
<tr>
<td>CNTVCT_EL0[63:0]</td>
<td>CNTVCT</td>
</tr>
<tr>
<td>CNTVOFF_EL2[63:0]</td>
<td>CNTVOFF</td>
</tr>
<tr>
<td>Debug System registers</td>
<td></td>
</tr>
<tr>
<td>DBGAUTHSTATUS_EL1[31:0]</td>
<td>DBGAUTHSTATUS</td>
</tr>
<tr>
<td>DBGBCR&lt;α&gt;_EL1[31:0]</td>
<td>DBGBCR&lt;α&gt;</td>
</tr>
</tbody>
</table>
Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

<table>
<thead>
<tr>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGBVR&lt;n&gt;_EL1[31:0]</td>
<td>DBGBVR&lt;n&gt;</td>
</tr>
<tr>
<td>DBGBVR&lt;n&gt;_EL1[63:32]</td>
<td>DBGXVR&lt;n&gt;</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1[31:0]</td>
<td>DBGCLAIMCLR</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1[31:0]</td>
<td>DBGCLAIMSET</td>
</tr>
<tr>
<td>DBGDTR_EL0[63:32]</td>
<td>DBGDTRRXint</td>
</tr>
<tr>
<td>DBGDTR_EL0[31:0]</td>
<td>DBGDTRTXint</td>
</tr>
<tr>
<td>DBGDTRRX_EL0[31:0]</td>
<td>DBGDTRRXint</td>
</tr>
<tr>
<td>DBGDTRTX_EL0[31:0]</td>
<td>DBGDTRRXint</td>
</tr>
<tr>
<td>DBGPRCR_EL1[31:0]</td>
<td>DBGPRCR</td>
</tr>
<tr>
<td>DBGVCR32_EL2[31:0]</td>
<td>DBGVCR</td>
</tr>
<tr>
<td>DBGWCR&lt;n&gt;_EL1[31:0]</td>
<td>DBGWCR&lt;n&gt;</td>
</tr>
<tr>
<td>DBGWVR&lt;n&gt;_EL1[31:0]</td>
<td>DBGWVR&lt;n&gt;</td>
</tr>
<tr>
<td>ID_DFR0_EL1[31:0]</td>
<td>ID_DFR0</td>
</tr>
<tr>
<td>MDCCSR_EL0b[30:29]</td>
<td>DBGDSCRimb</td>
</tr>
<tr>
<td>MDCR_EL2[31:0]</td>
<td>HDCR</td>
</tr>
<tr>
<td>MDRAR_EL1[63:0]</td>
<td>DBGDRAAR</td>
</tr>
<tr>
<td>MDSCR_EL1b[31:0]</td>
<td>DBGDSCRxextb</td>
</tr>
<tr>
<td>OSDLR_EL1[31:0]</td>
<td>DBGOSDLR</td>
</tr>
<tr>
<td>OSDTRRX_EL1b[31:0]</td>
<td>DBGDTRXextb</td>
</tr>
<tr>
<td>OSDTRTX_EL1b[31:0]</td>
<td>DBGDTRXextb</td>
</tr>
<tr>
<td>OSECCR_EL1[31:0]</td>
<td>DBGOSECCR</td>
</tr>
<tr>
<td>OSLAR_EL1[31:0]</td>
<td>DBGOSLAR</td>
</tr>
<tr>
<td>OSLSR_EL1[31:0]</td>
<td>DBGOSLSR</td>
</tr>
<tr>
<td>SDER32_EL3[31:0]</td>
<td>SDER</td>
</tr>
</tbody>
</table>

Performance Monitors System registers

<table>
<thead>
<tr>
<th>System registers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCCNTR_EL0[31:0]</td>
<td>PMCCNTR (MRC/MCR)</td>
</tr>
<tr>
<td>PMCEID0_EL0[31:0]</td>
<td>PMCEID0</td>
</tr>
<tr>
<td>PMCEID0_EL0[63:32]</td>
<td>PMCEID2</td>
</tr>
<tr>
<td>PMCEID1_EL0[31:0]</td>
<td>PMCEID1</td>
</tr>
<tr>
<td>PMCEID1_EL0[63:32]</td>
<td>PMCEID3</td>
</tr>
<tr>
<td>PMCNTENCLR_EL0[31:0]</td>
<td>PMCNTENCLR</td>
</tr>
<tr>
<td>PMCNTENSET_EL0[31:0]</td>
<td>PMCNTENSET</td>
</tr>
</tbody>
</table>
Table D1-29 Mapping of writable AArch64 System registers to the AArch32 System registers

<table>
<thead>
<tr>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCR_EL0[31:0]</td>
<td>PMCR</td>
</tr>
<tr>
<td>PMEVCNTR_&lt;n&gt;_EL0[31:0]</td>
<td>PMEVCNTR_&lt;n&gt;</td>
</tr>
<tr>
<td>PMEVTYPE_&lt;n&gt;_EL0[31:0]</td>
<td>PMEVTYPE_&lt;n&gt;</td>
</tr>
<tr>
<td>PMINTENCLR_EL1[31:0]</td>
<td>PMINTENCLR</td>
</tr>
<tr>
<td>PMINTENSET_EL1[31:0]</td>
<td>PMINTENSET</td>
</tr>
<tr>
<td>PMSELR_EL0[31:0]</td>
<td>PMSELR</td>
</tr>
<tr>
<td>PMSWINC_EL0[31:0]</td>
<td>PMSWINC</td>
</tr>
<tr>
<td>PMUSERENR_EL0[31:0]</td>
<td>PMUSERENR</td>
</tr>
<tr>
<td>PMXEVCNTR_EL0[31:0]</td>
<td>PMXEVCNTR</td>
</tr>
<tr>
<td>PMXEVTYPER_EL0[31:0]</td>
<td>PMXEVTYPER</td>
</tr>
<tr>
<td>AMCNTENCLR0_EL0[31:0]</td>
<td>AMCNTENCLR0</td>
</tr>
<tr>
<td>AMCNTENCLR1_EL0[31:0]</td>
<td>AMCNTENCLR1</td>
</tr>
<tr>
<td>AMCNTENSET0_EL0[31:0]</td>
<td>AMCNTENSET0</td>
</tr>
<tr>
<td>AMCNTENSET1_EL0[31:0]</td>
<td>AMCNTENSET1</td>
</tr>
<tr>
<td>AMCR_EL0[31:0]</td>
<td>AMCR</td>
</tr>
<tr>
<td>AMEVCNTR0_&lt;n&gt;_EL0[63:0]</td>
<td>AMEVCNTR0_&lt;n&gt;</td>
</tr>
<tr>
<td>AMEVCNTR1_&lt;n&gt;_EL0[63:0]</td>
<td>AMEVCNTR1_&lt;n&gt;</td>
</tr>
<tr>
<td>AMEVTYPE1_&lt;n&gt;_EL0[31:0]</td>
<td>AMEVTYPE1_&lt;n&gt;</td>
</tr>
<tr>
<td>DISR_EL1[31:0]</td>
<td>DISR</td>
</tr>
<tr>
<td>ERRIDR_EL1[31:0]</td>
<td>ERRIDR</td>
</tr>
<tr>
<td>ERRSELR_EL1[31:0]</td>
<td>ERRSELR</td>
</tr>
<tr>
<td>ERXADDR_EL1[31:0]</td>
<td>ERXADDR</td>
</tr>
<tr>
<td>ERXADDR_EL1[63:32]</td>
<td>ERXADDR2</td>
</tr>
<tr>
<td>ERXCTRLR_EL1[31:0]</td>
<td>ERXCTRLR</td>
</tr>
<tr>
<td>ERXCTRLR_EL1[63:32]</td>
<td>ERXCTRLR2</td>
</tr>
<tr>
<td>ERXFR_EL1[31:0]</td>
<td>ERXFR</td>
</tr>
<tr>
<td>ERXFR_EL1[63:32]</td>
<td>ERXFR2</td>
</tr>
<tr>
<td>ERXMISCO0_EL1[31:0]</td>
<td>ERXMISCO0</td>
</tr>
<tr>
<td>ERXMISCO0_EL1[63:32]</td>
<td>ERXMISCO1</td>
</tr>
<tr>
<td>ERXMISC1_EL1[31:0]</td>
<td>ERXMISC2</td>
</tr>
</tbody>
</table>
There are a small number of AArch32 System registers that are not mapped to any AArch64 System registers. The AArch64 registers listed in Table D1-30 can be used to access these from a higher Exception level that is using AArch64. The registers shown in the table are UNDEFINED if EL1 cannot use AArch32.

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>Register for access from AArch64 state</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DACR</td>
<td>DACR32_EL2</td>
<td>Domain Access Control Register</td>
</tr>
<tr>
<td>DBGVCR</td>
<td>DBGVCR32_EL2</td>
<td>Debug Vector Access Register</td>
</tr>
<tr>
<td>FPEXC</td>
<td>FPEXC32_EL2</td>
<td>Floating-Point Exception Control Register</td>
</tr>
<tr>
<td>IFSR</td>
<td>IFSR32_EL2</td>
<td>Instruction Fault Status Register</td>
</tr>
<tr>
<td>SDER</td>
<td>SDER32_EL3</td>
<td>AArch32 Secure Debug Enable Register</td>
</tr>
</tbody>
</table>

Table D1-31 shows the AArch64 System registers that allow access from AArch64 state to the AArch32 ID registers. These AArch64 registers are UNKNOWN if no Exception level can use AArch32.

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>Register for access from AArch64 state</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_AFR0</td>
<td>ID_AFR0_EL1</td>
<td>AArch32 Auxiliary Feature Register 0</td>
</tr>
<tr>
<td>ID_DFR0</td>
<td>ID_DFR0_EL1</td>
<td>AArch32 Debug Feature Register 0</td>
</tr>
<tr>
<td>ID_ISAR0</td>
<td>ID_ISAR0_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 0</td>
</tr>
<tr>
<td>ID_ISAR1</td>
<td>ID_ISAR1_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 1</td>
</tr>
<tr>
<td>ID_ISAR2</td>
<td>ID_ISAR2_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 2</td>
</tr>
<tr>
<td>ID_ISAR3</td>
<td>ID_ISAR3_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 3</td>
</tr>
<tr>
<td>ID_ISAR4</td>
<td>ID_ISAR4_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 4</td>
</tr>
<tr>
<td>ID_ISAR5</td>
<td>ID_ISAR5_EL1</td>
<td>EL1, AArch32 Instruction Set Attribute Register 5</td>
</tr>
</tbody>
</table>
### D1.19.2 State of the general-purpose registers on taking an exception to AArch64 state

When an exception is taken from AArch32 state to AArch64 state, the state of a general-purpose register depends on whether, immediately before the exception, the register was accessible from AArch32 state, as follows:

**If the general-purpose register was accessible from AArch32 state**

The upper 32 bits either become zero, or hold the value that the same architectural register held before any AArch32 execution. The choice between these two options is IMPLEMENTATION DEFINED, and might vary dynamically within an implementation. Correspondingly, software must regard the value as being a CONSTRAINED UNPREDICTABLE choice between these two values.

This behavior applies regardless of whether any execution occurred at the Exception level that was using AArch32. That is, this behavior applies even if AArch32 state was entered by an exception return from AArch64 state, and another exception was immediately taken to AArch64 state without any instruction execution in AArch32 state.

Which general-purpose registers have their upper 32 bits affected in this way depends on both:

- The AArch64 state target Exception level.
- The values of both:
  - SCR_EL3.RW.
  - HCR_EL2.RW or HCR.RW, where HCR.RW is a notional bit that is RES0.

Table D1-32 shows which general-purpose registers can have their upper 32 bits set to zero.

#### Table D1-31 AArch64 registers that access the AArch32 ID registers (continued)

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>Register for access from AArch64 state</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_MMFR0</td>
<td>ID_MMFR0_EL1</td>
<td>AArch32 Memory Model Feature Register 0</td>
</tr>
<tr>
<td>ID_MMFR1</td>
<td>ID_MMFR1_EL1</td>
<td>AArch32 Memory Model Feature Register 1</td>
</tr>
<tr>
<td>ID_MMFR2</td>
<td>ID_MMFR2_EL1</td>
<td>AArch32 Memory Model Feature Register 2</td>
</tr>
<tr>
<td>ID_MMFR3</td>
<td>ID_MMFR3_EL1</td>
<td>AArch32 Memory Model Feature Register 3</td>
</tr>
<tr>
<td>ID_MMFR4</td>
<td>ID_MMFR4_EL1</td>
<td>AArch32 Memory Model Feature Register 4</td>
</tr>
<tr>
<td>ID_PFR0</td>
<td>ID_PFR0_EL1</td>
<td>AArch32 PE Feature Register 0</td>
</tr>
<tr>
<td>ID_PFR1</td>
<td>ID_PFR1_EL1</td>
<td>AArch32 PE Feature Register 1</td>
</tr>
</tbody>
</table>

#### Table D1-32 General-purpose registers that can have their upper 32 bits set to zero on taking an exception to AArch64 state from AArch32 state

<table>
<thead>
<tr>
<th>SCR_EL3.RW</th>
<th>HCR_EL2.RW or HCR.RWa</th>
<th>Registers when the target Exception level is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EL3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>X0-X30</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X0-X14, X16-X30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X0-X14</td>
</tr>
</tbody>
</table>

a. HCR.RW is a notional bit that is RES0.
b. The RW bit values are not valid for the targeted Exception level.
c. Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.
Note

If EL2 is not implemented, or the SCR_EL3.NS or SCR.NS bit prevents its use, then as described in The effects of supporting fewer than four Exception levels on page D1-2415, the behavior is consistent with HCR_EL2.RW taking the value of SCR_EL3.RW.

If the general-purpose register was not accessible from AArch32 state

The general rule is that the register retains the state it had before any AArch32 execution.

There is one exception to this rule, that is when taking an exception to EL3 using AArch64 when either EL2 is not implemented or EL1 is in Secure state. In these cases, the X15 register must be treated as if it is accessible when the value of SCR_EL3.RW is 0, and therefore the upper bits of X15 might either be set to zero or retain their previous value.

Which general-purpose registers retain their state depends on both:

- The AArch64 state target Exception level.
- The values of both:
  - SCR_EL3.RW.
  - HCR_EL2.RW or HCR.RW, where HCR.RW is a notional bit that is RES0.

Table D1-33 shows which general-purpose registers can retain their state.

Table D1-33 General-purpose registers that can retain their state on taking an exception to AArch64 from AArch32

<table>
<thead>
<tr>
<th>SCR_EL3.RW</th>
<th>HCR_EL2.RW or HCR.RWa</th>
<th>Registers when the target Exception level is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EL3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X15-X30</td>
</tr>
</tbody>
</table>

a. HCR.RW is a notional bit that is RES0.
b. The RW bit values are not valid for the targeted Exception level.
c. Not valid because the RW bit values would imply that EL2 is AArch32 and EL1 is AArch64.

Note

If EL2 is not implemented, or the SCR_EL3.NS bit prevents its use, then as described in The effects of supporting fewer than four Exception levels on page D1-2415, the behavior is consistent with HCR_EL2.RW taking the value of SCR_EL3.RW.
D1.19.3   SPSR, ELR, and AArch64 SP relationships on changing Execution state

Table D1-34 shows the SPSR and ELR registers that are architecturally mapped between AArch32 state and AArch64 state.

<table>
<thead>
<tr>
<th>AArch32 register</th>
<th>AArch64 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPSR_svc</td>
<td>SPSR_EL1</td>
</tr>
<tr>
<td>SPSR_hyp</td>
<td>SPSR_EL2</td>
</tr>
<tr>
<td>ELR_hyp</td>
<td>ELR_EL2</td>
</tr>
</tbody>
</table>

On exception entry to EL3 using AArch64 state from an Exception level using AArch32 state, when EL2 has been using AArch32 state, the upper 32-bits of ELR_EL2 are either set to zero or they retain the value before the AArch32 state execution. The implementation determines the choice between these two options, and the choice might vary dynamically within an implementation. Therefore, software must regard the upper 32-bits as being UNKNOWN.

On exception entry to an Exception level using AArch64 state from an Exception level using AArch32 state, the AArch64 Stack Pointers and Exception Link Registers associated with an Exception level that are not accessible during execution in AArch32 state at that Exception level, retain the state that they had before the execution in AArch32 state.

The following AArch32 registers are used only during execution in AArch32 state. However, they retain their state when there is execution at EL1 with EL1 using AArch64 state:

- SPSR_abt.
- SPSR_und.
- SPSR_irq.
- SPSR_fiq.

Note

- These registers are accessible during execution in AArch64 state at Exception levels higher than EL1, for context switching.
- If EL1 does not support execution in AArch32 state then these registers are RES0.

On exception entry to an Exception level using AArch64 from an Exception level using AArch32, the AArch64 Stack Pointers and Exception Link Registers associated with an Exception level that are not accessible during AArch32 execution at that Exception level retain the state that they had before AArch32 execution. This applies to the following registers:

- SP_EL0.
- SP_EL1.
- SP_EL2.
- ELR_EL1.
D1.20 The effect of implementation choices on the programmers’ model

Three of the implementation choices in Armv8 are:
• The number of Exception levels implemented.
• Which Exception levels support AArch32 and which Exception levels support AArch64.
• Whether SIMD and floating-point support is implemented.

The following subsections give more information about how these choices affect the programmers’ model:
• Implication of Exception levels implemented.
• Support for Exception levels and Execution states on page D1-2414.
• Implementations not including Advanced SIMD and floating-point instructions on page D1-2414.
• The effects of supporting fewer than four Exception levels on page D1-2415.

D1.20.1 Implication of Exception levels implemented

All implementations must include EL0 and EL1.

EL2 and EL3 are optional. The architecture permits all combinations of EL2 and EL3.

See also Implementations not including Advanced SIMD and floating-point instructions on page D1-2414 and The effects of supporting fewer than four Exception levels on page D1-2415.

For an implementation that includes all of the Exception levels Figure D1-5 shows the implemented Exception levels and the possible Execution states at lower Exception levels when EL3 is using AArch64. Figure D1-5 applies regardless of whether EL3 also supports use of AArch32.

Figure D1-5 Armv8-A security model when EL3 is using AArch64

† AArch64 permitted only if EL1 is using AArch64
‡ AArch64 permitted only if EL2 is using AArch64
The possible combinations of Exception levels are as follows:

- EL0, EL1, and EL2. The implementation supports only a single Security state. This might be either Secure state or Non-secure state.

- EL0, EL1, and EL3. The implementation does not support Virtualization. The Exception levels and Execution states depend on whether EL3 is using AArch64 state or AArch32 state, as follows:
  - If EL3 is using AArch64, the Exception levels and Execution states are as shown in Figure D1-5 on page D1-2413 with EL2 removed and no virtualization of EL1 and EL0.
  - If EL3 is using AArch32, the Exception levels and Execution states are as shown in Figure G1-1 on page G1-5720 with EL2 removed and no virtualization of EL1 and EL0.

- EL0 and EL1 only. The implementation supports only a single Security state. This might be either Secure state or Non-secure state, see *Behavior when only EL1 and EL0 are implemented* on page D1-2416.

- EL0, EL1, EL2, and EL3, as described in this section.

For more information, see *The effects of supporting fewer than four Exception levels* on page D1-2415.

### D1.20.2 Support for Exception levels and Execution states

Subject to the interprocessing rules defined in *Interprocessing* on page D1-2400, an implementation of the Arm architecture could support:

- AArch64 state only.
- AArch64 and AArch32 states.
- AArch32 state only.

This means the Armv8-A architecture can, potentially, support implementations with very large number of combinations of Execution state and Exception level. Arm intends to license only a subset of the possible combinations.

In an implementation that:

- Supports AArch64 state, all Exception levels are included.
- Has Secure and Non-secure states, EL3 should be implemented.
- Includes all Exception levels, EL3 cannot be included in AArch32 state.

### D1.20.3 Implementations not including Advanced SIMD and floating-point instructions

In general, Armv8-A requires the inclusion of the Advanced SIMD and floating-point instructions in all instruction sets. Exceptionally, for implementations targeting specialized markets that do not require support for floating-point or use of Advanced SIMD, Arm might produce or license an Armv8-A implementation that does not provide any support for Advanced SIMD and floating-point instructions. In such an implementation:

**In AArch64 state**

- The CPACR_EL1.FPEN field is RES0.
- The CPTR_EL2.TFP bit is RES1.
- The CPTR_EL3.TFP bit is RES1.
- Each of the ID_AA64PFR0_EL1.{AdvSIMD, FP} fields is 0b1111.
- The FPEXC32_EL2, FPCR, and FPSR registers are not implemented, and their encodings are UNDEFINED.
- Attempted accesses to Advanced SIMD and floating-point functionality are UNDEFINED. This means:
  - All Advanced SIMD and floating-point instructions are UNDEFINED.
  - Attempts to access the Advanced SIMD and floating-point System registers are UNDEFINED.
- If at least one Exception level supports execution in AArch32 state, the MVFR0_EL1, MVFR1_EL1 and MVFR2_EL1 registers are RAZ. When no Exception level supports execution in AArch32 state these registers are UNKNOWN.
In AArch32 state

See AArch32 implications of not including support for Advanced SIMD and floating-point on page G1-5812.

D1.20.4 The effects of supporting fewer than four Exception levels

The effect of implementation choices on the programmers’ model on page D1-2413 defines the permitted combinations of Exception levels in an Armv8-A implementation.

In every implementation that supports the highest Exception level using either AArch64 state or AArch32 state, an IMPLEMENTATION DEFINED mechanism determines whether the highest implemented Exception level uses AArch64 state or AArch32 state from a Cold reset. Typically, this mechanism is a configuration input. When the highest level is configured to be AArch64 state, then after a Cold reset execution starts at the reset vector in that Exception level.

The unimplemented Exception levels have no effect on execution:

- No interrupts are routed to these Exception levels.
- No traps that target these Exception levels are active.
- All systems calls to unimplemented Exception levels from lower Exception levels are treated as UNDEFINED.
- There is no support for address translation from these Exception levels.
- Any exception return that targets an unimplemented Exception level is treated as an illegal exception return as described in Illegal return events from AArch64 state on page D1-2345.
- Every accessible register associated with an unimplemented Exception level is RES0 unless the register is associated with the Exception level only to provide the ability to transfer execution to a lower Exception level.

Note

If, for example, EL3 is not implemented and EL2 is the highest implemented Exception level, then because none of the EL3 registers are accessible from EL2, the content of those registers is not architecturally visible.

The following subsections give more information about each of the permitted combinations of Exception levels that do not include all Exception levels.

Behavior when EL3 is not implemented

If EL3 is not implemented:

- If EL2 is implemented and Secure EL2 is not implemented, the Effective value of SCR_EL3.NS is 0b1.
- If Secure EL2 is implemented, the Effective value of SCR_EL3.EEL2 is 0b1 and the Effective value of SCR_EL3.NS is 0b0.
- If EL2 is not implemented, it is IMPLEMENTATION DEFINED whether the Effective value of SCR_EL3.NS is 0b1 or 0b0.

Behavior when EL2 is not implemented

If EL2 is not implemented and EL3 is implemented:

- If EL1 can use AArch32 then the following registers are not RES0:
  — DACR32_EL2.
  — IFSR32_EL2.
  — FPEXC32_EL2.
  — DBGVCR32_EL2.

- The VMPIDR_EL2 and VPIDR_EL2 behave as follows:
  — Reads of VMPIDR_EL2 return the value of MPIDR_EL1, writes to VMPIDR_EL2 are ignored.
  — Reads of VPIDR_EL2 return the value of MIDR_EL1, writes to VPIDR_EL2 are ignored.
The behavior is consistent with the HCR_EL2.RW bit taking the value of the SCR_EL3.RW bit for all purposes other than reading the HCR_EL2.

Virtual interrupts are disabled.

The following address translation and TLB invalidation instructions are UNDEFINED:
- AT S1E2R and AT S1E2W.
- TLBI VAE2, TLBI VALE2, TLBI VAE2IS, TLBI VALE2IS, TLBI VAE2OS, TLBI VALE2OS, TLBI VAE2IS, TLBI VALE2IS, TLBI VAE2OS, TLBI VALE2OS.

Note

No other TLB or address translation instructions become UNDEFINED with this combination of Exception levels.

The SCR_EL3.HCE bit is RES0.

If EL2 is not implemented, regardless of whether EL3 is implemented:
- The Effective value of CNTHCTL_EL2[1:0] is 0b11.
- The Effective value of MDCR_EL2.HPMN is the value of PMCR_EL0.N.

Behavior when only EL1 and EL0 are implemented

If EL3 and EL2 are not implemented, it is IMPLEMENTATION DEFINED whether the Effective value of the SCR_EL3.NS bit is 0b1 or 0b0.

This means that if the PE is part of a system that supports two Security states:
- When the Effective value of the SCR_EL3.NS bit is 0b1, the PE can only access Non-secure memory.
- When the Effective value of the SCR_EL3.NS bit is 0b0, the PE can access both Secure memory and Non-secure memory.

If the Effective value of the SCR_EL3.NS bit is 0b0, then:
- The Effective value of MDCR_EL3.{EPMAD, EDAD} is {0b1, 0b1}.
- The Effective value of MDCR_EL3.{SPME, NSPB} is {0b1, 0b01}.
- The Effective value of MDCR_EL3.SPD32 is 0b11.

If EL3 is not implemented, regardless of whether EL2 is implemented, the Effective value of MDCR_EL3.STE is the inverse of the Effective value of SCR_EL3.NS.

Note

- The behavior described in this subsection still applies if EL1 is configured to use AArch32.
- The implementation can provide a configuration input that determines, from reset, the Effective value of the SCR_EL3.NS bit.
Chapter D2
AArch64 Self-hosted Debug

When the PE is using self-hosted debug, it generates debug exceptions. This chapter describes the AArch64 self-hosted debug exception model. It is organized as follows:

Introductory information
- About self-hosted debug on page D2-2418.
- The debug exception enable controls on page D2-2422.

The debug Exception model
- Routing debug exceptions on page D2-2423.
- Enabling debug exceptions from the current Exception level on page D2-2425.
- The effect of powerdown on debug exceptions on page D2-2427.
- Summary of the routing and enabling of debug exceptions on page D2-2428.
- Pseudocode description of debug exceptions on page D2-2430.

The debug exceptions
- Breakpoint Instruction exceptions on page D2-2431.
- Breakpoint exceptions on page D2-2433.
- Watchpoint exceptions on page D2-2451.
- Vector Catch exceptions on page D2-2465.
- Software Step exceptions on page D2-2466.

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the authentication interface, but before a Context synchronization event guarantees the effects of the changes:
- Synchronization and debug exceptions on page D2-2479.
D2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, that are taken using the exception model described in Chapter D1 The AArch64 System Level Programmers’ Model. This section introduces some terms that are used in describing self-hosted debug, and then introduces the debug exceptions. See:

- Definition of a debugger in the context of self-hosted debug.
- Context ID and Process ID.
- About debug exceptions.

D2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that handles debug exceptions and programs the Debug System registers. An operating system with rich application environments might provide debug services that support a debugger user interface executing at EL0. From the architectural perspective, the debug services are the debugger.

D2.1.2 Context ID and Process ID

A CONTEXTIDR_ELx identifies the current Context ID, that is used by:

- The debug logic, for breakpoint and watchpoint matching.
- Implemented trace logic, to identify the current process.

In AArch64 state, the CONTEXTIDR_ELx has a single field, PROCID, that is defined as the Process Identifier (Process ID). Therefore, in AArch64 state, the Context ID and Process ID are identical.

D2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For example, a software developer might use a debugger contained in an operating system to debug an application. To do this, the debugger enables one or more debug exceptions. The debug exceptions that can be generated in stage 1 of an AArch64 translation regime are:

- Breakpoint Instruction exceptions on page D2-2419.
- Breakpoint exceptions on page D2-2419, generated by hardware breakpoints.
- Watchpoint exceptions on page D2-2419, generated by hardware watchpoints.
- Software Step exceptions on page D2-2420.

In addition, debug exceptions generated in an AArch32 translation regime might be routed to EL2 using AArch64. See Routing debug exceptions on page D2-2423. Chapter G2 describes the debug exceptions that can be generated in an AArch32 translation regime.

Vector Catch exceptions are exceptions that cannot be generated in an AArch64 translation regime but can be generated in stage 1 of an AArch32 translation regime and routed to EL2 using AArch64. Vector Catch exceptions on page D2-2465 describes the behavior for this case.

The PE can only generate a particular debug exception when both:

1. Debug exceptions are enabled from the current Exception level and Security state.
   See Enabling debug exceptions from the current Exception level on page D2-2425. Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.

2. A debugger has enabled that particular debug exception.
   All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in the MDSCR_EL1. See The debug exception enable controls on page D2-2422.

Note

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state instead of causing debug exceptions. In Debug state, the PE is halted.
For the definition of halting is allowed, see Halting allowed and halting prohibited on page H2-7015.

The following list summarizes each of the debug exceptions:

**Breakpoint Instruction exceptions**

*Breakpoint instructions* generate these. Breakpoint instructions are instructions that software developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A64 instruction set is `BRK #<immediate>`. Whenever one of these is committed for execution, the PE takes a Breakpoint Instruction exception.

**PE behavior**

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint Instruction exceptions regardless of both of the following:

- The current Exception level.
- The current Security state.

For more information, see Breakpoint Instruction exceptions on page D2-2431.

**Breakpoint exceptions**

The Armv8-A architecture provides 2-16 hardware breakpoints. These can be programmed to generate Breakpoint exceptions based on particular instruction addresses, or based on particular PE contexts, or both.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint exception whenever the instruction with address `0x1000` is committed for execution.

The Armv8-A architecture supports the following types of hardware breakpoint for use in stage 1 of an AArch64 translation regime:

- Address.
  - Comparisons are made with the virtual address of each instruction in the program flow.
- Context:
  - Context ID Match. Matches with the Context ID held in the CONTEXTIDR_EL1.
  - VMID Match. Matches with the VMID value held in the VTTBR_EL2.
  - Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context breakpoint, so that the Address breakpoint only generates a Breakpoint exception if the PE is in a particular context when the address match occurs.

A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is committed for execution.

**PE behavior**

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

- If debug exceptions are enabled, hardware breakpoints cause Breakpoint exceptions.
- If debug exceptions are disabled, hardware breakpoints are ignored.

For more information, see Breakpoint exceptions on page D2-2433.

**Watchpoint exceptions**

The Armv8-A architecture provides 2-16 hardware watchpoints. These can be programmed to generate Watchpoint exceptions based on accesses to particular data addresses, or based on accesses to any address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint exception on an access to any address in the data address range `0x1000 - 0x101F`. 
A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Linked Context type. In this case, the watchpoint only generates a Watchpoint exception if the PE is in a particular context when the data address match occurs.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that causes a match is committed for execution.

**PE behavior**

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

- If debug exceptions are enabled, hardware watchpoints cause Watchpoint exceptions.
- If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see *Watchpoint exceptions on page D2-2451*.

**Vector Catch exceptions**

These are not generated in an AArch64 translation regime. They can only be generated in an AArch32 translation regime. See *Vector Catch exceptions on page D2-2465*.

**Software Step exceptions**

Software step is a resource that a debugger can use to make the PE single-step instructions.

For example, by using software step, debugger software executing at a higher Exception level can debug software executing at a lower Exception level, by making it single-step instructions.

After the software being debugged has single-stepped an instruction, the PE takes a Software Step exception.

**PE behavior**

Software step can only be used by a debugger executing in an Exception level that is using AArch64. However, the instruction stepped might be executed in either Execution state, and therefore Software Step exceptions can be taken from either Execution state.

If debug exceptions are enabled, Software Step exceptions can be generated.

If debug exceptions are disabled, software step is inactive.

For more information, see *Software Step exceptions on page D2-2466*.

Table D2-1 summarizes PE behavior and shows the location of the pseudocode for each of the debug exceptions.

<table>
<thead>
<tr>
<th>Debug exception</th>
<th>PE behavior if debug exceptions are:</th>
<th>Pseudocode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Breakpoint Instruction exceptions</td>
<td>Takes the exception</td>
<td>Takes the exception</td>
</tr>
<tr>
<td>Breakpoint exceptions</td>
<td>Takes the exception(^a)</td>
<td>Ignored</td>
</tr>
</tbody>
</table>
### Table D2-1 PE behavior and pseudocode for each of the debug exceptions (continued)

<table>
<thead>
<tr>
<th>Debug exception</th>
<th>PE behavior if debug exceptions are:</th>
<th>Pseudocode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Watchpoint exceptions</td>
<td>Takes the exception&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Ignored</td>
</tr>
<tr>
<td>Vector Catch exceptions</td>
<td>Takes the exception</td>
<td>Ignored</td>
</tr>
<tr>
<td>Software Step exceptions</td>
<td>Takes the exception</td>
<td>Not applicable&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing debug exceptions. See Chapter H2 Debug State.

<sup>b</sup> Software Step is inactive if debug exceptions are disabled. No Software Step exceptions can be generated.
D2.2 The debug exception enable controls

The enable controls for each debug exception are as follows:

**Breakpoint Instruction exceptions**

None. Breakpoint Instruction exceptions are always enabled.

**Breakpoint exceptions**

MDSCR\_EL1.MDE, plus an enable control for each breakpoint, DBGBCR\(<n>_EL1.E.

**Watchpoint exceptions**

MDSCR\_EL1.MDE, plus an enable control for each watchpoint, DBGWCR\(<n>_EL1.E.

**Vector Catch exceptions**

MDSCR\_EL1.MDE.

**Software Step exceptions**

MDSCR\_EL1.SS.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the controls that enable debug exceptions from the current Exception level and Security state. See *Enabling debug exceptions from the current Exception level* on page D2-2425.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.
D2.3 Routing debug exceptions

Debug exceptions are enabled and routed according to the following controls:

- MDCR_EL2.TDE.
- HCR_EL2.TGE.
- MDCR_EL3.SDD.
- The Security state when the exception is taken.
- The Exception level where the exception is taken.

Breakpoint Instructions are enabled in some situations where other Debug exceptions are disabled.

If the OS Lock is locked, or if DoubleLockStatus() == TRUE, a Debug exception cannot be taken.

--- Note ---

If EL2 is not implemented, the Effective value of HCR_EL2.TGE is 0 and the Effective value of MDCR_EL2.TDE is 0. Throughout this section, references to the values of these fields are to the Effective values of the fields.

If EL3 is not implemented, and the implementation is a Secure state only implementation, the Effective value of MDCR_EL3.SDD is 0.

The routing of debug exceptions is as follows:

Table D2-2 shows when debug exceptions are enabled from the current Security state.

<table>
<thead>
<tr>
<th>Current Security state</th>
<th>Breakpoint Instruction exceptions</th>
<th>All other debug exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Secure</td>
<td>Enabled</td>
<td>Disabled if MDCR_EL3.SDD is 1. See Disabling debug exceptions from Secure state on page D2-2425. Otherwise enabled.</td>
</tr>
</tbody>
</table>

Debug exceptions taken when EL2 is implemented and enabled in the current Security state

The routing of debug exceptions taken depends on the values of MDCR_EL2.TDE and HCR_EL2.TGE:

If the Effective value of {MDCR_EL2.TDE, HCR_EL2.TGE} is not {0, 0}

Debug exceptions are routed to EL2, EL_D is EL2.

Otherwise

Debug exceptions behave as follows:
- Debug exceptions taken from EL1 and EL0 are routed to EL1. EL_D is EL1
- Breakpoint Instruction exceptions taken from EL2 are routed to EL2.
- All other debug exceptions are disabled from EL2 using AArch64.

When EL3 is implemented

Breakpoint Instruction exceptions taken from EL3 are routed to EL3.
All other debug exceptions are disabled from EL3 using AArch64.

Otherwise

Debug exceptions are routed to EL1.

This means that, for all debug exceptions, the debug target Exception level, EL_D, is either EL1 or EL2. When executing in the same exception level as EL_D, see Enabling debug exceptions from the current Exception level on page D2-2425.
Table D2-3, Table D2-4, and Table D2-5 show the routing of debug exceptions. In these tables:

<table>
<thead>
<tr>
<th>NS</th>
<th>EEL2</th>
<th>TDE or TGE</th>
<th>EL₀</th>
<th>EL₁</th>
<th>EL₂</th>
<th>EL₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
<td>EL₁</td>
<td>EL₁</td>
<td>n/a</td>
<td>(EL₁)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>EL₁</td>
<td>EL₁</td>
<td>(EL₁)</td>
<td>(EL₁)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>EL₂</td>
<td>EL₂</td>
<td>EL₂</td>
<td>(EL₂)</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>0</td>
<td>EL₁</td>
<td>EL₁</td>
<td>(EL₁)</td>
<td>(EL₁)</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>EL₂</td>
<td>EL₂</td>
<td>EL₂</td>
<td>(EL₂)</td>
</tr>
</tbody>
</table>

Table D2-4 Routing when EL3 is implemented and EL2 is not implemented

<table>
<thead>
<tr>
<th>EL₀</th>
<th>EL₁</th>
<th>EL₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL₁</td>
<td>EL₁</td>
<td>(EL₁)</td>
</tr>
</tbody>
</table>

Table D2-5 Routing when EL3 is not implemented and EL2 is implemented

<table>
<thead>
<tr>
<th>TDE</th>
<th>EL₀</th>
<th>EL₁</th>
<th>EL₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EL₁</td>
<td>EL₁</td>
<td>(EL₁)</td>
</tr>
<tr>
<td>1</td>
<td>EL₂</td>
<td>EL₂</td>
<td>EL₂</td>
</tr>
</tbody>
</table>

**D2.3.1 Pseudocode description of routing debug exceptions**

DebuggerTarget() returns the current debug target Exception level.

DebuggerTargetFrom() returns the debug target Exception level for the specified Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.
D2.4 Enabling debug exceptions from the current Exception level

A debug exception can only be taken if all of the following are true:

• The OS Lock is unlocked.
• DoubleLockStatus() == FALSE.
• The debug exception is enabled from the current Exception level.
• The debug exception is enabled from the current Security state.

Table D2-6 shows when debug exceptions are enabled from the current Exception level. In the table, EL_D is the Exception level that Table D2-3 on page D2-2424 defines.

Table D2-6 Whether debug exceptions are enabled from the current Exception level

<table>
<thead>
<tr>
<th>Current Exception level</th>
<th>Breakpoint Instruction exceptions</th>
<th>All other debug exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Exception level that is higher than EL_D&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>EL_D</td>
<td>Enabled</td>
<td>Disabled if either of the following is true:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The Local (kernel) Debug Enable bit, MDSCR_EL1.KDE, is 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The Debug exception mask bit, PSTATE.D, is 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otherwise enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This means that a debugger must explicitly enable these debug exceptions from EL_D by setting MDSCR_EL1.KDE to 1 and PSTATE.D to 0.</td>
</tr>
<tr>
<td>Any Exception level that is lower than EL_D</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<sup>a</sup> This includes EL3. EL3 is always higher than EL_D.

---

Note

PSTATE.D is set to 1 at reset and on exception entry.

D2.4.1 Disabling debug exceptions from Secure state

If EL3 is implemented, software executing at EL3 can set the Secure Debug Disable bit, MDCR_EL3.SDD, to 1 to disable all debug exceptions taken from AArch64 Secure state other than Breakpoint Instruction exceptions.

The Armv8-A architecture does not support disabling debug in Non-secure state.

---

Note

• If the boot software executed when reset is deasserted sets MDCR_EL3.SDD to 1, software operating at EL3 never has to switch the debug registers between Secure state and Non-secure state.
• The PE cannot take a debug exception unless it is enabled from the current Exception level. See Table D2-6.
• If either the OS Lock or the OS Double Lock is locked, debug exceptions other than Breakpoint Instruction exceptions are disabled.
• If EL3 and EL2 are not implemented, and the implementation is a Secure state only implementation, the PE behaves as if MDCR_EL3.SDD is 0.
D2.4.2 Pseudocode description of enabling debug exceptions

AArch64.GenerateDebugExceptions() determines whether debug exceptions other than Breakpoint Instruction exceptions are enabled from the current Exception level and Security state.

AArch64.GenerateDebugExceptionsFrom() determines whether debug exceptions other than Breakpoint Instruction exceptions are enabled from the specified Exception level and Security state.

These functions are described in Chapter J1 Armv8 Pseudocode.
D2.5 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences on page H6-7123 describes the powerdown save routine and the restore routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:

- Breakpoint exceptions.
- Watchpoint exceptions.
- Vector Catch exceptions.
- Software Step exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the debug registers might be lost over these routines.

If the OS Lock is unlocked, and DoubleLockStatus() == FALSE, debug exceptions other than Breakpoint Instruction exceptions are enabled.

If OS Lock is locked, or if DoubleLockStatus() == TRUE, debug exceptions other than Breakpoint Instruction exceptions are disabled.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
### D2.6 Summary of the routing and enabling of debug exceptions

Behavior is as follows:

**Breakpoint Instruction exceptions**

These are always enabled, regardless of the current Exception level and Security state. A Breakpoint Instruction exception taken from EL3 is always routed to EL3. A Breakpoint Instruction exception taken from EL2 is routed to EL2. A Breakpoint Instruction exception taken from EL0 or EL1 is always routed to EL1.

**All other debug exceptions**

Table D2-7 shows the valid combinations of MDCR_EL3.SDD, MDCR_EL2.TDE, MDSCR_EL1.KDE, and PSTATE.D, and for each combination shows where these exceptions are enabled from and where they are taken to.

In the table:
- **Lock** Means the value of (OSLSR_EL1.OSLK == '1' || DoubleLockStatus()).
- **NS** Means the Effective value of SCR_EL3.NS.
- **SDD** Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from Secure state on page D2-2425.
- **EEL2** Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.
- **TGE** Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if this is 0.
- **TDE** Means the value of MDCR_EL2.TDE. If EL2 is not implemented, the PE behaves as if this is 0.
- **KDE** Means the value of MDSCR_EL1.KDE.
- **D** Means the value of PSTATE.D.
- **n/a** Means not applicable. The PE cannot be executing at this Exception level.
- **-** Means that debug exceptions are disabled from that Exception level.

#### Table D2-7 Routing of Breakpoint, Watchpoint, Software Step, and Vector Catch exceptions

<table>
<thead>
<tr>
<th>Debug state</th>
<th>Lock</th>
<th>NS</th>
<th>SDD</th>
<th>EEL2</th>
<th>TGE</th>
<th>TDE</th>
<th>KDE</th>
<th>D</th>
<th>EL0 when enabled from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>FALSE</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

		0	X	X	0	X	EL1	n/a	-
		1	0	EL1	n/a	-			
		1	EL1	n/a	-				
		1	0	EL1	-				
		1	EL1	-	-				

---

Non-Confidential

ID072120
### Table D2-7 Routing of Breakpoint, Watchpoint, Software Step, and Vector Catch exceptions (continued)

<table>
<thead>
<tr>
<th>Debug state</th>
<th>Lock</th>
<th>NS</th>
<th>SDD</th>
<th>EEL2</th>
<th>TGE</th>
<th>TDE</th>
<th>KDE</th>
<th>D</th>
<th>EL0 when enabled from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>FALSE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>EL2  EL2 - -</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>EL2</td>
<td>EL2</td>
<td>EL2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>EL2</td>
<td>EL2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>EL2</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>EL2</td>
<td>n/a</td>
<td>EL2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>EL2</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>EL1  - - -</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>EL1</td>
<td>EL1</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>EL1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>EL2</td>
<td>EL2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>EL2</td>
<td>EL2</td>
<td>EL2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>EL2</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>EL2</td>
<td>n/a</td>
<td>EL2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>EL2</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D2.7 Pseudocode description of debug exceptions

AArch64.DebugFault() returns a FaultRecord object that indicates that a memory access has generated a debug exception:

The AArch64.Abort() function processes FaultRecord objects, as described in Abort exceptions on page D4-2524, and generates a debug exception.

AArch64.Abort() calls one of the following:
• AArch64.BreakpointException().
• AArch64.WatchpointException().
• AArch64.VectorCatchException().
• AArch64.SoftwareStepException().

These functions are defined in Chapter J1 Armv8 Pseudocode.
D2.8 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:

• In an Exception level that is using AArch64.
• At EL0 using AArch32 when EL1 is using AArch64.

For software executing in an Exception level that is using AArch64, a Breakpoint Instruction exception results from the execution of an A64 BRK instruction. However, within the AArch64 EL1&0 translation regime, executing a T32 or A32 BKPT instruction at EL0 using AArch32 generates a Breakpoint Instruction exception.

For more information about the T32 and A32 BKPT instructions, see:

• Breakpoint instruction in the A32 and T32 instruction sets on page G2-5867.
• BKPT instructions as the first instruction in an IT block on page G2-5868.

The following subsections describe Breakpoint Instruction exceptions in an AArch64 translation regime:

• About Breakpoint Instruction exceptions.
• Breakpoint instructions.
• Exception syndrome information and preferred return address on page D2-2432.
• Pseudocode description of Breakpoint Instruction exceptions on page D2-2432.

D2.8.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.
• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, that this section describes, are software breakpoints. Breakpoint exceptions on page D2-2433 describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked.

A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution, regardless of all of the following:

• The current Exception level.
• The current Security state.
• Whether the debug target Exception level, EL_D, is using AArch64 or AArch32.

Note

• The debug target Exception level, EL_D, is the Exception level that debug exceptions are targeting. Routing debug exceptions on page D2-2423 describes how EL_D is derived.
• Debuggers using breakpoint instructions must be aware of the Armv8 rules for concurrent modification and execution of instructions. See Concurrent modification and execution of instructions on page B2-120.

D2.8.2 Breakpoint instructions

The breakpoint instruction in the A64 instruction set is BRK #<immediate>. It is unconditional.

For details of the instruction encoding, see BRK on page C6-837.

The breakpoint instruction in the A32 and T32 instruction sets is BKPT #<immediate>.

For more information about the A32 and T32 breakpoint instruction, see Breakpoint instruction in the A32 and T32 instruction sets on page G2-5867.
D2.8.3 Exception syndrome information and preferred return address

See the following:

- Exception syndrome information.
- Preferred return address.

Exception syndrome information

On taking a Breakpoint Instruction exception, the PE records information about the exception in the Exception Syndrome Register (ESR) at the Exception level the exception is taken to. The ESR used is one of:

- ESR_EL1.
- ESR_EL2.
- ESR_EL3.

--- Note ---

Breakpoint Instruction exceptions are the only debug exception that can be taken to EL3 using AArch64.

Table D2-8 shows the information that the PE records.

<table>
<thead>
<tr>
<th>ESR_ELx field</th>
<th>Information recorded in ESR_EL1, ESR_EL2, or ESR_EL3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception Class, EC</td>
<td>Whether the breakpoint instruction was executed in AArch64 state or AArch32 state. The PE sets this to:</td>
</tr>
<tr>
<td></td>
<td>• 0x3C for an A64 BRK instruction.</td>
</tr>
<tr>
<td></td>
<td>• 0x38 for an A32 or T32 BKPT instruction.</td>
</tr>
<tr>
<td>Instruction Length, IL</td>
<td>The PE sets this to:</td>
</tr>
<tr>
<td></td>
<td>• 0 for a 16-bit T32 BKPT instruction.</td>
</tr>
<tr>
<td></td>
<td>• 1 for an A64 BRK instruction, or an A32 BKPT instruction.</td>
</tr>
<tr>
<td>Instruction Specific Syndrome, ISS</td>
<td>ISS[24:16]</td>
</tr>
<tr>
<td></td>
<td>ISS[15:0]</td>
</tr>
</tbody>
</table>

--- Note ---

- If debug exceptions are routed to EL2, it is the exception that is routed, not the instruction that is trapped. Therefore, if a Breakpoint Instruction exception is routed to EL2, ESR_EL2.EC is set to the same value as if the exception was taken to EL1.
- For information about how debug exceptions can be routed to EL2, see Routing debug exceptions on page D2-2423.

Preferred return address

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different to the behavior of other exception-generating instructions, like SVC.

D2.8.4 Pseudocode description of Breakpoint Instruction exceptions

AArch64.SoftwareBreakpoint() generates a Breakpoint Instruction exception that is taken to AArch64 state.

This function is defined in Chapter J1 Armv8 Pseudocode.
D2.9 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:
• In an Exception level that is using AArch64.
• At EL0 using AArch32 when EL1 is using AArch64.

This section contains the following subsections:
• About Breakpoint exceptions.
• Breakpoint types and linking of breakpoints on page D2-2434.
• Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
• Breakpoint instruction address comparisons on page D2-2444.
• Breakpoint context comparisons on page D2-2446.
• Breakpoint usage constraints on page D2-2447.
• Preferred return address on page D2-2450.
• Pseudocode description of Breakpoint exceptions taken from AArch64 state on page D2-2450.

D2.9.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, which is based on either:
• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.
• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions on page D2-2431.

An implementation can include between 2-16 hardware breakpoints. ID_AA64DFR0_EL1.BRPs shows how many are implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:
• The Breakpoint Control Register, DBGBCR<n>_EL1. This contains controls for the breakpoint, for example an enable control.
• The Breakpoint Value Register, DBGBVR<n>_EL1. This holds the value used for breakpoint matching, that is one of:
  — An instruction virtual address.
  — A Context ID.
  — A VMID value.
  — A concatenation of both a Context ID value and a VMID value.

These registers are numbered, so that:
• DBGBCR_1_EL1 and DBGBVR1_EL1 are for breakpoint number one.
• DBGBCR2_EL1 and DBGBVR2_EL1 are for breakpoint number two.
• …
• …
• DBGBCR<n>_EL1 and DBGBVR<n>_EL1 are for breakpoint number n.

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with anything other than an address together, so that a Breakpoint debug event is only generated if both breakpoints match.

For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates a Breakpoint debug event if all of the following are true:
• The breakpoint is enabled. That is, the breakpoint enable control for it, DBGBCR<n>_EL1.E, is 1.
• The conditions specified in the DBGCR<\text{n}>_EL1 are met.
• The comparison with the value held in the DBGVR<\text{n}>_EL1 is successful.
• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also successful.
• The instruction is committed for execution.

If all of these conditions are met, the breakpoint generates the Breakpoint debug event regardless of the following:
• Whether the instruction passes its Condition code check.
• The instruction type.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.
Otherwise, if debug exceptions are:
• Enabled, Breakpoint debug events generate Breakpoint exceptions.
• Disabled, Breakpoint debug events are ignored.

—— Note ———
The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating Breakpoint exceptions.
However, the behavior described also applies if breakpoints are causing entry to Debug state.

The debug exception enable controls on page D2-2422 describes the enable controls for Breakpoint debug events.

D2.9.2 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:
• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception on any one of the following:
  — An instruction address match.
  — A Context ID match, with the value held in the CONTEXTIDR_EL1.
  — A VMID match, with the VMID value held in the VTTBR_EL2.
  — Both a Context ID match and a VMID match.
• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception on an instruction address match.

ID_AA64DFR0_EL1.CTX_CMPs shows how many of the implemented breakpoints are context-aware breakpoints. At least one implemented breakpoint must be context-aware. The context-aware breakpoints are the highest numbered breakpoints.

Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match is categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized as Context breakpoints.

When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that breakpoint so that it is either:
• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.
• Enabled for linking to another breakpoint. In this case, the breakpoint is called a Linked breakpoint.

By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that only generates a Breakpoint exception if the PE is in a particular context when an instruction address match occurs. For example, a debugger might:
1. Program breakpoint number one to be a Linked Address Match breakpoint.
2. Program breakpoint number five to be a Linked Context ID Match breakpoint.
3. Link these two breakpoints together. A Breakpoint exception is only generated if both the instruction address matches and the Context ID matches.

The Breakpoint Type field for a breakpoint, DBGBCR<n>_EL1.BT, controls the breakpoint type and whether the breakpoint is enabled for linking. If BT[0] is 1, the breakpoint is enabled for linking.

If AArch32 state is implemented, Address breakpoints can be programmed to generate Breakpoint exceptions on addresses that are halfword-aligned but not word-aligned. This makes it possible to breakpoint on T32 instructions. See Specifying the halfword-aligned address that an Address breakpoint matches on page D2-2444.

Note
Stage 1 of an AArch32 translation regimes supports two additional breakpoint types, Unlinked and Linked Address Mismatch breakpoints, BT == 0b0100 and BT == 0b101. For information about these, see Chapter G2 AArch32 Self-hosted Debug. These types are reserved in stage 1 of an AArch64 translation regime. See Reserved BT values on page D2-2447.

Rules for linking breakpoints
The rules for breakpoint linking are as follows:

• Only Linked breakpoint types can be linked.

• Any type of Linked Address breakpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number field, DBGBCR<n>_EL1.LBN, for the Linked Address breakpoint specifies the particular Linked Context breakpoint that the Linked Address breakpoint links to, and:
  — DBGBCR<n>_EL1.{SSC, HMC, PMC} for the Linked Address breakpoint define the execution conditions that the breakpoint pair generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
  — DBGBCR<n>_EL1.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.

• Linked Context breakpoint types can only be linked to. The LBN field for Context breakpoints is therefore ignored.

• Linked Address breakpoints cannot link to watchpoints. The LBN field can therefore only specify another breakpoint.

• If a Linked Address breakpoint links to a breakpoint that is not context-aware, the behavior of the Linked Address breakpoint is CONSTRAINED UNPREDICTABLE. See Other usage constraints for Address breakpoints on page D2-2449.

• If a Linked Address breakpoint links to an Unlinked Context breakpoint, the Linked Address breakpoint never generates any Breakpoint exceptions.

• Multiple Linked Address breakpoints can link to a single Linked Context breakpoint.

Note
Multiple Linked watchpoints can also link to a single Linked Context breakpoint. Watchpoint exceptions on page D2-2451 describes watchpoints.

These rules mean that a single Linked Context breakpoint might be linked to by all, or any combination of, the following:

• Multiple Linked Address Match breakpoints.
• Multiple Linked watchpoints.

Note
If FEAT_NV2 is implemented, the hypervisor must use the 0b1101, Linked CONTEXTIDR_EL2 Match breakpoint type to guarantee a linked match, see Interaction with self-hosted and External debug on page D5-2644.
It is also possible that a Linked Context breakpoint might have no breakpoints or watchpoints linked to it.

**Figure D2-1** shows an example of permitted breakpoint and watchpoint linking.

<table>
<thead>
<tr>
<th>Breakpoint or watchpoint number</th>
<th>Breakpoints</th>
<th>Watchpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unlinked Address type</td>
<td>Linked watchpoint</td>
</tr>
<tr>
<td>1</td>
<td>Linked Address type</td>
<td>Linked watchpoint</td>
</tr>
<tr>
<td>2</td>
<td>Linked Address type</td>
<td>Linked watchpoint</td>
</tr>
<tr>
<td>3</td>
<td>Linked Address type</td>
<td>Unlinked watchpoint</td>
</tr>
<tr>
<td>4</td>
<td>Linked Context type</td>
<td>Linked watchpoint</td>
</tr>
<tr>
<td>5</td>
<td>Linked Context type</td>
<td>Linked watchpoint</td>
</tr>
<tr>
<td>6</td>
<td>Unlinked Context type</td>
<td>Unlinked watchpoint</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>Linked Context type</td>
<td>Linked watchpoint</td>
</tr>
</tbody>
</table>

**Figure D2-1 The role of linking in Breakpoint and Watchpoint exception generation**

In **Figure D2-1**, each Linked Address breakpoint can only generate a Breakpoint exception if the comparisons made by both it, and the Linked Context breakpoint that it links to, are successful. Similarly, each Linked watchpoint can only generate a Watchpoint exception if the comparisons made by both it, and the Linked Context breakpoint that it links to, are successful.

**Breakpoint types defined by DBGBCRn_EL1.BT**

The following list provides more detail about each breakpoint type:

- **Unlinked Address Match breakpoint**
  
  Generation of a Breakpoint exception depends on both:
  - **DBGBCR<n>_EL1.{SSC, HMC, PMC}**. These define the execution conditions for which the breakpoint generates Breakpoint exceptions. See *Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442*.
  - A successful address match, as described in *Breakpoint instruction address comparisons on page D2-2444*.

  **DBGBCR<n>_EL1.LBN** for this breakpoint is ignored.
0b0001, Linked Address Match breakpoint
Generation of a Breakpoint exception depends on all of the following:
• \( \text{DBGBCR}^{\langle n\rangle}_\text{EL1}.\{\text{SSC, HMC, PMC}\} \) for this breakpoint. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
• A successful address match defined by this breakpoint, as described in Breakpoint instruction address comparisons on page D2-2444.
• A successful context match defined by the Linked Context breakpoint that this breakpoint links to.
\( \text{DBGBCR}^{\langle n\rangle}_\text{EL1}.\text{LBN} \) for this breakpoint selects the Linked Context breakpoint that this breakpoint links to.

0b0010, Unlinked Context ID Match breakpoint
BT == 0b0010 is a reserved value if the breakpoint is not a context-aware breakpoint.
For context-aware breakpoints, generation of a Breakpoint exception depends on both:
• \( \text{DBGBCR}^{\langle n\rangle}_\text{EL1}.\{\text{SSC, HMC, PMC}\} \). These define the execution conditions for which the breakpoint generates Breakpoint exceptions. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
• A successful Context ID match, as described in Breakpoint context comparisons on page D2-2446.
The value of \( \text{DBGBVR}^{\langle n\rangle}_\text{EL1}.\text{ContextID} \) is compared with the current Context ID.
\( \text{CONTEXTIDR}_\text{EL2} \) holds the current Context ID when all of:
• The implementation includes FEAT_VHE.
• EL2 is implemented and enabled in the current Security state.
• EL2 using AArch64 and \( \text{HCR}_{\text{EL2}.E2H} \) is set to 1.
• The PE is executing at EL0 and \( \text{HCR}_{\text{EL2}.TGE} \) is 1, or the PE is executing at EL2.
Otherwise, \( \text{CONTEXTIDR}_\text{EL1} \) holds the current Context ID.
\( \text{DBGBCR}^{\langle n\rangle}_\text{EL1}.\{\text{LBN, BAS}\} \) for this breakpoint are ignored

0b0011, Linked Context ID Match breakpoint
BT == 0b0011 is a reserved value if the breakpoint is not a context-aware breakpoint.
For context-aware breakpoints, one of the following applies:
• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.
• Generation of a Breakpoint exception depends on both:
  — A successful instruction address match, defined by a Linked Address breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page D2-2444.
  — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.
• Generation of a Watchpoint exception depends on both:
  — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page D2-2456.
  — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.
The value of \( \text{DBGBVR}^{\langle n\rangle}_\text{EL1}.\text{ContextID} \) is compared with the current Context ID.
\( \text{CONTEXTIDR}_\text{EL2} \) holds the current Context ID when all of:
• The implementation includes FEAT_VHE.
• EL2 is implemented and enabled in the current Security state.
• EL2 using AArch64 and \( \text{HCR}_{\text{EL2}.E2H} \) is set to 1.
• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2.
Otherwise, CONTEXTIDR_EL1 holds the current Context ID.
DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

**0b0100, Unlinked Address Mismatch breakpoint**

BT == 0b0100 is a reserved value in stage 1 of an AArch64 translation regime. See Reserved BT values on page D2-2447.

*0b0100, Unlinked Address Mismatch breakpoint on page G2-5875 describes the behavior of Address Mismatch breakpoints in stage 1 of an AArch32 translation regime.*

**0b0101, Linked Address Mismatch breakpoint**

BT == 0b0101 is a reserved value in stage 1 of an AArch64 translation regime. See Reserved BT values on page D2-2447.

*0b0101, Linked Address Mismatch breakpoint on page G2-5875 describes the behavior of Address Mismatch breakpoints in stage 1 of an AArch32 translation regime.*

**0b0110, Unlinked CONTEXTIDR_EL1 Match breakpoint**

BT == 0b0110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.
• The implementation does not include FEAT_VHE.

In an implementation that includes FEAT_VHE, for context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.
• A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of DBGBVR<n>_EL1.ContextID is compared with the Context ID value held in CONTEXTIDR_EL1.

Note: ___________
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

**0b0111, Linked CONTEXTIDR_EL1 Match breakpoint**

BT == 0b0111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.
• The implementation does not include FEAT_VHE.

In an implementation that includes FEAT_VHE, for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:
  — A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page D2-2444.
  — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.

• Generation of a Watchpoint exception depends on both:
  — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page D2-2456.
— A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.

The Context ID check is made against the value in CONTEXTIDR_EL1. The value of DBGVR<\n>_EL1.ContextID is compared with the Context ID value held in CONTEXTIDR_EL1.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGCR<\n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1000, Unlinked VMID Match breakpoint
BT == 0b1000 is a reserved value if either:
• The breakpoint is not a context-aware breakpoint.
• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:
• DBGCR<\n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
• A successful VMID match, as described in Breakpoint context comparisons on page D2-2446.

DBGCR<\n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1001, Linked VMID Match breakpoint
BT == 0b1000 is a reserved value if either:
• The breakpoint is not a context-matching breakpoint.
• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:
• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:
  — A successful instruction address match, defined by a Linked Address Match breakpoint that links to this breakpoint. See Breakpoint instruction address comparisons on page D2-2444.
  — A successful VMID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.

• Generation of a Watchpoint exception depends on both:
  — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page D2-2456.
  — A successful VMID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.

DBGCR<\n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1010, Unlinked Context ID and VMID Match breakpoint
BT == 0b1010 is a reserved value if either:
• The breakpoint is not a context-aware breakpoint.
• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, generation of a Breakpoint exception depends on all of the following:
• DBGCR<\n>_EL1.{SSC, HMC, PMC}. These define the execution conditions that the breakpoint generates a Breakpoint exception for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.
• A successful Context ID match, as described in Breakpoint context comparisons on page D2-2446.
• A successful VMID match.

The value of DBGBVR<\(n\)>_EL1.ContextID is compared with CONTEXTIDR_EL1. Breakpoint context comparisons on page D2-2446 describes the requirements for a successful Context ID match and a successful VMID match.

DBGBCR<\(n\)>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1011, Linked Context ID and VMID Match breakpoint

BT == 0b1011 is a reserved value if either:
• The breakpoint is not a context-aware breakpoint.
• EL2 is not implemented.

When EL2 is implemented, for context-aware breakpoints, one of the following applies:
• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.
• Generation of a Breakpoint exception depends on all of the following:
  — A successful instruction address match, defined by a Linked Address breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page D2-2444.
  — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.
  — A successful VMID match defined by this breakpoint.

• Generation of a Watchpoint exception depends on all of the following:
  — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page D2-2456.
  — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page D2-2446.
  — A successful VMID match defined by this breakpoint.

The value of DBGBVR<\(n\)>_EL1.ContextID is compared with CONTEXTIDR_EL1. Breakpoint context comparisons on page D2-2446 describes the requirements for a successful Context ID match and a successful VMID match by this breakpoint.

DBGBCR<\(n\)>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1100, Unlinked CONTEXTIDR_EL2 Match breakpoint

BT == 0b1100 is a reserved value if either:
• The breakpoint is not a context-aware breakpoint.
• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented, for context-aware breakpoints, generation of a Breakpoint exception depends on both:
• DBGBCR<\(n\)>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.
• A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons on page D2-2446.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of DBGBVR<\(n\)>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<\(n\)>_EL1.{LBN, BAS} for this breakpoint are ignored.
0b1101, Linked CONTEXTIDR_EL2 Match breakpoint

BT == 0b1101 is a reserved value if either:

- The breakpoint is not a context-aware breakpoint.
- FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented, for context-aware breakpoints, either:

- If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.
- Generation of a Breakpoint exception depends on both:
  - A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page D2-2444.
  - A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons on page D2-2446.

- Generation of a Watchpoint exception depends on both:
  - A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page D2-2456.
  - A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons on page D2-2446.

The Context ID check is made against the value in CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1 is compared with the Context ID value held in CONTEXTIDR_EL2.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Unlinked Full Context ID Match breakpoint

BT == 0b1110 is a reserved value if either:

- The breakpoint is not a context-aware breakpoint.
- FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented, for context-aware breakpoints, generation of a Breakpoint exception depends on both:

- DBGBCR<n>_EL1.{SSC, HMC, PMC}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.
- A successful Context ID match, as described in Breakpoint context comparisons on page D2-2446.

The Context ID check is made against the values in both CONTEXTIDR_EL1 and CONTEXTIDR_EL2. The value of DBGBVR<n>_EL1[31:0] is compared with the Context ID value held in CONTEXTIDR_EL1, and the value of DBGBVR<n>_EL1[63:32] is compared with the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context ID check.

Note

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>_EL1.{LBN, BAS} for this breakpoint are ignored.

0b1111, Linked Full Context ID Match breakpoint

BT == 0b1111 is a reserved value if either:

- The breakpoint is not a context-aware breakpoint.
• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.

In an implementation in which FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented, for context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:
  — A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see *Breakpoint instruction address comparisons on page D2-2444.*
  — A successful Context ID match, as described in *Breakpoint context comparisons on page D2-2446.*

• Generation of a Watchpoint exception depends on both:
  — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see *Watchpoint data address comparisons on page D2-2456.*
  — A successful Context ID match, as described in *Breakpoint context comparisons on page D2-2446.*

The Context ID check is made against the values in both CONTEXTIDR_EL1 and CONTEXTIDR_EL2. The value of DBGVR<\(n\) EL1>[31:0] is compared with the Context ID value held in CONTEXTIDR_EL1, and the value of DBGVR<\(n\) EL1>[63:32] is compared with the Context ID value held in CONTEXTIDR_EL2. Both comparisons must match for the Context ID check.

__Note__
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

__Note__
DBGCR<\(n\) EL1>.[LBN, SSC, HMC, BAS, PMC] for this breakpoint are ignored.

---

**D2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions**

Each breakpoint can be programmed so that it only generates Breakpoint exceptions for certain execution conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE is executing at EL0 in Secure state.

DBGCR<\(n\) EL1>.{SSC, HMC, PMC} defines the execution conditions the breakpoint generates Breakpoint exceptions for, as follows:

**Security State Control, SSC**

Controls whether the breakpoint generates Breakpoint exceptions only in Secure state, only in Non-secure state, or in both Security states.

__Note__
This is determined by the Security state of the PE, not from the NS attribute returned by the translation of the virtual address on which the breakpoint is set.

**Higher Mode Control, HMC, and Privileged Mode Control, PMC**

HMC and PMC together control which Exception levels the breakpoint generates Breakpoint exceptions in.
Table D2-9 shows the valid combinations of the values of HMC, SSC, and PMC, and for each combination shows which Exception levels breakpoints generate Breakpoint exceptions in.

In the table:

- **Y**: Means that a breakpoint programmed with the values of HMC, SSC, and PMC shown in that row can generate Breakpoint exceptions in that Exception level and Security state.

- **-**: Means that a breakpoint programmed with the values of HMC, SSC, and PMC shown in that row cannot generate Breakpoint exceptions in that Exception level and Security state.

For information about which combinations of HMC, SSC and PMC are reserved if an Exception level or Security state are not implemented or enabled, see **Reserved DBGBCR<n>_EL1.[SSC, HMC, PMC] values** on page D2-2448.

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PMC</th>
<th>Security state</th>
<th>EL3&lt;sup&gt;a&lt;/sup&gt;</th>
<th>EL2</th>
<th>EL1</th>
<th>EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01</td>
<td>Non-secure</td>
<td>n/a</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td>-</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td>-</td>
<td>n/a</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td>Secure</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>00</td>
<td>Secure</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>01</td>
<td>-</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td>-</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>00</td>
<td>Secure</td>
<td>Y</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>01</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>00</td>
<td>Both</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
a. Debug exceptions are not generated at EL3 using AArch64. This means that these combinations of HMC, SSC, and PMC are only relevant if breakpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC, and PMC that generate Breakpoint exceptions at EL3 using AArch64.

All combinations of HMC, SSC, and PMC that this table does not show are reserved. See Reserved DBGBCR<n>_EL1.(SSC, HMC, PMC) values on page D2-2448.

**D2.9.4 Breakpoint instruction address comparisons**

In this subsection, the term $\text{AddrTop}$ represents the most significant bit of a virtual address used by breakpoint data address comparisons. $\text{AddrTop}$ is:

- 55, if address tagging is used for the address. See Address tagging in AArch64 state on page D5-2528.
- 63, otherwise.

--- Note ---

When stage 1 translation is enabled, in AArch64 state, a virtual address has a maximum address width of either 48 bits or, when FEAT_LVA is implemented and the 64KB translation granule is used, 52 bits. Software can configure a smaller address width for a virtual address, see Input address size on page D5-2543. Attempting to translate an address that is larger than the configured input address size generates a Translation fault.

When stage 1 translation is disabled, using an address that ia larger than the implemented PA size generates an Address size fault. The implemented PA size is IMPLEMENTATION DEFINED up to 52 bits, see Physical address size on page D5-2542.

These faults have a higher priority than breakpoints.

---

An address comparison is successful if bits $\text{AddrTop}:2$ of the current instruction virtual address are equal to DBGBVR$n>\_EL1[\text{AddrTop}:2]$.

--- Note ---

DBGBVR$n>\_EL1$ is a 64-bit register. The most significant bits of this register are sign-extension bits. DBGBVR$n>\_EL1[1:0]$ are RES0 and are ignored.

---

If EL1 is using AArch64 and EL0 is using AArch32, A32 and T32 instructions can be executed in stage 1 of an AArch64 translation regime. In this case, the instruction addresses are zero-extended before comparison with the breakpoint.

**Specifying the halfword-aligned address that an Address breakpoint matches on**

For Address Match breakpoints, if the implementation supports AArch32 state, a debugger must program the Byte Address Selection field, DBGBCR$n>\_EL1.BAS$.

<table>
<thead>
<tr>
<th>BAS</th>
<th>Match instruction at</th>
<th>Constraint for debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0011</td>
<td>DBGBCR$n&gt;_EL1</td>
<td>Use for T32 instructions.</td>
</tr>
<tr>
<td>0b1100</td>
<td>DBGBCR$n&gt;_EL1 + 2</td>
<td>Use for T32 instructions.</td>
</tr>
<tr>
<td>0b1111</td>
<td>DBGBCR$n&gt;_EL1</td>
<td>Use for A64 and A32 instructions.</td>
</tr>
</tbody>
</table>

If the implementation is an AArch64-only implementation, all instructions are word-aligned and DBGBCR$n>\_EL1.BAS$ is RES1.
Figure D2-2 shows a summary of when Address Match breakpoints programmed with particular BAS values generate Breakpoint exceptions. The figure contains four parts:

- A column showing the row number, on the left.
- An instruction set and instruction size table.
- A location of instruction figure.
- A BAS field values table, on the right.

To use the figure, read across the rows. For example, row 7 shows that a breakpoint with DBGBCR<n>_EL1.BAS programmed as either 0b0011 or 0b1111 generates Breakpoint exceptions for A64 instructions. A64 instructions are always at word-aligned addresses.

**Note**

To breakpoint on an A64 instruction, Arm recommends that the debugger programs DBGBCR<n>_EL1.BAS as 0b1111.

In the figure:

- **Yes** Means that the breakpoint generates a Breakpoint exception.
- **No** Means that the breakpoint does not generate a Breakpoint exception.
- **UNP** Means that it is CONstrained UNPREDICTable whether the breakpoint generates a Breakpoint exception. See Other usage constraints for Address breakpoints on page D2-2449.

### Figure D2-2 Summary of BAS field meanings for Address Match breakpoints

<table>
<thead>
<tr>
<th>Instruction set</th>
<th>Size</th>
<th>Location of instruction(^a)</th>
<th>BAS[3:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Row 1</td>
<td>T32</td>
<td>16-bit</td>
<td></td>
</tr>
<tr>
<td>Row 2</td>
<td>T32</td>
<td>16-bit</td>
<td></td>
</tr>
<tr>
<td>Row 3</td>
<td>T32</td>
<td>32-bit</td>
<td></td>
</tr>
<tr>
<td>Row 4</td>
<td>T32</td>
<td>32-bit</td>
<td></td>
</tr>
<tr>
<td>Row 5</td>
<td>T32</td>
<td>32-bit</td>
<td></td>
</tr>
<tr>
<td>Row 6</td>
<td>A32</td>
<td>32-bit</td>
<td></td>
</tr>
<tr>
<td>Row 7</td>
<td>A64</td>
<td>32-bit</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 0 means the word-aligned address held in the DBGBVR<n>_EL1[maxAddressSize:2]:00. The other locations a
- -2 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) – 2).
- -1 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) – 1).
- ... 
- ... 
- +5 means ((DBGBVR<n>_EL1[maxAddressSize:2]:00) + 5).

The solid areas show the location of the instruction.
D2.9.5 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<\textit{n}>.EL1.BT determines what context comparison is required, if any. Table D2-11 shows the BT values that require a comparison, and the match required for the comparison to be successful.

Table D2-11 Breakpoint Context ID and VMID comparison tests

<table>
<thead>
<tr>
<th>DBGBCR&lt;\textit{n}&gt;.BT</th>
<th>Test required for successful context comparison</th>
</tr>
</thead>
</table>
| 0b001x                | • When FEAT_VHE is implemented, EL2 is using AArch64, the \textit{Effective value} of HCR_EL2.E2H is 1, and either the PE is executing at EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2, CONTEXTIDR_EL2 must match the DBGBR<n>_EL1.ContextID value.  
  • Otherwise, CONTEXTIDR_EL1 must match the DBGBR<n>_EL1.ContextID value. |
| 0b011x                | CONTEXTIDR_EL1 must match the DBGBR<n>_EL1.ContextID value. |
| 0b100x                | VTTBR_EL2.VMID must match the DBGBR<n>_EL1.VMID value. |
| 0b101x                | CONTEXTIDR_EL1 must match the DBGBR<n>_EL1.ContextID value and VTTBR_EL2.VMID must match the DBGBR<n>_EL1.VMID value. |
| 0b110x                | CONTEXTIDR_EL2 must match the DBGBR<n>_EL1.ContextID2 value, DBGBR<n>_EL1[63:32]. |
| 0b111x                | Both:  
  • CONTEXTIDR_EL1 must match the DBGBR<n>_EL1.ContextID value, DBGBR<n>_EL1[31:0].  
  • CONTEXTIDR_EL2 must match the DBGBR<n>_EL1.ContextID2 value, DBGBR<n>_EL1[63:32]. |

No Context ID or VMID comparison is required for other valid DBGBCR<\textit{n}>.BT values.

Context breakpoints do not generate Breakpoint exceptions when any of:

- The comparison uses the value of CONTEXTIDR_EL1 and any of:
  - The PE is executing at EL3 using AArch64.
  - The PE is executing at EL2.
  - FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and HCR_EL2.[E2H, TGE] \(\{1, 1\}\).

- The comparison uses the value of CONTEXTIDR_EL2 and any of:
  - Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.
  - If the PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.
  - EL2 is using AArch32.
  - EL2 is not implemented.

- The comparison uses the current VMID value and any of:
  - EL2 is not implemented.
  - If the PE is in Secure state, and either FEAT_SEL2 is not implemented, or Secure EL2 is disabled.
  - The PE is executing at EL2.
  - FEAT_VHE is implemented, EL2 is using AArch64, EL2 is enabled in the current Security state, and HCR_EL2.[E2H, TGE] \(\{1, 1\}\).

**Note**

- For all Context breakpoints, DBGBCR<\textit{n}>.EL1.BAS is \textit{RES1} and is ignored.
- For Linked Context breakpoints, DBGBCR<\textit{n}>.EL1.[LBN, SSC, HMC, PMC] are \textit{RES0} and are ignored.
### D2.9.6 Breakpoint usage constraints

See the following sections:

- *Reserved DBGBCR<n>_EL1.BT values.*
- *Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values* on page D2-2448.
- *Reserved DBGBCR<n>_EL1.BAS values* on page D2-2448.
- *Reserved DBGBCR<n>_EL1.LBN values* on page D2-2449.
- *Other usage constraints for Address breakpoints* on page D2-2449.
- *Other usage constraints for Context breakpoints* on page D2-2449.

#### Reserved DBGBCR<n>_EL1.BT values

Table D2-12 shows when particular DBGBCR<n>_EL1.BT values are reserved.

<table>
<thead>
<tr>
<th>BT value</th>
<th>Breakpoint type</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b001x</td>
<td>Context ID Match</td>
<td>If the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b010x</td>
<td>Address Mismatch</td>
<td>In stage 1 of an AArch64 translation regime, or if EDSCR.HDE is 1 and halting is allowed</td>
</tr>
<tr>
<td>0b011x</td>
<td>CONTEXTIDR_EL1 Match</td>
<td>If FEAT_VHE is not implemented, or the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b100x</td>
<td>VMID Match</td>
<td>If EL2 is not implemented, or the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b101x</td>
<td>Context ID and VMID Match</td>
<td>If EL2 is not implemented, or the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b110x</td>
<td>CONTEXTIDR_EL2 Match</td>
<td>If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b111x</td>
<td>Full Context ID Match</td>
<td></td>
</tr>
</tbody>
</table>

If a breakpoint is programmed with one of these reserved BT values:

- The breakpoint must behave as if it is either:
  - Disabled.
  - Programmed with a BT value that is not reserved, other than for a direct or external read of DBGBCR<n>_EL1.
- For a direct or external read of DBGBCR<n>_EL1, if the reserved BT value:
  - Has no function for any execution conditions, the value read back is **UNKNOWN**.
  - Has a function for execution conditions other than the current execution conditions, the value read back is the value written. This permits software to save and restore the BT value so that the breakpoint functions for the other execution conditions.

The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.
Reserved DBGBCR<\n>_EL1.{SSC, HMC, PMC} values

Table D2-13 shows when particular combinations of DBGBCR<\n>_EL1.{SSC, HMC, PMC} are reserved in stage 1 of an AArch64 translation regime.

<table>
<thead>
<tr>
<th>HMC, SSC, and PMC combination</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combinations with SSC set to 0b01 or 0b10, except for the combination with HMC set to 1, SSC set to 0b01, and PMC set to 0b00</td>
<td>When EL3 is not implemented and EL2 is implemented</td>
</tr>
<tr>
<td>Any combination where HMC or SSC is nonzero, except for the combination with HMC set to 1, SSC set to 0b01, and PMC set to 0b00, or combinations when SSC is set to 0b11</td>
<td>When both of EL2 and EL3 are not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to 0b11, and PMC set to 0b00</td>
<td>When EL2 is not implemented</td>
</tr>
<tr>
<td>The combinations with SSC set to 0b11 except the combination with HMC set to 1, SSC set to 0b11 and PMC set to 0b00</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to 0b01 and PMC set to 0b00</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>Combinations not included in Table D2-9 on page D2-2443</td>
<td>Always</td>
</tr>
</tbody>
</table>

For all breakpoints except Linked Context breakpoints, if a breakpoint is programmed with one of these reserved combinations:

- If the reserved combination has a function for other execution conditions:
  - The breakpoint must behave as if it is disabled.
  - A direct or external read of DBGBCR<\n>_EL1.{SSC, HMC, PMC} returns the values written. This means that software can save and restore the combination so that the breakpoint can function for the other execution conditions.
- If the reserved combination does not have a function for other execution conditions:
  - It must behave either as if it is programmed with a combination that is not reserved or as if it is disabled.
  - A direct or external read of DBGBCR<\n>_EL1.{SSC, HMC, PMC} returns UNKNOWN values.

If the breakpoint is a Linked Context breakpoint, then:

- The values of HMC, SSC, and PMC are ignored.
- A direct or external read of DBGBCR<\n>_EL1.{SSC, HMC, PMC} returns UNKNOWN values.

The behavior of breakpoints with reserved combinations of HMC, SSC, and PMC might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGBCR<\n>_EL1.BAS values

In an AArch64-only implementation, DBGBCR<\n>_EL1.BAS for all breakpoints is RES1.

Otherwise:

For all Context breakpoints

DBGBCR<\n>_EL1.BAS is RES1 and is ignored.

For all Address breakpoints

Table D2-10 on page D2-2444 gives the valid values of the DBGBCR<\n>_EL1.BAS field.
If a breakpoint is programmed with a reserved BAS value:

- The breakpoint must behave as if it is either:
  - Disabled.
  - Programmed with a BAS value that is not reserved, other than for a direct or external read of `DBGBCR<n>_EL1`.

- A direct or external read of `DBGBCR<n>_EL1.BAS` returns an **UNKNOWN** value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of the architecture.

**Reserved DBGBCR<n>_EL1.LBN values**

For all Context breakpoints

`DBGBCR<n>_EL1.LBN` reads **UNKNOWN** and its value is ignored.

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address breakpoint, any `DBGBCR<n>_EL1.LBN` value that is not for a context-aware breakpoint is reserved.

If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not context-aware, then reads of `DBGBCR<n>_EL1.LBN` return an unknown value and behavior is **CONSTRAINED UNPREDICTABLE**. The Linked Address breakpoint behaves as if it is either:

- Disabled.
- Linked to an **UNKNOWN** context-aware breakpoint.

If a Linked Address breakpoint links to a breakpoint that is implemented and that is context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked Address breakpoints

`DBGBCR<n>_EL1.LBN` reads **UNKNOWN** and its value is ignored.

**Other usage constraints for Address breakpoints**

For all Address breakpoints

- `DBGBVR<n>_EL1[1:0]` are **RES0** and are ignored.
- If the implementation supports AArch32 state:
  - For 32-bit instructions, if a breakpoint matches on the address of the second halfword but not the address of the first halfword, it is **CONSTRAINED UNPREDICTABLE** whether the breakpoint generates a Breakpoint exception.
  - If `DBGBCR<n>.BAS` is `0b1111`, it is **CONSTRAINED UNPREDICTABLE** whether the breakpoint generates a Breakpoint exception for a T32 instruction starting at address `((DBGBVR<n>[48:2]:00) + 2)`. For T32 instructions, Arm recommends that the debugger programs the BAS field with either `0b0011` or `0b1100`.

**Other usage constraints for Context breakpoints**

For all Context breakpoints

Any bits of `DBGBVR<n>_EL1` that are not used to specify Context ID or VMID are **RES0** and are ignored.

For Linked Context breakpoints

If no Linked Address breakpoints or Linked watchpoints link to a Linked Context breakpoint, the Linked Context breakpoint does not generate any Breakpoint exceptions.
D2.9.7  Preferred return address

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

D2.9.8  Pseudocode description of Breakpoint exceptions taken from AArch64 state

AArch64.BreakpointValueMatch() tests the value in DBGBVR<n>_EL1.

AArch64.StateMatch() tests the values in DBGBCR<n>_EL1.{SSC, HMC, PMC} and, if the breakpoint links to a Linked Context breakpoint, also tests the Linked Context breakpoint.

For a watchpoint, AArch64.StateMatch() tests the values in DBGWCR<n>_EL1.{SSC, HMC, PAC} and, if the watchpoint links to a Linked Context breakpoint, also tests the Linked Context breakpoint.

AArch64.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch64.CheckBreakpoint() generates a Breakpoint exception if all of the following are true:

- MDSCR_EL1.MDE is 1.
- Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug exceptions from the current Exception level on page D2-2425.
- All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions on page D2-2433.

Note

AArch64.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

AArch64.BreakpointException() is called to generate a Breakpoint exception.

These functions are defined in Chapter J1 Armv8 Pseudocode.
D2.10 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch64 translation regime.

The PE is using an AArch64 translation regime when it is executing either:
• In an Exception level that is using AArch64.
• At EL0 using AArch32 when EL1 is using AArch64.

This section contains the following subsections:
• About Watchpoint exceptions.
• Watchpoint types and linking of watchpoints on page D2-2452.
• Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.
• Watchpoint data address comparisons on page D2-2456.
• Determining the memory location that caused a Watchpoint exception on page D2-2459.
• Watchpoint behavior on other instructions on page D2-2460.
• Watchpoint usage constraints on page D2-2461.
• Exception syndrome information and preferred return address on page D2-2463.
• Pseudocode description of Watchpoint exceptions taken from AArch64 state on page D2-2464.

D2.10.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.
2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, ID_AA64DFR0_EL1.WRPs shows how many are implemented.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:
• The Watchpoint Control Register, DBGWCR<\text{n}>_EL1. This contains controls for the watchpoint, for example an enable control.
• The Watchpoint Value Register, DBGWVR<\text{n}>_EL1. This holds the data virtual address used for watchpoint matching.

These registers are numbered, so that:
• DBGWCR1_EL1 and DBGWVR1_EL1 are for watchpoint number one.
• DBGWCR2_EL2 and DBGWVR2_EL1 are for watchpoint number two.
• ...
• ...
• DBGWCR<\text{n}>_EL1 and DBGWVR<\text{n}>_EL1 are for watchpoint number \text{n}.

A watchpoint can:
• Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on both types of access.
• Link to a Linked Context breakpoint, so that a Watchpoint debug event is only generated if the PE is in a particular context when the address match occurs.
A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching is either:

- One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>_EL1.BAS, to select the bytes. See Programming a watchpoint with eight bytes or fewer on page D2-2457.

- Eight bytes to 2GB, provided that both of the following are true:
  - The number of bytes is a power-of-two.
  - The range starts at an address that is aligned to the range size.

  A debugger uses the MASK field, DBGWCR<n>_EL1.MASK, to program a watchpoint with eight bytes to 2GB. See Programming a watchpoint with eight or more bytes on page D2-2458.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates Watchpoint debug events is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK fields on page D2-2462.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint debug event if all of the following are true:

- The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>_EL1.E, is 1.
- The conditions specified in the DBGWCR<n>_EL1 are met.
- The comparison with the address held in the DBGWVR<n>_EL1 is successful.
- If the watchpoint links to a Linked Context breakpoint, the comparison or comparisons made by the Linked Context breakpoint also are successful. See Figure D2-1 on page D2-2436. See also Breakpoint context comparisons on page D2-2446.
- The instruction that initiates the memory access is committed for execution.
- The instruction that initiates the memory access passes its Condition code check.
- If the access is due to a System register access instruction executed at EL1 and transformed into a memory access by the mechanism described in Enhanced support for nested virtualization on page D5-2640 and one of the following is true:
  - EDSCR.HDE is set to 1 and halting is allowed.
  - Debug exceptions are enabled at EL2.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state. Otherwise, if debug exceptions are:
- Enabled, Watchpoint debug events generate Watchpoint exceptions.
- Disabled, Watchpoint debug events are ignored.

**Note**

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating Watchpoint exceptions.

However, the behavior described also applies if watchpoints are causing entry to Debug state.

---

**D2.10.2 Watchpoint types and linking of watchpoints**

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

- Used in isolation. In this case, the watchpoint is called an **Unlinked watchpoint**.
- Enabled for linking to a Linked Context breakpoint. In this case, the watchpoint is called a **Linked watchpoint**.
When a Linked watchpoint links to a Linked Context breakpoint, the Linked watchpoint only generates a Watchpoint exception if the PE is in a particular context when the data address match occurs. For example, a debugger might:

1. Program watchpoint number one with a data address.
2. Program breakpoint number five to be a Linked VMID Match breakpoint.
3. Link the watchpoint and the breakpoint together. A Watchpoint exception is only generated if both the data address matches and the VMID matches.

The Watchpoint Type field for a watchpoint, DBGWCR<\texttt{n}\_EL1.WT, controls whether the watchpoint is enabled for linking. If DBGWCR<\texttt{n}\_EL1.WT is 1, the watchpoint is enabled for linking.

### Rules for linking watchpoints

The rules for watchpoint linking are as follows:

- Only Linked watchpoints can be linked.
- A Linked watchpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number field, DBGWCR<\texttt{n}\_EL1.LBN, for the Linked watchpoint specifies the particular Linked Context breakpoint that the Linked watchpoint links to, and:
  - DBGWCR<\texttt{n}\_EL1.WT\{SSC, HMC, PAC\} for the Linked watchpoint defines the execution conditions that the watchpoint generates Watchpoint exceptions for. See *Execution conditions for which a watchpoint generates Watchpoint exceptions*.
  - DBGBCR<\texttt{n}\_EL1\{SSC, HMC, PMC\} for the Linked Context breakpoint are ignored.
- A Linked watchpoint cannot link to another watchpoint. The LBN field can therefore only specify a breakpoint.
- If a Linked watchpoint links to a breakpoint that is not context-aware, the behavior of the Linked watchpoint is CONSTRAINED UNPREDICTABLE. See *Watchpoint usage constraints* on page D2-2461.
- If a Linked watchpoint links to an Unlinked Context breakpoint, the Linked watchpoint never generates any Watchpoint exceptions.
- If the access is due to a System register access instruction executed at EL1 and transformed into a memory access by the mechanism described in *Enhanced support for nested virtualization* on page D5-2640, and the watchpoint is linked to a context-aware breakpoint that is programmed to match the value held in CONTEXTIDR_EL1, then it is CONSTRAINED UNPREDICTABLE whether there is a watchpoint match.
- Multiple Linked watchpoints can link to a single Linked Context breakpoint.

---

**Note**

Multiple Address breakpoints can also link to a single Linked Context breakpoint. *Breakpoint exceptions* on page D2-2433 describes breakpoints.

Figure D2-1 on page D2-2436 shows an example of permitted watchpoint linking.

### D2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it only generates Watchpoint exceptions for certain execution conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only for Non-secure EL2 accesses.
DBGWCR<n>_EL1.{SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint exceptions for, as follows:

**Security State Control, SSC**

Controls whether the watchpoint generates Watchpoint exceptions only in Secure state, only in Non-secure state, or in both Security states.

--- **Note** ---

This is determined by the Security state of the PE, not from the NS attribute returned by the translation of the virtual address on which the watchpoint is set.

---

**Higher Mode Control, HMC, and Privileged Access Control, PAC**

HMC and PAC together control which Exception levels the watchpoint generates Watchpoint exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level at which the access was made:

- Load unprivileged or Store unprivileged instructions executed at EL1, or executed at EL2 when HCR_EL2.E2H is 1, are treated as EL0 accesses.
- System register accesses executed at EL1 and transformed into a memory access by the mechanism described in Enhanced support for nested virtualization on page D5-2640 are treated as EL2 accesses.

--- **Note** ---

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at EL1, the resulting data access triggers a watchpoint only if both:

- PAC is programmed to a value that generates watchpoints on EL0 accesses.
- All other conditions for generating the watchpoint are met.

Example A64 Load unprivileged and Store unprivileged instructions are LDTR and STTR.

Table D2-14 on page D2-2455 shows the valid combinations of HMC, SSC, and PAC, and for each combination shows which Exception levels watchpoints generate Watchpoint exceptions in.

In the table:

**Y or -**

Means that a watchpoint programmed with the values of HMC, SSC, and PAC shown in that row:

- **Y** Can generate Watchpoint exceptions in that Exception level and Security state.
- **-** Cannot generate Watchpoint exceptions in that Exception level and Security state.

For information about which combinations of HMC, SSC and PMC are reserved if an Exception level or Security state are not implemented or enabled, see Reserved DBGWCR<n>_EL1.{SSC, HMC, PAC} values on page D2-2461.
### Table D2-14 Summary of watchpoint HMC, SSC, and PAC encodings

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PAC</th>
<th>Security state</th>
<th>EL3</th>
<th>EL2</th>
<th>EL1</th>
<th>EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>11</td>
<td>Non-secure</td>
<td>n/a</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01</td>
<td>Non-secure</td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td></td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td>Non-secure</td>
<td>n/a</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td>Secure</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td></td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>00</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>11</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>01</td>
<td></td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>00</td>
<td>Secure</td>
<td>Y</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>01</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>00</td>
<td>Both</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>01</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>Non-secure</td>
<td>n/a</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

*Debug exceptions are not generated at EL3 using AArch64. This means that these combinations of HMC, SSC, and PAC are only relevant if watchpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC, and PMC that generate Watchpoint exceptions at EL3 using AArch64.*

All combinations of HMC, SSC, and PAC that this table does not show are reserved. See **Reserved DBGWCR<\> EL1. (SSC, HMC, PAC) values** on page D2-2461.
D2.10 Watchpoint data address comparisons

In this subsection, the term $\text{AddrTop}$ represents the most significant bit of a virtual address used by watchpoint data address comparisons. $\text{AddrTop}$ is:

- 55, if address tagging is used for the address. See Address tagging in AArch64 state on page D5-2528.
- 63, otherwise.

--- Note ---

When stage 1 translation is enabled, in AArch64 state, a virtual address has a maximum address width of either 48 bits or, when FEAT_LVA is implemented and the 64KB translation granule is used, 52 bits. Software can configure a smaller address width for a virtual address. See Input address size on page D5-2543. Attempting to translate an address that is larger than the configured input address size generates a Translation fault.

When stage 1 translation is disabled, using an address that is larger than the implemented PA size generates an Address size fault. The implemented PA size is IMPLEMENTATION DEFINED up to 52 bits. See Physical address size on page D5-2542.

These faults have a higher priority than watchpoints.

---

An address comparison is successful if bits $[\text{AddrTop}:2]$ of the current data address are equal to $\text{DBGWVR}<n>\_\text{EL1}[\text{AddrTop}:2]$, taking into account all of the following:

- The size of the access. See Size of the data access.
  
  If EL1 is using AArch64 and EL0 is using AArch32, AArch32 instructions can be executed in stage 1 of an AArch64 translation regime. In this case, data addresses are zero-extended before comparison with the watchpoint.

- The bytes selected by $\text{DBGWVR}<n>\_\text{EL1}.\text{BAS}$. See Programming a watchpoint with eight bytes or fewer on page D2-2457.

- Any address ranges indicated by $\text{DBGWVR}<n>\_\text{EL1}.\text{MASK}$. See Programming a watchpoint with eight or more bytes on page D2-2458.

--- Note ---

- $\text{DBGWVR}<n>\_\text{EL1}$ is a 64-bit register. The most significant bits of this register are sign-extension bits.
- $\text{DBGWVR}<n>\_\text{EL1}[1:0]$ are RES0 and are ignored.

---

**Size of the data access**

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each data access must be taken into account. See Example D2-1.

---

**Example D2-1**

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009 is accessed.

2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

---

The size of data accesses initiated by DC ZVA instructions is the DC ZVA block size that DCZID_EL0.BS defines.

The size of data accesses initiated by DC ZVA instructions is an IMPLEMENTATION DEFINED size that is both:

- From the inclusive range between:
  
  The size that $\text{CTR}\_\text{EL0}.\text{DminLine}$ defines.
For both of these instructions:

- The lowest address accessed by the instruction is the address supplied to the instruction, rounded down to the nearest multiple of the access size initiated by that instruction.
- The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, *Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA instruction on page D2-2461.*

### Programming a watchpoint with eight bytes or fewer

The Byte Address Select field, `DBGWCR<n>_EL1.BAS`, selects which bytes in the doubleword starting at the address contained in the `DBGWVR<n>_EL1` the watchpoint generates Watchpoint exceptions for.

If the address programmed into the `DBGWVR<n>_EL1` is:

- Doubleword-aligned:
  - All eight bits of `DBGWCR<n>_EL1.BAS` are used, and the descriptions given in Table D2-15 apply.
- Word-aligned but not doubleword-aligned:
  - Only `DBGWCR<n>_EL1.BAS[3:0]` are used, and the descriptions given in Table D2-16 apply. In this case, `DBGWCR<n>_EL1.BAS[7:4]` are *RES0*.

#### Table D2-15 Supported BAS values when the DBGWVRn_EL1 address alignment is doubleword

<table>
<thead>
<tr>
<th>BAS value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000000</td>
<td>Watchpoint never generates a Watchpoint exception.</td>
</tr>
<tr>
<td>BAS[0] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:00</code> is accessed.</td>
</tr>
<tr>
<td>BAS[1] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:01</code> is accessed.</td>
</tr>
<tr>
<td>BAS[2] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:10</code> is accessed.</td>
</tr>
<tr>
<td>BAS[3] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:11</code> is accessed.</td>
</tr>
<tr>
<td>BAS[4] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:100</code> is accessed.</td>
</tr>
<tr>
<td>BAS[5] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:101</code> is accessed.</td>
</tr>
<tr>
<td>BAS[6] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:110</code> is accessed.</td>
</tr>
<tr>
<td>BAS[7] == 1</td>
<td>Generates a Watchpoint exception if the byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:3]:111</code> is accessed.</td>
</tr>
</tbody>
</table>

#### Table D2-16 Supported BAS values when the DBGWVRn_EL1 address alignment is word

<table>
<thead>
<tr>
<th>BAS value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000000</td>
<td>Watchpoint never generates a Watchpoint exception.</td>
</tr>
<tr>
<td>BAS[0] == 1</td>
<td>Generates a Watchpoint exception if byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:2]:00</code> is accessed.</td>
</tr>
<tr>
<td>BAS[1] == 1</td>
<td>Generates a Watchpoint exception if byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:2]:01</code> is accessed.</td>
</tr>
<tr>
<td>BAS[2] == 1</td>
<td>Generates a Watchpoint exception if byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:2]:10</code> is accessed.</td>
</tr>
<tr>
<td>BAS[3] == 1</td>
<td>Generates a Watchpoint exception if byte at address <code>DBGWVR&lt;n&gt;_EL1[AddrTop:2]:11</code> is accessed.</td>
</tr>
</tbody>
</table>

*a.* `DBGWCR<n>_EL1.BAS[7:4]` are *RES0*. 

---

— 2KB.

- A power-of-two.
If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous. For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage constraints on page D2-2463.

When programming the BAS field with anything other than 0b11111111, a debugger must program DBGWCR<n>_EL1.MASK to be 0b000000. See Programming dependencies of the BAS and MASK fields on page D2-2462.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

- The access size is smaller or larger than the address region being watched.
- The access is misaligned, and the base address of the access is not in the doubleword or word of memory addressed by the DBGWVR<n>_EL1[AddrTop:3]. See Example D2-1 on page D2-2456.

The following are some example configurations of the BAS field:

- To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:
  - DBGWVR<n>_EL1 with 0x1000.
  - DBGWCR<n>_EL1.BAS to be 0b00001000.
- To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and 0x2005, program:
  - DBGWVR<n>_EL1 with 0x2000.
  - DBGWCR<n>_EL1.BAS to be 0b00111000.
- If the address programmed into the DBGWVR<n>_EL1 is doubleword-aligned:
  - To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned address is accessed, program DBGWCR<n>_EL1.BAS to be 0b00001111.
  - To generate a Watchpoint exception when any byte in the word starting at address DBGWVR<n>_EL1[31:3]:100 is accessed, program DBGWCR<n>_EL1.BAS to be 0b11110000.

Note

Arm deprecates programming a DBGWVR<n>_EL1 with an address that is not doubleword-aligned.

Programming a watchpoint with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>_EL1.MASK, to program a single watchpoint with a data address range. The range must meet all of the following criteria:

- It is a size that is:
  - A power-of-two.
  - A minimum of eight bytes.
  - A maximum of 2GB.
- It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least significant bits can be masked:

<table>
<thead>
<tr>
<th>MASK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>No bits are masked.</td>
</tr>
<tr>
<td>000001</td>
<td>Reserved.</td>
</tr>
<tr>
<td>000010</td>
<td>Reserved.</td>
</tr>
<tr>
<td>000011</td>
<td>Three least significant bits are masked.</td>
</tr>
<tr>
<td>000100</td>
<td>Four least significant bits are masked.</td>
</tr>
<tr>
<td>000101</td>
<td>Five least significant bits are masked.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>011111</td>
<td>31 least significant bits are masked.</td>
</tr>
</tbody>
</table>
If $n$ least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the following:

- Address $\text{DBGWVR}_{n}$\textsubscript{EL1}[$\text{AddrTop:}n$]:000…
- Address $\text{DBGWVR}_{n}$\textsubscript{EL1}[$\text{AddrTop:}n$]:111…
- Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all addresses between $\text{DBGWVR}_{n}$\textsubscript{EL1}[$\text{AddrTop:}4$]:0000 and $\text{DBGWVR}_{n}$\textsubscript{EL1}[$\text{AddrTop:}4$]:1111, including these addresses.

---

**Note**

- The 17 most significant bits cannot be masked. This means that the full address cannot be masked.
- For watchpoint behavior when its MASK field is programmed with a reserved value, see *Reserved DBGWCR\textsubscript{n}._EL1.MASK values* on page D2-2463.

---

When masking address bits, a debugger must both:

- Program $\text{DBGWCR}_{n}$\textsubscript{EL1}.BAS to be 0b11111111. See *Programming dependencies of the BAS and MASK fields* on page D2-2462.
- In the $\text{DBGWVR}_{n}$\textsubscript{EL1}, set the masked address bits to 0. For watchpoint behavior when any of the masked address bits are not 0, see *Other usage constraints* on page D2-2463.

---

**D2.10.5 Determining the memory location that caused a Watchpoint exception**

On taking a Watchpoint exception, the PE records an address in a *Fault Address Register* that the debugger can use to determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

- FAR\_EL1, if the exception is taken to EL1.
- FAR\_EL2, if the exception is taken to EL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.

On entering Debug state on a Watchpoint debug event, the PE records the address in the EDWAR.

For more information, see the subsections that follow. These are:

- *Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions*
- *Address recorded for Watchpoint exceptions generated by data cache maintenance instructions* on page D2-2460

---

**Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions**

---

Despite its mnemonic, the *DC ZVA, Data Cache Zero by VA* instruction is not a data cache maintenance instruction.

---

The address recorded must be both:

- From the inclusive range between:
  - The lowest address accessed by the memory access that triggered the watchpoint.
  - The highest *watchpointed address* accessed by the memory access. A watchpointed address is an address that the watchpoint is watching.
- Within a naturally-aligned block of memory that is all of the following:
  - A power-of-two size.
— No larger than the DC ZVA block size.
— Contains a watchpointed address accessed by the memory access.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.

Example D2-2 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the watchpoint.

If the DC ZVA block size is:
• 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.
• 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

Address recorded for Watchpoint exceptions generated by data cache maintenance instructions

The address recorded is the address passed to the instruction. This means that the address recorded might be higher than the address of the location that triggered the watchpoint.

D2.10.6 Watchpoint behavior on other instructions

Under normal operating conditions, the following do not generate Watchpoint exceptions:
• Instruction cache maintenance instructions.
• Address translation instructions.
• TLB maintenance instructions.
• Prefetch memory instructions.
• All data cache maintenance instructions except DC IVAC.

Note

Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache maintenance instruction.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the instruction as a load or a store, and the access size of instruction cache, address translation, and TLB operations are implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache, address translation, and TLB operations which generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also the following subsections:
• Watchpoint behavior on accesses by Store-Exclusive instructions.
• Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA instruction on page D2-2461.

Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:

• If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether the watchpoint generates a Watchpoint exception.
• Otherwise, the watchpoint generates a Watchpoint exception.
Watchpoint behavior on accesses by the DC IVAC instruction and the DC ZVA instruction

DC ZVA operations can generate Watchpoint exceptions. If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a DC IVAC instruction can generate a Watchpoint exception. Otherwise, DC IVAC operations can generate Watchpoint exceptions.

DC IVAC and DC ZVA operations are treated as data stores by DBGWCR<\textit{n}>_EL1.LSC.

--- Note ---

For the size of data accesses performed by the DC IVAC instruction and the DC ZVA instruction, see \textit{Watchpoint data address comparisons} on page D2-2456. The size of all data accesses must be considered because watchpoints can be programmed to match on individual bytes.

D2.10.7 Watchpoint usage constraints

See the following:

- \textit{Reserved DBGWCR<\textit{n}>_EL1.{SSC, HMC, PAC} values}.
- \textit{Reserved DBGWCR<\textit{n}>_EL1.LBN values} on page D2-2462.
- \textit{Programming dependencies of the BAS and MASK fields} on page D2-2462.
- \textit{Reserved DBGWCR<\textit{n}>_EL1.BAS values} on page D2-2462.
- \textit{Reserved DBGWCR<\textit{n}>_EL1.MASK values} on page D2-2463.
- \textit{Other usage constraints} on page D2-2463.

Reserved DBGWCR<\textit{n}>_EL1.{SSC, HMC, PAC} values

Table D2-17 shows when particular combinations of DBGWCR<\textit{n}>_EL1.{SSC, HMC, PAC} are reserved.

<table>
<thead>
<tr>
<th>HMC, SSC, and PAC combination</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combinations with SSC set to 0b01 or 0b10 except for the combination with HMC set to 1, SSC set to 0b01, and PAC set to 0b00.</td>
<td>When EL3 is not implemented and EL2 is implemented.</td>
</tr>
<tr>
<td>All combinations where HMC or SSC is nonzero, except for the combination with HMC set to 1, SSC set to 0b01, and PAC set to 0b00 or combinations with SSC set to 0b11.</td>
<td>When both of EL2 and EL3 are not implemented.</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to 0b11, and PAC set to 0b00.</td>
<td>When EL2 is not implemented.</td>
</tr>
<tr>
<td>The combinations with SSC set to 0b11 except the combination with HMC set to 1, SSC set to 0b11, and PAC set to 0b00.</td>
<td>When Secure EL2 is not implemented.</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to 0b01, and PAC set to 0b00.</td>
<td>When Secure EL2 is not implemented.</td>
</tr>
<tr>
<td>Combinations not included in Table D2-14 on page D2-2455.</td>
<td>Always.</td>
</tr>
</tbody>
</table>

If a watchpoint is programmed with one of these reserved combinations:

- The watchpoint must behave as if it is either:
  - Disabled.
  - Programmed with a combination that is not reserved, other than for a direct or external read of DBGWCR<\textit{n}>_EL1.
- For a direct or external read of DBGWCR<\textit{n}>_EL1, if the reserved combination:
  - Has no function for any execution conditions, the value read back for each of SSC, HMC, and PMC is UNKNOWN.
— Has a function for execution conditions other than the current execution conditions, the value read back is the value written. This permits software to save and restore the combination so that the watchpoint functions for the other execution conditions.

The behavior of watchpoints with reserved combinations of SSC, HMC, and PAC might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGWCR<n>_EL1.LBN values

For Linked Watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any DBGWCR<n>_EL1.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked watchpoint links to a breakpoint that is not implemented, or that is not context-aware, then reads of DBGWCR<n>_EL1.LBN return an UNKNOWN value and the behavior is CONSTRAINED UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

• Disabled
• Linked to an UNKNOWN context-aware breakpoint.

If a Linked watchpoint links to a breakpoint that is implemented and is context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked Watchpoints

For Unlinked watchpoints, DBGWCR<n>_EL1.LBN reads UNKNOWN and its value is ignored.

Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

• The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.

• The BAS field, to select which bytes in the doubleword or word starting at the address contained in the DBGWVR<n>_EL1 the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

• MASK field, it must program BAS to be 0b11111111, so that all bytes in the doubleword or word are selected.

• BAS field, it must program MASK to be 0b000000, so that the MASK field does not indicate any address ranges.

If an enabled watchpoint has a MASK field that is non-zero and a BAS field that is not set to 0b11111111, then for each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception is generated.

Reserved DBGWCR<n>_EL1.BAS values

The BAS field must be programmed with a value Zeros(8-n-m):Ones(n):Zeros(m), where:

• \( n \) is a non-zero positive integer less-than-or-equal-to 8.

• \( m \) is a positive integer less-than 8.

• \( n+m \) is less-than-or-equal-to 8.

All other values are reserved.

——— Note ————

If \( x \) is zero, then \( \text{Zeros}(x) \) is an empty bitstring.

If DBGWVR<n>_EL1[2] is 1, DBGWCR<n>_EL1.BAS[7:4] are RES0 and are ignored.
If a watchpoint is programmed with a reserved BAS value:

- It is **CONSTRAINED UNPREDICTABLE** whether the watchpoint generates a Watchpoint exception for each byte in the doubleword or word of memory addressed by the DBGWVR<\text{<n>_EL1}.
- A direct or external read of DBGWCR<\text{<n>_EL1}.BAS returns an **UNKNOWN** value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of the architecture.

**Reserved DBGWCR<\text{<n>_EL1}.MASK values**

If a watchpoint is programmed with a reserved MASK value:

- The watchpoint must behave as if it is either:
  - Disabled.
  - Programmed with an **UNKNOWN** value that is not reserved, that might be 0b00000, other than for a direct or external read of DBGWCR<\text{<n>_EL1}.
- A direct or external read of DBGWCR<\text{<n>_EL1}.MASK returns an **UNKNOWN** value.

**Other usage constraints**

For all watchpoints:

- DBGWVR<\text{<n>_EL1}[1:0] are **RES0** and are ignored.
- If DBGWCR<\text{<n>_EL1}.MASK is nonzero, and any masked bits of DBGWVR<\text{<n>_EL1} are not 0, it is **CONSTRAINED UNPREDICTABLE** whether the watchpoint generates a Watchpoint exception when the unmasked bits match.
- A watchpoint never generates any Watchpoint exceptions if DBGWCR<\text{<n>_EL1}.LSC is 0b00.

**D2.10.8 Exception syndrome information and preferred return address**

See the following:

- **Exception syndrome information**.
- **Preferred return address** on page D2-2464.

**Exception syndrome information**

On taking a Watchpoint exception, the PE records all of the following:

- Information about the exception in the **Exception Syndrome Register (ESR_ELx)** at the Exception level the exception is taken to.
- An address that the debugger can use to determine the memory location that caused the exception. The PE records this in a **Fault Address Register (FAR)**.

The ESR and FAR used is either:

- **ESR_EL1** and **FAR_EL1**, if the exception is taken to EL1.
- **ESR_EL2** and **FAR_EL2**, if the exception is taken to EL2.

**Note**

Watchpoint exceptions cannot be taken to EL3 using AArch64.

See **ISS encoding for an exception from a Watchpoint exception** on page D13-2996 for more information.
**Preferred return address**

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

**D2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch64 state**

- **AArch64.WatchpointByteMatch()** tests an individual byte accessed by an operation.
- **AArch64.StateMatch()** tests the values in DBGWCR<n>_EL1.{HMC, SSC, PAC}, and if the watchpoint is Linked, also tests the Linked Context breakpoint that the watchpoint links to.
- **AArch64.WatchpointMatch()** tests the value in DBGWVR<n>_EL1.
- **AArch64.CheckWatchpoint()** generates a FaultRecord that **AArch64.Abort()** raises a Watchpoint exception for if all of the following are true:
  - MDSCR_EL1.MDE is 1.
  - Debug exceptions are enabled from the current Exception level and Security state. See *Enabling debug exceptions from the current Exception level* on page D2-2425.
  - All of the conditions required for Watchpoint exception generation are met. See *About Watchpoint exceptions* on page D2-2451.

**Note**

**AArch64.CheckWatchpoint()** might halt the PE and cause it to enter Debug state. External debug uses Debug state.

**AArch64.WatchpointException()** is called to generate a Watchpoint exception.

These functions are defined in *Chapter J1 Armv8 Pseudocode.*
D2.11 Vector Catch exceptions

Vector Catch exceptions are not generated in AArch64 translation regimes.

**Note**

This means that they are never taken to EL1 using AArch64 and are only supported if at least EL1 using AArch32 is supported.

A debugger that is executing in EL2 using AArch64 can route Vector Catch exceptions to EL2 using AArch64. See *Routing debug exceptions* on page D2-2423.

`AArch64.VectorCatchException()` is called to generate a Vector Catch exception.

*Vector Catch exceptions on page G2-5909* describes Vector Catch exceptions.
D2.12 Software Step exceptions

The following subsections describe Software Step exceptions:

- **About Software Step exceptions**.
- **Rules for setting MDSCR_EL1.SS to 1**.
- **The software step state machine**.
- **Entering the active-not-pending state** on page D2-2468.
- **Behavior in the active-not-pending state** on page D2-2471.
- **Entering the active-pending state** on page D2-2473.
- **Behavior in the active-pending state** on page D2-2474.
- **Stepping T32 IT instructions** on page D2-2474.
- **Exception syndrome information and preferred return address** on page D2-2475.
- **Additional considerations** on page D2-2476.
- **Pseudocode description of Software Step exceptions** on page D2-2478.

D2.12.1 About Software Step exceptions

Software step is an Armv8-A resource that a debugger can use to make the PE single-step instructions. For example, by using software step, debugger software executing at a higher Exception level can single-step instructions at a lower Exception level.

Operation is as follows:

1. **A debugger:**
   a. Enables software step by setting MDSCR_EL1.SS to 1. See **The debug exception enable controls** on page D2-2422.
   b. Executes an exception return instruction, to branch to the instruction to be single-stepped in the software being debugged.

2. **The PE then:**
   a. Executes the instruction to be single-stepped.
   b. Takes a Software Step exception on the next instruction, returning control to the debugger.

However, another exception might be generated while the instruction is being stepped. This exception is either:

- A synchronous exception that is generated by the instruction being stepped.
- An asynchronous exception that is taken before or after the instruction being stepped.

The PE can only take a Software Step exception if debug exceptions are enabled from the current Exception level and Security state. See **Enabling debug exceptions from the current Exception level** on page D2-2425.

A state machine describes the behavior of software step, shown in **The software step state machine**.

Throughout this **Software Step exceptions** section, including in all subsections, EL₀ means the Exception level that Software Step exceptions are targeting. **Routing debug exceptions** on page D2-2423 defines EL₀ as the **debug target Exception level**.

D2.12.2 Rules for setting MDSCR_EL1.SS to 1

Debugger software must be executing in an Exception level and Security state that debug exceptions are disabled from when it sets MDSCR_EL1.SS to 1.

The Exception level that hosts the debugger software must be using AArch64.

D2.12.3 The software step state machine

In **Figure D2-3** on page D2-2467:

- The OS Lock is unlocked and DoubleLockStatus() == FALSE.
- The PE is not in Secure state with MDCR_EL3.SDD set to 1. That is, the PE is in Non-secure state, or is in Secure state with MDCR_EL3.SDD set to 0, or the implementation does not include EL3.

---

**Figure D2-3 Software step state machine**

For a description of when debug exceptions are enabled or disabled from an Exception level, see *Enabling debug exceptions from the current Exception level* on page D2-2425.

For more information about how a step is completed, see *Behavior in the active-not-pending state* on page D2-2471.
The software step states are:

**Inactive**
Software step is inactive. It cannot generate any Software Step exceptions or affect PE execution. Software step is inactive whenever any of the following are true:
- MDSCR_EL1.SS is 0.
- EL_D is using AArch32.
- Debug exceptions are disabled from the current Exception level or Security state.

**Active-not-pending**
None of the conditions mentioned in *Inactive* are true, therefore software step is active.
The current instruction is the instruction to be stepped.

**Active-pending**
None of the conditions mentioned in *Inactive* are true, therefore software step is active.
A Software Step exception is pending on the current instruction.

Whenever software step is active, whether the state machine is in the active-not-pending state or the active-pending state depends on PSTATE.SS. Table D2-18 shows this.

### Table D2-18 State machine states

<table>
<thead>
<tr>
<th>EL_D using:</th>
<th>Debug exception enable status in the current Exception level and Security state</th>
<th>MDSCR_EL1.SS</th>
<th>PSTATE.SS</th>
<th>State machine state</th>
</tr>
</thead>
<tbody>
<tr>
<td>AArch32</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Inactive</td>
</tr>
<tr>
<td>AArch64</td>
<td>Disabled</td>
<td>X</td>
<td>X</td>
<td>Inactive</td>
</tr>
<tr>
<td>AArch64</td>
<td>Enabled</td>
<td>0</td>
<td>X</td>
<td>Inactive</td>
</tr>
<tr>
<td>AArch64</td>
<td>Enabled</td>
<td>1</td>
<td>1</td>
<td>Active-not-pending</td>
</tr>
<tr>
<td>AArch64</td>
<td>Enabled</td>
<td>1</td>
<td>0</td>
<td>Active-pending</td>
</tr>
</tbody>
</table>

#### D2.12.4 Entering the active-not-pending state

Software step can only enter the active-not-pending state from the inactive state.

Software step:
- Enters the active-not-pending state when an Exception return instruction writes 1 to PSTATE.SS, by copying from SPSR_ELx.SS when it restores PSTATE.
- Might enter the active-not-pending state on exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 1. See *Exiting Debug state on page H2-7051*.

An Exception return instruction only copies 1 from SPSR_ELx.SS to PSTATE.SS if all of the following are true:
- MDSCR_EL1.SS is 1.
- EL_D is using AArch64.
- Debug exceptions are disabled from the current Exception level.
- Debug exceptions are enabled from the Exception level that the Exception return instruction targets.

Otherwise, Exception return instructions set PSTATE.SS to 0, regardless of the value of SPSR_ELx.SS.

Table D2-19 on page D2-2469 shows this. In the table:

- **Lock** Means the value of (OSLSR_EL1.OSLK == ’1’ || DoubleLockStatus()).
- **NS** Means the Effective value of SCR_EL3.NS.
SDD  Means the Effective value of MDCR_EL3.SDD. See Disabling debug exceptions from Secure state on page D2-2425.

EEL2  Means the Effective value of SCR_EL3.EEL2. If FEAT_SEL2 is not implemented, this is 0.

TGE  Means the value of HCR_EL2.TGE. If EL2 is not implemented, the PE behaves as if this is 0.

TDE  Means the Effective value of MDCR_EL2.TDE. See Routing debug exceptions on page D2-2423.

EL1 is using  The Execution state when the EL_D is EL1.

EL2 is using  The Execution state when the EL_D is EL2.

### Table D2-19 Value an Exception return instruction writes to PSTATE.SS

<table>
<thead>
<tr>
<th>MDSCR_EL1.SS</th>
<th>Lock</th>
<th>NS</th>
<th>SDD</th>
<th>EEL2</th>
<th>TGE</th>
<th>TDE</th>
<th>EL1 is using</th>
<th>EL2 is using</th>
<th>Value an Exception return instruction writes to PSTATE.SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X 0</td>
</tr>
<tr>
<td>1</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X 0</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 n/a See Table D2-20 on page D2-2470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 n/a See Table D2-20 on page D2-2470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 AArch64 See Table D2-20 on page D2-2470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 AArch64 See Table D2-21 on page D2-2471</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 AArch64 See Table D2-21 on page D2-2471</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 AArch64 See Table D2-20 on page D2-2470</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>AArch32 AArch32 0</td>
</tr>
</tbody>
</table>

For:

- If EL_D is EL1 using AArch64, Table D2-20 on page D2-2470 shows the value an Exception return instruction writes to PSTATE.SS.

- If EL_D is EL2 using AArch64, Table D2-21 on page D2-2471 shows the value an Exception return instruction writes to PSTATE.SS.

In both tables:

**From EL**  Means the Exception level at which the PE executes the Exception return instruction.

**Target EL**  Is the target Exception level of the Exception return instruction.
Note

If the Exception return instruction is an illegal exception return, the target Exception level of the Exception return instruction is the current Exception level. See Illegal return events from AArch64 state on page D1-2345.

KDE

Is MDSCR_EL1.KDE. See Enabling debug exceptions from the current Exception level on page D2-2425.

Table D2-20 Value an Exception return instruction writes to PSTATE.SS if EL_D is EL1 using AArch64

<table>
<thead>
<tr>
<th>From EL</th>
<th>Target EL</th>
<th>KDE</th>
<th>PSTATE.D</th>
<th>SPSR_ELx.D</th>
<th>Software step enable status at:</th>
<th>Value an Exception return instruction writes to PSTATE.SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>From EL</td>
<td>Target EL</td>
</tr>
<tr>
<td>EL3</td>
<td>EL3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>EL2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>EL1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Disabled</td>
<td>Enabled</td>
<td>SPSR_EL3.SS</td>
<td></td>
</tr>
<tr>
<td>EL0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>EL2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>EL1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Disabled</td>
<td>Enabled</td>
<td>SPSR_EL2.SS</td>
<td></td>
</tr>
<tr>
<td>EL0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>EL1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>Enableda</td>
<td>Enabledb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>Disabled</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Disabled</td>
<td>Enabled</td>
<td>SPSR_EL1.SS</td>
<td></td>
</tr>
<tr>
<td>EL0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
<td>Enabled</td>
<td>SPSR_EL1.SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>Enableda</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>X</td>
<td>Disabled</td>
<td>Enabled</td>
<td>SPSR_EL1.SS</td>
</tr>
</tbody>
</table>

a. Because MDSCR_EL1.SS == 1, it means that the Exception return instruction is itself being stepped.
b. Depends on SPSR_EL1.D.
Note

No AArch32 instruction can set PSTATE.SS to 1.

D2.12.5 Behavior in the active-not-pending state

In this state, the PE does one of the following:

- Executes the instruction to be stepped and either:
  - Completes it without taking a synchronous exception.
  - Takes a synchronous exception if the instruction generates one.
- Takes an asynchronous exception without executing any instructions.
• Enters Debug state because of a Halting debug event.

If the PE executes the instruction without taking any exceptions, then the PE sets PSTATE.SS to 0, meaning that after the instruction has been executed:

• If the instruction has disabled debug by setting PSTATE.D to 1 then software step advances to the inactive state.

• If the instruction disables software step by a direct write to a System register, for example a write to MDSCR_EL1.KDE or MDSCR_EL1.SS, then software step might advance to the inactive state. These writes require explicit synchronization to guarantee their effect. See Synchronization and the software step state machine on page D2-2477.

• Otherwise, software step advances to the active-pending state. See Behavior in the active-pending state on page D2-2474.

If the PE takes either a synchronous or an asynchronous exception, behavior is as described in one of the following:

• If the PE takes an exception to an Exception level that is using AArch64.

• If the PE takes an exception to an Exception level that is using AArch32 on page D2-2473.

If the PE enters Debug state because of a Halting debug event, behavior is as described in Entering Debug state and Software Step on page H2-7023.

If the PE takes an exception to an Exception level that is using AArch64

As part of exception entry, the PE does all of the following:

• Sets SPSR_ELx.SS to 0 or 1, depending on the exception. See Table D2-22.

• It is UNPREDICTABLE whether SPSR_ELx.SS to 0 or 1 when an SError interrupt is taken to ELx without executing the instruction.

• Sets PSTATE.SS to 0. This causes software step to enter either the active-pending state or the inactive state, depending on whether debug exceptions are enabled or disabled from the Exception level that the exception is taken to:
  - Enabled    Software step enters the active-pending state.
  - Disabled   Software step enters the inactive state.

In either case, on taking the exception, a step is complete.

• Sets PSTATE.D to 1.

--- Note ---

If an SMC instruction executed at Non-secure EL1 is trapped to EL2 because HCR_EL2.TSC is 1, the exception is a Trap exception, not a Secure Monitor Call exception, and so SPSR_ELx.SS is set to 1, not 0.

<table>
<thead>
<tr>
<th>Exception description</th>
<th>Exceptions</th>
<th>SPSR_ELx.SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceptions whose preferred return address is for the instruction that follows the instruction to be stepped.</td>
<td>Supervisor Call (SVC) exceptions. Hypervisor Call (HVC) exceptions. Secure Monitor Call (SMC) exceptions.</td>
<td>0</td>
</tr>
<tr>
<td>Exceptions whose preferred return address is the address of the instruction to be stepped.</td>
<td>All other synchronous exceptions, and asynchronous exceptions that are taken before the instruction to be stepped.</td>
<td>1</td>
</tr>
</tbody>
</table>
If the PE takes an exception to an Exception level that is using AArch32

This can only happen when all of the following is true:

- EL2 is implemented and is using AArch64, and the Effective value of MDCR_EL2.TDE is 1. Because MDCR_EL2.TDE is 1, ELD is EL2.
- The exception is taken to EL1 using AArch32.

As part of exception entry, the PE sets PSTATE.SS to 0. This causes software step to enter the active-pending state.

**Note**

- Software step always enters the active-pending state because the exception is taken to an Exception level that debug exceptions are enabled from, EL1. Debug exceptions are enabled from EL1 because ELD is EL2, and debug exceptions are always enabled from Exception levels that are lower than ELD.
- AArch32 SPSRs have no SS bit.

Summary of behavior in the active-not-pending state

Table D2-23 summarizes behavior in the active-not-pending state.

<table>
<thead>
<tr>
<th>Event</th>
<th>Value written to PSTATE.SS</th>
<th>Target Exception level is using:</th>
<th>Detailsa</th>
<th>Value written to SPSR_ELx.SS</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exception</td>
<td>0</td>
<td>n/a</td>
<td>Disables Software step</td>
<td>n/a</td>
<td>Inactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Otherwise</td>
<td>n/a</td>
<td>Active-pending</td>
</tr>
<tr>
<td>Exception</td>
<td>0</td>
<td>AArch64</td>
<td>Supervisor Call (SVC)</td>
<td>0</td>
<td>Active-pending or inactiveb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypervisor Call (HVC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Secure Monitor Call (SMC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AArch32</td>
<td>All</td>
<td>Active-pending</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a. For the No exception rows, this column shows the effect of the event.

b. Which state software step enters depends on whether debug exceptions are enabled or disabled from the target Exception level. See Figure D2-3 on page D2-2467.

D2.12.6 Entering the active-pending state

Software step enters the active-pending state after any of the following operations, provided that both:

- MDSCR_EL1.SS is 1.
- Debug exceptions are enabled from the Exception level and Security state that execution is in after the operation.

The operations are:

**While software step is in the active-not-pending state**

The PE either:

- Executing the instruction to be stepped without taking any exceptions.
- Taking an exception.
While software step is in the active-pending state

The PE takes an asynchronous exception.

While software step is in the inactive state

The PE executes either:

• An Exception return instruction when SPSR_ELx.SS is 0.
• An instruction that enables debug by setting PSTATE.D to 0.

Note

If entry to the active-pending state is because of the PE taking an exception, it means that the exception is one that is taken to EL1 when MDCR_EL2.TDE is 1 and EL2 is implemented and enabled in the current Security state. Otherwise, debug exceptions are masked by PSTATE.D, therefore they would be disabled from the target Exception level of the exception.

In addition, software step might enter the active-pending state either:

• After a direct write to a System register, for example a write to MDSCR_EL1.KDE or MDSCR_EL1.SS. These writes require explicit synchronization to guarantee their effect. See Synchronization and the software step state machine on page D2-2477.
• On exiting Debug state when DSPSR_EL0.SS or DSPSR.SS is 0. See Exiting Debug state on page H2-7051.

D2.12.7 Behavior in the active-pending state

When the PE is in the active-pending state, a Software Step exception is taken before the PE executes an instruction.

The Software Step exception has higher priority than all other types of synchronous exception. However, the prioritization of this exception with respect to any unmasked pending asynchronous exception is not defined by the architecture.

For more information, see the following:

• Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.
• Prioritization and recognition of interrupts on page D1-2365.
• Architectural requirements for taking asynchronous exceptions on page G1-5749.

D2.12.8 Stepping T32 IT instructions

The Armv8-A architecture permits a combination of an IT instruction and another 16-bit T32 instruction to comprise one 32-bit instruction.

For the purpose of stepping an item, it is IMPLEMENTATION DEFINED whether:

• The PE considers this combination to be one instruction.
• The PE considers this combination to be two instructions.

In an implementation that supports the ITD control, that can disable some uses of the IT instruction, it is then IMPLEMENTATION DEFINED whether this behavior depends on the value of the applicable ITD field. For example:

• The PE might consider this combination to be one instruction, regardless of the state of the applicable ITD field.
• The PE might consider this combination to be two instructions, regardless of the state of the applicable ITD field.
• The PE might consider this combination to be one instruction when the applicable ITD field is 1, and two instructions when it is 0.

The applicable ITD field is one of:

• SCTLR_EL1.ITD if execution is at EL0 using AArch32 when EL1 is using AArch64.
• SCTLR.ITD if execution is at EL0 or EL1 when EL1 is using AArch32.
D2.12.9 Exception syndrome information and preferred return address

See the following:

- Exception syndrome information.
- Preferred return address on page D2-2476.

Exception syndrome information

On taking a Software Step exception, the PE records information about the exception in the Exception Syndrome Register (ESR_ELx) at the Exception level the exception is taken to. See ISS encoding for an exception from a Software Step exception on page D13-2996 for more information.

If no instruction was stepped because software step entered the active-pending state from the inactive state without passing through the active-not-pending state, then ESR_ELx.ISV, EX are set to 0.

When an instruction has been stepped, if the stepped instruction was a conditional Load-Exclusive instruction that failed its Condition code test, then ESR_ELx.EX is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1.

When an instruction has been stepped, if the stepped instruction was an Exception return instruction or an ISB, then ESR_ELx.ISV is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1, and ESR_ELx.EX is set to 0.

If the Effective value of MDCR_EL2.TDE == 1, EL2 is implemented and enabled in the current Security state, and a different exception is taken before the Software Step exception, then ESR_ELx.ISV is set to a CONSTRAINED UNPREDICTABLE choice of 0 or 1. In this case:

- If ESR_ELx.ISV is set to 1, then ESR_ELx.EX is set to the correct value for the instruction.
- If ESR_ELx.ISV is set to 0, then ESR_ELx.EX is set to zero.

Other than for the cases described above, when an instruction has been stepped:

- ESR_ELx.ISV is set to 1, to indicate that the EX bit is valid.
- The value of ESR_ELx.EX is set according to the instruction stepped. When:
  - The instruction stepped was an instruction other than a Load-Exclusive instruction, an Exception Return instruction, or an ISB, and no other exception was taken before the Software Step exception, ESR_ELx.EX is set to 0.
  - The instruction stepped was a Load-Exclusive instruction that was either not conditional or did not fail its Condition code test, ESR_ELx.EX is set to 1.

Note

A Load-Exclusive instruction is any one of the following:

- In the A64 instruction set, any instruction that has a mnemonic starting with either LDX or LDAX.
- In the A32 and T32 instruction sets, any instruction that has a mnemonic starting with either LDREX or LDAEX.

An implementation that always sets ISV to 0 and never sets EX is not compliant.
Table D2-24 summarizes the possible values that the PE can record in ESR_ELx.ISV, EX.

Table D2-24 Values that the PE can record in ESR_ELx.ISV, EX

<table>
<thead>
<tr>
<th>Description</th>
<th>ESR_ELx.ISV</th>
<th>ESR_ELx.EX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndrome data is not available because no instruction was stepped.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syndrome data is available because an instruction was stepped. The instruction stepped was a conditional Load-Exclusive instruction that failed its Condition code test.</td>
<td>1</td>
<td>0 or 1</td>
</tr>
<tr>
<td>Syndrome data is available because an instruction was stepped. The instruction stepped was an Exception Return instruction or an ISB.</td>
<td>0 or 1</td>
<td>0</td>
</tr>
<tr>
<td>A different exception is taken before the Software Step exception.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Set to the correct value for the instruction.</td>
</tr>
<tr>
<td>Syndrome data is available because an instruction was stepped. The instruction stepped was an instruction other than a Load-Exclusive instruction, an Exception Return instruction, or an ISB, and no other exception was taken before the Software Step exception.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Syndrome data is available because an instruction was stepped. The instruction stepped was a Load-Exclusive instruction that was either not conditional or did not fail its Condition code test.</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Preferred return address

The preferred return of a Software Step exception is the address of the instruction that was not executed because the PE took the Software Step exception instead.

D2.12.10 Additional considerations

This section contains the following:

• Behavior when an Exception return instruction is an illegal exception return.
• Behavior when the instruction stepped writes a misaligned PC value on page D2-2477.
• Stepping code that uses Exclusives monitors on page D2-2477.
• Synchronization and the software step state machine on page D2-2477.

Behavior when an Exception return instruction is an illegal exception return

If the conditions for entering the active-not-pending state in Entering the active-not-pending state on page D2-2468 are met, but the PE executes an Exception return instruction that is an illegal exception return, the exception return must be taken to the same Exception level that it was taken from. In this scenario, even though the Exception level remains the same before and after the Exception return instruction, software step can advance from the inactive state to one of the active states. Consider the following case:

1. MDSCR_EL1.SS is 1 and software step is inactive. The current Exception level is EL1 using AArch64, the OS Lock and OS Double Lock are unlocked, and MDCR_EL2.TDE is 0, MDSCR_EL1.KDE is 1, and PSTATE.D is 1.
   PSTATE.D == 1 is the reason why software step is inactive, because PSTATE.D == 1 means that debug exceptions are disabled from the current Exception level.

2. The PE executes an Exception return instruction.
3. The intended target of the Exception return instruction is EL2. This means that the Exception return instruction is an illegal exception return because the intended target is higher than the Exception level the Exception return instruction it is executed at. In this case, the Exception return instruction must target EL1 instead of EL2.

If SPSR_EL1.D is 0, then on the Exception return instruction PSTATE.D becomes 0 and debug exceptions become enabled from the current Exception level. Software step therefore advances from the inactive state to one of the active states.

Which active state software step advances to depends on whether SPSR_ELx.SS is 1 or 0:

- If SPSR_ELx.SS is 1, software step advances to the active-not-pending state.
  In this case, an Illegal Execution state exception is pending on the instruction to be stepped, and the PE takes the Illegal Execution state exception instead of executing the instruction to be stepped.
- If SPSR_ELx.SS is 0, software step advances to the active-pending state.
  In this case, a Software Step exception and an Illegal Execution state exception are both pending. The Software Step exception has higher priority. On taking the Software Step exception, the PE sets SPSR_ELx.IL to 1.

---

**Note**

*Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349* shows the relative priorities of synchronous exceptions.

---

**Behavior when the instruction stepped writes a misaligned PC value**

An indirect branch that writes a misaligned PC value might generate a PC alignment fault exception at the target of the branch. However, if the indirect branch is stepped using software step, the PE takes a Software Step exception instead, because the Software Step exception has higher priority. Behavior on returning from the Software Step exception depends on which Execution state the Exception level being returned to is using:

- **AArch64** A PC alignment fault exception is generated.
- **AArch32** The return from the Software Step exception forces the PC to the correct alignment, and no PC alignment fault exception is generated.

Debugger software must therefore take care when using software step to single-step an indirect branch instruction executed in AArch32 state, that it does not hide a PC alignment fault exception.

**Stepping code that uses Exclusives monitors**

The Armv8-A architecture provides no mechanism for preserving the state of the Exclusives monitors when a Load-Exclusive or a Store-Exclusive instruction is stepped.

However, for certain progressions through the software step state machine, on taking a Software Step exception, the PE provides an indication of whether the instruction stepped was a Load-Exclusive instruction.

Debugger software can use this to detect the state of the Exclusives monitors. For example, if the PE reports that the instruction stepped was a Load-Exclusive instruction, the debugger is aware that the next Store-Exclusive operation will fail, because all Exclusives monitors are cleared on returning from the Software Step exception. The debugger must then take action to ensure that the code being stepped makes forwards progress.

For more information on how the PE reports whether the instruction stepped was a Load-Exclusive instruction, see *Exception syndrome information and preferred return address on page D2-2475*.

**Synchronization and the software step state machine**

Any of the following can cause transitions between software step states:

- A direct write to a System register.
- A direct write to a Special-purpose register.
A write to an external debug register that affects the routing of debug exceptions.

Because the software step state machine indirectly reads these registers, it is not guaranteed to observe any new values until after a Context synchronization event has occurred.

In the time between a write to one of these registers and the next Context synchronization event, it is constrained unpredictable whether software step uses the state of the PE before the write, or the state of the PE after the write.

After aContext synchronization event, the state machine must use the state of the PE after the write.

Example D2-3

1. Software changes MDSCR_EL1.SS from 0 to 1 when debug exceptions are enabled.
2. The PE executes some instructions.
3. AContext synchronization eventoccurs.

During step 2, it is constrained unpredictable whether software step remains in the inactive state, as if MDSCR_EL1.SS is 0, or enters the active-pending state because MDSCR_EL1.SS is 1. If it is in the:

- Inactive state, then after the Context synchronization event, it must enter the active-pending state.
- Active-pending state, the PE might take a Software Step exception before the Context synchronization event.

Note

A direct write to a Special-purpose register does not require explicit synchronization.

D2.12.11 Pseudocode description of Software Step exceptions

SSAdvance() advances software step from the active-not-pending state to the active-pending state, by setting PSTATE.SS to 0. It is called on completing execution of each instruction.

CheckSoftwareStep() checks whether software step is in the active-pending state, and if it is, generates a Software Step exception. It is called before each instruction executed, regardless of Execution state, before checking for any other synchronous exceptions.

DebugExceptionReturnSS() returns the value to write to PSTATE.SS on an exception return or an exit from Debug state. See Entering the active-not-pending state on page D2-2468.

These functions are defined in Chapter J1 Armv8 Pseudocode.
D2.13 Synchronization and debug exceptions

The behavior of debug depends on all of the following:

- The state of the external debug authentication interface.
- Indirect reads of:
  - External debug registers.
  - System registers, including system debug registers.
  - Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until after a *Context synchronization event* has occurred. Similarly, the effect of the change on the software step state machine cannot be relied on until after a *Context synchronization event* has occurred.

For any instructions executed between the time when the change is made and the time when the next *Context synchronization event* occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the change, or the state of the PE after the change.

---

Example D2-4

1. Software changes MDSCR_EL1.MDE from 0 to 1.
2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the PE after the change.
3. A *Context synchronization event* occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

---

Example D2-5

1. Software unlocks the OS Lock.
2. The PE executes some instructions.
3. A *Context synchronization event* occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether debug exceptions other than Breakpoint Instruction exceptions can be generated.

---

**Note**

Some register updates are self-synchronizing. Others require an explicit *Context synchronization event*. For more information, see:

- *Accessing PSTATE fields* on page D1-2325.
- *Synchronization requirements for AArch64 System registers* on page D13-2863.
- *Synchronization of changes to the external debug registers* on page H8-7138.
Chapter D3
AArch64 Self-hosted Trace

This chapter describes the AArch64 self-hosted trace:

Introductory information:
- *About self-hosted trace* on page D3-2482.
- *Trace sinks* on page D3-2482.
- *Register controls to enable self-hosted trace* on page D3-2482.

Prohibited regions in trace:
- *Controls to prohibit trace at Exception levels* on page D3-2483.
- *Self-hosted trace and visibility of virtual data* on page D3-2484.

Timestamps and Synchronization:
- *Self-hosted trace timestamps* on page D3-2485.
- *Synchronization in self-hosted trace* on page D3-2487.
D3.1 About self-hosted trace

A PE Trace Unit generates trace data to describe the program flow of the PE.

The PE Trace Unit may be an implementation of a standard Arm Embedded Trace Macrocell (ETM), or another type of Arm Trace Architecture, or an IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture PE Trace Unit, FEAT_TRF extension must be implemented.

If an Armv8.4-compliant PE implements a Trace Unit that is not an ETM Architecture PE Trace Unit, Arm recommends that FEAT_TRF extension is implemented, but this is not mandatory.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace sink.

If the self-hosted trace extensions are implemented, the PE Trace Unit must implement the system register interface. The PE Trace Unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is implemented, `ExternalNoninvasiveDebugEnabled()` is always TRUE.

D3.1.1 Trace sinks

The PE Trace Unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow software to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer in memory. Trace data is written to this buffer.

Arm recommends that a system that includes FEAT_TRF incorporates an ETR, and follows the system architecture described by the CoreSight Base System Architecture (CS-BSA).

The self-hosted trace extensions do not describe the programmers' model trace sinks.

D3.1.2 Register controls to enable self-hosted trace

If FEAT_TRF is implemented, self-hosted trace is enabled if one of the following is true:

- `EDSCR.TFO == 0`.
- `EDSCR.TFO == 1`, EL3 is implemented, `MDCR_EL3.STE == 1` and `ExternalSecureNoninvasiveDebugEnabled() == FALSE`.
- `EDSCR.TFO == 1`, EL3 is not implemented, the PE executes in Secure state and `ExternalSecureNoninvasiveDebugEnabled() == FALSE`.

The pseudocode function `SelfHostedTraceEnabled()` shows these rules.

If FEAT_TRF is not implemented, `SelfHostedTraceEnabled()` returns FALSE.

While `SelfHostedTraceEnabled() == FALSE`, `ExternalSecureNoninvasiveDebugEnabled()` and `ExternalNoninvasiveDebugEnabled()` control whether tracing is prohibited or allowed in each Security state.

The self-hosted trace extensions do not provide any mechanism to control software access to the PE Trace Unit external debug interface.
**D3.2 Prohibited regions in self-hosted trace**

Trace is not generated in prohibited regions. The pseudocode function `TraceAllowed()` indicates whether tracing is allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted trace extension.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited in Secure state when `MDCR_EL3.STE == 0`. If `FEAT_TRF` is implemented but not enabled, tracing is prohibited in Secure state when `ExternalSecureNonInvasiveDebugEnabled()` == FALSE.

### D3.2.1 Controls to prohibit trace at Exception levels

If `SelfHostedTraceEnabled()` == TRUE, `TRFCR_EL1` and `TRFCR_EL2` control whether trace is prohibited at an Exception level. While `SelfHostedTraceEnabled()` == FALSE, the registers `TRFCR_EL1` and `TRFCR_EL2` are ignored.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL0 if one of the following is true:

- The Effective value of `HCR_EL2.TGE == 0` and `TRFCR_EL1.E0TRE == 0`.
- The Effective value of `HCR_EL2.TGE == 1` and `TRFCR_EL2.E0HTRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL1 if `TRFCR_EL1.E1TRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL2 if `TRFCR_EL2.E2TRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL3 if one of the following is true:

- EL3 is using AArch64 state.
- EL3 is using AArch32 state and `TRFCR.E1TRE == 0`.

The pseudocode `TraceAllowed()` shows the above rules.

If `SelfHostedTraceEnabled()` == TRUE, Table D3-1 shows when export of PMU events to the ETM is prohibited.

**Table D3-1 Export of PMU events prohibited**

<table>
<thead>
<tr>
<th>Tracing prohibited in all of these Exception levels</th>
<th>HCR_EL2.TGE</th>
<th>Export of PMU events Attributable to this Exception level to the ETM is prohibited at these Exception levels.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0, EL2, EL3</td>
<td>1</td>
<td>EL0, EL2, EL3</td>
</tr>
<tr>
<td>EL0, EL1, EL2, EL3</td>
<td>0</td>
<td>EL0, EL1, EL2, EL3</td>
</tr>
<tr>
<td>EL1, EL2, EL3</td>
<td>0</td>
<td>EL1, EL2, EL3</td>
</tr>
<tr>
<td>EL2, EL3</td>
<td>0</td>
<td>EL2, EL3</td>
</tr>
<tr>
<td>EL3</td>
<td>0</td>
<td>EL3</td>
</tr>
</tbody>
</table>

If `SelfHostedTraceEnabled()` == TRUE, Table D3-2 on page D3-2484 shows the prohibited regions by exception level and state.

In the table:

- **STE** Means the Effective value of `MDCR_EL3.STE` or `SDCR.STE`, as applicable.
- **EEL2** Means the Effective value of `SCR_EL3.EEL2`.
- **TGE** Means the Effective value of `HCR_EL2.TGE`.
- **P** Means prohibited.
- **E2TRE** Means allowed if `TRFCR_EL2.E2TRE == 1`. 
AArch64 Self-hosted Trace

D3.2 Prohibited regions in self-hosted trace

E1TRE  Means allowed if TRFCR_EL1.E1TRE == 1.
E0HTRE Means allowed if TRFCR_EL2.E0HTRE == 1.
E0TRE  Means allowed if TRFCR_EL1.E0TRE == 1.
n/a    Not applicable.

<table>
<thead>
<tr>
<th>Controls</th>
<th>STI</th>
<th>EL3 using</th>
<th>EEL2</th>
<th>TGE</th>
<th>EL3</th>
<th>EL2</th>
<th>EL1</th>
<th>EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>n/a</td>
<td>E2TRE</td>
<td>E1TRE</td>
<td>E0TRE</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>n/a</td>
<td>E2TRE</td>
<td>n/a</td>
<td>E0HTRE</td>
</tr>
<tr>
<td>Secure</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>AArch64</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>P</td>
<td>n/a</td>
<td>E1TRE</td>
<td>E0TRE</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td>P</td>
<td>P</td>
<td></td>
<td>E2TRE</td>
<td>E1TRE</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>P</td>
<td>E2TRE</td>
<td>n/a</td>
<td>E1TRE</td>
<td>E0HTRE</td>
</tr>
<tr>
<td>AArch32</td>
<td>X</td>
<td>X</td>
<td>E1TRE</td>
<td>n/a</td>
<td>n/a</td>
<td>E0TRE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D3.2.2 Self-hosted trace and visibility of virtual data

A hypervisor can use TRFCR_EL2.CX to control visibility of CONTEXTIDR_EL2 and VTTBR_EL2.VMID.

If SelfHostedTraceEnabled() == TRUE and TRFCR_EL2.CX == 0, or if EL2 is not implemented:

- The values of CONTEXTIDR_EL2 and VTTBR_EL2.VMID are not traced.
- Comparisons between CONTEXTIDR_EL2 and VTTBR_EL2.VMID do not match and results of comparison are not exposed through the comparators.

The PE Trace Unit may either prohibit trace for these values, or may record a CONTEXTIDR_EL2 or VTTBR_EL2.VMID value of zero in the trace.
D3.3  **Self-hosted trace timestamps**

The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While `SelfHostedTraceEnabled()` == FALSE, the external trace provides the trace timestamp. If the external trace is a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is **IMPLEMENTATION DEFINED**.

When `SelfHostedTraceEnabled()` == TRUE, the trace timestamp is one of the following:

- The physical counter value `CNTPCT_EL0`.
- An offset physical counter value, which is calculated from the physical counter value `CNTPCT_EL0`, minus an offset `CNTPOFF_EL2`. When any of the following are true, the *Effective value* of `CNTPOFF_EL2` is 0 for all trace and SPE purposes:
  - EL3 is using AArch32.
  - EL2 is not implemented.
  - FEAT_ECV is not implemented.
  - EL2 is enabled in the current Security state and is using AArch32.
  - CNTHCTL_EL2.ECV is 0.
  - SCR_EL3.ECVEn is 0.
- A virtual counter value, which is calculated from the physical counter value `CNTPCT_EL0`, minus an offset `CNTVOFF_EL2`.

The fields `TRFCR_EL2.TS`, `HTRFCR.TS`, `TRFCR_EL1.TS` and `TRFCR.TS` control which counter is used for self-hosted trace.

The timestamp used for trace is shown in Table D3-3.

---

**Note**

The counter value used for the trace timestamp is not affected by the value of `HCR_EL2.E2H`, or whether EL2 is enabled or disabled in the current Security state.

---

Table D3-3 Timestamp used for trace.

<table>
<thead>
<tr>
<th><code>SelfHostedTraceEnabled()</code></th>
<th><code>TRFCR_EL2.TS</code></th>
<th><code>TRFCR_EL1.TS</code></th>
<th>Timestamp traced</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>xx</td>
<td>xx</td>
<td>CoreSight time</td>
</tr>
<tr>
<td>TRUE</td>
<td>0b00</td>
<td>0b01</td>
<td>CNTPCT_EL0 - CNTVOFF_EL2</td>
</tr>
<tr>
<td></td>
<td>0b00</td>
<td>0b10</td>
<td>CNTPCT_EL0 - CNTPOFF_EL2&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>0b00</td>
<td>0b11</td>
<td>CNTPCT_EL0</td>
</tr>
<tr>
<td></td>
<td>0b01</td>
<td>xx</td>
<td>CNTPCT_EL0 - CNTVOFF_EL2</td>
</tr>
<tr>
<td></td>
<td>0b10</td>
<td>xx</td>
<td>CNTPCT_EL0 - CNTPOFF_EL2&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>0b11</td>
<td>xx</td>
<td>CNTPCT_EL0</td>
</tr>
</tbody>
</table>

<sup>a</sup> This register is only implemented when FEAT_ECV is implemented.
D3.4 Synchronization in self-hosted trace

The PE Trace Unit is an indirect observer of the System registers.

While `SelfHostedTraceEnabled()` == TRUE, indirect reads of the trace filter control fields, TRFCR_EL1.{E1TRE, E0TRE} and TRFCR_EL2.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced. For these register fields, in addition to the standard requirements for synchronization of System register accesses, when a trace filter control value is changed and synchronization is not explicitly specified, one of the following occurs:

- The behavior of the PE must be consistent with the control value having the old value.
- The behavior of the PE must change the control value at a point in the simple sequential execution of the program, so that before that point, the behavior of the PE is consistent with the control value having the old value, and after that point the behavior of the PE is consistent with the control value having the new value.

If there are multiple direct writes to the register without explicit synchronization, the behavior is consistent with the writes occurring in program order.

The TSB CSYNC operation is used to ensure that a trace operation, due to a PE Trace Unit generating trace for an instruction has completed. The TSB CSYNC operation may be reordered with respect to other instructions, so must be combined with at least one context synchronization event to ensure the operations are executed in the required order. This means that a direct write to TRFCR_EL1 or TRFCR_EL2 is guaranteed to be observed by the PE Trace Unit only after a subsequent Context synchronization event. For more information, see Trace Synchronization Barrier (TSB CSYNC) on page B2-137.

While `SelfHostedTraceEnabled()` == FALSE, the PE Trace Unit might impose stronger synchronization requirements.
AArch64 Self-hosted Trace
D3.4 Synchronization in self-hosted trace
Chapter D4
The AArch64 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following sections:

- `About the memory system architecture on page D4-2490.`
- `Address space on page D4-2491.`
- `Mixed-endian support on page D4-2492.`
- `Cache support on page D4-2493.`
- `External aborts on page D4-2519.`
- `Memory barrier instructions on page D4-2521.`
- `Pseudocode description of general memory System instructions on page D4-2522.`
D4.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory system architecture describes a design space in which an implementation is made. The architecture does not prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits implementation choices to be made while enabling the development of common software routines that do not have to be specific to a particular microarchitectural form of the memory system. For more information about the concept of a hierarchical memory system see Memory hierarchy on page B2-143.

If FEAT_MTE is implemented and enabled the definitions of the memory model which apply to data accesses and data apply to Allocation Tag accessess and Allocation tags, unless otherwise specified in Chapter D6 Memory Tagging Extension.

D4.1.1 Form of the memory system architecture

The Armv8 A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter D5 The AArch64 Virtual Memory System Architecture describes the AArch64 view of the VMSA.

D4.1.2 Memory attributes

Memory types and attributes on page B2-153 describes the memory attributes, including how different memory types have different attributes. Each location in memory has a set of memory attributes, and the translation tables define the virtual memory locations, and the attributes for each location.

Table D4-1 shows the memory attributes that are visible at the system level.

<table>
<thead>
<tr>
<th>Memory type</th>
<th>Shareability</th>
<th>Cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devicea</td>
<td>Outer Shareable</td>
<td>Non-cacheable.</td>
</tr>
<tr>
<td>Normal</td>
<td>One of:</td>
<td>One ofb:</td>
</tr>
<tr>
<td></td>
<td>• Non-shareable.</td>
<td>• Non-cacheable.</td>
</tr>
<tr>
<td></td>
<td>• Inner Shareable.</td>
<td>• Write-Through Cacheable.</td>
</tr>
<tr>
<td></td>
<td>• Outer Shareable.</td>
<td>• Write-Back Cacheable.</td>
</tr>
</tbody>
</table>

b. See also Cacheability, cache allocation hints, and cache transient hints on page D4-2496.

For more information on cacheability and shareability see Shareable Normal memory on page B2-154, Non-shareable Normal memory on page B2-155, and Caches and memory hierarchy on page B2-143.
D4.2 Address space

The Armv8 architecture is designed to support a wide range of applications with different memory requirements. It supports a range of physical address (PA) sizes, and provides associated control and identification mechanisms. For more information, see Address size configuration on page D5-2541.

D4.2.1 Virtual address space overflow

When a PE performs a Simple sequential execution of instructions, it calculates:

(address of current instruction) + (size of executed instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an instruction overflows 0xFFFF FFFF FFFF FFFF, the program counter becomes UNKNOWN.

——— Note ————
Address tags are not propagated to the program counter, so the tag does not affect the address calculation.

——————

Where an instruction accesses a sequential set of bytes that crosses the 0xFFFF_FFFF_FFFF_FFFF boundary when tagged addresses are not used, or the 0xFFF_FFFF_FFFF_FFFF boundary when tagged addresses are used, then the virtual address accessed for the bytes above this boundary is UNKNOWN. When tagged addresses are used, the value of the tag associated with the address also becomes UNKNOWN.
D4.3 Mixed-endian support

A control bit, SCTLR_EL1.E0E is provided to allow the endianness of explicit data accesses made while executing at EL0 to be controlled independently of those made while executing at EL1. Table D4-2 shows the endianness of explicit data accesses and translation table walks.

<table>
<thead>
<tr>
<th>Exception level</th>
<th>Explicit data accesses</th>
<th>Stage 1 translation table walks</th>
<th>Stage 2 translation table walks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>SCTLR_EL1.E0E</td>
<td>SCTLR_EL1.EE</td>
<td>SCTLR_EL2.EE</td>
</tr>
<tr>
<td>EL1</td>
<td>SCTLR_EL1.EE</td>
<td>SCTLR_EL1.EE</td>
<td>SCTLR_EL2.EE</td>
</tr>
<tr>
<td>EL2</td>
<td>SCTLR_EL2.EE</td>
<td>SCTLR_EL2.EE</td>
<td>N/A</td>
</tr>
<tr>
<td>EL3</td>
<td>SCTLR_EL3.EE</td>
<td>SCTLR_EL3.EE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

**Note**

SCTLR_EL1.E0E has no effect on the endianness of the LDTR, LDTRH, LDTRSH, and LDTRSW instructions, or on the endianness of the STTR and STTRH instructions, when these are executed at EL1.

AArch64 state provides the following options for endianness support:

- All Exception levels support mixed-endianness:
  - SCTLR_ELx.EE is RW and SCTLR_EL1.E0E is RW.
- Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:
  - SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RW.
- Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:
  - SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RW.
- All Exception levels support only little-endianness:
  - SCTLR_ELx.EE is RES0 and SCTLR_EL1.E0E is RES0.
- All Exception levels support only big-endianness:
  - SCTLR_ELx.EE is RES1 and SCTLR_EL1.E0E is RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only big-endian accesses, SPSR_ELx.E is RES1. PSTATE.E is ignored in AArch64 state.

The *BigEndian()* function determines whether the current Exception level and Execution state are using big-endian data. This function is defined in Chapter J1 *Armv8 Pseudocode*.

For more information about endianness in the Arm architecture see *Endian support on page B2-150.*
D4.4 Cache support

This section describes the Armv8 cache identification and control mechanisms, and the A64 cache maintenance instructions, in the following sections:

- General behavior of the caches.
- Cache identification on page D4-2494.
- Cacheability, cache allocation hints, and cache transient hints on page D4-2496.
- Enabling and disabling the caching of memory accesses on page D4-2497.
- Behavior of caches at reset on page D4-2499
- Non-cacheable accesses and instruction caches on page D4-2499.
- About cache maintenance in AArch64 state on page D4-2500.
- A64 Cache maintenance instructions on page D4-2504
- Data cache zero instruction on page D4-2514.
- Cache lockdown on page D4-2515.
- System level caches on page D4-2516.
- Branch prediction on page D4-2516.
- Execution and data prediction restriction System instructions on page D4-2516.

See also Caches in a VMSAv8-64 implementation on page D5-2679.

D4.4.1 General behavior of the caches

When a memory location has a Normal Cacheable memory attribute, determining whether a copy of the memory location is held in a cache still depends on many aspects of the implementation. The following non-exhaustive list of factors might be involved:

- The size, line length, and associativity of the cache.
- The cache allocation algorithm.
- Activity by other elements of the system that can access the memory.
- Speculative instruction fetching algorithms.
- Speculative data fetching algorithms.
- Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture cannot guarantee whether:

- A memory location present in the cache remains in the cache.
- A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

- The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is IMPLEMENTATION DEFINED, and lockdown might not be supported by:
  — A particular implementation.
  — Some memory attributes.
- An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an unlocked item that remains in the cache remains dirty.
- A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

Note

For more information, see The interaction of cache lockdown with cache maintenance instructions on page D4-2515.
• Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a higher Exception level can be allocated to a cache at any time.

• It is guaranteed that no memory location will be allocated into a Data or Unified cache if that location does not have a Normal Cacheable attribute in either:
  — The translation regime at the current Exception level.
  — The translation regime at any higher Exception level.

• For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute is guaranteed to be coherent with all Requesters in its shareability domain.

• Any memory location is not guaranteed to remain incoherent with the rest of memory.

• The eviction of a cache entry from a cache level can overwrite memory that has been written by another observer only if the entry contains a memory location that has been written to by an observer in the shareability domain of that memory location. The maximum size of the memory that can be overwritten is called the Cache Write-back Granule. In some implementations the CTR_EL0 identifies the Cache Write-back Granule.

• The allocation of a memory location into a cache cannot cause the most recent value of that memory location to become invisible to an observer if it was previously visible to that observer.

--- Note ---

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C} controls.

--- ---

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to the size of the cache entry.

D4.4.2 Cache identification

The Armv8 cache identification registers describe the implemented caches that are affected by cache maintenance instructions executed on the PE. This includes the cache maintenance instructions that:

• Affect the entire cache, for example IC IALLU.
• Operate by VA, for example IC IVAU.
• Operate by set/way, for example DC ISW.

The cache identification registers are:

• The Cache Type Register, CTR_EL0, that defines:
  — The minimum line length of any of the instruction caches affected by the instruction cache maintenance instructions.
  — The minimum line length of any of the data or unified caches, affected by the data cache maintenance instruction.
  — The cache indexing and tagging policy of the Level 1 instruction cache.

--- Note ---

It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and because of the possible existence of system caches some caches before the PoC might not be reported. For more information about system caches see System level caches on page D4-2516.

--- ---

• A single Cache Level ID Register, CLIDR_EL1, that defines:
  — The type of cache that is implemented and can be maintained using the architected cache maintenance instructions that operate by set/way or operate on the entire cache at each cache level, up to the maximum of seven levels.
  — The Level of Coherence (LoC) for the caches. See Terms used in describing the cache maintenance instructions on page D4-2500 for the definition of LoC.

--- ---
The Level of Unification Uniprocessor (LoUU) for the caches. See Terms used in describing the cache maintenance instructions on page D4-2500 for the definition of LoUU.

— An optional ICB field to indicate the boundary between the caches used for caching Inner Cacheable memory regions and those used only for caching Outer Cacheable regions.

- A single Cache Size Selection Register, CSSELR_EL1, that selects the cache level and cache type of the current Cache Size Identification Register.

- For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache Size Identification Register, CCSIDR_EL1, that defines:
  — Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.
  — The number of sets, associativity and line length of the cache. See Terms used in describing the cache maintenance instructions on page D4-2500 for a definition of these terms.

Note

From Armv8.3, multiple formats of the Cache Size Identification Register are supported. For more information, see Possible formats of the Cache Size Identification Register, CCSIDR_EL1.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache. This register also provides the size of the smallest cache lines used for the instruction caches, and for the data and unified caches. These values are used in cache maintenance instructions.

2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of Coherence (LoC) for the cache implementation.

3. For each cache identified at stage 2:
   - Write to the Cache Size Selection Register to select the required cache. A cache is identified by its level, and whether it is:
     — An instruction cache.
     — A data or unified cache.
   - Read the Cache Size Identification Register to find details of the cache.

Possible formats of the Cache Size Identification Register, CCSIDR_EL1

From Armv8.3, the Cache Size Identification Register, CCSIDR_EL1 has two different formats available for defining the number of sets and associativity of the cache. For a definition of these terms, see Terms used in describing the cache maintenance instructions on page D4-2500.

When FEAT_CCIDX is implemented:

- CCSIDR_EL1 is a 64-bit register.
- The length of the CCSIDR_EL1.Assoc field is 21 bits. This limits the associativity of the currently selected cache to $2^{21}$.
- The length of the CCSIDR_EL1.NumSets field is 24 bits. This limits the number of sets in the currently selected cache to $2^{24}$.

This is the 64-bit format of the Cache Size Identification Register.

When FEAT_CCIDX is not implemented:

- CCSIDR_EL1 is a 32-bit register.
- The length of the CCSIDR_EL1.Assoc field is 10 bits. This limits the associativity of the currently selected cache to $2^{10}$.
The length of the CCSIDR_EL1.NumSets field is 15 bits. This limits the number of sets in the currently selected cache to $2^{15}$.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

### D4.4.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability only applies to Normal memory, and can be defined independently for Inner and Outer cache locations. All types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes on page B2-153, the memory attributes include a cacheability attribute that is one of:

- Non-cacheable.
- Write-Through cacheable.
- Write-Back cacheable.

In Armv8, Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This is an indication to the memory system of whether allocating a value to a cache is likely to improve performance. In addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient cacheability hint.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient hint is supported the following cache allocation hints can be assigned:

**For read accesses:** Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

**For write accesses:** Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

--- **Note** ---

- A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.

- Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a subset of ways.

- For VMSAv8-64 translation table walks, the TCR_ELx.[IRGNn, ORGNn] fields define the memory attributes of the translation tables, including the cacheability. However, this assignment supports only a subset of the cacheability attributes described in this section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an implementation might not make any distinction between memory locations with attributes that differ only in their cache allocation hint.

### Transient cacheability hint

In Armv8, it is IMPLEMENTATION DEFINED whether a Transient hint is supported. In an implementation that supports the Transient hint, the Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of caching is for a relatively short period. It indicates that it might be better to restrict allocation of transient entries, to avoid possibly casting-out other, less transient, entries.

--- **Note** ---

The architecture does not specify what is meant by a relatively short period.

The description of the AArch64 MAIR_EL1, MAIR_EL2, and MAIR_EL3 registers, and the AArch32 MAIR0, MAIR1, HMAIR0, and HMAIR1 registers, includes the assignment of the Transient hint in an implementation that supports this option. In this assignment:

- The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.
• A single Transient hint applies to both read and write accesses to a memory region.

D4.4.4  Enabling and disabling the caching of memory accesses

In Armv8, Cacheability control fields can force all memory locations with the Normal memory type to be treated as Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each stage of address translation, with separate controls for:
• Data accesses. These controls also apply to accesses to the translation tables.
• Instruction accesses.

--- Note ---
These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

The Cacheability control fields and their effects are as follows:

For the EL1&0 translation regime

• When the value of SCTLR_EL1.C is 0:
  — All stage 1 translations for data accesses to Normal memory are Non-cacheable.
  — All accesses to the EL1&0 stage 1 translation tables are Non-cacheable.
• When the value of SCTLR_EL1.I is 0:
  — All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.
• When the value of HCR_EL2.CD is 1:
  — All stage 2 translations for data accesses to Normal memory are Non-cacheable.
  — All accesses to the EL1&0 stage 2 translation tables are Non-cacheable.
• When the value of HCR_EL2.ID is 1:
  — All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.
• When the value of HCR_EL2.DC is 1, all stage 1 translations and all accesses to the EL1&0 stage 1 translation tables, are treated as accesses to Normal Non-shareable Inner Write-Back Cacheable Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate Write-Allocate memory, regardless of the value of SCTLR_EL1.{I, C}. This applies to translations for both data and instruction accesses.

--- Note ---
• The stage 1 and stage 2 cacheability attributes are combined as described in Combining the stage 1 and stage 2 cacheability attributes for Normal memory on page D5-2630.
• The SCTLR_EL1.{C, I} and HCR_EL2.DC fields have no effect on the EL2, EL2&0, and EL3 translation regimes.
• The HCR_EL2.{ID, CD} fields affect only stage 2 of the EL1&0 translation regime.
• When EL2 is using AArch64 and EL1 is using AArch32, the HCR_EL2.{ID, CD, DC} controls apply as described here, but the EL1 controls are SCTLR.{C, I}.

For the EL2 translation regime

• When the value of SCTLR_EL2.C is 0:
  — All data accesses to Normal memory using the EL2 translation regime are Non-cacheable.
  — All accesses to the EL2 translation tables are Non-cacheable.
• When the value of SCTLR_EL2.I is 0:
  — All instruction accesses to Normal memory using the EL2 translation regime are Non-cacheable.
Note
The SCTLR_EL2.{I, C} fields have no effect on the EL1&0 and EL3 translation regimes.

For the EL2&0 translation regime
- When the value of SCTLR_EL2.C is 0:
  - All stage 1 translations for data accesses to Normal memory are Non-cacheable.
  - All accesses to the EL2&0 stage 1 translation tables are Non-cacheable.
- When the value of SCTLR_EL2.I is 0:
  - All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.

For the EL3 translation regime
- When the value of SCTLR_EL3.C is 0:
  - All data accesses to Normal memory using the EL3 translation regime are Non-cacheable.
  - All accesses to the EL3 translation tables are Non-cacheable.
- When the value of SCTLR_EL3.I is 0:
  - All instruction accesses to Normal memory using the EL3 translation regime are Non-cacheable.

Note
The SCTLR_EL3.{I, C} fields have no effect on the EL1&0, EL2, and EL2&0 translation regimes.

In addition:
- For translation regimes other than the EL1&0 translation regime, if the value of SCTLR_ELx.M is 0, indicating that stage 1 translations are disabled for that translation regime, then:
  - If the value of SCTLR_ELx.I is 0, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.
  - If the value of SCTLR_ELx.I is 1, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.
- For the EL1&0 translation regime, if the value of SCTLR_EL1.M is 0, indicating that stage 1 translations are disabled for that translation regime, and the value of HCR_EL2.DC is 0:
  - If the value of SCTLR_EL1.I is 0, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.
  - If the value of SCTLR_EL1.I is 1, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Write-Through Cacheable, Outer Write-Through Cacheable.

The effect of SCTLR_ELx.C, HCR_EL2.DC and HCR_EL2.CD is reflected in the result of the address translation instructions in the PAR when these bits have an effect on the stages of translation being reported in the PAR.

Note
In conjunction with the requirements in Non-cacheable accesses and instruction caches on page D4-2499, the requirements in this section mean the architecturally required effect of SCTLR_ELx.I is limited to its effect on caching instruction accesses in unified caches.

This specification can give rise to different cacheability attributes between instruction and data accesses to the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched memory attributes on page B2-163 must be followed to manage the corresponding loss of coherency.
D4.4.5  **Behavior of caches at reset**

In Armv8:

- All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.
- The Cacheability control fields described in *Enabling and disabling the caching of memory accesses on page D4-2497* reset to values that force all memory locations to be treated as Non-cacheable.

___ Note ___

This applies only to the controls that apply to the Translation regime that is used by the Exception level and Security state entered on reset.

- An implementation can require the use of a specific cache initialization routine to invalidate its storage array before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED, and the routine must be documented clearly as part of the documentation of the device.

- If an implementation permits cache hits when the Cacheability control fields force all memory locations to be treated as Non-cacheable then the cache initialization routine must:
  - Provide a mechanism to ensure the correct initialization of the caches.
  - Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization routine to require a fixed instruction sequence to be placed in a restricted range of memory.

- Arm recommends that whenever an invalidation routine is required, it is based on the Armv8 cache maintenance instructions.

See also *TLB behavior at reset on page D5-2659.*

D4.4.6  **Non-cacheable accesses and instruction caches**

In AArch64 state, instruction accesses to Non-cacheable Normal memory can be held in instruction caches.

Correspondingly, the sequence for ensuring that modifications to instructions are available for execution must include invalidation of the modified locations from the instruction cache, even if the instructions are held in Normal Non-cacheable memory. This includes cases where System register Cacheability control fields force instruction accesses to memory to be Non-cacheable.

Therefore when using self-modified code in Non-cacheable space in a uniprocessor system, the following sequence is required:

```
; Enter this code with <Wt> containing the new 32-bit instruction
; to be held at a location pointed to by <Xn> in Normal Non-cacheable memory.
STR <Wt>, [Xn]
DSB ISH; Ensure visibility of the data stored
IC IVAU, [Xn]; Invalidate instruction cache by VA to PoU
DSB ISH; Ensure completion of the invalidations
ISB ;
```

In a multiprocessor system, the IC IVAU is broadcast to all PEs within the Inner Shareable domain of the PE running this sequence, but additional software steps might be required to synchronize the threads with other PEs. This might be necessary so that the PEs executing the modified instructions can execute an ISB after completing the invalidation, and to avoid issues associated with concurrent modification and execution of instruction sequences.

Larger blocks of instructions can be modified using the IC IALLU instruction for a uniprocessor system, or a IC IALLUIS for a multiprocessor system.
Note
This section applies even when the Cacheability control fields force instruction accesses to memory in AArch64 state to be Non-cacheable, as described in Enabling and disabling the caching of memory accesses on page D4-2497.

D4.4.7 About cache maintenance in AArch64 state

The following sections give general information about cache maintenance:

- Terms used in describing the cache maintenance instructions.
- The Armv8 abstraction of the cache hierarchy on page D4-2503.

The following sections describe the A64 cache maintenance instructions:

- The instruction cache maintenance instruction (IC) on page D4-2505.
- The data cache maintenance instruction (DC) on page D4-2505.

Note
Some descriptions of the cache maintenance instructions refer to the cacheability of the address on which the instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that address, as modified by any applicable System register Cacheability controls, such as the SCTLR_EL1.{I, C} controls.

Terms used in describing the cache maintenance instructions

Cache maintenance instructions are defined to act on particular memory locations. Instruction scope can be defined:

- By the virtual address of the memory location to be maintained, referred to as operating by VA.
- By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

- Terminology for cache maintenance instructions operating by set/way.
- Terminology for Clean, Invalidate, and Clean and Invalidate instructions on page D4-2501.

Note
There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior when address translation is disabled, see The effects of disabling a stage of address translation on page D5-2580.

Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level
The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The cache levels that can be managed using the architected cache maintenance instructions that operate by set/way can be determined from the CLIDR_EL1.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory hierarchy on page B2-143.

Set
Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED function of an address.

In the Arm architecture, sets are numbered from 0.
Way

The associativity of a cache is the number of locations in a set to which a specific address can be assigned. The way number specifies one of these locations.

In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine to perform maintenance on the entire cache.

Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that can access memory. This can occur because new updates are still in the cache and are not visible yet to the other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that has been updated.

The Clean and Invalidate instructions address these two issues. The definitions of these instructions are:

Clean

A cache clean instruction ensures that updates made by an observer that controls the cache are made visible to other observers that can access memory at the point to which the instruction is performed. Once the Clean has completed, the new memory values are guaranteed to be visible to the point to which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another observer only if the entry contains a location that has been written to by an observer in the shareability domain of that memory location.

Invalidate

A cache invalidate instruction ensures that updates made visible by observers that access memory at the point to which the invalidate is defined, are made visible to an observer that controls the cache. This might result in the loss of updates to the locations affected by the invalidate instruction that have been written by observers that access the cache, if those updates have not been cleaned from the cache since they were made.

If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or any type of Device memory then an invalidate instruction also ensures that this address is not present in the cache.

Note

Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so the cache invalidate instruction cannot ensure that the address is not present in a cache.

Clean and Invalidate

A cache clean and invalidate instruction behaves as the execution of a clean instruction followed immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction operates by VA or by set/way:

• For instructions operating by set/way, the point is defined to be to the next level of caching. For the All operations, the point is defined as the Point of Unification for each location held in the cache.
For instructions operating by VA, the following conceptual points are defined:

**Point of Coherency (PoC)**

The point at which all agents that can access memory are guaranteed to see the same copy of a memory location for accesses of any memory type or cacheability attribute. In many cases this is effectively the main system memory, although the architecture does not prohibit the implementation of caches beyond the PoC that have no effect on the coherency between memory system agents.

--- Note ---

The presence of system caches can affect the determination of the point of coherency as described in *System level caches* on page D4-2516.

---

**Point of Unification (PoU)**

The PoU for a PE is the point by which the instruction and data caches and the translation table walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the Point of Unification is the point in a uniprocessor memory system by which the instruction and data caches and the translation table walks have merged.

The PoU for an Inner Shareable shareability domain is the point by which the instruction and data caches and the translation table walks of all the PEs in that Inner Shareable shareability domain are guaranteed to see the same copy of a memory location. Defining this point permits self-modifying software to ensure future instruction fetches are associated with the modified version of the software by using the standard correctness policy of:

1. Clean data cache entry by address.
2. Invalidate instruction cache entry by address.

**Point of Persistence (PoP)**

*When FEAT_DPB is implemented:*

The point in a memory system, if it exists, at or beyond the Point of Coherency, where a write to memory is maintained when system power is removed, and reliably recovered when power is restored to the affected locations in memory.

*When FEAT_DPB and FEAT_DPB2 are implemented:*

The point in a memory system where there is a system guarantee that there is sufficient energy within the system to ensure that a write to memory will be persistent if system power is removed.

--- Note ---

Such memory is sometimes called non-volatile memory. For example, the Storage-class memory shown in *Figure B2-1 on page B2-144* could be used as target memory for this feature.

---

**Point of Deep Persistence (PoDP)**

The point in a memory system where any writes that have reached that point are persistent, even in the event of an instantaneous hardware failure of the power system.

The following fields in the *CLIDR_EL1* relate to the PoC and PoU:

**LoC, Level of Coherence**

This field defines the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC contains the value 3:

- A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches to be cleaned.
- Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to be cleaned or invalidated when cleaning or invalidating to the Point of Coherency.

If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Coherency.
LoUU, Level of Unification, uniprocessor
This field defines the last level of data cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Unification for the PE. As with LoC, the LoUU value is a cache level.
If the LoUU field value is 0x0, this means that no levels of data cache need to be cleaned or invalidated when cleaning or invalidating to the Point of Unification.
If the LoUU field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable
In any implementation:
• This field defines the last level of data or unified cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Unification for the Inner Shareable shareability domain. As with LoC, the LoUIS value is a cache level.
• If the LoUIS field value is 0x0, this means that no levels of data or unified cache need to be cleaned or invalidated when cleaning or invalidating to the Point of Unification for the Inner Shareable shareability domain.
• If the LoUIS field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Unification.

The Armv8 abstraction of the cache hierarchy
The following subsections describe the Armv8 abstraction of the cache hierarchy:
• Cache maintenance instructions that operate by VA.
• Cache maintenance instructions that operate by set/way.

Cache maintenance instructions that operate by VA
The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always qualified as being one of:
• Performed to the Point of Coherency.
• Performed to the Point of Unification.
• When FEAT_DPB is implemented, performed to the Point of Persistence.
See Terms used in describing the cache maintenance instructions on page D4-2500 for definitions of these terms, and for more information about possible meanings of VA.

A64 Cache maintenance instructions on page D4-2504 lists the VA-based maintenance instructions.
The CTR_EL0 holds minimum line length values for:
• The instruction caches.
• The data and unified caches.
These values support efficient invalidation of a range of VAs, because this value is the most efficient address stride to use to apply a sequence of VA-based maintenance instructions to a range of VAs.
For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR_EL0 defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache Write-back Granule is in addition to its defining the maximum size that can be written back.

Cache maintenance instructions that operate by set/way
A64 Cache maintenance instructions on page D4-2504 lists the set/way-based maintenance instructions. Some encodings of these instructions include a required field that specifies the cache level for the instruction:
• A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving further from the PE.
• An invalidate instruction invalidates only at the level specified.
### A64 Cache maintenance instructions

The A64 cache maintenance instructions are part of the A64 System instruction class in the register encoding space. For encoding details and other general information on these System instructions, see System instructions on page C3-202, SYS on page C6-1359 and Cache maintenance instructions, and data cache zero operation on page C5-377.

Table D4-3 shows the AArch64 System instructions that perform instruction or data cache maintenance. Instructions that take an argument include Xt in the entry in the System instruction column.

---

**Notes**

- In Table D4-3 the Point of Unification is the Point of Unification of the PE executing the cache maintenance instruction.
- In general, the AArch32 instruction and data cache maintenance instructions provide equivalent functionality to the AArch64 cache maintenance instructions, see AArch32 cache and branch predictor maintenance instructions on page G4-5939. However, the data cache clean to the Point of Persistence instruction, implemented when FEAT_DPB is implemented, is supported in AArch64 state only.

---

**Table D4-3 System instructions for cache maintenance**

<table>
<thead>
<tr>
<th>System instruction</th>
<th>Instruction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction cache maintenance instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC IALLUIS</td>
<td>Invalidate all to Point of Unification, Inner Shareable EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>IC IALLU</td>
<td>Invalidate all to Point of Unification EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>IC IVAU, Xt</td>
<td>Invalidate by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access. Otherwise, EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>Data cache maintenance instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC IVAC, Xt</td>
<td>Invalidate by virtual address to Point of Coherency EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC ISW, Xt</td>
<td>Invalidate by set/way EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CVAC, Xt</td>
<td>Clean by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0 access. Otherwise EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CVAP, Xt</td>
<td>Clean by virtual address to Point of Persistenceb When SCTLR_EL1.UCIa == 1, EL0 access. Otherwise EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CSW, Xt</td>
<td>Clean by set/way EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CVAU, Xt</td>
<td>Clean by virtual address to Point of Unification When SCTLR_EL1.UCIa == 1, EL0 access. Otherwise EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CIVAC, Xt</td>
<td>Clean and invalidate by virtual address to Point of Coherency When SCTLR_EL1.UCIa == 1, EL0 access. Otherwise EL1 or higher access.</td>
<td></td>
</tr>
<tr>
<td>DC CISW, Xt</td>
<td>Clean and invalidate by set/way EL1 or higher access.</td>
<td></td>
</tr>
</tbody>
</table>

a. When HCR_EL2.{E2H,TGE} == {1, 1}, the control is from SCTLR_EL2.
b. Supported only when FEAT_DPB is implemented.

---

A DSB or DMB instruction intended to ensure the completion of cache or branch predictor maintenance instructions must have an access type of both loads and stores.
The following subsections give more information about these instructions:

- The instruction cache maintenance instruction (IC).
- The data cache maintenance instruction (DC).
- EL0 accessibility of cache maintenance instructions on page D4-2507.
- General requirements for the scope of maintenance instructions on page D4-2507.
- Effects of instructions that operate by VA to the PoC on page D4-2507.
- Effects of instructions that operate by VA to the PoP on page D4-2508.
- Effects of instructions that operate by VA to the PoU on page D4-2509.
- Effects of All and set/way maintenance instructions on page D4-2509.
- Effects of virtualization and Security state on the cache maintenance instructions on page D4-2509.
- Boundary conditions for cache maintenance instructions on page D4-2511.
- Ordering and completion of data and instruction cache instructions on page D4-2511.
- Performing cache maintenance instructions on page D4-2513.

The instruction cache maintenance instruction (IC)

System instructions on page C3-202 describes the A64 assembly syntax for this instruction.

When an IC instruction requires an address argument this takes the form of a 64-bit register that holds the VA argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

- For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H==1, the current ASID.
- The current Security state.
- Whether the instruction was executed at EL1 or EL2.
- For an instruction executed at EL1, the current VMID.

That VA to PA translation might fault. However, for an instruction cache maintenance instruction that operates by VA:

- It is IMPLEMENTATION DEFINED whether the instruction can generate:
  - An Access flag fault.
  - A Translation fault.

- The instruction cannot generate a Permission fault, except for:
  - The possible generation of a Permission fault by the execution of an IC IVAU instruction at EL0 when the specified address does not have read access at EL0, as described in EL0 accessibility of cache maintenance instructions on page D4-2507.
  - The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a cache maintenance instruction that operates by VA see VMSAv8-64 memory aborts on page D5-2645.

See also Ordering and completion of data and instruction cache instructions on page D4-2511.

The data cache maintenance instruction (DC)

System instructions on page C3-202 describes the A64 assembly syntax for this instruction.

When a DC instruction requires a set/way/level argument this takes the form of a 64-bit register, the upper 32 bits of which are RES0.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value supported by the implementation then the instruction is CONSTRAINED UNPREDICTABLE, see Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-7981 or the instruction description.

When a DC instruction requires an address argument this takes the form of a 64-bit register that holds the VA argument. No alignment restrictions apply for this address.
Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:
- For an instruction executed at EL1, or at EL2 when HCR_EL2.E2H is 1, the current ASID.
- The current Security state.
- Whether the instruction is executed at EL1 or EL2.
- For an instruction executed at EL1, the current VMID.

That VA to PA translation might fault. However, a data or unified cache maintenance instruction that operates by VA cannot generate a Permission fault except in the following cases:
- The possible generation of a Permission fault by:
  - The execution of a DC IVAC instruction when the specified address does not have write permission.
  - The execution of an enabled DC * instruction at EL0 when the specified address does not have read access at EL0, as described in EL0 accessibility of cache maintenance instructions on page D4-2507.

The description of Permission faults includes possible constraints on the generation of Permission faults on cache maintenance by VA instructions.
- The possible Permission fault on a Stage 2 fault on a stage 1 translation table walk.

For more information about possible faults on a VA to PA translation see VMSAv8-64 memory aborts on page D5-2645.

When executed at EL1, a DC ISW instruction performs a clean and invalidate, meaning it performs the same maintenance as a DC CISW instruction, if all of the following apply:
- EL2 is implemented and enabled in the current Security state.
- Either:
  - The value of HCR_EL2.SWIO is 1, forcing a cache clean to perform a clean and invalidate.
  - The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

When executed at EL1, a DC IVAC instruction performs a clean and invalidate, meaning it performs the same maintenance as a DC CIVAC instruction, if all of the following apply:
- EL2 is implemented and enabled in the current Security state.
- The value of HCR_EL2.VM is 1, meaning EL1&0 stage two address translation is enabled.

--- Note

The forcing of a clean instruction to perform a clean invalidate applies to the AArch32 cache maintenance instructions DCIMVAC and DCISW. See AArch32 data cache maintenance instructions (DC*) on page G4-5941.

--- Note

When FEAT_DPB is implemented, meaning the DC CVAP instruction is implemented, if the memory system does not support the Point of Persistence, a data cache clean to the PoP, DC CVAP, behaves as a data cache clean to the PoC, DC CVAC.

--- Note

- Support for the Point of Persistence does not change the definition or behavior of the CLIDR_EL1 System register.
- Because a DSB SYS instruction will not complete until all previous DC CVAP instructions have completed, the following sequence can be used to ensure the completion of any store to the Point of Persistence, where the store might be to Non-cacheable memory:
  ```assembly
 DMB ; Note this can be any DMB that applies to both loads and stores
 DC CVAP, Xt
 DSB SYS
  ```
- If caches that are invisible to the programmer exist beyond the Point of Coherency but before the Point of Persistence and hold data that is marked as Non-cacheable, the DC CVAP operation causes the Non-cacheable locations to be cleaned from those caches.

If a memory fault that sets the FAR for the translation regime applicable for the cache maintenance instruction is generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument of the instruction.
Note

Despite its mnemonic, *DC ZVA* is not a cache maintenance instruction.

See also *EL0 accessibility of cache maintenance instructions and Ordering and completion of data and instruction cache instructions* on page D4-2511.

**EL0 accessibility of cache maintenance instructions**

The SCTLR_EL1.UCI bit enables EL0 access for the *DC CVAU, DC CVAC, DC CVAP, DC CIVAC,* and *IC IVAU* instructions. When EL0 use of these instructions is disabled because SCTLR_EL1.UCI == 0, executing one of these instructions at EL0 generates a trap to EL1, that is reported using EC = 0x18. When HCR_EL2.{E2H,TGE} == 1, the control is from SCTLR_EL2.

Note

*DC CVAP* is implemented only if FEAT_DPB is implemented.

For these instructions read access permission is required. When the value of SCTLR_EL1.UCI is 1:

- For the *DC CVAU, DC CVAC, DC CVAP,* and *DC CIVAC* instructions, if the instruction is executed at EL0 and the address specified in the argument cannot be read at EL0, a Permission fault might be generated.

- For the *IC IVAU* instruction, if the instruction is executed at EL0 and the address specified in the argument cannot be read at EL0, it is IMPLEMENTATION DEFINED whether a Permission fault is generated.

For more information see the description of Permission faults. In the case of a *DC * instruction executed at EL0 when the address specified cannot be read at EL0 the Permission fault is generated unless one of the permitted constraints described in that section applies and means the fault cannot be generated.

Software can read the CTR_EL0 to discover the stride needed for cache maintenance instructions. The SCTLR_EL1.UCT bit enables EL0 access to the CTR_EL0. When EL0 access to the Cache Type register is disabled, a register access instruction executed at EL0 is trapped to EL1 using EC = 0x18.

**General requirements for the scope of maintenance instructions**

The Armv8 specification of the cache maintenance instructions describes what each instruction is guaranteed to do in a system. It does not limit other behaviors that might occur, provided they are consistent with the requirements described in *General behavior of the caches* on page D4-2493, *Behavior of caches at reset* on page D4-2499, and *Preloading caches* on page B2-147.

This means that as a side-effect of a cache maintenance instruction:

- Any location in the cache might be cleaned.
- Any unlocked location in the cache might be cleaned and invalidated.

Note

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends that the side-effects of operations performed in Non-secure state do not have a significant performance impact on execution in Secure state.

**Effects of instructions that operate by VA to the PoC**

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that operate by VA to the PoC must affect the caches of other PEs in the shareability domain described by the shareability attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is operating.
In all cases, for any affected PE, these instructions affect all data and unified caches to the PoC. Table D4-4 shows the scope of these Data and unified cache maintenance instructions.

**Table D4-4 PEs affected by cache maintenance instructions to the PoC**

<table>
<thead>
<tr>
<th>Shareability</th>
<th>PEs affected</th>
<th>Effective to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shareable</td>
<td>The PE executing the instruction</td>
<td>The PoC of the entire system</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>All PEs in the same Inner Shareable shareability domain as the PE executing the instruction</td>
<td>The PoC of the entire system</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>All PEs in the same Outer Shareable shareability domain as the PE executing the instruction</td>
<td>The PoC of the entire system</td>
</tr>
</tbody>
</table>

Note: It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance instructions apply.

**Effects of instructions that operate by VA to the PoP**

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, cache maintenance instructions that operate by VA to the PoP must affect the caches of other PEs in the shareability domain described by the shareability attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches of all PEs in the Outer Shareable shareability domain of the PE on which the instruction is operating.

In all cases, for any affected PE, these instructions affect all data and unified caches to the PoP. Table D4-5 shows the scope of these Data and unified cache maintenance to the PoP instructions.

**Table D4-5 PEs affected by cache maintenance instructions to the PoP**

<table>
<thead>
<tr>
<th>Shareability</th>
<th>PEs affected</th>
<th>Effective to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shareable</td>
<td>The PE executing the instruction</td>
<td>The PoP of the entire system</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>All PEs in the same Inner Shareable shareability domain as the PE executing the instruction</td>
<td>The PoP of the entire system</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>All PEs in the same Outer Shareable shareability domain as the PE executing the instruction</td>
<td>The PoP of the entire system</td>
</tr>
</tbody>
</table>

Note: It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance instructions apply.
Effects of instructions that operate by VA to the PoU

For cache maintenance instructions that operate by VA to the PoU, Table D4-6 shows how, for a VA in a Normal or Device memory location, the shareability attribute of the VA determines the minimum set of PEs affected, and the point to which the instruction must be effective.

Table D4-6 PEs affected by cache maintenance instructions to the PoU

<table>
<thead>
<tr>
<th>Shareability</th>
<th>PEs affected</th>
<th>Effective to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shareable</td>
<td>The PE executing the instruction</td>
<td>The PoU of instruction cache fills, data cache fills and write-backs, and translation table walks, on the PE executing the instruction</td>
</tr>
<tr>
<td>Inner Shareable or Outer Shareable</td>
<td>All PEs in the same Inner Shareable shareability domain as the PE executing the instruction</td>
<td>The PoU of instruction cache fills, data cache fills and write-backs, and translation table walks, of all PEs in the same Inner Shareable shareability domain as the PE executing the instruction</td>
</tr>
</tbody>
</table>

Note

- The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable shareability domain containing the PE executing the instruction.
- It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance instructions apply.

Effects of All and set/way maintenance instructions

The **IC IALLU** and **DC** set/way instructions apply only to the caches of the PE that performs the instruction.

The **IC IALUIS** instruction can affect the caches of all PEs in the same Inner Shareable shareability domain as the PE that performs the instruction. This instruction has an effect to the Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all PEs in the same Inner Shareable shareability domain.

Note

- The possible presence of system caches, as described in **System level caches on page D4-2516**, means architecture does not guarantee that all levels of the cache can be maintained using set/way instructions.
- It is IMPLEMENTATION DEFINED by the system whether the cache maintenance instructions have an effect on the caches of observers that are not PEs within the affected shareability domain to which the cache maintenance instructions apply.

Effects of virtualization and Security state on the cache maintenance instructions

Each Security state has its own physical address (PA) space, therefore cache entries are associated with PA space.
Table D4-7 shows the effects of virtualization and security on the cache maintenance instructions. In the table, the Specified entries are entries that the architecture requires the instruction to affect. The rules described in General behavior of the caches on page D4-2493 mean that an instruction might also affect other entries.

### Table D4-7 Effects of virtualization and security on the maintenance instructions

<table>
<thead>
<tr>
<th>Cache maintenance instructions</th>
<th>Security state</th>
<th>Specified entries</th>
</tr>
</thead>
</table>
| Data or unified cache maintenance instructions | Both | All lines that hold the PA that, in the current Security state, is mapped to by the combination of all of:  
  • The specified VA.  
  • For an instruction executed at EL1, EL0, or at EL2 when HCR_EL2.E2H is set to 1 the current ASID if the location is mapped to by a non-global page.  
  • For an instruction executed at EL1 when SCR_EL3.NS == 1 or SCR_EL3.EEL2 == 1, the current VMID.  
  • For an instruction executed at EL0 when (SCR_EL3.NS == 1 or SCR_EL3.EEL2 == 1) and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0), the current VMID.  
| Invalidate, Clean, or Clean and Invalidate by VA: | Both | All lines corresponding to the specified VA\(^b\) in the current translation regime and:  
  • For an instruction executed at EL1, EL0, or at EL2 when HCR_EL2.E2H is set to 1 the current ASID.  
  • For an instruction executed at EL1 when SCR_EL3.NS == 1 or SCR_EL3.EEL2 == 1, the current VMID.  
  • For an instruction executed at EL0 when (SCR_EL3.NS == 1 or SCR_EL3.EEL2 == 1) and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0), the current VMID.  
| Invalidate All: | Both | For an instruction executed at:  
  • EL1 when SCR_EL3.NS == 0 and SCR_EL3.EEL2 == 1, all instruction cache lines containing entries associated with the current VMID.  
  • EL1 when SCR_EL3.NS == 1, all instruction cache lines containing Non-secure entries associated with the current VMID.  
  • EL2 when SCR_EL3.NS == 1, all instruction cache lines containing Non-secure entries.  
  • EL1 when the Effective value of SCR_EL3.{EEL2, NS} is \{0,0\}, EL2 when SCR_EL3.EEL2 is 1, or EL3, all instruction cache lines.  

---

a. Dependencies on the VMID apply even when HCR_EL2.VM is set to 0. VTTBR_EL2.VMID resets to zero, meaning there is a valid VMID.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:

- For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
- For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag corresponds to the specified address.

For information on types of instruction cache see Instruction caches on page D5-2679.

For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The interaction of cache lockdown with cache maintenance instructions on page D4-2515 applies.
With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

In an implementation that includes EL2:

- The architecture does not require cache cleaning when switching between virtual machines. Cache invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated with a second virtual machine. To ensure this requirement is met, invalidate by set/way instructions can, instead, perform a clean and invalidate by set/way.

- As described in The data cache maintenance instruction (DC) on page D4-2505, the AArch64 Data cache invalidate instructions, DC_IVAC and DC_ISW, when executed at EL1 and EL0, and the AArch32 Data cache invalidate instructions DCIMVAC and DCISW, when executed at EL1, can be configured to perform a cache clean as well as a cache invalidation.

- TLB and instruction cache invalidate instructions executed at EL1 are broadcast across the Inner Shareable domain when all of the following is true:
  - When the value of HCR_EL2.FB is 1.
  - EL3 is not implemented, or EL3 is implemented and either SCR_EL3.NS == 1 or SCR_EL3.EEL2 == 1.

  When EL1 is using AArch64, this applies to the IC_IALLU instruction. This means the instruction performs the invalidation that would be performed by the corresponding Inner Shareable instruction IC_IALLUIS.

For more information about the cache maintenance instructions, see About cache maintenance in AArch64 state on page D4-2500, A64 Cache maintenance instructions on page D4-2504, and Chapter D5 The AArch64 Virtual Memory System Architecture.

### Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability controls force all memory accesses to be Non-cacheable.

For VA-based cache maintenance instructions, the instruction operates on the caches regardless of the memory type and cacheability attributes marked for the memory address in the VMSA translation table entries. This means that the effects of the cache maintenance instructions can apply regardless of:

- Whether the address accessed:
  - Is Normal memory or Device memory.
  - Has the Cacheable attribute or the Non-cacheable attribute.

- Any applicable domain control of the address accessed.

- The access permissions for the address accessed, other than the effect of the stage two write permission on data or unified cache invalidation instructions.

### Ordering and completion of data and instruction cache instructions

All data cache instructions, other than DC_ZVA, that specify an address:

- Execute in program order relative to loads or stores that have all of the following properties:
  - Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.
  - Use an address with the same cacheability attributes as the address passed to the data cache instruction.

- Can execute in any order relative to loads or stores that have all of the following properties:
  - Access an address in Normal memory with either Inner Write Through or Inner Write Back attributes within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.
  - Use an address with different cacheability attributes as the address passed to the data cache instruction.
Do not have a DMB or DSB executed between the load or store instruction and the data cache instruction.

- Can execute in any order relative to loads or stores that access any address with the Device memory attribute, or with Normal memory with Inner Non-cacheable attribute unless a DMB or DSB is executed between the instructions.
- Execute in program order relative to other data cache instructions, other than DC ZVA, that specify an address within the same cache line of minimum size, as indicated by CTR_EL0.DMinLine.
- Can execute in any order relative to loads or stores that access an address in a different cache line of minimum size, as indicated by CTR_EL0.DMinLine, unless a DMB or DSB is executed between the instructions.
- Can execute in any order relative to other data cache instructions, other than DC ZVA, that specify an address in a different cache line of minimum size, as indicated by CTR_EL0.DMinLine, unless a DMB or DSB is executed between the instructions.
- Can execute in any order relative to data cache maintenance instructions that do not specify an address unless a DMB or DSB is executed between the instructions.

**Note**

Despite its mnemonic, the DC ZVA, Data Cache Zero by VA instruction is not a data cache maintenance instruction.

- Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed between the instructions.

**Note**

- Data cache ordering rules by address are consistent with physically indexed physically tagged caches. See Data and unified caches on page D5-2679.
- Data cache zero instruction on page D4-2514 describes the ordering and completion rules for Data Cache Zero.

All data cache maintenance instructions that do not specify an address:

- Can execute in any order relative to data cache maintenance instructions that do not specify an address unless a DMB or DSB is executed between the instructions.
- Can execute in any order relative to data cache maintenance instructions that specify an address, other than Data Cache Zero, unless a DMB or DSB is executed between the instructions.
- Can execute in any order relative to loads or stores unless a DMB or DSB is executed between the instructions.
- Can execute in any order relative to instruction cache maintenance instructions unless a DSB is executed between the instructions.

All instruction cache maintenance instructions can execute in any order relative to other instruction cache instructions, data cache instructions, loads, and stores unless a DSB is executed between the instructions.

A cache maintenance instruction can complete at any time after it is executed, but is only guaranteed to be complete, and its effects visible to other observers, following a DSB instruction executed by the PE that executed the cache maintenance instruction. See also the requirements for cache maintenance instructions in Completion and endpoint ordering on page B2-130.

In all cases, where the text in this section refers to a DMB or a DSB, this means a DMB or DSB whose required access type is both loads and stores.

**Note**

These ordering requirements are extended from the requirements in AArch32 state given in:

- Ordering of cache and branch predictor maintenance instructions on page G4-5947.
Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly recommends that software:

- For data or unified cache maintenance, uses the CTR_EL0.DMinLine value to determine the loop increment size for a loop of data cache maintenance by VA instructions.
- For instruction cache maintenance, uses the CTR_EL0.IMinLine value to determine the loop increment size for a loop of instruction cache maintenance by VA instructions.

**Example code for cache maintenance instructions**

The cache maintenance instructions by set/way can clean or invalidate, or both, the entirety of one or more levels of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations as Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of the cache maintenance instructions.

--- Note ---

Since the set/way instructions are performed only locally, there is no guarantee of the atomicity of cache maintenance between different PEs, even if those different PEs are each executing the same cache maintenance instructions at the same time. Since any cacheable line can be allocated into the cache at any time, it is possible for a cache line to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the line is not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs, and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency management with very large buffers or with buffers with unknown address can fail to provide the expected coherency results because of speculation by other PEs, or possibly by other threads. The only way that these instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems where this will be an issue.

**System level caches** on page D4-2516 refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes that the current Cache Size Identification Register is in 32-bit format. For more information, see Possible formats of the Cache Size Identification Register, CCSIDR_EL1 on page D4-2495.

```
MRS X0, CLIDR_EL1
AND W3, W0, #0x07000000 // Get 2 x Level of Coherence
LSR W3, W3, #23
CBZ W3, Finished
MOV W10, #0 // W10 = 2 x cache level
MOV W8, #1 // W8 = constant 0b1
Loop1: ADD W2, W10, W10, LSR #1 // Calculate 3 x cache level
LSR W1, W0, W2 // extract 3-bit cache type for this level
AND W1, W1, #0x7
OMP W1, #2 // No data or unified cache at this level
B.LT Skip // Select this cache level
MSR CSSELR_EL1, X10 // Synchronize change of CSSELR
```

---

- **AArch32 instruction cache maintenance instructions (IC*) on page G4-5940.**
Similar approaches can be used for all cache maintenance instructions.

### D4.4.9 Data cache zero instruction

The Data Cache Zero by Address instruction, **DC ZVA**, writes 0x00 to each byte of a block of \(N\) bytes, aligned in memory to \(N\) bytes in size, where:

- The block in memory is identified by the address supplied as an argument to the **DC ZVA** instruction. There are no alignment restrictions on this address.

**Note**

This means that each byte of the block of memory that includes the supplied address is set to zero.

- The **DCZID_EL0** register indicates the block size, \(N\) bytes, that is written with byte values of zero.

Software can restrict access to this instruction. See *Configurable instruction enables and disables, and trap controls on page D1-2367* and the description of the **DC ZVA** instruction.

The **DC ZVA** instruction behaves as a set of stores to the location being accessed, and:

- Generates a Permission fault if the translation regime being used when the instruction is executed does not permit writes to the locations.
- Requires the same considerations for ordering and the management of coherency as any other store instruction.

In addition:

- When the instruction is executed, it can generate memory faults or watchpoints that are prioritized in the same way as other memory related faults or watchpoints. Where a synchronous Data Abort fault or a watchpoint is generated, the CM bit in the syndrome field is not set to 1, which would be the case for all other cache maintenance instructions. See *ISS encoding for an exception from a Data Abort on page D13-2987* for more information about the encoding of the associated ESR_ELx.ISS field.

- If the memory region being zeroed is any type of Device memory, then **DC ZVA** generates an Alignment fault which is prioritized in the same way as other alignment faults that are determined by the memory type.

**Note**

The architecture makes no statements about whether or not a **DC ZVA** instruction causes allocation to any particular level of the cache, for addresses that have a cacheable attribute for those levels of cache.
Despite its mnemonic, the DC ZVA instruction is not a data cache maintenance instruction.

D4.4.10 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.
• Some memory attributes.

An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an architecturally-defined cache maintenance instruction on a locked cache line must comply with the following general rules:

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:
  — Cache clean by set/way, DC CSW.
  — Cache invalidate by set/way, DC ISW.
  — Cache clean and invalidate by set/way, DC CISW.
  — Instruction cache invalidate all, IC IALLU and IC IALLUIS.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.
2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.
3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is generated, using the DFSC value defined for this purpose, see ISS encoding for an exception from a Data Abort on page D13-2987.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by performing the required operation on the entire cache, without having to consider whether any cache entries are locked.

The effect of the following instructions is IMPLEMENTATION DEFINED:

• Cache clean by virtual address, DC CVAC, DC CVAP, and DC CVAU.
• Cache invalidate by virtual address, DC IVAC.
• Cache clean and invalidate by virtual address, DC CIVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean and invalidate instructions, the entry must be cleaned before it is invalidated.
2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.
3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is generated, using the DFSC value defined for this purpose. See ESR_ELx on page K15-8164.

In an implementation that includes EL2 enabled in the current Security state, if HCR_EL2.TIDCP is set to 1, any exception relating to lockdown of an entry is routed to EL2.
An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked down must:

- Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on entries that are not locked down.
- Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the IMPLEMENTATION DEFINED spaces reserved for Cache Lockdown, see Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.

D4.4.11 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification registers, CCSIDR_EL1 and CLIDR_EL1, and for which the set/way cache maintenance instructions do not apply.

Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by any cache maintenance instructions. Such systems fundamentally undermine the concept of cache maintenance instructions operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage coherency. The use of such systems in the Arm architecture is explicitly prohibited.

2. System caches which lie before the point of coherency and can be managed by cache maintenance by address instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way instructions. Where maintenance of the entirety of such a cache must be performed, as in the case for power management, it must be performed using non-architectural mechanisms.

3. System caches which lie beyond the point of coherency and so are invisible to the software. The management of such caches is outside the scope of the architecture.

D4.4.12 Branch prediction

Armv8 does not define any branch predictor maintenance instructions for AArch64 state.

If branch prediction is architecturally visible, cache maintenance must also apply to branch prediction.

D4.4.13 Execution and data prediction restriction System instructions

When FEAT_SPECRES is implemented, the System instructions listed in A64 System instructions for prediction restriction on page C5-756 prevent predictions based on information gathered from earlier execution within a particular execution context from affecting the later Speculative execution within that context, to the extent that the speculative execution is observable through side-channels.

The prediction restriction System instructions being used by a particular execution context apply to:

- All control flow prediction resources that predict execution addresses.
- Data value prediction.
• Cache allocation prediction.

For these System instructions, the execution context is defined by:

• The Security state.
• The Exception level.
• When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.
• When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.
• When executing at EL0 when using the EL1&0 translation regime, the ASID and, if EL2 is implemented and enabled in the current Security state, the VMID.
• When executing at EL0 when using the EL2&0 translation regime, the ASID.

--- Note

• The data value prediction applies to all prediction resources that use some form of training to speculate data values as part of an execution.

• The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

• Execution of the System instruction at EL0 only applies to the current hardware defined context.
• Execution of the System instruction at EL1 only applies to the current VMID and Security state, and does not apply to EL2 or EL3.
• Execution of the System instruction at EL2 can only apply to the current Security state, and does not apply to EL3.

If the System instruction is specified to apply to Exception levels that are not implemented, or which are higher than the Exception level that the System instruction is executed at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected context are influenced by the execution of the program before the System instruction in a manner that can be observed by the use of any side channels.

--- Note

• Prediction restriction System instructions do not require the invalidation of prediction structures so long as the behavior described for completion is met by an implementation.

• Prediction restriction System instructions are permitted to invalidate more prediction information than is defined by the supplied execution context.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior on the same PE that executed the original instruction. A subsequent Context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch64 state, EL0 access to the System instructions is controlled by:

• When $\text{HCR}_{\text{EL2}}.\{\text{E2H, TGE}\}$ is not $\{1, 1\}$, $\text{SCTLR}_{\text{EL1}}.\text{EnRCTX}$.
• When $\text{HCR}_{\text{EL2}}.\{\text{E2H, TGE}\} = \{1, 1\}$, $\text{SCTLR}_{\text{EL2}}.\text{EnRCTX}$.

--- Note

If the $\text{SCR}_{\text{EL3}}.\text{EEL2}$ is changed, in order to remove all VMID tagging from Secure EL1 and Secure EL0 entries, each prediction resource should be invalidated for:

• Secure EL0 for all ASID and VMID values.
• Secure EL1 for all VMID values.
The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are detected by the MMU or debug logic. An External abort might signal a data corruption to the PE. For example, a memory location might have been corrupted, and this corruption is detected by hardware using a parity or error correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more information, see the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

An External abort is one of the following:
• Synchronous.
• Precise asynchronous.
• Imprecise asynchronous.

For more information, see Exception terminology on page D1-2313.

The RAS Extension provides a more granular taxonomy of aborts. When the RAS Extension is not implemented, the Arm architecture does not provide any method to distinguish between precise asynchronous and imprecise asynchronous External aborts.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported.

External aborts on data accesses and translation table walks on data accesses can be either synchronous or asynchronous.

When FEAT_DoubleFault is not implemented, External aborts on instruction fetches and translation table walks on instruction fetches can be either synchronous or asynchronous.

When FEAT_DoubleFault is implemented, all External abort exceptions on instruction fetches and translation table walks on instruction fetches must be synchronous.

A synchronous External abort on an instruction fetch, including a translation table walk on an instruction fetch, is taken precisely using the Instruction Abort exception.

A synchronous External abort on a data read or write, including a translation table walk on a data read or write, is taken precisely using the Data Abort exception.

See Synchronous exception types, routing and priorities on page D1-2348.

An asynchronous External abort is taken using the SError interrupt exception. See Asynchronous exception types, routing, masking and priorities on page D1-2357.

The effect of a failed memory access is described in Effect of Data Aborts and Watchpoints on page D1-2353.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that is running, Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:
• Provision for the classification of External aborts.
• Parity or ECC error reporting, RAS Extension not implemented on page D4-2520.

D4.5.1 Provision for the classification of External aborts

In AArch64 state, an implementation can use ESR_ELx.EA, ISS[9], to provide more information about synchronous External aborts. For all synchronous aborts other than synchronous External aborts, ESR_ELx.EA, ISS[9], returns a value of 0.

If the RAS Extension is implemented:
• The ESR_ELx.SET field provides information about the state of the PE following a synchronous External abort.
• The ESR_ELx.AET field might contain more information following an asynchronous abort taken as an SError interrupt.
The AArch64 System Level Memory Model

D4.5 External aborts

- The implementation might define error record registers.

For more information, see:
- **ISS encoding for an exception from an Instruction Abort** on page D13-2985.
- **ISS encoding for an exception from a Data Abort** on page D13-2987.
- **ISS encoding for an SError interrupt** on page D13-2994.
- **ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.**

D4.5.2 Parity or ECC error reporting, RAS Extension not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the cache system. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors, see *Use of the ESR_EL1, ESR_EL2, and ESR_EL3* on page D1-2336. However, when parity or ECC error reporting is implemented, it is implementation defined whether a parity or ECC error is reported using the assigned fault code or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
D4.6 Memory barrier instructions

Memory barriers on page B2-134 describes the memory barrier instructions. This section describes the system level controls of those instructions.

D4.6.1 EL2 control of the shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 enabled in the current Security state and supports shareability limitations on the data barrier instructions, the HCR_EL2.BSU field can modify the required shareability of an instruction that is executed at EL0 or EL1. Table D4-8 shows the encoding of this field.

Table D4-8 EL2 control of shareability of barrier instructions executed at EL0 or EL1

<table>
<thead>
<tr>
<th>HCR_EL2.BSU</th>
<th>Minimum shareability of barrier instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No effect, shareability is as specified by the instruction</td>
</tr>
<tr>
<td>01</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>11</td>
<td>Full system</td>
</tr>
</tbody>
</table>

For an instruction executed at EL0 or EL1, Table D4-9 shows how the HCR_EL2.BSU is combined with the shareability specified by the argument of the DMB or DSB instruction to give the scope of the instruction.

Table D4-9 Effect of HCR_EL2.BSU on barrier instructions executed at EL1 or EL0

<table>
<thead>
<tr>
<th>Shareability specified by the DMB or DSB argument</th>
<th>HCR_EL2.BSU</th>
<th>Resultant shareability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full system</td>
<td>Any</td>
<td>Full system</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>00, 01, or 10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td></td>
<td>11, Full system</td>
<td>Full system</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>00 or 01</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td></td>
<td>10, Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td></td>
<td>11, Full system</td>
<td>Full system</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>00, No effect</td>
<td>Non-shareable</td>
</tr>
<tr>
<td></td>
<td>01, Inner Shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td></td>
<td>10, Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td></td>
<td>11, Full system</td>
<td>Full system</td>
</tr>
</tbody>
</table>
D4.7  Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

- Memory data type definitions.
- Basic memory access.
- Aligned memory access on page D4-2523.
- Unaligned memory access on page D4-2523.
- Exclusives monitors operations on page D4-2523.
- Access permission checking on page D4-2524.
- Abort exceptions on page D4-2524.
- Memory barriers on page D4-2524.

D4.7.1  Memory data type definitions

This section lists the memory data types.

The memory data types are:

- Address descriptor, defined by the AddressDescriptor type.
- Full address, defined by the FullAddress type.
- Memory attributes, defined by the MemoryAttributes type.
- Memory type, defined by the MemType enumeration.
- Device memory type, defined by the DeviceType enumeration.
- Normal memory attributes, defined by the MemAttrHints type.
- Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.
- Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWV constants.
- Access permissions, defined by the Permissions type.

These types are defined in Chapter J1 Armv8 Pseudocode.

D4.7.2  Basic memory access

The two forms of the _Mem[] accessor, non-assignment (memory read) _Mem and assignment (memory write) _Mem, are the operations that perform single-copy atomic, aligned, little-endian memory accesses of size bytes to or from the underlying physical memory array of bytes.

The functions address the array using desc.paddress, that supplies:

- The physical address.
- An NS bit that selects between the Secure and Non-secure parts of the array.

The attributes in desc.memattrs are used by the memory system to determine caching and ordering behaviors as described in Memory types and attributes on page B2-153, Ordering relations on page B2-126, and Atomicity in the Arm architecture on page B2-118.

An additional parameter to the _Mem[] accessor defines the access type, for example normal, exclusive, ordered, or streaming, and whether the access is made as part of a translation table walk.

The actual implemented array of physical memory might be smaller than the maximum size permitted by the architecture. In this case the scheme for aliasing is IMPLEMENTATION DEFINED, or some parts of the address space might give rise to External aborts or a System Error.

Note

The permitted physical memory size is:

- $2^{52}$ bytes in an implementation that includes FEAT_LPA. However, only $2^{48}$ bytes are accessible using the 4KB or 16KB translation granule.

- $2^{48}$ bytes otherwise.
D4.7.5 Exclusives monitors operations

The AArch64.SetExclusiveMonitors() function sets the Exclusives monitors for a block of bytes, the size of which is determined by size, at the virtual address defined by address.

The AArch64.ExclusiveMonitorsPass() function checks whether the Exclusives monitors are set to include the location of a number of bytes specified by size, at the virtual address defined by address. The atomic write that follows after the Exclusives monitors have been set must be to the same physical address. It is permitted, but not required, for this function to return FALSE if the virtual address is not the same as that used in the previous call to AArch64.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory locations selected by AArch64.ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1, indicating that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested. If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED whether this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size bytes from address paddress. If no address is marked as exclusive access requested, then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an address region including any of size bytes starting from paddress has had a request for an exclusive access. It is

\[ \text{PAMax()} \] returns the IMPLEMENTATION DEFINED size of the physical address.

D4.7.4 Unaligned memory access

The two \text{Mem}[] accessor functions, Non-assignment (memory read) Mem[] and Assignment (memory write) Mem[], make atomic, little-endian accesses of size bytes from address paddress. The size of the transfer. The function returns TRUE if the PE processorid has requested exclusive access that covers at least the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an address range covering at least size bytes starting from paddress has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of IsExclusiveGlobal() with the same parameters.

The AArch64.CheckAlignment() function checks the alignment of memory accesses.

D4.7.3 Aligned memory access

The two \text{MemSingle}[] accessor functions, non-assignment (memory read) AArch64.MemSingle[] and assignment (memory write) AArch64.MemSingle[], make atomic, little-endian accesses of size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It also reverses the byte order if the access is big-endian.

The AArch64.CheckAlignment() function checks the alignment of memory accesses.

The MarkExclusiveGlobal() function sets the Exclusives monitors for a block of bytes, the size of which is determined by size, at the virtual address defined by address.

The MarkExclusiveLocal() function sets the Exclusives monitors for a block of bytes, the size of which is determined by size, at the virtual address defined by address. The atomic write that follows after the Exclusives monitors have been set must be to the same physical address. It is permitted, but not required, for this function to return FALSE if the virtual address is not the same as that used in the previous call to AArch64.SetExclusiveMonitors().

The ExclusiveMonitorsStatus() function returns 0 if the previous atomic write was to the same physical memory locations selected by AArch64.ExclusiveMonitorsPass() and therefore succeeded. Otherwise the function returns 1, indicating that the address translation delivered a different physical address.

The MarkExclusiveGlobal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure records that the PE processorid has requested exclusive access covering at least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address by the same PE to be cleared.

The MarkExclusiveLocal() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure records in a local record that PE processorid has requested exclusive access to an address covering at least size bytes from address paddress. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure also performs a MarkExclusiveGlobal() using the same parameters.

The IsExclusiveGlobal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The function returns TRUE if the PE processorid has marked in a global record an address range as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested. If no address is marked in a global record as exclusive access, IsExclusiveGlobal() returns FALSE.

The IsExclusiveLocal() function takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The function returns TRUE if the PE processorid has marked an address range as exclusive access requested that covers at least size bytes from address paddress. It is IMPLEMENTATION DEFINED whether this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of size bytes from address paddress. If no address is marked as exclusive access requested, then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANED with the result of IsExclusiveGlobal() with the same parameters.

The ClearExclusiveByAddress() procedure takes as arguments a FullAddress paddress, the PE identifier processorid and the size of the transfer. The procedure clears the global records of all PEs, other than processorid, for which an address region including any of size bytes starting from paddress has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processor id is also cleared if any of size bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processor id. The procedure clears the local record of PE processor id for which an address has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether this operation also clears the global record of PE processor id that an address has had a request for an exclusive access.

These functions are defined in Chapter J1 Armv8 Pseudocode.

D4.7.6 Access permission checking

The function AArch64.CheckPermission() is used by the architecture to perform access permission checking based on attributes derived from the translation tables or location descriptors. It returns the result of the call to AArch64.NoFault().

These functions are defined in Chapter J1 Armv8 Pseudocode.

The interpretation of access permission is shown in Memory access control on page D5-2600.

D4.7.7 Abort exceptions

The function AArch64.Abort() generates either a Data Abort or an Instruction Abort exception by calling AArch64.DataAbort() or AArch64.InstructionAbort(). It also can generate a debug exception for debug related faults, see Chapter D2 AArch64 Self-hosted Debug.

The function AArch64.DataAbort() generates a Data Abort exception, routes the exception to EL2 or EL3, and records the information required for the Exception Syndrome registers, ESR_ELx. See ISS encoding for an exception from a Data Abort on page D13-2987. A second stage abort might also record the intermediate physical address, IPA, but this depends on the type of the abort.

For a synchronous abort, AArch64.DataAbort() also sets the FAR to the VA of the abort.

The function AArch64.InstructionAbort() generates an Instruction Abort exception, routes the exception to EL2 or EL3, and records the information required for the Exception Syndrome registers, ESR_ELx, see ISS encoding for an exception from an Instruction Abort on page D13-2985. A second stage abort might also record the intermediate physical address, IPA, but this depends on the type of the abort.

For a synchronous abort, AArch64.InstructionAbort() also sets the FAR to the VA of the abort.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the type of fault. Pseudocode description of the MMU faults on page D5-2654 provides a number of wrappers to generate FaultRecords.

The function AArch64.NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a FaultRecord contains a fault.

D4.7.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required shareability domains and required access types used as arguments for DMB and DSB instructions.

The procedures DataMemoryBarrier, DataSynchronizationBarrier, and InstructionSynchronizationBarrier perform the memory barriers.
Chapter D5
The AArch64 Virtual Memory System Architecture

This chapter provides a system level view of the AArch64 Virtual Memory System Architecture (VMSAv8-64), the memory system architecture of an Armv8 implementation that is executing in AArch64 state. It contains the following sections:

• About the Virtual Memory System Architecture (VMSA) on page D5-2526.
• The VMSAv8-64 address translation system on page D5-2534.
• VMSAv8-64 translation table format descriptors on page D5-2587.
• Memory access control on page D5-2600.
• Memory region attributes on page D5-2622.
• Virtualization Host Extensions on page D5-2632.
• Nested virtualization on page D5-2638.
• VMSAv8-64 memory aborts on page D5-2645.
• Nested virtualization on page D5-2638.
• Translation Lookaside Buffers (TLBs) on page D5-2655.
• TLB maintenance requirements and the TLB maintenance instructions on page D5-2661.
• Caches in a VMSAv8-64 implementation on page D5-2679.
D5.1 About the Virtual Memory System Architecture (VMSA)

This chapter describes the Armv8 Virtual Memory System Architecture (VMSA), and in particular how it applies to a PE that is executing in AArch64 state. In this state the PE is using VMSAv8-64, as defined in Armv8 VMSA naming. See The Armv8 VMSA when some Exception levels are using AArch32 for information about the VMSA in other contexts.

A VMSA provides a Memory Management Unit (MMU) that controls address translation, access permissions, and memory attribute determination and checking, for memory accesses made by the PE. The process of address translation maps the virtual addresses (VAs) used by the PE onto the physical addresses (PAs) of the physical memory system. The mapping of a VA to a PA requires either a single stage of translation, or two sequential stages of translation.

The translations are defined independently for different Exception levels and Security states, as described in The VMSAv8-64 address translation system on page D5-2534.

VMSAv8-64 supports tagging of VAs:
- Address tagging as described in Address tagging in AArch64 state on page D5-2528. As that section describes, this address tagging has no effect on the address translation process.
- If FEAT_MTE is implemented and enabled Memory tagging as described in Chapter D6 Memory Tagging Extension.

The remainder of this chapter gives a full description of VMSAv8-64 for an implementation that includes all of the Exception levels. The implemented Exception levels and the resulting translation stages and regimes on page D5-2539 describes the differences in the VMSA if some Exception levels are not implemented.

The following sections give more information about the VMSA:
- Armv8 VMSA naming.
- The Armv8 VMSA when some Exception levels are using AArch32.
- VMSA address types and address spaces on page D5-2527.
- Address tagging in AArch64 state on page D5-2528.
- Pointer authentication in AArch64 state on page D5-2530.

D5.1.1 Armv8 VMSA naming

The Armv8 VMSA naming model reflects the possible stages of address translation, as follows:

VMSAv8 The overall translation scheme, within which an address translation has one or two stages.

VMSAv8-32 The translation scheme for a single stage of address translation that is managed from an Exception level that is using AArch32.

VMSAv8-32 is sometimes used to refer to the two stages of translation used to map a VA to a PA, where each stage is managed from an Exception level that is using AArch32.

VMSAv8-64 The translation scheme for a single stage of address translation that is managed from an Exception level that is using AArch64.

VMSAv8-64 is sometimes used to refer to the two stages of translation used to map a VA to a PA, where each stage is managed from an Exception level that is using AArch64.

D5.1.2 The Armv8 VMSA when some Exception levels are using AArch32

As stated at the start of the chapter, this chapter describes VMSAv8-64, the Armv8 VMSA that applies to an Exception level that is using AArch64. However, when a higher Exception level is using AArch64, and therefore using VMSAv8-64, lower Exception levels can be using AArch32. Chapter G5 The AArch32 Virtual Memory System Architecture describes VMSAv8-32, meaning it describes:
- The translation stages and translation regimes when EL3 is using AArch32.
- Any stages of address translation that are using VMSAv8-32 when EL3 is using AArch64.
However, a PE can be executing at EL0 using AArch32 when the next higher Exception level is using AArch64, for example when EL0 is using AArch32 and EL1 is using AArch64. When this is the case execution at EL0 uses a VMSAv8-64 translation regime as described in Constraints on accesses from EL0 when EL0 is using AArch32 on page D5-2537.

D5.1.3 VMSA address types and address spaces

A description of the VMSA refers to the following address types.

Note

These descriptions relate to the VMSAv8 description and therefore give more detail than the generic definitions given in the glossary.

Virtual address (VA)

An address used in an instruction, as a data or instruction address, is a Virtual Address (VA).

Note

This means that an address held in the PC, LR, SP, or an ELR, is a VA.

In AArch64 state, the VA has a maximum address width of either 48 bits or, when FEAT_LVA is implemented and the 64KB translation granule is used, 52 bits. As About address translation and supported input address ranges on page D5-2538 describes, a stage of address translation can support one or two VA ranges:

Translation stage can support only a single VA range

For a translation stage that supports a single VA range, a 48-bit VA width gives a VA range of \(0x0000000000000000\) to \(0xFFFFFFFFFFFF\).

If FEAT_LVA is implemented and the 64KB translation granule is used, for a translation regime that supports a single VA range, the 52-bit VA width gives a VA range of \(0x0000000000000000\) to \(0xFFFFFFFFFFFF\).

Translation stage can support two VA ranges

For a translation stage that supports two VA subranges, one at the bottom of the full 64-bit address range, and one at the top, as follows:

- The bottom VA range runs up from address \(0x0000000000000000\). With a maximum VA width of 48 bits this gives a VA range of \(0x0000000000000000\) to \(0xFFFFFFFF\).
  With a maximum VA width of 52 bits this gives a VA range of \(0x0000000000000000\) to \(0xFFFFFFFF\).

- The top VA subrange runs up to address \(0xFFFFFFFF\). With a maximum VA width of 48 bits this gives a VA range of \(0xFFFFFFFF00000000\) to \(0xFFFFFFFF\).
  With a maximum VA width of 52 bits this gives a VA range of \(0xFFFFFFFF00000000\) to \(0xFFFFFFFF\).

Reducing the VA width for this subrange increases the bottom address of the range.

Note

- When FEAT_VHE is not implemented, the only translation stage that can support two VA ranges is stage 1 of the EL1&0 translation regime.
- When FEAT_VHE is implemented and the value of HCR_EL2.E2H is 1, stage 1 of the EL2, or EL2&0, translation regime also can support two VA ranges.

A 48-bit VA range corresponds to an address space of 256TB. A 52-bit VA range corresponds to an address space of 4PB.
Each translation regime that takes a VA as an input address can be configured to support fewer than the maximum number of bits of VA space, see Address size configuration on page D5-2541.

Intermediate physical address (IPA)

In a translation regime that provides two stages of address translation, the IPA is:

- The OA from the stage 1 translation.
- The IA for the stage 2 translation.

In a translation regime that provides only one stage of address translation, the IPA is identical to the PA. Alternatively, the translation regime can be considered as having no concept of IPAs.

The EL3, Secure EL1, and if FEAT_SEL2 is implemented, Secure EL2 Exception levels provide independent definitions of the PA spaces for Secure and Non-secure operation. This means they provide two independent address spaces, where:

- A VA accessed in Secure state can be translated to either the Secure or the Non-secure PA space.
- When in Non-secure state, a VA is always mapped to the Non-secure PA space.

For more information about maximum address widths, see Address size configuration on page D5-2541.

Physical address (PA)

The address of a location in a physical memory map. That is, an output address from the PE to the memory system.

The EL3, Secure EL1, and if FEAT_SEL2 is implemented, Secure EL2 Exception levels provide independent definitions of the PA spaces for Secure and Non-secure operation. This means they provide two independent address spaces, where:

- A VA accessed in Secure state can be translated to either the Secure or the Non-secure PA space.
- When in Non-secure state, a VA is always mapped to the Non-secure PA space.

For more information about maximum address widths, see Address size configuration on page D5-2541.

D5.1.4 Address tagging in AArch64 state

In AArch64 state, the Armv8 architecture supports the tagging of addresses. Address tagging in this section is not to be confused with Memory tagging if FEAT_MTE is implemented. For more information on Memory tagging see Chapter D6 Memory Tagging Extension.

In the case of Address tagging the top eight bits of the VA are ignored when determining:

- If the translation system is enabled, whether the address is out of range and therefore causes a Translation fault.
- If the translation system is not enabled, whether the address is out of range and therefore causes an Address size fault.
- Whether the address requires invalidation when performing a TLB invalidation instruction by address.

The use of address tags is controlled as follows:

For addresses when stage 1 translation can support two VA ranges

The value of bit[55] of the VA determines the register bit that controls the use of address tags, as follows:

VA[55]==0 TCR_ELx.TBIO determines whether address tags are used. If stage 1 translation is enabled, TTBR0_ELx holds the base address of the translation tables used to translate the address.
VA[55]==1  

TCR_ELx.TBI determines whether address tags are used. If stage 1 translation is enabled, TTBR1_ELx holds the base address of the translation tables used to translate the address.

For addresses when stage 1 translation supports only a single VA range

TCR_ELx.TBI determines whether address tags are used. If stage 1 translation is enabled, TTBR0_ELx holds the base address of the translation tables used to translate the address.

Note

The TCR_ELx.TBI{n} bit determines whether address tags are used regardless of whether the corresponding translation regime is enabled.

When FEAT_PAuth is implemented, TBID{n} bits are added to TCR_ELx registers.

When a TCR_ELx.TBI{n} bit enables the use of address tagging, the corresponding TBID{n} bit determines whether address tagging is used for both instruction and data addresses, or only for data addresses.

The bits added are:

- TCR_EL1.{TBID1, TBID0}.
- If stage 1 of the EL2 or EL2&0 translation regime supports two VA ranges, TCR_EL2.{TBID1, TBID0}. Otherwise, TCR_EL2.TBID.
- TCR_EL3.TBID.

Note

Restricting address tagging to data addresses means instruction addresses can use larger Pointer authentication code fields. See Pointer authentication in AArch64 state on page D5-2530.

An address tag enable bit also has an effect on the PC value in the following cases:

- On taking an exception to the controlled Exception level, regardless of whether this is also the Exception level from which the exception was taken.
- Any branch within the controlled Exception level, unless that branch generates an Illegal exception return.
- On performing an exception return that is not an Illegal exception return to the controlled Exception level, regardless of whether this is also the Exception level from which the exception return was performed.

Note

On an Illegal exception return, bits[63:32] of the PC become UNKNOWN.

- Exiting from debug state to the controlled Exception level.

Note

As an example of what is meant by the controlled Exception level, TCR_EL3.TBI controls this effect for:
- A branch or procedure return within EL3.
- Taking an exception to EL3.
- Performing an exception return or a debug state exit to EL3.

The effect of the controlling TBI{n} bit is:

For a translation regime where stage 1 translation can support two VA ranges

If the controlling TBI{n} bit for the address being loaded into the PC is set to 1, then bits[63:56] of the PC are forced to be a sign-extension of bit[55] of that address.
For a translation regime where stage 1 translation supports only a single VA range

If the controlling TBI bit for the address being loaded into the PC is set to 1, then bits[63:56] of the PC are forced to be 0x00.

However, when FEAT_PAuth is implemented and the value of a TCR_ELx.TBID{ni} field is 1, the Effective value of the corresponding TCR_ELx.TBI{ni} field is 0 for any of:

• A branch or procedure return within an Exception level.
• Taking an exception to an Exception level.
• Exception return to an Exception level.
• Exit from Debug state to an Exception level.

The AddrTop() pseudocode function shows the algorithm determining the most significant bit of the VA, and therefore whether the VA is using tagging. For a translation regime where the stage 1 translation supports two VA ranges, this pseudocode includes the selection between TTBR0_ELx and TTBR1_ELx described in Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2572.

Note
The required behavior prevents a tagged address being propagated to the program counter.

When address tagging is enabled for an address that causes a Data Abort or a Watchpoint, the address tag is included in the VA returned in the FAR.

D5.1.5 Pointer authentication in AArch64 state

FEAT_PAuth adds functionality that supports the authentication of the contents of a register before that register is used as the target of an indirect branch, or as a load. This functionality is supported only in AArch64 state.

For pointer authentication, this functionality provides:

• An instruction that inserts a Pointer Authentication Code (PAC) into the upper bits of a register. The bits used are the extension bits that do not hold valid address bits. The inserted PAC value is calculated from the value of the register and one other 64-bit value.

• An instruction that extracts the PAC from the upper bits of a register, and checks that the value is correct, based on the value of the register and one other 64-bit value, and:
  — If the value is correct, replaces the PAC with the extension bits.
  — Otherwise, replaces the PAC with the extension bits, except that two bits of the extension are set to a fixed unique number. This means that, if the register is used as the target of an indirect branch, execution branches to an address that generates a Translation fault because the VA is not mapped.

• An instruction that removes the PAC, replacing it with the extension bits, without any verification.

Multiple versions of these instructions are provided to support different use cases. These include instructions that combine a pointer authentication operation with another operation. Pointer authentication instructions on page C3-204 summarizes these instructions.

FEAT_PAuth2 adds enhanced functionality that changes the mechanism by which a PAC is added to the pointer. The mechanism exclusive-ORs the upper bits of the pointer with the PAC instead of replacing the upper bits of the pointer with the PAC.

Note
If FEAT_PAuth2 is implemented but FEAT_FPAC is not implemented, when stage 1 translation is disabled, and TCR_ELx.T0SZ or TCR_ELx.T1SZ is set to indicate an address range that is smaller than the PA size, for some PAC values, the address generated by a failed PAC authentication can still be an address within the PA size. This means that using such an address that has failed PAC authentication for a memory access will not generate an Address size fault. Instead, the memory access will be performed that has its upper bits, those between the PA size and the size indicated by the TCR_ELx.T0SZ or TCR_ELx.T1SZ field, taken from the result of the authentication...
process. As a result, if FEAT_PAuth2 is implemented but FEAT_FPAC is not implemented, when stage 1 translation is disabled, Arm recommends not setting the TCR_ELx.T0SZ or TCR_ELx.T1SZ values to indicate an address range that is smaller than the PA size.

For the Pointer authentication instructions, it is IMPLEMENTATION DEFINED whether PACs are generated using:

- The QARMA algorithm, see The QARMA Block Cipher Family. When this is the case, the value of ID_AA64ISAR1_EL1.APA is non-zero.
- An IMPLEMENTATION DEFINED algorithm. When this is the case, the value of ID_AA64ISAR1_EL1.API is non-zero.

FEAT_PAuth provides a generic authentication instruction, PACGA, that generates a 32-bit PAC from two 64-bit values.

Note

The PACGA instruction can be used to provide protection for small blocks of memory. Instructions can be chained to allow protection of an arbitrary-sized block.

Note

For the PACGA instruction, it is IMPLEMENTATION DEFINED whether PACs are generated using:

- The QARMA algorithm, see The QARMA Block Cipher Family. When this is the case, the value of ID_AA64ISAR1_EL1.GPA is non-zero.
- An IMPLEMENTATION DEFINED algorithm. When this is the case, the value of ID_AA64ISAR1_EL1.GPI is non-zero.

The pseudocode descriptions of the operation of these instructions describe the use of the QARMA algorithm. When an IMPLEMENTATION DEFINED algorithm is used the ComputePAC() function:

- Must have the same arguments as the function defined in this Manual.
- For a set of arguments passed to the function, must give the same result for all PEs that a thread of execution could migrate between.

Pointer authentication is implemented if the value of at least one of ID_AA64ISAR1_EL1.{APA, API, GPA, GPI} are not 0b0000.

Note

Pointer authentication functionality is useful only when address translation is enabled. However, this functionality is the same whether address translation is enabled or disabled.

The following sections give more information about the FEAT_PAuth, FEAT_PAuth2, and FEAT_FPAC functionality:

- Supported PAC field and relation to the use of address tagging.
- Keys for PAC generation and verification on page D5-2532.
- System register control of pointer authentication on page D5-2533.
- Faulting on pointer authentication on page D5-2533.

Supported PAC field and relation to the use of address tagging

As stated earlier in this section, the PAC is held in the extension bits of a register, that do not hold valid address bits. However, as described in Address tagging in AArch64 state on page D5-2528, when address tagging is used the tag is held in Xn[63:56]. Therefore, when Xn is a 64-bit register holding an address:

When address tagging is used

The PAC field is Xn[54:bottom_PAC_bit].

Note
When address tagging is not used

The PAC field is Xn[63:56, 54:bottom_PAC_bit].

In the PAC field definitions, bottom_PAC_bit == 64 - TCR_ELx.TnSZ.

Note

Xn[55] determines whether the address lies in the upper or lower address range for the purpose of determining whether address tagging is used, see Address tagging in AArch64 state on page D5-2528. The value of Xn[55] is the value of n in TnSZ. Therefore, it also determines whether Xn[63:56] are part of the PAC field, and which of TCR_ELx.{T0SZ, T1SZ} determines the value of bottom_PAC_bit.

If the value of TCR_ELx.TnSZ is outside its permitted range then it is CONSTRAINED UNPREDICTABLE whether the value used to determine bottom_PAC_bit is the programmed value of the field, or is forced to the maximum or minimum permitted value of the field. However, if the PE treats an out of range TnSZ value as the maximum or minimum permitted value of the field for all purposes except reading the value of the field then that behavior also applies to determining bottom_PAC_bit.

FEAT_PAuth adds a new control to TCR_ELx, that disables the use of address tagging for instruction addresses, see Address tagging in AArch64 state on page D5-2528.

Note

This control means software can use larger PAC field for instruction addresses, while using tagging and the smaller PAC field for data addresses.

Keys for PAC generation and verification

For pointer authentication, two 128-bit keys are provided for each of instruction addresses and data addresses, and a fifth 128-bit key is provided for the generic authentication instruction, as follows:

Keys for instruction address PACs

APIAKey_EL1

The concatenation of the register values APIAKeyHi_EL1:APIAKeyLo_EL1.

APIBKey_EL1

The concatenation of the register values APIBKeyHi_EL1:APIBKeyLo_EL1.

Keys for data address PACs

APDAKey_EL1

The concatenation of the register values APDAKeyHi_EL1:APDAKeyLo_EL1.

APDBKey_EL1

The concatenation of the register values APDBKeyHi_EL1:APDBKeyLo_EL1.

Key for generic authentication

APGAKey_EL1

The concatenation of the register values APGAKeyHi_EL1:APGAKeyLo_EL1.

Note

Keys are not banked by Exception level. Arm expects software to switch the keys between Exception levels, typically by swapping the values with zero so that the current key values are not present in memory.
System register control of pointer authentication

FEAT_PAuth adds controls to the SCTLR_ELx registers that enable generation and validation of PACs for data and instruction addresses. Formally, the definition of these fields is that when the functionality is disabled the `AddPAC<I|D><A|B>()` and `Auth<I|D><A|B>()` pseudocode functions return the value of the first parameter passed to them. This means:

- Except for PACGA, the instructions listed in Table C3-12 on page C3-204, that add a PAC to an address in a register, execute as NOPs.
- The instructions listed in Table C3-13 on page C3-205, that authenticate a pointer, execute as NOPs.
- For the Combined instructions listed in Table C3-15 on page C3-206, the `Auth<I|D><A|B>()` function has no effect on the operation of the instruction, which operates as the equivalent non-Authenticate pointer instruction. This means that, for example:
  - A RETAA instruction operates as a RET instruction.
  - A LDRAA Xt, [Xn, #<simm10>]! instruction operates as a LDR Xt, [Xn, #<simm10>:000]! instruction.

These controls do not affect the PACGA and XPAC* instructions, that are always enabled.

The controls added to the SCTLR_ELx registers are:

- **EnIA**: Controls instructions that apply to PACs for instruction addresses that are generated using the AP1IAKey_EL1 key.
- **EnIB**: Controls instructions that apply to PACs for instruction addresses that are generated using the AP1IBKey_EL1 key.
- **EnDA**: Controls instructions that apply to PACs for data addresses that are generated using the AP1DAKey_EL1 key.
- **EnDB**: Controls instructions that apply to PACs for data addresses that are generated using the AP1DBKey_EL1 key.

See the SCTLR_ELx.{EnIA, EnIB, EnDA, EnDB} field descriptions for more information.

---

**Note**

These fields are RES0 in versions of the architecture before Armv8.3, and therefore should be written as 0 by legacy software.

---

Faulting on pointer authentication

In addition to FEAT_PAuth2, FEAT_FPAC introduces faulting on instructions that authenticate a PAC and, optionally, on the combined instructions that include pointer authentication. If the PAC supplied is incorrect on any instructions listed in Table C3-13 on page C3-205, that authenticate a PAC, the instruction generates a synchronous exception.

It is IMPLEMENTATION DEFINED whether the combined instructions listed in Table C3-15 on page C3-206 generate an exception directly from an authorization failure, rather than changing the address in a way that will generate a Translation fault when the address is accessed.

If an exception from an authorization failure is generated at EL0 and HCR_EL2.TGE==1, the exception is taken at EL2. Otherwise, the exception is taken at EL1.

An exception from the authorization failure generated at any other Exception level is taken at the same Exception level. The ESR_ELx.EC code used for such an exception is 0x1C.

Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 describes the prioritization of exceptions taken from an authorization failure.
D5.2 The VMSAv8-64 address translation system

The following subsections describe the VMSAv8-64 address translation system, that maps VAs to PAs:

- About the VMSAv8-64 address translation system.
- The implemented Exception levels and the resulting translation stages and regimes on page D5-2539.
- Controlling address translation stages on page D5-2539.
- Memory translation granule size on page D5-2548.
- Translation tables and the translation process on page D5-2555.
- Overview of the VMSAv8-64 address translation stages on page D5-2558.
- The VMSAv8-64 translation table format on page D5-2569.
- The algorithm for finding the translation table descriptors on page D5-2576.
- The effects of disabling a stage of address translation on page D5-2580.
- The implemented Exception levels and the resulting translation stages and regimes on page D5-2539.
- Pseudocode description of VMSAv8-64 address translation on page D5-2582.
- Address translation instructions on page D5-2583.

Related to this:

- VMSAv8-64 translation table format descriptors on page D5-2587 describes the translation table entries.
- Memory region attributes on page D5-2622 describes the attributes that are held in the translation table entries, including how different attributes can interact.
- Translation Lookaside Buffers (TLBs) on page D5-2655 describes the caching of translation table lookups in TLBs, and the architected instructions for maintaining TLBs.
- AArch64 Address translation examples on page K7-8036 gives detailed descriptions of typical examples of translating a VA to a final PA, and obtaining the memory attributes of that PA.
- Chapter D6 Memory Tagging Extension, gives details of FEAT_MTE and the modified behavior of the VMSAv8-64 address translation system when FEAT_MTE is implemented and enabled.

D5.2.1 About the VMSAv8-64 address translation system

The Memory Management Unit (MMU) controls address translation, memory access permissions, and memory attribute determination and checking, for memory accesses made by the PE.

The general model of MMU operation is that the MMU takes information about a required memory access, including an input address (IA), and either:

- Returns an associated output address (OA), and the memory attributes for that address.
- Is unable to perform the translation for one of a number of reasons, and therefore causes an exception to be generated. This exception is called an MMU fault. System registers are used to report any MMU faults that occur.

The process of mapping an IA to an OA is an address translation, or more precisely a single stage of address translation.

When using a VMSA, a translation regime maps a VA to a PA using one or two stages of translation, and:

- The AArch64 translation regimes on page D5-2535 defines the translation regimes.
- VMSA address types and address spaces on page D5-2527 give more information about VAs and PAs.

The translation granule specifies the granularity of the mapping from IA to OA. That is, it defines both:

- The page size for a stage of address translation, where a page is the smallest block of memory for which an IA to OA mapping can be specified.
- The size of a complete translation table for that stage of address translation.
The MMU is controlled by System registers, that provide independent control of each address translation stage, including a control to disable the stage of address translation. The effects of disabling a stage of address translation on page D5-2580 defines how the MMU handles an access for which a required address translation stage is disabled.

This section describes the address translation system for an implementation that includes all of the Exception levels, and gives a complete description of translations that are controlled by an Exception level that is using AArch64. In addition:

- The Armv8 VMSA when some Exception levels are using AArch32 on page D5-2526 gives information about the VMSA when some Exception levels are using AArch32.
- The implemented Exception levels and the resulting translation stages and regimes on page D5-2539 describes the effect on the address translation model when some Exception levels are not implemented.

Each enabled stage of address translation uses a set of address translations and associated memory properties held in memory mapped tables called translation tables. A single translation table lookup can resolve only a limited number of bits of the IA, and therefore a single address translation can require multiple lookups. These are described as different levels of lookup.

Translation table entries can be cached in a Translation Lookaside Buffer (TLB).

As well as defining the OA that corresponds to the IA, the translation table entries define the following properties:

- For accesses made from Secure state, whether the access is to the Secure or Non-secure address map.
- Memory access permissions.
- Memory region attributes.

For more information, see Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.

The following subsections give more information:

- The AArch64 translation regimes.
- About address translation and supported input address ranges on page D5-2538.
- The VMSAv8-64 translation table format on page D5-2538.

**The AArch64 translation regimes**

The architecture defines a number of translation regimes, where a translation regime comprises either:

- A single stage of address translation.
  This maps an input VA to an output PA.
- Two, sequential, stages of address translation, where:
  — Stage 1 maps an input VA to an output IPA.
  — Stage 2 maps an input IPA to an output PA.

Figure D5-1 on page D5-2536 shows these translation stages and translation regimes when EL3 is using AArch64.
Translation regimes, when EL3 is using AArch64

EL1&0, when EL2 is disabled	VA	EL1&0 stage 1	Controlled from EL 1†	PA			
EL1&0, when EL2 is enabled	VA	EL1&0 stage 1	Controlled from EL 1†	IPA	EL1&0 stage 2	Controlled from EL 2‡	PA
EL2 or EL2&0‡	VA	EL2, or EL2&0‡ stage 1	Controlled from EL 2‡	PA			
EL3	VA	EL3 stage 1	Controlled from EL3	PA			

† Typically controlled from this Exception level, but also accessible from higher Exception levels
‡Only when the implementation includes FEAT_VHE and the value of HCR_EL2.E2H is 1

Figure D5-1 VMSAv8 AArch64 translation regimes, translation stages, and associated controls

This means that in VMSAv8-64 the set of translation regimes is:

The Secure EL1&0 translation regime, when EL2 is disabled
This has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges and the use of ASIDs.
This translation regime is used:
• For memory accesses from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The Non-secure EL1&0 translation regime, when EL2 is disabled
This has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges and the use of ASIDs.
This translation regime is used:
• For memory accesses from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.
The memory access will be Non-secure when SCR_EL3.NS is 1.

The Secure EL1&0 translation regime, when EL2 is enabled
If cached in a TLB, a translation table lookup for this regime is associated with the VMID that identifies the current virtual machine. This regime has two stages of lookup:
Stage 1 Maps VAs to IPAs. This stage can support two VA ranges and the use of ASIDs.
Stage 2 Maps IPAs to PAs. This stage supports a single IPA range.
This translation regime is used:
• For memory access from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The Non-secure EL1&0 translation regime, when EL2 is enabled
If cached in a TLB, a translation table lookup for this regime is associated with the VMID that identifies the current virtual machine. This regime has two stages of lookup:
Stage 1 Maps VAs to IPAs. This stage can support two VA ranges and the use of ASIDs.
Stage 2 Maps IPAs to PAs. This stage supports a single IPA range.
This translation regime is used:
• For memory access from EL1 or EL0 when the value of HCR_EL2.{E2H, TGE} is {0,0}.

The Secure EL2&0 translation regime
When FEAT_VHE is implemented, this regime has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges and the use of ASIDs.
This translation regime is used:
• For memory accesses from EL0 when the value of HCR_EL2.{E2H, TGE} is {1,1}.
The AArch64 Virtual Memory System Architecture

D5.2 The VMSAv8-64 address translation system

• For memory accesses from EL2 when the value of HCR_EL2.E2H is 1. This translation regime is present when FEAT_SEL2 is implemented and enabled.

The Non-secure EL2&0 translation regime

When FEAT_VHE is implemented, this regime has a single stage of translation, stage 1, that maps VAs to PAs and can support two VA ranges and the use of ASIDs.

This translation regime is used:
• For memory accesses from EL0 when the value of HCR_EL2.{E2H, TGE} is {1, 1}.
• For memory accesses from EL2 when the value of HCR_EL2.E2H is 1.

The Secure EL2 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

This translation regime is used:
• For all memory accesses from EL2 in implementations that do not include FEAT_VHE.
• For all memory access from EL2, when FEAT_VHE is implemented and HCR_EL2.E2H is 0.

This translation regime is present when FEAT_SEL2 is implemented and enabled.

The Non-secure EL2 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

This translation regime is used:
• For all memory accesses from EL2 in implementations that do not include FEAT_VHE.
• For all memory access from EL2, when FEAT_VHE is implemented and HCR_EL2.E2H is 0.

The Secure EL3 translation regime

This has a single stage of translation, stage 1, that maps VAs to PAs and supports a single VA range.

An MMU fault might be generated by a particular stage of translation. An MMU fault is described as either a stage 1 MMU fault or a stage 2 MMU fault.

Note

• In the Arm architecture, a software agent, such as an operating system, that uses or defines stage 1 memory translations, might be unaware of the second stage of translation, and of the distinction between IPA and PA.
• A more generalized description of the translation regimes is that a regime always comprises two sequential stages of translation, but in some regimes the stage 2 translation both:
  — Returns an OA that equals the IA. This is called a flat mapping of the IA to the OA.
  — Does not change the memory attributes returned by the stage 1 address translation.

Constraints on accesses from EL0 when EL0 is using AArch32

Armv8 permits execution with EL0 using AArch32 when the next higher Exception level is using AArch64. This happens in the following situations:
• EL1 is using AArch64. Execution at EL0 using AArch32 uses the VMSAv8-64 EL1&0 translation regime.
• EL2 is using AArch64 and the Effective value of HCR_EL2.{E2H, TGE} is \{0, 1\} or \{1, 0\}. Execution at EL0 using AArch32 uses the VMSAv8-64 EL1&0 translation regime.
• In an implementation that includes FEAT_VHE, EL2 is using AArch64 and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}. Execution at EL0 using AArch32 uses the VMSAv8-64 EL2&0 translation regime.

In this case, accesses from EL0 using AArch32 are using:
• The stated VMSAv8-64 translation regime, EL1&0 or EL2&0.
• The AArch32 memory model.
In particular, this means the accesses from EL0 are limited to a 32-bit VA range.

**About address translation and supported input address ranges**

For a single stage of address translation, a *Translation table base register* (TTBR_ELx) indicates the start of the first translation table required for a mapping from input address (IA) to output address (OA). For a stage of address translation that supports two VA ranges each VA range is an independent mapping from IA to OA. This means that each implemented translation stage shown in *VMSAv8 AArch64 translation regimes, translation stages, and associated controls on page D5-2536* requires:

- Two associated sets of translation tables if it supports two IA ranges.
- One associated set of translation tables if it supports a single IA range.

---

**Note**

- Stage 2 translations never support two IA ranges. This means that, for the translation stages that support two IA ranges the IA is always a VA.
- *Example use of the split VA range, and the TTBR0_ELx and TTBR1_ELx controls on page D5-2573* shows how two supported VA ranges might be used.

**Controlling address translation stages on page D5-2539** summarizes the System registers that control address translation by the MMU, and *Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2572* gives more information about the address translation stages that support two VA ranges.

A full translation table lookup is called a *translation table walk*. It is performed automatically by hardware, and can have a significant cost in execution time. To support fine granularity of the VA to PA mapping, a single IA to OA translation can require multiple accesses to the translation tables, with each access giving finer granularity. Each access is described as a *level* of address lookup. The final level of the lookup defines:

- The high bits of the required output address.
- The *attributes* and *access permissions* of the addressed memory.

Translation table entries can be cached in a *Translation Lookaside Buffer*, see *Translation Lookaside Buffers (TLBs) on page D5-2655*.

**The VMSAv8-64 translation table format**

Stages of address translation that are controlled by an Exception level that is using AArch64 use the VMSAv8-64 translation table format. This format uses 64-bit descriptor entries in the translation tables.

---

**Note**

This format is an extension of the VMSAv8-32 Long-descriptor translation table format originally defined by the Armv7 Large Physical Address Extension, and extended slightly by Armv8. VMSAv8-32 also supports a Short-descriptor translation table format. Chapter G5 *The AArch32 Virtual Memory System Architecture* describes both of these formats.

---

The VMSAv8-64 translation table format provides:

- Up to four levels of address lookup.
- A translation granule size of 4KB, 16KB, or 64KB.
- Input addresses of:
  - Up to 52 bits if FEAT_LVA is implemented and the 64KB translation granule is used.
  - Otherwise, up to 48 bits.
- Output addresses of:
  - Up to 52 bits if FEAT_LPA is implemented and the 64KB translation granule is used.
  - Otherwise, up to 48 bits.

For more information about input address and output address sizes, see *Address size configuration on page D5-2541*. 
D5.2.2 The implemented Exception levels and the resulting translation stages and regimes

"About the VMSAv8-64 address translation system on page D5-2534 describes an implementation that includes all Exception levels. Controlling address translation stages describes the control of address translation by Exception levels that are using AArch64. This subsection describes how the address translation scheme changes if an implementation does not include all of the Exception levels.

If an implementation does not include EL3, it has only a single Security state, with MMU controls equivalent to the Secure state MMU controls.

If an implementation does not include EL2 then:
• If it also does not include EL3, the MMU provides only a single EL1&0 stage 1 translation regime.
• If it includes EL3, the MMU provides an EL1&0 stage 1 translation regime in each Security state.

Figure D5-1 on page D5-2536 shows the set of translation regimes for an implementation that implements all of the Exception levels. Table D5-1 shows how the supported translation stages depend on the implemented Exception levels, and in some cases on the Execution state being used by the highest implemented Exception level.

Table D5-1 The relation between the implemented translation stages and Exception levels for AArch64

<table>
<thead>
<tr>
<th>Translation stage</th>
<th>Requires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure EL3 stage 1</td>
<td>EL3 implemented and using AArch64.</td>
</tr>
<tr>
<td>Secure EL2a stage 1</td>
<td>EL2 implemented and using AArch64.</td>
</tr>
<tr>
<td>Secure EL2&amp;0ab stage 1</td>
<td>EL2 implemented and using AArch64.</td>
</tr>
<tr>
<td>Secure EL1&amp;0a stage 2</td>
<td>EL2 implemented and using AArch64.</td>
</tr>
</tbody>
</table>
| Secure EL1&0 stage 1| Either:
  • EL3 implemented and using AArch64.
  • Only EL1 and EL0 implemented, all operation is in Secure state, and EL1 is using AArch64. |
| Non-secure EL2 stage 1| EL2 implemented. |
| Non-secure EL2&0b stage 1| EL2 implemented. |
| Non-secure EL1&0 stage 2| EL2 implemented. |
| Non-secure EL1&0 stage 1| Any implementation except:
  • Only EL1 and EL0 implemented, with all operation in the Secure state. |

a. This translation regime is supported only if an implementation includes FEAT_SEL2. When supported, it is used when the value of SCR_EL3.EEL2 is 1.
b. The EL2&0 translation regime is supported only if an implementation includes FEAT_VHE. When supported, it is used when the value of HCR_EL2.E2H is 1.

D5.2.3 Controlling address translation stages

The implemented Exception levels and the resulting translation stages and regimes defines the translation regimes and stages. For each supported address translation stages controlled from AArch64, Table D5-2 on page D5-2540 shows:
• A System register bit enables the stage of address translation, SCTLR_ELx.M or HCR_EL2.VM.
• A System register bit determines the endianness of the translation table lookups, SCTLR_ELx.EE.
• A Translation Control Register (TCR_ELx) controls the stage of address translation.
• If a stage of address translation supports two VA ranges then that stage of translation provides:
  — A single TCR_ELx.
— A TTBR_ELx for each VA range. TTBR0_ELx points to the translation tables for the address range that starts at 0x0000000000000000, and TTBR1_ELx points to the translation tables for the address range that ends at 0xFFFFFFFFFFFFFFFF. Therefore, a stage of translation provides a single TCR_ELx and a single TTBR_ELx that holds the address of the translation table that must be used for the first lookup for the stage of address translation.

Table D5-2 Enable and endianness bits for the AArch64 translation stages

<table>
<thead>
<tr>
<th>Translation stage</th>
<th>Controlled from</th>
<th>Controlling registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure EL3 stage 1</td>
<td>EL3</td>
<td>SCTLR_EL3.{EE, M} TCR_EL3 TTBR0_EL3</td>
</tr>
<tr>
<td>Secure EL2 stage 1b</td>
<td>Secure EL2</td>
<td>SCTLR_EL2.{EE, M} TCR_EL2 TTBR0_EL2</td>
</tr>
<tr>
<td>Secure EL2&amp;0 stage 1</td>
<td>Secure EL2</td>
<td>SCTLR_EL2.{EE, M} TCR_EL2 TTBR0_EL2 TTBR1_EL2</td>
</tr>
<tr>
<td>Secure EL1&amp;0 stage 2</td>
<td>Secure EL2</td>
<td>SCTLR_EL2.EE HCR_EL2.VM VSTCR_EL2 VSTTBR_EL2 VTCR_EL2 VTTBR_EL2</td>
</tr>
<tr>
<td>Secure EL1&amp;0 stage 1</td>
<td>Secure EL1</td>
<td>SCTLR_EL1.{EE, M} TCR_EL1 TTBR0_EL1 TTBR1_EL1</td>
</tr>
<tr>
<td>Non-secure EL2 stage 1</td>
<td>Non-secure EL2</td>
<td>SCTLR_EL2.{EE, M} TCR_EL2 TTBR0_EL2</td>
</tr>
<tr>
<td>Non-secure EL2&amp;0 stage 1</td>
<td>Non-secure EL2</td>
<td>SCTLR_EL2.{EE, M} TCR_EL2 TTBR0_EL2 TTBR1_EL2</td>
</tr>
<tr>
<td>Non-secure EL1&amp;0 stage 2</td>
<td>Non-secure EL2</td>
<td>SCTLR_EL2.EE HCR_EL2.VM VTCR_EL2 VTTBR_EL2</td>
</tr>
<tr>
<td>Non-secure EL1&amp;0 stage 1</td>
<td>Non-secure EL1</td>
<td>SCTLR_EL1.{EE, M} TCR_EL1 TTBR0_EL1 TTBR1_EL1</td>
</tr>
</tbody>
</table>

a. This translation regime is supported only if an implementation includes FEAT_SEL2. When supported, it is used when the value of SCR_EL3.EEL2 is 1.

b. The EL2&0 translation regime is supported only if an implementation includes FEAT_VHE. When supported, it is used when the value of HCR_EL2.E2H is 1.

---

Note

If the PA of the software that enables or disables a particular stage of address translation differs from its VA, speculative instruction fetching can cause complications. Arm strongly recommends that the PA and VA of any software that enables or disables a stage of address translation are identical if that stage of translation controls translations that apply to the software currently being executed.

The following subsections give more information about controlling address translation:

• System registers relevant to MMU operation on page D5-2541.
• Address size configuration on page D5-2541.
• Atomicity of register changes on changing virtual machine on page D5-2547.
• Use of out-of-context translation regimes on page D5-2548.
- If FEAT_MTE is implemented and enabled, Chapter D6 Memory Tagging Extension provides further controls for the checking of Tagged and Untagged addresses.

**System registers relevant to MMU operation**

In AArch64 state, System registers have a suffix that indicates the lowest Exception level from which they can be accessed. In some general descriptions of MMU control and address translation, this chapter uses a *Common abbreviation* for each of the System registers that affects MMU operation, as Table D5-3 shows. The common abbreviation is used when describing features that apply to multiple translation regimes or stages.

---

**Note**

The only translation regime that supports a stage 2 translation is the EL1&0 translation regime, when EL2 is enabled.

---

**Table D5-3 Abbreviations for System registers used in this chapter**

<table>
<thead>
<tr>
<th>Common abbreviation</th>
<th>Translation stage</th>
<th>Exception level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EL1</td>
</tr>
<tr>
<td>SCTLR_ELx</td>
<td>-</td>
<td>SCTLR_EL1</td>
</tr>
<tr>
<td>TCR_ELx</td>
<td>Stage 1</td>
<td>TCR_EL1</td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>-</td>
</tr>
<tr>
<td>TTBR_ELx</td>
<td>Stage 1</td>
<td>TTBR0_EL1, TTBR1_EL1</td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>-</td>
</tr>
<tr>
<td>TTBR0_ELx</td>
<td>Stage 1</td>
<td>TTBR0_EL1</td>
</tr>
<tr>
<td>TTBR1_ELx</td>
<td>Stage 1</td>
<td>TTBR1_EL1</td>
</tr>
</tbody>
</table>

\(^a\) Only when both the implementation includes FEAT_SEL2 and the value of SCR_EL3.EEL2 is 1.

\(^b\) Only when both the implementation includes FEAT_VHE and the value of HCR_EL2.E2H is 1.

**Address size configuration**

The following subsubsections specify the configuration of the PA size and of the input and output address sizes for each of the stages of address translation:

- *Physical address size* on page D5-2542.
- *Output address size* on page D5-2542.
- *Input address size* on page D5-2543.
- *Supported IPA size* on page D5-2545.
Physical address size

The ID_AA64MMFR0_EL1.PARange field indicates the implemented PA size, as Table D5-4 shows.

<table>
<thead>
<tr>
<th>ID_AA64MMFR0_EL1.PARange</th>
<th>Total PA size</th>
<th>PA address size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>4 GB</td>
<td>32 bits, PA[31:0]</td>
</tr>
<tr>
<td>0001</td>
<td>64 GB</td>
<td>36 bits, PA[35:0]</td>
</tr>
<tr>
<td>0010</td>
<td>1 TB</td>
<td>40 bits, PA[39:0]</td>
</tr>
<tr>
<td>0011</td>
<td>4 TB</td>
<td>42 bits, PA[41:0]</td>
</tr>
<tr>
<td>0100</td>
<td>16 TB</td>
<td>44 bits, PA[43:0]</td>
</tr>
<tr>
<td>0101</td>
<td>256 TB</td>
<td>48 bits, PA[47:0]</td>
</tr>
<tr>
<td>0110</td>
<td>4PB</td>
<td>52 bits, PA[51:0]</td>
</tr>
</tbody>
</table>

a. Only when an implementation includes FEAT_LPA and the 64KB translation granule is used, see Extending addressing above 48 bits on page D5-2546.

All other PARange values are reserved.

Output address size

For each enabled stage of address translation, TCR_ELx.{I}PS must be programmed to maximum output address size for that stage of translation, using the encodings as shown in Table D5-5.

<table>
<thead>
<tr>
<th>TCR_ELx.{I}PS</th>
<th>Total output size</th>
<th>Output address size</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>4 GB</td>
<td>32 bits, PA[31:0]</td>
</tr>
<tr>
<td>001</td>
<td>64 GB</td>
<td>36 bits, PA[35:0]</td>
</tr>
<tr>
<td>010</td>
<td>1 TB</td>
<td>40 bits, PA[39:0]</td>
</tr>
<tr>
<td>011</td>
<td>4 TB</td>
<td>42 bits, PA[41:0]</td>
</tr>
<tr>
<td>100</td>
<td>16 TB</td>
<td>44 bits, PA[43:0]</td>
</tr>
<tr>
<td>101</td>
<td>256 TB</td>
<td>48 bits, PA[47:0]</td>
</tr>
<tr>
<td>110</td>
<td>4PB</td>
<td>52 bits, PA[51:0]</td>
</tr>
</tbody>
</table>

a. Only when an implementation includes FEAT_LPA and is using the 64KB translation granule, see Extending addressing above 48 bits on page D5-2546.

Note

- The naming of this field is as follows:
  - IPS
    - In TCR_EL1.
    - In an implementation that includes FEAT_VHE, in TCR_EL2 when the value of HCR_EL2.E2H is 1.
  - PS
    - Otherwise.
The {I}PS fields are 3-bit fields, corresponding to the least-significant PARange bits shown in Table D5-4 on page D5-2542.

If {I}PS is programmed to a value larger than the implemented PA size, then the PE behaves as if programmed with the implemented PA size, but software must not rely on this behavior. That is, the output address size is never larger than the implemented PA size. Table D5-4 on page D5-2542 shows the implemented PA size.

The PE checks that the TTBR_ELx, translation table entries, and the output address for the stage of address translation have the address bits above the output address size set to zero. If this is not the case, an Address size fault is generated for the level and stage of translation that caused the fault. An Address size fault from the TTBR_ELx is always reported as a level 0 fault. When FEAT_LPA is implemented and a translation granule of 4KB or 16KB is in use, all output addresses are treated as having bits[51:48] set to 0b0000.

If stage 1 translation is disabled and the input address is larger than the implemented PA size, then a stage 1 level 0 Address size fault is generated.

Note

These faults are reported as level 0 faults even if they occur in a translation stage that does not perform level 0 lookups.

When using two stages of translation:

- If stage 2 translation is disabled and the output address from the stage 1 translation is larger than the implemented PA size, then a stage 1 Address size fault is generated for the level of the stage 1 translation that generated the output address.
- If stage 2 translation is enabled and the output address from the stage 1 translation does not generate a stage 1 Address size fault, but is larger than the input address size specified for the stage 2 translation, then a stage 2 Translation fault is generated.

Input address size

For each enabled stage of address translation, the TCR_ELx.TxSZ fields specify the input address size:

For a stage of translation that can support two VA ranges

The TCR_ELx has two TxSZ fields, corresponding to the two VA ranges:

- TCR_ELx.T0SZ specifies the size for the lower VA range, translated using TTBR0_ELx.
- TCR_ELx.T1SZ specifies the size for the upper VA range, translated using TTBR1_ELx.

For a stage of translation that supports only a single input address (IA) range

The TCR_ELx has a single T0SZ field, and IAs are translated using TTBR0_ELx.

Attempting to translate an address that is larger than the configured input address size generates a Translation fault. This means:

- For a TCR_ELx with a single T0SZ field and a 48-bit address size, Figure D5-2 on page D5-2544 shows the input address map:
Figure D5-2 AArch64 input address map when using a single TTBR and 48-bit input address size

- For a TCR_ELx with two TxSZ fields, the input address is always a VA, and Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2572 describes the VA address map.

For the EL1&0 translation regime when EL2 is enabled, when both stages of translation are enabled, if the output address from the stage 1 translation does not generate a stage 1 address size fault, and is larger than the input address specified by VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ, then the input address size check for the stage 2 translation generates a Translation fault.

Although software can configure the input address size to be smaller than 48 bits, all implemented AArch64 TTBR_ELxs must support input address sizes of up to 48 bits, and in an implementation that includes FEAT_LVA, all TTBR_ELxs must support input address sizes of up to 52 bits.

Overview of the VMSAv8-64 address translation stages on page D5-2558 gives more information about the relationship between the required input address size, the value of TxSZ, and the required initial lookup level, and how these are affected by the translation granule size. However:

**For all translation stages**

If FEAT_TTST is implemented, while the PE is executing in AArch64 state and is using 4KB or 16KB translation granules, the maximum TxSZ value is 48.

If FEAT_TTST is implemented, while the PE is executing in AArch64 state and is using 64KB translation granules, the maximum TxSZ value is 47.

If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum TxSZ value is 39.

If TxSZ is programmed to a value larger than the defined maximum then it is IMPLEMENTATION DEFINED whether:

- The implementation behaves as if the field is programmed to the maximum for all purposes other than reading back the value of the field.
- Any use of the TxSZ value generates a Level 0 Translation fault for the stage of translation at which TxSZ is used.

**For a stage 1 translation**

The effective minimum value of TxSZ is 16 if FEAT_LVA is not supported or if the translation granule that is in use is 4KB or 16KB in size. When FEAT_LVA is supported, for the 64KB translation granule size only, the effective minimum value of TxSZ is 12.

If TxSZ is programmed to a value smaller than the effective minimum value, and if FEAT_LVA is not supported, then it is IMPLEMENTATION DEFINED whether:

- The implementation behaves as if the field were programmed to 16 for all purposes other than reading back the value of the field.
- Any use of the TxSZ value generates a stage 1 level 0 Translation fault.
If $T_xSZ$ is programmed to a value smaller than the effective minimum value when FEAT_LVA is supported, then any use of the $T_xSZ$ value generates a stage 1 level 0 Translation fault.

For more information, see *Extending addressing above 48 bits* on page D5-2546.

**For a stage 2 translation**

Supported IPA size defines the effective minimum value of $T0SZ$, that depends on the supported PA size, and also describes the possible effects of programming $T0SZ$ to a value that is smaller than this effective minimum value.

**Supported IPA size**

When EL2 is enabled in the current Security state, for the EL1&0 translation regime, the maximum IPA size is the maximum input address size for the second stage of translation is specified by $VTCR\_EL2.T0SZ$ or $VSTCR\_EL2.T0SZ$. For more information, see *Input address size* on page D5-2543 and *Output address size* on page D5-2542.

The maximum IPA size is constrained by the implemented PA size that is specified by ID\_AA64MMFR0\_EL1.PARange, see *Physical address size* on page D5-2542.

The implemented PA size also constrains the value of $VTCR\_EL2.SL0$ and $VSTCR\_EL2.SL0$, that specifies the level of the initial lookup. SL0 also depends on the translation granule, as described in *Overview of the VMSAv8-64 address translation stages* on page D5-2558.

**Table D5-6 PA size implications for the $VTCR\_EL2$.$(T0SZ$, SL0) and $VSTCR\_EL2$.$(T0SZ$, SL0) fields**

<table>
<thead>
<tr>
<th>Supported PA size</th>
<th>Effective minimum $T0SZ$ value</th>
<th>Valid initial lookup levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bits</td>
<td>32 if EL1 is using AArch64</td>
<td>4KB granule 16KB granule 64KB granule</td>
</tr>
<tr>
<td></td>
<td>24 if EL1 is using AArch32</td>
<td>$3^a$, 2, 1 3, 2 3, 2</td>
</tr>
<tr>
<td>36 bits</td>
<td>28 if EL1 is using AArch64</td>
<td>$3^a$, 2, 1 3, 2 3, 2</td>
</tr>
<tr>
<td></td>
<td>24 if EL1 is using AArch32</td>
<td>$3^a$, 2, 1 3, 2 3, 2</td>
</tr>
<tr>
<td>40 bits</td>
<td>24</td>
<td>$3^a$, 2, 1 3, 2 3, 2</td>
</tr>
<tr>
<td>42 bits</td>
<td>22</td>
<td>$3^a$, 2, 1 3, 2 3, 2</td>
</tr>
<tr>
<td>44 bits</td>
<td>20</td>
<td>$3^a$, 2, 1, 0 3, 2, 1 3, 2, 1</td>
</tr>
<tr>
<td>48 bits</td>
<td>16</td>
<td>$3^a$, 2, 1, 0 3, 2, 1 3, 2, 1</td>
</tr>
<tr>
<td>52 bits</td>
<td>12</td>
<td>$3^a$, 2, 1, 0 3, 2, 1 3, 2, 1</td>
</tr>
</tbody>
</table>

a. Only supported if FEAT_TTST is implemented, while the PE is executing in AArch64 state.
b. Only supported if FEAT_LPA is implemented, and the PE is using the 64KB translation granule size.

If $VTCR\_EL2.SL0$ is programmed to represent an initial lookup level not shown in Table D5-6, or is programmed to a reserved value, then any memory access that uses the second stage of translation generates a stage 2 level 0 Translation fault.

If $VTCR\_EL2.T0SZ$ is programmed to a value smaller than the effective minimum value shown in Table D5-6, and if FEAT_LPA is not implemented, then the implementation consistently does one of the following:

- Treats the $VTCR\_EL2.T0SZ$ field as being programmed to the effective minimum value for all purposes other than reading back the value of the field.
- Treats the $VTCR\_EL2.T0SZ$ field as being programmed to the effective minimum value for all purposes other than:
  - Reading back the value of the field.
  - Checking whether the value of $VTCR\_EL2.T0SZ$ is consistent with the value of $VTCR\_EL2.SL0$. 

---

Table D5-6 PA size implications for the $VTCR\_EL2$.$(T0SZ$, SL0) and $VSTCR\_EL2$.$(T0SZ$, SL0) fields
Generates a stage 2 level 0 Translation fault on any memory access that uses the second stage of translation. If T0SZ is programmed to a value smaller than the effective minimum value when FEAT_LPA is supported, then any use of the T0SZ value generates a stage 2 level 0 Translation fault.

For more information, see *Extending addressing above 48 bits*.

--- Note ---

Programming VTCR_EL2.T0SZ to a value smaller than the effective minimum value shown in Table D5-6 on page D5-2545 can never provide support for a larger address range than the range given by the effective minimum value, because the stage 1 output address will give an Address size fault if it is larger than either:

- The PA size, for a VMSAv8-64 stage 1 translation.
- 40 bits, for a VMSAv8-32 stage 1 translation.

---

**Extending addressing above 48 bits**

Armv8.2 defines the following options for supporting 52-bit addressing:

**FEAT_LVA**

Supports 52-bit VAs when using the 64KB translation granule. The maximum IPA and PA sizes remain 48-bit unless FEAT_LPA is implemented.

**FEAT_LPA**

Supports 52-bit IPAs and PAs when using the 64KB translation granule. The maximum VA size remains 48-bit unless FEAT_LVA is implemented.

FEAT_LPA and FEAT_LVA can be implemented independently of each other.

When using the 64KB translation granule, FEAT_LPA supports Block descriptors in level 1 translation tables. In this case, a block covers a 4TB address range.

In all cases, 52-bit address ranges are supported only when using the 64KB translation granule. Maximum address sizes when using the other translation granules remain 48-bit.

See *Address size configuration* on page D5-2541 for how to configure use of 52-bit VAs when an implementation includes FEAT_LVA.

When using the 64KB translation granule, the 52-bit input address size is supported as follows:

- In an implementation that includes FEAT_LVA, for stage 1 translations the minimum value of TCR_ELx.TnSZ field is 12.
  
  If TCR_ELx.TnSZ is programmed to a value less than 12, any use of the TCR_ELx.TnSZ bit generates a stage 1 level 0 Translation fault.

- In an implementation that includes FEAT_LVA, for a stage 2 translation the effective minimum value of VTCR_EL2.T0SZ and VSTCR_EL2.T0SZ is 12.
  
  If VTCR_EL2.T0SZ or VSTCR_EL2.T0SZ is programmed to a smaller value than the effective minimum size, then any use of a stage 2 translation generates a stage 2 level 0 Translation fault.

Table D5-25 on page D5-2579 shows the translation table descriptor addressing for each level of lookup when using the 64KB translation granule.

In an implementation that includes FEAT_LPA and is using the 64KB translation granule:

- Bits[15:12] of each valid translation table descriptor hold bits[51:48] of the output address, or of the address of the translation table to be used for the initial lookup at the next level of translation. If the implementation does not support 52-bit physical addresses, then it is IMPLEMENTATION DEFINED whether non-zero values for these bits generate an Address size fault. In this case, not generating an Address Size Fault is deprecated.

- For a stage 1 translation, bits[5:2] of TTBR0_ELx or TTBR1_ELx holds bits[51:48] of the address of the translation table to be used for the initial lookup of that translation regime. If the implementation does not support 52-bit physical addresses, then non-zero values for these bits generate an Address size fault.
For a stage 2 translation, bits[5:2] of VTTBR_EL2 or VSTTBR_EL2 holds bits[51:48] of the address of the translation table to be used for the initial lookup of the stage 2 translation. If the implementation does not support 52-bit physical addresses, then non-zero values for these bits generate an Address size fault.

The minimum alignment of a translation table containing fewer than eight entries is 64 bytes.

Note
This is because, when the OA space is more than 48 bits, TTBR_ELx[5:2] specifies bits[51:48] of the translation table base address, and a translation table of fewer than eight entries would require one or more bits of TTBR_ELx[5:2] to be RES0 if the table was aligned to its size.

For more information, see VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats on page D5-2587 and Armv8 translation table level 3 descriptor formats on page D5-2591.

The ID_AA64MMFR2_EL1.VA field indicates the supported VA size. This field has the value 0x1 if the implementation includes FEAT_LVA.

The ID_AA64MMFR0_EL1.PArange field indicates the supported PA and IPA size. This field has the value 0x6 if the implementation supports 52-bit PAs.

In addition to the System registers discussed in this subsection, the FEAT_LPA and FEAT_LVA features affect the following System registers that contain addresses:

- HPAR_EL2.
- PAR_EL1.
- VBAR_EL1, VBAR_EL2, VBAR_EL3.
- DBGBVR<n> _EL1.
- DBGWVR<n> _EL1.
- MDRAR_EL1.
- LOREA_EL1.
- LORSA_EL1.

The larger VA, IPA, and PA addresses also affect the following System instructions for TLB maintenance:

- TLBI IPAS2E1.
- TLBI IPAS2E11S.
- TLBI IPAS2E1OS.
- TLBI IPAS2LE1.
- TLBI IPAS2LE11S.
- TLBI IPAS2LE1OS.
- TLBI RIAS2E1.
- TLBI RIAS2E11S.
- TLBI RIAS2E1OS.
- TLBI RIAS2LE1.
- TLBI RIAS2LE11S.
- TLBI RIAS2LE1OS.

Atomicity of register changes on changing virtual machine

From the viewpoint of software executing at EL1 or EL0, when there is a switch from one virtual machine to another, the registers that control or affect address translation must be changed atomically. This applies to the registers for the EL1&0, when EL2 is enabled, translation regime. This means that all of the following registers must change atomically:

- The registers associated with the stage 1 translations:
  - MAIR_EL1 and AMAIR_EL1.
  - TTBR0_EL1, TTBR1_EL1, TCR_EL1, and CONTEXTIDR_EL1.
  - SCTLR_EL1.
• The registers associated with the stage 2 translations:
  — VTTBR_EL2 and VTCR_EL2.
  — SCTLR_EL2.

—— Note ———
Only some bits of SCTLR_EL1 affect the stage 1 translation, and only some bits of SCTLR_EL2 affect the stage 2 translation. However, in each case, changing these bits requires a write to the register, and that write must be atomic with the other register updates.

These registers apply to execution using the EL1&0, when EL2 is enabled, translation regime. However, when updated as part of a switch of virtual machines they are updated by software executing at EL2. This means the registers are out of context when they are updated, and no synchronization precautions are required.

Similar considerations apply when FEAT_VHE is implemented.

Use of out-of-context translation regimes

The architecture requires that:

• When executing at EL3 or EL2, the PE must not use the registers associated with the EL1&0 translation regime for speculative memory accesses.

• When executing at EL3 the PE must not use the registers associated with the EL2 or EL2&0 translation regime for speculative memory accesses.

If SPE is not in use for a lower Exception level when entering an Exception level, on completion of a DSB instruction, then no new memory accesses using any translation table entries from a translation regime of an Exception level lower than the Exception level that has been entered will be observed by any observers, to the extent that those accesses are required to be observed as determined by the shareability and cacheability of those translation table entries.

If SPE is in use for a lower Exception level when entering an Exception level, on completion of a PSB CSYNC and a subsequent DSB instruction, then no new memory accesses using any translation table entries from a translation regime of an Exception level lower than the Exception level that has been entered will be observed by any observers, to the extent that those accesses are required to be observed as determined by the shareability and cacheability of those translation table entries.

—— Note ———
• This does not require that speculative memory accesses cannot be performed using those entries if it is impossible to tell that those memory accesses have been observed by the observers.

• This requirement does not imply that, on taking an exception to a higher Exception level, any translation table walks started before the exception was taken will be completed by the time the higher Exception level is entered, and therefore memory accesses required for such a translation table walk might, in effect, be performed speculatively. However, the execution of a DSB on entry to the higher Exception level ensures that these accesses are complete.

D5.2.4 Memory translation granule size

The memory translation granule size defines both:

• The maximum size of a single translation table.

• The memory page size. That is, the granularity of a translation table lookup.

VMSAv8-64 supports translation granule sizes of 4KB, 16KB, and 64KB. Support for each granule size is optional. If FEAT_GTG is implemented, support for granule size in Stage 1 is indicated as shown in Table D5-7 on page D5-2549, and support for granule size in Stage 2 is indicated as shown in Table D5-8 on page D5-2549. Otherwise, support for granule size in both Stages 1 and 2 is indicated as shown in Table D5-7 on page D5-2549:
### Table D5-7 Identifying supported granule sizes

<table>
<thead>
<tr>
<th>Granule size</th>
<th>Field</th>
<th>Values</th>
<th>Support indicated by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB</td>
<td>ID_AA64MMFR0_EL1.TGran4</td>
<td>0b0000</td>
<td>4KB granule size supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1111</td>
<td>4KB granule size not supported.</td>
</tr>
<tr>
<td>16KB</td>
<td>ID_AA64MMFR0_EL1.TGran16</td>
<td>0b0000</td>
<td>16KB granule size not supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001</td>
<td>16KB granule size supported.</td>
</tr>
<tr>
<td>64KB</td>
<td>ID_AA64MMFR0_EL1.TGran64</td>
<td>0b0000</td>
<td>64KB granule size supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1111</td>
<td>64KB granule size not supported.</td>
</tr>
</tbody>
</table>

### Table D5-8 Identifying supported granule sizes for Level 2 translation

<table>
<thead>
<tr>
<th>Granule size</th>
<th>Field</th>
<th>Values</th>
<th>Support indicated by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB</td>
<td>ID_AA64MMFR0_EL1.TGran4_2</td>
<td>0b0010</td>
<td>4KB granule size supported at stage 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001</td>
<td>4KB granule size not supported at stage 2.</td>
</tr>
<tr>
<td>16KB</td>
<td>ID_AA64MMFR0_EL1.TGran16_2</td>
<td>0b0010</td>
<td>16KB granule size supported at stage 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001</td>
<td>16KB granule size not supported at stage 2.</td>
</tr>
<tr>
<td>64KB</td>
<td>ID_AA64MMFR0_EL1.TGran64_2</td>
<td>0b0010</td>
<td>64KB granule size supported at stage 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001</td>
<td>64KB granule size not supported at stage 2.</td>
</tr>
</tbody>
</table>

--- **Note**

From a hardware viewpoint, the TGran*_2 fields hold the same information as the corresponding TGran* fields.

---

In VMSAv8-64, each address translation stage is configured, independently, to use one of the supported granule sizes.

--- **Note**

- Using a larger granule size can reduce the maximum required number of levels of address lookup because:
  - The increased translation table size means the translation table holds more entries. This means a single lookup can resolve more bits of the input address.
  - The increased page size means more of the least-significant address bits are required to address a page. These address bits are flat mapped from the input address to the output address, and therefore do not require translation.

- Arm recommends that memory-mapped peripherals are separated by an integer multiple of the largest granule size supported by the operating system or hypervisor, to allow each peripheral to be managed independently.
Table D5-9 summarizes the effects of the different granule sizes.

<table>
<thead>
<tr>
<th>Property</th>
<th>4KB granule</th>
<th>16KB granule</th>
<th>64KB granule</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of entries in a translation table</td>
<td>512</td>
<td>2048 (2K)</td>
<td>8192 (8K)</td>
<td>-</td>
</tr>
<tr>
<td>Address bits resolved in one level of lookup</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>$2^9=512$, $2^{11}=2K$, $2^{13}=8K$</td>
</tr>
<tr>
<td>Page size</td>
<td>4KB</td>
<td>16KB</td>
<td>64KB</td>
<td>-</td>
</tr>
</tbody>
</table>

How the granule size affects the address translation process

As Table D5-9 shows, the translation granule determines the number of address bits:
- Required to address a memory page.
- That can be resolved in a single translation table lookup.

This means the translation granule determines how the input address (IA) is resolved to an output address (OA) by the translation process.

Because a single translation table lookup can resolve only a limited number of address bits, the IA to OA resolution requires multiple levels of lookup.

Considering the resolution of an IA range of 48 bits, with a translation granule size of $2^n$ bytes:
- The least-significant $n$ bits of the IA address the memory page. This means $OA[(n-1):0]=IA[(n-1):0]$.
- The remaining ($48-n$) bits of the IA, $IA[47:n]$, must be resolved by the address translation.
- A translation table descriptor is 8 bytes. Therefore:
  - A complete translation table holds $2^{(n-3)}$ descriptors.
  - A single level of translation can resolve a maximum of $(n-3)$ bits of address.

Consider the translation process, working back from the final level of lookup, that resolves the least significant of the address bits that require translation. Because the translation needs to resolve $IA[47:n]$ and a level of lookup can resolve $(n-3)$ bits of address:
- The final level of lookup resolves $IA[(2n-4):n]$.
- The previous level of lookup resolves $IA[(3n-7):(2n-3)]$.

However, the level of lookup that resolves the most significant bits of the IA might not require a full-sized translation table. Therefore, in general, for a 48-bit IA the address bits resolved in a level of lookup are:
$IA[\text{Min}(47, ((3-m)(n-3)+2n-4):(n+(3-m)(n-3))]$, where:

$\text{Min}(a, b)$ is a function that returns the minimum of $a$ and $b$.

$m$ indicates the level of lookup. This is defined so that the level that resolves the least significant bit of the translated IA bits is level 3.

The following diagrams show this model, for each of the permitted granule sizes.

Figure D5-3 on page D5-2551 shows how a 48-bit IA is resolved when using the 4KB translation granule.
Figure D5-3 How a 48-bit IA is resolved when using the 4KB translation granule

Figure D5-4 shows how a 48-bit IA is resolved when using the 16KB translation granule.

Figure D5-4 How a 48-bit IA is resolved when using the 16KB translation granule

Figure D5-5 on page D5-2552 shows how a 48-bit IA is resolved when using the 64KB translation granule.
Figure D5-5 How a 48-bit IA is resolved when using the 64KB translation granule

In an implementation that includes FEAT_LVA and is using the 64KB translation granule:

- The IA range that can be addressed by the level 1 lookup is IA[51:42].
- The level 1 lookup can directly address a block of memory, returning OA[51:42].

Note
The increased IA range means the size of the indexed level 1 translation table is increased.

Later sections of this chapter give more information about the translation process, and explain the terminology used in these figures.

Effect of granule size on translation table addressing and indexing

Table D5-10 shows the effect of the translation granule size on the addressing and indexing of the TTBR_ELx, and on the input address range that must be resolved.

<table>
<thead>
<tr>
<th>Granule size</th>
<th>Translation table Addressed by</th>
<th>Indexed by</th>
<th>Translation resolvesa</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB</td>
<td>TTBR_ELx[47:12]</td>
<td>IA[47:12]</td>
<td>One level of lookup resolves up to 9 bits of IA</td>
<td></td>
</tr>
<tr>
<td>16KB</td>
<td>TTBR_ELx[47:14]</td>
<td>IA[47:14]</td>
<td>One level of lookup resolves up to 11 bits of IA</td>
<td></td>
</tr>
<tr>
<td>64KB</td>
<td>TTBR_ELx[47:16]d</td>
<td>IA[47:16]d</td>
<td>One level of lookup resolves up to 13 bits of IA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTBR_ELx[5:2, 47:16]</td>
<td>IA[51:16]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. When translating a maximum-sized input address, and accessing a page of memory.
b. Where the value of x depends on the lookup level, see Table D5-11 on page D5-2553.
c. Depending on the IA size, the initial lookup might resolve fewer bits of the IA.
d. For the 64KB granule entries in the Addressed by and Translation resolves columns, the second entry applies to an implementation that includes FEAT_LVA and has selected an IA space larger than 47 bits, see Extending addressing above 48 bits on page D5-2546. The first entry applies otherwise.
Table D5-11 shows the IA bits resolved at each level of lookup, and how these correspond to the possible values of $x$ in Table D5-10 on page D5-2552.

Table D5-11 IA bits resolved at different levels of lookup

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>4KB granule size</th>
<th>16KB granule size</th>
<th>64KB granule size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>IA[47:39], $x = 39$</td>
<td>IA[47:a], $x = 47$</td>
<td>(^\text{b})</td>
</tr>
<tr>
<td>First</td>
<td>IA[38:30], $x = 30$</td>
<td>IA[46:36], $x = 36$</td>
<td>IA[47:a:42], $x = 42$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IA[51:a:42], $x = 42$</td>
</tr>
<tr>
<td>Second</td>
<td>IA[29:21], $x = 21$</td>
<td>IA[35:25], $x = 25$</td>
<td>IA[41:29], $x = 29$</td>
</tr>
<tr>
<td>Third</td>
<td>IA[20:12], $x = 12$</td>
<td>IA[24:14], $x = 14$</td>
<td>IA[28:16], $x = 16$</td>
</tr>
</tbody>
</table>

a. Smaller value than indicated in Table D5-10 on page D5-2552, as explained in this section.
b. Level 0 lookup not possible with 64KB granule size
c. The second entry applies to an implementation that includes FEAT_LVA and has selected an IA space larger than 47 bits, see Extending addressing above 48 bits on page D5-2546, The first entry applies otherwise.

Table D5-10 on page D5-2552 refers to accessing a complete translation table, of 4KB, 16KB, or 64KB. However, the Armv8 translation system supports the following possible variations from the information in Table D5-10 on page D5-2552:

Reduced IA width

Depending on the configuration and implementation choices, the required input address width for the initial level of lookup might be smaller than the number of address bits that can be resolved at that level. This means that, for this initial level of lookup:

- The translation table size is reduced. For each 1 bit reduction in the input address size the size of the translation table is halved.

Note
This has no effect on the translation table size for subsequent levels of lookup, for which the lookups always use full-sized translation tables.
For a stage 2 translation, it might be possible to start the translation at a lower level, see Concatenated translation tables on page D5-2554.

- More low-order TTBR_ELx bits are needed to hold the translation table base address.

Example D5-1 shows how this applies to translating a 35-bit input address range using the 4KB granule.

Example D5-1 Effect of an IA width of 35 bits when using the 4KB granule size

With a 4KB granule size, a single level of lookup can resolve up to 9 bits of IA. If an implementation has a 35-bit input address range, IA[34:0], Table D5-11 shows that lookup must start at level 1, and that the initial lookup must resolve IA[34:30], meaning it resolves 5 bits of address: This 4-bit reduction in the required resolution means:

- The translation table size is divided by $2^4$, giving a size of 256B.
- The TTBR_ELx requires 4 more bits for the translation table base address, which becomes TTBR_ELx[47:8].

When using the 64KB translation granule to translate the maximum IA size of 48 bits, Table D5-11 shows that a level 1 lookup must resolve only IA[47:42]. This is 6 bits of address, compared to the 13 bits that can be resolved at a single level of lookup. This 7-bit reduction in the required resolution means:

- The translation table size is divided by $2^7$, giving a size of 512B.
• The TTBR_ELx requires 7 more bits for the translation table base address, which becomes TTBR_ELx[47:9].

**Concatenated translation tables**

For stage 2 address translations, for the initial lookup, up to 16 translation tables can be concatenated. This means additional IA bits can be resolved at that lookup level. The block of concatenated translation tables must be aligned to the size of the block of translation tables.

This means that each additional IA bit resolved:

• Doubles the number of translation tables required. Resolving an additional $n$ bits requires $2^n$ concatenated translation tables at the initial lookup level.
• Reduces by 1 bit the width of the translation table base address held in the TTBR_ELx.

This means that, for the initial lookup of a stage 2 translation table, the IA ranges shown in Table D5-11 on page D5-2553 can be extended by up to 4 bits. Example D5-2 shows how concatenation can be used to resolve a 40-bit IA when using the 4KB translation granule.

**Example D5-2 Concatenating translation tables to resolve a 40-bit IA range, with the 4K granule**

Table D5-11 on page D5-2553 shows that, when using the 4KB translation granule, a level 1 lookup can resolve a 39-bit IA, with the first lookup resolving IA[38:30]. For a stage 2 translation, to extend the IA width to 40 bits and resolve IA[39:30] with the first lookup:

• Two translation tables are concatenated, giving a total size of 8KB.
• The TTBR_ELx requires 1 fewer bit for the translation table base address, which becomes TTBR_ELx[47:13].

For more information, see *Use of concatenated translation tables for the initial stage 2 lookup* on page D5-2574.

In all cases, the translation table, or block of concatenated translation tables, must be aligned to the actual size of the table or block of concatenated tables.

The translation table base address held in the TTBR_ELx is defined in the OA map for that stage of address translation. The information given in this section assumes this stage of translation has the maximum OA size, meaning the translation table base address is:

• TTBR_ELx[47:12] if using the 4KB translation granule.
• TTBR_ELx[47:14] if using the 16KB translation granule.
• TTBR_ELx[47:16] if using the 64KB translation granule with an OA of 48 bits.
• In an implementation that includes FEAT_LPA and is using the 64KB translation granule, OA[51:16], where:
  — TTBR_ELx[5:2] holds OA[51:48].
  — TTBR_ELx[47:16] holds OA[47:16].

If the OA address is smaller than 48 bits then the upper bits of this field must be written as zero. For example, for a 40-bit OA range:

• If using the 4KB translation granule:
  — TTBR_ELx[47:40] must be set to zero.
  — TTBR_ELx[39:12] holds the translation table base address.
• If using the 16KB translation granule:
  — TTBR_ELx[47:40] must be set to zero.
  — TTBR_ELx[39:14] holds the translation table base address.
• If using the 64KB translation granule:
  — TTBR_ELx[47:40] must be set to zero.
  — TTBR_ELx[39:16] holds the translation table base address.
In all cases, if TTBR_ELx[47:40] is not zero, any attempt to access the translation table generates an Address size fault.

### D5.2.5 Translation tables and the translation process

The following subsections describe general properties of the translation tables and translation table walks, that are largely independent of the translation table format:

- **Translation table walks.**
- **Ordering of memory accesses from translation table walks** on page D5-2557.
- **Security state of translation table lookups** on page D5-2557.
- **Control of translation table walks** on page D5-2558.

See also **Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported** on page D5-2572.

#### Translation table walks

A translation table walk comprises one or more translation table lookups. The translation table walk is the set of lookups that are required to translate the VA to the PA. For the EL1&0, when EL2 is enabled, translation regime, this set includes lookups for both the stage 1 translation and the stage 2 translation, but translation table walk can also be used to refer to either:

- The set of lookups required for the stage 1 translation, that translates the VA to the IPA. This is the stage 1 translation table walk.
- The set of lookups required for the stage 2 translation, that translates the IPA to the PA. This is the stage 2 translation table walk.

The information returned by a successful translation table walk is:

- The required PA. If the access is from Secure state this includes identifying whether the access is to the Secure PA space or the Non-secure PA space, see **Security state of translation table lookups** on page D5-2557.
- The memory attributes for the target memory region, as described in **Memory types and attributes** on page B2-153. For more information about how the translation table descriptors specify these attributes, see **Memory region attributes** on page D5-2622.
- The access permissions for the target memory regions. For more information about how the translation table descriptors specify these permissions, see **Memory access control** on page D5-2600.

The translation table walk starts with a read of the translation table for the initial lookup. The TTBR_ELx for the stage of translation holds the base address of this table. Each translation table lookup returns a descriptor, that indicates one of the following:

- The entry is the final entry of the walk. In this case, the entry contains the OA, and the permissions and attributes for the access.
- An additional level of lookup is required. In this case, the entry contains the translation table base address for that lookup. In addition:
  - The descriptor provides hierarchical attributes that are applied to the final translation, see **Hierarchical control of Secure or Non-secure memory accesses** on page D5-2599 and **Hierarchical control of data access permissions** on page D5-2605.
  - If the translation is in a Secure translation regime, the descriptor indicates whether that base address is in the Secure or Non-secure address space, unless a hierarchical control at a previous level of lookup has indicated that it must be in the Non-secure address space.
- The descriptor is invalid. In this case, the memory access generates a Translation fault.

Figure D5-6 on page D5-2556 gives a generalized view of a single stage of address translation where three levels of lookup are required.
A translation table lookup from VMSAv8-64 performs a single-copy atomic 64-bit access to the translation table entry. This means the translation table entry is treated as a 64-bit object for the purpose of endianness. SCTLR_ELx.EE determines the endianness of the translation table lookups.

**Note**

Dynamically changing translation table endianness

Because any change to an SCTLR_ELx.EE, bit requires synchronization before it is visible to subsequent operations, Arm strongly recommends that any EE bit is changed only when either:

- Executing at an Exception level that does not use the translation tables affected by the EE bit being changed.
- Executing with address translation disabled for any stage of translation affected by the EE bit being changed.

Address translation stages are disabled by setting an SCTLR_ELx.M bit or the HCR_EL2.VM bit to 0. See the appropriate register description for more information.

The appropriate TTBR_ELx holds the output address of the base of the translation table used for the initial lookup, and:

- For all address translation stages other than EL1&0, when EL2 is enabled, stage 1 translations, the output address held in the TTBR_ELx, and any translation table base address returned by a translation table descriptor, is the PA of the base of the translation table.
- For EL1&0, when EL2 is enabled, stage 1 translations, the output address held in the TTBR_ELx, and any translation table base address returned by a translation table descriptor, is the IPA of the base of the translation table. This means that if stage 2 address translation is enabled, each of these OAs is subject to second stage translation.

**Note**

TLB caching can be used to minimize the number of translation table lookups that must be performed. For the EL1&0, when EL2 is enabled, translation regime, because each stage 1 OA generated during a translation table walk is subject to a stage 2 translation, if the caching of translation table entries is ineffective, a VA to PA address translation with two stages of translation can give rise to multiple translation table lookups. The number of lookups required is given by the following equation:

\[(S1+1)*(S2+1) - 1\]

Where, for this translation regime, \(S1\) is the number of levels of lookup required for a stage 1 translation, and \(S2\) is the number of levels of lookup required for a stage 2 translation.
The TCR_ELx determines the memory cacheability and shareability attributes that apply, for the corresponding stage of translation, to all translation table lookups generated by that stage of translation.

The Normal memory type is the memory type defined for a translation table lookup for a stage of translation.

--- Note ---

- In a two-stage translation regime, a translation table lookup from stage 1, that has the Normal memory type defined at stage 1 by this rule, can still be given the Device memory type as part of the stage 2 translation of that address. Arm strongly recommends against such a remapping of the memory type, and the architecture includes a trap of this behavior to EL2. For more information, see Stage 2 fault on a stage 1 translation table walk on page D5-2651.

- The rules about mismatched attributes given in Mismatched memory attributes on page B2-163 apply to the relationship between translation table walks and explicit memory accesses to the translation tables in the same way that they apply to the relationship between different explicit memory accesses to the same location. For this reason, Arm strongly recommends that the attributes that the TCR_ELx applies to the translation tables are the same as the attributes that are applied for explicit accesses to the memory that holds the translation tables.

For more information, see Overview of the VMSA v8-64 address translation stages on page D5-2558.

See also Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2572.

### Ordering of memory accesses from translation table walks

A translation table walk is considered to be a separate observer. An explicit write to the translation tables might be observed by that separate observer for either of the following:

- A translation table walk caused by a different explicit write generated by the same instruction.
- A translation table walk caused by an explicit access generated by any instruction appearing in program order after the instruction doing the explicit write to the translation table.

The explicit write to the translation tables is guaranteed to be observable, to the extent required by the shareability attributes, only after the execution of a DSB instruction. This DSB instruction and the instruction that performed the explicit write to the translation tables must have been executed by the same PE.

Any writes to the translation tables are not observed by the translation table walks of an explicit memory access generated by a load or store that occurs in program order before the instruction that performs the write to the translation tables.

If FEAT_ETS is implemented, and a memory access RW1 is Ordered-before a second memory access RW2, then RW1 is also Ordered-before any translation table walk generated by RW2 that generates any of the following:

- A Translation fault.
- An Address size fault.
- An Access flag fault.

### Security state of translation table lookups

For a Non-secure translation regime, all translation table lookups are performed to Non-secure output addresses.

For a Secure translation regime, for the first stage of translation, the initial translation table lookup is performed to a Secure IPA.

If the translation table descriptor returned as a result of that initial lookup points to a second translation table, then the NSTable bit in that descriptor determines whether that translation table lookup is made to a Secure or to a Non-secure IPA.

This applies for all subsequent translation table lookups as part of that translation table walk, with the additional rule that any translation table descriptor that is returned from Non-secure memory is treated as if the NSTable bit in that descriptor indicates that the subsequent translation table lookup is to Non-secure memory.
Where the Secure IPA from a first stage translation table is translated by the second stage translation, the security of the output address of that memory access is determined by:

- For accesses made to Secure IPA space, the VSTCR_EL2.SA bit.
- For accesses made to Non-secure IPA space, the VTCR_EL2.NSA bit.

For a Secure translation regime, for the second stage of translation, the security of the output address of the translation table walk is determined by:

- For translation table walks for the Secure IPA space, the VSTCR_EL2.SW bit.
- For translation table walks for the Non-secure IPA space, the VTCR_EL2.NSW bit.

### Control of translation table walks

When stage 1 translations of a translation can support two VA ranges the TCR_ELx.{EPD0, EPD1} bits determine whether, for that regime, the two sets of translation tables for stage 1 are valid. EPD0 indicates whether the tables that TTBR0_ELx points to is valid, and EPD1 indicates whether the tables that TTBR1_ELx points to is valid. The effect of these bits is:

- \( EPD_n = 0 \) The translation tables are valid, and can be used for a translation table lookup.
- \( EPD_n = 1 \) If a TLB miss occurs based on TTBR_ELx, a Translation fault is returned, and no translation table walk is performed. The fault is reported as a level 0 fault.

### D5.2.6 Overview of the VMSAv8-64 address translation stages

As shown in Memory translation granule size on page D5-2548, the granule size determines significant aspects of the address translation process. Effect of granule size on translation table addressing and indexing on page D5-2552 shows, for each granule size:

- How the required input address range determines the required initial lookup levels.
- For stage 2 translations, the possible effect described in Concatenated translation tables on page D5-2554.
- The TTBR_ELx addressing and indexing for the initial lookup.

The following subsections summarize the multiple levels of lookup that can be required for a single stage of address translation that might require the maximum number of lookups:

- Overview of VMSAv8-64 address translation using the 4KB translation granule.
- Overview of VMSAv8-64 address translation using the 16KB translation granule on page D5-2561.
- Overview of VMSAv8-64 address translation using the 64KB translation granule on page D5-2566.

#### Overview of VMSAv8-64 address translation using the 4KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.
**Overview of stage 1 translations, 4KB granule**

For a stage 1 translation, the required initial lookup level is determined only by the required input address range specified by the corresponding TCR_ELx.TnSZ field. When using the 4KB translation granule, Table D5-12 shows this requirement.

<table>
<thead>
<tr>
<th>Initial lookup level</th>
<th>TnSZ(_{\text{min}})</th>
<th>IA(_{\text{max}})</th>
<th>TnSZ(_{\text{max}})</th>
<th>IA(_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>IA[47:12]</td>
<td>24</td>
<td>IA[39:12]</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>IA[38:12]</td>
<td>33</td>
<td>IA[30:12]</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>IA[29:12]</td>
<td>42(^b)</td>
<td>IA[21:12]</td>
</tr>
<tr>
<td>3(^c)</td>
<td>43</td>
<td>IA[20:12]</td>
<td>48(^c)</td>
<td>IA[15:12]</td>
</tr>
</tbody>
</table>

\(\text{Note}\)  
Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 4KB translation granule, IA[11:0] = OA[11:0] for all translations.

Figure D5-7 shows the stage 1 address translation, for an address translation using the 4KB granule with an input address size greater than 39 bits.

---

**Table D5-12 TCR_ELx.TnSZ values and IA ranges, 4KB granule with no concatenation of tables**

<table>
<thead>
<tr>
<th>Initial lookup level</th>
<th>TnSZ(_{\text{min}})</th>
<th>IA(_{\text{max}})</th>
<th>TnSZ(_{\text{max}})</th>
<th>IA(_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>IA[47:12]</td>
<td>24</td>
<td>IA[39:12]</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>IA[38:12]</td>
<td>33</td>
<td>IA[30:12]</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>IA[29:12]</td>
<td>42(^b)</td>
<td>IA[21:12]</td>
</tr>
<tr>
<td>3(^c)</td>
<td>43</td>
<td>IA[20:12]</td>
<td>48(^c)</td>
<td>IA[15:12]</td>
</tr>
</tbody>
</table>

\(^a\) The IAs show the address bits to be resolved when addressing a page of memory, see the Note that follows.  
\(^b\) If FEAT_TTST is not implemented, or while the PE is executing in AArch32 state, TnSZ\(_{\text{max}}\) is 39.  
\(^c\) Only available if FEAT_TTST is implemented, while the PE is executing in AArch64 state.
Overview of stage 2 translations, 4KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on page D5-2574.

When using the 4KB translation granule, Table D5-13 shows all possibilities for the initial lookup for a stage 2 translation.

Table D5-13 VTCR_EL2.T0SZ values and IA ranges, 4KB granule with possible concatenation of translation tables

<table>
<thead>
<tr>
<th>Tables a</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial lookup level (SL0 value)</td>
<td>T0SZ values and input address ranges b for starting at this level</td>
<td>T0SZ</td>
<td>IA</td>
<td>T0SZ</td>
<td>IA</td>
</tr>
<tr>
<td>0 (2)</td>
<td>16-24</td>
<td>IA[47:12]-IA[39:12]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-12 on page D5-2559.
b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that follows.
c. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum value of T0SZ is 39 with corresponding IA[29:12]-IA[24:12].
d. If FEAT_TTST is implemented, while the PE is executing in AArch64 state, and is using 4KB granules, an initial lookup level 3, (VTCR_EL2.SL0 ==3) is possible.

Note

• Because concatenating translation tables reduces the number of levels of lookup required, when using the 4KB translation granule, tables cannot be concatenated at level 0.

• Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 4KB translation granule, IA[11:0] = OA[11:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted VTCR_EL2.\{T0SZ, SL0\} values. Table D5-13 shows the permitted T0SZ values for each initial lookup level.

If, when a translation table walk is started, the T0SZ value is not consistent with the SL0 value, or VTCR_EL2.SL0 is programmed to a reserved value, a stage 2 level 0 Translation fault is generated.

Figure D5-8 on page D5-2561 shows the stage 2 address translation, in a PE without FEAT_TTST, for an input address size of between 40 and 43 bits. For an input address size in this range, the lookup can start at either level 0 or level 1.
Overview of VMSAv8-64 address translation using the 16KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.
Overview of stage 1 translations, 16KB granule

For a stage 1 translation, the required initial lookup level is determined only by the required input address range specified by the corresponding TCR_ELx.TnSZ field. When using the 16KB translation granule, Table D5-14 shows this requirement.

Table D5-14 TCR_ELx.TnSZ values and IA ranges, 16KB granule with no concatenation of tables

<table>
<thead>
<tr>
<th>Initial lookup level</th>
<th>TnSZ min</th>
<th>IA max</th>
<th>TnSZ max</th>
<th>IA min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>IA[47:14]</td>
<td>16</td>
<td>IA[47:14]</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>IA[24:14]</td>
<td>48(^b)</td>
<td>IA[15:14]</td>
</tr>
</tbody>
</table>

a. The IAs show the address bits to be resolved when addressing a page of memory, see the Note that follows.
b. If FEAT_TTST is not implemented, the maximum is 39.

The configuration options for an initial lookup at level 1, level 2, or level 3 are also permitted for stage 2 translations, but stage 2 translation does not permit an initial lookup at level 0.

---

**Note**

- When using the 16KB translation granule, a maximum of 1 bit of IA is resolved by a level 0 lookup.
- Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 16KB translation granule, IA[13:0] = OA[13:0] for all translations.

Figure D5-9 shows the stage 1 address translation, for an address translation using the 16KB granule with an input address size of 48 bits.
Overview of stage 2 translations, 16KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on page D5-2574.

When using the 16KB granule, for a stage 2 translation with an input address sized of 48 bits, the initial lookup must be at level 1, with two concatenated translation tables at this level.

When using the 16KB translation granule, Table D5-15 shows all possibilities for the initial lookup for a stage 2 translation.

Table D5-15 VTCR_EL2.T0SZ values and IA ranges, 16KB granule with possible concatenation of translation tables

<table>
<thead>
<tr>
<th>Tables¹</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial lookup level (SL0 value)</td>
<td>T0SZ values and input address rangesb for starting at this level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T0SZ</td>
<td>IA</td>
<td>T0SZ</td>
<td>IA</td>
<td>T0SZ</td>
</tr>
<tr>
<td>1 (2)</td>
<td>17-27</td>
<td>IA[46:14]-IA[36:14]</td>
<td>16</td>
<td>IA[47:14]</td>
<td>-</td>
</tr>
</tbody>
</table>

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-14 on page D5-2562.

b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that follows.

c. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum value of T0SZ is 39 with corresponding IA[24:12].

Note

- When using the 16KB translation granule for a stage 2 translation, the initial lookup cannot be at level 0. When a 48-bit input address is required, translation must start with a level 1 lookup using two concatenated translation tables.
- Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 16KB translation granule, IA[13:0] = OA[13:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted VTCR_EL2.T0SZ, SL0 values. Table D5-15 shows the permitted values of T0SZ for each initial lookup level.

If, when a translation table walk is started, the T0SZ value is not consistent with the SL0 value, or VTCR_EL2.SL0 is programmed to a reserved value, a stage 2 level 0 Translation fault is generated.

When stage 2 translation supports a 48-bit input address range, translation must start with a level 1 lookup using two concatenated translation tables. Figure D5-10 on page D5-2564 shows the translation for this case.
However, for an input address size of between 37 and 40 bits, Table D5-15 on page D5-2563 shows that translation can start with either a level 1 lookup or a level 2 lookup, and Figure D5-11 on page D5-2565 shows these options.
VTCR_EL2:SL0 defines the start level.

Starting at level 1

Level 1 table
D_Table

Level 2 table
D_Block
D_Table

Level 3 table
D_Page
16KB memory page

Starting at level 2

Level 2 table
D_Block
D_Table

Level 3 table
D_Page
16KB memory page

Key for both diagrams:
- D_Table is a Table descriptor
- D_Block is a Block descriptor
- D_Page is a Page descriptor
- a Indexed by IA[36:36], where IA width is (n+1) bits
- b1 Indexed by IA[35:25]
- b2 Indexed by IA[n:25], where IA width is (n+1) bits
- c Indexed by IA[24:14]

Up to 16 concatenated tables at the initial level

Figure D5-11 General view of VMSAv8-64 stage 2 address translation, 16KB granule
Overview of VMSAv8-64 address translation using the 64KB translation granule

The requirements for the level of the initial lookup are different for stage 1 and stage 2 translations.

Overview of stage 1 translations, 64KB granule

For a stage 1 translation, the required initial lookup level is determined only by the required input address range specified by the corresponding TCR_ELx.TxSZ field. When using the 64KB translation granule, Table D5-16 shows this requirement.

### Table D5-16 TCR_ELx.TnSZ values and IA ranges, 64KB granule with no concatenation of tables

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>TnSZ values for and input address rangesa for starting at this level</th>
<th>TnSZ min</th>
<th>IA max</th>
<th>TnSZ max</th>
<th>IA min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>12 IA[51:16]</td>
<td>21</td>
<td>IA[42:16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16 IA[47:16]</td>
<td>21</td>
<td>IA[42:16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22 IA[41:16]</td>
<td>34</td>
<td>IA[29:16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>35 IA[28:16]</td>
<td>47c</td>
<td>IA[16:16]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The IAs show the address bits to be resolved when addressing a page of memory, see the Note that follows.
b. Supported only if FEAT_LVA is implemented and the 64KB translation granule is used, see Extending addressing above 48 bits on page D5-2546.
c. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum value of TnSZ is 39 with IA[24:16].

These configuration options are also permitted for stage 2 translations.

--- Note ---

- When using the 64KB translation granule, there are no level 0 lookups.
- Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 64KB translation granule, IA[15:0] = OA[15:0] for all translations.
- When FEAT_LPA is implemented, a level 1 block attribute is supported when using the 64KB granule.

Figure D5-12 on page D5-2567 shows the stage 1 address translation, for an address translation using the 64KB granule with an input address size greater than 42 bits.
Overview of stage 2 translations, 64KB granule

For a stage 2 translation, up to 16 translation tables can be concatenated at the initial lookup level. For certain input address sizes, concatenating tables in this way means that the lookup starts at a lower level than would otherwise be the case. For more information, see Use of concatenated translation tables for the initial stage 2 lookup on page D5-2574.

When using the 64KB translation granule, Table D5-17 shows all possibilities for the initial lookup for a stage 2 translation.

Table D5-17 VTCR_EL2.T0SZ values and IA ranges, 64KB granule with possible concatenation of translation tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial lookup level (SL0 value)</td>
<td>T0SZ</td>
<td>IA</td>
<td>T0SZ</td>
<td>IA</td>
<td>T0SZ</td>
</tr>
<tr>
<td>1c (2)</td>
<td>12-21</td>
<td>IA[51:16]-IA[48:16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 (2)</td>
<td>16-21</td>
<td>IA[47:16]-IA[42:16]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a. Number of concatenated translation tables at the initial lookup level. 1 table corresponds to no concatenation, also shown in Table D5-16 on page D5-2566.

b. The IAs shown in the table indicate the address bits to be resolved by an address translation addressing a page of memory, see the Note that follows.
c. Only supported if the PA size is 52 bits, see *Extending addressing above 48 bits on page D5-2546.*

d. If FEAT_TTST is not implemented or while the PE is executing in AArch32 state, the maximum T0SZ value is 39, with IA[24:16].

---

**Note**

- When using the 64KB translation granule, there are no level 0 lookups.
- Because concatenating translation tables reduces the number of levels of lookup required, when using the 64KB translation granule, tables cannot be concatenated at level 1.
- Some bits of the IA do not require resolution by the translation table lookup, because they always map directly to the OA. When using the 64KB translation granule, IA[15:0] = OA[15:0] for all translations.

Because the maximum number of concatenated translation tables is 16, there is a relationship between the permitted VTCR_EL2.{T0SZ, SL0} values. Table D5-17 on page D5-2567 shows the permitted values of T0SZ for each initial lookup level.

If, when a translation table walk is started, the T0SZ value is not consistent with the SL0 value, or VTCR_EL2.SL0 is programmed to a reserved value, a stage 2 level 0 Translation fault is generated.

Figure D5-13 shows the stage 2 address translation, for an input address size of between 43 and 46 bits. This means the lookup can start at either level 1 or level 2.

---

**Key for both diagrams**

- D_Table is a Table descriptor
- D_Block is a Block descriptor
- D_Page is a Page descriptor
- a Indexed by IA[n:42], where IA width is (n+1) bits
- b1 Indexed by IA[41:29]
- b2 Indexed by IA[n:29], where IA width is (n+1) bits
- c Indexed by IA[28:16]

**Figure D5-13 General view of VMSAv8-64 stage 2 address translation, 64KB granule**
D5.2.7 The VMSAv8-64 translation table format

This section provides the full description of the VMSAv8-64 translation table format, its use for address translations that are controlled by an Exception level using AArch64. For these translation regimes:

For a stage 1 translation that can support two VA ranges

- For the lower VA range, that uses TTBR0_ELx:
  - The TCR_ELx.{SH0, ORGN0, IRGN0} fields define memory region attributes for the translation table walks.
  - The TCR_ELx.TG0 field defines the Translation granule size.
- For the upper VA range, that uses TTBR1_ELx:
  - The TCR_ELx.{SH1, ORGN1, IRGN1} fields define memory region attributes for the translation table walks.
  - The TCR_ELx.TG1 field defines the Translation granule size.
- Each of TTBR0_ELx and TTBR1_ELx contains an ASID field, and the TCR_ELx.A1 field selects which of these specifies the ASID to use.

For a stage 1 translation that supports only one VA range

The translation table walks use TTBR0_ELx, and:

- The TCR_ELx.{SH0, ORGN0, IRGN0} fields define memory region attributes for the translation table walks.
- The TCR_ELx.TG0 field defines the Translation granule size.

For a stage 2 translation

The Non-secure translation table walks use VTTBR_EL2, and:

- The VTCR_EL2.{SH0, ORGN0, IRGN0} fields define memory region attributes for the translation table walks.
- The VTCR_EL2.TG0 field defines the Translation granule size.

The Secure translation table walks use VSTTBR_EL2, and:

- The VSTCR_EL2.{SH0, ORGN0, IRGN0} fields define memory region attributes for the translation table walks.
- The VSTCR_EL2.TG0 field defines the Translation granule size.

For the VMSAv8-64 translation table format, Overview of the VMSAv8-64 address translation stages on page D5-2558 summarizes the lookup levels, and Descriptor encodings, Armv8 level 0, level 1, and level 2 formats on page D5-2590 describes the translation table entries.

The following subsections describe the use of this translation table format:

- Translation granule size and associated block and page sizes on page D5-2570.
- Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported on page D5-2572.
- Use of concatenated translation tables for the initial stage 2 lookup on page D5-2574.
- Possible errors in programming the translation table registers on page D5-2575.
Translation granule size and associated block and page sizes

Table D5-18 shows the supported granule sizes, block sizes and page sizes, for the different granule sizes. For completeness, this table includes information for AArch32 state. In the table, the OA bit ranges are the OA bits that the translation table descriptor specifies to address the block or page of memory, in an implementation that supports a 48-bit OA range.

Table D5-18 Translation granule sizes, with block and page sizes, and output address ranges

<table>
<thead>
<tr>
<th>Granule size</th>
<th>Table level</th>
<th>Block size and OA bit range</th>
<th>Page size and OA bit range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB</td>
<td>Zero</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>One</td>
<td>1GB, OA[47:30]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>2MB, OA[47:21]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Three</td>
<td>-</td>
<td>4KB, OA[47:12]</td>
</tr>
<tr>
<td>16KB</td>
<td>Zero</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>One</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>32MB, OA[47:25]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Three</td>
<td>-</td>
<td>16KB, OA[47:14]</td>
</tr>
<tr>
<td>64KB</td>
<td>One</td>
<td>4TB, OA[51:42]a</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>512MB, OA[47:29]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Three</td>
<td>-</td>
<td>64KB, OA[47:16]</td>
</tr>
</tbody>
</table>

a. Only available when FEAT_LPA is implemented, see Extending addressing above 48 bits on page D5-2546.

Bit[1] of a translation table descriptor identifies whether the descriptor is a block descriptor, and:
- The 4KB granule size supports block descriptors only in level 1 and level 2 translation tables.
- The 16KB granule size supports block descriptors only in level 2 translation tables.
- The 64KB granule size supports block descriptors in level 2 translation tables, and in level 1 translation tables when FEAT_LPA is implemented and the implementation supports 52 bits of physical address. If the implementation does not support 52 bits of physical address, then encoding a block descriptor in a level 1 translation table generates a level 1 Translation fault.

If bit[1] of a descriptor is 0 in a translation table that does not support block descriptors then a translation table walk that accesses that descriptor generates a Translation fault.

For translations managed from AArch64 state, the following tables expand the information for each granule size, showing for an access to a single translation table at each lookup level:
- The maximum IA size, and the address bits that are resolved for that maximum size.
- The maximum OA range resolved by the translation table descriptors at this level, and the corresponding memory region size.
- The maximum size of the translation table. This is the size required for the maximum IA size.

Table D5-19 on page D5-2571 shows this information for the 4KB translation granule size, Table D5-20 on page D5-2571 shows this information for the 16KB translation granule size, and Table D5-21 on page D5-2571 shows this information for the 64KB translation granule size.
For the initial lookup level:

- If the IA range specified by the TCR_ELx.TxSZ field is smaller than the maximum size shown in these tables, then this reduces the number of addresses in the table and therefore reduces the table size. The smaller translation table is aligned to its table size.

### Table D5-19 Properties of the address lookup levels, 4KB granule size

<table>
<thead>
<tr>
<th>Level</th>
<th>Maximum input address</th>
<th>Maximum output address</th>
<th>Number of entries</th>
<th>Block entries supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Address range</td>
<td>Address range</td>
<td>Size of addressed region&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>512GB</td>
<td>Address[38:30]</td>
<td>Address[47:30]</td>
<td>1GB</td>
</tr>
<tr>
<td>Two</td>
<td>1GB</td>
<td>Address[29:21]</td>
<td>Address[47:21]</td>
<td>2MB</td>
</tr>
<tr>
<td>Three</td>
<td>2MB</td>
<td>Address[20:12]</td>
<td>Address[47:12]</td>
<td>4KB</td>
</tr>
</tbody>
</table>

<sup>a</sup> That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels of lookup.

### Table D5-20 Properties of the address lookup levels, 16KB granule size

<table>
<thead>
<tr>
<th>Level</th>
<th>Maximum input address</th>
<th>Maximum output address</th>
<th>Number of entries</th>
<th>Block entries supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Address range</td>
<td>Address range</td>
<td>Size of addressed region&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>256TB</td>
<td>Address[47]</td>
<td>Address[47]</td>
<td>128TB</td>
</tr>
<tr>
<td>One</td>
<td>128TB</td>
<td>Address[46:36]</td>
<td>Address[47:36]</td>
<td>64GB</td>
</tr>
<tr>
<td>Two</td>
<td>64GB</td>
<td>Address[35:25]</td>
<td>Address[47:25]</td>
<td>32MB</td>
</tr>
</tbody>
</table>

<sup>a</sup> That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels of lookup.

<sup>b</sup> The translation table size is less than the maximum for this granule size, and therefore the number of entries is reduced.

### Table D5-21 Properties of the address lookup levels, 64KB granule size

<table>
<thead>
<tr>
<th>Level</th>
<th>Maximum input address</th>
<th>Maximum output address</th>
<th>Number of entries</th>
<th>Block entries supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Address range</td>
<td>Address range</td>
<td>Size of addressed region&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>4PB</td>
<td>Address[51:42]</td>
<td>Address[51:42]</td>
<td>4TB</td>
</tr>
<tr>
<td>One</td>
<td>256TB</td>
<td>Address[47:42]</td>
<td>Address[47:42]</td>
<td>4TB</td>
</tr>
<tr>
<td>Two</td>
<td>4TB</td>
<td>Address[41:29]</td>
<td>Address[47:29]</td>
<td>512MB</td>
</tr>
<tr>
<td>Three</td>
<td>512MB</td>
<td>Address[28:16]</td>
<td>Address[47:16]</td>
<td>64KB</td>
</tr>
</tbody>
</table>

<sup>a</sup> That is, the size of the region either addressed by descriptors at this level or to be resolved at this and the subsequent levels of lookup.

<sup>b</sup> The translation table size is less than the maximum for this granule size, and therefore the number of entries is reduced.
• For stage 2 translations, multiple translation tables can be concatenated to extend the maximum IA size beyond that shown in these tables. For more information, see the stage 2 translation overviews in Overview of the VMSAv8-64 address translation stages on page D5-2558 and Use of concatenated translation tables for the initial stage 2 lookup on page D5-2574.

If a supplied input address is larger than the configured input address size, a Translation fault is generated.

--- Note ---

Larger translation granule sizes typically requires fewer levels of translation tables to translate a particular size of VA.

---

For the TCR_ELx programming requirements for the initial lookup, see Overview of the VMSAv8-64 address translation stages on page D5-2558.

Selection between TTBR0_ELx and TTBR1_ELx when two VA ranges are supported

Every translation table walk starts by accessing the translation table addressed by the TTBR_ELx for the stage 1 translation for the required translation regime.

For a stage 1 translation that can support two VA ranges, Figure D5-14 shows this VA range split when using 48-bit VAs, and:

• TTBR0_ELx points to the initial translation table for the lower VA range, that starts at address 0x0000000000000000,

• TTBR1_ELx points to the initial translation table for the upper VA range, that runs up to address 0xFFFF000000000000.

As Figure D5-14 shows, for 48-bit VAs:

• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0xFFFF000000000000.

• The address range translated using TTBR1_ELx is 0xFFFF000000000000 to 0xFFFFFFFFFFFF.

In an implementation that includes FEAT_LVA and is using the 64KB translation granule, for 52-bit VAs:

• The address range translated using TTBR0_ELx is 0x0000000000000000 to 0x000FFFFFFFFFFFF.

• The address range translated using TTBR1_ELx is 0xFFFF000000000000 to 0xFFFFFFFFFFFF.

Which TTBR_ELx is used depends only on the VA presented for translation. The most significant bits of the VA must all be the same value and:

• If the most significant bits of the VA are zero, then TTBR0_ELx is used.

• If the most significant bits of the VA are one, then TTBR1_ELx is used.
However, it is configurable whether VA[63:56] are considered when determining which TTBR_ELx is used, that is:

- In an implementation that includes FEAT_LVA and is using the 64KB translation granule, whether the determination depends on VA[63:52] or on VA[55:52].
- Otherwise, whether the determination depends on VA[63:48] or on VA[55:48].

For more information about whether VA[63:56] are considered for this determination, see Address tagging in AArch64 state on page D5-2528.

---

**Note**

The handling of the Contiguous bit can mean that the boundary between the translation regions defined by the TCR_ELx.TnSZ values and the region for which an access generates a Translation fault is wider than shown in Figure D5-14 on page D5-2572. That is, if the descriptor for an access to the region shown as generating a fault has the Contiguous bit set to 1, the access might not generate a fault. Possible errors in programming the translation table registers on page D5-2575 describes this possibility.

Example D5-3 shows a typical application of this VA split.

**Example D5-3 Example use of the split VA range, and the TTBR0_ELx and TTBR1_ELx controls**

An example of using the split VA range is:

**TTBR0_ELx** Used for process-specific addresses.

Each process maintains a separate level 1 translation table. On a context switch:

- TTBR0_ELx is updated to point to the level 1 translation table for the new context
- TCR_ELx is updated if this change changes the size of the translation table
- CONTEXTIDR_ELx is updated.

**TTBR1_ELx** Used for operating system and I/O addresses, that do not change on a context switch.

For each VA subrange, the input address size is $2^{(64 - TnSZ)}$, where $TnSZ$ is one of TCR_ELx.{T0SZ, T1SZ},

This means the two VA subranges are:

**Lower VA subrange** $0x0000_0000_0000_0000$ to $(2^{(64 - T0SZ)} - 1)$.

**Upper VA subrange** $(2^{64} - 2^{(64 - T1SZ)})$ to $0xFFFF_FFFF_FFFF_FFFF$.

If FEAT_E0PD is implemented, the TCR_ELx.E0PD1 field can prevent unprivileged access to the addresses translated by TTBR1_ELx.

For the situation where the minimum $TnSZ$ value is 16, corresponding to a maximum input address range of 48 bits, Example D5-4 shows the two VA subranges when T0SZ and T1SZ are both set to this minimum value.

**Example D5-4 Maximum VA ranges when a stage of translation supports two ranges**

The maximum VA subranges correspond to T0SZ and T1SZ each having a minimum value of 16. In this case the subranges are:

**Lower VA subrange** $0x0000_0000_0000_0000$ to $0xFFFF_FFFF_FFFF$.

**Upper VA subrange** $0xFFFF_0000_0000_0000$ to $0xFFFF_FFFF_FFFF_FFFF$.

Figure D5-14 on page D5-2572 indicates the effect of varying the $TnSZ$ values.
As described in *Overview of the VMSA8-64 address translation stages* on page D5-2558, the \( T_{n}SZ \) values also determine the initial lookup level for the translation.

**Use of concatenated translation tables for the initial stage 2 lookup**

*Overview of the VMSA8-64 address translation stages* on page D5-2558 introduced the ability to concatenate translation tables for the initial stage 2 translation lookup. This section gives more information about that concatenation.

If a stage 2 translation would require 16 entries or fewer in its top-level translation table, that stage of translation can, instead, be configured so that:

- It requires the corresponding number of concatenated translation tables at the next translation level, aligned to the size of the block of concatenated translation tables.
- The stage 2 translation starts at that next translation level.

When using the 16KB translation granule, if a 48-bit input address size is required for the stage 2 translations, lookup must start with two concatenated translation tables at level 1.

The use of concatenated translation tables requires the software that is defining the translation to:

- Define the concatenated translation tables with the required overall alignment.
- Program \( \text{VTTBR}_{\text{EL2}} \) or \( \text{VSTTBR}_{\text{EL2}} \) to hold the address of the first of the concatenated translation tables.
- Program \( \text{VTCR}_{\text{EL2}} \) or \( \text{VSTCR}_{\text{EL2}} \) to indicate the required input address range and initial lookup level.

---

**Note**

The use of concatenated translation tables avoids the overhead of an additional level of translation.

---

Concatenating additional translation tables at the initial level of look up resolves additional address bits at that level. To resolve \( n \) additional address bits requires \( 2^n \) concatenated translation tables. *Example D5-5* shows how, for level 1 lookups using the 4KB translation granule, translation tables can be concatenated to resolve three additional address bits.

**Example D5-5 Adding three bits of address resolution at level 1 lookup, using the 4KB granule**

When using the 4KB translation granule, a level 1 lookup with a single translation table resolves address bits[38:30]. To add three more address bits requires \( 2^3 \) translation tables, that is, eight translation tables. This means:

- The total size of the concatenated translation tables is \( 8 \times 4KB = 32KB \).
- This block of concatenated translation tables must be aligned to 32KB.
- The address range resolved at this lookup level is A[41:30], of which:
  - Bits A[41:39] select the 4KB translation table.
  - Bits A[38:30] index a descriptor within that translation table.
As an example of the concatenation of translation tables at the initial lookup level, when using the 4KB translation
granule, Table D5-22 shows the possible uses of concatenated translation tables to permit lookup to start at level 1
rather than at level 0. For completeness, the table starts with the case where the required IPA range means lookup
starts at level 1 with a single translation table at that level.

Table D5-22 Possible uses of concatenated translation tables for level 1 lookup, 4KB granule

<table>
<thead>
<tr>
<th>IPA range</th>
<th>Size</th>
<th>Required level 0 entries</th>
<th>Number of concatenated tables</th>
<th>Required alignmenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA[38:0]</td>
<td>2^36 bytes</td>
<td>-</td>
<td>1</td>
<td>4KB</td>
</tr>
<tr>
<td>IPA[39:0]</td>
<td>2^37 bytes</td>
<td>2</td>
<td>2</td>
<td>8KB</td>
</tr>
<tr>
<td>IPA[40:0]</td>
<td>2^38 bytes</td>
<td>4</td>
<td>4</td>
<td>16KB</td>
</tr>
<tr>
<td>IPA[41:0]</td>
<td>2^39 bytes</td>
<td>8</td>
<td>8</td>
<td>32KB</td>
</tr>
<tr>
<td>IPA[42:0]</td>
<td>2^40 bytes</td>
<td>16</td>
<td>16</td>
<td>64KB</td>
</tr>
</tbody>
</table>

Note

Because concatenation is permitted only for a stage 2 translation, the input addresses in the table are IPAs.

Overview of the VMSAv8-64 address translation stages on page D5-2558 identifies all of the possible uses of
concatenation. In all cases, the block of concatenated translation tables must be aligned to the block size.

Possible errors in programming the translation table registers

This subsection describes possible errors in programming the translation table registers.

Misprogramming the VTCR_EL2.(T0SZ, SL0) and VSTCR_EL2.(T0SZ, SL0) fields

For a stage 2 translation, the programming of the VTCR_EL2 or VSTCR_EL2 T0SZ and SL0 fields must be
consistent. If these fields are not consistent, or if SL0 is programmed to a reserved value, any translation table walk
that uses stage 2 translation generates a stage 2 level 0 Translation fault. For more information, see Overview of the
VMSAv8-64 address translation stages on page D5-2558.

Misprogramming of the Contiguous bit

For more information about the Contiguous bit, and the range of translation table entries that must have the bit set
to 1 to mark the entries as contiguous, see The Contiguous bit on page D5-2627.

If one or more of the following errors is made in programming the translation tables, the TLB might contain
overlapping entries:

- One or more of the contiguous translation table entries does not have the Contiguous bit set to 1.
- One or more of the contiguous translation table entries holds an output address that is not consistent with all
  of the entries pointing to the same aligned contiguous address range.
- The attributes and permissions of the contiguous entries are not all the same.

Such misprogramming of the translation tables means the output address, memory permissions, or attributes for a
lookup might be corrupted, and might be equal to values that are not consistent with any of the programmed
translation table values.

In some implementations, such misprogramming might also give rise to a TLB Conflict abort.
The architecture guarantees that misprogramming of the Contiguous bit cannot provide a mechanism for any of the following to occur:

- Software executing at EL1 or EL0 accessing regions of physical memory that are not accessible by programming the translation tables, from EL1, with arbitrary chosen values that do not misprogram the Contiguous bit.

- Software executing at EL1 or EL0 accessing regions of physical memory with attributes or permissions that are not possible by programming the translation tables, from EL1, with arbitrary chosen values that do not misprogram the Contiguous bit.

- Software executing in Non-secure state accessing Secure physical memory.

——— Note ————

Hardware implementations must ensure that use of the Contiguous bit cannot provide a mechanism for avoiding output address range checking. This might occur if a Contiguous bit block size of 0.5GB or 1GB is used in a system with the output address size configured to 4GB. The architecture permits the implemented mechanism for preventing any avoidance of output address range checking to suppress the use of the Contiguous bit for such entries in such a system.

Where the Contiguous bit is used to mark a set of blocks as contiguous, if the address range translated by a set of blocks marked as contiguous is larger than the size of the input address supported at a stage of translation used to translate that address at that stage of translation, as defined by the TCR_ELx.TxSZ field, then this is a programming error. An implementation is permitted, but not required, to:

- Treat such a block within a contiguous set of blocks as causing a Translation fault, even though the block is valid, and the address accessed within that block is within the size of the input address supported at a stage of translation, as defined by the TCR_ELx.TxSZ field.

- Treat such a block within a contiguous set of blocks as not causing a Translation fault, even though the address accessed within that block is outside the size of the input address supported at a stage of translation, as defined by the TCR_ELx.TxSZ field, provided that both of the following apply:
  — The block is valid.
  — At least one address within the block, or contiguous set of blocks, is within the size of the input address supported at a stage of translation.

When FEAT_LVA is implemented, level 1 block descriptors for the 64KB granule do not support the Contiguous bit, and that field is RES0.

D5.2.8 The algorithm for finding the translation table descriptors

This subsection gives the algorithms for finding the translation table descriptor that corresponds to a given IA, for each required level of lookup. The algorithms encode the descriptions of address translation given earlier in this section. The algorithm details depend on the translation granule size for the stage of address translation, see:

- Finding the translation table descriptor when using the 4KB translation granule on page D5-2577.
- Finding the translation table descriptor when using the 16KB translation granule on page D5-2578.
- Finding the translation table descriptor when using the 64KB translation granule on page D5-2579.

Each subsection uses the following terms:

- **BaseAddr** The base address for the level of lookup, as defined by:
  - For the initial lookup level, the value of the appropriate TTBR_ELx.BADDR field.
  - Otherwise, the translation table address returned by the previous level of lookup.

- **PAMax** The supported PA width, in bits.

- **IA** The supplied IA for this stage of translation.
The AArch64 Virtual Memory System Architecture

D5.2 The VMSAv8-64 address translation system

The translation table size for this stage of translation:

For EL1&0 stage 1

TCR_EL1.T0SZ or TCR_EL1.T1SZ, as appropriate.

For Non-secure EL1&0 stage 2

VTCR_EL2.T0SZ.

For Secure EL1&0 stage 2

VSTCR_EL2.T0SZ.

For EL2 stage 1

TCR_EL2.T0SZ.

For EL2&0 stage 1

TCR_EL2.T0SZ or TCR_EL2.T1SZ, as appropriate.

For EL3 stage 1

TCR_EL3.T0SZ.

The initial lookup level for this stage of translation:

For Non-secure EL1&0 stage 2 translation

VTCR_EL2.SL0

For Secure EL1&0 stage 2 translation

VSTCR_EL2.SL0

These subsections show only architecturally-valid programming of the TCR_ELx. See also Possible errors in programming the translation table registers on page D5-2575.

Finding the translation table descriptor when using the 4KB translation granule

Table D5-23 shows the translation table descriptor address, for each level of lookup, when using the 4KB translation granule. See the start of The algorithm for finding the translation table descriptors on page D5-2576 for more information about terms used in the table.

Table D5-23 Translation table entry addresses when using the 4KB translation granule

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>Stage 1 translation</th>
<th>Stage 2 translation</th>
<th>General conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>BaseAddr[PAMax-1:x]:IA[y:39]:0b0000 if^ a z ≤ TnSZ ≤ 24 then x = (28 - TnSZ)</td>
<td>BaseAddr[PAMax-1:x]:IA[y:39]:0b0000 if SL0^ b == 2 then if a z ≤ T0SZ ≤ 24 then x = (28 - T0SZ)</td>
<td>y = (x + 35) z = 16</td>
</tr>
<tr>
<td>One</td>
<td>BaseAddr[PAMax-1:x]:IA[y:30]:0b0000 if^ a 25 ≤ TnSZ ≤ 33 then x = (37 - TnSZ) else^ c x = 12</td>
<td>BaseAddr[PAMax-1:x]:IA[y:30]:0b0000 if SL0^ b == 1 then if a 21 ≤ T0SZ ≤ 33 then x = (37 - T0SZ) elsif SL0^ b, c == 2 then x = 12</td>
<td>y = (x + 26)</td>
</tr>
<tr>
<td>Two</td>
<td>BaseAddr[PAMax-1:x]:IA[y:21]:0b0000 if^ a 34 ≤ TnSZ ≤ 42 then x = (46 - TnSZ) else^ c x = 12</td>
<td>BaseAddr[PAMax-1:x]:IA[y:21]:0b0000 if SL0^ b == 0 then if a 30 ≤ T0SZ ≤ 42 then x = (46 - T0SZ) elsif SL0^ b, c == 1 or 2 then x = 12</td>
<td>y = (x + 17)</td>
</tr>
<tr>
<td>Three</td>
<td>BaseAddr[PAMax-1:x]:IA[y:12]:0b0000 if^ a 43 ≤ TnSZ ≤ 48 then x = (55 - TnSZ) else^ c x=12</td>
<td>BaseAddr[PAMax-1:x]:IA[y:12]:0b0000 if SL0^ b == 3 then if a 39 ≤ T0SZ ≤ 48 then x = (55 - T0SZ) elsif SL0^ b, c =0, 1, or 2 then x=12</td>
<td>y = (x + 8)</td>
</tr>
</tbody>
</table>

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Overview of VMSAv8-64 address translation using the 4KB translation granule on page D5-2558.
The AArch64 Virtual Memory System Architecture
D5.2 The VMSAv8-64 address translation system

Table D5-7 on page D5-2549 shows how software can determine whether an implementation supports the 4KB granule size.

**Finding the translation table descriptor when using the 16KB translation granule**

Table D5-24 shows the translation table descriptor address, for each level of lookup, when using the 16KB translation granule. See the start of *The algorithm for finding the translation table descriptors* on page D5-2576 for more information about terms used in the table.

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>Entry address and conditions</th>
<th>Stage 1 translation</th>
<th>Stage 2 translation</th>
<th>General conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>BaseAddr[PAmax-1:4]:IA[47]:0b000</td>
<td>16 == TnSZ</td>
<td>-</td>
<td>Only applies to stage 1</td>
</tr>
</tbody>
</table>
| One          | BaseAddr[PAmax-1:x]:IA[y:36]:0b000 | if a 17 ≤ TnSZ ≤ 27 then x = (31 - TnSZ)  
else c x = 14                                                  | BaseAddr[PAmax-1:x]:IA[y:36]:0b000 | y = (x + 32) |
| Two          | BaseAddr[PAmax-1:x]:IA[y:25]:0b000 | if a 28 ≤ TnSZ ≤ 38 then x = (42 - TnSZ)  
else c x = 14                                                  | BaseAddr[PAmax-1:x]:IA[y:25]:0b000 | y = (x + 21) |
| Three        | BaseAddr[PAmax-1:x]:IA[y:14]:0b000 | if a 39 ≤ TnSZ ≤ 48 then x = (53 - TnSZ)  
else c x = 14                                                  | BaseAddr[PAmax-1:x]:IA[y:14]:0b000 | y = (x + 10) |

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see *Overview of VMSAv8-64 address translation using the 16KB translation granule* on page D5-2561.
b. SL0 == 0 if the initial lookup is level 3, SL0 == 1 if the initial lookup is level 2, and SL0 == 2 if the initial lookup level is level 1.
c. This is the case where this level of lookup is not the initial level of lookup.

Table D5-7 on page D5-2549 shows how software can determine whether an implementation supports the 16KB granule size.
Finding the translation table descriptor when using the 64KB translation granule

Table D5-25 shows the translation table descriptor address, for each level of lookup, when using the 64KB translation granule. See the start of The algorithm for finding the translation table descriptors on page D5-2576 for more information about terms used in the table.

Table D5-25 Translation table entry addresses when using the 64KB translation granule

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>Entry address and conditions</th>
<th>Stage 2 translation</th>
<th>General conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>BaseAddr[PAMax-1:x]:IA[y:42]:0b0000 if ( z^b \leq TnSZ \leq 21 ) then ( x = (25 - TnSZ) )</td>
<td>BaseAddr[PAMax-1:x]:IA[y:42]:0b0000 if SL0c == 2 then ( z = 16 ) or 12b if ( T0SZ \leq 21 ) then ( x = (25 - T0SZ) )</td>
<td>( y = (x + 38) )</td>
</tr>
<tr>
<td>Two</td>
<td>BaseAddr[PAMax-1:x]:IA[y:29]:0b0000 if ( 22 \leq TnSZ \leq 34 ) then ( x = (38 - TnSZ) )</td>
<td>BaseAddr[PAMax-1:x]:IA[y:29]:0b0000 if SL0c == 1 then ( y = (x + 25) ) if ( 18 \leq T0SZ \leq 34 ) then ( x = (38 - T0SZ) ) elsif SL0c, d == 2 then ( x = 16 )</td>
<td>( y = (x + 25) )</td>
</tr>
<tr>
<td>Three</td>
<td>BaseAddr[PAMax-1:x]:IA[y:16]:0b0000 if ( 35 \leq TnSZ \leq 47 ) then ( x = (51 - TnSZ) )</td>
<td>BaseAddr[PAMax-1:x]:IA[y:16]:0b0000 if SL0c == 0 then ( y = (x + 12) ) if ( 31 \leq T0SZ \leq 47 ) then ( x = (51 - T0SZ) ) elsif SL0c, d == 1 or 2 then ( x = 16 )</td>
<td>( y = (x + 12) )</td>
</tr>
</tbody>
</table>

a. This line indicates the range of permitted values for \( TnSZ \), for a lookup that starts at this level, see Overview of VMSAv8-64 address translation using the 64KB translation granule on page D5-2566.

b. If FEAT_LVA is implemented, the value of \( z \) is 12, see Extending addressing above 48 bits on page D5-2546. Otherwise, the value of \( z \) is 16.

c. SL0 == 0 if the initial lookup is level 3, SL0 == 1 if the initial lookup is level 2, and SL0 == 2 if the initial lookup level is at level 1.

d. This is the case where this level of lookup is not the initial level of lookup.

Table D5-7 on page D5-2549 shows how software can determine whether an implementation supports the 64KB granule size.
D5.2.9 The effects of disabling a stage of address translation

The following sections describe the effect on MMU behavior of disabling each stage of translation:

- Behavior when stage 1 address translation is disabled.
- Behavior when stage 2 address translation is disabled on page D5-2581.
- Behavior of instruction fetches when all associated stages of translation are disabled on page D5-2581.

Behavior when stage 1 address translation is disabled

When a stage 1 address translation is disabled, memory accesses that would otherwise be translated by that stage of translation are treated as follows:

EL1 and EL0 accesses if the HCR_EL2.DC bit is set to 1

For the EL1&0, when EL2 is enabled, translation regime, when the value of HCR_EL2.DC is 1, the stage 1 translation assigns the Normal Non-shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes.

--- Note ---
This applies for both instruction and data accesses.

All other accesses

For all other accesses, when stage 1 address translation is disabled, the assigned attributes depend on whether the access is a data access or an instruction access, as follows:

Data access

The stage 1 translation assigns the Device-nGnRnE memory type.

Instruction access

The stage 1 translation assigns the Normal memory attribute, with the cacheability and shareability attributes determined by the value of the SCTL_ELx.I bit for the translation regime, as follows:

When the value of I is 0

The stage 1 translation assigns the Non-cacheable and Outer Shareable attributes.

When the value of I is 1

The stage 1 translation assigns the Cacheable, Inner Write-Through Read-Allocate No Write-Allocate, Outer Write-Through Read-Allocate No Write-Allocate Outer Shareable attribute.

Secure accesses and Non-secure accesses

For accesses from the Non-secure state, the output address is to the Non-secure output address space.

For accesses from the Secure state, the output address is to the Secure output address space.

For this stage of translation:

- No memory access permission checks are performed and therefore no MMU faults can be generated for this stage of address translation.
- No memory is guarded.

--- Note ---
Alignment checking is performed, and therefore Alignment faults can occur.

---

For every access, the input address of the stage 1 translation is flat-mapped to the output address.

For a EL1 or EL0 access, if EL1&0 stage 2 address translation is enabled, the stage 1 memory attribute assignments and output address can be modified by the stage 2 translation.
When the value of HCR_EL2.DC is 1:

- The SCTLR_EL1.M bit behaves as if it is 0, for all purposes other than reading the value of the bit. This means EL1&0 stage 1 address translation is disabled.
- The HCR_EL2.VM bit behaves as if it is 1, for all purposes other than reading the value of the bit. This means that EL1&0 stage 2 address translation is enabled.

See also *Behavior of instruction fetches when all associated stages of translation are disabled*.

**Effect of disabling address translation on maintenance and address translation instruction instructions**

Cache maintenance instructions act on the target cache regardless of whether any stages of address translation are disabled, and regardless of the values of the memory attributes. However, if a stage of address translation is disabled, they use the flat address mapping for that translation stage.

TLB invalidate operations act on the target TLB regardless of whether any stage of address translation is disabled.

The value of HCR_EL2.DC affect some address translation instructions, see *Address translation instructions, AT* on page D5-2583.

**Behavior when stage 2 address translation is disabled**

When stage 2 address translation is disabled:

- The IPA output from the stage 1 translation maps flat to the PA.
- The memory attributes and permissions from the stage 1 translation apply to the PA.

When both stages of address translation are disabled, see also *Behavior of instruction fetches when all associated stages of translation are disabled*.

**Secure accesses and Non-secure accesses**

For accesses from the Non-secure IPA address space, the output address is to the Non-secure physical address space.

For accesses from the Secure IPA address space, the output address is to the Secure physical address space.

**Behavior of instruction fetches when all associated stages of translation are disabled**

When EL3 is using AArch64, this section applies to:

- The Secure EL1&0, when EL2 is disabled, translation regime when stage 1 address translation is disabled in that regime.
- The EL3 translation regime when stage 1 address translation is disabled in that regime.
- The Secure EL2, or Secure EL2&0, translation regime when stage 1 address translation is disabled in that regime
- The Non-secure EL1&0, when EL2 is enabled, translation regime, when both stages of address translation are disabled.

--- **Note** ---

- The behaviors in Non-secure state apply regardless of the Execution state that EL3 is using.
- When the value of HCR_EL2.DC is 1, then the behavior of the EL1&0 translation regime is as if stage 1 translation is disabled and stage 2 translation is enabled, as described in *Behavior when stage 1 address translation is disabled* on page D5-2580.
In these cases, when execution is in AArch64 state, a memory location might be accessed as a result of an instruction fetch if either:

- The memory location is in the same block of memory as, or in the next contiguous block of memory to, an instruction that a simple sequential execution of the program either requires to be fetched now or has required to be fetched since the last reset.

- The memory location is the target of a direct branch that a simple sequential execution of the program would have taken since the most recent of:
  - The last reset.
  - The last synchronization of instruction cache maintenance targeting the address of the branch instruction.

In this description, the blocks of memory referred to are of the size of the minimum implemented translation granule and are aligned to that size.

These accesses can be caused by speculative instruction fetches, regardless of whether the prefetched instruction is committed for execution.

**Note**

To ensure architectural compliance, software must ensure that both of the following apply:

- Instructions that will be executed when all associated stages of address translation are disabled are located in blocks of the address space, of the translation granule size, that contain only memory that is tolerant to speculative accesses.

- Each block of the address space, of the translation granule size, that immediately follows a similar block that holds instructions that will be executed when all associated stages address translation are disabled, contains only memory that is tolerant to speculative accesses.

### D5.2.10 Pseudocode description of VMSAv8-64 address translation

The following subsections outline a pseudocode description of the translation table walk:

- **Definitions required for address translation.**
- **Performing the full address translation.**
- **Stage 1 translation** on page D5-2583.
- **Stage 2 translation** on page D5-2583.
- **Translation table walk** on page D5-2583.
- **Support functions** on page D5-2583.

#### Definitions required for address translation

In pseudocode, the result of a translation table lookup, in either Execution state, is returned in a `TLBRecord` structure.

*Memory data type definitions on page D4-2522* includes definitions of the `Permissions` and `AddressDescriptor` parameters.

#### Performing the full address translation

The function `AArch64.FullTranslate()` performs a full translation table walk. For any translation regime it performs a stage 1 translation for the supplied `VA`, and for the EL1&0, when EL2 is enabled, translation regime it then performs a stage 2 translation of the returned address.
Stage 1 translation

The function \texttt{AArch64.FirstStageTranslate()} performs a stage 1 translation, calling the function \texttt{AArch64.TranslationTableWalk()}, described in \textit{Translation table walk}, to perform the required translation table walk. However, if stage 1 translation is disabled, it calls the function \texttt{AArch64.TranslateAddressS1Off()} to set the memory attributes.

Stage 2 translation

In the EL1&0, when EL2 is enabled, translation regime, a descriptor address returned by stage 1 lookup is in the IPA address space, and must be mapped to a PA by a stage 2 translation. Function \texttt{AArch64.SecondStageWalk()} performs this translation, by calling the \texttt{AArch64.SecondStageTranslate()} function. When called from \texttt{AArch64.SecondStageWalk()}, the \texttt{AArch64.SecondStageTranslate()} function performs a second stage translation, from IPA to PA, of the supplied address, including checking that the access has read permission at the second stage. If the access does not have second stage read permission it generates a second stage Permission fault on the first stage translation table walk. The second stage translation might hit in a TLB, or might involve a translation table walk, which will use the algorithm described in this section.

Translation table walk

The function \texttt{AArch64.FirstStageTranslate()} returns the result, in the form of a \texttt{TLBRecord}, of a translation table walk made for a memory access from an Exception level that is using AArch64.

Support functions

In the translation table walk functions, the \texttt{WalkAttrDecode()} function determines the attributes for a translation table lookup.

The function \texttt{AArch64.S1AttrDecode()} decodes the attributes from a stage 1 translation table lookup.

The function \texttt{AArch64.CheckPermission()} checks the access permissions returned by a stage 1 translation table lookup, see \textit{Access permission checking} on page D4-2524.

The function \texttt{AArch64.CheckS2Permission()} checks the access permissions returned by a stage 2 translation table lookup.

The function \texttt{AddrTop()} returns the bit number of the most significant valid bit of a VA in the current translation regime. If EL1 is using AArch64 and EL0 is using AArch32 then an address from EL0 is zero-extended to 64 bits.

D5.2.11 Address translation instructions

Each of the Armv8 instruction sets provides instructions that return the result of translating an input address, supplied as an argument to the instruction, using a specified translation stage or regime.

The available instructions only perform translations that are accessible from the Security state and Exception level at which the instruction is executed. That is:

- No instruction executed in Non-secure state can return the result of a Secure address translation stage.
- No instruction can return the result of an address translation stage that is controlled by an Exception level that is higher than the Exception level at which the instruction is executed.

\textit{Address translation instructions, AT*} summarizes the A64 address translation instructions.

See also \textit{A64 System instructions for address translation} on page C5-532.

If \texttt{FEAT\_MTE} is implemented and enabled the behavior of \texttt{AT*} instructions in AArch64 state are modified. For more information, see \textit{Virtual address translation} on page D6-2687.

\textbf{Address translation instructions, AT*}

The A64 assembly language syntax for address translation instructions is:
AT \langle operation\rangle, \langle Xt\rangle

Where:

\langle operation\rangle  Is one of S1E1R, S1E1RP, S1E1W, S1E1WP, S1E0R, S1E0W, S1E0RP, S1E0WP, S1E2R, S1E2W, S1E2RP, S1E2WP, S1E3R, or S1E3W.
\langle operation\rangle has a structure of \langle stages\rangle\langle level\rangle\langle read\rangle\langle write\rangle\langle pan\rangle, where:

\langle stages\rangle  Is one of:
S1  Stage 1 translation.
S12  Stage 1 translation followed by stage 2 translation.

\langle level\rangle  Describes the Exception Level that the translation applies to. Is one of:
E0  EL0.
E1  EL1.
E2  EL2.
E3  EL3.
If \langle level\rangle is higher than the current Exception Level, the instruction is UNDEFINED.

\langle read\rangle\langle write\rangle  Is one of:
R  Read.
W  Write.

\langle pan\rangle  Only available when FEAT_PAN2 is implemented. Optional, but if present:
P  Determines action based on value of PSTATE.PAN.
  Only permitted for \langle stages\rangle=S1 and \langle level\rangle=E1.

\langle Xt\rangle  The address to be translated. No alignment restrictions apply for the address.

If EL2 is not implemented, the AT S1E2R and AT S1E2W instructions are UNDEFINED.

\textbf{Note}

If EL2 is not implemented but EL3 is implemented, the AT S1E2** instructions are not UNDEFINED, but behave the same way as the equivalent AT S1E** instructions. This is consistent with the behavior if EL2 is implemented but stage 2 translation is disabled.

In each case, the address being translated is held in the 64-bit address argument register, Xt. If the address translation instruction uses a translation regime that is using AArch32, meaning it requires a VA of only 32 bits, then VA[63:32] is RES0.

If the address translation is successful, the resulting output address is returned in PAR_EL1.PA, and PAR_EL1.F is set to 0 to indicate that the translation was successful. Otherwise, see Synchronous faults generated by address translation instructions on page D5-2585.

\textbf{Note}

The architecture provides a single PAR, PAR_EL1, that is used regardless of:
•  The Exception level at which the instruction was executed.
•  The Exception level that controls the stage or stages of translation used by the instruction.

For all of these instructions, the current context information determines which entries in TLB caching structures are used, and how the translation table walk is performed. However, it is IMPLEMENTATION DEFINED whether the Address translation instructions return the values held in a TLB or the result of a translation table walk. Therefore, Arm recommends that these instructions are not used at a time when the TLB entries might be different from the underlying translation tables held in memory.

If EL3 is implemented, then for instructions that apply to the EL1 or EL0 Exception level, SCR_EL3.NS determines the translation regime to which the instruction applies, as follows:

\textbf{SCR_EL3.NS} = 0  Secure EL1&0 translation regime.
SCR_EL3.NS == 1  Non-secure EL1&0 translation regime.

All relevant context information used for the translation depends on this determination.

When EL1&0 stage 1 address translation is disabled, any AT S1E0*, AT S1E1*, AT S12E0*, or AT S12E1* address translation instruction that accesses the Non-secure state translation reflects the effect of the HCR_EL2.DC bit as described in Behavior when stage 1 address translation is disabled on page D5-2580.

If Secure EL2 translation regime is disabled, executing AT $12E2R or AT $12E2W at EL3 with SCR_EL3.NS == 0 is UNDEFINED.

Note

AT S12E* instructions at EL3 with SCR_EL3.NS == 0 are not UNDEFINED but behave the same way as the equivalent AT S1E* instructions.

Synchronous faults generated by address translation instructions

The address translation instructions use the translation mechanism, and that mechanism can generate the following synchronous faults:

- Translation fault.
- Access flag fault.
- Permission fault.
- Domain fault, when translating using the AArch32 translation systems.
- Address size fault.
- TLB conflict fault.
- Synchronous External aborts during a translation table walk.

In addition:

- If the address translation instruction requires two stages of translation then these faults could arise from either stage 1 or stage 2.
- For a stage 1 translation for the EL1&0 translation regime, the fault might be generated on the stage 2 translation of an address accessed as part of the stage 1 translation table walk, see Stage 2 fault on a stage 1 translation table walk on page D5-2651.

Except as described in this section, these faults are not taken as an exception for the address translation instructions, but instead the PAR_EL1.FST field holds the Fault status information. In these cases the PAR_EL1.PA field does not hold the output address of the translation.

The exceptions to this reporting the fault in PAR_EL1 are:

- Synchronous External aborts during a translation table walk are taken as a Data Abort exception.

For an address translation instruction executed at a particular Exception level, if the synchronous External abort is generated on a stage 1 translation table walk, the Data Abort exception is taken to the Exception level to which a synchronous External abort on a stage 1 translation table walk for a memory access from that Exception level would be taken.

If the synchronous External abort is generated on a stage 2 translation table walk then:

- If the address translation instruction was executed at EL3, the synchronous Data Abort exception is taken to EL3.
- If the address translation instruction was executed at EL2 or EL1, the Data Abort exception is taken to the Exception level to which a synchronous External abort on a stage 2 translation table walk for a memory access from that Exception level would be taken.

In any case where the address translation instruction causes a synchronous Data Abort exception to be taken:

- The PAR_EL1 is UNKNOWN.
- The ESR_ELx of the target Exception Level of the exception indicates that the fault was due to a translation table walk for a cache maintenance instruction.
— The FAR_ELx of the target Exception Level holds the VA for the translation request.

• For the AT S1E0* and AT S1E1* instructions executed from EL1, if there is a synchronous stage 2 fault on a memory access made as part of the translation table walk then:
  — If the fault is a synchronous External abort on a stage 2 translation table and SCR_EL3,EA is 1, then a synchronous External abort on a stage 2 translation table walk is taken to EL3.
  — Otherwise the fault is taken as an exception to EL2.

If the exception is taken to EL2 the following apply:
  — PAR_EL1 is UNKNOWN.
  — ESR_EL2 indicates that the fault occurred on a translation table walk, and that the operation that faulted was a cache maintenance instruction.
  — HPFAR_EL2 holds the IPA that faulted.
  — FAR_EL2 holds the VA that the executing software supplied to the address translation instruction.

This fault can occur for any of the following reasons:
  — Stage 2 Translation fault.
  — Stage 2 Access fault.
  — Stage 2 Permission fault.
  — Stage 2 Address size fault.
  — Synchronous External abort on a stage 2 translation table walk.

_Synchronization requirements of the address translation instructions_

Where an instruction results in an update to a System register, as is the case with the AT * address translation instructions, explicit synchronization must be performed before the result is guaranteed to be visible to subsequent direct reads of the PAR_EL1.

_____ Note ________

This is consistent with the AArch32 requirement, where the VA to PA translation instructions are executed as writes to the (coproc==0b1111) System register encoding space, and the effect of those writes to other registers require explicit synchronization before the result is guaranteed to be visible to subsequent instructions.
D5.3 VMSAv8-64 translation table format descriptors

In general, a descriptor is one of:
- An invalid or fault entry.
- A table entry, that points to the next-level translation table.
- A block entry, that defines the memory properties for the access.
- A reserved format.

Bit[1] of the descriptor indicates the descriptor type, and bit[0] indicates whether the descriptor is valid.

The following sections describe the Armv8 translation table descriptor formats:
- VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats.
- Armv8 translation table level 3 descriptor formats on page D5-2591.

Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593 then gives more information about the descriptor attribute fields, and Control of Secure or Non-secure memory access on page D5-2599 describe how the NS and NSTable together control whether a memory access from Secure state accesses the Secure memory map or the Non-secure memory map.

D5.3.1 VMSAv8-64 translation table level 0, level 1, and level 2 descriptor formats

In the VMSAv8-64 translation table format, the difference in the formats of the level 0, level 1 and level 2 descriptors is:
- Whether a Block descriptor is permitted.
- If a Block descriptor is permitted, the size of the memory region described by that entry.
- The maximum OA size, depending on whether FEAT_LPA is implemented.

These differences depend on the translation granule, as follows:

**4KB granule** Level 0 translation tables do not support Block descriptors.

A block descriptor:
- In a level 1 table describes the mapping of the associated 1GB input address range.
- In a level 2 table describes the mapping of the associated 2MB input address range.

The maximum OA size of a lookup is 48 bits.

**16KB granule** Level 0 and level 1 translation tables do not support Block descriptors.

A Block descriptor in a level 2 table describes the mapping of the associated 32MB input address range.

The maximum OA size of a lookup is 48 bits.

**64KB granule** Level 0 lookup is not supported.

Other properties depend on whether FEAT_LPA is implemented:

**If FEAT_LPA is implemented**

A block descriptor:
- In a level 1 table describes the mapping of the associated 4TB input address range.
- In a level 2 table describes the mapping of the associated 512MB input address range.

The maximum OA size of a lookup is 48 bits.

**If FEAT_LPA is not implemented**

Level 1 translation tables do not support Block descriptors.

A Block descriptor in a level 2 table describes the mapping of the associated 512MB input address range.

The maximum OA size of a lookup is 48 bits.

When a lookup returns a Table descriptor, the OA is the next-level table address.
Figure D5-15 shows the Armv8 level 0, level 1, and level 2 descriptor formats that provide 48-bit OAs:

```
<table>
<thead>
<tr>
<th>Block</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper block attributes</td>
<td>RES0</td>
</tr>
<tr>
<td>63</td>
<td>50 49 48 47</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 only, RES0 at stage 2</td>
<td></td>
</tr>
<tr>
<td>NSTable</td>
<td>APTable</td>
</tr>
<tr>
<td>63 62 61 60</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the 4KB granule size, for the level 1 descriptor n is 30, and for the level 2 descriptor, n is 21.
With the 16KB granule size, for the level 2 descriptor, n is 25.
With the 64KB granule size, for the level 2 descriptor, n is 29.

A level 0 Table descriptor returns the address of the level 1 table.
A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

‡ When m is 12, the RES0 field shown for bits[(m-1):12] is absent.

Figure D5-15 VMSAv8-64 level 0, level 1 and level 2 descriptor formats with 48-bit OAs

In an implementation that includes FEAT_LPA, when the 64KB granule is used, the Block and Table descriptors are redefined as Figure D5-16 on page D5-2589 shows:
For the level 1 descriptor \(n \) is 42, and for the level 2 descriptor \(n \) is 29.

A level 1 Table descriptor returns the address of the level 2 table.
A level 2 Table descriptor returns the address of the level 3 table.

Note

The effects on the Non-secure EL1 descriptors when `FEAT_HPDS` is enabled and `HCR_EL2.{NV, NV1} == {1,1}` are detailed in *Effect of HCR_EL2.{NV, NV1} on page D5-2638.*

Descriptor encodings, Armv8 level 0, level 1, and level 2 formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

- **0, Block**
 The descriptor gives the base address of a block of memory, and the attributes for that memory region.

- **1, Table**
 The descriptor gives the address of the next level of translation table, and for a stage 1 translation, some attributes for that translation.

The other fields in the valid descriptors are:

Block descriptor

Gives the base address and attributes of a block of memory, as follows:

4KB translation granule

- For a level 1 Block descriptor, bits[47:30] are bits[47:30] of the output address. This output address specifies a 1GB block of memory.
- For a level 2 descriptor, bits[47:21] are bits[47:21] of the output address. This output address specifies a 2MB block of memory.

16KB translation granule

For a level 2 Block descriptor, bits[47:25] are bits[47:25] of the output address. This output address specifies a 32MB block of memory.

64KB translation granule

For a level 1 Block descriptor:

- If `FEAT_LPA` is implemented, bits[15:12] are bits[51:48] of the output address and bits[47:42] are bits[47:42] of the output address. This output address specifies a 4TB block of memory.
- If `FEAT_LPA` is not implemented, there is no level 1 Block descriptor.

For a level 2 Block descriptor:

- If `FEAT_LPA` is implemented, bits[15:12] are bits[51:48] of the output address, and bits[47:29] are bits[47:29] of the output address. This output address specifies a 512MB block of memory.
- If `FEAT_LPA` is not implemented, bits[47:29] are bits[47:29] of the output address. This output address specifies a 512MB block of memory.

In Armv8.0, bits[63:52, 11:2] provide attributes for the target memory block. When `FEAT_HAFDBS` is implemented, bits[63:51, 11:2] provide the attributes for the target memory block. For more information, see *Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.*

Note

- In Armv8.0, the position and contents of bits[63:52, 11:2] are identical to bits[63:52, 11:2] in the Page descriptors.
- When `FEAT_HAFDBS` is implemented, the position and contents of bits[63:51, 11:2] are identical to bits[63:51, 11:2] in the Page descriptors.
• When FEAT_HPDS2 is implemented, hardware can use bits[62:59] of the Block descriptors for IMPLEMENTATION DEFINED purposes, see Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.

Table descriptor
Gives the translation table address for the next-level lookup, as follows:

4KB translation granule
• Bits[47:12] are bits[47:12] of the address of the required next-level table, which is:
 — For a level 0 Table descriptor, the address of a level 1 table.
 — For a level 1 Table descriptor, the address of a level 2 table.
 — For a level 2 Table descriptor, the address of a level 3 table.
• Bits[11:0] of the table address are zero.

16KB translation granule
• Bits[47:14] are bits[47:14] of the address of the required next-level table, which is:
 — For a level 0 Table descriptor, the address of a level 1 table.
 — For a level 1 Table descriptor, the address of a level 2 table.
 — For a level 2 Table descriptor, the address of a level 3 table.
• Bits[13:0] of the table address are zero.

64KB translation granule
• Bits[47:16] are bits[47:16] of the address of the required next-level table, which is:
 — For a level 1 Table descriptor, the address of a level 2 table.
 — For a level 2 Table descriptor, the address of a level 3 table.
When FEAT_LPA is implemented, bits[15:12] are bits[51:48] of the required next-level table.
• Bits[15:0] of the table address are zero.

For a stage 1 translation only, bits[63:59] provide attributes for the next-level lookup, see Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.

If the translation table defines either the Secure or Non-secure EL1&0, when EL2 is enabled, stage 1 translations, then the output address in the descriptor is the IPA of the target block or table. Otherwise, it is the PA of the target block or table.

D5.3.2 Armv8 translation table level 3 descriptor formats
For the 4KB granule size, each entry in a level 3 table describes the mapping of the associated 4KB input address range.
For the 16KB granule size, each entry in a level 3 table describes the mapping of the associated 16KB input address range.
For the 64KB granule size, each entry in a level 3 table describes the mapping of the associated 64KB input address range.
Figure D5-17 on page D5-2592 shows the Armv8 level 3 descriptor formats.
Figure D5-17 VMSAv8-64 level 3 descriptor format

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

0, Reserved, invalid
 Behaves identically to encodings with bit[0] set to 0.
 This encoding must not be used in level 3 translation tables.

1, Page
 Gives the address and attributes of a 4KB, 16KB, or 64KB page of memory.

At this level, the only valid format is the Page descriptor. The other fields in the Page descriptor are:

Page descriptor
 Gives the output address of a page of memory, as follows:

 4KB translation granule
 Bits[47:12] are bits[47:12] of the output address for a page of memory.

 16KB translation granule

 64KB translation granule
 If FEAT_LPA is implemented, bits[15:12] are bits[51:48] and bits[47:16] are bits[47:16] of the output address for a page of memory.
 If FEAT_LPA is not implemented, bits[47:16] are bits[47:16] of the output address for a page of memory.

Bits[63:52, 11:2] provide attributes for the target memory page, see Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.

Note

• In Armv8.0, the position and contents of bits[63:52, 11:2] are identical to bits[63:52, 11:2] in the level 0, level 1, and level 2 block descriptors.

• When FEAT_HAFDBS is implemented, the position and contents of bits[63:51, 11:2] are identical to bits[63:51, 11:2] in the level 0, level 1, and level 2 block descriptors.
• When FEAT_HPDS2 is implemented, hardware can use bits[62:59] of the Page descriptors for IMPLEMENTATION DEFINED purposes, see Memory attribute fields in the VMSAv8-64 translation table format descriptors.

For either the Secure or Non-secure EL1&0, when EL2 is enabled, stage 1 translations, the output address in the descriptor is the IPA of the target page. Otherwise, it is the PA of the target page.

D5.3.3 Memory attribute fields in the VMSAv8-64 translation table format descriptors

Memory region attributes on page D5-2622 describes the region attribute fields. The following subsections summarize the descriptor attributes as follows:

Table descriptor

Table descriptors for stage 2 translations do not include any attribute field. For a summary of the attribute fields in a stage 1 table descriptor, that define the attributes for the next lookup level, see Next-level attributes in stage 1 VMSAv8-64 Table descriptors.

Block and page descriptors

These descriptors define memory attributes for the target block or page of memory. Stage 1 and stage 2 translations have some differences in these attributes, see:

- Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors on page D5-2595
- Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors on page D5-2597.

Next-level attributes in stage 1 VMSAv8-64 Table descriptors

In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the attributes for the next-level translation table access, and bits[58:51] are IGNORED:

Next-level descriptor attributes, stage 1 only

<table>
<thead>
<tr>
<th>63 62 61 60 59 58</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSTable</td>
<td></td>
</tr>
<tr>
<td>APTable</td>
<td></td>
</tr>
<tr>
<td>UXNTable or XNTable †</td>
<td></td>
</tr>
<tr>
<td>PXNTable ‡</td>
<td></td>
</tr>
</tbody>
</table>

† UXNTable for a translation regime that can apply to execution at EL0, otherwise XNTable.
‡ RES0 for a translation regime that cannot apply to execution at EL0.

These attributes are:

NSTable, bit[63]

For memory accesses from Secure state, specifies the Security state for subsequent levels of lookup, see Hierarchical control of Secure or Non-secure memory accesses on page D5-2599.

For memory accesses from Non-secure state, including all accesses in the EL2 or EL2&0 translation regime, this bit is RES0 and is ignored by the PE.

APTable, bits[62:61]

Access permissions limit for subsequent levels of lookup, see Hierarchical control of data access permissions on page D5-2605.

APTable[0] is RES0:

• In the EL2 translation regime.
In an implementation that includes FEAT_VHE, when the value of HCR_EL2.E2H is 1 the translation regime for memory accesses from EL2 is the EL2&0 translation regime. APTable[0] can be valid (not RES0) in the EL2&0 translation regime.

- In the EL3 translation regime.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of TCR_ELx.HPD{0} or TCR_ELx.HPD1 is 1:
 - The value of the corresponding APTable field is IGNORED by hardware, allowing the field to be used by software.
 - The behavior of the system is as if the value of the corresponding APTable field is 0.

--- Note ---

From Armv8.3, if EL2 is enabled in the current Security state, in the EL1 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[61] is treated as 0 regardless of the actual value, see Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2639.

UXNTable or XNTable, bit[60]

XN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching on page D5-2610.

The naming of this field depends on whether stage 1 of the translation regime can support two VA ranges:

Stage 1 can support two VA ranges
This field is UXNTable, and determines whether execution at EL0 of instructions fetched from the region identified at a lower level of lookup permitted.

--- Note ---

PXNTable is the equivalent control of execution at a higher Exception level.

Stage 1 supports only one VA range
This field is XNTable.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of TCR_ELx.HPD{0} or TCR_ELx.HPD1 is 1:
 - The value of the corresponding UXNTable field is IGNORED by hardware, allowing the field to be used by software.
 - The behavior of the system is as if the value of the corresponding UXNTable field is 0.

--- Note ---

From Armv8.3, if EL2 is enabled in the current Security state, in the EL1 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[60] holds PXNTable, see Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2639.

PXNTable, bit[59]

PXN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching on page D5-2610.

This field is valid only for a stage 1 translation that can support two VA ranges. It is RES0 for stage 1 translations that can support only one VA range.

From Armv8.1, when FEAT_HPDS is implemented, this field can be disabled. When the value of TCR_ELx.HPD{0} or TCR_EL1.HPD1 is 1:
 - The value of the corresponding PXNTable field is IGNORED by hardware, allowing the field to be used by software.
 - The behavior of the system is as if the value of the corresponding PXNTable field is 0.
Note

From Armv8.3, if EL2 is enabled in the current Security state, in the EL1&0 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[59] is RES0, see Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2639.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED on page Glossary-8235. For more information about these fields, see Other fields in the VMSAv8-64 translation table format descriptors on page D5-2627.

Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block, as shown for a stage 1 translation:

Attribute fields for VMSAv8-64 stage 1 Block and Page descriptors

<table>
<thead>
<tr>
<th>Upper attributes</th>
<th>Lower attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 62</td>
<td>16 15</td>
</tr>
<tr>
<td>59 58</td>
<td>12</td>
</tr>
<tr>
<td>55 54 53 52 51 50</td>
<td>9 8 7 6 5 4 2</td>
</tr>
</tbody>
</table>

- **Upper attributes**
 - **PBHA**: Page-based Hardware Attributes bits.
 - **nG**:...
 - **OA**:...

- **Lower attributes**
 - **nT**:...
 - **nG**:...
 - **AF**:...
 - **SH[1:0]**:...
 - **AP[2:1]**:...
 - **NS**:...
 - **AttrIndx[2:0]**:...

‡ IGNORED if FEAT_HPDS2 is not implemented.
† UXN for a translation regime that can apply to execution at EL0, otherwise XN.
‡ RES0 for a translation regime that cannot apply to execution at EL0.
* RES0 if FEAT_HAFDBS is not implemented.
§ RES0 if FEAT_LPA is not implemented.

For a stage 1 descriptor, the attributes are:

PBHA, bits[62:59]

Page-based Hardware Attributes bits.

These bits are IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, each TCR_ELx has a control bit for each PBHA bit in the translation tables that it controls. When the value of that control bit is 1, and the value of the corresponding Hierarchical permission disables bit, TCR_ELx.HPD{0} is 1, hardware can use that PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for implementation defined purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

The TCR_ELx control bits for this feature are:

For a translation regime that supports only a single VA range

- **HWU0nn**: Controls whether Block or Page descriptor bit[nn] can be used by hardware.
 - These controls apply only when the value of TCR_ELx.HPD0 is 1.

For a translation regime that can support two VA ranges

- **HWU0nn**: For the translation tables indicated by TTBR0_ELx, controls whether Block or Page descriptor bit[nn] can be used by hardware.
 - These controls apply only when the value of TCR_ELx.HPD0 is 1.

- **HWU1nn**: For the translation tables indicated by TTBR1_ELx, controls whether Block or Page descriptor bit[nn] can be used by hardware.
 - These controls apply only when the value of TCR_ELx.HPD1 is 1.
If FEAT_HPDS2 is not implemented, then the TCR_ELx control bits are RAZ/WI.

XN or UXN, bit[54]

The Execute-never or Unprivileged execute-never field, see *Access permissions for instruction execution* on page D5-2606.

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[54] holds PXN, see *Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1* on page D5-2639.

PXN, bit[53]

The Privileged execute-never field, see *Access permissions for instruction execution* on page D5-2606.

This field is valid only when stage 1 of the translation regime can support two VA ranges. It is RES0 when stage 1 can support only one VA range.

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[53] is RES0, see *Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1* on page D5-2639.

Contiguous, bit[52]

A hint bit indicating that the translation table entry is one of a contiguous set of entries, that might be cached in a single TLB entry, see *The Contiguous bit* on page D5-2627.

DBM, bit[51]

Dirty Bit Modifier, see *The dirty state* on page D5-2612.

GP, bit[50]

Guarded Page.

If FEAT_BTI is implemented, this field is present in stage 1 block and page translation table entries. Otherwise, this field is RES0.

This field is RES0 in stage 2 block and page translation table entries.

nT, bit[16]

Block translation entry, see *Block translation entry* on page D5-2612.

If FEAT_BBM is implemented, this field is present in stage 1 block translation table entries. Otherwise, this field is RES0.

nG, bit[11]

The not global bit. If a lookup using this descriptor is cached in a TLB, determines whether the TLB entry applies to all ASID values, or only to the current ASID value. See *Global and process-specific translation table entries* on page D5-2658.

This field is valid only when stage 1 of the translation regime can support two VA ranges. It is RES0 when stage 1 can support only one VA range.

AF, bit[10]

The Access flag, see *The Access flag* on page D5-2612.

SH, bits[9:8]

Shareability field, see *Memory region attributes* on page D5-2622.

AP[2:1], bits[7:6]

Data Access Permissions bits, see *Memory access control* on page D5-2600.

Note

The Armv8 translation table descriptor format defines AP[2:1] as the Access Permissions bits, and does not define an AP[0] bit.

AP[1] is valid only for stage 1 of a translation regime that can support two VA ranges. It is RES1 when stage 1 translations can support only one VA range.
The AArch64 Virtual Memory System Architecture
D5.3 VMSAv8-64 translation table format descriptors

Note

From Armv8.3, in the Non-secure EL1 translation regime, when the value of HCR_EL2.{NV, NV1} == {1, 1}, bit[6] is treated as 0 regardless of its actual value, see *Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1* on page D5-2639.

NS, bit[5] Non-secure bit. For memory accesses from Secure state, specifies whether the output address is in the Secure or Non-secure address map, see *Control of Secure or Non-secure memory access* on page D5-2599.

For memory accesses from Non-secure state this bit is RES0 and is ignored by the PE.

AttrIndx[2:0], bits[4:2]

Stage 1 memory attributes index field, for the MAIR_ELx, see *Stage 1 memory region type and Cacheability attributes* on page D5-2622.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see *IGNORED* on page Glossary-8235. For more information about these fields, see *Other fields in the VMSAv8-64 translation table format descriptors* on page D5-2627.

Attribute fields in stage 2 VMSAv8-64 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block, as shown for a stage 2 translation:

![Attribute fields for VMSAv8-64 stage 2 Block and Page descriptors](image)

\[\begin{array}{cccccc}
\text{MemAttr}[3:0] & \text{AF} & \text{SH}[1:0] & \text{S2AP}[1:0] & \text{DBM} & \text{Reserved for software use} \\
\text{Reserved for use by a System MMU} & \text{Reserved for use by a System MMU}
\end{array}\]

\[\begin{array}{cccccc}
\text{XN}[1:0] & \text{Contiguous} & \text{PBHA}† & \text{IGNORED} & \text{PBHA}† & \text{IGNORED}
\end{array}\]

\[\begin{array}{cccccc}
\text{Lower attributes} & \text{Upper attributes} & \text{Lower attributes} & \text{Upper attributes} & \text{Lower attributes} & \text{Upper attributes}
\end{array}\]

\[\begin{array}{cccccc}
\text{Reserved for use by a System MMU} & \text{Reserved for use by a System MMU}
\end{array}\]

† Bit[53] is RES0 if FEAT_XNX is not implemented.
‡ Bits [62:60] are IGNORED and reserved for use by System MMU if FEAT_HPDS2 is not implemented.

For a stage 2 descriptor, the attributes are:

PBHA[3:1], bits[62:60]

Page-based hardware attributes bits.

These bits are IGNORED and reserved for System MMU use when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for each PBHA bit in the EL1&0 stage 2 translation tables:

- When the value of that control bit is 1, hardware can use the corresponding PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

- When the value of that control bit is 0, the corresponding PBHA bit is IGNORED and reserved for System MMU use.
PBHA[0], bit[59]

Page-based hardware attributes bit.

This bit is IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for this bit in the EL1&0 stage 2 translation tables:

- When the value of that control bit is 1, hardware can use this bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.
- When the value of that control bit is 0, this bit is IGNORED.

XN[1:0], bits[54:53]

The Execute-never field, see Access permissions for instruction execution on page D5-2606.

If FEAT_XNX is not implemented, bit[53] is RES0.

Contiguous, bit[52]

A hint bit indicating that the translation table entry is one of a contiguous set or entries, that might be cached in a single TLB entry, see The Contiguous bit on page D5-2627.

DBM, bit[51] Dirty Bit Modifier, see The dirty state on page D5-2612.

nT, bit[16] Block translation entry, see Block translation entry on page D5-2612.

If FEAT_BBM is implemented, this field is present in stage 2 block translation table entries. Otherwise, this field is RES0.

SH, bits[9:8] Shareability field, see The stage 2 memory region attributes, EL1&0 translation regime on page D5-2624.

S2AP, bits[7:6] Stage 2 data Access Permissions bits, see The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime on page D5-2605.

Note

In the original VMSAv7-32 Long-descriptor attribute definition, this field was called HAP[2:1], for consistency with the AP[2:1] field in the stage 1 descriptors and despite there being no HAP[0] bit. Armv8 renames the field for greater clarity.

MemAttr, bits[5:2] Stage 2 memory attributes, see The stage 2 memory region attributes, EL1&0 translation regime on page D5-2624.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED on page Glossary-8235. For more information about these fields, see Other fields in the VMSAv8-64 translation table format descriptors on page D5-2627.
D5.3.4 Control of Secure or Non-secure memory access

As this section describes, the NS bit in the translation table entries:

- For accesses from Secure state, if the translation table entry was held in secure memory, determines whether the access is to Secure or Non-secure memory.
- Is ignored by:
 - Accesses from Non-secure state.
 - Accesses from Secure state if the translation table entry was held in Non-secure memory.

In the VMSAv8-64 translation table format:

- The NS bit relates only to the memory block or page at the output address defined by the descriptor.
- The descriptors also include an NSTable bit, that affects accesses at lower levels of lookup, see Hierarchical control of Secure or Non-secure memory accesses.

The NS and NSTable bits are valid only for memory accesses from Secure state described by translation table descriptors that are fetched from Secure memory, and:

- In the translation table descriptors in a Non-secure translation table, the NS and NSTable bits are SBZ.
- Memory accesses from Non-secure state, including all accesses from EL2, ignore the values of these bits.

In the Secure translation regimes, for translation table descriptors that are fetched from Secure memory, the NS bit in a descriptor indicates whether the descriptor refers to the Secure or the Non-secure address map, as follows:

\[
\begin{align*}
\text{NS} &= 0 & \text{Access the Secure PA space.} \\
\text{NS} &= 1 & \text{Access the Non-secure PA space.}
\end{align*}
\]

For Non-secure translation regimes, and for translation table descriptors fetched from Non-secure memory, the corresponding bit is RES0 and is ignored by the PE. The access is made to Non-secure memory, regardless of the value of the bit.

Hierarchical control of Secure or Non-secure memory accesses

For VMSAv8-64 table descriptors for stage 1 translations, the descriptor includes an NSTable bit, that indicates whether the table identified in the descriptor is in Secure or Non-secure memory. For accesses from Secure state, the meaning of the NSTable bit is:

\[
\begin{align*}
\text{NSTable} &= 0 & \text{The defined table address is in the Secure PA space. In the descriptors in that translation table, NS and NSTable bits have their defined meanings.} \\
\text{NSTable} &= 1 & \text{The defined table address is in the Non-secure PA space. Because this table is fetched from the Non-secure address space, the NS and NSTable bits in the descriptors in this table must be ignored. This means that, for this table:} \\
& & \quad \text{The value of the NS bit in any block or page descriptor is ignored. The block or page address refers to Non-secure memory.} \\
& & \quad \text{The value of the NSTable bit in any table descriptor is ignored, and the table address refers to Non-secure memory. When this table is accessed, the NS bit in any block or page descriptor is ignored, and all descriptors in the table refer to Non-secure memory.}
\end{align*}
\]

In addition, an entry fetched in Secure state is treated as non-global if it is read from the Non-secure IPA space memory. That is, these entries must be treated as if nG==1, regardless of the value of the nG bit. For more information about the nG bit, see Global and process-specific translation table entries on page D5-2658.

The effect of NSTable applies to later entries in the translation table walk, and so its effects can be held in one or more TLB entries. Therefore a change to NSTable requires coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.
D5.4 Memory access control

The access control fields in the translation table descriptors determine whether the PE, in its current state, is permitted to perform the required access to the output address given in the translation table descriptor. If a translation stage does not permit the access then an MMU fault is generated for that translation stage, and no memory access is performed.

The following sections describe the memory access controls:

- About access permissions.
- About PSTATE.PAN on page D5-2601.
- About PSTATE.UAO on page D5-2602.
- About PSTATE.BTYPE on page D5-2602.
- Data access permission controls on page D5-2604.
- Access permissions for instruction execution on page D5-2606.
- The Access flag on page D5-2612.
- The dirty state on page D5-2612.
- Software management of the Access flag on page D5-2612.
- Hardware management of the Access flag and dirty state on page D5-2613.
- Ordering of hardware updates to the translation tables on page D5-2619.
- Restriction on memory types for hardware updates on translation tables on page D5-2620.
- Use of the Contiguous bit with hardware updates of the translation table entries on page D5-2621.

--- Note ---

This section describes the access controls for each of the translation regimes, and for each stage of translation in the EL1&0, when EL2 is enabled, translation regime.

A translation applies to memory accesses from either:

- Only a single Exception level, for example the EL3 translation regime.
- EL0 and one higher Exception level, for example the EL1&0 translation regime.

In addition to an output address, a translation table entry that refers to a page or region of memory includes fields that define properties of the target memory region. These fields can be classified as address map control, access control, and region attribute fields. Control of Secure or Non-secure memory access on page D5-2599 describes the address map control, and Memory region attributes on page D5-2622 describes the other fields.

D5.4.1 About access permissions

The translation table descriptors include fields that define access permissions for data accesses and for instruction fetches. This section introduces those fields. In addition:

- System register controls can prevent execution from writable locations, see Preventing execution from writable locations on page D5-2611.
- For the effect of disabling a stage of address translation on the access permissions, see The effects of disabling a stage of address translation on page D5-2580.
- From Armv8.1, the PSTATE.PAN bit can affect the access permissions for privileged data accesses, see About PSTATE.PAN on page D5-2601.
- From Armv8.2, the PSTATE.UAO bit can affect the access permissions for unprivileged instructions, see About PSTATE.UAO on page D5-2602.
This section gives a general description of memory access permissions. In an implementation that includes EL2, software executing at EL1 can see only the access permissions defined by the EL1&0, when EL2 is enabled, stage 1 translations. However, software executing at EL2 can modify these permissions. This modification is invisible to the software executing at EL1 or EL0.

The access permission bits control access to the corresponding memory region. The VMSAv8-64 translation table format:

- In stage 1 translations, uses AP[2:1] to define the data access permissions, see *The AP[2:1] data access permissions, for stage 1 translations* on page D5-2604.

Note

The description of the access permission field as AP[2:1] is for consistency with the VMSAv8-32 Short-descriptor translation table format, see *The VMSAv8-32 Short-descriptor translation table format* on page G5-5979. The VMSAv8-64 translation table format does not define an AP[0] bit.

- In stage 2 translations, uses S2AP[1:0] to define the data access permissions, see *The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime* on page D5-2605.

- Uses the UXN, XN and PXN fields to define access controls for instruction fetches, see *Access permissions for instruction execution* on page D5-2606.

An attempt to perform a memory access that the translation table access permission bits do not permit generates a Permission fault, for the corresponding stage of translation.

Note

In an implementation that includes EL2, each stage of the translation of a memory access made using the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime has its own, independent, permission check.

D5.4.2 About PSTATE.PAN

When the value of PSTATE.PAN is 1, any privileged data access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible to data accesses at EL0, generates a Permission fault.

When the value of PSTATE.PAN is 0, the translation system is the same as in Armv8.0.

When FEAT_PAN is implemented, the SPSR_EL1.PAN, SPSR_EL2.PAN, and SPSR_EL3.PAN bits are used for exception returns, and the DSPSR_EL0 register is used for entry to or exit from Debug state.

When FEAT_PAN is implemented, the SCTLR_EL1.SPAN and SCTLR_EL2.SPAN bits are used to control whether the PAN bit is set on an exception to EL1 or EL2.

When HCR_EL2.{E2H, TGE} == {1, 1} SCTLR_EL1.SPAN and SCTLR_EL2.SPAN bits are used to control whether the PAN bit is set on an exception to EL1 or EL2.

When HCR_EL2.{E2H, TGE} == {1, 1} SCTLR_EL1.SPAN and SCTLR_EL2.SPAN are ignored.

The PAN bit has no effect on:

- Data Cache instructions other than DC ZVA.
- Address translation instructions, other than ATS1EP and ATS1EIP when FEAT_PAN2 is implemented.
- Unprivileged instructions, LDTR, LDTRB, LDTRH, LDRSB, LDRSH, LDRSW, STR, STRB, and STRH, unless HCR_EL2.{E2H, TGE} == {1, 0}.
- Instruction accesses.

The PAN bit has no effect when the first stage of translation is disabled for the current translation regime or when the first stage of translation for the current translation regime does not describe the permissions for access at EL0.

If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.PAN is copied to SPSR_ELx.PAN.
On an exception return from AArch64 state:

- $\text{SPSR}_{ELx}.\text{PAN}$ is copied to $\text{PSTATE}.\text{PAN}$, when the target Exception level is in AArch64 state.
- $\text{SPSR}_{ELx}.\text{PAN}$ is copied to $\text{CPSR}.\text{PAN}$, when the target Exception level is in AArch32 state.

Note

- In Non-debug state, in AArch64 state:
 - Software can use an $\text{MSR PAN, } #Imm4$ or $\text{MSR PAN, } Xt$ instruction to modify $\text{PSTATE}.\text{PAN}$, or an MRS Xt, PAN instruction to read $\text{PSTATE}.\text{PAN}$.
 - In EL1, when $\text{HCR_EL2.\{NV, NV1\}} == \{1, 1\}$, $\text{PSTATE}.\text{PAN}$ is treated as 0 for all purposes except reading the value of the bit.

- In Debug state, in AArch64 state, a debugger can use the DRPS instruction to modify $\text{PSTATE}.\text{PAN}$.

D5.4.3 About PSTATE.UAO

When the value of PSTATE.UAO is 1, a Load/Store unprivileged instruction executed at EL1, or executed at EL2 when the Effective value of $\text{HCR_EL2.\{E2H, TGE\}}$ is $\{1, 1\}$ is subject to the memory access permissions that apply to the Exception level at which it is executed, rather than being subject to the EL0 access permissions. This means the Load/Store unprivileged instruction is subject to the same access permissions as the corresponding Load/Store register instruction. See Load/Store unprivileged on page C3-211 and Load/Store register on page C3-207.

When FEAT_UAO is implemented and PSTATE.UAO is 0, it has no effect on the described behavior of any Load/Store unprivileged instruction.

A corresponding UAO bit is added to $\text{SPSR_EL1, SPSR_EL2, SPSR_EL3}$ for exception returns, and DSPSR_EL0 for entry to or exit from Debug state.

On an exception that is taken from AArch64 state to AArch64 state, PSTATE.UAO is copied to SPSR_ELx.UAO and then set to 0.

On an exception that is taken from AArch32 state to AArch64 state:

- PSTATE.UAO is set to 0.
- SPSR_ELx.UAO is set to 0.

On an exception return from AArch64 state to AArch64 state, SPSR_ELx.UAO is copied to PSTATE.UAO.

Note

- In Non-debug state, in AArch64 state, software can use an $\text{MSR UAO, } #Imm4$ or $\text{MSR UAO, } Xt$ instruction to modify PSTATE.UAO, or an MRS Xt, UAO instruction to read PSTATE.UAO.

- In Debug state, in AArch64 state, a debugger can use the DRPS instruction to modify PSTATE.UAO.

D5.4.4 About PSTATE.BTYPE

When FEAT_BTI is implemented, on execution of an instruction, the guarded status of the memory region and the register that is accessed by the instruction determines the value that the PSTATE.BTYPE field is set at the end of the execution of the instruction as shown in Table D5-26:

<table>
<thead>
<tr>
<th>Instruction executed</th>
<th>Memory region</th>
<th>Register accessed</th>
<th>PSTATE.BTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BR, BRAA, BRAAZ, BRAB, BRABZ}$</td>
<td>Guarded</td>
<td>Any register other than X16 or X17</td>
<td>0b11</td>
</tr>
<tr>
<td>$\text{BLR, BLRAA, BLRAAZ, BLRAB, BLRABZ}$</td>
<td>Any</td>
<td>Any register</td>
<td>0b10</td>
</tr>
<tr>
<td>$\text{BR, BRAA, BRAAZ, BRAB, BRABZ}$</td>
<td>Guarded</td>
<td>X16 or X17</td>
<td>0b01</td>
</tr>
</tbody>
</table>
The BTI instructions <targets> operand identifies the compatibility of the BTI instruction to different PSTATE.BTYPE values, as seen in Table D5-27.

<table>
<thead>
<tr>
<th>Instruction executed</th>
<th>Memory region</th>
<th>Register accessed</th>
<th>PSTATE.BTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR, BRAA, BRAAZ, BRAB, BRABZ</td>
<td>Non-guarded</td>
<td>Any register</td>
<td>0b01</td>
</tr>
<tr>
<td>RET, RETAA, RETAB</td>
<td>Any</td>
<td>Any register</td>
<td>0b00</td>
</tr>
<tr>
<td>Any instruction other than BR, BRAA, BRAAZ, BRAB, BRABZ, BLR, BLRAA, BLRAAZ, BLRAB, BLRABZ, RET, RETAA, RETAB</td>
<td>Any</td>
<td>Any register</td>
<td>0b00</td>
</tr>
</tbody>
</table>

When accessing a guarded memory region and if PSTATE.BTYPE has a value of 0b01, 0b10, or 0b11, then a BTI instruction that is compatible with the current value of PSTATE.BTYPE will not generate a Branch Target exception and will allow execution of subsequent instructions within the memory region.

A Branch Target exception is generated for an instruction that lies within a guarded page if PSTATE.BTYPE field is not 0b00 and if the instruction is not any of:

- A BTI instruction that is compatible with the PSTATE.BTYPE field.
- A PACIASP or PACIBSP instruction, and the PSTATE.BTYPE is consistent with implicit BTI behavior of these instructions.
- A Breakpoint Instruction exception.
- A Halt Instruction debug event.

A Branch Target exception is taken to:

- EL1 when executing at EL0 and HCR_EL2.TGE == 0.
- EL2 when executing at EL0 and HCR_EL2.TGE == 1.
- ELx when executing at ELx, where x is 1, 2, or 3.

The ESR_ELx.EC code for a Branch Target exception is 0x00, see ISS encoding for an exception from Branch Target Identification instruction on page D13-2999.

When accessing a guarded memory region, PACIASP and PACIBSP instructions have an implicit branch target identification instruction. This means that they are a target that is compatible with:

- A PSTATE.BTYPE value of 0b10 or 0b01,
- When the associated SCTLR_ELx.BT0, BT1, BT) bits are 0, a PSTATE.BTYPE value of 0b11.

Note

- The implicit branch target identification property of PACIASP and PACIBSP is independent of the setting of the SCTLR_ELx.EnIA, EnIB] bits.
• The Branch Target Identification instructions are NOPs in a non-guarded page.
• There is no direct way of reading or writing to the PSTATE.BTYPE field.

D5.4.5 Data access permission controls

The following subsubsections describe the data access permission controls:
• Preventing EL0 access to halves of the address map
• The AP[2:1] data access permissions, for stage 1 translations.
• The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime on page D5-2605.
• Hierarchical control of data access permissions on page D5-2605.

Preventing EL0 access to halves of the address map

If FEAT_E0PD is implemented, the TCR_ELx.{E0PD0, E0PD1} fields can prevent unprivileged access to the addresses translated by TTBR0_ELx or TTBR1_ELx. If access is prevented, the fault is reported as a level 0 fault, and should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks that use fault timing.

The AP[2:1] data access permissions, for stage 1 translations

In VMSA v8-64, for a translation regime that applies to both EL0 and a higher Exception level, the AP[2:1] bits control the stage 1 data access permissions, and:

| AP[2] | Selects between read-only and read/write access. |
| AP[1] | Selects between Application level (EL0) control and the higher Exception level control. |

This provides four permission settings for data accesses:
• Read-only at all levels.
• Read/write at all levels.
• Read-only at the higher Exception level, no access by software executing at EL0.
• Read/write at the higher Exception level, no access by software executing at EL0.

Note

In an implementation that does not include FEAT_VHE, the only translation regime that applies to EL0 and a higher Exception level is the EL1&0 translation regime. In an implementation that includes FEAT_VHE, the EL2&0 translation regime applies to both Non-secure EL0 and EL2 when the value of HCR_EL2.{E2H, TGE} is {1, 1}.

For translation regimes that apply only to accesses from a single Exception level, AP[2] determines the stage 1 data access permissions, and AP[1] is RES1, meaning it is ignored by hardware and is treated as if it is 1.

Table D5-28 shows the meaning of the AP[2:1] field for stage 1 of a translation regime that applies to both EL0 and a higher Exception level. In this table, an entry of None indicates that any access from that Exception level faults.

<table>
<thead>
<tr>
<th>AP[2:1]</th>
<th>Access from higher Exception level</th>
<th>Access from EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Read/write</td>
<td>None</td>
</tr>
<tr>
<td>01</td>
<td>Read/write</td>
<td>Read/write</td>
</tr>
<tr>
<td>10</td>
<td>Read-only</td>
<td>None</td>
</tr>
<tr>
<td>11</td>
<td>Read-only</td>
<td>Read-only</td>
</tr>
</tbody>
</table>
For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime:

- The stage 2 translation also defines data access permissions, see *The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime*.
- When both stages of translation are enabled, *Combining the stage 1 and stage 2 data access permissions on page D5-2629* describes how these permissions are combined.

Table D5-29 shows the effect of the AP[2] field for stage 1 of a translation regime that applies to only a single Exception level.

Table D5-29 Data access permissions for stage 1 translations that apply to only a single Exception level

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Read/write</td>
</tr>
<tr>
<td>1</td>
<td>Read-only</td>
</tr>
</tbody>
</table>

The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime

In the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, when stage 2 address translation is enabled, the S2AP field in the stage 2 translation table descriptors define the data access permissions as Table D5-30 shows. In this table, an entry of None indicates that any access generates a Permission fault.

Table D5-30 Data access permissions for stage 2 of the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime

<table>
<thead>
<tr>
<th>S2AP</th>
<th>Access from Non-secure EL1 or Non-secure EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>None</td>
</tr>
<tr>
<td>01</td>
<td>Read-only</td>
</tr>
<tr>
<td>10</td>
<td>Write-only</td>
</tr>
<tr>
<td>11</td>
<td>Read/write</td>
</tr>
</tbody>
</table>

The S2AP access permissions make no distinction between Non-secure accesses from EL1 and Non-secure accesses from EL0. However, when both stages of address translation are enabled, these permissions are combined with the stage 1 access permissions defined by AP[2:1], see *Combining the stage 1 and stage 2 data access permissions on page D5-2629*.

Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on page D5-2628 gives more information about the use of the stage 1 and stage 2 access permissions in an implementation of virtualization.

Hierarchical control of data access permissions

The VMSAv8-64 translation table format includes mechanisms by which entries at one level of translation table lookup can set limits on the permitted entries at subsequent levels of lookup. This subsection describes how these controls apply to the data access permissions.

--- **Note** ---

Similar hierarchical controls apply to instruction fetching, see *Hierarchical control of instruction fetching on page D5-2610*.

However, in an implementation that includes FEAT_HPDS, when the value of a TCR_ELx.HPD{0} field is 1, or the value of the TCR_ELx.HPD1 field is 1, the hierarchical control of data access permissions is disabled for the translation stage controlled by that TCR_ELx, and the information in this subsection does not apply.

The restrictions apply only to subsequent levels of lookup for the same stage of translation. The APTable[1:0] field restricts the access permissions, as Table D5-31 shows. As stated in the table footnote, for a translation regime that applies to only a single Exception level, APTable[0] is RES0, meaning it is ignored by the hardware.

Table D5-31 Effect of APTable[1:0] on subsequent levels of lookup

<table>
<thead>
<tr>
<th>APTable[1:0]</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No effect on permissions in subsequent levels of lookup.</td>
</tr>
<tr>
<td>01a</td>
<td>Access at EL0 not permitted, regardless of permissions in subsequent levels of lookup.</td>
</tr>
<tr>
<td>10</td>
<td>Write access not permitted, at any Exception level, regardless of permissions in subsequent levels of lookup.</td>
</tr>
<tr>
<td>11a</td>
<td>Regardless of permissions in subsequent levels of lookup:</td>
</tr>
<tr>
<td></td>
<td>• Write access not permitted, at any Exception level.</td>
</tr>
<tr>
<td></td>
<td>• Read access not permitted at EL0.</td>
</tr>
</tbody>
</table>

a. Not valid for any translation regime that applies to only a single Exception level. In the translation tables for such a regime, APTable[0] is RES0.

Note

The APTable[1:0] settings are combined with the translation table access permissions in the translation tables descriptors accessed in subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.

The VMSAv8-64 provides APTable[1:0] control only for stage 1 translations. The corresponding bits are RES0 in the stage 2 translation table descriptors.

The effect of APTable applies to later entries in the translation table walk, and so its effects can be held in one or more TLB entries. Therefore, a change to APTable requires coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

D5.4.6 Access permissions for instruction execution

Execute-never controls determine whether instructions can be executed from a memory region. These controls are:

UXN, Unprivileged execute-never, stage 1 only

Descriptor bit[54], defined as UXN only for stage 1 of any translation regime for which stage 1 translation can support two VA ranges.

This field applies only to execution at EL0. A value of 0 indicates that this control permits execution.

XN, Execute-never

Descriptor bit[54], defined as XN for:

- Stage 1 of any translation regime for which the stage 1 translation can support only a single VA range.
- Stage 2 translations when FEAT_XNX is not implemented.

Note

XN[1:0], Execute-never, stage 2 only describes the stage 2 control when FEAT_XNX is implemented.
This field applies to execution at any Exception level to which the stage of translation applies. A value of 0 indicates that this control permits execution.

PXN, Privileged execute-never, stage 1 only

Descriptor bit[53], used only for stage 1 of any translation regime for which stage 1 translation can support two VA ranges.

- For stage 1 of a translation regime for which the stage 1 translation supports only a single VA range the stage 1 descriptors define a PXN field that is RES0, meaning it is ignored by hardware.

This field applies only to execution at an Exception level higher than EL0. A value of 0 indicates that this control permits execution.

XN[1:0], Execute-never, stage 2 only

Descriptor bits[54:53], defined as XN[1:0] for:

- Stage 2 translations when FEAT_XNX is implemented.

Table D5-32 shows the operation of this control.

<table>
<thead>
<tr>
<th>XN[1]</th>
<th>XN[0]</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>The stage 2 control permits execution at EL1 and EL0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>The stage 2 control does not permit execution at EL1, but permits execution at EL0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>The stage 2 control does not permit execution at EL1 or EL0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>The stage 2 control permits execution at EL1, but does not permit execution at EL0</td>
</tr>
</tbody>
</table>

Note

For stage 2 translations when FEAT_XNX is not implemented, descriptor bit[53] is RES0, meaning it is ignored by hardware.

Note

In an implementation that does not include FEAT_VHE, the only translation regime for which stage 1 translation can support two VA ranges is the EL1&0 translation regime. In an implementation that includes FEAT_VHE:

- When the value of HCR_EL2.E2H is 1, TCR_EL2 controls the EL2&0 translation regime, and this regime:
 - Supports two VA ranges, corresponding to TTBR0_EL2 and TTBR1_EL2.
 - Always supports both UXN and PXN fields.
- Memory accesses from EL0 are translated using the EL2&0 translation regime only when the value of HCR_EL2.{E2H, TGE} is {1, 1}.

Table D5-32 shows the operation of the stage 2 XN[1:0] control, and for each single-bit execute-never field a value of 1 indicates that, at an exception level to which the control applies, instructions cannot be executed from the target memory region. In addition:

- For a translation regime that applies to EL0 and a higher Exception level, if the value of the AP[2:1] bits is 0b01, permitting write access from EL0, then the PXN field is treated as if it has the value 1, regardless of its actual value.
- In a translation regime with two stages of translation, a region is execute-never if execution is not permitted by the value of the applicable execute-never field in one or both of:
 - The stage 1 translation table descriptor.
 - The stage 2 translation table descriptor.
For each translation regime, if the value of the corresponding SCTLR_ELx.WXN field is 1 then any memory region that is writable is treated as XN, regardless of the value of the corresponding UXN, XN, or PXN field. For more information, see Preventing execution from writable locations on page D5-2611.

The SCR_EL3.SIF bit prevents execution in Secure state of any instruction fetched from Non-secure memory, see Restriction on Secure instruction fetch on page D5-2612.

The execute-never controls apply to speculative instruction fetching, meaning speculative instruction fetch from a memory region that is execute-never at the current Exception level is prohibited.

Note

Although the execute-never controls apply to speculative fetching, on a speculative instruction fetch from an execute-never location, no Permission fault is generated unless the PE attempts to execute the instruction that would have been fetched from that location. This means that, if a speculative fetch from an execute-never location is attempted, but there is no attempt to execute the corresponding instruction, a Permission fault is not generated.

The software that defines a translation table must mark any region of memory that is read-sensitive as execute-never, to avoid the possibility of a speculative fetch accessing the memory region. This means it must mark any memory region that corresponds to a read-sensitive peripheral as execute-never. Hardware does not prevent speculative accesses to a region of any Device memory type unless that region is also marked as execute-never for all Exception levels from which it can be accessed.

When no stage of address translation for the translation regime is enabled, memory regions cannot have UXN, XN, or PXN attributes assigned. Behavior of instruction fetches when all associated stages of translation are disabled on page D5-2581 describes how disabling all stages of address translation affects instruction fetching.

The following subsubsections give more information about the data access permission controls:

- Stage 1 instruction access and execution permissions.
- Stage 2 instruction execution permissions on page D5-2610.
- Hierarchical control of instruction fetching on page D5-2610.
- Preventing execution from writable locations on page D5-2611.
- Restriction on Secure instruction fetch on page D5-2612.

Stage 1 instruction access and execution permissions

Table D5-33 on page D5-2609 and Table D5-34 on page D5-2610 include the AP[2:1] read and write permissions shown in Table D5-28 on page D5-2604 and Table D5-29 on page D5-2605. These permissions are shown as:

- R Indicates Read permission granted.
- W Indicates Write permission granted.
Table D5-33 shows the stage 1 access permissions for instruction execution when using a translation regime that applies to EL0 and a higher Exception level.

Table D5-33: Stage 1 access permissions for instruction execution for a translation regime that applies to EL0 and a higher Exception level

<table>
<thead>
<tr>
<th>UXN</th>
<th>PXN</th>
<th>AP[2:1]</th>
<th>SCTLR_ELx.WXNa</th>
<th>Access from higher Exception level</th>
<th>Access from EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>R, W, Executable</td>
<td>Executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executable<sup>b</sup></td>
<td>Executable</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td></td>
<td>0</td>
<td>R, W, Not executable<sup>c</sup></td>
<td>R, W, Executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executable</td>
<td>R, W, Not executable<sup>d</sup></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Executable</td>
<td>Executable</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Executable</td>
<td>R, Executable</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>x</td>
<td>R, W, Not executable</td>
<td>Executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>R, W, Not executable</td>
<td>R, W, Executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executable</td>
<td>R, W, Not executable<sup>d</sup></td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Executable</td>
<td>Executable</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Not executable</td>
<td>R, Executable</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00</td>
<td>0</td>
<td>R, W, Executable</td>
<td>Not executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executable<sup>b</sup></td>
<td>Not executable</td>
</tr>
<tr>
<td>01</td>
<td>x</td>
<td></td>
<td></td>
<td>R, W, Not executable<sup>c</sup></td>
<td>R, W, Not executable</td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Executable</td>
<td>Not executable</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
<td>R, Executable</td>
<td>R, Not executable</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00</td>
<td>x</td>
<td>R, W, Not executable</td>
<td>Not executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>R, W, Not executable</td>
<td>R, W, Not executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executable</td>
<td>Not executable</td>
</tr>
</tbody>
</table>

^a Where ELx is the higher Exception level to which the translation regime applies.
^b Not executable because of SCTLR_ELx.WXN control, because region is writable at ELx.
^c Not executable, because AArch64 execution treats all regions writable at EL0 as being PXN.
^d Not executable because of SCTLR_ELx.WXN control, because region is writable at EL0.
Table D5-34 shows the stage 1 access permissions for instruction execution when using a translation regime that applies to only a single Exception level.

Table D5-34 Access permissions for instruction execution for a translation regime that applies to only a single Exception level

<table>
<thead>
<tr>
<th>XN</th>
<th>AP[2]</th>
<th>SCTLR_ELx.WXNa</th>
<th>Access permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>R, W, Executable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>R, W, Not executableb</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>R, Executable</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
<td>R, W, Not executable</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>R, Not executable</td>
</tr>
</tbody>
</table>

a. Where ELx is the higher Exception level to which the translation regime applies.
b. Not executable because of the SCTLR_ELx.WXN control, because region is writable at ELx.

Note

The Access permissions for an AArch64 translation regime that applies to only a single Exception level are consistent with the following fields in the translation table entries being treated as shown:

- AP treated as RES1.
- APTable[0] treated as RES0.
- PXN treated as RES0.
- PXNTable treated as RES0.

Stage 2 instruction execution permissions

For the Secure or Non-secure EL1&0, when EL2 is enabled, stage 2 translation, the XN fields in the stage 2 translation table descriptors control the execution permission, and this control is completely independent of the S2AP access permissions:

- When FEAT_XNX is not implemented the stage 2 XN field is a 1-bit field that applies to execution at both EL0 and EL1, see XN, Execute-never on page D5-2606.
- When FEAT_XNX is implemented the stage 2 XN field is a 2-bit field that provides independent control of execution from EL0 and execution from EL1, see XN[1:0], Execute-never, stage 2 only on page D5-2607.

See also Combining the stage 1 and stage 2 instruction execution permissions on page D5-2629.

Hierarchical control of instruction fetching

The VMSAv8-64 translation table format includes mechanisms by which entries at one level of translation table lookup can set limits on the permitted entries at subsequent levels of lookup. This subsection describes how these controls apply to the instruction fetching controls.

Note

Similar hierarchical controls apply to data accesses, see Hierarchical control of data access permissions on page D5-2605.

However, in an implementation that includes FEAT_HPDS, when the value of a TCR_ELx.HPD{0} field is 1, or the value of the TCR_ELx.HPD1 field is 1, the hierarchical control of instruction fetching is disabled for the translation stage controlled by that TCR_ELx, and the information in this subsection does not apply.
The restrictions apply only to subsequent levels of lookup at the same stage of translation, and:

- **UXNTable** or **XNTable** restricts the execute-never control:
 - When the value of the **XNTable** bit is 1, the **XN** bit is treated as 1 in all subsequent levels of lookup, regardless of its actual value.
 - When the value of the **UXNTable** bit is 1, the **UXN** bit is treated as 1 in all subsequent levels of lookup, regardless of its actual value.
 - When the value of a **UXNTable** or **XNTable** bit is 0 the bit has no effect.

- For a translation regime that applies to EL0 and a higher Exception level, **PXNTable** restricts the PXN control:
 - When the value of **PXNTable** is 1, the **PXN** bit is treated as 1 in all subsequent levels of lookup, regardless of the actual value of the bit.
 - When the value of **PXNTable** is 0 it has no effect.

Note
The **UXNTable**, **XNTable**, and **PXNTable** settings are combined with the **XN**, **UXN**, and **PXN** bits in the translation table descriptors accessed at subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.

Note
The **UXNTable**, **XNTable**, and **PXNTable** controls are provided only for stage 1 translations. The corresponding bits are RES0 in the stage 2 translation table descriptors.

The effect of **UXNTable**, **XNTable**, or **PXNTable** applies to later entries in the translation table walk, and so its effects can be held in one or more TLB entries. Therefore, a change to **UXNTable**, **XNTable**, or **PXNTable** requires coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

Preventing execution from writable locations

Armv8 provides control bits that, when corresponding stage 1 address translation is enabled, force writable memory to be treated as execute-never:

- For a translation regime that applies to EL0 and a higher Exception level, ELx, when the value of the applicable **SCTLR_ELx.WXN** field is 1:
 - All regions that are writable from EL0 at stage 1 of the address translation are treated as stage 1 execute-never at EL0.
 - All regions that are writable from ELx at stage 1 of the address translation are treated as stage 1 execute-never at ELx.

- For a translation regime that applies to only a single Exception level, ELx, when the value of the applicable **SCTLR_ELx.WXN** field is 1, all regions that are writable at stage 1 of the address translation are treated as stage 1 execute-never at ELx.

Note
The **SCTLR_ELx.WXN** controls are intended to be used in systems with very high security requirements.

- Setting a WXN field to 1 changes the interpretation of the translation table entry, overriding a zero value of a **XN**, **UXN**, or **PXN** field. It does not cause any change to the translation table entry.

Note
For any given virtual machine, Arm expects WXN to remain static in normal operation. In particular, it is IMPLEMENTATION DEFINED whether TLB entries associated with a particular VMID reflect the effect of the values of these fields. This means that any change of these fields without a corresponding change of VMID might require synchronization and TLB invalidation, as described in **TLB maintenance requirements and the TLB maintenance instructions** on page D5-2661.
Restriction on Secure instruction fetch

EL3 provides a Secure instruction fetch bit, SCR_EL3.SIF. When the value of this bit is 1, and execution is using the EL3 translation regime, the Secure EL2 translation regime, or the Secure EL1&0 translation regime, any attempt to execute an instruction fetched from memory marked in the first stage of translation as Non-secure memory causes a Permission fault. TLB entries might reflect the value of this bit, and therefore any change to the value of this bit requires synchronization and TLB invalidation, as described in TLB maintenance requirements and the TLB maintenance instructions on page D5-2661.

In an implementation that does not implement EL3, the Effective value of this bit is 0.

D5.4.7 The Access flag

The Access flag indicates when a page or section of memory is accessed for the first time since the Access flag in the corresponding translation table descriptor was set to 0.

The AF bit in the translation table descriptors is the Access flag.

In Armv8.0, the Access flag is managed by software as described in Software management of the Access flag.

From Armv8.1, the Access flag can be managed by hardware as described in Hardware management of the Access flag on page D5-2613.

Note

The support for hardware management of the Access flag applies only to the VMSA8-64 translation regimes.

D5.4.8 The dirty state

The dirty state indicates whether a page or section of memory is modified.

The dirty state can be managed by hardware as described in Hardware management of dirty state on page D5-2614.

Where the dirty state is managed in hardware, the dirty state information is encoded using the access permission bits AP[2] and S2AP[1] in conjunction with the DBM bit.

D5.4.9 Block translation entry

While the nT bit is set, if the implementation meets either level 1 or level 2 support, the PE either:

• Generates a translation fault when using a translation table entry that has the nT bit set. Such an entry is not permitted to be cached within the TLB.

• Guarantees that using a translation table entry that has the nT bit set does not break coherency, ordering guarantees or uniprocessor semantics, or fail to clear the Exclusives monitors when an entry that does not have the nT bit set is translating the same address cached within the TLB.

Note

Using a translation table entry that has the nT bit set might significantly impact the performance of the translation.

For more information, see Support levels for changing block size on page D5-2663.

D5.4.10 Software management of the Access flag

Armv8.0 requires that software manages the Access flag. This means an Access flag fault is generated whenever an attempt is made to read into the TLB a translation table descriptor entry for which the value of Access flag is 0.

The Access flag mechanism expects that, when an Access flag fault occurs, software resets the Access flag to 1 in the translation table entry that caused the fault. This prevents the fault occurring the next time that memory location is accessed. Entries with the Access flag set to 0 are never held in the TLB, meaning software does not have to flush the entry from the TLB after setting the flag.
Note

If a system incorporates components that can autonomously update translation table entries that are shared with the Arm PE, then the software must be aware of the possibility that such components can update the access flag autonomously.

In such a system, system software should perform any changes of translation table entries with an Access flag of 0, other than changes to the Access flag value, by using an Load-Exclusive/Store-Exclusive loop, to allow for the possibility of simultaneous updates.

D5.4.11 Hardware management of the Access flag and dirty state

Armv8.1 introduces the following OPTIONAL features that perform hardware updates to the translation tables:

- Hardware management of the Access flag.
- Hardware management of dirty state on page D5-2614.

The support for hardware management of the Access flag and dirty state is identified by the feature FEAT_HAFDBS.

When the hardware management of the Access flag is enabled, in situations where, without this feature, an Access flag fault would be generated, the hardware instead performs an atomic read-modify-write of the appropriate translation table descriptor to update the Access flag from 0 to 1.

When the hardware management of dirty state is enabled, if the Block or Page descriptor in a translation table indicates that a data access does not have write permission, then in situations where, without this feature, a data access would generate a Permission fault only because of this lack of write permission, the hardware checks the value of the DBM field in the Block or Page descriptor. If this field is 1, then instead of generating a Permission fault, the hardware performs an atomic read-modify-write of the translation table descriptor, to change the value of the bit that prohibits the write access.

It is permissible, but not required, that a stage 2 permission failure on the stage 1 translation table walk is generated (and has priority over the stage 1 abort generated by the stage 1 translation table entry) if all of the following are true:

- Stage 1 hardware updating of either access or dirty information is enabled.
- A stage 1 translation table entry would result in the stage 1 translation table entry having the access or dirty bit updated.
- The stage 1 translation table entry has stage 2 read permission but not stage 2 write permission.
- The stage 1 translation entry generates an abort (which might be one of an address size fault, an alignment fault caused by memory type or a permission fault).

Hardware management of the Access flag

Hardware management of the Access flag is enabled, for the corresponding stage of address translation, by the following configuration fields:

For stage 1 translations

- TCR_EL1.HA.
- TCR_EL2.HA.
- TCR_EL3.HA.

For stage 2 translations

- VTCR_EL2.HA.

Implementations are not required to support the hardware management of the Access flag. If FEAT_HAFDBS is not supported, then the HA bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.
When the value of a configuration bit, HA, is 1, then when a memory access is made using a translation table Block or Page descriptor from the corresponding stage of address translation:

- The PE sets the value of the Access flag to 1 in the translation table descriptor in memory, in a coherent manner, by an atomic read-modify-write of the translation table descriptor, if both of the following conditions are true:
 - The descriptor does not generate a Permission fault or an Alignment fault based on the memory type.
 - If the hardware update mechanism was disabled or not implemented, the access would have generated an Access flag fault.

When the PE updates the Access flag in this way no Access flag fault is generated.

- It is CONSTRAINED UNPREDICTABLE whether the PE sets the value of the Access flag in the translation table entry in memory to 1, in a coherent manner, by an atomic read-modify-write of the translation table descriptor, if both of the following conditions are true.
 - The descriptor generates a Permission fault or an Alignment fault based on the memory type.
 - If the hardware update mechanism was disabled or not implemented, the access would have generated an Access flag fault.

This means that the value of the Access flag becomes UNKNOWN if the above conditions are all true.

The Access flag might be set to 1 as a result of speculative accesses by the PE.

--- Note ---
A consequence of the architectural rules for translation table accesses is that the architecture requires that for any translation to which an architecturally executed memory access occurs, the Access flag is set to 1, except as indicated in **Using break-before-make when updating translation table entries on page D5-2662**. However, because the architecture permits speculative accesses, the Access flag is permitted to be set to 1, even if there is no architecturally executed memory accesses by the processor.

When hardware updating of the Access flag is enabled, each stage of translation is treated independently. This means that a single memory access can cause a hardware update to either or both:

- The stage 1 Access flag.
- The stage 2 Access flag.

--- Note ---
Since speculative accesses are permitted to update the Access flags, it is permissible for:

- The stage 1 Access flag for a translation of a virtual address to be updated in situations where the stage 2 translation of the associated intermediate physical address that is returned by the stage 1 of the virtual address does not permit access.
- The stage 2 Access flag for a translation of an intermediate physical address to be updated in situations where the stage 1 translation of the associated virtual address which returned that intermediate physical address does not permit access.

An address translation instruction for an address is permitted, but not required, to set the Access flag in the translation table entries for that address. Correspondingly, it is IMPLEMENTATION DEFINED whether such an instruction can generate a Data Abort if the Access flag for a stage of translation is updated to be set.

When hardware updates of the Access flag are enabled for a stage of translation an address translation instruction that uses that stage of translation will not report that the address will give rise to an Access flag fault in the PAR, and the result in PAR will be as if the value of the Access flag in the translation table entries for that address was 1.

Hardware management of dirty state

The hardware management of dirty state mechanism can only be enabled if hardware management of the Access flag is enabled. For information on the hardware management of the Access flag, see **Hardware management of the Access flag on page D5-2613**.
The hardware management of dirty state mechanism uses:

- In a stage 1 translation table access, the AP[2] bit in conjunction with the DBM bit in the translation table descriptors.
- In a stage 2 translation table access, the S2AP[1] bit in conjunction with the DBM bit in the translation table descriptors.

Hardware management of dirty state is enabled, for the corresponding stage of address translation, by the following configuration fields:

For stage 1 translations
- TCR_EL1.HD.
- TCR_EL2.HD.
- TCR_EL3.HD.

For stage 2 translations
- VTCR_EL2.HD.

Implementations are not required to support the dirty state mechanism. If this mechanism is not supported, then the HD bit in TCR_EL1, TCR_EL2, TCR_EL3, and VTCR_EL2 is RES0.

When hardware management of dirty state is enabled, and a memory access is made using a translation table Block or Page descriptor:

- For a stage 1 address translation, if the value of the TCR_ELx.HD field corresponding to the address translation is 1, then the PE sets AP[2] to 0 in the translation descriptor in memory, in a coherent manner by an atomic read-modify-write of the translation table descriptor, if both of the following conditions are true:
 - The value of the DBM field in the descriptor is 1.
 - If the hardware update mechanism was disabled or not implemented, the access using this descriptor would have generated a Permission fault only because the value of the AP[2] field is 1, indicating that the access does not have write permission.

 When the PE updates AP[2] in this way no Permission fault is generated because of the value of the AP[2] field.

- For a stage 2 address translation, if the value of the VTCR_EL2.HD field is 1, then the PE sets S2AP[1] to 1 in the translation descriptor in memory, in a coherent manner by an atomic read-modify-write of the translation table descriptor, if both of the following conditions are true:
 - The value of the DBM field in the descriptor is 1.
 - If the hardware update mechanism was disabled or not implemented, the access using this descriptor would have generated a Permission fault only because the value of the S2AP[1] field is 0, indicating that the access does not have write permission.

 When the PE updates S2AP[1] in this way no Permission fault is generated because of the value of the S2AP[1] field.

Note

The PE that does the atomic update of the translation table descriptor is expected to ensure that any cached copy of that translation table descriptor for that PE is similarly updated, or removed from the TLB, so that multiple writes from the same thread on the same PE do not lead to multiple updates to the table. This is only a performance expectation.

If, for a write access, the PE finds that a cached copy of the descriptor in a TLB had the DBM bit set to 1 and the AP[2] or S2AP[1] bit set to the value that forbids writes, then the PE must check that the cached copy is not stale with regard to the descriptor entry in memory, and if necessary perform an atomic read-modify-write update of the descriptor in memory. This applies if the cached copy of the descriptor in a TLB is either:

- A stage 1 descriptor in which DBM has the value 1 and AP[2] has the value 1.
- A stage 2 descriptor in which DBM has the value 1 and S2AP[1] has the value 0.
Note

Arm expects that, in many implementations, any atomic update of a translation table entry required by the dirty state management mechanism will cause a translation table walk.

For the hardware updating of the AP[2] and S2AP[1] bits, each translation stage is treated independently. This means a single memory access can update either or both of:

- The stage 2 S2AP[1] bit.

The architecture does not permit updates to AP[2] and S2AP[1] by the hardware management of the dirty state mechanism to occur as a result of speculative accesses by the PE that are not performed architecturally, except that for translation table entries for which the value of DBM is 1:

- A non-speculative access that passes stage 1 permissions check can update AP[2], if writes to that stage translation table are permitted and subsequently encounter a stage 2 fault. A non-speculative access that passes its stage 1 permission check but subsequently encounters a stage 2 fault is also permitted (but not required) to generate a stage 2 permission fault on the stage 1 translation table walk if all of the following is true:
 - The stage 1 hardware updating of the access flag or dirty state is enabled.
 - The stage 2 translation table entry translating the last level stage 1 translation entry has S2AP[1] == 0 and either DBM == 0 or hardware updating of the dirty state information is not enabled.

Note

These are cases where there is no stage 2 write permission for the hardware updating of the last level stage 1 translation table entry.

- A non-speculative access that generates an Alignment fault only because the memory type accessed is Device memory by a stage of translation can update AP[2] or S2AP[1] of that stage of translation if the memory access would have updated that translation table bit had the memory access not generated the Alignment fault.

- If the stage 2 hardware management of dirty state mechanism is enabled, the S2AP[1] field of a stage 2 translation table entry that is translating a stage 1 translation table without generating a stage 2 MMU fault:
 - Is updated from 0 to 1 as a result of a speculative update of the Access flag in an entry of that stage 1 translation table.
 - Is permitted to be updated speculatively from 0 to 1 as a result of performing a translation table walk using that stage 1 translation table, even if the entry in the stage 1 translation table is not updated. The speculative update is permitted to generate a synchronous External abort or an IMPLEMENTATION DEFINED abort caused by the memory type not supporting an atomic read-modify-write.

Note

This applies even if the stage 1 translation table contains entries that are not the final level entries and therefore would not be updated. This relaxation avoids the hardware complexity of having to detect whether the stage 1 entry is a final level entry before deciding to set the stage 2 dirty state information.

- If an instruction that generates more than one single-copy atomic memory access has a fault on some, but not all, of those memory accesses, then AP[2] and S2AP[1] bits associated with accesses from that instruction, which do not fault are permitted to be updated if the associated hardware update of dirty state mechanism is enabled.

- If the hardware update of dirty state mechanism is enabled and a write to memory is prevented by a Synchronous Tag Check Fault, the AP[2] and S2AP[1] bits associated with that write are permitted to be updated. For more information, see Chapter D6 Memory Tagging Extension.

For a Block or Page translation table descriptor for which the AF bit is 0, the DBM bit is 1, and either the value of the stage 1 AP[2] bit is 1 or the value of the stage 2 S2AP[1] bit is 0, both AF can be set to 1, and either AP[2] set to 0 or S2AP[1] set to 1, in a single atomic read-modify-write operation, as a result of an attempted write to a memory location that uses the translation table entry.

Implications of enabling the dirty state management mechanism

This subsection describes behaviors that result from having the dirty state management mechanism enabled for a particular stage of address translation.

For the final level of lookup in a stage 1 translation:

In the EL3 translation regime

The OA of the lookup is treated as writable if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2] is 1.
• In the descriptor for every higher level of lookup, the value of APTable[1] is 0.

In this case, if the value of SCTLR_EL3.WXN is 1 then the OA is treated as Execute-never.

In the EL2 or EL2&0 translation regime, when the value of HCR_EL2.{E2H, TGE} is not {1, 1}

--- Note ---

When the value of HCR_EL2.E2H is 1, TCR_EL2 controls the EL2&0 translation regime, and otherwise it controls the EL2 translation regime.

--- Note ---

The OA of the lookup is treated as writable if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2] is 1.
• In the descriptor for every higher level of lookup the value of APTable[1] is 0.

In this the value of SCTLR_EL2.WXN is 1 then the OA is treated as Execute-never.

In addition, if the value of HCR_EL2.E2H is 1, the OA is treated as Privileged execute-never if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b11.
• In the descriptor for every higher level of lookup, the value of APTable[1:0] is 0b00.

--- Note ---

When the value of HCR_EL2.{E2H, TGE} is not {1, 1}, memory accesses from EL0 do not use the EL2, or EL2&0, translation regime.

In the EL2&0 translation regime, when the value of HCR_EL2.{E2H, TGE} is {1, 1}

The OA of the lookup is treated as writable at EL2 and EL0, Privileged execute-never, if all of the following conditions apply:

• In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b11.
• In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b00.

In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is also treated as Unprivileged execute-never.

The OA of the lookup is treated as writable at EL2 but not writable at EL0 if either:

• Both:
 • In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b10.
 • In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.
In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is treated as Privileged execute-never.

- Both:
 - In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b11.
 - In at least one of the descriptors for higher levels of lookup the value of APTable[1:0] is 0b01.

In this case, if the value of SCTLR_EL2.WXN is 1 then the OA is treated as Privileged execute-never.

In the EL1&0 translation regime

The OA of the lookup is treated as writable at EL1 and EL0, Privileged execute-never, if all of the following conditions apply:

- In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b11.
- In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b00.

In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Unprivileged execute-never.

The OA of the lookup is treated as writable at EL1 but not writable at EL0 if either:

- Both:
 - In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b11.
 - In at least one of the descriptors for higher levels of lookup the value of APTable[1:0] is 0b01.

In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Privileged execute-never.

- Both:
 - In the descriptor for the final level of lookup, the value of DBM is 1 and the value of AP[2:1] is 0b10.
 - In the descriptor for every higher level of lookup the value of APTable[1:0] is 0b0x.

In this case, if the value of SCTLR_EL1.WXN is 1 then the OA is treated as Privileged execute-never.

The OA of a translation table entry where the DBM bit is 1, and the stage 1 AP[2] bit is 1 or the stage 2 S2AP[1] bit is 0, is treated as writable:

- For data cache invalidation instructions that require write permission, that is for the DC IVAC instruction.
- For address translation instructions that require write permission, that is for the AT S1E0W, AT S1E1W, AT S1E0W, AT S1E1W, AT S1E2W, and AT S1E3W instructions.

Cache invalidation and address translation instructions never cause the stage 1 AP[2] bit or the stage 2 S2AP[1] bit in the translation table entry to be updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1 and the stage 1 AP[2] bit is 1, if the Store-Exclusive fails because the Exclusives monitor is not in the exclusive state, it is IMPLEMENTATION DEFINED whether the AP[2] bit in the translation table is updated.

For a Store-Exclusive instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, if the Store-Exclusive fails because the Exclusives monitor is not in the Exclusive access state, it is IMPLEMENTATION DEFINED whether the S2AP[1] bit in the translation table is updated.

For a store to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, it is IMPLEMENTATION DEFINED whether the AP[2] bit in the translation table is updated:

- If the memory location generates a synchronous External abort on a write for a store to a memory location.
- If the memory location generates a watchpoint on a write.
For a store to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, it is IMPLEMENTATION DEFINED whether the S2AP[1] bit in the translation table is updated:

- If the memory location generates a synchronous External abort on a write for a store to a memory location.
- If the memory location generates a watchpoint on a write.

In the event of a PE setting the stage 1 AP[2] bit to 0, it is not required that all associated entries are removed from the TLBs of other PEs in the system.

In the event of a PE setting the stage 2 S2AP[1] bit to 1, it is not required that all associated entries are removed from the TLBs of other PEs in the system.

For the stage 2 translation tables, it is CONSTRAINED UNPREDICTABLE whether the stage 2 S2AP[1] entry is updated in response to a stage 1 translation table walk where the stage 1 translation system is configured to perform hardware updates to the Access flag or stage 1 AP[2] bit, but the values of the Access flag and AP[2] bit are such that a hardware update to the stage 1 translation table entry being accessed is not required.

In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and the stage 1 AP[2] bit is 1 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.

In the event of a PE encountering a situation for a data write for which the DBM bit is 1 and stage 2 S2AP[1] bit is 0 in a TLB, it is required that the hardware checks that the cached copy is not stale with regards to the translation table entry in memory and performs the atomic read-modify-write update with respect to table entry in memory.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 1 AP[2] bit is 1, if the compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the AP[2] bit in the translation table is updated.

For a CAS or CASP instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[1] bit is 0, if the compare fails, and the location is not updated, it is CONSTRAINED UNPREDICTABLE whether the S2AP[1] bit in the translation table is updated.

For an atomic instruction to a memory location for which the DBM bit is 1, and the stage 2 S2AP[0:1] is 00, if the instruction generates a stage 2 Permission fault as a result of not having read permission, it is CONSTRAINED UNPREDICTABLE whether the S2AP[1] bit in the translation table is updated.

D5.4.12 Ordering of hardware updates to the translation tables

A hardware update to the translation table that is caused by a load or a store, including an atomic instruction, is guaranteed to be observed, to the extent required by the shareability attributes:

- Before a load or store, including an atomic instruction, to an arbitrary address, other than the address of the translation table entry, that appears in program order after the load or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the load or store, including an atomic instruction, that caused the update to the translation table and the subsequent load or store.

- Before a load to the translation table entry that is being updated that appears in program order after the load or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the load or store, including an atomic instruction, that caused the update to the translation table and the subsequent load.

- Before a store or atomic access to the translation table entry that is being updated that appears in program order after the load or store, including an atomic instruction, causing the update to the translation table entry.

- Before a cache maintenance instruction to an arbitrary address appearing in program order after the load or store, including an atomic instruction, causing the update to the translation table entry only if a DSB with the appropriate shareability attributes, where the DSB applies to both loads and stores, is executed between the load or store, including an atomic instruction that caused the update to the translation table entry and the subsequent cache maintenance instruction.

An update to the translation table that is caused by a load is not ordered with respect to the load itself.
An update to the translation table that is caused by a store or an atomic access is observed by all observers, to the extent required by the shareability attributes, before the store itself in the case that the store is to the same location as the translation table update.

An update to the translation table that is caused by a store or an atomic access is not ordered with respect to the store itself in the case that the store is not the same location as the translation table update.

D5.4.13 Restriction on memory types for hardware updates on translation tables

Translation tables can be placed in Normal memory with any cacheability, but the hardware updates to the translation tables require an atomic update of memory. The properties of the atomicity can be met only by functionality outside the PE. Some system implementations might not implement this functionality for all regions of memory. This can apply to:

- Any type of memory in the system that does not support hardware cache coherency.
- Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does not support hardware cache coherency.

An implementation can choose which memory type is treated as Non-cacheable.

The memory types for which it is architecturally guaranteed that the hardware updates of the translation tables will be atomic are:

- Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.
- Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write allocation hints and not transient.

If the hardware updates of the translation tables are not atomic in regard to other agents that access memory, then performing a hardware update to such a location can have one or more of the following effects:

- The hardware update generates a synchronous External abort, which is presented as an External abort on a translation table walk.
- The instruction generates a SError interrupt.
- The hardware update generates an Unsupported atomic hardware update MMU fault reported using the Fault status code of:
 - `$ESR_ELx.DFSC = 110001$` for Data Abort exceptions.
 - `$ESR_ELx.IFSC = 110001$` for Instruction Abort exceptions.
 - `$PMBSR_EL1.FSC = 110001$` for an abort on a write to the Statistical Profiling buffer.

For the Secure or Non-secure EL1&0 translation regime, when EL2 is implemented and enabled in the current Security state, if atomic hardware update is not supported because of the memory type that is defined in the first stage of translation, or the second stage of translation is not enabled, then this exception is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

The priority of this MMU fault for a stage of the translation lies at an **IMPLEMENTATION DEFINED** point between:

- Immediately before the priority of an Access Flag fault generated by the same stage of translation as the stage of this MMU fault.
- Immediately after the priority of a Permission fault generated by the same stage of translation as the stage of this MMU fault.

The hardware updates are performed, but there is no guarantee that the memory accesses were performed atomically in regard to other agents that access memory. In this case, the instruction might also generate a SError interrupt.
D5.4.14 Use of the Contiguous bit with hardware updates of the translation table entries

Hardware updates of the Access flag, and the AP[2] or S2AP[1] bit, only apply to a single translation table entry. An update to one of these bits in a translation table entry that also has the Contiguous bit set to 1 can give rise to translation table entries that have different Access flag, or different AP[2] or S2AP[1] bits, within the members of a group of contiguous translation table entries.

This is acceptable under the architecture when using hardware updates of the translation table entries. In addition, an access or a write to a location translated by an entry that has the Contiguous bit set might not result in a hardware update of the Access flag or the AP[2] or S2AP[1] bit, if at least one entry in the set of contiguous translation table entries has the Access flag set to 1, or the AP[2] or S2AP[1] bit indicating that the entry is dirty.

--- Note ---

- The provision of the Contiguous bit permits, but does not require, the hardware to hold a single entry in a TLB for the set of translation table entries in the group, and to have updated only one or more of the Access flags and the AP[2] bit or S2AP[1] bit for the single translation table entry that gave rise to the TLB entry.

- A consequence of this is that software must combine the Access flag values, and AP[2] or S2AP[1] values, across all translation table entries in a contiguous group to determine whether any of the entries have been accessed or written to.

For more information on the Contiguous bit, see *The Contiguous bit on page D5-2627.*
The AArch64 Virtual Memory System Architecture

D5.5 Memory region attributes

The memory region attribute fields control the memory type, accesses to the caches, and whether the memory region is Shareable and therefore is coherent. This section also describes some additional translation table fields that this manual groups with the memory region attributes.

In the EL1&0 translation regime, each enabled stage of address translation assigns memory region attributes, as described in this section. When both stages of translation are enabled, Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on page D5-2628 describes how the assignments from the two stages are combined.

--- Note ---
In a virtualization implementation, a hypervisor, executing at EL2, might usefully:

- Reduce the permitted cacheability of a region.
- Increase the required shareability of a region.

The combining of attributes from stage 1 and stage 2 translations supports both of these options.

--- Note ---
This section describes the memory region attributes for each of the translation regimes, and for each stage of translation in the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime.

- A translation applies to memory accesses from either:
 - Only a single Exception level, for example the EL3 translation regime.
 - EL0 and one higher Exception level, for example the EL1&0 translation regime.

- In general, attribute assignment is simpler in a regime that applies to only a single Exception level, and in these regimes behavior is consistent with fields in the translation tables being treated as follows:
 - AP[1] is RES1, meaning the PE ignores the value of the bit and behaves as if it is 1.
 - APTable[0] is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.
 - The PXN field is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.
 - The PXNTable bit is RES0, meaning the PE ignores the value of the bit and behaves as if it is 0.

--- D5.5.1 ---
The stage 1 memory region attributes

The description of the memory region attributes in a translation descriptor divides into:

Memory type and Cacheability

These are described indirectly, by registers referenced by bits in the table descriptor. This is described as remapping the memory type and attribute description. Stage 1 memory region type and Cacheability attributes describes this encoding.

Shareability

The SH[1:0] field in the translation table descriptor encodes shareability information. Stage 1 Shareability attribute, for Normal memory on page D5-2623 describes this encoding.

Stage 1 memory region type and Cacheability attributes

In the VMSAv8-64 translation table format, the AttrIndx[2:0] field in a block or page translation table descriptor for a stage 1 translation indicates the 8-bit field in the MAIR_ELx that specifies the attributes for the corresponding memory region. The required field is Attrn, where \(n = \text{AttrIndx}[2:0] \). For more information about AttrIndx[2:0], see Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors on page D5-2595.
Each MAIR_ELx is a 64-bit register that is architecturally mapped to a pair of AArch32 registers. See the MAIR_ELx register descriptions for more information.

Each MAIR_ELx.Attrn field defines, for the corresponding memory region:

- The memory type, Device or Normal.
- For Device memory, the Device memory type, one of:
 - Device-nGnRnE.
 - Device-nGnRE.
 - Device-nGRE.
 - Device-GRE.
- For Normal memory:
 - The inner and outer cacheability, Non-cacheable, Write-Through, or Write-Back.
 - For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and Write-Allocate policy hints, each of which is Allocate or No Allocate, and the Transient allocation hints, if supported.
 - The Tagged attribute.

For more information about the memory type and attributes, see Memory types and attributes on page B2-153, Cacheability, cache allocation hints, and cache transient hints on page D4-2496, and Tagged and Untagged Addresses on page D6-2687.

Stage 1 Shareability attribute, for Normal memory

When using the VMSAv8-64 translation table format, the SH[1:0] field in a block or page translation table descriptor specifies the Shareability attributes of the corresponding memory region. Table D5-35 shows the encoding of this field.

<table>
<thead>
<tr>
<th>SH[1:0]</th>
<th>Normal memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non-shareable</td>
</tr>
<tr>
<td>01</td>
<td>Reserved, CONSTRAINED UNPREDICTABLE(^a)</td>
</tr>
<tr>
<td>10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>11</td>
<td>Inner Shareable</td>
</tr>
</tbody>
</table>

\(^a\) See Reserved values in System and memory-mapped registers and translation table entries on page K1-7981 for the permitted CONSTRAINED UNPREDICTABLE behavior.

The shareability field is only relevant if the memory is a Normal Cacheable memory type. All Device and Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table shareability attributes.

See Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2631 for constraints on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.
D5.5.2 The stage 2 memory region attributes, EL1&0 translation regime

In the stage 2 translation table descriptors for memory regions and pages, the MemAttr[3:0] and SH[1:0] fields describe the stage 2 memory region attributes:

- **Stage 2 memory region type and Cacheability attributes** describes how the MemAttr[3:0] field defines these attributes.
- The SH[1:0] field in the translation table descriptor encodes shareability information. **Stage 2 Shareability attribute, for Normal memory on page D5-2625** describes this encoding.

The following sections describe how, when both stages of address translation are enabled, the memory region attributes assigned at stage 2 of the translation are combined with those assigned at stage 1:

- **Combining the stage 1 and stage 2 memory type attributes on page D5-2629.**
- **Combining the stage 1 and stage 2 cacheability attributes for Normal memory on page D5-2630.**
- **Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2631.**

D5.5.3 Stage 2 memory region type and Cacheability attributes

Table D5-36 shows how MemAttr[3:2] gives a top-level definition of the memory type, and of the Outer cacheability of a Normal memory region.

Table D5-36 VMSAv8-64 MemAttr[3:2] encoding, stage 2 translation

<table>
<thead>
<tr>
<th>MemAttr[3:2]</th>
<th>Memory type</th>
<th>Outer cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Device</td>
<td>Not applicable</td>
</tr>
<tr>
<td>01</td>
<td>Normal</td>
<td>Outer Non-cacheable</td>
</tr>
<tr>
<td>10</td>
<td>Outer Write-Through Cacheable</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Outer Write-Back Cacheable</td>
<td></td>
</tr>
</tbody>
</table>

The encoding of MemAttr[1:0] depends on the Memory type indicated by MemAttr[3:2]:

- When MemAttr[3:2]==0b00, indicating Device memory, Table D5-37 shows the encoding of MemAttr[1:0].

Table D5-37 MemAttr[1:0] encoding for Device memory

<table>
<thead>
<tr>
<th>MemAttr[1:0]</th>
<th>Meaning when MemAttr[3:2] == 0b00</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Region is Device-nGnRnE memory</td>
</tr>
<tr>
<td>01</td>
<td>Region is Device-nGnRE memory</td>
</tr>
<tr>
<td>10</td>
<td>Region is Device-nGRE memory</td>
</tr>
<tr>
<td>11</td>
<td>Region is Device-GRE memory</td>
</tr>
</tbody>
</table>

- When MemAttr[3:2]!=0b00, indicating Normal memory, Table D5-38 shows the encoding of MemAttr[1:0].

Table D5-38 MemAttr[1:0] encoding for Normal memory

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Reserved, CONSTRAINED UNPREDICTABLE³</td>
</tr>
</tbody>
</table>
The stage 2 translation does not assign any allocation hints.

The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:

- MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

Note

- The stage 2 translation does not assign any allocation hints.
- The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:
 - MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

D5.5.4 Stage 2 Shareability attribute, for Normal memory

When using the VMSAv8-64 translation table format, the SH[1:0] field in a block or page translation table descriptor specifies the Shareability attributes of the corresponding memory region. Table D5-39 shows the encoding of this field.

Table D5-39 SH[1:0] field encoding for Normal memory, VMSAv8-64 translation table format

<table>
<thead>
<tr>
<th>SH[1:0]</th>
<th>Normal memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non-shareable</td>
</tr>
<tr>
<td>01</td>
<td>Reserved, CONSTRAINED UNPREDICTABLE(a)</td>
</tr>
<tr>
<td>10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>11</td>
<td>Inner Shareable</td>
</tr>
</tbody>
</table>

Note

- VMSAv8-64 translation table format descriptors on page D5-2587 This encoding is the same as the shareability encoding described in Stage 1 Shareability attribute, for Normal memory on page D5-2623.
- The shareability field is only relevant if the memory is a Normal Cacheable memory type. All Device and Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table shareability attributes.

See Combining the stage 1 and stage 2 shareability attributes for Normal memory on page D5-2631 for constraints on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.
D5.5.5 Stage 2 memory region type and Cacheability attributes when FEAT_S2FWB is implemented

When FEAT_S2FWB is implemented and HCR_EL2.FWB is set to 1, the MemAttr[3:0] field is encoded in bits[5:2] of the Stage 2 page or block descriptor as follows:

- Bit[5] is RES0.

When bit[4] is one the effects of bits [3:2] are defined in Table D5-40.

When HCR_EL2.FWB is set to 1 and Bit[4] is 0, then the stage 2 memory type is Device. Bits[3:2] of the Stage 2 page or block descriptor define the stage 2 Device memory attributes. The stage 2 Device Memory attributes are defined in Table D5-41.

The following are unaffected by the value of HCR_EL2.FWB:

- The way that Shareability attributes from stage 1 and stage 2 are combined.
- The way that stage 1 memory types and attributes are combined with stage 2 Device type and attributes.

Table D5-40 Effect of bit[4] == 1 on Cacheability and Memory Type

<table>
<thead>
<tr>
<th>Stage 1 Memory Type and Inner or Outer Cacheability attribute</th>
<th>Stage 2 Block/ Descriptor Bits[3:2]</th>
<th>Resultant Memory type and Cacheability attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Write-Back</td>
<td>0b11</td>
<td>Normal Write-Back</td>
</tr>
<tr>
<td>Normal Write-Through</td>
<td></td>
<td>Normal Write-Through</td>
</tr>
<tr>
<td>Normal Non-cacheable</td>
<td></td>
<td>Normal Non-cacheable</td>
</tr>
<tr>
<td>Device<attr></td>
<td></td>
<td>Device<attr></td>
</tr>
<tr>
<td>Normal Write-Back</td>
<td>0b10</td>
<td>Normal Write-Back</td>
</tr>
<tr>
<td>Normal Write-Through</td>
<td></td>
<td>Normal Write-Through</td>
</tr>
<tr>
<td>Normal Non-cacheable</td>
<td></td>
<td>Normal Non-cacheable</td>
</tr>
<tr>
<td>Device<attr></td>
<td></td>
<td>Device<attr></td>
</tr>
<tr>
<td>Normal Write-Back</td>
<td>0b01</td>
<td>Normal Non-cacheable</td>
</tr>
<tr>
<td>Normal Write-Through</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Non-cacheable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device<attr></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0b00</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

When HCR_EL2.FWB is set to 1 and Bit[4] is 0, then the stage 2 memory type is Device. Bits[3:2] of the Stage 2 page or block descriptor define the stage 2 Device memory attributes. The stage 2 Device Memory attributes are defined in Table D5-41.

Table D5-41 Device Memory Attributes when Bit[4] == 0

<table>
<thead>
<tr>
<th>Stage 2 page/block descriptor bits [3:2]</th>
<th>Device Memory Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Device-nGnRnE</td>
</tr>
<tr>
<td>0b01</td>
<td>Device-nGnRE</td>
</tr>
<tr>
<td>0b10</td>
<td>Device-nGRE</td>
</tr>
<tr>
<td>0b11</td>
<td>Device-GRE</td>
</tr>
</tbody>
</table>
D5.5.6 Other fields in the VMSAv8-64 translation table format descriptors

The following subsections describe the other fields in the translation table block and page descriptors:

- The Contiguous bit.
- IGNORED fields on page D5-2628.
- Field reserved for software use on page D5-2628.

The Contiguous bit

When the value of the Contiguous bit is 1, it indicates that the entry is one of a number of adjacent translation table entries that point to a contiguous output address range. The required number of adjacent entries depends on the current translation granule size, as follows:

4KB granule 16 adjacent translation table entries point to a contiguous output address range that has the same permissions and attributes. These 16 entries must be aligned in the translation table. If accessing a full-sized 4KB translation table, this means that the top 5 of the 9 input addresses bits that index the descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 16 translation table entries at the same translation table level.

16KB granule This bit indicates that adjacent translation table entries point to contiguous output address range that has the same permissions and attributes. With the 16KB granule, the number of contiguous entries indicated by setting this bit to 1 depends on the lookup level of the translation table:

- **Level 2 lookup** The bit indicates 32 contiguous entries, giving a 1GB block of memory. These entries must be aligned in the translation table. When accessing a full-sized 16KB translation table, this means the top 6 of the 11 input addresses bits that index the descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 32 translation table entries at the same translation table level.

- **Level 3 lookup** The bit indicates 128 contiguous entries, giving a 2MB block of memory. These entries must be aligned in the translation table. When accessing a full-sized 16KB translation table, this means the top 4 of the 11 input addresses bits that index the descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 128 translation table entries at the same translation table level.

64KB granule 32 adjacent translation table entries point to a contiguous output address range that has the same permissions and attributes. These 32 entries must be aligned in the translation table. If accessing a full-sized 64KB translation table, this means that the top 8 of the 13 input addresses bits that index the descriptor positions in the translation table are the same for all of the entries.

The contiguous output address range must be aligned to size of 32 translation table entries at the same translation table level.

Setting this bit to 1 means that the TLB can cache a single entry to cover the contiguous translation table entries.

This section defines the requirements for programming the Contiguous bit. Possible errors in programming the translation table registers on page D5-2575 describes the effect of not meeting these requirements.

The architecture does not require a PE to cache TLB entries in this way. To avoid TLB coherency issues, any TLB maintenance by address must not assume any optimization of the TLB tables that might result from use of the Contiguous bit.

TLB maintenance must be performed based on the size of the underlying translation table entries, to avoid TLB coherency issues.

Use of the Contiguous bit with hardware updates of the translation table entries on page D5-2621 describes the effect of hardware management of the Access flag and dirty state on the Contiguous bit.
Note

When FEAT_LVA is implemented, the level 1 block size for the 64KB granule does not support the Contiguous bit, and that field is RES0.

IGNORED fields

In the VMSc8-64 translation table descriptors, the following fields are identified as IGNORED, meaning the architecture guarantees that a PE makes no use of these fields:

• In the stage 1 and stage 2 Table descriptors, bits[58:51] and bits[11:2].
• In the stage 1 and stage 2 Block and Page descriptors, bit[63] and bits[58:55].
• In the stage 1 and stage 2 Block and Page descriptors in an implementation that does not include FEAT_HPDS2, bits[62:59].

Of these fields:

• In the stage 1 and stage 2 block and page descriptors, bits[58:55] are reserved for software use, see Field reserved for software use.
• In the stage 2 block and page descriptors:
 — Bit[63] is reserved for use by a System MMU.
 — In an implementation that does not include FEAT_HPDS2, bits[62:59] are reserved for use by a System MMU.

Field reserved for software use

The architecture reserves a 4-bit IGNORED field in the Block and translation table descriptors, bits[58:55], for software use. The definition of IGNORED means the architecture guarantees that hardware makes no use of this field.

Note

This means there is no need to invalidate the TLB if these bits are changed.

D5.5.7 Combining the stage 1 and stage 2 attributes, EL1&0 translation regime

When EL2 is enabled, the Secure or Non-secure EL1&0 translation regime comprises two stages of translation, each of which can be enabled independently:

• Stage 1 translation is configured and controlled from EL1. When enabled, stage 1 translation can define access permissions independently for access from EL0 and for accesses from EL1.
 Stage 1 MMU faults are taken to EL1.
• When stage 2 translation is enabled, the stage 2 access controls defined at EL2:
 — Affect the stage 1 access permissions settings.
 — Take no account of whether the accesses are at EL1 or EL0.
 — Permit software executing at EL2 to assign a write-only attribute to a memory region.
 Stage 2 MMU faults are taken to EL2.

Note

In an implementation of virtualization, the attributes defined in the stage 2 translation tables mean a hypervisor can define additional access restrictions to those defined by a Guest OS in the stage 1 translation tables. For a particular access, the actual access permission is the more restrictive of the permissions defined by:

• The Guest OS, in the stage 1 translation tables.
• The hypervisor, in the stage 2 translation tables.

The effects of the combination of attributes defined by the Hypervisor are functionally transparent to the Guest OS.
When \(\text{HCR_EL2.FWB} \) is 1 and the final memory type is Normal Cacheable:

- If the stage 1 page or block descriptor specifies a cacheable memory type, then the final cache allocation hint is the stage 1 cache allocation hint.
- If the stage 1 page or block descriptor does not specify a cacheable memory type, then the final cache allocation hint is Read Allocate, Write Allocate.

The effects of \(\text{HCR_EL2.FWB} \) apply to both Secure and Non-secure stage 2 translation regime.

When \(\text{FEAT_S2FWB} \) is implemented, the architecture requires that \(\text{CLIDR_EL1}.\{\text{LOUU, LOIUS}\} \) are zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

When \(\text{HCR_EL2.FWB} \) is set to 1, and the stage 2 page or block descriptor \([4:2]\) is set to \(0b110\), the resultant memory type is Normal WriteBack cacheable regardless of the value of the stage 1 memory type.

If the stage 1 page or block descriptor specifies the Tagged attribute, the final memory type is Tagged only if the final cacheable memory type is Inner and Outer Write-back cacheable and the final allocation hints are Read-Allocate, Write-Allocate.

Combining the stage 1 and stage 2 data access permissions

When both stages of translation are enabled, the following access permissions are combined:

- The stage 1 permissions described in *The AP\([2:1]\) data access permissions, for stage 1 translations on page D5-2604.*
- The stage 2 permissions described in *The S2AP data access permissions, Secure or Non-secure EL1&0, when EL2 is enabled, translation regime on page D5-2605.*

The stage 1 and stage 2 permissions are combined as follows:

1. If an access is not permitted by the stage 1 permissions, then it generates a stage 1 Permission fault, regardless of the stage 2 permissions.
2. If an access is permitted by the stage 1 permissions, but is not permitted by the stage 2 Permissions, then it generates a stage 2 Permission fault.
3. If an access is permitted by both the stage 1 permissions and the stage 2 permissions, then it does not generate a Permission fault.

Combining the stage 1 and stage 2 instruction execution permissions

When both stages of translation are enabled, the following access permissions are combined:

- The stage 1 permissions described in *Stage 1 instruction access and execution permissions on page D5-2608.*
- The stage 2 permissions described in *Stage 2 instruction execution permissions on page D5-2610.*

The stage 1 and stage 2 permissions are combined as follows:

1. If an instruction fetch is not permitted by the stage 1 permissions, then it generates a stage 1 Permission fault, regardless of the stage 2 permissions.
2. If an instruction fetch is permitted by the stage 1 permissions, but is not permitted by the stage 2 Permissions, then it generates a stage 2 Permission fault.
3. If an instruction fetch is permitted by both the stage 1 permissions and the stage 2 permissions, then it does not generate a Permission fault.

Combining the stage 1 and stage 2 memory type attributes

The combining of memory type attributes from the two stages of translation applies only if \(\text{HCR_EL2.FWB} \) is set to 0.
Table D5-42 shows the rules for combining the stage 1 and stage 2 memory type assignments.

<table>
<thead>
<tr>
<th>Rule</th>
<th>If either stage of translation assigns:</th>
<th>The resultant memory type is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device has precedence over Normal</td>
<td>Any Device memory type</td>
<td>A Device memory type</td>
</tr>
<tr>
<td>non-Gathering has precedence over Gathering</td>
<td>A Device-nGxx memory type</td>
<td>A Device-nGxx memory type</td>
</tr>
<tr>
<td>non-Reordering has precedence over Reordering</td>
<td>A Device-nGnRx memory type</td>
<td>A Device-nGnRx memory type</td>
</tr>
<tr>
<td>No Early write acknowledge has precedence over Early write acknowledge</td>
<td>The Device-nGnRnE memory type</td>
<td>The Device-nGnRnE memory type</td>
</tr>
</tbody>
</table>

Regardless of any shareability attribute obtained as described in *Combining the stage 1 and stage 2 shareability attributes for Normal memory* on page D5-2631:

- Any location for which the resultant memory type is any type of Device memory is always treated as Outer Shareable.
- Any location for which the resultant memory type is Normal Inner Non-cacheable, Outer Non-cacheable is always treated as Outer Shareable.

For information about how the cacheability attribute is obtained from the attributes assigned at each stage of translation, see *Combining the stage 1 and stage 2 cacheability attributes for Normal memory*.

The combining of the memory type attributes from the two stages of translation means a translation table walk for stage 1 translation can be made to a type of Device memory. If this occurs then:

- If the value of HCR_EL2.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable memory. This means it can be done speculatively.
- If the value of HCR_EL2.PTW is 1, then the memory access generates a stage 2 Permission fault.

When the first stage of the translation regime specifies Device memory, HCR_EL2.FWB is set to 1, and the stage 2 page or block descriptor [4:2] is set to 0b110, does not prevent:

- Instruction fetches from Device memory being a CONSTRAINED UNPREDICTABLE choice between:
 - Generating a prefetch abort.
 - Accessing memory as the resultant memory type of Normal WriteBack cacheable.
- A misaligned memory access generating a first stage alignment fault.

When the first stage of the translation regime specifies Device memory, HCR_EL2.FWB is set to 1, and the stage 2 page or block descriptor [4:2] is set to 0b110:

- It is IMPLEMENTATION DEFINED whether Atomic memory accesses or Exclusives are supported, in the same way as it is for accesses to memory locations whose resultant memory type is Device memory.
- It is CONSTRAINED UNPREDICTABLE whether a misaligned access can generate a stage 1 alignment fault as a result of the memory type described in the stage 1 translation.
- It is CONSTRAINED UNPREDICTABLE whether a DC ZVA, DC GZVA or DC GVA instruction can generate a stage 1 alignment fault as a result of the memory type described in the stage 1 translation.

Combining the stage 1 and stage 2 cacheability attributes for Normal memory

The combining of cacheability attributes from the two stages of translation applies only if HCR_EL2.FWB is set to 0.
For a Normal memory region, Table D5-43 shows how the stage 1 and stage 2 cacheability assignments are combined. This combination applies, independently, for the Inner cacheability and Outer cacheability attributes.

Table D5-43 Combining the stage 1 and stage 2 cacheability assignments for Normal memory

<table>
<thead>
<tr>
<th>Assignment in stage 1</th>
<th>Assignment in stage 2</th>
<th>Resultant cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cacheable</td>
<td>Any</td>
<td>Non-cacheable</td>
</tr>
<tr>
<td>Any</td>
<td>Non-cacheable</td>
<td>Non-cacheable</td>
</tr>
<tr>
<td>Write-Through Cacheable</td>
<td>Write-Through or Write-Back Cacheable</td>
<td>Write-Through Cacheable</td>
</tr>
<tr>
<td>Write-Through or Write-Back Cacheable</td>
<td>Write-Through Cacheable</td>
<td>Write-Through Cacheable</td>
</tr>
<tr>
<td>Write-Back Cacheable</td>
<td>Write-Back Cacheable</td>
<td>Write-Back Cacheable</td>
</tr>
</tbody>
</table>

Combining the stage 1 and stage 2 shareability attributes for Normal memory

A memory region is treated as Outer Shareable, regardless of any shareability assignments at either stage of translation, if either:

- The resultant memory type attribute, described in Combining the stage 1 and stage 2 memory type attributes on page D5-2629, is any type of Device memory.
- The resultant memory type attribute, described in Combining the stage 1 and stage 2 memory type attributes on page D5-2629, is Normal memory, and the resultant cacheability, described in Combining the stage 1 and stage 2 cacheability attributes for Normal memory on page D5-2630, is Inner Non-cacheable, Outer Non-cacheable.

For a memory region with a resultant memory type attribute of Normal, that is not Inner Non-cacheable, Outer Non-cacheable, Table D5-44 shows how the stage 1 and stage 2 shareability assignments are combined.

Table D5-44 Combining the stage 1 and stage 2 Shareability assignments for Normal memory

<table>
<thead>
<tr>
<th>Assignment in stage 1</th>
<th>Assignment in stage 2</th>
<th>Resultant shareability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Shareable</td>
<td>Any</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Non-shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Non-shareable</td>
<td>Non-shareable</td>
</tr>
</tbody>
</table>

a. Applies only if the Normal memory is not Inner Non-cacheable, Outer Non-cacheable, see text.
D5.6 Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions that provide enhanced support for a Type 2 virtualization solution, where there is a Host OS, which is either more privileged than the hypervisor, or is a peer of the hypervisor.

The Virtualization Host Extensions only apply to an implementation that includes EL2 using AArch64.

D5.6.1 State added by the Virtualization Host Extensions

The following state is added as part of FEAT_VHE:

- A configuration bit, E2H, is added to HCR_EL2.
- New registers:
 - CONTEXTIDR_EL2, which has the same format and contents as CONTEXTIDR_EL1.
 - TTBR1_EL2, which has the same format and contents as TTBR1_EL1.
- An EL2 virtual timer which is accessed using the registers CNTHV_CTL_EL2, CNTHV_CVAL_EL2, and CNTHV_TVAL_EL2. The registers take the same format as CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0 respectively. The virtual offset is treated as 0 for this timer.

D5.6.2 Behavior of HCR_EL2.E2H

When the value of HCR_EL2.E2H is 0:

- There are no changes to the Armv8 functionality other than the new state described in State added by the Virtualization Host Extensions.

 Note

 This means the translation regime controlled by TCR_EL2 is called the EL2 translation regime.

- The contents of TTBR1_EL2 are ignored by hardware, other than reads by an MRS instruction and writes by an MSR instruction.
- The Context ID matching breakpoint is disabled at EL2, and uses the value of CONTEXTIDR_EL1 at EL0 and EL1.

When the value of HCR_EL2.E2H is 1, and EL2 is enabled for the current Security state:

- The translation regime controlled by TCR_EL2 is the EL2&0 translation regime, and the behaviors of this translation regime differ from those of the EL2 translation regime.
- The EL2&0 translation regime behaves in the same way as stage 1 of the EL1&0 translation regime, with an upper address range translated by tables pointed to by TTBR1_EL2. The existing TTBR0_EL2 translates the lower address range of the EL2&0 translation regime and is extended to have the same contents and format as the TTBR0_EL1.
- The translation tables used in the EL2&0 translation regime take the same format as the EL1&0 translation regime. EL2 accesses are treated as privileged in this format.
- Context ID matching can occur at EL2. When executing at EL2, a Context ID matching breakpoint uses CONTEXTIDR_EL2.
- VMID and VMID + Context ID matching breakpoints do not match at EL2.
- The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL2.
- The Privileged Access Never mechanism applies to accesses from EL2 to a virtual address which has access permitted in the EL2&0 translation regime.
- The following registers are redefined:
 - CNTHCTL_EL2.
If \(\text{HCR EL2.E2H, TGE} = \{1, 0\} \), then all accesses from EL1 and EL0 are not included in the EL2&0 translation regime.

If \(\text{HCR EL2.E2H, TGE} = \{1, 1\} \):

- The EL2&0 translation regime is used when executing at EL0 as well as when executing at EL2, where EL0 accesses are treated as unprivileged.

--- Note ---
Accesses from EL1 are not possible under this configuration.

- In EL2, the unprivileged instructions \(\text{LDTR}, \text{LDTRB}, \text{LDTRH}, \text{LDTRSB}, \text{LDTRSH}, \text{STTR}, \text{STTRB}, \text{STTRH} \) act as if they are executing at EL0 for permission and watchpoint checking.
- Except for the purpose of reading the value held in the register, some fields in HCR_EL2 and all fields in HSTR_EL2 are treated as having a specific value.
- SCTLR_EL2 is redefined to include additional fields from SCTLR_EL1, and to apply to execution at EL0.
- The following timer registers, and their equivalent AArch32 registers, are redefined to access the associated _EL2 register, rather than accessing the _EL0 register when in EL0:
 - CNTP_CTL_EL0.
 - CNTP_CVAL_EL0.
 - CNTP_TVAL_EL0.
 - CNTV_CTL_EL0.
 - CNTV_CVAL_EL0.
 - CNTV_TVAL_EL0.

For some information on registers that are redirected, see System and Special-purpose register redirection.

- When executing at EL0, a Context ID matching breakpoint uses CONTEXTIDR_EL2.
- VMID and VMID + Context ID matching breakpoints do not match at EL0.
- The CPACR_EL1 register does not cause any instructions to be trapped to EL1, regardless of the contents of CPACR_EL1.
- The CNTKCTL_EL1 register does not cause any instructions to be trapped to EL1, and the event stream event caused by the CNTKCTL_EL1 is disabled, regardless of the contents of CNTKCTL_EL1.
- The virtual offset is treated as 0 when CNTVCT_EL0 is read from EL0 or EL2.
- The TLB maintenance and address translation instructions that apply to the EL1&0 translation regime are redefined to apply to the EL2&0 translation regime. See \(\text{A64 System instructions for address translation on page C5-532} \) and \(\text{A64 System instructions for TLB maintenance on page C5-557} \).
- When executing at EL2 or EL0, any physical interrupt that is configured to be taken at EL2 is subject to the PSTATE.\{D, A, I, F\} interrupt masks. If the mask bit is set, then the corresponding interrupt will not be taken. If the mask bit is not set, then the corresponding interrupt will be taken. See Asynchronous exception masking on page D1-2361.
- When an exception is taken from EL0 to EL2, the value of the HCR_EL2.RW bit is not considered when determining the exception vector offset to use. Table D1-5 on page D1-2336 lists the vector offsets used when an exception is taken from EL0.

D5.6.3 System and Special-purpose register redirection

When FEAT_VHE is implemented, and HCR_EL2.E2H is set to 1, when executing at EL2, some EL1 System register access instructions are redefined to access the equivalent EL2 register.
Table D5-45 shows the System register access instruction encodings that are redirected to the equivalent EL2 register when the named mnemonic is used.

<table>
<thead>
<tr>
<th>System register access instruction encoding</th>
<th>Mnemonic</th>
<th>Equivalent register accessed at EL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 CRn CRm op2</td>
<td>Mnemonic</td>
<td>Equivalent register accessed at EL2</td>
</tr>
<tr>
<td>3 0 1 0 0</td>
<td>SCTLR_EL1</td>
<td>SCTLR_EL2</td>
</tr>
<tr>
<td>2</td>
<td>CPACR_EL1</td>
<td>CPTLR_EL2</td>
</tr>
<tr>
<td>2 1</td>
<td>TRFCR_EL1</td>
<td>TRFCR_EL2</td>
</tr>
<tr>
<td>2 0 0</td>
<td>TTBR0_EL1</td>
<td>TTBR0_EL2</td>
</tr>
<tr>
<td>2</td>
<td>TTBR1_EL1</td>
<td>TTBR1_EL2</td>
</tr>
<tr>
<td>2</td>
<td>TCR_EL1</td>
<td>TCR_EL2</td>
</tr>
<tr>
<td>5 1</td>
<td>AFSR0_EL1</td>
<td>AFSR0_EL2</td>
</tr>
<tr>
<td>5 0</td>
<td>AFSR1_EL1</td>
<td>AFSR1_EL2</td>
</tr>
<tr>
<td>2</td>
<td>ESR_EL1</td>
<td>ESR_EL2</td>
</tr>
<tr>
<td>6 0 0</td>
<td>FAR_EL1</td>
<td>FAR_EL2</td>
</tr>
<tr>
<td>10</td>
<td>MAIR_EL1</td>
<td>MAIR_EL2</td>
</tr>
<tr>
<td>3 0</td>
<td>AMAIR_EL1</td>
<td>AMAIR_EL2</td>
</tr>
<tr>
<td>12</td>
<td>VBAR_EL1</td>
<td>VBAR_EL2</td>
</tr>
<tr>
<td>13</td>
<td>CONTEXTIDR_EL1</td>
<td>CONTEXTIDR_EL2</td>
</tr>
<tr>
<td>14</td>
<td>CNTKCTL_EL1</td>
<td>CNTHCTL_EL2</td>
</tr>
<tr>
<td>3 14 2 0</td>
<td>CNTP_TVAL_EL0</td>
<td>CNTHP_TVAL_EL2</td>
</tr>
<tr>
<td>1</td>
<td>CNTP_CTL_EL0</td>
<td>CNTHP_CTL_EL2</td>
</tr>
<tr>
<td>2</td>
<td>CNTP_CVAL_EL0</td>
<td>CNTHP_CVAL_EL2</td>
</tr>
<tr>
<td>3 3 14 3 0</td>
<td>CNTV_TVAL_EL0</td>
<td>CNTHV_TVAL_EL2</td>
</tr>
<tr>
<td>1</td>
<td>CNTV_CTL_EL0</td>
<td>CNTHV_CTL_EL2</td>
</tr>
<tr>
<td>2</td>
<td>CNTV_CVAL_EL0</td>
<td>CNTHV_CVAL_EL2</td>
</tr>
</tbody>
</table>

a. This register is accessed when FEAT_SEL2 is implemented and enabled, when the value of SCR_EL3.EEL2 is 1.
Table D5-46 shows the Special-purpose register access instruction encodings that are redirected to the equivalent EL2 register when the named mnemonic is used.

![Table D5-46 Special-purpose register redirection](image)

<table>
<thead>
<tr>
<th>Special-purpose register access instruction encoding</th>
<th>Mnemonic</th>
<th>Equivalent register accessed at EL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>op1 CRm op2</td>
<td>SPSR_EL1</td>
<td>SPSR_EL2</td>
</tr>
<tr>
<td>0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ELR_EL1</td>
<td>ELR_EL2</td>
<td></td>
</tr>
</tbody>
</table>

D5.6.4 System and Special-purpose register aliasing

New register encodings, and aliases, are provided so that software executing at EL2 can access the EL1 registers for which accesses from EL2 are redirected as described in System and Special-purpose register redirection on page D5-2633. These aliases can also be used at EL3, but are UNDEFINED at EL1 and EL0.
Table D5-47 shows the System register access instruction encodings that are aliased.

<table>
<thead>
<tr>
<th>System register access instruction encoding</th>
<th>Mnemonic</th>
<th>Register accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 CRn CRm op2</td>
<td>SCTL_EL1</td>
<td>SCTL_EL1</td>
</tr>
<tr>
<td>3 5 1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CPACR_EL1</td>
<td></td>
</tr>
<tr>
<td>2 0 0 ZCR_EL1</td>
<td>ZCR_EL1*</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TRFCR_EL1</td>
<td></td>
</tr>
<tr>
<td>2 0 0 TTBR0_EL1</td>
<td>TTBR0_EL1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TTBR1_EL1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TCR_EL1</td>
<td></td>
</tr>
<tr>
<td>5 1 0 AFSR0_EL1</td>
<td>AFSR0_EL1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AFSR1_EL1</td>
<td></td>
</tr>
<tr>
<td>2 0 0 ESR_EL1</td>
<td>ESR_EL1</td>
<td></td>
</tr>
<tr>
<td>6 0 0 FAR_EL1</td>
<td>FAR_EL1</td>
<td></td>
</tr>
<tr>
<td>9 9 0 PMSER_EL1</td>
<td>PMSER_EL1</td>
<td></td>
</tr>
<tr>
<td>10 2 0 MAIR_EL1</td>
<td>MAIR_EL1</td>
<td></td>
</tr>
<tr>
<td>3 0 0 AMAIR_EL1</td>
<td>AMAIR_EL1</td>
<td></td>
</tr>
<tr>
<td>12 0 0 VBAR_EL1</td>
<td>VBAR_EL1</td>
<td></td>
</tr>
<tr>
<td>13 0 1 CONTEXTIDR_EL1</td>
<td>CONTEXTIDR_EL1</td>
<td></td>
</tr>
<tr>
<td>14 1 0 CNTKCTL_EL1</td>
<td>CNTKCTL_EL1</td>
<td></td>
</tr>
<tr>
<td>2 0 0 CNTP_TVVAL_EL0</td>
<td>CNTP_TVVAL_EL0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CNTP_CTL_EL0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CNTP_CVAL_EL0</td>
<td></td>
</tr>
<tr>
<td>3 5 14 3 0 CNTV_TVVAL_EL0</td>
<td>CNTV_TVVAL_EL0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CNTV_CTL_EL0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CNTV_CVAL_EL0</td>
<td></td>
</tr>
</tbody>
</table>

a. Scalable Vector Extension System register, see *The Scalable Vector Extension (SVE)* on page A2-99.
Table D5-48 shows the Special-purpose register aliasing.

<table>
<thead>
<tr>
<th>Special-purpose register access instruction encoding</th>
<th>Register name</th>
<th>Register accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 CRn CRm op2</td>
<td>SPSR_EL12 SPSR_EL1</td>
<td></td>
</tr>
<tr>
<td>3 5 4 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ELR_EL12 ELR_EL1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D5.7 Nested virtualization

From Armv8.3, nested virtualization is supported in AArch64 state:

- If FEAT_NV is implemented, a Host hypervisor executing at EL2 can run a Guest hypervisor at EL1, see Armv8.3 nested virtualization functionality.
- If FEAT_NV2 is implemented, the PE further transforms System register accesses into memory accesses, see Enhanced support for nested virtualization on page D5-2640.

D5.7.1 Armv8.3 nested virtualization functionality

Note

When running a Guest hypervisor with HCR_EL2.E2H == 0, the Host hypervisor must set HCR_EL2.TVM and CPTR_EL2.TCPAC to trap any Guest hypervisor accesses to the EL1 System registers that would be accesses from any Guest OS running under the Guest hypervisor.

FEAT_NV does not introduce any changes to either debug or to the Performance Monitors. Arm assumes that the Host hypervisor will trap accesses to the Breakpoint and Performance Monitors registers to EL2, so that it can process any accesses to these registers made by a Guest hypervisor or by a Guest OS running under the Guest hypervisor.

FEAT_NV adds the fields HCR_EL2.{NV, NV1, AT}, see:

- Effect of HCR_EL2.{NV, NV1}.
- Effect of HCR_EL2.AT on page D5-2640.

Effect of HCR_EL2.{NV, NV1}

The following subsections describe the effect of HCR_EL2.{NV, NV1}:

- Behavior when HCR_EL2.NV == 1.
- Additional behavior when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 0 on page D5-2639.
- Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 on page D5-2639.
- Behavior when HCR_EL2.NV == 0 and HCR_EL2.NV1 == 1 on page D5-2639.

HCR_EL2.{NV, NV1} are both permitted to be cached in a TLB.

Behavior when HCR_EL2.NV==1

The following behaviors apply when the value of HCR_EL2.NV is 1, regardless of the value of HCR_EL2.NV1. At EL1:

- Reads or writes to any allocated and implemented System register or Special-purpose register named *_EL2, *_EL02, or *_EL12 in the MRS or MSR instruction, other than SP_EL2, are trapped to EL2 rather than being UNDEFINED. In this case, ESR_EL2 uses the EC code of 0x18.

Only accesses that are permitted at EL2 are trapped. This means that, for example, if the register is a read-only register at EL2, then an MSR from Non-secure EL1 to the register is not trapped by this mechanism. Instead the register access remains UNDEFINED.

Note

The priority of this trapping relative to other configurable traps follows the standard hierarchy of exceptions, see Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

- Reads or writes to SPSR_irq, SPSR_abt, SPSR_und, or SPSR_fiq using MSR and MSR instructions are trapped to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code 0x18.
• Reads or writes to SP_EL1 using the dedicated MSR and MRS instruction for accessing that register are trapped to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

• Execution of the EL2 translation regime Address translation instructions and TLB maintenance instructions are trapped to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

• Execution of the EL1 translation regime Address translation instructions and TLB maintenance instructions that are only accessible from EL2 and above are trapped to EL2 rather than being UNDEFINED. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

• The ERETA, ERETAB, and ERET instructions are trapped to EL2. In this case the exception is reported in ESR_EL2 using the EC code 0x1A.

— Note ——
The ERETA and ERETAB instructions are only available when FEAT_PAuth is implemented.

• A read of CurrentEL returns the value 0x2 in bits[3:2].

• If EL3 is not implemented and HCR_EL2.TSC == 1, an SMC instruction executed at EL1 is trapped to EL2 rather than being UNDEFINED, and HCR_EL2.TSC is not RES0. In this case the exception is reported in ESR_EL2 using the EC code 0x17.

Additional behavior when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 0

At EL1, all the behaviors described in Behavior when HCR_EL2.NV==1 on page D5-2638 apply.

In addition, when HCR_EL2.{NV, NV1} == {1, 0}, any exception taken from EL1 to EL1 causes SPSR_EL1.M[3:2] to be set to 0b10 rather than 0b01.

Additional behaviors when HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1

At Non-secure EL1, all the behaviors described in Behavior when HCR_EL2.NV==1 on page D5-2638 apply.

In addition, when HCR_EL2.{NV, NV1} == {1, 1}:

• Accesses to VBAR_EL1, ELR_EL1, and SPSR_EL1 from EL1 are trapped to EL2. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

• In the EL1 translation table Block and Page descriptors:
 — Bit[54] holds PXN, not UXN.
 — Bit[53] is RES0.
 — Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical permissions are enabled, then in the EL1 translation table Table descriptor:
 — Bit[61] is treated as 0 regardless of the actual value.
 — Bit[60] holds PXNTable, not UXNTable.
 — Bit[59] is RES0.

• When in EL1, PSTATE.PAN is treated as 0 for all purposes except reading the value of the bit.

• When executed at EL1, the LDTR* behave as the corresponding LDR* instructions, and the STTR* instructions behave as the equivalent STR* instructions.

Behavior when HCR_EL2.NV == 0 and HCR_EL2.NV1 == 1

When HCR_EL2.{NV, NV1} == {0, 1}, the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV==1 and HCR_EL2.NV1==1 for all purposes other than reading back the value of the HCR_EL2.NV bit.
• Behaving as if HCR_EL2.NV==0 and HCR_EL2.NV1==0 for all purposes other than reading back the value of the HCR_EL2.NV1 bit.

• Behaving as defined for HCR_EL2.NV==0, with HCR_EL2.NV1==1 having the effect of causing accesses to VBAR_EL1, ELR_EL1, and SPSR_EL1 from EL1 to be trapped to EL2.

Effect of HCR_EL2.AT

When FEAT_NV is implemented, if HCR_EL2.AT is 1, then EL1 accesses to AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, and AT S1E1WP, are trapped to EL2. In this case the exception is reported in ESR_EL2 using the EC code 0x18.

D5.7.2 Enhanced support for nested virtualization

If FEAT_NV2 is implemented, the PE can access the VNCR_EL2 register and the control bit HCR_EL2.NV2.

When HCR_EL2.NV2 is 1:

• When in EL1, the PE redirects EL2 register accesses to EL1 register accesses, see Redirection of register accesses from EL2 to EL1.

• When a Guest hypervisor issues System register access instructions to a Guest Guest OS, the PE transforms the System register access instructions into memory access instructions, see Loads and stores generated by transforming register accesses.

When HCR_EL2.NV2 is 0, the behavior of HCR_EL2.NV and HCR_EL2.NV1 are as described in Armv8.3 nested virtualization functionality on page D5-2638.

Redirection of register accesses from EL2 to EL1

When HCR_EL2.NV and HCR_EL2.NV2 are set to 1, instructions accessing certain Special-purpose EL2 registers executed at EL1 are redefined to access the corresponding EL1 register:

Table D5-49 Redirection of accesses to special-purpose registers at EL2

<table>
<thead>
<tr>
<th>Special register access instruction a</th>
<th>Named EL2 register</th>
<th>Actual register accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>op1 = 4, CRm=0, op2=0</td>
<td>SPSR_EL2</td>
<td>SPSR_EL1</td>
</tr>
<tr>
<td>op1 = 4, CRm=0, op2=1</td>
<td>ELR_EL2</td>
<td>ELR_EL1</td>
</tr>
</tbody>
</table>

a. For further information, see op0==0b11, Moves to and from Special-purpose registers on page C5-383.

When HCR_EL2.NV and HCR_EL2.NV2 are set to 1, instructions accessing certain System registers executed at EL1 are redefined to access the corresponding EL1 register:

Table D5-50 Redirection of accesses to System registers at EL2

<table>
<thead>
<tr>
<th>System register access instruction a</th>
<th>Named EL2 register</th>
<th>Actual register accessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 = 3, op1=4, CRn=5, CRm=2, op2=0</td>
<td>ESR_EL2</td>
<td>ESR_EL1</td>
</tr>
<tr>
<td>op0 = 3, op1=4, CRn=6, CRm=0, op2=0</td>
<td>FAR_EL2</td>
<td>FAR_EL1</td>
</tr>
</tbody>
</table>

a. For further information, see Instructions for accessing non-debug System registers on page D12-2847.

Loads and stores generated by transforming register accesses

When an MRS or MSR instruction is executed at EL1 and is accessing a register listed in Table D5-51 on page D5-2641, the PE transforms that access into a loads or store, respectively.
When the PE transforms a System register access into a memory access, the address of the resulting memory access is defined using a combination of a base address and an offset according to the formula $\text{SignExtend}(\text{VNCR}_\text{EL2}.BADDR : \text{Offset}<11:0>, 64)$:

- VNCR_EL2 holds the base memory address used for memory redirection of System register accesses.
- Each register which supports redirection to memory has a unique offset value, see Table D5-51.

<table>
<thead>
<tr>
<th>Register access</th>
<th>If HCR_EL2.{NV, NV1, NV2} == {1, 0, 1}</th>
<th>If HCR_EL2.{NV, NV1, NV2} == {1, 1, 1}</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTTBR_EL2</td>
<td>VTTBR_EL2</td>
<td></td>
<td>$0x20$</td>
</tr>
<tr>
<td>VSTTBR_EL2</td>
<td>VSTTBR_EL2</td>
<td></td>
<td>$0x30$</td>
</tr>
<tr>
<td>VTCR_EL2</td>
<td>VTCR_EL2</td>
<td></td>
<td>$0x40$</td>
</tr>
<tr>
<td>VSTCR_EL2</td>
<td>VSTCR_EL2</td>
<td></td>
<td>$0x48$</td>
</tr>
<tr>
<td>VMPIDR_EL2</td>
<td>VMPIDR_EL2</td>
<td></td>
<td>$0x50$</td>
</tr>
<tr>
<td>$\text{CNTVOFF}_\text{EL2}$</td>
<td>$\text{CNTVOFF}_\text{EL2}$</td>
<td></td>
<td>$0x60$</td>
</tr>
<tr>
<td>HCR_EL2</td>
<td>HCR_EL2</td>
<td></td>
<td>$0x78$</td>
</tr>
<tr>
<td>HSTR_EL2</td>
<td>HSTR_EL2</td>
<td></td>
<td>$0x80$</td>
</tr>
<tr>
<td>VPIDR_EL2</td>
<td>VPIDR_EL2</td>
<td></td>
<td>$0x88$</td>
</tr>
<tr>
<td>TPIDR_EL2</td>
<td>TPIDR_EL2</td>
<td></td>
<td>$0x90$</td>
</tr>
<tr>
<td>VNCR_EL2</td>
<td>VNCR_EL2</td>
<td></td>
<td>$0x80$</td>
</tr>
<tr>
<td>CPACR_EL12</td>
<td>CPACR_EL1</td>
<td></td>
<td>$0x100$</td>
</tr>
<tr>
<td>$\text{CONTEXTIDR}_\text{EL12}$</td>
<td>$\text{CONTEXTIDR}_\text{EL1}$</td>
<td></td>
<td>$0x108$</td>
</tr>
<tr>
<td>SCTLR_EL12</td>
<td>SCTLR_EL1</td>
<td></td>
<td>$0x110$</td>
</tr>
<tr>
<td>ACTLR_EL1</td>
<td>ACTLR_EL1</td>
<td></td>
<td>$0x118$</td>
</tr>
<tr>
<td>TCR_EL12</td>
<td>TCR_EL1</td>
<td></td>
<td>$0x120$</td>
</tr>
<tr>
<td>AFSR0_EL12</td>
<td>AFSR0_EL1</td>
<td></td>
<td>$0x128$</td>
</tr>
<tr>
<td>AFSR1_EL12</td>
<td>AFSR1_EL1</td>
<td></td>
<td>$0x130$</td>
</tr>
<tr>
<td>ESR_EL12</td>
<td>ESR_EL1</td>
<td></td>
<td>$0x138$</td>
</tr>
<tr>
<td>MAIR_EL12</td>
<td>MAIR_EL1</td>
<td></td>
<td>$0x140$</td>
</tr>
<tr>
<td>AMAIR_EL12</td>
<td>AMAIR_EL1</td>
<td></td>
<td>$0x148$</td>
</tr>
<tr>
<td>MDSCR_EL1</td>
<td>MDSCR_EL1</td>
<td></td>
<td>$0x158$</td>
</tr>
<tr>
<td>SPSR_EL12</td>
<td>SPSR_EL1</td>
<td></td>
<td>$0x160$</td>
</tr>
<tr>
<td>$\text{CNTV}\text{CVAL}\text{EL02}$</td>
<td>$\text{CNTV}\text{CVAL}\text{EL0}$</td>
<td></td>
<td>$0x168$</td>
</tr>
<tr>
<td>$\text{CNTV}\text{CTL}\text{EL02}$</td>
<td>$\text{CNTV}\text{CTL}\text{EL0}$</td>
<td></td>
<td>$0x170$</td>
</tr>
<tr>
<td>$\text{CNTP}\text{CVAL}\text{EL02}$</td>
<td>$\text{CNTP}\text{CVAL}\text{EL0}$</td>
<td></td>
<td>$0x178$</td>
</tr>
<tr>
<td>$\text{CNTP}\text{CTL}\text{EL02}$</td>
<td>$\text{CNTP}\text{CTL}\text{EL0}$</td>
<td></td>
<td>$0x180$</td>
</tr>
</tbody>
</table>
Table D5-51 Memory address offsets associated with each transformed register access

<table>
<thead>
<tr>
<th>Register access</th>
<th>Offset</th>
<th>If HCR_EL2.(NV, NV1, NV2) == {1, 0, 1}</th>
<th>If HCR_EL2.(NV, NV1, NV2) == {1, 1, 1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXTNUM_EL12</td>
<td>SCXTNUM_EL1</td>
<td>0x188</td>
<td></td>
</tr>
<tr>
<td>TFSR_EL12</td>
<td>TFSR_EL1</td>
<td>0x190</td>
<td></td>
</tr>
<tr>
<td>CNTPOFF_EL2</td>
<td>CNTPOFF_EL2</td>
<td>0x1A8</td>
<td></td>
</tr>
<tr>
<td>HFGRTR_EL2</td>
<td>HFGRTR_EL2</td>
<td>0x1B8</td>
<td></td>
</tr>
<tr>
<td>HFGWTR_EL2</td>
<td>HFGWTR_EL2</td>
<td>0x1C0</td>
<td></td>
</tr>
<tr>
<td>HFGITR_EL2</td>
<td>HFGITR_EL2</td>
<td>0x1C8</td>
<td></td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>HDFGRTR_EL2</td>
<td>0x1D0</td>
<td></td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>HDFGWTR_EL2</td>
<td>0x1D8</td>
<td></td>
</tr>
<tr>
<td>ZCR_EL12</td>
<td>ZCR_EL1</td>
<td>0x1E0</td>
<td></td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>HAFGRTR_EL2</td>
<td>0x1E8</td>
<td></td>
</tr>
<tr>
<td>TTBR0_EL12</td>
<td>TTBR0_EL1</td>
<td>0x200</td>
<td></td>
</tr>
<tr>
<td>TTBR1_EL12</td>
<td>TTBR1_EL1</td>
<td>0x210</td>
<td></td>
</tr>
<tr>
<td>FAR_EL12</td>
<td>FAR_EL1</td>
<td>0x220</td>
<td></td>
</tr>
<tr>
<td>ELR_EL12</td>
<td>ELR_EL1</td>
<td>0x230</td>
<td></td>
</tr>
<tr>
<td>SP_EL1</td>
<td>SP_EL1</td>
<td>0x240</td>
<td></td>
</tr>
<tr>
<td>VBAR_EL12</td>
<td>VBAR_EL1</td>
<td>0x250</td>
<td></td>
</tr>
<tr>
<td>ICH_LR<n>_EL2</td>
<td>ICH_LR<n>_EL2</td>
<td>0x400+8*n</td>
<td></td>
</tr>
<tr>
<td>ICH_AP0R<n>_EL2</td>
<td>ICH_AP0R<n>_EL2</td>
<td>0x480+8*n</td>
<td></td>
</tr>
<tr>
<td>ICH_AP1R<n>_EL2</td>
<td>ICH_AP1R<n>_EL2</td>
<td>0x4A0+8*n</td>
<td></td>
</tr>
<tr>
<td>ICH_HCR_EL2</td>
<td>ICH_HCR_EL2</td>
<td>0x4C0</td>
<td></td>
</tr>
<tr>
<td>ICH_VMCR_EL2</td>
<td>ICH_VMCR_EL2</td>
<td>0x4C8</td>
<td></td>
</tr>
<tr>
<td>VDISR_EL2</td>
<td>VDISR_EL2</td>
<td>0x500</td>
<td></td>
</tr>
<tr>
<td>VSESRR_EL2</td>
<td>VSESRR_EL2</td>
<td>0x508</td>
<td></td>
</tr>
<tr>
<td>PMBLIMITR_EL1</td>
<td>PMBLIMITR_EL1</td>
<td>0x800</td>
<td></td>
</tr>
<tr>
<td>PMBPTR_EL1</td>
<td>PMBPTR_EL1</td>
<td>0x810</td>
<td></td>
</tr>
<tr>
<td>PMBSR_EL1</td>
<td>PMBSR_EL1</td>
<td>0x820</td>
<td></td>
</tr>
<tr>
<td>PMSCR_EL12</td>
<td>PMSCR_EL1</td>
<td>0x828</td>
<td></td>
</tr>
<tr>
<td>PMSEVFR_EL1</td>
<td>PMSEVFR_EL1</td>
<td>0x830</td>
<td></td>
</tr>
<tr>
<td>PMSICR_EL1</td>
<td>PMSICR_EL1</td>
<td>0x838</td>
<td></td>
</tr>
<tr>
<td>PMSIRR_EL1</td>
<td>PMSIRR_EL1</td>
<td>0x840</td>
<td></td>
</tr>
<tr>
<td>PMSLATFR_EL1</td>
<td>PMSLATFR_EL1</td>
<td>0x848</td>
<td></td>
</tr>
</tbody>
</table>
Note
Software should assume that future expansion of the architecture will allocate offset values up to but not including 0x1000.

Registers that affect hypervisor execution by controlling the event stream are not included in Table D5-51 on page D5-2641:

- **CNTHCTL_EL2**
- When HCR_EL2.NV1 is 0, CNTKCTL_EL12.
- When HCR_EL2.NV1 is 1, CNTKCTL_EL1.

When a System register access is transformed into a memory access, that memory access has a defined format:

- The address accessed by the memory access is translated by the EL2 translation regime.
- The endianness of the memory access is defined by SCTLR_EL2.EE.
- The memory access is 64-bit single-copy atomic aligned to 64 bits.
- The memory access does not have acquire or release semantics.

Note
The value of the transformed System register access is not affected by fields that are defined to be RES0 or RES1 in the associated System register.

Note
When there is no context synchronizing operation between the read or write of the register and the load or store instruction accessing the address, the PE is permitted, but not required, to reorder the memory accesses with respect to any EL1 reads or writes generated by load or store instructions to the same address.

Note
The memory accesses behave as if PSTATE.PAN == 0 regardless of the value of PSTATE.PAN.

When a register access instruction targets a register that is not implemented, the PE treats access to that register as UNALLOCATED.

Any attempt to trap a register access instruction is subject to the exception prioritization rules, unless it is trapped by either or both of HCR_EL2,{NV, NV1}. When a System register access instruction is trapped by either or both of HCR_EL2,{NV, NV1}, then the instruction is transformed into a memory access instruction instead of creating a trap, see Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

Exceptions from transformed register accesses

When HCR_EL2,{NV2, NV} == {1,1} any exception taken from EL1 and taken to EL1 causes the SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

When the memory access generates a Data Abort, then the resulting fault has a defined format:

- The fault is taken to EL2, using the standard vector offset for exceptions from EL1 to EL2.
• The fault is reported as a Data Abort from the current exception level with the ESR_EL2.EC code 0x25, see ISS encoding for an exception from a Data Abort on page D13-3028.

• FAR_EL2 is updated to hold the faulting address.

When the memory access generates a synchronous External abort, and when External aborts are not configured to be taken to EL3, then the resulting fault has a defined format:

• The fault is taken to EL2 using the standard vector offset for exceptions from EL1 to EL2.

• The fault is reported as a Data Abort from the current Exception level with ESR_EL2.EC code 0x25, see ISS encoding for an exception from a Data Abort on page D13-3028.

The VNCR field in ESR_EL2 and ESR_EL3 identifies whether the fault came from use of VNCR_EL2 by EL1, see ISS encoding for an exception from a Data Abort on page D13-3028.

Interaction with self-hosted and External debug

When a register access is transformed into a memory access, the PE:

• Treats the instruction as an instruction executed at EL1.

• Treats the loads and stores generated by the transformation of reads and writes of registers as an EL2 access.

This means that:

• When filtering PMU events by Exception level, filtering instructions by Exception level for trace or Statistical Profiling, and when checking the instruction address against breakpoint registers or trace resources, the operation is checked as an instruction executed at EL1.

• When checking the memory access against the watchpoint registers, or recording the address in a Statistical Profiling record, the PE treats the access as an EL2 access.

When the memory access matches an EL2 access in the watchpoint registers, while a watchpoint is linked to a context-aware breakpoint that is programmed to match the value held in CONTEXTIDR_EL1 or VMID, then it is CONSTRAINED UNPREDICTABLE whether there is a watchpoint match.

When there is a watchpoint match, while EDSCR.HDE is set to 1 and halting is allowed, the watchpoint match generates a Watchpoint debug event.

When there is a watchpoint match, while EDSCR.HDE is set to 0 and debug exceptions are enabled at EL2, then the watchpoint match generates a Watchpoint exception.

When the watchpoint match generates a Watchpoint exception, the resulting exception has a defined format:

• The exception is taken to EL2.

• The exception is reported as a Watchpoint from the current Exception level with the ESR_EL2.EC code 0x35, see ISS encoding for an exception from a Watchpoint exception on page D13-3037.

• FAR_EL2 is updated to hold the watchpointed address.

The VNCR field in ESR_EL2 identifies whether the Watchpoint exception came from use of VNCR_EL2 by EL1, see ISS encoding for an exception from a Watchpoint exception on page D13-3037.

The loads and stores generated by the transformation of reads and writes of registers are treated by the Performance Monitors as Memory-read operations and Memory-write operations. For more information, see Memory-read operation on page D7-2711 and Memory-write operation on page D7-2712.

When the Statistical Profiling Extension selects the instruction generating the memory access for profiling, it records the operation as a Load/Store operation. For more information, see Operation Type packet payload (Load/store) on page D10-2825.

When the Statistical Profiling Extension selects the instruction generating the memory access for profiling while Statistical Profiling is disabled at EL2, the virtual address for the memory access is not recorded.
D5.8 VMSAv8-64 memory aborts

In a VMSAv8-64 implementation, the following mechanisms cause a PE to take an exception on a failed memory access:

- **Debug exception**
 An exception caused by the debug configuration, see [Chapter D2 AArch64 Self-hosted Debug](#).

- **Alignment fault**
 An Alignment fault is generated if the address used for a memory access does not have the required alignment for the operation. For more information, see [Alignment support on page B2-148](#).

- **MMU fault**
 An MMU fault is a fault generated by the fault checking sequence for the current translation regime. See [Types of MMU faults](#).

- **External abort**
 Any memory system fault other than a Debug exception, an Alignment fault, or an MMU fault.

Collectively, these mechanisms are called aborts. [Chapter D2 AArch64 Self-hosted Debug](#) and [on page H3-7053](#) describe Debug exceptions, and the remainder of this section describes Alignment faults, MMU faults, and External aborts.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Exception Syndrome Registers (ESRs) to record context information.

In AArch64 state MMU faults are synchronous exceptions that are reported as either:

- Data Aborts.
- Instruction Aborts

Note
Instruction Aborts report any synchronous memory abort on an instruction fetch.

The Exception level that an MMU fault is taken to depends on the translation regime and stage that generated the fault. The fault context saved in the appropriate ESR_ELx, where ELx is the Exception level that the fault is taken to, is dependent on whether:

- The MMU fault is reported as an Instruction or as a Data Abort.
- The exception is taken from the same or a lower Exception level.

For more information, see [Synchronous exception types, routing and priorities on page D1-2348](#).

External aborts can be reported synchronously or asynchronously. Asynchronous External aborts are reported using the SError interrupt. For more information, see [External aborts on page D4-2519](#).

Software stepping, which is a debug feature, and a PC alignment fault exception are the only exceptions that are higher priority than an Instruction Abort. Only watchpoints are at a lower priority than Data Aborts in the exception priority hierarchy. For more information, see [Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349](#).

The following sections describe the abort mechanisms:

- Types of MMU faults.
- The MMU fault-checking sequence on page D5-2648.
- AArch64 state prioritization of synchronous aborts from a single stage of address translation on page D5-2652.
- Pseudocode description of the MMU faults on page D5-2654.

D5.8.1 Types of MMU faults

This section describes the faults that might be detected during one of the fault-checking sequences described in [The MMU fault-checking sequence on page D5-2648](#). The following list includes all the types of exceptions that can occur:

- Alignment fault on a data access, see [Alignment support on page B2-148](#).
Permission fault

A Permission fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. See About access permissions on page D5-2600 for information about conditions that cause a Permission fault.

A TLB might hold a translation table entry that causes a Permission fault. Therefore, if the handling of a Permission fault results in an update to the associated translation tables, the software that updates the translation tables must invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent memory access.

This maintenance requirement applies to Permission faults in both stage 1 and stage 2 translations.

Cache maintenance instructions cannot generate Permission faults, except that:

- A stage 1 translation table walk performed as part of a cache maintenance instruction can generate a stage 2 Permission fault as described in Stage 2 fault on a stage 1 translation table walk.

- When the value of SCTLR_EL1.UCI is 1, enabling EL0 execution of the DC CVAU, DC CVAC, DC CVAP, DC CIVAC, and IC IVAU instructions:
 - Executing a DC CVAU, DC CVAC, DC CVAP, or DC CIVAC instruction at EL0 to a location that does not have read permission at EL0 generates a Permission fault, subject to the constraints described in this section.
 - It is IMPLEMENTATION DEFINED whether executing an IC IVAU instruction at EL0 to a location that does not have read permission at EL0 generates a Permission fault.

- A DC IVAC instruction requires write permission to the address it invalidates, otherwise it generates a Permission fault, subject to the constraints described in this section.

Note

- Execution of the DCDIVAC instruction in AArch32 state does not have this write permission requirement.
- When EL1&0 stage 2 address translation is enabled, a DC IVAC instruction executed in Non-secure state performs a cache clean and invalidate, meaning it performs the same invalidation as a DC CIVAC instruction, as described in Effects of virtualization and Security state on the cache maintenance instructions on page D4-2509.

In all cases where the execution of a cache maintenance instruction might generate a Permission fault:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache maintenance by VA to the Point of Coherency instruction can generate a Permission fault.

- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault.

The Data Cache Zero instruction, DC ZVA, operates as set of stores to each byte within the block being accessed, and therefore it generates a Permission fault if the translation system does not permit writes to these locations.
Translation fault

A Translation fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. A Translation fault is generated if bits[1:0] of a translation table descriptor identify the descriptor as either a Fault encoding or a reserved encoding. For more information, see VMSAv8-64 translation table format descriptors on page D5-2587.

In addition, a Translation fault is generated if the input address for a translation either does not map onto an address range of a TTBR_ELx, or the TTBR_ELx range that it maps onto is disabled. In these cases, the fault is reported as a level 0 Translation fault on the translation stage at which the mapping to a region described by a TTBR_ELx failed.

A data or unified cache maintenance by VA instruction can generate a Translation fault, except that:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or unified cache maintenance by VA instruction can generate a Translation fault.

- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate a Translation fault.

The architecture guarantees that any translation table entry that causes a Translation fault is not cached, meaning the TLB never holds such an entry. Therefore, when a Translation fault occurs, the fault handler does not have to perform any TLB maintenance instructions to remove the faulting entry.

If FEAT_E0PD is implemented and enabled, the TCR_ELx.{E0D0, E0D1} fields can prevent unprivileged access to the addresses translated by TTBR0_ELx or TTBR1_ELx. If access is prevented, the fault is reported as a level 0 Translation fault, and should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks that use fault timing.

Address size fault

An Address size fault can be generated at any level of lookup.

An Address size fault is generated if one of the following has nonzero address bits above the output address size, for the current stage of translation:

- The TTBR_ELx used for the translation.
- A translation table entry.
- The output address of the translation.

For an Address size fault generated because the TTBR_ELx used for the translation has nonzero address bits above the output address size, the reported fault code indicates a fault at level 0. Otherwise, the reported fault code indicates the lookup level at which the fault occurred.

A data or unified cache maintenance by VA instruction can generate an Address size fault, except that:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or unified cache maintenance by VA instruction can generate an Address size fault.

- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate an Address size fault.

The architecture guarantees that any translation table entry that causes an Address size fault is not cached, meaning the TLB never holds such an entry. Therefore, when an Address size fault occurs, the fault handler does not have to perform any TLB maintenance instructions to remove the faulting entry.

For more information on Address size faults, see Output address size on page D5-2542.
External abort on a translation table walk

An External abort on a translation table walk can be either synchronous or asynchronous. An External abort on a translation table walk is reported:

• If the external abort is synchronous, using:
 — A synchronous Instruction Abort exception if the translation table walk is for an instruction fetch.
 — A synchronous Data Abort exception if the translation table walk is for a data access.

• If the External abort is asynchronous, using the SError interrupt exception.

Behavior of External aborts on a translation table walk caused by address translation instructions

The address translation instructions summarized in Address translation instructions on page C5-379 require translation table walks. An External abort can occur in the translation table walk. This is reported as follows:

• If the External abort is synchronous, using a synchronous Data Abort exception.
• If the External abort is asynchronous, using the SError interrupt exception.

For more information, see Synchronous faults generated by address translation instructions on page D5-2585.

Access flag fault

An Access flag fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. An Access flag fault is generated only if a translation table descriptor with the Access flag bit set to 0 is used.

For more information about the Access flag bit, see VMSAv8-64 translation table format descriptors on page D5-2587.

The architecture guarantees that any translation table entry that causes an Access flag fault is not cached, meaning the TLB never holds such an entry. Therefore, when an Access flag fault occurs, the fault handler does not have to execute any TLB maintenance instructions to remove the faulting entry.

Whether any cache maintenance by VA instructions can generate Access flag faults is IMPLEMENTATION DEFINED.

For more information, see The Access flag on page D5-2612.

D5.8.2 The MMU fault-checking sequence

This section describes the MMU checks made for the memory accesses required for instruction fetches and for explicit memory accesses:

• If an instruction fetch faults, it generates an Instruction Abort.
• If a data memory access faults, it generates a Data Abort.

MMU fault checking is performed for each stage of address translation.

The fault-checking sequence shows a translation from an Input address to an Output address. For more information about this terminology, see About address translation and supported input address ranges on page D5-2538.

Note

The descriptions in this section do not include the possibility that the attempted address translation generates a TLB conflict abort, as described in TLB conflict aborts on page D5-2660.

Types of MMU faults on page D5-2645 describes the faults that an MMU fault-checking sequence can report.

Figure D5-18 on page D5-2649 shows the process of fetching a descriptor from the translation table. For the top-level fetch for any translation, the descriptor is fetched only if the input address passes any required alignment check. As the figure shows, if the translation is stage 1 of the Secure or Non-secure EL1&0 translation regime, when EL2 is enabled, then the descriptor address is in the IPA address space, and is subject to a stage 2 translation to obtain the required PA. This stage 2 translation requires a recursive entry to the fault checking sequence.
Figure D5-18 Fetching the descriptor in a VMSAv8-64 translation table walk

Figure D5-19 on page D5-2650 shows the full VMSA fault checking sequence, including the alignment check on the initial access.
Figure D5-19 VMSAv8-64 fault checking sequence

1 Is the access subject to an alignment check?
2 Does the address map to a TTBR?
3 Not permitted at the lowest lookup level
4 Fault any unaligned access to Device memory

† Links to and from Fetching the descriptor flowchart
‡ See Fetching the descriptor flowchart

A1† See 1

Input address

Alignment check? Yes

Check address alignment

No

Get translation table base address

Yes

Translatable?

No

No

Alignment fault

Yes

Translation fault

Translation fault

No

Address size valid?

No

No

No

Yes

Access flag fault

No

See 3

Table entry?

Yes

Yes

Yes

Access flag fault

No

No

No

No

Address size fault

See 2

Fetch descriptor ‡

Descriptor valid?

Yes

No

Translation fault

Yes

No

Address size valid?

See 4

Yes

Alignment valid?

No

No

No

No

Alignment fault

Yes

Permission fault

Output address

A2†
Stage 2 fault on a stage 1 translation table walk

On performing a translation table walk for the stage 1 translations, the descriptor addresses must be translated from IPA to PA, using a stage 2 translation. This means that a memory access made as part of a stage 1 translation table lookup might generate, on a stage 2 translation:

- A Translation fault, Access flag fault, or Permission fault.
- A synchronous External abort on the memory access.

If SCR_EL3.EA is set to 1, a synchronous External abort is taken to EL3. Otherwise, these faults are reported as stage 2 memory aborts. ESR_EL2.ISS[7] is set to 1, to indicate a stage 2 fault during a stage 1 translation table walk, and the part of the ISS field that might contain details of the instruction is invalid. For more information, see Use of the ESR_EL1, ESR_EL2, and ESR_EL3 on page D1-2336.

Alternatively, a memory access made as part of a stage 1 translation table lookup might target an area of memory with the Device attribute assigned on the stage 2 translation of the address accessed. When the HCR_EL2.PTW bit is set to 1, such an access generates a stage 2 Permission fault.

Note

On most systems, such a mapping to Device memory on the stage 2 translation is likely to indicate a Guest OS error, where the stage 1 translation table is corrupted. Therefore, it is appropriate to trap this access to the hypervisor.

A TLB might hold entries that depend on the effect of HCR_EL2.PTW. Therefore, if HCR_EL2.PTW is changed without changing the current VMID, the TLBs must be invalidated before executing in EL1 or EL0 state.

A cache maintenance instruction executed at EL1 or EL0 can cause a stage 1 translation table walk that might generate a stage 2 Permission fault as described in this section. However:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache maintenance by VA instruction can generate a Permission fault in this way.
- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault in this way.
- It is IMPLEMENTATION DEFINED whether an instruction cache invalidation by VA instruction can generate a Permission fault in this way.

Note

This is an exception to the general rule that a cache maintenance instruction cannot generate a Permission fault.

The level associated with MMU faults

For MMU faults, Table D5-52 shows how the LL bits in the ESR_ELx.STATUS fields encode the lookup level associated with the fault.

Table D5-52 Use of LL bits to encode the lookup level at which the fault occurred

<table>
<thead>
<tr>
<th>LL bits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Level 0 of translation or translation table base register.</td>
</tr>
<tr>
<td>01</td>
<td>Level 1.</td>
</tr>
<tr>
<td>10</td>
<td>Level 2.</td>
</tr>
<tr>
<td>11</td>
<td>Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.</td>
</tr>
</tbody>
</table>

The lookup level associated with a fault is:

- For a fault generated on a translation table walk, the lookup level of the walk being performed.
For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because a stage of address translation is disabled, or because the input address is outside the range specified by the appropriate base address register or registers, or because FEAT_E0PD is enabled and prevents access to the translation table, the fault is reported as a level 0 fault.

For an Access flag fault, the lookup level of the translation table that gave the fault.

For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of the final level of translation table accessed for the translation. That is, the lookup level of the translation table that returned a Block or Page descriptor.

Also see Synchronous External aborts from address translation caching structures on page D5-2654

AArch64 state prioritization of synchronous aborts from a single stage of address translation

Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 describes the prioritization of exceptions taken to an Exception level that is using AArch64. This section gives additional information about the prioritization of MMU faults from VMSAv8-64 translation regimes.

Note

The priority numbering in this list only shows the relative priorities of aborts from a single stage of address translation in a VMSAv8-64 translation regime. This numbering has no global significance and, for example, does not correlate with the equivalent AArch32 list in AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.

For a single stage of translation in a VMSAv8-64 translation regime, the following numbered list shows the priority of the possible memory management faults on a memory access. In this list:

- For memory accesses that undergo two stages of translation, the italic entries show where the faults from the stage 2 translation can occur. A stage 2 fault within a stage 1 translation table walk follows the same prioritization of faults:

- For synchronous External aborts from translation table walks, see also Synchronous External aborts from address translation caching structures on page D5-2654.

The prioritization between the stage 2 permission failure on the stage 1 translation table walk and the stage 1 abort generated by the stage 1 translation table entry is IMPLEMENTATION DEFINED if all the following are true:

- Stage 1 hardware updating of either access or dirty information is enabled.
- A stage 1 translation table entry results in the stage 1 translation table entry having the access or dirty bit updated.
- The stage 1 translation table entry has stage 2 read permission but not stage 2 write permission.
- The stage 1 translation entry generates an abort (which might be one of an address size fault, an alignment fault caused by memory type or a permission fault).

The priority order, from highest priority to lowest priority, is:

1. Alignment fault not caused by memory type. This is possible for a stage 1 translation only.
2. Translation fault due to the input address being out of the address range to be translated or requiring a TTBR_ELx that is disabled. This includes VTCR_EL2.SL0 being inconsistent with VTCR_EL2.T0SZ, VSTCR_EL2.SL0 being inconsistent with VSTCR_EL2.T0SZ, or SL0 programmed to a reserved value.
3. Address size fault on a TTBR_ELx caused by either:
 - The check on TCR_EL1.IPS, TCR_EL2.PS, TCR_EL3.PS, or VTCR_EL2.PS.
 - The PA being out of the range implemented.
4. **Second stage abort on a level 0 memory access of a stage 1 table walk.** When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.

5. Synchronous parity or ECC error on a level 0 lookup of a translation table walk.

6. Synchronous External abort on a level 0 lookup level of a translation table walk.

7. Translation fault on a level 0 translation table entry.

8. Address size fault a level 0 lookup translation table entry caused by either:
 - The check on TCR_EL1.IPS, TCR_EL2.PS, TCR_EL3.PS, or VTCR_EL2.PS.
 - The output address being out of the range implemented.

9. **Second stage abort on a level 1 memory access of a stage 1 table walk.** When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.

10. Synchronous parity or ECC error on a level 1 lookup of a translation table walk.

11. Synchronous External abort on a level 1 lookup level of a translation table walk.

12. Translation fault on a level 1 translation table entry.

13. Address size fault on a level 1 lookup translation table entry caused by either:
 - The check on TCR_EL1.IPS, TCR_EL2.PS, TCR_EL3.PS, or VTCR_EL2.PS.
 - The output address being out of the range implemented.

14. **Second stage abort on a level 2 memory access of a stage 1 table walk.** When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.

15. Synchronous parity or ECC error on a level 2 lookup of a translation table walk.

16. Synchronous External abort on a level 2 lookup level of a translation table walk.

17. Translation fault on a level 2 translation table entry.

18. Address size fault on a level 2 lookup translation table entry caused by either:
 - The check on TCR_EL1.IPS, TCR_EL2.PS, TCR_EL3.PS, or VTCR_EL2.PS.
 - The output address being out of the range implemented.

19. **Second stage abort on a level 3 memory access of a stage 1 table walk.** When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.

20. Synchronous parity or ECC error on a level 3 lookup of a translation table walk.

21. Synchronous External abort on a level 3 lookup level of a translation table walk.

22. Translation fault on a level 3 translation table entry.

23. Address size fault on a level 3 lookup translation table entry caused by either:
 - The check on TCR_EL1.IPS, TCR_EL2.PS, TCR_EL3.PS, or VTCR_EL2.PS.
 - The output address being out of the range implemented.

25. Alignment fault caused by the memory type.

26. Permission fault.

27. **A fault from the stage 2 translation of the memory access.** When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented.
28. Synchronous parity or ECC error on the memory access.

29. Synchronous External abort on the memory access.

--- Note ---

- The prioritization of TLB Conflict aborts is IMPLEMENTATION DEFINED, as the exact cause of these aborts depends on the form of TLBs implemented. However, the TLB conflict abort must have higher priority than any abort that depends on a value held in the TLB.

- The prioritization of IMPLEMENTATION DEFINED MMU faults for a Load-Exclusive or Store-Exclusive to an unsupported memory type is IMPLEMENTATION DEFINED.

- The prioritization of an unsupported atomic hardware update MMU fault is IMPLEMENTATION DEFINED to be at a point between immediately before the priority of an Access Flag fault generated by the same stage of translation as the stage of this MMU fault, and immediately after the priority of a Permission fault generated by the same stage of translation as the stage of this MMU fault.

Synchronous External aborts from address translation caching structures

A caching structure used for caching translation table walks might support:

- An arbitrary number of levels of translation table lookup.
- One or more stages of translation, that might not correspond to the stages of an address translation lookup.

This might mean that, on a synchronous External aborts arising from the caching structure, including parity or ECC errors, the PE cannot precisely determine one or both of the translation stage and level of lookup at which the error occurred. In this case:

- If the PE cannot determine precisely the translation stage at which the error occurred, it is reported and prioritized as a stage 1 error.

- If the PE cannot determine precisely the lookup level at which the error occurred, the level is reported and prioritized as either:
 - The lowest-numbered level that could have given rise to the error.
 - Level 0 if the PE cannot determine any information about the level.

D5.8.4 Pseudocode description of the MMU faults

The following functions generate fault records that describe MMU faults:

- `AArch64.AccessFlagFault()`.
- `AArch64.AddressSizeFault()`.
- `AArch64.PermissionFault()`.
- `AArch64.TranslationFault()`.

Abort exceptions on page D4-2524 describes how fault records are used.
D5.9 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of translation table walks. TLBs behave as caches of the translation table information, and the VMSA provides TLB maintenance instructions for the management of TLB contents.

Note

The Arm architecture permits TLBs to hold any translation table entry that does not directly cause a Translation fault, an Address size fault, or an Access flag fault.

Note

The following sections describe the architectural requirements for Translation Lookaside Buffers (TLBs) and their maintenance:

- Use of ASIDs and VMIDs to reduce TLB maintenance requirements.
- About Armv8 Translation Lookaside Buffers (TLBs) on page D5-2657.
- TLB maintenance requirements and the TLB maintenance instructions on page D5-2661.

In these descriptions, TLB entries for a translation regime for a particular Exception level are out of context when executing at a higher Exception level.

Note

In addition to the functions described in this section, the TLB might cache information from control registers that are described as being “permitted to be cached in a TLB”, even when any or all of the stages of translation are disabled. This caching of information gives rise to the maintenance requirements described in General TLB maintenance requirements on page D5-2661.

D5.9.1 Use of ASIDs and VMIDs to reduce TLB maintenance requirements

To reduce the need for TLB maintenance on context switches, the lookups from some translation regimes can be associated with an ASID, or with an ASID and a VMID, as follows:

ASID

For stage 1 of a translation regime that can support two VA ranges the VMSA can distinguish between Global pages and Process-specific pages. The ASID identifies pages associated with a specific process and provides a mechanism for changing process-specific tables without having to maintain the TLB structures.

For these stage 1 translations, each of TTBR0_ELx and TTBR1_ELx has a valid ASID field, and TCR_ELx.A1 determines which of these holds the current ASID.

Note

The selected ASID applies regardless of which set of translation tables are used. For example, when the value of TCR_ELx.A1 is 0, any translation table lookup using this stage of translation is associated with the ASID from TTBR0_ELx.ASID, regardless of whether the translation lookup uses TTBR0_ELx or TTBR1_ELx.

See also ASID size on page D5-2656 and Global and process-specific translation table entries on page D5-2658.

For a symmetric multiprocessor cluster where a single operating system is running on the set of processing elements, the Arm architecture requires all ASID values to be assigned uniquely within any single Inner Shareable domain. In other words, each ASID value must have the same meaning to all processing elements in the system.

VMID

For the Secure or Non-secure EL1&0 translation regime, when EL2 is enabled, the VMID identifies the current virtual machine, with its own independent ASID space. The TLB entries include this VMID information, meaning TLBs do not require explicit invalidation when changing from one virtual machine to another if the virtual machines have different VMIDs.

VTTBR_EL2.VMID holds the current VMID.
Common not private translations

In an implementation that includes FEAT_TTCNP, multiple PEs in the same Inner Shareable domain can use the same translation table entries for a given stage of translation in a particular translation regime. This sharing is enabled by the TTBR_ELx.CnP field for the stage of address translation.

When the value of a TTBR_ELx.CnP field is 1, translation table entries pointed to by that TTBR_ELx are shared with all other PEs in the Inner Shareable domain for which the following conditions are met:

- The corresponding TTBR_ELx.CnP field has the value 1.
- That TTBR_ELx relates to the same translation regime.

--- Note ---

- For TTBR0_EL1 the current Security state determines whether the register relates to the Secure EL1&0, when EL2 is disabled, translation regime, or to the Non-secure EL1&0, when EL2 is enabled, translation regime.
- For TTBR0_EL2 the value of HCR_EL2.E2H determines whether the register relates to the EL2 translation regime, or to the EL2&0 translation regime.

- If an ASID applies to the stage of translation corresponding to that TTBR_ELx then the current ASID value must be the same for all of the PEs that are sharing entries for any translation table entry that is not global or leaf level.
- If a VMID applies to the stage of translation corresponding to that TTBR_ELx then the current VMID value must be the same for all of the PEs that are sharing entries.

For all PEs that are sharing translation table entries for a stage of translation, all system registers bits that apply to that stage of translation and that are described as being permitted to be cached in a TLB must be the same for all the PEs that are sharing the translation table entry. If this condition is not met by software then it is CONSTRAINED UNPREDICTABLE whether or not the value of such a control bit that has a different value between PEs, interpreted by a PE, called PE1 here, takes the value configured for:

- The system register bit of PE1.
- The system register bit of one of the PEs that is sharing the translation table entry.

For a translation regime with both stage 1 and stage 2 translations, where a TLB holds only stage 1 translation tables or where a TLB combines information from stage 1 and stage 2 translation table entries into a single entry, this entry can be shared between different PEs only if the value of the TTBR_ELx.CnP bit is 1 for both stage 1 and stage 2 of the translation table walk.

The TTBR_ELx.CnP bit can be cached in a TLB.

For a given TTBR_ELx, if the value of TTBR_ELx.CnP is 1 on multiple PEs in the same Inner Shareable domain, and those PEs meet the other conditions for sharing translation table entries as defined in this section, but those TTBR_ELxs do not point to the same translation table entries, then the system is misconfigured, and performing an address translation using that TTBR_ELx:

- Might generate multiple hits in the TLB, and as a result generate an exception that is reported using the TLB conflict fault code, see TLB conflict aborts on page D5-2660.
- Otherwise, has a CONSTRAINED UNPREDICTABLE result, as described in CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

ASID size

In VMSAv8-64, the ASID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits, and ID_AA64MMFR0_EL1.ASIDBits identifies the supported size.

When an implementation supports a 16-bit ASID, TCR_ELx.AS selects whether the top 8 bits of the ASID are used.
When the value of TCR_ELx.AS is 0, ASID[15:8]:

- Are ignored by hardware for every purpose other than direct reads of TTBR0_ELx.ASID and TTBR1_ELx.ASID.
- Are treated as if they are all zeros when used for allocating and matching entries in the TLB.

--- Note ---

VMSAv8-32 uses an 8-bit ASID. For backwards compatibility, when executing using translations controlled from an Exception level that is using AArch32, the ASID size remains at 8 bits. If the implementation supports 16-bit ASIDs, the 8-bit ASID used is zero-extended to 16 bits.

--- VMID size ---

From Armv8.1, the VMID size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits, and ID_AA64MMFR1_EL1.VMIDBits identifies the supported size.

When FEAT_VMID16 is implemented, VTTBR_EL2[63:48] contains the 16-bit VMID.

When an implementation supports a 16-bit VMID, VTCR_EL2.VS selects whether the top 8 bits of the VMID are used.

When the value of VTCR_EL2.VS is 0, VMID[63:56]:

- Are ignored by hardware for every purpose other than reads of ID_AA64MMFR1_EL1.
- Are treated as if they are all zeros when used for allocating and matching entries in the TLB.

FEAT_VMID16 is only supported when EL2 is using AArch64.

--- D5.9.2 About Armv8 Translation Lookaside Buffers (TLBs) ---

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or translation table entries. TLBs avoid the requirement for every memory access to perform a translation table walk in memory. The Arm architecture does not specify the exact form of the TLB structures for any design. In a similar way to the requirements for caches, the architecture only defines certain principles for TLBs:

- The architecture has a concept of an entry locked down in the TLB. The method by which lockdown is achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.
- The architecture does not guarantee that an unlocked TLB entry remains in the TLB.
- The architecture guarantees that a locked TLB entry remains in the TLB. However, a locked TLB entry might be updated by subsequent updates to the translation tables. Therefore, when a change is made to the translation tables, the architecture does not guarantee that a locked TLB entry remains incoherent with an entry in the translation table.
- The architecture guarantees that a translation table entry that generates a Translation fault, an Address size fault, or an Access flag fault is not held in the TLB. However a translation table entry that generates a Permission fault might be held in the TLB.
- When address translation is enabled, any translation table entry that does not generate a Translation fault, an Address size fault, or an Access flag fault and is not from a translation regime for an Exception level that is lower than the current Exception level can be allocated to a TLB at any time. The only translation table entries guaranteed not to be held in a TLB are those that generate a Translation fault, an Address size fault, or an Access flag fault.

--- Note ---

A TLB can hold a translation table entry that does not itself generate a Translation fault but that points to a subsequent table in the translation table walk. This is referred to as intermediate caching of TLB entries.
• Software can rely on the fact that between disabling and re-enabling a stage of address translation, entries in
the TLB relating to that stage of translation have not have been corrupted to give incorrect translations.

The following sections give more information about TLB implementation:
• Global and process-specific translation table entries.
• TLB matching.
• TLB behavior at reset on page D5-2659.
• TLB lockdown on page D5-2659.
• TLB conflict aborts on page D5-2660.

See also TLB maintenance requirements and the TLB maintenance instructions on page D5-2661.

Global and process-specific translation table entries

In a VMSA implementation, system software can divide the virtual memory map used by a stage of translation that
can support two VA ranges into global and non-global regions, indicated by the nG bit in the translation table
descriptors:

nG == 0 The translation is global, meaning the region is available for all processes.

nG == 1 The translation is non-global, or process-specific, meaning it relates to the current ASID, as defined by:
• TTBR0_ELx.ASID, if the value of TCR_ELx.A1 is 0.
• TTBR1_ELx.ASID, if the value of TCR_ELx.A1 is 1.

As indicated by the nG field definitions, each non-global region has an associated ASID. These identifiers mean different translation table mappings can co-exist in a caching structure such as a TLB. This means that software can create a new mapping of a non-global memory region without removing previous mappings.

Note
• The selected ASID applies to the translation of any address for which the value of the nG bit is 1, regardless of whether the address is translated based on TTBR0_ELx or on TTBR1_ELx.

• In an implementation that does not include FEAT_VHE, the only stage of translation that can support two VA ranges is stage 1 of the EL1&0 translation regime. In an implementation that includes FEAT_VHE stage 1 of the EL2&0 translation regime also can support two VA ranges.

ASIDs are supported only when stage 1 translations can support two VA ranges. Stage 2 translations, and stage 1 translations that can support only a single VA range do not support ASIDs, and all descriptors in these regimes are treated as global.

In a translation regime that supports global and non-global translations, translation table entries from lookup levels other than the final level of lookup are treated as being non-global, regardless of the value of the nG bit.

When a PE is using the VMSA8-64 translation table format, and is in Secure state, a translation must be treated as non-global, regardless of the value of the nG bit, if NSTable is set to 1 at any level of the translation table walk.

For more information, see Control of Secure or Non-secure memory access on page D5-2599.

TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching structures, it is mostly invisible to software. However, there are some situations where it can become visible. These are associated with coherency problems caused by an update to the translation table that has not been reflected in the TLB. Use of the TLB maintenance instructions described in TLB maintenance requirements and the TLB maintenance instructions on page D5-2661 can prevent any TLB incoherency becoming a problem.
A particular case where the presence of the TLB can become visible is if the translation table entries that are in use under a particular ASID and VMID are changed without suitable invalidation of the TLB. This can occur only if the architecturally-required break-before-make sequence described in Using break-before-make when updating translation table entries on page D5-2662 is not used. If the break-before make sequence is not used, the TLB can hold two mappings for the same address, and this:

- Might generate an exception that is reported using the TLB conflict fault code, see TLB conflict aborts on page D5-2660.
- Might lead to CONSTRAINED UNPREDICTABLE behavior. In this case, behavior will be consistent with one of the mappings held in the TLB, or with some amalgamation of the values held in the TLB, but cannot give access to regions of memory with permissions or attributes that could not be assigned by valid translation table entries in the translation regime being used for access. In addition, where all the entries being amalgamated come from Non-secure memory, the amalgamation cannot give rise to an output address that accesses Secure memory. For more information, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

TLB behavior at reset

The Arm architecture does not require a reset to invalidate the TLBs. The architecture recognizes that an implementation might require caches, including TLBs, to maintain their contents over a system reset. Possible reasons for doing so include power management and debug requirements.

Therefore, for Armv8:

- All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.
- All TLBs are disabled from reset. All stages of address translation are disabled from reset, and the contents of the TLBs have no effect on address translation. For more information, see Controlling address translation stages on page D5-2539.
- An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB arrays before they are enabled after a reset. The exact form of this routine is IMPLEMENTATION DEFINED, but if an invalidation routine is required it must be documented clearly as part of the documentation of the device. Arm recommends that if an invalidation routine is required for this purpose, the routine is based on the TLB maintenance instructions described in TLB maintenance instructions on page D5-2664.

Similar rules apply to cache behavior, see Behavior of caches at reset on page D4-2499.

TLB lockdown

The Arm architecture recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture, making it inappropriate to define a common mechanism across all implementations. This means that:

- VMSAv8-64 does not require TLB lockdown support.
- If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED. However, key properties of the interaction of lockdown with the architecture must be documented as part of the implementation documentation.

This means that a region of the System instruction encoding space is reserved for IMPLEMENTATION DEFINED functions, see Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860. An implementation might use some of these encodings to implement TLB lockdown functions. These functions might include:

- Unlock all locked TLB entries.
- Preload into a specific level of TLB. This is beyond the scope of the PLI and PLD hint instructions.

In an implementation that includes EL2, exceptions generated as a result of TLB lockdown when executing in EL1 or EL0 state can be routed to either:

- EL1, as a Data Abort exception.
- EL2, as a Hyp Trap exception.
For more information, see *Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page D1-2379.*

TLB conflict aborts

If an address matches multiple entries in the TLB, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is generated.

--- Note ---

An address can hit multiple entries in the TLB if the TLB has been invalidated inappropriately, for example if TLB invalidation required by the architecture has not been performed.

An implementation can generate TLB conflict aborts on either or both instruction fetches and data accesses. A TLB conflict abort:

- On an instruction fetch is reported as an Instruction Abort, see *ISS encoding for an exception from an Instruction Abort on page D13-2985.*
- On a data access is reported as a Data Abort, see *ISS encoding for an exception from a Data Abort on page D13-3028.*

Armv8 defines the Fault status encoding of 0b110000 for TLB conflict aborts. On a TLB conflict abort, the returned syndrome includes the address that generated the fault. That is, it includes the address that was being looked up in the TLB.

It is IMPLEMENTATION DEFINED whether a TLB conflict abort is a stage 1 abort or a stage 2 abort.

--- Note ---

A stage 2 abort cannot be generated if stage 2 of the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime is disabled.

The priority of the TLB conflict abort is IMPLEMENTATION DEFINED, because it depends on the form of a TLB that can generate the abort. However, the TLB conflict abort must have higher priority than any abort that depends on a value held in the TLB.

If an address matches multiple entries in the TLB and no TLB conflict abort is generated, the resulting behavior is CONSTRAINED UNPREDICTABLE, see *CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.* The CONSTRAINED UNPREDICTABLE behavior must not permit access to regions of memory with permissions or attributes that mean they cannot be accessed in the current Security state at the current Exception level.
D5.10 TLB maintenance requirements and the TLB maintenance instructions

Translation Lookaside Buffers (TLBs) are an implementation mechanism that caches translations or translation table entries. The Arm architecture does not specify the form of any TLB structures, but defines the mechanisms by which TLBs can be maintained. The following sections describe the VMSA TLB maintenance instructions:

- General TLB maintenance requirements.
- TLB maintenance instructions on page D5-2664.

See also Atomicity of register changes on changing virtual machine on page D5-2547.

D5.10.1 General TLB maintenance requirements

TLB maintenance instructions provide a mechanism for invalidating entries from TLB caching structures to ensure that changes to the translation tables are reflected correctly in those TLB caching structures.

The architecture permits the caching of any translation table entry that has been returned from memory without a fault, provided that the entry does not, itself, cause a Translation fault, an Address size fault, or an Access Flag fault. This means that the entries that can be cached include:

- Entries in translation tables that point to subsequent tables to be used in that stage of translation.
- Stage 2 translation table entries used as part of a stage 1 translation table walk
- Stage 2 translation table entries used to translate the output address of the stage 1 translation.

Such entries might be held in intermediate TLB caching structures that are used during a translation table walk and that are distinct from the data caches in that they are not required to be invalidated as the result of writes of the data. The architecture makes no restriction of the form of these intermediate TLB caching structures.

The architecture does not intend to restrict the form of TLB caching structures used for holding translation table entries, and in particular for a translation regime that involves two stages of translation, it is recognized that such caching structures might contain:

- Entries containing information from stage 1 translation table entries, at any level of the translation table walk.
- Entries containing information from stage 2 translation table entries, at any level of the translation table walk.
- Entries that combine information from stage 1 and stage 2 translation table entries, at any level of the translation table walk.

Note

For the purpose of TLB maintenance, the term TLB entry denotes any structure, including temporary working registers in translation table walk hardware, that holds a translation table entry.

Where a TLB maintenance instruction is:

- Required to apply to stage 1 entries, then it must apply to any cached entries in caching structures that include any stage 1 information that are used to translate the address being invalidated.

Note

- Where stage 1 information has been cached in multiple TLB entries, as could occur from splintering a page when caching in the TLB, then the invalidation must apply to each cached entry containing stage 1 information from the page that is used to translate the address being invalidated, regardless of whether or not that cached entry would be used to translate the address being invalidated.
- As stated in Global and process-specific translation table entries on page D5-2658, translation table entries from levels of translation other than the final level are treated as being non-global. Arm expects that, in at least some implementations, cached copies of levels of the translation table walk other than the last level are tagged with their ASID, regardless of whether the final level is global. This means that TLB invalidations that involve the ASID require the ASID to match such entries to perform the required invalidation.
• Required to apply to stage 2 entries only, then:
 — It is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.
 — It must apply to caching structures that contain information only from stage 2 translation table entries.

• Required to apply to both stage 1 and stage 2 entries, then it must apply to any entry in the caching structures that includes information from either a stage 1 translation table entry or a stage 2 translation table entry, including any entry that combines information from both stage 1 and stage 2 translation table entries.

Whenever translation tables entries associated with a particular VMID or ASID are changed, the corresponding entries must be invalidated from the TLB to ensure that these changes are visible to subsequent execution, including speculative execution, that uses the changed translation table entries.

Some System register field descriptions state that the effect of the field is permitted to be cached in a TLB. This means that all TLB entries that might be affected by a change of the field must be invalidated whenever that field is changed, to ensure that the effect of the change of that control field is visible to subsequent execution, including speculative execution, that uses that control field. This invalidation is required in addition to, and after, the normal synchronization of the System registers described in Synchronization requirements for AArch64 System registers on page D13-2863, and applies to any stage of address translation that is implemented for the translation regime, and VMID and ASID as appropriate, that is affected by that control field. A control field that is permitted to be cached in a TLB requires this maintenance even when all stages of address translation are disabled.

In addition to any TLB maintenance requirement, when changing the cacheability attributes of an area of memory, software must ensure that any cached copies of affected locations are removed from the caches. For more information, see Cache maintenance requirement created by changing translation table attributes on page D5-2681.

Because a TLB never holds any translation table entry that generates a Translation fault, an Address size fault, or an Access Flag fault, a change from a translation table entry that causes a Translation, Address size, or Access flag fault to one that does not fail, does not require any TLB invalidation. However, a Context synchronization event is required to ensure that instruction fetches are affected by a completed change to translation table entries that, before the change, generated a Translation, Address size, or Access flag fault.

Special considerations apply to translation table updates that change the memory type, cacheability, or output address of an entry, see Using break-before-make when updating translation table entries.

Using break-before-make when updating translation table entries

To avoid possibly creating multiple TLB entries for the same address, and to avoid the effects of TLB caching possibly breaking coherency, single-copy atomicity properties, ordering guarantees or uniprocessor semantics, or possibly failing to clear the Exclusives monitors, the architecture requires the use of a break-before-make sequence when changing translation table entries whenever multiple threads of execution can use the same translation tables and the change to the translation table entries involves any of:

• A change of the memory type.

• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entry and the new translation table entry is writable, including if the DBM bit is set and hardware updates to the dirty bits are enabled.

• A change to the size of block used by the translation system. This applies both:
 — When changing from a smaller size to a larger size, for example by replacing a table mapping with a block mapping in a stage 2 translation table.
 — When changing from a larger size to a smaller size, for example by replacing a block mapping with a table mapping in a stage 2 translation table.

• A change of the output address (OA), if the contents of memory at the new OA do not match the contents of memory at the previous OA.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.
A break-before-make sequence on changing from an old translation table entry to a new translation table entry requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.
2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB instruction to ensure the completion of that invalidation.
3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of execution, and therefore the problems described at the start of this subsection cannot arise.

In Armv8.1, with the introduction of hardware updates to the translation table entries, the effects of not following the break-before-make rules are extended.

If the break-before-make rules are not followed for changing the translation table entries, the Armv8.1 architecture permits that the following failures associated with the hardware updates of the translation table entries could occur:

- The Access flag is not set on such a translation table entry despite the fact that the memory location associated with that entry was accessed.
- The AP[2] or S2AP[1] bit is modified by the hardware on such a translation table entry despite the fact that the memory location associated with that entry was not written to.
- The AP[2] or S2AP[1] bit is not modified by the hardware on such a translation table entry despite the fact that the memory location associated with that entry was written to.
- The ordering required between hardware updates to such a translation table entry and stores appearing later in program order is not followed.

Support levels for changing block size

If FEAT_BBM is implemented, the PE provides three levels of support when changing block size, without changing any other parameters that require break-before-make:

Level 0
Software must use break-before-make to avoid breaking coherency, ordering guarantees or uniprocessor semantics, or failing to clear the Exclusives monitors when changing block size. See Using break-before-make when updating translation table entries on page D5-2662.

Level 1
Software can use the level 0 approach, or software can use the nT block translation entry to avoid breaking coherency, ordering guarantees or uniprocessor semantics, or failing to clear the Exclusives monitors when changing block size. See Block translation entry on page D5-2612.

Level 2
Software can use the level 0 or level 1 approach and, in addition, changing block size does not break coherency, ordering guarantees or uniprocessor semantics, or fail to clear the Exclusives monitors. If there has not been a TLB invalidation of the entries that have changed since the writes that changed those entries were completed, this change might cause Conflict aborts. This is because multiple translation entries might exist within the TLB for the same input address.

In addition, an implementation that uses the level 1 or level 2 approach supports the following without breaking coherency, ordering guarantees or uniprocessor semantics, or failing to clear the Exclusives monitors:

- A change to a set of blocks or pages from having the Contiguous bit set to having the Contiguous bit not set.
- A change to a set of blocks or pages from having the Contiguous bit not set to having the Contiguous bit set.

If multiple translation entries exist within the TLB for the same input address, this change might cause Conflict aborts when translating the address.

For level 1 or level 2 support, if the change of block size or contiguous bit gives rise to a Conflict abort, then in a translation regime for which stage 2 translations are enabled, the Conflict abort is reported to EL2.
Clearing entries associated with a Conflict abort

While using level 1 or level 2 support, on a Conflict abort, the following instructions are guaranteed to clear the entries associated with the conflict:

- For the EL1&0 Translation regime, while stage 2 translations are in use: TLBI VMALLS12E1, TLBI ALLE1.
- For the EL1&0 Translation regime, while stage 2 translations are not in use: TLBI VMALLE1, TLBI ALLE1.
- For the EL2&0 Translation regime: TLBI VMALLE1, TLBI ALLE1.
- For the EL2 Translation regime: TLBI ALLE2.
- For the EL3 Translation regime: TLBI ALLE3.

D5.10.2 TLB maintenance instructions

The architecture defines TLB maintenance instructions, that provide the following:

- Invalidate all entries in the TLB.
- Invalidate a single TLB entry by ASID for a non-global entry.
- Invalidate all TLB entries that match a specified ASID.
- Invalidate all TLB entries that match a specified VA, regardless of the ASID.
- Invalidate all TLB entries within a range of addresses.

Each instruction can be specified as applying only to the PE that executes the instruction, or as applying to all PEs in the same shareability domain as the PE that executes the instruction.

The following subsubsections describe these instructions:

- **TLB maintenance instruction syntax**.
- **Operation of the TLB maintenance instructions on page D5-2668**.
- **Scope of the A64 TLB maintenance instructions on page D5-2669**.
- **TLB range maintenance instructions on page D5-2672**.
- **Invalidation of TLB entries from stage 2 translations on page D5-2673**.
- **Broadcast TLB maintenance between AArch32 and AArch64 on page D5-2674**.
- **Broadcast TLB maintenance with different translation granule sizes on page D5-2675**.
- **Ordering and completion of TLB maintenance instructions on page D5-2676**.
- **TLB maintenance in the event of TLB conflict on page D5-2677**.
- **The interaction of TLB lockdown with TLB maintenance instructions on page D5-2677**.

TLB maintenance instructions on page C5-379 describes the encoding of the TLB maintenance instructions.

TLB maintenance instruction syntax

The A64 syntax for TLB maintenance instructions is:

```
TLBI <operation>{, <Xt>}
```

Where:

- `<operation>` is one of ALLE1, ALLE2, ALLE3, ALLE1IS, ALLE2IS, ALLE3IS, ALLE1OS, ALLE2OS, ALLE3OS, VMALLE1, VMALLE1IS, VMALLE1OS, VMALLS12E1, VMALLS12E1IS, VMALLS12E1OS, ASIDE1, ASIDE1IS, ASIDE1OS, \{(R)\}VA(L)E1, \{(R)\}VA(L)E2, \{(R)\}VA(L)E3, \{(R)\}VA(L)E1IS, \{(R)\}VA(L)E2IS, \{(R)\}VA(L)E3IS, \{(R)\}VA(L)E1OS, \{(R)\}VA(L)E2OS, \{(R)\}VA(L)E3OS, \{(R)\}VA(L)E1, \{(R)\}VA(L)E2, \{(R)\}VA(L)E3, \{(R)\}IPAS2(L)E1, \{(R)\}IPAS2(L)E1IS, or \{(R)\}IPAS2(L)E1OS.

- `<operation>` has a structure of (R)<type><level><shareability> where:
 - **R** when present, indicates that the function applies to all TLBs that are within a determined address range, see **TLB range maintenance instructions on page D5-2672**.
 - when not present, indicates that the function applies to all TLBs at a single address that contain entries that could be used by the PE that executes the TLBI instruction.

- `<type>` is one of:
 - All: All translations used at <level>.
For the scope of ALL instructions, see ALL on page D5-2669.
The ALL instructions are valid for all values of <level>.

VMALL
All stage 1 translations used at <level> with the current VMID, if appropriate.
For the scope of the VMALL instructions, see VMALL on page D5-2669.
The VMALL instructions are valid only when level == E1.

VMALLS12
All stage 1 and stage 2 translations used at EL1 with the current VMID, if appropriate.
For the scope of the VMALLS12 instructions, see VMALLS12 on page D5-2669.
The VMALLS12 instructions are valid only when level == E1.

ASID
All translations used at EL1 with the supplied ASID.
For the scope of the ASID instructions, see ASID on page D5-2670.
The ASID instructions are valid only when level == E1.

VA(L)
Translations used at <level> for the specified address and, if appropriate, the specified ASID.
For the scope of the VA instructions, see VA on page D5-2670. For the scope of the VAL instructions, see VAL on page D5-2670.
The VA(L) instructions are valid for all values of <level>.

VAA(L)
Translations used at <level> for the specified address, for all ASID values, if appropriate.
For the scope of the VAA instructions, see VAA on page D5-2671. For the scope of the VAAL instructions, see VAAL on page D5-2671.
The VAA(L) instructions are valid only when level == E1.

IPAS2(L)
Translations used at <level> for the specified IPA that are held in stage 2 only caching structures.
For the scope of the IPAS2 instructions, see IPAS2 on page D5-2671. For the scope of the IPAS2L instructions, see IPAS2L on page D5-2671.
The IPAS2(L) instructions are valid only when level == E1.

In the VA(L), VAA(L), and IPAS2(L) types:
L
An optional parameter that indicates that the invalidation only applies to caching of entries returned from the final lookup level of the translation table walk.

<level>
Defines the Exception level of the translation regime that the invalidation applies to. Is one of:
E1 EL1.
E2 EL2.
E3 EL3.

An instruction that applies to the translation regime of an Exception level higher than the Exception level at which the instruction is executed is UNDEFINED.
TLBI ALLE1, TLBI ALLE1IS, TLBI ALLE1OS, TLBI {R}IPAS2{L}E1, TLBI {R}IPAS2{L}E1IS, TLBI {R}IPAS2{L}E1OS, TLBI VMALLS12E1, TLBI VMALLS12E1IS, and TLBI VMALLS12E1OS are UNDEFINED at EL1.

Note
All TLB maintenance instructions are UNDEFINED at EL0.

<shareability>
Is one of:
IS When present, it indicates that the function applies to all TLBs in the Inner Shareable shareability domain.
OS When present, it indicates that the function applies to all TLBs in the Outer Shareable shareability domain.
When no shareability is present, it indicates that the function applies to all TLBs that contain entries that could be used by the PE that executes the TLBI instruction.

Note

When a TLB entry has been invalidated for one PE, it is not consistent with the architecture to allow another PE to refill that TLB entry where the new entry might give the appearance to software that the invalidation has not occurred.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><xt></td>
<td>Passes one or both of an address and an ASID as an argument, where required. <xt> is required for the TLB ASID, TLB VA<L>, TLB VA<A>L, and TLB IPAS2<L> instructions.</td>
</tr>
</tbody>
</table>

If EL2 is not implemented, the TLBI VA<L>E2, TLBI VA<L>E2IS, TLBI VA<L>E2OS, TLBI ALLE2, TLBI ALLE2IS, TLBI ALLE2OS, TLBI RVA<L>E2, TLBI RVA<L>E2IS, and TLBI RVA<L>E2OS instructions are UNDEFINED.

VMSAv8-64 TLB maintenance instructions that take a register argument that holds a VA, an ASID, or both, and that do not apply to a range of addresses, use the register argument format:

| Bits[63:48] | ASID. These bits are RES0 if the instruction does not require an ASID argument. |
| Bits[47:44] | TTL. Indicates the level of the translation table walk that holds the leaf entry for the address being invalidated, see Translation table level hints on page D5-2667. This field is RES0 if the instruction does not require a VA argument, or if FEAT_TTL is not implemented. |
| Bits[43:0] | VA[55:12]. For an instruction that requires a VA argument, the treatment of the low-order bits of this field depends on the translation granule size, as follows: |
| 4KB granule size | All bits are valid and used for the invalidation. |
| 16KB granule size | Bits[1:0] RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction. |
| 64KB granule size | Bits[3:0] are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction. |

These bits are RES0 if the instruction does not require a VA argument.

For TLB maintenance instructions that take an address argument, hardware interprets VA[63:56] as each having the same value as VA[55].

If a TLB maintenance instruction targets a translation regime that is using AArch32, meaning the VA is only 32-bit, then software must treat VA[55:32] as RES0, and these bits are ignored when the instruction is executed.

If the implementation supports 16 bits of ASID then the upper 8 bits of the ASID must be written to 0 by software when the context being invalidated only uses 8 bits.

VMSAv8-64 TLB maintenance instructions that take a register argument that holds an IPA, and that do not apply to a range of addresses, use the register argument format:

| Bits[63:48] | RES0. |
| Bits[47:44] | TTL. Indicates the level of the translation table walk that holds the leaf entry for the address being invalidated, see Translation table level hints on page D5-2667. This field is RES0 if the instruction does not require an IPA argument, or if FEAT_TTL is not implemented. |
| Bits[43:36] | RES0. |
| Bits[35:0] | IPA[47:12]. For an instruction that requires a VA argument, the treatment of the low-order bits of this field depends on the translation granule size, as follows: |
| 4KB granule size | All bits are valid and used for the invalidation. |
| 16KB granule size | Bits[1:0] RES0 and ignored when the instruction is executed, because IPA[13:12] have no effect on the operation of the instruction. |
| 64KB granule size | Bits[3:0] are RES0 and ignored when the instruction is executed, because IPA[15:12] have no effect on the operation of the instruction. |

For the register argument format of TLB instructions that apply to a range of addresses, see TLB range maintenance instructions on page D5-2672.
Translation table level hints

When FEAT_TTL is implemented, the TTL field indicates the level of page table walk holding the leaf entry for the address being invalidated. Hardware can use this information to determine if there was a risk of splintering.

If an incorrect value for the entry being invalidated by the instruction is specified in the TTL field, then no entries are required by the architecture to be invalidated from the TLB.

The TTL field in TLB maintenance instructions that take a register argument that holds a VA or an IPA, and that do not apply to a range of addresses, use the encodings in Table D5-53.

Table D5-53 TTL field encodings in TLB instructions that apply to a single address

<table>
<thead>
<tr>
<th>TTL[3:2]</th>
<th>TTL[1:0]</th>
<th>Information supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>RES0</td>
<td>No information supplied about the translation level. Hardware must assume that the entry can be from any level.</td>
</tr>
<tr>
<td>01</td>
<td>00</td>
<td>The entry comes from a 4KB translation granule. This value is reserved, and hardware should treat this as if TTL[3:2] is 0b00.</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>The entry comes from a 4KB translation granule. The leaf entry for the address being invalidated is on level 1 of the page table walk.</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td>The entry comes from a 16KB translation granule. This value is reserved, and hardware should treat this as if TTL[3:2] is 0b00.</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
<td>The entry comes from a 16KB translation granule. The leaf entry for the address being invalidated is on level 2 of the page table walk.</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>The entry comes from a 16KB translation granule. The leaf entry for the address being invalidated is on level 3 of the page table walk.</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>The entry comes from a 64KB translation granule. The leaf entry for the address being invalidated is on level 1 of the page table walk.</td>
</tr>
<tr>
<td>11</td>
<td>01</td>
<td>The entry comes from a 64KB translation granule. The leaf entry for the address being invalidated is on level 2 of the page table walk.</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>The entry comes from a 64KB translation granule. The leaf entry for the address being invalidated is on level 3 of the page table walk.</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>The entry comes from a 64KB translation granule. The leaf entry for the address being invalidated is on level 3 of the page table walk.</td>
</tr>
</tbody>
</table>
The TTL field in TLB maintenance instructions that take a register argument that holds a VA or an IPA, and that do not apply to a range of addresses, use the encodings in Table D5-54.

Table D5-54 TTL field encodings in TLB instructions that apply to multiple addresses

<table>
<thead>
<tr>
<th>TTL</th>
<th>Information supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>The entries in the range can be using any level for the translation table entries.</td>
</tr>
</tbody>
</table>
| 01 | When using a 4KB or 64KB translation granule, all entries to invalidate are Level 1 translation table entries.
| | When using a 16KB translation granule, this value is reserved, and hardware should treat the TTL field as 0b00. |
| 10 | All entries to invalidate are Level 2 translation table entries. |
| 11 | All entries to invalidate are Level 3 translation table entries. |

Operation of the TLB maintenance instructions

Any TLB maintenance instruction can affect any TLB entries that are not locked down.

The TLB maintenance instructions specify the Exception level of the translation regime to which they apply.

Note

Because there is no guarantee that an unlocked TLB entry remains in the cache, architecturally it is not possible to tell whether a TLB maintenance instruction has affected any TLB entries that were not specified by the instruction.

If a TLB maintenance instruction specifies a VA, and a data or instruction access to that VA would generate an MMU abort, the TLB maintenance instruction does not generate an abort. VAs for which a TLB maintenance instruction does not generate an abort include VAs that are not in the range of VAs that can be translated.

When EL3 is implemented:

- The TLB maintenance instructions that apply to the EL1&0 translation regime take account of the current Security state, as part of the address translation required for the TLB operation.
- **SCR_EL3.NS** modifies the effect of the TLB maintenance instructions as follows:
 - For instructions that apply to the EL1&0 translation regime, the **SCR_EL3.NS** bit identifies whether the maintenance instructions apply to the Secure or Non-secure EL1&0 translation regime.

 Note

 If EL3 is not implemented, then there is only a single EL1&0 translation regime.

 - When **SCR_EL3.EEL2** is 0 instructions that apply to the EL2 translation regime, or to the EL2&0 translation regime, the **SCR_EL3.NS** bit must be 1 or the instruction is **UNDEFINED**.
 - For instructions that apply to the EL3 translation regime, the **SCR_EL3.NS** bit has no effect.

 Note

 - An address-based TLB maintenance instruction that applies to the Inner Shareable domain or the Outer Shareable domain does so regardless of the Shareability attributes of the address supplied as an argument to the instruction.
 - Previous versions of the Arm architecture included TLB maintenance instructions that operated only on instruction TLBs, or only on data TLBs. From the introduction of Armv7, Arm deprecated any use of these instructions. In Armv8:
 - AArch64 state does not include any of these instructions.
 - AArch32 state includes some of these instructions, but Arm deprecates their use.
The Arm architecture does not dictate the form in which the TLB stores translation table entries. However, when a TLB maintenance instruction is executed, the minimum size of the table entry that is invalidated from the TLB must be at least the size that appears in the translation table entry.

Note
The Contiguous bit does not affect the minimum size of entry that must be invalidated from the TLB.

Scope of the A64 TLB maintenance instructions

The TLB invalidation instruction <type> affects the different possible cached entries in the TLB as follows:

ALL
The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from any level of the translation table walk required to translate any address at the specified Exception level, that would be used with the state specified by SCR_EL3.NS and SCR_EL3.EEL2.

For entries from the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, **ALL** applies to entries with any VMID.

For entries from a translation regime for which an ASID is valid, the invalidation applies to:
- All entries above the final level of lookup.
- All entries at the final level of lookup.

Note
This means the invalidation applies to both:
- Global entries.
- Non-global entries with any ASID.

VMALL
The invalidation applies to all cached copies of the stage 1 translation table entries, from any level of the translation table walk required to translate any address at the specified Exception level, that would be used with all of:
- For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies to:
- All entries above the final level of lookup.
- All entries at the final level of lookup.

Note
This means the invalidation applies to both:
- Global entries.
- Non-global entries with any ASID.

VMALLS12
The invalidation applies to all cached copies of the stage 1 and stage 2 translation table entries from any level of the translation table walk required to translate any address at the specified Exception level, that would be used with all of:
- For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies to:
- All entries above the final level of lookup.
All entries at the final level of lookup.

Note

This means the invalidation applies to both:
— Global entries.
— Non-global entries with any ASID.

VMALLS12 is valid for EL1.

If EL2 is not implemented, or if the TLBI VMALLS12 instruction is executed when the value of SCR_EL3.NS is 0 and EL2 is disabled, the instruction is not UNDEFINED but it has the same effect as TLBI VMALL. This is because there are no stage 2 translations to invalidate.

ASID

The invalidation applies to all cached copies of the stage 1 translation table entries from any level of the translation table walk required to translate any address at the specified Exception level, that would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.
• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies only if either:

• The entry is from a level of lookup above the final level and matches the specified ASID.
• The entry is a non-global entry from the final level of lookup and matches the specified ASID.

ASID is valid for:

• EL1.
• EL2, when HCR_EL2.{E2H, TGE} is \{1, 1\}.

VA

The invalidation applies to all cached copies of the stage 1 translation table entries from any level of the translation table walk required to translate the address specified in the invalidation instruction at the specified Exception level that would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.
• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies only if one of the following applies:

• The entry is from a level of lookup above the final level and matches the specified ASID.
• The entry is a global entry from the final level of lookup.
• The entry is a non-global entry from the final level of lookup that matches the specified ASID.

VAL

The invalidation applies to all cached copies of the stage 1 translation table entry from the final level of the translation table walk required to translate the address specified in the invalidation instruction at the specified Exception level, that would be used with all of:

• The Security state specified by SCR_EL3.NS and SCR_EL3.EEL2.
• For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies only if either:

• The entry is a global entry from the final level of lookup.
• The entry is a non-global entry from the final level of lookup that matches the specified ASID.
The invalidation applies to all cached copies of the stage 1 translation table entries from any level of the translation table walk required to translate the address specified in the invalidation instruction at the specified Exception level that would be used with all of:

- For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies to all of:

- All entries above the final level of lookup.
- All entries at the final level of lookup.

Note

This means the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The invalidation applies to all cached copies of the stage 1 translation table entry from the final level of the translation table walk required to translate the address specified in the invalidation instruction at the specified Exception level that would be used with all of:

- For the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime, the current VMID.

For entries from a translation regime for which an ASID is valid that meet the other specified conditions, the invalidation applies to all entries at the final level of lookup.

Note

This means the invalidation applies to both:

- Global entries.
- Non-global entries with any ASID.

The invalidation applies to all cached copies of the stage 2 translation table entries from any level of the translation table walk required to translate the specified IPA, that both:

- Are held in TLB caching structures holding stage 2 only entries.
- Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime.

When executed with the SCR_EL3.NS == 0, or in an implementation that does not implement EL2, this instruction is a NOP.

For more information about the architectural requirements for the IPAS2 instruction, see *Invalidation of TLB entries from stage 2 translations* on page D5-2673.

The invalidation applies to cached copies of the stage 2 translation table entry from the final level of the stage 2 translation table walk required to translate the specified IPA, that both:

- Are held in TLB caching structures holding stage 2 only entries.
- Would be used with the current VMID.

It is not required that this instruction invalidates TLB caching structures holding entries that combine stage 1 and stage 2 of the translation.

The only translation regime to which this instruction can apply is the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime.

When executed with the SCR_EL3.NS == 0, or in an implementation that does not implement EL2, this instruction is a NOP.
For more information about the architectural requirements for the IPAS2L instruction, see "Invalidation of TLB entries from stage 2 translations on page D5-2673."

The entries that the invalidations apply to are not affected by the state of any other control bits involved in the translation process. Therefore, the following is a non-exhaustive list of control bits that do not affect how a TLB maintenance instruction updates the TLB entries:

In AArch64 state

- TCR_EL1.{TG1, EPD1, T1SZ, TG0, EPD0, T0SZ, AS, A1}, TCR_EL2.{TG0, T0SZ},
- TCR_EL3.{TG0, T0SZ}, VTCR_EL2.{SL0, T0SZ}, TTBR0_EL1.ASID, TTBR1_EL1.ASID.

In AArch32 state

- SCTLR.M, HCR.VM, TTBCR.{EAE, PD1, PD0, N, EPD1, T1SZ, EPD0, T0SZ, A1},
- HTCR.T0SZ, VTCR.{SL0, T0SZ}, TTBR0.ASID, TTBR1.ASID, CONTEXTIDR.ASID.

Note

- Arm expects most TLB maintenance performed by an operating system to occur to the last level entries of the stage 1 translation table walks, and the purpose of the address-based TLB invalidation instructions where the invalidation need only apply to caching of entries returned from the last level of translation table walk of stage 1 translation is to avoid unnecessary loss of the intermediate caching of the translation table entries. Similarly, for stage 2 translations Arm expects that most TLB maintenance performed by a hypervisor for a given Guest operation system will affect only the last level entries of the stage 2 translations. Therefore, similar capability is provided for instructions that invalidate single stage 2 entries.

- The architecture permits the invalidation of entries in TLB caching structures at any time, so for each of these instructions the definition is in terms of the minimum set of entries that must be invalidated from TLB caching structures, and an implementation might choose to invalidate more entries. In general, for best performance, Arm recommends not invalidating entries that are not required to be invalidated.

- Dependencies on the VMID for the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime apply even when the value of HCR_EL2.VM is 0. The VTTBR_EL2.VMID field resets to a value that is architecturally UNKNOWN, and therefore VTTBR_EL2.VMID[7:0] must be set to a known value, that might be zero, as part of the PE initialization sequence, even if stage 2 translation is not in use.

TLB range maintenance instructions

Specific TLB invalidation instructions apply to a range of input addresses rather than a single address. All TLB range maintenance instructions invalidate TLB entries that are within the address range determined by the formula:

\[
\text{[BaseADDR} \leq \text{input_address} < \text{BaseADDR} + ((NUM} +1) \times 2^{(5+\text{SCALE} +1) \times \text{Translation_Granule_Size})].
\]

Note

The set of Requesters containing TLBs that can be affected by the TLB range maintenance instructions are defined by the system architecture. In some systems, there might be Requesters containing TLBs that are not affected by the TLB range maintenance instructions within the defined Shareability domains.

Within an Inner Shareable domain, it is expected that all PEs are similarly affected by broadcast TLB range maintenance instructions.

VMSAv8-64 TLB range maintenance instructions that take a register argument that holds a VA, or a VA and an ASID, use the following register argument format:

- **Bits[63:48]** ASID. These bits are RES0 if the instruction does not require an ASID argument.
- **Bits[47:46]** TG. This field gives the translation granule size for the translations that are being invalidated. If the translations use a different translation granule size than the one specified, then the architecture does not require that the instruction invalidates any entries.
Bits[45:44] SCALE. This field gives the exponent element of the calculation that is used to produce the upper range.

Bits[43:39] NUM. This field gives the base element of the calculation that is used to produce the upper range.

Bits[38:37] TTL level hint, see Translation table level hints on page D5-2667. This field is RES0 if the instruction does not require a VA argument, or if FEAT_TTL is not implemented.

Bits[36:0] BaseADDR. This field gives the starting address for the range of the maintenance instruction.
 4KB granule size BaseADDR[48:12].
 16KB granule size BaseADDR[50:14].
 64KB granule size BaseADDR[52:16].

VMSAv8-64 TLB range maintenance instructions that take a register argument that holds an IPA, use the following register argument format:

Bits[63] NS. This bit is RES0 if the instruction is executed in Non-secure state.

Bits[62:48] RES0.

Bits[47:46] TG. This field gives the translation granule size for the translations that are being invalidated. If the translations use a different translation granule size than the one specified, then the architecture does not require that the instruction invalidates any entries.

Bits[45:44] SCALE. This field gives the exponent element of the calculation that is used to produce the upper range.

Bits[43:39] NUM. This field gives the base element of the calculation that is used to produce the upper range.

Bits[38:37] TTL level hint, see Translation table level hints on page D5-2667. This field is RES0 if the instruction does not require a VA argument, or if FEAT_TTL is not implemented.

Bits[36:0] BaseADDR. This field gives the starting address for the range of the maintenance instruction.
 4KB granule size BaseADDR[48:12].
 16KB granule size BaseADDR[50:14].
 64KB granule size BaseADDR[52:16].

The range of addresses invalidated is UNPREDICTABLE when:

- When a 4K translation granule used, if the TTL field is 0b01 and BaseADDR[29:12] does not equal 0b00000000000000000000000000000.
- When a 4K translation granule used, if the TTL field is 0b10 and BaseADDR[20:12] does not equal 0b00000000000000000000000000000.
- When a 16K translation granule used, if the TTL field is 0b10 and BaseADDR[24:12] does not equal 0b00000000000000000000000000000.
- When a 64K translation granule used, if the TTL field is 0b01 and BaseADDR[41:16] does not equal 0b000000000000000000000000000000000000000.
- When a 64K translation granule used, if the TTL field is 0b10 and BaseADDR[28:16] does not equal 0b000000000000000000000000000000000000000.

Invalidation of TLB entries from stage 2 translations

The architectural requirements of the IPA\textsubscript{2} instruction are that:

1. The following code is sufficient to invalidate all cached copies of the stage 2 translation of the IPA held in \texttt{Xt} for the current VMID, with the corresponding requirement for the broadcast versions of the instructions:
2. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in Xt used to translate the VA (and the specified ASID when executing TLBI VAE1) held in Xt2, with the corresponding requirement for the broadcast versions of the instructions:

 TLBI IPAS2E1, Xt
 DSB
 TLBI VALE1

3. The following code is sufficient to invalidate all cached copies of the stage 2 translations of the IPA held in Xt used to translate the IPA produced by the last level of stage 1 translation table lookup for the VA (and ASID when executing TLBI VALE1) held in Xt2, with the corresponding requirement for the broadcast versions of the instructions:

 TLBI IPAS2E1, Xt
 DSB
 TLBI VAE1, Xt2 ; or TLBI VAAE1, Xt2

--- Note ---

Depending on the invalidation required, software must use the entire sequence 1, 2, or 3, even when Secure or Non-secure EL1&0, when EL2 is enabled, stage 1 translation is disabled.

Equivalent architectural requirements apply to the IPAS2L instruction, except that the only TLB entries that must be invalidated by an IPAS2L instruction are those that come from the final level of the translation table lookup.

Broadcast TLB maintenance between AArch32 and AArch64

In most cases, a TLB maintenance instruction affecting the shareability domain executed by a PE in an Exception level that is using AArch64 also affects any other PE in the same shareability domain that is executing at the same Exception level and is using AArch32, provided that the address, qualify the scope of the ASID and VMID matching requirements of the original instruction are met, as specified in Scope of the A64 TLB maintenance instructions on page D5-2669.

--- Note ---

The requirement to match means that the invalidation only occurs on the PE that is using AArch32 if, for the PE that executed the TLB maintenance instruction at an Exception level that is using AArch64, both of the following apply:

- If VA matching is required, the VA is 0x0000FFFFFFFF or lower in the memory map.
- If ASID matching is required and the PE is using a 16-bit ASID, then the top 8 bits of the ASID are zero.

Except for the cases identified here, a TLB maintenance instruction affecting the Inner Shareable shareability domain executed by a PE in an Exception level that is using AArch32 also affects any other PE in the same Inner Shareable domain that is executing at the same Exception level and is using AArch64, provided that the address, ASID, and VMID matching requirements of the original instruction are met, as specified in Scope of the A64 TLB maintenance instructions on page D5-2669. In addition, for the instruction executed in AArch32 state:

- For a TLBIMVAIS, TLBIMVAALIS, TLBIMWHIS, TLBIMWAIS, TLBIMVALIS, or TLBIMWALIS instruction, the VA supplied as an argument is zero-extended.
- For a TLBIIIPAS2IS or TLBIIIPAS2LIS instruction, the IPA supplied as an argument is zero-extended.
- For a TLBIAISDIS, TLBIMWDIS, or TLBIMWALIS instruction, the ASID supplied as an argument is zero-extended if the PE executing in AArch64 state is using a 16-bit ASID.

The VA from the instruction executed in AArch32 state is zero-extended, and the ASID is zero-extended if the PE executing in AArch64 state is using a 16-bit ASID.
The exceptions to these general rules are as follows:

1. An Armv7 PE in the same Inner Shareable domain is treated in the same way as an Armv8 PE for which EL3 is using AArch32, except that if an Armv8 PE issues a broadcast instruction that is not defined in Armv7, then that instruction is not required to have an effect on the TLBs of the Armv7 PE. The instructions that do not exist in Armv7 include the following TLB maintenance instructions that Armv8 adds to the T32 and A32 instruction sets:
 • The following instructions that operate on TLB entries for the final level of translation table walk for stage 1 translations:
 - TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, and TLBIMVAALH.
 • The following instructions that operate by IPA on TLB entries for stage 2 translations:
 - TLBIIPAS2IS, TLBIIPAS2LIS, TLBIIPAS2, and TLBIIPAS2L.

2. The number of Exception levels in Secure state depends on whether EL3 is using AArch32 or EL3 is using AArch64. This means that, within the Inner Shareable domain, there might be PEs with different numbers of Exception levels in Secure state. Therefore, the following exceptions are made to the general rules:
 • If a PE with EL3 using AArch32 issues a broadcast AArch32 TLB maintenance instruction affecting Secure entries, and the Inner Shareable domain also contains PEs with EL3 using AArch64, then the architecture does not require that the broadcast AArch32 TLB maintenance instruction has any effect on either:
 — The EL3 translation regime of the PEs with EL3 using AArch64.
 — The Secure or Non-secure EL1&0, when EL2 is disabled, translation regime of the PEs with EL3 using AArch64, regardless of whether the Secure or Non-secure EL1&0, when EL2 is disabled, translation regime is using AArch64 or AArch32.
 • If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting EL3 entries, and the Inner Shareable domain also contains PEs with EL3 using AArch32, then the architecture does not require that the broadcast AArch64 TLB maintenance instruction has any effect on the EL3 translation regime of the PEs with EL3 using AArch32.
 • If a PE with EL3 using AArch64 issues a broadcast AArch64 TLB maintenance instruction affecting Secure EL1 entries, and the Inner Shareable domain also contains PEs with EL3 using AArch32 then the architecture does not require that the broadcast AArch64 TLB maintenance instruction has any effect on the EL3 translation regime of the PEs with EL3 using AArch32.

Note

While the exceptions to the general rule mean the architecture does not require the specified TLB invalidations, the architecture also does not require that entries in the TLB remain in the TLB at any time, and so it is permissible that such broadcast instructions affect these translation regimes.

Broadcast TLB maintenance with different translation granule sizes

In the following cases, a broadcast TLB maintenance instruction is not required to perform any invalidation on the recipient PE:

• The TLB maintenance instruction specifying a VA and affecting the EL2 translation regime, the EL2&0 translation regime, or the EL3 translation regime is broadcast from a PE using one translation granule size for that translation regime to a PE using a different translation granule size for that same translation regime.

• The TLB maintenance instruction specifying a VA and affecting the EL1&0 translation regime is broadcast from a PE using one stage 1 translation granule size for that translation regime for a particular ASID (if applicable), VMID (if applicable), and Security state, to a PE where EL1 for the same ASID (if applicable), VMID (if applicable), and Security state, is using a different stage 1 translation granule size.

• The TLB maintenance instruction specifying a VA and affecting the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime is broadcast from a PE using one stage 2 translation granule size for a particular ASID (if applicable) and VMID, to a PE where EL1 for the same ASID (if applicable) and VMID is using a different stage 2 translation granule size.
• The TLB maintenance instruction specifying an IPA and affecting the Secure or Non-secure EL1&0, when EL2 is enabled, translation regime is broadcast from a PE using one stage 2 translation granule size for a particular VMID to a PE where EL1 for the same VMID is using a different stage 2 translation granule size.

Ordering and completion of TLB maintenance instructions

For AArch64 execution, a TLB maintenance instruction can be executed in any order relative to:

• Any load or store instruction, unless a DSB is executed between the load or store and the TLB maintenance instruction.

 Note

 In the Arm architecture, a translation table walk is considered to be a separate observer, and a store to the translation tables can be observed by that separate observer at any time after the instruction has been executed, but is only guaranteed to be observable after the execution of a DSB instruction by the PE that executed the store to the translation tables.

• Another TLB maintenance instruction, unless a DSB is executed between the instructions.

• A data or instruction cache maintenance instruction, unless a DSB is executed between the instructions.

For AArch64 execution, the completion rules are:

• A TLB maintenance instruction is finished for a PE when all memory accesses generated by that PE using in-scope old translation information are complete.

 In-scope old translation information is any translation information that is not consistent with either:

 — The architectural translation information held in the translation tables at the time that the TLB maintenance instruction is executed.

 — Any architecture translation information that is Coherence-after the information held in the translation tables at the time that the TLB maintenance instruction is executed for addresses that are in the scope of the TLB maintenance instruction.

 Note

 Old translation information of this type might be held in TLBs or other non-coherent caching structures.

A TLB maintenance instruction is complete when it is finished for all PEs.

After the TLB maintenance instruction is complete, no new memory accesses using the in-scope old translation information will be architecturally performed by any observer that is affected by the TLB maintenance instruction.

Note

This requirement does not mean that speculative memory accesses cannot be performed using those entries if it is impossible for software running on any observer to tell that those memory accesses have been performed.

• A TLB maintenance instruction executed by a PE, PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE other than PEx after the execution of DSB by the PEx.

• In an implementation that does not implement FEAT_ETS, a TLB maintenance instruction executed by a PE, PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE, PEx, after the execution of DSB by the PEx followed by a Context synchronization event.

• In an implementation that implements FEAT_ETS:

 — A TLB maintenance instruction that applies only to translations without execute permission executed by a PE, PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE, PEx, after the execution of DSB.
A TLB maintenance instruction that applies to any translations with execute permission executed by a PE, PEx, can complete at any time after it is issued, but is only guaranteed to be finished for a PE, PEx, after the execution of DSB by the PEx followed by a Context synchronization event.

In all cases in this section where a DMB or DSB is referred to, it refers to a DMB or DSB whose required access type is both loads and stores. A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a single PE. A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the same Inner Shareable domain.

TLB maintenance in the event of TLB conflict

In the event that multiple entries in the TLB are being used to translate a given address (which implies that an attempt to access the given address might give rise to a TLB Conflict abort), it is IMPLEMENTATION DEFINED as to the form of TLB maintenance operation that the software must perform in order to be guaranteed that all TLB entries associated with the given address and translation regime have been invalidated. In all cases, an ALL or VMALL form of TLB maintenance operation that targets the given translation regime is guaranteed to remove all entries within that regime, even if there are multiple, conflicting TLB entries for any given address within that regime.

The interaction of TLB lockdown with TLB maintenance instructions

The precise interaction of TLB lockdown with the TLB maintenance instructions is IMPLEMENTATION DEFINED. However, the architecturally-defined TLB maintenance instructions must comply with these rules:

- The effect on a locked TLB entry of a TLB invalidate all operation that would invalidate that entry if the entry was not locked must be one of the following, and it is IMPLEMENTATION DEFINED which behavior applies:
 - The operation has no effect on entries that are locked down.
 - The operation generates an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked down, or might be locked down.

Any such exceptions taken from Non-secure EL1 can be trapped to EL2, see Traps to EL2 of EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page D1-2379.

--- Note ---

These options permit a usage model for TLB invalidate routines, where the routine invalidates a large range of addresses, without considering whether any entries are locked in the TLB.

- The effect on a locked TLB entry of a TLB invalidate by VA or invalidate by ASID match operation that would invalidate that entry if the entry was not locked must be one of the following, and it is IMPLEMENTATION DEFINED which behavior applies:
 - The locked entry is invalidated in the TLB.
 - The operation has no effect on any locked entry in the TLB. In the case of an invalidate single entry by VA, this means the PE treats the operation as a NOP.
 - The operation generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on an entry that is locked down, or might be locked down.

The exception syndrome definitions include a fault code for cache and TLB lockdown faults, see ESR_EL1, Exception Syndrome Register (EL1) on page D13-2963.

--- Note ---

Any implementation that uses an abort mechanism for entries that can be locked down but are not actually locked down must:

- Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on entries that are not locked down.

- Implement one of the other specified alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use the architecturally-defined operations. This minimizes the number of customized operations required.
In addition, an implementation that uses an abort mechanism for handling the effect of TLB maintenance instructions on entries that can be locked down but are not actually locked down must provide an IMPLEMENTATION DEFINED mechanism that ensures that no TLB entries are locked.

Similar rules apply to cache lockdown, see *The interaction of cache lockdown with cache maintenance instructions* on page D4-2515.

The architecture does not guarantee that any unlocked entry in the TLB remains in the TLB. This means that, as a side effect of any TLB maintenance instruction, any unlocked entry in the TLB might be invalidated.
D5.11 Caches in a VMSAv8-64 implementation

The Arm architecture describes the required behavior of an implementation of the architecture. As far as possible it
does not restrict the implemented microarchitecture, or the implementation techniques that might achieve the
required behavior.

In particular, maintaining this level of abstraction is difficult when describing the relationship between memory
address translation and caches, especially regarding the indexing and tagging policy of caches. This section:

• Summarizes the architectural requirements for the interaction between caches and address translation.
• Gives some information about the likely implementation impact of the required behavior.

The following sections give this information:

• Data and unified caches.
• Instruction caches.

In addition, Cache maintenance requirement created by changing translation table attributes on page D5-2681
describes the cache maintenance required after updating the translation tables to change the attributes of an area of
memory.

For more information about cache maintenance, see A64 Cache maintenance instructions on page D4-2504, that
describes the cache maintenance instructions in the A64 instruction set.

D5.11.1 Data and unified caches

For data and unified caches, the use of address translation is entirely transparent to any data access other than as
described in Mismatched memory attributes on page B2-163.

This means that the behavior of accesses from the same observer to different VAs, that are translated to the same PA
with the same memory attributes, is fully coherent. This means these accesses behave as follows, regardless of
which VA is accessed:

• Two writes to the same PA occur in program order.
• A read of a PA returns the value of the last successful write to that PA.
• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
 that read.

The memory system behaves in this way without any requirement to use barrier or cache maintenance instructions.

In addition, if cache maintenance is performed on a memory location, the effect of that cache maintenance is visible
to all aliases of that physical memory location.

These properties are consistent with implementing all caches that can handle data accesses as Physically-indexed,
physically-tagged (PIPT) caches.

D5.11.2 Instruction caches

In the Arm architecture, an instruction cache is a cache that is accessed only as a result of an instruction fetch.
Therefore, an instruction cache is never written to by any load or store instruction executed by the PE.

The Arm architecture permits different behaviors for instruction caches. These are identified by descriptions of the
associated expected implementation. The following subsections describe the behavior associated with these cache
types, including any occasions where explicit cache maintenance is required to make the use of address translation
transparent to the instruction cache:

• PIPIT (Physically-indexed, physically-tagged) instruction caches on page D5-2680.
• VPIPT (VMID-aware PIPIT) instruction caches on page D5-2680.
• VIPT (Virtually-indexed, physically-tagged) instruction caches on page D5-2680.
• The IVIPT Extension on page D5-2681.

The CTR_EL0.L1Ip field identifies the form of the instruction caches.
Note

For software to be portable between implementations that might use any of PIPT instruction caches, VPIPT instruction caches, or VIPT instruction caches, software must invalidate the instruction cache whenever any condition occurs that would require instruction cache maintenance for at least one of the instruction cache types.

PIPT (Physically-indexed, physically-tagged) instruction caches

For a PIPT instruction cache:

• The use of memory address translation is entirely transparent to all instruction fetches other than as described in Mismatched memory attributes on page B2-163.

• If cache maintenance is performed on a memory location, the effect of that cache maintenance is visible to all aliases of that physical memory location.

An implementation that provides PIPT instruction caches implements the IVIPT Extension, see The IVIPT Extension on page D5-2681.

VPIPT (VMID-aware PIPT) instruction caches

An Armv8.2 implementation can implement VPIPT instruction caches. If it does so then it is described as implementing FEAT_VPIPT.

The CTR_EL0.L1Ip field identifies the implemented cache type, meaning it identifies whether FEAT_VPIPT is implemented.

For a VPIPT instruction cache:

• Instruction fetches from Non-secure EL1 and Non-secure EL0 are only permitted to hit in the cache if the instruction fetch is made using the VMID that was used when the entry in the instruction cache was fetched.

• An instruction cache maintenance instruction executed at Non-secure EL0 or at Non-secure EL1 is required to have an effect on entries in the instruction cache only if those entries were fetched using the VMID that is current when the cache maintenance instruction is executed.

All other requirements for the use of cache maintenance instructions are the same as for PIPT (Physically-indexed, physically-tagged) instruction caches.

An implementation that provides VPIPT instruction caches implements the IVIPT Extension, see The IVIPT Extension on page D5-2681.

VIPT (Virtually-indexed, physically-tagged) instruction caches

For a VIPT instruction cache:

• The use of memory address translation is transparent to all instruction fetches other than for the effect of memory address translation on instruction cache invalidate by address operations or as described in Mismatched memory attributes on page B2-163.

Note

Cache invalidation is the only cache maintenance that can be performed on an instruction cache.

• If instruction cache invalidation by address is performed on a memory location, the effect of that invalidation is visible only to the VA supplied with the operation. The effect of the invalidation might not be visible to any other aliases of that physical memory location.

The only architecturally-guaranteed way to invalidate all aliases of a PA from a VIPT instruction cache is to invalidate the entire instruction cache.

An implementation that provides VIPT instruction caches implements the IVIPT Extension, see The IVIPT Extension on page D5-2681.
The IVIPT Extension

In Armv8, any permitted instruction cache implementation can be described as implementing the IVIPT Extension to the Arm architecture.

The formal definition of the Arm IVIPT Extension is that it reduces the instruction cache maintenance requirement to the following condition:

• Instruction cache maintenance is required only after writing new data to a PA that holds an instruction.

Note
Previous versions of the Arm architecture have permitted an instruction cache option that does not implement the Arm IVIPT Extension.

D5.11.3 Cache maintenance requirement created by changing translation table attributes

Any change to the translation tables to change the attributes of an area of memory can require maintenance of the translation tables, as described in General TLB maintenance requirements on page D5-2661. If the change affects the cacheability attributes of the area of memory, including any change between Write-Through and Write-Back attributes, software must ensure that any cached copies of affected locations are removed from the caches, typically by cleaning and invalidating the locations from the levels of cache that might hold copies of the locations affected by the attribute change. Any of the following changes to the inner cacheability or outer cacheability attribute creates this maintenance requirement:

• Write-Back to Write-Through
• Write-Back to Non-cacheable
• Write-Through to Non-cacheable
• Write-Through to Write-Back.

The cache clean and invalidate avoids any possible coherency errors caused by mismatched memory attributes.

Similarly, to avoid possible coherency errors caused by mismatched memory attributes, the following sequence must be followed when changing the shareability attributes of a cacheable memory location:

1. Make the memory location Non-cacheable, Outer Shareable.
2. Clean and invalidate the location from them cache.
3. Change the shareability attributes to the required new values.
The AArch64 Virtual Memory System Architecture
D5.11 Caches in a VMSAv8-64 implementation
Chapter D6
Memory Tagging Extension

This chapter provides details of the OPTIONAL FEAT_MTE Extension.

- Introduction on page D6-2684.
- Allocation Tags on page D6-2685.
- Tag checking on page D6-2686.
- Tagged and Untagged Addresses on page D6-2687.
- PE access to Allocation Tags on page D6-2688.
- Enabling the Memory Tagging Extension on page D6-2689.
- PE handling of Tag Check Fault on page D6-2690.
- PE generation of Tag Checked and Tag Unchecked accesses on page D6-2692.
D6.1 Introduction

FEAT_MTE is an OPTIONAL extension to the Armv8.5 architecture in AArch64 state only.

The extension implements:

- Tag load and store instructions to access Allocation tags in a tag physical address space, separate to the data physical address space accessed by data load and store instructions to access data in normal memory and devices.

- 4-bit Allocation Tags at a granularity of one Allocation Tag for each naturally-aligned set of 16 physically addressed locations.

________ Note __________

Implementations are expected to provide one Allocation Tag for each 16 byte granule of bulk data memory.

- System register and page level control over access to Allocation Tags in memory.

- A Logical Address Tag from which a Physical Address Tag can be derived and held in the upper bits of the address that is used in load and store data instructions.

- A Tag Check of the Physical Address Tag against the 4-bit Allocation Tag for each data location that is accessed by a Tag Checked load or store of data.

- Instructions to generate and manipulate the Logical Address Tag in a register.

- A random tag generator using state that is held in RGSR_EL1 and controlled by GCR_EL1.

- Configurable behavior on a Tag Check returning a fail result causing a synchronous exception or recording the failure in a System register, one of TFSR_ELx or TFSRE0_EL1.

- Cache maintenance operations operating on Allocation Tags, or Allocation Tags and data.
D6.2 Allocation Tags

The tag physical address (tag PA) space provides access to Allocation Tags stored in memory. The data physical address (data PA) space provides access to data held in memory.

An Allocation Tag is 4 bits.

Each naturally-aligned set of 16 tag PA locations is a Tag Granule. Each Tag Granule is associated with one Allocation Tag.

Note

- The value 0b1111 may incur a higher performance overhead than other Allocation Tag encodings.
- Arm recommends that software does not use instructions which write 0b1111 as an Allocation Tag to memory.
- Arm recommends that implementations provide storage for Allocation Tags at each tag PA where general-purpose memory exists at the same physical address in the data PA space.

It is implementation defined what happens when an access is made to the tag PA where Allocation Tag storage is not provided.

It is implementation defined whether Allocation Tags are permitted to be accessed via regions of the data PA space. If Allocation Tags are accessible via the data PA space, then the layout of Allocation Tags is implementation defined.

It is not architecturally required for an Allocation Tag accessed via the tag PA space to be coherent with the same Allocation Tag accessed via the data PA space. A write to one location can be made visible at the other location by the use of the cache maintenance operations.

Unless otherwise stated the definitions in Chapter B2 The AArch64 Application Level Memory Model and Chapter D4 The AArch64 System Level Memory Model which apply to data accesses and data apply separately to Allocation Tag accesses and Allocation tags.

It is implementation defined whether the global monitor monitors access to the tag PA space.

D6.2.1 Cache activity and Allocation Tags

For more information on DC operations that affect Allocation Tags see A64 System instructions for cache maintenance on page C5-471.

The eviction of data from a cache entry from a cache level can overwrite data in memory that has been written by another observer only if the entry contains a memory location where either or both the data or associated Allocation Tags have been written to by an observer in the Shareability domain of that memory location, where the maximum size of the memory that can be overwritten is defined by the Cache Write-Back Granule in CTR_EL0.

The eviction of Allocation Tags from a cache entry from a cache level can overwrite Allocation Tags in memory that have been written by another observer only if the entry contains a memory location where the Allocation Tags have been written to by an observer in the Shareability domain of that memory location, where the maximum size of the memory that can be overwritten is defined by the Cache Write-Back Granule in CTR_EL0.
D6.3 Tag checking

A memory access is either Tag Checked or Tag Unchecked.

An access to the data PA space is either Tag Checked or Tag Unchecked.

An access to the tag PA space is always Tag Unchecked.

A data access which is performed as part of a prefetch operation is Tag Unchecked.

When the value of PSTATE.TCO is 1, all loads and stores are Tag Unchecked.

A Tag Checked memory access includes a physical address Tag. A physical address Tag is 4 bits.

A Tag Checked access causes a Tag Check operation to be performed.

If the Allocation Tag and Physical Address Tag in a Tag Check operation do not match, the Tag Check operation generates a Tag Check Fault.

A Tag Check Fault can be configured to cause one of:

• A synchronous exception.
• A bit to be asynchronously set in TFSR_ELx.
• It to be ignored.

If a Tag Check Fault on a store causes a synchronous exception, memory locations associated with the fault are unchanged.

If a Tag Check Fault does not cause a synchronous exception, there is no effect on the data access, or any side effects on the data access, so that the data access is always performed, unless prevented by another exception being taken or a Data Abort.

The read of an Allocation Tag due to a Tag Check operation and the dependent data access are not required to form an atomic operation.

If the Tag Checked property of a memory access due to a Store-Exclusive instruction and the Tag Checked property of a memory access due to the preceding Load-Exclusive instruction in a Load-Exclusive/Store-Exclusive instruction pair to the same location from the same PE do not match, then software cannot rely on the Load-Exclusive/Store-Exclusive pair to eventually succeed.
D6.4 Tagged and Untagged Addresses

A virtual address is either Tagged or Untagged.

An access to memory at an Untagged virtual address generates an Unchecked access.

An access to memory at a Tagged virtual address permits the generation of Tag Checked or Tag Unchecked access.

A read of an Allocation Tag from an Untagged virtual address returns the value 0b0000.

A write of an Allocation Tag to an Untagged address is IGNORED.

An access of an Allocation Tag at a Tagged virtual address is permitted.

All virtual addresses in AArch32 state are Untagged.

D6.4.1 Virtual address translation

If stage 1 translation at the current Exception level is enabled, stage 1 translations are Tagged or Untagged depending on the Memory Attributes for the memory location being accessed.

If stage 1 translation at the current Exception level is disabled:

• When the value of HCR_EL2.DC is one, stage 1 translations are Tagged or Untagged depending on the value of HCR_EL2.DCT.

• When the value of HCR_EL2.DC is zero, stage 1 translations are treated as Untagged.

Memory locations are treated as Tagged where all of the following is true:

• The combined effects of stage 1 and stage 2 translations define the memory attributes as:
 — Normal memory,
 — Inner, and Outer Write-Back Non-Transient Read-Allocate Write-Allocate

• The stage 1 translation is treated as Tagged.

Otherwise memory locations are Untagged.

If a memory location is marked as Untagged, a data cache invalidation operation that would invalidate Allocation Tags at that location cleans and invalidates the Allocation Tags.

When the EL1&0 stage 1 translation regime is disabled and HCR_EL2.DC is one, in the current Security state, the execution of any AT S1E0, AT S1E1, AT S12E0, or AT S12E1 address translation instruction will reflect the effect of HCR_EL2.DCT in PAR_EL1.ATTR.

For more information on Virtual address translation, see The VMSAv8-64 address translation system on page D5-2534.
D6.5 PE access to Allocation Tags

A PE can access an Allocation tag using the following instructions:

- LDG
- LDQM
- ST2G
- STG
- STQG
- STCP
- STZ2G
- STZG
- STZQG
- DC GVA
- DC GZVA

Instructions that load or store Allocation Tags apply the same address translation and permission checks as a load or store of data to a virtual address.

Instructions that load or store Allocation Tags at a virtual address have the same effect on the Access flag and dirty state as instructions that load or store data at the same virtual address.

An instruction that loads or stores an Allocation Tag:

- Is considered a load or store of data to each location associated with the Allocation Tag for the purpose of triggering Watchpoints and PMU events, other than for events which count bytes of data transferred.
- Generates a tag PA with the same physical address as a load or store of data to a virtual address.

Instructions that store Allocation Tags to memory locations marked as Device memory result in a CONSTRAINED UNPREDICTABLE choice between:

- Storing the data, if any, to the specified locations.
- Generating an Alignment Fault, which is prioritized in the same way as other alignment faults that are determined by the memory type.

If ID_AA64PFR1_EL1.MTE is 0b0010 the Memory Tagging Extension is fully implemented.

If ID_AA64PFR1_EL1.MTE is 0b0001 all of the following is true:

- SCR_EL3.ATA is RES0.
- HCR_EL2.ATA is RES0.
- SCTLR_ELx.ATA is RES0.
- SCTLR_ELx.ATA0 is RES0.
- All operations which read Allocation Tags treat the Allocation Tag as zero, any traps or permission checks continue to apply.
- All operations which write an Allocation Tag to memory do not modify the Allocation Tag in memory. Any traps or permission checks continue to apply.
- Instructions which write an Allocation Tag into addresses treat the Allocation Tag as zero. This means that:
 - IRG inserts 0b0000.
 - ADDG or SUBG insert 0b0000.
 - LDG inserts 0b0000.
- The System instructions that are introduced by the Memory Tagging Extension are Unallocated.
- All other instructions which read or write Allocation Tags behave as if ID_AA64PFR1_EL1.MTE is 0b0010.
D6.6 Enabling the Memory Tagging Extension

Access to Allocation Tags in memory can be enabled by the use of the following controls:

- SCR_EL3.ATA.
- HCR_EL2.ATA.
- SCTLR_ELx.ATA.
- SCTLR_ELx.ATA0.

When access to Allocation Tags is disabled for an Exception level, instructions that are executed at that Exception level, that:

- Load or store data are Unchecked.
- Load or store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as zero.

When software does not require access to Allocation Tags in a context, Arm recommends that one or more SCTLR_ELx.ATA affecting that context are set to zero.

When software requires access to Allocation Tags in a context but Tag Checking is not required, Arm recommends that the SCTLR_ELx.TCF or SCTLR_ELx.TCF0 affecting that context is set to zero.

For the purpose of determining Allocation Tag access, unprivileged load and store instructions are treated as if executed at EL0 when executed either:

- At EL1 when the Effective value of PSTATE.UAO is 0.
- At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of PSTATE.UAO is 0.
D6.7 PE handling of Tag Check Fault

If SCTLR_ELx.TCF has the value of 0b00, a Tag Check Fault due to a load or store at ELx has no effect on the PE.

A Tag Check Fault due to a load or store at EL0 has no effect on the PE if either of the following conditions are true:

- SCTLR_EL1.TCF0 has the value of 0b00 and HCR_EL2.{E2H, TGE} does not have the value of {1,1}.
- SCTLR_EL2.TCF0 has the value of 0b00 and HCR_EL2.{E2H, TGE} has the value of {1,1}.

If SCTLR_ELx.TCF has the value of 0b01, a Tag Check Fault due to a load or store at ELx generates a synchronous exception.

If SCTLR_ELx.TCF has the value of 0b10, a Tag Check Fault due to a load or store at ELy using TTBR_ELx causes TFSR_ELx.TFx to be asynchronously set to 1.

A Tag Check Fault due to a load or store at EL0 has no effect on the PE if either of the following conditions are true:

- SCTLR_EL1.TCF0 has the value of 0b00 and HCR_EL2{E2H, TGE} does not have the value of {1,1}.
- SCTLR_EL2.TCF0 has the value of 0b00 and HCR_EL2{E2H, TGE} has the value of {1,1}.

If SCTLR_ELx.TCF has the value of 0b11, a Tag Check Fault due to a load or store at EL0 has no effect on the PE if either of the following conditions are true:

- SCTLR_EL1.TCF0 has the value of 0b01 and HCR_EL2{E2H, TGE} does not have the value of {1,1}.
- SCTLR_EL2.TCF0 has the value of 0b01 and HCR_EL2{E2H, TGE} has the value of {1,1}.

TFSR_ELx and TFSRE0_EL1 are unchanged by a memory data access causing a Tag Check pass.

A synchronous exception due to a Tag Check Fault is reported as a Data Abort with a Data Fault status code of Synchronous Tag Check Fault and the faulting virtual address is reported in FAR_ELx.

A Data Abort due to a Tag Check Fault is taken to:

- EL1 from EL0 if HCR_EL2.TGE has the value of 0.
- EL2 from EL0 if HCR_EL2.TGE has the value of 1.
- ELx from ELx where x is 1, 2 or 3.

A Data Abort due to a Tag Check Fault is prioritized as a Data Abort exception generated by a synchronous External abort that was not generated by a translation table walk.

If an access generates both a Data Abort due to a Synchronous Tag Check Fault and a Data Abort due to a synchronous External abort that was not generated by a translation table walk, it is IMPLEMENTATION DEFINED which abort is reported. For more information on prioritization of exceptions see Synchronous exception types, routing and priorities on page D1-2348.

If an instruction that stores to memory generates a Data Abort that is a Synchronous Tag Check Fault, the value of each memory location that the instruction stores to is UNKNOWN for any location for which no exceptions and no Debug event is generated. The size of a memory location is defined as being the size for which a memory access is single-copy atomic.

For the purpose of determining Tag Check Fault handling, unprivileged load and store instructions are treated as if executed at EL0 when executed either:

- At EL1 when the Effective value of PSTATE.UAO is 0.
- At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1,1} and the Effective value of PSTATE.UAO is 0.

Indirect writes to TFSRE0_EL1, and any TFSR_ELx accessible at ELy, caused by a Tag Check Fault are synchronized by any of:

- If SCTLR_ELx.ITFSB has the value of 0b1, exception entry to ELy.
- A DSB at ELy in program order after the instruction causing the Tag Check Fault.
When FEAT_SVE is implemented, if a load of an element in a SVE Non-faulting or First-faulting load instruction causes a Tag Check Fault, and is not the first active element in a First-faulting instruction, the Tag Check Fault:

- Is recorded in the corresponding FFR register.
- Does not generate a Synchronous Tag Check Fault exception.
- Does not cause any bit in any TFSR_ELx or TFSRE0_EL1 registers to be set.
- The value loaded into the element is UNKNOWN.

When SVE is implemented, if a load of an element in a SVE Non-faulting or First-faulting load instruction causes a Tag Check Fault, and is the first active element in a First-faulting instruction, the Tag Check Fault:

- Is not recorded in the corresponding FFR register.
- Generates a Synchronous Tag Check Fault exception if configured to do so.
- Sets a bit in TFSR_ELx or TFSRE0_EL1 registers if configured to do so.
- If a synchronous tag check fault is generated, the value loaded into the element is UNKNOWN.
D6.8 PE generation of Tag Checked and Tag Unchecked accesses

Bits [59:56] of the 64-bit address that is used for a load or store instruction form a Logical Address Tag.

The PE generates a Physical Address Tag from the Logical Address Tag for each Tag Checked access to memory.

Unless an access is explicitly defined as a Tag Unchecked access, it is a Tag Checked access.

D6.8.1 Tag Unchecked accesses

The following operations generate a Tag Unchecked access:
- An instruction fetch.
- A load instruction that loads an Allocation Tag.
- A store instruction that stores an Allocation Tag.

When PSTATE.TCO has the value of one all loads and stores generate Tag Unchecked accesses.

A cache maintenance by virtual address operation other than DC ZVA, Data Cache Zero by VA generates a Tag Unchecked access.

An access due to a translation table walk generates a Tag Unchecked access.

If FEAT_NV2 is implemented, Loads and Stores relative to VNCR_EL2 generate a Tag Unchecked access.

If the Statistical Profiling Extension is implemented all accesses to the Profiling Buffer are Tag Unchecked accesses, see Chapter D9 The Statistical Profiling Extension for more information.

Data accesses by an external Debugger may generate Tag Checked accesses, see Chapter H2 Debug State for more information.

An access which would be translated using TTBR0_ELx is Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not, where either of the following conditions apply:
- TCR_ELx.TBI has the value of zero.
- TCR_ELx.TBI0 has the value of zero.

If TCR_ELx.TBI1 has the value of zero, an access which would be translated using TTBR1_ELx is Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not, where all of the following conditions apply:
- The access would be translated using TTBR0_ELx.
- The Logical Address Tag is 0b0000.
- TCR_ELx.TCMA has the value of one, or TCR_ELx.TCMA0 has the value of one.

An access will be Tag Unchecked, irrespective of whether the stage 1 address translation for the ELx translation regime is enabled or not, when all of the following conditions apply:
- The access would be translated using TTBR1_ELx.
- The Logical Address Tag is 0b1111.
- TCR_ELx.TCMA1 has the value of one.

A Tag Unchecked access will be generated for a load or store that uses either of the following:
- A base register only, with the SP as the base register.
- A base register plus immediate offset addressing form, with the SP as the base register.

Literal (PC-relative) loads generate a Tag Unchecked access.

D6.8.2 Constrained Unpredictable behavior

When executing a Store Exclusive instruction that if Tag Unchecked would not perform the store and return a status value of one, it is CONSTRAINED UNPREDICTABLE whether:
- The instruction generates a Tag Checked access.
- The instruction generates a Tag Unchecked access.
Chapter D7
The Performance Monitors Extension

This chapter describes the Armv8 implementation of the Arm Performance Monitors, that are an optional non-invasive debug component. It describes version 3 of the Performance Monitor Unit (PMU) architecture, PMUv3. It contains the following sections:

• About the Performance Monitors on page D7-2694.
• Accuracy of the Performance Monitors on page D7-2697.
• Behavior on overflow on page D7-2699.
• Attributability on page D7-2701.
• Prohibiting event counting on page D7-2703.
• Event filtering on page D7-2705.
• Performance Monitors and Debug state on page D7-2707.
• Counter enables on page D7-2708.
• Counter access on page D7-2709.
• PMU events and event numbers on page D7-2710.
• Performance Monitors Extension registers on page D7-2766.

Note
Table K15-2 on page K15-8162 disambiguates the general register references used in this chapter.
D7.1 About the Performance Monitors

In Armv8-A, the Performance Monitors Extension is an OPTIONAL feature of an implementation, but Arm strongly recommends that Armv8-A implementations include version 3 of the Performance Monitors Extension, FEAT_PMUv3.

--- Note ---
No previous versions of the Performance Monitors Extension can be implemented in Armv8.

The basic form of the Performance Monitors is:

- A 64-bit cycle counter, see Time as measured by the Performance Monitors cycle counter on page D7-2696.
- A number of 64-bit or 32-bit event counters. If FEAT_PMUv3p5 is implemented and the highest Exception level is using AArch64, the event counters are 64-bit. If FEAT_PMUv3p5 is not implemented, the event counters are 32-bit.
- The event counted by each event counter is programmable. Armv8 provides space for up to 31 event counters. The actual number of event counters is IMPLEMENTATION DEFINED, and the specification includes an identification mechanism.

--- Note ---
Arm recommends that at least two event counters are implemented, and that hypervisors provide at least this many event counters to guest operating systems.

- When EL2 is implemented, the required controls to partition the implemented event counters into the following sets:
 - A set which is available for use by the guest operating system accessible at all Exception levels.
 - A set which is available for use by the hypervisor accessible at EL3 and EL2, and, if FEAT_SEL2 is not implemented or if Secure EL2 is disabled, in Secure state.

- Controls for:
 - Enabling and resetting counters.
 - Flagging overflows.
 - Enabling interrupts on overflow.

Monitoring software can enable the cycle counter independently of the event counters, and if FEAT_PMUv3p5 is implemented, disable the cycle counter in Secure state or in EL2.

The PMU architecture uses event numbers to identify an event. It:

- Defines event numbers for common events, for use across many architectures and microarchitectures.

--- Note ---
Implementations that include PMUv3 must, as a minimum requirement, implement a subset of the common events. See Common event numbers on page D7-2716.

- Reserves a large event number space for IMPLEMENTATION DEFINED events.

The full set of events for an implementation is IMPLEMENTATION DEFINED. Arm recommends that implementations include all of the events that are appropriate to the architecture profile and microarchitecture of the implementation.

When an implementation includes the Performance Monitors Extension, Armv8 defines the following possible interfaces to the Performance Monitors Extension registers:

- A System register interface. This interface is mandatory.

--- Note ---
In AArch32 state, the interface is in the (coproc==0b1111) encoding space.
• An external debug interface which optionally supports memory-mapped accesses. Implementation of this interface is OPTIONAL. See Chapter 13 Recommended External Interface to the Performance Monitors.

An operating system can use the System registers to access the counters.

Also, if required, the operating system can enable application software to access the counters. This enables an application to monitor its own performance with fine-grain control without requiring operating system support. For example, an application might implement per-function performance monitoring.

To enable interaction with external monitoring, an implementation might consider additional enhancements, such as providing:
• A set of events, from which a selection can be exported onto a bus for use as external events.
• The ability to count external events. This enhancement requires the implementation to include a set of external event input signals.

The Performance Monitors Extension is common to AArch64 operation and AArch32 operation. This means the Armv8 architecture defines both AArch64 and AArch32 System registers to access the Performance Monitors. For example, the Performance Monitors Cycle Count Register is accessible as:
• When executing in AArch64 state, PMCCNTR_EL0.
• When executing in AArch32 state, PMCCNTR.

When executing in AArch32 state, if FEAT_PMUv3p5 is implemented, bits [63:32] of the event counters are not accessible. If the implementation does not support AArch64 at any Exception level, 64-bit event counters are not required to be implemented.

D7.1.1 Interaction with EL3

Software executing at EL3 can trap attempts by lower Exception levels to access the PMU. This means that the Secure monitor can identify any software which is using the PMU and switch contexts, if required.

Software executing at EL3 can:
• Prohibit counting of events Attributable to Secure state.
• If FEAT_PMUv3p5 is implemented, prohibit counting of cycles in Secure state, see Prohibiting event counting on page D7-2703.

In AArch32 state, the Performance Monitors registers are Common registers, see Classification of System registers on page G5-6092.

If FEAT_MTPMU is implemented and EL3 is implemented, MDCR_EL3.MTPME and SDCR.MTPME enable and disable the PMEVTYPE<->.MT bit.

D7.1.2 Interaction with EL2

Software can program HDCR.HPMN to reserve the highest-numbered event counters by partitioning the event counters into two sets. This does not depend on whether EL2 is enabled in the current Security state. Each set of event counters has its own global controls.

Software executing at EL3, and when EL2 is implemented and enabled in the current Security state, software executing at EL2 can:
• Trap an access at EL0 or EL1 to the PMU. This means the hypervisor can identify which Guest OSs are using the PMU and intelligently employ switching of the PMU state. There is a separate trap for the PMCR register, and if FEAT_FGT is implemented and enabled, fine-grained traps are provided.
• If FEAT_PMUv3p1 is implemented, prohibit counting of events Attributable to EL2 by the counters accessible to EL1 and EL0.
• If FEAT_PMUv3p5 is implemented, prohibit counting of cycles at EL2.
When EL2 is implemented and enabled in the current Security state, software executing at EL1 and, if enabled by PMUSERENR, EL0:

- Will read the value of HDCR.HPMN for PMCR.N.
- Cannot access the highest-numbered event counters, or the controls associated with them.

If FEAT_MTPMU is implemented, EL3 is not implemented, and EL2 is implemented, MDCR_EL2.MTPME and HDCR.MTPME enable and disable the PMEVTYPER<n>.MT bit.

For more information, see:
- Counter enables on page D7-2708.
- Counter access on page D7-2709.
- Prohibiting event counting on page D7-2703.
- Multithreaded implementations on page D7-2704.

D7.1.3 Time as measured by the Performance Monitors cycle counter

The Performance Monitors cycle counter, accessed through PMCCNTR_EL0 or PMCCNTR, increments from the hardware processor clock, not PE clock cycles.

The relationship between the count recorded by the Performance Monitors cycle counter and the passage of real time is IMPLEMENTATION DEFINED.

See Prohibiting event counting on page D7-2703 for information about when the cycle counter does not increment.

Note

- This means that, in an implementation where PEs are multithreaded, the counter continues to increment across all PEs, rather than only counting cycles for which the current PE is active.
- Although the architecture requires that direct reads of PMCCNTR_EL0 or PMCCNTR occur in program order, there is no requirement that the count increments between two such reads. Even when the counter is incrementing on every clock cycle, software might need check that the difference between two reads of the counter is nonzero.

The architecture requires that an indirect write to the PMCCNTR_EL0 or PMCCNTR is observable to direct reads of the register in finite time. The counter increments from the hardware processor clock are indirect writes to these registers.

D7.1.4 Interaction with trace

It is IMPLEMENTATION DEFINED whether the implementation exports counter events to a PE Trace Unit, or other external monitoring agent, to provide triggering information. The form of any exporting is also IMPLEMENTATION DEFINED. If implemented, this exporting might be enabled as part of the performance monitoring control functionality.

Arm recommends system designers include a mechanism for importing a set of external events to be counted, but such a feature is IMPLEMENTATION DEFINED. When implemented, this feature enables the PE Trace Unit to pass in events to be counted.

Exporting PMU events to the ETM is prohibited for some Exception levels when SelfHostedTraceEnabled() == TRUE. For more information, see Controls to prohibit trace at Exception levels on page D3-2483.

D7.1.5 Interaction with power saving operations

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions.
D7.2 Accuracy of the Performance Monitors

The Performance Monitors:

- Are a non-invasive debug component. See Non-invasive behavior.
- Must provide broadly accurate and statistically useful count information.

However, the Performance Monitors allow for:

- A reasonable degree of inaccuracy in the counts to keep the implementation and validation cost low. See A reasonable degree of inaccuracy.
- IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, to put the PE in an operating state that might do one or both of the following:
 - Change the level of non-invasiveness of the Performance Monitors so that enabling an event counter can impact the performance or behavior of the PE.
 - Allow inaccurate counts. This includes, but is not limited to, cycle counts.

D7.2.1 Non-invasive behavior

The Performance Monitors are a non-invasive debug feature. A non-invasive debug feature permits the observation of data and program flow. Performance Monitors, PC Sample-based Profiling and Trace are non-invasive debug features.

Non-invasive debug components do not guarantee that they do not make any changes to the behavior or performance of the processor. Any changes that do occur must not be severe however, as this will reduce the usefulness of event counters for performance measurement and profiling. This does not include any change to program behavior that results from the same program being instrumented to use the Performance Monitors, or from some other performance monitoring process being run concurrently with the process being profiled in a multitasking operating system. As such, a reasonable variation in performance is permissible.

Note

Power consumption is one measure of performance. Therefore, a reasonable variation in power consumption is permissible.

Arm does not define a reasonable variation in performance, but recommends that such a variation is kept within 5% of normal operating performance, when averaged across a suite of code that is representative of the application workload.

Note

For profiles other than A-profile, there is the potential for stronger requirements. Ultimately, performance requirements are determined by end-users, and not set by the architecture.

For some common architectural events, this requirement to be non-invasive can conflict with the requirement to present an accurate value of the count under normal operating conditions. Should an implementation require more performance-invasive techniques to accurately count an event, there are the following options:

- If the event is optional, define an alternative implementation defined event that accurately counts the event and document the impact on performance of enabling the event.
- Provide an implementation defined control that disables accurate counting of the event to restore broadly accurate performance, and document the impact on performance of accurate counting.

D7.2.2 A reasonable degree of inaccuracy

The Performance Monitors provide broadly accurate and statistically useful count information. To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is acceptable. Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

- Under normal operating conditions, the counters must present an accurate value of the count.
• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable for the count to be inaccurate.

• Under very unusual, non-repeating pathological cases, the counts can be inaccurate. These cases are likely to occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in the count is very unlikely.

--- Note ---
An implementation must not introduce inaccuracies that can be triggered systematically by the execution of normal pieces of software. For example, it is not reasonable for the count of branch behavior to be inaccurate when caused by a systematic error generated by the loop structure producing a dropping in branch count.

However, dropping a single branch count as the result of a rare interaction with an interrupt is acceptable.

--- Note ---
The permitted inaccuracy limits the possible uses of the Performance Monitors. In particular, the architecture does not define the points in a pipeline where the event is generated and where it is counted, relative to the point where a read of the counters is made. This means that pipelining effects can cause some imprecision.

Where a direct write to a Performance Monitors control register disables a counter, and is followed by a Context synchronization event, any subsequent indirect read of the control register by the Performance Monitors to determine whether the counter is enabled will return the updated value. Any subsequent direct read of the counter will return the value at the point the counter was disabled.

--- Note ---
The imprecision means that the counter might have counted an event around the time the counter was disabled, but does not allow the event to be observed as counted after the counter was disabled.

A change of Security state can also affect the accuracy of the Performance Monitors, see Interaction with EL3 on page D7-2695.

In addition to this, entry to and exit from Debug state can disturb the normal running of the PE, causing further inaccuracy in the Performance Monitors. Disabling the counters while in Debug state limits the extent of this inaccuracy. An implementation can employ methods to limit this inaccuracy, for example by promptly disabling the counters during the Debug state entry sequence.

An implementation must document any particular scenarios where significant inaccuracies are expected.
D7.3 Behavior on overflow

The event counters, PMEVCNTR<n> are either 32-bit or 64-bit unsigned counters that overflow in the following situations:

- If FEAT_PMUv3p5 is not implemented, 32-bit event counters are implemented, and if incrementing PMEVCNTR<n> causes an unsigned overflow of an event counter, the PE sets PMOVSCLR[n] to 1.

- If FEAT_PMUv3p5 is implemented, 64-bit event counters are implemented, and either n is in the range [0..(HDCR.HPMN-1)] or EL2 is not implemented, then event counter overflow is configured by PMCR.LP:
 - When PMCR.LP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits [31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.
 - When PMCR.LP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits [63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

- If FEAT_PMUv3p5 is implemented, 64-bit event counters are implemented, and EL2 is implemented, when n is in the range [HDCR.HPMN..(PMCR.N-1)], event counter overflow is configured by HDCR.HLP:
 - When HDCR.HLP is set to 0, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits [31:0] of the event counter, the PE sets PMOVSCLR[n] to 1.
 - When HDCR.HLP is set to 1, if incrementing PMEVCNTR<n> causes an unsigned overflow of bits [63:0] of the event counter, the PE sets PMOVSCLR[n] to 1.

The cycle counter, PMCCNTR, is a 64-bit unsigned counter, that is configured by PMCR.LC:

- If PMCR.LC is set to 0, if incrementing PMCCNTR causes an unsigned overflow of bits [31:0] of the cycle counter, the PE sets PMOVSCLR[31] to 1.
- If PMCR.LC is set to 1, if incrementing PMCCNTR causes an unsigned overflow of bits [63:0] of the cycle counter, the PE sets PMOVSCLR[31] to 1.

For all 64-bit counters, incrementing the counter is the same whether an unsigned overflow occurs at [31:0] or [63:0]. If the counter increments for an event, bits [63:0] are always incremented.

When any overflow occurs, an interrupt request is generated if the PE is configured to generate counter overflow interrupts. For more information, see *Generating overflow interrupt requests*.

Note

Software executing at EL1 or higher must take care that setting PMCR.LP or HDCR.HLP does not cause software executing at lower Exception levels to malfunction. If legacy software accesses the PMU at lower Exception levels, software at the higher Exception levels should not set the PMCR.LP or HDCR.HLP fields to 1. However, if the legacy software does not use the counter overflow, it is not affected by setting the PMCR.LP or HDCR.HLP to 1.

D7.3.1 Generating overflow interrupt requests

Software can program the Performance Monitors so that an overflow interrupt request is generated when a counter overflows. See PMINTENSET and PMINTENCLR.

Note

- The mechanism by which an interrupt request from the Performance Monitors generates an FIQ or IRQ exception is IMPLEMENTATION DEFINED.

- Arm recommends that the overflow interrupt requests:
 - Translate into a PMUIRQ signal, so that they are observable to external devices.
 - Connect to inputs on an IMPLEMENTATION DEFINED generic interrupt controller as a *Private Peripheral Interrupt* (PPI) for the originating processor. See the *ARM Generic Interrupt Controller Architecture Specification* for information about PPIs.
 - Connect to a *Cross Trigger Interface* (CTI), see Chapter H5 *The Embedded Cross-Trigger Interface*.

- Arm strongly discourages implementations from connecting overflow interrupt requests from multiple PEs to the same *System Peripheral Interrupt* (SPI) identifier.
• From GICv3, the ARM® Generic Interrupt Controller Architecture Specification recommends that the Private Peripheral Interrupt (PPI) with ID 23 is used for overflow interrupt requests.

Software can write to the counters to control the frequency at which interrupt requests occur. For example, software might set a 32-bit counter to 0xFFFF0000, to generate another counter overflow after 65536 increments, and reset it to this value every time an overflow interrupt occurs.

--- Note ---

If an event can occur multiple times in a single clock cycle, then counter overflow can occur without the counter registering a value of zero.

The overflow interrupt request is a level-sensitive request. The PE signals a request for:

• Any given PMEVCNTR<\(n\)> counter, when the value of PMOVSET[\(n\)] is 1, the value of PMINTENSET[\(n\)] is 1, and one of the following is true:
 — EL2 is not implemented and the value of PMCR.E is 1.
 — EL2 is implemented, \(n\) is less than the value of HDCR.HPMN, and the value of PMCR.E is 1.
 — EL2 is implemented, \(n\) is greater than or equal to the value of HDCR.HPMN, and the value of HDCR.HPME is 1.

• The cycle counter, when the values of PMOVSET[31], PMINTENSET[31], and PMCR.E are all 1.

The overflow interrupt request is active in both Secure and Non-secure states. In particular, if EL3 and EL2 are both implemented, overflow events from PMEVCNTR<\(n\)> where \(n\) is greater than or equal to the value of HDCR.HPMN can be signaled from all modes and states but only if the value of HDCR.HPME is 1.

The interrupt handler for the counter overflow request must cancel the interrupt request, by writing to PMOVSCLR[\(n\)] to clear the overflow bit to 0.

Pseudocode description of overflow interrupt requests

See Chapter J1 Armv8 Pseudocode for a pseudocode description of overflow interrupt requests. The AArch64.CheckForPMUOverflow() and AArch32.CheckForPMUOverflow() pseudocode functions signal PMU overflow interrupt requests to an interrupt controller and PMU overflow trigger events to the cross-trigger interface.
D7.4 Attributability

An event caused by the PE counting the event is Attributable. If an agent other than the PE that is counting the events causes an event, these events are Unattributable.

An event is defined as being either Attributable or Unattributable. If the event is Attributable, it is further defined whether it is Attributable to:

• The current Security state of the PE.
• The current Exception level of the PE.
• When the PE is in Debug state, operations issued to the PE by the debugger through the external debug interface.

In a multithreaded implementation, an event might be generated by another PE with the same values for affinity level 1 and higher. This event is further defined as Attributable to:

• The current Security state of that PE.
• The current Exception level of that PE.
• When that PE is in Debug state, operations issued to that PE by the debugger through the external debug interface.

See Multithreaded implementations on page D7-2704 for information about enabling and restricting counting events in a multithreaded implementation.

Note

• In an implementation containing multiple PEs, each PE is identified by a unique affinity value reported by MPIDR_EL1{Aff3, Aff2, Aff1, Aff0}, where the value of affinity level 0 is the most significant for determining the PE behavior, and the values of higher affinity levels are less significant. Affinity level 3 is only supported in AArch64 state.

• An implementation is described as multithreaded when the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. In this section, when referring to a multithreaded implementation, thread is used to mean processing elements with:
 — MPIDR_EL1.MT or MPIDR.MT set to 1,
 — Different values for affinity level 0.
 — The same values for affinity level 1 and higher.

An event can be defined as the combination of multiple subevents, which can be either Attributable or Unattributable.

All architecturally defined events are Attributable, unless otherwise stated.

Unattributable events might be counted when Attributable events are not counted. See:

• Interaction with EL3 on page D7-2695.
• Event filtering on page D7-2705.
• Performance Monitors and Debug state on page D7-2707.
These sections are summarized by Table D7-1 for events Attributable to the processor, and Unattributable events.

<table>
<thead>
<tr>
<th>Counter and PMU enabled</th>
<th>State</th>
<th>Allowed or prohibited</th>
<th>Filtered</th>
<th>Event type</th>
<th>If Attributable to:</th>
<th>Then</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Non-debug</td>
<td>Allowed</td>
<td>Not filtered</td>
<td>X</td>
<td>Count</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtered</td>
<td>Current Exception level</td>
<td>Do not count</td>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prohibited</td>
<td>X</td>
<td>Current Security state</td>
<td>Do not count</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>Debug</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Debugger operations or raw cycles</td>
<td>Do not count</td>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Do not count</td>
<td>Do not count</td>
<td></td>
</tr>
</tbody>
</table>
D7.5 Prohibiting event counting

Counting Attributable events in Secure state is prohibited unless any one of the following is true:

- EL3 is not implemented.
- EL3 is implemented, is using AArch64, and the value of MDCR_EL3.SPME is 1.
- EL3 is implemented, is using AArch32, and the value of SDCR.SPME is 1.
- EL3 is implemented, EL3 or EL1 is using AArch32, executing at EL0, and the value of SDER32_EL3.SUNIDEN is 1.
- If FEAT_Debugv8p2 is not implemented, EL3 is implemented, and counting is permitted by an IMPLEMENTATION DEFINED authentication interface, ExternalSecureNoninvasiveDebugEnabled() == TRUE.

Note

Software can read the Authentication Status register, DBGAUTHSTATUS to determine the state of an IMPLEMENTATION DEFINED authentication interface.

Counting Attributable events at EL2 is prohibited unless any of the following are true:

- FEAT_PMUv3p1 is not implemented.
- HDCR.HPMD is 0.
- The event is being counted by an event counter reserved by HDCR.HPMN for use by the hypervisor.

If FEAT_SEL2 is implemented, counting Attributable events at Secure EL2 is prohibited if counting events in Secure state is prohibited or counting events at EL2 is prohibited.

The accessibility of Performance Monitors registers is unaffected by whether event counting is enabled or prohibited.

The cycle counter, PMCCNTR, counts unless one of the following is true:

- Event counting is prohibited and PMCR.DP is set to 1.
- The PE is in Debug state.
- FEAT_PMUv3p5 is implemented, EL3 is implemented, the PE is in Secure state, and SDCR.SCCD is set to 1.
- FEAT_PMUv3p5 is implemented, EL2 is implemented, the PE is executing at EL2, and HDCR.HCCD is set to 1.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when counting Attributable events is prohibited.

See AArch64.CountEvents() and AArch32.CountEvents() in Chapter J1 Armv8 Pseudocode for more information. The CountEvents() functions return TRUE if PMEVCTR<n> counts events or the cycle counter counts cycles at the current Exception level and state. However, these functions do not completely describe the behavior for Unattributable events.

The Performance Monitors are intended to be broadly accurate and statistically useful, see Accuracy of the Performance Monitors on page D7-2697. Some inaccuracy is permitted at the point of changing between a state where counting is prohibited and a state where counting is allowed, however. To avoid the leaking of information, the permitted inaccuracy is that transactions that are not prohibited can be uncounted. Where possible, prohibited transactions must not be counted, but if they are counted, then that counting must not degrade security.
D7.6 Multithreaded implementations

If an implementation is multithreaded and the *Effective value* of `PMEVTYPER<n>.MT == 1`, events on other PEs with the same level 1 Affinity are also counted. A pair of PEs have the same level 1 Affinity if they have the same values for all fields in `MPIDR_EL1` or `MPIDR` except the Aff0 field.

Events on other PEs are not counted when the *Effective value* of `PMEVTYPER<n>.MT` is 0.

If the CPU implements multithreading, and `FEAT_MTPMU` is not implemented, for Armv8.5 and earlier, it is IMPLEMENTATION DEFINED whether `PMEVTYPER<n>.MT` is implemented as RW or RES0. From Armv8.6, if the OPTIONAL `FEAT_MTPMU` feature is not implemented, the *Effective value* of `PMEVTYPER<n>.MT` is RES0.

If `FEAT_MTPMU` is implemented, EL3 is implemented, and `MDCR_EL3.MTPME` is 0 or `SDCR.MTPME` is 0, `FEAT_MTPMU` is disabled and the *Effective value* of `PMEVTYPER<n>.MT` is 0.

If `FEAT_MTPMU` is implemented, EL3 is not implemented, EL2 is implemented, and `MDCR_EL2.MTPME` is 0 or `HDCR.MTPME` is 0, `FEAT_MTPMU` is disabled and the *Effective value* of `PMEVTYPER<n>.MT` is 0.

If `FEAT_MTPMU` is disabled on a Processing Element PE_A, it is IMPLEMENTATION DEFINED whether `FEAT_MTPMU` is disabled on another Processing Element PE_B, if all the following are true:

- `FEAT_MTPMU` is implemented on PE_A and PE_B.
- PE_A and PE_B have the same values for Affinity level 1 and higher.
- PE_A and PE_B both have `MPIDR_EL1.MT` or `MPIDR.MT` set to 1.

However, even when the *Effective value* of `PMEVTYPER<n>.MT` is 1, the PE does not count an event that is *Attributable* to Secure state or EL2 on another thread if counting events *Attributable* to Secure state or EL2 is prohibited on the PE that is counting the events.

Example D7-1 The effect of having `PMEVTYPER<n>.MT == 1`

If the value of `MDCR_EL3.SPME` is 0, and `<n>` is less than `PMCR.N` on one thread, then event counter `<n>` on this thread does not count events *Attributable* to Secure state on another thread, even if one or both of the following applies:

- This thread is in Non-secure state.
- `MDCR_EL3.SPME==1` on the other thread.

Example D7-2 The effect of having `PMEVTYPER<n>.MT == 1`

If the value of `MDCR_EL2.HPMD` is 1 and `<n>` is less than `MDCR_EL2.HPMN` on one thread, then event counter `<n>` on this thread does not count events *Attributable* to EL2 on another thread, even if one of the following applies:

- `MDCR_EL2.HPMD==0` on the other thread.
- This thread is not executing at EL2.

When the current configuration prohibits counting of events *Attributable* to Secure state or EL2 in Secure state or at EL2, it is IMPLEMENTATION DEFINED whether:

- Counting events *Attributable* to Secure state on this PE in Non-secure state is permitted.
- Counting events *Attributable* to EL2 when this PE is using another Exception level is permitted
- Counting Unattributable events related to other secure operations in the system or at EL2 is permitted.

If not specified above, counting events that are not prohibited on either PE is permitted.
D7.7 Event filtering

The PMU can filter events by various combinations of Exception level and Security state. This gives software the flexibility to count events across multiple processes.

D7.7.1 Filtering by Exception level and Security state

In AArch64 state:

- For each event counter, \(\text{PMEVTYPER}<n> _\text{EL}0 \) specifies the Exception levels in which the counter counts events \(\text{Attributable} \) to Exception levels.
- \(\text{PMCCFILTR} _\text{EL}0 \) specifies the Exception levels in which the cycle counter counts.

For an event that is \(\text{Attributable} \) to an Exception level, in a multithreaded implementation:

- When the Effective value of \(\text{PMEVTYPER}<n> _\text{EL}0.\text{MT} \) is 1, the specified filtering is evaluated using the current Exception level and Security state of the thread to which the event is \(\text{Attributable} \). See Example D7-3.
- When the Effective value of \(\text{PMEVTYPER}<n> _\text{EL}0.\text{MT} \) is 0, the event is only counted if it is \(\text{Attributable} \) to the counting thread, and the filtering is evaluated using the Exception level and Security state of the counting thread.

Example D7-3 Example of the effect of the \(\text{PMEVTYPER}<n> _\text{EL}0.\text{MT} \) control

In a multithreaded implementation, if the Effective value of \(\text{PMEVTYPER}<n> _\text{EL}0.\text{MT} \) is 1 and the value of \(\text{PMEVTYPER}<n> _\text{EL}0.\text{U} \) is 1 on the counting thread, then event counter \(<n> \) does not count events \(\text{Attributable} \) to EL0 on another thread, even if the counting thread is not executing at EL0.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether the filtering applies. In a multithreaded implementation, if the filtering applies to an Unattributable event, then the filtering is evaluated using the Exception level and Security state of the counting thread.

In AArch32 state, the filtering controls are provided by the \(\text{PMEVTYPER}<n> \) and \(\text{PMCCFILTR} \) registers.

For more information, see the individual register descriptions and Multithreaded implementations on page D7-2704.

D7.7.2 Accuracy of event filtering

For most events, it is acceptable that, during a transition between states, events generated by instructions executed in one state are counted in the other state. The following sections describe the cases where event counts must not be counted in the wrong state:

- Exception-related events.
- Software increment events on page D7-2706.

Exception-related events

The PMU must filter events related to exceptions and exception handling according to the Exception level in which the event occurred. These events are:

- \(\text{EXC} _\text{TAKEN} \), Exception taken.
- \(\text{EXC} _\text{RETURN} \), Instruction architecturally executed, Condition code check pass, exception return.
- \(\text{CID} _\text{WRITE} _\text{RETIRED} \), Instruction architecturally executed, Condition code check pass, write to CONTEXTIDR.
- \(\text{TTBR} _\text{WRITE} _\text{RETIRED} \), Instruction architecturally executed, Condition code check pass, write to translation table base.
The Performance Monitors Extension

D7.7 Event filtering

The PMU must not count an exception after it has been taken because this could systematically report a result of zero exceptions at EL0. Similarly, it is not acceptable for the PMU to count exception returns or writes to CONTEXTIDR after the return from the exception.

Software increment events

The PMU must filter software increment events according to the Exception level in which the software increment occurred. Software increment counting must also be precise, meaning the PMU must count every architecturally executed software increment event, and must not count any Speculatively executed software increment.

Software increment events must also be counted without the need for explicit synchronization. For example, two software increments executed without an intervening Context synchronization event must increment the event counter twice.

For more information, see SW_INCR, Instruction architecturally executed, Condition code check pass, software increment.

D7.7.3 Pseudocode description of event filtering

See AArch64.CountEvents() and AArch32.CountEvents() in Chapter J1 Armv8 Pseudocode for a pseudocode description of event filtering. However, this function does not completely describe the behavior for Unattributable events.
D7.8 Performance Monitors and Debug state

Events that count cycles are not counted in Debug state.

Events Attributable to the operations issued by the debugger through the external debug interface are not counted in Debug state.

In an implementation that supports multithreading, when the Effective value of PMEVTYPE[n]>_EL0.MT is 1, if an event is Attributable to an operation issued by the debugger through the external debug interface to another thread that is in Debug state, then the event is not counted, and it is IMPLEMENTATION DEFINED whether the event is counted when the counting thread is in Debug state.

For each Unattributable event, it is IMPLEMENTATION DEFINED whether it is counted when the counting PE is in Debug state. If the event might be counted, then the rules in Filtering by Exception level and Security state on page D7-2705 apply for the current Security state in Debug state.
D7.9 Counter enables

Table D7-2 shows an implementation that does not include EL2, and where the PMCR.E bit is a global counter enable bit, and PMCNTENSET provides an enable bit for each counter.

Table D7-2 Event counter enables when an implementation does not include EL2

<table>
<thead>
<tr>
<th>PMCR.E</th>
<th>PMCNTENSET[n] == 0</th>
<th>PMCNTENSET[n] == 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PMEVCNTR<φ> disabled</td>
<td>PMEVCNTR<φ> disabled</td>
</tr>
<tr>
<td>1</td>
<td>PMEVCNTR<φ> disabled</td>
<td>PMEVCNTR<φ> enabled</td>
</tr>
</tbody>
</table>

If the implementation includes EL2, then in addition to the PMCR.E and PMCNTENSET enable bits:

- HDCR.HPME overrides the value of PMCR.E for counters configured for access in Hyp mode.
- HDCR.HPMN specifies the number of performance counters that the Guest OS can access. The minimum permitted value of HDCR.HPMN is 1, meaning there must be at least one counter that the Guest OS can access.

Table D7-3 shows the combined effect of all the counter enable controls.

Table D7-3 Event counter enables when an implementation includes EL2

<table>
<thead>
<tr>
<th>HDCR.HPME</th>
<th>PMCR.E</th>
<th>PMCNTENSET[n] == 0</th>
<th>PMCNTENSET[n] == 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>PMEVCNTR<φ> disabled</td>
<td>PMEVCNTR<φ> disabled</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>PMEVCNTR<φ> enabled</td>
<td>PMEVCNTR<φ> enabled</td>
</tr>
</tbody>
</table>

Note

- The effect of HDCR.{HPME, HPMN} on the counter enables applies at all Exception levels and in both Security states.
- The value returned for PMCR.N is not affected by HDCR.HPMN at:
 - EL3.
 - EL2.
 - Secure EL1, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.
 - Secure EL0, if FEAT_SEL2 is not implemented or Secure EL2 is disabled.

EL2 does not affect the enabling of PMCCNTR. Table D7-4 shows the PMCCNTR enables, for all implementations.

Table D7-4 Cycle counter enables

<table>
<thead>
<tr>
<th>PMCR.E</th>
<th>PMCNTENSET[31] == 0</th>
<th>PMCNTENSET[31] == 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PMCCNTR disabled</td>
<td>PMCCNTR disabled</td>
</tr>
<tr>
<td>1</td>
<td>PMCCNTR disabled</td>
<td>PMCCNTR enabled</td>
</tr>
</tbody>
</table>
D7.10 Counter access

All implemented counters are accessible in EL3 and EL2. If EL2 is implemented the hypervisor uses HDCR.HPMN to reserve an event counter, with the effect that if EL2 is enabled in the current Security state, software cannot access that counter and its associated state from EL0 or EL1.

If FEAT_FGT is implemented, if PMSEL.R.SEL or n indicates an unimplemented event counter, access to PMXEVTYPER, PMXEVNTR, PMEVTYPE<n>, or PMEVCNTR<n> is UNDEFINED.

--- Note ---

Whether software can access an event counter at an Exception level does not affect whether the counter counts events at that Exception level. For more information, see Prohibiting event counting on page D7-2703 and Counter enables on page D7-2708.

D7.10.1 PMEVCNTR<n> event counters

Table D7-5 shows how the number of implemented counters, PMCR.N, and if EL2 is implemented, the value of the HDCR.HPMN field affects the behavior of permitted accesses to the PMEVCNTR<n> event counter registers for values of n from 0 to 30.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Access at Exception level</th>
</tr>
</thead>
<tbody>
<tr>
<td>n < PMCR.N and either EL2 is not implemented or EL2 is disabled in the current Security state</td>
<td>EL3</td>
</tr>
<tr>
<td>Succeeds</td>
<td>n/a</td>
</tr>
<tr>
<td>n < HDCR.HPMN and EL2 is implemented and enabled in the current Security state</td>
<td>Succeeds</td>
</tr>
<tr>
<td>n ≥ HDCR.HPMN and n < PMCR.N and EL2 is implemented and enabled in the current Security state</td>
<td>Succeeds</td>
</tr>
<tr>
<td>n ≥ PMCR.N</td>
<td>No access</td>
</tr>
</tbody>
</table>

Where Table D7-5 shows access succeeds for an event counter <n>, the access might be UNDEFINED or generate a trap exception. See the descriptions of PMEVCNTR<n> and PMXEVCNTR for details.

Where Table D7-5 shows no access for an event counter <n>:

- When PMSEL.R.SEL is n, the PE prevents direct reads and direct writes of PMXEVTYPER or PMXEVNTR. See the register descriptions for more information.
- The PE prevents direct reads and direct writes of PMEVTYPE<n> or PMEVCNTR<n>. See the register descriptions for more information.
- Direct reads and direct writes of the following registers are RAZ/WI. PMOVSCLR[n], PMOVSET[n], PMCNTENSET[n], PMCNTRCLR[n], PMINTENSET[n], and PMINTENCLR[n].
- Direct writes to PMSWINC[n] are ignored.
- A direct write of 1 to PMCR.P does not reset PMEVCNTR<n>.

D7.10.2 Cycle counter

The PMU does not provide any control that a hypervisor can use to reserve the cycle counter for its own use. However, access to the PMU registers are subject to the access permissions described in Configurable instruction enables and disables, and trap controls on page D1-2367.
D7.11 PMU events and event numbers

The following sections describe the events that can be counted and their associated event numbers, and the
mnemonics for the events:

• Definitions.
• The PMU event number space and common events on page D7-2715.
• Common event numbers on page D7-2716.
• Cycle event counting on multithreaded implementations on page D7-2762.
• Meaningful ratios between common microarchitectural events on page D7-2763.
• Required events on page D7-2763.
• IMPLEMENTATION DEFINED event numbers on page D7-2765.

D7.11.1 Definitions

The following subsections give more information about terms used in the event definitions:

• Definition of terms.
• Levels of caches and TLBs on page D7-2715.
• Shared caches and buses on page D7-2715.

Definition of terms

CSIZE Container size, in bits, that corresponds to the largest non-overlapping SVE or Advanced SIMD
vector element size or scalar register size that is encoded in the instruction opcode. This excludes
the 64-bit elements of the wide element variants of the SVE bitwise shift and integer compare
instructions that overlap the narrower source and destination elements.

Instruction architecturally executed

Instruction architecturally executed is a class of event that counts for each instruction of the
specified type. Architecturally executed means that the program flow is such that the counted
instruction would be executed in a Simple sequential execution of the program. Therefore an
instruction that has been executed and retired is defined to be architecturally executed. When a PE
can perform speculative execution, an instruction is not architecturally executed if the PE discards
the results of the speculative execution.

If an instruction that would be executed in a Simple sequential execution of the program generates
a synchronous exception, it is IMPLEMENTATION DEFINED whether the instruction is counted.

Each architecturally executed instruction is counted once, even if the implementation splits the
instruction into multiple operations. Instructions that have no visible effect on the architectural state
of the PE are architecturally executed if they form part of the architecturally executed program flow.
The point where such instructions are retired is IMPLEMENTATION DEFINED.

Examples of instructions that have no visible effect are:

• A NOP.
• A conditional instruction that fails its Condition code check.
• A Compare and Branch on Zero, CBZ, instruction that does not branch.
• A Compare and Branch on Nonzero, CBNZ, instruction that does not branch.

The point at which an event causes an event counter to be updated is not defined.

Unless otherwise stated, all instructions of the specified type are counted even if they have no visible
effect on the architectural state of the PE. This includes a conditional instruction that fails its
Condition code check.

For events that count only the execution of instructions that update context state, such as writes to the
CONTEXTIDR, if such an instruction is executed twice without an intervening Context
synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first instruction is counted.
Instruction architecturally executed, Condition code check pass

Instruction architecturally executed, Condition code check pass is a class of events that explicitly do not occur for:

- A conditional instruction that fails its Condition code check.
- A Compare and Branch on Zero, C8Z, instruction that does not branch.
- A Compare and Branch on Nonzero, C8NZ, instruction that does not branch.
- A Test and Branch on Zero, T8Z, instruction that does not branch.
- A Test and Branch on Nonzero, T8NZ, instruction that does not branch.
- A Store-Exclusive instruction that does not write to memory.

Otherwise, the definition of architecturally executed is the same as for *Instruction architecturally executed*. A branch that is architecturally executed, with condition code check pass is also described as a branch taken.

Instruction memory access

A PE acquires instructions for execution through instruction fetches. Instruction fetches might be due to:

- Fetching instructions that are architecturally executed.
- The result of the execution of an instruction preload instruction, PLI.
- Speculation that a particular instruction might be executed in the future.

The relationship between the fetch of an individual instruction and an instruction memory access is IMPLEMENTATION DEFINED. For example, an implementation might fetch many instructions including a non-integer number of instructions in a single instruction memory access.

Memory-read operations

A PE accesses memory through memory-read operations and Memory-write operations. A memory-read operation might be due to:

- The result of an architecturally executed memory-reading instructions.
- The result of a Speculatively executed memory-reading instructions.
- A translation table walk.

For levels of cache hierarchy beyond the Level 1 caches, memory-read operations also include accesses made as part of a refill of another cache closer to the PE. Such refills might be due to:

- Memory-read operations or Memory-write operations that miss in the cache
- The execution of a data preload instruction.
- The execution of an instruction preload instruction on a unified cache.
- The execution of a cache maintenance instruction.

--- **Note**

A preload instruction or cache maintenance instruction is not, in itself, an access to that cache. However, it might generate cache refills which are then treated as memory-read operations beyond that cache.

- Speculation that a future instruction might access the memory location.
- Instruction memory accesses.

This list is not exhaustive.

The relationship between memory-read instructions and memory-read operations is IMPLEMENTATION DEFINED. For example, for some implementations an LDP instruction that reads two 64-bit registers might generate one memory-read operation if the address is quadword-aligned, but for other addresses it generates two or more memory-read operations.
Memory-write operations

Memory-write operations might be due to:
- The result of an architecturally executed memory-writing instructions.
- The result of a Speculatively executed memory-writing instructions.

Note

Speculatively executed memory-writing instructions that do not become architecturally executed must not alter the architecturally defined view of memory. They can, however, generate a memory-write operation that is later undone in some implementation specific way.

For levels of cache hierarchy beyond the Level 1 caches, memory-write operations also include accesses made as part of a write-back from another cache closer to the PE. Such write-backs might be due to:
- Evicting a dirty line from the cache, to allocate a cache line for a cache refill, see Memory-read operations.
- The execution of a cache maintenance instruction.

Note

A cache maintenance instruction is not in itself an access to that cache. However, it might generate write-backs which are then treated as memory-write operations beyond that cache.

- The result of a coherency request from another PE.

This list is not exhaustive.

The relationship between memory-writing instructions and memory-write operations is IMPLEMENTATION DEFINED. For example, for some implementations an STP instruction that writes two 64-bit registers might generate one memory-write operation if the address is quadword-aligned, but for other addresses it generates two or more memory-write operations. In some implementations, the result of two STR instructions that write to adjacent memory might be merged into a single memory-write operation.

Note

The data written back from a cache that is shared with other PEs might not be data that was written by the PE that performs the operation that leads to the write-back. Nevertheless, the event is counted as a write-back event for that PE.

Microarchitectural operation

It is permissible for an implementation of a PE to break down instructions into separate, smaller, operations. The use of Microarchitectural operations (micro-ops) is IMPLEMENTATION DEFINED.

An instruction might create one or more micro-ops at any point in the execution pipeline. For the purpose of event counting, the micro-ops are counted. The definition of a micro-op is implementation specific. An architecture instruction might create more than one micro-op for each instruction. micro-ops might also be removed or merged in the execution stream, so an architecture instruction might create no micro-ops for an instruction. Any arbitrary translation of instructions to an equivalent sequence of micro-ops is permitted.

The counting of operations can indicate the workload on the PE. However, there is no requirement for operations to represent similar amounts of work, and direct comparisons between different microarchitectures are not meaningful.

For example, an implementation might split an A32 or T32 LDM instruction of six registers into six micro-ops, one for each load, and a seventh address-generation operation to determine the base address or writeback address. Also, for doubleword alignment, the six load micro-ops might combine into four operations, that is, a word load, two doubleword loads, and a second word load. This single instruction can then be counted as five, or possibly six, events:
- Four (Operations speculatively executed - Load) events.
- One (Operations speculatively executed - Integer data processing) event.
• One (Operations speculatively executed) - Software change of the PC event if the PC was one of the six registers in the LDM instruction.

MSIZE
Memory element access size, in bits, that corresponds to a load or store instruction mnemonic suffix, where B=8, H=16, W=32 and D=64. When an instruction mnemonic does not end with B, H, W or D, the memory access size is implied by the scalar transfer register size or SIMD transfer register element size.

non-SIMD SVE instructions
These are instructions listed in the non-SIMD SVE instruction category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

Operation counts for dot-product and multiply-accumulate operations
Table D7-6 gives the operation counts for any combination of an applicable instruction when a PMU event in the range 0x80C0 to 0x80CF is implemented.

In this table:
- **Input size** - The element size of input operands other than the accumulator.
- **Acc size** - The element size of the accumulator operand.
- **Count** - The number of addition and multiply operations per 128 bits of input:
 - Scalable vector operations increment the counter by the Count value for an applicable _SCALE_OPS_SPEC event.
 - Advanced SIMD operations operating on a 128-bit register increment the counter by the Count value for an applicable _FIXED_OPS_SPEC event.
 - Advanced SIMD operations operating on a 64-bit register increment the counter by half the Count value for an applicable _FIXED_OPS_SPEC event.
- **Type** - The data type classification for the operations. This determines for which events the event counter counts the operation.

Predicated operations are counted even if the Governing predicate for the element is FALSE.

Note
The FP64 FMMLA instruction works on 256-bit segments, and performs 16 operations per 256-bit segment. The table represents counts per 128 bits of input, so the counter increments by 8.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input size</th>
<th>Acc size</th>
<th>Count</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDOT, UDOT, USDOT, USDOT</td>
<td>8 bits</td>
<td>32 bits</td>
<td>32</td>
<td>Integer</td>
</tr>
<tr>
<td>SDOT, UDOT</td>
<td>16 bits</td>
<td>64 bits</td>
<td>16</td>
<td>Integer</td>
</tr>
<tr>
<td>BFDOOT</td>
<td>16 bits</td>
<td>32 bits</td>
<td>16</td>
<td>Single-precision floating point</td>
</tr>
<tr>
<td>BFMLA</td>
<td>16 bits</td>
<td>32 bits</td>
<td>32</td>
<td>Single-precision floating point</td>
</tr>
<tr>
<td>BFMLAL, FMLAL, and FMLSL</td>
<td>16 bits</td>
<td>32 bits</td>
<td>8</td>
<td>Single-precision floating point</td>
</tr>
<tr>
<td>SMMLA, UMMLA, or USMMLA</td>
<td>8 bits</td>
<td>32 bits</td>
<td>64</td>
<td>Integer</td>
</tr>
<tr>
<td>FMMLA</td>
<td>32 bits</td>
<td>32 bits</td>
<td>16</td>
<td>Single-precision floating point</td>
</tr>
<tr>
<td>FMMLA</td>
<td>64 bits</td>
<td>64 bits</td>
<td>8</td>
<td>Double-precision floating point</td>
</tr>
</tbody>
</table>

Note
Predicated operations are counted even if the governing predicate for the element is FALSE.
Operations speculatively executed

There is no architecturally guaranteed relationship between a Speculatively executed micro-op and an architecturally executed instruction.

The results of such an operation can also be discarded, if it transpires that the operation was not required, following a mispredicted branch. Therefore, Armv8-A defines these events as operations speculatively executed, where appropriate.

Slot

An implementation of a PE might be able to execute multiple micro-ops in a single processor cycle. The maximum number of micro-ops that can be executed might vary at different points in the execution pipeline.

To allow profiling of the utilization of the resource of the PE, an implementation specific point in the execution pipeline is chosen where the maximum number of micro-ops that can be executed is an IMPLEMENTATION DEFINED fixed value.

Each possible micro-op that can be executed at that point in a cycle is called a Slot. The maximum number of micro-ops that can be executed is defined by PMMIR.SLOTS.

Software change of the PC

Some events relate to instructions that cause a software change of the PC. This includes all:

- Branch instructions.
- Memory-reading instructions that explicitly write to the PC.
- Data-processing instructions that explicitly write to the PC.
- Exception return instructions.

It is IMPLEMENTATION DEFINED whether any or all of the following are treated as software changes of the PC:

- BRK and BKPT instructions.
- An exception generated because an instruction is UNDEFINED.
- The exception-generating instructions, SVC, HVC, and SMC.
- Context synchronization barrier ISB instructions.

Speculatively executed

Many events relate to speculatively executed operations. Here, speculatively executed means the PE did some work associated with one or more instructions but the instructions were not necessarily architecturally executed.

See Operations speculatively executed for speculation of micro-ops.

Note

The definition of speculatively executed does not mean only those operations that are executed speculatively and later abandoned, for example due to a branch misprediction or fault. That is, speculatively executed operations must count operations on both false and correct execution paths.

Different groups of events can have different IMPLEMENTATION DEFINED definitions of speculatively executed. Such groups share a common base type, which the event name denotes. Each of the events in the previous example is of the base type, operation speculatively executed.

For groups of events with a common base type, speculatively executed operations are all counted on the same basis, which normally means at the same point in the pipeline. It is possible to compare the counts and make meaningful observations about the program being profiled.

Within these groups, events are commonly defined with reference to a particular architecture instruction or group of instructions. In the case of speculatively executed operations this means operations with semantics that map to that type of instruction.

VL

The current SVE vector length, in bits.
Levels of caches and TLBs

The mapping of levels of cache and TLB to the PMU events is IMPLEMENTATION DEFINED. Although CLIDR_EL1 and CLIDR define the implemented levels of cache, these are not required to correspond with the levels of cache defined for PMU events. The architecture does not provide any way of determining implemented levels of TLB. Also, many implementations include structures that provide some caching at a higher level than the level 1 caches or TLBs. Typically, these structures, that might be called Level 0 caches, or mini caches, or microcaches, are invisible to software. The implementation-specific nature of cache and TLB implementations mean that, in general, PMU event counts cannot be used reliably to make direct comparisons between different implementations.

Shared caches and buses

There is no architectural concept of a shared component. However, when a cache, a bus, or any other system component that might generate countable events is implemented, and:

• The extent of the first-order effects due to an event from that component are only applicable to a single PE, then the event is not shared.
• Otherwise, the event is shared.

Second-order effects are not considered when determining if an event is shared.

Example D7-4 First and second order effects of a cache miss in a multiple-PE implementation

In an implementation that consists of two PEs, each with its own L1 cache, a cache miss by one of the PEs is a first-order effect of an access to its cache. Any snoop that is performed on the L1 cache of the other PE in the implementation as a result of that cache miss is a second order effect.

Note

Shared events are inherently linked to microarchitectures and so the implementer must make an informed decision about how such events are implemented.

D7.11.2 The PMU event number space and common events

In Armv8.0, the event number space is 10 bits. Armv8.1 extends the event number space, and therefore the PMEVTYPE<10:0>_EL0.evtCount field to 16 bits, and is allocated as Table D7-7 shows. For more information about the entries in the Allocation column see the text that follows this table:

Table D7-7 Allocation of the PMU event number space

<table>
<thead>
<tr>
<th>Event numbers</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000 – 0x003F</td>
<td>Common architectural and microarchitectural events.</td>
</tr>
<tr>
<td>0x0040 – 0x008F</td>
<td>Arm-recommended common architectural and microarchitectural events.</td>
</tr>
<tr>
<td>0x00C0 – 0x03FF</td>
<td>IMPLEMENTATION DEFINED events.</td>
</tr>
<tr>
<td>From Armv8.1</td>
<td></td>
</tr>
<tr>
<td>0x0400 – 0x3FF</td>
<td>IMPLEMENTATION DEFINED events.</td>
</tr>
<tr>
<td>0x0400 – 0x403F</td>
<td>Common architectural and microarchitectural events.</td>
</tr>
<tr>
<td>0x4040 – 0x408F</td>
<td>Arm-recommended common architectural and microarchitectural events.</td>
</tr>
<tr>
<td>0x40C0 – 0x7FFF</td>
<td>IMPLEMENTATION DEFINED events.</td>
</tr>
</tbody>
</table>
The meaning of the entries in the Allocation on page D7-2715 column of Table D7-7 on page D7-2715 is as follows:

Common architectural and microarchitectural events

Arm defines the use of these event numbers. For more information see Common event numbers.

Arm-recommended common architectural and microarchitectural events

The use of these event numbers is IMPLEMENTATION DEFINED. For more information see:

• IMPLEMENTATION DEFINED event numbers on page D7-2765.

• Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events.

Common architectural and microarchitectural SVE events

Arm defines the use of these event numbers. See Common event numbers. An implementation is not required to implement SVE in order to implement these events.

IMPLEMENTATION DEFINED event numbers

For more information about the use of these event numbers see IMPLEMENTATION DEFINED event numbers on page D7-2765.

D7.11.3 Common event numbers

The event numbers of the common architectural and microarchitectural events are reserved for the specified events. Each of these event numbers must either:

• Be used for its assigned event.

• Not be used.

However, see Required events on page D7-2763.

When an implementation supports monitoring of an event that is assigned a common architectural or microarchitectural event number, Arm strongly recommends that it uses that number for the event. However, software might encounter implementations where an event assigned a number in this range is monitored using an event number from an IMPLEMENTATION DEFINED range.

Note

Arm might define other common architectural and microarchitectural event numbers. This is one reason why software must not assume that an event with an assigned common architectural or microarchitectural event number is never monitored using an event number from the IMPLEMENTATION DEFINED range.

Common events:

• Common architectural events on page D7-2717.

• Common microarchitectural events on page D7-2724.
The supported common architectural and microarchitectural events in the ranges 0x0000-0x003F and 0x4000-0x403F are discoverable to software through:

- The PMCEID0_EL0 and PMCEID1_EL0 registers in AArch64 state.
- The PMCEID0, PMCEID1, PMCEID2, and PMCEID3 registers in AArch32 state.

Arm recommends that the value of 0 is used for the PMCEID0_EL0 or PMCEID1_EL0 bit corresponding to any event that an implementation never generates, even if the implementation is considered to support but never count the event.

--- Note ---
- For example, if an implementation never generates the L1D_CACHE_ALLOCATE event, event 31, Arm recommends that PMCEID0_EL0[31] is RAZ.
- In an implementation that supports both Execution states, each bit in the AArch64 PMCEID0_EL0 and PMCEID1_EL0 registers corresponds to a single bit in the AArch32 PMCEID0, PMCEID1, PMCEID2, and PMCEID3 registers, and corresponding bits must have the same behavior.

However, for some implementations, an event in the common events range might be generated by the system, meaning behavior can vary between systems. In such a case, the corresponding PMCEIDn_EL0 bit might be RAO.

Event numbers that Table D7-7 on page D7-2715 shows as allocated for common architectural and microarchitectural events that are not described in Common architectural events and Common microarchitectural events on page D7-2724 are reserved. Future revisions of this manual, or of the architecture, might assign these reserved values to additional common events. Events that do not require additional features in the PMU can be implemented retrospectively, meaning an implementation of a particular version of the PMU specification might support common events that are first defined in a later version of the PMU specification.

--- Note ---
- The requirement that an event that is implemented retrospectively does not require additional features in the PMU means that it must be possible to represent the event in the PMEVTYPER<n>_EL0.evtCount field. This means, for example, that an implementation with a 12-bit PMEVTYPER<n>_EL0.evtCount field can only implement events with event numbers 0x000-0xFFF.
- This means that, for example, an Armv7 PMUv2 implementation, for which the evtCount field is 8 bits, can include support for any of the event numbers that are described in Common architectural events and Common microarchitectural events on page D7-2724 define in the range 0x00-0xFF.

Common architectural events

This section describes the use of the defined common architectural event numbers.

For the common features, normally the counters must increment only once for each event. The event descriptions include any exceptions to this rule.

In these definitions, the term architecturally executed means that the instruction flow is such that the counted instruction would have been executed in a Simple sequential execution model.

The events corresponding to the common architectural event numbers are:

0x0000, **SW_INCR**, Instruction architecturally executed, Condition code check pass, software increment

The counter increments on writes to the PMSWINC register.

If the PE performs two architecturally executed writes to the PMSWINC register without an intervening Context synchronization event, then the counter is incremented twice.

If PMEVTYPER<n>_EL0.evtCount is set to 0x0000, then in AArch64 state, counts MSR writes to PMSWINC_EL0 with bit [n] set to 1.

If the value of PMEVTYPER<n>_EL0.MT is 1 then, in a multithreaded implementation, this counts writes by all PEs that have the same affinity at level 1 and above.
0x0006, **LD_RETIRED**, *Instruction architecturally executed, Condition code check pass, load*

The counter increments for every executed memory-reading instruction.

--- **Note** ---

The counter 0x006 does not count the return status value of a Store-Exclusive instruction.

Whether the preload instructions *PRFM*, *PLD*, *PLDw*, *PLI*, count as memory-reading instructions is IMPLEMENTATION DEFINED. Arm recommends that if the instruction is not implemented as a *NOP* then it is counted as a memory-reading instruction.

0x0007, **ST_RETIRED**, *Instruction architecturally executed, Condition code check pass, store*

The counter increments for every executed memory-writing instruction.

DC *ZVA* is counted as a store.

The counter does not increment for a Store-Exclusive instruction that fails.

0x0008, **INST_RETIRED**, *Instruction architecturally executed*

The counter increments for every architecturally executed instruction.

It is IMPLEMENTATION DEFINED whether the counter increments for the *MOVPRFX* instruction.

0x0009, **EXC_TAKEN**, *Exception taken*

The counter increments for each exception taken. See *Exception-related events* on page D7-2705.

--- **Note** ---

The counter counts the PE exceptions described in:

- For exceptions taken to an Exception level using AArch64, *Exception entry* on page D1-2333.
- For exceptions taken to an Exception level using AArch32, *AArch32 state exception descriptions* on page G1-5778.

0x000A, **EXC_RETURN**, *Instruction architecturally executed, Condition code check pass, exception return*

The counter increments for each executed exception return instruction. See also *Exception-related events* on page D7-2705. The following sections define the counted instructions:

- For an exception return from an Exception level using AArch64, *Exception return* on page D1-2344.
- For an exception return from an Exception level using AArch32, *Exception return instructions* on page G1-5765.

However, is CONstrained UNpREDICTABLE whether this event counts the execution of an exception return instruction if either:

- Execution of the instruction is, itself, CONstrained UNpREDICTABLE.

--- **Note** ---

Examples of when an exception return instruction is CONstrained UNpREDICTABLE are if the instruction is executed at EL0, or in AArch32 state in System mode.

- Execution of the instruction sets PSTATE.IL and does not generate an exception return.

--- **Note** ---

A particular consequence of this CONstrained UNpREDICTABLE behavior is that an implementation that does not support AArch32 state at EL1 or higher does not have to treat AArch32 MOV* PC, LR instructions, and related instructions, as exception return instructions.
0x0009, CID_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to CONTEXTIDR

The counter increments for every write to CONTEXTIDR. See Exception-related events on page D7-2705.

If the PE performs two architecturally-executed writes to CONTEXTIDR without an intervening Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write is counted.

When FEAT_VHE is implemented, the counter is:

- Incremented as a result of the retirement of an instruction accessing the named register CONTEXTIDR_EL1, even when executing at EL2.
- Not incremented as a result of the retirement of an instruction accessing the named CONTEXTIDR_EL12.

--- Note ---

The event is defined by the name used to access the register. The counter does not count writes to the named register CONTEXTIDR_EL2.

0x000C, PC_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, software change of the PC

The counter increments for every Software change of the PC.

The counter does not increment for exceptions other than those explicitly identified as a Software change of the PC.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED events are both implemented, the PE must have a consistent definition of Software change of the PC instructions. This means the definition must treat the following instructions in the same way for both events:

- BRK and BKPT instructions.
- An exception generated because an instruction is UNDEFINED.
- The exception-generating instructions, SVC, HVC, and SMC.
- Context synchronization barrier instructions.

From Armv8.6, when BR_RETIRED is also implemented, the PE must treat these instructions in the same way for BR_RETIRED, PC_WRITE_RETIRED and BR_SKIP_RETIRED.

--- Note ---

Conditional branches are only counted if the branch is taken.

0x000D, BR_IMMED_RETIRED, Instruction architecturally executed, immediate branch

The counter counts all immediate branch instructions on the architecturally executed path.

In AArch32 state, the counter increments each time the PE executes one of the following instructions:

- B{<c>} <label>.
- BL{<c>} <label>.
- BLX{<c>} <label>.
- CBZ <Rn>, <label>.
- CBNZ <label>.

In AArch64 state, the counter increments each time the PE executes an immediate branch instructions:

- B <label>.
- B.cond <label>.
- BL <label>.
- CBZ <Rn>, <label>.
- CBNZ <Rn>, <label>.
• TBZ <Rn>, <label>.
• TBNZ <Rn>, <label>.

--- Note ---
Conditional branches are always counted, regardless of whether the branch is taken.

--- Note ---
If an ISB is counted as a software change of the PC instruction, then it is IMPLEMENTATION DEFINED whether an ISB is counted as an immediate branch instruction.

0x000E, BR_RETURN_RETIRED, Instruction architecturally executed, Condition code check pass, procedure return

In AArch32 state, the counter counts the following procedure return instructions:
• BX R14.
• MOV PC, LR.
• POP {…, PC}.
• LDR PC, [SP], #offset.

--- Note ---
The counter counts only the listed instructions as procedure returns. For example, it does not count the following as procedure return instructions:
• BX R0, because Rm != R14.
• MOV PC, R0, because Rm != R14.
• LDM SP, {…, PC}, because writeback is not specified.
• LDR PC, [SP, #offset], because this specifies the wrong addressing mode.

--- Note ---
In AArch64 state, the counter counts all architecturally executed RET, RETAA, and RETAB instructions.

0x000F, UNALIGNED_LDST_RETIRED, Instruction architecturally executed, Condition code check pass, unaligned load or store

The counter counts each memory-reading instruction or memory-writing instruction access that would generate an Alignment fault when Alignment fault checking is enabled.

The counter does not count accesses that would generate an SP alignment fault exception if the applicable stack pointer alignment check is enabled, unless that access would also generate an Alignment fault Data Abort exception if Alignment fault checking is enabled.

It is IMPLEMENTATION DEFINED whether this event counts accesses that generate an exception, including accesses that do generate Alignment fault Data Abort exceptions.

See SP alignment checking on page D1-2327 for more information.
See Unaligned data access on page E2-4044 for more information.

0x001C, TTBR_WRITE_RETIRED, Instruction architecturally executed, Condition code check pass, write to TTBR

The counter counts writes to TTBR0_EL1 and TTBR1_EL1 in AArch64 state and TTBR0 and TTBR1 in AArch32 state. When EL3 is implemented and using AArch32, this includes counting writes to both banked copies of TTBR0 and TTBR1. See Exception-related events on page D7-2705.

If the PE executes two writes to the same TTBR, without an intervening Context synchronization event, it is CONSTRAINED UNPREDICTABLE whether the first write to the TTBR, is counted.

If EL3 is implemented and using AArch64, the counter does not count writes to TTBR0_EL3.
If EL2 is implemented and using AArch64, the counter does not count writes to TTBR0_EL2 and to VTTBR_EL2.
If EL2 is implemented and using AArch32, the counter does not count writes to HTTBR and to VTTBR.
When **FEAT_VHE** is implemented, the counter is:

- Incremented as a result of the retirement of an instruction accessing the named registers TTBR0_EL1 and TTBR1_EL1.
- Not incremented as a result of the retirement of an instruction accessing the named registers TTBR0_EL12 and TTBR1_EL12.

\[0x001E, \text{CHAIN} \]

Even-numbered counters never increment as a result of this event. For an odd-numbered counter \(n+1 \), if **FEAT_PMUv3p5** is implemented, the odd-numbered event counter does not increment if:

- EL2 is not implemented and PMCR.LP is set to 1.
- EL2 is implemented, \(<n>\) is less than HDCR.HPMN and PMCR.LP is set to 1.
- EL2 is implemented, \(<n+1>\) is greater than or equal to HDCR.HPMN and HDCR.HLP is set to 1.

Otherwise, the odd-numbered event counter \(n+1 \) increments when an event increments the preceding even-numbered counter \(n \) on the same PE and causes an unsigned overflow of bits [31:0] of event counter \(n \).

This means the CHAIN event can be used to link the odd-numbered counter with the preceding even-numbered counter to provide a 64-bit counter.

Note

When **FEAT_PMUv3p5** is not implemented, the CHAIN event can be used by software to provide \(N \) 32-bit counters, \(N/2 \) 64-bit counters, or a mixture of 32-bit counters and 64-bit counters.

The CHAIN event only counts overflows from the preceding even-numbered counter on the same PE. This means it is unaffected by the value of PMEVTYPER<\(n>_{EL0}.MT.

To filter the Exception levels and Security states in which the event is counted, software must:

- Program PMEVTYPER<\(n>_{EL0} to count the event in the required conditions.
- Program PMEVTYPER<\(n+1>_{EL0} to count the CHAIN event in all Exception levels and states.

This allows, but does not require, hardware to ignore the filter settings for the CHAIN event and behave as if they are set to count in all Exception levels and states.

If software does not program the event in this way, the count becomes UNPREDICTABLE.

There is no atomic access to a pair of counters, so if software reads a counter-pair that is enabled, it must use a high-low-high read sequence, or employ reasonable heuristics, to avoid tearing.

Similarly, if using CHAIN events, when disabling the counters software must take care that the result is not torn by the low counter overflowing at the same time as the counters are disabled.

Example D7-5 shows suitable sequences for disabling and enabling CHAIN counters.

Example D7-5 Usage examples for 64-bit counters

An example high-low-high read sequence for a 64-bit counter created by a pair of 32-bit counters paired by a CHAIN event is:

```
retry:
  MRS W2, PMEVCNTR1_EL0  ;; read high counter, must be odd-numbered
  ISB
  MRS W0, PMEVCNTR0_EL0  ;; read low counter
                         ;; must return the previous counter to PMEVCNTR1_EL0
  ISB
  MRS W1, PMEVCNTR1_EL0  ;; read high counter
  CMP W1, W2
  BNE retry              ;; if the high counter has changed, then retry
  CHP W1, W2
  BNE retry
```

When disabling a pair of counters that are paired by a CHAIN event, software must:

1. Disable the low counter, by setting PMCNTENCLR_EL0[n] to 1.
2. Execute an ISB instruction, or perform another Context synchronization event.
3. Disable the high counter, by setting PMCNTENCLR_EL0[n+1] to 1, or setting PMCR_EL0.E to 0.

When enabling a pair of counters that are paired by a CHAIN event, software must:
1. Enable the high counter, by setting PMCNTENSET_EL0[n+1] to 1 and, if necessary, setting PMCR_EL0.E to 1.
2. Execute an ISB instruction, or perform another Context synchronization event.
3. Enable the low counter by setting PMCNTENSET_EL0[n] to 1.

When using 64-bit counters created by a pair of 32-bit counters paired by a CHAIN event, the architecture does not define the latency between the first counter overflowing and the second counter incrementing the CHAIN event. There is no requirement for updates to occur synchronously, but software reading or enabling the counter pair using a low-ISB-high sequence, as shown in Example D7-5 on page D7-2721, must not observe the low counter incrementing and overflowing for the event and the high counter not incrementing for the resulting CHAIN event. This means that the ISB executed after reading the low counter must ensure the completion of the update of the high counter by the CHAIN event.

0x0021, BR RETIRED, Instruction architecturally executed, branch

The counter counts all branches on the architecturally executed path that would incur cost if mispredicted.
Counts all branch instructions, memory-reading and data-processing instructions that explicitly write to the PC, at retirement.

--- Note ---
Conditional branches are always counted, whether the branch is taken or not taken.

It is IMPLEMENTATION DEFINED whether this includes each of:
• Unconditional direct branch instructions. Arm recommends these are included.
• Exception-generating instructions.
• Exception return instructions. Arm recommends these are included.
• Context synchronization instructions.

From Armv8.6, when PC_WRITE RETIRED and BR RETIRED are both implemented, the PE must treat the following types of instruction in the same way for both events:
• BRK and BKPT instructions.
• UNDEFINED instructions.
• The exception-generating instructions, SVC, HVC, and SMCE.
• Context synchronization barrier instructions.

0x8000, SIMD_INST RETIRED, SIMD Instruction architecturally executed

The counter counts the following architecturally executed SIMD instructions:
• SVE instructions, but not non-SIMD SVE instructions.
• Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x8001, ASE_INST RETIRED, Advanced SIMD Instruction architecturally executed

The counter counts architecturally executed Advanced SIMD instructions. It is IMPLEMENTATION DEFINED whether this event counts Advanced SIMD scalar instructions.

0x8002, SVE_INST RETIRED, Instruction architecturally executed, SVE

The counter counts architecturally executed SVE instructions. It is IMPLEMENTATION DEFINED whether this event counts non-SIMD SVE instructions.
0x8003, ASE SVE_INST_RETIRED, Advanced SIMD and SVE Instruction architecturally executed

The counter counts architecturally executed instructions that are counted by ASE_INST_RETIRED or SVE_INST_RETIRED.

0x8107, BR_SKIP_RETIRED, Instruction architecturally executed, branch not taken

The counter counts the each conditional Software change of the PC instruction, on the architecturally executed path, that is not taken.

Note

Many of these instructions can only be conditional in the AArch32 instruction sets.

The counter does not increment for exceptions not listed as a Software change of the PC.

If PC_WRITE_RETIRED and BR_SKIP_RETIRED events are both implemented, the PE must have a consistent definition of Software change of the PC instructions. This means the definition must treat the following instructions in the same way for both events:

• BRK and BKPT instructions.
• UNDEFINED instructions.
• The exception-generating instructions, SVC, HVC, and SMC.
• Context synchronization barrier instructions.

From Armv8.6, then the BR_RETIRED event is implemented, the PE must treat these instructions in the same way for the BR_RETIRED event.

0x8108, BR_IMMED_TAKEN_RETIRED, Instruction architecturally executed, immediate branch taken

The counter counts the instructions, on the architecturally executed path, counted by both BR_IMMED_RETIRED and PC_WRITE_RETIRED. These are all immediate branch instructions where the branch is taken.

0x8109, BR_IMMED_SKIP_RETIRED, Instruction architecturally executed, immediate branch not taken

The counter counts the instructions on the architecturally executed path, counted by both BR_IMMED_RETIRED, and BR_SKIP_RETIRED. These are all immediate branch instructions where the branch is not taken.

0x810A, BR_IND_TAKEN_RETIRED, Instruction architecturally executed, indirect branch taken

The counter counts the instructions, on the architecturally executed path, counted by both BR_IND_RETIRED, and PC_WRITE_RETIRED. These are branch instructions where the branch is taken, but does not include immediate instructions.

A64 does not include conditional indirect branches. If A32 is not supported at any Exception level, this event is not implemented because BR_IND_RETIRED counts the same events.

0x810B, BR_IND_SKIP_RETIRED, Instruction architecturally executed, indirect branch not taken

The counter counts the instructions on the architecturally executed path, counted by both BR_IND_RETIRED, and BR_SKIP_RETIRED. These are branch instructions, where the branch is not taken, but does not include immediate instructions.

A64 does not include conditional indirect branches. If A32 is not supported at any Exception level, this event is not implemented.

0x810C, BR_INDNR_TAKEN_RETIRED, Instruction architecturally executed, indirect branch taken excluding returns

The counter counts the instructions, on the architecturally executed path, counted by both BR_IND_RETIRED, and PC_WRITE_RETIRED, but not BR_RETURN_RETIRED. These are branch instructions, where the branch is taken, but does not include returns or immediate instructions.

0x810D, BR_INDNR_SKIP_RETIRED, Instruction architecturally executed, indirect branch not taken excluding returns
The counter counts the instructions, on the architecturally executed path, counted by both BR_INDNR_RETIRED and BR_SKIP_RETIRED. These are branch instructions, where the branch is not taken, but does not include returns or immediate instructions.

A64 does not include conditional indirect branches. If A32 is not supported at any Exception level, this event is not implemented.

0x810E, BR_RETURN_ANY_RETIRED, Instruction architecturally executed, procedure return

The counter counts the instructions counted on the architecturally executed path by BR_IND_RETIRED where, if taken, the branch would be counted by BR_RETURN_RETIRED.

A64 does not include conditional indirect branches. If A32 is not supported at any Exception level, this event is not implemented because BR_RETURN_RETIRED counts the same events.

0x810F, BR_RETURN_SKIP_RETIRED, Instruction architecturally executed, procedure return not taken

The counter counts the instructions on the architecturally executed path, counted by both BR_RETURN_ANY_RETIRED and BR_SKIP_RETIRED. These are branch return instructions, where the branch is not taken.

A64 does not include conditional indirect branches. If A32 is not supported at any Exception level, this event is not implemented.

0x811D, BR_IND_RETIRED, Instruction architecturally executed, indirect branch

The counter counts each Software change of the PC on the architecturally executed path that is not counted by BR_IMMED_RETIRED. These are all branch instructions that are not immediate,

Note

Conditional branches are always counted, whether the branch is taken or not taken.

0x811E, BR_INDNR_RETIRED, Instruction architecturally executed, indirect branch excluding procedure return

The counter counts the instructions on the architecturally executed path counted by BR_RETIRED, but not counted by BR_RETURN_ANY_RETIRED. These are branch instructions but does not include returns or immediate instructions.

If A32 is not supported at any Exception level, this event is not implemented because BR_INDNR_TAKEN_RETIRED counts the same events.

Common microarchitectural events

This section describes the use of the defined common microarchitectural event numbers.

The common microarchitectural events are features that are likely to be implemented across a wide range of implementations. Unlike the common architectural events, there can be some IMPLEMENTATION DEFINED variation between definitions on different implementations.

Unless otherwise stated, the common microarchitectural features relate only to events resulting from the operation of the PE counting the events. Events resulting from the operation of other PEs that might share a resource must not be counted. Where a resource can be subject to events that do not result from the operation of any of the PEs that share it, Arm recommends that the resource implements its own event counters. An example of a resource that might require its own event counters is a shared Level 2 cache that is subject to accesses from a system coherency port on that cache.

The event definitions relating to Level 2 caches generally assume the Level 2 cache is shared. The event definitions relating to Level 1 caches generally assume the Level 1 cache is not shared.

The events corresponding to the common microarchitectural event numbers are:

0x0001, L1I_CACHE_REFILL, Level 1 instruction cache refill

The counter counts each access counted by L1I_CACHE that causes a demand refill of any of the Level 1 caches outside the Level 1 caches of this PE.
A refill includes any access that causes data to be fetched from outside the cache, even if the data is ultimately not allocated into the cache. For example, data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted. If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x0002, L1I_TLB_REFILL, Attributable Level 1 instruction TLB refill

The counter counts Attributable instruction memory accesses that cause a TLB refill of at least the Level 1 instruction TLB. This includes each Instruction memory access that causes an access to a level of memory system due to a translation table walk or an access to another level of TLB caching. It is IMPLEMENTATION DEFINED whether the count increments when:
- A refill results in a Translation fault.
- A refill is not allocated in the TLB.

The counter does not count:
- A TLB miss that does not cause a refill but does generate a translation table walk.
- TLB maintenance instructions.

See also:
- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x0003, L1D_CACHE_REFILL, Level 1 data cache refill

The counter counts each access counted by L1D_CACHE that causes a demand refill of at least the Level 1 data or unified cache from outside the Level 1 cache. Each access to a cache line that causes a new linefill is counted, including those from instructions that generate multiple accesses, such as load or store multiples, and PUSH and POP instructions. In particular, the counter counts accesses to the Level 1 cache that cause a refill that is satisfied by another Level 1 data or unified cache, or a Level 2 cache, or memory.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is ultimately not allocated into the cache. For example, data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

The counter does not count:
- A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even if that previous refill is not complete at the time of the miss.
- A miss that does not generate a refill, such as a write through the cache.
- If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x0004, L1D_CACHE, Level 1 data cache access

If FEAT_PMUv3p4 is not implemented:
- The counter counts each Memory-read operation or Memory-write operation that causes a cache access to at least the Level 1 data or unified cache.
- The counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented:

- The counter counts each Memory-read operation or Memory-write operation that cause a cache access, to at least the Level 1 data or unified cache. This includes accesses that transfer data to the cache when the data is not ultimately allocated to the cache. This does not include accesses that update the cache status information for the cache entry without changing the content of the cache data.

- It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted.

Each access to a cache line is counted including the multiple accesses of instructions, such as LDM or STM. Each access to other Level 1 data or unified memory structures, for example refill buffers, write buffers, and write-back buffers, is also counted.

See also Attributability on page D7-2701.

0x0005, L1D_TLB_REFILL, Attributable Level 1 data TLB refill

The counter counts each Attributable Memory-read operation or Attributable Memory-write operation that causes a TLB refill of at least the Level 1 data or unified TLB. It counts each read or write that causes a refill, in the form of a translation table walk or an access to another level of TLB caching. It is IMPLEMENTATION DEFINED whether the count increments when:

- A refill results in a Translation fault.
- A refill is not allocated in the TLB.

The counter does not count:

- A TLB miss that does not cause a refill but does generate a translation table walk.
- TLB maintenance instructions.

See also:

- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x0010, BR_MIS_PRED, Mispredicted or not predicted branch Speculatively executed

The counter counts each correction to the predicted program flow that occurs because of a misprediction from, or no prediction from, the branch prediction resources and that relates to instructions that the branch prediction resources are capable of predicting.

If no program-flow prediction resources are implemented, Arm recommends that the counter counts all branches that are not taken.

0x0011, CPU_CYCLES, Cycle

The counter increments on every cycle.

All counters are subject to changes in clock frequency, including when a WFI or WFE instruction stops the clock. This means that it is CONSTRAINED UNPREDICTABLE whether or not CPU_CYCLES continues to increment when the clocks are stopped by WFI and WFE instructions.

______ Note ________

Unlike PMCCNTR, this count is not affected by PMCR.DP, PMCR.D, PMCR.C, SDCR.SCCD or HDCR.HCCD:

- The counter is not incremented in prohibited regions, so is not affected by PMCR.DP.
- The counter increments on every cycle, regardless of the setting of PMCR.D.
- The counter is reset when event counters are reset by PMCR.P, never by PMCR.C.
- The counter is not disabled when FEAT_PMUv3p5 is implemented, EL3 is implemented, the PE is in Secure state, and SDCR.SCCD is set to 1.
- The counter is not disabled when FEAT_PMUv3p5 is implemented, EL2 is implemented, the PE is executing at EL2, and HDCR.HCCD is set to 1.
In a multithreaded implementation, CPU_CYCLES counts each cycle for the processor for which this PE thread was active and could issue an instruction. For more information, see Cycle event counting on multithreaded implementations on page D7-2762.

0x0012, BR_PRED, Predictable branch Speculatively executed

The counter counts every branch or other change in the program flow that the branch prediction resources are capable of predicting.

If all branches are subject to prediction, for example a BTB or BTAC, then all branches are predictable branches.

If branches are decoded before the predictor, so that the branch prediction logic dynamically predicts only some branches, for example conditional and indirect branches, then it is IMPLEMENTATION DEFINED whether other branches are counted as predictable branches. Arm recommends that all branches are counted.

An implementation might include other structures that predict branches, such as a loop buffer that predicts short backwards direct branches as taken. Each execution of such a branch is a predictable branch. Terminating the loop might generate a misprediction event that is counted by BR_MIS_PRED.

If no program-flow prediction resources are implemented, this event is optional, but Arm recommends that BR_PRED counts all branches.

0x0013, MEM_ACCESS, Data memory access

The counter counts Memory-read operations and Memory-write operations that the PE made. The counter increments whether the access results in an access to a Level 1 data or unified cache, a Level 2 data or unified cache, or neither of these.

The counter does not increment as a result of:

• Instruction memory accesses, see Definition of terms on page D7-2710.
• Translation table walks.
• Write-back from any cache.
• Refilling of any cache.

The number of accesses generated by each instruction is IMPLEMENTATION DEFINED.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

0x0014, L1I_CACHE, Attributable Level 1 instruction cache access

If FEAT_PMUv3p4 is not implemented, the counter counts Attributable instruction memory accesses that access at least the Level 1 instruction or unified cache.

If FEAT_PMUv3p4 is implemented, the counter counts Attributable instruction memory accesses, that access at least the Level 1 instruction or unified cache. This includes accesses that transfer data to the cache when the data is not ultimately allocated to the cache. This does not include accesses that update the cache status information for the cache entry without changing the content of the cache data.

Each access to other Level 1 instruction memory structures, such as refill buffers, is also counted.

See also Attributability on page D7-2701.

0x0015, L1D_CACHE_WB, Attributable Level 1 data cache write-back

The counter counts every write-back of data from the Level 1 data or unified cache. The counter counts each write-back that causes data to be written from the Level 1 cache to outside of the Level 1 cache. For example, the counter counts the following cases:

• A write-back that causes data to be written to a Level 2 cache or memory.
• A write-back of a recently fetched cache line that has not been allocated to the Level 1 cache.
• Transfer of data from the Level 1 cache to outside of this cache made as a result of a coherency request. The conditions determining which of these are counted for transfers to other Level 1 caches within the same multiprocessor cluster are IMPLEMENTATION DEFINED.
Each write-back is counted once, even if multiple accesses are required to complete the write-back. Whether write-backs made as a result of cache maintenance instructions are counted is IMPLEMENTATION DEFINED.

The counter does not count:
- The invalidation of a cache line without any write-back to a Level 2 cache or memory.
- Writes from the PE that write through the Level 1 cache to outside of the Level 1 cache.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency request that results in write-back. If the cache is shared, then an Unattributable write-back event is not counted. If the cache is not shared, then the event is counted. See Attributability on page D7-2701.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache, is counted. For example, this applies when the PE determines streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.

See also Attributability on page D7-2701.

0x0016, L2D_CACHE, Level 2 data cache access

If FEAT_PMUv3p4 is not implemented:
- The counter counts each Memory-read operation or Memory-write operation that causes a cache access to at least the Level 2 data or unified cache.
- The counter does not count cache maintenance instructions.

If FEAT_PMUv3p4 is implemented:
- The counter counts each Memory-read operation or Memory-write operation that cause a cache access, to at least the Level 2 data or unified cache. This includes accesses that transfer data to the cache when the data is not ultimately allocated to the cache. This does not include accesses that update the cache status information for the cache entry without changing the content of the cache data.
- It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted.

Each access to a cache line is counted including refills of and write-backs from the Level 1 data, instruction, or unified caches. Each access to other Level 2 data or unified memory structures, such as refill buffers, write buffers, and write-back buffers, is also counted.

See also Attributability on page D7-2701.

0x0017, L2D_CACHE_REFILL, Level 2 data cache refill

The counter counts each access counted by L2D_CACHE that causes a refill of a demand refill of any of the Level 1 or Level 2 caches from outside the Level 1 and Level 2 caches of the PE.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is ultimately not allocated into the cache. For example, data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

For example, the counter counts:
- Accesses to the Level 2 cache that cause a refill that is satisfied by another Level 2 cache, a Level 3 cache, or memory.
- Refills of and write-backs from any Level 1 data, instruction or unified cache that cause a refill from outside the Level 1 and Level 2 caches.
- Accesses to the Level 2 cache that cause a refill of a Level 1 cache from outside of the Level 1 and Level 2 caches, even if there is no refill of the Level 2 cache.

The counter does not count, as events on this PE:
- A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even if that previous refill is not complete at the time of the miss.
• A miss that does not generate a refill, such as a write through the cache.
• If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
• Attributability on page D7-2701.
• Meaningful ratios between common microarchitectural events on page D7-2763.

0x0018, L2D_CACHE_WB, Attributable Level 2 data cache write-back

The counter counts every write-back of data from the Level 2 data or unified cache that occurs as a result of an operation by this PE. It counts each write-back that causes data to be written from the Level 2 cache to outside the Level 1 and Level 2 caches. For example, the counter counts:
• A write-back that causes data to be written to a Level 3 cache or memory.
• A write-back of a recently fetched cache line that has not been allocated to the Level 2 cache.

Each write-back is counted once, even if it requires multiple accesses to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:
• A transfer of data from the Level 2 cache to outside the Level 1 and Level 2 cache made as a result of a coherency request.
• Write-backs made as a result of Cache maintenance instructions.

The counter does not count:
• The invalidation of a cache line without any write-back to a Level 3 cache or memory.
• Writes from the PE or Level 1 data or unified cache that write through the Level 2 cache to outside the Level 1 and Level 2 caches.
• Transfers of data from the Level 2 cache to a Level 1 cache, to satisfy a Level 1 cache refill.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency request that results in write-back. If the cache is shared, then an Unattributable write-back event is not counted. If the cache is not shared, then the event is counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache, is counted. For example, this applies when the PE determines streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.

See also Attributability on page D7-2701.

0x0019, BUS_ACCESS, Attributable Bus access

The counter counts Memory-read operations and Memory-write operations that access outside of the boundary of the PE and its closely-coupled caches. Where this boundary lies with respect to any implemented caches is IMPLEMENTATION DEFINED.

The definition of a bus access is IMPLEMENTATION DEFINED but physically is a single beat rather than a burst. That is, for each bus cycle for which the bus is active.

Bus accesses include refills of and write-backs from data, instruction, and unified caches. Whether bus accesses include operations that do use the bus but not explicitly transfer data is IMPLEMENTATION DEFINED.

An Unattributable bus access occurs when a requestor outside the PE makes a request that results in a bus access, for example, a coherency request. If the bus is shared, then an Unattributable bus access is not counted. If the bus is not shared, then the event is counted.

If the bus is shared, then only Attributable bus accesses are counted. If the bus is not shared, then all bus accesses are counted.

Where an implementation has multiple buses at this boundary, this event counts the sum of accesses across all buses.
If a bus supports multiple accesses per cycle, for example through multiple channels, the counter increments once for each channel that is active on a cycle, and so it might increment by more than one in any given cycle.

The maximum increment in any given cycle is implementation defined.

See also:
- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x001A, MEMORY_ERROR, Local memory error
The counter counts every occurrence of a memory error signaled by a memory closely coupled to this PE. The definition of local memories is IMPLEMENTATION DEFINED but includes caches, tightly-coupled memories, and TLB arrays.

Memory error refers to a physical error detected by the hardware, such as a parity or ECC error. It includes errors that are correctable and those that are not. It does not include errors as defined in the architecture, such as MMU faults.

0x001B, INST_SPEC, Operation Speculatively executed
The counter counts Speculatively executed operations. The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x001D, BUS_CYCLES, Bus cycle
The counter increments on every cycle of the interface at the boundary of the PE and its closely-coupled caches. Where this boundary lies with respect to any implemented caches is IMPLEMENTATION DEFINED.

--- Note ---
If the implementation clocks the external memory interface at the same rate as the processor hardware, the counter counts every cycle.

See also Meaningful ratios between common microarchitectural events on page D7-2763.

0x001F, L1D_CACHE_ALLOCATE, Attributable Level 1 data cache allocation without refill
The counter increments on every Attributable write that writes an entire line into the Level 1 cache without fetching from outside the Level 1 cache, for example:
- A write from a coalescing buffer of a full cache line.
- A DC ZVA operation.

See also Attributability on page D7-2701.

0x0020, L2D_CACHE_ALLOCATE, Attributable Level 2 data cache allocation without refill
The counter increments on every Attributable write that writes an entire line into the Level 2 cache without fetching from outside the Level 1 or Level 2 caches, for example:
- A write-back from a Level 1 to Level 2 cache.
- A write from a coalescing buffer of a full cache line.
- A DC ZVA operation.

See also Attributability on page D7-2701.

0x0022, BR_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted branch
The counter counts all instructions counted by BR_RETIRED that were not correctly predicted. If no program-flow prediction resources are implemented, this event counts all retired not-taken branches.

0x0023, STALL_FRONTEND, No operation issued due to the frontend
The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued because there are no operations available to issue for this PE from the frontend.
The division between frontend and backend is IMPLEMENTATION DEFINED. STALL, STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline.

--- Note ---

- For a simplified pipeline model of Fetch → Decode → Issue → Execute → Retire, Arm recommends that the events are counted when instructions are dispatched from Decode to Issue.
- On a given cycle, both events might be counted if the backend is unable to accept any operations and there are no operations available to issue from the frontend.

For more information, see Cycle event counting on multithreaded implementations on page D7-2762.

0x0024, STALL_BACKEND, No operation issued due to the backend
The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued because either:
- The backend is unable to accept any of the operations available for issue for this PE.
- The backend is unable to accept any operations.
For example, the back end might be unable to accept operations because of a resource conflict or non-availability.
The division between frontend and backend is IMPLEMENTATION DEFINED. STALL, STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline. See STALL_FRONTEND for more information.
For more information, see Cycle event counting on multithreaded implementations on page D7-2762.

0x0025, L1D_TLB, Attributable Level 1 data or unified TLB access
The counter counts each Attributable Memory-read operation or Attributable Memory-write operation that causes a TLB access to at least the Level 1 data or unified TLB. Each access to a TLB record is counted including the multiple accesses of instructions, such as LDM or STM.
The counter does not count TLB maintenance instructions.
See also Attributability on page D7-2701.

0x0026, L1I_TLB, Attributable Level 1 instruction TLB access
The counter counts each Attributable Instruction memory access that causes a TLB access to at least the Level 1 instruction or unified TLB.
The counter does not count TLB maintenance instructions.
See also Attributability on page D7-2701.

0x0027, L2I_CACHE, Attributable Level 2 instruction cache access
If FEAT_PMUv3p4 is not implemented, the counter counts Attributable instruction memory accesses that access at least the Level 2 instruction or unified cache.
If FEAT_PMUv3p4 is implemented, the counter counts Attributable instruction memory accesses, that access at least the Level 2 instruction or unified cache. This includes accesses that transfer data to the cache when the data is not ultimately allocated to the cache. This does not include accesses that update the cache status information for the cache entry without changing the content of the cache data.
Each Attributable access to other Level 2 instruction memory structures, such as refill buffers, is also counted.
See also Attributability on page D7-2701.

0x0028, L2I_CACHE_REFILL, Attributable Level 2 instruction cache refill
The counter counts each access counted by L2I_CACHE that causes a demand refill of any of the Level 1 or 2 caches outside the Level 1 or 2 caches of this PE.
A refill includes any access that causes data to be fetched from outside the cache, even if the data is ultimately not allocated into the cache. For example, data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

If the cache is shared, only events Attribute to this PE are counted. If the cache is not shared, all events are counted. If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
- **Attributability on page D7-2701.**
- **Meaningful ratios between common microarchitectural events on page D7-2763.**

0x0029, L3D_CACHE_ALLOCATE, Attributable Level 3 data cache allocation without refill

The counter increments on every Attributable write that writes an entire line into the Level 3 cache without fetching from outside the Level 1, Level 2, or Level 3 cache, for example:

- A write-back from a Level 2 to Level 3 cache.
- A write from a coalescing buffer of a full cache line.
- A DC ZVA operation.

See also **Attributability on page D7-2701.**

0x002A, L3D_CACHE_REFILL, Attributable Level 3 data cache refill

The counter counts each access counted by L3D_CACHE which causes a demand refill of any of the Level 1, Level 2, or Level 3 caches from outside the Level 1, Level 2, and Level 3 caches.

A refill includes any access that causes data to be fetched from outside the cache, even if the data is ultimately not allocated into the cache. For example, data might be fetched into a buffer but then discarded, rather than being allocated into a cache. These buffers are treated as part of the cache.

The counter does not count as events on this PE:

- A miss that does not cause a new refill but is satisfied by the refill of a previous miss, even if that previous refill is not complete at the time of the miss.
- A miss that does not generate a refill, such as a write through the cache.
- If FEAT_PMUv3p4 is not implemented, cache maintenance instructions.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
- **Attributability on page D7-2701.**
- **Meaningful ratios between common microarchitectural events on page D7-2763.**

0x002B, L3D_CACHE, Attributable Level 3 data cache access

If FEAT_PMUv3p4 is not implemented:

- The counter counts each Memory-read operation or Memory-write operation that causes a cache access to at least the Level 3 data or unified cache.
- The counter does not count cache maintenance instructions.

If FEAT_PMUv3p4 is implemented:

- The counter counts each Memory-read operation or Memory-write operation that cause a cache access, to at least the Level 3 data or unified cache. This includes accesses that transfer data to the cache when the data is not ultimately allocated to the cache. This does not include accesses that update the cache status information for the cache entry without changing the content of the cache data.
- It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted.
Each access to a cache line is counted including refills of and write-backs from the Level 1 or Level 2 data, instruction, or unified caches. Each access to other Level 3 data or unified memory structures, such as refill buffers, write buffers, and write-back buffers, is also counted.

See also Attribution on page D7-2701.

0x002C, L3D_CACHE_WB, Attributable Level 3 data cache write-back

The counter counts every write-back of data from the Level 3 data or unified cache that occurs as a result of an operation by this PE. It counts each write-back that causes data to be written from the Level 3 cache to outside of the Level 1, Level 2, and Level 3 caches. For example, the counter counts the following cases:

- A write-back that causes data to be written to a Level 4 cache, or to memory.
- A write-back of a recently fetched cache line that has not been allocated to the Level 3 cache.

Each write-back is counted once, even if multiple accesses are required to complete the write-back.

It is IMPLEMENTATION DEFINED whether the counter counts:

- A transfer of data from the Level 3 cache to outside the Level 1, Level 2, and Level 3 caches made as a result of a coherency request.
- A write-back made as a result of a Cache maintenance instruction.

The counter does not count:

- The invalidation of a cache line without any write-back to a Level 4 cache or memory.
- Writes from the PE, Level 1, or Level 2 data or unified cache, that write through the Level 3 cache to outside of the Level 3 cache.
- Transfers of data from the Level 3 cache to a Level 1 or Level 2 cache, to satisfy a Level 1 or Level 2 cache refill.

An Unattributable write-back event occurs when a requestor outside the PE makes a coherency request that results in write-back. If the cache is shared, then Unattributable write-back events are not counted. If the cache is not shared, then Unattributable write-back events are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache, is counted. For example, this applies when the PE determines streaming writes to memory and does not allocate lines to the cache, or by a DC ZVA operation.

See also Attribution on page D7-2701.

0x002D, L2D_TLB_REFILL, Attributable Level 2 data TLB refill

The counter counts each Attributable Memory-read operation or Attributable Memory-write operation that causes a TLB refill of at least the Level 2 data or unified TLB. It counts each Attributable read or Attributable write that causes a refill, in the form of a translation table walk or an access to another level of TLB caching. It is IMPLEMENTATION DEFINED whether the count increments when:

- A refill results in a Translation fault.
- A refill is not allocated in the TLB.

The counter does not count:

- A TLB miss that does not cause a refill but does generate a translation table walk.
- TLB maintenance instructions.

See also:

- Attribution on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x002E, L2I_TLB_REFILL, Attributable Level 2 instruction TLB refill

The counter counts Attributable instruction memory accesses that cause a TLB refill of at least the Level 2 instruction TLB. This includes each Attributable Instruction memory access that causes an access to a level of memory system due to a translation table walk or an access to another level of TLB caching. It is IMPLEMENTATION DEFINED whether the count increments when:

- A refill results in a Translation fault.
• A refill is not allocated in the TLB.

The counter does not count:
• A TLB miss that does not cause a refill but does generate a translation table walk.
• TLB maintenance instructions.

See also:
• Attributability on page D7-2701.
• Meaningful ratios between common microarchitectural events on page D7-2763.

0x002F, L2D_TLB, Attributable Level 2 data or unified TLB access
The counter counts each Attributable memory read operation or Attributable memory write operation that causes a TLB access to at least the Level 2 data or unified TLB. Each access to a TLB record is counted, including the multiple accesses of instructions such as LDM or STM.

The counter does not count TLB maintenance instructions.
See also Attributability on page D7-2701.

0x0030, L2I_TLB, Attributable Level 2 instruction TLB access
The counter counts each Attributable memory read operation or Attributable memory write operation that causes a TLB access to at least the Level 2 instruction or unified TLB.

The counter does not count TLB maintenance instructions.
See also Attributability on page D7-2701.

0x0031, REMOTE_ACCESS, Access to another socket in a multi-socket system
The counter counts each Attributable memory read operation or memory write operation that causes an access to another socket in a multi-socket system.

It is IMPLEMENTATION DEFINED whether an access that causes a snoop into another socket but does not return data from or pass data to the remote socket is counted.
See also Attributability on page D7-2701.

0x0032, LL_CACHE, Last Level cache access
The counter counts each Memory-read operation or Memory-write operation that causes a cache access to at least the Last Level data or unified cache. If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted.

If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.
See also Attributability on page D7-2701.

0x0033, LL_CACHE_MISS, Last Level cache miss
The Counter counts each Attributable Memory-read operation or Memory-write operation that causes a cache access to at least the Last Level data or unified cache, but is not completed by the Last Level cache. That is, either of the following:
• A memory read operation that does not return data from the Last Level cache.
• A memory write operation that does not update the Last Level cache.

The counter does not count operations that are completed by a cache above the Last Level cache.
If FEAT_PMUv3p4 is not implemented, the counter does not count cache maintenance instructions.
If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

See also:
• Attributability on page D7-2701.
• Meaningful ratios between common microarchitectural events on page D7-2763.
0x0034, **DTLB_WALK, Access to data TLB causes a translation table walk**

The counter counts each **Attributable** memory read or memory write operation that causes a refill of a data or unified TLB involving at least one translation table walk access. This includes each complete or partial translation table walk that causes an access to memory, including to data or translation table walk caches.

The counter does not count TLB maintenance instructions.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x0035, **ITLB_WALK, Access to instruction TLB that causes a translation table walk**

The counter counts each **Attributable** Instruction memory access that causes a refill of an instruction TLB, involving at least one translation table walk access. This includes each complete or partial translation table walk that causes an access to memory, including to data or translation table walk caches.

The counter does not count TLB maintenance instructions.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x0036, **LL_CACHE_RD, Attributable Last level cache memory read**

As **LL_CACHE**, but counts only memory read accesses.

If the cache is shared, only events **Attributable** to this PE are counted. If the cache is not shared, all events are counted. If **FEAT_PMUv3p4** is not implemented, the counter does not count cache maintenance instructions. If **FEAT_PMUv3p4** is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted by this event.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x0037, **LL_CACHE_MISS_RD, Last level cache miss, read**

As **LL_CACHE_MISS**, but counts only memory read operations.

If **FEAT_PMUv3p4** is not implemented, the counter does not count cache maintenance instructions. If **FEAT_PMUv3p4** is implemented, it is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x0038, **REMOTE_ACCESS_RD, Access to another socket in a multi-socket system, read**

As **REMOTE_ACCESS**, but counts only memory read operations.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x0039, **L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss**

The counter counts each memory read access counted by **L1D_CACHE** that incurs additional latency because it returns data from outside the Level 1 data or unified cache of this PE.

If the cache is shared, only events **Attributable** to this PE are counted. If the cache is not shared, all events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.
The event indicates to software that the access missed in the Level 1 data or unified cache and might have a significant performance impact compared to the latency of an access that hits in the Level 1 data or unified cache.

This counter does not count:
- Access where the additional latency is unlikely to be significantly performance-impacting. For example, if the access hits in another cache in the same local cluster, and the additional latency is small when compared against a miss in all Level 1 caches that the access looks up in that results in an access being made to a Level 2 cache or elsewhere beyond the Level 1 data and unified cache.
- A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine whether the additional latency had a performance impact. An implementation can extend the definition of this event with additional scenarios where a memory read access counted by L1D_CACHE might have a significant performance impact due to additional latency for the address.

See also *Attributability* on page D7-2701.

0x003A, **OP_RETIRED**, Micro-operation architecturally executed

The counter counts each operation counted by OP_SPEC that would be executed in a *Simple sequential execution* of the program.

0x003B, **OP_SPEC**, Micro-operation Speculatively executed

The counter counts the number of operations executed by the PE, including those that are executed speculatively and would not be executed in a *Simple sequential execution* of the program.

0x003C, **STALL**, No operation sent for execution

The counter counts every *Attributable* cycle on which no *Attributable* instruction or operation was sent for execution on this PE.

If the PMU supports multi-threading:
- When PMEVTYPEP<n>_EL0.MT = 0b0, the counter counts cycles for which only instructions or operations *Attributable* to other PEs are sent for execution when this PE is eligible to execute instructions or operations on that cycle. The counter does not count cycles when this PE of the multi-threaded operation is not eligible to execute instructions or operations.
- When PMEVTYPEP<n>_EL0.MT = 0b1, the counter counts all cycles when no instructions or operations for any PE of the multi-threaded operation are sent for execution.

The division between frontend and backend is *IMPLEMENTATION DEFINED*. STALL, STALL_FRONTEND, and STALL_BACKEND events must count at the same point in the pipeline. For more information, see STALL_FRONTEND.

See also:
- *Attributability* on page D7-2701.
- *Meaningful ratios between common microarchitectural events* on page D7-2763.

0x003D, **STALL_SLOT_BACKEND**, No operation sent for execution on a Slot due to the backend

Counts each Slot counted by STALL_SLOT where no *Attributable* instruction or operation was sent for execution because the backend is unable to accept one of:
- The instruction operation available for the PE on the Slot.
- Any operations on the Slot.

The division between frontend and backend is *IMPLEMENTATION DEFINED*. STALL_SLOT, STALL_SLOT_FRONTEND, and STALL_SLOT_BACKEND events must count at the same point in the pipeline. The maximum value that STALL_SLOT_FRONTEND and STALL_SLOT_BACKEND events can count in a single-cycle is *IMPLEMENTATION DEFINED*. For more information, see STALL_SLOT.

See also *Attributability* on page D7-2701.
0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend

Counts each Slot counted by STALL_SLOT where no Attributable instruction or operation was sent for execution because there was no Attributable instruction or operation to issue from the PE from the frontend for the Slot.

The division between frontend and backend is IMPLEMENTATION DEFINED. STALL_SLOT, STALL_SLOT_FRONTEND, and STALL_SLOT_BACKEND events must count at the same point in the pipeline. The maximum value that STALL_SLOT_FRONTEND and STALL_SLOT_BACKEND events can count in a single-cycle is implementation defined. For more information, see STALL_SLOT.

----- Note -----

Arm recommends that STALL_SLOT_FRONTEND counts instructions that have been decoded and, if applicable, split into micro-operations.

See also Attributability on page D7-2701.

0x003F, STALL_SLOT, No operation sent for execution on a Slot

The counter counts on each Attributable cycle the number of instruction or operation Slots that were not occupied by an instruction or operation Attributable to the PE.

If the PMU supports multi-threading:

- When PMEVTPYPER<El0>MTC = 0b0, the counter counts instruction or operation Slots for which those Slots are occupied by instructions or operations Attributable to other PEs of the multi-threaded implementation only when the PE was eligible to execute instruction or operations in that cycle. The counter does not count any instruction or operation Slots on cycles when this PE was not eligible to execute instructions or operations.

- When PMEVTPYPER<El0>MTC = 0b1, for every cycle the counter counts all instruction or operation Slots not occupied by any instruction or operation for any PE of the multi-threaded implementation.

If FEAT_PMUv3p4 is implemented:

- If STALL_SLOT is not implemented, it is IMPLEMENTATION DEFINED whether the PMMIR System registers are implemented.

- If STALL_SLOT is implemented, then the PMMIR System registers are implemented.

See also Attributability on page D7-2701.

0x4000, SAMPLE_POP, Sample Population

The counter increments for each operation that might be sampled, whether or not the operation was sampled. Operations that are executed at an Exception level or Security state in which the Statistical Profiling Extension is disabled are not counted.

0x4001, SAMPLE_FEED, Sample Taken

The counter increments each time the sample interval counter reaches zero and is reloaded, and the sample does not collide with the previous sample. Samples that are removed by filtering, or discarded, and not written to the Profiling Buffer are counted.

0x4002, SAMPLE_FILTRATE, Sample taken and not removed by filtering

The counter increments each time that a completed sample record is checked against the filters and not removed. Sample records that are not removed by filtering, but are discarded before being written to the Profiling Buffer because of a Profiling Buffer management event, are counted.

0x4003, SAMPLE_COLLISION, Sample collided with a previous sample

The counter increments for each sample record that is taken when the previous sampled operation has not completed generating its sample record.

0x4004, CNT_CYCLES, Constant frequency cycles

The counter is defined identically to CNT_CYCLES in the AMUv1 architecture.
0x4005, **STALL_BACKEND_MEM, Memory stall cycles**

The counter is defined identically to **STALL_BACKEND_MEM** in the AMUv1 architecture.

0x4006, **L1I_CACHE_LMISS, Level 1 instruction cache long-latency read miss**

The counter counts each access counted by **L1I_CACHE** that incurs additional latency because it returns instructions from outside the Level 1 instruction cache.

If the cache is shared, only events **Attributable** to this PE are counted. If the cache is not shared, all events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

The event indicates to software that the access missed in the Level 1 instruction cache and might have a significant performance impact due to the additional latency, compared to the latency of an access that hits in the Level 1 instruction cache.

This counter does not count:

- Access where the additional latency is unlikely to be significantly performance-impacting. For example, if the access hits in another cache in the same local cluster, and the additional latency is small when compared against a miss in all Level 1 caches that the access looks up in that results in an access being made to a Level 2 cache or elsewhere beyond the Level 1 data and unified cache.
- A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine whether the additional latency had a performance impact. An implementation can extend the definition of this event with additional scenarios where a memory read access counted by **L1I_CACHE** might have a significant performance impact due to additional latency for the address.

0x4009, **L2D_CACHE_LMISS_RD, Level 2 data cache long-latency read miss**

The counter counts each memory read access counted by **L2D_CACHE** that incurs additional latency because it returns data from outside the Level 2 data or unified cache of this PE.

If the cache is shared, only events **Attributable** to this PE are counted. If the cache is not shared, all events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

The event indicates to software that the access missed in the Level 2 data or unified cache and might have a significant performance impact compared to the latency of an access that hits in the Level 2 data or unified cache.

This counter does not count:

- Access where the additional latency is unlikely to be significantly performance-impacting. For example, if the access hits in another cache in the same local cluster, and the additional latency is small when compared against a miss in all Level 2 caches that the access looks up in that results in an access being made to a Level 3 cache or elsewhere beyond the Level 2 data and unified cache. This might be counted as a Level 1 cache miss.
- A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine whether the additional latency had a performance impact. An implementation can extend the definition of this event with additional scenarios where a memory read access counted by **L2D_CACHE** might have a significant performance impact due to additional latency for the address.

See also **Attributability** on page D7-2701.

0x400A, **L2I_CACHE_LMISS, Level 2 instruction cache long-latency read miss**

The counter counts each access counted by **L2I_CACHE** that incurs additional latency because it returns instructions from outside the Level 2 instruction cache.

If the cache is shared, only events **Attributable** to this PE are counted. If the cache is not shared, all events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.
The event indicates to software that the access missed in the Level 2 instruction cache and might have a significant performance impact due to the additional latency, compared to the latency of an access that hits in the Level 2 instruction cache.

This counter does not count:

- Access where the additional latency is unlikely to be significantly performance-impacting. For example, if the access hits in another cache in the same local cluster, and the additional latency is small when compared against a miss in all Level 2 caches that the access looks up in that results in an access being made to a Level 3 cache or elsewhere beyond the Level 2 data and unified cache. This might be counted as a Level 2 cache miss.
- A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine whether the additional latency had a performance impact. An implementation can extend the definition of this event with additional scenarios where a memory read access counted by L2I_CACHE might have a significant performance impact due to additional latency for the address.

0x400B, L3D_CACHE_LMISS_RD, Level 3 data cache long-latency read miss

The counter counts each memory read access counted by L3D_CACHE that incurs additional latency because it returns data from outside the Level 3 data or unified cache of this PE.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted. It is IMPLEMENTATION DEFINED whether accesses that result from cache maintenance instructions are counted.

The event indicates to software that the access missed in the Level 3 data or unified cache and might have a significant performance impact compared to the latency of an access that hits in the Level 3 data or unified cache.

This counter does not count:

- Access where the additional latency is unlikely to be significantly performance-impacting. For example, if the access hits in another cache in the same local cluster, and the additional latency is small when compared against a miss in all Level 3 caches that the access looks up in that results in an access being made to a Level 4 cache or elsewhere beyond the Level 3 data and unified cache. This might be counted as a Level 2 cache miss.
- A miss that does not cause a new cache refill but is satisfied from a previous miss.

An implementation is not required to measure the latency nor to track the access to determine whether the additional latency had a performance impact. An implementation can extend the definition of this event with additional scenarios where a memory read access counted by L3D_CACHE might have a significant performance impact due to additional latency for the address.

See also Attributability on page D7-2701.

0x4020, LDST_ALIGN_LAT, Access with additional latency from alignment

The counter counts each access counted by MEM_ACCESS that, due to the alignment of the address and size of data being accessed, incurred additional latency.

0x4021, LD_ALIGN_LAT, Load with additional latency from alignment

The counter counts each memory-read access counted by LDST_ALIGN_LAT.

0x4022, ST_ALIGN_LAT, Store with additional latency from alignment

The counter counts each memory-write access counted by LDST_ALIGN_LAT.

0x4024, MEM_ACCESS_CHECKED, Checked data memory access

The counter counts each memory access counted by MEM_ACCESS that is Tag Checked by the Memory Tagging Extension. For more information see Chapter D6 Memory Tagging Extension.

0x4025, MEM_ACCESS_CHECKED_RD, Checked data memory access, read

The counter counts each memory-read access counted by MEM_ACCESS_CHECKED.
0x4026, MEM_ACCESS_CHECKED_WR, Checked data memory access, write
The counter counts each memory-write access counted by MEM_ACCESS_CHECKED.

0x8004, SIMD_INST_SPEC, SIMD Instructions, Operations speculatively executed
The counter counts speculatively executed operations due to the following SIMD instructions:
- SVE instructions, but not non-SIMD SVE instructions.
- Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x8005, ASE_INST_SPEC, Advanced SIMD Instructions, Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD instructions. It is IMPLEMENTATION DEFINED whether this event counts operations due to Advanced SIMD scalar instructions.

0x8006, SVE_INST_SPEC, SVE Operations speculatively executed
The counter counts speculatively executed operations due to SVE instructions. It is IMPLEMENTATION DEFINED whether this event counts operations due to non-SIMD SVE instructions.

0x8007, ASE_SVE_INST_SPEC, Advanced SIMD and SVE Operations speculatively executed
The counter counts speculatively executed operations that would be counted by ASE_INST_SPEC or SVE_INST_SPEC.

0x8008, UOP_SPEC, Microarchitectural operation, Operations speculatively executed
The counter counts all speculatively executed microarchitectural operations, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations speculatively executed.

0x8009, ASE_UOP_SPEC, Advanced SIMD Microarchitectural operation, Operations speculatively executed
The counter counts all speculatively executed microarchitectural operations due to Advanced SIMD instructions, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations speculatively executed. It is IMPLEMENTATION DEFINED whether this event counts microarchitectural operations due to Advanced SIMD scalar instructions.

0x800A, SVE_UOP_SPEC, SVE micro-operation, Speculatively executed
The counter counts all speculatively executed microarchitectural operations due to SVE instructions, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations speculatively executed. It is IMPLEMENTATION DEFINED whether this event counts microarchitectural operations due to non-SIMD SVE instructions.

0x800B, ASE_SVE_UOP_SPEC, Advanced SIMD and SVE Microarchitectural operation, Operations speculatively executed
The counter counts all speculatively executed microarchitectural operations that are counted by SVE_UOP_SPEC or ASE_UOP_SPEC.

0x800C, SIMD_UOP_SPEC, SIMD micro-operation, Speculatively executed
The counter counts the following speculatively executed microarchitectural operations, irrespective of the IMPLEMENTATION DEFINED interpretation of Operations speculatively executed, due to:
- SVE instructions, but not non-SIMD SVE instructions.
- Advanced SIMD instructions, but not Advanced SIMD scalar instructions.

0x800E, SVE_MATH_SPEC, SVE Math accelerator Operations speculatively executed
The counter counts speculatively executed math function operations due to the SVE FTSMUL, FTMAD, FTSSEL, and FEXPA instructions.

0x8010, FP_SPEC, Floating-point Operations speculatively executed
The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE floating-point instructions. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

--- **Note** ---
The IMPLEMENTATION DEFINED event counter VFP_SPEC is similar to this event counter, but does not count SIMD operations.

0x8011, ASE_FP_SPEC, Advanced SIMD floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD floating-point instructions. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

0x8012, SVE_FP_SPEC, SVE floating-point Operations speculatively executed
The counter counts speculatively executed operations due to SVE floating-point instructions. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

0x8013, ASE_SVE_FP_SPEC, Advanced SIMD and SVE floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD and SVE floating-point instructions. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

0x8014, FP_HP_SPEC, Half-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE floating-point instructions, where the largest type is half-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

0x8015, ASE_FP_HP_SPEC, Advanced SIMD, Half-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD floating-point instructions, where the largest type is half-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.

0x8016, SVE_FP_HP_SPEC, SVE Half-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to SVE floating-point instructions, where the largest type is half-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the *Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A*.
0x8017, ASE_SVE_FP_HP_SPEC, Advanced SIMD and SVE Half-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD and SVE instructions, where the largest type is half-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8018, FP_SP_SPEC, Single-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE floating-point instructions, where the largest type is single-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8019, ASE_FP_SP_SPEC, Advanced SIMD Single-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD floating-point instructions, where the largest type is single-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801A, SVE_FP_SP_SPEC, SVE Single-precision floating-point operations, Operations speculatively executed
The counter counts speculatively executed operations due to SVE floating-point instructions, where the largest type is single-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801B, ASE_SVE_FP_SP_SPEC, Advanced SIMD and SVE Single-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD and SVE instructions, where the largest type is single-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801C, FP_DP_SPEC, Double-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to scalar, Advanced SIMD, and SVE floating-point instructions, where the largest type is double-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801D, ASE_FP_DP_SPEC, Advanced SIMD Double-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD floating-point instructions, where the largest type is double-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
0x801E, SVE_FP_DP_SPEC, SVE Double-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to SVE floating-point instructions, where the largest type is double-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x801F, ASE_SVE_FP_DP_SPEC, Advanced SIMD and SVE Double-precision floating-point Operations speculatively executed
The counter counts speculatively executed operations due to Advanced SIMD and SVE floating-point instructions, where the largest type is double-precision. These instructions are in the floating point instructions category and optionally the floating-point conversions instructions category and the floating-point or integer instructions category listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8020, FP_DIV_SPEC, Floating-point divide Operations speculatively executed
The counter counts speculatively executed floating-point divide operations.

0x8021, ASE_FP_DIV_SPEC, Advanced SIMD Floating-point divide Operations speculatively executed
The counter counts speculatively executed Advanced SIMD floating point divide operations.

0x8022, SVE_FP_DIV_SPEC, SVE Floating-point divide Operations speculatively executed
The counter counts speculatively executed SVE floating-point divide operations.

0x8023, ASE_SVE_FP_DIV_SPEC, Advanced SIMD and SVE Floating-point divide Operations speculatively executed
The counter counts speculatively executed Advanced SIMD and SVE floating-point divide operations.

0x8024, FP_SQRT_SPEC, Floating-point square-root Operations speculatively executed
The counter counts speculatively executed floating-point square-root operations.

0x8025, ASE_FP_SQRT_SPEC, Advanced SIMD Floating-point square-root Operations speculatively executed
The counter counts speculatively executed Advanced SIMD floating-point square-root operations.

0x8026, SVE_FP_SQRT_SPEC, SVE Floating-point square-root Operations speculatively executed
The counter counts speculatively executed SVE floating-point square-root operations.

0x8027, ASE_SVE_FP_SQRT_SPEC, Advanced SIMD and SVE Floating-point square root Operations speculatively executed
The counter counts speculatively executed Advanced SIMD and SVE floating point square-root operations.

0x8028, FP_FMA_SPEC, Floating-point FMA Operations speculatively executed
The counter counts speculatively executed floating point fused multiply-add and multiply-subtract operations due to the following instructions:
- Scalar: FMADD, FMSUB, FNMADD, FNMSUB.
- Advanced SIMD: FCMLA, FMUL, FMLS.
- SVE: FCMADD, FMADD, FMLA, FMUL, FMSB, FNMAD, FNMADD, FNMUL, FNSUB, FTMSUB, FTMADD.

0x8029, ASE_FP_FMA_SPEC, Advanced SIMD Floating-point FMA Operations speculatively executed
The counter counts speculatively executed floating point multiply-add and multiply-subtract operations due to the Advanced SIMD FCMADD, FMLA, and FMLS instructions.
The Performance Monitors Extension

D7.11 PMU events and event numbers

0x802A, SVE_FP_FMA_SPEC, SVE Floating-point FMA Operations speculatively executed
The counter counts speculatively executed floating point multiply-add and multiply-subtract operations due to the SVE FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FMNSB, FTMAD instructions.

0x802B, ASE_SVE_FP_FMA_SPEC, Advanced SIMD and SVE Floating-point FMA Operations speculatively executed
The counter counts speculatively executed floating-point fused multiply-add and multiply-subtract operations due to the following instructions:
- Advanced SIMD: FCMLA, FMLA, FMLS.
- SVE: FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FMNSB, FTMAD.

0x802C, FP_MUL_SPEC, Floating-point multiply Operations speculatively executed
The counter counts speculatively executed floating-point multiply operations due to the scalar, Advanced SIMD, and SVE FMUL and FMULX instructions and the SVE FTSMUL instruction.

0x802D, ASE_FP_MUL_SPEC, Advanced SIMD Floating-point multiply Operations speculatively executed
The counter counts speculatively executed floating-point multiply operations due to the scalar Advanced SIMD instructions FMUL and FMULX.

0x802E, SVE_FP_MUL_SPEC, SVE Floating-point multiply Operations speculatively executed
The counter counts speculatively executed floating-point multiply operations due to the SVE instructions FMUL, FMULX, and FTSMUL.

0x802F, ASE_SVE_FP_MUL_SPEC, Advanced SIMD and SVE Floating-point multiply Operations speculatively executed
The counter counts speculatively executed floating-point multiply operations due to the Advanced SIMD and SVE FMUL and FMULX instructions and the SVE FTSMUL instruction.

0x8030, FP_ADDSUB_SPEC, floating-point add or subtract Operations speculatively executed
The counter counts speculatively executed floating-point add and subtract operations due to the scalar, Advanced SIMD, and SVE FADD and FSUB instructions, and the Advanced SIMD and SVE FABD instructions.

0x8031, ASE_FP_ADDSUB_SPEC, Advanced SIMD floating-point add or subtract Operations speculatively executed
The counter counts speculatively executed floating-point add and subtract operations due to the Advanced SIMD FA0D, FA0D, and FSUB instructions.

0x8032, SVE_FP_ADDSUB_SPEC, SVE floating-point add or subtract Operations speculatively executed
The counter counts speculatively executed floating-point add and subtract operations due to the SVE FABD, FADD, and FSUB instructions.

0x8033, ASE_SVE_FP_ADDSUB_SPEC, Advanced SIMD and SVE floating-point add and subtract Operations speculatively executed
The counter counts speculatively executed floating-point add and subtract operations due to the Advanced SIMD and SVE FABD, FA0D, and FSUB instructions.

0x8034, FP_RECPE_SPEC, Floating-point reciprocal estimate Operations speculatively executed
The counter counts speculatively executed floating-point reciprocal estimate operations due to the Advanced SIMD scalar, Advanced SIMD vector, and SVE FRECPE and FRSQRT instructions.

0x8035, ASE_FP_RECPE_SPEC, Advanced SIMD floating-point reciprocal estimate Operations speculatively executed
The counter counts speculatively executed floating-point reciprocal estimate operations due to the Advanced SIMD vector FRECPE and FRSQRT instructions.

0x8036, SVE_FP_RECPE_SPEC, SVE floating-point reciprocal estimate Operations speculatively executed
The counter counts speculatively executed floating-point reciprocal estimate operations due to the SVE FRECPE and FRSQRTF instructions.

0x8037, ASE_SVE_FP_RECPE_SPEC, Advanced SIMD and SVE floating-point reciprocal estimate Operations speculatively executed

The counter counts speculatively executed floating-point reciprocal estimate operations due to Advanced SIMD vector and SVE FRECPE and FRSQRTF instructions.

0x8038, FP_CVT_SPEC, floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the scalar, Advanced SIMD, and SVE floating-point conversion instructions. The instructions in the Floating-point conversions category are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8039, ASE_FP_CVT_SPEC, Advanced SIMD floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the Advanced SIMD floating-point conversion instructions. The instructions in the Floating-point conversions category are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x803A, SVE_FP_CVT_SPEC, SVE floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the SVE floating-point conversion instructions. The instructions in the Floating-point conversions category are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x803B, ASE_SVE_FP_CVT_SPEC, Advanced SIMD and SVE floating-point convert Operations speculatively executed

The counter counts speculatively executed floating-point convert operations due to the Advanced SIMD and SVE floating-point conversion instructions. The instructions in the Floating-point conversions category are listed in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x803C, SVE_FP_AREDUCE_SPEC, SVE floating-point accumulating reduction Operations speculatively executed

The counter counts speculatively executed floating-point accumulating reduction operations due to the SVE FADDA instruction.

0x803D, ASE_FP_PREDUCE_SPEC, Advanced SIMD floating-point pairwise add step Operations speculatively executed

The counter counts speculatively executed floating-point pairwise add operations due to the Advanced SIMD FADDP instruction.

0x803E, SVE_FP_VREDUCE_SPEC, SVE floating-point vector reduction Operations speculatively executed

The counter counts speculatively executed floating-point treewise reduction operations due to the SVE FADDV, FMAXVMV, FMAXV, FMINVMV, and FMINV instructions.

0x803F, ASE_SVE_FP_VREDUCE_SPEC, Advanced SIMD and SVE floating-point vector reduction Operations speculatively executed

The counter counts speculatively executed floating-point vector reduction operations due to the Advanced SIMD FMAXVMV, FMAXV, FMINVMV, and FMINV instructions, the Advanced SIMD FADDP instruction, and the SVE FADDV instruction.

0x8040, INT_SPEC, integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to scalar, Advanced SIMD, and SVE data-processing instructions. These instructions are listed in the integer instructions category and optionally the floating-point conversions category and the floating-point or integer category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
0x8041, ASE_INT_SPEC, Advanced SIMD integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to Advanced SIMD data-processing instructions. These instructions are listed in the integer instructions category and optionally the floating-point conversions category and the floating-point or integer category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8042, SVE_INT_SPEC, SVE integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to SVE data-processing instructions. These instructions are listed in the integer instructions category and optionally the floating-point conversions category and the floating-point or integer category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8043, ASE_SVE_INT_SPEC, Advanced SIMD and SVE integer Operations speculatively executed

The counter counts speculatively executed integer arithmetic operations due to Advanced SIMD and SVE data-processing instructions. These instructions are listed in the integer instructions category and optionally the floating-point conversions category and the floating-point or integer category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

0x8044, INT_DIV_SPEC, integer divide Operations speculatively executed

The counter counts speculatively executed scalar and SVE integer divide operations due to the SDIV and UDIV instructions.

0x8045, INT_DIV64_SPEC, 64-bit integer divide Operations speculatively executed

The counter counts speculatively executed scalar and SVE integer divide operations due to the SDIV and UDIV instructions with 64-bit operands or vector elements.

0x8046, SVE_INT_DIV_SPEC, SVE integer divide Operations speculatively executed

The counter counts speculatively executed SVE integer divide operations due to the SVE SDIV and UDIV instructions.

0x8047, SVE_INT_DIV64_SPEC, SVE 64-bit integer divide Operations speculatively executed

The counter counts speculatively executed SVE integer divide operations due to the SVE SDIV and UDIV instructions with 64-bit vector elements.

0x8048, INT_MUL_SPEC, integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following instructions:
• Scalar: MADD, MSUB, MUL, SMADD, SMUL, UMADD, UMUL.
• Advanced SIMD: MLA, MLS, MUL, PMULL, SMLAL, SMLS, SMULL, SQMLAL, SQMLLSL, SQDMULH, SQDMMUL, SQRDMLAH, SQRDMLSH, SQRDMLUL, UMLAL, UMLSL, UMLUL.
• SVE: MAD, MLA, MLS, MSB, MUL, SMUL, UMUL.

0x8049, ASE_INT_MUL_SPEC, Advanced SIMD integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following Advanced SIMD instructions: MLA, MLS, MUL, PMULL, SMLAL, SMLS, SMULL, SQMLAL, SQMLLSL, SQDMULH, SQDMMUL, SQRDMLAH, SQRDMLSH, SQRDMLUL, UMLAL, UMLSL, UMLUL.

0x804A, SVE_INT_MUL_SPEC, SVE integer multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations due to the following SVE instructions: MAD, MLA, MLS, MSB, MUL, SMUL, UMUL.

0x804B, ASE_SVE_INT_MUL_SPEC, Advanced SIMD and SVE integer multiply Operations speculatively executed
The counter counts speculatively executed integer multiply operations due to the following instructions:

- **Advanced SIMD**: MLA, MLS, MUL, PMULL, SMLAL, SMULL, SQDMULAL, SQDMULH, SQDMULL, SQDMLAH, SQDMLSLH, SQDMLSLH, UMLAL, UMLSL, UMLUL.
- **SVE**: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804C, **INT_MUL64_SPEC**, integer 64x64 multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations returning a 64-bit result for the following instructions:

- **Scalar**: MADD, MSUB, MADDL, SMULH, UMAADDL, UMULH.
- **SVE**: MAD, MLS, MLA, MSB, MUL, SMULH, UMULH.

0x804D, **SVE_INT_MUL64_SPEC**, SVE integer 64-bit multiply Operations speculatively executed

The counter counts speculatively executed integer multiply operations returning a 64-bit result for the following SVE instructions: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804E, **INT_MULH64_SPEC**, integer 64-bit multiply returning high part Operations speculatively executed

The counter counts speculatively executed widening integer multiply operations returning a 64-bit result for the scalar and SVE SMULH and UMULH instructions.

0x804F, **SVE_INT_MULH64_SPEC**, SVE integer 64-bit multiply high part Operations speculatively executed

The counter counts speculatively executed widening integer multiply operations returning a 64-bit result for the SVE SMULH and UMULH instructions.

0x8058, **NONFP_SPEC**, Non floating-point Operations speculatively executed

The counter counts speculatively executed operations due to the following instructions:

- Scalar instructions that would be counted by the **DP_SPEC** event.
- Advanced SIMD data processing instructions defined in Data processing - SIMD and floating-point on page C3-237 that would not be counted by **FP_SPEC**.
- SVE instructions with vector source or destination registers that would not be counted by **FP_SPEC**.

0x8059, **ASE_NONFP_SPEC**, Advanced SIMD non-floating-point Operations speculatively executed

The counter counts speculatively executed operations due to Advanced SIMD data processing instructions defined in the section titled Data processing - SIMD and floating-point on page C3-237 that would not be counted by **ASE_FP_SPEC**.

0x805A, **SVE_NONFP_SPEC**, SVE non-floating-point Operations speculatively executed

The counter counts speculatively executed operations due to SVE instructions with vector source or destination registers that would not be counted by **SVE_FP_SPEC**.

0x805B, **ASE_SVE_NONFP_SPEC**, Advanced SIMD and SVE non-floating-point Operations speculatively executed

The counter counts speculatively executed operations due to the following instructions:

- Advanced SIMD data-processing instructions defined in Data processing - SIMD and floating-point on page C3-237 that would not be counted by **ASE_SVE_FP_SPEC**.
- SVE instructions with vector source or destination registers that would not be counted by **ASE_SVE_FP_SPEC**.

0x805D, **ASE_INT_VREDUCE_SPEC**, Advanced SIMD integer reduction Operations speculatively executed

The counter counts speculatively executed across-vector and pairwise integer reduction operations due to the Advanced SIMD SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADDL, UMAXV, and UMINV instructions.

0x805E, **SVE_INT_VREDUCE_SPEC**, SVE integer reduction Operations speculatively executed

The counter counts speculatively executed across-vector integer reduction operations due to the following SVE instructions: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, and UMINV instructions.
D7.11 PMU events and event numbers

0x805F, ASE_SVE_INT_VREDUCE_SPEC, Advanced SIMD and SVE integer reduction Operations speculatively executed

The counter counts speculatively executed across-vector and pairwise integer reduction operations due to the following instructions:

- Advanced SIMD: SADLP, SADDLV, SMAXP, SMAVX, SMINV, UADDL, UMAXV, and UMINV.
- SVE: ANDV, EORV, ORV, SADDV, MAXV, MINV, UADDV, UMAXV, and UMINV.

0x8060, SVE_PERM_SPEC, SVE permute Operations speculatively executed

The counter counts speculatively executed vector or predicate permute operations due to the following SVE instructions: CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV, REV16, REVT, REV64, SPLIC, SUNPKHI, SUNPKLO, TBL, TRN1, TRN2, UUNPKHI, UUNPKLO, UZP1, UZP2, ZIP1, and ZIP2.

0x8061, SVE_PERM_IGRANULE_SPEC, SVE intra-granule permute Operations speculatively executed

The counter counts speculatively executed vector or predicate permute operations within a 128-bit vector granule or 16-bit predicate granule for the following SVE instructions: REV16, REV32, REV64, TRN1, TRN2.

0x8062, SVE_PERM_XGRANULE_SPEC, SVE cross-granule permute Operations speculatively executed

The counter counts speculatively executed vector or predicate permute operations that can cross between 128-bit vector granules or 16-bit predicate granules for the following SVE instructions:

CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV, SPLIC, SUNPKHI, SUNPKLO, TBL, UNPKHI, UNPKLO, UZP1, UZP2, ZIP1, and ZIP2.

0x8063, SVE_PERM_VARIABLE_SPEC, SVE programmable permute Operations speculatively executed

The counter counts speculatively executed variable vector permute operations due to the following SVE instructions: CLASTA, CLASTB, COMPACT, LASTA, LASTB, SPLIC, and TBL.

0x8064, SVE_XPIPE_SPEC, SVE cross-pipe Operations speculatively executed

The counter counts speculatively executed cross-pipeline transfer operations due to the following SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, CPY (scalar), DECP (scalar), DUP (scalar), INCP (scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar), LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINC (scalar), UQDECP (scalar), UQDECP (scalar), WHILE<ccc>.

0x8065, SVE_XPIPE_Z2R_SPEC, SVE vector to scalar cross-pipe Operations speculatively executed

The counter counts speculatively executed vector to general-purpose scalar cross-pipeline transfer operations due to the following SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, DECP (scalar), INCP (scalar), LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINC (scalar), UQDECP (scalar), UQDECP (scalar).

0x8066, SVE_XPIPE_R2Z_SPEC, SVE scalar to vector cross-pipe Operations speculatively executed

The counter counts speculatively executed general-purpose scalar to vector cross-pipeline transfer operations due to the following SVE instructions: CPY (scalar), DUP (scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar), WHILE<ccc>.

0x8067, SVE_PGEN_NVEC_SPEC, SVE predicate-only Operations speculatively executed

The counter counts speculatively executed predicate-generating operations that do not read vector registers due to the following SVE instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BBKBS, BRKIN, BRKNS, BRKPA, BRKPP, BRKPB, BRKPPS, EOR (predicates), EORS, NAND, NANS, OR, ORNS, ORN (predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI, PUNPKLO, RDFR, RDFERS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates), UZP2 (predicates), WHILE<ccc>, ZIP1 (predicates), ZIP2 (predicates).

0x8068, SVE_PGEN_SPEC, SVE predicate generating Operations speculatively executed

The counter counts speculatively executed predicate-generating operations due to the following SVE instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BBKBS, BRKIN, BRKNS, BRKPA, BRKPP, BRKPB, BRKPPS, CMP<ccc>, EOR (predicates), EORS, FAC<ccc>, FCM<ccc>, NAND, NANS, OR, ORNS,
The counter counts speculatively executed predicate generating operations, due to the following SVE instructions:

- AND (predicates), ANDS, BIC (predicates), BICS, EOR (predicates), EORS, NAND, NANDS, NOR, NORS, OR (predicates), ORN, ORR (predicates), ORRS.

0x806D, SVE_PPERM_SPEC, SVE predicate permute Operations speculatively executed
The counter counts speculatively executed predicate permute operations, due to the following SVE instructions: PUNPKH1, PUNPKL0, REV (predicate), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates), UZP2 (predicates), ZIP1 (predicates), ZIP2 (predicates).

0x806E, SVE_PSCAN_SPEC, SVE predicate scan Operations speculatively executed
The counter counts speculatively executed predicate scanning and generation operations, due to the following SVE instructions: BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPBS, BRKPB, BRKPBS, PFIRST, PNEXT.

0x806F, SVE_PCNT_SPEC, SVE predicate count Operations speculatively executed
The counter counts speculatively executed predicate population count operations, due to the following SVE instructions: CNTP, DECP, INCP, SQDECP, SQINCP, UDDECP, UDINCP.

0x8070, SVE_PLOOP_WHILE_SPEC, SVE predicate loop while Operations speculatively executed
The counter counts speculatively executed counted predicate generation operations, due to the following SVE instructions: WHILEL, WHILELE, WHILELT.

0x8071, SVE_PLOOP_TEST_SPEC, SVE predicate loop test Operations speculatively executed
The counter counts speculatively executed loop predicate test operations, due to the following SVE instructions: BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPBS, BRKPB, BRKPBS, PFIRST, PNEXT.

0x8072, SVE_PLOOP_ELTS_SPEC, SVE predicate loop elements Operations speculatively executed
The counter counts speculatively executed loop predicate generation operations, due to the following SVE instructions:
- WHILELE, WHILELO, WHILELS, WHILELT. This event increments the counter by (128 ÷ CSIZE).

Note
This counter must be multiplied by (VL ÷ 128) to determine the number of vector elements speculatively processed by while loops.

0x8073, SVE_PLOOP_TERM_SPEC, SVE predicate loop termination, Operations speculatively executed
The counter counts speculatively executed loop-terminating predicate generation operations due to the following SVE instructions:
- WHILELE, WHILELO, WHILELS, WHILELT, which set PSTATE.N to 0.
• BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, which set PSTATE.C to 1.
• CTERMEQ and CTERME, which set PSTATE.N to 1 and PSTATE.V to 0.

0x8074, SVE_PRED_SPEC, SVE predicated Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions with a Governing predicate operand that determines the Active elements.

0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates, Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions with a Governing predicate in which all elements are FALSE.

0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations with all active predicates, Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions with a Governing predicate in which all elements are TRUE.

0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations with partially active predicates, Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions with a Governing predicate in which elements are neither all TRUE nor all FALSE.

0x8078, SVE_UNPRED_SPEC, SVE unpredicated Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions without a Governing predicate.

0x8079, SVE_PRED_NOT_FULL_SPEC, SVE predicated operations with empty or partially active predicates, Operations speculatively executed
The counter counts speculatively executed SIMD data-processing and load/store operations due to SVE instructions with a Governing predicate in which elements are not all TRUE, but may be all FALSE.

0x807C, SVE_MOVPRFX_SPEC, SVE MOVPRFX Operations speculatively executed
The counter counts speculatively executed operations due to MOVPRFX instructions, whether or not they were fused with the prefixed instruction.

0x807D, SVE_MOVPRFX_Z_SPEC, SVE MOVPRFX zeroing predication Operations speculatively executed
The counter counts speculatively executed operations due to MOVPRFX instructions using zeroing predication, whether or not they were fused with the prefixed instruction.

0x807E, SVE_MOVPRFX_M_SPEC, SVE MOVPRFX merging predication Operations speculatively executed
The counter counts speculatively executed operations due to MOVPRFX instructions using merging predication, whether or not they were fused with the prefixed instruction.

0x807F, SVE_MOVPRFX_U_SPEC, SVE MOVPRFX unfused Operations speculatively executed
The counter counts speculatively executed operations due to MOVPRFX instructions that were not fused with the prefixed instruction.

0x8080, SVE_LDST_SPEC, SVE load, store, and prefetch Operations speculatively executed
The counter counts speculatively executed operations that read from, write to, or prefetch memory due to SVE instructions.

0x8081, SVE_LD_SPEC, SVE load Operations speculatively executed
The counter counts speculatively executed operations that read from memory due to SVE load instructions.
0x8082, SVE_ST_SPEC, SVE store Operations speculatively executed
The counter counts speculatively executed operations that write to memory due to SVE store instructions.

0x8083, SVE_PRF_SPEC, SVE prefetch Operations speculatively executed
The counter counts speculatively executed operations that prefetch memory due to SVE prefetch instructions.

0x8084, ASE_SVE_LDST_SPEC, Advanced SIMD and SVE, load and store Operations speculatively executed
The counter counts speculatively executed operations that read from or write to memory due to SVE and Advanced SIMD instructions, or any instructions that prefetch memory.

0x8085, ASE_SVE_LD_SPEC, Advanced SIMD and SVE load Operations speculatively executed
The counter counts speculatively executed operations that read from memory due to SVE and Advanced SIMD load instructions.

0x8086, ASE_SVE_ST_SPEC, Advanced SIMD and SVE store Operations speculatively executed
The counter counts speculatively executed operations that write to memory due to SVE and Advanced SIMD store instructions.

0x8087, PRF_SPEC, Prefetch Operations speculatively executed
The counter counts speculatively executed prefetch operations due to scalar PRFM and SVE PRF instructions.

0x8088, BASE_LDST_REG_SPEC, General-purpose register load, store and prefetch Operations speculatively executed
The counter counts speculatively executed operations that read from memory to a general-purpose register, write a general-purpose register to memory, or prefetch memory due to the PRFM instruction. It is IMPLEMENTATION DEFINED whether operations due to the DC ZVA instruction are counted.

0x8089, BASE_LD_REG_SPEC, General-purpose register load Operations speculatively executed
The counter counts speculatively executed operations that read from memory due to an instruction that loads a general-purpose register.

0x808A, BASE_ST_REG_SPEC, General-purpose register store Operations speculatively executed
The counter counts speculatively executed operations that write to memory due to an instruction that stores a general-purpose register. It is IMPLEMENTATION DEFINED whether operations due to the DC ZVA instruction are counted.

0x808B, BASE_PRF_SPEC, General-purpose register prefetch Operations speculatively executed
The counter counts speculatively executed operations that prefetch memory due to the PRFM instruction.

0x808C, FPASE_LDST_REG_SPEC, Floating-point and Advanced SIMD register load and store Operations speculatively executed
The counter counts speculatively executed operations that read from or write to memory, due to scalar SIMD&FP LDR, LDP, STR, and STP instructions or Advanced SIMD LD1, LD1R, and ST1 instructions.

0x808D, FPASE_LD_REG_SPEC, Floating-point and Advanced SIMD register load Operations speculatively executed
The counter counts speculatively executed operations that read from memory, due to scalar SIMD&FP LDR and LDP instructions or Advanced SIMD LD1 and LD1R instructions.

0x808E, FPASE_ST_REG_SPEC, Floating-point and Advanced SIMD register store Operations speculatively executed
The counter counts speculatively executed operations that write to memory, due to scalar SIMD&FP STR and STP instructions or Advanced SIMD ST1 instructions.

0x8090, SVE_LDST_REG_SPEC, SVE unpredicated load and store register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory or write to memory due to SVE LDR and STR instructions.

0x8091, SVE_LDR_REG_SPEC, SVE unpredicated load register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory due to an SVE LDR instruction.

0x8092, SVE_STR_REG_SPEC, SVE unpredicated store register **Operations speculatively executed**

The counter counts speculatively executed operations that write to memory due to an SVE STR instruction.

0x8094, SVE_LDST_PREG_SPEC, SVE load and store predicate register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory or write to memory due to SVE LDR (predicate) and STR (predicate) instructions.

0x8095, SVE_LDR_PREG_SPEC, SVE load predicate register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory due to an SVE LDR (predicate) instruction.

0x8096, SVE_STR_PREG_SPEC, SVE store predicate register **Operations speculatively executed**

The counter counts speculatively executed operations that write to memory due to an SVE STR (predicate) instruction.

0x8098, SVE_LDST_ZREG_SPEC, SVE load and store vector register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory or write to memory due to SVE LDR (vector) and STR (vector) instructions.

0x8099, SVE_LDR_ZREG_SPEC, SVE load vector register **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory due to an SVE LDR (vector) instruction.

0x809A, SVE_STR_ZREG_SPEC, SVE store vector register **Operations speculatively executed**

The counter counts speculatively executed operations that write to memory due to an SVE STR (vector) instruction.

0x809C, SVE_LDST_CONTIG_SPEC, SVE contiguous load, store, and prefetch element **Operations speculatively executed**

The counter counts speculatively executed operations that read from, write to, or prefetch memory due to an SVE predicated single vector contiguous element load, store, or prefetch instruction. Operations due to SVE load and replicate LD1R and LD1RQ instructions are also counted.

0x809D, SVE_LD_CONTIG_SPEC, SVE contiguous load element **Operations speculatively executed**

The counter counts speculatively executed operations that read from memory due to SVE predicated single vector contiguous element load instructions. Operations due to SVE load and replicate LD1R and LD1RQ instructions are also counted.

0x809E, SVE_ST_CONTIG_SPEC, SVE contiguous store element **Operations speculatively executed**

The counter counts speculatively executed operations that write to memory due to SVE predicated single vector contiguous element store instructions.

0x809F, SVE_PRF_CONTIG_SPEC, SVE contiguous prefetch element **Operations speculatively executed**

The counter counts speculatively executed operations that prefetch memory due to an SVE predicated single contiguous element prefetch instruction.
The counter counts speculatively executed operations that read from memory or write to memory with a non-temporal hint due to an SVE non-temporal contiguous element load or store instruction.

The counter counts speculatively executed operations that read from memory with a non-temporal hint due to an SVE non-temporal contiguous element load instruction.

The counter counts speculatively executed operations that write to memory with a non-temporal hint due to an SVE non-temporal contiguous element store instruction.

The counter counts speculatively executed operations that read from memory or write to memory due to an SVE or Advanced SIMD multiple vector contiguous structure load and store instruction.

The counter counts speculatively executed operations that read from memory due to SVE and Advanced SIMD multiple vector contiguous structure load instructions.

The counter counts speculatively executed operations that write to memory due to SVE and Advanced SIMD multiple vector contiguous structure store instructions.

The counter counts speculatively executed operations that read from memory or write to memory due to SVE multiple vector contiguous structure load and store instructions.

The counter counts speculatively executed operations that read from memory due to SVE multiple vector contiguous structure load instructions.

The counter counts speculatively executed operations that write to memory due to SVE multiple vector contiguous structure store instructions.

The counter counts speculatively executed operations that read from, write to, or prefetch memory due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions.

The counter counts speculatively executed operations that read from memory due to SVE non-contiguous gather-load instructions.

The counter counts speculatively executed operations that write to memory due to SVE non-contiguous scatter-store instructions.

The counter counts speculatively executed operations that write to memory due to SVE non-contiguous scatter-store instructions.
The counter counts speculatively executed operations that prefetch memory due to SVE non-contiguous gather-prefetch instructions.

0x80B0, SVE_LDST64_NONCONTIG_SPEC, SVE 64-bit non-contiguous load, store, and prefetch Operations speculatively executed

The counter counts speculatively executed operations that read from, write to, or prefetch memory due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions with 64-bit vector elements in the address.

0x80B1, SVE_LD64_GATHER_SPEC, SVE 64-bit gather-load Operations speculatively executed

The counter counts speculatively executed operations that read from memory due to SVE non-contiguous gather-load instructions with 64-bit vector elements in the address.

0x80B2, SVE_ST64_SCATTER_SPEC, SVE 64-bit scatter-store Operations speculatively executed

The counter counts speculatively executed operations that write to memory due to SVE non-contiguous scatter-store instructions with 64-bit vector elements in the address.

0x80B3, SVE_PRF64_GATHER_SPEC, SVE 64-bit gather-prefetch Operations speculatively executed

The counter counts speculatively executed operations that prefetch memory due to SVE non-contiguous gather-prefetch instructions with 64-bit vector elements in the address.

0x80B4, ASE_SVE_UNALIGNED_LDST_SPEC, Advanced SIMD and SVE unaligned accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD load and store instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.
• A gather, scatter, or single element address is not aligned to the memory element access size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

0x80B5, ASE_SVE_UNALIGNED_LD_SPEC, Advanced SIMD and SVE unaligned read accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD load instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.
• A gather, scatter or single element address is not aligned to the memory element access size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

0x80B6, ASE_SVE_UNALIGNED_ST_SPEC, Advanced SIMD and SVE unaligned write accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD store instructions where:

• A contiguous vector address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.
• A gather, scatter or single element address is not aligned to the memory element access size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

0x80B8, ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC, Advanced SIMD and SVE unaligned contiguous accesses

The counter counts memory read and write accesses due to SVE and Advanced SIMD contiguous load and store instructions where the address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.
The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

`0x80B9, ASE_SVE_UNALIGNED_CONTIG_LD_SPEC, Advanced SIMD and SVE unaligned contiguous read accesses`

The counter counts memory read accesses due to SVE and Advanced SIMD contiguous load instructions where the address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

`0x80BA, ASE_SVE_UNALIGNED_CONTIG_ST_SPEC, Advanced SIMD and SVE unaligned contiguous write accesses`

The counter counts memory write accesses due to SVE and Advanced SIMD contiguous store instructions where the address is not aligned to the minimum of the in-memory size of the vector and the cache line size, in bytes.

The counter also counts unaligned accesses if they are subsequently converted into multiple aligned accesses.

`0x80BC, SVE_LDFFF_SPEC, SVE First-fault load Operations speculatively executed`

The counter counts speculatively executed memory read operations due to SVE First-fault and Non-fault load instructions.

`0x80BD, SVE_LDFFF_FAULT_SPEC, SVE First-fault load operations which set FFR bit to 0, Operations speculatively executed`

The counter counts speculatively executed memory read operations due to SVE First-fault and Non-fault load instructions that write 0 to at least one bit in FFR.

`0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element Operations speculatively executed`

The counter counts speculatively executed operations that would be counted by SVE_FP_SPEC, except that it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (SVE) category in the Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

The counter is incremented by \((128 \div \text{CSIZE})\) and by twice that amount for operations that would also be counted by SVE_FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

`0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element Operations speculatively executed`

The counter counts speculatively executed operations that would be counted by FP_SPEC but not by SVE_FP_SPEC, and it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

The counter is incremented by the specified number of elements for Advanced SIMD operations or by 1 for scalar operations and by twice those amounts for operations that would also be counted by FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

`0x80C2, FP_HP_SCALE_OPS_SPEC, Scalable half-precision floating-point element Operations speculatively executed`

The counter counts speculatively executed operations that would be counted by SVE_FP_HP_SPEC, except that it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (SVE) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

The counter is incremented by 8, or by 16 for operations that would also be counted by...
The Performance Monitors Extension
D7.11 PMU events and event numbers

SVE_FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C3, FP_HP_FIXED_OPS_SPEC, Non-scalable half-precision floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by FP_HP_SPEC but not by SVE_FP_HP_SPEC, and it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A. The counter is incremented by the number of 16-bit elements for Advanced SIMD operations, or by 1 for scalar operations, and by twice those amounts for operations that would also be counted by FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C4, FP_SP_SCALE_OPS_SPEC, Scalable single-precision floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by SVE_FP_SP_SPEC, except that is IMPLEMENTATION DEFINED whether this includes operations other than those listed in the Floating-point arithmetic (SVE) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A. The counter is incremented by 4, or by 8 for operations that would also be counted by SVE_FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C5, FP_SP_FIXED_OPS_SPEC, Non-scalable single-precision floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by FP_SP_SPEC but not by SVE_FP_SP_SPEC, and it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (scalar) category and the Floating-point arithmetic (Advanced SIMD) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A. The counter is incremented by 2 for Advanced SIMD operations, or by 1 for scalar operations, and by twice those amounts for operations that would also be counted by FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C6, FP_DP_SCALE_OPS_SPEC, Scalable double-precision floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by SVE_FP_DP_SPEC, except that is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (SVE) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A. The counter is incremented by 2, or by 4 for operations that would also be counted by SVE_FP_FMA_SPEC. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C7, FP_DP_FIXED_OPS_SPEC, Non-scalable double-precision floating-point element Operations speculatively executed

The counter counts speculatively executed operations that would be counted by FP_DP_SPEC but not by SVE_FP_DP_SPEC, and it is IMPLEMENTATION DEFINED whether this includes operations due to instructions other than those listed in the Floating-point arithmetic (scalar) category in Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A. The counter is incremented by 2 for Advanced SIMD operations, or by 1 for scalar operations, and by twice those amounts for operations that would also be counted by FP_FMA_SPEC. See
The Performance Monitors Extension

D7.11 PMU events and event numbers

Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C8, INT_SCALE_OPS_SPEC, Scalable integer element Operations speculatively executed
The counter counts speculatively executed operations that would be counted by SVE_INT_SPEC. The counter is incremented by \(\frac{128}{\text{CSIZE}}\), and by twice that amount for operations due to the SVE MAD, MLA, and MSB instructions. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80C9, INT_FIXED_OPS_SPEC, Non-scalable integer element Operations speculatively executed
The counter counts speculatively executed operations that would be counted by INT_SPEC but not by SVE_INT_SPEC. The counter is incremented by the specified number of elements for Advanced SIMD operations, or by 1 for scalar operations, and by twice those amounts for operations due to:

- Scalar: MADD, MSUB, SMADDL, SMSUBL, UMADD, UMSUBL.
- Advanced SIMD: MLA, MLS, SMLAL, SMLSL, SQDMMLAL, SQDMMLSL, SQRDMMLAH, SQRDMMLSH, UMLAL, UMLSL.

See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CA, LDST_SCALE_OPS_SPEC, Scalable load and store element Operations speculatively executed
The counter counts speculatively executed memory read and write operations, due to the SVE predicated vector load and store instructions, excluding the replicating LD1R and LD1RQ instructions. For each instruction, the counter is incremented by \(\frac{128}{\text{CSIZE}}\), multiplied by the number of transferred vector register. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CB, LDST_FIXED_OPS_SPEC, Non-scalable load and store element Operations speculatively executed
The counter counts speculatively executed memory read and write operations as follows:
- Loading or storing a single scalar register increments the counter by 1.
- Loading or storing a pair of scalar registers increments the counter by 2.
- An atomic store instruction increments the counter by 1.
- An atomic load instruction increments the counter by 2.
- SVE and Advanced SIMD LD1R instructions increment the counter by 1.
- SVE LD1RQ instructions increment the counter by \(\frac{128}{\text{CSIZE}}\).
- Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of elements transferred per vector multiplied by the number of transferred registers.

See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CC, LD_SCALE_OPS_SPEC, Scalable load element Operations speculatively executed
The counter counts speculatively executed memory read operations, due to SVE predicated vector load instructions, excluding the replicating LD1R and LD1RQ instructions. For each instruction, the counter is incremented by \(\frac{128}{\text{CSIZE}}\), multiplied by the number of transferred registers. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CD, LD_FIXED_OPS_SPEC, Non-scalable load element Operations speculatively executed
The counter counts speculatively executed memory read operations as follows:
- Loading a single scalar register increments the counter by 1.
- Loading a pair of scalar registers increments the counter by 2.
- An atomic load instruction increments the counter by 1.
• SVE and Advanced SIMD LD1R instructions increment the counter by 1.
• SVE LD1RQ instructions increment the counter by \((128 \div \text{CSIZE})\).
• Advanced SIMD LD[1-4] instructions increment the counter by the number of elements transferred per vector multiplied by the number of transferred registers.

See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CE, ST_SCALE_OPS_SPEC, Scalable store element Operations speculatively executed

The counter counts speculatively executed memory write operations, due to SVE predicated vector store instructions. For each instruction, the counter is incremented by \((128 \div \text{CSIZE})\), multiplied by the number of transferred registers. See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80CF, ST_FIXED_OPS_SPEC, Non-scalable store element Operations speculatively executed

The counter counts speculatively executed memory write operations as follows:
• Storing a single scalar register increments the counter by 1.
• Storing a pair of scalar registers increments the counter by 2.
• An atomic store instruction increments the counter by 1.
• Advanced SIMD ST[1-4] instructions increment the counter by the number of elements transferred per vector multiplied by the number of transferred registers.

See Operation counts for dot-product and multiply-accumulate operations on page D7-2713 for information on counts for dot product, matrix multiplication, and BFloat16 multiply-accumulate instructions.

0x80DA, LDST_SCALE_BYTES_SPEC, Scalable load and store bytes, Speculatively executed

The counter counts bytes speculatively read or written due to SVE vector load and store instructions, excluding the replicating LD1R and LD1RQ instructions. For each instruction, the counter is incremented by \((16 \div (\text{CSIZE} \div \text{MSIZE}))\), multiplied by the number of transferred vector registers.

0x80DB, LDST_FIXED_BYTES_SPEC, Non-scalable load and store bytes, Speculatively executed

The counter counts bytes speculatively read and written as follows:
• Non-SVE LDR and STR instructions increment the counter by \((\text{MSIZE} \div 8)\).
• LDP, LDNP, STP, and STNP instructions increment the counter by \(2 \times (\text{MSIZE} \div 8)\).
• Atomic store instructions increment the counter by \((\text{MSIZE} \div 8)\).
• Atomic load instructions increment the counter by \(2 \times (\text{MSIZE} \div 8)\).
• SVE and Advanced SIMD LD1R instructions increment the counter by \((\text{MSIZE} \div 8)\).
• SVE LD1RQ instructions increment the counter by 16.
• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of bytes being transferred per register multiplied by the number of registers transferred.

0x80DC, LD_SCALE_BYTES_SPEC, Scalable load bytes, Speculatively executed

The counter counts bytes speculatively read due to SVE vector load instructions, excluding the replicating LD1R and LD1RQ instructions. For each instruction, the counter is incremented by \((16 \div (\text{CSIZE} \div \text{MSIZE}))\), multiplied by the number of transferred vector registers.

0x80DD, LD_FIXED_BYTES_SPEC, Non-scalable load bytes, Speculatively executed

The counter counts bytes speculatively read as follows:
• Non-SVE LDR instructions increment the counter by \((\text{MSIZE} \div 8)\).
• LDP and LDNP instructions increment the counter by \(2 \times (\text{MSIZE} \div 8)\).
• Atomic load instructions increment the counter by \((\text{MSIZE} \div 8)\).
• SVE and Advanced SIMD LD1R instructions increment the counter by \((\text{MSIZE} \div 8)\).
• SVE LD1RQ instructions increment the counter by 16.
• Advanced SIMD \texttt{LD}[1-4] instructions increment the counter by the number of bytes read per register multiplied by the number of registers transferred.

0x80DE, \texttt{ST_SCALE_BYTES_SPEC}, Scalable store bytes, Speculatively executed
The counter counts bytes speculatively written due to SVE vector store instructions. For each instruction, the counter is incremented by \((16 \div (\text{CSIZE} \div \text{MSIZE})))\), multiplied by the number of transferred vector registers.

0x80DF, \texttt{ST_FIXED_BYTES_SPEC}, Non-scalable store bytes, Speculatively executed
The counter counts bytes speculatively written as follows:
• Non-SVE \texttt{STR} instructions increment the counter by \((\text{MSIZE} \div 8))\).
• \texttt{STP} and \texttt{STNP} instructions increment the counter by \(2 \times (\text{MSIZE} \div 8))\).
• Atomic load and store instructions increment the counter by \((\text{MSIZE} \div 8))\).
• Advanced SIMD \texttt{ST}[1-4] instructions increment the counter by the number of bytes read per register multiplied by the number of registers transferred.

0x80E1, \texttt{ASE_INT8_SPEC}, Advanced SIMD 8-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT8_SPEC} where the operation is an Advanced SIMD operation.

0x80E2, \texttt{SVE_INT8_SPEC}, SVE 8-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT8_SPEC} where the operation is an SVE operation.

0x80E3, \texttt{ASE_SVE_INT8_SPEC}, Advanced SIMD and SVE 8-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT_SPEC} where the largest type is an 8-bit integer.

0x80E5, \texttt{ASE_INT16_SPEC}, Advanced SIMD 16-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT16_SPEC} where the operation is an Advanced SIMD operation.

0x80E6, \texttt{SVE_INT16_SPEC}, SVE 16-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT16_SPEC} where the operation is an SVE operation.

0x80E7, \texttt{ASE_SVE_INT16_SPEC}, Advanced SIMD and SVE 16-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT_SPEC} where the largest type is a 16-bit integer.

0x80E9, \texttt{ASE_INT32_SPEC}, Advanced SIMD 32-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT32_SPEC} where the operation is an Advanced SIMD operation.

0x80EA, \texttt{SVE_INT32_SPEC}, SVE 32-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT32_SPEC} where the operation is an SVE operation.

0x80EB, \texttt{ASE_SVE_INT32_SPEC}, Advanced SIMD and SVE 32-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT_SPEC} where the largest type is a 32-bit integer.

0x80ED, \texttt{ASE_INT64_SPEC}, Advanced SIMD 64-bit integer Operations speculatively executed
The counter counts each operation counted by \texttt{ASE_SVE_INT64_SPEC} where the operation is an Advanced SIMD operation.
0x80EE, SVE_INT64_SPEC, SVE 64-bit integer **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_INT64_SPEC where the operation is an SVE operation.

0x80EF, ASE_SVE_INT64_SPEC, Advanced SIMD and SVE 64-bit integer **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_INT_SPEC where the largest type is an 64-bit integer.

0x80F1, ASE_FP_DOT_SPEC, Advanced SIMD floating-point dot-product **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_DOT_SPEC where the operation is an Advanced SIMD dot-product operation.

0x80F2, SVE_FP_DOT_SPEC, SVE floating-point dot-product **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_DOT_SPEC where the operation is an SVE dot-product operation.

0x80F3, ASE_SVE_FP_DOT_SPEC, Advanced SIMD and SVE floating-point dot-product **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_DOT_SPEC where the operation is an Advanced SIMD dot-product operation.

0x80F5, ASE_FP_MMLA_SPEC, Advanced SIMD floating-point matrix multiply **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation is an Advanced SIMD matrix multiply operation.

0x80F6, SVE_FP_MMLA_SPEC, SVE floating-point matrix multiply **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation is an SVE matrix multiply operation.

0x80F7, ASE_SVE_FP_MMLA_SPEC, Advanced SIMD and SVE floating-point matrix multiply **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation is an Advanced SIMD matrix multiply operation.

0x80F9, ASE_INT_DOT_SPEC, Advanced SIMD integer dot-product **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_INT_DOT_SPEC where the operation is an Advanced SIMD dot-product operation.

0x80FA, ASE_SVE_INT_DOT_SPEC, Advanced SIMD and SVE integer dot-product **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_INT_DOT_SPEC where the operation is an SVE dot-product operation.

0x80FB, ASE_FP_MMLA_SPEC, Advanced SIMD integer matrix multiply **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_FP_MMLA_SPEC where the operation is an Advanced SIMD matrix multiply operation.

0x80FE, SVE_INT_MMLA_SPEC, SVE integer matrix multiply **Operations speculatively executed**
The counter counts each operation counted by ASE_SVE_INT_MMLA_SPEC where the operation is an SVE matrix multiply operation.
0x80FF, **ASE_SVE_INT_MMLA_SPEC, Advanced SIMD and SVE integer matrix multiply Operations speculatively executed**
The counter counts each operation counted by INT_SPEC where the operation is an Advanced SIMD or SVE matrix multiply operation.

0x8110, **BR_IMMED_PRED_RETIRED, Instruction architecturally executed, predicted immediate branch**
The counter counts the instructions on the architecturally executed path counted by both BR_IMMED_RETIRED and BR_PRED_RETIRED. These are all immediate branch instructions where the branch was correctly predicted.

0x8111, **BR_IMMED_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted immediate branch**
The counter counts the instructions on the architecturally executed path, counted by both BR_IMMED_RETIRED and BR_MIS_PRED_RETIRED. These are all immediate branch instructions where the branch was mispredicted.

0x8112, **BR_IND_PRED_RETIRED, Instruction architecturally executed, predicted indirect branch**
The counter counts the instructions on the architecturally executed path counted by both BR_IND_RETIRED and BR_PRED_RETIRED. These are branch instructions where the branch was correctly predicted, but does not include immediate instructions.

0x8113, **BR_IND_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted indirect branch**
The counter counts the instructions on the architecturally executed path counted by both BR_IND_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the branch was mispredicted, but does not include immediate instructions.

0x8114, **BR_RETURN_PRED_RETIRED, Instruction architecturally executed, predicted procedure return**
The counter counts the instructions on the architecturally executed path counted by BR_IND_RETIRED where, if taken, the branch would be counted by BR_RETURN_RETIRED. These are branch return instructions, where the branch was correctly predicted.

0x8115, **BR_RETURN_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted procedure return**
The counter counts the instructions on the architecturally executed path counted by BR_IND_MIS_PRED_RETIRED where, if taken, the branch would also be counted by BR_RETURN_RETIRED. These are branch return instructions where the branch was mispredicted.

0x8116, **BR_INDNR_PRED_RETIRED, Instruction architecturally executed, predicted indirect branch, excluding return**
The counter counts the instructions on the architecturally executed path counted by BR_IND_PRED_RETIRED where, if taken, the branch would not be counted by BR_RETURN_RETIRED. These are branch instructions where the branch was correctly predicted, but does not include immediate or return instructions.

0x8117, **BR_INDNR_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted indirect branch, excluding return**
The counter counts the instructions on the architecturally executed path counted by BR_IND_MIS_PRED_RETIRED where, if taken, the branch would not be counted by BR_RETURN_RETIRED. These are branch instructions where the branch was mispredicted, but does not include immediate or return instructions.

0x8118, **BR_TAKEN_PRED_RETIRED, Instruction architecturally executed, predicted branch, taken**
The counter counts the instructions on the architecturally executed path counted by both PC_WRITE_RETIRED and BR_PRED_RETIRED. These are branch instructions, where the branch was correctly predicted and taken.
The counter counts the instructions on the architecturally executed path counted by both PC_WRITE_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the branch was mispredicted and taken.

0x811A, BR_SKIP_PRED_RETIRED, Instruction architecturally executed, predicted branch, not taken

The counter counts the instructions on the architecturally executed path counted by both BR_SKIP_RETIRED and BR_PRED_RETIRED. These are branch instructions, where the branch was correctly predicted and not taken.

0x811B, BR_SKIP_MIS_PRED_RETIRED, Instruction architecturally executed, mispredicted branch, not taken

The counter counts the instructions on the architecturally executed path counted by both BR_SKIP_RETIRED and BR_MIS_PRED_RETIRED. These are branch instructions where the branch was mispredicted and not taken.

0x811C, BR_PRED_RETIRED, Instruction architecturally executed, predicted branch

The counter counts the instructions on the architecturally executed path counted by BR_RETIRED that are not counted by BR_MIS_PRED_RETIRED. These are branch instructions, where the branch was correctly predicted.

D7.11.4 Cycle event counting on multithreaded implementations

For most events, the event is only counted when it is Attributable to the counting PE or thread, see Attributability on page D7-2701.

Multithreaded implementations can have various forms, some examples of these are:

- **Simultaneous Multithreading** (SMT), where every PE thread is active on every cycle.
- **Fine-grained Multithreading** (FGMT), also known as a Barrel processor, where one PE thread is active on each cycle, and this changes regularly.
- **Switch on Event Multithreading** (SoEMT), also known as **Coarse-grained Multithreading** (CGMT), where high latency events cause the processor to switch the active PE thread.

In the above examples, active means that the PE might execute the instructions. A PE can be active but not executing instructions when no instruction is available or because of limited execution resources.

When the PMU implementation supports multithreading, and the Effective value of PMEVTYPER<n>_EL0.MT bit is 0, the CPU_CYCLES event only counts cycles on which the thread was active. For the example multithreaded implementations, this means that:

- For an SMT implementation, the CPU_CYCLES event counts every cycle.
- For a particular FGMT implementation, that alternates between two threads on each cycle, the CPU_CYCLES event counts every other cycle.
- For a particular SoEMT implementation, that is waiting for a long latency operation, the CPU_CYCLES event does not count cycles, as the PE thread is not active.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the CPU_CYCLES event counts each processor cycle, and can only count a maximum of one cycle each cycle.

In addition, the STALL_FRONTEND and STALL_BACKEND events only count cycles that are counted by the CPU_CYCLES event, and so have the same limitation. For example, in an SMT implementation, if a PE thread cannot issue an instruction because of contention with other PE threads, these are counted as STALL_BACKEND cycles.

If the Effective value of PMEVTYPER<n>_EL0.MT bit is 1, the PE only counts cycles on which no operation is issued from any thread.
Note

The PMCCNTR register counts every processor cycle.

See Multithreaded implementations on page D7-2704, MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME, and HDCR.MTPME for more information about when the Effective value of PMEVTYPER<n>_EL0 is 0.

D7.11.5 Meaningful ratios between common microarchitectural events

The architecture highlights some meaningful ratios that can be derived from the common microarchitectural events. Table D7-8 lists the highlighted ratios.

Table D7-8 REFILL events and associated access events

<table>
<thead>
<tr>
<th>Numerator</th>
<th>Denominator</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001 L1I_CACHE_REFILL</td>
<td>0x0014 L1I_CACHE</td>
<td>Attributable Level 1 instruction cache refill rate</td>
</tr>
<tr>
<td>0x0002 L1I_TLB_REFILL</td>
<td>0x0026 L1I_TLB</td>
<td>Attributable Level 1 instruction TLB refill rate</td>
</tr>
<tr>
<td>0x0003 L1D_CACHE_REFILL</td>
<td>0x0004 L1D_CACHE</td>
<td>Attributable Level 1 data or unified cache refill rate</td>
</tr>
<tr>
<td>0x0005 L1D_TLB_REFILL</td>
<td>0x0025 L1D_TLB</td>
<td>Attributable Level 1 data or unified TLB refill rate</td>
</tr>
<tr>
<td>0x0017 L2D_CACHE_REFILL</td>
<td>0x0016 L2D_CACHE</td>
<td>Attributable Level 2 data or unified cache refill rate</td>
</tr>
<tr>
<td>0x0028 L2I_CACHE_REFILL</td>
<td>0x0027 L2I_CACHE</td>
<td>Attributable Level 2 instruction cache refill rate</td>
</tr>
<tr>
<td>0x002A L3D_CACHE_REFILL</td>
<td>0x0028 L3D_CACHE</td>
<td>Attributable Level 3 data or unified cache refill rate</td>
</tr>
<tr>
<td>0x002D L2D_TLB_REFILL</td>
<td>0x002F L2D_TLB</td>
<td>Attributable Level 2 data or unified TLB refill rate</td>
</tr>
<tr>
<td>0x002E L2I_TLB_REFILL</td>
<td>0x0030 L2I_TLB</td>
<td>Attributable Level 2 instruction TLB refill rate</td>
</tr>
<tr>
<td>0x0019 BUS_ACCESS</td>
<td>0x001D BUS_CYCLES</td>
<td>Attributable Bus accesses per cycle</td>
</tr>
<tr>
<td>0x0033 LL_CACHE_MISS</td>
<td>0x0032 LL_CACHE</td>
<td>Attributable Last Level data or unified cache refill rate</td>
</tr>
<tr>
<td>0x0034 DTLB_WALK</td>
<td>0x0025 L1D_TLB</td>
<td>Attributable data TLB miss rate</td>
</tr>
<tr>
<td>0x0035 ITLB_WALK</td>
<td>0x0026 L1I_TLB</td>
<td>Attributable instruction TLB miss rate</td>
</tr>
<tr>
<td>0x0037 LL_CACHE_MISS_RD</td>
<td>0x0036 LL_CACHE_RD</td>
<td>Attributable memory read operation miss rate</td>
</tr>
<tr>
<td>0x0038 REMOTE_ACCESS_RD</td>
<td>0x0031 REMOTE_ACCESS</td>
<td>Attributable read accesses to another socket in a multi-socket system</td>
</tr>
</tbody>
</table>

D7.11.6 Required events

PMUv3 requires that an implementation includes the following common events:

- 0x0000, SW_INCR, Instruction architecturally executed, Condition code check pass, software increment.
- 0x0003, L1D_CACHE_REFILL, Level 1 data cache refill.

Note

Event 0x0003 is only required if the implementation includes a Level 1 data or unified cache.

Note

Event 0x0004 is only required if the implementation includes a Level 1 data or unified cache.
0x0010, BR_MIS_PRED, Mispredicted or not predicted branch Speculatively executed.

--- Note ---

Event 0x0010 is only required if the implementation includes program-flow prediction. However, Arm strongly recommends that the event is implemented as described in Common microarchitectural events on page D7-2724.

0x0011, CPU_CYCLES, Cycle.

0x0012, BR_PRED, Predictable branch Speculatively executed.

--- Note ---

Event 0x0012 is only required if the implementation includes program-flow prediction. However, Arm recommends that the event is implemented as described in Common microarchitectural events on page D7-2724.

At least one of:
- 0x0008, INST_RETIRED, Instruction architecturally executed.
- 0x001B, INST_SPEC, Operation Speculatively executed.

--- Note ---

Arm strongly recommends that event 0x008 is implemented.

When FEAT_PMUv3p1 is implemented:
- 0x0023, STALL_FRONTEND, No operation issued due to the frontend.
- 0x0024, STALL_BACKEND, No operation issued due to the backend.

When The Scalable Vector Extension (SVE) is implemented, at least one of:
- 0x8002, SVE_INST_RETIRED, SVE instruction architecturally retired.
- 0x8006, SVE_INST_SPEC, SVE operation speculatively executed.

When the Statistical Profiling Extension is implemented:
- 0x4000, SAMPLE_POP, Sample Population.
- 0x4001, SAMPLE_FEED, Sample Taken.
- 0x4002, SAMPLE_FILTRATE, Sample Filtered.
- 0x4003, SAMPLE_COLLISION, Sample Collision.

When FEAT_PMUv3p4 is implemented:
- 0x003C, STALL, No operation sent for execution.
- 0x0039, L1D_CACHE_LMISS_RD, Level 1 data cache long-latency read miss.
- 0x0036, L1I_CACHE_LMISS, Level 1 instruction cache long-latency miss.
- 0x0040, L1D_CACHE_RD, Level 1 data cache read.

When any of the following common events are implemented, all three of them are implemented:
- 0x003D, STALL_SLOT_BACKEND, No operation sent for execution on a Slot due to the backend.
- 0x003E, STALL_SLOT_FRONTEND, No operation sent for execution on a Slot due to the frontend.
- 0x003F, STALL_SLOT, No operation sent for execution on a Slot.

Arm strongly recommends that the following events are implemented:
- 0x0021, BR_RETIRED.
- 0x0022, BR_MIS_PRED_RETIRED.
- 0x003A, OP_RETIRED.
- 0x003B, OP_SPEC.
- 0x003D, STALL_SLOT_BACKEND.
- 0x003E, STALL_SLOT_FRONTEND.
- 0x003F, STALL_SLOT.
D7.11.7 IMPLEMENTATION DEFINED event numbers

Arm recommends that implementers establish a standardized numbering scheme for their IMPLEMENTATION
DEFINED events, with common definitions, and common event numbers, applied to all of their implementations. In
general, the recommended approach is for standardization across implementations with common features. However,
Arm recognizes that attempting to standardize the encoding of microarchitectural features across too wide a range
of implementations is not productive.

Arm strongly recommends that at least the following classes of event are identified in the IMPLEMENTATION
DEFINED events:

- Separating each of the STALL_FRONTEND and STALL_SLOT_FRONTEND events to count holes in
 instruction availability.
- Separating each of the STALL_BACKEND and STALL_SLOT_BACKEND events, to count, for example,
 cumulative duration of stalls, unavailability of execution resources, or missed superscalar issue opportunities.
- Miss rates for additional levels of caches and TLBs.
- Any external events passed to the PE through an IMPLEMENTATION DEFINED mechanism.
- Cumulative duration of a PSTATE.{A, I, F} interrupt mask set to 1.
- Cumulative occupancy for resource queues, such as data access queues, and entry/exit counts, so that average
 latencies can be determined, separating out counts for key resources that might exist. An implementation
 might also provide registers in the IMPLEMENTATION DEFINED space to further extend such counts, for
 example by specifying a minimum latency for an event to be counted.
- Any other microarchitectural features that the implementer considers are valuable to count.

The range of possible IMPLEMENTATION DEFINED event numbers is described in The PMU event number space and
common events on page D7-2715. Appendix K3 Recommendations for Performance Monitors Event Numbers for
IMPLEMENTATION DEFINED Events lists the Arm recommended standardized numbering scheme for these
events.
D7.12 Performance Monitors Extension registers

Further information on the Performance Monitors Extension Registers can be found in the following sections:

• Table K15-2 on page K15-8162 lists the Performance Monitors register names for AArch32 and AArch64 states.
• Performance monitors registers on page K15-8182 summarizes the Performance Monitors Extension registers in AArch64 state.
• Performance monitors registers on page K15-8206 summarizes the Performance Monitors Extension registers in AArch32 state.
Chapter D8
The Activity Monitors Extension

This chapter describes the Armv8 implementation of version 1 of the Activity Monitor Unit (AMU) architecture, AMUv1, an optional non-invasive component. It contains the following sections:

• About the Activity Monitors Extension on page D8-2768.
• Properties and behavior of the activity monitors on page D8-2769.
• AMU events and event numbers on page D8-2771.
D8.1 About the Activity Monitors Extension

The Activity Monitors Extension is an OPTIONAL extension to the Armv8.4 architecture.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, AMUv1, and interfaces to the registers defined by AMUv1, the Activity Monitors registers.

Version 1 of the Activity Monitors architecture implements:

• A counter group of four architected 64-bit event counters. The events counted by the architected event counter are fixed and architecturally defined.

 Note

 The Activity Monitors architecture provides space for up to 16 architected event counters. Future versions of the Activity Monitors architecture may use this space to implement additional architected event counters.

• A counter group of up to 16 auxiliary 64-bit event counters. The event counted for each auxiliary event counter may be fixed or programmable, and whether it is fixed or programmable is IMPLEMENTATION DEFINED. When the event counted by an auxiliary event counter is fixed, this event is IMPLEMENTATION DEFINED.

• Controls for enabling and disabling counters.

• When the event counted by an auxiliary event counter is programmable, controls for assigning an event to the counter.

• Controls that determine whether the activity monitor counters continue to count while the PE is halted in Debug state.

The read-only registers AMCFGR and AMCGCR provide information about features supported by the Activity Monitors Extension, the number of counter groups implemented, the total number of counters implemented, the number of counters implemented within each group, and the size of the counters.

The Activity Monitors Extension provides:

• A mandatory System register interface to the Activity Monitors registers, for both AArch64 and AArch32 states.

 Base system registers on page K15-8190 lists the AArch64 Activity Monitors registers, and Base system registers on page K15-8213 lists the AArch32 Activity Monitors registers. Table K15-3 on page K15-8163 shows the relationship between the AArch64 and the AArch32 Activity Monitors register.

• Controls that allow software to enable or disable access by software running at lower Exception levels to the Activity Monitors registers.

• When FEAT_AMUv1p1 is implemented, and the hypervisor is using AArch64, offset registers that support virtualization of the Activity Monitor event counters.

• An optional external interface providing read-only memory-mapped access to the Activity Monitors registers.

 Alphabetical index of memory-mapped registers on page K15-8215 lists the Activity Monitors memory-mapped registers. For more information on the recommended external interface, see Chapter I4 Recommended External Interface to the Activity Monitors.
D8.2 Properties and behavior of the activity monitors

D8.2.1 Basic characteristics of the activity monitor event counters

Every activity monitor event counter is a 64-bit wrapping counter. When an activity monitor event counter wraps, the counter overflows.

Note

The Activity Monitor architecture does not provide support for overflow status indication or interrupts.

The state of the authentication signals do not affect counting.

Any change in clock frequency, including when a WFI and WFE instruction stops the clock, can affect any counter.

If FEAT_AMUv1p1 is implemented, for the architected event counters 0, 2 and 3, and each auxiliary event counter configured to use an offset, there is an offset register which is used to virtualize the count on a read from EL1 or EL0. At EL2, EL3 or from the memory-mapped view, permitted accesses to the counters use the physical view without any offset. See Virtualization on page D8-2770

D8.2.2 Counter configuration and controls

For each architected event counter AMEVCNTR0<n>, there is a corresponding event type register AMEVTPYR0<n> which provides information on the event counted by that counter. The event type registers AMEVTPYR0<n> are read-only.

For each auxiliary event counter AMEVCNTR1<n>, there is a corresponding event type register AMEVTPYR1<n> which provides information on the event counted by that counter. When the event counted by an auxiliary event counter is fixed, the corresponding event type register AMEVTPYR1<n> is read-only. When the event counted by an auxiliary event counter is programmable, the corresponding event type register AMEVTPYR1<n> is read/write.

For each counter group, there is a pair of separate controls to enable and disable the counters in that counter group. AMCNTNCLR0 and AMCNTNSET0 are used to disable and enable the architected event counters. AMCNTNCLR1 and AMCNTNSET1 are used to disable and enable the auxiliary event counters.

While the PE is halted in Debug state, AMCR.HDBG controls whether activity monitor counting is halted.

AMUSERENR.EN controls access from EL0 to the Activity Monitor Extension System registers. CPTR_EL2.TAM and HCPTR.TAM control access from EL0 and EL1 to the Activity Monitor Extension System registers. CPTR_EL3.TAM control access from EL0, EL1, and EL2 to the Activity Monitor Extension System registers.

Note

These controls obey the priority order described in Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 and Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747.

AMUSERENR.EN is configurable at EL1, EL2, and EL3. All other controls, as well as the value of the counters, are configurable only at the highest implemented Exception level.

If FEAT_AMUv1p1 is implemented, AMCG1IDR_EL0 defines which auxiliary counters are implemented, and if virtual offsets are enabled, indicates which of the implemented counters have a virtual offset when read from EL0 and EL1.

If FEAT_AMUv1p1 is implemented, AMCR.CG1RZ controls whether the auxiliary event counters read as zero if they are accessed at an Exception level lower than the highest implemented Exception level.

D8.2.3 Power and reset domains

The power domain of the activity monitoring unit is IMPLEMENTATION DEFINED.
The reset domain of the activity monitoring unit is IMPLEMENTATION DEFINED.

When a Cold reset of the power domain of the activity monitoring unit occurs, the activity monitoring unit is reset and the counters are reset to zero. When the PE is not in reset, the activity monitoring unit is available.

D8.2.4 Accuracy and non-invasive behavior

The activity monitors are a non-invasive component which must provide broadly accurate and statistically useful count information.

The implementation of an architecturally required event might create a conflict between the requirement to be non-invasive and the requirement to present an accurate value of the count under normal operating conditions. An implementation might provide an IMPLEMENTATION DEFINED control that disables accurate count of the event to restore performance and document the impact on performance of accurate counting. The expectations for non-invasive behavior and the degree of inaccuracy of the activity monitors are otherwise as described for the Performance Monitors architecture.

--- Note ---

For information on the expectations for non-invasive behavior and the degree of inaccuracy of the Performance Monitors, see Non-invasive behavior on page D7-2697 and A reasonable degree of inaccuracy on page D7-2697.

D8.2.5 Virtualization

FEAT_AMUv1p1 supports virtualized access to the Activity Monitors event counters at EL1 and EL0.

The fields HCR_EL2.AMOVOFFEN and SCR_EL3.AMOVFFEN enable and disable virtualization. When enabled, the architected event counters 0, 2 and 3 have counter offsets. Architected event counter 1 does not have an offset. The register AMCG1IDR_EL0 indicates which of the implemented auxiliary event counters has implemented counter offsets. An implemented event counter that does not have a defined offset has an effective offset of zero.

The offset registers can be accessed only at EL2 or EL3, and affect views of the event counters at EL1 and EL0 from the System register interfaces only.

The AMEVCNTVOFF0<\text{n}>_EL2 registers hold the offsets for the implemented and enabled architected event counters.

The AMEVCNTVOFF1<\text{n}>_EL2 registers hold the offsets for the implemented and enabled auxiliary event counters.
D8.3 AMU events and event numbers

The Activity Monitors architecture uses the event number space defined by the Performance Monitors architecture to identify events.

The Activity Monitors architecture defines additional events and adds them to the event number space defined by the Performance Monitors architecture for common events.

If the event is counting an IMPLEMENTATION DEFINED event, it must use an event number from the IMPLEMENTATION DEFINED event space.

When an implementation supports monitoring of an event that is assigned a common architectural or microarchitectural event number, Arm strongly recommends that it uses that number for the event.

When a common event is available to both the Performance Monitors architecture and the Activity Monitors architecture within one implementation, both architectures use the same event number.

D8.3.1 Architected event counters

Version 1 of the Activity Monitors architecture, AMUv1, requires four events to be counted by the architected activity monitor event counters.

The events required to be counted are:

0x0011, CPU_CYCLES, Processor frequency cycles

This event is defined identically to CPU_CYCLES in the PMUv3 architecture.

When the PE is in WFI or WFE, this counter does not increment. When in a multithreaded implementation, regardless of which PE is currently active, this counter continues to count for all PEs not in WFI or WFE.

This event is counted by AMEVCNTR0<n>, where n is 0.

0x4004, CNT_CYCLES, Constant frequency cycles

The constant frequency cycles counter increments at a constant frequency equal to the rate of increment of the System counter, CNTPCT_EL0.

When the PE is in WFI or WFE, this counter does not increment. When in a multithreaded implementation, regardless of which PE is currently active, this counter continues to count for all PEs not in WFI or WFE.

This event is counted by AMEVCNTR0<n>, where n is 1.

0x0008, INST_RETIRED, Instructions retired

This event is defined identically to INST_RETIRED in the PMUv3 architecture.

This event is counted by AMEVCNTR0<n>, where n is 2.

0x4005, STALL_BACKEND_MEM, Memory stall cycles

The counter counts cycles in which the PE is unable to dispatch instructions from the frontend to the backend of the PE due to a backend stall caused by a miss in the last level of cache within the PE clock domain.

This event is counted by AMEVCNTR0<n>, where n is 3.

D8.3.2 Auxiliary event counters

Auxiliary event counters can count events defined by the Performance Monitors architecture and IMPLEMENTATION DEFINED events defined specifically for activity monitoring.

Implementations must not re-use an IMPLEMENTATION DEFINED event number for different hardware events across the Performance Monitors architecture and the Activity Monitors architecture.
The Activity Monitors Extension
D8.3 AMU events and event numbers
This chapter describes the Statistical Profiling Extension. It contains the following sections:

- About the Statistical Profiling Extension on page D9-2774.
- Defining the sample population on page D9-2776.
- Controlling when an operation is sampled on page D9-2777.
- Enabling profiling on page D9-2780.
- Filtering sample records on page D9-2782.
- The profiling data on page D9-2783.
- The Profiling Buffer on page D9-2792.
- Profiling Buffer management on page D9-2796.
- Synchronization and Statistical Profiling on page D9-2800.
D9.1 About the Statistical Profiling Extension

Statistical profiling is a four stage process.

1. An operation is chosen from a sample population, that can be restricted by Exception level, at a programmable interval that might have some random, or pseudorandom, perturbation.

2. A trace of the sampled operation is taken. This includes the PC, events, timings, and data addresses, related to the sampled operation. This is the profiling operation.

3. Before a sample record is created, it is possible to filter out potential sample records generated by the profiling operation by reference to any or all of the following:
 a. The type of operation.
 b. Events.
 c. Latency.

4. A sample record is created that contains the traced information. Sample records that meet the criteria of the filter are written to and stored in a memory buffer. These sample records can be processed by software when the memory buffer is full.

D9.1.1 Non-invasive behavior

Statistical Profiling is a non-invasive debug operation:

• While profiling is enabled, the operation and performance of the processing element (PE) must not be significantly impacted between sampled operations, that is, other than for writing out sample records and processing Profiling Buffer management interrupts.

• The performance of the sampled operation and the performance of the PE in general must not be significantly impacted. The sample records are not written to memory until after the sampled operation has completed. However, this does not apply if the sample records are physical addresses for data access operations. In this case, the impact is IMPLEMENTATION DEFINED.

• The profiling operation to write sample records must not be excessively impactful on the performance of the sampled operation or the performance of the PE generally.

D9.1.2 PMU extensions

If the Statistical Profiling and Performance Monitors Extensions are implemented, then the following PMU events must be implemented:

• SAMPLE_POP.
• SAMPLE_FEED.
• SAMPLE_FILTRATE.
• SAMPLE_COLLISION.

___ Note ___

These events are discoverable through a read of PMCEID0_EL0[35:32].

D9.1.3 Multithreaded implementations

In a multithreaded implementation:

• Statistical Profiling is implemented per-thread.
• The sample interval counter counts only operations for the thread that is being profiled.
• Latency and other cycle counters count each cycle for the PE for which the thread was active and could issue an operation.

The architecture does not define features for inter-thread profiling and does not support sharing the Profiling Buffer between threads.
Note

An implementation is described as multithreaded when the lowest level of affinity consists of logical processors that are implemented using a multi-threading type approach. That is, the performance of processors at the lowest affinity level is very interdependent.
D9.2 Defining the sample population

All samples are taken from a population of operations. The population is dynamic rather than static. That is, if a program executes the same operation multiple times (for example, because of loops and subroutines) then that operation appears multiple times in the population.

The operations are an implementation defined choice between:

- Architecture instructions.
- IMPLEMENTATION DEFINED microarchitectural operations (micro-ops).

Architecture instruction means a single instruction that is defined by the Armv8 instruction set architecture in AArch64 state.

An architecture instruction might create one or more micro-ops at any point in the execution pipeline. The definition of a micro-op is implementation specific. An architecture instruction might create more than one micro-op for each instruction. A micro-op might also be removed or merged with another micro-op in the execution stream, so an architecture instruction might create no micro-ops for an instruction.

Any arbitrary translation of architecture instructions to an equivalent sequence of micro-ops is permitted. In some implementations, the relationship between architecture instructions and micro-ops might vary over time.

--- Note ---
Sampling from architecture instructions does not require that the instruction is architecturally executed.

D9.2.1 Operations that might be excluded from the sample population

It is implementation defined whether each of the following operations is part of the sample population:

- Operations on misspeculated paths.
- Operations (specifically micro-ops) that do not relate to any architecture instruction.
- Operations that generate non-architectural exceptions.

If the operation is not part of the sample population, the operation does not cause the sample interval counter to decrement, is not counted by the SAMPLE_POP event and therefore is never sampled.

If the operation is part of the sample population, the operation causes the sample interval counter to decrement, is counted by the SAMPLE_POP event, and might be sampled and counted by the SAMPLE_FEED event. However, it is implementation defined whether the sample record for such a sampled operation is captured in the Profiling Buffer. For more information, see Sample operation records for misspeculated and non-architectural operations on page D9-2788 and Non-architectural exceptions on page D9-2791.

If such a sample record is not captured into the Profiling Buffer, then no packets are output and the sample is not counted by the SAMPLE_FILTRATE event.

--- Note ---
If the owning Exception level passes this data to less privileged software for processing, it can set PMISFCR_EL1.FE to 1 and PMSEVFR_EL1[1] to 1 to prevent speculative instructions from being recorded in the Profiling Buffer.
D9.3 Controlling when an operation is sampled

The sample interval counter, PMSICR_EL1.COUNT controls when an operation is selected for sampling. In some implementations, a secondary sample interval counter, PMSICR_EL1.ECOUNT, is also used.

The following sections describe the operation of the sample interval counters.

Details of the random or pseudorandom number generator used when PMSIRR_EL1.RND is set to 1 are IMPLEMENTATION DEFINED. See Generating random numbers for sampling.

D9.3.1 Operation sampling

A sample operation is as follows:

1. A sampling interval is written to PMSICR_EL1.COUNT by software. The interval is measured in operations.
2. The sample interval counter is decremented by hardware for each operation when sampling is enabled.
3. When the sample interval counter reaches zero, then:
 a. If random perturbation is enabled, the PE continues to count for a random number of further operations while sampling is enabled.
 b. An operation is chosen for profiling. The choice of operation around the sampling point is implementation-specific, but does not introduce sampling bias.
4. The sample interval counter is reloaded and the process loops to step 2. It is IMPLEMENTATION DEFINED whether the sample interval counter is reloaded before step 3.a) or at step 3.b). That is, before or after counting the random number of further operations.
5. The chosen operation is marked as the sampled operation. The PE collects information about the sampled operation as it executes by a profiling operation.
6. When the sampled operation is completed, the sample record is created.

D9.3.2 Generating random numbers for sampling

The random number generator is IMPLEMENTATION DEFINED. Implementations might use a pseudorandom number. The random number generator must be reset into a useable state. An implementation might include IMPLEMENTATION DEFINED registers to further configure the random number generator.

It is IMPLEMENTATION DEFINED whether the PE adds the random number to the sample interval counter prior to counting down the interval, or after the counter reaches zero and the counter has been reloaded.

D9.3.3 Initializing the sample interval counters

When the PE moves from a state where profiling is disabled to a state where profiling is enabled:

- If PMSICR_EL1 is nonzero, then sampling restarts from the current values in PMSICR_EL1.
- If PMSICR_EL1 is zero, then it is loaded with an initial value. The behavior depends on PMSIRR_EL1.RND and an IMPLEMENTATION DEFINED choice discoverable by a read of PMSIDR_EL1.ERnd.
 - If PMSIRR_EL1.RND is 0:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to 0x00.
 - If PMSIRR_EL1.RND is 1 and PMSIRR_EL1.ERnd is 0:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to 0xFF.
 - If PMSIRR_EL1.RND is 1 and PMSIRR_EL1.ERnd is 1:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to 0xFF.
D9.3.4 Behavior of the sample interval counter while profiling is enabled

While profiling is enabled, the counters control when an operation is selected for sampling. The behavior depends on PMSIRR_EL1.RND and an IMPLEMENTATION DEFINED choice discoverable in PMSIDR_EL1.ERnd.

If PMSIRR_EL1.RND is 0:

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the counter reaches zero:

- A member of the sampling population is selected for sampling.
- The counter is set as follows:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to 0x00.

Note

Because the counter counts down to zero, when PMSIRR_EL1.RND is 0 the interval between operations being selected for sampling is \((INTERVAL \times 256 + 1)\).

If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0

While nonzero, the sample interval counter decrements by 1 for each member of the sample population. When the counter reaches zero:

- A member of the sampling population is selected for sampling.
- The counter is set as follows:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to a random or pseudorandom value in the range 0x00 to 0xFF.

Note

When PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 0, the mean interval between operations being selected for sampling is \((INTERVAL \times 256 + 128)\), if the random number generator is uniform.

If PMSIRR_EL1.RND is 1 and PMSIDR_EL1.ERnd is 1

While nonzero, the primary sample interval counter decrements by 1 for each member of the sample population. When the primary counter reaches zero:

- The primary sample interval counter is set as follows:
 - PMSICR_EL1.COUNT[31:8] is set to PMSIRR_EL1.INTERVAL.
 - PMSICR_EL1.COUNT[7:0] is set to 0x00.
- The secondary sample interval counter, PMSICR_EL1.ECOUNT, is set to a random or pseudorandom value in the range 0x00 to 0xFF.

While the secondary sample interval counter is nonzero, the secondary sample interval counter decrements by 1 for each member of the sample population. The primary sample interval counter also continues to decrement because it is also nonzero.

When the secondary sample interval counter reaches zero, an operation is selected for sampling.

Note

When PMSIRR_EL1.RND is set to 1 and PMSIDR_EL1.ERnd is 1, the mean interval between operations being selected for sampling is \((INTERVAL \times 256 + 1)\), if the random number generator is uniform.
D9.3.5 Behavior of the sample interval counter while profiling is disabled

When profiling is disabled:
- No operations are selected for sampling.
- No sample records are collected.
- The sample interval counters retain their values and do not decrement.

D9.3.6 Where operations are sampled

The exact point in the sampled lifespan of operations at which operations are chosen for profiling is IMPLEMENTATION DEFINED.

Note
Arm recommends that the point at which operations are sampled is linked to the definition of the Performance Monitors Extension (PMU) STALL_FRONTEND and STALL_BACKEND events, so that sampling records information for STALL_BACKEND stalls.

D9.3.7 Sample collisions

The maximum number of sampled operations that a PE can support simultaneously is IMPLEMENTATION DEFINED. If the maximum number of simultaneous sampled operations has been reached at the point when a new operation must be sampled, the new sample is said to have collided with a previous sampled operation.

The PE records the fact that a sampled operation has collided with another sampled operation. Software can also count the number of collisions and gauge the impact of the collisions.

On a sample collision:
- The PMU event SAMPLE_COLLISION is generated.
- PMBSR_EL1.COLL is set to 1.
- The new operation is not sampled.

Following a context synchronization event an indirect write to PMBSR_EL1.COLL is guaranteed to be visible to instructions in program order after the sampled operation that collided. There is no guarantee of visibility without a context synchronization event. For more information see Synchronization and Statistical Profiling on page D9-2800.

Note
This means that following a context synchronization event PMBSR_EL1.COLL will not change on entry to a state where profiling is disabled.
D9.4 Enabling profiling

Profiling is disabled if the Profiling Buffer is disabled, including when:

- PMBLIMITR_EL1.E is cleared to 0 or PMBSR_EL1.S is set to 1.
- Executing at a higher Exception level than the Profiling Buffer owning Exception level.
- Executing in the Security state that is not the Security state of the owning Exception level.
- The PE is in Debug state.

--- Note ---

The owning Exception level is controlled by MDCR_EL3.NSPB and MDCR_EL2.E2PB.

PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} enable sampling by Exception level:

- In a guest operating system or Secure state, PMSCR_EL1.E1SPE enables profiling at EL1 and PMSCR_EL1.E0SPE at EL0.
- In a hypervisor or host operating system, PMSCR_EL2.E2SPE enables profiling at EL2 and PMSCR_EL2.E0HSPE at EL0.
- Sampling is always disabled at EL3.

Table D9-1 defines the valid combinations of the Effective values of SCR_EL3.NS, SCR_EL3.EEL2, MDCR_EL3.NSPB, MDCR_EL2.E2PB, and HCR_EL2.TGE that define when sampling is enabled.

In Table D9-1:

- **D** Disabled.
- **E2SPE** Enabled if PMSCR_EL2.E2SPE == 1, disabled otherwise.
- **E1SPE** Enabled if PMSCR_EL1.E1SPE == 1, disabled otherwise.
- **E0HSPE** Enabled if PMSCR_EL2.E0HSPE == 1, disabled otherwise.
- **E0SPE** Enabled if PMSCR_EL1.E0SPE == 1, disabled otherwise.

Table D9-1 Enabling by Exception level and Security state (for all Exception levels using AArch64 state)

<table>
<thead>
<tr>
<th>Controls</th>
<th>Sampling enabled at</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>NSPB</td>
</tr>
<tr>
<td>1</td>
<td>0b0X</td>
</tr>
<tr>
<td>0b1X</td>
<td>0b1X</td>
</tr>
<tr>
<td>0b1X</td>
<td>X</td>
</tr>
<tr>
<td>0b0X</td>
<td>X</td>
</tr>
<tr>
<td>0b0X</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0b1X</td>
</tr>
<tr>
<td>0b0X</td>
<td>X</td>
</tr>
<tr>
<td>0b1X</td>
<td>1</td>
</tr>
<tr>
<td>0b1X</td>
<td>1</td>
</tr>
<tr>
<td>0b0X</td>
<td>1</td>
</tr>
<tr>
<td>0b0X</td>
<td>1</td>
</tr>
</tbody>
</table>
This is described in the pseudocode function `StatisticalProfilingEnabled()`.
D9.5 Filtering sample records

PMSFCR_EL1.FT enables filtering by operation type. When enabled, PMSFCR_EL1.{ST, LD, B} define the collected types:

- ST enables collection of store sampled operations, including all atomic operations.
- LD enables collection of load sampled operations, including atomic operations that return a value to a register.
- B enables collection of branch sampled operations, including direct and indirect branches and exception returns.

Note
When micro-op sampling is implemented, filtering is based on the micro-op type.

Table D9-2 summarizes the controls for filtering by operation type. In this table:

- **Load Atomic** refers to atomic operations which return a value to a general-purpose register. Other atomic operations are classed as Store.
- **D** indicates that the operation is discarded.
- **C** indicates that the operation is collected.
- **C/D** indicates it is CONSTRAINED UNPREDICTABLE whether the operation is collected or discarded.

<table>
<thead>
<tr>
<th>PMSFCR_EL1 field</th>
<th>Operation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT LD ST B</td>
<td>Load</td>
</tr>
<tr>
<td>0 X X X X</td>
<td>C</td>
</tr>
<tr>
<td>1 0 0 0 0</td>
<td>C/D</td>
</tr>
<tr>
<td>1 1 D D</td>
<td>D</td>
</tr>
<tr>
<td>1 0 0 D</td>
<td>D</td>
</tr>
<tr>
<td>1 D C</td>
<td>D</td>
</tr>
<tr>
<td>1 0 0 C</td>
<td>C</td>
</tr>
<tr>
<td>1 1 C</td>
<td>C</td>
</tr>
<tr>
<td>1 0 0 C</td>
<td>C</td>
</tr>
<tr>
<td>1 C C</td>
<td>C</td>
</tr>
</tbody>
</table>

PMSFCR_EL1.FE enables filtering by a set of events that are defined by PMSEVFR_EL1. When enabled, only sampled operations with all the events in the filter set are recorded and written to the Profiling Buffer.

PMSFCR_EL1.FL enables filtering by total latency. PMSLATFR_EL1.MINLAT defines the minimum latency. When enabled, only sampled operations with a total latency greater than or equal to the minimum latency are recorded and written to the Profiling Buffer.

These controls combine together as a logical AND.

This is described in the pseudocode function `CollectRecord()`.

The Statistical Profiling Extension
D9.5 Filtering sample records
D9.6 The profiling data

Unless otherwise stated all sample records that are generated by a profiling operation contain:

- A timestamp, if enabled. This is one of:
 - The physical counter, CNTPCT_EL0.
 - The offset physical counter, CNTPCT_EL0 - CNTPOFF_EL2. When any of the following are true, the Effective value of CNTPOFF_EL2 is 0 for all trace and SPE purposes:
 - EL3 is using AArch32.
 - EL2 is not implemented.
 - FEAT_ECV is not implemented.
 - EL2 is enabled in the current Security state and is using AArch32.
 - CNTHCTL_EL2.ECV is 0.
 - SCR_EL3.ECVEn is 0.
 - The virtual counter, CNTVCT_EL0.

It is IMPLEMENTATION DEFINED how this timestamp relates to the sampled operation. It might be the time when the sampled operation was taken or any later time during the lifetime of the sampled operation, that is, up to the time when the sampled operation is completed.

If the Generic Timer system counter is disabled and timestamps are enabled, then it is IMPLEMENTATION DEFINED whether:

- The Statistical Profiling Extension behaves as if timestamps are disabled.
- The timestamp that is collected in the sample record is UNKNOWN.

Note

This behavior describes when CNTEN.EN is cleared to 0. This behavior does not apply when the Generic Timer system counter is enabled but not accessible at the current Exception level.

- The context, if enabled, which is one or more of:
 - CONTEXTIDR_EL1.
 - CONTEXTIDR_EL2.
 - The Exception level.
 - The Security state.

- Information about whether the sampled operation generated an exception:
 - The target address for an exception generating operation is not collected.

- Information about whether the sampled operation completed execution.

If the sampled operation completes execution and does not generate an exception, the sample record also contains:

- The PC virtual address for the sampled operation.
- Information about whether the sampled operation is a branch, a load, a load atomic, a store, or other.
- Information about whether the sampled operation is conditional, conditional select, or not.
- The total latency, a cycle count from the start of the sampled operation up to the point where the operation has finished execution and is no longer capable of stalling any instruction that consumes its output.
- The issue latency, a cycle count from the start of the sampled operation up to the point when at least one part of the sampled operation starts executing. A sampled operation might be delayed, for example, because the input operands were not available.

If the sampled operation does not complete execution or generates an exception it is UNPREDICTABLE whether the record contains all or any of this information and the other information about the operation listed in this section and the following subsections. For information on exceptions being taken in sampled operations see Exceptions on page D9-2791.

The architecture defines a set of additional data that is collected in the sample record for each sampled operation. This is described in the following subsections, and comprises:

- Events, which are required to be implemented consistently with PMU Events, for more information see Chapter D10 Statistical Profiling Extension Sample Record Specification and Chapter D7 The Performance Monitors Extension.
• Cycle counters. Cycle count values as described in this architecture, which, for a particular implementation, are fixed with an IMPLEMENTATION DEFINED value, might be omitted from the sample record.
• Addresses.

In addition, the architecture permits IMPLEMENTATION DEFINED events, counters, and addresses to be collected.

D9.6.1 Information collected for micro-ops

Because architectural instructions might create zero, one, or more micro-ops, micro-ops might have different characteristics from the architectural instructions they are created from. The data collected for each micro-op is IMPLEMENTATION DEFINED. Implementations should collect the subset of data appropriate to the micro-op.

Example D9-1 Collection of sampled operations

If PMSFRCR_EL1.FE is set to 1, PMSFRCR_EL1.FT is set to 1, and PMSFRCR_EL1.FL is set to 1, then only sampled operations that meet all of the following criteria are recorded and written to the Profiling Buffer:

• The sampled operation is one of the selected operation types.
• The operation has all of the events in the filter set.
• The total latency is equal to or greater than the minimum latency.

D9.6.2 Additional information for each profiled branch or exception return

For a completed branch or exception return sampled operation, the profiling operation must record:

• The sampled operation type as an unconditional branch or a conditional branch. Sampled exception returns are treated as unconditional branches by the Statistical Profiling Extension.
• If the branch is taken, the target virtual address of the branch. The target virtual address of the branch includes the Exception level and Security state of the target. The target virtual address includes the Exception level and Security state of the target. If the sampled operation is an illegal exception return, it is CONSTRAINED UNPREDICTABLE whether the context information recorded in the target virtual address is the actual target context, or the target context that is described by the SPSR.
• If the PE implements branch prediction, whether the branch was correctly predicted or mispredicted.
• Whether the branch was taken or not taken.
• Whether the branch was direct or indirect.
• If the branch is not taken, a target virtual address might be recorded. Software must treat this value if present as UNKNOWN.

Note

A sampled operation that generates an exception is not treated as a branch.

D9.6.3 Additional information for each profiled memory access operation

For a completed load, store, or atomic sampled operation that does not generate an exception, the profiling operation must record:

• The data virtual and, if enabled, physical addresses being accessed.
 — If the applicable Top Byte Ignore (TBI) bit is set to one, the virtual address includes any top-byte tag.
 — The physical address is the address the PE accesses in the physical address space, and so includes the Secure address space identifier.
• The sampled operation type, which includes:
 — Whether the sampled operation is a load, store, or atomic.
 — Whether the sampled operation is Load-Exclusive, Store-Exclusive or Load-acquire, Store-release.
 — Whether the sampled operation accesses the general-purpose or SIMD&FP registers.
• The translation latency. This is defined as an IMPLEMENTATION DEFINED choice between:
 — The count of cycles for which at least one part or a chosen part of a load or store operation is waiting for the MMU to complete an address translation, and no part of the operation is accessing memory.
 — The count of cycles for which at least one part or a chosen part of a load or store operation is waiting for the MMU to complete an address translation.
• Whether the sampled operation accessed the Level 1 data cache and the result.
• Whether the sampled operation accessed the data TLB and the result.
• An optional, IMPLEMENTATION DEFINED, record of whether the sampled operation accessed Last Level data cache and the result.
• An optional, IMPLEMENTATION DEFINED, record of whether the sampled operation accessed another socket in a multi-socket system.
• An optional, IMPLEMENTATION DEFINED, indicator of the data source for a load.
• If FEAT_SPEv1p1 is implemented, an optional indication that the sampled memory operation is non-optimal for the access size. For more information see Data Alignment Flag on page D9-2786.

For each of the Last level cache and another socket indicators, it is IMPLEMENTATION DEFINED whether this information is present only for load accesses, only for store accesses, for neither, or for both.

For more information see Events packet on page D10-2818.

Note

A store might be marked as not accessing a cache or another socket because it completed before doing so. For example, the write was held in a write buffer. This behavior is IMPLEMENTATION DEFINED, and such events must be interpreted with care.

If architecture instructions are sampled, for a sampled load or store operation that is not single-copy atomic, the data addresses are the lowest address that is accessed by the sampled operation regardless of whether architecture instructions are sampled or not.

Otherwise the information is for the micro-op that is sampled.

Example D9-2 Sampling of micro-ops

If an architectural load instruction is split into an address generation micro-op and a load micro-op, then when generating the sample record and filtering based on operation type:
 • If the address generation micro-op is sampled, the sampled operation is treated as other.
 • If the load micro-op is sampled, the sampled operation is treated as a load.

The sampled data physical address is always the address generated from translating the sampled data virtual address. The sampled data physical address packet is not output if any of the following are true:
 • The PE does not translate the address, for example because it does not perform the access or the address translation generates a Translation fault.
 • The sampled data virtual address packet is not output.
 • Prohibited by System register controls.

When the sampled operation is a System register access transformed into a memory access by the mechanism described in Enhanced support for nested virtualization on page D5-2640, the operation is recorded as a load/store operation. If Statistical Profiling is disabled at EL2, the virtual address for the memory access is not recorded.

If FEAT_MTE is implemented, a PE will generate an Unchecked access for each access to the Profiling Buffer as part of writing a sample record.

For more information on FEAT_MTE, see Chapter D6 Memory Tagging Extension.
Data Alignment Flag

If FEAT_SPEv1p1 is implemented, Events packet E[11] is set to 1 for a sampled memory operation if the address alignment is non-optimal for the access size.

Address alignment is defined as non-optimal if that access incurs an additional performance penalty only because of the address alignment, and is unrelated to whether the access is architecturally misaligned for the access size.

Example D9-3 Data Alignment Flag operation

- A 32-bit word access that is not word aligned is architecturally misaligned, but (if Alignment faults are disabled) might not incur an additional penalty because of this alignment unless the word also happens to span a cache-line boundary.
- A contiguous load operation that loads a vector that is the length of two cache lines is optimally aligned if it has cache-line alignment, even though the operation makes two cache line accesses.
- A non-contiguous SVE load operation that makes a sequence of access is optimal only if all of the access are optimal.

The definition of non-optimal is IMPLEMENTATION DEFINED and support for the Alignment Flag is OPTIONAL.

D9.6.4 Additional information for each profiled conditional instruction

For a completed conditional select, conditional move, or conditional increment sampled operation, the profiling operation must record:
- That the sampled operation was conditional.
- Whether the condition passed or failed.

For conditional branches, see Additional information for each profiled branch or exception return on page D9-2784.

D9.6.5 Additional information for each profiled Scalable Vector Extension operation

When FEAT_SPEv1p1 and The Scalable Vector Extension (SVE) are implemented, SVE operations are sampled as described in this section.

In this section the following terms are used:

Maximum implemented vector length
Meaning the implemented width of the vector registers. This value is IMPLEMENTATION DEFINED.

Accessible vector length
Meaning the accessible width of the SVE vector registers at the current Exception level, as constrained by the ZCR_EL1, ZCR_EL2 or ZCR_EL3 System registers. The Accessible vector length is always less-than-or-equal-to the Maximum implemented vector length.

Sampled SVE operation
Meaning an instruction or micro-operation defined by the Arm Architecture Reference Manual Supplement: The Scalable Vector Extension (SVE), for Armv8-A and sampled by the Statistical Profiling Extension that has a vector or a predicate as an input or output. This includes instructions with scalar outputs, but excludes the Non-SIMD SVE instructions.

Sampled operation vector
Meaning the portion of the accessible vector operated on by the Sampled SVE operation.

Effective vector length
Is the length of the Sampled operation vector. The Effective vector length is always less-than-or-equal-to the Accessible vector length.
Note

The Accessible vector length is always quantized into multiples of 128-bits. However, the Sampled operation vector can be any size down to the element size of the operation.

Sampled predicated SVE operation

Means a Sampled SVE operation that is one of:

- An SVE operation that writes to a vector destination register under a Governing predicate using either zeroing or merging predication.
- A predicated store of a vector registers.

For an implementation that samples micro-operations, an SVE instruction might be split up into one or more micro-operations, some of which are predicated and some of which are not predicated.

Note

Sampled predicated SVE operation excludes operations that do not write a vector register, or do so but not using zeroing or merging predication, and applies to machine instructions rather than aliases. For example, the following instructions are not predicated SVE instructions under this definition:

- CNTP, LASTA, and PTRUE do not write to vector registers.
- FADDV, and SMAX write scalar values to SIMD&FP registers.
- COMPACT and SEL (vectors) write to vector registers, and have a predicate operand, but do not use that predicate as a Governing predicate for zeroing or merging predication.
- MOV (vector, predicated) appears to be a predicated SVE instruction because it specifies merging predication through the <PG>/M operand, but it is actually an alias for the SEL (vectors) instruction.

If an implementation samples micro-operations, it is IMPLEMENTATION DEFINED whether individual elements, or groups of elements, are treated as single micro-operations.

The division of instructions into micro-operations must be fixed prior to sampling to guarantee consistently accurate statistical sampling.

Example D9-4 Vector length

For example, to support a vector length of 1024 bits, an implementation might split all instructions into four micro-operations on 256-bit vector paths. The implementation must, however, implement 1024-bit wide vector registers.

This behavior might vary based on operation type. For example, an implementation that has a full-width data-path for most operations might choose to break certain complex operations, such as non-contiguous load or stores, into shorter vectors.

Example D9-5 Accessible vector length less-than the Maximum implemented

To support an Accessible vector length less-than the Maximum implemented vector length, an implementation might choose to do all operations at the Maximum implemented vector length and discard the results above the Accessible vector length. Discarded results, arising from difference between Maximum implemented vector length and Accessible vector length, do not form part of the sampled operation and the Effective vector length must not include any discarded portions of the vector.

Results discarded because of predication are part of the sampled operation.
For a sampled SVE cache prefetch operation:

- The profiling operation captures an IMPLEMENTATION DEFINED subset of the information captured for an SVE load instruction.
- The profiling operation treats the operation type as Other when generating the sample records and filtering based on operation.
- It is IMPLEMENTATION DEFINED whether the operation is treated as a Sampled SVE operation:
 - If treated as a Sampled SVE operation, the Operation Type packet payload format is the Operation Type packet on page D10-2823.
 - If not treated as a Sampled SVE operation, the Operation Type packet format is the Operation Type packet payload (Other) on page D10-2823.

For a Sampled SVE operation the Operation Type packet is one of:

- The SVE operation format.
- The SVE load or store format.

For a Sampled SVE operation the Operation Type packet.EVL field records an upper bound on the Effective vector length. The value recorded in the Operation Type packet.EVL field is the Effective vector length rounded up to a power-of-two value.

For a Sampled SVE operation that is a Sampled predicated SVE operation:

- Operation Type packet.PRED, Predicated SVE operation, is set to 1.
- If any elements in the Sampled operation vector are Inactive elements, then Events packet.E[17], Partial predicate, is set to 1.
- If all elements in the Sampled operation vector are Inactive elements, then Events packet.E[18].Empty predicate, is set to 1 and Events packet.E[17] (Partial predicate) is set to 1.
- If all elements in the Sampled operation vector are Active elements then Events packet.E[18:17] is set to 0b00.

For a Sampled SVE operation, that is not a Sampled predicated SVE operation:

- Operation Type packet.PRED, Predicated SVE operation, is set to 0.
- Events packet.E[18:17] is set to 0b00.

For a sampled non-contiguous SVE load or store operation that makes multiple memory accesses, the sampled data virtual address is the address accessed by a random one of the load or store operations chosen from the Sampled operation vector. If the chosen load or store operation is for an Inactive element, the data virtual address packet is not output.

For more information on memory access operations see Additional information for each profiled memory access operation on page D9-2784.

For a sampled contiguous SVE load or store operation that makes multiple memory accesses, the sampled data virtual address is an IMPLEMENTATION DEFINED choice of:

- The address accessed for the lowest element in the Sampled operation vector.
- The address used for the access containing the lowest Active element in the Sampled operation vector.

If the corresponding element is an Inactive element, it is IMPLEMENTATION DEFINED whether the data virtual address packet is output.

D9.6.6 Sample operation records for misspeculated and non-architectural operations

It is IMPLEMENTATION DEFINED whether each of the following operations is part of the sample population:

- Operations on misspeculated paths.
- Operations that do not relate to any architecture instruction.
If the operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether the sample record for the sampled operation is captured in the Profiling Buffer. For more information, see *Operations that might be excluded from the sample population* on page D9-2776.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then some information for the operation might not be present. However, the Events packet and either the End packet or the Timestamp packet is always output. Neither event 0 (generated exception) nor event 1 (architecturally retired) will be set in the Events packet.

The record must not contain information that cannot be accessed by privileged software of the owning Exception level.

D9.6.7 Additional information for other operations

For cache maintenance operations by virtual address, cache prefetch, other than SVE cache prefetch, or address translation instructions, the profiling operation:

- Captures an IMPLEMENTATION DEFINED subset of the information captured for a load instruction.
- Treats the operation type as *other* when generating the sample record and filtering based on operation type.

See *Filtering sample records* on page D9-2782, Operation Type packet and *Additional information for each profiled Scalable Vector Extension operation* on page D9-2786.

D9.6.8 Controlling the data that is collected

Certain data in sample records is only collected if permitted by one or both of EL1 and EL2. This is to restrict exposure of data to a lower Exception level or to Non-secure state.

`CONTEXTIDR_EL1` is collected only if `PMSCR_EL1.CX` is set to 1, the PE is executing at EL1 or EL0 and any of the following are true when an operation is sampled:

- EL2 is not implemented.
- `FEAT_SEL2` is implemented and EL2 is disabled for the current Security state.
- The Effective value of `HCR_EL2.TGE` is 0.

`CONTEXTIDR_EL2` is collected only if the Effective value of `PMSCR_EL2.CX` is 1 and EL2 is implemented and enabled for the current Security state.

This is described in the pseudocode functions `CollectContextIDR1()` and `CollectContextIDR2()`.

Timestamps are collected only if one of the following is true:

- `PMSCR_EL1.TS` is set to 1 and the Profiling Buffer is owned by EL1.
- `PMSCR_EL2.TS` is set to 1 and the Profiling Buffer is owned by EL2.

The timestamp is a choice between:

- Physical time, which is defined by the value of `CNTPCT_EL0`.
- If `FEAT_ECV` is implemented and enabled, offset physical time, as defined by the value of `(CNTPCT_EL0 - CNTPOFF_EL2)`. That is, the physical time minus the physical offset, `CNTPOFF_EL2`.
- Virtual time, as defined by the value of `CNTVCT_EL0`. That is, the physical time minus the virtual offset, `CNTVOFF_EL2`. However, the virtual offset is treated as zero if a read of `CNTVCT_EL0` at the current Exception level would treat the virtual offset as zero.

Table D9-3 on page D9-2790 summarizes the choice of value for the Timestamp packet when `FEAT_ECV` is implemented and `StatisticalProfilingEnabled()` is TRUE. In Table D9-3 on page D9-2790:

<table>
<thead>
<tr>
<th>Owning EL</th>
<th>This is the Exception level that owns the Profiling Buffer. This is returned by the function <code>ProfilingBufferOwner()</code>. If EL2 is disabled in the current Security state, this is always EL1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL2 enabled</td>
<td>This is TRUE when EL2 is enabled in the current Security state. When EL2 is disabled in the current Security state, this is FALSE.</td>
</tr>
<tr>
<td>Virtual</td>
<td>This means the timestamp is offset physical time, as returned by a direct read of <code>CNTVCT_EL0</code> at the Exception level the sampled operation is executed at.</td>
</tr>
</tbody>
</table>
Physical This means the timestamp is physical time, given by the value of CNTPCT_EL0 at the Exception level the sampled operation is executed at.

Offset physical This means the timestamp is offset physical time, as returned by (CNTPCT_EL0 - CNTPOFF_EL2) at the Exception level the sampled operation is executed at. That is, the physical time minus the physical offset. When any of the following are true, the Effective value of CNTPOFF_EL2 is 0 for all trace and SPE purposes:

- EL3 is using AArch32.
- EL2 is not implemented.
- FEAT_ECV is not implemented.
- EL2 is enabled in the current Security state and is using AArch32.
- CNTHCTL_EL2.ECV is 0.
- SCR_EL3.ECVEn is 0.

<table>
<thead>
<tr>
<th>EL2 enabled</th>
<th>Owning EL</th>
<th>PMSCR_EL2</th>
<th>PMSCR_EL1</th>
<th>Recorded timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>EL1</td>
<td>xx</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b00</td>
<td>1</td>
<td>Virtual</td>
</tr>
<tr>
<td>TRUE</td>
<td>EL1</td>
<td>xx</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b01</td>
<td>1</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b11</td>
<td>1</td>
<td>Offset physical</td>
</tr>
<tr>
<td></td>
<td>EL2</td>
<td>xx</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b00</td>
<td>1</td>
<td>Virtual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b01</td>
<td>1</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b11</td>
<td>1</td>
<td>Offset physical</td>
</tr>
</tbody>
</table>

Table D9-3 Recorded timestamp when FEAT_ECV is implemented

If EL2 is not implemented, see the register descriptions of PMSCR_EL1.PCT and PMSCR_EL2.PCT for details of their behavior. This behavior is described by the pseudocode function CollectTimeStamp().

Physical data addresses are collected only if one of the following is true:

- PMSCR_EL1.PA is set to 1 and the Profiling Buffer is owned by Secure EL1, and Secure EL2 is disabled or is not implemented.
- PMSCR_EL2.PA is set to 1 and the Profiling Buffer is owned by Secure or Non-secure EL2.
- PMSCR_EL1.PA is set to 1 and PMSCR_EL2.PA is set to 1 and either the Profiling Buffer is owned by Non-secure EL1, or the Profiling Buffer is owned by Secure EL1 and Secure EL2 is implemented and enabled.

If EL2 is not implemented or is disabled for the current Security state, the PE behaves as if PMSCR_EL2.PA is set to 1, other than for a direct read of the register.

Enabling collection of the physical data addresses has an IMPLEMENTATION DEFINED impact on the sampled operation. This is described by the pseudocode function CollectPhysicalAddress().
D9.6.9 Exceptions

All sample records written to the Profiling Buffer contain the Events packet and either the End packet or the Timestamp packet.

If the sampled operation generates an exception, it is UNPREDICTABLE whether the sample record contains any other information.

Where a sampled operation generates an exception and the type of exception means that a particular item is not computed by the sampled operation, that information is not collected by the profiling operation. For more information see Synchronization and Statistical Profiling on page D9-2800.

Example D9-6 Translation Faults

If a sampled operation generates a Translation Fault, the physical address for the sampled operation was not generated by the MMU and cannot be recorded.

Non-architectural exceptions

It is IMPLEMENTATION DEFINED whether operations that generate non-architectural exceptions are part of the sample population. If such an operation is part of the sample population, it is further IMPLEMENTATION DEFINED whether the sample record for a sampled operation that generates a non-architectural exception is captured in the Profiling Buffer. For more information, see Operations that might be excluded from the sample population on page D9-2776.

If such an operation is part of the sample population and the sample record is captured in the Profiling Buffer, then the sample might record handling of the non-architectural exception. If the sample does not record handling of the non-architectural exception, then the sampled operation does not complete because of the non-architectural exception and it is recorded using E[1] == 0 (operation did not retire) in the Events packet. Bit E[0] (operation generated an exception) might be used to indicate the operation did not complete because of the non-architectural exception.
D9.7 The Profiling Buffer

The profile data is collected in a memory Profiling Buffer. The Profiling Buffer is defined by:

- PMBPTR_EL1, the current write pointer.
- PMBLIMITR_EL1, the write limit pointer.

The Profiling Buffer starts at the current write pointer and extends to the current limit pointer minus one. The write limit pointer must be aligned to the smallest implemented translation granule size. The alignment of the current write pointer is IMPLEMENTATION DEFINED.

PMBLIMITR_EL1 and PMBPTR_EL1 are virtual addresses in the stage 1 translation regime of the owning Exception level. This is called the owning translation regime.

--- Note ---

The translation of virtual addresses to physical addresses is identical to that for any other virtual address in the owning Exception level. For example, PMBPTR_EL1[63:56] are ignored by address translation if the respective TBI bit is set to 1.

D9.7.1 Restrictions on the current write pointer

This section describes the software rules on setting the current write pointer, PMBPTR_EL1. If these rules are not followed, the value returned for a direct read of PMBPTR_EL1 is UNKNOWN, the behavior is UNPREDICTABLE, and the PE might do any of the following at any point after profiling is enabled:

- Write sample records to any writeable address in memory that is writable at the owning Exception level.
- Generate a Profiling Buffer management event, with or without indicating data loss, for one of the following reasons:
 - The Profiling Buffer is full.
 - Any MMU Fault.

When profiling becomes enabled, all the following must be true:

- The current write pointer must be at least one sample record below the write limit pointer. That is:
 \[\text{UInt}(\text{PMBPTR}_\text{EL1}.\text{PTR}) \leq \text{UInt}(\text{PMBLIMITR}_\text{EL1}.\text{LIMIT} :\text{Zeros}(12)) - 2^{\text{PMSIDR}_\text{EL1}.\text{MaxSize}}. \]
- PMBPTR_EL1.PTR[63:56] must equal PMBLIMITR_EL1.LIMIT[63:56].

When the Profiling Buffer is first configured, PMBPTR_EL1.PTR must be aligned to PMBIDR_EL1.Align. That is, if PMBIDR_EL1.Align is nonzero, PMBPTR_EL1.PTR [\text{UInt}(\text{PMBIDR}_\text{EL1}.\text{Align})-1:0] must be all zeros.

However, the current write pointer can usually be restored to the saved write pointer value it had when profiling was disabled, providing a PSB CSYNC and a context synchronization event were executed before reading PMBPTR_EL1:

- If no Profiling Buffer management event was signaled then profiling can be restarted from the saved write pointer. In this case, the saved write pointer points within one sample record of the write limit pointer.
- If a Profiling Buffer management event was signaled then:
 - If PMBSR_EL1.S is restored to 1, then profiling is not being enabled, and there are no constraints on the value written to PMBPTR_EL1.
 - If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by an MMU fault, profiling can be restarted from the saved write pointer; if PMBSR_EL1.{EA, DL} did not also indicate an external abort or data loss, and the saved write pointer is at least one sample record below the write limit pointer.

--- Note ---

If a signaled MMU fault has not been corrected, the Statistical Profiling Extension generates a new MMU fault Profiling Buffer management event when it next tries to write a sample record.

- If PMBSR_EL1.S is restored to 0, and the Profiling Buffer management event was caused by a buffer full event, the Profiling Buffer can be extended and profiling restarted from the saved write pointer; if PMBSR_EL1.{EA, DL} did not also indicate an external abort or data loss and the saved write pointer is at least one sample record below the extended write limit pointer.
The current write pointer must not be restored from the saved write pointer following a Profiling Buffer management event if PMBSR_EL1.DL was set to 1.

The saved write pointer might not be aligned to $2^{\text{PMBIDR_EL1.Align}}$ and might point to within one sample record of the write limit pointer.

For more information see *Synchronization and Statistical Profiling* on page D9-2800.

D9.7.2 The owning Exception level

The owning Exception level is:

- **Non-secure EL1**, if all of the following are true:
 - Either EL3 is not implemented and the PE is executing in Non-Secure state, or MDCR_EL3.NSPB is set to either 0b10 or 0b11.
 - Either EL2 is not implemented, or MDCR_EL2.E2PB is set to either 0b10 or 0b11.

- **Non-secure EL2**, if all of the following are true:
 - EL2 is implemented.
 - Either EL3 is not implemented and the PE is executing in Non-secure state, or MDCR_EL3.NSPB is set to either 0b10 or 0b11.
 - MDCR_EL2.E2PB is set to 0b00.

- **Secure EL1**, if all of the following are true:
 - Either EL3 is not implemented and the PE is executing in Secure state, or MDCR_EL3.NSPB is set to either 0b00 or 0b01.
 - Either Secure EL2 is not implemented or is disabled, or MDCR_EL2.E2PB is set to either 0b10 or 0b11.

- **Secure EL2**, if all of the following are true:
 - Secure EL2 is implemented and enabled.
 - Either EL3 is not implemented and the PE is executing in Secure state, or MDCR_EL3.NSPB is set to either 0b00 or 0b01.
 - MDCR_EL2.E2PB is set to 0b00.

When the owning Exception level is Non-secure EL1

The Profiling Buffer addresses are in the Non-secure EL1&0 translation regime using the current ASID from TTBRx_EL1. This is a two-stage translation using the current VMID if EL2 is implemented and HCR_EL2.VM is set to 1.

If EL3 is implemented, then the Profiling Buffer is disabled in Secure state.

If EL2 is implemented, then profiling is disabled at EL2 and at Non-secure EL0 when HCR_EL2.TGE is set to 1.

When the owning Exception level is Non-secure EL2

The Profiling Buffer addresses are in the Non-secure EL2 translation regime. If both HCR_EL2.E2H is set to 1 and HCR_EL2.TGE is set to 1, this is an EL2&0 translation regime using the current EL2&0 translation regime ASID from TTBRx_EL2.

If EL3 is implemented, then the Profiling Buffer is disabled in Secure state.

Note

If either HCR_EL2.E2H is cleared to 0 or HCR_EL2.TGE is cleared to 0, and the PE is executing at EL1 or EL0, the EL2 translation regime is not the current stage 1 translation regime because the current stage 1 translation regime is EL1&0.

When the owning Exception level is Secure EL1

The Profiling Buffer addresses are in the Secure EL1&0 translation regime using the current ASID from TTBRx_EL1. This is a two-stage translation using the current VMID if Secure EL2 is implemented and enabled and HCR_EL2.VM is set to 1.

If EL3 is implemented, then the Profiling Buffer is disabled in Non-secure state.
If Secure EL2 is implemented and enabled, then profiling is disabled at EL2 and at Secure EL0 when HCR_EL2.TGE is set to 1.

When the owning Exception level is Secure EL2
The Profiling Buffer addresses are in the Secure EL2 translation regime. If both HCR_EL2.E2H is set to 1 and HCR_EL2.TGE is set to 1, this is an EL2&0 translation regime using the current EL2&0 translation regime ASID from TTBRx_EL2.

If EL3 is implemented, then the Profiling Buffer is disabled in Non-secure state.

Summary of the owning translation regime
The Profiling Buffer is disabled if any of the following are true:
• The owning Exception level is using AArch32 state.
• PMBLIMITR_EL1.E is cleared to 0.

Table D9-4 summarizes the owning translation regime.

Table D9-4 Summary of owning translation regime (for all Exception levels using AArch64 state)

<table>
<thead>
<tr>
<th>PMBLIMITR_EL1.E</th>
<th>SCR_EL3.NS</th>
<th>SCR_EL3.EEL2</th>
<th>MDCR_EL3.NSPB</th>
<th>MDCR_EL2.E2PB</th>
<th>Owning translation regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0b1x</td>
<td>0b1x</td>
<td>Non-secure EL1&0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0b00</td>
<td></td>
<td>Non-secure EL2 or EL2&0a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0b0x</td>
<td>X</td>
<td>Disabled</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0b0x</td>
<td>X</td>
<td></td>
<td>Secure EL1&0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0b0x</td>
<td>0b1x</td>
<td></td>
<td>Secure EL1&0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0b00</td>
<td></td>
<td>Secure EL2 or EL2&0a</td>
</tr>
<tr>
<td>X</td>
<td>0b1x</td>
<td>X</td>
<td></td>
<td></td>
<td>Disabled</td>
</tr>
</tbody>
</table>

a. Depending on the values of HCR_EL2.{E2H,TGE}.

D9.7.3 Memory access types and coherency
The Statistical Profiling Extension acts as a separate observer in the system and is subject to the rules regarding coherency.

Writes to any Device memory type by the Statistical Profiling Extension occur once.

The memory type and attributes that are used for a write by the Statistical Profiling Extension to the Profiling Buffer is taken from the translation table entries for the virtual address being written to. That is:
• The writes are treated as coming from an observer that is coherent with all observers in the Shareability domain that is defined by the translation tables.
• There is no requirement to manage coherency for observers in the same Shareability domain but coherency for other observers in the system might require explicit management.

For more information see Synchronization and Statistical Profiling on page D9-2800.
If FEAT_MTE is implemented, an instruction which loads or stores an Allocation tag will be treated as a load or store if profiling is enabled. For more information on FEAT_MTE, see Chapter D6 Memory Tagging Extension.

Writes to the Profiling Buffer are made as privileged writes within the owning translation regime.

This means that if FEAT_E0PD is implemented, the values of TCR_ELx.E0PDy, where ELx is the owning Exception level, do not apply to accesses to the Profiling Buffer made by the Statistical Profiling Extension.

D9.7.4 Cache and TLB operations

TLB maintenance operations that affect the TLB of the PE also affect any TLB caching translations for the Statistical Profiling Extension of that PE.

Cache maintenance operations that affect the caches of the PE also affect data caching by the Statistical Profiling Extension of that PE.

This means that the completion of any cache or TLB maintenance instruction includes its completion on all Statistical Profiling Extensions for PEs that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction. See Completion and endpoint ordering on page B2-130.

Although the Statistical Profiling Extension acts as another observer in the system, for determining the Shareability domain of this DSB, or cache, or TLB maintenance operation, the writes of sample records are treated as coming from the PE that is being profiled.

D9.7.5 Effect on the exclusive monitors

If an operation between Load-Exclusive and Store-Exclusive instructions is sampled, then the Store-Exclusive must be guaranteed not to fail, even though the sample record is written to an unrelated address.
D9.8 Profiling Buffer management

A Profiling Buffer management event occurs:

• On a fault, see Faults and watchpoints on page D9-2797.
• On an external abort, see External aborts on page D9-2799.
• When the Profiling Buffer fills, see Buffer full event on page D9-2797.

On a Profiling Buffer management event:

• The service bit, PMBSR_EL1.S, is set to 1.
• The data loss bit, PMBSR_EL1.DL, is set as described in the event description.
• The Profiling Buffer management interrupt request signal, PMBIRQ, is asserted:
 — PMBIRQ is a level-sensitive interrupt request driven by PMBSR_EL1.S. This means that a direct
 write that sets PMBSR_EL1.S to 1 causes the interrupt to be asserted, and PMBIRQ remains
 asserted until software clears PMBSR_EL1.S to 0.
 — If a Generic Interrupt Controller (GIC) is implemented, PMBIRQ must be configured as a Private
 Peripheral Interrupt (PPI) in a multiprocessor system. PMBIRQ is signaled by the PE that implements
 the Statistical Profiling Extension.

—— Note ——

A standard PPI number is allocated by the ARM® Server Base System Architecture (SBSA).

• Additional syndrome for the event is written to PMBSR_EL1.MSS. Unless otherwise stated in the event
 description, other PMBSR_EL1 fields are unchanged.

While PMBSR_EL1.S is set to 1:

• The buffer is disabled and profiling is disabled.
• All remaining buffered sample records are discarded.
• The values in PMBPTR_EL1 are retained and PMSICR_EL1 does not decrement.

Buffer full events and MMU fault Profiling Buffer management events are reported synchronously.

—— Note ——

Reported synchronously means that profiling is disabled before the SPE samples further operations. The interrupt
exception resulting from asserting the Profiling Buffer interrupt request is an asynchronous exception.

—— Note ——

It is IMPLEMENTATION DEFINED whether external aborts are reported to the Statistical Profiling Extension
synchronously or asynchronously. If external aborts are reported as asynchronous:

• The external abort might not be received until after a first Profiling Buffer management event has set
 PMBSR_EL1.S to 1.
• Writes to the buffer might generate a second Profiling Buffer management event after the external abort has
 set PMBSR_EL1.S to 1.

The architecture does not require that a sample record is written sequentially by the Statistical Profiling Extension,
only that:

• The Statistical Profiling Extension never writes past the PMBLIMITR_EL1 limit pointer.
• On a Profiling Buffer management interrupt, PMBSR_EL1.DL indicates whether PMBPTR_EL1 points to
 the first byte after the last complete sample record.
• On an MMU fault or synchronous external abort, PMBPTR_EL1 serves as a Fault Address Register.

—— Note ——

• This means that it must not be assumed that:
 — There is ever any valid data beyond the current PMBPTR_EL1 write pointer.
 — The PE has not written a valid sample record between the current PMBPTR_EL1 write pointer and the
 PMBLIMITR_EL1 limit pointer.
 — If PMBSR_EL1.DL is set to 1 on a Profiling Buffer management interrupt, that there is any valid data
 between the end of the last complete sample record and the current PMBPTR_EL1 write pointer.
Any valid data has been written to the Profiling Buffer if an external abort is reported asynchronously to the Statistical Profiling Extension.

- The last complete sample record must end at most \(2^{(\text{PMSIDR_EL1.MaxSize})}\) bytes below PMBPTR_EL1.

D9.8.1 Prioritization of Profiling Buffer management events

Where multiple synchronous Profiling Buffer management events occur on writing a sample record, the PE prioritizes them as follows (from highest to lowest priority):

1. Synchronous fault.
2. Synchronous external abort.
3. Buffer full event.

Asynchronous external aborts are not prioritized with respect to other events.

Note

Prioritization of Profiling Buffer management interrupt requests is managed by the interrupt controller. Profiling Buffer management events are prioritized internally by the PE.

D9.8.2 Buffer full event

If, after writing a sample record, there is not sufficient space in the Profiling Buffer for a sample record of the size indicated by PMSIDR_EL1.MaxSize, and PMBSR_EL1.S is 0, a Profiling Buffer management event is generated:

- PMBSR_EL1.EC is set to 0b000000, other buffer management event.
- The BSC field of PMBSR_EL1.MSS is set as follows:
 - PMBSR_EL1.BSC is set to 0b000001, buffer filled.
- PMBPTR_EL1 is set to the first byte after the last complete sample record. PMBSR_EL1.DL is unchanged.
- The other PMBSR_EL1 fields are unchanged.

That is, the Profiling Buffer management event is generated when the PE writes past the write limit pointer minus \(2^{(\text{PMSIDR_EL1.MaxSize})}\). The Statistical Profiling Extension never writes beyond the write limit pointer.

For more information see *Restrictions on the current write pointer* on page D9-2792.

D9.8.3 Faults and watchpoints

Table D9-5 lists the faults that might be generated by a write to the Profiling Buffer by the Statistical Profiling Extension.

Writes to the Profiling Buffer never generate watchpoints.

Table D9-5 Faults

<table>
<thead>
<tr>
<th>Fault</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td>The translation of a virtual address to a physical address might generate a Translation fault.</td>
</tr>
<tr>
<td>Address Size</td>
<td>The translation of a virtual address to a physical address might generate an Address Size fault.</td>
</tr>
<tr>
<td>Alignment</td>
<td>If PMBPTR_EL1 is not aligned to an IMPLEMENTATION DEFINED minimum alignment, the behavior is UNPREDICTABLE and a write to the Profiling Buffer by the Statistical Profiling Extension might generate an Alignment fault. For more information see Restrictions on the current write pointer on page D9-2792.</td>
</tr>
</tbody>
</table>
If a write to the Profiling Buffer generates a fault and PMBSR_EL1.S is 0, then a Profiling Buffer management event is generated:

- PMBSR_EL1.S is set to 1.
- PMBSR_EL1.EC is set to one of:
 - 0b100100, stage 1 Data Abort on write to the Profiling Buffer.
 - 0b100101, stage 2 Data Abort on write to the Profiling Buffer.
- The FSC field of PMBSR_EL1.MSS is set as follows:
 - PMBSR_EL1.FSC is set to indicate the type of the fault.
- PMBPTR_EL1 is set to the address that generated the fault.
- If PMBPTR_EL1 is not the address of the first byte after the last complete sample record written by the Statistical Profiling Extension, then PMBSR_EL1.DL is set to 1. Otherwise, PMBSR_EL1.DL is unchanged.
- The other PMBSR_EL1 fields are unchanged.

Note
Each of these faults gives rise to a Profiling Buffer management interrupt, not an actual MMU fault exception. The ESR and FAR registers are unchanged.

For more information see The MMU fault-checking sequence on page D5-2648.

Hardware management of dirty state and the Access flag by the Statistical Profiling Extension

It is IMPLEMENTATION DEFINED whether address translations performed by the Statistical Profiling Extension manage dirty state and the Access flag. This is discoverable by software using PMBIDR_EL1.F. See Hardware management of dirty state on page D5-2614 and Hardware management of the Access flag on page D5-2613.

If hardware management of dirty state by the Statistical Profiling Extension is implemented, and hardware management of dirty state is enabled for the owning translation regime, then the Statistical Profiling Extension can speculatively update the translation table descriptor for any Page or Block in the Statistical Profiling buffer before writing data to it, if the write is otherwise permitted. This includes the case where a buffer management event means the Statistical Profiling Extension stops writing data before the page or block is written to.
D9.8.4 External aborts

A write to the Profiling Buffer might generate an external abort, including an external abort on a translation table walk or translation table update. It is an IMPLEMENTATION DEFINED choice whether such an external abort:

- Is reported to the Statistical Profiling Extension and treated as a Profiling Buffer management event.
- Generates an SError interrupt exception.

If a write to the Profiling Buffer generates an external abort that is reported to the Statistical Profiling Extension:

- The external abort bit, PMBSR_EL1.EA, is set to 1.
- The Statistical Profiling Extension stops writing sample records to the Profiling Buffer. It is implementation defined whether an external abort on a write to the Profiling Buffer is reported as synchronous or asynchronous:
 — The external abort is reported as synchronous if PMBPTR_EL1 is set to the address that was externally aborted.
 — The external abort is reported as asynchronous if PMBPTR_EL1 is not guaranteed to be set to the address that was externally aborted.
- If the external abort is reported as asynchronous or PMBPTR_EL1 is not the address of the first byte of the sample record being written by the Statistical Profiling Extension, then PMBSR_EL1.DL is set to 1. Otherwise PMBSR_EL1.DL is unchanged.

Note

Following an external abort reported asynchronously to the Statistical Profiling Extension, software must not assume that any valid data has been written to the Profiling Buffer.

- The other PMBSR_EL1 fields are unchanged.

If a write to the Profiling Buffer generates an external abort that is taken as an SError interrupt exception, the PE takes the SError interrupt exception as normal, and PMBSR_EL1 fields are unchanged.

Note

Treating the external abort as a Profiling Buffer management event:

- Sets PMBSR_EL1.S to 1 and so disables the Statistical Profiling Extension.
- Allows error recovery software to isolate the event to the actions of the Statistical Profiling Extension.

Taking an SError interrupt:

- Means that the Statistical Profiling Extension will only be disabled if the SError interrupt is taken to an Exception level where the Statistical Profiling Extension is disabled.
- Might not allow error recovery software to isolate the event and error containment.
D9.9 Synchronization and Statistical Profiling

The profiling operation of the Statistical Profiling Extension:

- Makes indirect reads and indirect writes of System registers.
- Writes to memory.
- Makes further indirect writes to PMBPTR_EL1 as a result of an external abort on a write to memory.

The indirect reads of the PMSCR_EL1.{E1SPE, E0SPE} and PMSCR_EL2.{E2SPE, E0HSPE} controls when determining whether to select an operation for profiling are treated as indirect reads made by the instruction being executed, and subject to the standard requirements for synchronization.

Otherwise, although the profiling operation is generated by a sampled operation, the profiling operation executes independently of the instructions that are executed on the PE, and acts as a separate memory observer from the PE in the system.

A DSB instruction guarantees that all memory transactions that are made by the PE are observable by writes made by a profiling operation relating to a sampled operation in program order after the DSB instruction.

A Context synchronization event guarantees that a direct write to a System register made by the PE in program order before the context synchronization event are observable by indirect reads and indirect writes of the same System register made by a profiling operation relating to a sampled operation in program order after the context synchronization event.

To synchronize previous profiling operations, software must execute a PSB CSYNC Buffer Synchronization instruction.

--- Note ---

The PSB CSYNC instruction is not defined in the AArch32 instruction set architecture.

Following a context synchronization event, a PSB CSYNC instruction is guaranteed to synchronize the profiling operations for all instructions that are executed in program order before the context synchronization event.

Synchronized by the PSB CSYNC instruction means:

- A direct read of a System register in program order following a PSB CSYNC instruction requires explicit synchronization to observe an indirect write to the same System register made by a profiling operation synchronized by the PSB CSYNC instruction.
- An indirect write to a System register made by a profiling operation synchronized by a PSB CSYNC instruction does not affect a direct write to the same System register made in program order following the PSB CSYNC instruction.
- A direct write to a System register in program order following a PSB CSYNC instruction is not allowed to affect an indirect read of the same System register made by a profiling operation synchronized by the PSB CSYNC instruction.
- A DSB instruction in program order following a PSB CSYNC instruction does not complete before the writes to the Profiling Buffer of sample records for profiling operations synchronized by the PSB CSYNC instruction have completed. The DSB instruction must apply to both loads and stores.

For the indirect write to PMBSR_EL1 that is made as a result of an external abort on a write of a sample record to memory, the synchronization rules apply only after the write has completed.

Although the Statistical Profiling Extension acts as another observer in the system, for determining the Shareability domain of the DSB instructions, the writes of sample records are treated as coming from the PE that is being profiled.

--- Note ---

If the Statistical Profiling Extension is not disabled when the context synchronization event occurs, further profiling operations might be generated that are not guaranteed to be synchronized by the PSB CSYNC instruction.

If the PE takes an exception to an Exception level where the Statistical Profiling Extension is disabled, no new operations are selected for sampling. The Statistical Profiling Extension is always disabled if the owning Exception level is a lower Exception level than the current Exception level.
In the absence of a context synchronization event, a `PSB CSYNC` instruction is not required to execute in program order with respect to sampled operations.

D9.9.1 UNPREDICTABLE behavior

In the absence of correct context synchronization events, it is UNPREDICTABLE whether an indirect read of a System register made by a profiling operation will return the old or the new values.

If the indirect reads mean that `ProfilingBufferEnabled()` returns FALSE when a sample record or records are about to be written to the physical address, then it is further unpredictable whether the sample record or records:

- Are written to memory.
- Are silently discarded and not written to memory.
- Are discarded and not written to memory, and a Profiling Buffer management event is generated:
 - `PMBSR_EL1.DL` is set to 1.
 - `PMBSR_EL1.EC` is set to `0x00`.
 - `PMBSR_EL1.BSC` is set to `0x00` to indicate that the buffer is not full.

This means that software must execute a `PSB CSYNC` instruction to force any sample records to be written to the Profiling Buffer before changing context.
Chapter D10
Statistical Profiling Extension Sample Record Specification

This chapter describes the sample records generated by the Statistical Profiling Extension. It contains the following sections:

• About the Statistical Profiling Extension Sample Records on page D10-2804.
• Alphabetical list of Statistical Profiling Extension packets on page D10-2807.
D10.1 About the Statistical Profiling Extension Sample Records

The sample record format is self-describing and extensible. This format allows software to parse profile data even when that profile data contains extended information.

The Statistical Profiling Extension writes a series of sample records to memory, each record consisting of a sequence of packets, and each packet consisting of:

- One or two header bytes.
- Zero, 1, 2, 4 or 8 payload bytes.

D10.1.1 Headers

The first header byte encodes the number of payload bytes:

- 0x00-0x1F: Single byte header, no payload.
- 0x20-0x3F: First byte of extended header. Second byte encodes the payload length.
- 0x40-0x4F, 0x80-0x8F, 0xC0-0xCF: Header with an 8-bit payload.
- 0x50-0x5F, 0x90-0x9F, 0xD0-0xDF: Header with a 16-bit payload.
- 0x60-0x6F, 0xA0-0xAF, 0xE0-0xEF: Header with a 32-bit payload.
- 0x70-0x7F, 0xB0-0xBF, 0xF0-0xFF: Header with a 64-bit payload.

D10.1.2 Records

A record consists of multiple packets. A record comprises, in ascending address order:

- A sequence of headers, each followed by their payload byte or bytes.
- Either:
 - An End packet header.
 - A Timestamp packet.

Figures in this chapter show each packet as a sequence of bytes. Figure D10-1 shows how bytes are stored in memory in increasing addresses from left to right.

<table>
<thead>
<tr>
<th>First byte</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Last Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td>Data</td>
<td></td>
<td>Header Data</td>
<td>0x01</td>
</tr>
<tr>
<td>(16-bit data)</td>
<td></td>
<td></td>
<td></td>
<td>(8-bit data)</td>
<td>End Packet</td>
</tr>
<tr>
<td>LSB</td>
<td></td>
<td></td>
<td></td>
<td>MSB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Byte</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
<th>12</th>
<th>Last Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td>Data</td>
<td></td>
<td>Header</td>
<td>0x71</td>
<td>Timestamp</td>
<td>...</td>
<td>TS [55:48]</td>
<td>TS [63:56]</td>
</tr>
<tr>
<td>(16-bit data)</td>
<td></td>
<td></td>
<td></td>
<td>(8-bit data)</td>
<td>Data</td>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSB</td>
<td></td>
<td></td>
<td></td>
<td>MSB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D10-1 Convention for packet descriptions

In some sections, the figures are split into separate figures for the header byte and payload bytes. For instance, where the number of payload bytes varies according to a field in the header.
D10.1.3 Byte order

Header bytes and payload bytes are written in ascending address order. Within a payload value, values are written in little-endian byte order.

The size of the access granule for writes to the Profiling Buffer by the Statistical Profiling Extension is IMPLEMENTATION DEFINED, up to a maximum of 2KB. The size of the access granule can vary from time to time.

Note

This means that if the memory type accessed is non-Gathering Device, the architecture does not require a specific access granule size at the end device.

D10.1.4 Protocol framing packets and forwards compatibility

The padding header, alignment command, timestamp packet, and end packet are protocol framing packets that frame the records created by the Statistical Profiling Extension. Only padding headers and alignment commands are permitted between records.

Note

PMBIDR_EL1.Align defines a minimum alignment for records. However, implementations must nevertheless create a valid protocol stream that can be parsed without knowledge of the minimum alignment.

The packet types are described in the following sections. Software must ignore unknown packets, using the size field encoded in the header. This includes packets containing reserved values in fields.

The following sections give an overview of the Statistical Profiling Extension packets output to a memory-mapped Profiling Buffer or Device memory:

- Statistical Profiling Extension protocol packet headers

D10.1.5 Statistical Profiling Extension protocol packet headers

8-bit headers

For Address packets and Counter packets, the 8-bit header format is described as the short format.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Padding on page D10-2828</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>End packet on page D10-2817</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Timestamp packet on page D10-2829</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Events packet on page D10-2818</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Data Source packet on page D10-2816</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>Context packet on page D10-2812</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Operation Type packet on page D10-2823</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Address packet on page D10-2807 (Short format)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Counter packet on page D10-2813 (Short format)</td>
</tr>
</tbody>
</table>
16-bit headers

For Address packets and Counter packets, the 16-bit header format is described as the *extended format*.

Table D10-2 16-bit header encodings

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 0 0 0 x x</td>
<td>1 0 1 1 0 x x x</td>
<td>Address packet on page D10-2807</td>
</tr>
<tr>
<td>0 0 1 0 0 0 x x</td>
<td>1 0 0 1 1 x x x</td>
<td>Counter packet on page D10-2813</td>
</tr>
</tbody>
</table>
D10.2 Alphabetical list of Statistical Profiling Extension packets

D10.2.1 Address packet

The Address packet characteristics are:

Purpose Provides an address value for the record. Addresses are always 64 bits.

Attributes Multi-part packet comprising:

- 8 or 16-bit header.
- 64-bit payload.

Address packet header

When Extended format is used, the Address packet header bit assignments are:

```
0 0 1 0 0 0 INDEX[4:3] Byte 0
1 0 1 1 0 0 INDEX[2:0] Byte 1
```

When Short format is used, the Address packet header bit assignments are:

```
1 0 1 1 0 0 INDEX Byte 0
```

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

- 0b11 Doubleword.

This field reads as 0b11.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b0.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads-as-zero.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format, INDEX, byte 0 bits [2:0], when Short format

The defined values of this field are:

- 0b0000 Issued instruction virtual address (PC). Included for all operations.
- 0b0001 Branch target address:
 - It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this address is included for an Exception Return to an Exception level where profiling is disabled.
 - Included for all other branch and exception return instructions.
0b00010 Data access virtual address. Included for all load, store and atomic operations.
0b00011 Data access physical address:
 • It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this address included for accesses that generate Permission or Access Flag faults.
 • Not included for all other accesses that generate an abort, or if disabled by CollectPhysicalAddress.
 • Included for all other load, store and atomic operations.
0b0011x IMPLEMENTATION DEFINED address.
0b1xxxx IMPLEMENTATION DEFINED address.
All other values are reserved.
In the Short format header, bits [4:3] are zero.

Address packet payload

When Data access physical address, the Address packet payload bit assignments are:

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
</tr>
<tr>
<td>CH</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>PAT</td>
</tr>
<tr>
<td>Byte 7</td>
</tr>
</tbody>
</table>
When Data access virtual address, the Address packet payload bit assignments are:

<table>
<thead>
<tr>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- ADDR[7:0] Byte 0
- ADDR[15:8] Byte 1
- ADDR[23:16] Byte 2
- ADDR[31:24] Byte 3
- ADDR[39:32] Byte 4
- ADDR[47:40] Byte 5
- ADDR[55:48] Byte 6
- TAG Byte 7

When Instruction virtual address, the Address packet payload bit assignments are:

<table>
<thead>
<tr>
<th>Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- ADDR[7:0] Byte 0
- ADDR[15:8] Byte 1
- ADDR[23:16] Byte 2
- ADDR[31:24] Byte 3
- ADDR[39:32] Byte 4
- ADDR[47:40] Byte 5
- ADDR[55:48] Byte 6
- NS EL 0 0 0 0 0 Byte 7

TAG byte (<7>, when Data access virtual address

Top-byte tag.

If the value of the applicable TBI bit is one, a data access virtual address includes the top-byte tag.
If the applicable TBI bit is zero, it is IMPLEMENTATION DEFINED whether this field reads as zero or holds the address tag of the applicable address.
NS, byte 7 bit [7], when Instruction virtual address
Non-secure state. The Security state associated with the address. For an issued instruction virtual
address (PC) this is the Security state the instruction was executed in. For a branch target address,
this is the Security state at the target of the branch. The defined values of this bit are:
0 Secure state.
1 Non-secure state.

--- Note ---
For an Exception Return, the Security state at the target of the branch might be different to the
Security state the instruction was executed in.

NS, byte 7 bit [7], when Data access physical address
Physical address space identifier. The Security attribute for the physical address. The defined values
of this bit are:
0 Secure physical address space.
1 Non-secure physical address space.

CH, byte 7 bit[6], when Data access physical address
When FEAT_MTE is implemented, Checked access identifier. Checked or Unchecked access. The
defined values of this bit are:
0 Unchecked access.
1 Checked access.

For more information see Chapter D6 Memory Tagging Extension.
If FEAT_MTE is not implemented this bit is RAZ.

EL, byte 7 bits [6:5], when Instruction virtual address
Exception level. The Exception level associated with the address. For an issued instruction virtual
address (PC) this is the Exception level the instruction was executed in. For a branch target address,
this is the Exception level at the target of the branch. The defined values of this field are:
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

--- Note ---
For an Exception Return, the Exception level at the target of the branch might be different to the
Exception level the instruction was executed in.

Byte 7 bits [5:4], when Data access physical address
This field reads as 0b00.

PAT, Byte 7 bits [3:0], when Data access physical address
When FEAT_MTE is implemented, this field provides the Physical Address Tag for a Checked
access. If the access is Unchecked this field reads as an IMPLEMENTATION DEFINED choice between
0b0000 and the Physical Address Tag used to perform the access.

For more information see Chapter D6 Memory Tagging Extension.
If FEAT_MTE is not implemented this field is RAZ.

Byte 7 bits [4:0], when Instruction virtual address
This field reads as 0b0000.
ADDR, bytes <6:0>

D10.2.2 Context packet

The Context packet characteristics are:

Purpose
Provides context information for the record.

Attributes
Multi-part packet comprising:
- 8-bit header.
- 32-bit payload.

Context packet header

The Context packet header bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5:4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3:2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

- 0b10 Word.

 This field reads as 0b10.

Byte 0 bits [3:2]

This field reads as 0b01.

INDEX, byte 0 bits [1:0]

Identifies the context value. The defined values of this field are:

- 0b00 CONTEXTIDR_EL1. Included for all operations if enabled by CollectContextIDR1.
- 0b01 CONTEXTIDR_EL2. Included for all operations if enabled by CollectContextIDR2.

 All other values are reserved.

Context packet payload

The Context packet payload bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
</tr>
</thead>
</table>

CONTEXT, bytes <3:0>

The context value.
D10.2.3 Counter packet

The Counter packet characteristics are:

Purpose
Count of cycles the operation spent performing all or part of its behavior. The counter value occupies the least significant bits of the payload. The remaining bits are set to zero.

Attributes
Multi-part packet comprising:
- 8 or 16-bit header.
- 16-bit payload.

Counter packet header

When Extended format, the Counter packet header bit assignments are:

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>INDEX[4:3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SZ</td>
<td></td>
</tr>
</tbody>
</table>

When Short format, the Counter packet header bit assignments are:

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>INDEX</td>
<td></td>
</tr>
</tbody>
</table>

Byte 1 bits [7:6], when Extended format, Byte 0 bits [7:6], when Short format

This field reads as 0b10.

SZ, byte 1 bits [5:4], when Extended format, SZ, byte 0 bits [5:4], when Short format

Payload size. The defined values of this field are:

- 0b01 Halfword.
 This field reads as 0b01.

Byte 1 bit [3], when Extended format, Byte 0 bit [3], when Short format

This bit reads as 0b1.

Byte 0 bits [7:5], when Extended format

This field reads as 0b001.

Byte 0 bits [4:2], when Extended format

This field reads as-zero.

INDEX, byte 0 bits [1:0], byte 1 bits [2:0], when Extended format, INDEX, byte 0 bits [2:0], when Short format

The defined values of this field are:

- 0b00000 Total latency. Cycle count from the operation being dispatched for issue to the operation being microarchitecturally-finished. Included for all operations.
- 0b00001 Issue latency. Cycle count from the operation being dispatched for issue to the operation being issued for execution. This counts any delay in waiting the operation being ready to issue. Included for all operations.
- 0b00010 Translation latency. Cycle count from a virtual address being passed to the MMU for translation to the result of the translation being available. Included for all load, store and atomic operations.
- 0b0011x IMPLEMENTATION DEFINED counter value.
\texttt{0b1xxxx} IMPLEMENTATION DEFINED counter value.
All other values are reserved.

In the Short format header, bits [4:3] are zero.

For the purposes of defining these counter values:

- Dispatched for issue means:
 - The operation has been decoded.
 - The operation might not be ready to start execution because it is waiting for input values. The operation might be put into a queue.

- Issued for execution means the operation is ready to start executing:
 - For example, for a memory operation, this should be indicative of the cycle count from memory operation being dispatched for issue to access being initiated (virtual address).

- Microarchitecturally-finished means:
 - The operation has completed execution and is no longer capable of stalling any instruction that consumes its output. The results of the operation are not required to be coherent or observable by other PEs.
 - It is IMPLEMENTATION DEFINED whether the operation is speculative, or has committed its results to the architectural state of the PE.
 - For example:
 - For an arithmetic, floating-point, or SIMD operation with variable timing, such as divide, the results of the operation are available.
 - For load and atomic operations that return data, all data have been returned from memory.
 - For store and atomic operations that do not return data, it is not required that the store is complete for other observers.
 - For branch operations, the branch has been resolved as taken or not taken.
 - For barrier operations, the barrier has completed.

For WFE and WFI operations, it is IMPLEMENTATION DEFINED whether:

- The instruction is complete before the PE enters a low-power state or when the PE wakes from the low-power state.
- Counters count in the low power state.
- Sampling an operation is itself a wake-up event.

Counter packet payload

The Counter packet payload bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Byte 1 bits [7:4]

This field reads-as-zero.

COUNT, byte 1 bits [3:0], byte <0>, when a 12-bit counter is implemented

The counter value occupies the least significant bits of the payload. The remaining bits are set to zero. The counters are:

- Unsigned numbers.
• 12 bits.
• Saturating.

The value 0xFFF indicates the count has saturated.
D10.2.4 Data Source packet

The Data Source packet characteristics are:

Purpose
If the implementation includes support for indicating the loaded data source, the Data Source packet indicates where the data returned for a load operation was sourced. It might also include other information, such as the state of the data at the source. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether this is included for load and atomic operations that generate an external abort. It is IMPLEMENTATION DEFINED whether this is included for atomic operations that do not return data to a PE register. Included for all other load and atomic operations.

Attributes
Multi-part packet comprising:
- 8-bit header.
- 8 or 16-bit payload.

Data Source packet header
The Data Source packet header bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>SZ</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Byte 0 bits [7:6]
This field reads as 0b01.

SZ, byte 0 bits [5:4]
Payload size. The defined values of this field are:
- 0b00 Byte.
- 0b01 Halfword.

Byte 0 bits [3:0]
This field reads as 0b0011.

Data Source packet payload
When SZ == 0b00, the Data Source packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOURCE</td>
</tr>
</tbody>
</table>

When SZ == 0b01, the Data Source packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOURCE[7:0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOURCE[15:8]</td>
<td></td>
</tr>
</tbody>
</table>

SOURCE, byte <0>, when SZ == 0b00, SOURCE, bytes <1:0>, when SZ == 0b01
Because the list of data sources varies from system to system, the definition of this field is IMPLEMENTATION DEFINED. If a sampled operation generated multiple data accesses, it is IMPLEMENTATION DEFINED how the data source information is combined.
D10.2.5 End packet

The End packet characteristics are:

Purpose
Defines the end of a record if a Timestamp packet is not present.

Attributes
8-bit packet.

Field descriptions

The End packet bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Byte <0>

This field reads as \(\texttt{0b0000001}\).
D10.2.6 Events packet

The Events packet characteristics are:

Purpose

Indicates up to 64 events generated by the sampled operation. If FEAT_PMUv3p1 is implemented and an event counter is configured to count PMU events, then a sampled operation that causes the event counter to be incremented has the event recorded as one, and conversely a sampled operation that does not cause the counter to be incremented is recorded as zero.

Note

Arm recommends that the Performance Monitors Extension implements the Events.

Attributes

Multi-part packet comprising:

- 8-bit header.
- 8, 16, 32, or 64-bit payload.

Events packet header

The Events packet header bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>SZ</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Byte 0 bits [7:6]

This field reads as 0b01.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

- 0b00 Byte.
- 0b01 Halfword.
- 0b10 Word.
- 0b11 Doubleword.

Software must treat bits that are not output as zero.

Byte 0 bits [3:0]

This field reads as 0b0010.

Events packet payload

When SZ == 0b00, the Events packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

Byte 0
When $SZ = 0b01$, the Events packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte 0</th>
</tr>
</thead>
</table>

| Byte 1 |

| 00000000 | 00000000 |

| Byte 4 |

| E[55:48] |

| Byte 6 |

| E[63:56] |

| Byte 7 |

When $SZ = 0b10$, the Events packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte 0</th>
</tr>
</thead>
</table>

| Byte 1 |

| 00000000 | 00000000 |

| Byte 4 |

| E[55:48] |

| Byte 6 |

| E[63:56] |

| Byte 7 |

When $SZ = 0b11$, the Events packet payload bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte 0</th>
</tr>
</thead>
</table>

| Byte 1 |

| 00000000 | 00000000 |

| Byte 4 |

| E[55:48] |

| Byte 6 |

| E[63:56] |

| Byte 7 |

$E[63:48]$, bytes <7:6>, when $SZ = 0b11$

Events 63 to 48, IMPLEMENTATION DEFINED.
Bytes <5:4,2>, byte 1 bit [3], when SZ == 0b11
This field reads-as-zero.

E[31:24], byte <3>, when SZ == 0b10, or when SZ == 0b11
Events 31 to 24. IMPLEMENTATION DEFINED.

E[18], byte 2 bit [18], when SZ == 0b10, or SZ == 0b11
Empty predicate.
When The Scalable Vector Extension (SVE) and FEAT_SPEv1p1 are implemented the defined values of this bit are:
0 Operation was not an SVE operation, was unpredicated or executed with all elements Active.
1 SVE operation executed with all elements Inactive.
Otherwise this bit reads-as-zero.
If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to be implemented consistently with SVE_PRED_EMPTY_SPEC in the Arm Architecture Reference Manual Supplement, the Scalable Vector Extension, for v8-A.

E[17], byte 2 bit [17], when SZ == 0b10, or SZ == 0b11
Partial predicate.
When The Scalable Vector Extension (SVE) and FEAT_SPEv1p1 are implemented the defined values of this bit are:
0 Operation was not an SVE operation, was unpredicated, or executed with all elements Active.
1 Predicated SVE operation executed with at least one Inactive element.
Otherwise this bit reads-as-zero.
If PMUv3 and The Scalable Vector Extension (SVE) are implemented this Event is required to be implemented consistently with SVE_PRED_EMPTY_SPEC and SVE_PRED_PARTIAL_SPEC in the Arm Architecture Reference Manual Supplement, the Scalable Vector Extension, for v8-A.

E[15:12], byte 1 bits [7:4], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11
Events 15 to 12. IMPLEMENTATION DEFINED.

E[11], byte 1, bit [11], when SZ == 0b10, or SZ == 0b11
Alignment.
When FEAT_SPEv1p1 is implemented the defined values of this bit are:
0 Load/store operation that was optimally aligned for the size of data being accessed.
1 Load/store operation that, due to the alignment of the address and size of data being accessed, incurred additional latency.
Otherwise this bit reads-as-zero.
If PMUv3 is implemented this Event is required to be implemented consistently with LDST_ALIGN_LAT.

Byte 1 bit [3], when SZ == 0b01
This bit reads-as-zero.

E[10], byte 1 bit [2], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11
Remote access. The defined values of this bit are:
0 Did not cause access to another socket.
1 Load/store operation caused an access to another socket in a multi-socket system. This includes each data memory access that accesses another socket in a multi-socket system, including those that do not return data.
If PMUv3 is implemented this Event is required to be implemented consistently with REMOTE_ACCESS.

E[9], byte 1 bit [1], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Last Level cache miss. The defined values of this bit are:

0 Did not miss Last Level cache.
1 Load/store operation caused an access to at least the Last Level cache but is not completed by the Last Level cache. That is, each:

 • Load operation that does not return data from the Last Level cache.
 • Store operation that does not update the Last Level cache.

The event is not set for operations that are completed by a cache above the Last Level cache.

If PMUv3 is implemented this Event is required to be implemented consistently with LL_CACHE_MISS.

E[8], byte 1 bit [0], when SZ == 0b01, when SZ == 0b10, or when SZ == 0b11

Last Level cache access. The defined values of this bit are:

0 Did not access Last Level data or unified cache.
1 Load/store operation caused a cache access to at least the Last Level data or unified cache.

--- Note ---

The architecture does not define the Last Level cache. The Last Level cache is typically the largest cache on this device shared by all PEs in the inner or outer Shareable domain of this PE. In a multi-socket system, it is IMPLEMENTATION DEFINED whether this includes caches on other sockets.

If PMUv3 is implemented this Event is required to be implemented consistently with LL_CACHE.

E[7], byte 0 bit [7]

Mispredicted. The defined values of this bit are:

0 Did not cause correction to the predicted program flow.
1 A branch that caused a correction to the predicted program flow.

If PMUv3 is implemented this Event is required to be implemented consistently with either BR_MIS_PRED or BR_MIS_PRED_RETIRED.

E[6], byte 0 bit [6]

Not taken. The defined values of this bit are:

0 Did not fail condition code check.
1 A conditional instruction that failed its condition code check. This includes conditional branches, compare-and-branch, conditional select, and conditional compares:

 • For a conditional branch or compare-and-branch instruction, this means the branch was not taken.
 • For a conditional select, this means the second operand was written to the result.
 • For a condition compare, this means the condition flags were set to the immediate value and not the result of the compare.

--- Note ---

This Event includes branches, selects, COMP (register), and COMP (immediate).

E[5], byte 0 bit [5]

TLB walk. The defined values of this bit are:

0 Did not generate TLB walk.
1 Load/store operation that causes a refill of a data or unified TLB, involving at least one
translation table walk access. This includes each complete or partial translation table
walk that causes an access to memory, including to data or translation table walk caches.

If PMUv3 is implemented this Event is required to be implemented consistently with
DTLB_WALK.

E[4], byte 0 bit [4]
TLB access. The defined values of this bit are:
0 Did not access TLB.
1 Load/store operation caused an access to at least the first level of data or unified TLB.

If PMUv3 is implemented this Event is required to be implemented consistently with L1D_TLB.

E[3], byte 0 bit [3]
Level 1 Data cache refill. The defined values of this bit are:
0 Did not cause level 1 data cache refill.
1 Load/store operation caused a refill of at least the first level of data or unified cache.
This includes each data memory access that causes a refill from outside the cache. It
excludes accesses that do not cause a new cache refill but are satisfied from refilling data
of a previous miss.

If PMUv3 is implemented this Event is required to be implemented consistently with L1D_CACHE_REFILL.

E[2], byte 0 bit [2]
Level 1 Data cache access. The defined values of this bit are:
0 Did not access level 1 data cache.
1 Load/store operation caused a cache access to at least the first level of data or unified
cache.

If PMUv3 is implemented this Event is required to be implemented consistently with L1D_CACHE.

E[1], byte 0 bit [1]
Architecturally retired. The defined values of this bit are:
0 Did not retire.
1 Committed its results to the architectural state of the PE, or completed with a
synchronous architectural exception.

--- Note ---
A conditional instruction can retire even if it fails its condition code check.

If PMUv3 is implemented this Event is required to be implemented consistently with
INST RETIRED.

E[0], byte 0 bit [0]
Generated exception. The defined values of this bit are:
0 Did not generate an exception.
1 Completed with a synchronous exception.

If E[1] in the same Events packet is set to 0, then the meaning of this bit is IMPLEMENTATION
DEFINED.

If PMUv3 is implemented this Event is required to be implemented consistently with
EXC_TAKEN.
D10.2.7 Operation Type packet

The Operation Type packet characteristics are:

Purpose
Defines the type of operation sampled. Included for all operations.

Attributes
Multi-part packet comprising:
- 8-bit header.
- 8-bit payload.

Operation Type packet header

The Operation Type packet header bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>SZ</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CLASS</td>
</tr>
</tbody>
</table>
```

Byte 0 bits [7:6]
This field reads as 0b01.

SZ, byte 0 bits [5:4]
Payload size. The defined values of this field are:
- 0b00 Byte.
 This field reads as 0b00.

Byte 0 bits [3:2]
This field reads as 0b10.

CLASS, byte 0 bits [1:0]
Top-level instruction class. The defined values of this field are:
- 0b00 Other.
- 0b01 Load, store, or atomic.
- 0b10 Branch or exception return.
 All other values are reserved.

Operation Type packet payload (Other)

When Other operation, the Operation Type packet payload (Other) bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Cond</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Bit 0</th>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 4</th>
<th>Bit 5</th>
<th>Bit 6</th>
<th>Bit 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBCLASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

When an SVE operation, the Operation Type packet payload (Other) bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EVL</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>PRED</td>
</tr>
<tr>
<td>4</td>
<td>FP</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

SUBCLASS, byte<0>

Second-level instruction class. Defines the type of instruction. The defined values of this field are:

- `0b0000000x` Other operation.
- `0b0xxx1xx0` SVE operation. If SVE is implemented, and if FEAT_SPE is implemented, bits [6:4:2:1] are further defined as the EVL, PRED, and FP fields. Otherwise this value is reserved.

EVL, byte 0 bits [6:4], when SVE operation

Effective Vector Length. Defines the sampled operation vector length, rounded up to a power of two. That is, the length of vector operated on by the sampled operation. The defined values of this field are:

- `0b000` 32 bits.
- `0b001` 64 bits.
- `0b010` 128 bits.
- `0b011` 256 bits.
- `0b100` 512 bits.
- `0b101` 1024 bits.
- `0b110` 2048 bits.

All other values reserved.

The accessible vector length is always quantized into multiples of 128 bits. However, the effective vector length can be any size down to the smallest element size.

If the effective vector length is not a power of two, or is less than 32 bits, the value is rounded up before it is encoded in this field.

PRED, byte 0 bit[2], when SVE operation

Predicated SVE operation. The defined values of this bit are:

- `0` Not predicated.
- `1` Predicated SVE operation. The operation is an SVE operation that writes to a vector destination register under a Governing predicate using either zeroing or merging predication.

FP, byte 0 bits [6:4], when SVE operation

Floating-point operation. The defined values of this bit are:

- `0` Integer.
- `1` Floating-point.

COND, byte 0 bit [0], when Other operation

Conditional. The defined values of this bit are:

- `0` Unconditional operation.
- `1` Conditional operation or select.
Operation Type packet payload (Branch)

The Operation Type packet payload (Branch) bit assignments are:

```
+---+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+---+
       COND  Byte 0
```

SUBCLASS, byte <0>

Second-level instruction class. Describes the branch type. The defined values of this field are:

- 0b0000000x Direct branch.
- 0b0000001x Indirect branch.
- All other values are reserved.

COND, byte 0 bit [0]

Conditional. The defined values of this bit are:

- 0 Unconditional branch.
- 1 Conditional branch.

Operation Type packet payload (Load/store)

When the FEAT_NV2 transformed System register access, the Operation Type packet payload (Load/store) bit assignments are:

```
+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+
       SUBCLASS Byte 0
```

When Extended load/store, the Operation Type packet payload (Load/store) bit assignments are:

```
+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+
       SUBCLASS Byte 0
```

When General-purpose load/store, the Operation Type packet payload (Load/store) bit assignments are:

```
+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+
       SUBCLASS Byte 0
```

When SIMD&FP load/store, the Operation Type packet payload (Load/store) bit assignments are:

```
+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+
       SUBCLASS Byte 0
```
When SVE load/store, the Operation Type packet payload (Load/store) bit assignments are:

<table>
<thead>
<tr>
<th>SG</th>
<th>EVL</th>
<th>1</th>
<th>PRED</th>
<th>0</th>
<th>LDST</th>
</tr>
</thead>
</table>

When Unspecified load/store the Operation type packet payload (Load/store) bit assignments are:

| 0 | 0 | 0 | 1 | 0 | 0 | 0 | LDST |

SUBCLASS, byte <0>

Second-level instruction class. Indicates the load/store type. The defined values of this field are:

- 0b0000000x A load/store targeting the general-purpose registers, other than an atomic operation, load-acquire, store-release or exclusive.
- 0b000xxx1x An atomic operation, load-acquire, store-release or exclusive. Bits [4:2] are further subdivided as described by the AR, EXCL and AT fields.
- 0b0000010x A load/store targeting the SIMD&FP registers.
- 0bxxxx1x0x A load/store targeting the SVE registers. Bits [7:4,2] are further defined as SG, EVL and PRED fields.
 - This value is defined only if both *The Scalable Vector Extension (SVE)* and FEAT_SPEv1p1 are implemented.
 - This value is reserved otherwise.
- 0b0001000x A load/store targeting unspecified registers.
 - This value is defined only if FEAT_SPEv1p1 is implemented
 - This value is reserved otherwise.
- 0b0011000x An MRS or MSR operation at EL1 transformed to a load/store when HCR_EL2.NV2 is 1.
 - This value is defined only if FEAT_NV2 is implemented and reserved otherwise.

All other values are reserved.

SG, byte 0 bit [7], when SVE load/store

Gather/scatter load/store. The defined values of this bit are:

- 0 Not gather load or scatter store.
- 1 Gather load or scatter store.

EVL, byte 0 bits [6:4], when SVE load/store

Effective Vector Length. Defines the sampled operation vector length, rounded up to a power of two. That is, the length of vector operated on by the sampled operation. The defined values of this field are:

- 0b000 32 bits.
- 0b001 64 bits.
- 0b010 128 bits.
- 0b011 256 bits.
- 0b100 512 bits.
- 0b101 1024 bits.
- 0b110 2048 bits.

All other values reserved.
The accessible vector length is always quantized into multiples of 128 bits. However, the effective vector length can be any size down to the smallest element size. If the effective vector length is not a power of two, or is less than 32 bits, the value is rounded up before it is encoded in this field.

AR, byte 0 bit [4], when Extended load/store
Acquire/Release. The defined values of this bit are:
- 0 Load/store/atomic without Acquire or Release semantics.
- 1 Load/store/atomic with Acquire or Release semantics.

EXCL, byte 0 bit [3], when Extended load/store
Exclusive. The defined values of this bit are:
- 0 Load/store/atomic without Exclusive.
- 1 Load/store with Exclusive.
This bit is RES0 if AT == 1.

PRED, byte 0 bit[2], when SVE load/store
Predicated SVE operation. The defined values of this bit are:
- 0 Not predicated.
- 1 Predicated SVE operation. The operation is an SVE operation that writes to a vector destination register under a Governing predicate using either zeroing or merging predication.

AT, byte 0 bit [2], when Extended load/store
Atomic load/store. The defined values of this bit are:
- 0 Not atomic.
- 1 Atomic.

LDST, byte 0 bit [0]
Store not load. The defined values of this bit are:
- 0 Load or swap.
- 1 Store.
D10.2.8 Padding

The Padding characteristics are:

Purpose
Allows the PE to create alignment in the protocol buffer.

Attributes
8-bit packet.

Field descriptions

The Padding bit assignments are:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Byte <0>

This field reads as **0b00000000**.
D10.2.9 Timestamp packet

The Timestamp packet characteristics are:

Purpose

The 64-bit timestamp value when the operation was sampled. The Timestamp packet must come at the end of the record. If the Timestamp packet is not present, an *End packet* must come at the end of the record.

Attributes

Multi-part packet comprising:

- 8-bit header.
- 64-bit payload.

Timestamp packet header

The Timestamp packet header bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Byte 0 bits [7:6]

This field reads as `0b01`.

SZ, byte 0 bits [5:4]

Payload size. The defined values of this field are:

- `0b11` Doubleword.

 This field reads as `0b11`.

Byte 0 bits [3:0]

This field reads as `0b0001`.
Timestamp packet payload

The Timestamp packet payload bit assignments are:

```
+---+---+---+---+---+---+---+
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
+---+---+---+---+---+---+---+---+
| TS[7:0]      | Byte 0  |
| TS[15:8]     | Byte 1  |
| TS[23:16]    | Byte 2  |
| TS[31:24]    | Byte 3  |
| TS[39:32]    | Byte 4  |
| TS[47:40]    | Byte 5  |
| TS[55:48]    | Byte 6  |
| TS[63:56]    | Byte 7  |
```

TS, bytes <7:0>

Timestamp value when the operation was sampled. The value depends on the result of `CollectTimeStamp()`:

- If `TimeStamp_Virtual`, this is the virtual timestamp, `CNTVCT_EL0`.
- If `TimeStamp_Physical`, this is the physical timestamp, `CNTPCT_EL0`.
- If `TimeStamp_OffsetPhysical`, this is the offset physical timestamp, `CNTPCT_EL0 - CNTPOFF_EL2`.
- If `TimeStamp_None`, the timestamp packet is not included and an End packet must come at the end of the record.

However, if the Generic Timer System counter is disabled and `CollectTimeStamp()` returns a value other than `TimeStamp_None`, then it is IMPLEMENTATION DEFINED whether:

- The Statistical Profiling Extension behaves as if `CollectTimeStamp()` returns the value `TimeStamp_None`.
- The value of this field in the record is UNKNOWN.

--- **Note** ---

This relaxation refers to when the actual System counter is disabled, that is, `CNTEN.EN == 0`. It does not apply when the System counter is enabled but not accessible at the current Exception level.
Chapter D11
The Generic Timer in AArch64 state

This chapter describes the implementation of the Arm Generic Timer. It includes an overview of the AArch64 System register interface to an Arm Generic Timer.

It contains the following sections:
• About the Generic Timer on page D11-2832.
• The AArch64 view of the Generic Timer on page D11-2836.

Chapter G6 The Generic Timer in AArch32 state describes the AArch32 view of the Generic Timer, and Chapter I2 System Level Implementation of the Generic Timer describes the system level implementation of the Generic Timer.
D11.1 About the Generic Timer

Figure D11-1 shows an example system-on-chip that uses the Generic Timer as a system timer. In this figure:

- This manual defines the architecture of the individual PEs in the multiprocessor blocks.
- The ARM Generic Interrupt Controller Architecture Specification defines a possible architecture for the interrupt controllers.
- Generic Timer functionality is distributed across multiple components.

The Generic Timer:

- Provides a system counter, that measures the passing of time in real-time.

 Note

 The Generic Timer can also provide other components at a system level, but Figure D11-1 does not show any such components.

- Supports virtual counters that measure the passing of virtual-time. That is, a virtual counter can measure the passing of time on a particular virtual machine.
- Timers, that can trigger events after a period of time has passed. The timers:
 - Can be used as count-up or as count-down timers.
 - Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure D11-1 shows as Timer_0 or Timer_1 within the Multiprocessor A or Multiprocessor B block. This component can be accessed from AArch64 state or AArch32 state, and this chapter describes access from AArch64 state. Chapter G6 The Generic Timer in AArch32 state describes access to this component from AArch32 state.

A Generic Timer implementation must also include a memory-mapped system component. This component:

- Must provide the System counter shown in Figure D11-1.
- Optionally, can provide timer components for use at a system level.

Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.
D11.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter on page D11-2834. Because this must be implemented at the system level, it is accessed through The system level memory-mapped implementation of the Generic Timer. However, during initialization, a status register in each implemented timer in the system must be programmed with the frequency of the system counter, so that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

- A physical counter, that gives access to the count value of the system counter. When FEAT_ECV is implemented, the CNTPOFF_EL2 register allows offsetting of physical timers and counters.
- A virtual counter, that gives access to virtual time. In AArch64 state, the CNTVOFF_EL2 register defines the offset between physical time, as defined by the value of the system counter, and virtual time.
- A number of timers. In an implementation where all Exception levels are implemented and can use AArch64 state, the timers that are accessible from AArch64 state are:
 - An EL1 physical timer.
 - A Non-secure EL2 physical timer.
 - An EL3 physical timer.
 - An EL1 virtual timer.
 - A Non-secure EL2 virtual timer.
 - A Secure EL2 virtual timer.
 - A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available only when FEAT_VHE is implemented.

The Secure EL2 timers are available only when FEAT_SEL2 is implemented.

The AArch64 view of the Generic Timer on page D11-2836 describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and defined by the system.

Each system level component has one or two register frames. The possible system level components are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:
- A control frame, CNTControlBase.
- A status frame, CNTReadBase.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers, and the memory-mapped timer control module identifies:
- Which timers are implemented.
- The features of each implemented timer.

This module has a single frame, CNTCTLBase.

Memory-mapped timers, optional

An implemented memory-mapped timer:
- Must provide a privileged view of the timer, in the CNTBaseN frame.
• Optionally, provides an unprivileged view of the timer in the CNTEL0BaseN frame.

\[\text{N is the timer number, and the corresponding frame number, in the range 0-7.} \]

Chapter 12 System Level Implementation of the Generic Timer describes these components.

D11.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of the counter is zero-extended to 64 bits. From Armv8.6, must be 64 bits wide.</td>
</tr>
<tr>
<td>Frequency</td>
<td>From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range 1-50MHz. It can support one or more alternative operating modes in which it increments by larger amounts at a lower frequency, typically for power-saving. From Armv8.6, increments at a fixed frequency of 1GHz.</td>
</tr>
<tr>
<td>Roll-over</td>
<td>Roll-over time of not less than 40 years.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Arm does not specify a required accuracy, but recommends that the counter does not gain or lose more than ten seconds in a 24-hour period. Use of lower-frequency modes must not affect the implemented accuracy.</td>
</tr>
<tr>
<td>Start-up</td>
<td>Starts operating from zero.</td>
</tr>
</tbody>
</table>

The system counter, once configured and running, must provide a uniform view of system time. More precisely, it must be impossible for the following sequence of events to show system time going backwards:

1. Device A reads the time from the system counter.
2. Device A communicates with another agent in the system, Device B.
3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.

To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:

• By 1 at 10MHz.
• By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz. This implies a resolution of 1ns.

_____ Note _____

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step in the counter might be more than a single bit increment. It is recommended that the count is not incremented at a rate that is less than 50MHz in normal running operation.

The CNTFRQ_EL0 register is intended to hold a copy of the current clock frequency to allow fast reference to this frequency by software running on the PE. For more information, see Initializing and reading the system counter frequency on page D11-2835.

The mechanism by which the count from the system counter is distributed to system components is IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter input that can capture each increment of the counter.

_____ Note _____

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed using a Gray code sequence. Gray-count scheme for timer distribution scheme on page K5-8026 gives more information about this possibility.
Initializing and reading the system counter frequency

The CNTFRQ_EL0 register must be programmed to the clock frequency of the system counter. Typically, this is done only during the system boot process, by using the System register interface to write the system counter frequency to the CNTFRQ_EL0 register. Only software executing at the highest implemented Exception level can write to CNTFRQ_EL0.

--- Note ---
The CNTFRQ_EL0 register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the system boot process.

Software can read the CNTFRQ_EL0 register, to determine the current system counter frequency, in the following states:
- Secure and Non-secure EL2.
- Secure and Non-secure EL1.
- When CNTKCTL_EL1.{EL0PCTEN, EL0VCTEN} is not {0,0} and CNTHCTL_EL2.{EL0PCTEN, EL0VCTEN} is not {0,0}, Secure and Non-secure EL0.

Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter. These controls are:
- Enabling and disabling the counter.
- Setting the counter value.
- Changing the operating mode, to change the update frequency and increment value.
- Enabling Halt-on-debug, that a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter 12 System Level Implementation of the Generic Timer.
D11.2 The AArch64 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen from AArch64 state:

- The physical counter.
- The virtual counter on page D11-2837.
- Event streams on page D11-2839.
- Timers on page D11-2840.

D11.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT_EL0 register holds the current physical counter value. When FEAT_ECV is implemented, the CNTPOFF_EL2 register holds the optional physical offset that can be applied at EL0 and EL1 whether EL0 and EL1 are using AArch64 state or AArch32 state. For more information, see The physical offset register on page D11-2837.

Reads of CNTPCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same PE.

The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The CNTPCTSS_EL0 register is a non-speculative view of the physical counter, as seen from the Exception level that CNTPCTSS_EL0 is read from.

Accesses to the CNTPCTSS_EL0 are subject to the same traps as accesses to the CNTPCT_EL0.

Reads of CNTPCT_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Reads of CNTPCTSS_EL0 occur in program order relative to reads of CNTPCT_EL0 or CNTPCTSS_EL0.

Example D11-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT_EL0 must be read, an ISB is used to ensure that the read of CNTPCT_EL0 occurs after the signal has been read from memory, as shown in the following code sequence:

```assembly
loop                   ; polling for some communication to indicate a requirement to read the timer
    LDR X1, [X2]   ; polling for some communication to indicate a requirement to read the timer
    CMP X1, #1     ; has had the value 1 written to it
    B.NE loop      ; without this the CNTPCT_EL0 could be read before the memory location in [X2]
    ISB
    MRS X1, CNTPCT_EL0
```

When FEAT_ECV is implemented, an access to CNTPCTSS_EL0 can be used in place of the CNTPCT_EL0 which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can be used:

```assembly
loop                   ; polling for some communication to indicate a requirement to read the timer
    LDR X1, [X2]
    CMP X1, #1
    B.NE loop
    MRS X1, CNTPCTSS_EL0
```

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores appearing in program order before the read of the counter, then the following code sequences can be used:

```assembly
...  ; earlier loads and stores
DSB  ; completes the earlier loads and stores
ISB  ; without this the CNTPCT_EL0 could be read before the completion of the earlier
      ; loads and stores
MRS X1, CNTPCT_EL0
```
Or, if FEAT_ECV is implemented:

```assembly
... ; earlier loads and stores  
DSB ; completes earlier loads and stores  
MRS X1, CNTPCTSS_EL0
```

Neither view of the physical counter ensures that:

- Context changes occurring in program order before the read of the counter have been synchronized.
- Accesses to memory appearing in program order after the read of the counter are executed before the counter has been read.

Example D11-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been synchronized before the read of the counter, the following sequence should be used:

```assembly
DSB  
ISB  
MRS Xn, CNTPCT(SS)_EL0 ; either view of the physical counter has the same effect in this example
```

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

```assembly
MRS Xn, CNTPCT(SS)_EL0 ; either view of the physical counter has the same effect in this example  
ISB  
LDR Xa, [Xb] ; this load will be executed after the timer has been read
```

The physical offset register

When FEAT_ECV is implemented, the CNTPOFF_EL2 register allows an offset to be applied to the physical counter, as viewed from EL1 and EL0, and to the EL1 physical timer. The functionality of this 64-bit register is affected by CNTHCTL_EL2.ECV.

When CNTHCTL_EL2.ECV is 1, an MRS to CNTPCT_EL0 or CNTPCTSS_EL0 from either EL0 or EL1 that is not trapped will return the value (PCount<63:0> - CNTPOFF_EL2<63:0>). For information on how the EL1 physical timer interrupt is triggered when CNTHCTL_EL2.ECV is 1, see Operation of the CompareValue views of the timers on page D11-2841.

When EL2 is not enabled for the current Security state, or when CNTHCTL_EL2.ECV is 0, then the behavior of the counters and timers is as described for Armv8.5 and the optional physical offset is not used.

When SCR_EL3.ECVEn is 0, all values of CNTPOFF_EL2 are treated as 0 for all purposes other than direct reads or writes to the register from EL3.

D11.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, that indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing at EL1 or EL0, the virtual offset value relates to the current virtual machine.

The CNTVOFF_EL2 register contains the virtual offset, see The virtual offset register on page D11-2839.

The CNTVCT_EL0 register holds the current virtual counter value.

Reads of CNTVCT_EL0 can occur speculatively and out of order relative to other instructions executed on the same PE.
The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The CNTVCTSS_EL0 register is a non-speculative view of the physical counter, as seen from the Exception level that CNTVCTSS_EL0 is read from.

Accesses to the CNTVCTSS_EL0 are subject to the same traps as accesses to the CNTVCT_EL0.

Reads of CNTVCT_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Reads of CNTVCTSS_EL0 occur in program order relative to reads of CNTVCT_EL0 or CNTVCTSS_EL0.

Example D11-3 Ensuring reads of the virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT_EL0 must be read, an ISB is used to ensure that the read of CNTVCT_EL0 occurs after the signal has been read from memory, as shown in the following code sequence:

```
loop ; polling for some communication to indicate a requirement to read the timer
  LDR X1, [X2]    ; polling for some communication to indicate a requirement to read the timer
  CMP X1, #1      ; has had the value 1 written to it
  B.NE loop
  ISB             ; without this the CNTVCT_EL0 could be read before the memory location in [X2]
  MRS X1, CNTVCT_EL0
```

When FEAT_ECV is implemented, an access to CNTVCTSS_EL0 can be used in place of the CNTVCT_EL0, which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can be used:

```
loop ; polling for some communication to indicate a requirement to read the timer
  LDR X1, [X2]    ; polling for some communication to indicate a requirement to read the timer
  CMP X1, #1      ; has had the value 1 written to it
  B.NE loop
  MRS X1, CNTVCTSS_EL0
```

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores appearing in program order before the read of the counter, then the following two sequences can be used:

```
... ; earlier loads and stores
  DSB ; completes earlier loads and stores
  ISB ; without this CNTVCT_EL0 could be read before the completion of the earlier
        ; loads and stores
  MRS X1, CNTVCT_EL0
```

Or, if FEAT_ECV is implemented:

```
... ; earlier loads and stores
  DSB ; completes earlier loads and stores
  MRS X1, CNTVCTSS_EL0
```

Neither view of the virtual counter ensures that:

- Context changes occurring in program order before the read of the counter have been synchronized.
- Accesses to memory appearing in program order after the read of the counter are executed before the counter has been read.

Example D11-4 Ensuring reads of the virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been synchronized before the read of the counter, the following sequence should be used:
DSB
ISB
MRS Xn, CNTVCT(SS)_EL0 ; either view of the virtual counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRS Xn, CNTVCT(SS)_EL0 ; either view of the virtual counter has the same effect in this example
ISB
LDR Xa, [Xb] ; this load will be executed after the timer has been read

The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3. This virtual offset is held in the register CNTVOFF_EL2. The virtual counter value is the count compared by the EL1 virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed offset of zero.

D11.2.3 Event streams

An implementation that includes the Generic Timer can use the system counter to generate one or more event streams, to generate periodic wake-up events as part of the mechanism described in Wait for Event mechanism and Send event on page D1-2391.

Note

An event stream might be used:
- To impose a time-out on a Wait For Event polling loop.
- To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL_EL1.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the virtual counter.

In all implementations, the CNTHCTL_EL2.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the physical counter.

The event stream is configured as follows:
- EVNTI selects the counter bit that triggers the event.
- If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].
- If FEAT_ECV is implemented, EVNTIS selects whether EVNTI selects between bits[0:15] or bits[8:23].
- EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the selected counter bit.

The operation of an event stream is as follows:
- The pseudocode variables PreviousCNTVCT and PreviousCNTPCT are initialized as:

```
// Variables used for generation of the timer event stream.
bits(64) PreviousCNTVCT = bits(64) UNKNOWN;
bits(64) PreviousCNTPCT = bits(64) UNKNOWN;
```
- The pseudocode functions TestEventCNTV() and TestEventCNTP() are called on each cycle of the PE clock.
- The TestEventCNTx() pseudocode template defines the functions TestEventCNTV() and TestEventCNTP():

```
// TestEventCNTx()
// =============

// Template for the TestEventCNTV() and TestEventCNTP() functions
// Describes operation when all Exception Levels are using AArch64:
// CNTxCT_EL0 is CNTVCT_EL0 or CNTPCT_EL0 64-bit count value
```
The Generic Timer in AArch64 state

D11.2 The AArch64 view of the Generic Timer

// CNTxCTL_ELx is CNTXCTL_EL1 or CNTXCTL_EL2 Control register
// PreviousCNTxCT_EL0 is PreviousCNTVCT_EL0 or PreviousCNTPCT_EL0

TestEventCNTx()
 if CNTxCTL_ELx.EVNTEN == '1' then
 n = UInt(CNTxCTL_ELx.EVNTI);
 if CNTxCTL_ELx.EVNTIS == '1' then
 n = n + 8;
 SampleBit = CNTxCT_EL0<n>;
 PreviousBit = PreviousCNTxCT_ELx<n>;
 if CNTxCTL_ELx.EVNTDIR == '0' then
 if PreviousBit == '0' && SampleBit == '1' then EventRegisterSet();
 else
 if PreviousBit == '1' && SampleBit == '0' then EventRegisterSet();
 PreviousCNTxCT_EL0 = CNTxCT_EL0;
 return;

D11.2.4 Timers

In an implementation of the Generic Timer that includes EL3, if EL3 can use AArch64, the following timers are implemented:

- An EL1 physical timer, that:
 - In Secure state, can be accessed from EL1.
 - In Non-secure state, can be accessed from EL1 unless those accesses are trapped to EL2.
 When this timer can be accessed from EL1, an EL1 control determines whether it can be accessed from EL0.
- A Non-secure EL2 physical timer.
- A Secure EL3 physical timer. An EL3 control determines whether this register is accessible from Secure EL1.
- An EL1 virtual timer.
- When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.
- When FEAT_SEL2 is implemented, a Secure EL2 physical timer.
- When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

The output of each implemented timer:

- Provides an output signal to the system.
- If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

- Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.
- Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit downcounter.
• Has, in addition, a 32-bit Control register.

Table D11-1 Physical timer registers summary for the Generic Timer

<table>
<thead>
<tr>
<th>Timer register</th>
<th>EL1 physical timer</th>
<th>EL2 physical timer</th>
<th>Secure EL2 physical timer</th>
<th>EL3 physical timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>CNTP_CVAL_EL0</td>
<td>CNTHP_CVAL_EL2</td>
<td>CNTHPS_CVAL_EL2</td>
<td>CNTPS_CVAL_EL1</td>
</tr>
<tr>
<td>TV</td>
<td>CNTV_TVAL_EL0</td>
<td>CNTVP_TVAL_EL2</td>
<td>CNTVP_SVAL_EL2</td>
<td>CNTPS_TVAL_EL1</td>
</tr>
<tr>
<td>Control</td>
<td>CNTP_CTL_EL0</td>
<td>CNTHP_CTL_EL2</td>
<td>CNTHPS_CTL_EL2</td>
<td>CNTPS_CTL_EL1</td>
</tr>
</tbody>
</table>

- In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.
- Only present when the implementation includes FEAT_SEL2.

Table D11-2 Virtual timer register summary for the Generic Timer

<table>
<thead>
<tr>
<th>Timer register</th>
<th>EL1 virtual timer</th>
<th>EL2 virtual timer</th>
<th>Secure EL2 virtual timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>CNTV_CVAL_EL0</td>
<td>CNTV_CVAL_EL2</td>
<td>CNTV_SVAL_EL2</td>
</tr>
<tr>
<td>TV</td>
<td>CNTV_TVAL_EL0</td>
<td>CNTV_TVAL_EL2</td>
<td>CNTV_SVAL_EL2</td>
</tr>
<tr>
<td>Control</td>
<td>CNTV_CTL_EL0</td>
<td>CNTV_CTL_EL2</td>
<td>CNTV_SVAL_EL2</td>
</tr>
</tbody>
</table>

- In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.
- Only when the implementation includes FEAT_VHE.
- Only present when the implementation includes FEAT_SEL2.

Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate counter reaches the value programmed into its CompareValue register. When the timer condition is met, an interrupt is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0, CNTHP_CTL_EL2, CNTHPS_CTL_EL2, CNTPS_CTL_EL0, CNTVP_CTL_EL0, CNTHVP_CTL_EL2 or CNTHVS_CTL_EL2. For CNTPS_CTL_EL0, the asserted interrupt is the same as the interrupt asserted by the Non-secure instance of the AArch32 register CNTP_CTL.

The operation of this view of a timer is:

\[
\text{TimerConditionMet} = (((\text{Counter}[63:0] - \text{Offset}[63:0])[63:0] - \text{CompareValue}[63:0]) \geq 0)
\]

Where:

- **TimerConditionMet** is TRUE if the timer condition for this counter is met, and FALSE otherwise.
- **Counter** is the physical counter value, which can be read from the CNTPCT_EL0 register.
- **Offset** is the offset value for the EL1 physical timer, which is zero for the EL1 physical timer and the offset value for the EL1 virtual timer.
- **CompareValue** is the value of the appropriate CompareValue register, CNTP_CVAL_EL0, CNTHP_CVAL_EL2, CNTHPS_CVAL_EL2, CNTVP_CVAL_EL0, CNTHVP_CVAL_EL2, or CNTHVS_CVAL_EL2.

In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.
--- Note ---
This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF might never meet its timer condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT_EL0.

--- Operation of the TimerValue views of the timers ---

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL_EL0, CNTHP_CTL_EL2, CNTHPS_CTL_EL2, CNTPS_CTL_EL1, CNTV_CTL_EL0, CNTHV_CTL_EL2, or CNTHVS_CTL_EL2.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

Reads
- TimerValue = (CompareValue - (Counter - Offset))[31:0]

Writes
- CompareValue = ((Counter - Offset)[63:0] + SignExtend(TimerValue))[63:0]

Where the arguments other than TimerValue have the definitions used in *Operation of the CompareValue views of the timers* on page D11-2841, and in addition:

TimerValue
- The value of a TimerValue register, CNTP_TV_AL_EL0, CNTHP_TV_AL_EL2, CNTHPS_TV_AL_EL2, CNTPS_TV_AL_EL1, CNTV_TV_AL_EL0, CNTHV_TV_AL_EL2, or CNTHVS_TV_AL_EL2.

In this view of a timer, values are signed in standard two's complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition was met.

--- Note ---
- *Operation of the CompareValue views of the timers* on page D11-2841 gives a strict definition of TimerConditionMet. However, provided that the TimerValue is not expected to wrap as a 32-bit signed value when decremented from 0x80000000, the TimerValue view can be used as giving an effect equivalent to:
 - TimerConditionMet = (TimerValue ≤ 0)

- Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially delays meeting the timer condition for an extremely long period of time.
Chapter D12
AArch64 System Register Encoding

This chapter describes the AArch64 System register encoding space. It contains the following sections:

- The System register encoding space on page D12-2844.
- op0==0b10, Moves to and from debug and trace System registers on page D12-2845.
- op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-2847.
D12.1 The System register encoding space

The A64 instruction set includes instructions that access the System register encoding space. These instructions provide:

- Access to System registers, including the debug registers, that provide system control, and system status information.
- Access to Special-purpose registers such as SPSR_ELx, ELR_ELx, and the equivalent fields of the Process State.
- The cache and TLB maintenance instructions and address translation instructions.
- Barriers and the CLREX instruction.
- Architectural hint instructions.

This section describes the parts of the System register encoding space that provides access to the System registers described in Chapter D13 AArch64 System Register Descriptions.

--- Note ---

- See Fixed values in AArch64 instruction and System register descriptions on page C2-195 for information about abbreviations used in the System instruction descriptions.
- In AArch32 state much of this functionality is provided through the System register interface described in The AArch32 System register interface on page G1-5809. In AArch64 state, the parameters used to characterize the System register encoding space are \{op0, op1, CRn, CRm, op2\}. These are based on the parameters that characterize the AArch32 System register encoding space, which reflect the original implementation of these registers, as described in Background to the System register interface on page G1-5810. In Armv8, there is no particular significance to the naming of these parameters, and no functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding on page C5-372 describes some general properties of these encodings. System instruction class encoding overview on page C5-373 then describes the top-level encoding of these instructions, identifying that:

- Entries in the encoding space are characterized by the parameter set \{op0, op1, CRn, CRm, op2\}.
- op0 is the most significant parameter for determining allocations in this space.

Much of this encoding space is used for System instructions, as described in Chapter C5 The A64 System Instruction Class. This chapter describes only the part of the encoding space that is used for System registers, in the following sections:

- op0==0b10, Moves to and from debug and trace System registers on page D12-2845.
- op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-2847.
D12.2 op0==0b10, Moves to and from debug and trace System registers

The instructions that move data to and from the debug, Execution environment, and trace System registers are encoded with op0==0b10. This means the encoding of these instructions is:

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>8 7 6 5</th>
<th>4 3 2 1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0</td>
<td>1 0 1 0 0</td>
<td>L 1 0</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
<td>Rt</td>
</tr>
</tbody>
</table>

--- Note ---

- The section describes the use of all of the op0==0b10 region of the System register encoding space.
- These encodings access the registers that are equivalent to the AArch32 System registers in the (coproc==0b1110) encoding space.

The value of op1 provides the next level of decode of these instructions, as follows:

op1 == {0, 3, 4}

Debug. See Instructions for accessing debug System registers

--- Note ---

The standard encoding of debug registers is op0==0b10, op1=={0, 3, 4}. The registers in the op0==0b11 encoding space that are classified as debug registers are DLR_EL0, DSPSR_EL0, MDCR_EL2, MDCR_EL3, and SDER32_EL3. See Instructions for accessing non-debug System registers on page D12-2847 for the encodings of these registers.

op1 == 1 Trace. See the appropriate trace architecture specification.

D12.2.1 Instructions for accessing debug System registers

The instructions for accessing debug System registers are:

- MSR <System register>, Xt ; Write to System register
- MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MDCCSR_EL0.

This section includes only the System register access encodings for which both:

- op0 is 0b10.
- The value of op1 is one of {0, 3, 4}.

--- Note ---

These encodings access the registers that are equivalent to the AArch32 System registers in the (coproc==0b1110) encoding space.
Table D12-1 shows the mapping of the System register encodings for debug System register access.

<table>
<thead>
<tr>
<th>Register</th>
<th>Access instruction encoding</th>
<th>Permitted accesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSDTRRX_EL1</td>
<td>op0 0 0 2 0 2</td>
<td>RW</td>
</tr>
<tr>
<td>MDCCINT_EL1</td>
<td>2 0 0</td>
<td>RW</td>
</tr>
<tr>
<td>MDSCR_EL1</td>
<td>2</td>
<td>RW</td>
</tr>
<tr>
<td>OSDTRTX_EL1</td>
<td>3 2</td>
<td>RW</td>
</tr>
<tr>
<td>OSECCR_EL1</td>
<td>6 2</td>
<td>RW</td>
</tr>
<tr>
<td>DBGVR<n>_EL1</td>
<td>0-15<sup>a</sup> 4</td>
<td>RW</td>
</tr>
<tr>
<td>DBGBCR<n>_EL1</td>
<td>0-15<sup>a</sup> 5</td>
<td>RW</td>
</tr>
<tr>
<td>DBGWVR<n>_EL1</td>
<td>0-15<sup>a</sup> 6</td>
<td>RW</td>
</tr>
<tr>
<td>DBGWCR<n>_EL1</td>
<td>0-15<sup>a</sup> 7</td>
<td>RW</td>
</tr>
<tr>
<td>MDRAR_EL1</td>
<td>2 0 1 0 0 RO</td>
<td></td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>4 W</td>
<td></td>
</tr>
<tr>
<td>OSLSR_EL1</td>
<td>1 4 4 RO</td>
<td></td>
</tr>
<tr>
<td>OSDLR_EL1</td>
<td>3 4 RW</td>
<td></td>
</tr>
<tr>
<td>DBGPRCR_EL1</td>
<td>4 4 RW</td>
<td></td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>7 8 6 RW</td>
<td></td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>9 6 RW</td>
<td></td>
</tr>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>14 6 RO</td>
<td></td>
</tr>
<tr>
<td>MDCSSR_EL0</td>
<td>3 0 1 0 RO</td>
<td></td>
</tr>
<tr>
<td>DBGDTTR_EL0</td>
<td>4 0 RW</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRRX_EL0</td>
<td>5 0 RO</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRTX_EL0</td>
<td></td>
<td>RO</td>
</tr>
<tr>
<td>DBGVCR32_EL2</td>
<td>4 0 7 0 RW</td>
<td></td>
</tr>
</tbody>
</table>

^a Accesses to not implemented breakpoint and watchpoint register access instructions are UNDEFINED. CRm encodes ⁿ, the breakpoint or watchpoint number.

For more information see Mapping of the System registers between the Execution states on page D1-2403.
D12.3 op0==0b11, Moves to and from non-debug System registers, Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with op0==0b11, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these instructions is:

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1 1 0 1 0 1 0 1 0 0 | L 1 1 | op1 | CRn | CRm | op2 | Rt |

The value of CRn provides the next level of decode of these instructions, as follows:

- CRn=={0, 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14}:
 See Instructions for accessing non-debug System registers.
- CRn==4:
 See Instructions for accessing Special-purpose registers on page C5-383.
- CRn=={11, 15}:
 See Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-2860.

D12.3.1 Instructions for accessing non-debug System registers

The A64 instructions for accessing System registers are:

- MSR <System register>, Xt ; Write to System register
- MRS Xt, <System register> ; Read from System register

Where <System_register> is the register name, for example MIDR_EL1.

This section includes only the System register access encodings for which both:
- op0 is 0b11.
- The value of CRn is one of {0, 1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14}.

Note
- These encodings access the registers that are equivalent to the AArch32 System registers in the (coproc==0b1111) encoding space.
- While this group is described as accessing the non-debug System registers, its correct characterization is by the {op0, CRn} values given in this subsection, and the group includes the debug registers DLR_EL0, DSPSR_EL0, MDCR_EL2, MDCR_EL3, and SDER32_EL3, that are described in Debug registers on page D13-3567. These registers are exceptions to the standard encoding of debug registers, that has op0==0b10, see Instructions for accessing debug System registers on page D12-2845.

The instruction encoding for these accesses is:

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 12 11 8 7 5 4 0 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1 1 0 1 0 1 0 1 0 0 | L 1 1 | CRn | CRm | op2 | Rt |

See text for permitted values of CRn

Table D12-2 on page D12-2848 shows the encodings of the register access instructions. In the Notes on page D12-2848 column of the table:

- **Config-RO** Means it is configurable whether read accesses are permitted. Write accesses are UNDEFINED.
- **Config-WO** Means it is configurable whether write accesses are permitted. Read accesses are UNDEFINED.
- **Config-RW** Means it is configurable whether accesses are permitted. Either read and write accesses are permitted, or read and write accesses are UNDEFINED.

See the register descriptions for information about the control that determines whether these accesses are permitted.
Table D12-2 System instruction encodings for non-Debug System register accesses

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDR_EL1</td>
<td>op0 3 op1 0 CRn 0 CRm 0</td>
<td>v8.0</td>
<td>RO.</td>
</tr>
<tr>
<td>MPIDR_EL1</td>
<td>5 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REVIDR_EL1</td>
<td>6 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_PFR0_EL1</td>
<td>1 0 v8.0</td>
<td>RO, but UNKNOWN if AArch32 is not implemented.</td>
<td></td>
</tr>
<tr>
<td>ID_PFR1_EL1</td>
<td>1 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_DFR0_EL1</td>
<td>2 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AFR0_EL1</td>
<td>3 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_MMFR0_EL1</td>
<td>4 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_MMFR1_EL1</td>
<td>5 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_MMFR2_EL1</td>
<td>6 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_MMFR3_EL1</td>
<td>7 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_ISAR0_EL1</td>
<td>2 0 v8.0</td>
<td>RO, but UNKNOWN if AArch32 is not implemented.</td>
<td></td>
</tr>
<tr>
<td>ID_ISAR1_EL1</td>
<td>1 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_ISAR2_EL1</td>
<td>2 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_ISAR3_EL1</td>
<td>3 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_ISAR4_EL1</td>
<td>4 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_ISAR5_EL1</td>
<td>5 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_MMFR4_EL1</td>
<td>6 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n -</td>
<td>RO, for n=7.</td>
<td></td>
</tr>
<tr>
<td>MVFR0_EL1</td>
<td>0 v8.0</td>
<td>RO, but UNKNOWN if AArch32 is not implemented.</td>
<td></td>
</tr>
<tr>
<td>MVFR1_EL1</td>
<td>1 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVFR2_EL1</td>
<td>2 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_PFR2_EL1</td>
<td>4 v8.0</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ID_MMFR5_EL1</td>
<td>6 v8.0</td>
<td>RO, but UNKNOWN if AArch32 is not implemented.</td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n -</td>
<td>RO, for n={3, 5, 7}.</td>
<td></td>
</tr>
<tr>
<td>ID_AA64PFR0_EL1</td>
<td>0 v8.0</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ID_AA64PFR1_EL1</td>
<td>1 v8.0</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ID_AA64ZFR0_EL1</td>
<td>4 SVE(^a)</td>
<td>RO, but RAZ if SVE is not implemented.</td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n -</td>
<td>RO, for n={2, 3, 5, 6, 7}.</td>
<td></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID_AA64DFR0_EL1</td>
<td>3 0 0 5 0 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64DFR1_EL1</td>
<td>1 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64AFR0_EL1</td>
<td>4 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64AFR1_EL1</td>
<td>5 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n - RO, for n=2, 3, 6, 7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64ISAR0_EL1</td>
<td>6 0 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64ISAR1_EL1</td>
<td>1 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n - RO, for n=2-7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64MMFR0_EL1</td>
<td>7 0 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64MMFR1_EL1</td>
<td>1 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID_AA64MMFR2_EL1</td>
<td>2 v8.2 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved, RAZ</td>
<td>n - RO, for n=3-7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCTLR_EL1</td>
<td>1 0 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTLR_EL1</td>
<td>1 v8.0 RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPACR_EL1</td>
<td>2 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZCR_EL1</td>
<td>2 0 SVE RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRFCR_EL1</td>
<td>1 v8.4 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTBR0_EL1</td>
<td>2 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTBR1_EL1</td>
<td>1 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCR_EL1</td>
<td>2 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIAKeyLo_EL1</td>
<td>1 0 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIAKeyHi_EL1</td>
<td>1 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIBKeyLo_EL1</td>
<td>2 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APIBKeyHi_EL1</td>
<td>3 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDAKeyLo_EL1</td>
<td>2 0 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDAKeyHi_EL1</td>
<td>1 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDBKeyLo_EL1</td>
<td>2 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APDBKeyHi_EL1</td>
<td>3 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APGAKeyLo_EL1</td>
<td>3 0 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APGAKeyHi_EL1</td>
<td>1 v8.3 RW.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC_PMR_EL1</td>
<td>op0 3 op1 0 CRn 4 CRm 6 op2 0</td>
<td>GIC<sup>b</sup></td>
<td>RW.</td>
</tr>
<tr>
<td>ICCV_PMR_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSR0_EL1</td>
<td>5 1 0 op2 v8.0</td>
<td>v8.0</td>
<td>RW, contents IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>AFSR1_EL1</td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ESR_EL1</td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ESR_EL1</td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ERRIDR_EL1</td>
<td></td>
<td>3</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERSEL_R_EL1</td>
<td></td>
<td>3</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td></td>
<td>4</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td></td>
<td>4</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXCTRLR_EL1</td>
<td></td>
<td>1</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td></td>
<td>2</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td></td>
<td>3</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERRSFGR_EL1</td>
<td></td>
<td>4</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFRGCDN_EL1</td>
<td></td>
<td>5</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFRGCDN_EL1</td>
<td></td>
<td>6</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXMISC0_EL1</td>
<td></td>
<td>5</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXMISC1_EL1</td>
<td></td>
<td>1</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXMISC2_EL1</td>
<td></td>
<td>2</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXMISC3_EL1</td>
<td></td>
<td>3</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td></td>
<td>6</td>
<td>RAS<sup>c</sup></td>
</tr>
<tr>
<td>PAR_EL1</td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMSMR_EL1</td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMSVR_EL1</td>
<td></td>
<td>9</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSICR_EL1</td>
<td></td>
<td>2</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSIVR_EL1</td>
<td></td>
<td>3</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSFRE_EL1</td>
<td></td>
<td>4</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSEVF_R_EL1</td>
<td></td>
<td>5</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSLATF_R_EL1</td>
<td></td>
<td>6</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMSIDR_EL1</td>
<td></td>
<td>7</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMLIMITR_EL1</td>
<td></td>
<td>10</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMBPTR_EL1</td>
<td></td>
<td>1</td>
<td>SPE<sup>d</sup></td>
</tr>
<tr>
<td>PMBSR_EL1</td>
<td></td>
<td>3</td>
<td>SPE<sup>d</sup></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMBIDR_EL1</td>
<td>3 0 9 10 7 SPE^d RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMINTENSEL1</td>
<td>14 1 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td>2 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMMIR_EL1</td>
<td>6 v8.4 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIR_EL1</td>
<td>10 2 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMAIR_EL1</td>
<td>3 0 v8.0 RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LORSA_EL1</td>
<td>4 0 v8.1 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOREA_EL1</td>
<td>1 v8.1 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LORN_EL1</td>
<td>2 v8.1 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LORC_EL1</td>
<td>3 v8.1 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LORID_EL1</td>
<td>7 v8.1 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBAR_EL1</td>
<td>12 0 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVBAR_EL1</td>
<td>1 v8.0 RO. Implemented only if EL2 and EL3 are not implemented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMR_EL1</td>
<td>2 v8.0 RW. Implemented only if EL2 and EL3 are not implemented.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISR_EL1</td>
<td>1 0 v8.0 RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISR_EL1</td>
<td>1 RAS^c RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_IAR0_EL1</td>
<td>8 0 GIC^b RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_EOIR0_EL1</td>
<td>1 GIC^b WO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_HPPIR0_EL1</td>
<td>2 GIC^b RO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_BPR0_EL1</td>
<td>3 GIC^b RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_AP0R<op2-4>_EL1</td>
<td>GIC^b RW, <op2-4> = op2-4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_AP1R<op2-4>_EL1</td>
<td>GIC^b RW, <op2-4> = op2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_DIR_EL1</td>
<td>11 1 GIC^b WO.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
^b Non-Confidential
<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC_RPR_EL1</td>
<td>3 0 12 11 3</td>
<td>GIC<sup>b</sup></td>
<td>RO.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_RPR_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_SGI1R_EL1</td>
<td>5</td>
<td>GIC<sup>b</sup></td>
<td>WO.<sup>b</sup></td>
</tr>
<tr>
<td>ICC_ASGI1R_EL1</td>
<td>6</td>
<td>GIC<sup>b</sup></td>
<td>WO.<sup>b</sup></td>
</tr>
<tr>
<td>ICC_SGI0R_EL1</td>
<td>7</td>
<td>GIC<sup>b</sup></td>
<td>WO.<sup>b</sup></td>
</tr>
<tr>
<td>ICC_IAR1_EL1</td>
<td>12 0</td>
<td>GIC<sup>b</sup></td>
<td>RO.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_IAR1_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_EORI1_EL1</td>
<td>1</td>
<td>GIC<sup>b</sup></td>
<td>WO.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_EORI1_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_HPPRI1_EL1</td>
<td>2</td>
<td>GIC<sup>b</sup></td>
<td>RO.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_HPPRI1_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_BPRI1_EL1</td>
<td>3</td>
<td>GIC<sup>b</sup></td>
<td>RW.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_BPRI1_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_CTLR_EL1</td>
<td>4</td>
<td>GIC<sup>b</sup></td>
<td>RW.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_CTLR_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_SRE_EL1</td>
<td>5</td>
<td>GIC<sup>b</sup></td>
<td>RW.<sup>b</sup></td>
</tr>
<tr>
<td>ICC_IRGPN0_EL1</td>
<td>6</td>
<td>GIC<sup>b</sup></td>
<td>RW.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_IRGPN0_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_IRGPN1_EL1</td>
<td>7</td>
<td>GIC<sup>b</sup></td>
<td>RW.<sup>b</sup></td>
</tr>
<tr>
<td>ICV_IRGPN1_EL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTEXTIDR_EL1</td>
<td>13 0 1</td>
<td>v8.0</td>
<td>RW.</td>
</tr>
<tr>
<td>TPIDR_EL1</td>
<td>4</td>
<td>v8.0</td>
<td>RW.</td>
</tr>
<tr>
<td>CNTKCTL_EL1</td>
<td>14 1 0</td>
<td>v8.0<sup>e</sup></td>
<td>RW</td>
</tr>
<tr>
<td>CCSIDR_EL1</td>
<td>1 0 0 0</td>
<td>v8.0<sup>b</sup></td>
<td>RO.</td>
</tr>
<tr>
<td>CLIDR_EL1</td>
<td>1</td>
<td>v8.0</td>
<td>RO.</td>
</tr>
<tr>
<td>CCSIDR2_EL1</td>
<td>2</td>
<td>v8.3<sup>i</sup></td>
<td>RO, but IMPLEMENTATION DEFINED<sup>©</sup> if AArch32 is not implemented.</td>
</tr>
<tr>
<td>AIDR_EL1</td>
<td>7</td>
<td>v8.0</td>
<td>RO.</td>
</tr>
<tr>
<td>CSSELR_EL1</td>
<td>2 0 0 0</td>
<td>v8.0</td>
<td>RW.</td>
</tr>
<tr>
<td>CTR_EL0</td>
<td>3 0 0 1</td>
<td>v8.0</td>
<td>Config-RO at EL0, otherwise RO.</td>
</tr>
<tr>
<td>DCZID_EL0</td>
<td>7</td>
<td>v8.0</td>
<td>RO.</td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCR_EL0</td>
<td>3 3 9 12 0 v8.0e</td>
<td></td>
<td>Config-RW at EL0, otherwise RW.</td>
</tr>
<tr>
<td>PMCNTENSET_EL0</td>
<td>1 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMCNTENCLR_EL0</td>
<td>2 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td>3 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMSWINC_EL0</td>
<td>4 v8.0e</td>
<td></td>
<td>Config-WO at EL0, otherwise WO.</td>
</tr>
<tr>
<td>PMSELRL_EL0</td>
<td>5 v8.0e</td>
<td></td>
<td>Config-RW at EL0, otherwise RW.</td>
</tr>
<tr>
<td>PMCEID0_EL0</td>
<td>6 v8.0e</td>
<td></td>
<td>Config-RO at EL0, otherwise RO.</td>
</tr>
<tr>
<td>PMCEID1_EL0</td>
<td>7 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>13 0 v8.0e</td>
<td></td>
<td>Config-RW at EL0, otherwise RW.</td>
</tr>
<tr>
<td>PMXEVTYPE_EL0</td>
<td>1 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMXEVCNTR_EL0</td>
<td>2 v8.0e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMUSERENR_EL0</td>
<td>14 0 v8.0e</td>
<td></td>
<td>RO at EL0, otherwise RW.</td>
</tr>
<tr>
<td>PMOVSSSET_EL0</td>
<td>3 v8.0e</td>
<td></td>
<td>Config-RW at EL0, otherwise RW.</td>
</tr>
<tr>
<td>TPIDR_EL0</td>
<td>13 0 2 v8.0e</td>
<td></td>
<td>RW.</td>
</tr>
<tr>
<td>TPIDRRO_EL0</td>
<td>3 v8.0e</td>
<td></td>
<td>RW.</td>
</tr>
<tr>
<td>AMCR_EL0</td>
<td>2 0 AMUk</td>
<td></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
<tr>
<td>AMCFGR_EL0</td>
<td>1 AMUk</td>
<td></td>
<td>Config-RO at EL0, otherwise RO.</td>
</tr>
<tr>
<td>AMCGCR_EL0</td>
<td>2 AMUk</td>
<td></td>
<td>Config-RO at EL0, otherwise RO.</td>
</tr>
<tr>
<td>AMUSERENR_EL0</td>
<td>3 AMUk</td>
<td></td>
<td>RO at EL0, otherwise RW.</td>
</tr>
<tr>
<td>AMCNTENCLR0_EL0</td>
<td>4 AMUk</td>
<td></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
<tr>
<td>AMCNTENSETO_EL0</td>
<td>5 AMUk</td>
<td></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
<tr>
<td>AMCG1IDR_EL0</td>
<td>6 v8.6</td>
<td></td>
<td>RO.</td>
</tr>
<tr>
<td>AMCNTENCELR1_EL0</td>
<td>3 0 AMUk</td>
<td></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCNTENSET1_EL0</td>
<td>op0 3, op1 3, CRn 13, CRm 3, op2 1</td>
<td>AMU<sup>k</sup></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
<tr>
<td>AMEVCTR0<sub>n</sub>_EL0</td>
<td>{4-5}, {0-7}</td>
<td>AMU<sup>k</sup></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO. CRm and op2 encode <n>, the counter number:
• For CRm==4, <n>=op2.
• For CRm==5, <n>=op2+8.</td>
</tr>
<tr>
<td>AMEVTPR0<sub>n</sub>_EL0</td>
<td>{6-7}, {0-7}</td>
<td>AMU<sup>k</sup></td>
<td>Config-RO at EL0, otherwise RO. CRm and op2 encode <n>, the counter number:
• For CRm==6, <n>=op2.
• For CRm==7, <n>=op2+8.</td>
</tr>
<tr>
<td>AMEVCTR1<sub>n</sub>_EL0</td>
<td>{12-13}, {0-7}</td>
<td>AMU<sup>k</sup></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO. CRm and op2 encode <n>, the counter number:
• For CRm==12, <n>=op2.
• For CRm==13, <n>=op2+8.</td>
</tr>
<tr>
<td>AMEVTPR1<sub>n</sub>_EL0</td>
<td>{14-15}, {0-7}</td>
<td>AMU<sup>k</sup></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO. CRm and op2 encode <n>, the counter number:
• For CRm==14, <n>=op2.
• For CRm==15, <n>=op2+8.</td>
</tr>
<tr>
<td>CNTFRQ_EL0</td>
<td>14 0 0 v8.0<sup>g</sup></td>
<td></td>
<td>Config-RO at EL0, RW at the highest implemented Exception level, otherwise RO.</td>
</tr>
<tr>
<td>CNTPCT_EL0</td>
<td>1 v8.0<sup>g</sup></td>
<td></td>
<td>Config-RO at EL0, otherwise RO.</td>
</tr>
<tr>
<td>CNTVCT_EL0</td>
<td>2 v8.0<sup>g</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTPCTS_EL0</td>
<td>5 v8.6</td>
<td></td>
<td>RO.</td>
</tr>
<tr>
<td>CNTVCSTS_EL0</td>
<td>6 v8.6</td>
<td></td>
<td>RO.</td>
</tr>
<tr>
<td>CNTP_TVVAL_EL0</td>
<td>2 0 v8.0<sup>g</sup></td>
<td></td>
<td>Config-RW at EL0 and Non-secure EL1, otherwise RW.</td>
</tr>
<tr>
<td>CNTP_CTL_EL0</td>
<td>1 v8.0<sup>g</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTP_CVAL_EL0</td>
<td>2 v8.0<sup>g</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>op0</td>
<td>op1</td>
<td>CRn</td>
</tr>
<tr>
<td>CNTV_TVAL_EL0</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>CNTV_CTL_EL0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTV_CVAL_EL0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| PMEVCNTR<\text{n}>_EL0 | | | | | {8-10}|{0-7} | v8.0e | Config-RW at EL0, otherwise RW. CRn and op2 encode \(<\text{n}>\), the counter number:
 \begin{itemize}
 \item For CRn\{8, 12\},
 \begin{itemize}
 \item \(<\text{n}>\)=op2.
 \end{itemize}
 \item For CRn\{9, 13\},
 \begin{itemize}
 \item \(<\text{n}>\)=op2+8.
 \end{itemize}
 \item For CRn\{10, 14\},
 \begin{itemize}
 \item \(<\text{n}>\)=op2+16.
 \end{itemize}
 \item For CRn\{11, 15\},
 \begin{itemize}
 \item \(<\text{n}>\)=op2+24.
 \end{itemize}
 \end{itemize}
| 11 |{0-6} | v8.0e | | | | | | |
| PMEVTYPE\text{<n>}_EL0 | | | | | {12-14}|{0-7} | v8.0e | |
| PMCCFILTR_EL0 | | | | | 15 | {0-6} | v8.0e | Config-RW at EL0, otherwise RW. |
| VPIDR_EL2 | 4 | 0 | 0 | 0 | v8.0 | RW. | |
| VMPIDR_EL2 | 5 | | | v8.0| RW. | |
| SCTLR_EL2 | 1 | 0 | 0 | v8.0| RW. | |
| ACTLR_EL2 | 1 | v8.0| RW, contents IMPLEMENTATION DEFINED. | |
| HCR_EL2 | 1 | v8.0| RW. | |
| MDCR_EL2 | 1 | v8.0| RW. | |
| CPTR_EL2 | 2 | v8.0| RW. | |
| HSTR_EL2 | 3 | v8.0| RW. | |
| HFGGRTR_EL2 | 4 | v8.6| RW. | |
| HFGGWTR_EL2 | 5 | v8.6| RW. | |
| HFGITR_EL2 | 6 | v8.6| RW. | |
| HACR_EL2 | 7 | v8.0| RW, contents IMPLEMENTATION DEFINED. | |
| ZCR_EL2 | 2 | 0 | SVE \text{a} | RW. | |
| TRFCR_EL2 | 1 | v8.4| RW. | |

\begin{footnotesize}
\text{a} SVE = Super Vector Extension.
\end{footnotesize}
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDER32_EL2</td>
<td>3 4 1 3 1 v8.4 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTBRO_EL2</td>
<td>2 0 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCR_EL2</td>
<td>2 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTTBR_EL2</td>
<td>1 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTCR_EL2</td>
<td>2 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNCR_EL2</td>
<td>2 0 v8.4 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSTTBR_EL2</td>
<td>6 0 v8.4 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSTCR_EL2</td>
<td>2 v8.4 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DACR32_EL2</td>
<td>3 0 0 v8.0 RW if EL1 can use AArch32, otherwise UNDEFINED. m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>1 4 v8.6 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>5 v8.6 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>6 v8.6 and AMU^m RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFSR32_EL2</td>
<td>5 0 1 v8.0 RW if EL1 can use AArch32, otherwise UNDEFINED. m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSR0_EL2</td>
<td>1 0 v8.0 RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFSR1_EL2</td>
<td>1 v8.0 RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESR_EL2</td>
<td>2 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSESER_EL2</td>
<td>3 RAS^c RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPEXC32_EL2</td>
<td>3 0 v8.0 RW if EL1 can use AArch32, otherwise UNDEFINED. m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAR_EL2</td>
<td>6 0 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPFAR_EL2</td>
<td>4 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMSCR_EL2</td>
<td>9 9 0 SPE^d RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAIR_EL2</td>
<td>10 2 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMAIR_EL2</td>
<td>3 0 v8.0 RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBAR_EL2</td>
<td>12 0 0 v8.0 RW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVBAR_EL2</td>
<td>1 v8.0 RO. Implemented only if EL3 is not implemented.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMR_EL2</td>
<td>op0 3 op1 4 CRn 12 CRm 0 op2 2</td>
<td>v8.0</td>
<td>RW. Implemented only if EL2 is implemented and EL3 is not implemented. (^f)</td>
</tr>
<tr>
<td>VDISR_EL2</td>
<td>1 1 RAS(^c)</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ICH_AP0R<(n)>_EL2</td>
<td>8 {0-3} GIC(^b)</td>
<td>RW, <(n)>=op2.</td>
<td></td>
</tr>
<tr>
<td>ICH_AP1R<(n)>_EL2</td>
<td>9 {0-3} GIC(^b)</td>
<td>RW, <(n)>=op2.</td>
<td></td>
</tr>
<tr>
<td>ICC_SRE_EL2</td>
<td>5 GIC(^b)</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ICH_HCR_EL2</td>
<td>11 0 GIC(^b)</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ICH_VTR_EL2</td>
<td>1 GIC(^b)</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ICH_MISR_EL2</td>
<td>2 GIC(^b)</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ICH_EISR_EL2</td>
<td>3 GIC(^b)</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ICH_ELRSR_EL2</td>
<td>5 GIC(^b)</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>ICH_VMCR_EL2</td>
<td>7 GIC(^b)</td>
<td>RW.</td>
<td></td>
</tr>
</tbody>
</table>
| ICH_LR<\(n\)>_EL2 | \{12,13\} \{0-7\} GIC\(^b\) | RW:
 • For CRm==12, <\(n\)>=op2.
 • For CRm==13, <\(n\)>=op2+8. |
| CONTEXTIDR_EL2 | 13 0 1 v8.1 | RW. |
| TPIDR_EL2 | 2 v8.0 | RW. |
| AMEVCNTVOFF0<\(n\)>_EL2 | \{8-9\} \{0-7\} v8.6 | RW. |
| AMEVCNTVOFF1<\(n\)>_EL2 | \{10-11\} \{0-7\} v8.6 | RW. |
| CNTVOFF_EL2 | 14 0 3 v8.0\(^g\) | RW. |
| CNTPOFF_EL2 | 6 v8.6 | RW. |
| CNTHCTL_EL2 | 1 0 v8.0\(^g\) | RW. |
| CNTHP_TVAL_EL2 | 2 0 v8.0\(^g\) | RW. |
| CNTHP_CTL_EL2 | 1 v8.0\(^g\) | RW. |
| CNTHP_CVAL_EL2 | 2 v8.0\(^g\) | RW. |
| CNTHV_TVAL_EL2 | 3 0 v8.1 | RW. |
| CNTHV_CTL_EL2 | 1 v8.1 | RW. |
| CNTHV_CVAL_EL2 | 2 v8.1 | RW. |
| CNTHVS_TVAL_EL2 | 4 0 v8.4 | RW. |
| CNTHVS_CTL_EL2 | 1 v8.4 | RW. |

\(^a\) ARM DDI 0487F.c
\(^b\) Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
\(^c\) D12-2857
\(^d\) ID072120
\(^e\) Non-Confidential
\(^f\) Table D12-2 System instruction encodings for non-Debug System register accesses.
<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTHVS_CVAL_EL2</td>
<td>3 4 14 4 2 v8.4</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>CNTHPS_TVAL_EL2</td>
<td>5 0 0 v8.4</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>CNTHPS_CTL_EL2</td>
<td>1 v8.4</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>CNTHPS_CVAL_EL2</td>
<td>2 v8.4</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>*_EL02</td>
<td>5 {0-15} {0-15} {0-7} v8.1</td>
<td>Reserved for EL2 aliases of EL0 and EL1 registers, see Table D5-47 on page D5-2636 and Table D5-48 on page D5-2637.</td>
<td></td>
</tr>
<tr>
<td>SCTLR_EL3</td>
<td>6 1 0 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ACTLR_EL3[63:0]</td>
<td>1 v8.0</td>
<td>RW.</td>
<td>contents IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>SCR_EL3</td>
<td>1 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>SDER32_EL3</td>
<td>1 v8.0</td>
<td>RW.</td>
<td>if EL1 can use AArch32, otherwise UNDEFINED, otherwise UNDEFINED.</td>
</tr>
<tr>
<td>CPTR_EL3</td>
<td>1 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ZCR_EL3</td>
<td>2 0 SVEa</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>MDCR_EL3</td>
<td>3 1 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>TTBR0_EL3</td>
<td>2 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>TCR_EL3</td>
<td>2 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>AFSR0_EL3</td>
<td>5 1 0 v8.0</td>
<td>RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
</tr>
<tr>
<td>AFSR1_EL3</td>
<td>1 v8.0</td>
<td>RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
</tr>
<tr>
<td>ESR_EL3</td>
<td>2 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>FAR_EL3</td>
<td>6 0 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>MAIR_EL3</td>
<td>10 2 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>AMAIR_EL3</td>
<td>3 0 v8.0</td>
<td>RW, contents IMPLEMENTATION DEFINED.</td>
<td></td>
</tr>
<tr>
<td>VBAR_EL3</td>
<td>12 0 0 v8.0</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>RVBAR_EL3</td>
<td>1 v8.0</td>
<td>RO.</td>
<td></td>
</tr>
<tr>
<td>RMR_EL3</td>
<td>2 v8.0</td>
<td>RW.</td>
<td>Implemented only if EL3 is implemented.</td>
</tr>
<tr>
<td>ICC_CTLR_EL3</td>
<td>4 GICb</td>
<td>RW.</td>
<td></td>
</tr>
<tr>
<td>ICC_SRE_EL3</td>
<td>5 GICb</td>
<td>RW.</td>
<td></td>
</tr>
</tbody>
</table>
Table D12-2 System instruction encodings for non-Debug System register accesses (continued)

<table>
<thead>
<tr>
<th>Register accessed</th>
<th>Access instruction encoding</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC_IGRPEN1_EL3</td>
<td>3 6 12 12 7</td>
<td>GIC(^b)</td>
<td>RW.</td>
</tr>
<tr>
<td>TPIDR_EL3</td>
<td>13 0 2 v8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTPS_TV_AL_EL1</td>
<td>7 14 2 0 v8.0(^g)</td>
<td></td>
<td>RW at EL3, Config-RW at Secure EL1.</td>
</tr>
<tr>
<td>CNTPS_CTL_EL1</td>
<td>1 v8.0(^g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTPS_CVAL_EL1</td>
<td>2 v8.0(^g)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Scalable Vector Extension System register, see The Scalable Vector Extension (SVE) on page A2-99.
b. GIC System register, see About the GIC System registers As that subsection describes, each ICV\(_*\) register uses the same encoding as the corresponding ICC\(_*\) register.
c. RAS Extension System registers, see The Reliability, Availability, and Serviceability Extension on page A2-97.
e. Performance Monitors Extension System register, see Performance Monitors registers on page D13-3678.
f. Required if the highest implemented Exception level can use both AArch32 and AArch64. If the highest implemented Exception level can use only AArch64 then it is IMPLEMENTATION DEFINED whether this register is implemented.
g. Generic Timer System register, see Generic Timer registers on page D13-3883.
h. When FEAT_CCIDX is implemented, CCSIDR_EL1 is a 64-bit register. Otherwise, it is a 32-bit register.
i. CCSIDR2_EL1 is implemented only when FEAT_CCIDX is implemented.
j. When AArch32 is not implemented, it is IMPLEMENTATION DEFINED whether CCSIDR2_EL1 is UNDEFINED or UNKNOWN.
k. Activity Monitors System register, see Activity Monitors registers on page D13-3745.
l. Debug register in the op0==3 encoding space, see Debug registers on page D13-3567.
m. Defined to allow access from AArch64 state to registers that are only used in AArch32 state.
n. Activity Monitors System register, see Activity Monitors registers on page D13-3745.

About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers, identified by the prefix of the register name:

- **ICC\(_*\)** GIC physical CPU interface System registers.
- **ICH\(_*\)** GIC virtual interface control System registers.
- **ICV\(_*\)** GIC Virtual CPU interface System registers.

Note

These registers are in addition to the GIC memory-mapped register groups GICC\(_*\), GIUD\(_*\), GICH\(_*\), GICR\(_*\), GICV\(_*\), and GITS\(_*\).

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these registers are included in the register summaries. However, the registers are defined only in the GIC Architecture Specification.

As Table D12-2 on page D12-2848 shows, the ICV\(_*\) registers have the same \{op0, op1, CRn, CRm, op2\} encodings as the corresponding ICC\(_*\) registers. For these encodings, GIC register configuration fields determine which register is accessed.

For more information see the ARM\(^a\) Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).
D12.3.2 Reserved encodings for IMPLEMENTATION DEFINED registers

The System register encoding space with \(\text{op0} == 0b11 \) reserves the following encodings for IMPLEMENTATION DEFINED registers:

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15</th>
<th>12</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 0 1 0 0</td>
<td>L</td>
<td>1 1</td>
<td>op1</td>
<td>1 x 1</td>
<td>CRm</td>
<td>op2</td>
<td>Rt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value of \(\text{L} \) defines the access type and the use of \(\text{Rt} \) as follows:

- **0**: Write the value in \(\text{Rt} \) to the IMPLEMENTATION DEFINED register.
- **1**: Read the value of the IMPLEMENTATION DEFINED register to \(\text{Rt} \).

For more information about these encodings see \(\text{S3_<op1>_<Cn>_<Cm>_<op2>}, \text{IMPLEMENTATION DEFINED registers} \) on page D13-3383. As that section describes, any IMPLEMENTATION DEFINED registers are accessed in a similar way to architecturally-defined System registers, using \(\text{MRS and MSR} \) instructions, see:

- \(\text{MRS} \) on page C6-1125.
- \(\text{MSR (immediate)} \) on page C6-1126.
- \(\text{MSR (register)} \) on page C6-1129.

The Arm architecture guarantees not to define any register name prefixed with \(\text{IMP} \) as part of the standard Arm architecture.

______ **Note** ______

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be prefixed with \(\text{IMP} \) and postfixed with \(_ELx \), where appropriate.

Chapter D13
AArch64 System Register Descriptions

This chapter defines the AArch64 System registers. It contains the following sections:

• *About the AArch64 System registers* on page D13-2862.
• *General system control registers* on page D13-2870.
• *Debug registers* on page D13-3567.
• *Performance Monitors registers* on page D13-3678.
• *Activity Monitors registers* on page D13-3745.
• *Statistical Profiling Extension registers* on page D13-3784.
• *RAS registers* on page D13-3836.
• *Generic Timer registers* on page D13-3883.
D13.1 About the AArch64 System registers

The following sections describe common features of the AArch64 registers:

- Fixed values in the System register descriptions.
- General behavior of accesses to the AArch64 System registers.
- Principles of the ID scheme for fields in ID registers on page D13-2867.

D13.1.1 Fixed values in the System register descriptions

See Fixed values in AArch64 instruction and System register descriptions on page C2-195. This section defines how the glossary terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

D13.1.2 General behavior of accesses to the AArch64 System registers

The following subsections give general information about the behavior of accesses to the System registers:

- Reset behavior of AArch64 System registers.
- Synchronization requirements for AArch64 System registers on page D13-2863.

Reset behavior of AArch64 System registers

Reset values apply only to RW registers and fields, however:

- Some RO registers or fields, including feature ID registers and some status registers or register fields, always return a known value.

- Some RW and RO registers or register fields return status information about the PE. Unless the register description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset returns valid information.

- Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior of the aliased register or field determines the value returned by a read of the register immediately after a reset.

- WO registers that only have an effect on writes do not have meaningful reset values. However, an access to a WO register might affect underlying state, and that state might have a defined reset value.

- IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace System registers, reset requirements must take account of different levels of reset. For more information about the reset behavior of System registers when the PE resets into an Exception level that is using AArch64, see:

- PE state on reset to AArch64 state on page D1-2330.
- The appropriate Trace architecture specification, for the Trace System registers.

For a PE reset into an Exception level that is using AArch64, the architecture defines which AArch64 System registers have a defined reset value, and when that defined reset value applies. The register descriptions include this information, and PE state on reset to AArch64 state on page D1-2330 summarizes these architectural requirements. Otherwise, RW registers that have a meaningful reset value reset to an architecturally UNKNOWN value.

--- Note ---

When the PE resets into an Exception level that is using AArch32, no PE state that relates to execution in AArch64 state is accessible until another reset causes the Execution state to change to AArch64. Therefore, on a reset into AArch32 state, PE state that relates only to execution in AArch64 state cannot have a meaningful reset value.

Pseudocode description of resetting System registers

The AArch64.ResetSystemRegisters() pseudocode function resets all System registers, and register fields, that have defined reset values, as described in this section and PE state on reset to AArch64 state on page D1-2330.
Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.

Synchronization requirements for AArch64 System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE, provided that both:

- Any data dependencies between the instructions, including read-after-read dependencies, are respected.
- The reads to the register do not occur earlier than the most recent Context synchronization event to its architectural position in the instruction stream.

Note

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous Context synchronization event. For example, where a memory access is used to communicate a read of such a counter, an ISB must be inserted between the read of the memory location that is known to have returned its data, either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is necessary that the counter returns a count value after the memory communication.

Direct writes using the instructions in Table D12-2 on page D12-2848 require synchronization before software can rely on the effects of changes to the System registers to affect instructions appearing in program order after the direct write to the System register. Direct writes to these registers are not allowed to affect any instructions appearing in program order before the direct write. The only exceptions are:

- All direct writes to the same register, that use the same encoding for that register, are guaranteed to occur in program order relative to each other
- All direct writes to a register occur in program order with respect to all direct reads to the same register using the same encoding.
- Any System register access that an Arm Architecture Specification or equivalent specification defines as not requiring synchronization.

Explicit synchronization occurs as a result of a Context synchronization event, which is one of the following events:

- Execution of an ISB instruction.
- Exception entry, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that exception entries to this Exception level are context synchronization events.
- Exception return, if FEAT_ExS is not implemented, or if FEAT_ExS is implemented and defines that exception returns from this Exception level are context synchronization events.
- Execution of a DCPS instruction in Debug state.
- Execution of a DRPS instruction in Debug state.
- Exit from Debug state.

Note

The ISB and exception entry events are applicable both in Debug state and in Non-debug state.

Conceptually, explicit synchronization occurs as the first step of each of these events, so that if the event uses state that has previously been changed but was not synchronized by the time of the event, the event is guaranteed to use the state as if it had been synchronized.

Note

This explicit synchronization applies as the first step of the execution of the events, and does not apply to any effect of System registers that apply to the fetch and decode of the instructions that cause these events, such as breakpoints or changes to the translation table.
In addition, any system instructions that cause a write to a System register must be synchronized before the result is guaranteed to be visible to subsequent direct reads of that System register.

Direct reads to any one of the following registers, using the same encoding, occur in program order relative to each other:

- **ISR_EL1**.
- The Generic Timer registers, that is, **CNTPCT_EL0** and **CNTVCT_EL0**, and the Counter registers **CNTP_TV AL_EL0**, **CNTV_TV AL_EL0**, **CNTHP_TV AL_EL2**, and **CNTPS_TV AL_EL1**.
- **DBGCLAIMCLR_EL1**.
- The PMU Counters, that is, **PMCCNTR_EL0**, **PMEVCNTR<ν> EL0**, **PMXEVCNTR_EL0**, **PMOVSCLR_EL0**, and **PMOVSSET_EL0**.
- The Debug Communications Channel registers, that is, **DBGDTRRX_EL0**, **DBGDTR_EL0**, and **MDCCSR_EL0**.

All other direct reads of System registers can occur in any order if synchronization has not been performed.

Table D13-1 describes the synchronization requirements between two successive read or write accesses to the same register, where the ordering of the read or write accesses is:

1. Program order, in the event that both the reads or writes are caused by an instruction executed on this PE, other than one caused by a memory access by this PE.
2. The order of arrival of asynchronous reads and writes at the PE relative to the execution of instructions that cause reads or writes.
3. The order of arrival of asynchronous reads and writes at the PE relative to each other.

<table>
<thead>
<tr>
<th>First read-write</th>
<th>Second read-write</th>
<th>Synchronization requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct read</td>
<td>Direct read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>None, see Notes on page D13-2865</td>
</tr>
<tr>
<td>Direct write</td>
<td>Direct read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>None, see Notes on page D13-2865</td>
</tr>
<tr>
<td>Indirect read</td>
<td>Direct read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>None</td>
</tr>
</tbody>
</table>
The terms Direct read, Direct write, Indirect read, and Indirect write, as used in Table D13-1 on page D13-2864, are defined as follows:

Direct read Where software uses an MRS system register access instruction to read that register into a general purpose register.

Where a direct read of a register has a side-effect that changes the contents of a register, the effect of a direct read on that register is defined to be an indirect write. In this case, the indirect write is only guaranteed to have occurred, and be visible to subsequent direct or indirect reads or writes, if synchronization is performed after the direct read.

Direct write Where software uses an MSR (register) access instruction to write to that register from a general purpose register.

Where a direct write to a register has an effect on the register that means that the value in the register is not always the last value that is written (as is the case with set and clear registers), the effect of a direct write on that register is defined to be an indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect reads or writes if synchronization is performed after the direct write and before the subsequent direct or indirect reads or writes.

Indirect read Where an instruction uses a System register to establish operating conditions for the instruction, for example, the TTBR_ELx address or whether memory accesses are forced to be Non-cacheable. This includes situations where the contents of one System register selects what value is read or written using a different register. Indirect reads also include reads of the System register by external agents such as debuggers. Where an indirect read of a register has a side-effect that changes the contents of that register, that is defined to be an indirect write.

Indirect write Where a System register is written as the consequence of some other instruction, exception, operation, or by the asynchronous operation of an external agent, including the passage of time as seen in counters, timers, or performance counters, the assertion of interrupts, or writes from an external debugger.

--- **Note** ---

Since an exception is context synchronizing, registers such as the Exception Syndrome registers that are indirectly written as part of exception entry do not require additional synchronization.

Where a direct read or write to a register is followed by an indirect write caused by an external agent, autonomous asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee the order of those two accesses.

Where an indirect write caused by a direct write is followed by an indirect write caused by an external agent, autonomous asynchronous event, or as a result of memory mapped write, synchronization is required to guarantee the order of those two indirect accesses.

Where a direct read to one register causes a bit or field in a different register (or the same register using a different encoding) to be updated, the change to the different register (or same register using a different encoding) is defined to be an indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect reads or writes if synchronization is performed after the direct read and before the subsequent direct or indirect reads or writes.

Table D13-1 Synchronization requirements (continued)

<table>
<thead>
<tr>
<th>First read-write</th>
<th>Second read-write</th>
<th>Synchronization requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect write</td>
<td>Direct read</td>
<td>Required, see Notes</td>
</tr>
<tr>
<td>Direct write</td>
<td>None, see Notes</td>
<td></td>
</tr>
<tr>
<td>Indirect read</td>
<td>Required, see Notes</td>
<td></td>
</tr>
<tr>
<td>Indirect write</td>
<td>None, see Notes</td>
<td></td>
</tr>
</tbody>
</table>

--- **Notes** ---

The terms Direct read, Direct write, Indirect read, and Indirect write, as used in Table D13-1 on page D13-2864, are defined as follows:
Where a direct write to one register causes a bit or field in a different register (or the same register using a different encoding) to be updated as a side-effect of that direct write (as opposed to simply being a direct write to the different encoding), the change to the different register (or same register using a different encoding) is defined to be an indirect write. In this case, the indirect write is only guaranteed to be visible to subsequent direct or indirect reads or writes if synchronization is performed after the direct write and before the subsequent direct or indirect reads or writes.

Where indirect writes are caused by the actions of external agents such as debuggers, or by memory-mapped reads or writes by the PE, then an indirect write by that agent and mechanism to a register, followed by an indirect read by that agent and mechanism to the same register using the same address, does not require synchronization.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no other accesses are allowed between the register access and its side-effect.

Indirect writes caused by external agents, autonomous asynchronous events, or as a result of memory-mapped writes, to the registers shown in Table D13-2, are required to be observable to:

- Direct reads in finite time without explicit synchronization.
- Subsequent indirect reads without explicit synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order. This applies even if the accesses occur simultaneously.

In addition to the requirements shown in Table D13-2:

- Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external agents, are required to be observable to the indirect read made in determining the response to a subsequent memory-mapped access without explicit synchronization:
 - OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is permitted.
 - EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or side-effect of an access is ignored.

 Note

This requirement is stricter than the general requirement for the observability of indirect writes.

- The requirement that an indirect write to the registers in Table D13-2 is observable to direct reads in finite time does not imply that all observers will observe the indirect write at the same time.

<table>
<thead>
<tr>
<th>Registers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISR_EL1</td>
<td>Interrupt Status Register</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1, DBGCLAIMSET_EL1</td>
<td>Debug CLAIM registers</td>
</tr>
<tr>
<td>CNTPCT_EL0, CNTVCT_EL0, CNTP_TVAL_EL0, CNTV_TVAL_EL0, CNTHP_TVAL_EL2, CNTPS_TVAL_EL1</td>
<td>Generic Timer registers</td>
</tr>
<tr>
<td>PMCCNTR_EL0, PMEVCNTR<\text{r}>_EL0, PMXEVCNTR_EL0, PMOVSCLR_EL0, PMOVSET_EL0</td>
<td>PMU Counters</td>
</tr>
<tr>
<td>DBGDTRTX_EL0, DBGDTRRX_EL0, DBGDTR_EL0, and the DCC flags in MDCCSR_EL0 and EDSR</td>
<td>Debug Communication Channel registers</td>
</tr>
<tr>
<td>EDSR.PipeAdv</td>
<td>External Debug Status and Control Register PipeAdv field</td>
</tr>
</tbody>
</table>

Table D13-2 Registers with a guarantee of observability, VMSAv8-64
For example, an increment of the system counter is an autonomous asynchronous event that performs an indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a Context synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE has taken an interrupt request from another source, but before software reads the current interrupt ID from the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of that register.

Although this example uses the counter-timer registers, it applies equally to other registers that might be linked to interrupt requests, including the PMU and Statistical Profiling status registers.

- When the PE is in Debug state, there are synchronization requirements for the Debug Communication Channel and Instruction Transfer registers. See DCC and ITR access in Debug state on page H4-7094.

Note

- The provision of explicit synchronization requirements to System registers is provided to allow the direct access to these registers to be implemented in a small number of cycles, and that updates to multiple registers can be performed quickly with the synchronization penalty being paid only when the updates have occurred.

- Since toolkits might use registers such as the thread-local storage registers within compiled code, it is recommended that access to these registers is implemented to take a small number of cycles.

- While no synchronization is required between a direct write and a direct read, or between a direct read and an indirect write, this does not imply that a direct read causes synchronization of a previous direct write. That is, the sequence direct write → direct read → indirect read, with no intervening context synchronization, does not guarantee that the indirect read observes the result of the direct write.

- If FEAT_MTE is implemented, a data synchronisation barrier (DSB) or an exception entry to ELy with SCTLR_EL.y.IFSB = 0b1 is required between an indirect write to TFSR0_EL1, or any TFSR_ELx accessible at ELy, and a direct read or direct write of that register.

D13.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of ID registers that are characterized as comprising a set of 4-bit ID fields. Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation of the architecture. These fields follow an architectural model that aids their use by software and provides future compatibility. This section describes that model. ID registers to which this scheme applies on page D13-2868 identifies the set of ID registers.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description states that it does not follow this scheme.

Note

- The ID fields described here are distinct from register fields that enumerate the number of resources, such as the number of breakpoints, watchpoints, or performance monitors, or the amount of memory.

- ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used for the Performance Monitors Extension version on page D13-2869.

- The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section. The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in functionality. Therefore, if a value of 0x1 indicates the presence of some instructions, then the value 0x2 will indicate the presence of those instructions plus some additional instructions or functionality. This means software can be written in the form:

```
if (value >= number) { // do something that relies on the value of the feature}
```
For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

- The field holds a signed value.
- The field value 0xF indicates that the feature is not implemented.
- The field value 0x0 indicates that the feature is implemented.
- Software that depends on the feature can use the test:
  ```c
  if value >= 0 { // Software features that depend on the presence of the hardware feature }
  ```

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to discover this. This is done by the introduction of a *fractional* field that both:

- Is referred to in the definition of the original field.
- Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates and the value of that field. Example D13-1 shows the use of such a field.

Example D13-1 Example of the use of a fractional field

For a field describing some class of functionality:

- The value 0x1 was defined as indicating that item A is present.
- The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

- Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,
- Software that depends on the test if (value >= 0x2) can rely on feature A being present,
- If new software needs to check only that features A and B are present, then it can test:
  ```c
  if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) { // Software features that depend on A and B only }
  ```

A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or fractional implementation options, are added.

ID registers to which this scheme applies

This scheme applies to the following registers:

AArch64 System registers

- The AArch64 views of the AArch32 feature ID registers given by:
 - The AArch32 Auxiliary Feature register ID_AFR0_EL1.
 - The AArch32 Processor Feature registers ID_PFR0_EL1 and ID_PFR1_EL1.
 - The AArch32 Debug Feature register ID_DFR0_EL1.
The AArch32 Memory Model Feature registers ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

The AArch32 Instruction Set Attribute registers ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

The AArch32 Media and VFP Feature registers MVFR0_EL1, MVFR1_EL1, and MVFR2_EL1.

The AArch64 Auxiliary Feature registers ID_AA64AFR0_EL1 and ID_AA64AFR1_EL1.

The AArch64 Processor Feature registers ID_AA64PFR0_EL1 and ID_AA64PFR1_EL1.

The AArch64 Debug Feature registers ID_AA64DFR0_EL1 and ID_AA64DFR1_EL1.

The AArch64 Memory Model Feature registers ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, and ID_AA64MMFR2_EL1.

The AArch64 Instruction Set Attribute registers ID_AA64ISAR0_EL1 and ID_AA64ISAR1_EL1.

AArch32 System registers

The AArch32 Auxiliary Feature register ID_AFR0.

The AArch32 Processor Feature registers ID_PFR0 and ID_PFR1.

The AArch32 Debug Feature register ID_DFR0.

The AArch32 Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

The AArch32 Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

The AArch32 Media and FP Feature registers MVFR0, MVFR1, and MVFR2.

Memory-mapped registers

The External Debug Processor Feature register EDPFR.

The External Debug Feature register EDDFR.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, that identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software must treat these fields as follows:

- The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.
- If the field value is not 0xF the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance Monitors Extension must be written in the form:

```c
if (value != 0xF and value >= number) { // do something that relies on version 'number' of the feature }
```

For these fields, Arm deprecates use of the value 0xF in new implementations.
D13.2 General system control registers

This section lists the System registers in AArch64 that are not part of one of the other listed groups.
D13.2.1 ACTLR_EL1, Auxiliary Control Register (EL1)

The ACTLR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Note

Arm recommends the contents of this register have no effect on the PE when HCR_EL2.{E2H, TGE} is {1, 1}, and instead the configuration and control fields are provided by the ACTLR_EL2 register. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL1[31:0] is architecturally mapped to AArch32 System register ACTLR[31:0].

AArch64 System register ACTLR_EL1[63:32] is architecturally mapped to AArch32 System register ACTLR2[31:0].

Attributes

ACTLR_EL1 is a 64-bit register.

Field descriptions

The ACTLR_EL1 bit assignments are:

![Field description diagram](image)

Accessing the ACTLR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ACTLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() & HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x118];
 else
 return ACTLR_EL1;
elsif PSTATE_EL == EL2 then
D13-2872 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c
Non-Confidential

AArch64 System Register Descriptions
D13.2 General system control registers

return ACTLR_EL1;
elsif PSTATE_EL == EL3 then
 return ACTLR_EL1;

MSR ACTLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enable() && HCR_EL2.TACR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enable() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x118] = X[t];
 else
 ACTLR_EL1 = X[t];
 endif
elsif PSTATE_EL == EL2 then
 ACTLR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
 ACTLR_EL1 = X[t];

D13.2.2 ACTLR_EL2, Auxiliary Control Register (EL2)

The ACTLR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL2.

Note

Arm recommends the contents of this register are updated to apply to EL0 when HCR_EL2.{E2H, TGE} is {1, 1}, gaining configuration and control fields from the ACTLR_EL1. This avoids the need for software to manage the contents of these register when switching between a Guest OS and a Host OS.

Configurations

AArch64 System register ACTLR_EL2[31:0] is architecturally mapped to AArch32 System register HACTLR[31:0].

AArch64 System register ACTLR_EL2[63:32] is architecturally mapped to AArch32 System register HACTLR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ACTLR_EL2 is a 64-bit register.

Field descriptions

The ACTLR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Offset</th>
<th>Bit Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED, bits [63:0]</td>
</tr>
<tr>
<td>0</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED.</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ACTLR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
return ACTLR_EL2;
elsif PSTATE.EL == EL3 then
 return ACTLR_EL2;

MSR ACTLR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 ACTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 ACTLR_EL2 = X[t];
else
 UNDEFINED;
endif
D13.2.3 ACTLR_EL3, Auxiliary Control Register (EL3)

The ACTLR_EL3 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ACTLR_EL3 are UNDEFINED.

Attributes

ACTLR_EL3 is a 64-bit register.

Field descriptions

The ACTLR_EL3 bit assignments are:

![Implementation defined bits diagram](image)

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ACTLR_EL3

```plaintext
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b10</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 UNDEFINED;
elsiif PSTATE.EL == EL1 then
 UNDEFINED;
elsiif PSTATE.EL == EL2 then
 UNDEFINED;
elsiif PSTATE.EL == EL3 then
 return ACTLR_EL3;

MSR ACTLR_EL3, <Xt>

```plaintext
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b11</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 UNDEFINED;
elsiif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 UNDEFINED;
elsif PSTATE_EL == EL3 then
 ACTLR_EL3 = X[t];
D13.2.4 AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)

The AFSR0_EL1 characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

Configurations
AArch64 System register AFSR0_EL1[31:0] is architecturally mapped to AArch32 System register ADFSR[31:0].

Attributes
AFSR0_EL1 is a 64-bit register.

Field descriptions
The AFSR0_EL1 bit assignments are:

![Field descriptions diagram](image)

IMPLEMENTATION DEFINED, bits [63:0]
IMPLEMENTATION DEFINED. This field resets to an architecturally UNKNOWN value.

Accessing the AFSR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR0_EL1 or AFSR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AFSR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x128];
 else
 return AFSR0_EL1;
 elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR0_EL2;
 else
 return AFSR0_EL1;
 elsif PSTATE_EL == EL3 then
 return AFSR0_EL1;
MSR AFSR0_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x128] = X[t];
else
 AFSR0_EL1 = X[t];
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL2 = X[t];
else
 AFSR0_EL1 = X[t];
elsif PSTATE_EL == EL3 then
 AFSR0_EL1 = X[t];

MRS <Xt>, AFSR0_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x128];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR0_EL1;
else
 UNDEFINED;
elsif PSTATE_EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return AFSR0_EL1;
else
 UNDEFINED;

MSR AFSR0_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x128] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 AFSR0_EL1 = X[t];
 else
 UNDEFINED;
D13.2.5 AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)

The AFSR0_EL2 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

Configurations

AArch64 System register AFSR0_EL2[31:0] is architecturally mapped to AArch32 System register HADFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AFSR0_EL2 is a 64-bit register.

Field descriptions

The AFSR0_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

Accessing the AFSR0_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR0_EL2 or AFSR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AFSR0_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
MSR AFSR0_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  AFSR0_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  AFSR0_EL2 = X[t];
MRS <Xt>, AFSR0_EL1
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x128] = X[t];
  else
    return AFSR0_EL1;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return AFSR0_EL2;
  else
    return AFSR0_EL1;
elsif PSTATE.EL == EL3 then
  return AFSR0_EL1;
MSR AFSR0_EL1, <Xt>
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR0_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x128] = X[t];
  else
    AFSR0_EL1 = X[t];
```
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR0_EL2 = X[t];
 else
 AFSR0_EL1 = X[t];
elsif PSTATE_EL == EL3 then
 AFSR0_EL1 = X[t];
D13.2.6 AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)

The AFSR0_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR0_EL3 are UNDEFINED.

Attributes

AFSR0_EL3 is a 64-bit register.

Field descriptions

The AFSR0_EL3 bit assignments are:

```plaintext
63  0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the AFSR0_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

### **MRS <Xt>, AFSR0_EL3**

```
op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b000
```

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return AFSR0_EL3;

### **MSR AFSR0_EL3, <Xt>**

```
op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0001 0b000
```

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  UNDEFINED;
elsif PSTATE_EL == EL3 then
  AFSR0_EL3 = X[t];
D13.2.7 AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)

The AFSR1_EL1 characteristics are:

**Purpose**

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL1.

**Configurations**

AArch64 System register AFSR1_EL1[31:0] is architecturally mapped to AArch32 System register AIFSR[31:0].

**Attributes**

AFSR1_EL1 is a 64-bit register.

**Field descriptions**

The AFSR1_EL1 bit assignments are:

![Field descriptions diagram]

**IMPLEMENTATION DEFINED, bits [63:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the AFSR1_EL1**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AFSR1_EL1 or AFSR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, AFSR1_EL1**

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.AFSR1_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x130];
 else
 return AFSR1_EL1;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AFSR1_EL2;
 else
 return AFSR1_EL1;
 endif
elsif PSTATE.EL == EL3 then
 return AFSR1_EL1;
else
 return AFSR1_EL1;
endif
```
**MSR AFSR1_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
else
  if PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AFSR1_EL1 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x130] = X[t];
      else
        AFSR1_EL1 = X[t];
      end
    end
  elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
      AFSR1_EL2 = X[t];
    else
      AFSR1_EL1 = X[t];
    end
  elsif PSTATE.EL == EL3 then
    AFSR1_EL1 = X[t];
  end
end

**MRS <Xt>, AFSR1_EL12**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
else
  if PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
      return NVMem[0x130];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      UNDEFINED;
    end
  elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
      return AFSR1_EL1;
    else
      UNDEFINED;
    end
  elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
      return AFSR1_EL1;
    else
      UNDEFINED;
    end
  end
end

**MSR AFSR1_EL12, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
else
  if PSTATE.EL == EL1 then
if EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '101' then
  NVMem[0x130] = X[t];
elsif EL2Enabled() \&\& HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    AFSR1_EL1 = X[t];
  else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
  if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '1' then
    AFSR1_EL1 = X[t];
  else
    UNDEFINED;
D13.2.8 AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)

The AFSR1_EL2 characteristics are:

**Purpose**

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL2.

**Configurations**

AArch64 System register AFSR1_EL2[31:0] is architecturally mapped to AArch32 System register HAIFSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

AFSR1_EL2 is a 64-bit register.

**Field descriptions**

The AFSR1_EL2 bit assignments are:

```
 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

**IMPLEMENTATION DEFINED, bits [63:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the AFSR1_EL2**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AFSR1_EL2 or AFSR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, AFSR1_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```
MSR AFSR1_EL2, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AFSR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AFSR1_EL2 = X[t];
```

MRS <Xt>, AFSR1_EL1

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & ( HaveEL(EL3) || SCR_EL3.FGTEn == '1' ) & HFGWTR_EL2.AFSR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x130];
    else
        return AFSR1_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.EZH == '1' then
        return AFSR1_EL2;
    else
        return AFSR1_EL1;
elsif PSTATE.EL == EL3 then
    return AFSR1_EL1;
```

MSR AFSR1_EL1, <Xt>

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & ( HaveEL(EL3) || SCR_EL3.FGTEn == '1' ) & HFGWTR_EL2.AFSR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x130] = X[t];
    else
        AFSR1_EL1 = X[t];
```
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AFSR1_EL2 = X[t];
 else
 AFSR1_EL1 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 AFSR1_EL1 = X[t];
endif
D13.2.9 AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)

The AFSR1_EL3 characteristics are:

Purpose

Provides additional IMPLEMENTATION DEFINED fault status information for exceptions taken to EL3.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to AFSR1_EL3 are UNDEFINED.

Attributes

AFSR1_EL3 is a 64-bit register.

Field descriptions

The AFSR1_EL3 bit assignments are:

![Implementation Defined Bit Assignments](image)

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AFSR1_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AFSR1_EL3

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return AFSR1_EL3;
```

MSR AFSR1_EL3, <Xt>

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
```

elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AFSR1_EL3 = X[t];
D13.2.10 AIDR_EL1, Auxiliary ID Register

The AIDR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.

The value of this register must be interpreted in conjunction with the value of MIDR_EL1.

Configurations

AArch64 System register AIDR_EL1[31:0] is architecturally mapped to AArch32 System register AIDR[31:0].

Attributes

AIDR_EL1 is a 64-bit register.

Field descriptions

The AIDR_EL1 bit assignments are:

| 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|
| 63 | IMPLEMENTATION DEFINED |
| 62 | IMPLEMENTATION DEFINED |

Accessing the AIDR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AIDR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b001</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFRTR_EL2.AIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return AIDR_EL1;
 elseif PSTATE.EL == EL2 then
 return AIDR_EL1;
 elsif PSTATE.EL == EL3 then
 return AIDR_EL1;
 else
 UNDEFINED;
D13.2.11 AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)

The AMAIR_EL1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL1.

Configurations

AArch64 System register AMAIR_EL1[31:0] is architecturally mapped to AArch32 System register AMAIR0[31:0].

AArch64 System register AMAIR_EL1[63:32] is architecturally mapped to AArch32 System register AMAIR1[31:0].

Attributes

AMAIR_EL1 is a 64-bit register.

Field descriptions

The AMAIR_EL1 bit assignments are:

![Implementation Defined](image)

AMAIR_EL1 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic AMAIR_EL1 or AMAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AMAIR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCRTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x148];
 else
 return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
return AMAIR_EL2;
else
 return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
 return AMAIR_EL1;

MSR AMAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() \&\& (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') \&\& HFGWTR_EL2.AMAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x148] = X[t];
 else
 AMAIR_EL1 = X[t];
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL2 = X[t];
 else
 AMAIR_EL1 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t];

MRS <Xt>, AMAIR_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x148];
 elsif EL2Enabled() \&\& HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return AMAIR_EL1;
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL3 then
 if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '1' then
 return AMAIR_EL1;
 else
 UNDEFINED;
 endif
MSR AMAIR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDONE;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x148] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDONE;
endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL1 = X[t];
 else
 UNDONE;
endif
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAAArch32(EL2) && HCR_EL2.E2H == '1' then
 AMAIR_EL1 = X[t];
 else
 UNDEFINED;
endif
D13.2.12 AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)

The AMAIR_EL2 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL2.

Configurations

AArch64 System register AMAIR_EL2[31:0] is architecturally mapped to AArch32 System register HAMAIR0[31:0].

AArch64 System register AMAIR_EL2[63:32] is architecturally mapped to AArch32 System register HAMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

AMAIR_EL2 is a 64-bit register.

Field descriptions

The AMAIR_EL2 bit assignments are:

```
   63  62  61  60  59  58  57  56  55  54  53  52  51  50  49  48  47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10  09  08  07  06  05  04  03  02  01  00

   IMPLEMENTATION DEFINED
```

AMAIR_EL2 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic AMAIR_EL2 or AMAIR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AMAIR_EL2

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```c
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE_EL == EL2 then
        return AMAIR_EL2;
```
```
elsif PSTATE.EL == EL3 then
    return AMAIR_EL2;

**MSR AMAIR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AMAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    AMAIR_EL2 = X[t];

**MRS <Xt>, AMAIR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x148];
    else
        return AMAIR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return AMAIR_EL2;
    else
        return AMAIR_EL1;
elsif PSTATE.EL == EL3 then
    return AMAIR_EL1;

**MSR AMAIR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.AMAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x148];
    else
        return AMAIR_EL1;
```
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x148] = X[t];
else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 AMAIR_EL2 = X[t];
 else
 AMAIR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 AMAIR_EL1 = X[t];
D13.2.13 AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)

The AMAIR_EL3 characteristics are:

Purpose
Provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR_EL3.

Configurations
This register is present only when EL3 is implemented. Otherwise, direct accesses to AMAIR_EL3 are UNDEFINED.

Attributes
AMAIR_EL3 is a 64-bit register.

Field descriptions
The AMAIR_EL3 bit assignments are:

```
63                  0
```

AMAIR_EL3 is permitted to be cached in a TLB.

IMPLEMENTATION DEFINED, bits [63:0]

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

```ml
MRS <Xt>, AMAIR_EL3
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 UNDEFINED;
elsif PSTATE_EL == EL3 then
 return AMAIR_EL3;
MSR AMAIR_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 AMAIR_EL3 = X[t];

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.14 APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64])

The APDAKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key A used for authentication of data pointer values.

Note

The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1: APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APDAKeyHi_EL1 are UNDEFINED.

Attributes

APDAKeyHi_EL1 is a 64-bit register.

Field descriptions

The APDAKeyHi_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>64 bit value, bits[127:64] of the 128 bit pointer authentication key value</th>
</tr>
</thead>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the APDAKeyHi_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, APDAKeyHi_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3)) || SCR_EL3.FGTEn == '1') && HFCRTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.AP = '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
return APDAKeyHi_EL1;
elif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDAKeyHi_EL1;
elif PSTATE.EL == EL3 then
 return APDAKeyHi_EL1;

MSR APDAKeyHi_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
elif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFQWTR_EL2.APDAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t];
elif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDAKeyHi_EL1 = X[t];
elif PSTATE.EL == EL3 then
 APDAKeyHi_EL1 = X[t];
D13.2.15 APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0])

The APDAKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key A used for authentication of data pointer values.

--- **Note** ---

The term APDAKey_EL1 is used to describe the concatenation of APDAKeyHi_EL1: APDAKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APDAKeyLo_EL1 are UNDEFINED.

Attributes

APDAKeyLo_EL1 is a 64-bit register.

Field descriptions

The APDAKeyLo_EL1 bit assignments are:

```
+----------------+-----------------+----------------+-------------+-------------+-------------+
| 63             | 62              | 0              |             |             |             |
+----------------+-----------------+----------------+-------------+-------------+-------------+
| 64 bit value   | bits[63:0]      | of the 128 bit | pointer     | authentication| key value   |
|                |                 | authentication  | key value   |             |             |
+----------------+-----------------+----------------+-------------+-------------+-------------+

Bits [63:0]

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.
This field resets to an architecturally UNKNOWN value.

**Accessing the APDAKeyLo_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, APDAKeyLo_EL1**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0x000</td>
<td>0x010</td>
<td>0x000</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif EL2Enabled() && HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APDAKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
```
return APDAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return APDAKeyLo_EL1;
 end
elsif PSTATE.EL == EL3 then
 return APDAKeyLo_EL1;

MSR APDAKeyLo_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.16 APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64])

The APDBKeyHi_EL1 characteristics are:

Purpose

Holds bits[127:64] of key B used for authentication of data pointer values.

--- Note ---

The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1: APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APDBKeyHi_EL1 are UNDEFINED.

Attributes

APDBKeyHi_EL1 is a 64-bit register.

Field descriptions

The APDBKeyHi_EL1 bit assignments are:

| 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
| ?? | ?? | 64 bit value, bits[127:64] of the 128 bit pointer authentication key value |

Bits [63:0]

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

Accessing the APDBKeyHi_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, APDBKeyHi_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then

UNDEFINED;

else if PSTATE.EL == EL1 then

if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& SCR_EL3.APK == '0' then

UNDEFINED;

else if EL2Enabled() \&\& HCR_EL2.APK == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);

else if EL2Enabled() \&\& (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') \&\& HFCRTR_EL2.APDBKey == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else if HaveEL(EL3) \&\& SCR_EL3.APK == '0' then

if Halted() \&\& EDSCR.SDD == '1' then

UNDEFINED;

else

AArch64.SystemAccessTrap(EL3, 0x18);

else

return APDBKeyHi_EL1;
elif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
 UNDEFINED;
elif HaveEL(EL3) & SCR_EL3.APK == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return APDBKeyHi_EL1;
elif PSTATE.EL == EL3 then
return APDBKeyHi_EL1;

MSR APDBKeyHi_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
 UNDEFINED;
elif EL2Enabled() & HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) & SCR_EL3.APK == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t];
elif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
 UNDEFINED;
elif HaveEL(EL3) & SCR_EL3.APK == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 APDBKeyHi_EL1 = X[t];
elif PSTATE.EL == EL3 then
 APDBKeyHi_EL1 = X[t];
D13.2.17 APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0])

The APDBKeyLo_EL1 characteristics are:

Purpose

Holds bits[63:0] of key B used for authentication of data pointer values.

--- Note ---

The term APDBKey_EL1 is used to describe the concatenation of APDBKeyHi_EL1:
APDBKeyLo_EL1.

Configurations

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APDBKeyLo_EL1 are UNDEFINED.

Attributes

APDBKeyLo_EL1 is a 64-bit register.

Field descriptions

The APDBKeyLo_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>64 bit value, bits[63:0] of the 128 bit pointer authentication key value</th>
</tr>
</thead>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the APDBKeyLo_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, APDBKeyLo_EL1

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1' & SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() & HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCRTR_EL2.APDBKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
```
return APDBKeyLo_EL1;
else if PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  else
    AArch64.SystemAccessTrap(EL1, 0x18);
  endif
else if PSTATE.EL == EL3 then
  return APDBKeyLo_EL1;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif

MSR APDBKeyLo_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
else if PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif EL2Enabled() & HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APDBKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  else
    APDBKeyLo_EL1 = X[t];
  endif
else if PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  else
    APDBKeyLo_EL1 = X[t];
  endif
else if PSTATE.EL == EL3 then
  APDBKeyLo_EL1 = X[t];
else
  APDBKeyLo_EL1 = X[t];
D13.2.18 APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64])

The APGAKeyHi_EL1 characteristics are:

**Purpose**

Holds bits[127:64] of key used for generic pointer authentication code.

--- Note ---

The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1: APGAKeyLo_EL1.

---

**Configurations**

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APGAKeyHi_EL1 are UNDEFINED.

**Attributes**

APGAKeyHi_EL1 is a 64-bit register.

**Field descriptions**

The APGAKeyHi_EL1 bit assignments are:

![Image of 64-bit bit assignments]

**Bits [63:0]**

64 bit value, bits[127:64] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

**Accessing the APGAKeyHi_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, APGAKeyHi_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
    UNDEFINED;
elif EL2Enabled() && HCR_EL2.APK == '0' then
      AArch64.SystemAccessTrap(EL2, 0x18); 
elif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APGAKey == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18); 
elif HaveEL(EL3) && SCR_EL3.APK == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
else
      AArch64.SystemAccessTrap(EL3, 0x18); 
else

return APGAKeyHi_EL1;
elseif PSTATE_EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
  when SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endelse
  return APGAKeyHi_EL1;
elseif PSTATE_EL == EL3 then
  return APGAKeyHi_EL1;
endelse

MSR APGAKeyHi_EL1, <Xt>

if PSTATE_EL == EL0 then
  UNDEFINED;
elseif PSTATE_EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
  when SCR_EL3.APK == '0' then
    UNDEFINED;
  elseif EL2Enabled() & HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APGKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endelse
  elif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    when SCR_EL3.APK == '0' then
      UNDEFINED;
    elseif HaveEL(EL3) & SCR_EL3.APK == '0' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endelse
    else
      APGAKeyHi_EL1 = X[t];
    endelse
  else
    APGAKeyHi_EL1 = X[t];
  endelse
elseif PSTATE_EL == EL3 then
  APGAKeyHi_EL1 = X[t];
D13.2.19 APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0])

The APGAKeyLo_EL1 characteristics are:

Purpose
Holds bits[63:0] of key used for generic pointer authentication code.

--- Note ---
The term APGAKey_EL1 is used to describe the concatenation of APGAKeyHi_EL1: APGAKeyLo_EL1.

Configurations
This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APGAKeyLo_EL1 are UNDEFINED.

Attributes
APGAKeyLo_EL1 is a 64-bit register.

Field descriptions
The APGAKeyLo_EL1 bit assignments are:

64 bit value, bits[63:0] of the 128 bit pointer authentication key value

Accessing the APGAKeyLo_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, APGAKeyLo_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCRTR_EL2.APGAKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      64 bit value, bits[63:0] of the 128 bit pointer authentication key value.
This field resets to an architecturally UNKNOWN value.
return APGAKeyLo_EL1;
elif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
    when SDD == '1'" && SCR_EL3.APK == '0' then
        UNDEFINED;
    elseif HaveEL(EL3) && SCR_EL3.APK == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    else
        return APGAKeyLo_EL1;
    endif PSTATE_EL == EL3 then
return APGAKeyLo_EL1;
end;

**MSR APGAKeyLo_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
    when SDD == '1'" && SCR_EL3.APK == '0' then
        UNDEFINED;
    elseif EL2Enabled() && HCR_EL2.APK == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.APAGKey == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && SCR_EL3.APK == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    else
        APGAKeyLo_EL1 = X[t];
    endif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
    when SDD == '1'" && SCR_EL3.APK == '0' then
        UNDEFINED;
    elseif HaveEL(EL3) && SCR_EL3.APK == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    else
        APGAKeyLo_EL1 = X[t];
    endif PSTATE_EL == EL3 then
APGAKeyLo_EL1 = X[t];
D13.2.20 APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64])

The APIAKeyHi_EL1 characteristics are:

**Purpose**

Holds bits[127:64] of key A used for authentication of instruction pointer values.

---

**Note**

The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1: APIAKeyLo_EL1.

---

**Configurations**

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APIAKeyHi_EL1 are UNDEFINED.

**Attributes**

- APIAKeyHi_EL1 is a 64-bit register.

**Field descriptions**

The APIAKeyHi_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bit value, bits[127:64] of the 128 bit pointer authentication key value</td>
</tr>
</tbody>
</table>

**Accessing the APIAKeyHi_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, APIAKeyHi_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```bash
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCGTR_EL2.APIAKey == '1') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
```
return APIAKeyHi_EL1;
else if PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  else if HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end if;
  else
    return APIAKeyHi_EL1;
  end if;
else if PSTATE.EL == EL3 then
  return APIAKeyHi_EL1;
end if;

MSR APIAKeyHi_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
else if PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  else if EL2Enabled() & HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APIAKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end if;
  else
    APIAKeyHi_EL1 = X[t];
  end if;
else if PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  else if HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end if;
  else
    APIAKeyHi_EL1 = X[t];
  end if;
else if PSTATE.EL == EL3 then
  APIAKeyHi_EL1 = X[t];
### APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0])

The APIAKeyLo_EL1 characteristics are:

**Purpose**

Holds bits[63:0] of key A used for authentication of instruction pointer values.

**Note**

The term APIAKey_EL1 is used to describe the concatenation of APIAKeyHi_EL1: APIAKeyLo_EL1.

**Configurations**

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APIAKeyLo_EL1 are **UNDEFINED**.

**Attributes**

APIAKeyLo_EL1 is a 64-bit register.

**Field descriptions**

The APIAKeyLo_EL1 bit assignments are:

64 bit value, bits[63:0] of the 128 bit pointer authentication key value

**Bits [63:0]**

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally **UNKNOWN** value.

**Accessing the APIAKeyLo_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, APIAKeyLo_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.APK == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && !(HaveEL(EL3) && SCR_EL3.FGTEn == '1') && HFCRTR_EL2.APIAKey == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 UNDEFINED;
```
return APIAKeyLo_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return APIAKeyLo_EL1;
  end
elsif PSTATE.EL == EL3 then
  return APIAKeyLo_EL1;
endif

MSR APIAKeyLo_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elsif EL2Enabled() & HCR_EL2.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APIAKey == '1') then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    APIAKeyLo_EL1 = X[t];
  endif
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    APIAKeyLo_EL1 = X[t];
  endif
elsif PSTATE.EL == EL3 then
  APIAKeyLo_EL1 = X[t];
D13.2.22 APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64])

The APIBKeyHi_EL1 characteristics are:

Purpose
Holds bits[127:64] of key B used for authentication of instruction pointer values.

Note
The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1: APIBKeyLo_EL1.

Configurations
This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APIBKeyHi_EL1 are UNDEFINED.

Attributes
APIBKeyHi_EL1 is a 64-bit register.

Field descriptions
The APIBKeyHi_EL1 bit assignments are:

64 bit value, bits[127:64] of the 128 bit pointer authentication key value

Bits [63:0]
64 bit value, bits[127:64] of the 128 bit pointer authentication key value. This field resets to an architecturally UNKNOWN value.

Accessing the APIBKeyHi_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, APIBKeyHi_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
elif EL2Enabled() & HCR_EL2.APIBKey == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCRTR_EL2.APIBKey == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) & SCR_EL3.APIBKey == '0' then
    if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
else
        AArch64.SystemAccessTrap(EL3, 0x18);
else

return APIBKeyHi_EL1;
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    end;
else
    return APIBKeyHi_EL1;
elsif PSTATE_EL == EL3 then
    return APIBKeyHi_EL1;
end;

**MSR APIBKeyHi_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif EL2Enabled() & HCR_EL2.APK == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APIBKey == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    else
        APIBKeyHi_EL1 = X[t];
    end;
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.APK == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    else
        APIBKeyHi_EL1 = X[t];
    end;
elsif PSTATE_EL == EL3 then
    APIBKeyHi_EL1 = X[t];
D13.2.23 APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0])

The APIBKeyLo_EL1 characteristics are:

**Purpose**

Holds bits[63:0] of key B used for authentication of instruction pointer values.

**Note**

The term APIBKey_EL1 is used to describe the concatenation of APIBKeyHi_EL1: APIBKeyLo_EL1.

**Configurations**

This register is present only when FEAT_PAuth is implemented. Otherwise, direct accesses to APIBKeyLo_EL1 are UNDEFINED.

**Attributes**

APIBKeyLo_EL1 is a 64-bit register.

**Field descriptions**

The APIBKeyLo_EL1 bit assignments are:

64 bit value, bits[63:0] of the 128 bit pointer authentication key value.

This field resets to an architecturally UNKNOWN value.

**Accessing the APIBKeyLo_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0010 & 0b0001 & 0b010 \\
\end{array}
\]

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.APK == '0' then
    UNDEFINED;
  elsif EL2Enabled() && SCR_EL3.APK == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.APIBKey == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.APK == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
  AArch64.SystemAccessTrap(EL1, 0x18);
return APIBKeyLo_EL1;
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.APK == '0'
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return APIBKeyLo_EL1;
    end
elsif PSTATE_EL == EL3 then
    return APIBKeyLo_EL1;
end

**MSR APIBKeyLo_EL1, <xt>**

<table>
<thead>
<tr>
<th>0b11</th>
<th>0b000</th>
<th>0b0010</th>
<th>0b0001</th>
<th>0b010</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif EL2Enabled() & HCR_EL2.APK == '0'
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.APIBKey == '1'
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & SCR_EL3.APK == '0'
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        APIBKeyLo_EL1 = X[t];
    end
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.APK == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.APK == '0'
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        APIBKeyLo_EL1 = X[t];
    end
elsif PSTATE_EL == EL3 then
    APIBKeyLo_EL1 = X[t];
D13.2.24  CCSIDR2_EL1, Current Cache Size ID Register 2

The CCSIDR2_EL1 characteristics are:

**Purpose**

When FEAT_CCIDX is implemented, provides the information about the architecture of the currently selected cache from bits[63:32] of CCSIDR_EL1.

When FEAT_CCIDX is not implemented, this register is not implemented.

**Configurations**

AArch64 System register CCSIDR2_EL1[31:0] is architecturally mapped to AArch32 System register CCSIDR2[31:0].

This register is present only when FEAT_CCIDX is implemented. Otherwise, direct accesses to CCSIDR2_EL1 are UNDEFINED.

In an AArch64 only implementation, it is IMPLEMENTATION DEFINED whether reading this register gives an UNKNOWN value or is UNDEFINED.

The implementation includes one CCSIDR2_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache Size ID Register is accessible.

**Attributes**

CCSIDR2_EL1 is a 64-bit register.

**Field descriptions**

The CCSIDR2_EL1 bit assignments are:

- **Bits [63:24]**
  - Reserved, RES0.

- **NumSets, bits [23:0]**
  - (Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

**Accessing the CCSIDR2_EL1**

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

- The CCSIDR2_EL1 read is treated as NOP.
- The CCSIDR2_EL1 read is UNDEFINED.
- The CCSIDR2_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CCSIDR2_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b001</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
else
  if PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID2 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return CCSIDR2_EL1;
  elseif PSTATE.EL == EL2 then
    return CCSIDR2_EL1;
  elseif PSTATE.EL == EL3 then
    return CCSIDR2_EL1;
D13.2.25  CCSIDR_EL1, Current Cache Size ID Register

The CCSIDR_EL1 characteristics are:

**Purpose**
Provides information about the architecture of the currently selected cache.

**Configurations**
AArch64 System register CCSIDR_EL1[31:0] is architecturally mapped to AArch32 System register CCSIDR[31:0].
AArch64 System register CCSIDR_EL1[63:32] is architecturally mapped to AArch32 System register CCSIDR2[31:0].
The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache Size ID Register is accessible.

**Attributes**
CCSIDR_EL1 is a 64-bit register.

**Field descriptions**
The CCSIDR_EL1 bit assignments are:

*When FEAT_CCIDX is implemented:*

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-56</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>55-32</td>
<td>NumSets, bits [55:32]</td>
</tr>
<tr>
<td>31-24</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>23-3</td>
<td>Associativity, bits [23:3]</td>
</tr>
<tr>
<td>2-0</td>
<td>LineSize, bits [2:0]</td>
</tr>
</tbody>
</table>

--- Note ---
The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on these parameters.

**Bits [63:56]**
Reserved, RES0.

**NumSets, bits [55:32]**
(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

**Bits [31:24]**
Reserved, RES0.

**Associativity, bits [23:3]**
(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

**LineSize, bits [2:0]**
(Log2(Number of bytes in cache line)) - 4. For example:
- For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
- For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.
When FEAT_MTE is implemented and enabled, where a cache only holds Allocation tags, this field is RES0.

**Otherwise:**

<table>
<thead>
<tr>
<th>63</th>
<th>32-31</th>
<th>28-27</th>
<th>13-12</th>
<th>3-2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>UNKNOWN</td>
<td>NumSets</td>
<td>Associativity</td>
<td>LineSize</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on these parameters.

**Bits [63:32]**

Reserved, RES0.

**UNKNOWN, bits [31:28]**

Reserved, UNKNOWN.

**NumSets, bits [27:13]**

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

**Associativity, bits [12:3]**

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

**LineSize, bits [2:0]**

(Log2(Number of bytes in cache line)) - 4. For example:
- For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
- For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

**Accessing the CCSIDR_EL1**

If CSSELRL EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

- The CCSIDR_EL1 read is treated as NOP.
- The CCSIDR_EL1 read is UNDEFINED.
- The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CCSIDR_EL1

If PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && HCR_EL2.TID2 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CCSIDR_EL1 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return CCSIDR_EL1;
    elsif PSTATE.EL == EL2 then
        return CCSIDR_EL1;
    elsif PSTATE.EL == EL3 then
        return CCSIDR_EL1;
### D13.2.26 CLIDR_EL1, Cache Level ID Register

The CLIDR_EL1 characteristics are:

**Purpose**

Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architectured cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

**Configurations**

AArch64 System register CLIDR_EL1[31:0] is architecturally mapped to AArch32 System register CLIDR[31:0].

**Attributes**

CLIDR_EL1 is a 64-bit register.

**Field descriptions**

The CLIDR_EL1 bit assignments are:

#### Bits [63:47]

Reserved, RES0.

#### Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 1 to 7

*When FEAT_MTE is implemented:*

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architectured cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy.

- **0b00**: No Tag Cache.
- **0b01**: Separate Allocation Tag Cache.
- **0b10**: Unified Allocation Tag and Data cache, Allocation Tags and Data in unified lines.
- **0b11**: Unified Allocation Tag and Data cache, Allocation Tags and Data in separate lines.

*Otherwise:*

Reserved, RES0.

#### ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

The possible values are:

- **0b0000**: Not disclosed by this mechanism.
- **0b0001**: L1 cache is the highest Inner Cacheable level.
LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

--- Note ---

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

--- Note ---

When FEAT_S2FWB is implemented, the architecture requires that this field is zero so that no levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache hierarchy. Possible values of each field are:

- **0b000**: No cache.
- **0b001**: Instruction cache only.
- **0b010**: Data cache only.
- **0b011**: Separate instruction and data caches.
- **0b100**: Unified cache.
- All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be managed using the architected cache maintenance instructions that operate by set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

Accessing the CLIDR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>MRS &lt;Xt&gt;, CLIDR_EL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return CLIDR_EL1;
elsif PSTATE.EL == EL2 then
return CLIDR_EL1;
elsif PSTATE.EL == EL3 then
return CLIDR_EL1;
D13.2.27 CONTEXTIDR_EL1, Context ID Register (EL1)

The CONTEXTIDR_EL1 characteristics are:

**Purpose**

Identifies the current Process Identifier.

The value of the whole of this register is called the Context ID and is used by:

- The debug logic, for Linked and Unlinked Context ID matching.
- The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

**Configurations**

AArch64 System register CONTEXTIDR_EL1[31:0] is architecturally mapped to AArch32 System register CONTEXTIDR[31:0].

**Attributes**

CONTEXTIDR_EL1 is a 64-bit register.

**Field descriptions**

The CONTEXTIDR_EL1 bit assignments are:

```
 63 32 31 0
 +---+---+---+
 | RES0 | PROCID |
 +---+---+---+
```

**Bits [63:32]**

Reserved, RES0.

**PROCID, bits [31:0]**

Process Identifier. This field must be programmed with a unique value that identifies the current process.

--- Note ---

In AArch32 state, when TTBCR.EAE is set to 0, CONTEXTIDR.ASID holds the ASID.
In AArch64 state, CONTEXTIDR_EL1 is independent of the ASID, and for the EL1&0 translation regime either TTBR0_EL1 or TTBR1_EL1 holds the ASID.

This field resets to an architecturally UNKNOWN value.

**Accessing the CONTEXTIDR_EL1**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CONTEXTIDR_EL1 or CONTEXTIDR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CONTEXTIDR_EL1

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x108];
    else
        return CONTEXTIDR_EL1;
    end if;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return CONTEXTIDR_EL2;
    else
        return CONTEXTIDR_EL1;
    end if;
elsif PSTATE.EL == EL3 then
    return CONTEXTIDR_EL1;
end if;

MSR CONTEXTIDR_EL1, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x108] = X[t];
    else
        CONTEXTIDR_EL1 = X[t];
    end if;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL2 = X[t];
    else
        CONTEXTIDR_EL1 = X[t];
    end if;
elsif PSTATE.EL == EL3 then
    CONTEXTIDR_EL1 = X[t];
end if;

MRS <Xt>, CONTEXTIDR_EL12

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return CONTEXTIDR_EL12;
    end if;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL2 = X[t];
    else
        CONTEXTIDR_EL1 = X[t];
    end if;
elsif PSTATE.EL == EL3 then
    CONTEXTIDR_EL1 = X[t];
end if;
return NVMem[0x108];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return CONTEXTIDR_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        return CONTEXTIDR_EL1;
    else
        UNDEFINED;

**MSR CONTEXTIDR_EL12, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x108] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        CONTEXTIDR_EL1 = X[t];
    else
        UNDEFINED;
D13.2.28 CONTEXTIDR_EL2, Context ID Register (EL2)

The CONTEXTIDR_EL2 characteristics are:

**Purpose**

Identifies the current Process Identifier for EL2.

The value of the whole of this register is called the Context ID and is used by:

- The debug logic, for Linked and Unlinked Context ID matching.
- The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

**Configurations**

This register is present only when FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented. Otherwise, direct accesses to CONTEXTIDR_EL2 are *UNDEFINED*.

If EL2 is not implemented, this register is *RES0* from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

CONTEXTIDR_EL2 is a 64-bit register.

**Field descriptions**

The CONTEXTIDR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>RES0</td>
</tr>
<tr>
<td>31-0</td>
<td>PROCID</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, *RES0*.

**PROCID, bits [31:0]**

Process Identifier. This field must be programmed with a unique value that identifies the current process.

This field resets to an architecturally *UNKNOWN* value.

**Accessing the CONTEXTIDR_EL2**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CONTEXTIDR_EL2 or CONTEXTIDR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

*MRS <Xt>, CONTEXTIDR_EL2*

<table>
<thead>
<tr>
<th>Op0</th>
<th>Op1</th>
<th>CRn</th>
<th>CRm</th>
<th>Op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then

ARM DDI 0487F.c  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  D13-2933
ID072120 Non-Confidential
AArch64 System Register Descriptions
D13.2 General system control registers

AArch64.SystemAccessTrap(EL2, 0x18);

MSR CONTEXTIDR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b11</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      UNDEFINED;
elseif PSTATE.EL == EL2 then
    CONTEXTIDR_EL2 = X[t];
elseif PSTATE.EL == EL3 then
    CONTEXTIDR_EL2 = X[t];

MRS <Xt>, CONTEXTIDR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b11</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CONTEXTIDR_EL1 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
      return NVMem[0x108];
    else
      return CONTEXTIDR_EL1;
elseif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
      return CONTEXTIDR_EL2;
    else
      return CONTEXTIDR_EL1;
elseif PSTATE.EL == EL3 then
    return CONTEXTIDR_EL1;
MSR CONTEXTIDR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CONTEXTIDR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x108] = X[t];
  else
    CONTEXTIDR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    CONTEXTIDR_EL2 = X[t];
  else
    CONTEXTIDR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
  CONTEXTIDR_EL1 = X[t];
D13.2.29 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

**Purpose**

Controls access to trace, SVE, Advanced SIMD and floating-point functionality.

**Configurations**

AArch64 System register CPACR_EL1[31:0] is architecturally mapped to AArch32 System register CPACR[31:0].

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the controls provided by CPTR_EL2 are used.

**Attributes**

CPACR_EL1 is a 64-bit register.

**Field descriptions**

The CPACR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:29</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>28</td>
<td>TTA, bit [28]</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**TTA, bit [28]**

Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.{E2H, TGE} is {0,1}, from both Execution states as follows:

- In AArch64 state, accesses to trace registers are trapped, reported using EC syndrome value 0x18.
- In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using EC syndrome value 0x05.
- In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using EC syndrome value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses to all implemented trace registers to be trapped.

**Note**

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPACR_EL1.TTA is 1.
- The Armv8-A architecture does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.
If System register access to the trace functionality is not implemented, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [27:22]
Reserved, RES0.

FPEN, bits [21:20]
Traps EL0 and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1, reported using EC syndrome value 0x07, or to EL2 reported using EC syndrome value 0x00, when EL2 is implemented and enabled for the current Security state and HCR_EL2.{E2H, TGE} is {0,1}, from both Execution states as follows:

- In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-31 registers.
- In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including their views as D0-D31 registers or S0-31 registers.

- **0b00** This control causes any instructions at EL0 or EL1 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN.
- **0b01** This control causes any instructions at EL0 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN, but does not cause any instruction at EL1 to be trapped.
- **0b10** This control causes any instructions at EL0 or EL1 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPACR_EL1.ZEN.
- **0b11** This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
- Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
- Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPACR_EL1.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

Bits [19:18]
Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:
Traps SVE instructions and instructions that access SVE System registers at EL0 and EL1 to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.{E2H, TGE} is {0,1}.

- **0b00** This control causes these instructions executed at EL0 or EL1 to be trapped.
- **0b01** This control causes these instructions executed at EL0 to be trapped, but does not cause any instruction at EL1 to be trapped.
- **0b10** This control causes these instructions executed at EL0 or EL1 to be trapped.
- **0b11** This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.
Bits [15:0]
Reserved, RES0.

Accessing the CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1 or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CPACR_EL1

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0001 & 0b0000 & 0b010 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0001 & 0b0000 & 0b010 \\
\end{array}
\]

MSR CPACR_EL1, <Xt>

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0001 & 0b0000 & 0b010 \\
\end{array}
\]
when SDD == '1' && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCR_EL2.E2H == '111' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) & CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    endif
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' then
    AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) & CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    endif
elsif Halted() && HCR_EL2.E2H == '111' then
    X[t] = NVMem[0x100];
else
    CPACR_EL1 = X[t];
endif
else
    PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL2) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
            UNDEFINED;
        elseif HaveEL(EL3) & CPTR_EL3.TCPAC == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            endif
        elseif HCR_EL2.E2H == '1' then
            CPTR_EL2 = X[t];
        else
            CPACR_EL1 = X[t];
        endif
    endif
else
    PSTATE.EL == EL3 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
            return CPACR_EL1;
        else
            UNDEFINED;
        endif
    elseif PSTATE.EL == EL3 then
        if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
            return CPACR_EL1;
        else
            UNDEFINED;
        endif
    else
        UNDEFINED;
    endif
endif

MRS <Xt>, CPACR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x100];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
            UNDEFINED;
        elseif HaveEL(EL3) & CPTR_EL3.TCPAC == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            endif
        elseif HCR_EL2.E2H == '1' then
            CPTR_EL2 = X[t];
        else
            CPACR_EL1 = X[t];
        endif
    endif
else
    PSTATE.EL == EL3 then
        if EL2Enabled() && ELUsingAArch32(EL2) & HCR_EL2.E2H == '1' then
            return CPACR_EL1;
        else
            UNDEFINED;
        endif
    else
        UNDEFINED;
    endif
endif

MRS <Xt>, CPACR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x100];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
            UNDEFINED;
        elseif HaveEL(EL3) & CPTR_EL3.TCPAC == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            endif
        elseif HCR_EL2.E2H == '1' then
            CPTR_EL2 = X[t];
        else
            CPACR_EL1 = X[t];
        endif
    endif
else
    PSTATE.EL == EL3 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
            return CPACR_EL1;
        else
            UNDEFINED;
        endif
    elseif PSTATE.EL == EL3 then
        if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
            return CPACR_EL1;
        else
            UNDEFINED;
        endif
    else
        UNDEFINED;
    endif
endif

MRS <Xt>, CPACR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
else
    UNDEFINED;

MSR CPACR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x100] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end
        else
            CPACR_EL1 = X[t];
        end
    else
        CPACR_EL1 = X[t];
    end
else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        CPACR_EL1 = X[t];
    else
        UNDEFINED;
end
D13.2.30 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

**Purpose**

Controls:
- Trapping to EL2 of access to CPACR, CPACR_EL1, trace functionality, and to SVE, Advanced SIMD and floating-point functionality.
- EL2 access to trace functionality, and to SVE, Advanced SIMD and floating-point functionality.

**Configurations**

AArch64 System register CPTR_EL2[31:0] is architecturally mapped to AArch32 System register HCPTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

CPTR_EL2 is a 64-bit register.

**Field descriptions**

The CPTR_EL2 bit assignments are:

*When FEAT_VHE is implemented and HCR_EL2.TGE == 1:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>32</td>
<td>TCPAC</td>
</tr>
<tr>
<td>31</td>
<td>TAC</td>
</tr>
<tr>
<td>30</td>
<td>RES0</td>
</tr>
<tr>
<td>29</td>
<td>TTA</td>
</tr>
<tr>
<td>28</td>
<td>RES0</td>
</tr>
<tr>
<td>27</td>
<td>FPEN</td>
</tr>
<tr>
<td>21-20</td>
<td>ZEN</td>
</tr>
<tr>
<td>19</td>
<td>RES0</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**TCPAC, bit [31]**

When HCR_EL2.TGE is 0, traps EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, and accesses to CPACR reported using EC syndrome value 0x83, to EL2 when EL2 is enabled in the current Security state.

- 0b0: This control does not cause any instructions to be trapped.
- 0b1: EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2 when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

**Note**

CPACR_EL1 and CPACR are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.
TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

- In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value \(0x18\):
  - AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

- In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using EC syndrome value \(0x03\):
  - AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER<n>, and AMEVTYPER1<n>.

- In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to EL2, reported using EC syndrome value \(0x04\).

- This control does not cause any instructions to be trapped.

- Any attempt at EL0, EL1 or EL2, to execute a System register access to an implemented trace register is trapped to EL2 when EL2 is enabled in the current Security state, unless HCR_EL2.TGE is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.

When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a System register access to an implemented trace register is trapped to EL2 when EL2 is enabled in the current Security state.

Note

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

- EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current Security state, from both Execution states, as follows:

- In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC syndrome value \(0x18\).

- In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2, reported using EC syndrome value \(0x05\).

- In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2, reported using EC syndrome value \(0x0C\).

- This control does not cause any instructions to be trapped.

- Any attempt at EL0, EL1 or EL2, to execute a System register access to an implemented trace register is trapped to EL2 when EL2 is enabled in the current Security state, unless HCR_EL2.TGE is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.

When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a System register access to an implemented trace register is trapped to EL2 when EL2 is enabled in the current Security state.
System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

**Bits [27:22]**

Reserved, RES0.

**FPEN, bits [21:20]**

Traps EL0, EL2 and, when HCR_EL2.TGE is 0, EL1 accesses to the SVE, Advanced SIMD and floating-point registers to EL2 when EL2 is enabled in the current Security state, from both Execution states.

0b00  This control causes any instructions at EL0, EL1, or EL2 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, subject to the exception prioritization rules, unless they are trapped by CPTR_EL2.ZEN.

0b01  When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped. When HCR_EL2.TGE is 1, this control causes instructions at EL0 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, unless they are trapped by CPTR_EL2.ZEN, but does not cause any instruction at EL2 to be trapped.

0b10  This control causes any instructions at EL0, EL1, or EL2 that use the registers associated with SVE, Advanced SIMD and floating-point execution to be trapped, subject to the exception prioritization rules, unless they are trapped by CPTR_EL2.ZEN.

0b11  This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

--- Note ---

- Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
- Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting exception is higher priority than an exception that would be generated because the value of CPTR_EL2.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

**Bits [19:18]**

Reserved, RES0.

**ZEN, bits [17:16]**

*When FEAT_SVE is implemented:*

Traps execution at EL2, EL1, and EL0 of SVE instructions or instructions that access SVE System registers to EL2 when EL2 is enabled in the current Security state.

0b00  This control causes execution at EL2, EL1, and EL0 of these instructions to be trapped, subject to the exception prioritization rules.

0b01  When HCR_EL2.TGE is 0, this control does not cause any instruction to be trapped. When HCR_EL2.TGE is 1, this control causes these instructions executed at EL0 to be trapped, but does not cause any instruction at EL2 to be trapped.

0b10  This control causes execution at EL2, EL1, and EL0 of these instructions to be trapped, subject to the exception prioritization rules.

0b11  This control does not cause any instruction to be trapped.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bits [15:0]
Reserved, RES0.

Otherwise:

This format applies in all Armv8.0 implementations.

Bits [63:32]
Reserved, RES0.

TCPAC, bit [31]
Traps EL1 accesses to CPACR_EL1, reported using EC syndrome value 0x18 and accesses to CPACR, reported using EC syndrome value 0x03, to EL2 when EL2 is enabled in the current Security state.

0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2 when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note
CPACR_EL1 and CPACR are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

TAM, bit [30]
Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

- In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x18:
  - AMUSERENR_EL0, AMCGRnell, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCTNTR<nn>_EL0, AMEVCTR1<nn>_EL0, AMEVTYPE0<nn>_EL0, and AMEVTYPE1<nn>_EL0.

- In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x03:
  - AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCR, AMEVTYPE0<nn>, and AMEVTYPE1<nn>.
• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<\text{n}> and AMEVCNTR1<\text{n}>, are trapped to EL2, reported using EC syndrome value \text{0x04}.

\text{0b0}  
Accesses from EL1 and EL0 to Activity Monitor registers are not trapped.

\text{0b1}  
Accesses from EL1 and EL0 to Activity Monitor registers are trapped to EL2, when EL2 is enabled in the current Security state.

This field resets to an architecturally \texttt{UNKNOWN} value.

**Bits [29:21]**

Reserved, RES0.

**TTA, bit [20]**

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current Security state, from both Execution states as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC syndrome value \text{0x18}.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2, reported using EC syndrome value \text{0x05}.

• In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2, reported using EC syndrome value \text{0x8C}.

\text{0b0}  
This control does not cause any instructions to be trapped.

\text{0b1}  
Any attempt at EL0, EL1, or EL2, to execute a System register access to an implemented trace register is trapped to EL2 when EL2 is enabled in the current Security state, unless it is trapped by CPACR.TRCDIS or CPACR_EL1.TTA.

**Note**

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are \texttt{UNDEFINED}, and any resulting exception is higher priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

- EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

This field resets to an architecturally \texttt{UNKNOWN} value.

**Bits [19:14]**

Reserved, RES0.

**Bits [13:12]**

Reserved, RES1.

**Bit [11]**

Reserved, RES0.

**TFP, bit [10]**

Traps accesses to SVE, Advanced SIMD and floating-point functionality to EL2 when EL2 is enabled in the current Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value \text{0x07}:

  — FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-31 registers.
• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x07:
  — MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15, including their views as D0-D31 registers or S0-31 registers. For the purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or higher as an access to a SIMD and floating-point register. Otherwise, permitted VMSR accesses to FPSID are ignored.

0b0  This control does not cause any instructions to be trapped.
0b1  Any attempt at EL0, EL1 or EL2, to execute an instruction that uses the registers associated with SVE, Advanced SIMD and floating-point execution is trapped to EL2 when EL2 is enabled in the current Security state, subject to the exception prioritization rules, unless it is trapped by CPTR_EL2.TZ.

Note
FPEXC32_EL2 is not accessible from EL0 using AArch64.
FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.
This field resets to an architecturally UNKNOWN value.

Bit [9]
Reserved, RES1.

TZ, bit [8]
Traps execution at EL2, EL1, or EL0 of SVE instructions and instructions that access SVE System registers to EL2 when EL2 is enabled in the current Security state.
0b0  This control does not cause any instruction to be trapped.
0b1  This control causes these instructions to be trapped, subject to the exception prioritization rules.
This field resets to an architecturally UNKNOWN value.

Bits [7:0]
Reserved, RES1.

Accessing the CPTR_EL2
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRS <Xt>, CPTR_EL2
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
elif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
   AArch64.SystemAccessTrap(EL1, 0x18);
else
   return CPTR_EL2;
elsif PSTATE.EL == EL3 then
   return CPTR_EL2;

**MSR CPTR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      UNDEFINED;
   elsif PSTATE.EL == EL2 then
      if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
         AArch64.SystemAccessTrap(EL3, 0x18);
      else
         UNDEFINED;
      elsif PSTATE.EL == EL3 then
         CPTR_EL2 = X[t];
   else
      CPTR_EL2 = X[t];

**MRS <Xt>, CPACR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      UNDEFINED;
   elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCRTR_EL2.CPACR_EL1 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      AArch64.SystemAccessTrap(EL3, 0x18);
   elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
      return NMem[0x100];
   else
      return CPACR_EL1;
elsif PSTATE.EL == EL2 then
   if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
      AArch64.SystemAccessTrap(EL3, 0x18);
   else
      return CPACR_EL1;
elsif PSTATE.EL == EL3 then
   if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
      AArch64.SystemAccessTrap(EL3, 0x18);
   else
      return CPACR_EL1;
UNDEFINED;
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end
elsif HCR_EL2.E2H == '1' then
  return CPTR_EL2;
else
  return CPACR_EL1;
elsif PSTATE_EL == EL3 then
  return CPACR_EL1;

MSR CPACR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
  elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x100] = X[t];
  else
    CPACR_EL1 = X[t];
  end
elsif PSTATE_EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR_SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    if Halted() && EDSCR_SDD == '1' then
      CPTR_EL2 = X[t];
    else
      CPACR_EL1 = X[t];
    end
  elsif PSTATE_EL == EL3 then
    CPACR_EL1 = X[t];
D13.2.31 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

**Purpose**

Controls trapping to EL3 of access to CPACR_EL1, CPTR_EL2, trace functionality and registers associated with SVE, Advanced SIMD and floating-point execution. Also controls EL3 access to trace functionality and registers associated with SVE, Advanced SIMD and floating-point execution.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3 are UNDEFINED.

**Attributes**

CPTR_EL3 is a 64-bit register.

**Field descriptions**

The CPTR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>TCPAC</td>
</tr>
<tr>
<td>31</td>
<td>TAM</td>
</tr>
<tr>
<td>30</td>
<td>TTA</td>
</tr>
<tr>
<td>29</td>
<td>TFP</td>
</tr>
<tr>
<td>20</td>
<td>EZ</td>
</tr>
<tr>
<td>19</td>
<td>RES0</td>
</tr>
<tr>
<td>11</td>
<td>RES0</td>
</tr>
<tr>
<td>10</td>
<td>RES0</td>
</tr>
<tr>
<td>9</td>
<td>RES0</td>
</tr>
<tr>
<td>8</td>
<td>RES0</td>
</tr>
<tr>
<td>7</td>
<td>RES0</td>
</tr>
<tr>
<td>0</td>
<td>RES0</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**TCPAC, bit [31]**

Traps all of the following to EL3, from both Security states and both Execution states.
- EL2 accesses to CPTR_EL2, reported using EC syndrome value 0x18, or HCPTR, reported using EC syndrome value 0x3.
- EL2 and EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, or CPACR reported using EC syndrome value 0x3.

When CPTR_EL3.TCPAC is:

- **0b0**: This control does not cause any instructions to be trapped.
- **0b1**: EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1 accesses to the CPACR_EL1 or CPACR, are trapped to EL3, unless they are trapped by CPTR_EL2.TCPAC.

This field resets to an architecturally UNKNOWN value.

**TAM, bit [30]**

*When FEAT_AMUv1 is implemented:*

Trap Activity Monitor access. Traps EL2, EL1 and EL0 accesses to all Activity Monitor registers to EL3.
Accesses to the Activity Monitors registers are trapped as follows:

- In AArch64 state, the following registers are trapped to EL3 and reported with EC syndrome value 0x18:
  - AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

- In AArch32 state, accesses with MRC or MCR to the following registers reported with EC syndrome value 0x03:
  - AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

- In AArch32 state, accesses with MRRC or MCCR to the following registers, reported with EC syndrome value 0x04:
  - AMEVCNTR0<n>, AMEVCNTR1<n>.

0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are not trapped.
0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor registers are trapped to EL3.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**Bits [29:21]**
Reserved, RES0.

**TTA, bit [20]**
Traps System register accesses. Accesses to the trace registers, from all Exception levels, both Security states, and both Execution states are trapped to EL3 as follows:

- In AArch64 state, Trace registers with op0=2, op1=1, are trapped to EL3 and reported using EC syndrome value 0x18.
- In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14 and opc1=1 are reported using EC syndrome value 0x05.
- In AArch32 state, accesses using MCRR or MCCR to the Trace registers with cpnum=14 and opc1=1 are reported using EC syndrome value 0x0C.

0b0 This control does not cause any instructions to be trapped.
0b1 Any System register access to the trace registers is trapped to EL3, subject to the exception prioritization rules, unless it is trapped by CPACR TRCDIS, CPACR_EL1.TTA or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

**Note**
The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see Traps on instructions on page D1-2368.

This field resets to an architecturally UNKNOWN value.

**Bits [19:11]**
Reserved, RES0.
TFP, bit [10]

Traps all accesses to SVE, Advanced SIMD and floating-point functionality, from all Exception levels, both Security states, and both Execution states, to EL3. Defined values are:

This includes the following registers, all reported using EC syndrome value 0x07:

- FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their views as D0-D31 registers or S0-31 registers.
- MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15, including their views as D0-D31 registers or S0-31 registers.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture define a VMSR access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

0b0  This control does not cause any instructions to be trapped.
0b1  Any attempt at any Exception level to execute an instruction that uses the registers associated with SVE, Advanced SIMD and floating-point is trapped to EL3, subject to the exception prioritization rules, unless it is trapped by CPTR_EL3.EZ.

Note
FPEXC32_EL2 is not accessible from EL0 using AArch64.
FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

This field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

Traps all accesses to SVE functionality and registers from all Exception levels, and both Security states, to EL3.

0b0  This control causes these instructions executed at any Exception level to be trapped, subject to the exception prioritization rules.
0b1  This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

Accessing the CPTR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\text{0b11} & \text{0b110} & \text{0b0001} & \text{0b0001} & \text{0b010} \\
\end{array}
\]

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return CPTR_EL3;

MSR CPTR_EL3, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    CPTR_EL3 = X[t];
D13.2.32 CSSELR_EL1, Cache Size Selection Register

The CSSELR_EL1 characteristics are:

**Purpose**

Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level and the cache type (either instruction or data cache).

**Configurations**

AArch64 System register CSSELR_EL1[31:0] is architecturally mapped to AArch32 System register CSSELR[31:0].

**Attributes**

CSSELR_EL1 is a 64-bit register.

**Field descriptions**

The CSSELR_EL1 bit assignments are:

![Field diagram]

**Bits [63:5]**

Reserved, RES0.

**InD, bit [4]**

*When FEAT_MTE is implemented:*

Allocation Tag not Data bit.

0b0 Data, Instruction or Unified cache.

0b1 Separate Allocation Tag cache.

When CSSELR_EL1.InD == 1, this bit is RES0.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR_EL1 is UNKNOWN. This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**Level, bits [3:1]**

Cache level of required cache.

0b000 Level 1 cache.

0b001 Level 2 cache.

0b010 Level 3 cache.

0b011 Level 4 cache.

0b100 Level 5 cache.

0b101 Level 6 cache.

0b110 Level 7 cache.

All other values are reserved.
If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR_EL1 is UNKNOWN. This field resets to an architecturally UNKNOWN value.

InD, bit [0]
Instruction not Data bit.

0b0 Data or unified cache.
0b1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSELR_EL1 is CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for CSSELR_EL1.{Level, InD}. This field resets to an architecturally UNKNOWN value.

Accessing the CSSELR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CSSELR_EL1**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b010</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE_EL == EL0 then
  UNDEFINED;
elseif PSTATE_EL == EL1 then
  if EL2Enabled() & HCR_EL2.TID2 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() & HCR_EL2.TID4 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.CSSELR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
    return CSSELR_EL1;
else
    return CSSELR_EL1;
elseif PSTATE_EL == EL2 then
    return CSSELR_EL1;
elseif PSTATE_EL == EL3 then
    return CSSELR_EL1;

**MSR CSSELR_EL1, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b010</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE_EL == EL0 then
  UNDEFINED;
elseif PSTATE_EL == EL1 then
  if EL2Enabled() & HCR_EL2.TID2 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() & HCR_EL2.TID4 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elseif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.CSSELR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
    CSSELR_EL1 = X[t];
else
    CSSELR_EL1 = X[t];
elseif PSTATE_EL == EL2 then
    CSSELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    CSSEL_R_EL1 = X[t];
D13.2.33 CTR_EL0, Cache Type Register

The CTR_EL0 characteristics are:

**Purpose**

Provides information about the architecture of the caches.

**Configurations**

AArch64 System register CTR_EL0[31:0] is architecturally mapped to AArch32 System register CTR[31:0].

**Attributes**

CTR_EL0 is a 64-bit register.

**Field descriptions**

The CTR_EL0 bit assignments are:

- **Bits [63:38]**
  
  Reserved, RES0.

- **TminLine, bits [37:32]**

  *When FEAT_MTE is implemented:*

  Tag minimum Line. Log2 of the number of words covered by Allocation Tags in the smallest cache line of all caches which can contain Allocation tags that are controlled by the PE.

  **Note**

  - For an implementation with cache lines containing 64 bytes of data and 4 Allocation Tags, this will be \(\log_2(64/4) = 4\).
  - For an implementation with Allocations Tags in separate cache lines of 128 Allocation Tags per line, this will be \(\log_2(128*16/4) = 9\).

- **Otherwise:**

  Reserved, RES0.

- **Bit [31]**

  Reserved, RES1.

- **Bit [30]**

  Reserved, RES0.

- **DIC, bit [29]**

  Instruction cache invalidation requirements for data to instruction coherence.

  0b0 Instruction cache invalidation to the Point of Unification is required for data to instruction coherence.
Instruction cache invalidation to the Point of Unification is not required for data to instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

- **0b0**: Data cache clean to the Point of Unification is required for instruction to data coherence, unless CLIDR_EL1.LoC == 0b000 or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
- **0b1**: Data cache clean to the Point of Unification is not required for instruction to data coherence.

CWG, bits [27:24]

Cache writeback granule. \( \log_2 \) of the number of words of the maximum size of memory that can be overwritten as a result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

- The architectural maximum of 512 words (2KB) must be assumed.
- The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example, to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. \( \log_2 \) of the number of words of the maximum size of the reservation granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

\( \log_2 \) of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

- **0b00**: VMID aware Physical Index, Physical tag (VPIPT)
- **0b01**: ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
- **0b10**: Virtual Index, Physical Tag (VIPT)
- **0b11**: Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in Armv8.

The value 0b00 is permitted only in an implementation that includes FEAT_VPIPT, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

\( \log_2 \) of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.
Accessing the CTR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CTR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & SCTLR_EL1.UCT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & HCR_EL2.TID2 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &
        HGRTR_EL2.CTR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return CTR_EL0;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() & HCR_EL2.TID2 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &
            HGRTR_EL2.CTR_EL0 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return CTR_EL0;
        end
    elsif PSTATE.EL == EL2 then
        return CTR_EL0;
    elsif PSTATE.EL == EL3 then
        return CTR_EL0;
    end
D13.2.34 DACR32_EL2, Domain Access Control Register

The DACR32_EL2 characteristics are:

**Purpose**

Allows access to the AArch32 DACR register from AArch64 state only. Its value has no effect on execution in AArch64 state.

**Configurations**

AArch64 System register DACR32_EL2[31:0] is architecturally mapped to AArch32 System register DACR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to DACR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

**Attributes**

DACR32_EL2 is a 64-bit register.

**Field descriptions**

The DACR32_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>RES0</td>
</tr>
<tr>
<td>31</td>
<td>D15</td>
</tr>
<tr>
<td>30</td>
<td>D14</td>
</tr>
<tr>
<td>29</td>
<td>D13</td>
</tr>
<tr>
<td>28</td>
<td>D12</td>
</tr>
<tr>
<td>27</td>
<td>D11</td>
</tr>
<tr>
<td>26</td>
<td>D10</td>
</tr>
<tr>
<td>25</td>
<td>D9</td>
</tr>
<tr>
<td>24</td>
<td>D8</td>
</tr>
<tr>
<td>23</td>
<td>D7</td>
</tr>
<tr>
<td>22</td>
<td>D6</td>
</tr>
<tr>
<td>21</td>
<td>D5</td>
</tr>
<tr>
<td>20</td>
<td>D4</td>
</tr>
<tr>
<td>19</td>
<td>D3</td>
</tr>
<tr>
<td>18</td>
<td>D2</td>
</tr>
<tr>
<td>17</td>
<td>D1</td>
</tr>
<tr>
<td>16</td>
<td>D0</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**D<n>, bits [2n+1:2n], for n = 0 to 15**

Domain n access permission, where n = 0 to 15. Permitted values are:

- 0b00: No access. Any access to the domain generates a Domain fault.
- 0b01: Client. Accesses are checked against the permission bits in the translation tables.
- 0b11: Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

This field resets to an architecturally UNKNOWN value.

**Accessing the DACR32_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } <Xt>, \text{ DACR32_EL2} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
UNDEFINED;
elsif PSTATE.EL == EL2 then
    return DACR32_EL2;
elsif PSTATE.EL == EL3 then
    return DACR32_EL2;

**MSR DACR32_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    DACR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    DACR32_EL2 = X[t];
D13.2.35 DCZID_EL0, Data Cache Zero ID register

The DCZID_EL0 characteristics are:

Purpose

Indicates the block size that is written with byte values of 0 by the DC ZVA (Data Cache Zero by Address) System instruction.

If FEAT_MTE is implemented, this register also indicates the granularity at which the DC GVA and DC GZVA instructions write.

Configurations

There are no configuration notes.

Attributes

DCZID_EL0 is a 64-bit register.

Field descriptions

The DCZID_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:5]</td>
<td>RES0</td>
</tr>
<tr>
<td>DZP, bit [4]</td>
<td>Data Zero Prohibited. This field indicates whether use of DC ZVA instructions is permitted or prohibited.</td>
</tr>
<tr>
<td>BS, bits [3:0]</td>
<td>Log2 of the block size in words. The maximum size supported is 2KB (value == 9).</td>
</tr>
</tbody>
</table>

Accessing the DCZID_EL0

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DCZID_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.<E2H,TGE> != '1' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
    HFRTR_EL2.DCZID_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return DCZID_EL0;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFRTR_EL2.DCZID_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return DCZID_EL0;
elsif PSTATE.EL == EL2 then
    return DCZID_EL0;
elsif PSTATE.EL == EL3 then
    return DCZID_EL0;
D13.2.36 ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

**Purpose**

Holds syndrome information for an exception taken to EL1.

**Configurations**

AArch64 System register ESR_EL1[31:0] is architecturally mapped to AArch32 System register DFSR[31:0].

**Attributes**

ESR_EL1 is a 64-bit register.

**Field descriptions**

The ESR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>32 31</th>
<th>26 25 24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>EC</td>
<td>IL</td>
<td>ISS</td>
</tr>
</tbody>
</table>

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of ESR_EL1 is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

**Bits [63:32]**

Reserved, RES0.

**EC, bits [31:26]**

Exception Class. Indicates the reason for the exception that this register holds information about. For each EC value, the table references a subsection that gives information about:

- The cause of the exception, for example the configuration required to enable the trap.
- The encoding of the associated ISS.

Possible values of the EC field are:

**EC == 0b000000**

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

**EC == 0b000001**

Trapped WFI or WFE instruction execution. Conditional WFE and WFI instructions that fail their condition code check do not cause an exception.

See ISS encoding for an exception from a WFI or WFE instruction.

**EC == 0b000011 When AArch32 is supported at any Exception level**

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC 0b000000.

See ISS encoding for an exception from an MCR or MRC access.

**EC == 0b000100 When AArch32 is supported at any Exception level**

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC 0b000000.
See ISS encoding for an exception from an MCRR or MRRC access.

**EC == 0b000101 When AArch32 is supported at any Exception level**
Trapped MCR or MRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCR or MRC access.

**EC == 0b000110 When AArch32 is supported at any Exception level**
Trapped LDC or STC access.
The only architected uses of these instruction are:
- An STC to write data to memory from DBGDTTRXint.
- An LDC to read data from memory to DBGDTTRXint.
See ISS encoding for an exception from an LDC or STC instruction.

**EC == 0b000111**
Access to SVE, Advanced SIMD, or floating-point functionality trapped by CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.
Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is 1, or because SVE or Advanced SIMD and floating-point are not implemented. These are reported with EC value 0b000000 as described in The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1 on page D1-2341.
See ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps.

**EC == 0b001100 When AArch32 is supported at any Exception level**
Trapped MRRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCRR or MRRC access.

**EC == 0b001101 When FEAT_BTI is implemented**
Branch Target Exception.
See ISS encoding for an exception from Branch Target Identification instruction.

**EC == 0b001110**
Illegal Execution state.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

**EC == 0b010001 When AArch32 is supported at any Exception level**
SVC instruction execution in AArch32 state.
This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TGE is 1.
See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b010101 When AArch64 is supported at any Exception level**
SVC instruction execution in AArch64 state.
See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b011000 When AArch64 is supported at any Exception level**
Trapped MSR, MRS or System instruction execution in AArch64 state, that is not reported using EC 0b000000, 0b000001 or 0b000111.
This includes all instructions that cause exceptions that are part of the encoding space defined in System instruction class encoding overview on page C5-373, except for those exceptions reported using EC values 0b000000, 0b000001, or 0b000111.
See ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state.

**EC == 0b011001 When FEAT_SVE is implemented**
Access to SVE functionality trapped as a result of CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC 0b000000.
See ISS encoding for an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.
EC == 0b011000 When FEAT_FPAC is implemented
Exception from a Pointer Authentication instruction authentication failure
See ISS encoding for an exception from a Pointer Authentication instruction authentication failure.

EC == 0b100000
Instruction Abort from a lower Exception level.
Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from an Instruction Abort.

EC == 0b100001
Instruction Abort taken without a change in Exception level.
Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from an Instruction Abort.

EC == 0b100010
PC alignment fault exception.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

EC == 0b100100
Data Abort from a lower Exception level.
Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from a Data Abort.

EC == 0b100101
Data Abort taken without a change in Exception level.
Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from a Data Abort.

EC == 0b100110
SP alignment fault exception.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

EC == 0b101000 When AArch32 is supported at any Exception level
Trapped floating-point exception taken from AArch32 state.
This EC value is valid if the implementation supports trapping of floating-point exceptions, otherwise it is reserved. Whether a floating-point implementation supports trapping of floating-point exceptions is IMPLEMENTATION DEFINED.
See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101100 When AArch64 is supported at any Exception level
Trapped floating-point exception taken from AArch64 state.
This EC value is valid if the implementation supports trapping of floating-point exceptions, otherwise it is reserved. Whether a floating-point implementation supports trapping of floating-point exceptions is IMPLEMENTATION DEFINED.
See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101111
SErrror interrupt.
See ISS encoding for an SError interrupt.
EC == 0b110000
Breakpoint exception from a lower Exception level.
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.
EC == 0b110001
Breakpoint exception taken without a change in Exception level.
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.
EC == 0b110010
Software Step exception from a lower Exception level.
See ISS encoding for an exception from a Software Step exception.
EC == 0b110011
Software Step exception taken without a change in Exception level.
See ISS encoding for an exception from a Software Step exception.
EC == 0b110100
Watchpoint exception from a lower Exception level.
See ISS encoding for an exception from a Watchpoint exception.
EC == 0b110101
Watchpoint exception taken without a change in Exception level.
See ISS encoding for an exception from a Watchpoint exception.
EC == 0b111000 When AArch32 is supported at any Exception level
BKPT instruction execution in AArch32 state.
See ISS encoding for an exception from execution of a Breakpoint instruction.
EC == 0b111001 When AArch64 is supported at any Exception level
BRK instruction execution in AArch64 state.
This is reported in ESR_EL3 only if a BRK instruction is executed.
See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:
• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]
Instruction Length for synchronous exceptions. Possible values of this bit are:
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction exceptions. For Breakpoint instruction exceptions, this bit has its standard meaning:
  — 0b0: 16-bit T32 BKPT instruction.
ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between the Execution states on page D1-2401.

If the AArch32 register descriptor is 0b1111, then:

- If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
- If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must be either:
  - The AArch64 view of the register number of a register that might have been used at the Exception level from which the exception was taken.
  - The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

The following subsections describe each ISS format.

**ISS encoding for exceptions with an unknown reason**

![ISS encoding for exceptions with an unknown reason](image)

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the following situations:

- The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible at the current Exception level and Security state, including:
  - A read access using a System register pattern that is not allocated for reads or that does not permit reads at the current Exception level and Security state.
  - A write access using a System register pattern that is not allocated for writes or that does not permit writes at the current Exception level and Security state.
  - Instruction encodings that are unallocated.
  - Instruction encodings for instructions or System registers that are not implemented in the implementation.
- In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
- In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.

• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:
  — An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
  — An SMC instruction when disabled by SCR_EL3.SMD.
  — An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution, in Debug state, of:
  — A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in the current Security state.
  — A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security state.
  — A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon. See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register) instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

**ISS encoding for an exception from a WFI or WFE instruction**

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>23</td>
<td>20</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>COND</td>
<td>RES0</td>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- 00: The COND field is not valid.
- 01: The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.
COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
  — If the instruction is conditional, COND is set to the condition code field value from the instruction.
  — If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
  — With COND set to 0b1110, the value for unconditional.
  — With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  — CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  — CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

0b0  WFI trapped.
0b1  WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.
**ISS encoding for an exception from an MCR or MRC access**

<table>
<thead>
<tr>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>14</th>
<th>13</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>Opc2</td>
<td>Opc1</td>
<td>CRn</td>
<td>Rt</td>
<td>CRm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CV, bit [24]**

Condition code valid. Possible values of this bit are:
- `0b0`: The COND field is not valid.
- `0b1`: The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to `0b1110`.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to `0b1110`.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to `0b1110`, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to `0b1110`, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Opc2, bits [19:17]**

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value `0b000`.

This field resets to an architecturally UNKNOWN value.
Opc1, bits [16:14]
The Opc1 value from the issued instruction.
For a trapped VMRS access, holds the value 0b111.
This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]
The CRn value from the issued instruction.
For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.
This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]
The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.
This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]
The CRm value from the issued instruction.
For a trapped VMRS access, holds the value 0b0000.
This field resets to an architecturally UNKNOWN value.

Direction, bit [0]
Indicates the direction of the trapped instruction. The possible values of this bit are:
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS instruction.
This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000011:

- CNTKCTL_EL1. {EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- PMUSERENR_EL0. {ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- HCR_EL2. {TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2. {TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2. {TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
• **CPTR_EL2.TCPAC**, for accesses to **CPACR_EL1** or **CPACR** using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• **HSTR_EL2.T<n>**, for accesses to System registers using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• **CNTHCTL_EL2.EL1PCEN**, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• **MDCR_EL2. {TPM, TPMCR}**, for accesses to Performance Monitor registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• **CPTR_EL2.TAM**, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• **CPTR_EL3.TCPAC**, for accesses to CPACR from EL1 and EL2, and accesses to **HCPTR** from EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• **MDCR_EL3.TPM**, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• **CPTR_EL3.TAM**, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see *Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32* on page D1-2385.

• If **FEAT_FGT** is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000011:

• **CPACR_EL1.TTA** for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• **MDSCR_EL1.TDCC**, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

If **FEAT_FGT** is implemented, **MDCR_EL2.TDCC** for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

• **HCR_EL2.TID0**, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC access (coproc == 0b1110) trapped to EL2.

• **CPTR_EL2.TTA**, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDRA**, for accesses to Debug ROM registers **DBGDRAR** and AArch-DBGDSAR using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDOSA**, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDA**, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **CPTR_EL3.TTA**, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• **MDCR_EL3.TDOSA**, for accesses to powerdown debug registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• **MDCR_EL3.TDA**, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.
The following fields describe configuration settings for generating exceptions that are reported using EC value 0b001000:

- **HCR_EL2.TID0**, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access trapped to EL2.
- **HCR_EL2.TID3**, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS access trapped to EL2.

**ISS encoding for an exception from an MCRR or MRRC access**

```
 24 23 20 19 16 15 14 10 9 5 4 1 0
 COND Opc1 Rt2 Rt CRm

CV RES0
```

**CV, bit [24]**
Condition code valid. Possible values of this bit are:

- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**
For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.
This field resets to an architecturally UNKNOWN value.

**Opc1, bits [19:16]**

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

**Bit [15]**

Reserved, RES0.

**Rt2, bits [14:10]**

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See *Mapping of the general-purpose registers between the Execution states on page D1-2401*.

This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See *Mapping of the general-purpose registers between the Execution states on page D1-2401*.

This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**

Indicates the direction of the trapped instruction. The possible values of this bit are:

- **0b0**: Write to System register space. MCRR instruction.
- **0b1**: Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000100:

- **CNTKCTL_EL1**. {EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **PMUSERENR_EL0**. {CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **AMUSERENR_EL0**. {EN}, for accesses to Activity Monitors registers AMEVCNTR0<0...<n> and AMEVCNTR1<0...<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **HCR_EL2**. {TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **HSTR_EL2**. T<0...<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **CNTHCTL_EL2**. {EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **MDCR_EL2**. {TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
• **CPTR_EL2.TAM**, for accesses to Activity Monitors registers registers AMEVcntr0<n> and AMEVcntr1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• **MDCR_EL3.TPM**, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• **CPTR_EL3.TAM**, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If **FEAT_FGT** is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b001100:

• **MDSCR_EL1.TDCC**, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• **MDCR_EL2.TDRA**, for accesses to Debug ROM registers DBGDRAR and AArch32-DBGDSAR using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL3.TDA**, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.

• **CPACR_EL1.TTA** for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• **CPTR_EL2.TTA**, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• **CPTR_EL3.TTA**, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.

--- **Note** ---

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

**ISS encoding for an exception from an LDC or STC instruction**

![ISS encoding diagram](Image)

CV, bit [24]

Condition code valid. Possible values of this bit are:

- 0b0  The COND field is not valid.
- 0b1  The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**imm8, bits [19:12]**

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

**Bits [11:10]**

Reserved, RES0.

**Rn, bits [9:5]**

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

**Offset, bit [4]**

Indicates whether the offset is added or subtracted:

- 0b0 Subtract offset.
- 0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.
AM, bits [3:1]

Addressing mode. The permitted values of this field are:

- **0b000** Immediate unindexed.
- **0b001** Immediate post-indexed.
- **0b010** Immediate offset.
- **0b011** Immediate pre-indexed.
- **0b100** For a trapped STC instruction or a trapped T32 LDC instruction this encoding is reserved.
- **0b110** For a trapped STC instruction, this encoding is reserved.
- **0b101** The values **0b101** and **0b111** are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped registers and translation table entries on page K1-7981.
- **0b111** Bits [1:0] in this subfield correspond to the bits \{P, W\} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

- **0b0** Write to memory. STC instruction.
- **0b1** Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value **0b000110**:

- **MDSCR_EL1.TDCC**, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint trapped to EL1 or EL2.
- **MDCR_EL2.TDA**, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint MCR or MRC access trapped to EL2.
- **MDCR_EL3.TDA**, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint MCR or MRC access trapped to EL3.
- If FEAT_FGT is implemented, **MDCR_EL2.TDCC** for LDC and STC accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

**ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps**

<table>
<thead>
<tr>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The accesses covered by this trap include:

- Execution of SVE or Advanced SIMD and floating-point instructions.
- Accesses to the Advanced SIMD and floating-point System registers.
For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the exception is reported using the EC value \(0b000000\).

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- \(0b0\) The COND field is not valid.
- \(0b1\) The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to \(0b1110\).

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to \(0b1110\).
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to \(0b1110\), the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to \(0b1110\), or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Bits [19:0]**

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value \(0b000111\):

- **CPACR_EL1.FPEN**, for accesses to SIMD and floating-point registers trapped to EL1.
- **CPTR_EL2.TFP**, for accesses to SIMD and floating-point registers trapped to EL2.
- **CPTR_EL2.TFP**, for accesses to SIMD and floating-point registers trapped to EL3.
ISS encoding for an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ

The accesses covered by this trap include:

- Execution of SVE instructions.
- Accesses to the SVE System registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

**Bits [24:0]**

Reserved, RES0.

The following sections describe the configuration setting for the traps:

- **CPACR_EL1.ZEN**, for accesses to SVE registers at EL0 or EL1, trapped to EL2.
- **CPTR_EL2.ZEN**, for accesses to SVE registers at EL0, EL1, or EL2, trapped to EL2.
- **CPTR_EL2.TZ**, for accesses to SVE instructions and instructions that access SVE System registers at EL0, EL1, or EL2, trapped to EL2.
- **CPTR_EL3.EZ**, for accesses to SVE functionality and registers from all Exception levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault

**Bits [24:0]**

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault exceptions. For more information about these exceptions see *The Illegal Execution state exception* on page D1-2347 and *PC alignment checking* on page D1-2327.

*SP alignment checking* on page D1-2327 describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

**Bits [24:16]**

Reserved, RES0.

**imm16, bits [15:0]**

The value of the immediate field from the HVC or SVC instruction.
For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued instruction.

For an A32 or T32 SVC instruction:

- If the instruction is unconditional, then:
  - For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
  - For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
- If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC execution.

**ISS encoding for an exception from SMC instruction execution in AArch32 state**

![ISS encoding diagram](image)

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown in the diagram.

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- **0b0**  The COND field is not valid.
- **0b1**  The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to **0b1110**.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to \(0b1110\).
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to \(0b1110\), the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to \(0b1110\), or to the value of any condition that applied to the instruction.

This field is only valid if CKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

**CKKNOWNPASS, bit [19]**

Indicates whether the instruction might have failed its condition code check.

- \(0b0\) The instruction was unconditional, or was conditional and passed its condition code check.
- \(0b1\) The instruction was conditional, and might have failed its condition code check.

--- Note ---

In an implementation in which an SMC instruction that fails its code check is not trapped, this field can always return the value 0.

This field resets to an architecturally UNKNOWN value.

**Bits [18:0]**

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

*System calls on page D1-2390* describes the case where these exceptions are trapped to EL3.

**ISS encoding for an exception from SMC instruction execution in AArch64 state**

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>imm16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:16]**

Reserved, RES0.

**imm16, bits [15:0]**

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.
The value of ISS[24:0] described here is used both:

- When an SMC instruction is trapped from EL1 modes.
- When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

System calls on page D1-2390 describes the case where these exceptions are trapped to EL3.

**ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state**

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>RES0, Reserved, reserved.</td>
</tr>
<tr>
<td>22</td>
<td>Op0, The Op0 value from the issued instruction.</td>
</tr>
<tr>
<td>20</td>
<td>Op2, The Op2 value from the issued instruction.</td>
</tr>
<tr>
<td>19</td>
<td>Op1, The Op1 value from the issued instruction.</td>
</tr>
<tr>
<td>17</td>
<td>CRn, The CRn value from the issued instruction.</td>
</tr>
<tr>
<td>16</td>
<td>RT, The Rt value from the issued instruction.</td>
</tr>
<tr>
<td>10</td>
<td>CRm, The CRm value from the issued instruction.</td>
</tr>
<tr>
<td>9</td>
<td>Direction, Indicates the direction of the trapped instruction.</td>
</tr>
<tr>
<td>5</td>
<td>Reserved.</td>
</tr>
<tr>
<td>4</td>
<td>Reserved.</td>
</tr>
<tr>
<td>1</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

**Bits [24:22]**

- **Reserved, RES0.**

**Op0, bits [21:20]**

- The Op0 value from the issued instruction.
  - This field resets to an architecturally UNKNOWN value.

**Op2, bits [19:17]**

- The Op2 value from the issued instruction.
  - This field resets to an architecturally UNKNOWN value.

**Op1, bits [16:14]**

- The Op1 value from the issued instruction.
  - This field resets to an architecturally UNKNOWN value.

**CRn, bits [13:10]**

- The CRn value from the issued instruction.
  - This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**

- The Rt value from the issued instruction, the general-purpose register used for the transfer.
  - This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**

- The CRm value from the issued instruction.
  - This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**

- Indicates the direction of the trapped instruction. The possible values of this bit are:
  - 0b0 Write access, including MSR instructions.
  - 0b1 Read access, including MRS instructions.
  - This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions on page C4-275 for the encoding values returned by an instruction.
The following fields describe configuration settings for generating the exception that is reported using EC value 0b011000:

- **SCTLR_EL1.UCI**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.UCT**, for accesses to **CTR_EL0** using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.DZE**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.UMA**, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **CPACR_EL1.TTA**, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **MDSCR_EL1.TDCC**, for accesses to the Debug Communications Channel (DCC) registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- If **FEAT_FGT** is implemented, **MDCR_EL2.TDCC** for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.
- **CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}** accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **PMUSERENR_EL0.{ER, CR, SW, EN}**, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **AMUSERENR_EL0.EN**, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **HCR_EL2.{TRVM, TVM}**, for accesses to virtual memory control registers using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TDZ**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TTLB**, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.{TSW, TPC, TPU}**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TACR**, for accesses to the Auxiliary Control Register, **ACTLR_EL1**, using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TIDCP**, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.{TID1, TID2, TID3}**, for accesses to ID group 1, ID group 2 or ID group 3 registers, using AArch64 state, MSR or MRS access trapped to EL2.
- **CPTR_EL2.TCPAC**, for accesses to **CPACR_EL1**, using AArch64 state, MSR or MRS access trapped to EL2.
- **CPTR_EL2.TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL2.
- **MDCR_EL2.TTRF**, for accesses to the trace filter register, **TRFCR_EL1**, using AArch64 state, MSR or MRS access trapped to EL2.
• **MDCR_EL2.TDRA**, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TDOSA**, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• **CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}**, for accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TDA**, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.{TPM, TPMCR}**, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **CPTR_EL2.TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.APK**, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.{NV, NV1}**, for Nested virtualization register access, using AArch64 state, MSR or MRS access, trapped to EL2.

• **HCR_EL2.AT**, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to EL2.

• **HCR_EL2.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped to EL2.

• **SCR_EL3.APK**, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **SCR_EL3.ST**, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **SCR_EL3.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TCPAC**, for accesses to **CPTR_EL2** and **CPACR_EL1** using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TTRF**, for accesses to the filter trace control registers, **TRFCR_EL1** and **TRFCR_EL2**, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TDA**, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TDOSA**, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TPM**, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access, trapped to EL3.

• If **FEAT_EVT** is implemented the following registers control traps for EL1 and EL0 Cache controls that use this EC value:
  — **HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}**.
  — **HCR2.{TTLBIS, TICAB, TOCU, TID4}**.
• If FEAT_FGT is implemented:
  — SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped to EL3.
  — HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 trapped to EL2.
  — HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2.
  — HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 state trapped to EL2.
  — HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and EL1 trapped to EL2.

**ISS encoding for an IMPLEMENTATION DEFINED exception to EL3**

**IMPLEMENTATION DEFINED, bits [24:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from an Instruction Abort**

**Bits [24:13]**

Reserved, RES0.

**SET, bits [12:11]**

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction Abort exception. The possible values of this field are:

- 0b00: Recoverable state (UER).
- 0b10: Uncontainable (UC).
- 0b11: Restartable state (UEO).

All other values are reserved.

**Note**

Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.
FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0  FAR is valid.
0b1  FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.
This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.
This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

0b0  Fault not on a stage 2 translation for a stage 1 translation table walk.
0b1  Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.
This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000  Address size fault, level 0 of translation or translation table base register.
0b000001  Address size fault, level 1.
0b000010  Address size fault, level 2.
0b000011  Address size fault, level 3.
0b000100  Translation fault, level 0.
0b000101  Translation fault, level 1.
0b000110  Translation fault, level 2.
0b000111  Translation fault, level 3.
0b001001  Access flag fault, level 1.
0b001010  Access flag fault, level 2.
0b001011  Access flag fault, level 3.
0b001101  Permission fault, level 1.
0b001110  Permission fault, level 2.
0b001111  Permission fault, level 3.
0b010000  Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b01001 Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b01010 Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b01011 Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b01100 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b01110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.
0b011101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.
0b110000 TLB conflict abort.
0b110001 When FEAT_HAFDBS is implemented Unsupported atomic hardware update fault. All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on page D5-2651.

Note
Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.
This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from a Data Abort**

<table>
<thead>
<tr>
<th>24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9 8 7 6 5 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td>SRT</td>
</tr>
<tr>
<td>SET</td>
<td>DFSC</td>
</tr>
<tr>
<td>ISV</td>
<td>WnR</td>
</tr>
<tr>
<td>SSE</td>
<td>S1PTW</td>
</tr>
<tr>
<td>SF</td>
<td>CM</td>
</tr>
<tr>
<td>AR</td>
<td>EA</td>
</tr>
<tr>
<td>VNCR</td>
<td>FnV</td>
</tr>
</tbody>
</table>

**ISV, bit [24]**
Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.
This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:
- AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive and excluding those with writeback).
• AArch32 instructions where the instruction:
  — Is an LDR, LDA, LDRHT, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSHT, LDRB, LDA, LDRB, STR, STL, STRT, STRH, STLH, STRHT, STRB, STL, or STRB instruction.
  — Is not performing register writeback.
  — Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome, and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2 translation table walk is IMPLEMENTATION DEFINED.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx, ESR_ELx.FNV is 0 and FAR_ELx is valid.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

0b00  Byte
0b01  Halfword
0b10  Word
0b11  Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SSE, bit [21]
Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign extended. For these cases, the possible values of this bit are:

0b0  Sign-extension not required.
0b1  Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]
Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.

This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.
SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

0b0  Instruction loads/stores a 32-bit wide register.
0b1  Instruction loads/stores a 64-bit wide register.

--- Note ---

This field specifies the register width identified by the instruction, not the Execution state.

---

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. The possible values of this bit are:

0b0  Instruction did not have acquire/release semantics.
0b1  Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

VNCR, bit [13]

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

0b0  The fault was not generated by the use of VNCR_EL2, by an MRS or MSR instruction executed at EL1.
0b1  The fault was generated by the use of VNCR_EL2, by an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

This field resets to an architecturally UNKNOWN value.

SET, bits [12:11]

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data Abort exception. The possible values of this field are:

0b0  Recoverable state (UER).
0b10  Uncontainable (UC).
0b11  Restartable state (UEO).

All other values are reserved.

--- Note ---

Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

---

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0  FAR is valid.
0b1  FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.
EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

\[
\begin{align*}
0b0 & \quad \text{The Data Abort was not generated by the execution of one of the System instructions identified in the description of value 1.} \\
0b1 & \quad \text{The Data Abort was generated by either the execution of a cache maintenance instruction or by a synchronous fault on the execution of an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.}
\end{align*}
\]

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

\[
\begin{align*}
0b0 & \quad \text{Fault not on a stage 2 translation for a stage 1 translation table walk.} \\
0b1 & \quad \text{Fault on the stage 2 translation of an access for a stage 1 translation table walk.}
\end{align*}
\]

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

\[
\begin{align*}
0b0 & \quad \text{Abort caused by an instruction reading from a memory location.} \\
0b1 & \quad \text{Abort caused by an instruction writing to a memory location.}
\end{align*}
\]

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read of the address specified by the instruction would have generated the fault which is being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

- An External abort on an Atomic access.
- A fault reported using a DFSC value of 0b101010 or 0b100001, indicating an unsupported Exclusive or atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

\[
\begin{align*}
0b000000 & \quad \text{Address size fault, level 0 of translation or translation table base register.} \\
0b000001 & \quad \text{Address size fault, level 1.} \\
0b000010 & \quad \text{Address size fault, level 2.} \\
0b000011 & \quad \text{Address size fault, level 3.}
\end{align*}
\]
0b000000 Translation fault, level 0.
0b000001 Translation fault, level 1.
0b000010 Translation fault, level 2.
0b000011 Translation fault, level 3.
0b000100 Access flag fault, level 1.
0b000101 Access flag fault, level 2.
0b000111 Access flag fault, level 3.
0b000110 Permission fault, level 1.
0b001000 Permission fault, level 2.
0b001011 Permission fault, level 3.
0b001001 Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010000 Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010001 When FEAT_MTE is implemented Synchronous Tag Check Fault.
0b010100 Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b010101 Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b010110 Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b010111 Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b010101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011000 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011100 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b100000 Alignment fault.
0b110000 TLB conflict abort.
0b110001 When FEAT_HAFDBS is implemented Unsupported atomic hardware update fault.
0b110100 IMPLEMENTATION DEFINED fault (Lockdown).
0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).
All other values are reserved.

For more information about the lookup level associated with a fault, see *The level associated with MMU faults on page D5-2651.*

--- Note ---

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally UNKNOWN value.
ISS encoding for an exception from a trapped floating-point exception

**Bit [24]**

Reserved, RES0.

**TFV, bit [23]**

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information about trapped floating-point exceptions. The possible values of this bit are:

- **0b0**: The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped floating-point exceptions and are UNKNOWN.
- **0b1**: One or more floating-point exceptions occurred during an operation performed while executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate trapped floating-point exceptions that occurred. For more information see *Floating-point exceptions and exception traps* on page D1-2354.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating point exception from a vector instruction.

**Note**

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

**Bits [22:11]**

Reserved, RES0.

**VECITR, bits [10:8]**

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

**IDF, bit [7]**

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

- **0b0**: Input denormal floating-point exception has not occurred.
- **0b1**: Input denormal floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.
Bits [6:5]
Reserved, RES0.

IXF, bit [4]
Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally UNKNOWN value.

UFF, bit [3]
Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally UNKNOWN value.

OFF, bit [2]
Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally UNKNOWN value.

DZF, bit [1]
Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally UNKNOWN value.

IOF, bit [0]
Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

- From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point exception traps.
- From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point exception traps.
ISS encoding for an SError interrupt

ID$\cdot$, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

- $0b0$: Bits [23:0] of the ISS field holds the fields described in this encoding.

  **Note**
  
  If the RAS Extension is not implemented bits [23:0] of the ISS field are RES0.

- $0b1$: Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that can be used to provide additional information about the SError interrupt.

  **Note**
  
  This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

Implicit error synchronization event.

- $0b0$: The SError interrupt was either not synchronized by the implicit error synchronization event or not taken immediately.

- $0b1$: The SError interrupt was synchronized by the implicit error synchronization event and taken immediately.

This field is valid only if the DFSC code is $0b010001$. It is RES0 for all other errors. This field resets to an architecturally UNKNOWN value.

AET, bits [12:10]

Asynchronous Error Type.

When DFSC is $0b010001$, describes the PE error state after taking the SError interrupt exception. The possible values of this field are:

- $0b000$: Uncontainable (UC).
- $0b001$: Unrecoverable state (UEU).
- $0b010$: Restartable state (UEO).
- $0b011$: Recoverable state (UER).
- $0b110$: Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.
Note
Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is \texttt{0b010001}. It is \texttt{RES0} for all other errors. This field resets to an architecturally UNKNOWN value.

\textbf{EA, bit [9]}
External abort type. When DFSC is \texttt{0b010001}, provides an IMPLEMENTATION DEFINED classification of External aborts.
This field is valid only if the DFSC code is \texttt{0b010001}. It is \texttt{RES0} for all other errors. This field resets to an architecturally UNKNOWN value.

\textbf{Bits [8:6]}
Reserved, \texttt{RES0}.

\textbf{DFSC, bits [5:0]}
\textit{When FEAT\_RAS is implemented:}
Data Fault Status Code.
\texttt{0b000000} Uncategorized error.
\texttt{0b010001} Asynchronous SError interrupt.
All other values are reserved.
This field resets to an architecturally UNKNOWN value.

\textit{ISS encoding for an exception from a Breakpoint or Vector Catch debug exception}

\begin{center}
\begin{tabular}{cccc}
\hline
24 & 6 & 5 & 0 \\
\hline
RES0 & IFSC \\
\hline
\end{tabular}
\end{center}

\textbf{Bits [24:6]}
Reserved, \texttt{RES0}.

\textbf{IFSC, bits [5:0]}
Instruction Fault Status Code.
\texttt{0b100010} Debug exception.
This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

\begin{itemize}
\item For exceptions from AArch64, see \textit{Breakpoint exceptions} on page D2-2433.
\item For exceptions from AArch32, see \textit{Breakpoint exceptions} on page G2-5870 and \textit{Vector Catch exceptions} on page G2-5909.
\end{itemize}
**ISS encoding for an exception from a Software Step exception**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>ISV</td>
</tr>
<tr>
<td>23</td>
<td>EX</td>
</tr>
<tr>
<td>7:6</td>
<td>IFSC</td>
</tr>
</tbody>
</table>

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

- **0b0**: EX bit is RES0.
- **0b1**: EX bit is valid.

See the EX bit description for more information.

This field resets to an architecturally UNKNOWN value.

**Bits [23:7]**

Reserved, RES0.

**EX, bit [6]**

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

- **0b0**: An instruction other than a Load-Exclusive instruction was stepped.
- **0b1**: A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

**IFSC, bits [5:0]**

Instruction Fault Status Code.

- **0b100010**: Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see [Software Step exceptions on page D2-2466](#).

**ISS encoding for an exception from a Watchpoint exception**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>RES0</td>
</tr>
<tr>
<td>15</td>
<td>RES0</td>
</tr>
<tr>
<td>14</td>
<td>RES0</td>
</tr>
<tr>
<td>13</td>
<td>DFSC</td>
</tr>
</tbody>
</table>

**Bits [24:15]**

Reserved, RES0.

**Bit [14]**

Reserved, RES0.
VNCR, bit [13]
Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0  The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.
0b1  The watchpoint was generated by the use of VNCR_EL2 by EL1 code.
This field is 0 in ESR_EL1.
This field resets to an architecturally UNKNOWN value.

Bits [12:9]
Reserved, RES0.

CM, bit [8]
Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address translation instruction:

0b0  The Watchpoint exception was not generated by the execution of one of the System instructions identified in the description of value 1.
0b1  The Watchpoint exception was generated by either the execution of a cache maintenance instruction or by a synchronous Watchpoint exception on the execution of an address translation instruction. The DC ZV A, DC GVA, and DC GZVA instructions are not classified as a cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.
This field resets to an architecturally UNKNOWN value.

Bit [7]
Reserved, RES0.

WnR, bit [6]
Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

0b0  Watchpoint exception caused by an instruction reading from a memory location.
0b1  Watchpoint exception caused by an instruction writing to a memory location.
For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a value of 1.
For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have generated the Watchpoint exception, otherwise it is set to 1.
If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the Watchpoint exception.
This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]
Data Fault Status Code.
0b100010  Debug exception.
This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions on page D2-2451.
**ISS encoding for an exception from execution of a Breakpoint instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Comment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:16]**

Reserved, RES0.

**Comment, bits [15:0]**

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see *Breakpoint Instruction exceptions* on page D2-2431.

**ISS encoding for an exception from ERET, ERETA* or ERETAB instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ERETA</td>
<td>ERET</td>
<td></td>
</tr>
</tbody>
</table>

This EC value applies when *FEAT_FGT* is implemented, or when *HCR_EL2.NV* is 1.

**Bits [24:2]**

Reserved, RES0.

**ERET, bit [1]**

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

- 0b0: ERET instruction trapped to EL2.
- 0b1: ERETA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

This field resets to an architecturally UNKNOWN value.

**ERETA, bit [0]**

Indicates whether an ERETA or ERETAB instruction was trapped to EL2. Possible values are:

- 0b0: ERETA instruction trapped to EL2.
- 0b1: ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see *HCR_EL2.NV*.

If *FEAT_FGT* is implemented, *HFGITR_EL2.ERET* controls fine-grained trap exceptions from ERET, ERETA and ERETAB execution.
**ISS encoding for an exception from Branch Target Identification instruction**

![ISS encoding diagram]

**Bits [24:2]**
Reserved, RES0.

**BTYPE, bits [1:0]**
This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception. For more information about generating these exceptions, see Chapter B1 *The AArch64 Application Level Programmers’ Model*.

**ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0**

![ISS encoding diagram]

**Bits [24:0]**
Reserved, RES0.

For more information about generating these exceptions, see:

- **HCR_EL2.API**, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL2.
- **SCR_EL3.API**, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

**ISS encoding for an exception from a Pointer Authentication instruction authentication failure**

![ISS encoding diagram]

**Bits [24:2]**
Reserved, RES0.

**Bit [1]**
This field indicates whether the exception is as a result of an Instruction key or a Data key.

- 0b0 Instruction Key.
- 0b1 Data Key.

This field resets to an architecturally UNKNOWN value.
Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0  A key.

0b1  B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

- AUTIASP, AUTIAZ, AUTIA1716.
- AUTIBSP, AUTIBZ, AUTIB1716.
- AUTIA, AUTDA, AUTIB, AUTDB.
- AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the authorization failure, rather than changing the address in a way that will generate a translation fault when the address is accessed:

- RETAA, RETAB.
- BRAA, BRAB, BLRAA, BLRAB.
- BRAAZ, BRABZ, BLRAAZ, BLRABZ.
- ERETTA, ERETAB.
- LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

### Accessing the ESR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

### MRS <Xt>, ESR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x138];
 else
 return ESR_EL1;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ESR_EL2;
 else
 return ESR_EL1;
 elsif PSTATE.EL == EL3 then
 return ESR_EL1;
```
### MSR ESR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCWTR_EL2.ESR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x138] = X[t];
 else
 ESR_EL1 = X[t];
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 ESR_EL2 = X[t];
 else
 ESR_EL1 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 ESR_EL1 = X[t];
```

### MRS <Xt>, ESR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '1' then
 return NVMem[0x138];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return ESR_EL1;
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return ESR_EL1;
 else
 UNDEFINED;
 endif
```

### MSR ESR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
```
if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101' then
  NVMem[0x138] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    ESR_EL1 = X[t];
  else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    ESR_EL1 = X[t];
  else
    UNDEFINED;
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
    return ESR_EL1;
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return ESR_EL2;
elsif PSTATE.EL == EL3 then
  return ESR_EL2;
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
    ESR_EL1 = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  ESR_EL2 = X[t];

MRS <Xt>, ESR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

MSR ESR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.37  ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

Configurations

AArch64 System register ESR_EL2[31:0] is architecturally mapped to AArch32 System register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

ESR_EL2 is a 64-bit register.

Field descriptions

The ESR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>32 31</th>
<th>26 25 24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>EC</td>
<td>IL</td>
<td>ISS</td>
</tr>
</tbody>
</table>

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of ESR_EL2 is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about. For each EC value, the table references a subsection that gives information about:

- The cause of the exception, for example the configuration required to enable the trap.
- The encoding of the associated ISS.

Possible values of the EC field are:

EC == 0b0000000

Unknown reason.
See ISS encoding for exceptions with an unknown reason.

EC == 0b0000001

Trapped WFI or WFE instruction execution.
Conditional WFE and WFI instructions that fail their condition code check do not cause an exception.
See ISS encoding for an exception from a WFI or WFE instruction.

EC == 0b0000011 When AArch32 is supported at any Exception level

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC 0b0000000.
See ISS encoding for an exception from an MCR or MRC access.
EC == 0b000100 When AArch32 is supported at any Exception level
Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC 0b000000.
See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b000101 When AArch32 is supported at any Exception level
Trapped MCR or MRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCR or MRC access.

EC == 0b000110 When AArch32 is supported at any Exception level
Trapped LDC or STC access.
The only architectured uses of these instructions are:
• An STC to write data to memory from DBGDTRRXint.
• An LDC to read data from memory to DBGDTRTXint.
See ISS encoding for an exception from an LDC or STC instruction.

EC == 0b000111
Access to SVE, Advanced SIMD, or floating-point functionality trapped by CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.
Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is 1, or because SVE or Advanced SIMD and floating-point are not implemented. These are reported with EC value 0b000000 as described in The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1 on page D1-2341.
See ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps.

EC == 0b001000 When AArch32 is supported at any Exception level
Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.
See ISS encoding for an exception from an MCR or MRC access.

EC == 0b001001 When FEAT_PAuth is implemented
Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 || SCR_EL3.API == 0.
See ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0 on page D13-3040.

EC == 0b001100 When AArch32 is supported at any Exception level
Trapped MRRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCRR or MRRC access.

EC == 0b001101 When FEAT_BTI is implemented
Branch Target Exception.
See ISS encoding for an exception from Branch Target Identification instruction.

EC == 0b001110
Illegal Execution state.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

EC == 0b0100001 When AArch32 is supported at any Exception level
SVC instruction execution in AArch32 state.
This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TGE is 1.
See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b0100010 When AArch32 is supported at any Exception level
HVC instruction execution in AArch32 state, when HVC is not disabled.
See ISS encoding for an exception from HVC or SVC instruction execution.

EC == 0b010011 When AArch32 is supported at any Exception level
SMC instruction execution in AArch32 state, when SMC is not disabled.
This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch32 state.

**EC == 0b010101 When AArch64 is supported at any Exception level**

SVC instruction execution in AArch64 state.

See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b010110 When AArch64 is supported at any Exception level**

HVC instruction execution in AArch64 state, when HVC is not disabled.

See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b010111 When AArch64 is supported at any Exception level**

SMC instruction execution in AArch64 state, when SMC is not disabled.

This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TSC is 1.

See ISS encoding for an exception from SMC instruction execution in AArch64 state.

**EC == 0b011000 When AArch64 is supported at any Exception level**

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not reported using EC 0b000000, 0b000001 or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space defined in System instruction class encoding overview on page C5-373, except for those exceptions reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state.

**EC == 0b011001 When FEAT_SVE is implemented**

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC 0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

**EC == 0b011010 When FEAT_PAuth is implemented and FEAT_NV is implemented**

Trapped ERET, ERETAA, or ERETAB instruction execution.

See ISS encoding for an exception from ERET, ERETAA or ERETAB instruction.

**EC == 0b011100 When FEAT_FPAC is implemented**

Exception from a Pointer Authentication instruction authentication failure

See ISS encoding for an exception from a Pointer Authentication instruction authentication failure.

**EC == 0b100000**

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from an Instruction Abort.

**EC == 0b100001**

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from an Instruction Abort.

**EC == 0b100010**

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.
EC == 0b100100
Data Abort from a lower Exception level, excluding Data Aborts taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested virtualization support.
These Data Aborts might be generated from Exception levels in any Execution state. Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from a Data Abort.

EC == 0b100101
Data Abort without a change in Exception level, or Data Aborts taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested virtualization support.
Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.
See ISS encoding for an exception from a Data Abort.

EC == 0b100110
SP alignment fault exception.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

EC == 0b101000 When AArch32 is supported at any Exception level
Trapped floating-point exception taken from AArch32 state.
This EC value is valid if the implementation supports trapping of floating-point exceptions, otherwise it is reserved. Whether a floating-point implementation supports trapping of floating-point exceptions is IMPLEMENTATION DEFINED.
See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101100 When AArch64 is supported at any Exception level
Trapped floating-point exception taken from AArch64 state.
This EC value is valid if the implementation supports trapping of floating-point exceptions, otherwise it is reserved. Whether a floating-point implementation supports trapping of floating-point exceptions is IMPLEMENTATION DEFINED.
See ISS encoding for an exception from a trapped floating-point exception.

EC == 0b101111
SError interrupt.
See ISS encoding for an SError interrupt.

EC == 0b110000
Breakpoint exception from a lower Exception level.
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110001
Breakpoint exception taken without a change in Exception level.
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b110010
Software Step exception from a lower Exception level.
See ISS encoding for an exception from a Software Step exception.

EC == 0b110011
Software Step exception taken without a change in Exception level.
See ISS encoding for an exception from a Software Step exception.
EC == 0b110100
Watchpoint from a lower Exception level, excluding Watchpoint Exceptions taken to
EL2 as a result of accesses generated associated with VNCR_EL2 as part of nested
virtualization support.
These Watchpoint Exceptions might be generated from Exception levels using any
Execution state.
See ISS encoding for an exception from a Watchpoint exception.

EC == 0b110101
Watchpoint exceptions without a change in Exception level, or Watchpoint exceptions
taken to EL2 as a result of accesses generated associated with VNCR_EL2 as part of
nested virtualization support.
See ISS encoding for an exception from a Watchpoint exception.

EC == 0b111000 When AArch32 is supported at any Exception level
BKPT instruction execution in AArch32 state.
See ISS encoding for an exception from execution of a Breakpoint instruction.

EC == 0b111010 When AArch32 is supported at any Exception level
Vector Catch exception from AArch32 state.
The only case where a Vector Catch exception is taken to an Exception level that is using
AArch64 is when the exception is routed to EL2 and EL2 is using AArch64.
See ISS encoding for an exception from a Breakpoint or Vector Catch debug exception.

EC == 0b111100 When AArch64 is supported at any Exception level
BRK instruction execution in AArch64 state.
This is reported in ESR_EL3 only if a BRK instruction is executed.
See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:
• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for
synchronous exceptions.
• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and
might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]
Instruction Length for synchronous exceptions. Possible values of this bit are:

0b0  16-bit instruction trapped.

0b1  32-bit instruction trapped. This value is also used when the exception is one of the
following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction exceptions. For
Breakpoint instruction exceptions, this bit has its standard meaning:
  — 0b0: 16-bit T32 BKPT instruction.
  — 0b1: 32-bit A32 BKPT instruction or A64 BRK instruction.
• An exception reported using EC value 0b000000.
This field resets to an architecturally UNKNOWN value.

**ISS, bits [24:0]**

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see *Mapping of the general-purpose registers between the Execution states* on page D1-2401.

If the AArch32 register descriptor is 0b1111, then:

- If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
- If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must be either:
  - The AArch64 view of the register number of a register that might have been used at the Exception level from which the exception was taken.
  - The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

The following subsections describe each ISS format.

### ISS encoding for exceptions with an unknown reason

![ISS encoding for exceptions with an unknown reason](image)

**Bits [24:0]**

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the following situations:

- The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible at the current Exception level and Security state, including:
  - A read access using a System register pattern that is not allocated for reads or that does not permit reads at the current Exception level and Security state.
  - A write access using a System register pattern that is not allocated for writes or that does not permit writes at the current Exception level and Security state.
  - Instruction encodings that are unallocated.
  - Instruction encodings for instructions or System registers that are not implemented in the implementation.
- In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
- In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug state.
- In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.

• Attempted execution of:
  — An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
  — An SMC instruction when disabled by SCR_EL3.SMD.
  — An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution, in Debug state, of:
  — A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in the current Security state.
  — A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security state.
  — A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon. See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register) instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b0000111.

\textit{ISS encoding for an exception from a WFI or WFE instruction}

<table>
<thead>
<tr>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td></td>
<td></td>
<td></td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ti</td>
</tr>
</tbody>
</table>

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0  The COND field is not valid.
0b1  The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.
For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to \(0b1110\).
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Bits [19:1]**

Reserved, RES0.

**TI, bit [0]**

Trapped instruction. Possible values of this bit are:

- 0b0 WFI trapped.
- 0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

- SCTLR_EL1.{nTWE, nTWI}.
- HCR_EL2.{TWE, TWI}.
- SCR_EL3.{TWE, TWI}.

### ISS encoding for an exception from an MCR or MRC access

<table>
<thead>
<tr>
<th>24 23 20 19 17 16 14 13 10 9 5 4 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND  Opc2  Opc1  CRn  Rt  CRm</td>
</tr>
</tbody>
</table>

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.
For exceptions taken from AArch64, CV is set to 1.
For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Opc2, bits [19:17]**
The Opc2 value from the issued instruction.
For a trapped VMRS access, holds the value 0b000.
This field resets to an architecturally UNKNOWN value.

**Opc1, bits [16:14]**
The Opc1 value from the issued instruction.
For a trapped VMRS access, holds the value 0b111.
This field resets to an architecturally UNKNOWN value.

**CRn, bits [13:10]**
The CRn value from the issued instruction.
For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.
This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**
The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.
This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.
For a trapped VMRS access, holds the value 0b0000.
This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS instruction.
This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000011:

- CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.
- HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
- CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.
• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

For information on other traps using EC value 0b000011, see *Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32* on page D1-2385.

If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS access trapped to EL2.
ISS encoding for an exception from an MCRR or MRRC access

CV, bit [24]
Condition code valid. Possible values of this bit are:
- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.
For exceptions taken from AArch64, CV is set to 1.
For exceptions taken from AArch32:
  - When an A32 instruction is trapped, CV is set to 1.
  - When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.
This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]
For exceptions taken from AArch64, this field is set to 0b1110.
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:
  - When an A32 instruction is trapped, CV is set to 1 and:
    - If the instruction is conditional, COND is set to the condition code field value from the instruction.
    - If the instruction is unconditional, COND is set to 0b1110.
  - A conditional A32 instruction that is known to pass its condition code check can be presented either:
    - With COND set to 0b1110, the value for unconditional.
    - With the COND value held in the instruction.
  - When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
    - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
    - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
  - For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.
This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]
The Opc1 value from the issued instruction.
This field resets to an architecturally UNKNOWN value.
Bit [15]
Reserved, RES0.

**Rt2, bits [14:10]**
The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See *Mapping of the general-purpose registers between the Execution states on page D1-2401.*
This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**
The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See *Mapping of the general-purpose registers between the Execution states on page D1-2401.*
This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**
The CRm value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**
Indicates the direction of the trapped instruction. The possible values of this bit are:

0b0   Write to System register space. MCRR instruction.
0b1   Read from System register space. MRRC instruction.
This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000100:

- **CNTKCTL_EL1. {EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN},** for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **PMUSERENR_EL0. {CR, EN},** for accesses to Performance Monitor registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **AMUSERENR_EL0. {EN},** for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **HCR_EL2. {TRVM, TVM},** for accesses to virtual memory control registers from EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **HSTR_EL2. T<n>,** for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **CNTHCTL_EL2. {EL1PCEN, EL1PCTEN},** for accesses to the Generic Timer registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **MDCR_EL2. {TPM, TPMCR},** for accesses to Performance Monitor registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **CPTR_EL2. TAM,** for accesses to Activity Monitors registers registers AMEVCNTR0<n> and AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **MDCR_EL3. TPM,** for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.
- **CPTR_EL3. TAM,** for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.
If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b001100:

- MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.
- MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.
- MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.
- CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.
- CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.
- CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.

**Note**

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

**ISS encoding for an exception from an LDC or STC instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>imm8</td>
<td>Rn</td>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**imm8, bits [19:12]**

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

**Bits [11:10]**

Reserved, RES0.

**Rn, bits [9:5]**

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

**Offset, bit [4]**

Indicates whether the offset is added or subtracted:

- 0b0 Subtract offset.
- 0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

**AM, bits [3:1]**

Addressing mode. The permitted values of this field are:

- 0b000 Immediate unindexed.
- 0b001 Immediate post-indexed.
- 0b010 Immediate offset.
- 0b011 Immediate pre-indexed.
- 0b100 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is reserved.
For a trapped STC instruction, this encoding is reserved. The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped registers and translation table entries on page K1-7981.

Bit [2] in this subfield indicates the instruction form, immediate or literal. Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding. This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**

Indicates the direction of the trapped instruction. The possible values of this bit are:

- 0b0 Write to memory. STC instruction.
- 0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000010:

- MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint trapped to EL1 or EL2.
- MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint MCR or MRC access trapped to EL2.
- MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint MCR or MRC access trapped to EL3.
- If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

**ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps**

```
 24 23 20 19 0
 COND | RES0
 CV
```

The accesses covered by this trap include:

- Execution of SVE or Advanced SIMD and floating-point instructions.
- Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the exception is reported using the EC value 0b000000.

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is \textit{implementation defined} whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally \textit{unknown} value.

\textbf{COND, bits [23:20]}

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
  — If the instruction is conditional, COND is set to the condition code field value from the instruction.
  — If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
  — With COND set to 0b1110, the value for unconditional.
  — With the COND value held in the instruction.

• When a T32 instruction is trapped, it is \textit{implementation defined} whether:
  — CV is set to 0 and COND is set to an \textit{unknown} value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  — CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is \textit{implementation defined} whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally \textit{unknown} value.

\textbf{Bits [19:0]}

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• \texttt{CPACR\_EL1.FPEN}, for accesses to SIMD and floating-point registers trapped to EL1.

• \texttt{CPTR\_EL2.TFP}, for accesses to SIMD and floating-point registers trapped to EL2.

• \texttt{CPTR\_EL2.TFP}, for accesses to SIMD and floating-point registers trapped to EL3.

\textit{ISS encoding for an exception from an access to SVE functionality, resulting from CPACR\_EL1.ZEN, CPTR\_EL2.ZEN, CPTR\_EL2.TZ, or CPTR\_EL3.EZ}

\begin{center}
\begin{tabular}{|c|c|}
\hline
24 & 0 \\
\hline
\end{tabular}
\end{center}

RES0

The accesses covered by this trap include:

• Execution of SVE instructions.

• Accesses to the SVE System registers, ZCR\_ELx and ID\_AA64ZFR0\_EL1.
For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

**Bits [24:0]**

Reserved, RES0.

The following sections describe the configuration setting for the traps:

- **CPACR_EL1.ZEN**, for accesses to SVE registers at EL0 or EL1, trapped to EL2.
- **CPTR_EL2.ZEN**, for accesses to SVE registers at EL0, EL1, or EL2, trapped to EL2.
- **CPTR_EL2.TZ**, for accesses to SVE instructions and instructions that access SVE System registers at EL0, EL1, or EL2, trapped to EL2.
- **CPTR_EL3.EZ**, for accesses to SVE functionality and registers from all Exception levels, trapped to EL3.

**ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault**

```
 24 0
 RES0
```

**Bits [24:0]**

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault exceptions. For more information about these exceptions see *The Illegal Execution state exception* on page D1-2347 and *PC alignment checking* on page D1-2327.

*SP alignment checking* on page D1-2327 describes the configuration settings for generating SP alignment fault exceptions.

**ISS encoding for an exception from HVC or SVC instruction execution**

```
 24 16 15 0
 RES0 imm16
```

**Bits [24:16]**

Reserved, RES0.

**imm16, bits [15:0]**

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued instruction.

For an A32 or T32 SVC instruction:

- If the instruction is unconditional, then:
  - For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
  - For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
- If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.
In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

For T32 and A32 instructions, see SVC and HVC.

For A64 instructions, see SVC and HVC.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC execution.

**ISS encoding for an exception from SMC instruction execution in AArch32 state**

![ISS encoding diagram](imaginary_diagram)

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown in the diagram.

**CV, bit [24]**

Condition code valid. Possible values of this bit are:
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.
For exceptions taken from AArch32:
• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.
This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:
• When an A32 instruction is trapped, CV is set to 1 and:
  — If the instruction is conditional, COND is set to the condition code field value from the instruction.
  — If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented either:
  — With COND set to 0b1110, the value for unconditional.
  — With the COND value held in the instruction.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

- CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
- CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

**CCKNOWNPASS, bit [19]**

Indicates whether the instruction might have failed its condition code check.

- 0b0 The instruction was unconditional, or was conditional and passed its condition code check.
- 0b1 The instruction was conditional, and might have failed its condition code check.

**Note**

In an implementation in which an SMC instruction that fails its code check is not trapped, this field can always return the value 0.

This field resets to an architecturally UNKNOWN value.

**Bits [18:0]**

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

*System calls* on page D1-2390 describes the case where these exceptions are trapped to EL3.

**ISS encoding for an exception from SMC instruction execution in AArch64 state**

```
 24 16 15 0
 RES0 imm16
```

**Bits [24:16]**

Reserved, RES0.

**imm16, bits [15:0]**

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

- When an SMC instruction is trapped from EL1 modes.
- When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

*System calls* on page D1-2390 describes the case where these exceptions are trapped to EL3.
**ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state**

<table>
<thead>
<tr>
<th></th>
<th>24</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>17</th>
<th>16</th>
<th>14</th>
<th>13</th>
<th>10</th>
<th>9</th>
<th>5</th>
<th>4</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Op0</td>
<td>Op2</td>
<td>Op1</td>
<td>CRn</td>
<td>Rt</td>
<td>CRm</td>
<td>Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:22]**
- **Reserved, RES0.**

**Op0, bits [21:20]**
- The Op0 value from the issued instruction.
- This field resets to an architecturally UNKNOWN value.

**Op2, bits [19:17]**
- The Op2 value from the issued instruction.
- This field resets to an architecturally UNKNOWN value.

**Op1, bits [16:14]**
- The Op1 value from the issued instruction.
- This field resets to an architecturally UNKNOWN value.

**CRn, bits [13:10]**
- The CRn value from the issued instruction.
- This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**
- The Rt value from the issued instruction, the general-purpose register used for the transfer.
- This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**
- The CRm value from the issued instruction.
- This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**
- Indicates the direction of the trapped instruction. The possible values of this bit are:
  - 0b0: Write access, including MSR instructions.
  - 0b1: Read access, including MRS instructions.
- This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see [System instructions on page C4-275](#) for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value 0b011000:

- **SCTLR_EL1.UCI**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.UCT**, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.DZE**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
• **SCTLR_EL1.UMA**, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• **CPACR_EL1.TTA**, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• **MDSCR_EL1.TDCC**, for accesses to the Debug Communications Channel (DCC) registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If **FEAT_FGT** is implemented, **MDCR_EL2.TDCC** for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

• **CNTKCTL_EL1.EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN** accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• **PMUSERENR_EL0.ER, CR, SW, EN**, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• **AMUSERENR_EL0.EN**, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• **HCR_EL2.TRVM, TVM**, for accesses to virtual memory control registers using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.TDZ**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.TTLB**, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.TSW, TPC, TPU**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.ACTLR_EL1**, for accesses to the Auxiliary Control Register, using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.TIDCP**, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.TID1, TID2, TID3**, for accesses to ID group 1, ID group 2 or ID group 3 registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **CPTR_EL2.TCPAC**, for accesses to **CPACR_EL1**, using AArch64 state, MSR or MRS access trapped to EL2.

• **CPTR_EL2.TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TTRF**, for accesses to the trace filter register, **TRFCR_EL1**, using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TDRA**, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TDOSA**, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access trapped to EL2.

• **CNTKCTL_EL2.EL1PCEN, EL1PCTEN**, for accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL2.

• **MDCR_EL2.TDA**, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.
• **CPTR_EL2.TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.APK**, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS access trapped to EL2.

• **HCR_EL2.{NV, NV1}**, for Nested virtualization register access, using AArch64 state, MSR or MRS access, trapped to EL2.

• **HCR_EL2.AT**, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to EL2.

• **HCR_EL2.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped to EL2.

• **SCR_EL3.APK**, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS access, trapped to EL3.

• **SCR_EL3.ST**, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **SCR_EL3.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TCPAC**, for accesses to **CPTR_EL2** and **CPACR_EL1** using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TTRF**, for accesses to the filter trace control registers, **TRFCR_EL1** and **TRFCR_EL2**, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TDA**, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TDOSA**, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR_EL3.TPM**, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR_EL3.TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access, trapped to EL3.

• **If FEAT_EVT** is implemented the following registers control traps for EL1 and EL0 Cache controls that use this EC value:
  — **HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}**.
  — **HCR2.{TTLBIS, TICAB, TOCU, TID4}**.

• **If FEAT_FGT** is implemented:
  — **SCR_EL3.FGTEn**, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped to EL3.
  — **HFGTR_EL2** for reads and **HFGWTR_EL2** for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 trapped to EL2.
  — **HFGITR_EL2** for execution of system instructions, MSR or MRS access trapped to EL2
  — **HDFGTR_EL2** for reads and **HDFGWTR_EL2** for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 state trapped to EL2.
  — **HAFGFRTER_EL2** for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and EL1 trapped to EL2.
**ISS encoding for an IMPLEMENTATION DEFINED exception to EL3**

24 0

IMPLEMENTATION DEFINED

**IMPLEMENTATION DEFINED, bits [24:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from an Instruction Abort**

24 13 12 11 10 9 8 7 6 5 0

RES0 SET IFSC

**Bits [24:13]**

Reserved, RES0.

**SET, bits [12:11]**

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction Abort exception. The possible values of this field are:

- 0b00  Recoverable state (UER).
- 0b10  Uncontainable (UC).
- 0b11  Restartable state (UEO).

All other values are reserved.

--- **Note**

Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

---

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

**FnV, bit [10]**

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

- 0b0  FAR is valid.
- 0b1  FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.
EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

SIPTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

0b0  Fault not on a stage 2 translation for a stage 1 translation table walk.
0b1  Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000  Address size fault, level 0 of translation or translation table base register.
0b000001  Address size fault, level 1.
0b000010  Address size fault, level 2.
0b000011  Address size fault, level 3.
0b000100  Translation fault, level 0.
0b000101  Translation fault, level 1.
0b000110  Translation fault, level 2.
0b000111  Translation fault, level 3.
0b001001  Access flag fault, level 1.
0b001010  Access flag fault, level 2.
0b001011  Access flag fault, level 3.
0b001101  Permission fault, level 1.
0b001110  Permission fault, level 2.
0b001111  Permission fault, level 3.
0b010000  Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b010101  Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b010110  Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b010111  Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b011000  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access, not on translation table walk.
When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.

When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.

When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.

When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.

TLB conflict abort.

When FEAT_HAFDBS is implemented Unsupported atomic hardware update fault.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on page D5-2651.

--- Note ---

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from a Data Abort**

<table>
<thead>
<tr>
<th>24 23 22 21 20</th>
<th>16 15 14 13 12 11 10 9 8 7 6 5 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td>SRT</td>
</tr>
<tr>
<td>SET</td>
<td>DFSC</td>
</tr>
</tbody>
</table>

**ISV, bit [24]**

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

- **0b0** No valid instruction syndrome. ISS[23:14] are RES0.
- **0b1** ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

- AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive and excluding those with writeback).
- AArch32 instructions where the instruction:
  - Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STRT, STR, STRH, STL, STRHT, STRB, STLH, STR, STRHT, STRB, STL, or STRBT instruction.
  - Is not performing register writeback.
  - Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.
ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.
When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.
For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome, and therefore ISV is 0 for these aborts.
When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2 translation table walk is IMPLEMENTATION DEFINED.
When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx, ESR_ELx.FNV is 0 and FAR_ELx is valid.
This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]
Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.
0b00  Byte
0b01  Halfword
0b10  Word
0b11  Doubleword
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SSE, bit [21]
Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign extended. For these cases, the possible values of this bit are:
0b0  Sign-extension not required.
0b1  Data item must be sign-extended.
For all other operations this bit is 0.
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]
Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.
If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SF, bit [15]
Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:
0b0  Instruction loads/stores a 32-bit wide register.
0b1  Instruction loads/stores a 64-bit wide register.

Note
This field specifies the register width identified by the instruction, not the Execution state.
This field is **UNKNOWN** when the value of ISV is **UNKNOWN**.
This field is **RES0** when the value of ISV is **0**.
This field resets to an architecturally **UNKNOWN** value.

**AR, bit [14]**

Acquire/Release. The possible values of this bit are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Instruction did not have acquire/release semantics.</td>
</tr>
<tr>
<td>0b1</td>
<td>Instruction did have acquire/release semantics.</td>
</tr>
</tbody>
</table>

This field is **UNKNOWN** when the value of ISV is **UNKNOWN**.
This field resets to an architecturally **UNKNOWN** value.

**VNCR, bit [13]**

Indicates that the fault came from use of `VNCR_EL2` register by EL1 code.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>The fault was not generated by the use of <code>VNCR_EL2</code>, by an MRS or MSR instruction executed at EL1.</td>
</tr>
<tr>
<td>0b1</td>
<td>The fault was generated by the use of <code>VNCR_EL2</code>, by an MRS or MSR instruction executed at EL1.</td>
</tr>
</tbody>
</table>

This field is **0** in `ESR_EL1`.
This field resets to an architecturally **UNKNOWN** value.

**SET, bits [12:11]**

Synchronous Error Type. When `DFSC` is `0b010000`, describes the PE error state after taking the Data Abort exception. The possible values of this field are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Recoverable state (UER).</td>
</tr>
<tr>
<td>0b10</td>
<td>Uncontainable (UC).</td>
</tr>
<tr>
<td>0b11</td>
<td>Restartable state (UEO).</td>
</tr>
</tbody>
</table>

All other values are reserved.

--- **Note**
Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the `DFSC` code is `0b010000`. It is **RES0** for all other aborts.
This field resets to an architecturally **UNKNOWN** value.

**FnV, bit [10]**

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>FAR is valid.</td>
</tr>
<tr>
<td>0b1</td>
<td>FAR is not valid, and holds an <strong>UNKNOWN</strong> value.</td>
</tr>
</tbody>
</table>

This field is valid only if the `DFSC` code is `0b010000`. It is **RES0** for all other aborts.
This field resets to an architecturally **UNKNOWN** value.

**EA, bit [9]**

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of **0**.
This field resets to an architecturally **UNKNOWN** value.
CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:

0b0  The Data Abort was not generated by the execution of one of the System instructions identified in the description of value 1.

0b1  The Data Abort was generated by either the execution of a cache maintenance instruction or by a synchronous fault on the execution of an address translation instruction. The DC ZwA, DC GvA, and DC GzvA instructions are not classified as cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

0b0  Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1  Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

0b0  Abort caused by an instruction reading from a memory location.

0b1  Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read of the address specified by the instruction would have generated the fault which is being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.

• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

0b000000  Address size fault, level 0 of translation or translation table base register.

0b000001  Address size fault, level 1.

0b000010  Address size fault, level 2.

0b000011  Address size fault, level 3.

0b000100  Translation fault, level 0.

0b000101  Translation fault, level 1.

0b000110  Translation fault, level 2.

0b000111  Translation fault, level 3.

0b001001  Access flag fault, level 1.
0b001010  Access flag fault, level 2.
0b001011  Access flag fault, level 3.
0b001101  Permission fault, level 1.
0b001110  Permission fault, level 2.
0b001111  Permission fault, level 3.
0b010000  Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010001  When FEAT_MTE is implemented  Synchronous Tag Check Fault.
0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b010101  Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b010110  Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b010111  Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b011000  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access, not on translation table walk.
0b011010  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.
0b011100  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.
0b011110  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.
0b011111  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.
0b100001  Alignment fault.
0b110000  TLB conflict abort.
0b110001  When FEAT_HAFDBS is implemented  Unsupported atomic hardware update fault.
0b110100  IMPLEMENTATION DEFINED fault (Lockdown).
0b111001  IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).
All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on page D5-2651.

--- Note ---

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

--- ---

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally UNKNOWN value.
**ISS encoding for an exception from a trapped floating-point exception**

- **Bit [24]**
  Reserved, RES0.

- **TFV, bit [23]**
  Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information about trapped floating-point exceptions. The possible values of this bit are:
  - 0b0: The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped floating-point exceptions and are **UNKNOWN**.
  - 0b1: One or more floating-point exceptions occurred during an operation performed while executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate trapped floating-point exceptions that occurred. For more information see [Floating-point exceptions and exception traps](#) on page D1-2354.

  It is **IMPLEMENTATION DEFINED** whether this field is set to 0 on an exception generated by a trapped floating point exception from a vector instruction.

  **Note**
  This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

  This field resets to an architecturally **UNKNOWN** value.

- **Bits [22:11]**
  Reserved, RES0.

- **VECITR, bits [10:8]**
  For a trapped floating-point exception from an instruction executed in AArch32 state this field is **RES1**.
  For a trapped floating-point exception from an instruction executed in AArch64 state this field is **UNKNOWN**.
  This field resets to an architecturally **UNKNOWN** value.

- **IDF, bit [7]**
  Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is **UNKNOWN**.
  Otherwise, the possible values of this bit are:
  - 0b0: Input denormal floating-point exception has not occurred.
  - 0b1: Input denormal floating-point exception occurred during execution of the reported instruction.

  This field resets to an architecturally **UNKNOWN** value.
Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0  Inexact floating-point exception has not occurred.
0b1  Inexact floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0  Underflow floating-point exception has not occurred.
0b1  Underflow floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0  Overflow floating-point exception has not occurred.
0b1  Overflow floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0  Divide by Zero floating-point exception has not occurred.
0b1  Divide by Zero floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0  Invalid Operation floating-point exception has not occurred.
0b1  Invalid Operation floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

- From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point exception traps.
- From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of the floating-point exception traps.
### ISS encoding for an SError interrupt

<table>
<thead>
<tr>
<th>24 23</th>
<th>14 13 12</th>
<th>10 9 8 6 5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>AET</td>
<td>RES0</td>
<td>DFSC</td>
</tr>
</tbody>
</table>

#### IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

- **0b0**: Bits [23:0] of the ISS field holds the fields described in this encoding.  
  
  __Note__
  
  If the RAS Extension is not implemented bits [23:0] of the ISS field are RES0.

- **0b1**: Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that can be used to provide additional information about the SError interrupt.
  
  __Note__
  
  This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

#### Bits [23:14]

Reserved, RES0.

#### IESB, bit [13]

Implicit error synchronization event.

- **0b0**: The SError interrupt was either not synchronized by the implicit error synchronization event or not taken immediately.
- **0b1**: The SError interrupt was synchronized by the implicit error synchronization event and taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors. This field resets to an architecturally UNKNOWN value.

#### AET, bits [12:10]

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception. The possible values of this field are:

- **0b00**: Uncontainable (UC).
- **0b01**: Unrecoverable state (UEU).
- **0b10**: Restartable state (UEO).
- **0b11**: Recoverable state (UER).
- **0b10**: Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.
Note
Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is \texttt{0b010001}. It is \texttt{RES0} for all other errors. This field resets to an architecturally \texttt{UNKNOWN} value.

EA, bit \([9]\)
External abort type. When DFSC is \texttt{0b010001}, provides an \texttt{IMPLEMENTATION DEFINED} classification of External aborts.

This field is valid only if the DFSC code is \texttt{0b010001}. It is \texttt{RES0} for all other errors. This field resets to an architecturally \texttt{UNKNOWN} value.

Bits \([8:6]\)
Reserved, \texttt{RES0}.

DFSC, bits \([5:0]\)
*When FEAT\_RAS is implemented:*

Data Fault Status Code.

\begin{itemize}
\item \texttt{0b000000} Uncategorized error.
\item \texttt{0b010001} Asynchronous \texttt{S}Error interrupt.
\end{itemize}

All other values are reserved.

This field resets to an architecturally \texttt{UNKNOWN} value.

**ISS encoding for an exception from a Breakpoint or Vector Catch debug exception**

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
24 & 6 & 5 & 0 \\
\hline
RES0 & IFSC \\
\hline
\end{tabular}
\end{center}

Bits \([24:6]\)
Reserved, \texttt{RES0}.

IFSC, bits \([5:0]\)
Instruction Fault Status Code.

\begin{itemize}
\item \texttt{0b100010} Debug exception.
\end{itemize}

This field resets to an architecturally \texttt{UNKNOWN} value.

For more information about generating these exceptions:

- For exceptions from AArch64, see \textit{Breakpoint exceptions} on page D2-2433.
- For exceptions from AArch32, see \textit{Breakpoint exceptions} on page G2-5870 and \textit{Vector Catch exceptions} on page G2-5909.
**ISS encoding for an exception from a Software Step exception**

### ISV, bit [24]
Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:
- 0b0: EX bit is RES0.
- 0b1: EX bit is valid.

See the EX bit description for more information.
This field resets to an architecturally UNKNOWN value.

### Bits [23:7]
Reserved, RES0.

### EX, bit [6]
Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.
- 0b0: An instruction other than a Load-Exclusive instruction was stepped.
- 0b1: A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.
This field resets to an architecturally UNKNOWN value.

### IFSC, bits [5:0]
Instruction Fault Status Code.
- 0b100010: Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Software Step exceptions on page D2-2466.

**ISS encoding for an exception from a Watchpoint exception**

### Bits [24:15]
Reserved, RES0.

### Bit [14]
Reserved, RES0.
VNCR, bit [13]
Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2 by EL1 code.
This field is 0 in ESR_EL1.
This field resets to an architecturally UNKNOWN value.

Bits [12:9]
Reserved, RES0.

CM, bit [8]
Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address translation instruction:

0b0 The Watchpoint exception was not generated by the execution of one of the System instructions identified in the description of value 1.
0b1 The Watchpoint exception was generated by either the execution of a cache maintenance instruction or by a synchronous Watchpoint exception on the execution of an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as a cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.
This field resets to an architecturally UNKNOWN value.

Bit [7]
Reserved, RES0.

WnR, bit [6]
Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

0b0 Watchpoint exception caused by an instruction reading from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a memory location.
For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a value of 1.
For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have generated the Watchpoint exception, otherwise it is set to 1.
If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the Watchpoint exception.
This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]
Data Fault Status Code.
0b100010 Debug exception.
This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see Watchpoint exceptions on page D2-2451.
**ISS encoding for an exception from execution of a Breakpoint instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Comment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:16]**

Reserved, RES0.

**Comment, bits [15:0]**

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see *Breakpoint Instruction exceptions on page D2-2431*.

**ISS encoding for an exception from ERET, ERETTA or ERETAB instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td>ERETA</td>
</tr>
<tr>
<td>ERET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

**Bits [24:2]**

Reserved, RES0.

**ERET, bit [1]**

Indicates whether an ERET or ERETA* instruction was trapped to EL2. Possible values are:

- 0b0: ERET instruction trapped to EL2.
- 0b1: ERETTA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

This field resets to an architecturally UNKNOWN value.

**EREIDA, bit [0]**

Indicates whether an ERETTA or ERETAB instruction was trapped to EL2. Possible values are:

- 0b0: ERETTA instruction trapped to EL2.
- 0b1: ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETTA and ERETAB execution.
ISS encoding for an exception from Branch Target Identification instruction

Bits [24:2]
Reserved, RES0.

BTYPE, bits [1:0]
This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 The AArch64 Application Level Programmers’ Model.

ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0

Bits [24:0]
Reserved, RES0.

For more information about generating these exceptions, see:
• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL2.
• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

ISS encoding for an exception from a Pointer Authentication instruction authentication failure

Bits [24:2]
Reserved, RES0.

Bit [1]
This field indicates whether the exception is as a result of an Instruction key or a Data key.

0b0 Instruction Key.
0b1 Data Key.

This field resets to an architecturally UNKNOWN value.
Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

0b0 A key.
0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

- AUTIASP, AUTIAZ, AUTIA1716.
- AUTIBSP, AUTIBZ, AUTIB1716.
- AUTIA, AUTDA, AUTIB, AUTDB.
- AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the authorization failure, rather than changing the address in a way that will generate a translation fault when the address is accessed:

- RETAA, RETAB.
- BRAA, BRAB, BLRAA, BLRAB.
- BRAAZ, BRABZ, BLRAAZ, BLRABZ.
- ERETA, ERETAB.
- LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS} <\text{Xt}>, \text{ESR_EL2}
\]

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return ESR_EL1;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 return ESR_EL2;
elsif PSTATE.EL == EL3 then
 return ESR_EL2;
end
```

MSR ESR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        ESR_EL1 = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        ESR_EL2 = X[t];
    elsif PSTATE.EL == EL3 then
        ESR_EL3 = X[t];

MRS <Xt>, ESR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x138];
    else
        return ESR_EL1;
else
    return ESR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.EZH == '1' then
        return ESR_EL2;
    else
        return ESR_EL1;
elsif PSTATE.EL == EL3 then
    return ESR_EL1;

MSR ESR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x138] = X[t];

else
    ESR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        ESR_EL2 = X[t];
    else
        ESR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
    ESR_EL1 = X[t];
D13.2.38 ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

**Purpose**

Holds syndrome information for an exception taken to EL3.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are UNDEFINED.

**Attributes**

ESR_EL3 is a 64-bit register.

**Field descriptions**

The ESR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31:26</td>
<td>Exception Class (EC)</td>
</tr>
<tr>
<td>25:24</td>
<td>Instruction (ISS)</td>
</tr>
<tr>
<td>23:0</td>
<td>Opcode (IL)</td>
</tr>
</tbody>
</table>

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of ESR_EL3 is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

**Bits [63:32]**

Reserved, RES0.

**EC, bits [31:26]**

Exception Class. Indicates the reason for the exception that this register holds information about. For each EC value, the table references a subsection that gives information about:

- The cause of the exception, for example the configuration required to enable the trap.
- The encoding of the associated ISS.

Possible values of the EC field are:

**EC == 0b000000**

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

**EC == 0b000001**

Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that fail their condition code check do not cause an exception.

See ISS encoding for an exception from a WFI or WFE instruction.

**EC == 0b000011 When AArch32 is supported at any Exception level**

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC 0b000000.

See ISS encoding for an exception from an MCR or MRC access.

**EC == 0b000100 When AArch32 is supported at any Exception level**

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC 0b000000.
See ISS encoding for an exception from an MCRR or MRRC access.

**EC == 0b0000101 When AArch32 is supported at any Exception level**
Trapped MCR or MRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCR or MRC access.

**EC == 0b0000110 When AArch32 is supported at any Exception level**
Trapped LDC or STC access.
The only architected uses of these instruction are:
- An STC to write data to memory from DBGDTRRXint.
- An LDC to read data from memory to DBGDTRTXint.
See ISS encoding for an exception from an LDC or STC instruction.

**EC == 0b000111**
Access to SVE, Advanced SIMD, or floating-point functionality trapped by CPACR_EL1.FPEN, CPTR_EL2.FPEN, CPTR_EL2.TFP, or CPTR_EL3.TFP control.
Excludes exceptions resulting from CPACR_EL1 when the value of HCR_EL2.TGE is 1, or because SVE or Advanced SIMD and floating-point are not implemented. These are reported with EC value 0b000000 as described in The EC used to report an exception routed to EL2 because HCR_EL2.TGE is 1 on page D1-2341.
See ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps.

**EC == 0b001001 When FEAT_PAuth is implemented**
Trapped use of a Pointer authentication instruction because HCR_EL2.API == 0 || SCR_EL3.API == 0.
See ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0 on page D13-3079.

**EC == 0b001100 When AArch32 is supported at any Exception level**
Trapped MRRC access with (coproc==0b1110).
See ISS encoding for an exception from an MCRR or MRRC access.

**EC == 0b001101 When FEAT_BTI is implemented**
Branch Target Exception.
See ISS encoding for an exception from Branch Target Identification instruction.

**EC == 0b001110**
Illegal Execution state.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

**EC == 0b010011 When AArch32 is supported at any Exception level**
SMC instruction execution in AArch32 state, when SMC is not disabled.
This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TSC is 1.
See ISS encoding for an exception from SMC instruction execution in AArch32 state.

**EC == 0b010101 When AArch64 is supported at any Exception level**
SVC instruction execution in AArch64 state.
See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b010110 When AArch64 is supported at any Exception level**
HVC instruction execution in AArch64 state, when HVC is not disabled.
See ISS encoding for an exception from HVC or SVC instruction execution.

**EC == 0b010111 When AArch64 is supported at any Exception level**
SMC instruction execution in AArch64 state, when SMC is not disabled.
This is reported in ESR_EL2 only when the exception is generated because the value of HCR_EL2.TSC is 1.
See ISS encoding for an exception from SMC instruction execution in AArch64 state.
**EC == 0b011000 When AArch64 is supported at any Exception level**

Trapped MSR, MRS or System instruction execution in AArch64 state, that is not reported using EC 0b000000, 0b000001 or 0b000111.

This includes all instructions that cause exceptions that are part of the encoding space defined in System instruction class encoding overview on page C5-373, except for those exceptions reported using EC values 0b000000, 0b000001, or 0b000111.

See ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state.

**EC == 0b011001 When FEAT_SVE is implemented**

Access to SVE functionality trapped as a result of CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ, that is not reported using EC 0b000000.

See ISS encoding for an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ.

**EC == 0b011100 When FEAT_FPAC is implemented**

Exception from a Pointer Authentication instruction authentication failure

See ISS encoding for an exception from a Pointer Authentication instruction authentication failure.

**EC == 0b011111 IMPLEMENTATION DEFINED exception to EL3.**

See ISS encoding for an IMPLEMENTATION DEFINED exception to EL3.

**EC == 0b100000**

Instruction Abort from a lower Exception level.

Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from an Instruction Abort.

**EC == 0b100001**

Instruction Abort taken without a change in Exception level.

Used for MMU faults generated by instruction accesses and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from an Instruction Abort.

**EC == 0b100010**

PC alignment fault exception.

See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

**EC == 0b100100**

Data Abort from a lower Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from a Data Abort.

**EC == 0b100101**

Data Abort taken without a change in Exception level.

Used for MMU faults generated by data accesses, alignment faults other than those caused by Stack Pointer misalignment, and synchronous External aborts, including synchronous parity or ECC errors. Not used for debug related exceptions.

See ISS encoding for an exception from a Data Abort.

**EC == 0b100110**

SP alignment fault exception.
See ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault.

**EC == 0b101100 When AArch64 is supported at any Exception level**

Trapped floating-point exception taken from AArch64 state.

This EC value is valid if the implementation supports trapping of floating-point exceptions, otherwise it is reserved. Whether a floating-point implementation supports trapping of floating-point exceptions is IMPLEMENTATION DEFINED.

See ISS encoding for an exception from a trapped floating-point exception.

**EC == 0b101111**

SError interrupt.

See ISS encoding for an SError interrupt.

**EC == 0b111100 When AArch64 is supported at any Exception level**

BRK instruction execution in AArch64 state.

This is reported in ESR_EL3 only if a BRK instruction is executed.

See ISS encoding for an exception from execution of a Breakpoint instruction.

All other EC values are reserved by Arm, and:

- Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
- Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

**IL, bit [25]**

Instruction Length for synchronous exceptions. Possible values of this bit are:

- 0b0 16-bit instruction trapped.
- 0b1 32-bit instruction trapped. This value is also used when the exception is one of the following:
  - An SError interrupt.
  - An Instruction Abort exception.
  - A PC alignment fault exception.
  - An SP alignment fault exception.
  - A Data Abort exception for which the value of the ISV bit is 0.
  - An Illegal Execution state exception.
  - Any debug exception except for Breakpoint instruction exceptions.
  - An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

**ISS, bits [24:0]**

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see Mapping of the general-purpose registers between the Execution states on page D1-2401.
If the AArch32 register descriptor is \(0b1111\), then:
- If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value \(0b11111\).
- If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must be either:
  - The AArch64 view of the register number of a register that might have been used at the Exception level from which the exception was taken.
  - The value \(0b11111\).

When the EC field is \(0b000000\), indicating an exception with an unknown reason, the ISS field is not valid, RES0.

The following subsections describe each ISS format.

**ISS encoding for exceptions with an unknown reason**

<table>
<thead>
<tr>
<th>24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
</tr>
</tbody>
</table>

**Bits [24:0]**

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the following situations:

- The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible at the current Exception level and Security state, including:
  - A read access using a System register pattern that is not allocated for reads or that does not permit reads at the current Exception level and Security state.
  - A write access using a System register pattern that is not allocated for writes or that does not permit writes at the current Exception level and Security state.
  - Instruction encodings that are unallocated.
  - Instruction encodings for instructions or System registers that are not implemented in the implementation.
- In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
- In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug state.
- In AArch32 state, attempted execution of a short vector floating-point instruction.
- In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.
- An exception generated because of the value of one of the SCTLR_EL1.\{ITD, SED, CP15BEN\} control bits.
- Attempted execution of:
  - An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
  - An SMC instruction when disabled by SCR_EL3.SMD.
  - An HLT instruction when disabled by EDSCR.HDE.
• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

• Attempted execution, in Debug state, of:
  — A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in the current Security state.
  — A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security state.
  — A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon. See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register) instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

**ISS encoding for an exception from a WFI or WFE instruction**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>23</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>COND</td>
<td>RES0</td>
<td>TI</td>
<td></td>
</tr>
</tbody>
</table>

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- 0:0 The COND field is not valid.
- 0:1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  — If the instruction is conditional, COND is set to the condition code field value from the instruction.
  — If the instruction is unconditional, COND is set to 0b1110.

- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  — With COND set to 0b1110, the value for unconditional.
— With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  — CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the
    SPSR.IT field to determine the condition, if any, of the T32 instruction.
  — CV is set to 1 and COND is set to the condition code for the condition that applied to
    the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a
  trapped conditional instruction only if the instruction passes its condition code check, these
  definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND
  field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

0b0 WFI trapped.
0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

**ISS encoding for an exception from an MCR or MRC access**

```
 24 23 20 19 17 16 14 13 10 9 5 4 1 0
 COND Opc2 Opc1 CRn Rt CRm
 CV Direction
```

CV, bit [24]

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or
  set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from
AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to \texttt{0b1110}.

- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to \texttt{0b1110}, the value for unconditional.
  - With the COND value held in the instruction.

- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to \texttt{0b1110}, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Opc2, bits [19:17]**

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value \texttt{0b000}.

This field resets to an architecturally UNKNOWN value.

**Opc1, bits [16:14]**

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value \texttt{0b111}.

This field resets to an architecturally UNKNOWN value.

**CRn, bits [13:10]**

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See *Mapping of the general-purpose registers between the Execution states* on page D1-2401.

This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value \texttt{0b0000}.

This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**

Indicates the direction of the trapped instruction. The possible values of this bit are:

- \texttt{0b0} Write to System register space. MCR instruction.
- \texttt{0b1} Read from System register space. MRC or VMRS instruction.

This field resets to an architecturally UNKNOWN value.
The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000011:

- **CNTKCTL_EL1.**{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

- **PMUSERENR_EL0.**{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

- **AMUSERENR_EL0.EN**, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

- **HCR_EL2.**{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **HCR_EL2.TTTLB**, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **HCR_EL2.TSW, TPC, TPU** for execution of cache maintenance instructions at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **HCR_EL2.TACR**, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **HCR_EL2.TIDCP**, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **CPTR_EL2.TCPAC**, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **CPTR_EL2.TAM**, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **CPTR_EL2.TCPAC**, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **CPTR_EL2.TAM**, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

- **CPTR_EL2.TCPAC**, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

- **CPTR_EL3.TAM**, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

- For information on other traps using EC value 0b000011, see *Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.*

- If **FEAT_FGT** is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000101:

- **CPACR_EL1.TTA** for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.
• **MDSCR_EL1.TDCC** for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

  If `FEAT_FGT` is implemented, **MDCR_EL2.TDCC** for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

• **HCR_EL2.TID0**, for accesses to the **JIDR** register in the ID group 0 at EL0 and EL1 using AArch32, MRC access (coproc == 0b1110) trapped to EL2.

• **CPTR_EL2.TTA**, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDRA**, for accesses to Debug ROM registers `DBGDRAR` and AArch-DBGDSAR using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDOSA**, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **MDCR_EL2.TDA**, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• **CPTR_EL3.TTA**, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• **MDCR_EL3.TDOSA**, for accesses to powerdown debug registers using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

• **MDCR_EL3.TDA**, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value `0b001000`:

• **HCR_EL2.TID0**, for accesses to the **FPSID** register in ID group 0 at EL1 using AArch32 state, VMRS access trapped to EL2.

• **HCR_EL2.TID3**, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS access trapped to EL2.

### ISS encoding for an exception from an MCRR or MRRC access

![ISS encoding for an exception from an MCRR or MRRC access]

**CV**, bit [24]

Condition code valid. Possible values of this bit are:

- **0b0**: The COND field is not valid.
- **0b1**: The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.
This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to $0b1110$.
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:
- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to $0b1110$.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to $0b1110$, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to $0b1110$, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Opc1, bits [19:16]**
The Opc1 value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

**Bit [15]**
Reserved, RES0.

**Rt2, bits [14:10]**
The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.

This field resets to an architecturally UNKNOWN value.

**Rt, bits [9:5]**
The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.

This field resets to an architecturally UNKNOWN value.

**CRm, bits [4:1]**
The CRm value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

**Direction, bit [0]**
Indicates the direction of the trapped instruction. The possible values of this bit are:
- $0b0$: Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction. This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value 0b000100:

- **CNTKCTL_EL1.\{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN\},** for accesses to the Generic Timer Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **PMUSERENR_EL0.\{CR, EN\},** for accesses to Performance Monitor registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.
- **AMUSERENR_EL0.\{EN\},** for accesses to Activity Monitors registers AMEVCNTR0<n> and AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

- **HCR_EL2.\{TRVM, TVM\},** for accesses to virtual memory control registers from EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **HSTR_EL2.T<n>,** for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **CNTHCTL_EL2.\{EL1PCEN, EL1PCTEN\},** for accesses to the Generic Timer registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **MDCR_EL2.\{TPM, TPMCR\},** for accesses to Performance Monitor registers from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
- **MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.
- **CPTR_EL3.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

The following sections describe configuration settings for generating exceptions that are reported using EC value 0b001100:

- **MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.
- **MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.
- **MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.
- **CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.
- **CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.
- **CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL3.
--- Note ---

If the Armv8-A architecture is implemented with an ETMv4 implementation, MCRR and MRRC accesses to trace registers are UNDEFINED and the resulting exception is higher priority than an exception due to these traps.

**ISS encoding for an exception from an LDC or STC instruction**

```
24 23 20 19 12 11 10 9 5 4 3 1 0
COND imm8 Rn AM
CV
```

CV, bit [24]

Condition code valid. Possible values of this bit are:

- **0b0**: The COND field is not valid.
- **0b1**: The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.
For exceptions taken from AArch32:
  - When an A32 instruction is trapped, CV is set to 1.
  - When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.
The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.
For exceptions taken from AArch32:
  - When an A32 instruction is trapped, CV is set to 1 and:
    - If the instruction is conditional, COND is set to the condition code field value from the instruction.
    - If the instruction is unconditional, COND is set to 0b1110.
  - A conditional A32 instruction that is known to pass its condition code check can be presented either:
    - With COND set to 0b1110, the value for unconditional.
    - With the COND value held in the instruction.
  - When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
    - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
    - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
  - For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.
imm8, bits [19:12]
The immediate value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

Bits [11:10]
Reserved, RES0.

Rn, bits [9:5]
The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value gives the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.
This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.
This field resets to an architecturally UNKNOWN value.

Offset, bit [4]
Indicates whether the offset is added or subtracted:
0b0    Subtract offset.
0b1    Add offset.
This bit corresponds to the U bit in the instruction encoding.
This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]
Addressing mode. The permitted values of this field are:
0b000    Immediate unindexed.
0b001    Immediate post-indexed.
0b010    Immediate offset.
0b011    Immediate pre-indexed.
0b100    For a trapped STC instruction or a trapped T32 LDC instruction this encoding is reserved.
0b110    For a trapped STC instruction, this encoding is reserved.
The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as described in Reserved values in System and memory-mapped registers and translation table entries on page K1-7981.
Bit [2] in this subfield indicates the instruction form, immediate or literal.
Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.
This field resets to an architecturally UNKNOWN value.

Direction, bit [0]
Indicates the direction of the trapped instruction. The possible values of this bit are:
0b0    Write to memory. STC instruction.
0b1    Read from memory. LDC instruction.
This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

- MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint trapped to EL1 or EL2.
- MDSCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to DBGDTRRXint MCR or MRC access trapped to EL2.
• **MDCR_EL3.TDA**, for accesses using AArch32 state, LDC access to DBGDTRXInt or STC access to DBGDTRRXInt MCR or MRC access trapped to EL3.

• If **FEAT_FGT** is implemented, **MDCR_EL2.TDCC** for LDC and STC accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.

### ISS encoding for an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from the FPEN and TFP traps

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>CV</td>
</tr>
<tr>
<td>23</td>
<td>COND</td>
</tr>
<tr>
<td>20</td>
<td>RES0</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.

• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the exception is reported using the EC value `0b000000`.

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

- `0b0`: The COND field is not valid.
- `0b1`: The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to `0b1110`.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to `0b1110`.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to `0b1110`, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
— CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

**Bits [19:0]**

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

- CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
- CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
- CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

**ISS encoding for an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ**

<table>
<thead>
<tr>
<th>24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>

The accesses covered by this trap include:

- Execution of SVE instructions.
- Accesses to the SVE System registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

**Bits [24:0]**

Reserved, RES0.

The following sections describe the configuration setting for the traps:

- CPACR_EL1.ZEN, for accesses to SVE registers at EL0 or EL1, trapped to EL2.
- CPTR_EL2.ZEN, for accesses to SVE registers at EL0, EL1, or EL2, trapped to EL2.
- CPTR_EL2.TZ, for accesses to SVE instructions and instructions that access SVE System registers at EL0, EL1, or EL2, trapped to EL2.
- CPTR_EL3.EZ, for accesses to SVE functionality and registers from all Exception levels, trapped to EL3.

**ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault**

<table>
<thead>
<tr>
<th>24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:0]**

Reserved, RES0.
There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault exceptions. For more information about these exceptions see *The Illegal Execution state exception* on page D1-2347 and *PC alignment checking* on page D1-2327.

*SP alignment checking* on page D1-2327 describes the configuration settings for generating SP alignment fault exceptions.

**ISS encoding for an exception from HVC or SVC instruction execution**

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-15</td>
<td>RES0</td>
</tr>
<tr>
<td>15-0</td>
<td>imm16</td>
</tr>
</tbody>
</table>

**Bits [24:16]**

Reserved, RES0.

**imm16, bits [15:0]**

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued instruction.

For an A32 or T32 SVC instruction:

- If the instruction is unconditional, then:
  - For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
  - For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

- If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

For T32 and A32 instructions, see *SVC and HVC*.

For A64 instructions, see *SVC and HVC*.

If `FEAT_FGT` is implemented, `HFGITR_EL2.{SVC_EL1, SVC_EL0}` control fine-grained traps on SVC execution.

**ISS encoding for an exception from SMC instruction execution in AArch32 state**

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-23</td>
<td>COND</td>
</tr>
<tr>
<td>20-18</td>
<td>RES0</td>
</tr>
</tbody>
</table>

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding is RES0.
For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as shown in the diagram.

**CV, bit [24]**

Condition code valid. Possible values of this bit are:

0b0      The COND field is not valid.
0b1      The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

**COND, bits [23:20]**

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and only when the value of CV is 1.

For exceptions taken from AArch32:

- When an A32 instruction is trapped, CV is set to 1 and:
  - If the instruction is conditional, COND is set to the condition code field value from the instruction.
  - If the instruction is unconditional, COND is set to 0b1110.
- A conditional A32 instruction that is known to pass its condition code check can be presented either:
  - With COND set to 0b1110, the value for unconditional.
  - With the COND value held in the instruction.
- When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
  - CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
  - CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
- For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

**CCKNOWNPASS, bit [19]**

Indicates whether the instruction might have failed its condition code check.

0b0      The instruction was unconditional, or was conditional and passed its condition code check.
0b1      The instruction was conditional, and might have failed its condition code check.

--- Note ---

In an implementation in which an SMC instruction that fails its code check is not trapped, this field can always return the value 0.
This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2. 

System calls on page D1-2390 describes the case where these exceptions are trapped to EL3.

**ISS encoding for an exception from SMC instruction execution in AArch64 state**

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>imm16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

- When an SMC instruction is trapped from EL1 modes.
- When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes. 

System calls on page D1-2390 describes the case where these exceptions are trapped to EL3.

**ISS encoding for an exception from MSR, MRS, or System instruction execution in AArch64 state**

| 24 | 22 | 21 | 20 | 19 | 17 | 16 | 14 | 13 | 10 | 9 | 5 | 4 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|
| RES0 | Op0 | Op2 | Op1 | CRn | Rt | CRm |

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.
CRn, bits [13:10]
The CRn value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]
The Rt value from the issued instruction, the general-purpose register used for the transfer.
This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]
The CRm value from the issued instruction.
This field resets to an architecturally UNKNOWN value.

Direction, bit [0]
Indicates the direction of the trapped instruction. The possible values of this bit are:
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.
This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see System instructions on page C4-275 for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value 0b011000:

- **SCTLR_EL1.UCI**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.UCT**, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.DZE**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **SCTLR_EL1.UMA**, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **CPACR_EL1.TTA**, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **MDSCR_EL1.TDCC**, for accesses to the Debug Communications Channel (DCC) registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- If FEAT_FGT is implemented, **MDCR_EL2.TDCC** for accesses to the DCC registers at EL0 and EL1 trapped to EL2, and **MDCR_EL3.TDCC** for accesses to the DCC registers at EL0, EL1, and EL2 trapped to EL3.
- **CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}** accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **PMUSERENR_EL0.{ER, CR, SW, EN}**, for accesses to the Performance Monitor registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **AMUSERENR_EL0.EN**, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.
- **HCR_EL2.{TRVM, TVM}**, for accesses to virtual memory control registers using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TDZ**, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to EL2.
- **HCR_EL2.TTLB**, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.{TSW, TPC, TPU}**, for execution of cache maintenance instructions using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.TACR**, for accesses to the Auxiliary Control Register, `ACTLR_EL1`, using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.TIDCP**, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.{TID1, TID2, TID3}**, for accesses to ID group 1, ID group 2 or ID group 3 registers, using AArch64 state, MSR or MRS access trapped to EL2.

- **CPTR_EL2.TCPAC**, for accesses to `CPACR_EL1`, using AArch64 state, MSR or MRS access trapped to EL2.

- **CPTR_EL2.TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL2.

- **MDCR_EL2.TTRF**, for accesses to the trace filter register, `TRFCR_EL1`, using AArch64 state, MSR or MRS access trapped to EL2.

- **MDCR_EL2.TDRA**, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access trapped to EL2.

- **MDCR_EL2.TDOSA**, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access trapped to EL2.

- **CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}**, for accesses to the Generic Timer registers using AArch64 state, MSR or MRS access trapped to EL2.

- **MDCR_EL2.TDA**, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.

- **MDCR_EL2.{TPM, TPMCR}**, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access trapped to EL2.

- **CPTR_EL2.TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.APK**, for accesses to Pointer authentication key registers using AArch64 state, MSR or MRS access trapped to EL2.

- **HCR_EL2.{NV, NV1}**, for Nested virtualization register access, using AArch64 state, MSR or MRS access, trapped to EL2.

- **HCR_EL2.AT**, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to EL2.

- **HCR_EL2.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped to EL2.

- **SCR_EL3.APK**, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS access trapped to EL3.

- **SCR_EL3.ST**, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR or MRS access trapped to EL3.

- **SCR_EL3.{TERR, FIEN}**, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped to EL3.

- **CPTR_EL3.TCPAC**, for accesses to `CPTR_EL2` and `CPACR_EL1` using AArch64 state, MSR or MRS access trapped to EL3.
• **CPTR\_EL3\_TTA**, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR\_EL3\_TTRF**, for accesses to the filter trace control registers, TRFCR\_EL1 and TRFCR\_EL2, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR\_EL3\_TDA**, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR\_EL3\_TDOSA**, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **MDCR\_EL3\_TPM**, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access trapped to EL3.

• **CPTR\_EL3\_TAM**, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access, trapped to EL3.

  • If **FEAT\_EVT** is implemented the following registers control traps for EL1 and EL0 Cache controls that use this EC value:
    — **HCR\_EL2**\: \{TTLBOS, TTLBIS, TICAB, TOCU, TID4\}.
    — **HCR2**\: \{TTLBIS, TICAB, TOCU, TID4\}.

  • If **FEAT\_FGT** is implemented:
    — **SCR\_EL3\_FGTEn**, for accesses to the fine-grained trap registers, MSR or MRS access at EL2 trapped to EL3.
    — **HFGTR\_EL2** for reads and **HFGWTR\_EL2** for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 trapped to EL2.
    — **HFGITR\_EL2** for execution of system instructions, MSR or MRS access trapped to EL2
    — **HDFGRTR\_EL2** for reads and **HDFGWTR\_EL2** for writes of registers, using AArch64 state, MSR or MRS access at EL0 and EL1 state trapped to EL2.
    — **HAFGRTR\_EL2** for reads of Activity Monitor counters, using AArch64 state, MRS access at EL0 and EL1 trapped to EL2.

**ISS encoding for an IMPLEMENTATION DEFINED exception to EL3**

<table>
<thead>
<tr>
<th>24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>

**IMPLEMENTATION DEFINED, bits [24:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.
ISS encoding for an exception from an Instruction Abort

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>13</td>
<td>SET, bits [12:11]</td>
</tr>
<tr>
<td></td>
<td>Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction Abort exception. The possible values of this field are:</td>
</tr>
<tr>
<td></td>
<td>0b00  Recoverable state (UER).</td>
</tr>
<tr>
<td></td>
<td>0b10  Uncontainable (UC).</td>
</tr>
<tr>
<td></td>
<td>0b11  Restartable state (UEO).</td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td>10</td>
<td>FnV, bit [10]</td>
</tr>
<tr>
<td></td>
<td>FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.</td>
</tr>
<tr>
<td></td>
<td>0b0  FAR is valid.</td>
</tr>
<tr>
<td></td>
<td>0b1  FAR is not valid, and holds an UNKNOWN value.</td>
</tr>
<tr>
<td>9</td>
<td>EA, bit [9]</td>
</tr>
<tr>
<td></td>
<td>External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.</td>
</tr>
<tr>
<td></td>
<td>For any abort other than an External abort this bit returns a value of 0.</td>
</tr>
<tr>
<td>8</td>
<td>Bit [8]</td>
</tr>
<tr>
<td></td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7</td>
<td>S1PTW, bit [7]</td>
</tr>
<tr>
<td></td>
<td>For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:</td>
</tr>
<tr>
<td></td>
<td>0b0  Fault not on a stage 2 translation for a stage 1 translation table walk.</td>
</tr>
</tbody>
</table>

---

**Note**

Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts. This field resets to an architecturally UNKNOWN value.
0b1    Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]
Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

0b000000  Address size fault, level 0 of translation or translation table base register.
0b000001  Address size fault, level 1.
0b000010  Address size fault, level 2.
0b000011  Address size fault, level 3.
0b000100  Translation fault, level 0.
0b000101  Translation fault, level 1.
0b000110  Translation fault, level 2.
0b000111  Translation fault, level 3.
0b001000  Access flag fault, level 1.
0b001001  Access flag fault, level 2.
0b001010  Access flag fault, level 2.
0b001011  Access flag fault, level 3.
0b001100  Permission fault, level 1.
0b001101  Permission fault, level 2.
0b001110  Permission fault, level 3.
0b001111  Synchronous External abort, not on translation table walk or hardware update of translation table.
0b010000  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b010001  Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b010010  Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b010011  Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b010100  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access, not on translation table walk.
0b010101  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.
0b010110  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.
0b010111  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.
0b011000  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.
0b011001  TLB conflict abort.
0b011010  When FEAT_HAFDBS is implemented  Unsupported atomic hardware update fault.
All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on page D5-2651.
**Note**

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally **UNKNOWN** value.

**ISS encoding for an exception from a Data Abort**

### ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No valid instruction syndrome. ISS[23:14] are RES0.</td>
</tr>
<tr>
<td>01</td>
<td>ISS[23:14] hold a valid instruction syndrome.</td>
</tr>
</tbody>
</table>

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

- AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive and excluding those with writeback).
- AArch32 instructions where the instruction:
  - Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STLB, STRBT, STRB, or STRBT instruction.
  - Is not performing register writeback.
  - Is not using R15 as a source or destination register.

For these cases, ISV is **UNKNOWN** if the exception was generated in Debug state in memory access mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome, and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2 translation table walk is IMPLEMENTATION DEFINED.

When FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx, ESR_ELx.FNV is 0 and FAR_ELx is valid.

This field resets to an architecturally **UNKNOWN** value.

### SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Byte</td>
</tr>
</tbody>
</table>
0b01 Halfword
0b10 Word
0b11 Doubleword
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SSE, bit [21]
Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign extended. For these cases, the possible values of this bit are:
  0b0 Sign-extension not required.
  0b1 Data item must be sign-extended.
For all other operations this bit is 0.
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]
Syndrome Register Transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.
If the exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register. See Mapping of the general-purpose registers between the Execution states on page D1-2401.
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

SF, bit [15]
Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:
  0b0 Instruction loads/stores a 32-bit wide register.
  0b1 Instruction loads/stores a 64-bit wide register.

  Note
This field specifies the register width identified by the instruction, not the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.
This field is RES0 when the value of ISV is 0.
This field resets to an architecturally UNKNOWN value.

AR, bit [14]
Acquire/Release. The possible values of this bit are:
  0b0 Instruction did not have acquire/release semantics.
  0b1 Instruction did have acquire/release semantics.
This field is UNKNOWN when the value of ISV is UNKNOWN.
This field resets to an architecturally UNKNOWN value.
VNR, bit [13]
Indicates that the fault came from use of VNCR_EL2 register by EL1 code.
- 0b0: The fault was not generated by the use of VNCR_EL2, by an MRS or MSR instruction executed at EL1.
- 0b1: The fault was generated by the use of VNCR_EL2, by an MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.
This field resets to an architecturally UNKNOWN value.

SET, bits [12:11]
Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data Abort exception. The possible values of this field are:
- 0b0: Recoverable state (UER).
- 0b10: Uncontainable (UC).
- 0b11: Restartable state (UEO).

All other values are reserved.

--- Note ---
Software can use this information to determine what recovery might be possible. Taking a synchronous External Abort exception might result in a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.
This field resets to an architecturally UNKNOWN value.

FnV, bit [10]
FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.
- 0b0: FAR is valid.
- 0b1: FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.
This field resets to an architecturally UNKNOWN value.

EA, bit [9]
External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.
For any abort other than an External abort this bit returns a value of 0.
This field resets to an architecturally UNKNOWN value.

CM, bit [8]
Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation instruction:
- 0b0: The Data Abort was not generated by the execution of one of the System instructions identified in the description of value 1.
- 0b1: The Data Abort was generated by either the execution of a cache maintenance instruction or by a synchronous fault on the execution of an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.
S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

0b0  Fault not on a stage 2 translation for a stage 1 translation table walk.
0b1  Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.
This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

0b0  Abort caused by an instruction reading from a memory location.
0b1  Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.
For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read of the address specified by the instruction would have generated the fault which is being reported, otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.
This field is UNKNOWN for:
• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or atomic access.
This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.
0b000000  Address size fault, level 0 of translation or translation table base register.
0b000001  Address size fault, level 1.
0b000010  Address size fault, level 2.
0b000011  Address size fault, level 3.
0b000100  Translation fault, level 0.
0b000101  Translation fault, level 1.
0b000110  Translation fault, level 2.
0b000111  Translation fault, level 3.
0b001001  Access flag fault, level 1.
0b001010  Access flag fault, level 2.
0b001011  Access flag fault, level 3.
0b001101  Permission fault, level 1.
0b001110  Permission fault, level 2.
0b001111  Permission fault, level 3.
0b010000  Synchronous External abort, not on translation table walk or hardware update of translation table.

0b010001 When FEAT_MTE is implemented Synchronous Tag Check Fault.
0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
0b010101 Synchronous External abort on translation table walk or hardware update of translation table, level 1.
0b010110 Synchronous External abort on translation table walk or hardware update of translation table, level 2.
0b010111 Synchronous External abort on translation table walk or hardware update of translation table, level 3.
0b011000 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011100 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.
0b011101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.
0b100000 Alignment fault.
0b110000 TLB conflict abort.
0b110001 When FEAT_HAFDBS is implemented Unsupported atomic hardware update fault.
0b110010 IMPLEMENTATION DEFINED fault (Lockdown).
0b110100 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic access).
All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on page D5-2651.

--- Note ---

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor, they cannot occur at level 0.

---

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from a trapped floating-point exception**

```
 24 23 22
 RES0 VECITR
 RES0
 TFV

 21 20 19
 IOF

 18
 DZF

 17
 OFF

 16
 UFF

 15 14
 IXF
 RES0

 13
 IDF
```

**Bit [24]**

Reserved, RES0.
TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information about trapped floating-point exceptions. The possible values of this bit are:

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid information about trapped floating-point exceptions and are UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation performed while executing the reported instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits indicate trapped floating-point exceptions that occurred. For more information see Floating-point exceptions and exception traps on page D1-2354.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating point exception from a vector instruction.

--- Note ---

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible values of this bit are:

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the reported instruction.
This field resets to an architecturally **UNKNOWN** value.

**OFF, bit [2]**

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is **UNKNOWN**. Otherwise, the possible values of this bit are:

- **0b0**  Overflow floating-point exception has not occurred.
- **0b1**  Overflow floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally **UNKNOWN** value.

**DZF, bit [1]**

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is **UNKNOWN**. Otherwise, the possible values of this bit are:

- **0b0**  Divide by Zero floating-point exception has not occurred.
- **0b1**  Divide by Zero floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally **UNKNOWN** value.

**IOF, bit [0]**

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is **UNKNOWN**. Otherwise, the possible values of this bit are:

- **0b0**  Invalid Operation floating-point exception has not occurred.
- **0b1**  Invalid Operation floating-point exception occurred during execution of the reported instruction.

This field resets to an architecturally **UNKNOWN** value.

In an implementation that supports the trapping of floating-point exceptions:

- From an Exception level using AArch64, the **FPCR.IDE, IXE, UFE, OFE, DZE, IOE** bits enable each of the floating-point exception traps.
- From an Exception level using AArch32, the **FPSCR.IDE, IXE, UFE, OFE, DZE, IOE** bits enable each of the floating-point exception traps.

**ISS encoding for an SError interrupt**

```
 24 23 14 13 12 10 9 8 6 5 0
 RES0 AET RES0 DFSC

IDS IESB

 EA

IDS, bit [24]
```

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

- **0b0**  Bits [23:0] of the ISS field holds the fields described in this encoding.
- **0b1**  Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED syndrome information that can be used to provide additional information about the SError interrupt.

**Note**

If the RAS Extension is not implemented bits [23:0] of the ISS field are **RES0**.
### Note

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

**Bits [23:14]**

Reserved, RES0.

**IESB, bit [13]**

Implicit error synchronization event.

- **0b0** The SError interrupt was either not synchronized by the implicit error synchronization event or not taken immediately.
- **0b1** The SError interrupt was synchronized by the implicit error synchronization event and taken immediately.

This field is valid only if the DFSC code is **0b010001**. It is RES0 for all other errors.

This field resets to an architecturally UNKNOWN value.

**AET, bits [12:10]**

Asynchronous Error Type.

When DFSC is **0b010001**, describes the PE error state after taking the SError interrupt exception. The possible values of this field are:

- **0b00** Uncontainable (UC).
- **0b01** Unrecoverable state (UEU).
- **0b10** Restartable state (UEO).
- **0b11** Recoverable state (UER).
- **0b10** Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.

### Note

Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is **0b010001**. It is RES0 for all other errors.

This field resets to an architecturally UNKNOWN value.

**EA, bit [9]**

External abort type. When DFSC is **0b010001**, provides an IMPLEMENTATION DEFINED classification of External aborts.

This field is valid only if the DFSC code is **0b010001**. It is RES0 for all other errors.

This field resets to an architecturally UNKNOWN value.

**Bits [8:6]**

Reserved, RES0.

**DFSC, bits [5:0]**

*When FEAT_RAS is implemented:*

Data Fault Status Code.

- **0b000000** Uncategorized error.
Asynchronous SError interrupt.
All other values are reserved.
This field resets to an architecturally UNKNOWN value.

**ISS encoding for an exception from a Breakpoint or Vector Catch debug exception**

![ISS encoding diagram]

**Bits [24:6]**
Reserved, RES0.

**IFSC, bits [5:0]**
Instruction Fault Status Code.

0b100010 Debug exception.
This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

- For exceptions from AArch64, see *Breakpoint exceptions* on page D2-2433.
- For exceptions from AArch32, see *Breakpoint exceptions* on page G2-5870 and *Vector Catch exceptions* on page G2-5909.

**ISS encoding for an exception from a Software Step exception**

![ISS encoding diagram]

**ISV, bit [24]**
Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.
This field resets to an architecturally UNKNOWN value.

**Bits [23:7]**
Reserved, RES0.

**EX, bit [6]**
Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

0b0 An instruction other than a Load-Exclusive instruction was stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.
This field resets to an architecturally UNKNOWN value.
IFSC, bits [5:0]
Instruction Fault Status Code.

0b100010 Debug exception.
This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see [Software Step exceptions on page D2-2466](#).

**ISS encoding for an exception from a Watchpoint exception**

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>24</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RES0</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFSC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VNCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WnR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CM</td>
</tr>
</tbody>
</table>
```

**Bits [24:15]**
Reserved, RES0.

**Bit [14]**
Reserved, RES0.

**VNCR, bit [13]**
Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

- 0b0 The watchpoint was not generated by the use of VNCR_EL2 by EL1 code.
- 0b1 The watchpoint was generated by the use of VNCR_EL2 by EL1 code.

This field is 0 in ESR_EL1.
This field resets to an architecturally UNKNOWN value.

**Bits [12:9]**
Reserved, RES0.

**CM, bit [8]**
Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance instruction or address translation instruction:

- 0b0 The Watchpoint exception was not generated by the execution of one of the System instructions identified in the description of value 1.
- 0b1 The Watchpoint exception was generated by either the execution of a cache maintenance instruction or by a synchronous Watchpoint exception on the execution of an address translation instruction. The DC ZVA, DC GVA, and DC GZVA instructions are not classified as a cache maintenance instructions, and therefore their execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

**Bit [7]**
Reserved, RES0.

**WnR, bit [6]**
Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory location, or by an instruction reading from a memory location. The possible values of this bit are:

- 0b0 Watchpoint exception caused by an instruction reading from a memory location.
Watchpoint exception caused by an instruction writing to a memory location. For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

**DFSC, bits [5:0]**

Data Fault Status Code.

### Bit 0

0b0 Watchpoint exception caused by an instruction writing to a memory location.

Note: For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a value of 1.

Note: For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have generated the Watchpoint exception, otherwise it is set to 1.

Note: If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the Watchpoint exception.

Note: This field resets to an architecturally UNKNOWN value.

### ISS encoding for an exception from execution of a Breakpoint instruction

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Comment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [24:16]**

Reserved, RES0.

**Comment, bits [15:0]**

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see **Watchpoint exceptions** on page D2-2451.

**ISS encoding for an exception from ERET, ERETTA or ERETAB instruction**

<table>
<thead>
<tr>
<th>24</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

**Bits [24:2]**

Reserved, RES0.

**ERET, bit [1]**

Indicates whether an ERET or ERETA\* instruction was trapped to EL2. Possible values are:

- 0b0 ERET instruction trapped to EL2.
- 0b1 ERETTA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.
This field resets to an architecturally **UNKNOWN** value.

**ERETA, bit [0]**

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2. Possible values are:

- **0b0** ERETAA instruction trapped to EL2.
- **0b1** ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is **RES0**.

This field resets to an architecturally **UNKNOWN** value.

For more information about generating these exceptions, see [HCR_EL2.NV](#).

If **FEAT_FGT** is implemented, **HFGITR_EL2.ERET** controls fine-grained trap exceptions from ERET, ERETAA and ERETAB execution.

**ISS encoding for an exception from Branch Target Identification instruction**

![ISS encoding](#)

<table>
<thead>
<tr>
<th>Bits [24:2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, <strong>RES0</strong></td>
</tr>
</tbody>
</table>

**BTYPE, bits [1:0]**

This field is set to the **PSTATE.BTYPE** value that generated the Branch Target Exception.

For more information about generating these exceptions, see Chapter B1 *The AArch64 Application Level Programmers’ Model*.

**ISS encoding for an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0**

![ISS encoding](#)

<table>
<thead>
<tr>
<th>Bits [24:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, <strong>RES0</strong></td>
</tr>
</tbody>
</table>

For more information about generating these exceptions, see:

- **HCR_EL2.API**, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL2.
- **SCR_EL3.API**, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.
ISS encoding for an exception from a Pointer Authentication instruction authentication failure

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Exception as a result of an Instruction key or a Data key</td>
</tr>
<tr>
<td>2</td>
<td>Exception as a result of an A key or a B key</td>
</tr>
</tbody>
</table>

**Bits [24:2]**
Reserved, RES0.

**Bit [1]**
This field indicates whether the exception is as a result of an Instruction key or a Data key.
- 0b0 Instruction Key.
- 0b1 Data Key.
This field resets to an architecturally UNKNOWN value.

**Bit [0]**
This field indicates whether the exception is as a result of an A key or a B key.
- 0b0 A key.
- 0b1 B key.
This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

- AUTIASP, AUTIAZ, AUTIA1716.
- AUTIBSP, AUTIBZ, AUTIB1716.
- AUTIA, AUTDA, AUTIB, AUTDB.
- AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the authorization failure, rather than changing the address in a way that will generate a translation fault when the address is accessed:

- RETAA, RETAB.
- BRAA, BRAB, BLRAA, BLRAB.
- BRAAZ, BRABZ, BLRAAZ, BLRABZ.
- ERETTAA, ERETAB.
- LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

**Accessing the ESR_EL3**
Accesses to this register use the following encodings in the System instruction encoding space:
**MRS <Xt>, ESR_EL3**

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return ESR_EL3;

**MSR ESR_EL3, <Xt>**

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    ESR_EL3 = X[t];
D13.2.39   FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

**Purpose**

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to EL1.

**Configurations**

AArch64 System register FAR_EL1[31:0] is architecturally mapped to AArch32 System register DFAR[31:0] (NS).

AArch64 System register FAR_EL1[63:32] is architecturally mapped to AArch32 System register IFAR[31:0] (NS).

**Attributes**

FAR_EL1 is a 64-bit register.

**Field descriptions**

The FAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Faulting Virtual Address for synchronous exceptions taken to EL1</td>
</tr>
</tbody>
</table>

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

- The lowest address that gave rise to the fault.
- The address specified in the register argument of the instruction as generated by MMU faults caused by DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

- The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE.
- The implementation treats such incrementing as setting bit[32] of the virtual address to 1.
For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception, then this field includes the tag. For more information about address tagging, see Address tagging in AArch64 state on page D5-2528.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception that gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where different faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

This field resets to an architecturally UNKNOWN value.

### Accessing the FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, FAR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x220];
 else
 return FAR_EL1;
 endif
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL2;
 else
 return FAR_EL1;
 endif
elsif PSTATE_EL == EL3 then
 return FAR_EL1;
endif
```

**MSR FAR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return FAR_EL1;
 endif
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL2;
 else
 return FAR_EL1;
 endif
elsif PSTATE_EL == EL3 then
 return FAR_EL1;
endif
```
AArch64 System Register Descriptions
D13.2 General system control registers

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEl(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
  NVMem[0x220] = X[t];
else
  FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    FAR_EL2 = X[t];
  else
    FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  FAR_EL1 = X[t];

MRS <Xt>, FAR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
</table>
| 0b11| 0b010| 0b0110| 0b0000| 0b000 |}

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    return NVMem[0x220];
elsif EL2Enabled() && HCR_EL2.E2H == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return FAR_EL1;
  else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    return FAR_EL1;
else
  UNDEFINED;

MSR FAR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
</table>
| 0b11| 0b010| 0b0110| 0b0000| 0b000 |}

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x220] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    FAR_EL1 = X[t];
  else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
  FAR_EL1 = X[t];
else
  UNDEFINED;

**MRS <xt>, FAR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    return FAR_EL1;
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  return FAR_EL2;
elsif PSTATE.EL == EL3 then
  return FAR_EL2;

**MSR FAR_EL2, <xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    FAR_EL1 = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  FAR_EL2 = X[t];
D13.2.40 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

**Purpose**

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint exceptions that are taken to EL2.

**Configurations**

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register HDFAR[31:0].

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register HIFAR[31:0].

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register DFAR[31:0] (S) when EL2 is implemented.

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register IFAR[31:0] (S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

FAR_EL2 is a 64-bit register.

**Field descriptions**

The FAR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulting Virtual Address for synchronous exceptions taken to EL2</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:0]**

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

- The lowest address that gave rise to the fault.
- The address specified in the register argument of the instruction as generated by MMU faults caused by DC ZVA.
If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

- The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.
- The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception, then this field includes the tag. For more information about address tagging, see Address tagging in AArch64 state on page D5-2528.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

--- Note ---

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception that gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where different faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2. This field resets to an architecturally UNKNOWN value.

**Accessing the FAR_EL2**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, FAR_EL2**

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b100 & 0b0110 & 0b0000 & 0b000 \\
\end{array}
\]

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return FAR_EL1;
 elif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 end if;
elsif PSTATE_EL == EL2 then
 return FAR_EL2;
elsif PSTATE_EL == EL3 then
 return FAR_EL2;
```

---
**MSR FAR_EL2, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 FAR_EL1 = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 FAR_EL2 = X[t];
```

**MRS <Xt>, FAR_EL1**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x220];
 else
 return FAR_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return FAR_EL2;
 else
 return FAR_EL1;
elsif PSTATE.EL == EL3 then
 return FAR_EL1;
```

**MSR FAR_EL1, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x220] = X[t];
```
else
    FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        FAR_EL2 = X[t];
    else
        FAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    FAR_EL1 = X[t];
**D13.2.41 FAR_EL3, Fault Address Register (EL3)**

The FAR_EL3 characteristics are:

**Purpose**

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions that are taken to EL3.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are UNDEFINED.

**Attributes**

FAR_EL3 is a 64-bit register.

**Field descriptions**

The FAR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>Faulting Virtual Address for synchronous exceptions taken to EL3</td>
</tr>
</tbody>
</table>

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which TCR_ELx.TBI{<0|1>} = 1 for the translation regime in use when the abort was generated, then the top eight bits of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

- The lowest address that gave rise to the fault.
- The address specified in the register argument of the instruction as generated by MMU faults caused by DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception Level using AArch32 faults of AArch64, the top 32 bits are all zero, unless both of the following apply, in which case the top 32 bits of FAR_EL3 are 0x00000001:

- The faulting address was generated by a load or store instruction that sequentially incremented from address 0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.
- The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access that caused the exception, then this field includes the tag. For more information about address tagging, see *Address tagging in AArch64 state* on page D5-2528.
For a synchronous Tag Check Fault abort, bits[63:60] are _UNKNOWN_.
Execution at EL2, EL1 or EL0 makes FAR_EL3 become _UNKNOWN_.

--- Note

The address held in this register is an address accessed by the instruction fetch or data access that caused the exception that actually gave rise to the instruction or data abort. It is the lowest address that gave rise to the fault. Where different faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL3 is made _UNKNOWN_ on an exception return from EL3.
This field resets to an _architecturally UNKNOWN_ value.

**Accessing the FAR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, FAR_EL3**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return FAR_EL3;

**MSR FAR_EL3, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    FAR_EL3 = X[t];
D13.2.42  FPEXC32_EL2, Floating-Point Exception Control register

The FPEXC32_EL2 characteristics are:

**Purpose**

Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64 state.

**Configurations**

AArch64 System register FPEXC32_EL2[31:0] is architecturally mapped to AArch32 System register FPEXC[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to FPEXC32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

**Attributes**

FPEXC32_EL2 is a 64-bit register.

**Field descriptions**

The FPEXC32_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31</td>
<td>EX, bit [31]</td>
</tr>
<tr>
<td>30</td>
<td>EN, bit [30]</td>
</tr>
<tr>
<td>29</td>
<td>DEX</td>
</tr>
<tr>
<td>28</td>
<td>FP2V</td>
</tr>
<tr>
<td>27</td>
<td>TFV</td>
</tr>
<tr>
<td>25</td>
<td>VVECITR</td>
</tr>
<tr>
<td>11:0</td>
<td>IOF, DZF, OFF, UFF, IXF, RES0, IDF</td>
</tr>
</tbody>
</table>

**EX, bit [31]**

Exception bit. From Armv8, this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

**EN, bit [30]**

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not disable the following:

- VMSR accesses to the FPEXC or FPSID.
- VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

**0b0**  Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all Exception levels.
This control permits access to the Advanced SIMD and floating-point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

- CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
- FPEXC.EN.
- If executing in Non-secure state:
  - HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
  - NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.
- For Advanced SIMD instructions only:
  - CPACR.ASEDIS.
  - If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

---

### Note

When executing at EL0 using AArch32:

- If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
- If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.{RW, TGE} is {1, 1} then behavior is as if the value of FPEXC.EN is 1.
- If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.{RW, TGE} is {0, 1} then it is IMPLEMENTATION DEFINED whether the behavior is:
  - As if the value of FPEXC.EN is 1.
  - Determined by the value of FPEXC32_EL2.EN, as described in this field description. However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

This field resets to an architecturally **UNKNOWN** value.

### DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

0b0 The exception was generated by the attempted execution of an unallocated instruction in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr(). If FPEXC32_EL2.TFV is RW then it is invalid and UNKNOWN. If FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an unallocated encoding. FPEXC32_EL2.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the AArch32 FPSCR. {Stride, Len} fields as RAZ, this bit is RES0.

This field resets to an architecturally **UNKNOWN** value.

### FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally **UNKNOWN** value.
VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore whether the FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of FPSHR. {Stride, Len} was non-zero. If the FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} bits are RW then they are invalid and UNKNOWN.

0b1 FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-point exceptions that had occurred at the time of the exception. Bits are set for all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FSCR. {Stride, Len} as RAZ, this bit is RAO/WI.

This field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal exception occurred while FPSHR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FSCR.FZ is 1.

——— Note ————

A half-precision floating-point value that is flushed to zero because the value of FSCR.FZ16 is 1 does not generate an Input Denormal exception.

——————

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.
IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception occurred while FPSCR.UFE was 1:

0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception occurred while FPSCR.OFE was 1:

0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:

0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.
IOF, bit [0]
Invalid Operation trapped exception bit. Valid only when the value of FPECX.TFV is 1. When valid, it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:

0b0  Invalid Operation exception has not occurred.
0b1  Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.
When the value of FPECX.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.
This field resets to an architecturally UNKNOWN value.

Accessing the FPECX32_EL2
Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRS} <\text{Xt}>, \text{FPECX32_EL2} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

\[ \text{MSR FPECX32_EL2, <Xt>} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x10);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TFP == '1' then
        UNDEFINED;
    elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x07);
    elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x07);
        endif
    else
        FPEXC32_EL2 = X[t];
    endif
else
    if PSTATE.EL == EL3 then
        if CPTR_EL3.TFP == '1' then
            AArch64.SystemAccessTrap(EL3, 0x07);
        else
            FPEXC32_EL2 = X[t];
        endif
    endif
else
    FPEXC32_EL2 = X[t];
endif
D13.2.43 GCR_EL1, Tag Control Register.

The GCR_EL1 characteristics are:

**Purpose**
Tag Control Register.

**Configurations**
This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to GCR_EL1 are UNDEFINED.

**Attributes**
GCR_EL1 is a 64-bit register.

**Field descriptions**
The GCR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:17]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>RRND, bit [16]</td>
<td>Controls generation of tag values by the IRG instruction.</td>
</tr>
<tr>
<td>Exclude, bits [15:0]</td>
<td>Allocation Tag values excluded from selection by ChooseNonExcludedTag(). If all bits of GCR_EL1.Exclude are 1, then the Allocation Tag value 0 will be used. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

**Accessing the GCR_EL1**
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, GCR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end
else
  return GCR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return GCR_EL1;
  end
elsif PSTATE.EL == EL3 then
  return GCR_EL1;
end

MSR GCR_EL1, <Xt>

<table>
<thead>
<tr>
<th></th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b110</td>
<td></td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.ATA == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    GCR_EL1 = X[t];
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    GCR_EL1 = X[t];
  end
elsif PSTATE.EL == EL3 then
  GCR_EL1 = X[t];
end
D13.2.44 GMID_EL1, Multiple tag transfer ID register

The GMID_EL1 characteristics are:

**Purpose**

Indicates the block size that is accessed by the LDGM and STGM System instructions.

**Configurations**

This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to GMID_EL1 are UNDEFINED.

**Attributes**

GMID_EL1 is a 64-bit register.

**Field descriptions**

The GMID_EL1 bit assignments are:

![Bit assignments diagram](image)

**Bits [63:4]**

Reserved, RES0.

**BS, bits [3:0]**

Log2 of the block size in words. The minimum supported size is 16B (value == 2) and the maximum is 256B (value == 6).

**Accessing the GMID_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, GMID_EL1**

<table>
<thead>
<tr>
<th>CRn</th>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>0b11</td>
<td>0b001</td>
<td>0b100</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif;
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif;
else
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() & HCR_EL2.TID5 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return GMID_EL1;
 endif;
elsif PSTATE_EL == EL2 then
 return GMID_EL1;
elsif PSTATE_EL == EL3 then
 return GMID_EL1;
```
D13.2.45   **HACR_EL2, Hypervisor Auxiliary Control Register**

The HACR_EL2 characteristics are:

**Purpose**

Controls trapping to EL2 of implementation defined aspects of EL1 or EL0 operation.

--- **Note** ---

Arm recommends that the values in this register do not cause unnecessary traps to EL2 when HCR_EL2.{E2H, TGE} == {1, 1}.

**Configurations**

AArch64 System register HACR_EL2[31:0] is architecturally mapped to AArch32 System register HACR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

HACR_EL2 is a 64-bit register.

**Field descriptions**

The HACR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

**IMPLEMENTATION DEFINED, bits [63:0]**

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the HACR_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HACR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() & HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return HACR_EL2;
elsif PSTATE.EL == EL3 then
  return HACR_EL2;
MSR HACR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    HACR_EL2 = X[t];
elsif PSTATE_EL == EL3 then
    HACR_EL2 = X[t];
D13.2.46 HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

The HAFGRTR_EL2 characteristics are:

**Purpose**

Provides controls for traps of MRS reads of Activity Monitors System registers.

**Configurations**

This register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented. Otherwise, direct accesses to HAFGRTR_EL2 are UNDEFINED.

**Attributes**

HAFGRTR_EL2 is a 64-bit register.

**Field descriptions**

The HAFGRTR_EL2 bit assignments are:

- **Bits [63:50]**
  - Reserved, RES0.

- **AMEVTYPER115_EL0**, bit [49]
  - Trap MRS reads of AMEVTYPER115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER115 at EL0 using AArch32 when EL1 is using AArch64 to EL2.
  - 0b0: MRS reads of AMEVTYPER115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER115 at EL0 using AArch32 are not affected by this bit.
  - 0b1: If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
    - MRS reads of AMEVTYPER115_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
• MRC reads of AMEVTPER115 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR115_EL0, bit [48]

Trap MRS reads of AMEVCNTR115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR115 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR115_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR115 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVCNTR115_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR115 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER114_EL0, bit [47]

Trap MRS reads of AMEVTYPER114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER114 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER114 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVTYPER114_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER114 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR114_EL0, bit [46]

Trap MRS reads of AMEVCNTR114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR114 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR114_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR114 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVCNTR114_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR114 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER113_EL0, bit [45]

Trap MRS reads of AMEVTYPER113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER113 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER113 at EL0 using AArch32 are not affected by this bit.
\( \text{0b1} \) If EL2 is implemented and enabled in the current Security state, \( HCR_{EL2}.\{E2H,TGE\} \neq \{1,1\} \), EL1 is using AArch64, and either EL3 is not implemented or \( SCR_{EL3}.\text{FGTEn} == 1 \), then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER113_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVTYPER113 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR113_EL0, bit [44]**

Trap MRS reads of AMEVCNTR113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR113 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

\( \text{0b0} \) MRS reads of AMEVCNTR113_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR113 at EL0 using AArch32 are not affected by this bit.

\( \text{0b1} \) If EL2 is implemented and enabled in the current Security state, \( HCR_{EL2}.\{E2H,TGE\} \neq \{1,1\} \), EL1 is using AArch64, and either EL3 is not implemented or \( SCR_{EL3}.\text{FGTEn} == 1 \), then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR113_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR113 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER112_EL0, bit [43]**

Trap MRS reads of AMEVTYPER112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER112 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

\( \text{0b0} \) MRS reads of AMEVTYPER112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER112 at EL0 using AArch32 are not affected by this bit.

\( \text{0b1} \) If EL2 is implemented and enabled in the current Security state, \( HCR_{EL2}.\{E2H,TGE\} \neq \{1,1\} \), EL1 is using AArch64, and either EL3 is not implemented or \( SCR_{EL3}.\text{FGTEn} == 1 \), then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER112_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVTYPER112 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR112_EL0, bit [42]**

Trap MRS reads of AMEVCNTR112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR112 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

\( \text{0b0} \) MRS reads of AMEVCNTR112_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR112 at EL0 using AArch32 are not affected by this bit.

\( \text{0b1} \) If EL2 is implemented and enabled in the current Security state, \( HCR_{EL2}.\{E2H,TGE\} \neq \{1,1\} \), EL1 is using AArch64, and either EL3 is not implemented or \( SCR_{EL3}.\text{FGTEn} == 1 \), then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR112_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR112 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.
AMEVTYPER111_EL0, bit [41]

Trap MRS reads of AMEVTYPER111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER111 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVTYPER111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER111 at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER111_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVTYPER111 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR111_EL0, bit [40]

Trap MRS reads of AMEVCNTR111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR111 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR111_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR111 at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR111_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR111 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER110_EL0, bit [39]

Trap MRS reads of AMEVTYPER110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER110 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVTYPER110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER110 at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER110_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVTYPER110 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR110_EL0, bit [38]

Trap MRS reads of AMEVCNTR110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR110 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of AMEVCNTR110_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR110 at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR110_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER19_EL0, bit [37]**

Trap MRS reads of AMEVTYPER19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER19 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER19 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVTYPER19_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVTYPER19 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR19_EL0, bit [36]**

Trap MRS reads of AMEVCNTR19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR19 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR19_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR19 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVCNTR19_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVCNTR19 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER18_EL0, bit [35]**

Trap MRS reads of AMEVTYPER18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER18 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER18 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVTYPER18_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVTYPER18 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR18_EL0, bit [34]**

Trap MRS reads of AMEVCNTR18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR18 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR18_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR18 at EL0 using AArch32 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state, HCR_EL2.\{E2H,TGE\} != \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR18_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR18 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER17_EL0, bit [33]**

Trap MRS reads of AMEVTYPER17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER17 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- MRS reads of AMEVTYPER17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER17 at EL0 using AArch32 are not affected by this bit.
- If EL2 is implemented and enabled in the current Security state, HCR_EL2.\{E2H,TGE\} != \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - MRS reads of AMEVTYPER17_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - MRC reads of AMEVTYPER17 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR17_EL0, bit [32]**

Trap MRS reads of AMEVCNTR17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR17 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- MRS reads of AMEVCNTR17_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR17 at EL0 using AArch32 are not affected by this bit.
- If EL2 is implemented and enabled in the current Security state, HCR_EL2.\{E2H,TGE\} != \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - MRS reads of AMEVCNTR17_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - MRC reads of AMEVCNTR17 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER16_EL0, bit [31]**

Trap MRS reads of AMEVTYPER16_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER16 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- MRS reads of AMEVTYPER16_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER16 at EL0 using AArch32 are not affected by this bit.
- If EL2 is implemented and enabled in the current Security state, HCR_EL2.\{E2H,TGE\} != \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - MRS reads of AMEVTYPER16_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - MRC reads of AMEVTYPER16 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.
AMEVCNTR16_EL0, bit [30]

This bit controls trap behavior for accessing AMEVCNTR16_EL0 registers when EL1 is using AArch64.

0b0: MRS reads of AMEVCNTR16_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR16 at EL0 using AArch32 are not affected.

0b1: If EL2 is enabled and either SCR_EL3.FGTEn == 1 or HCR_EL2.{E2H,TGE} != {1,1}, then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR16_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR16 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER15_EL0, bit [29]

This bit controls trap behavior for accessing AMEVTYPER15_EL0 registers when EL1 is using AArch64.

0b0: MRS reads of AMEVTYPER15_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER15 at EL0 using AArch32 are not affected.

0b1: If EL2 is enabled and either SCR_EL3.FGTEn == 1 or HCR_EL2.{E2H,TGE} != {1,1}, then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER15_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVTYPER15 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR15_EL0, bit [28]

This bit controls trap behavior for accessing AMEVCNTR15_EL0 registers when EL1 is using AArch64.

0b0: MRS reads of AMEVCNTR15_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR15 at EL0 using AArch32 are not affected.

0b1: If EL2 is enabled and either SCR_EL3.FGTEn == 1 or HCR_EL2.{E2H,TGE} != {1,1}, then, unless the read generates a higher priority exception:

- MRS reads of AMEVCNTR15_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads of AMEVCNTR15 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER14_EL0, bit [27]

This bit controls trap behavior for accessing AMEVTYPER14_EL0 registers when EL1 is using AArch64.

0b0: MRS reads of AMEVTYPER14_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER14 at EL0 using AArch32 are not affected.

0b1: If EL2 is enabled and either SCR_EL3.FGTEn == 1 or HCR_EL2.{E2H,TGE} != {1,1}, then, unless the read generates a higher priority exception:

- MRS reads of AMEVTYPER14_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
MRC reads of AMEVTYPER14 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR14_EL0, bit [26]

Trap MRS reads of AMEVCNTR14_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR14 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR14_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR14 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVCNTR14_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVCNTR14 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER13_EL0, bit [25]

Trap MRS reads of AMEVTYPER13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER13 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER13 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVTYPER13_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVTYPER13 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR13_EL0, bit [24]

Trap MRS reads of AMEVCNTR13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR13 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR13_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR13 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVCNTR13_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVCNTR13 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVTYPER12_EL0, bit [23]

Trap MRS reads of AMEVTYPER12_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER12 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER12_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER12 at EL0 using AArch32 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- **MRS** reads of AMEVTYPEP12_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
- **MRC** reads of AMEVTYPEP12 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR12_EL0, bit [22]**

Trap **MRS** reads of AMEVCNTR12_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVCNTR12 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- **0b0** **MRS** reads of AMEVCNTR12_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVCNTR12 at EL0 using AArch32 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - **MRS** reads of AMEVCNTR12_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - **MRC** reads of AMEVCNTR12 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVTYPER11_EL0, bit [21]**

Trap **MRS** reads of AMEVTYPEP11_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVTYPEP11 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- **0b0** **MRS** reads of AMEVTYPEP11_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVTYPEP11 at EL0 using AArch32 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - **MRS** reads of AMEVTYPEP11_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - **MRC** reads of AMEVTYPEP11 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**AMEVCNTR11_EL0, bit [20]**

Trap **MRS** reads of AMEVCNTR11_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVCNTR11 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- **0b0** **MRS** reads of AMEVCNTR11_EL0 at EL1 and EL0 using AArch64 and **MRC** reads of AMEVCNTR11 at EL0 using AArch32 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - **MRS** reads of AMEVCNTR11_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - **MRC** reads of AMEVCNTR11 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.
AMEVTYPER10_EL0, bit [19]

Trap MRS reads of AMEVTYPER10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER10 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVTYPER10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER10 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVTYPER10_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVTYPER10 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMEVCNTR10_EL0, bit [18]

Trap MRS reads of AMEVCNTR10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR10 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR10_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR10 at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of AMEVCNTR10_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of AMEVCNTR10 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMCNTEN1, bit [17]

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR1_EL0 and AMCNTENSET1_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR1 and AMCNTENSET1.

0b0  The operations listed above are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of AMCNTENCLR1_EL0 and AMCNTENSET1_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of AMCNTENCLR1 and AMCNTENSET1 are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, RES0.
AMEVCNTR0<x>_EL0, bit [x+1], for x = 0 to 3

Trap MRS reads of AMEVCNTR0<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR0<x> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of AMEVCNTR0<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR0<x> at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads of AMEVCNTR0<x>_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads of AMEVCNTR0<x> at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

AMCNTEN0, bit [0]

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

•  At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR0_EL0 and AMCNTENSET0_EL0.

•  At EL0 using Arch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR0 and AMCNTENSET0.

0b0  The operations listed above are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

•  MRS reads at EL1 and EL0 using AArch64 of AMCNTENCLR0_EL0 and AMCNTENSET0_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.

•  MRC reads at EL0 using AArch32 of AMCNTENCLR0 and AMCNTENSET0 are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HAFGRTR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, HAFGRTR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x1E8];
    elseif EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FGTEn == '0' then
            // code...
        else
            // code...
        endif
    endif
endif

}
msr hafgrtr_el2, <xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>crn</th>
<th>crm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x1E8] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            HAFGRTR_EL2 = X[t];
    elsif PSTATE.EL == EL3 then
        return HAFGRTR_EL2;
D13.2.47  HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

**Purpose**

Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

**Configurations**

AArch64 System register HCR_EL2[31:0] is architecturally mapped to AArch32 System register HCR[31:0].

AArch64 System register HCR_EL2[63:32] is architecturally mapped to AArch32 System register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not enabled in the current Security state.

**Attributes**

HCR_EL2 is a 64-bit register.

**Field descriptions**

The HCR_EL2 bit assignments are:

**TWDEL, bits [63:60]**

*When FEAT_TWED is implemented:*

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE caused by HCR_EL2.TWE as \(2^{(TWDEL + 8)} \) cycles.

This field resets to an architecturally **UNKNOWN** value.

*Otherwise:*

Reserved, RES0.
TWEDEn, bit [59]

When FEAT_TWED is implemented:
TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by HCR_EL2.TWE.

0b0    The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1    The delay for taking a WFE trap is at least the number of cycles defined in HCR_EL2.TWEDEL.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TID5, bit [58]

When FEAT_MTE is implemented:
Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:
AArch64:
• GMID_EL1.

0b0    This control does not cause any instructions to be trapped.
0b1    The specified EL1 and EL0 accesses to ID group 5 registers are trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

DCT, bit [57]

When FEAT_MTE is implemented:
Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as Tagged or Untagged.

0b0    Stage 1 translations are treated as Untagged.
0b1    Stage 1 translations are treated as Tagged.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

ATA, bit [56]

When FEAT_MTE is implemented:
Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to Allocation Tags.

When access is prevented:
• Instructions which Load or Store data are Unchecked.
• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.
• MRS and MSR instructions at EL1 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2, or TFSRE0_EL1 that are not UNDEFINED are trapped to EL2.

0b0 Access is prevented.
0b1 Access is not prevented.

This field is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TTLBOS, bit [55]

When FEAT_EVT is implemented:
Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS, TLBI RVAE1OS, TLBI RVAAE1OS, TLBI RVALE1OS, and TLBI RVAALE1OS.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TTLBIS, bit [54]

When FEAT_EVT is implemented:
Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, and TLBI RVAALE1IS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAILIS, TLBIASIDIS, TLBIMVAILIS, TLBIMVAILIS, and TLBIMVAILIS.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

EnSCXT, bit [53]

When FEAT_CSV2 is implemented:
Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

0b0 When (HCR_EL2.TGE==0 or HCR_EL2.E2H==0) and EL2 is enabled in the current Security state, EL1 and EL0 access to SCXTNUM_EL0 and EL1 access to SCXTNUM_EL1 is disabled by this mechanism, causing an exception to EL2, and the values of these registers to be treated as 0.
When ((HCR_EL2.TGE==1 and HCR_EL2.E2H==1) and EL2 is enabled in the current Security state, EL0 access to SCXTNUM_EL0 is disabled by this mechanism, causing an exception to EL2, and the value of this register to be treated as 0.

0b1  This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**TOCU, bit [52]**

*When FEAT_EVT is implemented:*

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

- When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, IC IV AU, DC CV AU.
- When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
- When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

**Note**

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap to EL2. In addition:

- IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
- ICIMVAU, ICIALLU, ICIALLUI, and DCCMVAU are always UNDEFINED at EL0 using AArch32.

0b0  This control does not cause any instructions to be trapped.

0b1  Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**AMVOFFEN, bit [51]**

*When FEAT_AMUs1p1 is implemented:*

Activity Monitors Virtual Offsets Enable.

0b0  Virtualization of the Activity Monitors is disabled. Indirect reads of the virtual offset registers are zero.

0b1  Virtualization of the Activity Monitors is enabled.

This field resets to an architecturally UNKNOWN value.
D13.2 General system control registers

TICAB, bit [50]

When FEAT_EVT is implemented:
Trap ICIAULLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

- When EL1 is using AArch64, IC IALLUIS.
- When EL1 is using AArch32, ICIAULLUIS.

0b0  This control does not cause any instructions to be trapped.
0b1  EL1 execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TID4, bit [49]

When FEAT_EVT is implemented:
Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:
- EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
- EL1 writes to CSSELR_EL1.

AArch32:
- EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
- EL1 writes to CSSELR.

0b0  This control does not cause any instructions to be trapped.
0b1  The specified EL1 and EL0 accesses to ID group 4 registers are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [48]
Reserved, RES0.

FIEN, bit [47]

When FEAT_RASv1p1 is implemented:
Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

0b0  Accesses to the specified registers from EL1 are trapped to EL2, when EL2 is enabled in the current Security state.

Otherwise:
Reserved, RES0.
0b1  This control does not cause any instructions to be trapped.
If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.
If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

FWB, bit [46]

When FEAT_S2FWB is implemented:
Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

--- Note ---
When FEAT_MTE is implemented, if the stage 1 page or block descriptor specifies the Tagged
attribute, the final memory type is Tagged only if the final cacheable memory type is Inner and Outer
Write-back cacheable and the final allocation hints are Read-Allocate, Write-Allocate.

0b0  When this bit is 0, then:
•  The combination of stage 1 and stage 2 translations on memory type and
  cacheability attributes are as described in the Armv8.0 architecture. For more
  information see Combining the stage 1 and stage 2 attributes, EL1&0 translation
  regime on page D5-2628.
•  The encoding of the stage 2 memory type and cacheability attributes in bits[5:2]
  of the stage 2 page or block descriptors are as described in the Armv8.0
  architecture.

0b1  When this bit is 1, then:
•  Bit[5] of stage 2 page or block descriptor is RES0.
•  When bit[4] of stage 2 page or block descriptor is 1 and when:
  — Bits[3:2] of stage 2 page or block descriptor are 0b11, the resultant memory
    type and inner or outer cacheability attribute is the same as the stage 1
    memory type and inner or outer cacheability attribute.
  — Bits[3:2] of stage 2 page or block descriptor are 0b10, the resultant memory
    type and attribute is Normal Write-Back.
  — Bits[3:2] of stage 2 page or block descriptor are 0b0x, the resultant memory
    type will be Normal Non-cacheable except where the stage 1 memory type
    was Device-<attr> the resultant memory type will be Device-<attr>
•  When bit[4] of stage 2 page or block descriptor is 0 the memory type is Device,
  and when:
  — Bits[3:2] of stage 2 page or block descriptor are 0b00, the stage 2 memory
    type is Device-nGnRnE.
  — Bits[3:2] of stage 2 page or block descriptor are 0b01, the stage 2 memory
    type is Device-nGnRE.
  — Bits[3:2] of stage 2 page or block descriptor are 0b10, the stage 2 memory
    type is Device-nGRE.
  — Bits[3:2] of stage 2 page or block descriptor are 0b11, the stage 2 memory
    type is Device-GRE.
•  If the stage 1 translation specifies a cacheable memory type, then the stage 1
  cache allocation hint is applied to the final cache allocation hint where the final
  memory type is cacheable.
• If the stage 1 translation does not specify a cacheable memory type, then if the final memory type is cacheable, it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the manner described in Combining the stage 1 and stage 2 attributes, EL1&0 translation regime on page D5-2628.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**NV2, bit [45]**

*When FEAT_NV2 is implemented:*

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV, NV1} to provide a mechanism for hardware to transform reads and writes from System registers into reads and writes from memory.

0b0 This bit has no effect on the behavior of HCR_EL2.{NV, NV1}. The behavior of HCR_EL2.{NV, NV1} is as defined for FEAT_NV.

0b1 Redefines behavior of HCR_EL2.{NV, NV1} to enable:

• Transformation of read/writes to registers into read/writes to memory.
• Redirection of EL2 registers to EL1 registers.

Any exception taken from EL1 and taken to EL1 causes SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**AT, bit [44]**

*When FEAT_NV is implemented:*

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified instructions is trapped to EL2.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**NV1, bit [43]**

*When FEAT_NV2 is implemented:*

Nested Virtualization.

0b0 If HCR_EL2.{NV, NV2} are both 1, accesses executed from EL1 to implemented EL12, EL02, or EL2 registers are transformed to loads and stores.

If HCR_EL2.NV2 is 0 or HCR_EL2.{NV, NV2} == {0, 1}, this control does not cause any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to implemented EL2 registers are transformed to loads and stores.

If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1, and SPSR_EL1, are trapped to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.
If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads and stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are UNDEFINED.

For the list of registers affected, see Enhanced support for nested virtualization on page D5-2640.

If HCR_EL2.{NV, NV1} is {1, 0}, any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If HCR_EL2.{NV, NV1} is {1, 1}, then:

- The EL1 translation table Block and Page descriptors:
  - Bit[54] holds the PXN instead of the UXN.
  - Bit[53] is RES0.
  - Bit[6] is treated as 0 regardless of the actual value.

- If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
  - Bit[61] is treated as 0 regardless of the actual value.
  - Bit[60] holds the PXNTable instead of the UXNTable.
  - Bit[59] is RES0.

- When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.

- When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV, NV1, NV2} are {0, 1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

- Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading back the value of the HCR_EL2.NV bit.
- Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading back the value of the HCR_EL2.NV1 bit.
- Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this description.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current Security state.

0b0  This control does not cause any instructions to be trapped.

0b1  EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1 are trapped to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0 then the following effects also apply:

- Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If the bits HCR_EL2.NV and HCR_EL2.NV1 are both set to 1 then following effects also apply:

- The EL1 translation table Block and Page descriptors:
  - Bit[54] holds the PXN instead of the UXN.
  - Bit[53] is RES0.
  - Bit[6] is treated as 0 regardless of the actual value.
• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
  — Bit[61] is treated as 0 regardless of the actual value.
  — Bit[60] holds the PXNTable instead of the UXNTable.
  — Bit[59] is RES0.
• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the bit.
• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1 then the behavior is a CONSTRAINED UNPREDICTABLE choice of:
• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading than reading back the value of the HCR_EL2.NV bit.
• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading than reading back the value of the HCR_EL2.NV1 bit.
• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this description.

This bit is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**NV, bit [42]**

*When FEAT_NV2 is implemented:*

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:
• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access SPSR_EL1 and ELR_EL1 respectively.
• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to the following operations:
• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and above.

**0b0**
When this bit is set to 0, HCR_EL2.NV2 /*= 0 for all purposes other than reading this register. This control does not cause any instructions to be trapped.
When HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is implemented.

**0b1**
When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, EL1 accesses to the specified registers or the execution of the specified instructions are trapped to EL2, when EL2 is enabled in the current Security state. EL1 read accesses to the CurrentEL register return a value of 0x2.
When HCR_EL2.NV2 is 1, this control redefines EL1 register accesses so that instructions accessing SPSR_EL2, ELR_EL2, ESR_EL2, and FAR_EL2 instead access SPSR_EL1, ELR_EL1, ESR_EL1, and FAR_EL1 respectively.
When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

- The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18 are as follows:
  - Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
  - Registers accessed using MRS or MSR with a name ending in _EL12.
  - Registers accessed using MRS or MSR with a name ending in _EL02.
  - Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
  - Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

- The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:
  - EL2 translation regime Address Translation instructions and TLB maintenance instructions.
  - EL1 translation regime Address Translation instructions and TLB maintenance instructions that are only accessible from EL2 and EL3.

- The instructions for which the execution is trapped as follows:
  - SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit is not RES0 in this case. This is reported using EC syndrome value 0x17.
  - The ERET, ERETTAA, and ERETTAB instructions, reported using EC syndrome value 0x1A.

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits are set so that EL1 execution of an ERETTAA or ERETTAB instruction is trapped to EL2, then the syndrome reported is 0x1A.

This field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to the following operations:

- EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
- EL1 accesses to System registers that are not UNDEFINED at EL2.
- Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and above.

The possible values are:

0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers or the execution of the specified instructions are trapped to EL2, when EL2 is enabled in the current Security state. EL1 read accesses to the CurrentEL register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18 are as follows:

- Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
- Registers accessed using MRS or MSR with a name ending in _EL12.
- Registers accessed using MRS or MSR with a name ending in _EL02.
- Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
- Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.
The instructions for which the execution is trapped and reported using EC syndrome value \(0x18\) are as follows:

- EL2 translation regime Address Translation instructions and TLB maintenance instructions.
- EL1 translation regime Address Translation instructions and TLB maintenance instructions that are only accessible from EL2 and EL3.

The execution of the ERET, ERETA, and ERETB instructions are trapped and reported using EC syndrome value \(0x1A\)

--- Note ---

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If both of these bits are set so that EL1 execution of an ERETA or ERETB instruction is trapped to EL2, then the syndrome reported is \(0x1A\).

---

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is 1 are trapped and reported using EC syndrome value \(0x17\). HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**API, bit [41]**

When FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

- In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>==1.
- In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value \(0x09\). The Pointer Authentication instructions trapped are:

- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.
- PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.
- RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
- ERETA, ERETB, LDRAA and LDRA.

0b0 The instructions related to Pointer Authentication are trapped to EL2, when EL2 is enabled in the current Security state and the instructions are enabled for the EL1&0 translation regime, from:

- EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
- EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the HCR_EL2.API trap for the ERETA and ERETB instructions.

If EL2 is implemented and enabled in the current Security state and HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of ERETA or ERETB instructions is reported with EC syndrome value \(0x1A\) with its associated ISS field, as the fine-grained trap has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RES0.

APK, bit [40]

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1 to EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

- APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1,
- APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1,
- APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0  Access to the registers holding "key" values for pointer authentication from EL1 are trapped to EL2, when EL2 is enabled in the current Security state.

0b1  This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security state, the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

0b0  For the EL1&0 translation regimes, for permitted accesses to a memory location that use a common definition of the Shareability and Cacheability of the location, there must be no loss of coherency if the Inner Cacheability attribute for those accesses differs from the Outer Cacheability attribute.

0b1  For the EL1&0 translation regimes, for permitted accesses to a memory location that use a common definition of the Shareability and Cacheability of the location, there might be a loss of coherency if the Inner Cacheability attribute for those accesses differs from the Outer Cacheability attribute.

For more information see Mismatched memory attributes on page B2-163.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TEA, bit [37]

When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

0b0  This control does not cause exceptions to be routed from EL0 and EL1 to EL2.

0b1  Route synchronous External abort exceptions from EL0 and EL1 to EL2, when EL2 is enabled in the current Security state, if not routed to EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
TERR, bit [36]

When `FEAT_RAS` is implemented:

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

- If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x18:
  - `ERRIDR_EL1`, `ERRSELR_EL1`, `ERXADDR_EL1`, `ERXCTLR_EL1`, `ERXFR_EL1`, `ERXMISC0_EL1`, `ERXMISC1_EL1`, and `ERXSTATUS_EL1`.
  - When `FEAT_RASv1p1` is implemented, `ERXMISC2_EL1`, and `ERXMISC3_EL1`.

- If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC syndrome value 0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC syndrome value 0x04:
  - `ERRIDR`, `ERRSELR`, `ERXADDR`, `ERXADDR2`, `ERXCTLR`, `ERXCTLR2`, `ERXFR`, `ERXFR2`, `ERXMISC0`, `ERXMISC1`, `ERXMISC2`, `ERXMISC3`, and `ERXSTATUS`.
  - When `FEAT_RASv1p1` is implemented, `ERXMISC4`, `ERXMISC5`, `ERXMISC6`, and `ERXMISC7`.

 0b0 This control does not cause any instructions to be trapped.

 0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]

When `FEAT_LOR` is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to `LORSA_EL1`, `LOREA_EL1`, `LORN_EL1`, `LORC_EL1`, and `LORID_EL1` registers to EL2.

 0b0 This control does not cause any instructions to be trapped.

 0b1 Non-secure EL1 accesses to the LOR registers are trapped to EL2.

When `HCR_EL2.TGE` is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]

When `FEAT_VHE` is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's applications are running in EL0.

 0b0 The facilities to support a Host Operating System at EL2 are disabled.

 0b1 The facilities to support a Host Operating System at EL2 are enabled.

For information on the behavior of this bit see `Behavior of HCR_EL2.E2H on page D5-2632`.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
**ID, bit [33]**

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

- 0b0: This control has no effect on stage 2 of the EL1&0 translation regime.
- 0b1: Forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**CD, bit [32]**

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

- 0b0: This control has no effect on stage 2 of the EL1&0 translation regime for data accesses and translation table walks.
- 0b1: Forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**RW, bit [31]**

*When AArch32 is supported at any Exception level:*

Execution state control for lower Exception levels:

- 0b0: Lower levels are all AArch32.
- 0b1: The Execution state for EL1 is AArch64. The Execution state for EL0 is determined by the current value of PSTATE.nRW when executing at EL0.

If AArch32 state is not supported by the implementation at EL1, then this bit is RAO/WI.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has the same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RAO/WI.

**TRVM, bit [30]**

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome value 0x18.
  - SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.
• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to EL2 and reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using EC syndrome value 0x04:

— SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFS, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

  0b0  This control does not cause any instructions to be trapped.

  0b1  EL1 read accesses to the specified Virtual Memory controls are trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

    — Note ———

    EL2 provides a second stage of address translation, that a hypervisor can use to remap the address map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to the registers that control the memory system. A hypervisor might use this trap as part of its virtualization of memory management.

    ——— Note ———

    This field resets to an architecturally UNKNOWN value.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

  0b0  HVC instruction execution is enabled at EL2 and EL1.

  0b1  HVC instructions are Undefined at EL2 and EL1. Any resulting exception is taken to the Exception level at which the HVC instruction is executed.

    — Note ———

    HVC instructions are always Undefined at EL0.

    ——— Note ———

    This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

  0b0  This control does not cause any instructions to be trapped.

  0b1  In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at EL0 when the instruction is not Undefined at EL0, is trapped to EL2 when EL2 is enabled in the current Security state.

    Reading the DCZID_EL0 returns a value that indicates that the instructions this trap applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

  0b0  This control has no effect on execution at EL0.
When EL2 is not enabled in the current Security state, this control has no effect on execution at EL0.

When EL2 is enabled in the current Security state, in all cases:

- All exceptions that would be routed to EL1 are routed to EL2.
- If EL1 is using AArch64, the `SCTLR_EL1.M` field is treated as being 0 for all purposes other than returning the result of a direct read of `SCTLR_EL1`.
- If EL1 is using AArch32, the `SCTLR.M` field is treated as being 0 for all purposes other than returning the result of a direct read of `SCTLR`.
- All virtual interrupts are disabled.
- Any implementation defined mechanisms for signaling virtual interrupts are disabled.
- An exception return to EL1 is treated as an illegal exception return.
- The `MDCR_EL2.{TDRA, TDOSA, TDA, TDE}` fields are treated as being 1 for all purposes other than returning the result of a direct read of `MDCR_EL2`.

In addition, when EL2 is enabled in the current Security state, if:

- `HCR_EL2.E2H` is 0, the Effective values of the `HCR_EL2.{FMO, IMO, AMO}` fields are 1.
- `HCR_EL2.E2H` is 1, the Effective values of the `HCR_EL2.{FMO, IMO, AMO}` fields are 0.

For further information on the behavior of this bit when E2H is 1, see `Behavior of HCR_EL2.E2H` on page D5-2632.

HCR_EL2.TGE must not be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

**TVM, bit [26]**

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome value 0x18:
  - `SCTLR_EL1`, `TTBR0_EL1`, `TTBR1_EL1`, `TCSR_EL1`, `ESR_EL1`, `FAR_EL1`, `MAIR_EL1`, `AFSR0_EL1`, `AFSR1_EL1`, `MAAIR_EL1`, `CONTEXTIDR_EL1`.
- If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to EL2 and reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using EC syndrome value 0x04:
  - `SCTLR`, `TTBR0`, `TTBR1`, `TCSR`, `TTBCR`, `DACR`, `DFSR`, `IFSR`, `DFAR`, `IFAR`, `ADFSR`, `AIFSR`, `PRRR`, `NMRR`, `MAIR0`, `MAIR1`, `AMAIR0`, `AMAIR1`, `CONTEXTIDR`.

**TTLB, bit [25]**

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is enabled in the current Security state, as follows:

- When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
  - `TLBI VMALLE1`, `TLBI VAE1`, `TLBI ASIDE1`, `TLBI VAAE1`, `TLBI VALE1`, `TLBI VAALE1`.
— TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAASE1IS.
— If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI VAEE1OS, TLBI ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAASE1OS.
— If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI RVAE1OS, TLBI RVAE1IS, TLBI RVAE1OS, TLBI RVAE1IS.
— If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to TLBI RVAE1OS, TLBI RVAE1OS, TLBI RVAE1IS, TLBI RVAE1OS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome value \(0x03\):  
  — TLBIALLIS, TLBIMVAILIS, TLBIASIDIS, TLBIMVALIS, TLBIMVAAILIS.
  — TLBIALL, TLBIMVA, TLBIASID, TLBIMVAL, TLBIMVAAL
  — ITLBIALL, ITLBMVA, ITLBIASID.
  — DTTLBIALL, DTTLBMVA, DTTLBIASID.

0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions are trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note
The TLB maintenance instructions are UNDEFINED at EL0.

This field resets to an architecturally UNKNOWN value.

TBU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped to EL2 and reported with EC syndrome value \(0x18\):
  — IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.
• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC syndrome value \(0x18\):
  — IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC syndrome value \(0x18\):
  — ICIMVAU, ICIALLU, ICIALLUIS, DCCMVVAU.

Note
An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVVAU are always UNDEFINED at EL0 using AArch32.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the current Security state.
If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TPCP, bit [23]

When FEAT_DPB is implemented:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

- If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
  - DC CIV AC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.
- If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x18:
  - DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
- If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome value 0x3:
  - DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGV AC, DC CIGDV AC, DC IGV AC, DC IGDV AC, DC CGV AC, DC CGDV AC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

——— Note ————

- An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap to EL2. In addition:
  - AArch64 instructions which invalidate by VA to the Point of Coherency are always UNDEFINED at EL0 using AArch64.
  - DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using AArch32.
- In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is named TPCP.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.
Otherwise:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

- If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the following registers are trapped and reported using EC syndrome value 0x18:
  - DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.
- If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and reported using EC syndrome value 0x18.
- When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are trapped and reported using EC syndrome value 0x03.

--- Note ---

- An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap to EL2. In addition:
  - AArch64 instructions which invalidate by VA to the Point of Coherency are always UNDEFINED at EL0 using AArch64.
  - DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at EL0 using AArch32.
- In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is named TPCP.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

- If EL1 is using AArch64 state, accesses to DC ISW, DC CISW, DC CISW are trapped to EL2, reported using EC syndrome value 0x18.
- If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2, reported using EC syndrome value 0x03.

If FEAT_MTE is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC CGDSW, DC CIGSW, and DC CIGDSW.

--- Note ---

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.
This field resets to an architecturally UNKNOWN value.

**TACR, bit [21]**

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and reported using EC syndrome value \(0x18\).
- If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are trapped to EL2 and reported using EC syndrome value \(0x03\).

- **0b0** This control does not cause any instructions to be trapped.
- **0b1** EL1 accesses to the specified registers are trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

---

**Note**

ACTLR_EL1 is not accessible at EL0

ACTLR, and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement global control bits for the PE.

---

This field resets to an architecturally UNKNOWN value.

**TIDCP, bit [20]**

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED functionality to EL2, when EL2 is enabled in the current Security state as follows:

- In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped and reported using EC syndrome \(0x18\):
  - IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and SYSL, with CRn == \{11, 15\}.
  - IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the S3_\_<op1>_\_<Cm>_\_<Cn>_\_<op2> register name.
- In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and reported using EC syndrome \(0x03\):
  - All coproc==p15, CRn==c9, opc1 == \{0-7\}, CRm == \{c0-c2, c5-c8\}, opc2 == \{0-7\}.
  - All coproc==p15, CRn==c10, opc1 ==\{0-7\}, CRm == \{c0, c1, c4, c8\}, opc2 == \{0-7\}.
  - All coproc==p15, CRn==c11, opc1==\{0-7\}, CRm == \{c0-c8, c15\}, opc2 == \{0-7\}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from EL0 generates an exception that is taken to EL1.

- **0b0** This control does not cause any instructions to be trapped.
- **0b1** EL1 accesses to or execution of the specified encodings reserved for IMPLEMENTATION DEFINED functionality are trapped to EL2, when EL2 is enabled in the current Security state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.
Note

Arm expects the trapping of EL0 accesses to these functions to EL2 to be unusual, and used only when the hypervisor is virtualizing EL0 operation. Arm strongly recommends that unless the hypervisor must virtualize EL0 operation, an EL0 access to any of these functions is UNDEFINED, as it would be if the implementation did not include EL2. The PE then takes any resulting exception to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting from the register access being UNDEFINED.

This field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security state.

If execution is in AArch64 state the trap is reported using EC syndrome value 0x17.
If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Trap exceptions and SMC exceptions have different preferred return addresses.

0b0 This control does not cause any instructions to be trapped.
0b1 If EL3 is implemented, then any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2 is enabled in the current Security state, regardless of the value of SCR_EL3.SMD.
If EL3 is not implemented, FEAT_NV is implemented, and HCR_EL2.NV is 1, then any attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2, when EL2 is enabled in the current Security state.
If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION DEFINED whether:

- Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2 is enabled in the current Security state.
- Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are UNDEFINED at EL0.
If EL3 is not implemented and HCR_EL2.NV is 0, it is IMPLEMENTATION DEFINED whether this bit is:

- RES0.
- Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security state, as follows:
In AArch64 state:

- Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:
  - ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1,
    ID_MMFRO_EL1, ID_MMF1_EL1, ID_MMF2_EL1, ID_MMF3_EL1,
    ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
    ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.
  - ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1,
    ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1,
    ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64AFR0_EL1,
    ID_AA64AFR1_EL1.
  - If FEAT_FGT is implemented:
    - ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.
    - ID_AAA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.
    - ID_DFR1_EL1 is trapped to EL2.
    - ID_AA64ZFR0_EL1 is trapped to EL2.
    - This field traps all MRS accesses to registers in the following range that are not
      already mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0,
      CRm == {c1-c7}, op2 == {0-7}.
  - If FEAT_FGT is not implemented:
    - ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless
      implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses
      to ID_MMFR4_EL1 or ID_MMFR5_EL1 are trapped to EL2.
    - ID_AAA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless
      implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses
      to ID_AAA64MMFR2_EL1 or ID_ISAR6_EL1 are trapped to EL2.
    - ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is
      IMPLEMENTATION DEFINED whether accesses to ID_DFR1_EL1 are trapped to
      EL2.
    - ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
      IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are
      trapped to EL2.
    - Otherwise it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses
      to registers in the following range that are not already mentioned in this field
      description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

- VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC
  syndrome value 0x08, unless access is also trapped by HCPTR which takes priority.

- MRC access to the following registers are trapped to EL2, reported using EC syndrome value
  0x03:
  - ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFRO, ID_MMF1,
    ID_MMF2, ID_MMF3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3,
    ID_ISAR4, ID_ISAR5.
  - If FEAT_FGT is implemented:
    - ID_MMFR4 and ID_MMFR5 are trapped to EL2.
    - ID_ISAR6 is trapped to EL2.
    - ID_DFR1 is trapped to EL2.
  - This field traps all MRC accesses to encodings in the following range that are not
    already mentioned in this field description: coproc == p15, opc1 == 0, CRn
    == c0, CRm == {c2-c7}, opc2 == {0-7}. 
— If FEAT_FGT is not implemented:
  — ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.
  — ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.
  — ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.
  — Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC accesses to registers in the following range not already mentioned in this field description with coproc == p15, opc1 == 0, CRn == c0, CRm == \{c2-c7\}, opc2 == \{0-7\}.

\[ 0b0 \]
This control does not cause any instructions to be trapped.

\[ 0b1 \]
The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**TID2, bit [17]**

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state, as follows:

- If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.
- If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are UNDEFINED and any resulting exception takes precedence over this trap.
- If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.
- If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are trapped to EL2, reported using EC syndrome value 0x03.
- If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome value 0x03.

\[ 0b0 \]
This control does not cause any instructions to be trapped.

\[ 0b1 \]
The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2 is enabled in the current Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.E2H, TGE is \{1, 1\}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

**TID1, bit [16]**

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state as follows:

- In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, reported using EC syndrome value 0x18.
- In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC syndrome value 0x03.

\[ 0b0 \]
This control does not cause any instructions to be trapped.

\[ 0b1 \]
The specified EL1 read accesses to ID group 1 registers are trapped to EL2, when EL2 is enabled in the current Security state.
When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**TID0, bit [15]**

*When AArch32 is supported at any Exception level:*

Trap ID group 0. Traps the following register accesses to EL2:
- EL1 reads of the JIDR, reported using EC syndrome value 0x05.
- If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value 0x05.
- EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

**Note**
- It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is UNDEFINED at EL0 then any resulting exception takes precedence over this trap.
- The FPSID is not accessible at EL0 using AArch32.
- Writes to the FPSID are ignored, and not trapped by this control.

0b0  This control does not cause any instructions to be trapped.
0b1  The specified EL1 read accesses to ID group 0 registers are trapped to EL2, when EL2 is enabled in the current Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**TWE, bit [14]**

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from both Execution states, reported using EC syndrome value 0x01.

0b0  This control does not cause any instructions to be trapped.
0b1  Any attempt to execute a WFE instruction at EL0 or EL1 is trapped to EL2, when EL2 is enabled in the current Security state, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWE or SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

**Note**
Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see *Wait for Event mechanism and Send event on page D1-2391.*

This field resets to an architecturally UNKNOWN value.
TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from both Execution states, reported using EC syndrome value 0x01.

0b0  This control does not cause any instructions to be trapped.
0b1  Any attempt to execute a WFI instruction at EL0 or EL1 is trapped to EL2, when EL2 is enabled in the current Security state, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWI or SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see Wait For Interrupt on page D1-2394.

This field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

0b0  This control has no effect on the EL1&0 translation regime.
0b1  In both Security states:
  •  When EL1 is using AArch64, the PE behaves as if the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of SCTLR_EL1.
  •  When EL1 is using AArch32, the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the value of a direct read of SCTLR.
  •  The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes other than returning the value of a direct read of HCR_EL2.
  •  The memory type produced by stage 1 of the EL1&0 translation regime is Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this field.

This field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from EL1 or EL0:

0b00  No effect.
0b01  Inner Shareable.
0b10  Outer Shareable.
0b11  Full system.
This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability attributes from two stages of address translation. When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this field behaves as 0b00 for all purposes other than a direct read of the value of this bit. This field resets to an architecturally UNKNOWN value.

**FB, bit [9]**

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from EL1:

AArch32: BPIALL, TLBIA MALL, TLBIMVA, TLBIS AID, DTLBIALL, DTLBIMVA, DTLBIAS ID, ITLBI A M ALL, ITLBI MVA, ITLBIAS ID, TLBIMVAL, TLBIMVA A L.

AArch64: TLBI VMALLE1, TLBI VA E1, TLBI ASIDE1, TLBI VAAE1, TLBI VA E1, TLBI VAAE1, IC IALLU, TLBI RV A E1, TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.

0b0 This field has no effect on the operation of the specified instructions.
0b1 When one of the specified instruction is executed at EL1, the instruction is broadcast within the Inner Shareable shareability domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**VSE, bit [8]**

Virtual SError interrupt.

0b0 This mechanism is not making a virtual SError interrupt pending.
0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is only enabled when the value of HCR_EL2.{TGE, AMO} is \{0, 1\}. This field resets to an architecturally UNKNOWN value.

**VI, bit [7]**

Virtual IRQ Interrupt.

0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is \{0, 1\}. This field resets to an architecturally UNKNOWN value.

**VF, bit [6]**

Virtual FIQ Interrupt.

0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is \{0, 1\}. This field resets to an architecturally UNKNOWN value.

**AMO, bit [5]**

Physical SError interrupt routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:

- Physical SError interrupts are not taken to EL2.
- When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using AArch64, physical SError interrupts are not taken unless they are routed to EL3 by the SCR_EL3.EA bit.
- Virtual SError interrupts are disabled.
When executing at any Exception level, and EL2 is enabled in the current Security state:

- Physical SError interrupts are taken to EL2, unless they are routed to EL3.
- When the value of HCR_EL2.TGE is 0, then virtual SError interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see *Asynchronous exception routing on page D1-2358.*

This field resets to an architecturally UNKNOWN value.

**IMO, bit [4]**

Physical IRQ Routing.

When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:

- Physical IRQ interrupts are not taken to EL2.
- When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using AArch64, physical IRQ interrupts are not taken unless they are routed to EL3 by the SCR_EL3.IRQ bit.
- Virtual IRQ interrupts are disabled.

When executing at any Exception level, and EL2 is enabled in the current Security state:

- Physical IRQ interrupts are taken to EL2, unless they are routed to EL3.
- When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see *Asynchronous exception routing on page D1-2358.*

This field resets to an architecturally UNKNOWN value.

**FMO, bit [3]**

Physical FIQ Routing.

When executing at Exception levels below EL2, and EL2 is enabled in the current Security state:

- Physical FIQ interrupts are not taken to EL2.
- When the value of HCR_EL2.TGE is 0, if the PE is executing at EL2 using AArch64, physical FIQ interrupts are not taken unless they are routed to EL3 by the SCR_EL3.FIQ bit.
- Virtual FIQ interrupts are disabled.

When executing at any Exception level, and EL2 is enabled in the current Security state:

- Physical FIQ interrupts are taken to EL2, unless they are routed to EL3.
- When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.
If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

- Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
- When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other than a direct read of the value of this bit.
- When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information, see *Asynchronous exception routing* on page D1-2358.

This field resets to an architecturally UNKNOWN value.

**PTW, bit [2]**

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made to a type of Device memory. If this occurs, then the value of this bit determines the behavior:

- 0b0: The translation table walk occurs as if it is to Normal Non-cacheable memory. This means it can be made speculatively.
- 0b1: The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**SWIO, bit [1]**

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to perform a data cache clean and invalidate by set/way:

- 0b0: This control has no effect on the operation of data cache invalidate by set/way instructions.
- 0b1: Data cache invalidate by set/way instructions perform a data cache clean and invalidate by set/way.

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DCISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

This field resets to an architecturally UNKNOWN value.

**VM, bit [0]**

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled in the current Security state.

- 0b0: EL1&0 stage 2 address translation disabled.
- 0b1: EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.
Accessing the HCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HCR_EL2**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV2,NV == '11' then
 return NVMem[0x078];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 return HCR_EL2;
elsif PSTATE_EL == EL3 then
 return HCR_EL2;
```

**MSR HCR_EL2, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV2,NV == '11' then
 NVMem[0x078] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 HCR_EL2 = X[t];
elsif PSTATE_EL == EL3 then
 HCR_EL2 = X[t];
```
### D13.2.48 HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

The HDFGRTR_EL2 characteristics are:

**Purpose**

Provides controls for traps of \texttt{MRS} and \texttt{MRC} reads of debug, trace, PMU, and Statistical Profiling System registers.

**Configurations**

This register is present only when FEAT\_FGT is implemented. Otherwise, direct accesses to HDFGRTR\_EL2 are UNDEFINED.

**Attributes**

HDFGRTR\_EL2 is a 64-bit register.

**Field descriptions**

The HDFGRTR\_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:59]</td>
</tr>
<tr>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**PMCEIDn\_EL0, bit [58]**

When \texttt{FEAT\_PMUv3} is implemented:

\texttt{MRS} reads of PMCEID<n>\_EL0 at EL1 and EL0 using AArch64 and \texttt{MRC} reads of PMCEID<n> at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- \texttt{0b0}  \texttt{MRS} reads of PMCEID<n>\_EL0 at EL1 and EL0 using AArch64 and \texttt{MRC} reads of PMCEID<n> at EL0 using AArch32 are not affected by this bit.
- \texttt{0b1}  If EL2 is implemented and enabled in the current Security state, HCR\_EL2.\{E2H,TGE\} \!= \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR\_EL3.FGTEn \!= 1, then, unless the read generates a higher priority exception:
  - \texttt{MRS} reads of PMCEID<n>\_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value \texttt{0x18}.

---

**Legend**

D13-3144  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  
ARM DDI 0487F.c  
Non-Confidential  
ID072120
• MRC reads of PMCEID<0<n> at EL0 using AArch32 are trapped to EL2 and reported
  with EC syndrome value 0x03.

  In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

**PMUSERENR_EL0, bit [57]**

*When FEAT_PMUv3 is implemented:*

Trap MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of
PMUSERENR at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1},
EL1 is using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  • MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18.
  • MRC reads of PMUSERENR at EL0 using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

  In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

**Bits [56:49]**

Reserved, RES0.

**TRCVICTLR, bit [48]**

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:*

Trap MRS reads of TRCVICTLR at EL1 using AArch64 to EL2.

0b0  MRS reads of TRCVICTLR are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCVICTLR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

  In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

**TRCSTATR, bit [47]**

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is
implemented:*

Trap MRS reads of TRCSTATR at EL1 using AArch64 to EL2.

0b0  MRS reads of TRCSTATR are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCSTATR at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

  In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.
TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

- Trap MRS reads of TRCSSCSR<n> at EL1 using AArch64 to EL2.
- \(0b0\) MRS reads of TRCSSCSR<n> are not affected by this bit.
- \(0b1\) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \(SCR\_EL3\_FGTEn == 1\), MRS reads of TRCSSCSR<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \(0x18\), unless the read generates a higher priority exception.

If Single-shot Comparator n is not implemented, a read of TRCSSCSR<n> is UNDEFINED.

This bit is RES0 if TRCSSCSR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

- Trap MRS reads of TRCSEQSTR at EL1 using AArch64 to EL2.
- \(0b0\) MRS reads of TRCSEQSTR are not affected by this bit.
- \(0b1\) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \(SCR\_EL3\_FGTEn == 1\), MRS reads of TRCSEQSTR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \(0x18\), unless the read generates a higher priority exception.

This bit is RES0 if TRCSEQSTR is not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

- Trap MRS reads of TRCPRGCTLR at EL1 using AArch64 to EL2.
- \(0b0\) MRS reads of TRCPRGCTLR are not affected by this bit.
- \(0b1\) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \(SCR\_EL3\_FGTEn == 1\), MRS reads of TRCPRGCTLR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \(0x18\), unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCOSLSR, bit [43]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

- Trap MRS reads of TRCOSLSR at EL1 using AArch64 to EL2.
- \(0b0\) MRS reads of TRCOSLSR are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCOSLSR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

Bit [42]
Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCIMSPEC<n> at EL1 using AArch64 to EL2.
0b0 MRS reads of TRCIMSPEC<n> are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCIMSPEC<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a read of TRCIMSPEC<n> is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCID, bit [40]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
• TRCDEVARCH.
• TRCDEVID.
• TRCIDR<n>.
0b0 MRS reads of the System registers listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

Bits [39:38]
Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCCNTVR<n> at EL1 using AArch64 to EL2.
0b0 MRS reads of TRCCNTVR<n> are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCCNTVR<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

If Counter n is not implemented, a read of TRCCNTVR<n> is UNDEFINED.

This bit is RES0 if TRCCNTVR<n> are not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCCCLAIM, bit [36]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- TRCCCLAIMCLR.
- TRCCCLAIMSET.

0b0 MRS reads of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCAUXCTLR, bit [35]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUXCTLR at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCAUXCTLR are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCAUXCTLR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCAUTHSTATUS, bit [34]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUTHSTATUS at EL1 using AArch64 to EL2.

0b0 MRS reads of TRCAUTHSTATUS are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TRCAUTHSTATUS at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
Otherwise:
Reserved, RES0.

TRC, bit [33]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- TRCACATR<n>.
- TRCACVR<n>.
- TRCBBCTL.
- TRCCCCTL.
- TRCCIDCCTL<n>.
- TRCCIDCVR<n>.
- TRCCNTCTL<n>.
- TRCCNTRLDVR<n>.
- TRCCONFIG.
- TRCEVENTCTL0R.
- TRCEVENTCTL1R.
- TRCEXITINSEL.
- TRCQCTL.
- TRCRSCTL<n>.
- TRCSEQEVR<n>.
- TRCSEQRSITEV.
- TRCSSCCR<n>.
- TRCSSPCICR<n>.
- TRCSTALLCTL.
- TRCSYNCP.
- TRCTRACEID.
- TRCTSCTL.
- TRCVIECTL.
- TRCVIPCSSCTL.
- TRCVISSCTL.
- TRCVMIDCCTL<n>.
- TRCVMIDCVR<n>.

0b0 MRS reads of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

A read of an unimplemented register is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.
PMSLATFR_EL1, bit [32]

*When FEAT_SPE is implemented:*

- Trap MRS reads of PMSLATFR_EL1 at EL1 using AArch64 to EL2.
- \( \text{0b0} \) MRS reads of PMSLATFR_EL1 are not affected by this bit.
- \( \text{0b1} \) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), MRS reads of PMSLATFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \( 0\times18 \), unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to \( 0 \).

*Otherwise:*

Reserved, RES0.

PMSIRR_EL1, bit [31]

*When FEAT_SPE is implemented:*

- Trap MRS reads of PMSIRR_EL1 at EL1 using AArch64 to EL2.
- \( \text{0b0} \) MRS reads of PMSIRR_EL1 are not affected by this bit.
- \( \text{0b1} \) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), MRS reads of PMSIRR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \( 0\times18 \), unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to \( 0 \).

*Otherwise:*

Reserved, RES0.

PMSIDR_EL1, bit [30]

*When FEAT_SPE is implemented:*

- Trap MRS reads of PMSIDR_EL1 at EL1 using AArch64 to EL2.
- \( \text{0b0} \) MRS reads of PMSIDR_EL1 are not affected by this bit.
- \( \text{0b1} \) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), MRS reads of PMSIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \( 0\times18 \), unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to \( 0 \).

*Otherwise:*

Reserved, RES0.

PMSICR_EL1, bit [29]

*When FEAT_SPE is implemented:*

- Trap MRS reads of PMSICR_EL1 at EL1 using AArch64 to EL2.
- \( \text{0b0} \) MRS reads of PMSICR_EL1 are not affected by this bit.
- \( \text{0b1} \) If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), MRS reads of PMSICR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \( 0\times18 \), unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to \( 0 \).

*Otherwise:*

Reserved, RES0.
PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

- Trap MRS reads of PMSFCR_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of PMSFCR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMSFCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

- Trap MRS reads of PMSEVFR_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of PMSEVFR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMSEVFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

- Trap MRS reads of PMSCR_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of PMSCR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

- Trap MRS reads of PMBSR_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of PMBSR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMBSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
PMBPTR_EL1, bit [24]

*When FEAT_SPE is implemented:*

Trap MRS reads of PMBPTR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of PMBPTR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMBPTR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

*When FEAT_SPE is implemented:*

Trap MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of PMBLIMITR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

PMMIR_EL1, bit [22]

*When FEAT_PMUv3 is implemented:*

Trap MRS reads of PMMIR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of PMMIR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PMMIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

PMSELR_EL0, bit [19]

*When FEAT_PMUv3 is implemented:*

Trap MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- **0b0**: MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0 using AArch32 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:
  - MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
• MRC reads of PMSELR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMOVSN, bit [18]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.
Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: MRS reads of PMOVSCALLR_EL0 and PMOVSET_EL0.
- At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMOVSR and PMOVSEST.

0b0 The operations listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.[E2H,TGE] != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads at EL1 and EL0 using AArch64 of PMOVSCALLR_EL0 and PMOVSEST_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads at EL0 using AArch32 of PMOVSR and PMOVSEST are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- PMINTENCLR_EL1.
- PMINTENSET_EL1.

0b0 MRS reads of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.
Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: MRS reads of PMCNTENCLR_EL0 and PMCNTENSET_EL0.
- At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMCNTENCLR and PMCNTENSET.

  0b0  The operations listed above are not affected by this bit.

  0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

      • MRS reads at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.

      • MRC reads at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

  In a system where the PE resets into EL2, this field resets to 0.

  Otherwise:

  Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

Traps MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

  0b0  MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of PMCCNTR at EL0 using AArch32 are not affected by this bit.

  0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

      • MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

      • MRC and MRRC reads of PMCCNTR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03 (for MRC) or 0x04 (for MRRC).

  In a system where the PE resets into EL2, this field resets to 0.

  Otherwise:

  Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Traps MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

  0b0  MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR at EL0 using AArch32 are not affected by this bit.

  0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

      • MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

      • MRC reads of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this bit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.
In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**PMEVTYPER\_n\_EL0, bit [13]**

*When FEAT\_PMUv3 is implemented:*

Trap \texttt{MRS} reads and \texttt{MRC} reads of multiple System registers.

Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: \texttt{MRS} reads of PMEVTYPER\_<\_n\>_EL0 and PMXEVTYPER\_EL0.
- At EL0 using Arch32 when EL1 is using AArch64: \texttt{MRC} reads of PMEVTYPER\_<\_n\> and PMXEVTYPER.

0b0 The operations listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR\_EL0.\{E2H,TGE\} != \{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR\_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- \texttt{MRS} reads at EL1 and EL0 using AArch64 of PMEVTYPER\_<\_n\>_EL0 and PMXEVTYPER\_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.
- \texttt{MRC} reads at EL0 using AArch32 of PMEVTYPER\_<\_n\> and PMXEVTYPER are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

When FEAT\_FGT is implemented, then, regardless of the value of this bit, for each value n:

- If event counter n is not implemented, the following accesses are UNDEFINED:
  - In AArch64 state, a read of PMEVTYPER\_<\_n\>_EL0, or, if n is not 31, a read of PMXEVTYPER\_EL0 when PMSEL\_EL0.SEL == n.
  - In AArch32 state, a read of PMEVTYPER\_<\_n\>, or, if n is not 31, a read of PMXEVTYPER when PMSEL.SEL == n.

- If event counter n is implemented and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to EL2 from EL0 or EL1:
  - In AArch64 state, a read of PMEVTYPER\_<\_n\>_EL0, or a read of PMXEVTYPER\_EL0 when PMSEL\_EL0.SEL == n, reported with EC syndrome value 0x18.
  - In AArch32 state, a read of PMEVTYPER\_<\_n\>, or a read of PMXEVTYPER when PMSEL.SEL == n, reported with EC syndrome value 0x03.

See also HDFGRTR\_EL2.PMCCFILTR\_EL0.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**PMEVCNTR\_n\_EL0, bit [12]**

*When FEAT\_PMUv3 is implemented:*

Trap \texttt{MRS} reads and \texttt{MRC} reads of multiple System registers.

Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: \texttt{MRS} reads of PMEVCNTR\_<\_n\>_EL0 and PMXEVCNTR\_EL0.
- At EL0 using Arch32 when EL1 is using AArch64: \texttt{MRC} reads of PMEVCNTR\_<\_n\> and PMXEVCNTR.

0b0 The operations listed above are not affected by this bit.
If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

- MRS reads at EL1 and EL0 using AArch64 of PMEVCNTR<\(n\)>_EL0 and PMXEVCNTR_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.
- MRC reads at EL0 using AArch32 of PMEVCNTR<\(n\)> and PMXEVCNTR are trapped to EL2 and reported with EC syndrome value 0x03, unless the read generates a higher priority exception.

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value \(n\):

- If event counter \(n\) is not implemented, the following accesses are UNDEFINED:
  - In AArch64 state, a read of PMEVCNTR<\(n\)>_EL0, or a read of PMXEVCNTR_EL0 when PMSELR_EL0.SEL == \(n\).
  - In AArch32 state, a read of PMEVCNTR<\(n\)>, or a read of PMXEVCNTR when PMSELR.SEL == \(n\).

- If event counter \(n\) is implemented, and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to EL2 from EL0 or EL1:
  - In AArch64 state, a read of PMEVCNTR<\(n\)>_EL0, or a read of PMXEVCNTR_EL0 when PMSELR_EL0.SEL == \(n\), reported with EC syndrome value 0x18.
  - In AArch32 state, a read of PMEVCNTR<\(n\)>, or a read of PMXEVCNTR when PMSELR.SEL == \(n\), reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

OSDLR_EL1, bit [11]

*When FEAT_DoubleLock is implemented:*

Trap MRS reads of OSDLR_EL1 at EL1 using AArch64 to EL2.

- **0b0** MRS reads of OSDLR_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of OSDLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MRS reads of OSECCR_EL1 at EL1 using AArch64 to EL2.

- **0b0** MRS reads of OSECCR_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of OSECCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**OSLSR_EL1, bit [9]**

Trap MRS reads of OSLSR_EL1 at EL1 using AArch64 to EL2.

- **0b0** MRS reads of OSLSR_EL1 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of OSLSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [8]
Reserved, RES0.

DBGPRCR_EL1, bit [7]
Trap MRS reads of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGPRCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGPRCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGAUTHSTATUS_EL1, bit [6]
Trap MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGAUTHSTATUS_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGCLAIM, bit [5]
Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- DBGCLAIMCLR_EL1.
- DBGCLAIMSET_EL1.

0b0 MRS reads of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]
Trap MRS reads of MDSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of MDSCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of MDSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]
Trap MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of DBGWVR<n>_EL1 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

**DBGWCRn_EL1, bit [2]**

<table>
<thead>
<tr>
<th>0b0</th>
<th>0b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap MRS reads of DBGWCR&lt;n&gt;_EL1 at EL1 using AArch64 to EL2.</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGWCR&lt;n&gt;_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.</td>
</tr>
</tbody>
</table>

If watchpoint n is not implemented, a read of DBGWCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

**DBGVBVRn_EL1, bit [1]**

<table>
<thead>
<tr>
<th>0b0</th>
<th>0b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap MRS reads of DBGVBVR&lt;n&gt;_EL1 at EL1 using AArch64 to EL2.</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGVBVR&lt;n&gt;_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.</td>
</tr>
</tbody>
</table>

If breakpoint n is not implemented, a read of DBGVBVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

**DBGBCRn_EL1, bit [0]**

<table>
<thead>
<tr>
<th>0b0</th>
<th>0b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap MRS reads of DBGBCR&lt;n&gt;_EL1 at EL1 using AArch64 to EL2.</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DBGBCR&lt;n&gt;_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.</td>
</tr>
</tbody>
</table>

If breakpoint n is not implemented, a read of DBGBCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

**Accessing the HDFGRTR_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HDFGRTR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x1D0];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && SCR_EL3.FGTEn == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
    UNDEFINED;
  elseif Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return HDFGRTR_EL2;
elsif PSTATE.EL == EL3 then
  return HDFGRTR_EL2;

MSR HDFGRTR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '1' then
    NVMem[0x1D0] = X[t];
  elseif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && SCR_EL3.FGTEn == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
    UNDEFINED;
  elseif Halted() && SCR_EL3.FGTEn == '0' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    HDFGRTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  HDFGRTR_EL2 = X[t];
D13.2.49 HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

The HDFGWTR_EL2 characteristics are:

**Purpose**

Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling System registers.

**Configurations**

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HDFGWTR_EL2 are UNDEFINED.

**Attributes**

HDFGWTR_EL2 is a 64-bit register.

**Field descriptions**

The HDFGWTR_EL2 bit assignments are:

63 58 57 56 50 49 48 47 46 45 44 42 41 40 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

---

Bits [63:58]

Reserved, RES0.

PMUSERENR_EL0, bit [57]

*When FEAT_PMUv3 is implemented:*

- Trap MSR writes of PMUSERENR_EL0 at EL1 using AArch64 to EL2.
- 0b0 MSR writes of PMUSERENR_EL0 are not affected by this bit.
- 0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn = 1, MSR writes of PMUSERENR_EL0 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
Otherwise:
Reserved, RES0.

Bits [56:50]
Reserved, RES0.

TRFCR_EL1, bit [49]

When FEAT_TRF is implemented:
Trap MSR writes of TRFCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of TRFCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRFCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:
Trap MSR writes of TRCVICTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCVICTLR are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCVICTLR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

Bit [47]
Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:
Trap MSR writes of TRCSSCSR<n> at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCSSCSR<n> are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCSSCSR<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

If Single-shot Comparator n is not implemented, a write of TRCSSCSR<n> is UNDEFINED.
This bit is RES0 if TRCSSCSR<n> are not implemented.
In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.
TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCSEQSTR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCSEQSTR are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCSEQSTR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

This bit is RES0 if TRCSEQSTR is not implemented.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCPRGCTLR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCPRGCTLR are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCPRGCTLR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [43]

Reserved, RES0.

TRCOSLAR, bit [42]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCOSLAR at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCOSLAR are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCOSLAR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

0b0 MSR writes of TRCIMSPEC<n> are not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCIMSPEC<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a write of TRCIMSPEC<n> is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

Bits [40:38]
Reserved, RES0.

TRCCNTVRn, bit [37]

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:*

Trap MSR writes of TRCCNTVR<n> at EL1 using AArch64 to EL2.

0b0  MSR writes of TRCCNTVR<n> are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TRCCNTVR<n> at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

If Counter n is not implemented, a write of TRCCNTVR<n> is UNDEFINED.
This bit is RES0 if TRCCNTVR<n> are not implemented.
In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

TRCCLAIM, bit [36]

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:*

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- TRCCLAIMCLR.
- TRCCLAIMSET.

0b0  MSR writes of the System registers listed above are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**
Reserved, RES0.

TRCAUXCTLR, bit [35]

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:*

Trap MSR writes of TRCAUXCTLR at EL1 using AArch64 to EL2.

0b0  MSR writes of TRCAUXCTLR are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR\_EL3.FGTEn} = 1 \), MSR writes of TRCAUXCTLR at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value \( 0x18 \), unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**Bit [34]**

Reserved, RES0.

**TRC, bit [33]**

*When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:*

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- TRCACATR<\(n\)>
- TRCACVR<\(n\)>
- TRCBCBCTL.R
- TRCCCCCTL.R
- TRCCIDCCTLR<\(n\)>
- TRCCIDCVR<\(n\)>
- TRCCNTCTL<\(n\)>
- TRCCNTRLDVR<\(n\)>
- TRCCONFIGR.
- TRCEVENTCTL0.R
- TRCEVENTCTL1.R
- TRCEX TinSEL.R, if FEAT_ETMv4 is implemented.
- TRCRSCTL<\(n\)>
- TRCSEQEVR<\(n\)>
- TRCSEQRSTEVR.
- TRCSSCCR<\(n\)>
- TRCSSPCICR<\(n\)>
- TRCSTALLCTL.R.
- TRCSYNCR.
- TRCTRACEIDR.
- TRCTSTCTL.R.
- TRCVIIECTLR.
- TRCVIPCSSCTLR.
- TRCVISSCTLR.
- TRCVMIDCCTLR<\(n\)>
- TRCVMIDCVR<\(n\)>

MSR writes of the System registers listed above are not affected by this bit.

If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR\_EL3.FGTEn} = 1 \), MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value \( 0x18 \), unless the write generates a higher priority exception.
A write of an unimplemented register is UNDEFINED.
In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:
Trap MSR writes of PMSLATFR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of PMSLATFR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSLATFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:
Trap MSR writes of PMSIRR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of PMSIRR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSIRR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

Bit [30]
Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:
Trap MSR writes of PMSICR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of PMSICR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSICR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:
Trap MSR writes of PMSFCR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of PMSFCR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSFCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

**PMSEVFR_EL1, bit [27]**

When FEAT_SPE is implemented:
Trap MSR writes of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSEVFR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSEVFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

**PMSCR_EL1, bit [26]**

When FEAT_SPE is implemented:
Trap MSR writes of PMSCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMSCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

**PMBSR_EL1, bit [25]**

When FEAT_SPE is implemented:
Trap MSR writes of PMBSR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBSR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMBSR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

**PMBPTR_EL1, bit [24]**

When FEAT_SPE is implemented:
Trap MSR writes of PMBPTR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of PMBPTR_EL1 are not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMBPTR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

Trap MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of PMBLIMITR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

PMCR_EL0, bit [21]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

  • MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  • MCR writes of PMCR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSWINC_EL0, bit [20]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

  • MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
• MCR writes of PMSWINC at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMSELRL0, bit [19]

When FEAT_PMUv3 is implemented:
Trap MSR writes of PMSELRL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELRL0 at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MSR writes of PMSELRL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELRL0 at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.E2H,TGE != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:
• MSR writes of PMSELRL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
• MCR writes of PMSELRL0 at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMOVSLR, bit [18]

When FEAT_PMUv3 is implemented:
Trap MSR writes and MCR writes of multiple System registers.
Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMOVSLR_EL0 and PMOVSET_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMOVSR and PMOVSET.

0b0 The operations listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.E2H,TGE != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:
• MSR writes at EL1 and EL0 using AArch64 of PMOVSLR_EL0 and PMOVSET_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.
• MCR writes at EL0 using AArch32 of PMOVSR and PMOVSET are trapped to EL2 and reported with EC syndrome value 0x03, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:
Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
• PMINTENCLR_EL1.
- **PMINTENSET_EL1.**
  
  **0b0**  
  MSR writes of the System registers listed above are not affected by this bit.
  
  **0b1**  
  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

  In a system where the PE resets into EL2, this field resets to 0.

  **Otherwise:**

  Reserved, RES0.

**PMCNTEN, bit [16]**

**When FEAT_PMUv3 is implemented:**

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: MSR writes of PMCNTENCLR_EL0 and PMCNTENSET_EL0.
- At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMCNTENCLR and PMCNTENSET.

  **0b0**  
  The operations listed above are not affected by this bit.
  
  **0b1**  
  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:
  
  - MSR writes at EL1 and EL0 using AArch64 of PMCNTENCLR_EL0 and PMCNTENSET_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.
  
  - MCR writes at EL0 using AArch32 of PMCNTENCLR and PMCNTENSET are trapped to EL2 and reported with EC syndrome value 0x03, unless the write generates a higher priority exception.

  In a system where the PE resets into EL2, this field resets to 0.

  **Otherwise:**

  Reserved, RES0.

**PMCCNTR_EL0, bit [15]**

**When FEAT_PMUv3 is implemented:**

Trap MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of PMCCNTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

  **0b0**  
  MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of PMCCNTR at EL0 using AArch32 are not affected by this bit.
  
  **0b1**  
  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:
  
  - MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  
  - MCR and MCRR writes of PMCCNTR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03 (for MCR) or 0x04 (for MCRR).

  In a system where the PE resets into EL2, this field resets to 0.

  **Otherwise:**

  Reserved, RES0.
PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCCFILTR at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCCFILTR at EL0 using AArch32 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MCR writes of PMCCFILTR at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31, and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this bit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of PMSELR_EL0.SEL or PMSELR.SEL.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0.

• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVTYPER<n> and PMXEVTYPER.

0b0  The operations listed above are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.

• MCR writes at EL0 using AArch32 of PMEVTYPER<n> and PMXEVTYPER are trapped to EL2 and reported with EC syndrome value 0x03, unless the write generates a higher priority exception.

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:

  — In AArch64 state, a write of PMEVTYPER<n>_EL0, or, if n is not 31, a write of PMXEVTYPER_EL0 when PMSELR_EL0.SEL == n.

  — In AArch32 state, a write of PMEVTYPER<n>, or, if n is not 31, a write of PMXEVTYPER when PMSELR.SEL == n.
If event counter n is implemented and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to EL2 from EL0 or EL1:

- In AArch64 state, a write of PMEVTPER<\text{n}>_EL0, or a write of PMXEVTYPER_EL0 when PMSELR_EL0.SEL == \text{n}, reported with EC syndrome value 0x18.

- In AArch32 state, a write of PMEVTPER<\text{n}>, or a write of PMXEVTYPER when PMSELR.SEL == \text{n}, reported with EC syndrome value 0x03.

See also HDFGWTR_EL2.PMCCFILTR_EL0.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**PMEVCNTRn_EL0, bit [12]**

*When FEAT_PMUv3 is implemented:*

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

- At EL1 and EL0 using AArch64: MSR writes of PMEVCNTR<\text{n}>_EL0 and PMXEVCNTR_EL0.

- At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVCNTR<\text{n}> and PMXEVCNTR.

0b0 The operations listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} !\in\{1,1\}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:

- MSR writes at EL1 and EL0 using AArch64 of PMEVCNTR<\text{n}>_EL0 and PMXEVCNTR_EL0 are trapped to EL2 and reported with EC syndrome value 0x18.

- MCR writes at EL0 using AArch32 of PMEVCNTR<\text{n}> and PMXEVCNTR are trapped to EL2 and reported with EC syndrome value 0x03, unless the write generates a higher priority exception.

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value \text{n}:

- If event counter \text{n} is not implemented, the following accesses are UNDEFINED:

  - In AArch64 state, a write of PMEVCNTR<\text{n}>_EL0, or a write of PMXEVCNTR_EL0 when PMSELR_EL0.SEL == \text{n}.

  - In AArch32 state, a write of PMEVCNTR<\text{n}>, or a write of PMXEVCNTR when PMSELR.SEL == \text{n}.

- If event counter \text{n} is implemented, and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to EL2 from EL0 or EL1:

  - In AArch64 state, a write of PMEVCNTR<\text{n}>_EL0, or a write of PMXEVCNTR_EL0 when PMSELR_EL0.SEL == \text{n}, reported with EC syndrome value 0x18.

  - In AArch32 state, a write of PMEVCNTR<\text{n}>, or a write of PMXEVCNTR when PMSELR.SEL == \text{n}, reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.
OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

Trap MSR writes of OSDLR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSDLR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of OSDLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSECCR_EL1, bit [10]

Trap MSR writes of OSECCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSECCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of OSECCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [9]

Reserved, RES0.

OSLAR_EL1, bit [8]

Trap MSR writes of OSLAR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of OSLAR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of OSLAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGPRCR_EL1, bit [7]

Trap MSR writes of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of DBGPRCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of DBGPRCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Bit [6]

Reserved, RES0.

DBGCLAIM, bit [5]

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- DBGCLAIMCLR_EL1.
- DBGCLAIMSET_EL1.

0b0 MSR writes of the System registers listed above are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MSR writes of MDSCR_EL1 at EL1 using AArch64 to EL2.

- 0b0: MSR writes of MDSCR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of MDSCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

- 0b0: MSR writes of DBGWVR<n>_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

- 0b0: MSR writes of DBGWCR<n>_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

If watchpoint n is not implemented, a write of DBGWCR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGBVRn_EL1, bit [1]

Trap MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

- 0b0: MSR writes of DBGBVR<n>_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBVR<n>_EL1 is UNDEFINED.

In a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

- 0b0: MSR writes of DBGBCR<n>_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.
If breakpoint n is not implemented, a write of DBGBCR<n>_EL1 is UNDEFINED.
In a system where the PE resets into EL2, this field resets to 0.

Accessing the HDFGWTR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HDFGWTR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0011</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

**MSR HDFGWTR_EL2, <Xt>**
HDFGWTR_EL2 = X[t];
elsif PSTATE_EL == EL3 then
  HDFGWTR_EL2 = X[t];
D13.2.50 HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

The HFGITR_EL2 characteristics are:

**Purpose**

Provides controls for traps of execution of System instructions.

**Configurations**

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGITR_EL2 are UNDEFINED.

**Attributes**

HFGITR_EL2 is a 64-bit register.

**Field descriptions**

The HFGITR_EL2 bit assignments are:

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CGDVAC, if FEAT_MTE is implemented.
- DC CGVAC, if FEAT_MTE is implemented.
- DC CVAC.

0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 and EL0 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**SVC_EL1, bit [53]**

Trap execution of SVC at EL1 using AArch64 to EL2.

0b0 Execution of SVC is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of SVC at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x15, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**SVC_EL0, bit [52]**

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 Execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority exception:

- Execution of SVC at EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x15.
- Execution of SVC at EL0 using AArch32 is trapped to EL2 and reported with EC syndrome value 0x12.

In a system where the PE resets into EL2, this field resets to 0.

**ERET, bit [51]**

Trap execution of ERET* instructions. Enables a trap on execution at EL1 using AArch64 of any of the following AArch64 System instructions to EL2:

- ERET.
- ERETA, if FEAT_PAuth is implemented.
- ERETAB, if FEAT_PAuth is implemented.

0b0 Execution of the ERET* instructions is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 using AArch64 of any of the ERET* instructions is trapped to EL2 and reported with EC syndrome value 0x1A, unless the instruction generates a higher priority exception.

If EL2 is implemented and enabled in the current Security state and HCR_EL2.API == 0, execution at EL1 using AArch64 of ERETA or ERETAB instructions is reported with EC syndrome value 0x1A with its associated ISS field, as the fine-grained trap has higher priority than the HCR_EL2.API == 0.

In a system where the PE resets into EL2, this field resets to 0.
CPRRCTX, bit [50]

When FEAT_SPECRES is implemented:
Trap execution of CPRRCTX at EL1 and EL0 using AArch64 and execution of CPRRCTX at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  Execution of CPRRCTX at EL1 and EL0 using AArch64 and execution of CPRRCTX at EL0 using AArch32 is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority exception:
- Execution of CPRRCTX at EL1 and EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18.
- Execution of CPRRCTX at EL0 using AArch32 is trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

DVRPRCTX, bit [49]

When FEAT_SPECRES is implemented:
Trap execution of DVRPRCTX at EL1 and EL0 using AArch64 and execution of DVRPRCTX at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  Execution of DVRPRCTX at EL1 and EL0 using AArch64 and execution of DVRPRCTX at EL0 using AArch32 is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority exception:
- Execution of DVRPRCTX at EL1 and EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18.
- Execution of DVRPRCTX at EL0 using AArch32 is trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
Reserved, RES0.

CFPRRCTX, bit [48]

When FEAT_SPECRES is implemented:
Trap execution of CFPRRCTX at EL1 and EL0 using AArch64 and execution of CFPRRCTX at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0  Execution of CFPRRCTX at EL1 and EL0 using AArch64 and execution of CFPRRCTX at EL0 using AArch32 is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the instruction generates a higher priority exception:
- Execution of CFPRRCTX at EL1 and EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18.
- Execution of CFPRRCTX at EL0 using AArch32 is trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.
Otherwise:
Reserved, RES0.

**TLBIVAALE1, bit [47]**
Trap execution of TLBI VAALE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI VAALE1 is not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAALE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIVALE1, bit [46]**
Trap execution of TLBI VALE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI VALE1 is not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VALE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIVAAE1, bit [45]**
Trap execution of TLBI VAAE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI VAAE1 is not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAAE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIVASIDE1, bit [44]**
Trap execution of TLBI ASIDE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI ASIDE1 is not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI ASIDE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIVAE1, bit [43]**
Trap execution of TLBI VAE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI VAE1 is not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIVMALLE1, bit [42]**
Trap execution of TLBI VMALLE1 at EL1 using AArch64 to EL2.

- **0b0**: Execution of TLBI VMALLE1 is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), execution of TLBI \( \text{VMALLE1} \) at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**TLBIRVAALE1, bit [41]**

*When FEAT_TLBIRANGE is implemented:*

- Trap execution of TLBI RVAALE1 at EL1 using AArch64 to EL2.
- 0b0 Execution of TLBI RVAALE1 is not affected by this bit.
- 0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), execution of TLBI RVAALE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**TLBIRVALE1, bit [40]**

*When FEAT_TLBIRANGE is implemented:*

- Trap execution of TLBI RVALE1 at EL1 using AArch64 to EL2.
- 0b0 Execution of TLBI RVALE1 is not affected by this bit.
- 0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), execution of TLBI RVALE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**TLBIRVAAE1, bit [39]**

*When FEAT_TLBIRANGE is implemented:*

- Trap execution of TLBI RVAAE1 at EL1 using AArch64 to EL2.
- 0b0 Execution of TLBI RVAAE1 is not affected by this bit.
- 0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), execution of TLBI RVAAE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**TLBIRVAE1, bit [38]**

*When FEAT_TLBIRANGE is implemented:*

- Trap execution of TLBI RVAE1 at EL1 using AArch64 to EL2.
- 0b0 Execution of TLBI RVAE1 is not affected by this bit.
- 0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \( \text{SCR}_{\text{EL3}}.\text{FGTEn} == 1 \), execution of TLBI RVAE1 at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1IS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI RVAALE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVAALE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1IS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI RVALE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVALE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1IS, bit [35]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1IS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI RVAAE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVAAE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1IS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI RVAE1IS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVAE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
TLBIV AALE1IS, bit [33]
Trap execution of TLBI VAALE1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI VAALE1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAALE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1IS, bit [32]
Trap execution of TLBI VALE1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI VALE1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VALE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [31]
Trap execution of TLBI VAE1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI VAE1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBISIDES1IS, bit [30]
Trap execution of TLBI ASIDE1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI ASIDE1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI ASIDE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [29]
Trap execution of TLBI VAЕ1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI VAЕ1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAЕ1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TLBVMALLE1IS, bit [28]
Trap execution of TLBI VMALLE1IS at EL1 using AArch64 to EL2.

0b0  Execution of TLBI VMALLE1IS is not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VMALLE1IS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.
In a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1OS, bit [27]

*When FEAT_TLBIRANGE is implemented and FEAT_TLBIO is implemented:*

Trap execution of TLBI RVALE1OS at EL1 using AArch64 to EL2.

- \(0\): Execution of TLBI RVALE1OS is not affected by this bit.
- \(1\): If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVALE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

TLBIRVALE1OS, bit [26]

*When FEAT_TLBIRANGE is implemented and FEAT_TLBIO is implemented:*

Trap execution of TLBI RVALE1OS at EL1 using AArch64 to EL2.

- \(0\): Execution of TLBI RVALE1OS is not affected by this bit.
- \(1\): If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVALE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

TLBIRVAAE1OS, bit [25]

*When FEAT_TLBIRANGE is implemented and FEAT_TLBIO is implemented:*

Trap execution of TLBI RVAE1OS at EL1 using AArch64 to EL2.

- \(0\): Execution of TLBI RVAE1OS is not affected by this bit.
- \(1\): If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVAE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

TLBIRVAE1OS, bit [24]

*When FEAT_TLBIRANGE is implemented and FEAT_TLBIO is implemented:*

Trap execution of TLBI RVAE1OS at EL1 using AArch64 to EL2.

- \(0\): Execution of TLBI RVAE1OS is not affected by this bit.
- \(1\): If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI RVAE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.
TLBVAALE1OS, bit [23]

*When FEAT_TLBIOS is implemented:*

- Trap execution of **TLBI VALE1OS** at EL1 using AArch64 to EL2.
  
  - **0b0** Execution of **TLBI VALE1OS** is not affected by this bit.
  
  - **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or **SCR_EL3.FGTEn == 1**, execution of **TLBI VALE1OS** at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

TLBVALE1OS, bit [22]

*When FEAT_TLBIOS is implemented:*

- Trap execution of **TLBI VALE1OS** at EL1 using AArch64 to EL2.
  
  - **0b0** Execution of **TLBI VALE1OS** is not affected by this bit.
  
  - **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or **SCR_EL3.FGTEn == 1**, execution of **TLBI VALE1OS** at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

TLBVAAE1OS, bit [21]

*When FEAT_TLBIOS is implemented:*

- Trap execution of **TLBI VAAE1OS** at EL1 using AArch64 to EL2.
  
  - **0b0** Execution of **TLBI VAAE1OS** is not affected by this bit.
  
  - **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or **SCR_EL3.FGTEn == 1**, execution of **TLBI VAAE1OS** at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

TLBIASIDE1OS, bit [20]

*When FEAT_TLBIOS is implemented:*

- Trap execution of **TLBI ASIDE1OS** at EL1 using AArch64 to EL2.
  
  - **0b0** Execution of **TLBI ASIDE1OS** is not affected by this bit.
  
  - **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or **SCR_EL3.FGTEn == 1**, execution of **TLBI ASIDE1OS** at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.
TLBIVAE1OS, bit [19]

When FEAT_TLBiOS is implemented:

Trap execution of TLBI VAE1OS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI VAE1OS is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VAE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]

When FEAT_TLBiOS is implemented:

Trap execution of TLBI VMALLE1OS at EL1 using AArch64 to EL2.

0b0 Execution of TLBI VMALLE1OS is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of TLBI VMALLE1OS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]

When FEAT_PAN2 is implemented:

Trap execution of ATS1E1WP at EL1 using AArch64 to EL2.

0b0 Execution of ATS1E1WP is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of ATS1E1WP at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1RP, bit [16]

When FEAT_PAN2 is implemented:

Trap execution of ATS1E1RP at EL1 using AArch64 to EL2.

0b0 Execution of ATS1E1RP is not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of ATS1E1RP at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ATS1E0W, bit [15]
Trap execution of AT S1E0W at EL1 using AArch64 to EL2.
0b0 Execution of AT S1E0W is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of AT S1E0W at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ATS1E0R, bit [14]
Trap execution of AT S1E0R at EL1 using AArch64 to EL2.
0b0 Execution of AT S1E0R is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of AT S1E0R at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ATS1E1W, bit [13]
Trap execution of AT S1E1W at EL1 using AArch64 to EL2.
0b0 Execution of AT S1E1W is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of AT S1E1W at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ATS1E1R, bit [12]
Trap execution of AT S1E1R at EL1 using AArch64 to EL2.
0b0 Execution of AT S1E1R is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of AT S1E1R at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCZVA, bit [11]
Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the following AArch64 System instructions to EL2:
- DC GVA, if FEAT_MTE is implemented.
- DC GZVA, if FEAT_MTE is implemented.
- DC ZVA.
0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 and EL0 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
DCCIVAC, bit [10]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CIGDVAC, if FEAT_MTE is implemented.
- DC CIGVAC, if FEAT_MTE is implemented.
- DC CIVAC.

0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 and EL0 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCVADP, bit [9]

When FEAT_DPB2 is implemented:

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CGDVADP, if FEAT_MTE is implemented.
- DC CGVADP, if FEAT_MTE is implemented.
- DC CVADP.

0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 and EL0 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAP, bit [8]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CGDVAP, if FEAT_MTE is implemented.
- DC CGVAP, if FEAT_MTE is implemented.
- DC CVAP.

0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2. {E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 and EL0 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

0b0 Execution of DC CVAU is not affected by this bit.
If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != \{1,1\}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of DC CVAU at EL1 and EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCISW, bit [6]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CIGDSW, if FEAT_MTE is implemented.
- DC CIGSW, if FEAT_MTE is implemented.
- DC CISW.

0b0  Execution of the System instructions listed above is not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCCSW, bit [5]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC CGDSW, if FEAT_MTE is implemented.
- DC CGSW, if FEAT_MTE is implemented.
- DC CSW.

0b0  Execution of the System instructions listed above is not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCISW, bit [4]

Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC IGDSW, if FEAT_MTE is implemented.
- DC IGSW, if FEAT_MTE is implemented.
- DC ISW.

0b0  Execution of the System instructions listed above is not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

DCTIVAC, bit [3]

 Trap execution of multiple System instructions. Enables a trap on execution at EL1 using AArch64 of any of the following AArch64 System instructions to EL2:

- DC IGDVAC, if FEAT_MTE is implemented.
- DC IGVAC, if FEAT_MTE is implemented.
DC IVAC.

0b0 Execution of the System instructions listed above is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution at EL1 using AArch64 of any of the System instructions listed above is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

0b0 Execution of IC IVAU is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of IC IVAU at EL1 and EL0 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

0b0 Execution of IC IALLU is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of IC IALLU at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

0b0 Execution of IC IALLUIS is not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, execution of IC IALLUIS at EL1 using AArch64 is trapped to EL2 and reported with EC syndrome value 0x18, unless the instruction generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGITR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS <Xt>, HFGITR_EL2}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x1C8];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL2 then

Accessing the HFGITR_EL2
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end if;
else
  return HFGITr_EL2;
elsif PSTATE.EL == EL3 then
  return HFGITr_EL2;
end if;

MSR HFGITr_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x1C8] = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  end if;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end if;
  else
    HFGITr_EL2 = X[t];
  end if;
elsif PSTATE.EL == EL3 then
  HFGITr_EL2 = X[t];
end if;
D13.2.51  HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

The HFGRTR_EL2 characteristics are:

**Purpose**

Provides controls for traps of MRS and MRC reads of System registers.

**Configurations**

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGRTR_EL2 are UNDEFINED.

**Attributes**

HFGRTR_EL2 is a 64-bit register.

**Field descriptions**

The HFGRTR_EL2 bit assignments are:

**Bits [63:50]**

Reserved, RES0.

**ERXADDR_EL1**, bit [49]

*When FEAT_RAS is implemented:*

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

- 0b0: MRS reads of ERXADDR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of ERXADDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.
**ERXPFGCDN_EL1, bit [48]**

*When FEAT_RASv1p1 is implemented:*

- Trap MRS reads of **ERXPFGCDN_EL1** at EL1 using AArch64 to EL2.
  - **0b0**: MRS reads of **ERXPFGCDN_EL1** are not affected by this bit.
  - **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of **ERXPFGCDN_EL1** at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

**ERXPFGCTL_EL1, bit [47]**

*When FEAT_RASv1p1 is implemented:*

- Trap MRS reads of **ERXPFGCTL_EL1** at EL1 using AArch64 to EL2.
  - **0b0**: MRS reads of **ERXPFGCTL_EL1** are not affected by this bit.
  - **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of **ERXPFGCTL_EL1** at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

**ERXPFGF_EL1, bit [46]**

*When FEAT_RAS is implemented:*

- Trap MRS reads of **ERXPFGF_EL1** at EL1 using AArch64 to EL2.
  - **0b0**: MRS reads of **ERXPFGF_EL1** are not affected by this bit.
  - **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of **ERXPFGF_EL1** at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

**ERXMISCn_EL1, bit [45]**

*When FEAT_RAS is implemented:*

- Trap MRS reads of **ERXMISC<n>_EL1** at EL1 using AArch64 to EL2.
  - **0b0**: MRS reads of **ERXMISC<n>_EL1** are not affected by this bit.
  - **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of **ERXMISC<n>_EL1** at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.
ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MSR reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

\( \overline{0} \) 0  MSR reads of ERXSTATUS_EL1 are not affected by this bit.

\( \overline{1} \) 1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR reads of ERXSTATUS_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

\( \overline{0} \) 0  MSR reads of ERXCTLR_EL1 are not affected by this bit.

\( \overline{1} \) 1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR reads of ERXCTLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

Trap MSR reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

\( \overline{0} \) 0  MSR reads of ERXFR_EL1 are not affected by this bit.

\( \overline{1} \) 1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR reads of ERXFR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

\( \overline{0} \) 0  MSR reads of ERRSELR_EL1 are not affected by this bit.

\( \overline{1} \) 1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR reads of ERRSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.
ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:
- Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.
  - 0b0: MRS reads of ERRIDR_EL1 are not affected by this bit.
  - 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of ERRIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
- Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:
- Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.
  - 0b0: MRS reads of ICC_IGRPEN<n>_EL1 are not affected by this bit.
  - 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:
- Reserved, RES0.

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of VBAR_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of VBAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of TTBR1_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TTBR1_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.
- 0b0: MRS reads of TTBR0_EL1 are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TTBR0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
TPIDR_EL0, bit [35]
Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDURW at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDURW at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of TPIDURW at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]
Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32 when EL1 is using AArch64 to EL2.

0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the read generates a higher priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]
Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TPIDR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TPIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]
Trap MRS reads of TCR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of TCR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of TCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]
When FEAT_CSV2 is implemented:
Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

0b0 MRS reads of SCXTNUM_EL0 are not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state, HCR_EL2.\{E2H,TGE\} != \{1,1\}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**SCXTNUM_EL1, bit [30]**

When FEAT_CSV2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

0b0  MRS reads of SCXTNUM_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of SCXTNUM_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**SCTLR_EL1, bit [29]**

Trap MRS reads of SCTLR_EL1 at EL1 using AArch64 to EL2.

0b0  MRS reads of SCTLR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of SCTLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**REVIDR_EL1, bit [28]**

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

0b0  MRS reads of REVIDR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of REVIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**PAR_EL1, bit [27]**

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

0b0  MRS reads of PAR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of PAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**MPIDR_EL1, bit [26]**

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

0b0  MRS reads of MPIDR_EL1 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of MPIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**MIDR_EL1, bit [25]**

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of MIDR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of MIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**MAIR_EL1, bit [24]**

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of MAIR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of MAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**LORS_A_EL1, bit [23]**

*When FEAT_LOR is implemented:*

Trap MRS reads of LORS_A_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of LORS_A_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of LORS_A_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

**LORN_EL1, bit [22]**

*When FEAT_LOR is implemented:*

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of LORN_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of LORN_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.
LORID_EL1, bit [21]

When FEAT_LOR is implemented:

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORID_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of LORID_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LOREA_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of LOREA_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of LORC_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of LORC_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of ISR_EL1 are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of ISR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

0b0 MRS reads of FAR_EL1 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of FAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

### ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of ESR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of ESR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

### DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

- **0b0**: MRS reads of DCZID_EL0 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

### CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

- **0b0**: MRS reads of CTR_EL0 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

### CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of CSSELR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of CSSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

### CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MRS reads of CPACR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of CPACR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
CONTEXTIDR_EL1, bit [11]

Trap MR5 reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

0b0  MR5 reads of CONTEXTIDR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MR5 reads of CONTEXTIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CLIDR_EL1, bit [10]

Trap MR5 reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

0b0  MR5 reads of CLIDR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MR5 reads of CLIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

CCSIDR_EL1, bit [9]

Trap MR5 reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

0b0  MR5 reads of CCSIDR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MR5 reads of CCSIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MR5 reads of multiple System registers. Enables a trap on MR5 reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APIBKeyHi_EL1.
- APIBKeyLo_EL1.

0b0  MR5 reads of the System registers listed above are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MR5 reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MR5 reads of multiple System registers. Enables a trap on MR5 reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APIAKeyHi_EL1.
- APIAKeyLo_EL1.

0b0  MR5 reads of the System registers listed above are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**APGAKey, bit [6]**

*When FEAT_PAuth is implemented:*

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APGAKeyHi_EL1.
- APGAKeyLo_EL1.

**APDBKey, bit [5]**

*When FEAT_PAuth is implemented:*

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APDBKeyHi_EL1.
- APDBKeyLo_EL1.

**APDAKey, bit [4]**

*When FEAT_PAuth is implemented:*

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APDAKeyHi_EL1.
- APDAKeyLo_EL1.
Otherwise:
Reserved, RES0.

**AMAIR_EL1, bit [3]**
Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.
0b0 MRS reads of AMAIR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of AMAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**AIDR_EL1, bit [2]**
Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.
0b0 MRS reads of AIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of AIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**AFSR1_EL1, bit [1]**
Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.
0b0 MRS reads of AFSR1_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of AFSR1_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**AFSR0_EL1, bit [0]**
Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.
0b0 MRS reads of AFSR0_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MRS reads of AFSR0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the read generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Accessing the HFGGRTR_EL2**
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRS <Xt>, HFGGRTR_EL2
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

\[
\text{if PSTATE.EL == EL0 then UNDEFINED;}
\text{elsif PSTATE.EL == EL1 then}
\text{if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then}
\text{return NVMem[0x1B8];}
\]
AArch64 System Register Descriptions
D13.2 General system control registers

```plaintext
elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return HFGRTR_EL2;
 elsif PSTATE.EL == EL3 then
 return HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x1B8] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && SCR_EL3.FGTEn == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 HFGRTR_EL2 = X[t];
 elsif PSTATE.EL == EL3 then
 HFGRTR_EL2 = X[t];
```

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

ID072120

Non-Confidential
D13.2.52  HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

The HFGWTR_EL2 characteristics are:

**Purpose**

Provides controls for traps of MSR and MCR writes of System registers.

**Configurations**

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGWTR_EL2 are UNDEFINED.

**Attributes**

HFGWTR_EL2 is a 64-bit register.

**Field descriptions**

The HFGWTR_EL2 bit assignments are:

---

**Bits [63:50]**

Reserved, RES0.

**ERXADDR_EL1, bit [49]**

*When FEAT_RAS is implemented:*

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

- **0b0**: MSR writes of ERXADDR_EL1 are not affected by this bit.
- **0b1**: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of ERXADDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

---
ERXPFGCDN_EL1, bit [48]

*When FEAT_RASv1p1 is implemented:*

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of ERXPFGCDN_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn = 1, MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

*When FEAT_RASv1p1 is implemented:*

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of ERXPFGCTL_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn = 1, MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

*When FEAT_RAS is implemented:*

Trap MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of ERXMISC<n>_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn = 1, MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

*When FEAT_RAS is implemented:*

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of ERXSTATUS_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn = 1, MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.
ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of ERXCTLR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of ERXCTLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of ERRSELR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of ERRSELR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of ICC_IGRPEN<n>_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of VBAR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of VBAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of TTBR1_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TTBR1_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of TTBR0_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TTBR0_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using AArch32 when EL1 is using AArch64 to EL2.

- **0b0** MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using AArch32 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state, HCR_EL2.E2H,TGE != {1,1}, EL1 is using AArch64, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, then, unless the write generates a higher priority exception:
  - **0b0** MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18.
  - **0b1** MCR writes of TPIDRURW at EL0 using AArch32 are trapped to EL2 and reported with EC syndrome value 0x03.

In a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of TPIDRRO_EL0 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TPIDRRO_EL0 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

- **0b0** MSR writes of TPIDR_EL1 are not affected by this bit.
- **0b1** If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TPIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
TCR_EL1, bit [32]

Trap MSR writes of TCR_EL1 at EL1 using AArch64 to EL2.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>MSR writes of TCR_EL1 are not affected by this bit.</td>
</tr>
<tr>
<td>0b1</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of TCR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.</td>
</tr>
</tbody>
</table>

In a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

*When FEAT_CSV2 is implemented:*

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>MSR writes of SCXTNUM_EL0 are not affected by this bit.</td>
</tr>
<tr>
<td>0b1</td>
<td>If EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H,TGE} != {1,1}, and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.</td>
</tr>
</tbody>
</table>

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

SCXTNUM_EL1, bit [30]

*When FEAT_CSV2 is implemented:*

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>MSR writes of SCXTNUM_EL1 are not affected by this bit.</td>
</tr>
<tr>
<td>0b1</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of SCXTNUM_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.</td>
</tr>
</tbody>
</table>

In a system where the PE resets into EL2, this field resets to 0.

*Otherwise:*

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MSR writes of SCTLR_EL1 at EL1 using AArch64 to EL2.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>MSR writes of SCTLR_EL1 are not affected by this bit.</td>
</tr>
<tr>
<td>0b1</td>
<td>If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of SCTLR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.</td>
</tr>
</tbody>
</table>

In a system where the PE resets into EL2, this field resets to 0.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>MSR writes of PAR_EL1 are not affected by this bit.</td>
</tr>
</tbody>
</table>
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of PAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Bits [26:25]**

Reserved, RES0.

**MAIR_EL1, bit [24]**

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of MAIR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of MAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Bits [23]**

When FEAT_LOR is implemented:

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of MAIR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of MAIR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

**LORSA_EL1, bit [23]**

When FEAT_LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of LORSA_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of LORSA_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

**LORN_EL1, bit [22]**

When FEAT_LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of LORN_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of LORN_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

**Bit [21]**

Reserved, RES0.

**LOREA_EL1, bit [20]**

When FEAT_LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of LOREA_EL1 are not affected by this bit.
0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of LORC_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**LORC_EL1, bit [19]**

*When FEAT_LOR is implemented:*

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of LORC_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of LORC_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Otherwise:**

Reserved, RES0.

**Bit [18]**

Reserved, RES0.

**FAR_EL1, bit [17]**

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of FAR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of FAR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**ESR_EL1, bit [16]**

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of ESR_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of ESR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Bits [15:14]**

Reserved, RES0.

**CSSELRL_EL1, bit [13]**

Trap MSR writes of CSSELRL_EL1 at EL1 using AArch64 to EL2.

0b0  MSR writes of CSSELRL_EL1 are not affected by this bit.

0b1  If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of CSSELRL_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.
CPACR_EL1, bit [12]
Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of CPACR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of CPACR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.
In a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]
Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.
0b0 MSR writes of CONTEXTIDR_EL1 are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.
In a system where the PE resets into EL2, this field resets to 0.

Bits [10:9]
Reserved, RES0.

APIBKey, bit [8]
When FEAT_PAuth is implemented:
Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
• APIBKeyHi_EL1.
• APIBKeyLo_EL1.
0b0 MSR writes of the System registers listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.
In a system where the PE resets into EL2, this field resets to 0.
Otherwise:
Reserved, RES0.

APIAKey, bit [7]
When FEAT_PAuth is implemented:
Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:
• APIAKeyHi_EL1.
• APIAKeyLo_EL1.
0b0 MSR writes of the System registers listed above are not affected by this bit.
0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.
In a system where the PE resets into EL2, this field resets to 0.
Otherwise:
Reserved, RES0.
APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APGAKeyHi_EL1.
- APGAKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APDBKeyHi_EL1.
- APDBKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the following AArch64 System registers to EL2:

- APDAKeyHi_EL1.
- APDAKeyLo_EL1.

0b0 MSR writes of the System registers listed above are not affected by this bit.

0b1 If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or SCR_EL3.FGTEn == 1, MSR writes at EL1 using AArch64 of any of the System registers listed above are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

0b0 MSR writes of AMAIR_EL1 are not affected by this bit.
If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \texttt{SCR\_EL3.FGTEn} == 1, \texttt{MSR} writes of \texttt{AMAIR\_EL1} at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Bit [2]**

Reserved, RES0.

**AFSR1\_EL1, bit [1]**

Trap MSR writes of \texttt{AFSR1\_EL1} at EL1 using AArch64 to EL2.

- 0b0: MSR writes of \texttt{AFSR1\_EL1} are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \texttt{SCR\_EL3.FGTEn} == 1, MSR writes of \texttt{AFSR1\_EL1} at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**AFSR0\_EL1, bit [0]**

Trap MSR writes of \texttt{AFSR0\_EL1} at EL1 using AArch64 to EL2.

- 0b0: MSR writes of \texttt{AFSR0\_EL1} are not affected by this bit.
- 0b1: If EL2 is implemented and enabled in the current Security state and either EL3 is not implemented or \texttt{SCR\_EL3.FGTEn} == 1, MSR writes of \texttt{AFSR0\_EL1} at EL1 using AArch64 are trapped to EL2 and reported with EC syndrome value 0x18, unless the write generates a higher priority exception.

In a system where the PE resets into EL2, this field resets to 0.

**Accessing the HFGWTR\_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

\textit{MRS <Xt>, HFGWTR\_EL2}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if \texttt{PSTATE.EL} == EL0 then
  UNDEFINED;
elsif \texttt{PSTATE.EL} == EL1 then
  if \texttt{EL2Enabled()} \&\& \texttt{HCR\_EL2.<NV2,NV>} == '11' then
    return \texttt{NVMem[0x1C0]};
  elsif \texttt{EL2Enabled()} \&\& \texttt{HCR\_EL2.NV} == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  elsif \texttt{PSTATE.EL} == EL2 then
    if \texttt{Halted()} \&\& \texttt{HaveEL(EL3)} \&\& \texttt{EDSCR.SDD} == '1' \&\& boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1' \&\& SCR\_EL3.FGTEn == '0'" then
      UNDEFINED;
    elsif \texttt{HaveEL(EL3)} \&\& \texttt{SCR\_EL3.FGTEn} == '0' then
      if \texttt{Halted()} \&\& \texttt{EDSCR.SDD} == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end
    else
      return HFGWTR\_EL2;
elsif PSTATE.EL == EL3 then
    return HFGWTR_EL2;

**MSR HFGWTR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x1C0] = X[t];
    elsif EL2Enabled() \&\& HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \& SCR_EL3.FGTEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) \& SCR_EL3.FGTEn == '0' then
        if Halted() \& EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            HFGWTR_EL2 = X[t];
    elsif PSTATE.EL == EL3 then
        HFGWTR_EL2 = X[t];
D13.2.53 HPFAR_EL2, Hypervisor IPA Fault Address Register

The HPFAR_EL2 characteristics are:

**Purpose**

Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

**Configurations**

AArch64 System register HPFAR_EL2[31:0] is architecturally mapped to AArch32 System register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

HPFAR_EL2 is a 64-bit register.

**Field descriptions**

The HPFAR_EL2 bit assignments are:

- **NS**, bit [63]
  - *When FEAT_SEL2 is implemented:*
    - Faulting IPA address space.
    - 0b0 Faulting IPA is from the Secure IPA space.
    - 0b1 Faulting IPA is from the Non-secure IPA space.
    
    For data or instruction aborts taken to Non-secure EL2, this field is RES0.
    
    This field resets to an architecturally UNKNOWN value.
  
  - *Otherwise:*
    - Reserved, RES0.

- **Bits [62:44]**
  - Reserved, RES0.

- **FIPA[51:48]**, bits [43:40]
  - *When FEAT_LPA is implemented:*
    - This field resets to an architecturally UNKNOWN value.
  
  - *Otherwise:*
    - Reserved, RES0.

- **FIPA[47:12]**, bits [39:4]
  - Bits [47:12] of the faulting intermediate physical address.
  
  For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use for the stage 1 translation, the FIPA[51:48] bits form the upper part of the address value. For implementations or stage 1 translation granules with fewer than 52 physical address bits the FIPA[51:48] bits are RES0.

The HPFAR_EL2 is written for:

- Translation or Access faults in the second stage of translation.
- An abort in the second stage of translation performed during the translation table walk of a first stage translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
- A stage 2 Address size fault.

________ Note __________

The address held in this register is an address accessed by the instruction fetch or data access that caused the exception that gave rise to the instruction or data abort. It is the lowest address that gave rise to the fault. Where different faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

________

For all other exceptions taken to EL2, this register is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HPFAR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return HPFAR_EL2;
elsif PSTATE.EL == EL3 then
  return HPFAR_EL2;

**MSR HPFAR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    HPFAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    HPFAR_EL2 = X[t];
D13.2.54 HSTR_EL2, Hypervisor System Trap Register

The HSTR_EL2 characteristics are:

**Purpose**

Controls trapping to EL2 of EL1 or lower AArch32 accesses to the System register in the coproc == 0b1111 encoding space, by the CRn value used to access the register using MCR or MRC instruction. When the register is accessible using an MCRR or MRRC instruction, this is the CRm value used to access the register.

**Configurations**

AArch64 System register HSTR_EL2[31:0] is architecturally mapped to AArch32 System register HSTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

HSTR_EL2 is a 64-bit register.

**Field descriptions**

The HSTR_EL2 bit assignments are:

*When AArch32 is supported at any Exception level:*

![Bit assignments diagram]

Bits [63:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the System registers in the coproc == 0b1111 encoding space, are trapped to EL2 as follows:

- MCR or MRC accesses to these registers that are trapped to EL2 are reported using EC syndrome value 0x03, unless the access is UNDEFINED.
- MCRR or MRRC accesses to these registers that are trapped to EL2 are reported using EC syndrome value 0x04, unless the access is UNDEFINED.

0b0 This control has no effect on EL0 or EL1 accesses to System registers.

0b1 System registers in the coproc == 0b1111 encoding space and CRn == <n> or CRm == <n> where T<n> is the name of this field, are trapped as follows:

- An EL1 MCR or MRC access is trapped to EL2.
• An EL0 MCR or MRC access is trapped to EL2, if the access is not UNDEFINED when the value of this field is 0.
• An EL1 MCRR or MRRC access is trapped to EL2.
• An EL0 MCRR or MRRC access is trapped to EL2, if the access is not UNDEFINED when the value of this field is 0.

It is IMPLEMENTATION DEFINED whether an EL0 access using AArch32 is trapped to EL2, or is UNDEFINED.

If the access is UNDEFINED, and generates an exception that is taken to EL1 or EL2 using AArch64, this is reported with EC syndrome value 0x00.

--- Note ---

Arm expects that trapping to EL2 of EL0 accesses to these registers is unusual and used only when the hypervisor must virtualize EL0 operation. Arm recommends that, whenever possible, EL0 accesses to these registers behave as they would if the implementation did not include EL2. This means that, if the architecture does not support the EL0 access, then the register access instruction is treated as UNDEFINED and generates an exception that is taken to EL1.

For example, when HSTR_EL2.T7 is 1, for instructions executed at EL1:
• An MCR or MRC instruction with coproc set to 0b1111 and <CRn> set to c7 is trapped to EL2.
• An MCRR or MRRC instruction with coproc set to 0b1111 and <CRm> set to c7 is trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Access to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, HSTR_EL2**

<table>
<thead>
<tr>
<th></th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x080];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
```
elsif PSTATE.EL == EL2 then
  return HSTR_EL2;
elsif PSTATE.EL == EL3 then
  return HSTR_EL2;

(* MSR HSTR_EL2, <Xt> *)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x080] = X[t];
  elseif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  HSTR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  HSTR_EL2 = X[t];
D13.2.55 ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0

The ID_AA64AFR0_EL1 characteristics are:

**Purpose**

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

There are no configuration notes.

**Attributes**

ID_AA64AFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64AFR0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Index</th>
<th>Bit Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0</td>
<td>Implemented defined</td>
</tr>
<tr>
<td>31-28</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>27-24</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>23-20</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>19-16</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>15-12</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>11-8</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>7-4</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>3-0</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

**Accessing the ID_AA64AFR0_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ID_AA64AFR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end if;
    else
        UNDEFINED;
    end if;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() & HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_AA64AFR0_EL1;
    end if;
elsif PSTATE_EL == EL2 then
    return ID_AA64AFR0_EL1;
elsif PSTATE_EL == EL3 then
    return ID_AA64AFR0_EL1;
D13.2.56   ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1

The ID_AA64AFR1_EL1 characteristics are:

**Purpose**

Reserved for future expansion of information about the IMPLEMENTATION DEFINED features of the PE in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

There are no configuration notes.

**Attributes**

ID_AA64AFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64AFR1_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:0]</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**Accessing the ID_AA64AFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRS \langle Xt \rangle, \text{ID\_AA64AFR1\_EL1} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 return ID_AA64AFR1_EL1;
 else
 UNDEFINED;
else if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64AFR1_EL1;
else if PSTATE.EL == EL2 then
 return ID_AA64AFR1_EL1;
elso if PSTATE.EL == EL3 then
 return ID_AA64AFR1_EL1;
```
### D13.2.57 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

**Purpose**

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

The external register EDDFR gives information from this register.

**Attributes**

ID_AA64DFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64DFR0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:52]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[51:48]</td>
<td>MTPMU, bits [51:48]</td>
</tr>
<tr>
<td>[47:44]</td>
<td>TraceFilt, bits [47:44]</td>
</tr>
<tr>
<td>[39:36]</td>
<td>DoubleLock</td>
</tr>
<tr>
<td>[35:32]</td>
<td>PMSVer</td>
</tr>
<tr>
<td>[31:28]</td>
<td>CTX_CMPs</td>
</tr>
<tr>
<td>[27:24]</td>
<td>RES0</td>
</tr>
<tr>
<td>[23:20]</td>
<td>WRPs</td>
</tr>
<tr>
<td>[19:16]</td>
<td>RES0</td>
</tr>
<tr>
<td>[15:12]</td>
<td>BRPs</td>
</tr>
<tr>
<td>[11:8]</td>
<td>PMUVer</td>
</tr>
<tr>
<td>[7:4]</td>
<td>TraceVer</td>
</tr>
<tr>
<td>[3]</td>
<td>DebugVer</td>
</tr>
</tbody>
</table>

**Bits [63:52]**

Reserved, RES0.

**MTPMU, bits [51:48]**

Multi-threaded PMU extension. Defined values are:

- **0b0000**: FEAT_MTPMU not implemented. If PMUv3 is implemented, it is implementation defined whether PMEVTYPER<\(n\)>_EL0.MT are read/write or RES0.
- **0b0001**: FEAT_MTPMU implemented and PMEVTYPER<\(n\)>_EL0.MT are read/write. When FEAT_MTPMU is disabled, the Effective values of PMEVTYPER<\(n\)>_EL0.MT are 0. All other values are reserved.

**TraceFilt, bits [47:44]**

Reserved, RES0.

**TraceFilt, bits [43:40]**

Armv8.4 Self-hosted Trace Extension version. Defined values are:

- **0b0000**: Armv8.4 Self-hosted Trace Extension not implemented.
- **0b0001**: Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

**TraceFilt** implements the functionality identified by the value **0b0001**.

From Armv8.4, if an Embedded Trace Macrocell Architecture PE Trace Unit is implemented, the value **0b0000** is not permitted.
DoubleLock, bits [39:36]

OS Double Lock implemented. Defined values are:

- 0b0000  OS Double Lock implemented. OSDLR_EL1 is RW.
- 0b1111  OS Double Lock not implemented. OSDLR_EL1 is RAZ/WI.

All other values are reserved.

FEAT_DoubleLock implements the functionality identified by the value 0b0000.

In Armv8.0, the only permitted value is 0b0000.

If FEAT_Debugv8p2 is implemented and FEAT_DoPD is not implemented, the permitted values are 0b0000 and 0b1111.

If FEAT_DoPD is implemented, the only permitted value is 0b1111.

PMSVer, bits [35:32]

Statistical Profiling Extension version. Defined values are:

- 0b0000  Statistical Profiling Extension not implemented.
- 0b0001  Statistical Profiling Extension implemented.
- 0b0010  As 0b0001, and adds:
  - Support for the Event packet Alignment flag.
  - If FEAT_SVE is implemented, support for the Scalable Vector extensions to Statistical Profiling.

All other values are reserved.

FEAT_SPE implements the functionality identified by the value 0b0001.

FEAT_SPEv1p1 implements the functionality identified by the value 0b0010.

From Armv8.5, if FEAT_SPE is implemented, the value 0b0001 is not permitted.

CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in Alternative ID scheme used for the Performance Monitors Extension version on page D13-2869

Defined values are:

- 0b0000  Performance Monitors Extension not implemented.
- 0b0001  Performance Monitors Extension, PMUv3 implemented.
- 0b0100  PMUv3 for Armv8.1. As 0b0001, and also includes support for:
  - Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.
  - If EL2 is implemented, the MDCR_EL2.HPMD control bit.
AArch64 System Register Descriptions

D13.2 General system control registers

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0101</td>
<td>PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR_EL1 register.</td>
</tr>
<tr>
<td>0b0110</td>
<td>PMUv3 for Armv8.5. As 0b0101, and also includes support for:</td>
</tr>
<tr>
<td></td>
<td>• 64-bit event counters.</td>
</tr>
<tr>
<td></td>
<td>• If EL2 is implemented, the MDCR_EL2.HCCD control bit.</td>
</tr>
<tr>
<td></td>
<td>• If EL3 is implemented, the MDCR_EL3.SCCD control bit.</td>
</tr>
<tr>
<td>0b1111</td>
<td>IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not supported. Arm does not recommend this value for new implementations.</td>
</tr>
</tbody>
</table>

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.
FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.
FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.
FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.
From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.
From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

TraceVer, bits [7:4]
Trace support. Indicates whether System register interface to a PE trace unit is implemented. Defined values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>PE trace unit System registers not implemented.</td>
</tr>
<tr>
<td>0b0001</td>
<td>PE trace unit System registers implemented.</td>
</tr>
</tbody>
</table>

All other values are reserved.

See the ETM Architecture Specification for more information.
A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented. A PE trace unit might nevertheless be implemented without a System register interface.

DebugVer, bits [3:0]
Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0110</td>
<td>Armv8 debug architecture.</td>
</tr>
<tr>
<td>0b0111</td>
<td>Armv8 debug architecture with Virtualization Host Extensions.</td>
</tr>
<tr>
<td>0b1000</td>
<td>Armv8.2 debug architecture.</td>
</tr>
<tr>
<td>0b1001</td>
<td>Armv8.4 debug architecture.</td>
</tr>
</tbody>
</table>

All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.
FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

In Armv8.1, the value 0b0110 is not permitted.
In Armv8.2, the value 0b0111 is not permitted.
From Armv8.4, the value 0b1000 is not permitted.

Accessing the ID-AA64DFR0_EL1
Accesses to this register use the following encodings in the System instruction encoding space:
### MRS $<Xt>$, ID_AA64DFR0_EL1

```c
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64DFR0_EL1;
elsif PSTATE_EL == EL2 then
 return ID_AA64DFR0_EL1;
elsif PSTATE_EL == EL3 then
 return ID_AA64DFR0_EL1;
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.58  ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1

The ID_AA64DFR1_EL1 characteristics are:

**Purpose**

Reserved for future expansion of top level information about the debug system in AArch64 state. For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

There are no configuration notes.

**Attributes**

ID_AA64DFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64DFR1_EL1 bit assignments are:

63 62 ... 0

RES0

Bits [63:0]  Reserved, RES0.

**Accessing the ID_AA64DFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_AA64DFR1_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDT") then
    if EL2Enabled() & HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    Undefined;
else
  PSTATE.EL == EL1 then
  if EL2Enabled() & HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_AA64DFR1_EL1;
else
  PSTATE.EL == EL2 then
  return ID_AA64DFR1_EL1;
else
  PSTATE.EL == EL3 then
  return ID_AA64DFR1_EL1;
D13.2.59  ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISAR0_EL1 characteristics are:

### Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers on page D13-2867.

### Configurations

There are no configuration notes.

### Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

### Field descriptions

The ID_AA64ISAR0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:60</td>
<td>RNDR, bits [63:60]</td>
</tr>
<tr>
<td>59:56</td>
<td>TLB, bits [59:56]</td>
</tr>
<tr>
<td>55:52</td>
<td>TS, bits [55:52]</td>
</tr>
<tr>
<td>51:48</td>
<td>FHM</td>
</tr>
<tr>
<td>47:44</td>
<td>DP</td>
</tr>
<tr>
<td>43:39</td>
<td>SM4, SM3, SHA3</td>
</tr>
<tr>
<td>38:35</td>
<td>RDM, RES0, Atomic, CRC32, SHA2, SHA1, AES, RES0</td>
</tr>
<tr>
<td>31:28</td>
<td>RDM</td>
</tr>
<tr>
<td>27:24</td>
<td>RES0</td>
</tr>
<tr>
<td>23:20</td>
<td>Atomic, SHA1, AES</td>
</tr>
<tr>
<td>19:16</td>
<td>SHA2, SHA1, AES</td>
</tr>
<tr>
<td>15:12</td>
<td>SHA3, SHA1, AES</td>
</tr>
<tr>
<td>11:8</td>
<td>SHA3, SHA1, AES</td>
</tr>
<tr>
<td>7:4</td>
<td>SHA1, AES</td>
</tr>
<tr>
<td>3</td>
<td>CRC32</td>
</tr>
<tr>
<td>2</td>
<td>SHA2</td>
</tr>
<tr>
<td>1</td>
<td>SHA1</td>
</tr>
<tr>
<td>0</td>
<td>RES0</td>
</tr>
</tbody>
</table>

#### RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state. Defined values are:

- **0b0000**: No Random Number instructions are implemented.
- **0b0001**: RNDR and RNDRRS registers are implemented.

All other values are reserved.

**FEAT_RNG** implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

#### TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

- **0b0000**: Outer shareable and TLB range maintenance instructions are not implemented.
- **0b0001**: Outer shareable TLB maintenance instructions are implemented.
- **0b0010**: Outer shareable and TLB range maintenance instructions are implemented.

All other values are reserved.

**FEAT_TLBIOS** implements the functionality identified by the values 0b0001 and 0b0010.

**FEAT_TLBIRANGE** implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

#### TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

- **0b0000**: No flag manipulation instructions are implemented.
- **0b0001**: CFINV, RMIF, SETF16, and SETF8 instructions are implemented.
- **0b0010**: CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG instructions are implemented.

All other values are reserved.

**FEAT_FlagM** implements the functionality identified by the value 0b0001.

**FEAT_FlagM2** implements the functionality identified by the value 0b0010.
In Armv8.2, the permitted values are 0b0000 and 0b0001.
In Armv8.4, the only permitted value is 0b0001.
From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]
Indicates support for FMLAL and FMLSL instructions. Defined values are:
0b0000   FMLAL and FMLSL instructions are not implemented.
0b0001   FMLAL and FMLSL instructions are implemented.
All other values are reserved.
FEAT_FHM implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]
Indicates support for Dot Product instructions in AArch64 state. Defined values are:
0b0000   No Dot Product instructions implemented.
0b0001   UDOT and SDOT instructions implemented.
All other values are reserved.
FEAT_DotProd implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]
Indicates support for SM4 instructions in AArch64 state. Defined values are:
0b0000   No SM4 instructions implemented.
0b0001   SM4E and SM4EKEY instructions implemented.
All other values are reserved.
If FEAT_SM4 is not implemented, the value 0b0001 is reserved.
From Armv8.2, the permitted values are 0b0000 and 0b0001.
This field must have the same value as ID_AA64ISAR0_EL1.SM3.

SM3, bits [39:36]
Indicates support for SM3 instructions in AArch64 state. Defined values are:
0b0000   No SM3 instructions implemented.
0b0001   SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and SM3PARTW2 instructions implemented.
All other values are reserved.
If FEAT_SM3 is not implemented, the value 0b0001 is reserved.
FEAT_SM3 implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.
This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]
Indicates support for SHA3 instructions in AArch64 state. Defined values are:
0b0000   No SHA3 instructions implemented.
0b0001   EOR3, RAX1, XAR, and BCAX instructions implemented.
All other values are reserved.
If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.
FEAT_SHA3 implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.
If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.
If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

**RDM, bits [31:28]**
Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:
- 0b0000: No RDMA instructions implemented.
- 0b0001: SQRDMLAH and SQRDMLSH instructions implemented.
All other values are reserved.
**FEAT_RDM** implements the functionality identified by the value 0b0001.
From Armv8.1, the only permitted value is 0b0001.

**Bits [27:24]**
Reserved, RES0.

**Atomic, bits [23:20]**
Indicates support for Atomic instructions in AArch64 state. Defined values are:
- 0b0000: No Atomic instructions implemented.
- 0b0010: LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN, CAS, CASP, and SWP instructions implemented.
All other values are reserved.
**FEAT_LSE** implements the functionality identified by the value 0b0010.
From Armv8.1, the only permitted value is 0b0010.

**CRC32, bits [19:16]**
Indicates support for CRC32 instructions in AArch64 state. Defined values are:
- 0b0000: No CRC32 instructions implemented.
All other values are reserved.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.1, the only permitted value is 0b0001.

**SHA2, bits [15:12]**
Indicates support for SHA2 instructions in AArch64 state. Defined values are:
- 0b0000: No SHA2 instructions implemented.
- 0b0001: Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.
- 0b0010: Implements instructions:
  - SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.
  - SHA512H, SHA512H2, SHA512SU0, and SHA512SU1.
All other values are reserved.
**FEAT_SHA256** implements the functionality identified by the value 0b0001.
**FEAT_SHA512** implements the functionality identified by the value 0b0010.
In Armv8, the permitted values are 0b0000 and 0b0001.
From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.
If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.
If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.
SHA1, bits [11:8]
Indicates support for SHA1 instructions in AArch64 state. Defined values are:
0b0000  No SHA1 instructions implemented.
0b0001  SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions implemented.

All other values are reserved.
FEAT_SHA1 implements the functionality identified by the value 0b0001.
From Armv8, the permitted values are 0b0000 and 0b0001.
If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

AES, bits [7:4]
Indicates support for AES instructions in AArch64 state. Defined values are:
0b0000  No AES instructions implemented.
0b0001  AESE, AESD, AESMC, and AESIMC instructions implemented.
0b0010  As for 0b0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

All other values are reserved.
From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]
Reserved, RES0.

Accessing the ID_AA64ISAR0_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64ISAR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    else
      UNDEFINED;
  elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return ID_AA64ISAR0_EL1;
  elsif PSTATE.EL == EL2 then
    return ID_AA64ISAR0_EL1;
  elsif PSTATE.EL == EL3 then
    return ID_AA64ISAR0_EL1;

D13.2.60  ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

**Purpose**

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

If ID_AA64ISAR1_EL1.{API, APA} == {0000, 0000}, then:

- The TCR_EL1.{TBID, TBID0}, TCR_EL2.{TBID0, TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
- APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1, APDBKeyHi_EL1, APDBKeyLo_EL1 are not allocated.
- SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

- HCR_EL2.APK and HCR_EL2.API are RES0.
- SCR_EL3.APK and SCR_EL3.API are RES0.

**Attributes**

ID_AA64ISAR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64ISAR1_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>56</td>
<td>I8MM</td>
<td>Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state. Defined values of this field are: 0b0000 0b0001 0b0002 0b0003 0b0004 0b0005 0b0006 0b0007 0b0008 0b0009 0b000A 0b000B 0b000C 0b000D 0b000E 0b000F</td>
</tr>
<tr>
<td>55</td>
<td>DGH</td>
<td>Indicates support for the Data Gathering Hint instruction. Defined values are: 0b0000 0b0001</td>
</tr>
<tr>
<td>52</td>
<td>BF16</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>SPECRES</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SB</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>FRINTTS</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>GPi</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>GPA</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>LRCPC</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>FCMA</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>JSCVT</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>API</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>APA</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>DPB</td>
<td></td>
</tr>
</tbody>
</table>

0b0000 0b0001 Int8 matrix multiplication instructions are not implemented. SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions are implemented. All other values are reserved. FEAT_I8MM implements the functionality identified by 0b0001. When Advanced SIMD and SVE are both implemented, this field must return the same value as ID_AA64ZFR0_EL1.I8MM. From Armv8.6, the only permitted value is 0b0001.
All other values are reserved.

**FEAT_DGH** implements the functionality identified by 0b0001.

From ARMv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0b0000.

**BF16, bits [47:44]**

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values are:

- 0b0000 BFloat16 instructions are not implemented.
- 0b0001 BFDOT, BFMLAL, BFMLAL2, BFMM MLA, BFCVT, and BFCVT2 instructions are implemented.

All other values are reserved.

**FEAT_BF16** implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as ID_AA64ZFR0_EL1.BF16.

From ARMv8.6, the only permitted value is 0b0001.

**SPECRES, bits [43:40]**

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

- 0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not implemented.
- 0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.

All other values are reserved.

**FEAT_SPECRES** implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

**SB, bits [39:36]**

Indicates support for SB instruction in AArch64 state. Defined values are:

- 0b0000 SB instruction is not implemented.
- 0b0001 SB instruction is implemented.

All other values are reserved.

**FEAT_SB** implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

**FRINTTS, bits [35:32]**

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined values are:

- 0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are not implemented.
- 0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.

All other values are reserved.

**FEAT_FRINTTS** implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

**GPI, bits [31:28]**

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:

- 0b0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.
- 0b0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is implemented. This includes the PACGA instruction.
All other values are reserved.
From Armv8.3, the permitted values are 0b0000 and 0b0001.
If the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b0000.

GPA, bits [27:24]
Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code authentication in AArch64 state. Defined values are:
0b0000  Generic Authentication using an Architected algorithm is not implemented.
0b0001  Generic Authentication using the QARMA algorithm is implemented. This includes the PACGA instruction.
All other values are reserved.
From Armv8.3, the permitted values are 0b0000 and 0b0001.
If the value of ID-AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]
Indicates support for weaker release consistency, RCpc, based model. Defined values are:
0b0000  The LDAPR*, LDAPUR*, and STLUR* instructions are not implemented.
0b0001  The LDAPR* instructions are implemented.
The LDAPUR*, and STLUR* instructions are not implemented.
0b0010  The LDAPR*, LDAPUR*, and STLUR* instructions are implemented.
All other values are reserved.
FEAT_LRCPC implements the functionality identified by the value 0b0001.
FEAT_LRCPC2 implements the functionality identified by the value 0b0010.
In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.
In Armv8.3, the permitted values are 0b0001 and 0b0010.
From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]
Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined values are:
0b0000  The FCMLA and FCADD instructions are not implemented.
0b0001  The FCMLA and FCADD instructions are implemented.
All other values are reserved.
FEAT_FCMA implements the functionality identified by the value 0b0001.
In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.
From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.
From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]
Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64 state. Defined values are:
0b0000  The FJCVTZS instruction is not implemented.
0b0001  The FJCVTZS instruction is implemented.
All other values are reserved.
FEAT_JSCVT implements the functionality identified by 0b0001.
In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.
From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.
From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]
Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

0b0000  Address Authentication using an IMPLEMENTATION DEFINED algorithm is not implemented.
0b0001  Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented, with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.
0b0010  Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented, with the HaveEnhancedPAC() function returning TRUE, and the HaveEnhancedPAC2() function returning FALSE.
0b0011  Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.
0b0100  Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning TRUE, the HaveFPACCombined() function returning FALSE, and the HaveEnhancedPAC() function returning FALSE.
0b0101  Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning TRUE, the HaveFPACCombined() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.
FEAT_PAuth2 implements the functionality added by the value 0b0011.
FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.
If the value of ID_AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b0000.

APA, bits [7:4]
Indicates whether QARMA or Architected algorithm is implemented in the PE for address authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

0b0000  Address Authentication using an Architected algorithm is not implemented.
0b0001  Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.
0b0010  Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function returning FALSE.
0b0011  Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning FALSE, the HaveFPACCombined() function returning FALSE, and the HaveEnhancedPAC() function returning FALSE.
0b0100  Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning TRUE, the HaveFPACCombined() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.
D13.2 General system control registers

Address Authentication using the QARMA algorithm is implemented, with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning TRUE, the HaveFPACCombined() function returning TRUE, and the HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_PAuth2 implements the functionality added by the value 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of the ID_AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state. Defined values are:

- 0b0000: DC CVAP not supported.
- 0b0001: DC CVAP supported.
- 0b0010: DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing the ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR1_EL1;
 else
 if PSTATE.EL == EL2 then
 return ID_AA64ISAR1_EL1;
 else
 return ID_AA64ISAR1_EL1;
```
D13.2.61 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

The ID_AA64MMFR0_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

There are no configuration notes.

**Attributes**

ID_AA64MMFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64MMFR0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:60</td>
<td>ECV, bits</td>
<td>Indicates presence of Enhanced Counter Virtualization. Defined values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0000  Enhanced Counter Virtualization is not implemented.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001  Enhanced Counter Virtualization is implemented. Supports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNTHCTL_EL2.{EL1TVT, EL1TVCT, EL1INVCT, EL1INVVCT, EVNTIS},</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNTKCTL_EL1.EVNTIS, CNTPCTSS_EL0 counter views, and CNTVCTSS_EL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>counter views. Extends the PMSCR_EL1.PCT, PMSCR_EL2.PCT, TRFCR_EL1.TS,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and TRFCR_EL2.TS fields.</td>
</tr>
<tr>
<td>59:56</td>
<td>FGT, bits</td>
<td>Indicates presence of the Fine-Grained Trap controls:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0000  The fine-grained trap controls are not implemented.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0001  As 0b0001, and also includes support for CNTHCTL_EL2.ECV and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNTPOFF_EL2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEAT_ECV implements the functionality identified by the values 0b0001 and 0b0010.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Armv8.6, the only permitted values are 0b0001 and 0b0010.</td>
</tr>
</tbody>
</table>

From Armv8.6, the only permitted values are 0b0001 and 0b0010.
The fine-grained trap controls are implemented and can generate fine-grained traps of EL1 and EL0 functionality.

All other values are reserved.

FEAT_FGT implements the functionality identified by the value 0b0001.

From Armv8.6, the only permitted value is 0b0001.

**Bits [55:48]**

Reserved, RES0.

**ExS, bits [47:44]**

Indicates support for disabling context synchronizing exception entry and exit. Defined values are:

- 0b0000  All exception entries and exits are context synchronization events.
- 0b0001  Non-context synchronizing exception entry and exit are supported.

All other values are reserved.

FEAT_ExS implements the functionality identified by the value 0b0001.

**TGran4_2, bits [43:40]**

Indicates support for 4KB memory granule size at stage 2. Defined values are:

- 0b0000  Support for 4KB granule at stage 2 is identified in the ID_AA64MMFR0_EL1.TGran4 field.
- 0b0001  4KB granule not supported at stage 2.
- 0b0010  4KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

**TGran64_2, bits [39:36]**

Indicates support for 64KB memory granule size at stage 2. Defined values are:

- 0b0000  Support for 64KB granule at stage 2 is identified in the ID_AA64MMFR0_EL1.TGran64 field.
- 0b0001  64KB granule not supported at stage 2.
- 0b0010  64KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

**TGran16_2, bits [35:32]**

Indicates support for 16KB memory granule size at stage 2. Defined values are:

- 0b0000  Support for 16KB granule at stage 2 is identified in the ID_AA64MMFR0_EL1.TGran16 field.
- 0b0001  16KB granule not supported at stage 2.
- 0b0010  16KB granule supported at stage 2.

All other values are reserved.

The 0b0000 value is deprecated.

**TGran4, bits [31:28]**

Indicates support for 4KB memory translation granule size. Defined values are:

- 0b0000  4KB granule supported.
- 0b1111  4KB granule not supported.

All other values are reserved.
TGran64, bits [27:24]
Indicates support for 64KB memory translation granule size. Defined values are:
0b0000 64KB granule supported.
0b1111 64KB granule not supported.
All other values are reserved.

TGran16, bits [23:20]
Indicates support for 16KB memory translation granule size. Defined values are:
0b0000 16KB granule not supported.
0b0001 16KB granule supported.
All other values are reserved.

BigEndEL0, bits [19:16]
Indicates support for mixed-endian at EL0 only. Defined values are:
0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit has a fixed value.
0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit can be configured.
All other values are reserved.
This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]
Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:
0b0000 Does not support a distinction between Secure and Non-secure Memory.
0b0001 Does support a distinction between Secure and Non-secure Memory.

Note
If EL3 is implemented, the value 0b0000 is not permitted.
All other values are reserved.

BigEnd, bits [11:8]
Indicates support for mixed-endian configuration. Defined values are:
0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a fixed value. See the BigEndEL0 field, bits[19:16], for whether EL0 supports mixed-endian.
0b0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be configured.
All other values are reserved.

ASIDBits, bits [7:4]
Number of ASID bits. Defined values are:
0b0000 8 bits.
0b0010 16 bits.
All other values are reserved.

PARange, bits [3:0]
Physical Address range supported. Defined values are:
0b0000 32 bits, 4GB.
0b0001 36 bits, 64GB.
0b0010 40 bits, 1TB.
0b0011 42 bits, 4TB.
0b0100 44 bits, 16TB.
0b0100 48 bits, 256TB.
0b0110 52 bits, 4PB.

All other values are reserved.
The value 0b0110 is permitted only if the implementation includes FEAT_LPA, otherwise it is reserved.

**Accessing the ID_AA64MMFR0_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_AA64MMFR0_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b1111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_AA64MMFR0_EL1;
    endif
elsif PSTATE.EL == EL2 then
    return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64MMFR0_EL1;

D13.2.62 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

The ID_AA64MMFR1_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

There are no configuration notes.

**Attributes**

ID_AA64MMFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64MMFR1_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0 [63:40]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>ETS [39:36]</td>
<td>Indicates support for Enhanced Translation Synchronization. Defined values are:</td>
</tr>
<tr>
<td></td>
<td>0b0000: Enhanced Translation Synchronization is not supported.</td>
</tr>
<tr>
<td></td>
<td>0b0001: Enhanced Translation Synchronization is supported.</td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td>FEAT_ETS implements the functionality identified by the value 0b0001.</td>
</tr>
<tr>
<td></td>
<td>From Armv8.0, the permitted values are 0b0000 and 0b0001.</td>
</tr>
<tr>
<td>TWED [35:32]</td>
<td>Indicates support for the configurable delayed trapping of WFE. Defined values are:</td>
</tr>
<tr>
<td></td>
<td>0b0000: Configurable delayed trapping of WFE is not supported.</td>
</tr>
<tr>
<td></td>
<td>0b0001: Configurable delayed trapping of WFE is supported.</td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td>FEAT_TWED implements the functionality identified by the value 0b0001.</td>
</tr>
<tr>
<td></td>
<td>From Armv8.6, the permitted values are 0b0000 and 0b0001.</td>
</tr>
<tr>
<td>XNX [31:28]</td>
<td>Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:</td>
</tr>
<tr>
<td></td>
<td>0b0000: Distinction between EL0 and EL1 execute-never control at stage 2 not supported.</td>
</tr>
<tr>
<td></td>
<td>0b0001: Distinction between EL0 and EL1 execute-never control at stage 2 supported.</td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td>FEAT_XNX implements the functionality identified by the value 0b0001.</td>
</tr>
<tr>
<td></td>
<td>From Armv8.2, the only permitted value is 0b0001.</td>
</tr>
</tbody>
</table>
**SpecSEI, bits [27:24]**

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:

- **0b0000** The PE never generates an SError interrupt due to an External abort on a speculative read.
- **0b0001** The PE might generate an SError interrupt due to an External abort on a speculative read.

All other values are reserved.

**PAN, bits [23:20]**

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and DSPSR_EL0. Defined values are:

- **0b0000** PAN not supported.
- **0b0001** PAN supported.
- **0b0010** PAN supported and AT S1E1RP and AT S1E1WP instructions supported.

All other values are reserved.

**LO, bits [19:16]**

LORegions. Indicates support for LORegions. Defined values are:

- **0b0000** LORegions not supported.
- **0b0001** LORegions supported.

All other values are reserved.

**HPDS, bits [15:12]**

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables. Defined values are:

- **0b0000** Disabling of hierarchical controls not supported.
- **0b0001** Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.
- **0b0010** As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

**VH, bits [11:8]**

Virtualization Host Extensions. Defined values are:

- **0b0000** Virtualization Host Extensions not supported.
- **0b0001** Virtualization Host Extensions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the permitted values are 0b0001 and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.
From Armv8.1, the only permitted value is 0b0001.

**VMIDBits, bits [7:4]**

Number of VMID bits. Defined values are:

- 0b0000 8 bits
- 0b0010 16 bits

All other values are reserved.

*FEAT_VMID16* implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

**HAFDBS, bits [3:0]**

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

- 0b0000 Hardware update of the Access flag and dirty state are not supported.
- 0b0001 Hardware update of the Access flag is supported.
- 0b0010 Hardware update of both the Access flag and dirty state is supported.

All other values are reserved.

*FEAT_HAFDBS* implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

**Accessing the ID_AA64MMFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_AA64MMFR1_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b000</td>
<td>0b011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then
  return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then
  return ID_AA64MMFR1_EL1;
D13.2.63 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

The ID_AA64MMFR2_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

--- Note ---

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

---

**Attributes**

ID_AA64MMFR2_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64MMFR2_EL1 bit assignments are:

**E0PD, bits [63:60]**

Indicates support for the E0PD mechanism. Defined values are:

0b0000  E0PDx mechanism is not implemented.  
0b0001  E0PDx mechanism is implemented.  
All other values are reserved.  
**FEAT_E0PD** implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.  
If **FEAT_E0PD** is implemented, **FEAT_CSV3** must be implemented.

**EVT, bits [59:56]**

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the 
**HCR_EL2** values: TTLBOS, TTLBIS, TOCU, TICAB, TID4 traps. Defined values are:

0b0000  **HCR_EL2** values: TTLBOS, TTLBIS, TOCU, TICAB, TID4 traps are not supported.  
0b0001  **HCR_EL2** values: TOCU, TICAB, TID4 traps are supported. **HCR_EL2** values: TTLBOS, TTLBIS traps are not supported.  
0b0010  **HCR_EL2** values: TTLBOS, TTLBIS, TOCU, TICAB, TID4 traps are supported.  
All other values are reserved.  
**FEAT_EVT** implements the functionality identified by the values 0b0001 and 0b0010.  
If EL2 is not implemented, the only permitted value is 0b0000.  
In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.  
From Armv8.5, the permitted values are:  
• 0b0000 when EL2 is not implemented.
• 0b0010 when EL2 is implemented.

**BBM, bits [55:52]**

Allows identification of the requirements of the hardware to have break-before-make sequences when changing block size for a translation.

- 0b0000 Level 0 support for changing block size is supported.
- 0b0001 Level 1 support for changing block size is supported.
- 0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBMM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

**TTL, bits [51:48]**

Indicates support for TTL field in address operations. Defined values are:

- 0b0000 TLB maintenance instructions by address have bits[47:44] as RES0.
- 0b0001 TLB maintenance instructions by address have bits[47:44] holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2E1OS, TLBI IPAS2LE1, TLBI IPAS2LE1IS, TLBI IPAS2LE1OS, TLBI VAAE1, TLBI VAAE1IS, TLBI VAAE1OS, TLBI VAAE1S, TLBI VAAE1IS, TLBI VAAE1OS, TLBI VALE1, TLBI VALE1IS, TLBI VALE1OS, TLBI VALE2, TLBI VALE2IS, TLBI VALE2OS, TLBI VALE3, TLBI VALE3IS, TLBI VALE3OS.

From Armv8.4, the only permitted value is 0b0001.

**Bits [47:44]**

Reserved, RES0.

**FWB, bits [43:40]**

Indicates support for HCR_EL2.FWB. Defined values are:

- 0b0000 HCR_EL2.FWB bit is not supported.
- 0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

**IDS, bits [39:36]**

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space. Defined values are:

- 0b0000 An exception which is generated by a read access to the feature ID space, other than a trap caused by HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported by ESR_ELx.EC == 0x0.
- 0b0001 All exceptions generated by an AArch64 read access to the feature ID space are reported by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1==0, 1, 3, CRn==0, CRm==0-7, op2==0-7.

FEAT_IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.
AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

0b0000 Unaligned single-copy atomicity and atomic functions are not supported.
0b0001 Unaligned single-copy atomicity and atomic functions with a 16-byte address range aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.
In Armv8.2, the permitted values are 0b0000 and 0b0001.
From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Identifies support for small translation tables. Defined values are:

0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 39.
0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 48 for 4KB and 16KB granules, and 47 for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.
If FEAT_SEL2 is implemented, the only permitted value is 0b0001.
In an implementation which does not support FEAT_SEL2, the permitted values are 0b0000 and 0b0001.

NV , bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization. Defined values are:

0b0000 Nested virtualization is not supported.
0b0001 The HCR_EL2.NV, HCR_EL2.NV1, HCR_EL2.AT bits are implemented.
0b0010 The VNCR_EL2 register and the HCR_EL2.{AT, NV, NV1, NV2} bits are implemented.

All other values are reserved.
If EL2 is not implemented, the only permitted value is 0b0000.

FEAT_NV implements the functionality identified by the value 0b0001.
FEAT_NV2 implements the functionality identified by the value 0b0010.
In Armv8.3, if EL2 is implemented, the permitted values are 0b0000 and 0b0001.
From Armv8.4, if EL2 is implemented, the permitted values are 0b0000, 0b0001, and 0b0010.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.
0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.
From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

0b0000 VMSAv8-64 supports 48-bit VAs.
0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB translation granule. The other translation granules support 48-bit VAs.
All other values are reserved.

**FEAT_LVA** implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

### IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

- 0b0000: IESB bit in the SCTLR_ELx registers is not supported.
- 0b0001: IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

**FEAT_IESB** implements the functionality identified by the value 0b0001.

### LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined values are:

- 0b0000: LSMAOE and nTLSMD bits not supported.
- 0b0001: LSMAOE and nTLSMD bits supported.

All other values are reserved.

**FEAT_LSMAOC** implements the functionality identified by the value 0b0001.

### UAO, bits [7:4]

User Access Override. Defined values are:

- 0b0000: UAO not supported.
- 0b0001: UAO supported.

All other values are reserved.

**FEAT_UAO** implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

### CnP, bits [3:0]

Indicates support for Common not Private translations. Defined values are:

- 0b0000: Common not Private translations not supported.
- 0b0001: Common not Private translations supported.

All other values are reserved.

**FEAT_TTCNP** implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

### Accessing the ID_AA64MMFR2_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_AA64MMFR2_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
```

---

**Non-Confidential**

ARM DDI 0487F.c
else
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_AA64MMFR2_EL1;
    elsif PSTATE.EL == EL2 then
        return ID_AA64MMFR2_EL1;
    elsif PSTATE.EL == EL3 then
        return ID_AA64MMFR2_EL1;
D13.2.64  ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

**Purpose**

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

The external register EDPFR gives information from this register.

**Attributes**

ID_AA64PFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_AA64PFR0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>CSV3, bits [63:60]</th>
<th>Speculative use of faulting data. Defined values are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>This Device does not disclose whether data loaded under speculation with a permission or domain fault can be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence</td>
</tr>
<tr>
<td>0b0001</td>
<td>Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence</td>
</tr>
</tbody>
</table>

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

0b0000	This Device does not disclose whether branch targets trained in one hardware described context can affect speculative execution in a different hardware described context.
0b0001	Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way. Contexts do not include the SCXTNUM_ELx register contexts, and these registers are not supported.
0b0010	Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way. Contexts include the SCXTNUM_ELx register contexts, and these registers are supported.

From Armv8.5, the only permitted values are 0b0001 or 0b010.

All other values are reserved.
Bits [55:52]

Reserved, RES0.

DIT, bits [51:48]

Data Independent Timing. Defined values are:
- 0b0000 AArch64 does not guarantee constant execution time of any instructions.
- 0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001. From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:
- 0b0000 Activity Monitors Extension is not implemented.
- 0b0001 FEAT_AMUv1 is implemented.
- 0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001. FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

MPAM, bits [43:40]

Indicates support for MPAM Extension. Defined values are:
- 0b0000 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension is not implemented.
  If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 0.1 is implemented.
- 0b0001 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension version 1.0 is implemented.
  If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension version 1.1 is implemented.

All other values are reserved.

SEL2, bits [39:36]

Secure EL2. Defined values are:
- 0b0000 Secure EL2 is not implemented.
- 0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:
- 0b0000 SVE architectural state and programmers' model are not implemented.
- 0b0001 SVE architectural state and programmers' model are implemented.

All other values are reserved.
If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are available.

**RAS, bits [31:28]**

RAS Extension version. Defined values are:

- **0b0000** No RAS Extension.
- **0b0001** RAS Extension present.
- **0b0010** FEAT_RASv1p1 present. As 0b0001, and adds support for:
  - If EL3 is implemented, FEAT_DoubleFault.
  - Additional ERXMRCEL1 System registers.
  - Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR<n>STATUS and support for the optional RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1.NUM is zero, the permitted values are IMPLEMENTATION DEFINED 0b0010 or 0b0011. Otherwise from Armv8.4, the only permitted value is 0b0010.

**GIC, bits [27:24]**

System register GIC CPU interface. Defined values are:

- **0b0000** GIC CPU interface system registers not implemented.
- **0b0001** System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.
- **0b0011** System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

**AdvSIMD, bits [23:20]**

Advanced SIMD. Defined values are:

- **0b0000** Advanced SIMD is implemented, including support for the following SISD and SIMD operations:
  - Integer byte, halfword, word and doubleword element operations.
  - Single-precision and double-precision floating-point arithmetic.
  - Conversions between single-precision and half-precision data types, and double-precision and half-precision data types.
- **0b0001** As for 0b0000, and also includes support for half-precision floating-point arithmetic.
- **0b1111** Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

- **0b0000** in an implementation with Advanced SIMD support that does not include the FEAT_FP16 extension.
- **0b0011** in an implementation with Advanced SIMD support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

**FP, bits [19:16]**
Floating-point. Defined values are:
- 0b0000 Floating-point is implemented, and includes support for:
  - Single-precision and double-precision floating-point types.
  - Conversions between single-precision and half-precision data types, and double-precision and half-precision data types.
- 0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.
- 0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:
- 0b0000 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
- 0b0001 in an implementation with floating-point support that includes the FEAT_FP16 extension.
- 0b1111 in an implementation without floating-point support.

**EL3, bits [15:12]**
EL3 Exception level handling. Defined values are:
- 0b0000 EL3 is not implemented.
- 0b0001 EL3 can be executed in AArch64 state only.
- 0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

**EL2, bits [11:8]**
EL2 Exception level handling. Defined values are:
- 0b0000 EL2 is not implemented.
- 0b0001 EL2 can be executed in AArch64 state only.
- 0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

**EL1, bits [7:4]**
EL1 Exception level handling. Defined values are:
- 0b0001 EL1 can be executed in AArch64 state only.
- 0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

**EL0, bits [3:0]**
EL0 Exception level handling. Defined values are:
- 0b0001 EL0 can be executed in AArch64 state only.
- 0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

**Accessing the ID_AA64PFR0_EL1**
Accesses to this register use the following encodings in the System instruction encoding space:
MRS <xt>, ID_AA64PFR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_AA64PFR0_EL1;
    end
elsif PSTATE.EL == EL2 then
    return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then
    return ID_AA64PFR0_EL1;
D13.2.65  ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.
For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers on page D13-2867.

Configurations
There are no configuration notes.

Attributes
ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR1_EL1 bit assignments are:

- **RES0**: [63:20] Reserved, RES0.
- **MPAM_frac**: [19:16]
  - MPAM Extension fractional field. Defined values are:
    - 0b0000: If ID_AA64PFR0_EL1.MPAM == 0b0000, MPAM Extension not implemented.
    - If ID_AA64PFR0_EL1.MPAM == 0b0001, MPAM Extension v1.0 is implemented.
    - 0b0001: If ID_AA64PFR0_EL1.MPAM == 0b0000, implements MPAM v0.1, which is like v1.1 but reduces support for Secure PARTIDs.
  - If ID_AA64PFR0_EL1.MPAM == 0b0001, implements MPAM v1.1 and adds support for MPAM2_EL2.TIDR to provide trapping of MPAMIDR_EL1 when MPAMHCR_EL2 is not present.
  - All other values are reserved.
- **RAS_frac**: [15:12]
  - RAS Extension fractional field. Defined values are:
    - 0b0000: If ID_AA64PFR0_EL1.RAS == 0b0000, RAS Extension implemented.
    - 0b0001: If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for:
      - Additional ERXMISC<,m> EL1 System registers.
      - Additional System registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to support the optional RAS Common Fault Injection Model Extension.
    - Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR<n>STATUS, and support for the optional RAS Timestamp and RAS Common Fault Injection Model Extensions.
    - All other values are reserved.
- **FEAT_RASv1p1**: implements the functionality identified by the value 0b0001.
This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

**MTE, bits [11:8]**

Support for the Memory Tagging Extension. Defined values are:

- **0b0000** Memory Tagging Extension is not implemented.
- **0b0001** Memory Tagging Extension instructions accessible at EL0 are implemented. Instructions and System Registers defined by the extension not configurably accessible at EL0 are Unallocated and other System Register fields defined by the extension are RES0.
- **0b0010** Memory Tagging Extension is implemented.

All other values are reserved.

**FEAT_MTE** implements the functionality identified by the value 0b0001.

When ID_AA64PFR1_EL1.MTE < 0b0010:

- All register fields added to existing System registers and Special-purpose registers as part of the extension are RES0, and treated as 0.
- The following System registers are UNDEFINED:
  - GMID_EL1, GCR_EL1, RGSR_EL1, TFSRE0_EL1, and TFSR_ELx.
- The following System instructions are UNDEFINED:
  - DC CGSW, DC CIGSW, DC IGSW, DC CGDSW, DC CIGDSW, DC IGDSW, DC IGVAC, and DC IGDVAC.
- The following instructions are UNDEFINED:
  - LDG, STG, and STZG.
- The Tagged memory type encoding in MAIR_ELx is UNPREDICTABLE.

**SSBS, bits [7:4]**

Speculative Store Bypassing controls in AArch64 state. Defined values are:

- **0b0000** AArch64 provides no mechanism to control the use of Speculative Store Bypassing.
- **0b0001** AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypass Safe.
- **0b0010** AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypassing Safe, and the MSR and MRS instructions to directly read and write the PSTATE.SSBS field.

All other values are reserved.

**FEAT_SSBS** implements the functionality identified by the value 0b0001.

**BT, bits [3:0]**

Branch Target Identification mechanism support in AArch64 state. Defined values are:

- **0b0000** The Branch Target Identification mechanism is not implemented.
- **0b0001** The Branch Target Identification mechanism is implemented.

All other values are reserved.

**FEAT_BTI** implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

**Accessing the ID_AA64PFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ID_AA64PFR1_EL1

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    else
      UNDEFINED;
  elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return ID_AA64PFR1_EL1;
  elsif PSTATE.EL == EL2 then
    return ID_AA64PFR1_EL1;
  elsif PSTATE.EL == EL3 then
    return ID_AA64PFR1_EL1;

\[\begin{array}{lllll}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0000 & 0b0100 & 0b001
\end{array}\]
D13.2.66 ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0

The ID_AFR0_EL1 characteristics are:

**Purpose**

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state.

Must be interpreted with the Main ID Register, MIDR_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_AFR0_EL1[31:0] is architecturally mapped to AArch32 System register ID_AFR0[31:0].

**Attributes**

ID_AFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_AFR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

- **Bits [63:16]**
  - Reserved, RES0.

  **IMPLEMENTATION DEFINED, bits [15:12]**
  - IMPLEMENTATION DEFINED.

  **IMPLEMENTATION DEFINED, bits [11:8]**
  - IMPLEMENTATION DEFINED.

  **IMPLEMENTATION DEFINED, bits [7:4]**
  - IMPLEMENTATION DEFINED.

  **IMPLEMENTATION DEFINED, bits [3:0]**
  - IMPLEMENTATION DEFINED.

*Otherwise:*

- **Bits [63:0]**
  - UNKNOWN
UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_AFR0_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MRS <Xt>, ID_AFR0_EL1
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    undefined;
  elseif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return ID_AFR0_EL1;
  elseif PSTATE.EL == EL2 then
    return ID_AFR0_EL1;
  elseif PSTATE.EL == EL3 then
    return ID_AFR0_EL1;
D13.2.67   ID_DFR0_EL1, AArch32 Debug Feature Register 0

The ID_DFR0_EL1 characteristics are:

**Purpose**

Provides top level information about the debug system in AArch32 state.
Must be interpreted with the Main ID Register, MIDR_EL1.
For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_DFR0_EL1[31:0] is architecturally mapped to AArch32 System register ID_DFR0[31:0].

**Attributes**

ID_DFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_DFR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31:28</td>
<td>TraceFilt, Self-hosted Trace Extension version. Defined values are:</td>
</tr>
<tr>
<td>31:28</td>
<td>(0b0000) Armv8.4 Self-hosted Trace Extension not implemented.</td>
</tr>
<tr>
<td>31:28</td>
<td>(0b0001) Armv8.4 Self-hosted Trace Extension implemented.</td>
</tr>
<tr>
<td>27:24</td>
<td>PerfMon, Performance Monitors Extension version. This field does not follow the standard ID scheme, but uses the alternative ID scheme described in Alternative ID scheme used for the Performance Monitors Extension version on page D13-2869</td>
</tr>
<tr>
<td>27:24</td>
<td>Defined values are:</td>
</tr>
<tr>
<td>27:24</td>
<td>(0b0000) Performance Monitors Extension not implemented.</td>
</tr>
<tr>
<td>27:24</td>
<td>(0b0001) Performance Monitors Extension, PMUv1 implemented.</td>
</tr>
<tr>
<td>27:24</td>
<td>(0b0010) Performance Monitors Extension, PMUv2 implemented.</td>
</tr>
<tr>
<td>27:24</td>
<td>(0b0011) Performance Monitors Extension, PMUv3 implemented.</td>
</tr>
<tr>
<td>24:20</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
<tr>
<td>19:16</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
<tr>
<td>15:12</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
<tr>
<td>11:8</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
<tr>
<td>7:4</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
<tr>
<td>3:0</td>
<td>MProfDbg, MMapTrc, CopTrc, MMapDbg, CopSDbg, CopDbg</td>
</tr>
</tbody>
</table>

Performance Monitors Extension not implemented.
Performance Monitors Extension, PMUv1 implemented.
Performance Monitors Extension, PMUv2 implemented.
Performance Monitors Extension, PMUv3 implemented.
PMUv3 for Armv8.1. As \(0b0011\), and also includes support for:
- Extended 16-bit PMEVTPER<\(n\).evtCount field.
- If EL2 is implemented, the HDCR.HPMD control bit.
0b0101  PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR register.
0b0110  PMUv3 for Armv8.5. As 0b0101, and also includes support for:
  •  64-bit event counters.
  •  If EL2 is implemented, the HDCR.HCCD control bit.
  •  If EL3 is implemented, the MDCR_EL3.SCCD control bit.
0b1111  IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not supported. Arm does not recommend this value for new implementations.

All other values are reserved.
FEAT_PMUv3 implements the functionality identified by the value 0b0011.
FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.
FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.
FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.
From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.
From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.
From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

Note
In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an Armv8 implementation.

MProfDbg, bits [23:20]
M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:
0b0000  Not supported.
0b0001  Support for M profile Debug architecture, with memory-mapped access.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]
Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:
0b0000  Not supported.
0b0001  Support for Arm trace architecture, with memory-mapped access.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
See the ETM Architecture Specification for more information.

CopTrc, bits [15:12]
Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding space. Defined values are:
0b0000  Not supported.
0b0001  Support for Arm trace architecture, with System registers access.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
See the ETM Architecture Specification for more information.
**MMAPDbg, bits [11:8]**

Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.

In Armv8-A, this field is RES0.

The optional memory map defined by Armv8 is not compatible with Armv7.

**CopSDbg, bits [7:4]**

Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space, for an A profile processor that includes EL3.

If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise, this field reads the same as bits [3:0].

**CopDbg, bits [3:0]**

Support for System registers-based debug model, using registers in the coproc = 0b1110 encoding space, for A and R profile processors. Defined values are:

- 0b0000: Not supported.
- 0b0010: Support for Armv6, v6 Debug architecture, with System registers access.
- 0b0011: Support for Armv6, v6.1 Debug architecture, with System registers access.
- 0b0100: Support for Armv7, v7 Debug architecture, with System registers access.
- 0b0101: Support for Armv7, v7.1 Debug architecture, with System registers access.
- 0b0110: Support for Armv8 debug architecture, with System registers access.
- 0b0111: Support for Armv8 debug architecture, with System registers access, and Virtualization Host Extensions.
- 0b1000: Support for Armv8.2 debug architecture.
- 0b1001: Support for Armv8.4 debug architecture.

All other values are reserved.

**FEAT_Debugv8p2** adds the functionality identified by the value 0b1000.

**FEAT_Debugv8p4** adds the functionality identified by the value 0b1001.

In Armv8.0, the only permitted value is 0b0110.

In Armv8.1, the only permitted value is 0b0111.

In Armv8.2, the only permitted value is 0b1000.

From Armv8.4, the only permitted value is 0b1001.

**Otherwise:**

![Diagram of bits 63 to 0]

**UNKNOWN, bits [63:0]**

Reserved, UNKNOWN.

**Accessing the ID_DFR0_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ID_DFR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_DFR0_EL1;
elsif PSTATE.EL == EL2 then
  return ID_DFR0_EL1;
elsif PSTATE.EL == EL3 then
  return ID_DFR0_EL1;
D13.2.68  ID_DFR1_EL1, Debug Feature Register 1

The ID_DFR1_EL1 characteristics are:

**Purpose**

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_DFR1_EL1[31:0] is architecturally mapped to AArch32 System register ID_DFR1[31:0].

--- Note ---

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

**Attributes**

ID_DFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_DFR1_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bits [63:4]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTPMU, bits [3:0]</td>
<td></td>
</tr>
</tbody>
</table>

Multi-threaded PMU extension. Defined values are:

- **0b0000**  FEAT_MTPMU not implemented. If PMUv3 is implemented, it is IMPLEMENTATION DEFINED whether PMEVTYPE<\n> EL0.MT are read/write or RES0.

- **0b0001**  FEAT_MTPMU implemented and PMEVTYPE<\n> EL0.MT are read/write. When FEAT_MTPMU is disabled, the Effective values of PMEVTYPE<\n> EL0.MT are 0.

- **0b1111**  FEAT_MTPMU not implemented. If PMUv3 is implemented, PMEVTYPE<\n> EL0.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value **0b0001**.

In an Armv8.6-compliant implementation that includes PMUv3, the value **0b0000** is not permitted.

In an implementation that does not include PMUv3, the value **0b0001** is not permitted.
Otherwise:

```
63 0
{UNKNOWN} {UNKNOWN}
```

**UNKNOWN, bits [63:0]**

Reserved, UNKNOWN.

**Accessing the ID_DFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_DFR1_EL1**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!IsZero(ID_DFR1_EL1) || boolean IMPLEMENTATION_DEFINED "ID_DFR1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_DFR1_EL1;
 elsif PSTATE.EL == EL2 then
 return ID_DFR1_EL1;
 elsif PSTATE.EL == EL3 then
 return ID_DFR1_EL1;
```
D13.2.69  ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0

The ID_ISAR0_EL1 characteristics are:

**Purpose**

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_ISAR0_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR0[31:0].

**Attributes**

ID_ISAR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>63</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Divide</td>
<td>Debug</td>
<td>Coproc</td>
<td>CmpBranch</td>
<td>BitField</td>
<td>BitCount</td>
<td>Swap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:28]  
Reserved, RES0.

Divide, bits [27:24]  
Indicates the implemented Divide instructions. Defined values are:

0b0000: None implemented.
0b0001: Adds SDIV and UDIV in the T32 instruction set.
0b0010: As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Debug, bits [23:20]  
Indicates the implemented Debug instructions. Defined values are:

0b0000: None implemented.
0b0001: Adds BKPT.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Coproc, bits [19:16]  
Indicates the implemented System register access instructions. Defined values are:

0b0000: None implemented, except for instructions separately attributed by the architecture to provide access to AArch32 System registers and System instructions.
0b0001: Adds generic CDP, LDC, MCR, MRC, and STC.
0b0010 As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.
0b0011 As for 0b0010, and adds generic MCRR and MRRC.
0b0100 As for 0b0011, and adds generic MCRR2 and MRRC2.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

CmpBranch, bits [15:12]
Indicates the implemented combined Compare and Branch instructions in the T32 instruction set. Defined values are:
0b0000 None implemented.
0b0001 Adds CBNZ and CBZ.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

BitField, bits [11:8]
Indicates the implemented BitField instructions. Defined values are:
0b0000 None implemented.
0b0001 Adds BFC, BFI, SBFX, and UBFX.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

BitCount, bits [7:4]
Indicates the implemented Bit Counting instructions. Defined values are:
0b0000 None implemented.
0b0001 Adds CLZ.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Swap, bits [3:0]
Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:
0b0000 None implemented.
0b0001 Adds SWP and SWPB.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_ISAR0_EL1
Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ID_ISAR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_ISAR0_EL1;
elsif PSTATE_EL == EL2 then
  return ID_ISAR0_EL1;
elsif PSTATE_EL == EL3 then
  return ID_ISAR0_EL1;
D13.2.70   ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1

The ID_ISAR1_EL1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state. Must be interpreted with ID_ISAR0_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

Configurations

AArch64 System register ID_ISAR1_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR1[31:0].

Attributes

ID_ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_ISAR1_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>[31:28]</td>
<td>Jazelle</td>
<td></td>
</tr>
<tr>
<td>[27:24]</td>
<td>Interwork</td>
<td></td>
</tr>
<tr>
<td>[23:20]</td>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>[19:16]</td>
<td>IfThen</td>
<td></td>
</tr>
<tr>
<td>[15:12]</td>
<td>Extend</td>
<td></td>
</tr>
<tr>
<td>[11:8]</td>
<td>Except_AR</td>
<td></td>
</tr>
<tr>
<td>[7:4]</td>
<td>Except</td>
<td></td>
</tr>
<tr>
<td>[3:0]</td>
<td>Endian</td>
<td></td>
</tr>
</tbody>
</table>

Jazelle, bits [31:28]

Indicates the implemented Jazelle extension instructions. Defined values are:

- 0b0000  No support for Jazelle.
- 0b0001  Adds the BXJ instruction and the J bit in the PSR. This setting might indicate a trivial implementation of the Jazelle extension.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Interwork, bits [27:24]

Indicates the implemented Interworking instructions. Defined values are:

- 0b0000  None implemented.
- 0b0001  Adds the BX instruction, and the T bit in the PSR.
- 0b0010  As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.
- 0b0011  As for 0b0010, and guarantees that data-processing instructions in the A32 instruction set with the PC as the destination and the S bit clear have BX-like behavior.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

Immediate, bits [23:20]

Indicates the implemented data-processing instructions with long immediates. Defined values are:

- 0b0000  None implemented.
0b0001  Adds:
  • The MOVT instruction.
  • The MOV instruction encodings with zero-extended 16-bit immediates.
  • The T32 ADD and SUB instruction encodings with zero-extended 12-bit immediates, and the other ADD, ADR, and SUB encodings cross-referenced by the pseudocode for those encodings.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

IfThen, bits [19:16]
Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:
0b0000  None implemented.
0b0001  Adds the IT instructions, and the IT bits in the PSRs.
All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Extend, bits [15:12]
Indicates the implemented Extend instructions. Defined values are:
0b0000  No scalar sign-extend or zero-extend instructions are implemented, where scalar instructions means non-Advanced SIMD instructions.
0b0001  Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0b0010  As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and UXTHA instructions.
All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Except_AR, bits [11:8]
Indicates the implemented A and R profile exception-handling instructions. Defined values are:
0b0000  None implemented.
0b0001  Adds the SRS and RFE instructions, and the A and R profile forms of the CPS instruction.
All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Except, bits [7:4]
Indicates the implemented exception-handling instructions in the A32 instruction set. Defined values are:
0b0000  Not implemented. This indicates that the User bank and Exception return forms of the LDM and STM instructions are not implemented.
0b0001  Adds the LDM (exception return), LDM (user registers), and STM (user registers) instruction versions.
All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Endian, bits [3:0]
Indicates the implemented Endian instructions. Defined values are:
0b0000  None implemented.
0b0001  Adds the SETEND instruction, and the E bit in the PSRs.
All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.
**Otherwise:**

![UNKNOWN, bits [63:0]](image)

Reserved, UNKNOWN.

**Accessing the ID_ISAR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_ISAR1_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 else
 UNDEFINED;
 end
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR1_EL1;
 end
elsif PSTATE.EL == EL2 then
 return ID_ISAR1_EL1;
elsif PSTATE.EL == EL3 then
 return ID_ISAR1_EL1;
```

```c
Otherwise:
```

```c
UNKNOWN
```

```c
```

```c
63

UNKNOWN, bits [63:0]
```
**D13.2.71 ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2**

The ID_ISAR2_EL1 characteristics are:

**Purpose**

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_ISAR2_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR2[31:0].

**Attributes**

ID_ISAR2_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR2_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[31:28]</td>
<td>Reversal, bits</td>
</tr>
<tr>
<td>[27:24]</td>
<td>PSR_AR, bits</td>
</tr>
<tr>
<td>[19:16]</td>
<td>MultS</td>
</tr>
<tr>
<td>[15:12]</td>
<td>Mult</td>
</tr>
<tr>
<td>[7:4]</td>
<td>LoadStore</td>
</tr>
<tr>
<td>[3:0]</td>
<td>MultiAccessInt</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**Reversal, bits [31:28]**

Indicates the implemented Reversal instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the REV, REV16, and REVSH instructions.
- 0b0010: As for 0b0001, and adds the RBIT instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

**PSR_AR, bits [27:24]**

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the MRS and MSR instructions, and the exception return forms of data-processing instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

The exception return forms of the data-processing instructions are:

- In the A32 instruction set, data-processing instructions with the PC as the destination and the S bit set. These instructions might be affected by the WithShifts attribute.
• In the T32 instruction set, the SUBS PC,LR,#N instruction.

MultU, bits [23:20]

Indicates the implemented advanced unsigned Multiply instructions. Defined values are:
- 0b0000: None implemented.
- 0b0001: Adds the UMULL and UMLAL instructions.
- 0b0010: As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

MultS, bits [19:16]

Indicates the implemented advanced signed Multiply instructions. Defined values are:
- 0b0000: None implemented.
- 0b0001: Adds the SMULL and SMLAL instructions.
- 0b0010: As for 0b0001, and adds the SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the Q bit in the PSRs.
- 0b0011: As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSDL, SMLSDDX, SMLA, SMLAR, SMML, SMMLS, SMMLR, SMMLUL, SMMLUR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0011.

Mult, bits [15:12]

Indicates the implemented additional Multiply instructions. Defined values are:
- 0b0000: No additional instructions implemented. This means only MUL is implemented.
- 0b0001: Adds the MLA instruction.
- 0b0010: As for 0b0001, and adds the MLS instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]

Indicates the support for interruptible multi-access instructions. Defined values are:
- 0b0000: No support. This means the LDM and STM instructions are not interruptible.
- 0b0001: LDM and STM instructions are restartable.
- 0b0010: LDM and STM instructions are continuable.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

MemHint, bits [7:4]

Indicates the implemented Memory Hint instructions. Defined values are:
- 0b0000: None implemented.
- 0b0001: Adds the PLD instruction.
- 0b0010: Adds the PLD instruction. (0b0000 and 0b0010 have identical effects.)
- 0b0011: As for 0b0001 (or 0b0010), and adds the PLI instruction.
- 0b0100: As for 0b0011, and adds the PLDW instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0100.
LoadStore, bits [3:0]
Indicates the implemented additional load/store instructions. Defined values are:

- 0b0000 No additional load/store instructions implemented.
- 0b0001 Adds the LDRD and STRD instructions.
- 0b0010 As for 0b0001, and adds the Load Acquire (LDAB, LDAH, LDA, LDAEXB, LDAEXH, LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLEXB, STLEXH, STLEX, STLEXD) instructions.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

Otherwise:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>UNKNOWN</td>
</tr>
</tbody>
</table>

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_ISAR2_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS <Xt>, ID_ISAR2_EL1}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
else PSTATE_EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_ISAR2_EL1;
elsif PSTATE_EL == EL2 then
  return ID_ISAR2_EL1;
elif PSTATE_EL == EL3 then
  return ID_ISAR2_EL1;
D13.2.72  ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3

The ID_ISAR3_EL1 characteristics are:

**Purpose**

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR4_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_ISAR3_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR3[31:0].

**Attributes**

ID_ISAR3_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR3_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>T32EE</td>
</tr>
<tr>
<td>31-28</td>
<td>TrueNOP</td>
</tr>
<tr>
<td>27-20</td>
<td>T32Copy</td>
</tr>
<tr>
<td>19-16</td>
<td>TabBranch</td>
</tr>
<tr>
<td>15-8</td>
<td>SynchPrim</td>
</tr>
<tr>
<td>7-4</td>
<td>SVC</td>
</tr>
<tr>
<td>3</td>
<td>SIMD</td>
</tr>
<tr>
<td>0</td>
<td>Saturate</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**T32EE, bits [31:28]**

Indicates the implemented T32EE instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the ENTERX and LEA VEX instructions, and modifies the load behavior to include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

**TrueNOP, bits [27:24]**

Indicates the implemented true NOP instructions. Defined values are:

- 0b0000: None implemented. This means there are no NOP instructions that do not have any register dependencies.
- 0b0001: Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**T32Copy, bits [23:20]**

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

- 0b0000: Not supported. This means that in the T32 instruction set, encoding T1 of the MOV (register) instruction does not support a copy from a low register to a low register.
0b0001  Adds support for T32 instruction set encoding T1 of the MOV (register) instruction, copying from a low register to a low register.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**TabBranch, bits [19:16]**

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:

0b0000  None implemented.
0b0001  Adds the TBB and TBH instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**SynchPrim, bits [15:12]**

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive instructions. Defined values are:

0b0000  If SynchPrim_frac == 0b0000, no Synchronization Primitives implemented.
0b0001  If SynchPrim_frac == 0b0000, adds the LDREX and STREX instructions. If SynchPrim_frac == 0b0011, also adds the CLREX, LDREXB, STREXB, and STREXH instructions.
0b0010  If SynchPrim_frac == 0b0000, as for 0b0001, 0b0011 and also adds the LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

**SVC, bits [11:8]**

Indicates the implemented SVC instructions. Defined values are:

0b0000  Not implemented.
0b0001  Adds the SVC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**SIMD, bits [7:4]**

Indicates the implemented SIMD instructions. Defined values are:

0b0000  None implemented.
0b0001  Adds the SSAT and USAT instructions, and the Q bit in the PSRs.
0b0011  As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, SHSAX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQSAX, USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16 instructions. Also adds support for the GE[3:0] bits in the PSRs.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose registers. In an implementation that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced SIMD instructions.
Saturate, bits [3:0]
Indicates the implemented Saturate instructions. Defined values are:

0b0000 None implemented. This means no non-Advanced SIMD saturate instructions are implemented.
0b0001 Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_ISAR3_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_ISAR3_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
if IsFeatureImplemented("FEAT_IDST") then
if EL2Enabled() && HCR_EL2.TGE == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  AArch64.SystemAccessTrap(EL1, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  return ID_ISAR3_EL1;
elsif PSTATE.EL == EL2 then
  return ID_ISAR3_EL1;
elsif PSTATE.EL == EL3 then
  return ID_ISAR3_EL1;
### D13.2.73 ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4

The ID_ISAR4_EL1 characteristics are:

#### Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

#### Configurations

AArch64 System register ID_ISAR4_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR4[31:0].

#### Attributes

ID_ISAR4_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR4_EL1 bit assignments are:

### When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Field Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 32 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0</td>
<td>SynchPrim_frac</td>
</tr>
</tbody>
</table>

#### Bits [63:32]

Reserved, RES0.

#### SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

- **0b0000**  SWP or SWPB instructions not implemented.
- **0b0001**  SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not guarantee whether memory accesses from other Requesters can come between the load memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is 0b0000.

In Armv8-A, the only permitted value is 0b0000.

#### PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

- **0b0000**  None implemented.
- **0b0001**  Adds the M profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
SynchPrim frac, bits [23:20]

Used in conjunction with ID_ISAR3.SynchPrim to indicate the implemented Synchronization Primitive instructions. Possible values are:

- **0b0000** If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim == 0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD instructions.

- **0b0011** If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH, STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

- **0b0000** None implemented. Barrier operations are provided only as System instructions in the (coproc==0b1111) encoding space.

- **0b0001** Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

- **0b0000** None implemented.

- **0b0001** Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the permitted values are 0b0001 and 0b0000.

If EL1 cannot use AArch32, then this field has the value 0b0000.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

- **0b0000** Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support writeback addressing modes. These instructions support all of their writeback addressing modes.

- **0b0001** Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

- **0b0000** Nonzero shifts supported only in MOV and shift instructions.

- **0b0001** Adds support for shifts of loads and stores over the range LSL 0-3.

- **0b0011** As for 0b0001, and adds support for other constant shift options, both on load/store and other instructions.

- **0b0100** As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.
### Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

- **0b0000**: None implemented. No T variant instructions are implemented.
- **0b0001**: Adds the LDRBT, LDRT, STRBT, and STRT instructions.
- **0b0010**: As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0010**.

### Otherwise:

![Binary diagram](image)

**UNKNOWN, bits [63:0]**

Reserved, **UNKNOWN**.

### Accessing the ID_ISAR4_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

#### MRS <Xt>, ID_ISAR4_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 else
 UNDEFINED;
 end
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_ISAR4_EL1;
 end
elsif PSTATE_EL == EL2 then
 return ID_ISAR4_EL1;
elsif PSTATE_EL == EL3 then
 return ID_ISAR4_EL1;
```
D13.2.74   ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5

The ID_ISAR5_EL1 characteristics are:

**Purpose**

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, and ID_ISAR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_ISAR5_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR5[31:0].

**Attributes**

ID_ISAR5_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR5_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>RES0</th>
<th>VCMA</th>
<th>RDM</th>
<th>RES0</th>
<th>CRC32</th>
<th>SHA2</th>
<th>SHA1</th>
<th>AES</th>
<th>SEVL</th>
</tr>
</thead>
</table>

**RES0**

Reserved, RES0.

**VCMA, bits [31:28]**

Indicates AArch32 support for complex number addition and multiplication where numbers are stored in vectors. Defined values are:

0b0000   The VCMLA and VCADD instructions are not implemented in AArch32.
0b0001   The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

**FEAT_FCMA** implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, the only permitted value is 0b0001.

**RDM, bits [27:24]**

Indicates whether the VQRDMLAH and VQRDMLSH instructions are implemented in AArch32 state. Defined values are:

0b0000   No VQRDMLAH and VQRDMLSH instructions implemented.
0b0001   VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

**FEAT_RDM** implements the functionality identified by the value 0b0001.

In Armv8.0, the only permitted value is 0b0000.

From Armv8.1, the only permitted value is 0b0001.
Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]
Indicates whether the CRC32 instructions are implemented in AArch32 state.

0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions implemented.
All other values are reserved.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]
Indicates whether the SHA2 instructions are implemented in AArch32 state.

0b0000 No SHA2 instructions implemented.
0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]
Indicates whether the SHA1 instructions are implemented in AArch32 state.

0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]
Indicates whether the AES instructions are implemented in AArch32 state.

0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC implemented.
0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data quantities.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0010.

SEVL, bits [3:0]
Indicates whether the SEVL instruction is implemented in AArch32 state.

0b0000 SEVL is implemented as a NOP.
0b0001 SEVL is implemented as Send Event Local.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Otherwise:
UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_ISAR5_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_ISAR5_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_ISAR5_EL1;
    end
elsif PSTATE.EL == EL2 then
    return ID_ISAR5_EL1;
elsif PSTATE.EL == EL3 then
    return ID_ISAR5_EL1;
D13.2.75  ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

The ID_ISAR6_EL1 characteristics are:

**Purpose**

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1 and ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_ISAR6_EL1[31:0] is architecturally mapped to AArch32 System register ID_ISAR6[31:0].

**Note**

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

**Attributes**

ID_ISAR6_EL1 is a 64-bit register.

**Field descriptions**

The ID_ISAR6_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-28</td>
<td>RES0</td>
</tr>
<tr>
<td>27-24</td>
<td>I8MM</td>
</tr>
<tr>
<td>23-20</td>
<td>BF16</td>
</tr>
<tr>
<td>19-16</td>
<td>SPECRES</td>
</tr>
<tr>
<td>15-12</td>
<td>SB</td>
</tr>
<tr>
<td>11-8</td>
<td>FHM</td>
</tr>
<tr>
<td>7-4</td>
<td>DP</td>
</tr>
<tr>
<td>3-0</td>
<td>JSCVT</td>
</tr>
</tbody>
</table>

**Bits [63:28]**

Reserved, RES0.

**I8MM, bits [27:24]**

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state. Defined values of this field are:

- **0b0000**: Int8 matrix multiplication instructions are not implemented.
- **0b0001**: VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by **0b0001**.

**BF16, bits [23:20]**

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:

- **0b0000**: BFloat16 instructions are not implemented.
- **0b0001**: VCVT, VCVTB, VCVTT, VDOT, VFMSL, and VMMLA instructions with BF16 operand or result types are implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by **0b0001**.
SPECRES, bits [19:16]
Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:
- 0b0000  Prediction invalidation instructions are not implemented.
- 0b0001  CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.
All other values are reserved.
FEAT_SPECRES implements the functionality identified by 0b0001.
From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]
Indicates support for the SB instruction in AArch32 state. Defined values are:
- 0b0000  SB instruction is not implemented.
- 0b0001  SB instruction is implemented.
All other values are reserved.
FEAT_SB implements the functionality identified by 0b0001.
From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]
Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined values are:
- 0b0000  VFMAL and VMFSL instructions are not implemented.
- 0b0001  VFMAL and VMFSL instructions are implemented.
All other values are reserved.
FEAT_FHM implements the functionality identified by 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [7:4]
Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined values are:
- 0b0000  Dot product instructions are not implemented.
- 0b0001  UDOT and VSDOT instructions are implemented.
All other values are reserved.
FEAT_DotProd implements the functionality identified by 0b0001.
In Armv8.2, the permitted values are 0b0000 and 0b0001.
From Armv8.4, the only permitted value is 0b0001.

JSCVT, bits [3:0]
Indicates support for the VJCVT instruction in AArch32 state. Defined values are:
- 0b0000  The VJCVT instruction is not implemented.
- 0b0001  The VJCVT instruction is implemented.
All other values are reserved.
FEAT_JSCVT implements the functionality identified by 0b0001.
In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.
From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.
From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.
Otherwise:

![Diagram of 64-bit register]

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_ISAR6_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS <Xt>, ID_ISAR6_EL1}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.El == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
  elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!IsZero(ID_ISAR6_EL1) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return ID_ISAR6_EL1;
  elsif PSTATE.EL == EL2 then
    return ID_ISAR6_EL1;
  elsif PSTATE.EL == EL3 then
    return ID_ISAR6_EL1;
D13.2.76   ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0

The ID_MMFR0_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR0_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR0[31:0].

**Attributes**

ID_MMFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>InnerShr, bits [31:28]</td>
<td>Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:</td>
</tr>
<tr>
<td>0b0000</td>
<td>Implemented as Non-cacheable.</td>
</tr>
<tr>
<td>0b0001</td>
<td>Implemented with hardware coherency support.</td>
</tr>
<tr>
<td>0b1111</td>
<td>Shareability ignored.</td>
</tr>
<tr>
<td>All other values are reserved.</td>
<td></td>
</tr>
<tr>
<td>From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.</td>
<td></td>
</tr>
<tr>
<td>This field is valid only if the implementation supports two levels of shareability, as indicated by ID_MMFR0_EL1.ShareLvl having the value 0b0001.</td>
<td></td>
</tr>
<tr>
<td>When ID_MMFR0_EL1.ShareLvl is zero, this field is UNKNOWN.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCSE, bits [27:24]</th>
<th>Indicates whether the implementation includes the FCSE. Defined values are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Not supported.</td>
</tr>
<tr>
<td>0b0001</td>
<td>Support for FCSE.</td>
</tr>
<tr>
<td>All other values are reserved.</td>
<td></td>
</tr>
<tr>
<td>From Armv8 the only permitted value is 0b0000.</td>
<td></td>
</tr>
</tbody>
</table>
AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

- 0b0000  None supported.
- 0b0001  Support for Auxiliary Control Register only.
- 0b0010  Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary Control Register.

All other values are reserved.

From Armv8 the only permitted value is 0b0010.

Note
Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]

Indicates support for TCMs and associated DMAs. Defined values are:

- 0b0000  Not supported.
- 0b0001  Support is IMPLEMENTATION DEFINED. Armv7 requires this setting.
- 0b0010  Support for TCM only, Armv6 implementation.
- 0b0011  Support for TCM and DMA, Armv6 implementation.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

ShareLvl, bits [15:12]

Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:

- 0b0000  One level of shareability implemented.
- 0b0001  Two levels of shareability implemented.

All other values are reserved.

From Armv8 the only permitted value is 0b0001.

OuterShr, bits [11:8]

Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:

- 0b0000  Implemented as Non-cacheable.
- 0b0001  Implemented with hardware coherency support.
- 0b1111  Shareability ignored.

All other values are reserved.

From Armv8 the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]

Indicates support for a PMSA. Defined values are:

- 0b0000  Not supported.
- 0b0001  Support for IMPLEMENTATION DEFINED PMSA.
- 0b0010  Support for PMSAv6, with a Cache Type Register implemented.
- 0b0011  Support for PMSAv7, with support for memory subsections. Armv7-R profile.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.
VMSA, bits [3:0]
Indicates support for a VMSA. Defined values are:

- 0b0000  Not supported.
- 0b0001  Support for IMPLEMENTATION DEFINED VMSA.
- 0b0010  Support for VMSA64, with Cache and TLB Type Registers implemented.
- 0b0011  Support for VMSA6, with support for remapping and the Access flag. Armv7-A profile.
- 0b0100  As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table format descriptors.
- 0b0101  As for 0b0100, and adds support for the Long-descriptor translation table format.

All other values are reserved.

In Armv8-A the only permitted value is 0b0101.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_MMFR0_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_MMFR0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if IsFeatureImplemented("FEAT_IDST") then
if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE_EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_MMFR0_EL1;
elsif PSTATE_EL == EL2 then
return ID_MMFR0_EL1;
elsif PSTATE_EL == EL3 then
return ID_MMFR0_EL1;
D13.2.77   ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1

The ID_MMFR1_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR1_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR1[31:0].

**Attributes**

ID_MMFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR1_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31-28</td>
<td>BPred, Branch Predictor. Indicates branch predictor management requirements. Defined values are:</td>
</tr>
<tr>
<td>31-28</td>
<td>0b0000: No branch predictor, or no MMU present. Implies a fixed MPU configuration.</td>
</tr>
<tr>
<td>31-28</td>
<td>0b0001: Branch predictor requires flushing on:</td>
</tr>
<tr>
<td>31-28</td>
<td>• Enabling or disabling a stage of address translation.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Writing new data to instruction locations.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Writing new mappings to the translation tables.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Changes to the TTBR0, TTBR1, or TTBCR registers.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.</td>
</tr>
<tr>
<td>31-28</td>
<td>0b0010: Branch predictor requires flushing on:</td>
</tr>
<tr>
<td>31-28</td>
<td>• Enabling or disabling a stage of address translation.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Writing new data to instruction locations.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Writing new mappings to the translation tables.</td>
</tr>
<tr>
<td>31-28</td>
<td>• Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the corresponding ContextID or ASID, or FCSE ProcessID if this is supported.</td>
</tr>
<tr>
<td>31-28</td>
<td>0b0011: Branch predictor requires flushing only on writing new data to instruction locations.</td>
</tr>
<tr>
<td>31-28</td>
<td>0b0100: For execution correctness, branch predictor requires no flushing at any time.</td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
</tr>
</tbody>
</table>
In Armv8-A, the permitted values are 0b0010, 0b0011, and 0b0100. For values other than 0b0000 and 0b0100 the Arm Architecture Reference Manual, or the product documentation, might give more information about the required maintenance.

**L1TstCln, bits [27:24]**
Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified cache implementations. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported Level 1 data cache test and clean operations are:
  - Test and clean data cache.
- 0b0010 As for 0b0001, and adds:
  - Test, clean, and invalidate data cache.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

**L1Uni, bits [23:20]**
Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache implementation. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported entire Level 1 cache operations are:
  - Invalidate cache, including branch predictor if appropriate.
  - Invalidate branch predictor, if appropriate.
- 0b0010 As for 0b0001, and adds:
  - Clean cache, using a recursive model that uses the cache dirty status bit.
  - Clean and invalidate cache, using a recursive model that uses the cache dirty status bit.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

**L1Hvd, bits [19:16]**
Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache implementation. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported entire Level 1 cache operations are:
  - Invalidate instruction cache, including branch predictor if appropriate.
  - Invalidate branch predictor, if appropriate.
- 0b0010 As for 0b0001, and adds:
  - Invalidate data cache.
  - Invalidate data cache and instruction cache, including branch predictor if appropriate.
- 0b0011 As for 0b0010, and adds:
  - Clean data cache, using a recursive model that uses the cache dirty status bit.
  - Clean and invalidate data cache, using a recursive model that uses the cache dirty status bit.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.
L1UniSW, bits [15:12]

Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified cache implementation. Defined values are:

0b0000  None supported.
0b0001  Supported Level 1 unified cache line maintenance operations by set/way are:
  •  Clean cache line by set/way.
0b0010  As for 0b0001, and adds:
  •  Clean and invalidate cache line by set/way.
0b0011  As for 0b0010, and adds:
  •  Invalidate cache line by set/way.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a Harvard cache implementation. Defined values are:

0b0000  None supported.
0b0001  Supported Level 1 Harvard cache line maintenance operations by set/way are:
  •  Clean data cache line by set/way.
  •  Clean and invalidate data cache line by set/way.
0b0010  As for 0b0001, and adds:
  •  Invalidate data cache line by set/way.
0b0011  As for 0b0010, and adds:
  •  Invalidate instruction cache line by set/way.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a unified cache implementation. Defined values are:

0b0000  None supported.
0b0001  Supported Level 1 unified cache line maintenance operations by VA are:
  •  Clean cache line by VA.
  •  Invalidate cache line by VA.
  •  Clean and invalidate cache line by VA.
0b0010  As for 0b0001, and adds:
  •  Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a Harvard cache implementation. Defined values are:

0b0000  None supported.
0b0001  Supported Level 1 Harvard cache line maintenance operations by VA are:
  •  Clean data cache line by VA.
  •  Invalidate data cache line by VA.
• Clean and invalidate data cache line by VA.
• Clean instruction cache line by VA.

0b0010  As for 0b0001, and adds:
• Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_MMFR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

*MRS <Xt>, ID_MMFR1_EL1*

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    else
      UNDEFINED;
  else
    return ID_MMFR1_EL1;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_MMFR1_EL1;
elsif PSTATE.EL == EL2 then
  return ID_MMFR1_EL1;
elif PSTATE.EL == EL3 then
  return ID_MMFR1_EL1;
D13.2.78   ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2

The ID_MMFR2_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR3_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR2_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR2[31:0].

**Attributes**

ID_MMFR2_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR2_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>63</th>
<th>32</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td>HWAccFlg, bits [31:28]</td>
<td></td>
</tr>
<tr>
<td>WFIStall, bits [27:24]</td>
<td></td>
</tr>
<tr>
<td>MemBarr, bits [23:20]</td>
<td></td>
</tr>
<tr>
<td>UniTLB</td>
<td></td>
</tr>
<tr>
<td>HvdTLB</td>
<td></td>
</tr>
<tr>
<td>L1HvdRng</td>
<td></td>
</tr>
<tr>
<td>L1HvdBG</td>
<td></td>
</tr>
<tr>
<td>L1HvdFG</td>
<td></td>
</tr>
</tbody>
</table>

Reserved, RES0.

**HWAccFlg, bits [31:28]**

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:

- 0b0000  Not supported.
- 0b0001  Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

From Armv8, the only permitted value is 0b0000.

**WFIStall, bits [27:24]**

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

- 0b0000  Not supported.
- 0b0001  Support for WFI stalling.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0001.

**MemBarr, bits [23:20]**

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc==0b1111) encoding space:

- 0b0000  None supported.
Supported memory barrier System instructions are:
- Data Synchronization Barrier (DSB).
- Instruction Synchronization Barrier (ISB).
- Data Memory Barrier (DMB).

All other values are reserved.
From Armv8, the only permitted value is 0b0010.
Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred barrier instructions.

**UniTLB, bits [19:16]**
Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values are:
- 0b0000 Not supported.
- 0b0001 Supported unified TLB maintenance operations are:
  - Invalidate all entries in the TLB.
  - Invalidate TLB entry by VA.
- 0b0010 As for 0b0001, and adds:
  - Invalidate TLB entries by ASID match.
- 0b0011 As for 0b0010, and adds:
  - Invalidate instruction TLB and data TLB entries by VA All ASID. This is a shared unified TLB operation.
- 0b0100 As for 0b0011, and adds:
  - Invalidate Hyp mode unified TLB entry by VA.
  - Invalidate entire Non-secure PL1&0 unified TLB.
  - Invalidate entire Hyp mode unified TLB.
- 0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.
- 0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS, TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0110.

**HvdTLB, bits [15:12]**
If the Unified TLB field (UniTLB, bits [19:16]) is not 0000, then the meaning of this field is IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

**L1HvdRng, bits [11:8]**
Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache implementation. Defined values are:
- 0b0000 Not supported.
- 0b0001 Supported Level 1 Harvard cache maintenance range operations are:
  - Invalidate data cache range by VA.
  - Invalidate instruction cache range by VA.
  - Clean data cache range by VA.
  - Clean and invalidate data cache range by VA.

All other values are reserved.
From Armv8, the only permitted value is 0b0000.
L1HvdBG, bits [7:4]
Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a Harvard cache implementation. When supported, background fetch operations are non-blocking operations. Defined values are:
- 0b0000  Not supported.
- 0b0001  Supported Level 1 Harvard cache background fetch operations are:
  - Fetch instruction cache range by VA.
  - Fetch data cache range by VA.
All other values are reserved.
From Armv8, the only permitted value is 0b0000.

L1HvdFG, bits [3:0]
Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a Harvard cache implementation. When supported, foreground fetch operations are blocking operations. Defined values are:
- 0b0000  Not supported.
- 0b0001  Supported Level 1 Harvard cache foreground fetch operations are:
  - Fetch instruction cache range by VA.
  - Fetch data cache range by VA.
All other values are reserved.
From Armv8, the only permitted value is 0b0000.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_MMFR2_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0000 & 0b0001 & 0b110 \\
\end{array}
\]

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
else
    return ID_MMFR2_EL1;
elsif PSTATE.EL == EL2 then
    return ID_MMFR2_EL1;
elsif PSTATE.EL == EL3 then
    return ID_MMFR2_EL1;
D13.2.79  ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3

The ID_MMFR3_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR4_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR3_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR3[31:0].

**Attributes**

ID_MMFR3_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR3_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>Supersec</td>
<td>Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are: 0b0000 Supersections supported. 0b1111 Supersections not supported. All other values are reserved. In Armv8-A, the permitted values are 0b0000 and 0b1111.</td>
</tr>
<tr>
<td>CMemSz</td>
<td>Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are: 0b0000 4GB, corresponding to a 32-bit physical address range. 0b0001 64GB, corresponding to a 36-bit physical address range. 0b0010 1TB or more, corresponding to a 40-bit or larger physical address range. All other values are reserved. In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b0010.</td>
</tr>
<tr>
<td>CohWalk</td>
<td></td>
</tr>
<tr>
<td>PAN</td>
<td></td>
</tr>
<tr>
<td>MaintBcst</td>
<td></td>
</tr>
<tr>
<td>BPMaint</td>
<td></td>
</tr>
<tr>
<td>CMaintSW</td>
<td></td>
</tr>
<tr>
<td>CMaintVA</td>
<td></td>
</tr>
</tbody>
</table>
CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of Unification. Defined values are:

- **0b0000**: Updates to the translation tables require a clean to the Point of Unification to ensure visibility by subsequent translation table walks.
- **0b0001**: Updates to the translation tables do not require a clean to the Point of Unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0001**.

PAN, bits [19:16]

Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined values are:

- **0b0000**: PAN not supported.
- **0b0001**: PAN supported.
- **0b0010**: PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value **0b0001**.

FEAT_PAN2 implements the functionality added by the value **0b0010**.

In Armv8.1, the value **0b0000** is not permitted.

From Armv8.2, the only permitted value is **0b0010**.

MaintBest, bits [15:12]

Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

- **0b0000**: Cache, TLB, and branch predictor operations only affect local structures.
- **0b0001**: Cache and branch predictor operations affect structures according to shareability and defined behavior of instructions. TLB operations only affect local structures.
- **0b0010**: Cache, TLB, and branch predictor operations affect structures according to shareability and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0010**.

BPMaint, bits [11:8]

Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache maintenance operations. Defined values are:

- **0b0000**: None supported.
- **0b0001**: Supported branch predictor maintenance operations are:
  - Invalidate all branch predictors.
- **0b0010**: As for **0b0001**, and adds:
  - Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0010**.

CMaintSW, bits [7:4]

Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical caches. Defined values are:

- **0b0000**: None supported.
Supported hierarchical cache maintenance instructions by set/way are:
- Invalidate data cache by set/way.
- Clean data cache by set/way.
- Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

`CMaintVA`, bits [3:0]

Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical caches. Defined values are:
- 0b0000 None supported.
- 0b0001 Supported hierarchical cache maintenance operations by VA are:
  - Invalidate data cache by VA.
  - Clean data cache by VA.
  - Clean and invalidate data cache by VA.
  - Invalidate instruction cache by VA.
  - Invalidate all instruction cache entries.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance instructions are not implemented.

`Otherwise:`

Accessing the ID_MMFR3_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

### MRS <Xt>, ID_MMFR3_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if `PSTATE_EL == EL0` then
  if IsFeatureImplemented("FEAT_IDST") then
    if `EL2Enabled()` && `HCR_EL2.TGE = '1'` then
      `AArch64.SystemAccessTrap(EL2, 0x18);`
    else
      `AArch64.SystemAccessTrap(EL1, 0x18);`
    else
      `UNDEFINED;`
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ID_MMFR3_EL1;
    elsif PSTATE.EL == EL2 then
        return ID_MMFR3_EL1;
    elsif PSTATE.EL == EL3 then
        return ID_MMFR3_EL1;
D13.2.80  ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4

The ID_MMFR4_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, and ID_MMFR3_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR4_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR4[31:0].

**Attributes**

ID_MMFR4_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR4_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>RES0</td>
</tr>
<tr>
<td>31:28</td>
<td>EVT</td>
</tr>
<tr>
<td>27:24</td>
<td>CCIDX</td>
</tr>
<tr>
<td>23:20</td>
<td>LSM</td>
</tr>
<tr>
<td>19:16</td>
<td>HPDS</td>
</tr>
<tr>
<td>15:12</td>
<td>CNP</td>
</tr>
<tr>
<td>11:8</td>
<td>XNX</td>
</tr>
<tr>
<td>7</td>
<td>AC2</td>
</tr>
<tr>
<td>30</td>
<td>SpecSEI</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**EVT, bits [31:28]**

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:

- 0b0000  HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.
- 0b0001  HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not supported.
- 0b0010  HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

**FEAT_EVT** implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

- 0b0000 when EL2 is not implemented.
- 0b0010 when EL2 is implemented.

**CCIDX, bits [27:24]**

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

- 0b0000  32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is not implemented.
0b0001 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is implemented.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

**LSM, bits [23:20]**

Indicates support for LSMAOE and nTLSMD bits in HSCTRL and SCTLR. Defined values are:

- 0b0000 LSMAOE and nTLSMD bits not supported.
- 0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

**HPDS, bits [19:16]**

Hierarchical permission disables bits in translation tables. Defined values are:

- 0b0000 Disabling of hierarchical controls not supported.
- 0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
- 0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_AA32HPD implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality added by the value 0b0010.

--- Note ---

The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

---

**CnP, bits [15:12]**

Common not Private translations. Defined values are:

- 0b0000 Common not Private translations not supported.
- 0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2 the only permitted value is 0b0001.

**XNX, bits [11:8]**

Support for execute-never control distinction by Exception level at stage 2. Defined values are:

- 0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.
- 0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

When FEAT_XNX is implemented:

- If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of ID_MMFR4_EL1.XNX is 0b0000 or 0b0001:
  - ID_AA64MMFR1_EL1.XNX == 1.
  - EL2 cannot use AArch32.
— EL1 can use AArch32.

- If EL2 can use AArch32 then the only permitted value is 0b0001.

AC2, bits [7:4]
Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2. Defined values are:

- 0b0000 ACTLR2 and HACTLR2 are not implemented.
- 0b0001 ACTLR2 and HACTLR2 are implemented.

All other values are reserved.
In Armv8.0 and Armv8.1 the permitted values are 0b0000 and 0b0001.
From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]
Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:

- 0b0000 The PE never generates an SError interrupt due to an External abort on a speculative read.
- 0b0001 The PE might generate an SError interrupt due to an External abort on a speculative read.

All other values are reserved.

Otherwise:

UNKOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_MMFR4_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_MMFR4_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
if IsFeatureImplemented("FEAT_IDST") then
if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() & (IsZero(ID_MMFR4_EL1) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4_EL1 trapped by HCR_EL2.TID3") & HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_MMFR4_EL1;
elsif PSTATE.EL == EL2 then
    return ID_MMFR4_EL1;
elsif PSTATE.EL == EL3 then
    return ID_MMFR4_EL1;
### D13.2.81 ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

The ID_MMFR5_EL1 characteristics are:

**Purpose**

Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_MMFR5_EL1[31:0] is architecturally mapped to AArch32 System register ID_MMFR5[31:0].

**Attributes**

ID_MMFR5_EL1 is a 64-bit register.

**Field descriptions**

The ID_MMFR5_EL1 bit assignments are:

#### When AArch32 is supported at any Exception level:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 4</td>
<td>RES0</td>
</tr>
<tr>
<td>3 0</td>
<td>ETS</td>
</tr>
</tbody>
</table>

**Bits [63:4]**

Reserved, RES0.

**ETS, bits [3:0]**

Support for Enhanced Translation Synchronization. Defined values are:

- 0b0000 Enhanced Translation Synchronization is not supported.
- 0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

**Otherwise:**

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 0</td>
<td>UNKNOWN</td>
</tr>
</tbody>
</table>

**UNKNOWN, bits [63:0]**

Reserved, UNKNOWN.

**Accessing the ID_MMFR5_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ID_MMFR5_EL1

if PSTATE.EL == EL0 then
   if IsFeatureImplemented("FEAT_IDST") then
      if EL2Enabled() && HCR_EL2.TGE == '1' then
         AArch64.SystemAccessTrap(EL2, 0x18);
      else
         AArch64.SystemAccessTrap(EL1, 0x18);
   else
      UNDEFINED;
else
   elseif PSTATE.EL == EL1 then
      if EL2Enabled() && ((IsZero(ID_MMFR5_EL1) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1') then
         AArch64.SystemAccessTrap(EL2, 0x18);
      else
         return ID_MMFR5_EL1;
   elseif PSTATE.EL == EL2 then
      return ID_MMFR5_EL1;
   elseif PSTATE.EL == EL3 then
      return ID_MMFR5_EL1;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b110</td>
</tr>
</tbody>
</table>
**D13.2.82  ID_PFR0_EL1, AArch32 Processor Feature Register 0**

The ID_PFR0_EL1 characteristics are:

**Purpose**

Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register ID_PFR0_EL1[31:0] is architecturally mapped to AArch32 System register ID_PFR0[31:0].

**Attributes**

ID_PFR0_EL1 is a 64-bit register.

**Field descriptions**

The ID_PFR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved</td>
<td>RES0</td>
</tr>
<tr>
<td>32:30</td>
<td>RAS Extension version. Defined values are:</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>No RAS Extension.</td>
<td>0b0000</td>
</tr>
<tr>
<td>30</td>
<td>RAS Extension present.</td>
<td>0b0001</td>
</tr>
<tr>
<td>28:27</td>
<td>FEAT_RASv1p1 present. As 0b0001, and adds support for additional ERXMISC&lt;m&gt; System registers. Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR&lt;n&gt;STATUS and support for the optional RAS Timestamp Extension. All other values are reserved. FEAT_RASv1p1 implements the functionality identified by the value 0b0010. In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001. In Armv8.2, the only permitted value is 0b0001. From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR.NUM is zero, the permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise, from Armv8.4, the only permitted value is 0b0010.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Data Independent Timing. Defined values are:</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>AArch32 does not guarantee constant execution time of any instructions.</td>
<td>0b0000</td>
</tr>
<tr>
<td>24</td>
<td>AArch32 provides the CPSR.DIT mechanism to guarantee constant execution time of certain instructions.</td>
<td>0b0001</td>
</tr>
</tbody>
</table>
All other values are reserved.

**FEAT_DIT** implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

**AMU, bits [23:20]**

Indicates support for Activity Monitors Extension. Defined values are:

- 0b0000 Activity Monitors Extension is not implemented.
- 0b0001 **FEAT_AMUv1** is implemented.
- 0b0010 **FEAT_AMUv1p1** is implemented. As 0b0001 and adds support for virtualization of the activity monitor event counters.

All other values are reserved.

**FEAT_AMUv1** implements the functionality identified by the value 0b0001.

**FEAT_AMUv1p1** implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

**CSV2, bits [19:16]**

Speculative use of out of context branch targets. Defined values are:

- 0b0000 This Device does not disclose whether branch targets trained in one hardware described context can affect speculative execution in a different hardware described context.
- 0b0001 Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way.

All other values are reserved.

**FEAT_CSV2** implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

**State3, bits [15:12]**

T32EE instruction set support. Defined values are:

- 0b0000 Not implemented.
- 0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

**State2, bits [11:8]**

Jazelle extension support. Defined values are:

- 0b0000 Not implemented.
- 0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.
- 0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**State1, bits [7:4]**

T32 instruction set support. Defined values are:

- 0b0000 T32 instruction set not implemented.
- 0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:
  - All instructions are 16-bit.
  - A BL or BLX is a pair of 16-bit instructions.
- 32-bit instructions other than BL and BLX cannot be encoded.

  0b0011  T32 encodings after the introduction of Thumb-2 technology implemented, for all 16-bit and 32-bit T32 basic instructions.

  All other values are reserved.

  In Armv8-A, the only permitted value is 0b0011.

**State0, bits [3:0]**

A32 instruction set support. Defined values are:

- 0b0000  A32 instruction set not implemented.
- 0b0001  A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

**Otherwise:**

![Diagram of unknown bits]

**UNKNOWN, bits [63:0]**

Reserved, UNKNOWN.

**Accessing the ID_PFR0_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ID_PFR0_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
else
 return ID_PFR0_EL1;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then
 return ID_PFR0_EL1;
```
D13.2.83 ID_PFR1_EL1, AArch32 Processor Feature Register 1

The ID_PFR1_EL1 characteristics are:

**Purpose**

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_PFR1_EL1[31:0] is architecturally mapped to AArch32 System register ID_PFR1[31:0].

**Attributes**

ID_PFR1_EL1 is a 64-bit register.

**Field descriptions**

The ID_PFR1_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit Locations</th>
<th>Field Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31:28</td>
<td>GIC</td>
</tr>
<tr>
<td>27:24</td>
<td>Virt_frac</td>
</tr>
<tr>
<td>23:20</td>
<td>Sec_frac</td>
</tr>
<tr>
<td>19:16</td>
<td>GenTimer</td>
</tr>
<tr>
<td>15:12</td>
<td>MProgMod</td>
</tr>
<tr>
<td>11:8</td>
<td>Security</td>
</tr>
<tr>
<td>7:4</td>
<td>ProgMod</td>
</tr>
<tr>
<td>3:0</td>
<td>Virtualization</td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**GIC, bits [31:28]**

System register GIC CPU interface. Defined values are:

- **0b0000**  GIC CPU interface system registers not implemented.
- **0b0001**  System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.
- **0b0011**  System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

**Virt_frac, bits [27:24]**

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the ARMv7 Virtualization Extensions. Defined values are:

- **0b0000**  No features from the ARMv7 Virtualization Extensions are implemented.
- **0b0001**  The following features of the ARMv7 Virtualization Extensions are implemented:
  - The SCR.SIF bit, if EL3 is implemented.
  - The modifications to the SCR.AW and SCR.FW bits described in the Virtualization Extensions, if EL3 is implemented.
  - The MSR (banked register) and MRS (banked register) instructions.
  - The ERET instruction.

All other values are reserved.
In Armv8-A, the permitted values are:

- 0b0000 when EL2 is implemented.
- 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the value 0b0000.

**Note**

The ID_ISAR registers do not identify whether the instructions added by the ARMv7 Virtualization Extensions are implemented.

**Sec_frac, bits [23:20]**

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7 Security Extensions. Defined values are:

- 0b0000: No features from the ARMv7 Security Extensions are implemented.
- 0b0001: The following features from the ARMv7 Security Extensions are implemented:
  - The VBAR register.
  - The TTBCR.PD0 and TTBCR.PD1 bits.
- 0b0010: As for 0b0001, plus the ability to access Secure or Non-secure physical memory is supported.

All other values are reserved.

In Armv8-A, the permitted values are:

- 0b0000 when EL3 is implemented.
- 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value 0b0000.

**GenTimer, bits [19:16]**

Generic Timer support. Defined values are:

- 0b0000: Generic Timer is not implemented.
- 0b0001: Generic Timer is implemented.
- 0b0010: Generic Timer is implemented, and also includes support for CNTHCTL.EVTNIS and CNTRKCTL.EVTNIS fields, and CNTMPCTSS and CNTMVTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, Armv8.1, Armv8.2, Armv8.3, Armv8.4, and Armv8.5, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

**Virtualization, bits [15:12]**

Virtualization support. Defined values are:

- 0b0000: EL2, Hyp mode, and the HVC instruction not implemented.
- 0b0001: EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

- 0b0000 when EL2 is not implemented.
- 0b0001 when EL2 is implemented.
In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

--- NOTE ---
The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]
M profile programmers’ model support. Defined values are:
0b0000 Not supported.
0b0010 Support for two-stack programmers’ model.
All other values are reserved.
In Armv8-A the only permitted value is 0b0000.

Security, bits [7:4]
Security support. Defined values are:
0b0000 EL3, Monitor mode, and the SMC instruction not implemented.
0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac == 0b0001 implemented.
0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8 as the NSACR.RFR bit is res0.
All other values are reserved.
In Armv8-A, the permitted values are:
- 0b0000 when EL3 is not implemented.
- 0b0001 when EL3 is implemented.
In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0b0001.
If EL1 cannot use AArch32 then this field has the value 0b0000.

ProgMod, bits [3:0]
Support for the standard programmers’ model for Armv4 and later. Model must support User, FIQ, IRQ, Supervisor, Abort, Undefined, and System modes. Defined values are:
0b0000 Not supported.
0b0001 Supported.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
If EL1 cannot use AArch32 then this field has the value 0b0000.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.
Accessing the ID_PFR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRS \langle Xr \rangle, \text{ID\_PFR1\_EL1}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if IsFeatureImplemented("FEAT_IDST") then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    undefined;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then
  return ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then
  return ID_PFR1_EL1;
D13.2.84 ID_PFR2_EL1, AArch32 Processor Feature Register 2

The ID_PFR2_EL1 characteristics are:

**Purpose**

- Gives information about the AArch32 programmers' model.
- Must be interpreted with ID_PFR0_EL1 and ID_PFR1_EL1.
- For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register ID_PFR2_EL1[31:0] is architecturally mapped to AArch32 System register ID_PFR2[31:0].

**Attributes**

ID_PFR2_EL1 is a 64-bit register.

**Field descriptions**

The ID_PFR2_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
<td>RAS_frac</td>
<td>SSBS</td>
<td>CSV3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:12]**

- Reserved, RES0.

**RAS_frac, bits [11:8]**

RAS Extension fractional field. Defined values are:

- 0b0000 If ID_PFR0_EL1.RAS == 0b10001, RAS Extension implemented.
- 0b0001 If ID_PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for additional ERXMISC<m> System registers.

Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR<n>STATUS and support for the optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0_EL1.RAS == 0b0001.

**SSBS, bits [7:4]**

Speculative Store Bypassing controls in AArch64 state. Defined values are:

- 0b0000 AArch32 provides no mechanism to control the use of Speculative Store Bypassing.
- 0b0001 AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypass Safe.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.
CSV3, bits [3:0]
Speculative use of faulting data. Defined values are:

0b0000  This Device does not disclose whether data loaded under speculation with a permission or domain fault can be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence

0b0001  Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.5, the only permitted value is 0b0001.
If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the ID_PFR2_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ID_PFR2_EL1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
<td>CRn</td>
<td>CRm</td>
<td>op2</td>
</tr>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if IsFeatureImplemented("FEAT_IDST") then
if EL2Enabled() & HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
else
UNDEFINED;
elsf PSTATE_EL == EL1 then
if EL2Enabled() & HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return ID_PFR2_EL1;
elsf PSTATE_EL == EL2 then
return ID_PFR2_EL1;
elsf PSTATE_EL == EL3 then
return ID_PFR2_EL1;
D13.2.85  IFSR32_EL2, Instruction Fault Status Register (EL2)

The IFSR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 IFSR register from AArch64 state only. Its value has no effect on execution in AArch64 state.

Configurations

AArch64 System register IFSR32_EL2[31:0] is architecturally mapped to AArch32 System register IFSR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to IFSR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Attributes

IFSR32_EL2 is a 64-bit register.

Field descriptions

The IFSR32_EL2 bit assignments are:

When TTBCR.EAE == 0:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>16</td>
<td>FnV, bit [16]</td>
</tr>
<tr>
<td>15</td>
<td>ExT, bit [12]</td>
</tr>
<tr>
<td>14</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>13</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>12</td>
<td>ExT, bit [12]</td>
</tr>
<tr>
<td>11</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>10</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>9</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>LPAE, FS[4]</td>
</tr>
<tr>
<td>7</td>
<td>FS[3:0]</td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>3</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>2</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Bits [63:17]  

Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0  IFAR is valid.

0b1  IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]  

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.
For aborts other than External aborts this bit always returns 0.
This field resets to an architecturally UNKNOWN value.

**Bit [11]**

Reserved, RES0.

**FS[4], bit [10]**

This field is bit[4] of FS[4:0].

- **0b00001** PC alignment fault.
- **0b00010** Debug exception.
- **0b00011** Access flag fault, level 1.
- **0b00101** Translation fault, level 1.
- **0b00110** Access flag fault, level 2.
- **0b00111** Translation fault, level 2.
- **0b01000** Synchronous External abort, not on translation table walk.
- **0b01001** Domain fault, level 1.
- **0b01011** Domain fault, level 2.
- **0b01100** Synchronous External abort, on translation table walk, level 1.
- **0b01101** Permission fault, level 1.
- **0b01110** Synchronous External abort, on translation table walk, level 2.
- **0b01111** Permission fault, level 2.
- **0b10000** TLB conflict abort.
- **0b10100** IMPLEMENTATION DEFINED fault (Lockdown fault).
- **0b11001** When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.

- **0b11100** When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 1.

- **0b11110** When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.
For more information about the lookup level associated with a fault, see *The level associated with MMU faults on a Short-descriptor translation table lookup on page G5-6070*.

The FS field is split as follows:
- FS[4] is IFSR32_EL2[10].
- FS[3:0] is IFSR32_EL2[3:0].

This field resets to an architecturally UNKNOWN value.

**LPAE, bit [9]**

On taking a Data Abort exception, this bit is set as follows:

- **0b0** Using the Short-descriptor translation table formats.
- **0b1** Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.
This field resets to an architecturally UNKNOWN value.

**Bits [8:4]**

Reserved, RES0.
FS[3:0], bits [3:0]
This field is bits[3:0] of FS[4:0].

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FS[4:0]</td>
</tr>
<tr>
<td>16</td>
<td>FnV</td>
</tr>
<tr>
<td>12</td>
<td>ExT</td>
</tr>
<tr>
<td>9</td>
<td>LPAE</td>
</tr>
<tr>
<td>6:5</td>
<td>STATUS</td>
</tr>
<tr>
<td>15:13</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>11:10</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8:6</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

FnV, bit [16]
Far not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Prefetch Abort exceptions.
This field resets to an architecturally UNKNOWN value.

ExT, bit [12]
External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.
For aborts other than External aborts this bit always returns 0.
This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]
On taking a Data Abort exception, this bit is set as follows:

0b0 Using the Short-descriptor translation table formats.
0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.
This field resets to an architecturally UNKNOWN value.

Bits [8:6]
Reserved, RES0.
STATUS, bits [5:0]

Fault status bits. Possible values of this field are:
- 0b000000 Address size fault in translation table base register.
- 0b000001 Address size fault, level 1.
- 0b000010 Address size fault, level 2.
- 0b000011 Address size fault, level 3.
- 0b000101 Translation fault, level 1.
- 0b000110 Translation fault, level 2.
- 0b000111 Translation fault, level 3.
- 0b001001 Access flag fault, level 1.
- 0b001010 Access flag fault, level 2.
- 0b001011 Access flag fault, level 3.
- 0b001101 Permission fault, level 1.
- 0b001110 Permission fault, level 2.
- 0b001111 Permission fault, level 3.
- 0b010000 Synchronous External abort, not on translation table walk.
- 0b010101 Synchronous External abort on translation table walk, level 1.
- 0b010110 Synchronous External abort on translation table walk, level 2.
- 0b010111 Synchronous External abort on translation table walk, level 3.

**0b011000 When FEAT_RAS is not implemented** Synchronous parity or ECC error on memory access, not on translation table walk.

**0b011101 When FEAT_RAS is not implemented** Synchronous parity or ECC error on memory access on translation table walk, level 1.

**0b011110 When FEAT_RAS is not implemented** Synchronous parity or ECC error on memory access on translation table walk, level 2.

**0b011111 When FEAT_RAS is not implemented** Synchronous parity or ECC error on memory access on translation table walk, level 3.

- 0b100001 PC alignment fault.
- 0b10010 Debug exception.
- 0b110000 TLB conflict abort.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see *The level associated with MMU faults on a Long-descriptor translation table lookup on page G5-6072.*

This field resets to an architecturally UNKNOWN value.

### Accessing the IFSR32_EL2

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, IFSR32_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    IFSR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    IFSR32_EL2 = X[t];

MSR IFSR32_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    IFSR32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    IFSR32_EL2 = X[t];
D13.2.86 ISR_EL1, Interrupt Status Register

The ISR_EL1 characteristics are:

**Purpose**

Shows the pending status of the IRQ, FIQ, or SError interrupt.

When executing at EL2, EL3 or Secure EL1 when SCR_EL3.EEL2 == 0b0, this shows the pending status of the physical IRQ, FIQ, or SError interrupts.

When executing at either Non-secure EL1 or at Secure EL1 when SCR_EL3.EEL2 == 0b1:

- If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR_EL1.{I,F,A} bit shows the pending status of the virtual IRQ, FIQ, or SError.
- If the HCR_EL2.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR_EL1.{I,F,A} bit shows the pending status of the physical IRQ, FIQ, or SError.

**Configurations**

AArch64 System register ISR_EL1[31:0] is architecturally mapped to AArch32 System register ISR[31:0].

**Attributes**

ISR_EL1 is a 64-bit register.

**Field descriptions**

The ISR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>9</td>
<td>A, bit [8]</td>
</tr>
<tr>
<td>8</td>
<td>SError interrupt pending bit.</td>
</tr>
<tr>
<td>7</td>
<td>I, bit [7]</td>
</tr>
<tr>
<td>6</td>
<td>F, bit [6]</td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Bits [63:9]**

Reserved, RES0.

**A, bit [8]**

SError interrupt pending bit.

0b0  No pending SError.
0b1  An SError interrupt is pending.

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

**I, bit [7]**

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

0b0  No pending IRQ.
0b1  An IRQ interrupt is pending.

**F, bit [6]**

FIQ pending bit. Indicates whether an FIQ interrupt is pending.

0b0  No pending FIQ.
0b1  An FIQ interrupt is pending.

**Bits [5:0]**

Reserved, RES0.
Accessing the ISR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, ISR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HGRTR_EL2.ISR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return ISR_EL1;
    elsif PSTATE_EL == EL2 then
        return ISR_EL1;
    elsif PSTATE_EL == EL3 then
        return ISR_EL1;

D13.2.87  LORC_EL1, LORegion Control (EL1)

The LORC_EL1 characteristics are:

**Purpose**

Enables and disables LORegions, and selects the current LORegion descriptor.

**Configurations**

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORC_EL1 are UNDEFINED.

If no LORegion descriptors are supported by the PE, then this register is res0.

**Attributes**

LORC_EL1 is a 64-bit register.

**Field descriptions**

The LORC_EL1 bit assignments are:

![Field Diagram]

**Bits [63:10]**

Reserved, RES0.

**DS, bits [9:2]**

Descriptor Select. Selects the current LORegion descriptor accessed by LORSA_EL1, LOREA_EL1, and LORN_EL1.

The number of LORegion descriptors in IMPLEMENTATION DEFINED. The maximum number of LORegion descriptors supported is 256. If the number is less than 256, then bits[63:M+2] are RES0, where M is Log2(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the registers LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

This field resets to an architecturally UNKNOWN value.

**Bit [1]**

Reserved, RES0.

**EN, bit [0]**

Enable. Indicates whether LORegions are enabled.

\[ 0:0 \]

Disabled. Memory accesses do not match any LORegions.

\[ 1:1 \]

Enabled. Memory accesses may match a LORegion.

This bit is permitted to be cached in a TLB.

This field resets to 0.

**Accessing the LORC_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, LORC_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elself PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
elself SCR_EL3.NS == '0' then
    UNDEFINED;
elself EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elself EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORC_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elself HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elself EL2Enabled() && EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORC_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elself HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elself HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elself PSTATE.EL == EL2 then
    return LORC_EL1;
elself PSTATE.EL == EL3 then
    return LORC_EL1;
elself PSTATE.EL == EL3 then
    return LORC_EL1;
elself PSTATE.EL == EL3 then
    return LORC_EL1;
ea

MSR LORC_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elself PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
elself SCR_EL3.NS == '0' then
    UNDEFINED;
elself EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elself EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORC_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elself HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
    LORC_EL1 = X[t];
elsif PSTATE_EL == EL2 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL1, 0x18);
    else
        LORC_EL1 = X[t];
elsif PSTATE_EL == EL3 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    else
        LORC_EL1 = X[t];
D13.2.88 LOREA_EL1, LORegion End Address (EL1)

The LOREA_EL1 characteristics are:

**Purpose**

Holds the physical address of the end of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

**Configurations**

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LOREA_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

- No LORegion descriptors are supported by the PE.
- LORC_EL1.DS points to a LORegion that is not supported by the PE.

**Attributes**

LOREA_EL1 is a 64-bit register.

**Field descriptions**

The LOREA_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>52</th>
<th>48</th>
<th>47</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>EA[51:48]</td>
<td>EA[47:16]</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any of the fields in this register are permitted to be cached in a TLB.

**Bits [63:52]**

Reserved, RES0.

**EA[51:48], bits [51:48]**

*When FEAT_LPA is implemented:*


This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

**EA[47:16], bits [47:16]**

Bits [47:16] of the end physical address of an LORegion described in the current LORegion descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF. For implementations with fewer than 48 bits, the upper bits of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, EA[51:48] form the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address bits, EA[51:48] are RES0.

This field resets to an architecturally UNKNOWN value.

**Bits [15:0]**

Reserved, RES0.

**Accessing the LOREA_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, LOREA_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return LOREA_EL1;
  end
elsif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return LOREA_EL1;
  end
elsif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  else
    return LOREA_EL1;
  end
else
  return LOREA_EL1;
end

MSR LOREA_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return LOREA_EL1;
  end
elsif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return LOREA_EL1;
  end
elsif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  else
    return LOREA_EL1;
  end
else
  return LOREA_EL1;
end
if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
    LOREA_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            LOREA_EL1 = X[t];
    elsif PSTATE.EL == EL3 then
        if SCR_EL3.NS == '0' then
            UNDEFINED;
        else
            LOREA_EL1 = X[t];
D13.2.89  **LORID_EL1, LORegionID (EL1)**

The LORID_EL1 characteristics are:

**Purpose**

Indicates the number of LORegions and LORegion descriptors supported by the PE.

**Configurations**

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORID_EL1 are UNDEFINED.

If no LORegion descriptors are implemented, then the registers LORC_EL1, LORN_EL1, LOREA_EL1, and LORSA_EL1 are RES0.

**Attributes**

LORID_EL1 is a 64-bit register.

**Field descriptions**

The LORID_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:24]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>LD, bits [23:16]</td>
<td>Number of LORegion descriptors supported by the PE. This is an 8-bit binary number.</td>
</tr>
<tr>
<td>Bits [15:8]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>LR, bits [7:0]</td>
<td>Number of LORegions supported by the PE. This is an 8-bit binary number.</td>
</tr>
</tbody>
</table>

**Note**

If LORID_EL1 indicates that no LORegions are implemented, then LoadLOAcquire and StoreLORelease will behave as LoadAcquire and StoreRelease.

**Accessing the LORID_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, LORID_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then

...
UNDEFINED;
elif EL2Enabled() && HCR_EL2.TLOR == '1' then
   AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCGR_EL2.LORID_EL1 == '1' then
   AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
   if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
   else
      AArch64.SystemAccessTrap(EL3, 0x18);
   end
   return LORID_EL1;
elif PSTATE.EL == EL2 then
   if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
      UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
   if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
   else
      AArch64.SystemAccessTrap(EL3, 0x18);
   end
   return LORID_EL1;
elif PSTATE.EL == EL3 then
   return LORID_EL1;
D13.2.90  LORN_EL1, LORegion Number (EL1)

The LORN_EL1 characteristics are:

**Purpose**

Holds the number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

**Configurations**

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORN_EL1 are UNDEFINED.

This register is RES0 if any of the following apply:

- No LORegion descriptors are supported by the PE.
- LORC_EL1.DS points to a LORegion that is not supported by the PE.

**Attributes**

LORN_EL1 is a 64-bit register.

**Field descriptions**

The LORN_EL1 bit assignments are:

```
63 8 7 0
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Num</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Any of the fields in this register are permitted to be cached in a TLB.

**Bits [63:8]**

Reserved, RES0.

**Num, bits [7:0]**

Number of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS.

The maximum number of LORegions supported by the PE is 256. If the maximum number is less than 256, then bits[8:N] are RES0, where N is \( \log_2(\text{Number of LORegions supported by the PE}) \).

If this field points to a LORegion that is not supported by the PE, then the current LORegion descriptor does not match any LORegion.

This field resets to an architecturally UNKNOWN value.

**Accessing the LORN_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRS <Xt>, LORN_EL1
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && SCR_EL3.TLOR == '1' then
  UNDEFINED;
elsif SCR_EL3.NS == '0' then
  UNDEFINED;
elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORN_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return LORN_EL1;
  endif
  return LORN_EL1;
elsif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORN_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return LORN_EL1;
  endif
  return LORN_EL1;
elsif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  else
    return LORN_EL1;
  endif
  return LORN_EL1;
endif

**MSR LORN_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b1000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1' && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  else
    return LORN_EL1;
  endif
  return LORN_EL1;
elsif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORN_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    LORN_EL1 = X[t];
  endif
  return LORN_EL1;
elsif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1' && SCR_EL3.TLOR == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        LORN_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    else
        LORN_EL1 = X[t];

D13.2.91 LORSA_EL1, LORegion Start Address (EL1)

The LORSA_EL1 characteristics are:

**Purpose**

Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical address of the start of the LORegion.

**Configurations**

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORSA_EL1 are **UNDEFINED**.

This register is **RES0** if any of the following apply:

- No LORegion descriptors are supported by the PE.
- LORC_EL1.DS points to a LORegion that is not supported by the PE.

**Attributes**

LORSA_EL1 is a 64-bit register.

**Field descriptions**

The LORSA_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Field Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-52</td>
<td>Reserved, <strong>RES0</strong></td>
<td></td>
</tr>
<tr>
<td>51-48</td>
<td>SA[51:48], bits <strong>[51:48]</strong></td>
<td></td>
</tr>
<tr>
<td>47-16</td>
<td><strong>SA[47:16]</strong></td>
<td></td>
</tr>
<tr>
<td>15-1</td>
<td>Reserved, <strong>RES0</strong></td>
<td></td>
</tr>
</tbody>
</table>

Any of the fields in this register are permitted to be cached in a TLB.

**Bits [63:52]**

Reserved, **RES0**.

**SA[51:48], bits [51:48]**

*When FEAT_LPA is implemented:*


This field resets to an architecturally **UNKNOWN** value.

*Otherwise:*

Reserved, **RES0**.

**SA[47:16], bits [47:16]**

Bits [47:16] of the start physical address of the LORegion described in the current LORegion descriptor selected by LORC_EL1.DS. Bits[15:0] of this address are defined to be 0x0000. For implementations with fewer than 48 bits, the upper bits of this field are **RES0**.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, SA[51:48] form the upper part of the address value. Otherwise, for implementations with fewer than 52 physical address bits, SA[51:48] are **RES0**.

This field resets to an architecturally **UNKNOWN** value.

**Bits [15:1]**

Reserved, **RES0**.
Valid, bit [0]  
Indicates whether the current LORegion Descriptor is enabled.

0b0  Disabled
0b1  Enabled

This field resets to 0.

Accessing the LORSA_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRS <Xt>, LORSA_EL1 \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
    UNDEFINED;
elif SCR_EL3.NS == '0' then
    UNDEFINED;
elif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCR_EL2.LORSA_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
elif SCR_EL3.NS == '0' then
    UNDEFINED;
elif Halted() && SCR_EL3.TLOR == '1' then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
elif Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
eelse
    AArch64.SystemAccessTrap(EL3, 0x18);
eelse
return LORSA_EL1;
eelif PSTATE.EL == EL2 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
elif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
    UNDEFINED;
elif SCR_EL3.NS == '0' then
    UNDEFINED;
elif SCR_EL3.TLOR == '1' then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
eelse
    AArch64.SystemAccessTrap(EL3, 0x18);
eelse
return LORSA_EL1;
eelif PSTATE.EL == EL3 then
  if SCR_EL3.NS == '0' then
    UNDEFINED;
eelse
return LORSA_EL1;
MSR LORSA_EL1, <Xt>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
    UNDEFINED;
  elsif SCR_EL3.NS == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORSA_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      LORSA_EL1 = X[t];
  elsif PSTATE_EL == EL2 then
    if SCR_EL3.NS == '0' then
      UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        LORSA_EL1 = X[t];
  elsif PSTATE_EL == EL3 then
    if SCR_EL3.NS == '0' then
      UNDEFINED;
    else
      LORSA_EL1 = X[t];
else
  LORSA_EL1 = X[t];
D13.2.92 MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

**Purpose**

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations at EL1.

**Configurations**

AArch64 System register MAIR_EL1[31:0] is architecturally mapped to AArch32 System register PRRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1[31:0] is architecturally mapped to AArch32 System register MAIR0[31:0] when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1[63:32] is architecturally mapped to AArch32 System register NMRR[31:0] when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1[63:32] is architecturally mapped to AArch32 System register MAIR1[31:0] when TTBCR.EAE == 1.

**Attributes**

MAIR_EL1 is a 64-bit register.

**Field descriptions**

The MAIR_EL1 bit assignments are:

```
63 56 48 40 32 24 16 8 7 0
| Attr7 | Attr6 | Attr5 | Attr4 | Attr3 | Attr2 | Attr1 | Attr0 |
```

MAIR_EL1 is permitted to be cached in a TLB.

**Attr<n>, bits [8n+7:8n], for n = 0 to 7**


Attr is encoded as follows:

<table>
<thead>
<tr>
<th>Attr</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000dd00</td>
<td>Device memory. See encoding of 'dd' for the type of Device memory.</td>
</tr>
<tr>
<td>0b0000ddxx, (xx != 00)</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0booooiili, (oooo != 0000 and iiii != 0000)</td>
<td>Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal Memory.</td>
</tr>
<tr>
<td>0b11110000</td>
<td>If FEAT_MTE is implemented, then: Tagged Normal Memory. Inner+Outer Write-Back Non-transient memory, Inner+Outer Read-Allocate, Inner+Outer Write-Allocate. Otherwise, UNPREDICTABLE.</td>
</tr>
<tr>
<td>0bxxxx0000, (xxxx != 0000 and xxxx != 1111)</td>
<td>UNPREDICTABLE</td>
</tr>
</tbody>
</table>
'dd' is encoded as follows:

<table>
<thead>
<tr>
<th>dd</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Device-nGnRnE memory</td>
</tr>
<tr>
<td>0b01</td>
<td>Device-nGnRE memory</td>
</tr>
<tr>
<td>0b10</td>
<td>Device-nGRE memory</td>
</tr>
<tr>
<td>0b11</td>
<td>Device-GRE memory</td>
</tr>
</tbody>
</table>

'o0oo' is encoded as follows:

<table>
<thead>
<tr>
<th>'o0oo'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW, RW not0b00</td>
<td>Normal memory, Outer Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Outer Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not0b00</td>
<td>Normal memory, Outer Write-Back Transient</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Outer Write-Through Non-transient</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Outer Write-Back Non-transient</td>
</tr>
</tbody>
</table>

'R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

<table>
<thead>
<tr>
<th>'iiii'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW, RW not0b00</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not0b00</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

'R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'o0oo' and 'iiii' fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.
Accessing the MAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, MAIR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x140];
 else
 return MAIR_EL1;
else
 return MAIR_EL1;
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 MAIR_EL2 = X[t];
 else
 MAIR_EL1 = X[t];
else
 return MAIR_EL1;
eisif PSTATE_EL == EL3 then
 MAIR_EL1 = X[t];
```

**MSR MAIR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x140] = X[t];
 else
 MAIR_EL1 = X[t];
else
 MAIR_EL1 = X[t];
eisif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 MAIR_EL2 = X[t];
 else
 MAIR_EL1 = X[t];
eisif PSTATE_EL == EL3 then
 MAIR_EL1 = X[t];
```
MRS <Xt>, MAIR_EL12

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x140];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return MAIR_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        return MAIR_EL1;
    else
        UNDEFINED;

MSR MAIR_EL12, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x140] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        MAIR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        MAIR_EL1 = X[t];
    else
        UNDEFINED;
D13.2.93   MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

**Purpose**

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations at EL2.

**Configurations**

AArch64 System register MAIR_EL2[31:0] is architecturally mapped to AArch32 System register HMAIR0[31:0].

AArch64 System register MAIR_EL2[63:32] is architecturally mapped to AArch32 System register HMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

MAIR_EL2 is a 64-bit register.

**Field descriptions**

The MAIR_EL2 bit assignments are:

```
 63 56 48 40 32 24 16 8 7 0
Attr7 Attr6 Attr5 Attr4 Attr3 Attr2 Attr1 Attr0
```

MAIR_EL2 is permitted to be cached in a TLB.

**Attr<><n>, bits [8n+7:8n], for n = 0 to 7**

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where AttrIndx[2:0] gives the value of \(<n>\) in Attr<><n>.

Attr is encoded as follows:

<table>
<thead>
<tr>
<th>Attr</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000dd00</td>
<td>Device memory. See encoding of 'dd' for the type of Device memory.</td>
</tr>
<tr>
<td>0b0000ddxx</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0booooiii, (oooo != 0000 and iii != 0000)</td>
<td>Normal memory. See encoding of 'oooo' and 'iii' for the type of Normal Memory.</td>
</tr>
<tr>
<td>0b11110000</td>
<td>If FEAT_MTE is implemented, then: Tagged Normal Memory. Inner+Outer Write-Back Non-transient memory, Inner+Outer Read-Allocate, Inner+Outer Write-Allocate. Otherwise, UNPREDICTABLE.</td>
</tr>
<tr>
<td>0bxxxx@000, (xxxx != 0000 and xxxx != 1111)</td>
<td>UNPREDICTABLE</td>
</tr>
</tbody>
</table>
'dd' is encoded as follows:

<table>
<thead>
<tr>
<th>dd</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Device-nGnRnE memory</td>
</tr>
<tr>
<td>0b01</td>
<td>Device-nGnRE memory</td>
</tr>
<tr>
<td>0b10</td>
<td>Device-nGRE memory</td>
</tr>
<tr>
<td>0b11</td>
<td>Device-GRE memory</td>
</tr>
</tbody>
</table>

'oooo' is encoded as follows:

<table>
<thead>
<tr>
<th>'oooo'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW</td>
<td>Normal memory, Outer Write-Through Transient</td>
</tr>
<tr>
<td>0b0000</td>
<td>Normal memory, Outer Write-Through Non-transient</td>
</tr>
<tr>
<td>0b01RW</td>
<td>Normal memory, Outer Write-Back Transient</td>
</tr>
<tr>
<td>0b011RW</td>
<td>Normal memory, Outer Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

<table>
<thead>
<tr>
<th>'iiii'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0000</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b01RW</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b011RW</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.
Accessing the MAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, MAIR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    return MAIR_EL2;
elsif PSTATE.EL == EL3 then
    return MAIR_EL2;

**MSR MAIR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    MAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    MAIR_EL2 = X[t];

**MRS <Xt>, MAIR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x140];
    else
        return NVMem[0x140];
else
return MAIR_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return MAIR_EL2;
    else
        return MAIR_EL1;
    endif
elsif PSTATE.EL == EL3 then
    return MAIR_EL1;
endif

**MSR MAIR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x140] = X[t];
    else
        MAIR_EL1 = X[t];
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        MAIR_EL2 = X[t];
    else
        MAIR_EL1 = X[t];
    endif
elsif PSTATE.EL == EL3 then
    MAIR_EL1 = X[t];
else
    MAIR_EL1 = X[t];
endif
D13.2.94 MAIR_EL3, Memory Attribute Indirection Register (EL3)

The MAIR_EL3 characteristics are:

**Purpose**

Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations at EL3.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to MAIR_EL3 are UNDEFINED.

**Attributes**

MAIR_EL3 is a 64-bit register.

**Field descriptions**

The MAIR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>56 55</td>
</tr>
<tr>
<td>Attr7</td>
<td>Attr6</td>
</tr>
</tbody>
</table>

MAIR_EL3 is permitted to be cached in a TLB.

**Attr<n>, bits [8n+7:8n], for n = 0 to 7**


Attr is encoded as follows:

<table>
<thead>
<tr>
<th>Attr</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000dd00</td>
<td>Device memory. See encoding of 'dd' for the type of Device memory.</td>
</tr>
<tr>
<td>0b0000ddxx, (xx != 00)</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0b0ooooiii, (oooo != 0000 and iiii != 0000)</td>
<td>Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal Memory.</td>
</tr>
<tr>
<td>0b11110000</td>
<td>If FEAT_MTE is implemented, then: Tagged Normal Memory, Inner+Outer Write-Back Non-transient memory, Inner+Outer Read-Allocate, Inner+Outer Write-Allocate. Otherwise, UNPREDICTABLE.</td>
</tr>
<tr>
<td>0bxxxx0000, (xxxx != 0000 and xxxx != 1111)</td>
<td>UNPREDICTABLE</td>
</tr>
</tbody>
</table>

'dd' is encoded as follows:

<table>
<thead>
<tr>
<th>dd</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Device-nGnRnE memory</td>
</tr>
<tr>
<td>01</td>
<td>Device-nGnRE memory</td>
</tr>
<tr>
<td>10</td>
<td>Device-nGRE memory</td>
</tr>
<tr>
<td>11</td>
<td>Device-GRE memory</td>
</tr>
</tbody>
</table>
'oooo' is encoded as follows:

<table>
<thead>
<tr>
<th>'oooo'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW</td>
<td>Normal memory, Outer Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Outer Non-cacheable</td>
</tr>
<tr>
<td>0b01RW</td>
<td>Normal memory, Outer Write-Back Transient</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Outer Write-Through Non-transient</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Outer Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

<table>
<thead>
<tr>
<th>'iiii'</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>See encoding of Attr</td>
</tr>
<tr>
<td>0b00RW</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

**Accessing the MAIR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MRS <Xt>, MAIR_EL3
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return MAIR_EL3;

MSR MAIR_EL3, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    MAIR_EL3 = X[t];

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b10</td>
<td>0b10</td>
<td>0b00</td>
<td>0b00</td>
</tr>
</tbody>
</table>


D13.2.95 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

**Purpose**

Provides identification information for the PE, including an implementer code for the device and a device ID number.

**Configurations**

AArch64 System register MIDR_EL1[31:0] is architecturally mapped to AArch32 System register MIDR[31:0].

AArch64 System register MIDR_EL1[31:0] is architecturally mapped to External register MIDR_EL1[31:0].

**Attributes**

MIDR_EL1 is a 64-bit register.

**Field descriptions**

The MIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Hex Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32] RES0</td>
<td>0x00</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>[31:24] Implementer</td>
<td>0xC0</td>
<td>Ampere Computing</td>
</tr>
<tr>
<td>[23:19] Variant</td>
<td>0x41</td>
<td>Arm Limited</td>
</tr>
<tr>
<td>[18:4] PartNum</td>
<td>0x42</td>
<td>Broadcom Corporation</td>
</tr>
<tr>
<td>[3] Revision</td>
<td>0x43</td>
<td>Cavium Inc.</td>
</tr>
<tr>
<td>[16] Architecture</td>
<td>0x44</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td></td>
<td>0x46</td>
<td>Fujitsu Ltd.</td>
</tr>
<tr>
<td></td>
<td>0x49</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td></td>
<td>0x4D</td>
<td>Motorola or Freescale Semiconductor Inc.</td>
</tr>
<tr>
<td></td>
<td>0x4E</td>
<td>NVIDIA Corporation</td>
</tr>
<tr>
<td></td>
<td>0x50</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
</tbody>
</table>
Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.

**Variant, bits [23:20]**

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

**Architecture, bits [19:16]**

Architecture version. For A-profile, the defined values are:

- 0b0001  Armv4.
- 0b0010  Armv4T.
- 0b0011  Armv5 (obsolete).
- 0b0100  Armv5T.
- 0b0101  Armv5TE.
- 0b0110  Armv5TEJ.
- 0b0111  Armv6.
- 0b1111  Architectural features are individually identified in the ID_* registers, see [ID registers on page K15-8181](#).

All other values are reserved.

**PartNum, bits [15:4]**

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

**Revision, bits [3:0]**

An IMPLEMENTATION DEFINED revision number for the device.

**Accessing the MIDR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, MIDR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
else
 if PSTATE.EL == EL1 then
```

---

<table>
<thead>
<tr>
<th>Hex representation</th>
<th>Implementer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x51</td>
<td>Qualcomm Inc.</td>
</tr>
<tr>
<td>0x56</td>
<td>Marvell International Ltd.</td>
</tr>
<tr>
<td>0x69</td>
<td>Intel Corporation</td>
</tr>
</tbody>
</table>

Flag table: Qualcomm Inc. 0x51
Flag table: Marvell International Ltd. 0x56
Flag table: Intel Corporation 0x69

---

**Qualcomm Inc.**

0x51

**Marvell International Ltd.**

0x56

**Intel Corporation**

0x69
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGTR_EL2.MIDR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() then
    return VPIDR_EL2;
else
    return MIDR_EL1;
elsif PSTATE.EL == EL2 then
    return MIDR_EL1;
elsif PSTATE.EL == EL3 then
    return MIDR_EL1;
D13.2.96 MPIDR_EL1, Multiprocessor Affinity Register

The MPIDR_EL1 characteristics are:

**Purpose**

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

**Configurations**

AArch64 System register MPIDR_EL1[31:0] is architecturally mapped to AArch32 System register MPIDR[31:0].

In a uniprocessor system Arm recommends that each Aff<n> field of this register returns a value of 0.

**Attributes**

MPIDR_EL1 is a 64-bit register.

**Field descriptions**

The MPIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Field descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-40</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>39-32</td>
<td>Affinity level 3.</td>
</tr>
<tr>
<td>31</td>
<td>Reserved, RES1.</td>
</tr>
<tr>
<td>30</td>
<td>U</td>
</tr>
<tr>
<td>29-25</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>24</td>
<td>MT</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>15-8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:40]**

Reserved, RES0.

**Aff3, bits [39:32]**

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

**Bit [31]**

Reserved, RES1.

**U, bit [30]**

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

- 0b0: Processor is part of a multiprocessor system.
- 0b1: Processor is part of a uniprocessor system.

**Bits [29:25]**

Reserved, RES0.

**MT, bit [24]**

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

- 0b0: Performance of PEs at the lowest affinity level, or PEs with MPIDR_EL1.MT set to 1, different affinity level 0 values, and the same values for affinity level 1 and higher, is largely independent.
Performance of PEs at the lowest affinity level, or PEs with MPIDR_EL1.MT set to 1, different affinity level 0 values, and the same values for affinity level 1 and higher, is very interdependent.

**Aff2, bits [23:16]**
Affinity level 2. See the description of Aff0 for more information.

**Aff1, bits [15:8]**
Affinity level 1. See the description of Aff0 for more information.

**Aff0, bits [7:0]**
Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

### Accessing the MPIDR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRS <Xt>, MPIDR_EL1 \]

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>
```

```c
if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
else
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return VMPIDR_EL2;
 else
 return MPIDR_EL1;
else
 PSTATE.EL == EL2 then
 return MPIDR_EL1;
 else
 PSTATE.EL == EL3 then
 return MPIDR_EL1;
```
D13.2.97  MVFR0_EL1, AArch32 Media and VFP Feature Register 0

The MVFR0_EL1 characteristics are:

**Purpose**

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register MVFR0_EL1[31:0] is architecturally mapped to AArch32 System register MVFR0[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

**Attributes**

MVFR0_EL1 is a 64-bit register.

**Field descriptions**

The MVFR0_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Field Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>RESERVED</td>
<td>0000</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31:28</td>
<td>FPRound</td>
<td>0000</td>
<td>Not implemented, or only Round to Nearest mode supported, except that Round towards Zero mode is supported for VCVT instructions that always use that rounding mode regardless of the FPSCR setting.</td>
</tr>
<tr>
<td>27:24</td>
<td>FPShVec</td>
<td>0000</td>
<td>Short vectors not supported.</td>
</tr>
<tr>
<td>23:19</td>
<td>FPStd</td>
<td>0000</td>
<td>Short vector operation supported.</td>
</tr>
<tr>
<td>18:15</td>
<td>FPDivide</td>
<td>0000</td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td>14:12</td>
<td>FPTrap</td>
<td>0000</td>
<td>In Armv8-A the only permitted value is 0b0000.</td>
</tr>
<tr>
<td>11:8</td>
<td>FPDiv</td>
<td>0000</td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td>7:4</td>
<td>FPSPF</td>
<td>0000</td>
<td>In Armv8-A the only permitted value is 0b0000.</td>
</tr>
<tr>
<td>3:0</td>
<td>SIMDReg</td>
<td>0000</td>
<td>All other values are reserved.</td>
</tr>
</tbody>
</table>
FPsqrt, bits [23:20]
Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root operations. Defined values are:

0b0000   Not supported in hardware.
0b0001   Supported.

All other values are reserved.
In Armv8-A the permitted values are 0b0000 and 0b0001.
The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]
Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:

0b0000   Not supported in hardware.
0b0001   Supported.

All other values are reserved.
In Armv8-A the permitted values are 0b0000 and 0b0001.
The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]
Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception trapping. Defined values are:

0b0000   Not supported.
0b0001   Supported.

All other values are reserved.
A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an exception.

FPDP, bits [11:8]
Double Precision. Indicates whether the floating-point implementation provides support for double-precision operations. Defined values are:

0b0000   Not supported in hardware.
0b0001   Supported, VFPv2.
0b0010   Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a double-precision floating-point constant, and conversions between double-precision and fixed-point values.

All other values are reserved.
In Armv8-A the permitted values are 0b0000 and 0b0010.
A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of VFP, except that, in addition to this field being nonzero:

• VSQRT.F64 is only available if the Square root field is 0b0001.
• VDIV.F64 is only available if the Divide field is 0b0001.
• Conversion between double-precision and single-precision is only available if the single-precision field is nonzero.
FPSP, bits [7:4]

Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations. Defined values are:

- 0b0000  Not supported in hardware.
- 0b0001  Supported, VFPv2.
- 0b0010  Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision floating-point constant, and conversions between single-precision and fixed-point values.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP, except that, in addition to this field being nonzero:

- VSQRT.F32 is only available if the Square root field is 0b0001.
- VDIV.F32 is only available if the Divide field is 0b0001.
- Conversion between double-precision and single-precision is only available if the double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support for the Advanced SIMD and floating-point register bank. Defined values are:

- 0b0000  The implementation has no Advanced SIMD and floating-point support.
- 0b0001  The implementation includes floating-point support with 16 x 64-bit registers.
- 0b0010  The implementation includes Advanced SIMD and floating-point support with 32 x 64-bit registers.

All other values are reserved.

In Armv8-A the permitted values are 0b0000 and 0b0010.

Otherwise:

UNKNOWN, bits [63:0]

Reserved, UNKNOWN.

Accessing the MVFR0_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MVFR0_EL1

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```cpp
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
```
else
  AArch64.SystemAccessTrap(EL1, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TID3 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return MVFR0_EL1;
elsif PSTATE.EL == EL2 then
  return MVFR0_EL1;
elsif PSTATE.EL == EL3 then
  return MVFR0_EL1;
D13.2.98 MVFR1_EL1, AArch32 Media and VFP Feature Register 1

The MVFR1_EL1 characteristics are:

**Purpose**

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR2_EL1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page D13-2867.

**Configurations**

AArch64 System register MVFR1_EL1[31:0] is architecturally mapped to AArch32 System register MVFR1[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

**Attributes**

MVFR1_EL1 is a 64-bit register.

**Field descriptions**

The MVFR1_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>FPHP</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>SIMDFMAC</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>SIMDSP</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>SIMDSPL</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SIMDInt</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SIMDInt</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FPDNaN</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>FPFPB</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**SIMDFMAC, bits [31:28]**

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate instructions. Defined values are:

- 0b0000: Not implemented.
- 0b0001: Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

**FPHP, bits [27:24]**

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

- 0b0000: Not supported.
- 0b0001: Floating-point half-precision conversion instructions are supported for conversion between single-precision and half-precision.
0b0010  As for 0b0001, and adds instructions for conversion between double-precision and half-precision.

0b0011  As for 0b0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

- 0b0000 in an implementation without floating-point support.
- 0b0010 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
- 0b0011 in an implementation with floating-point support that includes the FEAT_FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field, meaning the permitted values are:

<table>
<thead>
<tr>
<th>Half Precision instructions supported</th>
<th>FPHP</th>
<th>SIMDHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No support</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
<tr>
<td>Conversions only</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
<tr>
<td>Conversions and arithmetic</td>
<td>0b0011</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

- 0b0000  Not supported.
- 0b0001  SIMD half-precision conversion instructions are supported for conversion between single-precision and half-precision.
- 0b0010  As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

- 0b0000 in an implementation without SIMD floating-point support.
- 0b0010 in an implementation with SIMD floating-point support that does not include the FEAT_FP16 extension.
- 0b0011 in an implementation with SIMD floating-point support that includes the FEAT_FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field, meaning the permitted values are:

<table>
<thead>
<tr>
<th>Half Precision instructions supported</th>
<th>FPHP</th>
<th>SIMDHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No support</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
<tr>
<td>Conversions only</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
<tr>
<td>Conversions and arithmetic</td>
<td>0b0011</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-point instructions. Defined values are:

- 0b0000  Not implemented.
- 0b0001  Implemented. This value is permitted only if the SIMDInt field is 0b0001.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

**SIMDInt, bits [15:12]**

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values are:

- 0b0000: Not implemented.
- 0b0001: Implemented.

All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

**SIMDLS, bits [11:8]**

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined values are:

- 0b0000: Not implemented.
- 0b0001: Implemented.

All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

**FPDNaN, bits [7:4]**

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

- 0b0000: Not implemented, or hardware supports only the Default NaN mode.
- 0b0001: Hardware supports propagation of NaN values.

All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

**FPFtZ, bits [3:0]**

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined values are:

- 0b0000: Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
- 0b0001: Hardware supports full denormalized number arithmetic.

All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

Otherwise:

**UNKNOWN, bits [63:0]**

Reserved, UNKNOWN.

**Accessing the MVFR1_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, MVFR1_EL1

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return MVFR1_EL1;
    end
elsif PSTATE.EL == EL2 then
    return MVFR1_EL1;
elsif PSTATE.EL == EL3 then
    return MVFR1_EL1;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>
D13.2.99 MVFR2_EL1, AArch32 Media and VFP Feature Register 2

The MVFR2_EL1 characteristics are:

**Purpose**

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0_EL1 and MVFR1_EL1.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

**Configurations**

AArch64 System register MVFR2_EL1[31:0] is architecturally mapped to AArch32 System register MVFR2[31:0].

In an implementation where at least one Exception level supports execution in AArch32 state, but there is no support for Advanced SIMD and floating-point operation, this register is RAZ.

**Attributes**

MVFR2_EL1 is a 64-bit register.

**Field descriptions**

The MVFR2_EL1 bit assignments are:

*When AArch32 is supported at any Exception level:*

<table>
<thead>
<tr>
<th>Bits [63:8]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPMisc, bits [7:4]</td>
<td>Indicates whether the floating-point implementation provides support for miscellaneous VFP features.</td>
</tr>
<tr>
<td>0b0000</td>
<td>Not implemented, or no support for miscellaneous features.</td>
</tr>
<tr>
<td>0b0001</td>
<td>Support for Floating-point selection.</td>
</tr>
<tr>
<td>0b0010</td>
<td>As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.</td>
</tr>
<tr>
<td>0b0011</td>
<td>As 0b0010, and Floating-point Round to Integer Floating-point.</td>
</tr>
<tr>
<td>0b0100</td>
<td>As 0b0011, and Floating-point MaxNum and MinNum.</td>
</tr>
<tr>
<td>All other values are reserved.</td>
<td></td>
</tr>
</tbody>
</table>

In Armv8-A, the permitted values are 0b0000 and 0b0100.

<table>
<thead>
<tr>
<th>SIMDMisc, bits [3:0]</th>
<th>Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Not implemented, or no support for miscellaneous features.</td>
</tr>
<tr>
<td>0b0001</td>
<td>Floating-point Conversion to Integer with Directed Rounding modes.</td>
</tr>
<tr>
<td>0b0010</td>
<td>As 0b0001, and Floating-point Round to Integer Floating-point.</td>
</tr>
<tr>
<td>0b0011</td>
<td>As 0b0010, and Floating-point MaxNum and MinNum.</td>
</tr>
</tbody>
</table>
All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0011.

Otherwise:

UNKNOWN, bits [63:0]
Reserved, UNKNOWN.

Accessing the MVFR2_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MVFR2_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```
if PSTATE_EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 undefined;
else
 undefined;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MVFR2_EL1;
elsif PSTATE_EL == EL2 then
 return MVFR2_EL1;
elsif PSTATE_EL == EL3 then
 return MVFR2_EL1;
```
D13.2.100 PAR_EL1, Physical Address Register

The PAR_EL1 characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully, or fault information if the instruction did not execute successfully.

Configurations

AArch64 System register PAR_EL1[63:0] is architecturally mapped to AArch32 System register PAR[63:0].

Attributes

PAR_EL1 is a 64-bit register.

Field descriptions

The PAR_EL1 bit assignments are:

**When PAR_EL1.F == 0:**

<table>
<thead>
<tr>
<th>63</th>
<th>56–55</th>
<th>52–51</th>
<th>48–47</th>
<th>12–11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR</td>
<td>RES0</td>
<td>PA[51:48]</td>
<td>PA[47:12]</td>
<td>NS</td>
<td>SH</td>
<td>RES0</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the values that appear in the translation table descriptors. More precisely:

- The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any applicable configuration bits, instead of reporting the values that appear in the translation table descriptors.
- See the PAR_EL1.NS bit description for constraints on the value it returns.

**ATTR, bits [63:56]**

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

**Bits [55:52]**

Reserved, RES0.

**PA[51:48], bits [51:48]**

*When FEAT_LPA is implemented:*

Extension to PA[47:12]. See PA[47:12] for more details.

This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PA[47:12], bits [47:12]
Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[47:12].
When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, the PA[51:48] bits form the upper part of the address value. Otherwise the PA[51:48] bits are RES0. For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.
This field resets to an architecturally UNKNOWN value.

Bit [11]
Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

NS, bit [9]
Non-secure. The NS attribute for a translation table entry from a Secure translation regime.
For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the Security state of the intermediate physical address space of the translation for the instructions:
• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT S1E0W.
• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and ATS1CUW.
Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.
For a result from a Non-secure translation regime, this bit is UNKNOWN.
This field resets to an architecturally UNKNOWN value.

SH, bits [8:7]
Shareability attribute, for the returned output address. Permitted values are:
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.
The value 0b01 is reserved.

--- Note ---
This field returns the value 0b10 for:
• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.
This field resets to an architecturally UNKNOWN value.

Bits [6:1]
Reserved, RES0.
F, bit [0]
Indicates whether the instruction performed a successful address translation.
0b0 Address translation completed successfully.
This field resets to an architecturally UNKNOWN value.

When PAR_EL1.F == 1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>56</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>55</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>52</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>51</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>48</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>47</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>0</td>
<td>S</td>
</tr>
</tbody>
</table>

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

IMPLEMENTATION DEFINED, bits [63:56]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

Bits [47:12]
Reserved, RES0.

Bit [11]
Reserved, RES1.

Bit [10]
Reserved, RES0.

S, bit [9]
Indicates the translation stage at which the translation aborted:
0b0 Translation aborted because of a fault in the stage 1 translation.
0b1 Translation aborted because of a fault in the stage 2 translation.
This field resets to an architecturally UNKNOWN value.

PTW, bit [8]
If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.
This field resets to an architecturally UNKNOWN value.
Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

- 0b000000  Address size fault, level 0 of translation or translation table base register.
- 0b000001  Address size fault, level 1.
- 0b000010  Address size fault, level 2.
- 0b000011  Address size fault, level 3.
- 0b000100  Translation fault, level 0.
- 0b000101  Translation fault, level 1.
- 0b000110  Translation fault, level 2.
- 0b000111  Translation fault, level 3.
- 0b001001  Access flag fault, level 1.
- 0b001010  Access flag fault, level 2.
- 0b001011  Access flag fault, level 3.
- 0b001101  Permission fault, level 1.
- 0b001110  Permission fault, level 2.
- 0b001111  Permission fault, level 3.
- 0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
- 0b010101  Synchronous External abort on translation table walk or hardware update of translation table, level 1.
- 0b010110  Synchronous External abort on translation table walk or hardware update of translation table, level 2.
- 0b010111  Synchronous External abort on translation table walk or hardware update of translation table, level 3.
- 0b011100 When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 0.
- 0b011101 When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 1.
- 0b011110 When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 2.
- 0b011111 When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level 3.
- 0b100000 TLB conflict abort.
- 0b110001 When FEAT_HAFDBS is implemented  Unsupported atomic hardware update fault.
- 0b111101 When EL1 is capable of using AArch32  Section Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short-descriptor translation table format.
- 0b111110 When EL1 is capable of using AArch32  Page Domain fault, from an AArch32 stage 1 EL1&0 translation regime using Short-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

- 0b1  Address translation aborted.

This field resets to an architecturally UNKNOWN value.
Accessing the PAR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PAR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGTR_EL2.PAR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return PAR_EL1;
  endif;
elif PSTATE_EL == EL2 then
  return PAR_EL1;
elseif PSTATE_EL == EL3 then
  return PAR_EL1;
endif;

**MSR PAR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.PAR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    PAR_EL1 = X[t];
  endif;
elif PSTATE_EL == EL2 then
  PAR_EL1 = X[t];
elif PSTATE_EL == EL3 then
  PAR_EL1 = X[t];
endif;
### D13.2.101 REVIDR_EL1, Revision ID Register

The REVIDR_EL1 characteristics are:

**Purpose**
Provides implementation-specific minor revision information.

**Configurations**
AArch64 System register REVIDR_EL1[31:0] is architecturally mapped to AArch32 System register REVIDR[31:0].

If REVIDR_EL1 has the same value as MIDR_EL1, then its contents have no significance.

**Attributes**
REVIDR_EL1 is a 64-bit register.

**Field descriptions**
The REVIDR_EL1 bit assignments are:

![63 0 IMPLEMENTATION DEFINED](image)

**IMPLEMENTATION DEFINED, bits [63:0]**
IMPLEMENTATION DEFINED.

**Accessing the REVIDR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, REVIDR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() & HCR_EL2.TID1 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCRTR_EL2.REVIDR_EL1 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return REVIDR_EL1;
        elsif PSTATE.EL == EL2 then
            return REVIDR_EL1;
        elsif PSTATE.EL == EL3 then
            return REVIDR_EL1;
D13.2.102 RGSR_EL1, Random Allocation Tag Seed Register.

The RGSR_EL1 characteristics are:

**Purpose**

Random Allocation Tag Seed Register.

**Configurations**

This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to RGSR_EL1 are UNDEFINED.

When GCR_EL1.RRND==0b1, updates to RGSR_EL1 are implementation-specific.

**Attributes**

RGSR_EL1 is a 64-bit register.

**Field descriptions**

The RGSR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:24]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>SEED, bits [23:8]</td>
<td>Seed register used for generating values returned by RandomAllocationTag(). This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>Bits [7:4]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>TAG, bits [3:0]</td>
<td>Tag generated by the most recent IRG instruction. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

**Accessing the RGSR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RGSR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.ATA == '0' then
        UNDEFINED;
    elsif EL2Enabled() & SCR_EL2.ATA == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
else
    return RGSR_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return RGSR_EL1;
else
    if PSTATE.EL == EL3 then
        return RGSR_EL1;
    end
    MSR RGSR_EL1, <Xt>
    op0 op1 CRn CRm op2
    0b11 0b000 0b0001 0b0000 0b101
    if PSTATE.EL == EL0 then
        UNDEFINED;
    elsif PSTATE.EL == EL1 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
            UNDEFINED;
        elsif EL2Enabled() && HCR_EL2.ATA == '0' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end
        else
            RGSR_EL1 = X[t];
        end
    elsif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
            UNDEFINED;
        elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end
        else
            RGSR_EL1 = X[t];
        end
    elsif PSTATE.EL == EL3 then
        RGSR_EL1 = X[t];
else
    RGSR_EL1 = X[t];
end
D13.2.103 RMR_EL1, Reset Management Register (EL1)

The RMR_EL1 characteristics are:

**Purpose**

When this register is implemented:

- A write to the register at EL1 can request a Warm reset.
- If EL1 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm reset.

**Configurations**

AArch64 System register RMR_EL1[31:0] is architecturally mapped to AArch32 System register RMR[31:0] when the highest implemented Exception level is EL1.

This register is present only when the highest implemented Exception level is EL1. Otherwise, direct accesses to RMR_EL1 are UNDEFINED.

When EL1 is the highest implemented Exception level:

- If EL1 can use all Execution states then this register must be implemented.
- If EL1 cannot use AArch32 then it is IMPLEMENTATION DEFINED whether the register is implemented.

**Attributes**

RMR_EL1 is a 64-bit register.

**Field descriptions**

The RMR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>62</td>
<td>Reserved.</td>
</tr>
<tr>
<td>61</td>
<td>Reserved.</td>
</tr>
<tr>
<td>1</td>
<td>Reset Request. Setting this bit to 1 requests a Warm reset. This field resets to 0.</td>
</tr>
<tr>
<td>0</td>
<td>AArch64.</td>
</tr>
</tbody>
</table>

**When EL1 is capable of using AArch32:**

When EL1 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

- 0b0  AArch32.
- 0b1  AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL1 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.
Otherwise:
Reserved, RAO/WI.

Accessing the RMR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRS } <Xt>, \text{ RMR_EL1}\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE_EL == EL1 && IsHighestEL(EL1) then
return RMR_EL1;
else
UNDEFINED;

\[\text{MSR RMR_EL1, } <Xt>\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE_EL == EL1 && IsHighestEL(EL1) then
RMR_EL1 = X[t];
else
UNDEFINED;
D13.2.104   **RMR_EL2, Reset Management Register (EL2)**

The RMR_EL2 characteristics are:

**Purpose**

When this register is implemented:

- A write to the register at EL2 can request a Warm reset.
- If EL2 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm reset.

**Configurations**

AArch64 System register RMR_EL2[31:0] is architecturally mapped to AArch32 System register HRMR[31:0] when the highest implemented Exception level is EL2.

This register is present only when the highest implemented Exception level is EL2. Otherwise, direct accesses to RMR_EL2 are **UNDEFINED**.

When EL2 is the highest implemented Exception level:

- If EL2 can use all Execution states then this register must be implemented.
- If EL2 cannot use AArch32 then it is **IMPLEMENTATION DEFINED** whether the register is implemented.

**Attributes**

RMR_EL2 is a 64-bit register.

**Field descriptions**

The RMR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

2 1 0

RR

AA64

**Bits [63:2]**

Reserved, RES0.

**RR, bit [1]**

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

**AA64, bit [0]**

*When EL2 is capable of using AArch32:*

When EL2 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

- 0b0       AArch32.
- 0b1       AArch64.

On coming out of the Warm reset, execution starts at the **IMPLEMENTATION DEFINED** reset vector address of the specified Execution state.

If EL2 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.
Otherwise:

Reserved, RAO/WI.

Accessing the RMR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RMR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
  return RMR_EL2;
else
  UNDEFINED;

**MSR RMR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
  RMR_EL2 = X[t];
else
  UNDEFINED;
D13.2.105  RMR_EL3, Reset Management Register (EL3)

The RMR_EL3 characteristics are:

Purpose

If EL3 is the implemented and this register is implemented:
• A write to the register at EL3 can request a Warm reset.
• If EL3 can use all Execution states, this register specifies the Execution state that the PE boots into on a Warm reset.

Configurations

AArch64 System register RMR_EL3[31:0] is architecturally mapped to AArch32 System register RMR[31:0] when EL3 is implemented.

This register is present only when EL3 is implemented. Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

When EL3 is implemented:
• If EL3 can use all Execution states then this register must be implemented.
• If EL3 cannot use AArch32, then it is IMPLEMENTATION DEFINED whether the register is implemented.

Otherwise, direct accesses to RMR_EL3 are UNDEFINED.

Attributes

RMR_EL3 is a 64-bit register.

Field descriptions

The RMR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:2]</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RES0

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When EL3 is capable of using AArch32:

When EL3 can use AArch32, determines which Execution state the PE boots into after a Warm reset:

<table>
<thead>
<tr>
<th>Value</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>AArch32</td>
</tr>
<tr>
<td>0b1</td>
<td>AArch64</td>
</tr>
</tbody>
</table>

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL3 can only use AArch64 state, this bit is RAO/WI.

When implemented as a RW field, this field resets to 1 on a Cold reset.
Otherwise:
Reserved, RAO/WI.

Accessing the RMR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RMR_EL3**

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b10 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
return RMR_EL3;
else
UNDEFINED;

**MSR RMR_EL3, <Xt>**

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b10 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE.EL == EL3 && IsHighestEL(EL3) then
RMR_EL3 = X[t];
else
UNDEFINED;
D13.2.106 RNDR, Random Number

The RNDR characteristics are:

**Purpose**
Random Number. Returns a 64-bit random number which is reseeded from the True Random Number source at an IMPLEMENTATION DEFINED rate.
If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.
If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to 0b0100 and the data value returned is 0.
RNDR is a read-only register.

**Configurations**
This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to RNDR are UNDEFINED.

**Attributes**
RNDR is a 64-bit register.

**Field descriptions**
The RNDR bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number source at an IMPLEMENTATION DEFINED rate. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>
```

**Accessing the RNDR**
Accesses to this register use the following encodings in the System instruction encoding space:

```
MRS < Xt>, RNDR
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>Crn</th>
<th>Crm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b010</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```
if PSTATE_EL == EL0 then
 return RNDR;
elif PSTATE_EL == EL1 then
 return RNDR;
elif PSTATE_EL == EL2 then
 return RNDR;
elif PSTATE_EL == EL3 then
 return RNDR;
```
D13.2.107  RNDRRS, Reseeded Random Number

The RNDRRS characteristics are:

**Purpose**

- Reseeded Random Number. Returns a 64-bit random number which is reseeded from the True Random Number source immediately before the read of the random number.
- If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.
- If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to 0b0100 and the data value returned is 0.

RNDRRS is a read-only register.

**Configurations**

This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to RNDRRS are UNDEFINED.

**Attributes**

RNDRRS is a 64-bit register.

**Field descriptions**

The RNDRRS bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNDRRS</td>
<td>Reseeded Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number source immediately before this read. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

**Accessing the RNDRRS**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RNDRRS**

```
if PSTATE.EL == EL0 then
 return RNDRRS;
elsif PSTATE.EL == EL1 then
 return RNDRRS;
elsif PSTATE.EL == EL2 then
 return RNDRRS;
elsif PSTATE.EL == EL3 then
 return RNDRRS;
```
D13.2.108 RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented)

The RVBAR_EL1 characteristics are:

**Purpose**

If EL1 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when executing in AArch64 state.

**Configurations**

This register is present only when the highest implemented Exception level is EL1. Otherwise, direct accesses to RVBAR_EL1 are UNDEFINED.

**Attributes**

RVBAR_EL1 is a 64-bit register.

**Field descriptions**

The RVBAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reset Address, The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.</td>
</tr>
</tbody>
</table>

**Accessing the RVBAR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RVBAR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL1 && IsHighestEl(EL1) then
    return RVBAR_EL1;
else
    UNDEFINED;
D13.2.109 RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented)

The RVBAR_EL2 characteristics are:

Purpose

If EL2 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when executing in AArch64 state.

Configurations

This register is present only when the highest implemented Exception level is EL2. Otherwise, direct accesses to RVBAR_EL2 are UNDEFINED.

Attributes

RVBAR_EL2 is a 64-bit register.

Field descriptions

The RVBAR_EL2 bit assignments are:

![RVBAR_EL2 Bit Assignments Diagram]

Bits [63:0]

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.

Accessing the RVBAR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, RVBAR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
    return RVBAR_EL2;
else
    UNDEFINED;
D13.2.110 RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented)

The RVBAR_EL3 characteristics are:

**Purpose**

If EL3 is the highest Exception level implemented, contains the IMPLEMENTATION DEFINED address that execution starts from after reset when executing in AArch64 state.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to RVBAR_EL3 are UNDEFINED.

Only implemented if the highest Exception level implemented is EL3.

**Attributes**

RVBAR_EL3 is a 64-bit register.

**Field descriptions**

The RVBAR_EL3 bit assignments are:

![Diagram of RVBAR_EL3 bit assignments]

**Bits [63:0]**

Reset Address. The IMPLEMENTATION DEFINED address that execution starts from after reset when executing in 64-bit state. Bits[1:0] of this register are 00, as this address must be aligned, and the address must be within the physical address size supported by the PE.

**Accessing the RVBAR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\textit{MRS} \langle Xt \rangle, \text{RVBAR_EL3} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

\[
\text{if PSTATE.EL == EL3 && IsHighestEL(EL3) then return RVBAR_EL3; else UNDEFINED;}\]
D13.2.111  S3_<op1>_<_Cn>_<_Cm>_<_op2>, IMPLEMENTATION DEFINED registers

The S3_<op1>_<_Cn>_<_Cm>_<_op2> characteristics are:

**Purpose**

This area of the instruction set space is reserved for IMPLEMENTATION DEFINED registers.

**Configurations**

There are no configuration notes.

**Attributes**

S3_<op1>_<_Cn>_<_Cm>_<_op2> is a 64-bit register.

**Field descriptions**

The S3_<op1>_<_Cn>_<_Cm>_<_op2> bit assignments are:

```
63 62 51 40 39 28 17 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.
```

**Accessing the S3_<op1>_<_Cn>_<_Cm>_<_op2>**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, S3_<op1>_<Cn>_<Cm>_<op2>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>op1[2:0]</td>
<td>0b1x11</td>
<td>Cm[3:0]</td>
<td>op2[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        IMPLEMENTATION_DEFINED "";
else
    IMPLEMENTATION_DEFINED "";

**MSR S3_<op1>_<Cn>_<Cm>_<op2>, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>op1[2:0]</td>
<td>0b1x11</td>
<td>Cm[3:0]</td>
<td>op2[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TIDCP == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        IMPLEMENTATION_DEFINED "";
else
    IMPLEMENTATION_DEFINED "";

### D13.2.112 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

**Purpose**

Defines the configuration of the current Security state. It specifies:
- The Security state of EL0, EL1, and EL2. The Security state is either Secure or Non-secure.
- The Execution state at lower Exception levels.
- Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
- Whether various operations are trapped to EL3.

**Configurations**

AArch64 System register SCR_EL3[31:0] can be mapped to AArch32 System register SCR[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are UNDEFINED.

**Attributes**

SCR_EL3 is a 64-bit register.

**Field descriptions**

The SCR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>35</td>
<td>AMVOFFEN</td>
</tr>
<tr>
<td>30</td>
<td>RES0</td>
</tr>
<tr>
<td>28</td>
<td>TWDEn</td>
</tr>
<tr>
<td>27</td>
<td>ECVEn</td>
</tr>
<tr>
<td>26</td>
<td>FGTEn</td>
</tr>
<tr>
<td>25</td>
<td>ATA</td>
</tr>
<tr>
<td>24</td>
<td>EnSCXT</td>
</tr>
<tr>
<td>23</td>
<td>FIEN</td>
</tr>
<tr>
<td>22</td>
<td>NMEA</td>
</tr>
<tr>
<td>21</td>
<td>EASE</td>
</tr>
<tr>
<td>20</td>
<td>ST</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>NS</td>
</tr>
</tbody>
</table>

**Bits [63:36]**

Reserved, RES0.

**AMVOFFEN, bit [35]**

*When FEAT_AMUV1p1 is implemented:*

Activity Monitors Virtual Offsets Enable.

0b0 Accesses to AMEVCNTVOFF0<el2> and AMEVCNTVOFF1<el2> at EL2 are trapped to EL3. Indirect reads of the virtual offset registers are zero.
Accesses to AMEVCNTVOFF0<el2> and AMEVCNTVOFF1<el2> are not affected by this field.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**Bit [34]**

Reserved, RES0.

**TWDEDEL, bits [33:30]**

*When FEAT_TWED is implemented:*

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE caused by SCR_EL3.TWE as \(2^{\text{TWDEDEL}} \times 8\) cycles.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**TWEDEn, bit [29]**

*When FEAT_TWED is implemented:*

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCR_EL3.TWE.

\(0b0\) The delay for taking a WFE trap is IMPLEMENTATION DEFINED.

\(0b1\) The delay for taking a WFE trap is at least the number of cycles defined in SCR_EL3.TWDEDEL.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**ECVEn, bit [28]**

*When FEAT_ECV is implemented:*

ECV Enable. Enables access to the CNTPOFF_EL2 register.

\(0b0\) EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the value of CNTPOFF_EL2 is treated as 0 for all purposes other than direct reads or writes to the register from EL3.

\(0b1\) EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by this mechanism.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**FGTEn, bit [27]**

*When FEAT_FGT is implemented:*

Enables access to the Fine-Grained Traps registers: HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGTR_EL2, HFGITR_EL2 and HFGWTR_EL2.

\(0b0\) EL2 Accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are trapped to EL3, and those registers behave as if all bits are set to 0.

\(0b1\) EL2 Accesses to HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGTR_EL2, HFGITR_EL2 and HFGWTR_EL2 registers are not trapped to EL3 by this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and its associated ISS.
ATA, bit [26]

When FEAT_MTE is implemented:
Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.
When access is prevented:
  • Instructions which Load or Store data are Unchecked.
  • Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
  • Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
  • Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.
  • MRS and MSR instructions at EL1 and EL2 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or TFSRE0_EL1 that are not UNDEFINED or trapped to a lower Exception level are trapped to EL3.
  • MRS and MSR instructions at EL2 using TFSR_EL1 that are not UNDEFINED are trapped to EL3.

- 0b0 Access is prevented.
- 0b1 Access is not prevented.

This field is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

EnSCXT, bit [25]

When FEAT_CSV2 is implemented:
Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers. The defined values are:

- 0b0 EL2, EL1 and EL0 access to SCXTNUM_EL0, EL2 and EL1 access to SCXTNUM_EL1, EL2 access to SCXTNUM_EL2 registers are disabled by this mechanism, causing an exception to EL3, and the values of these registers to be treated as 0.
- 0b1 This control does not cause accesses to SCXTNUM_EL0, SCXTNUM_EL1, SCXTNUM_EL2 to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bits [24:22]
Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:
Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

- 0b0 Accesses to the specified registers from EL1 and EL2 generate a Trap exception to EL3.
- 0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.
If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be RES0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

### NMEA, bit [20]

**When FEAT_DoubleFault is implemented:**

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts at EL3.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>If SCR_EL3.EA == 1, asserted SError interrupts are not taken at EL3 if PSTATE.A == 1.</td>
</tr>
<tr>
<td>0b1</td>
<td>If SCR_EL3.EA == 1, asserted SError interrupts are taken at EL3 regardless of the value of PSTATE.A.</td>
</tr>
</tbody>
</table>

When SCR_EL3.EA == 0:

- Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.
- This field is ignored and its Effective value is 0.

This field resets to 0.

**Otherwise:**

Reserved, RES0.

### EASE, bit [19]

**When FEAT_DoubleFault is implemented:**

External aborts to SError interrupt vector.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Synchronous External abort exceptions taken to EL3 are taken to the appropriate synchronous exception vector offset from VBAR_EL3.</td>
</tr>
<tr>
<td>0b1</td>
<td>Synchronous External abort exceptions taken to EL3 are taken to the appropriate SError interrupt vector offset from VBAR_EL3.</td>
</tr>
</tbody>
</table>

This field resets to 0.

**Otherwise:**

Reserved, RES0.

### EEL2, bit [18]

**When FEAT_SEL2 is implemented:**

Secure EL2 Enable.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>All behaviors associated with Secure EL2 are disabled. All registers, including timer registers, defined by FEAT_SEL2 are UNDEFINED, and those timers are disabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>All behaviors associated with Secure EL2 are enabled.</td>
</tr>
</tbody>
</table>

When the value of this bit is 1, then:

- When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing the register.
- If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to Secure EL2, using the EC value of ESR_EL2.EC== 0x3:
  - A read or write of the SCR.
  - A read or write of the NSACR.
  - A read or write of the MVBAR.
  - A read or write of the SDCR.
Execution of an ATS12NSO** instruction.

- If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to Secure EL2 using the EC value of $ESR_{EL2}.EC = 0x0$:
  - Execution of an SRS instruction that uses $R13_{mon}$.
  - Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access $SPSR_{mon}$, $R13_{mon}$, or $R14_{mon}$.

**Note**
If the Effective value of $SCR_{EL3}.EEL2$ is 0, then these operations executed in Secure EL1 using AArch32 are trapped to EL3.

In a Secure only implementation that does not implement EL3 but implements EL2, behaves as if $SCR_{EL3}.EEL2 = 1$.

This bit is permitted to be cached in a TLB.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**API, bit [17]**

*When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:*

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an $ESR_{ELx}.EC$ value of 0x0:

- PACGA, which is always enabled.
- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:
  - In EL0, when $HCR_{EL2}.TGE = 0$ or $HCR_{EL2}.E2H = 0$, and the associated $SCTLR_{EL1}.En<<N><M>> = 1$.
  - In EL0, when $HCR_{EL2}.TGE = 1$ and $HCR_{EL2}.E2H = 1$, and the associated $SCTLR_{EL2}.En<<N><M>> = 1$.
  - In EL1, when the associated $SCTLR_{EL1}.En<<N><M>> = 1$.
  - In EL2, when the associated $SCTLR_{EL2}.En<<N><M>> = 1$.

**Note**
The use of any instruction related to pointer authentication in any Exception level except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped to EL2 as a result of the $HCR_{EL2}.API$ bit.

- **0b0** This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see *System register control of pointer authentication* on page D5-2533.

**Note**
If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

This field resets to an architecturally UNKNOWN value.

*When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:*

Controls the use of instructions related to Pointer Authentication:

- PACGA.
D13.2 General system control registers

- AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:
  - In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated SCTLR_EL1.En<N><M> == 1.
  - In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated SCTLR_EL2.En<N><M> == 1.
  - In Secure EL0, when the associated SCTLR_EL2.En<N><M> == 1.
  - In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
  - In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

0b0 The use of any instruction related to pointer authentication in any Exception level except EL3 when the instructions are enabled are trapped to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

--- Note ---

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

---

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, res0.

**APK, bit [16]**

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using an ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit or other traps:

- APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.
- APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.
- APGAKeyLo_EL1, and APGAKeyHi_EL1.

0b0 Access to the registers holding "key" values for pointer authentication from EL1 or EL2 are trapped to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit or other traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see System register control of pointer authentication on page D5-2533.

--- Note ---

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

---

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, res0.
TERR, bit [15]

When FEAT_RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2 to EL3 are trapped as follows:

- Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x18:
  - ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.
- If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to ERXMISC2_EL1, and ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC value of 0x18.
- Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and reported using an ESR_ELx.EC value of 0x03:
  - ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.
- If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the following registers are trapped and reported using an ESR_ELx.EC value of 0x03:
  - ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 and EL2 generate a Trap exception to EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]

When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 and EL2 accesses to the LOR registers that are not UNDEFINED are trapped to EL3, unless it is trapped HCR_EL2.TLOR.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both Execution states, reported using an ESR_ELx.EC value of 0x01.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at any Exception level lower than EL3 is trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWE, HCR.TWE, SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.
Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see *Wait for Event mechanism and Send event* on page D1-2391.

This field resets to an architecturally UNKNOWN value.

TWI, bit [12]
Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both Execution states, reported using an ESR_ELx.EC value of 0x01.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
<tr>
<td>0b1</td>
<td>Any attempt to execute a WFI instruction at any Exception level lower than EL3 is trapped to EL3, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI, SCTLR_EL2.nTWI, or HCR_EL2.TWI.</td>
</tr>
</tbody>
</table>

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see *Wait For Interrupt* on page D1-2394.

This field resets to an architecturally UNKNOWN value.

ST, bit [11]
Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Secure EL1 using AArch64 accesses to the CNTPS.TVAL_EL1, CNTPS.CTL_EL1, and CNTPS.CV_EL1 are trapped to EL3 when Secure EL2 is disabled. If Secure EL2 is enabled, the behavior is as if the value of this field was 0b1.</td>
</tr>
<tr>
<td>0b1</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
</tbody>
</table>

Note
Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These registers are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

RW, bit [10]
*When AArch32 is supported at any Exception level:*
Execution state control for lower Exception levels.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Lower levels are all AArch32.</td>
</tr>
<tr>
<td>0b1</td>
<td>The next lower level is AArch64. If EL2 is present:</td>
</tr>
<tr>
<td></td>
<td>• EL2 is AArch64.</td>
</tr>
<tr>
<td></td>
<td>• EL2 controls EL1 and EL0 behaviors.</td>
</tr>
</tbody>
</table>
If EL2 is not present:
- EL1 is AArch64.
- EL0 is determined by the Execution state described in the current process state when executing at EL0.

If AArch32 state is not supported by the implementation at EL2 and AArch32 state is not supported by the implementation at EL1, then this bit is RAO/WI.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2, NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RAO/WI.

**SIF, bit [9]**

*When FEAT_SEL2 is implemented:*
Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from memory marked in the first stage of translation as being Non-secure. The possible values for this bit are:

- 0b0 Secure state instruction fetches from memory marked in the first stage of translation as being Non-secure are permitted.
- 0b1 Secure state instruction fetches from memory marked in the first stage of translation as being Non-secure are not permitted.

This bit is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

*Otherwise:*
Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory.

- 0b0 Secure state instruction fetches from Non-secure memory are permitted.
- 0b1 Secure state instruction fetches from Non-secure memory are not permitted.

This bit is permitted to be cached in a TLB.
This field resets to an architecturally UNKNOWN value.

**HCE, bit [8]**

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

- 0b0 HVC instructions are UNDEFINED.
- 0b1 HVC instructions are enabled at EL3, EL2, and EL1.

**Note**
HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any resulting exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.
This field resets to an architecturally UNKNOWN value.
SMD, bit [7]
Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states and both Execution states, reported using an ESR_ELx.EC value of 0x00.

\[ \begin{align*}
\text{0b0} & \quad \text{SMC instructions are enabled at EL3, EL2 and EL1.} \\
\text{0b1} & \quad \text{SMC instructions are UNDEFINED.}
\end{align*} \]

--- Note ---
SMC instructions are always UNDEFINED at EL0. Any resulting exception is taken from the current Exception level to the current Exception level.
If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap has priority over this disable.

This field resets to an architecturally UNKNOWN value.

Bit [6]
Reserved, RES0.

Bits [5:4]
Reserved, RES1.

EA, bit [3]
External Abort and SError interrupt routing.

\[ \begin{align*}
\text{0b0} & \quad \text{When executing at Exception levels below EL3, External aborts and SError interrupts are not taken to EL3.} \\
& \quad \text{In addition, when executing at EL3:} \\
& \quad \quad \text{SErrror interrupts are not taken.} \\
& \quad \quad \text{External aborts are taken to EL3.} \\
\text{0b1} & \quad \text{When executing at any Exception level, External aborts and SError interrupts are taken to EL3.}
\end{align*} \]

For more information, see Asynchronous exception routing on page D1-2358.
This field resets to an architecturally UNKNOWN value.

FIQ, bit [2]
Physical FIQ Routing.

\[ \begin{align*}
\text{0b0} & \quad \text{When executing at Exception levels below EL3, physical FIQ interrupts are not taken to EL3.} \\
& \quad \text{When executing at EL3, physical FIQ interrupts are not taken.} \\
\text{0b1} & \quad \text{When executing at any Exception level, physical FIQ interrupts are taken to EL3.}
\end{align*} \]

For more information, see Asynchronous exception routing on page D1-2358.
This field resets to an architecturally UNKNOWN value.

IRQ, bit [1]
Physical IRQ Routing.

\[ \begin{align*}
\text{0b0} & \quad \text{When executing at Exception levels below EL3, physical IRQ interrupts are not taken to EL3.} \\
& \quad \text{When executing at EL3, physical IRQ interrupts are not taken.} \\
\text{0b1} & \quad \text{When executing at any Exception level, physical IRQ interrupts are taken to EL3.}
\end{align*} \]

For more information, see Asynchronous exception routing on page D1-2358.
This field resets to an architecturally UNKNOWN value.
NS, bit [0]

Non-secure bit.

\[ b0 \] Indicates that EL0 and EL1 are in Secure state.
\[ b1 \] Indicates that Exception levels lower than EL3 are in Non-secure state, and so memory accesses from those Exception levels cannot access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

This field resets to an architecturally UNKNOWN value.

**Accessing the SCR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SCR_EL3**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b10</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCR_EL3;
```

**MSR SCR_EL3, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b10</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCR_EL3 = X[t];
```
### D13.2.113 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

**Purpose**

Provides top level control of the system, including its memory system, at EL1 and EL0.

**Configurations**

AArch64 System register SCTLR_EL1[31:0] is architecturally mapped to AArch32 System register SCTLR[31:0].

**Attributes**

SCTLR_EL1 is a 64-bit register.

**Field descriptions**

The SCTLR_EL1 bit assignments are:

**Bits [63:50]**

Reserved, RES0.

**TWDEl**, bits [49:46]

*When FEAT_TWED is implemented:*

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE caused by SCTLR_EL1.nTWE as $2^{(TWDEl + 8)}$ cycles.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.
TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL1.nTWE.

0b0  The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1  The delay for taking a WFE trap is at least the number of cycles defined in SCTLR_EL1.TWEDEL.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

0b0  PSTATE.SSBS is set to 0 on an exception to EL1.
0b1  PSTATE.SSBS is set to 1 on an exception to EL1.

In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:
Reserved, RES0.

ATA, bit [43]

When FEAT_MTE is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation Tags.
When access to Allocation Tags is prevented:
- Instructions which Load or Store data are Unchecked.
- Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
- Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

0b0  Access to Allocation Tags is prevented.
0b1  Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.
In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H,TGE} != {1,1}, controls EL0 access to Allocation Tags.
When access to Allocation Tags is prevented:
- Instructions which Load or Store data are Unchecked.
- Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

0b0  Access to Allocation Tags is prevented.
0b1  Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

--- Note ---
Software may change this control bit on a context switch.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE is implemented:
Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

0b00  Tag Check Faults have no effect on the PE.
0b01  Tag Check Faults cause a synchronous exception.
0b10  Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE is implemented:
Tag Check Fault in EL0. When HCR_EL2.[E2H,TGE] !={1,1}, controls the effect of Tag Check Faults due to Loads and Stores in EL0.

0b00  Tag Check Faults have no effect on the PE.
0b01  Tag Check Faults cause a synchronous exception.
0b10  Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

--- Note ---
Software may change this control bit on a context switch.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE is implemented:
When synchronous exceptions are not being generated by Tag Check Faults which are generated for Loads and Stores in EL0 or EL1, controls the auto-synchronization of Tag Check Faults into TFSRE0_EL1 and TFSR_EL1.

0b0  Tag Check Faults are not synchronized on entry to EL1.
0b1  Tag Check Faults are synchronized on entry to EL1.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
**BT1, bit [36]**

*When FEAT_BTI is implemented:*

PAC Branch Type compatibility at EL1.

- **0b0** When the PE is executing at EL1, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
- **0b1** When the PE is executing at EL1, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**BT0, bit [35]**

*When FEAT_BTI is implemented:*

PAC Branch Type compatibility at EL0.

- **0b0** When the PE is executing at EL0, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
- **0b1** When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

When HCR_EL2.E2H == 1 && HCR_EL2.TGE == 1, the value of the SCTLR_EL1.BT0 has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Bits [34:32]**

Reserved, RES0.

**EnIA, bit [31]**

*When FEAT_PAuth is implemented:*

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see [System register control of pointer authentication on page D5-2533](#).

- **0b0** Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not enabled.
- **0b1** Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is enabled.

---

**Note**

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.
EnIB, bit [30]

When FEAT_PAuth is implemented:

- Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0  Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.

0b1  Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

--- Note ---

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

--- Note ---

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

- Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0  For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can have an interrupt taken during the sequence memory accesses, and the memory accesses are not required to be ordered.

0b1  The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

- No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

0b0  All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are trapped and generate a stage 1 Alignment fault.

0b1  All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.
EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0  Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.
0b1  Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

0b0  Execution of the specified instructions at EL0 using AArch64 is trapped.
0b1  This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

0b0  Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime are little-endian.
0b1  Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime are big-endian.
If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

**E0E, bit [24]**

Endianness of data accesses at EL0.

The possible values of this bit are:

0b0  Explicit data accesses at EL0 are little-endian.

0b1  Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**SPAN, bit [23]**

*When FEAT_PAN is implemented:*

Set Privileged Access Never, on taking an exception to EL1.

0b0  PSTATE.PAN is set to 1 on taking an exception to EL1.

0b1  The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES1.

**EIS, bit [22]**

*When FEAT_ExS is implemented:*

Exception Entry is Context Synchronizing. The defined values are:

0b0  The taking of an exception to EL1 is not a context synchronizing event.

0b1  The taking of an exception to EL1 is a context synchronizing event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

- Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:
- Changes to the PSTATE information on entry to EL1.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

**IESB, bit [21]**

*When FEAT_IESB is implemented:*
Implicit Error Synchronization event enable. Possible values are:

0b0  Disabled.

0b1  An implicit error synchronization event is added:
  - At each exception taken to EL1.
  - Before the operational pseudocode of each *ERET* instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL1 and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**TSCXT, bit [20]**

*When FEAT_CSV2 is implemented:*
Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64. The defined values are:

0b0  EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1  EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

**WXN, bit [19]**
Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0  This control has no effect on memory access permissions.

0b1  Any region that is writable in the EL1&0 translation regime is forced to XN for accesses from software executing at EL1 or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.
When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**nTWE, bit [18]**

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

- 0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if the instruction would otherwise have caused the PE to enter a low-power state.
- 0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

---

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**Bit [17]**

Reserved, RES0.

**nTWI, bit [16]**

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

- 0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if the instruction would otherwise have caused the PE to enter a low-power state.
- 0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

---

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

**UCT, bit [15]**

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

- 0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.
- 0b1 This control does not cause any instructions to be trapped.
When FEAT_VHE is implemented, and the value of HCR_EL2.\{E2H, TGE\} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is trapped.

Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.\{E2H, TGE\} is \{1, 1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

0b0 All instruction access to Stage 1 Normal memory from EL0 and EL1 are Stage 1 Non-cacheable.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1 Normal memory from EL0 and EL1.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.\{E2H, TGE\} is \{1, 1\}, this bit has no effect on the PE.
In a system where the PE resets into EL1, this field resets to 0.

**EOS, bit [11]**

*When FEAT_ExS is implemented:*

Exception Exit is Context Synchronizing. The defined values are:

- **0b0**: An exception return from EL1 is not a context synchronizing event
- **0b1**: An exception return from EL1 is a context synchronizing event

When **FEAT_VHE** is implemented, and the value of **HCR_EL2.{E2H, TGE}** is \{1,1\}, this bit has no effect on execution at EL0.

If SCTLR_EL1.EOS is set to **0b0**:

- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

- The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is synchronized.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

In a system where the PE resets into EL1, this field resets to an architecturally **UNKNOWN** value.

**Otherwise:**

Reserved, RES1.

**EnRCTX, bit [10]**

*When FEAT_SPECRES is implemented:*

Enable EL0 Access to the following instructions:

- AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.
- AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

The defined values are:

- **0b0**: EL0 access to these instructions is disabled, and these instructions are trapped to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.
- **0b1**: EL0 access to these instructions is enabled.

When **FEAT_VHE** is implemented, and the value of **HCR_EL2.{E2H, TGE}** is \{1,1\}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally **UNKNOWN** value.

**Otherwise:**

Reserved, RES0.

**UMA, bit [9]**

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

- **0b0**: Any attempt at EL0 using AArch64 to execute an MSR, MSR(register), or MSR(immediate) instruction that accesses the DAIF is trapped.
- **0b1**: This control does not cause any instructions to be trapped.

When **FEAT_VHE** is implemented, and the value of **HCR_EL2.{E2H, TGE}** is \{1,1\}, this bit has no effect on execution at EL0.
In a system where the PE resets into EL1, this field resets to an architecturally **UNKNOWN** value.

**SED, bit [8]**

*When EL0 is capable of using AArch32:*

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0  SETEND instruction execution is enabled at EL0 using AArch32.

0b1  SETEND instructions are **UNDEFINED** at EL0 using AArch32 and any attempt at EL0 to access a SETEND instruction generates an exception to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, reported using an ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is **RES1**.

When **FEAT_VHE** is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally **UNKNOWN** value.

*Otherwise:*

Reserved, **RES1**.

**ITD, bit [7]**

*When EL0 is capable of using AArch32:*

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0  All IT instruction functionality is enabled at EL0 using AArch32.

0b1  Any attempt at EL0 using AArch32 to execute any of the following is **UNDEFINED** and generates an exception, reported using an ESR_ELx.EC value of 0x00, to EL1 or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1:

* All encodings of the IT instruction with hw1[3:0]!=1000.
* All encodings of the subsequent instruction with the following values for hw1:
  * 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B, UDF, SVC, LDM, and STM.
  * 0b1011xxxxxxxxxxxx: All instructions in 'Miscellaneous 16-bit instructions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section F3.2.5.
  * 0b10100xxxxxxxxx: ADD Rd, PC, #imm
  * 0b01001xxxxxxxxxx: LDR Rd, [PC, #imm]
  * 0b0100x1xx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.
  * 0b010001xx1xxxx1111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers unpredictable cases with BLX Rn.

These instructions are always **UNDEFINED**, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block.

It is **IMPLEMENTATION** **DEFINED** whether the IT instruction is treated as:

* A 16-bit instruction, that can only be followed by another 16-bit instruction.
* The first half of a 32-bit instruction.

This means that, for the situations that are **UNDEFINED**, either the second 16-bit instruction or the 32-bit instruction is **UNDEFINED**.

An implementation might vary dynamically as to whether IT is treated as a 16-bit instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is **CONSTRAINED UNPREDICTABLE**. For more information see *Changes to an ITD control by an instruction in an IT block on page E1-3998.*
ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

nAA, bit [6]

When FEAT_LSE2 is implemented:
Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDARL, LDARRH, STLLR, STLLRH, STLUR, STLURH, and STLURH generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDARL, LDARRH, STLLR, STLLRH, STLUR, STLURH, or STLURH to generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32:
System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED and generates an exception to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using an ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see SP alignment checking on page D1-2327.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.
SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see SP alignment checking on page D1-2327.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

0b0              All data access to Stage 1 Normal memory from EL0 and EL1, and all Normal memory accesses from unified cache to the EL1&0 Stage 1 translation tables, are treated as Stage 1 Non-cacheable.

0b1              This control has no effect on the Stage 1 Cacheability of:
                    • Data access to Normal memory from EL0 and EL1.
                    • Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure EL0 and Non-secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

0b0              Alignment fault checking disabled when executing at EL1 or EL0.
                    Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element(s) being accessed.

0b1              Alignment fault checking enabled when executing at EL1 or EL0.
                    All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element(s) being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

In a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

0b0              EL1&0 stage 1 address translation disabled.
                    See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.

0b1              EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

In a system where the PE resets into EL1, this field resets to 0.
### Accessing the SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

#### MRS <Xt>, SCTLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x110];
    else
        return SCTLR_EL1;
    elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
            return SCTLR_EL2;
        else
            return SCTLR_EL1;
        elsif PSTATE.EL == EL3 then
            return SCTLR_EL1;
        endif
    endif

#### MSR SCTLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x110] = X[t];
    else
        SCTLR_EL1 = X[t];
    elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
            SCTLR_EL2 = X[t];
        else
            SCTLR_EL1 = X[t];
        endif
    elsif PSTATE.EL == EL3 then
        SCTLR_EL1 = X[t];
    endif
MRS <Xt>, SCTLR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        return NVMem[0x110];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return SCTLR_EL1;
    else
        UNDEFINED;
elsif PSTATE_EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        return SCTLR_EL1;
    else
        UNDEFINED;

MSR SCTLR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
        NVMem[0x110] = X[t];
    elseif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SCTLR_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE_EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        SCTLR_EL1 = X[t];
    else
        UNDEFINED;
D13.2.114 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

**Purpose**

Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.E2H, TGE is \{1, 1\}, these controls apply also to execution at EL0.

**Configurations**

AArch64 System register SCTLR_EL2[31:0] is architecturally mapped to AArch32 System register HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

SCTLR_EL2 is a 64-bit register.

**Field descriptions**

The SCTLR_EL2 bit assignments are:

*When HCR_EL2.E2H != 1 or HCR_EL2.TGE != 1:*

This format applies in all Armv8.0 implementations, and from Armv8.1 when the Effective value of HCR_EL2.{E2H, TGE} != \{1, 1\}.

**Bits [63:45]**

Reserved, RES0.

**DSSBS, bit [44]**

*When FEAT_SSBS is implemented:*

Default PSTATE.SSBS value on Exception Entry.

- **0b0** PSTATE.SSBS is set to 0 on an exception to EL2.
- **0b1** PSTATE.SSBS is set to 1 on an exception to EL2.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.
**ATA, bit [43]**

When FEAT_MTE is implemented:

Allocation Tag Access. When SCR_EL3.ATA=1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

- Instructions that Load or Store data are Unchecked.
- Instructions that Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions that insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
- Cache maintenance instructions that invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

- **0b0** Access to Allocation Tags is prevented.
- **0b1** Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**Bit [42]**

Reserved, RES0.

**TCF, bits [41:40]**

When FEAT_MTE is implemented:

Tag Check Fault. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

- **0b00** Tag Check Faults have no effect on the PE.
- **0b01** Tag Check Faults cause a synchronous exception.
- **0b10** Tag Check Faults are asynchronously accumulated.

The value **0b11** is reserved.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**Bits [39:38]**

Reserved, RES0.

**ITFSB, bit [37]**

When FEAT_MTE is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, which are generated for Loads and Stores in EL0, EL1 or EL2, controls the auto-synchronization of Tag Check Faults into TFSRE0_EL1, TFSR_EL1, and TFSR_EL2.

- **0b0** Tag Check Faults are not synchronized on entry to EL2.
- **0b1** Tag Check Faults are synchronized on entry to EL2.

**Otherwise:**

Reserved, RES0.
BT, bit [36]

When **FEAT_BTI** is implemented:

PAC Branch Type compatibility at EL2.

0b0 When the PE is executing at EL2, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When **FEAT_PAuth** is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When **FEAT_PAuth** is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.


**D13.2 General system control registers**

When **FEAT_PAuth** is implemented:

- Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.
- For more information, see *System register control of pointer authentication on page D5-2533.*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.</td>
</tr>
</tbody>
</table>

**Note**

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

**EE, bit [25]**

- Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL1&0 translation regime.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&amp;0 translation regime, and stage 2 translation table walks in the EL1&amp;0 translation regime are little-endian.</td>
</tr>
<tr>
<td>0b1</td>
<td>Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&amp;0 translation regime, and stage 2 translation table walks in the EL1&amp;0 translation regime are big-endian.</td>
</tr>
</tbody>
</table>

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an **IMPLEMENTATION DEFINED** value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

**EIS, bit [22]**

When **FEAT_ExS** is implemented:

- Exception entry is a context synchronization event. The defined values are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>The taking of an exception to EL2 is not a context synchronization event.</td>
</tr>
</tbody>
</table>
The taking of an exception to EL2 is a context synchronization event.

If SCTLR_EL2.EIS is set to 0b0:

1. Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
2. Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
3. Exception Catch debug events are synchronous debug events.
4. DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

1. Changes to the PSTATE information on entry to EL2.
2. Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and data processing instructions.
3. Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES1.

IESB, bit [21]

*When FEAT_IESB is implemented:*

Implicit Error Synchronization event enable.

- 0b0  Disabled.
- 0b1  An implicit error synchronization event is added:
  - At each exception taken to EL2.
  - Before the operational pseudocode of each ERET instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable to be treated as XN:

- 0b0  This control has no effect on memory access permissions.
- 0b1  Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.
The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.
Bit [17]
Reserved, RES0.

Bit [16]
Reserved, RES1.

Bits [15:14]
Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:
Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.
For more information, see System register control of pointer authentication on page D5-2533.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note
This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

I, bit [12]
Instruction access Cacheability control, for accesses at EL2:

0b0 All instruction accesses to Normal memory from EL2 are Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2 or EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.
In a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:
Exception exit is a context synchronization Event.

0b0 An exception return from EL2 is not a context synchronization event.
0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.
The following are not affected by the value of SCTLR_EL2.EOS:

- The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is synchronized.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and data processing instructions.
- Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES1.

**Bits [10:7]**

Reserved, RES0.

**nAA, bit [6]**

*When FEAT_LSE2 is implemented:*

Non-aligned access. This bit controls generation of Alignment faults at EL2 under certain conditions.

- **0b0** LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for accesses.
- **0b1** This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**Bits [5:4]**

Reserved, RES1.

**SA, bit [3]**

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more information, see *SP alignment checking on page D1-2327.*

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**C, bit [2]**

Cacheability control, for data accesses.

- **0b0** All data accesses to Normal memory from EL2, and all Normal memory accesses to the EL2 translation tables, are Non-cacheable for all levels of data and unified cache.
- **0b1** This control has no effect on the Cacheability of:
  - Data access to Normal memory from EL2.
  - Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

**A, bit [1]**

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

- **0b0** Alignment fault checking disabled when executing at EL2.
Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element(s) being accessed.

<table>
<thead>
<tr>
<th>M, bit [0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMU enable for EL2 stage 1 address translation.</td>
</tr>
<tr>
<td><strong>0b0</strong></td>
</tr>
<tr>
<td><strong>0b1</strong></td>
</tr>
</tbody>
</table>

In a system where the PE resets into EL2, this field resets to an architecturally **UNKNOWN** value.

### When \( \text{HCR\_EL2.E2H} == 1 \) and \( \text{HCR\_EL2.TGE} == 1 \):

![Diagram](attachment:register_diagram.png)

This format applies only from Armv8.1 when EL2 is enabled in the current Security state and \( \text{HCR\_EL2.\{E2H, TGE\}} == \{1, 1\} \).

#### Bits [63:50]

Reserved, **RES0**.

#### TWEDEL, bits [49:46]

*When FEAT\_TWED is implemented:*

TWE Delay. A 4-bit unsigned number that, when SCTL\_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE caused by SCTL\_EL2.nTWE as \( 2^{(\text{TWEDEL} + 8)} \) cycles.

In a system where the PE resets into EL2, this field resets to an architecturally **UNKNOWN** value.
**Otherwise:**

Reserved, RES0.

**TWEDEn, bit [45]**

*When FEAT_TWED is implemented:*

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

- **0b0** The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
- **0b1** The delay for taking a WFE trap is at least the number of cycles defined in SCTLR_EL2.TWEDEL.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**DSSBS, bit [44]**

*When FEAT_SSBS is implemented:*

Default PSTATE.SSBS value on Exception Entry.

- **0b0** PSTATE.SSBS is set to 0 on an exception to EL2.
- **0b1** PSTATE.SSBS is set to 1 on an exception to EL2.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

**Otherwise:**

Reserved, RES0.

**ATA, bit [43]**

*When FEAT_MTE is implemented:*

Allocation Tag Access in EL2. When SCR_EL3.ATA=1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

- Instructions which Load or Store data are Unchecked.
- Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
- Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

- **0b0** Access to Allocation Tags is prevented.
- **0b1** Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**ATA0, bit [42]**

*When FEAT_MTE is implemented:*

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, controls EL0 access to Allocation Tags.

When access to Allocation Tags is prevented:

- Instructions which Load or Store data are Unchecked.
- Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

0b0  Access to Allocation Tags is prevented.
0b1  Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

Note
Software may change this control bit on a context switch.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TCF, bits [41:40]
When FEAT_MTE is implemented:
Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.
0b00  Tag Check Faults have no effect on the PE.
0b01  Tag Check Faults cause a synchronous exception.
0b10  Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

TCF0, bits [39:38]
When FEAT_MTE is implemented:
Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.
0b00  Tag Check Faults have no effect on the PE.
0b01  Tag Check Faults cause a synchronous exception.
0b10  Tag Check Faults are asynchronously accumulated.

The value 0b11 is reserved.

Note
Software may change this control bit on a context switch.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

ITFSB, bit [37]
When FEAT_MTE is implemented:
When synchronous exceptions are not being generated by Tag Check Faults which are generated for Loads and Stores in EL0, EL1 or EL2, controls the auto-synchronization of Tag Check Faults into TFSR2_EL0, TFSR_EL1 and TFSR_EL2.
0b0  Tag Check Faults are not synchronized on entry to EL2.
0b1  Tag Check Faults are synchronized on entry to EL2.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.
BT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

0b0 When the PE is executing at EL2, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

0b0 When the PE is executing at EL0, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.
For more information, see System register control of pointer authentication on page D5-2533.

0b0  Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.
0b1  Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

Note
This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

LSMAOE, bit [29]
When FEAT_LSMAOC is implemented:
Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0  For all memory accesses at EL0, A32 and T32 Load Multiple and Store Multiple can have an interrupt taken during the sequence memory accesses, and the memory accesses are not required to be ordered.
0b1  The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.
In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

nTLSMD, bit [28]
When FEAT_LSMAOC is implemented:
No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

0b0  All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are trapped and generate a stage 1 Alignment fault.
0b1  All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.
In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

EnDA, bit [27]
When FEAT_PAuth is implemented:
Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0 translation regime.

For more information, see System register control of pointer authentication on page D5-2533.

0b0  Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.
0b1  Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.
This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**UCI, bit [26]**

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

- **0b0** Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is trapped to EL2.
- **0b1** This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**EE, bit [25]**

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL2&0 translation regime.

The possible values of this bit are:

- **0b0** Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL2&0 translation regime are little-endian.
- **0b1** Explicit data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage 2 translation table walks in the EL2&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.
**E0E, bit [24]**

Endianness of data accesses at EL0.
- 0b0: Explicit data accesses at EL0 are little-endian.
- 0b1: Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**SPAN, bit [23]**

Set Privileged Access Never, on taking an exception to EL2.
- 0b0: PSTATE.PAN is set to 1 on taking an exception to EL2.
- 0b1: The value of PSTATE.PAN is left unchanged on taking an exception to EL2.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**EIS, bit [22]**

*When FEAT_ExS is implemented:*

Exception Entry is a context synchronization event.
- 0b0: The taking of an exception to EL2 is not a context synchronization event.
- 0b1: The taking of an exception to EL2 is a context synchronization event.

If SCTLR_EL2.EIS is set to 0b0:
- Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, HPFAR_EL2 are synchronized on exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:
- Changes to the PSTATE information on entry to EL2.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES1.

**IESB, bit [21]**

*When FEAT_IESB is implemented:*

Implicit Error Synchronization event Enable.
- 0b0: Disabled.
- 0b1: An implicit error synchronization event is added:
  - After each exception taken to EL2.
  - Before the operational pseudocode of each ERET instruction executed at EL2.
When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

### TSCXT, bit [20]

**When FEAT_CSV2 is implemented:**

- **0b0** EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.
- **0b1** EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL2, and the SCXTNUM_EL0 value is treated as 0.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

### WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory regions that are writable to be treated as XN. The possible values of this bit are:

- **0b0** This control has no effect on memory access permissions.
- **0b1** Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

### nTWE, bit [18]

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

- **0b0** Any attempt to execute a WFE instruction at EL0 is trapped to EL2, if the instruction would otherwise have caused the PE to enter a low-power state.
- **0b1** This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

--- **Note** ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

---

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

---

### Bit [17]

Reserved, RES0.

### nTWI, bit [16]

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

- **0b0** Any attempt to execute a WFI instruction at EL0 is trapped EL2, if the instruction would otherwise have caused the PE to enter a low-power state.
0b1  This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

---

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.
0b0  Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to EL2.
0b1  This control does not cause any instructions to be trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.
If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.
0b0  Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is trapped to EL2. Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the instructions that this trap applies to are not supported.
0b1  This control does not cause any instructions to be trapped.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0 translation regime.
For more information, see System register control of pointer authentication on page D5-2533.
0b0  Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.
0b1  Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

--- Note ---

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

---

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and EL0:
0b0  All instruction access to Normal memory from EL2 and EL0 are Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.
0b1  This control has no effect on the Cacheability of instruction access to Normal memory from EL2 and EL0.

If the value of SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL3 translation regimes.
In a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:
Exception exit is a context synchronization event.

0b0  An exception return from EL2 is not a context synchronization event.
0b1  An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:
• Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:
• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is synchronized.
• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:
Enable EL0 Access to the following instructions:
• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.
• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

The defined values are:
0b0  EL0 access to these instructions is disabled, and these instructions are trapped to EL1.
0b1  EL0 access to these instructions is enabled.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [9]
Reserved, RES0.

SED, bit [8]

When EL0 is capable of using AArch32:
SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

0b0  SETEND instruction execution is enabled at EL0 using AArch32.
0b1  SETEND instructions are UNDEFINED at EL0 using AArch32.
If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

**ITD, bit [7]**

When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

0b0  All IT instruction functionality is enabled at EL0 using AArch32.
0b1  Any attempt at EL0 using AArch32 to execute any of the following is UNDEFINED:

- All encodings of the IT instruction with hw1[3:0]!={1000}.
- All encodings of the subsequent instruction with the following values for hw1:
  - 0b11xxxxxxxx: All 32-bit instructions, and the 16-bit instructions B, UDF, SVC, LDM, and STM.
  - 0b1011xxxxxxx: All instructions in 'Miscellaneous 16-bit instructions' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section F3.2.5.
  - 0b10100xxxxxx: ADD Rd, PC, #imm
  - 0b01001xxxxxxxx: LDR Rd, [PC, #imm]
  - 0b01001xxxxxxx: ADD Rd, PC, #imm
  - 0b01001xxxxxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.
  - 0b010001x1xxx111xxx: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

- A 16-bit instruction, that can only be followed by another 16-bit instruction.
- The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit instruction or the 32-bit instruction is UNDEFINED.

An implementation might vary dynamically as to whether IT is treated as a 16-bit instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by an instruction in an IT block on page E1-3998.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

**nAA, bit [6]**

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL2 and EL0 under certain conditions.

0b0  LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLNR, STLLRH, and STLURH generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for accesses.
0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLRR, STLRRH, STLUR, STLURH, or STLRURH to generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**CP15BEN, bit [5]**

*When EL0 is capable of using AArch32:*

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from EL0:

0b0 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAO/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**SA0, bit [4]**

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see SP alignment checking on page D1-2327.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**SA, bit [3]**

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see SP alignment checking on page D1-2327.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

**C, bit [2]**

Cacheability control, for data accesses.

0b0 All data access to Normal memory from EL2 and EL0, and all Normal memory accesses to the EL2&0 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:

- Data access to Normal memory from EL2 and EL0.
- Normal memory accesses to the EL2&0 translation tables.

This bit has no effect on the EL3 translation regimes.

In a system where the PE resets into EL2, this field resets to 0.

**A, bit [1]**

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and EL0.

0b0 Alignment fault checking disabled when executing at EL2 and EL0.

Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2 and EL0.
All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element(s) being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

In a system where the PE resets into EL2, this field resets to an architecturally _UNKNOWN_ value.

**M, bit [0]**

MMU enable for EL2&0 stage 1 address translation. Possible values of this bit are:

- **0b0**: EL2&0 stage 1 address translation disabled.
  
  See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

- **0b1**: EL2&0 stage 1 address translation enabled.

In a system where the PE resets into EL2, this field resets to 0.

### Accessing the SCTLR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SCTLR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SCTLR_EL2;
elsif PSTATE.EL == EL3 then
 return SCTLR_EL2;
```

**MSR SCTLR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SCTLR_EL2 = X[t];
else PSTATE.EL == EL3 then
 SCTLR_EL2 = X[t];
```
MRS <Xt>, SCTLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x110];
  else
    return SCTLR_EL1;
  endif;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return SCTLR_EL2;
  else
    return SCTLR_EL1;
  endif;
else
  SCTLR_EL1 = X[t];
endif;

MSR SCTLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x110] = X[t];
  else
    SCTLR_EL1 = X[t];
  endif;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    SCTLR_EL2 = X[t];
  else
    SCTLR_EL1 = X[t];
  endif;
else
  SCTLR_EL1 = X[t];
endif;
D13.2.115  SCTLR_EL3, System Control Register (EL3)

The SCTLR_EL3 characteristics are:

**Purpose**

Provides top level control of the system, including its memory system, at EL3.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3 are UNDEFINED.

**Attributes**

SCTLR_EL3 is a 64-bit register.

**Field descriptions**

The SCTLR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-45</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>44</td>
<td>DSSBS, bit [44]</td>
</tr>
<tr>
<td>43</td>
<td>ATA, bit [43]</td>
</tr>
<tr>
<td>42-32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31</td>
<td>ITFSB, bit [31]</td>
</tr>
<tr>
<td>30-20</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>19-12</td>
<td>EnIA, EnIB, RES1</td>
</tr>
<tr>
<td>11-4</td>
<td>Reserved, RES0, RES1</td>
</tr>
<tr>
<td>3</td>
<td>WXN, EIS, RES1</td>
</tr>
<tr>
<td>2</td>
<td>IESB, EIS, RES1</td>
</tr>
<tr>
<td>1</td>
<td>EE, RES0</td>
</tr>
<tr>
<td>0</td>
<td>RES0</td>
</tr>
</tbody>
</table>

**DSSBS, bit [44]**

*When FEAT_SSSBS is implemented:*

Default PSTATE.SSSBS value on Exception Entry.

- **0b0**: PSTATE.SSSBS is set to 0 on an exception to EL3.
- **0b1**: PSTATE.SSSBS is set to 1 on an exception to EL3.

In a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

**ATA, bit [43]**

*When FEAT_MTE is implemented:*

Allocation Tag Access in EL3. Controls EL3 access to Allocation Tags.
When access to Allocation Tags is prevented:

- Instructions which Load or Store data are Unchecked.
- Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.
- Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the Logical Address Tag as 0.
- Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent Clean and Invalidate operation on Allocation Tags.

0b0  Access to Allocation Tags is prevented.
0b1  Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [42]
Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE is implemented:
Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.
0b00  Tag Check Faults have no effect on the PE.
0b01  Tag Check Faults cause a synchronous exception.
0b10  Tag Check Faults are asynchronously accumulated.
The value 0b11 is reserved.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bits [39:38]
Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE is implemented:
When asynchronous exceptions are being generated by Tag Check Faults which are generated for Loads and Stores at any exception level, controls the auto-synchronisation of Tag Check Faults into TFSRE0_EL1 and TFSR_ELx
0b0  Tag Check Faults are not synchronized on entry to EL3.
0b1  Tag Check Faults are synchronized on entry to EL3.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

BT, bit [36]

When FEAT_BTI is implemented:
PAC Branch Type compatibility at EL3.
0b0  When the PE is executing at EL3, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
0b1  When the PE is executing at EL3, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.
In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**Bits [35:32]**
Reserved, RES0.

**EnIA, bit [31]**

*When FEAT_PAuth is implemented:*

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

- **0b0** Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not enabled.
- **0b1** Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is enabled.

For more information, see *System register control of pointer authentication on page D5-2533.*

--- **Note** ---

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**EnIB, bit [30]**

*When FEAT_PAuth is implemented:*

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3 translation regime.

Possible values of this bit are:

- **0b0** Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.
- **0b1** Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

For more information, see *System register control of pointer authentication on page D5-2533.*

--- **Note** ---

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**Bits [29:28]**
Reserved, RES1.
EnDA, bit [27]

*When FEAT_PAuth is implemented:*

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3 translation regime.

- **0b0**: Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.
- **0b1**: Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.

For more information, see *System register control of pointer authentication* on page D5-2533.

---

**Note**

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

---

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

Bit [26]

Reserved, RES0.

Bit [25]

Reserved, RES1.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

- **0b0**: Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime are little-endian.
- **0b1**: Explicit data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

In a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

*When FEAT_ExS is implemented:*

Exception Entry is Context Synchronizing.

- **0b0**: The taking of an exception to EL3 is not a context synchronizing event.
- **0b1**: The taking of an exception to EL3 is a context synchronizing event.

If SCTLR_EL3.EIS is set to **0b0**:
- Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on exception entry to EL3, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
Exception Catch debug events are synchronous debug events.
DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTL_EL3.EIS:
Changes to the PSTATE information on entry to EL3.
Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
Debug state exit.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES1.

**IESB, bit [21]**

When **FEAT_IESB** is implemented:
Implicit Error Synchronization event enable.

0b0  Disabled.
0b1  An implicit error synchronization event is added:
  - At each exception taken to EL3.
  - Before the operational pseudocode of each ERET instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL3 and before each DRPS instruction executed at EL3, in addition to the other cases where it is added. When **FEAT_DoubleFault** is implemented, and the Effective value of SCR_EL3.NMEA is 1, this field is ignored and its Effective value is 1.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**Bit [20]**
Reserved, RES0.

**WXN, bit [19]**
Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0  This control has no effect on memory access permissions.
0b1  Any region that is writable in the EL3 translation regime is forced to XN for accesses from software executing at EL3.

This bit applies only when SCTL_EL3.M bit is set.
The WXN bit is permitted to be cached in a TLB.
In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**Bit [18]**
Reserved, RES1.

**Bit [17]**
Reserved, RES0.

**Bit [16]**
Reserved, RES1.
Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:
Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3 translation regime.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

For more information, see System register control of pointer authentication on page D5-2533.

Note
This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

0b0 All instruction access to Normal memory from EL3 are Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.
0b1 This control has no effect on the Cacheability of instruction access to Normal memory from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage 1 of the EL3 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.
In a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:
Exception Exit is Context Synchronizing.

0b0 An exception return from EL3 is not a context synchronizing event
0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:
• Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.
The following are not affected by the value of SCTLR_EL3.EOS:
• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on exception return is synchronized.
• If the PE enters Debug state before the first instruction after an Exception return from EL3 to Non-secure state, any pending Halting debug event completes execution.
• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with leaving the EL3 Exception level.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
• Exit from Debug state.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain conditions.

\[
\begin{align*}
0b0 & : \text{LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLRR, STLRH, STLUR, and STLURH generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for accesses.} \\
0b1 & : \text{This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLRR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes.}
\end{align*}
\]

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more information, see SP alignment checking on page D1-2327.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

\[
\begin{align*}
0b0 & : \text{All data access to Normal memory from EL3, and all Normal memory accesses to the EL3 translation tables, are Non-cacheable for all levels of data and unified cache.} \\
0b1 & : \text{This control has no effect on the Cacheability of:} \\
& \quad \cdot \text{Data access to Normal memory from EL3.} \\
& \quad \cdot \text{Normal memory accesses to the EL3 translation tables.}
\end{align*}
\]

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

In a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

\[
\begin{align*}
0b0 & : \text{Alignment fault checking disabled when executing at EL3.}
\end{align*}
\]
Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL3.

All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element(s) being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

**M, bit [0]**

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses to Normal memory.

0b1 EL3 stage 1 address translation enabled.

In a system where the PE resets into EL3, this field resets to 0.

### Accessing the SCTLR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

#### MRS <Xt>, SCTLR_EL3

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b11</td>
<td>0b0000</td>
<td>0b000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCTLR_EL3;
```

#### MSR SCTLR_EL3, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b11</td>
<td>0b0000</td>
<td>0b000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCTLR_EL3 = X[t];
```
D13.2.116 SCXTNUM_EL0, EL0 Read/Write Software Context Number

The SCXTNUM_EL0 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL0 exception level, for the purpose of protecting against side-channels using branch prediction and similar resources.

Configurations

This register is present only when FEAT_CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL0 are UNDEFINED.

Attributes

SCXTNUM_EL0 is a 64-bit register.

Field descriptions

The SCXTNUM_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Software Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 0</td>
<td></td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, SCXTNUM_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then undefined;
    elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        endif
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
        if Halted() && EDSCR.SDD == '1' then undefined;
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        endif
    endif
else
    AArch64.SystemAccessTrap(EL1, 0x18);
endif
AArch64.SystemAccessTrap(EL3, 0x18);
else
    return SCXTNUM_EL0;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    else
        return SCXTNUM_EL0;
    endif
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
        UNDEFINED;
    elseif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    else
        return SCXTNUM_EL0;
    endif
elsif PSTATE.EL == EL3 then
    return SCXTNUM_EL0;
endif

MSR SCXTNUM_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b11</td>
<td>b011</td>
<td>b1101</td>
<td>b0000</td>
<td>b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
        UNDEFINED;
    elseif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end if
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    else
        SCXTNUM_EL0 = X[t];
    endif
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
        UNDEFINED;
elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then 
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1' then 
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
  SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL3 then
  SCXTNUM_EL0 = X[t];
D13.2.117 SCXTNUM_EL1, EL1 Read/Write Software Context Number

The SCXTNUM_EL1 characteristics are:

**Purpose**

Provides a number that can be used to separate out different context numbers with the EL1 exception level, for the purpose of protecting against side-channels using branch prediction and similar resources.

**Configurations**

This register is present only when FEAT_CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL1 are UNDEFINED.

**Attributes**

SCXTNUM_EL1 is a 64-bit register.

**Field descriptions**

The SCXTNUM_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Software Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Context Number. A number to identify the context within the EL1 exception level. This field resets to an architecturally UNKNOWN value.</td>
<td></td>
</tr>
</tbody>
</table>

**Accessing the SCXTNUM_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SCXTNUM_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsf PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;
elsf EL2Enabled() && HCR_EL2.EnSCTX == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsf EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsf HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
elsf EL2Enabled() && EDSCR.SDD == '1' then
AArch64.SystemAccessTrap(EL3, 0x18);
elsf EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x188];
elsf PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end if
elsif HCR_EL2.E2H == '1' then
  return SCXTNUM_EL2;
else
  return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then
  return SCXTNUM_EL1;
endif

MSR SCXTNUM_EL1, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18); 
  endif
elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
  return SCXTNUM_EL2;
else
  return SCXTNUM_EL1;
endif

if PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18); 
  endif
elsif HCR_EL2.E2H == '1' then
  SCXTNUM_EL2 = X[t];
else
  SCXTNUM_EL1 = X[t];
endif

if PSTATE.EL == EL3 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18); 
  endif
elsif HCR_EL2.E2H == '1' then
  SCXTNUM_EL3 = X[t];
else
  SCXTNUM_EL1 = X[t];
endif

## MSR SCXTNUM_EL1, <Xt> Table

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b111</td>
</tr>
</tbody>
</table>
MRS <Xt>, SCXTNUM_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    return NVMem[0x188];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
      UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end
    end
    else
      return SCXTNUM_EL1;
    end
  else
    UNDEFINED;
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    return SCXTNUM_EL1;
  else
    UNDEFINED;
end

MSR SCXTNUM_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x188] = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
      UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end
    end
  else
    SCXTNUM_EL1 = X[t];
  end
else
  UNDEFINED;
UNDEFINED;
elif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.EZH == '1' then
    SCXTNUM_EL1 = X[t];
  else
    UNDEFINED;

D13.2.118   SCXTNUM_EL2, EL2 Read/Write Software Context Number

The SCXTNUM_EL2 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with the EL2 exception level, for the purpose of protecting against side-channels using branch prediction and similar resources.

Configurations

This register is present only when FEAT_CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

SCXTNUM_EL2 is a 64-bit register.

Field descriptions

The SCXTNUM_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Software Context Number. A number to identify the context within the EL2 exception level. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

Accessing the SCXTNUM_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCXTNUM_EL2 or SCXTNUM_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS <Xt>, SCXTNUM_EL2}
\]

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
```

D13-3448  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
ID072120
else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
    return SCXTNUM_EL2;
else if PSTATE.E高山 == EL3 then
    return SCXTNUM_EL2;

**MSR SCXTNUM_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1101</td>
<td>0b00000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

**MRS <Xt>, SCXTNUM_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b00000</td>
<td>0b111</td>
</tr>
</tbody>
</table>
UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end
else if HCR_EL2.E2H == '1' then
  return SCXTNUM_EL2;
else
  return SCXTNUM_EL1;
elifsPSTATE.EL == EL3 then
  return SCXTNUM_EL1;
end

MSR SCXTNUM_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
elif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && (!HaveEL(EL3) || SCXTNUM_EL1 == '1') then
  AArch64.SystemAccessTrap(EL2, 0x18);
elif Halted() && EDSCR.SDD == '1' then
  if Halted() && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
  XVMem[0x18] = X[t];
else
  SCXTNUM_EL1 = X[t];
elif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
    UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
elif HCR_EL2.E2H == '1' then
  SCXTNUM_EL2 = X[t];
else
  SCXTNUM_EL1 = X[t];
elif PSTATE.EL == EL3 then
  SCXTNUM_EL1 = X[t];
### D13.2.119 SCXTNUM_EL3, EL3 Read/Write Software Context Number

The SCXTNUM_EL3 characteristics are:

**Purpose**

Provides a number that can be used to separate out different context numbers with the EL3 exception level, for the purpose of protecting against side-channels using branch prediction and similar resources.

**Configurations**

This register is present only when EL3 is implemented and FEAT_CSV2 is implemented. Otherwise, direct accesses to SCXTNUM_EL3 are UNDEFINED.

**Attributes**

SCXTNUM_EL3 is a 64-bit register.

**Field descriptions**

The SCXTNUM_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Software Context Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 to 0</td>
<td></td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

**Accessing the SCXTNUM_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, SCXTNUM_EL3**

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SCXTNUM_EL3;
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b111</td>
</tr>
</tbody>
</table>
### MSR SCXNUM_EL3, <Xt>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SCXNUM_EL3 = X[t];
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b10</td>
<td>0b101</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>
D13.2.120 TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

**Purpose**

The control register for stage 1 of the EL1&0 translation regime.

**Configurations**

AArch64 System register TCR_EL1[31:0] is architecturally mapped to AArch32 System register TTBCR[31:0].

AArch64 System register TCR_EL1[63:32] is architecturally mapped to AArch32 System register TTBCR2[31:0].

**Attributes**

TCR_EL1 is a 64-bit register.

**Field descriptions**

The TCR_EL1 bit assignments are:

Any of the bits in TCR_EL1, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be cached in a TLB.

**Bits [63:59]**

Reserved, RES0.

**TCMA1, bit [58]**

*When FEAT_MTE is implemented:*

Controls the generation of Unchecked accesses at EL1, and at EL0 if HCR_EL2.{E2H,TGE}!={1,1}, when address[59:55] = 0b11111.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.

0b1 All accesses at EL1 and EL0 are Unchecked.
Note
Software may change this control bit on a context switch.

Otherwise:
Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE is implemented:
Controls the generation of Unchecked accesses at EL1, and at EL0 if
HCR_EL2.{E2H,TGE}!={1,1}, when address[59:55] = 0b00000.

0b0 This control has no effect on the generation of Unchecked accesses at EL1 or EL0.
0b1 All accesses at EL1 and EL0 are Unchecked.

Note
Software may change this control bit on a context switch.

Otherwise:
Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:
Faulting control for Unprivileged access to any address translated by TTBR1_EL1.

0b0 Unprivileged access to any address translated by TTBR1_EL1 will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR1_EL1 will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:
Faulting control for Unprivileged access to any address translated by TTBR0_EL1.

0b0 Unprivileged access to any address translated by TTBR0_EL1 will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR0_EL1 will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented:
Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:
• All accesses due to an SVE non-fault contiguous load instruction.
Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE first-fault contiguous load instruction are not affected.

Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see FEAT_SVE.

\[0b0\] Does not disable stage 1 translation table walks using TTBR1_EL1.

\[0b1\] A TLB miss on a virtual address that is translated using TTBR1_EL1 due to the specified access types causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

### NFD0, bit [53]

**When FEAT_SVE is implemented:**

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for a virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

- All accesses due to an SVE non-fault contiguous load instruction.
- Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE first-fault contiguous load instruction are not affected.
- Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see FEAT_SVE.

\[0b0\] Does not disable stage 1 translation table walks using TTBR0_EL1.

\[0b1\] A TLB miss on a virtual address that is translated using TTBR0_EL1 due to the specified access types causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

### TBID1, bit [52]

**When FEAT_PAuth is implemented:**

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see *Address tagging in AArch64 state* on page D5-2528.

\[0b0\] TCR_EL1.TBI1 applies to Instruction and Data accesses.

\[0b1\] TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

### TBID0, bit [51]

**When FEAT_PAuth is implemented:**

Controls the use of the top byte of instruction addresses for address matching.
For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see *Address tagging in AArch64 state* on page D5-2528.

\[0b0\] TCR_EL1.TBI0 applies to Instruction and Data accesses.

\[0b1\] TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**HWU162, bit [50]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL1.

\[0b0\] For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

\[0b1\] For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**HWU161, bit [49]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL1.

\[0b0\] For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

\[0b1\] For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**HWU160, bit [48]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL1.

\[0b0\] For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

\[0b1\] For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.
HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

0b0   For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1   For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

0b0   For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1   For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL1.

0b0   Hierarchical permissions are enabled.
0b1   Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL1.

0b0   Hierarchical permissions are enabled.
0b1   Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
HD, bit [40]

When FEAT_HAFDBS is implemented:

- **0b0**: Stage 1 hardware management of dirty state disabled.
- **0b1**: Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

This field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, **RES0**.

HA, bit [39]

When FEAT_HAFDBS is implemented:

- **0b0**: Stage 1 Access flag update disabled.
- **0b1**: Stage 1 Access flag update enabled.

This field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, **RES0**.

TBI1, bit [38]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region, or ignored and used for tagged addresses.

- **0b0**: Top Byte used in the address calculation.
- **0b1**: Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by **TTBR1_EL1**. It has an effect whether the EL1&0 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the following cases:
- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

This field resets to an architecturally **UNKNOWN** value.

TBI0, bit [37]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region, or ignored and used for tagged addresses.

- **0b0**: Top Byte used in the address calculation.
- **0b1**: Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables pointed to by **TTBR0_EL1**. It has an effect whether the EL1&0 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data accesses.
Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

**AS, bit [36]**

ASID Size.

- 0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for every purpose except reading back the register, and are treated as if they are all zeros for when used for allocation and matching entries in the TLB.
- 0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

**Bit [35]**

Reserved, RES0.

**IPS, bits [34:32]**

Intermediate Physical Address Size.

- 0b000 32 bits, 4GB.
- 0b001 36 bits, 64GB.
- 0b010 40 bits, 1TB.
- 0b011 42 bits, 4TB.
- 0b100 44 bits, 16TB.
- 0b101 48 bits, 256TB.
- 0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL1 are 0b0000.

This field resets to an architecturally UNKNOWN value.

**TG1, bits [31:30]**

Granule size for the TTBR1_EL1.

- 0b0 16KB.
- 0b1 4KB.
- 0b1 64KB.

Other values are reserved.
If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

**SH1, bits [29:28]**
Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

- 0b00: Non-shareable.
- 0b10: Outer Shareable.
- 0b11: Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

**ORGN1, bits [27:26]**
Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

- 0b00: Normal memory, Outer Non-cacheable.
- 0b01: Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

**IRGN1, bits [25:24]**
Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

- 0b00: Normal memory, Inner Non-cacheable.
- 0b01: Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

**EPD1, bit [23]**
Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using TTBR1_EL1. The encoding of this bit is:

- 0b0: Perform translation table walks using TTBR1_EL1.
- 0b1: A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

**A1, bit [22]**
Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

- 0b0: TTBR0_EL1.ASID defines the ASID.
- 0b1: TTBR1_EL1.ASID defines the ASID.

This field resets to an architecturally UNKNOWN value.

**T1SZ, bits [21:16]**
The size offset of the memory region addressed by TTBR1_EL1. The region size is $2^{(64-T1SZ)}$ bytes.
The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.
This field resets to an architecturally UNKNOWN value.

**TG0, bits [15:14]**
Granule size for the TTBR0_EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>4KB</td>
</tr>
<tr>
<td>0b01</td>
<td>64KB</td>
</tr>
<tr>
<td>0b10</td>
<td>16KB</td>
</tr>
</tbody>
</table>
Other values are reserved.
If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.
It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.
This field resets to an architecturally UNKNOWN value.

**SH0, bits [13:12]**
Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Non-shareable</td>
</tr>
<tr>
<td>0b10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>0b11</td>
<td>Inner Shareable</td>
</tr>
</tbody>
</table>
Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.
This field resets to an architecturally UNKNOWN value.

**ORGN0, bits [11:10]**
Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Normal memory, Outer Non-cacheable</td>
</tr>
<tr>
<td>0b01</td>
<td>Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable</td>
</tr>
<tr>
<td>0b10</td>
<td>Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable</td>
</tr>
<tr>
<td>0b11</td>
<td>Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable</td>
</tr>
</tbody>
</table>
This field resets to an architecturally UNKNOWN value.

**IRGN0, bits [9:8]**
Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01</td>
<td>Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable</td>
</tr>
<tr>
<td>0b10</td>
<td>Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable</td>
</tr>
<tr>
<td>0b11</td>
<td>Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable</td>
</tr>
</tbody>
</table>
This field resets to an architecturally UNKNOWN value.

**EPD0, bit [7]**
Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL1. The encoding of this bit is:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Perform translation table walks using TTBR0_EL1.</td>
</tr>
</tbody>
</table>
A TLB miss on an address that is translated using TTBR0_EL1 generates a Translation fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

**Bit [6]**

Reserved, RES0.

**T0SZ, bits [5:0]**

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2\(^{64-\text{T0SZ}}\) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

### Accessing the TCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TCR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x120];
 else
 return TCR_EL1;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.EZH == '1' then
 return TCR_EL2;
 else
 return TCR_EL1;
 endif
elsif PSTATE.EL == EL3 then
 return TCR_EL1;
endif
```

**MSR TCR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCWRTR_EL2.TCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TCR_EL1;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.EZH == '1' then
 return TCR_EL2;
 else
 return TCR_EL1;
 endif
elsif PSTATE.EL == EL3 then
 return TCR_EL1;
endif
```
AArch64 System Access Trap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
  NVMem[0x120] = X[t];
else
  TCR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    TCR_EL2 = X[t];
  else
    TCR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
  TCR_EL1 = X[t];

MRS <Xt>, TCR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    return NVMem[0x120];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return TCR_EL1;
  else
    UNDEFINED;
elsif PSTATE_EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    TCR_EL1 = X[t];
  else
    UNDEFINED;

MSR TCR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x120] = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    TCR_EL1 = X[t];
  else
    UNDEFINED;
elsif PSTATE_EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    TCR_EL1 = X[t];
else
    UNDEFINED;
D13.2.121 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

**Purpose**

The control register for stage 1 of the EL2, or EL2&0, translation regime:

- When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime, that supports a single VA range, translated using TTBR0_EL2.
- When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that supports both:
  - A lower VA range, translated using TTBR0_EL2.
  - A higher VA range, translated using TTBR1_EL2.

**Configurations**

AArch64 System register TCR_EL2[31:0] is architecturally mapped to AArch32 System register HTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

TCR_EL2 is a 64-bit register.

**Field descriptions**

The TCR_EL2 bit assignments are:

*When HCR_EL2.E2H == 0:*

Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be cached in a TLB.

**Bits [63:32]**

Reserved, RES0.

**Bit [31]**

Reserved, RES1.
TCMA, bit [30]

When FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

0b0  This control has no effect on the generation of Unchecked accesses.
0b1  All accesses are Unchecked.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see Address tagging in AArch64 state on page D5-2528.

0b0  TCR_EL2.TBI applies to Instruction and Data accesses.
0b1  TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

0b0  Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1  Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

0b0  Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1  Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
HWU60, bit [26]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

- **0b0** Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1** Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

- **0b0** Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1** Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

*When FEAT_HPDS is implemented:*

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

- **0b0** Hierarchical permissions are enabled.
- **0b1** Hierarchical permissions are disabled.

_____ Note _____

In this case bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor attributes are required to be ignored by the PE, and are no longer reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

*When FEAT_HAFDBS is implemented:*

Hardware management of dirty state in stage 1 translations from EL2.

- **0b0** Stage 1 hardware management of dirty state disabled.
Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1. This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**HA, bit [21]**

*When FEAT_HAFDBS is implemented:*

Hardware Access flag update in stage 1 translations from EL2.

- **0b0** Stage 1 Access flag update disabled.
- **0b1** Stage 1 Access flag update enabled.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**TBI, bit [20]**

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see Address tagging in AArch64 state on page D5-2528.

- **0b0** Top Byte used in the address calculation.
- **0b1** Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL2.
- An exception taken to EL2.
- An exception return to EL2.

This field resets to an architecturally UNKNOWN value.

**Bit [19]**

Reserved, RES0.

**PS, bits [18:16]**

Physical Address Size.

- **0b000** 32 bits, 4GB.
- **0b001** 36 bits, 64GB.
- **0b010** 40 bits, 1TB.
- **0b011** 42 bits, 4TB.
- **0b100** 44 bits, 16TB.
- **0b101** 48 bits, 256TB.
- **0b110** 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the **0b101** or **0b110** encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value **0b110** is treated as reserved.
It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

This field resets to an architecturally UNKNOWN value.

**TG0, bits [15:14]**
Granule size for the TTBR0_EL2.
- 0b00 4KB.
- 0b01 64KB.
- 0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

**SH0, bits [13:12]**
Shareability attribute for memory associated with translation table walks using TTBR0_EL2.
- 0b00 Non-shareable.
- 0b10 Outer Shareable.
- 0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

**ORGN0, bits [11:10]**
Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.
- 0b00 Normal memory, Outer Non-cacheable.
- 0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

**IRGN0, bits [9:8]**
Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.
- 0b00 Normal memory, Inner Non-cacheable.
- 0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

**Bits [7:6]**
Reserved, RES0.
T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is \(2^{(64-T0SZ)}\) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

This view of the register is only valid from Armv8.1 when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:59]

Reserved, RES0.

TCMA1, bit [58]

When FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] = \(0\) \(\overline{1}1\)1111.

- 0b0 This control has no effect on the generation of Unchecked accesses at EL2 or EL0.
- 0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
TCMA0, bit [57]

*When FEAT_MTE is implemented:*

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when `address[59:55] = 0b00000`.

*0b0* This control has no effect on the generation of Unchecked accesses at EL2 or EL0.

*0b1* All accesses are Unchecked.

--- Note ---

Software may change this control bit on a context switch.

---

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

E0PD1, bit [56]

*When FEAT_E0PD is implemented:*

Faulting control for Unprivileged access to any address translated by TTBR1_EL2.

*0b0* Unprivileged access to any address translated by TTBR1_EL2 will not generate a fault by this mechanism.

*0b1* Unprivileged access to any address translated by TTBR1_EL2 will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

E0PD0, bit [55]

*When FEAT_E0PD is implemented:*

Faulting control for Unprivileged access to any address translated by TTBR0_EL2.

*0b0* Unprivileged access to any address translated by TTBR0_EL2 will not generate a fault by this mechanism.

*0b1* Unprivileged access to any address translated by TTBR0_EL2 will generate a level 0 translation fault

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

NFD1, bit [54]

*When FEAT_SVE is implemented:*

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

- All accesses due to an SVE non-fault contiguous load instruction.
- Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE first-fault contiguous load instruction are not affected.
- Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see FEAT_SVE.

*0b0* Does not disable stage 1 translation table walks using TTBR1_EL2.
NFD0, bit [53]

When FEAT_SVE is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for a virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

- All accesses due to an SVE non-fault contiguous load instruction.
- Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses due to an SVE first-fault contiguous load instruction are not affected.
- Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see FEAT_SVE.

0b0 Does not disable stage 1 translation table walks using TTBR0_EL2.

0b1 A TLB miss on a virtual address that is translated using TTBR0_EL2 due to the specified access types causes the access to fail without taking an exception. No stage 1 translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

For more information, see Address tagging in AArch64 state on page D5-2528.

0b0 TCR_EL2.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For more information, see Address tagging in AArch64 state on page D5-2528.

0b0 TCR_EL2.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

This field resets to an architecturally UNKNOWN value.
**D13.2 General system control registers**

---

**Otherwise:**
Reserved, RES0.

**HWU162, bit [50]**

**When FEAT_HPDS2 is implemented:**

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL2.

- **0b0**: For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: For translations using TTBR1_EL2, bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

---

**HWU161, bit [49]**

**When FEAT_HPDS2 is implemented:**

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL2.

- **0b0**: For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: For translations using TTBR1_EL2, bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

---

**HWU160, bit [48]**

**When FEAT_HPDS2 is implemented:**

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL2.

- **0b0**: For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: For translations using TTBR1_EL2, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.
HWU159, bit [47]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR1_EL2.

- 0b0 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- 0b1 For translations using TTBR1_EL2, bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

- 0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- 0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

- 0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- 0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

- 0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HPD1, bit [42]

When FEAT_HPDS is implemented:
Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL2.

0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.
When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:
Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL2.

0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.
When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:
Hardware management of dirty state in stage 1 translations from EL2.

0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.
This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**HA, bit [39]**

*When FEAT_HAFDBS is implemented:*

Hardware Access flag update in stage 1 translations from EL2.

- 0b0: Stage 1 Access flag update disabled.
- 0b1: Stage 1 Access flag update enabled.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**
Reserved, RES0.

**TBI1, bit [38]**

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR1_EL2 region, or ignored and used for tagged addresses.

For more information, see *Address tagging in AArch64 state on page D5-2528.*

- 0b0: Top Byte used in the address calculation.
- 0b1: Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&E0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.

**TBI0, bit [37]**

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region, or ignored and used for tagged addresses.

For more information, see *Address tagging in AArch64 state on page D5-2528.*

- 0b0: Top Byte used in the address calculation.
- 0b1: Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&E0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL0 or EL1.
- An exception taken to EL1.
- An exception return to EL0 or EL1.

This field resets to an architecturally UNKNOWN value.
AS, bit [36]

ASID Size.

- **0b0** 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored by hardware for every purpose except reading back the register, and are treated as if they are all zeros for when used for allocation and matching entries in the TLB.

- **0b1** 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

- **0b000** 32 bits, 4GB.
- **0b001** 36 bits, 64GB.
- **0b010** 40 bits, 1TB.
- **0b011** 42 bits, 4TB.
- **0b100** 44 bits, 16TB.
- **0b101** 48 bits, 256TB.
- **0b110** **When FEAT_LPA is implemented** 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

This field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

- **0b01** 16KB.
- **0b10** 4KB.
- **0b11** 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.
SH1, bits [29:28]
Shareability attribute for memory associated with translation table walks using TTBR1_EL2.

- 0b00: Non-shareable.
- 0b10: Outer Shareable.
- 0b11: Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.
This field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]
Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

- 0b00: Normal memory, Outer Non-cacheable.
- 0b01: Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]
Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

- 0b00: Normal memory, Inner Non-cacheable.
- 0b01: Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD1, bit [23]
Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using TTBR1_EL2. The encoding of this bit is:

- 0b0: Perform translation table walks using TTBR1_EL2.
- 0b1: A TLB miss on an address that is translated using TTBR1_EL2 generates a Translation fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

A1, bit [22]
Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

- 0b0: TTBR0_EL2.ASID defines the ASID.
- 0b1: TTBR1_EL2.ASID defines the ASID.

This field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]
The size offset of the memory region addressed by TTBR1_EL2. The region size is 2^{64-T1SZ} bytes. The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.
This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]
Granule size for the TTBR0_EL2.

- 0b00: 4KB.
0b01  64KB.
0b10  16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]
Shareability attribute for memory associated with translation table walks using TTBR0_EL2.
0b00  Non-shareable.
0b10  Outer Shareable.
0b11  Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]
Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.
0b00  Normal memory, Outer Non-cacheable.
0b01  Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]
Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.
0b00  Normal memory, Inner Non-cacheable.
0b01  Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

EPD0, bit [7]
Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using TTBR0_EL2. The encoding of this bit is:
0b0  Perform translation table walks using TTBR0_EL2.
0b1  A TLB miss on an address that is translated using TTBR0_EL2 generates a Translation fault. No translation table walk is performed.

This field resets to an architecturally UNKNOWN value.

Bit [6]
Reserved, RES0.

T0SZ, bits [5:0]
The size offset of the memory region addressed by TTBR0_EL2. The region size is 2^(64-T0SZ) bytes.
The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

This field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TCR_EL2**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TCR_EL2;
eselif PSTATE.EL == EL3 then
 return TCR_EL2;
```

**MSR TCR_EL2, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TCR_EL2 = X[t];
eselif PSTATE.EL == EL3 then
 TCR_EL2 = X[t];
```

**MRS <Xt>, TCR_EL1**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
```

```
```
AArch64 System Register Descriptions
D13.2 General system control registers

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCR_EL2.TCR_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
  return NVMem[0x120];
else
  return TCR_EL1;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return TCR_EL2;
  else
    return TCR_EL1;
elsif PSTATE.EL == EL3 then
  return TCR_EL1;

MSR TCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCR_EL2.TCR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x120] = X[t];
  else
    TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    TCR_EL2 = X[t];
  else
    TCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  TCR_EL1 = X[t];
D13.2.122   TCR_EL3, Translation Control Register (EL3)

The TCR_EL3 characteristics are:

**Purpose**

The control register for stage 1 of the EL3 translation regime.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR_EL3 are UNDEFINED.

**Attributes**

TCR_EL3 is a 64-bit register.

**Field descriptions**

The TCR_EL3 bit assignments are:

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

**Bits [63:32]**

Reserved, RES0.

**Bit [31]**

Reserved, RES1.

**TCMA, bit [30]**

When **FEAT_MTE** is implemented:

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

- 0b0 This control has no effect on the generation of Unchecked accesses.
- 0b1 All accesses are Unchecked.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>TCR_EL3.TBI applies to Instruction and Data accesses.</td>
</tr>
<tr>
<td>0b1</td>
<td>TCR_EL3.TBI applies to Data accesses only.</td>
</tr>
</tbody>
</table>

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.</td>
</tr>
<tr>
<td>0b1</td>
<td>Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.</td>
</tr>
</tbody>
</table>

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.</td>
</tr>
<tr>
<td>0b1</td>
<td>Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.</td>
</tr>
</tbody>
</table>

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.</td>
</tr>
<tr>
<td>0b1</td>
<td>Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.</td>
</tr>
</tbody>
</table>

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

0b0 Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HPD, bit [24]

When FEAT_HPDS is implemented:
Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL3.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

Note
In this case bit[61] (APTable[0]) and bit[59] (PXNTable) of the next level descriptor attributes are required to be ignored by the PE, and are no longer reserved, allowing them to be used by software.

When disabled, the permissions are treated as if the bits are zero.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [23]
Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:
Hardware management of dirty state in stage 1 translations from EL3.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:
Hardware Access flag update in stage 1 translations from EL3.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.
This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**TBI, bit [20]**

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL3 region, or ignored and used for tagged addresses.

- 0b0: Top Byte used in the address calculation.
- 0b1: Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL3.
- A exception taken to EL3.
- An exception return to EL3.

For more information, see *Address tagging in AArch64 state on page D5-2528.*

**Note**

This control determines the scope of address tagging. It never causes an exception to be generated.

This field resets to an architecturally UNKNOWN value.

**Bit [19]**

Reserved, RES0.

**PS, bits [18:16]**

Physical Address Size.

- 0b000: 32 bits, 4GB.
- 0b001: 36 bits, 64GB.
- 0b010: 40 bits, 1TB.
- 0b011: 42 bits, 4TB.
- 0b100: 44 bits, 16TB.
- 0b101: 48 bits, 256TB.
- 0b110: 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL3 are 0b0000.

This field resets to an architecturally UNKNOWN value.
TG0, bits [15:14]
Granule size for the TTBR0_EL3.

0b00  4KB.
0b01  64KB.
0b10  16KB.

Other values are reserved.
If the value is programmed to either a reserved value, or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]
Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00  Non-shareable.
0b10  Outer Shareable.
0b11  Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]
Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00  Normal memory, Outer Non-cacheable.
0b01  Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]
Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

0b00  Normal memory, Inner Non-cacheable.
0b01  Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

Bits [7:6]
Reserved, RES0.

T0SZ, bits [5:0]
The size offset of the memory region addressed by TTBR0_EL3. The region size is 2^{(64-T0SZ)} bytes.
The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

This field resets to an architecturally UNKNOWN value.
### Accessing the TCR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TCR_EL3**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 UNDEFINED;
elif PSTATE_EL == EL1 then
 UNDEFINED;
elif PSTATE_EL == EL2 then
 UNDEFINED;
elif PSTATE_EL == EL3 then
 return TCR_EL3;
```

**MSR TCR_EL3, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 UNDEFINED;
elif PSTATE_EL == EL1 then
 UNDEFINED;
elif PSTATE_EL == EL2 then
 UNDEFINED;
elif PSTATE_EL == EL3 then
 TCR_EL3 = X[t];
```
D13.2.123 TFSRE0_EL1, Tag Fault Status Register (EL0).

The TFSRE0_EL1 characteristics are:

**Purpose**

Holds accumulated Tag Check Faults occurring in EL0 that are not taken precisely.

**Configurations**

This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to TFSRE0_EL1 are UNDEFINED.

**Attributes**

TFSRE0_EL1 is a 64-bit register.

**Field descriptions**

The TFSRE0_EL1 bit assignments are:

- **Bits [63:2]**
  - Reserved, RES0.

- **TF1, bit [1]**
  - Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.
  - This field resets to an architecturally UNKNOWN value.

- **TF0, bit [0]**
  - Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.
  - This field resets to an architecturally UNKNOWN value.

**Accessing the TFSRE0_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TFSRE0_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1' & SCR_EL3.ATA == '0' then
    UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
elsif PSTATE.EL == EL3 then
    return TFSRE0_EL1;
else
    return TFSRE0_EL1;
end

**MSR TFSRE0_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.ATA == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        TFSRE0_EL1 = X[t];
    end
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        TFSRE0_EL1 = X[t];
    end
elsif PSTATE.EL == EL3 then
    TFSRE0_EL1 = X[t];
else
    TFSRE0_EL1 = X[t];
end
D13.2.124 TFSR_EL1, Tag Fault Status Register (EL1)

The TFSR_EL1 characteristics are:

**Purpose**

Holds accumulated Tag Check Faults occurring in EL1 that are not taken precisely.

**Configurations**

This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to TFSR_EL1 are UNDEFINED.

**Attributes**

TFSR_EL1 is a 64-bit register.

**Field descriptions**

The TFSR_EL1 bit assignments are:

```
 63 2 1 0

 | RES0 |
 +-------+
 | TF1 |
 | TF0 |
```

**Bits [63:2]**

Reserved, RES0.

**TF1, bit [1]**

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

This field resets to an architecturally UNKNOWN value.

**TF0, bit [0]**

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

**Accessing the TFSR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRS <Xt>, TFSR_EL1
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
    AArch64.SystemAccessTrap(EL2, 0x18);
```
elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x190];
else
 return TFSR_EL1;
endif
else
 return TFSL_EL1;
endif

MSR TFSR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b010</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 elsif HCR_EL2.E2H == '1' then
 return TFSR_EL2;
else
 return TFSR_EL1;
endif
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x190] = X[t];
else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 elsif HCR_EL2.E2H == '1' then
 TFSR_EL2 = X[t];
else
 TFSR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t];

MRS <Xt>, TFSR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x190];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 return TFSR_EL1;
 elseif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 return TFSR_EL1;
 else
 UNDEFINED;
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TFSR_EL1;
 else
 UNDEFINED;
 else
 UNDEFINED;

MSR TFSR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x190] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return TFSR_EL1;
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TFSR_EL1;
 else
 UNDEFINED;
```c
AArch64.SystemAccessTrap(EL3, 0x18);
else
    TFSR_EL1 = X[t];
else
    UNDEFINED;
else if PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        TFSR_EL1 = X[t];
    else
        UNDEFINED;
MRS <Xt>, TFSR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
else if PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TFSR_EL1;
else if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
else if PSTATE.EL == EL2 then
    if Halte() && HaveEL(EL3) && EDSCR.SDD == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return TFSR_EL2;
else if PSTATE.EL == EL3 then
    return TFSR_EL2;
MSR TFSR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 UNDEFINED;
else if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL1;
else if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
else if PSTATE.EL == EL2 then
 if Halte() && HaveEL(EL3) && EDSCR.SDD == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TFSR_EL2;
else if PSTATE.EL == EL3 then
 return TFSR_EL2;
priority when SDD == '1' && SCR_EL3.ATA == '0' then
 UNDEFINED;
elif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TFSR_EL1 = X[t];
elif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 TFSR_EL2 = X[t];
elif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t];
D13.2.125 TFSR_EL2, Tag Fault Status Register (EL2)

The TFSR_EL2 characteristics are:

Purpose

Holds accumulated Tag Check Faults occurring in EL2 that are not taken precisely.

Configurations

This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to TFSR_EL2 are UNDEFINED.

Attributes

TFSR_EL2 is a 64-bit register.

Field descriptions

The TFSR_EL2 bit assignments are:

![Field Diagram]

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

When HCR_EL2.E2H==0b0, this field is RES0.

This field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

This field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TFSR_EL2 or TFSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TFSR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EdSCR.SOD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
 priority when SOD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EdSCR.SOD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 end
 return TFSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EdSCR.SOD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
 priority when SOD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EdSCR.SOD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return TFSR_EL2;
elsif PSTATE.EL == EL3 then
 return TFSR_EL2;
else
 MSR TFSR_EL2, <Xt>

 if PSTATE.EL == EL0 then
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 if Halted() && HaveEL(EL3) && EdSCR.SOD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
 priority when SOD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EdSCR.SOD == '1' then
 UNDEFINED;
 else
 TFSR_EL1 = X[t];
 end
 end
 else
 TFSR_EL1 = X[t];
 end
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EdSCR.SOD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
 priority when SOD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EdSCR.SOD == '1' then
 UNDEFINED;
 else
 UNDEFINED;
 end
end

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>
AArch64.SystemAccessTrap(EL3, 0x18);
else
 TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 TFSR_EL2 = X[t];

MRS <Xt>, TFSR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x190];
 else
 return TFSR_EL1;
 end if;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x190];
 else
 return TFSR_EL1;
 end if;
elsif PSTATE.EL == EL3 then
 return TFSR_EL1;

MSR TFSR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.ATA == '0' then
 UNDEFINED;
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1> == '01' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif EL2Enabled() & HCR_EL2.ATA == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif EL2Enabled() & SCR_EL3.ATA == '0' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end if;
 elsif HCR_EL2.E2H == '1' then
 return TFSR_EL2;
 else
 return TFSR_EL1;
 end if;
elsif PSTATE.EL == EL3 then
 return TFSR_EL1;
AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEl(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x190] = X[t];
else
 TFSR_EL1 = X[t];
elif PSTATE.EL == EL2 then
 if Halted() && HaveEl(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ATA == '0' then
 UNDEFINED;
 else
 HaveEl(EL3) && SCR_EL3.ATA == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 endif
 endif
elsif HCR_EL2.E2H == '1' then
 TFSR_EL2 = X[t];
else
 TFSR_EL1 = X[t];
elif PSTATE.EL == EL3 then
 TFSR_EL1 = X[t];
D13.2.126 TFSR_EL3, Tag Fault Status Register (EL3)

The TFSR_EL3 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL3 that are not taken precisely.

Configurations
This register is present only when FEAT_MTE is implemented and ID_AA64PFR1_EL1.MTE != 0b0001. Otherwise, direct accesses to TFSR_EL3 are UNDEFINED.

Attributes
TFSR_EL3 is a 64-bit register.

Field descriptions
The TFSR_EL3 bit assignments are:

- **Bits [63:1]**
 - Reserved, RES0.
- **TF0, bit [0]**
 - Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.
 - This field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL3
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TFSR_EL3

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return TFSR_EL3;
```
MSR TFSR_EL3, <Xt>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    TFSR_EL3 = \text{X[t]};
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b10</td>
<td>0b0101</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.127 TPIDR_EL0, EL0 Read/Write Software Thread ID Register

The TPIDR_EL0 characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL0[31:0] is architecturally mapped to AArch32 System register TPIDRURW[31:0].

Attributes

TPIDR_EL0 is a 64-bit register.

Field descriptions

The TPIDR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread ID</td>
<td>Thread identifying information stored by software running at this Exception level. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

Accessing the TPIDR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TPIDR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
        HFRGR_EL2.TPIDR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return TPIDR_EL0;
else if PSTATE.EL == EL1 then
    if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFRGR_EL2.TPIDR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return TPIDR_EL0;
else if PSTATE.EL == EL2 then
    return TPIDR_EL0;
else if PSTATE.EL == EL3 then
    return TPIDR_EL0;
```
MSR TPIDR_EL0, <Xt>

```
if PSTATE.EL == EL0 then
    if EL2Enabled() && HCR_EL2.<E2H,TGE> != '1' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
        HFGWTR_EL2.TPIDR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
    TPIDR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    TPIDR_EL0 = X[t];
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
D13.2.128 TPIDR_EL1, EL1 Software Thread ID Register

The TPIDR_EL1 characteristics are:

Purpose

Provides a location where software executing at EL1 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch64 System register TPIDR_EL1[31:0] is architecturally mapped to AArch32 System register TPIDRPRW[31:0].

Attributes

TPIDR_EL1 is a 64-bit register.

Field descriptions

The TPIDR_EL1 bit assignments are:

```
+------------------+-
| Thread ID |       |
+------------------+-
  63 0
```

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRS <Xt>, TPIDR_EL1
```

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HGRTR_EL2.TPIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDR_EL1;
elsif PSTATE.EL == EL2 then
 return TPIDR_EL1;
elsif PSTATE.EL == EL3 then
 return TPIDR_EL1;
```
**MSR TPIDR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    TPIDR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
  TPIDR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  TPIDR_EL1 = X[t];
D13.2.129 TPIDR_EL2, EL2 Software Thread ID Register

The TPIDR_EL2 characteristics are:

**Purpose**

Provides a location where software executing at EL2 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

**Configurations**

AArch64 System register TPIDR_EL2[31:0] is architecturally mapped to AArch32 System register HTPIDR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

TPIDR_EL2 is a 64-bit register.

**Field descriptions**

The TPIDR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>63 0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Thread ID</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:0]**

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

**Accessing the TPIDR_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TPIDR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsf PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x090];
elsf EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsf PSTATE.EL == EL2 then
 return TPIDR_EL2;
elsf PSTATE.EL == EL3 then
 return TPIDR_EL2;
```
MSR TPIDR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b110</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x000] = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  elif PSTATE.EL == EL2 then
    TPIDR_EL2 = X[t];
  elsif PSTATE.EL == EL3 then
    TPIDR_EL2 = X[t];
D13.2.130 TPIDR_EL3, EL3 Software Thread ID Register

The TPIDR_EL3 characteristics are:

**Purpose**

Provides a location where software executing at EL3 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to TPIDR_EL3 are UNDEFINED.

**Attributes**

TPIDR_EL3 is a 64-bit register.

**Field descriptions**

The TPIDR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:0]</td>
<td>Thread ID. Thread identifying information stored by software running at this Exception level. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

**Accessing the TPIDR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TPIDR_EL3**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TPIDR_EL3;
```
### MSR TPIDR_EL3, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  TPIDR_EL3 = X[t];
### D13.2.131 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

The TPIDRRO_EL0 characteristics are:

**Purpose**

Provides a location where software executing at EL1 or higher can store thread identifying information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

**Configurations**

AArch64 System register TPIDRRO_EL0[31:0] is architecturally mapped to AArch32 System register TPIDRRO[31:0].

**Attributes**

TPIDRRO_EL0 is a 64-bit register.

**Field descriptions**

The TPIDRRO_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Thread ID. Thread identifying information stored by software running at this Exception level.</th>
</tr>
</thead>
</table>

**Accessing the TPIDRRO_EL0**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TPIDRRO_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '1' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HFRCTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDRRO_EL0;
else
 if PSTATE_EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFRCTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TPIDRRO_EL0;
 elsif PSTATE_EL == EL2 then
 return TPIDRRO_EL0;
else
 if PSTATE_EL == EL3 then
 return TPIDRRO_EL0;
```

---

D13-3510

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487F.c

ID072120
**MSR TPIDRRO_EL0, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDRRO_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        TPIDRRO_EL0 = X[t];
    end if
elsif PSTATE.EL == EL2 then
    TPIDRRO_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    TPIDRRO_EL0 = X[t];
D13.2.132 TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

**Purpose**

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the lower VA range in the EL1&0 translation regime, and other information for this translation regime.

**Configurations**

AArch64 System register TTBR0_EL1[63:0] is architecturally mapped to AArch32 System register TTBR0[63:0].

**Attributes**

TTBR0_EL1 is a 64-bit register.

**Field descriptions**

The TTBR0_EL1 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>BADDR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**ASID, bits [63:48]**

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

**BADDR, bits [47:1]**

Translation table base address, A[47:x] or A[51:x], bits[47:1].

--- **Note** ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of TCR_EL1.IPS is 0b110, then:

- Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
  - If x >= 6 then z=x.
  - Otherwise, z=6.
- When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
- When x>6 register bits[(x-1):6] are RES0.
- Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

• In an implementation that includes FEAT_TTCNP bit[0] of the stage 1 translation table base address is zero.

--- Note

• In an implementation that includes FEAT_LPA a TCR_EL1.IPS value of 0b110, that selects an IPA size of 52 bits, is permitted only when using the 64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses used in this stage of translation are 0b0000.

--- Note

This definition applies:

• To an implementation that includes FEAT_LPA and is using a translation granule smaller than 64KB.

• To any implementation that does not include FEAT_LPA.

If any TTBR0_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[(x-1):0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL1.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL1, for the current translation regime and ASID, are permitted to differ from corresponding entries for TTBR0_EL1 for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the current VMID.

0b1 The translation table entries pointed to by TTBR0_EL1 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.
• The translation tables relate to the same translation regime.
• The ASID is the same as the current ASID.
• If EL2 is implemented and enabled in the current Security state, the value of the current VMID.

This field is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

--- Note ---

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR0_EL1s do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR0_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR0_EL1 or TTBR0_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TTBR0_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TRVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TTBR0_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x200];
  else
    return TTBR0_EL1;
  elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
      return TTBR0_EL2;
    else
      return TTBR0_EL1;
  elsif PSTATE.EL == EL3 then
    return TTBR0_EL1;
else
  return TTBR0_EL1;
**MSR TTBR0_EL1, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & & HFCWTR_EL2.TTBR0_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x200] = X[t];
 else
 TTBR0_EL1 = X[t];
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 TTBR0_EL2 = X[t];
 else
 UNDEFINED;
 elself PSTATE.EL == EL3 then
 TTBR0_EL1 = X[t];
```

**MRS <Xt>, TTBR0_EL12**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x200];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return TTBR0_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() & !ELUsingAArch32(EL2) & & HCR_EL2.E2H == '1' then
 return TTBR0_EL1;
 else
 UNDEFINED;
```

**MSR TTBR0_EL12, <Xt>**

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
```
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x200] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        TTBR0_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        TTBR0_EL1 = X[t];
    else
        UNDEFINED;
D13.2.133 TTBR0_EL2, Translation Table Base Register 0 (EL2)

The TTBR0_EL2 characteristics are:

**Purpose**

When HCR_EL2.E2H is 0, holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2 translation regime, and other information for this translation regime.

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the lower VA range in the EL2&0 translation regime, and other information for this translation regime.

**Configurations**

AArch64 System register TTBR0_EL2[47:1] is architecturally mapped to AArch32 System register HTTBR[47:1].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

TTBR0_EL2 is a 64-bit register.

**Field descriptions**

The TTBR0_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td>BADDR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ASID, bits [63:48]**

*When FEAT_VHE is implemented:*

When HCR_EL2.E2H is 0, this field is RES0.

When HCR_EL2.E2H is 1, it holds an ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**BADDR, bits [47:1]**

Translation table base address, A[47:x] or A[51:x], bits[47:1].

--- Note ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.
In an implementation that includes FEAT_LPA, if the value of TCR_EL2.{I}PS is 0b110, then:
- Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
  - If x >= 6 then z=x.
  - Otherwise, z=6.
- When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
- When x>6 register bits[(x-1):6] are RES0.
- Register bit[1] is RES0.
- Bits[5:2] of the stage 1 translation table base address are zero.
- In an implementation that includes FEAT_TTCNP bit[0] of the stage 1 translation table base address is zero.

--- Note ---

In an implementation that includes FEAT_LPA:
- A TCR_EL2.{I}PS value of 0b110, that selects an OA size of 52 bits, is permitted only when using the 64KB translation granule.
- The OA size is specified by:
  - The value of TCR_EL2.PS when the value of HCR_EL2.E2H is 0.
  - The value of TCR_EL2.IPS when the value of HCR_EL2.E2H is 1.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of TCR_EL2.{I}PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

--- Note ---

This definition applies:
- To an implementation that includes FEAT_LPA and is using a translation granule smaller than 64KB.
- To any implementation that does not include FEAT_LPA.

---

If any TTBR0_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
- Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL2.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL2 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL2.CnP is 1.

0b0  The translation table entries pointed to by TTBR0_EL2 for the current translation regime, and ASID if applicable, are permitted to differ from corresponding entries for TTBR0_EL2 for other PEs in the Inner Shareable domain. This is not affected by:
  • The value of TTBR0_EL2.CnP on those other PEs.
  • When the current translation regime is the EL2&0 regime, the value of the current ASID.

0b1  The translation table entries pointed to by TTBR0_EL2 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR0_EL2.CnP is 1 and all of the following apply:
  • The translation table entries are pointed to by TTBR0_EL2.
  • The translation tables relate to the same translation regime.
  • If that translation regime is the EL2&0 regime, the ASID is the same as the current ASID.

This field is permitted to be cached in a TLB.

Note

If the value of the TTBR0_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR0_EL2s do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR0_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR0_EL2 or TTBR0_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b100 & 0b0010 & 0b0000 & 0b000 \\
\end{array}
\]

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TTBR0_EL2;
```
elsif PSTATE.EL == EL3 then
    return TTBR0_EL2;

**MSR TTBR0_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        TTBR0_EL2 = X[t];
    elsif PSTATE.EL == EL3 then
        TTBR0_EL2 = X[t];

**MRS <Xt>, TTBR0_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCGRTR_EL2.TTBR0_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x200];
    else
        return TTBR0_EL1;
    elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' then
            return TTBR0_EL2;
        else
            return TTBR0_EL1;
    elsif PSTATE.EL == EL3 then
        return TTBR0_EL1;

**MSR TTBR0_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.TTBR0_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
   NVMem[0x200] = X[t];
else
   TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
   if HCR_EL2.E2H == '1' then
      TTBR0_EL2 = X[t];
   else
      TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL3 then
   TTBR0_EL1 = X[t];
D13.2.134 TTBR0_EL3, Translation Table Base Register 0 (EL3)

The TTBR0_EL3 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL3 translation regime, and other information for this translation regime.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to TTBR0_EL3 are UNDEFINED.

Attributes

TTBR0_EL3 is a 64-bit register.

Field descriptions

The TTBR0_EL3 bit assignments are:

63 48 47 1 0
RES0 BADDR

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

--- Note ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of TCR_EL3.PS is 0b110 then:

- Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
  - If x >= 6 then z=x.
  - Otherwise, z=6.
- When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
- When x>6 register bits[(x-1):6] are RES0.
- Register bit[1] is RES0.
- Bits[5:2] of the stage 1 translation table base address are zero.
- In an implementation that includes FEAT_TTCNP bit[0] of the stage 1 translation table base address is zero.
In an implementation that includes FEAT_LPA a TCR_EL3.PS value of 0b110, that selects a PA size of 52 bits, is permitted only when using the 64KB translation granule.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of TCR_EL3.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL3.PS is not 0b110 then:
- Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
- Register bits[(x-1):1] are RES0.
- If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses used in this stage of translation are 0b0000.

This definition applies:
- To an implementation that includes FEAT_LPA and is using a translation granule smaller than 64KB.
- To any implementation that does not include FEAT_LPA.

If any TTBR0_EL3[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR0_EL3, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
- Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL3.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL3 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL3, for the current translation regime, are permitted to differ from corresponding entries for TTBR0_EL3 for other PEs in the Inner Shareable domain. This is not affected by the value of TTBR0_EL3.CnP on those other PEs.

0b1 The translation table entries pointed to by TTBR0_EL3 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR0_EL3.CnP is 1 and the translation table entries are pointed to by TTBR0_EL3.

This field is permitted to be cached in a TLB.

If the value of the TTBR0_EL3.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR0_EL3s do not point to the same translation table entries the results of translations using TTBR0_EL3 are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

Accessing the TTBR0_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TTBR0_EL3**

```plaintext
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return TTBR0_EL3;
```

**MSR TTBR0_EL3, <Xt>**

```plaintext
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 TTBR0_EL3 = X[t];
```
D13.2.135 TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

**Purpose**

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the higher VA range in the EL1&0 stage 1 translation regime, and other information for this translation regime.

**Configurations**

AArch64 System register TTBR1_EL1[63:0] is architecturally mapped to AArch32 System register TTBR1[63:0].

**Attributes**

TTBR1_EL1 is a 64-bit register.

**Field descriptions**

The TTBR1_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>ASID</td>
</tr>
<tr>
<td>47-1</td>
<td>BADDR</td>
</tr>
</tbody>
</table>

**ASID, bits [63:48]**

An ASID for the translation table base address. The TCR_EL1.A1 field selects either TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0. This field resets to an architecturally UNKNOWN value.

**BADDR, bits [47:1]**

Translation table base address, A[47:x] or A[51:x], bits[47:1].

--- Note ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of TCR_EL1.IPS is 0b110, then:

- Register bits[47:z] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
  - If x >= 6 then z=x.
  - Otherwise, z=6.
- When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
- When x>6 register bits[(x-1):6] are RES0.
- Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes FEAT_TTCNP bit[0] of the stage 1 translation table base address is zero.

Note

• In an implementation that includes FEAT_LPA a TCR_EL1.IPS value of 0b110, that selects an IPA size of 52 bits, is permitted only when using the 64KB translation granule.
• When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL1.IPS is not 0b110 then:
• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table base addresses used in this stage of translation are 0b0000.

Note
This definition applies:
• To an implementation that includes FEAT_LPA and is using a translation granule smaller than 64KB.
• To any implementation that does not include FEAT_LPA.

If any TTBR1_EL1[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using TTBR1_EL1, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of TCR_EL1.T1SZ, the stage of translation, and the translation granule size.
This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:
Common not Private. This bit indicates whether each entry that is pointed to by TTBR1_EL1 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1_EL1.CnP is 1.
0b0 The translation table entries pointed to by TTBR1_EL1, for the current translation regime and ASID, are permitted to differ from corresponding entries for TTBR1_EL1 for other PEs in the Inner Shareable domain. This is not affected by:
• The value of TTBR1_EL1.CnP on those other PEs.
• The value of the current ASID.
• If EL2 is implemented and enabled in the current Security state, the value of the current VMID.
0b1 The translation table entries pointed to by TTBR1_EL1 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR1_EL1.CnP is 1 and all of the following apply:
• The translation table entries are pointed to by TTBR1_EL1.
The translation tables relate to the same translation regime.

The ASID is the same as the current ASID.

If EL2 is implemented and enabled in the current Security state, the value of the current VMID.

This field is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR1_EL1s do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.

Reserved: RES0.

Accessing the TTBR1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TTBR1_EL1 or TTBR1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TTBR1_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.TRM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCRTR_EL2.TTBR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x210];
else
    return TTBR1_EL1;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return TTBR1_EL2;
else
    return TTBR1_EL1;
elsif PSTATE.EL == EL3 then
    return TTBR1_EL1;
else
    return TTBR1_EL1;
end
MSR TTBR1_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsesif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.TVM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsesif EL2Enabled() && PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    TTBR1_EL2 = X[t];
  else
    TTBR1_EL1 = X[t];
elsesif PSTATE.EL == EL3 then
  TTBR1_EL1 = X[t];

MRS <Xt>, TTBR1_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsesif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    return NVMem[0x210];
elsesif PSTATE.EL == EL3 then
  TTBR1_EL1 = X[t];
elsesif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return TTBR1_EL1;
elsesif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    return TTBR1_EL1;

MSR TTBR1_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsesif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x210] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        TTBR1_EL1 = X[t];
    else
        UNDEFINED;
elsif PSTATE_EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
        TTBR1_EL1 = X[t];
    else
        UNDEFINED;
D13.2.136 TTBR1_EL2, Translation Table Base Register 1 (EL2)

The TTBR1_EL2 characteristics are:

**Purpose**

When HCR_EL2.E2H is 1, holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the higher VA range in the EL2&0 translation regime, and other information for this translation regime.

--- Note ---

When HCR_EL2.E2H is 0, the contents of this register are ignored by the PE, except for a direct read or write of the register.

**Configurations**

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to TTBR1_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

TTBR1_EL2 is a 64-bit register.

**Field descriptions**

The TTBR1_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>48</th>
<th>47</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASID</td>
<td></td>
<td>BADDR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ASID, bits [63:48]**

An ASID for the translation table base address. The TCR_EL2.A1 field selects either TTBR0_EL2.ASID or TTBR1_EL2.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

This field resets to an architecturally UNKNOWN value.

**BADDR, bits [47:1]**

Translation table base address, A[47:x] or A[51:x], bits[47:1].

--- Note ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of TCR_EL2.{I}PS is 0b110, then:

- Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
  - If x >= 6 then z=x.
— Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base
  address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes FEAT_TTCNP bit[0] of the stage 1 translation table base
  address is zero.

Note

• In an implementation that includes FEAT_LPA a TCR_EL2.{I}PS value of 0b110, that selects
  an OA size of 52 bits, is permitted only when using the 64KB translation granule.
• When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does
  not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB
  translation granule when the Effective value of TCR_EL2.{I}PS is 0b110 and the value of
  register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of TCR_EL2.{I}PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs, then bits[51:48] of the translation table
  base addresses used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes FEAT_LPA and is using a translation granule smaller
  than 64KB.
• To any implementation that does not include FEAT_LPA.

If any TTBR1_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk
is performed using TTBR1_EL2, then the translation table base address might be misaligned, with
effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value
  read back from the corresponding register bits is either the value written to the register or
  zero.

• The result of the calculation of an address for a translation table walk using this register can
  be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on
the value of TCR_EL2.T1SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL2 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL2.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL2 for the current ASID are
permitted to differ from corresponding entries for TTBR1_EL2 for other PEs in the
Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL2.CnP on those other PEs.
• The value of the current ASID.
The translation table entries pointed to by TTBR1_EL2 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL2.CnP is 1 and all of the following apply:

- The translation table entries are pointed to by TTBR1_EL2.
- The ASID is the same as the current ASID.

This field is permitted to be cached in a TLB.

--- Note ---

- TTBR1_EL2 is accessible only when the value of HCR_EL2.E2H is 1, meaning the current
  translation regime is the EL2&0 regime.
- If the value of the TTBR1_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable
  domain and those TTBR1_EL2s do not point to the same translation table entries when the
  other conditions specified for the case when the value of CnP is 1 apply, then the results
  of translations are CONSTRAINED UNPREDICTABLE, see CONSTRUANED UNPREDICTABLE
  behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

### Accessing the TTBR1_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TTBR1_EL2
or TTBR1_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, TTBR1_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 return TTBR1_EL2;
elsif PSTATE_EL == EL3 then
 return TTBR1_EL2;
```

**MSR TTBR1_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
```
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    TTBR1_EL2 = X[t];
elsif PSTATE.EL == EL3 then
    TTBR1_EL2 = X[t];

\section*{MRS \(<X_t\), TTBR1_EL1}

\begin{center}
\begin{tabular}{cccccc}
\hline
op0 & op1 & CRn & CRm & op2 \\
\hline
0b11 & 0b000 & 0b0010 & 0b0000 & 0b001 \\
\hline
\end{tabular}
\end{center}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() \&\& (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') \&\& HFGTR_EL2.TTBR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x210];
    else
        return TTBR1_EL1;
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return TTBR1_EL2;
    else
        return TTBR1_EL1;
    endif
elsif PSTATE.EL == EL3 then
    return TTBR1_EL1;

\section*{MSR TTBR1_EL1, \(<X_t\>}

\begin{center}
\begin{tabular}{cccccc}
\hline
op0 & op1 & CRn & CRm & op2 \\
\hline
0b11 & 0b000 & 0b0010 & 0b0000 & 0b001 \\
\hline
\end{tabular}
\end{center}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() \&\& (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') \&\& HFGWTR_EL2.TTBR1_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x210] = X[t];
    else
        TTBR1_EL1 = X[t];
    endif
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        TTBR1_EL2 = X[t];
    else
        TTBR1_EL1 = X[t];
    endif
elsif PSTATE.EL == EL3 then
    TTBR1_EL1 = X[t];
D13.2.137  VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

**Purpose**
Holds the vector base address for any exception that is taken to EL1.

**Configurations**
AArch64 System register VBAR_EL1[31:0] is architecturally mapped to AArch32 System register VBAR[31:0].

**Attributes**
VBAR_EL1 is a 64-bit register.

**Field descriptions**
The VBAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
</table>

**Note**
If the implementation does not support FEAT_LVA, then:
- If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector address will result in a recursive exception.
- If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the vector address will result in a recursive exception.

If the implementation supports FEAT_LVA, then:
- If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector address will result in a recursive exception.
- If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

**Bits [10:0]**
Reserved, RES0.

**Accessing the VBAR_EL1**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, VBAR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() & CR_EL2.<NV2,NV1> == '01' then
    return AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (HaveEL(EL3) | SCR_EL3.FGTEn == '1') & HFCRTR_EL2.VBAR_EL1 == '1' then
    return AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & CR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x250];
  else
    return VBAR_EL1;
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return VBAR_EL2;
  else
    return VBAR_EL1;
elsif PSTATE_EL == EL3 then
  return VBAR_EL1;

MSR VBAR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() & CR_EL2.<NV2,NV1> == '01' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (HaveEL(EL3) | SCR_EL3.FGTEn == '1') & HFCRTR_EL2.VBAR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & CR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x250] = X[t];
  else
    VBAR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
  if HCR_EL2.E2H == '1' then
    VBAR_EL2 = X[t];
  else
    VBAR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
  VBAR_EL1 = X[t];

MRS <Xt>, VBAR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
return NVMem[0x250];
elsiF ELSEnable() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsiF PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    return VBAR_EL1;
  else
    UNDEFINED;
elsiF PSTATE.EL == EL3 then
  if ELSEnable() && ELEUSingAArch32(EL2) && HCR_EL2.E2H == '1' then
    return VBAR_EL1;
  else
    UNDEFINED;

**MSR VBAR_EL12, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsiF PSTATE.EL == EL1 then
  if ELSEnable() && HCR_EL2.<NV2,NV1,NV> == '101' then
    NVMem[0x250] = X[t];
elsiF ELSEnable() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsiF PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    VBAR_EL1 = X[t];
else
  UNDEFINED;
elsiF PSTATE.EL == EL3 then
  if ELSEnable() && ELEUSingAArch32(EL2) && HCR_EL2.E2H == '1' then
    VBAR_EL1 = X[t];
else
  UNDEFINED;
D13.2.138 VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

**Purpose**

Holds the vector base address for any exception that is taken to EL2.

**Configurations**

AArch64 System register VBAR_EL2[31:0] is architecturally mapped to AArch32 System register HVBAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

VBAR_EL2 is a 64-bit register.

**Field descriptions**

The VBAR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:11]</th>
<th>Vector Base Address</th>
<th>RES0</th>
</tr>
</thead>
</table>

--- **Note** ---

If FEAT_LVA is implemented:

- If HCR_EL2.E2H == 0b1:
  - If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector address will result in a recursive exception.
  - If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the vector address will result in a recursive exception.

- If HCR_EL2.E2H == 0b0:
  - If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive exception.
  - If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive exception.

If FEAT_LVA is not implemented:

- If HCR_EL2.E2H == 0b1:
  - If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or else the use of the vector address will result in a recursive exception.
  - If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same or else the use of the vector address will result in a recursive exception.

- If HCR_EL2.E2H == 0b0:
  - If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive exception.
  - If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be 0 or else the use of the vector address will result in a recursive exception.
This field resets to an architecturally UNKNOWN value.

Bits [10:0]
Reserved, RES0.

**Accessing the VBAR_EL2**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, VBAR_EL2**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then undefined;
elsi f PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else undefined;
elsif PSTATE.EL == EL2 then
 return VBAR_EL2;
elsi f PSTATE.EL == EL3 then
 return VBAR_EL2;
```

**MSR VBAR_EL2, <Xt>**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then undefined;
elsi f PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else undefined;
elsif PSTATE.EL == EL2 then
 VBAR_EL2 = X[t];
elsi f PSTATE.EL == EL3 then
 VBAR_EL2 = X[t];
```

**MRS <Xt>, VBAR_EL1**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```
if PSTATE.EL == EL0 then undefined;
elsi f PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
```

---

**Non-Confidential**

ARM DDI 0487F.c

ID072120
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGTR_EL2.VBAR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x250];
else
    return VBAR_EL1;
elsif PSTATE_EL == EL2 then
    if HCR_EL2.E2H == '1' then
        return VBAR_EL2;
    else
        return VBAR_EL1;
elsif PSTATE_EL == EL3 then
    return VBAR_EL1;
elif PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1> == '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.VBAR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x250] = X[t];
    else
        VBAR_EL1 = X[t];
    elseif PSTATE_EL == EL2 then
        if HCR_EL2.E2H == '1' then
            VBAR_EL2 = X[t];
        else
            VBAR_EL1 = X[t];
        elsif PSTATE_EL == EL3 then
            VBAR_EL1 = X[t];
    MSR VBAR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.2.139   VBAR_EL3, Vector Base Address Register (EL3)

The VBAR_EL3 characteristics are:

**Purpose**

Holds the vector base address for any exception that is taken to EL3.

**Configurations**

This register is present only when EL3 is implemented. Otherwise, direct accesses to VBAR_EL3 are UNDEFINED.

**Attributes**

VBAR_EL3 is a 64-bit register.

**Field descriptions**

The VBAR_EL3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10:0]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Note**

If the implementation does not support FEAT_LVA, then:

- If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive exception.
- If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive exception.

If the implementation supports FEAT_LVA, then:

- If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive exception.
- If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be 0 or else the use of the vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

**Accessing the VBAR_EL3**

Accesses to this register use the following encodings in the System instruction encoding space:
### MRS <Xt>, VBAR_EL3

```assembly
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return VBAR_EL3;
```

### MSR VBAR_EL3, <Xt>

```assembly
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 VBAR_EL3 = X[t];
```
D13.2.140 VMPIDR_EL2, Virtualization Multiprocessor ID Register

The VMPIDR_EL2 characteristics are:

Purpose
Holds the value of the Virtualization Multiprocessor ID. This is the value returned by EL1 reads of MPIDR_EL1.

Configurations
AArch64 System register VMPIDR_EL2[31:0] is architecturally mapped to AArch32 System register VMPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MPIDR_EL1 and writes to the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VMPIDR_EL2 is a 64-bit register.

Field descriptions
The VMPIDR_EL2 bit assignments are:

![Bit assignments diagram]

Bits [63:40]
Reserved, RES0.

Aff3, bits [39:32]
Affinity level 3. See the description of VMPIDR_EL2.Aff0 for more information.
Aff3 is not supported in AArch32 state.
This field resets to an architecturally UNKNOWN value.

Bit [31]
Reserved, RES1.

U, bit [30]
Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

| 0b0 | Processor is part of a multiprocessor system. |
| 0b1 | Processor is part of a uniprocessor system. |

This field resets to an architecturally UNKNOWN value.

Bits [29:25]
Reserved, RES0.

MT, bit [24]
Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of VMPIDR_EL2.Aff0 for more information about affinity levels.

| 0b0 | Performance of PEs at the lowest affinity level is largely independent. |
| 0b1 | Performance of PEs at the lowest affinity level is largely dependent. |
Performance of PEs at the lowest affinity level is very interdependent.
This field resets to an architecturally UNKNOWN value.

**Aff2, bits [23:16]**
Affinity level 2. See the description of VMPIDR_EL2.Aff0 for more information.
This field resets to an architecturally UNKNOWN value.

**Aff1, bits [15:8]**
Affinity level 1. See the description of VMPIDR_EL2.Aff0 for more information.
This field resets to an architecturally UNKNOWN value.

**Aff0, bits [7:0]**
Affinity level 0. This is the **affinity** level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR, {Aff2, Aff1, Aff0} or MPIDR_EL1, {Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.
This field resets to an architecturally UNKNOWN value.

**Accessing the VMPIDR_EL2**
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, VMPIDR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x050];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    return VMPIDR_EL2;
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        return MPIDR_EL1;
    else
        return VMPIDR_EL2;
    endif

**MSR VMPIDR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x050] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64 System Register Descriptions

D13.2 General system control registers

```c
AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VMPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 else
 VMPIDR_EL2 = X[t];

MRS <Xt>, MPIDR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
    if IsFeatureImplemented("FEAT_IDST") then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() then
        return VMPIDR_EL2;
    else
        return MPIDR_EL1;
elsif PSTATE.EL == EL2 then
    return MPIDR_EL1;
elsif PSTATE.EL == EL3 then
    return MPIDR_EL1;
```
D13.2.141 VNCR_EL2, Virtual Nested Control Register

The VNCR_EL2 characteristics are:

Purpose

When FEAT_NV2 is implemented, holds the base address that is used to define the memory location that is accessed by transformed reads and writes of System registers.

Configurations

This register is present only when FEAT_NV2 is implemented. Otherwise, direct accesses to VNCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VNCR_EL2 is a 64-bit register.

Field descriptions

The VNCR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, Sign extended.</td>
</tr>
<tr>
<td>53</td>
<td>Reserved</td>
</tr>
<tr>
<td>52</td>
<td>Base Address</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

RESS, bits [63:53]

Reserved, Sign extended. If the bits marked as RESS do not all have the same value, then there is a CONstrained UNPREDICTABLE choice between:

- Generating an EL2 translation regime Translation abort on use of the VNCR_EL2 register.
- Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes other than reading back the register.
- Bits[63:49] of VNCR_EL2 are treated as the same value as bit[48] for all purposes.
- If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2 are treated as the same value as bit[52] for all purposes other than reading back the register.
- If the virtual address space for EL2 supports more than 48 bits, bits[63:53] of VNCR_EL2 are treated as the same value as bit[52].

Where the EL2 translation regime has upper and lower address ranges, bit[52] is used to select between those address ranges to determine if the address space supports more than 48 bits.

BADDR, bits [52:12]

Base Address. If the virtual address space for EL2 does not support more than 48 bits, then bits [52:49] are RESS.

When a register read/write is transformed to be a Load or Store, the address of the load/store is to SignOffset(VNCR_EL2.BADDR:Offset<11:0>, 64).

This field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, res0.

Accessing the VNCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:
MRS \(<Xt> \), VNCR_EL2

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\hline
0b11 & 0b100 & 0b0010 & 0b0010 & 0b000 \\
\hline
\end{array}
\]

if \(\text{PSTATE.EL} = \text{EL0} \) then
 \text{UNDEFINED};
elseif \(\text{PSTATE.EL} = \text{EL1} \) then
 if \(\text{EL2Enabled()} \land \text{HCR_EL2.<NV2,NV>} = '11' \) then
 return \(\text{NVMem}[0x0B0] \);
 elseif \(\text{EL2Enabled()} \land \text{HCR_EL2.NV} = '1' \) then
 \text{AArch64.SystemAccessTrap(EL2, 0x18)};
 else
 \text{UNDEFINED};
 endif
elseif \(\text{PSTATE.EL} = \text{EL2} \) then
 \text{return VNCR_EL2};
elseif \(\text{PSTATE.EL} = \text{EL3} \) then
 \text{return VNCR_EL2};
endif

MSR VNCR_EL2, \(<Xt> \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\hline
0b11 & 0b100 & 0b0010 & 0b0010 & 0b000 \\
\hline
\end{array}
\]

if \(\text{PSTATE.EL} = \text{EL0} \) then
 \text{UNDEFINED};
elseif \(\text{PSTATE.EL} = \text{EL1} \) then
 if \(\text{EL2Enabled()} \land \text{HCR_EL2.<NV2,NV>} = '11' \) then
 \text{NVMem}[0x0B0] = X[t];
 elseif \(\text{EL2Enabled()} \land \text{HCR_EL2.NV} = '1' \) then
 \text{AArch64.SystemAccessTrap(EL2, 0x18)};
 else
 \text{UNDEFINED};
 endif
elseif \(\text{PSTATE.EL} = \text{EL2} \) then
 \text{VNCR_EL2} = X[t];
elseif \(\text{PSTATE.EL} = \text{EL3} \) then
 \text{VNCR_EL2} = X[t];
endif
D13.2.142 VPIDR_EL2, Virtualization Processor ID Register

The VPIDR_EL2 characteristics are:

Purpose

Holds the value of the Virtualization Processor ID. This is the value returned by EL1 reads of MIDR_EL1.

Configurations

AArch64 System register VPIDR_EL2[31:0] is architecturally mapped to AArch32 System register VPIDR[31:0].

If EL2 is not implemented, reads of this register return the value of the MIDR_EL1 and writes to the register are ignored.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VPIDR_EL2 is a 64-bit register.

Field descriptions

The VPIDR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes include the following:

<table>
<thead>
<tr>
<th>Hex representation</th>
<th>ASCII representation</th>
<th>Implementer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x41</td>
<td>A</td>
<td>Arm Limited</td>
</tr>
<tr>
<td>0x42</td>
<td>B</td>
<td>Broadcom Corporation</td>
</tr>
<tr>
<td>0x43</td>
<td>C</td>
<td>Cavium Inc.</td>
</tr>
<tr>
<td>0x44</td>
<td>D</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>0x49</td>
<td>I</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td>0x4D</td>
<td>M</td>
<td>Motorola or Freescale Semiconductor Inc.</td>
</tr>
<tr>
<td>0x4E</td>
<td>N</td>
<td>NVIDIA Corporation</td>
</tr>
<tr>
<td>0x50</td>
<td>P</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
<tr>
<td>0x51</td>
<td>Q</td>
<td>Qualcomm Inc.</td>
</tr>
<tr>
<td>0x56</td>
<td>V</td>
<td>Marvell International Ltd.</td>
</tr>
<tr>
<td>0x69</td>
<td>i</td>
<td>Intel Corporation</td>
</tr>
</tbody>
</table>
Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.

This field resets to an architecturally UNKNOWN value.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

This field resets to an architecturally UNKNOWN value.

Architecture, bits [19:16]

Architecture version. Defined values are:

- 0b0001 Armv4.
- 0b0010 Armv4T.
- 0b0011 Armv5 (obsolete).
- 0b0100 Armv5T.
- 0b0101 Armv5TE.
- 0b0110 Armv5TEJ.
- 0b0111 Armv6.
- 0b1111 Architectural features are individually identified in the ID_* registers, see ID registers on page K15-8205.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

This field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

This field resets to an architecturally UNKNOWN value.

Accessing the VPIDR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VPIDR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.NV2,NV == '11' then
 return NVMem[0x088];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VPIDR_EL2;
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 return MIDR_EL1;
 else
 return VPIDR_EL2;

MSR VPIDR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x088] = X[t];
 elseif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VPIDR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if !HaveEL(EL2) then
 //no operation
 else
 VPIDR_EL2 = X[t];

MRS <Xt>, MIDR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented("FEAT_IDST") then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() then
 return VPIDR_EL2;
 else
 return MIDR_EL1;
 elsif PSTATE.EL == EL2 then
 return MIDR_EL1;
 elsif PSTATE.EL == EL3 then
 return MIDR_EL1;
D13.2.143 VSTCR_EL2, Virtualization Secure Translation Control Register

The VSTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the Secure EL1&0 translation regime.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTCR_EL2 is a 64-bit register.

Field descriptions

The VSTCR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>Reserved, RES1.</td>
</tr>
<tr>
<td>30</td>
<td>Secure stage 2 translation output address space.</td>
</tr>
<tr>
<td>30</td>
<td>0b0: All stage 2 translations for the Secure IPA space access the Secure PA space.</td>
</tr>
<tr>
<td>30</td>
<td>0b1: All stage 2 translations for the Secure IPA space access the Non-secure PA space.</td>
</tr>
<tr>
<td>29</td>
<td>Secure stage 2 translation address space.</td>
</tr>
<tr>
<td>29</td>
<td>0b0: All stage 2 translation table walks for the Secure IPA space are to the Secure PA space.</td>
</tr>
<tr>
<td>29</td>
<td>0b1: All stage 2 translation table walks for the Secure IPA space are to the Non-secure PA space.</td>
</tr>
<tr>
<td>28:16</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>
TG0, bits [15:14]

Secure stage 2 granule size for VSTTBR_EL2.

<table>
<thead>
<tr>
<th>TG0</th>
<th>Granule Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>4KB.</td>
</tr>
<tr>
<td>0b01</td>
<td>64KB.</td>
</tr>
<tr>
<td>0b10</td>
<td>16KB.</td>
</tr>
</tbody>
</table>

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} indicate which granule sizes are supported for Level 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} indicate which granule sizes are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then for all purposes other than read back from this register, the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

Bits [13:8]

Reserved, RES0.

SL0, bits [7:6]

When FEAT_TTST is implemented:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field depends on the value of VSTCR_EL2.TG0.

<table>
<thead>
<tr>
<th>TG0</th>
<th>SL0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b00</td>
<td>Start at level 2. If VSTCR_EL2.TG0 is 0b00 (4KB granule) or 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.</td>
</tr>
<tr>
<td>0b00</td>
<td>0b01</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.</td>
</tr>
<tr>
<td>0b10</td>
<td>0b10</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.</td>
</tr>
<tr>
<td>0b11</td>
<td>0b11</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 3.</td>
</tr>
</tbody>
</table>

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Starting level of the Secure stage 2 translation lookup, controlled by VSTCR_EL2. The meaning of this field depends on the value of VSTCR_EL2.TG0.

<table>
<thead>
<tr>
<th>TG0</th>
<th>SL0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>0b00</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 3.</td>
</tr>
<tr>
<td>0b00</td>
<td>0b01</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 2.</td>
</tr>
<tr>
<td>0b10</td>
<td>0b10</td>
<td>If VSTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VSTCR_EL2.TG0 is 0b10 (16KB granule) or 0b01 (64KB granule), start at level 1.</td>
</tr>
</tbody>
</table>

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of VSTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.
T0SZ, bits [5:0]

The size offset of the memory region addressed by VSTTBR_EL2. The region size is $2^{(64-T0SZ)}$ bytes.

The maximum and minimum possible values for this field depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Accessing the VSTCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VSTCR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x048];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    else
        return VSTCR_EL2;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
        return VSTCR_EL2;
```

MSR VSTCR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x048] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
```
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t];
D13.2.144 VSTTBR_EL2, Virtualization Secure Translation Table Base Register

The VSTTBR_EL2 characteristics are:

Purpose

The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Secure EL1&0 translation regime, and other information for this translation stage.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTTBR_EL2 are **UNDEFINED**.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTTBR_EL2 is a 64-bit register.

Field descriptions

The VSTTBR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
</tr>
<tr>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5:2</td>
<td>BADDR</td>
</tr>
</tbody>
</table>

Any of the bits in VSTTBR_EL2 are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
- A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

If the value of VTCR_EL2.PS is 0b1110, then:

- Register bits[47:z] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
 - If x >= 6 then z=x.
 - Otherwise, z=6.
- When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
- When x>6 register bits[(x-1):6] are RES0.
- Register bit[1] is RES0.
- Bits[5:2] of the stage 1 translation table base address are zero.
Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk is performed using VSTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VSTTBR_EL2 are permitted to differ from the entries for VSTTBR_EL2 for other PEs in the Inner Shareable domain. This is not affected by the value of the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those VSTTBR_EL2s do not point to the same translation table entries when using the current VMID, then the results of translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the VSTTBR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, VSTTBR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x030];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 return VSTTBR_EL2;
 elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x030] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 VSTTBR_EL2 = X[t];
 elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 VSTTBR_EL2 = X[t];
D13.2.145 VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

Configurations

AArch64 System register VTCR_EL2[31:0] is architecturally mapped to AArch32 System register VTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTCR_EL2 is a 64-bit register.

Field descriptions

The VTCR_EL2 bit assignments are:

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

NSA, bit [30]

When FEAT_SEL2 is implemented:

Non-secure stage 2 translation output address space.

0b0 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation regime access the Secure PA space.

0b1 All stage 2 translations for the Non-secure IPA space of the Secure EL1&0 translation regime access the Non-secure PA space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when one of the following is true:

- The PE is executing in Non-secure state.
- The value of VTCR_EL2.NSW is 1.
The value of VSTCR_EL2.SA is 1.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

NSW, bit [29]
When FEAT_SEL2 is implemented:
Non-secure stage 2 translation table address space.
0b0 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0 translation regime are to the Secure PA space.
0b1 All stage 2 translation table walks for the Non-secure IPA space of the Secure EL1&0 translation regime are to the Non-secure PA space.

When the PE is executing in Non-secure state, this bit behaves as 1 for all purposes other than reading back the value of the bit.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU62, bit [28]
When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table Block or Page entry.
0b0 Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1 Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU61, bit [27]
When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table Block or Page entry.
0b0 Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1 Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU60, bit [26]
When FEAT_HPDS2 is implemented:
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table Block or Page entry.
0b0 Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
0b1 Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table Block or Page entry.

- **0b0**: Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bits [24:23]

Reserved, RES0.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 2 translations when EL2 is enabled in the current Security state.

- **0b0**: Stage 2 hardware management of dirty state disabled.
- **0b1**: Stage 2 hardware management of dirty state enabled, only if the VTCR_EL2.HA bit is also set to 1.

This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in Non-secure and Secure stage 2 translations when EL2 is enabled in the current Security state.

- **0b0**: Stage 2 Access flag update disabled.
- **0b1**: Stage 2 Access flag update enabled.

Otherwise:
Reserved, RES0.

Bit [20]

Reserved, RES0.

VS, bit [19]

When FEAT_VMID16 is implemented:

VMID Size.

- **0b0**: 8 bit - the upper 8 bits of VTTBR_EL2 and VSTTBR_EL2 are ignored by the hardware, and treated as if they are all zeros, for every purpose except when reading back the register.
- **0b1**: 16 bit - the upper 8 bits of VTTBR_EL2 and VSTTBR_EL2 are used for allocation and matching in the TLB.

If the implementation only supports an 8-bit VMID, this field is RES0.
This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PS, bits [18:16]

Physical address Size for the Second Stage of translation.

- **0b000**: 32 bits, 4GB.
- **0b001**: 36 bits, 64GB.
- **0b010**: 40 bits, 1TB.
- **0b011**: 42 bits, 4TB.
- **0b100**: 44 bits, 16TB.
- **0b101**: 48 bits, 256TB.
- **0b110**: 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the **0b101** or **0b110** encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value **0b110** is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the value of **0b110** for the 64KB translation granule size or whether setting this value behaves as the **0b101** encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not **0b110** or a value treated as **0b110**, then bits[51:48] of every translation table base address for the stage of translation controlled by VTCR_EL2 are **0b000**.

This field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the VTTBR_EL2.

- **0b0**: 4KB.
- **0b1**: 64KB.
- **0b10**: 16KB.

Other values are reserved.

If FEAT_GTG is implemented, ID_AA64MMFR0_EL1.{TGran4_2, TGran16_2, TGran64_2} indicate which granule sizes are supported for Level 2 translation.

If FEAT_GTG is not implemented, ID_AA64MMFR0_EL1.{TGran4, TGran16, TGran64} indicate which granule sizes are supported.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to the size chosen.

This field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

- **0b0**: Non-shareable.
- **0b10**: Outer Shareable.
0b11 Inner Shareable.
Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.
This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using VTTBR_EL2 or VSTTBR_EL2.

0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]

When FEAT_TTST is implemented:

Starting level of the Secure stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 3.
0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 2.
0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 1.
0b11 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 3.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Starting level of the Secure stage 2 translation lookup, controlled by VTCR_EL2. The meaning of this field depends on the value of VTCR_EL2.TG0.

0b00 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 2. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 3.
0b01 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 1. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 2.
0b10 If VTCR_EL2.TG0 is 0b00 (4KB granule), start at level 0. If VTCR_EL2.TG0 is 0b10 (16KB granule) or 0b11 (64KB granule), start at level 1.

All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of VTCR_EL2.T0SZ, then a stage 2 level 0 Translation fault is generated.
This field resets to an architecturally UNKNOWN value.

T0SZ, bits [5:0]

The size offset of the memory region addressed by VTTBR_EL2. The region size is \(2^{64-\text{T0SZ}}\) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 0 Translation fault is generated.

This field resets to an architecturally UNKNOWN value.

Accessing the VTCR_EL2

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VTCR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x040];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 return VTCR_EL2;
 elsif PSTATE.EL == EL3 then
 return VTCR_EL2;

MSR VTCR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x040] = X[t];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 VTCR_EL2 = X[t];
 elsif PSTATE.EL == EL3 then
 VTCR_EL2 = X[t];
D13.2.146 VTTBR_EL2, Virtualization Translation Table Base Register

The VTTBR_EL2 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the EL1&0 translation regime, and other information for this translation regime.

Configurations

AArch64 System register VTTBR_EL2[63:0] is architecturally mapped to AArch32 System register VTTBR[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTTBR_EL2 is a 64-bit register.

Field descriptions

The VTTBR_EL2 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>56</th>
<th>55</th>
<th>48</th>
<th>47</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMID[15:8]</td>
<td>VMID[7:0]</td>
<td>BADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

VMID[15:8], bits [63:56]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. See VTTBR_EL2.VMID[7:0] for more details.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [55:48]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:
- EL2 is using AArch32.
- The VTCR_EL2.VS is 0.
- FEAT_VMID16 is not implemented.

This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

--- **Note** ---

- Translation table base addresses of 52 bits, A[51:x], are supported only in an implementation that includes FEAT_LPA and is using the 64KB translation granule.
• A translation table must be aligned to the size of the table, except that when using a translation table base address larger than 48 bits the minimum alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of VTCR_EL2.PS is 0b110, then:
• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address, where z is determined as follows:
 — If x >= 6 then z=x.
 — Otherwise, z=6.
• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z=x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes FEAT_TTCNP, bit[0] of the stage 1 translation table base address is zero.

—— Note ———
• In an implementation that includes FEAT_LPA a VTCR_EL2.PS value of 0b110, that selects a PA size of 52 bits, is permitted only when using the 64KB translation granule.
• When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not support a 52 bit PA size, if a translation table lookup uses this register with the 64KB translation granule when the Effective value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:
• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses used in this stage of translation are 0b0000.

—— Note ———
This definition applies:
• To an implementation that includes FEAT_LPA and is using a translation granule smaller than 64KB.
• To any implementation that does not include FEAT_LPA.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using VTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from the corresponding register bits is either the value written to the register or zero.
• The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.
This field resets to an architecturally UNKNOWN value.
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1.

0b0 The translation table entries pointed to by VTTBR_EL2 are permitted to differ from the entries for VTTBR_EL2 for other PEs in the Inner Shareable domain. This is not affected by the value of the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

--- Note ---

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those VTTBR_EL2s do not point to the same translation table entries when using the current VMID then the results of translations using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the VTTBR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, VTTBR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x020];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE_EL == EL2 then
 return VTTBR_EL2;
 elsif PSTATE_EL == EL3 then
 return VTTBR_EL2;
elsif PSTATE_EL == EL0 then
 UNDEFINED;
MSR VTTBR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x020] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 VTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 VTTBR_EL2 = X[t];
This section lists the Debug System registers in AArch64 state, in alphabetic order:

- The principal encoding space for debug registers is \(\text{op0} = 0b10, \text{op1} = \{0, 3, 4\} \). *Instructions for accessing debug System registers on page D12-2845* summarizes the registers in this encoding space and lists them in order of their encodings.

- In addition, the following registers in the \(\text{op0} = 0b11 \) encoding space are classified as Debug registers:
 - DLR_EL0.
 - DSPSR_EL0.
 - MDCR_EL2.
 - MDCR_EL3.
 - SDER32_EL3.
D13.3.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configurations

AArch64 System register DBGAUTHSTATUS_EL1[31:0] is architecturally mapped to AArch32 System register DBGAUTHSTATUS[31:0].

AArch64 System register DBGAUTHSTATUS_EL1[31:0] is architecturally mapped to External register DBGAUTHSTATUS_EL1[31:0].

Attributes

DBGAUTHSTATUS_EL1 is a 64-bit register.

Field descriptions

The DBGAUTHSTATUS_EL1 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
<td></td>
<td>SNID</td>
<td>SID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSNID</td>
</tr>
</tbody>
</table>
```

Bits [63:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

Secure non-invasive debug.

- 0b00: Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.
- 0b10: Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.
- 0b11: Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

- 0b00: Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.
- 0b10: Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.
- 0b11: Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.
NSID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.
0b11 Implemented and enabled. EL3 is implemented or the Effective value of SCR_EL3.NS is 1.

All other values are reserved.

Otherwise:

Non-secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.
0b10 Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 0.
0b10 Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
0b11 Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing the DBGAUTHSTATUS_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DBGAUTHSTATUS_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGRTR_EL2.DBGAUTHSTATUS_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & MDCR_EL2.TDA == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) & MDCR_EL3.TDA == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return DBGAUTHSTATUS_EL1;
 end
 else
 return DBGAUTHSTATUS_EL1;
 end
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & MDCR_EL3.TDA == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return DBGAUTHSTATUS_EL1;
 end
 end
else
 return DBGAUTHSTATUS_EL1;
end
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return DBGAUTHSTATUS_EL1;
elsif PSTATE_EL == EL3 then
 return DBGAUTHSTATUS_EL1;
D13.3.2 DBGCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGCR<n>_EL1 characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

Configurations
AArch64 System register DBGCR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGCR<n>[31:0].
AArch64 System register DBGCR<n>_EL1[31:0] is architecturally mapped to External register DBGCR<n>_EL1[31:0].
If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGCR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGCR<n>_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 - 24</td>
<td>Reserved, RES0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 - 20</td>
<td>BT</td>
<td>0000</td>
<td>Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an instruction.</td>
</tr>
<tr>
<td></td>
<td>As 00000, but linked to a Context matching breakpoint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 - 16</td>
<td>LBN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 - 14</td>
<td>SSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 - 9</td>
<td>RES0, BAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - 2</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:24]
Reserved, RES0.

BT, bits [23:20]
Breakpoint Type. Possible values are:

- 0b0000: Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an instruction.
- 0b0001: As 0b0000, but linked to a Context matching breakpoint.
- 0b0010: Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise, DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.
- 0b0011: As 0b0010, with linking enabled.
- 0b0100: Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.
- 0b0111: As 0b0110, with linking enabled.
- 0b1000: Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.
- 0b1001: As 0b1000, with linking enabled.
- 0b1010: Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.
0b1011 As 0b1010, with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<\textit{n}>_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<\textit{n}>_EL1.ContextID is compared against CONTEXTIDR_EL1, and DBGBVR<\textit{n}>_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

All other values are reserved. Constraints on breakpoint programming mean other values are reserved under some conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of programming this field to a reserved value, see \textit{Execution conditions for which a breakpoint generates Breakpoint exceptions} on page D2-2442 and \textit{Reserved DBGBCR<\textit{n}>_EL1.BT values} on page D2-2447.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

\textbf{LBN, bits [19:16]}

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<\textit{n}>_EL1.E is 0.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

\textbf{SSC, bits [15:14]}

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint \textit{n} is generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the \{HMC, SSC, PMC\} fields.

For more information on the operation of the SSC, HMC, and PMC fields, and the effect of programming the fields to a reserved set of values, see \textit{Execution conditions for which a breakpoint generates Breakpoint exceptions} on page D2-2442 and \textit{Reserved DBGBCR<\textit{n}>_EL1.{SSC, HMC, PMC} values} on page D2-2448.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

\textbf{HMC, bit [13]}

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint \textit{n} is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the \{HMC, SSC, PMC\} fields. For more information see the SSC, bits [15:14] description.

For more information on the operation of the SSC, HMC, and PMC fields, see \textit{Execution conditions for which a breakpoint generates Breakpoint exceptions} on page D2-2442.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

\textbf{Bits [12:9]}

Reserved, \textit{RES0}.

D13-3572 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c
Non-Confidential ID072120
BAS, bits [8:5]

When AArch32 is supported at any Exception level:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.

The permitted values depend on the breakpoint type.

For Address match breakpoints, the permitted values are:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Match instruction at</th>
<th>Constraint for debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0011</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1100</td>
<td>DBGBVR<n>_EL1 + 2</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1111</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for A64 and A32 instructions</td>
</tr>
</tbody>
</table>

All other values are reserved. For more information, see Reserved DBGBCR<n>_EL1.BAS values on page D2-2448.

For more information on using the BAS field in address match breakpoints, see Using the BAS field in Address Match breakpoints on page G2-5883.

For Context matching breakpoints, this field is RES1 and ignored.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1.

0b0 Breakpoint disabled.
0b1 Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DBGBCR<n>_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end

MSR DBGBCR<n>_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
 end
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' \&\& HaltingAllowed() \&\& EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) \&\& MDCR_EL3.TDA == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif OSLSR_EL1.OSLK == '0' \&\& HaltingAllowed() \&\& EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
 endif
 endif
endif
else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' \&\& HaltingAllowed() \&\& EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
 endif
endif
D13.3.3 DBGBVR<\(n\)>_EL1, Debug Breakpoint Value Registers, \(n = 0 - 15\)

The DBGBVR<\(n\)>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint \(n\) together with control register DBGBCR<\(n\)>_EL1.

Configurations

AArch64 System register DBGBVR<\(n\)>_EL1[31:0] is architecturally mapped to AArch32 System register DBGBVR<\(n\)>[31:0].

- If the breakpoint is context-aware and EL2 is implemented, then AArch64 System register DBGBVR<\(n\)>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBXVR<\(n\)>[31:0]. Otherwise, there is no System register access to DBGBVR<\(n\)>_EL1[63:32] from AArch32 state.
- AArch64 System register DBGBVR<\(n\)>_EL1[63:0] is architecturally mapped to External register DBGBVR<\(n\)>_EL1[63:0].
- If breakpoint \(n\) is not implemented then accesses to this register are UNDEFINED.

Attributes

How this register is interpreted depends on the value of DBGBCR<\(n\)>_EL1.BT.

- When DBGBCR<\(n\)>_EL1.BT is 0b000x, this register holds a virtual address.
- When DBGBCR<\(n\)>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
- When DBGBCR<\(n\)>_EL1.BT is 0b100x, this register holds a VMID.
- When DBGBCR<\(n\)>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
- When DBGBCR<\(n\)>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<\(n\)>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<\(n\)>_EL1 bit assignments are:

When DBGBCR<\(n\)>_EL1.BT == 0b000x:

- **RESS[14:4]**, bits [63:53]

 Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant bit of VA is 1.

 It is IMPLEMENTATION DEFINED whether:

 - Reads return the value of the most significant bit of the VA for every bit in this field.
 - Reads return the last value written.

 The PE ignores this field.

- **VA[52:49]**, bits [52:49]

 When FEAT_LVA is implemented:

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Otherwise:

VA[48:2], bits [48:2]
Bits[48:2] of the address value for comparison.
When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are RESS.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Bits [1:0]
Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

```
<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ContextID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:32]
Reserved, RES0.

ContextID, bits [31:0]
Context ID value for comparison.
The value is compared against CONTEXTIDR_EL2 when FEAT_VHE is implemented, HCR_EL2.E2H is 1, and either:
- The PE is executing at EL2.
- HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.
Otherwise, the value is compared against CONTEXTIDR_EL1.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>_EL1.BT == 0b011x:

```
<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ContextID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:32]
Reserved, RES0.

ContextID, bits [31:0]
Context ID value for comparison against CONTEXTIDR_EL1.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.
When \(\text{DBGBCR}_n_\text{EL1.BT} = 0b100x \) and \(\text{EL2} \) is implemented:

\[
\begin{array}{c|c|c|c|c}
 & 63 & 48 & 47 & 40 \ 39 & 32 & 31 & 0 \\
\hline
\text{RES0} & \text{VMID}[15:8] & \text{VMID}[7:0] & \text{RES0} \\
\end{array}
\]

Bits [63:48]

Reserved, RES0.

\text{VMID}[15:8], bits [47:40]

When \text{FEAT_VMID16} is implemented, \(\text{VTCR_EL2.VS} = 1 \) and \(\text{EL2} \) is using AArch64:

Extension to VMID[7:0]. See DBGBVR\(n _\text{EL1.VMID}[7:0] \) for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

\text{VMID}[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

- \(\text{EL2} \) is using AArch32.
- \(\text{VTCR_EL2.VS} \) is 0.
- \(\text{FEAT_VMID16} \) is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Bits [31:0]

Reserved, RES0.

When \(\text{DBGBCR}_n_\text{EL1.BT} = 0b101x \) and \(\text{EL2} \) is implemented:

\[
\begin{array}{c|c|c|c|c}
 & 63 & 48 & 47 & 40 \ 39 & 32 & 31 & 0 \\
\hline
\text{RES0} & \text{VMID}[15:8] & \text{VMID}[7:0] & \text{ContextID} \\
\end{array}
\]

Bits [63:48]

Reserved, RES0.

\text{VMID}[15:8], bits [47:40]

When \text{FEAT_VMID16} is implemented, \(\text{VTCR_EL2.VS} = 1 \) and \(\text{EL2} \) is using AArch64:

Extension to VMID[7:0]. See DBGBVR\(n _\text{EL1.VMID}[7:0] \) for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

\text{VMID}[7:0], bits [39:32]

VMID value for comparison.
The VMID is 8 bits when any of the following are true:

- EL2 is using AArch32.
- VTCR_EL2.VS is 0.
- FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

When DBGBCR<El1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Bits [31:0]

Reserved, RES0.

When DBGBCR<El1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGBVR<El1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DBGVR<n>_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBBGBVRn_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGBVR_EL1[UInt(CRm<3:0>)];
    end if
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGBVR_EL1[UInt(CRm<3:0>)];
    end if
elsif PSTATE.EL == EL3 then
    if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGBVR_EL1[UInt(CRm<3:0>)];
    end if
```

MSR DBGVR<n>_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b100</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBBGBVRn_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGBVR_EL1[UInt(CRm<3:0>)];
    end if
```

D13-3580 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
else

 AArch64.SystemAccessTrap(EL3, 0x18);

elseif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 UNDEFINED;
elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 if OSLSR_EL1.OSLK == '0' && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGVR_EL1[UInt(CRm<3:0>)] = X[t];
D13.3.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0. The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software. Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

AArch64 System register DBGCLAIMCLR_EL1[31:0] is architecturally mapped to AArch32 System register DBGCLAIMCLR[31:0].

AArch64 System register DBGCLAIMCLR_EL1[31:0] is architecturally mapped to External register DBGCLAIMCLR_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 64-bit register.

Field descriptions

The DBGCLAIMCLR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>32-31</td>
<td>Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.</td>
</tr>
<tr>
<td>8-0</td>
<td>CLAIM, bits [7:0]. Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits. Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0. Writing 0 to one of these bits has no effect. On a Cold reset, this field resets to 0. On a Warm reset, the value of this field is unchanged.</td>
</tr>
</tbody>
</table>

Accessing the DBGCLAIMCLR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DBGCLAIMCLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 return DBGCLAIMCLR_EL1;
 end if;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elseif PSTATE.EL == EL0 then
 UNDEFINED;
 elseif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 DBGCLAIMCLR_EL1 = X[t];
 end if;
 else
 return DBGCLAIMCLR_EL1;
 end if;
 end if;
elsif PSTATE.EL == EL3 then
 return DBGCLAIMCLR_EL1;
end if;

MSR DBGCLAIMCLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 DBGCLAIMCLR_EL1 = X[t];
 end if;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif PSTATE.EL == EL3 then
 return DBGCLAIMCLR_EL1;
 end if;
else
 return DBGCLAIMCLR_EL1;
end if;
UNDEFINED;
elsif HaveEL(EL3) && MDTCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DBGCLAIMCLR_EL1 = X[t];
D13.3.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configurations

AArch64 System register DBGCLAIMSET_EL1[31:0] is architecturally mapped to AArch32 System register DBGCLAIMSET[31:0].

AArch64 System register DBGCLAIMSET_EL1[31:0] is architecturally mapped to External register DBGCLAIMSET_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 64-bit register.

Field descriptions

The DBGCLAIMSET_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31-8</td>
<td>Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.</td>
</tr>
<tr>
<td>7-0</td>
<td>CLAIM, bits [7:0]</td>
</tr>
<tr>
<td></td>
<td>Set CLAIM tag bits.</td>
</tr>
<tr>
<td></td>
<td>This field is RAO.</td>
</tr>
<tr>
<td></td>
<td>Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.</td>
</tr>
<tr>
<td></td>
<td>Writing 0 to one of these bits has no effect.</td>
</tr>
</tbody>
</table>

Accessing the DBGCLAIMSET_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DBGCLAIMSET_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 else
 EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWR_El2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 if PSTATE.EL == EL3 then
 return DBGCLAIMSET_EL1;
 end if;
 end if;
 elsif PSTATE.EL == EL3 then
 return DBGCLAIMSET_EL1;
 end if;

MSR DBGCLAIMSET_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 else
 EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWR_El2.DBGCLAIM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 else
 DBGCLAIMSET_EL1 = X[t];
 end if;
 elsif PSTATE.EL == EL3 then
 return DBGCLAIMSET_EL1;
 end if;
 end if;
UNDEFINED;
elsif HaveEl(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL3 then
 DBGCLAIMSET_EL1 = X[t];
else
 DBGCLAIMSET_EL1 = X[t];
end
D13.3.6 DBGDTR_EL0, Debug Data Transfer Register, half-duplex

The DBGDTR_EL0 characteristics are:

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using only a single register.

Configurations

AArch64 System register DBGDTR_EL0[63:32] is architecturally mapped to AArch32 System register DBGDTRRXint[31:0] when written.

AArch64 System register DBGDTR_EL0[63:32] is architecturally mapped to External register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0[63:32] is architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to External register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to External register DBGDTRTX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when read.

AArch64 System register DBGDTR_EL0[31:0] is architecturally mapped to External register DBGDTRTX_EL0[31:0] when read.

Attributes

DBGDTR_EL0 is a 64-bit register.

Field descriptions

The DBGDTR_EL0 bit assignments are:

63 32 31 0

| HighWord | LowWord |

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRTX.
- If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.
LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:
- If RXfull is set to 1, return the last value written to DTRRX.
- If RXfull is set to 0, return an **UNKNOWN** value.

After the read, RXfull is cleared to 0.

Accessing the DBGDTR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MRS <Xt>, DBGDTR_EL0
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if Halted() then
    return DBGDTR_EL0;
elsif PSTATE.EL == EL0 then
    if MDSCR_EL1.TDCC == '1' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        endif
    else
        if EL2Enabled() && MDSCR_EL2.TDCC == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && (HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDA> != '00') then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        elseif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return DBGDTR_EL0;
        endif
    else
        if EL2Enabled() && MDSCR_EL2.TDCC == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif MDSCR_EL2.<TDE,TDA> != '00' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        elseif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return DBGDTR_EL0;
        endif
    else
        if HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        elseif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return DBGDTR_EL0;
        endif
    else
        if PSTATE.EL == EL3 then
            return DBGDTR_EL0;
        endif
    endif
```
if Halted() then
 DBGDTR_EL0 = X[t];
elsif PSTATE.EL == EL0 then
 if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 DBGDTR_EL0 = X[t];
 elsif EL2Enabled() && MDSCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDSCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDSCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTR_EL0 = X[t];
 elsif PSTATE.EL == EL3 then
 DBGDTR_EL0 = X[t];
D13.3.7 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. See **DBGDTR_EL0** for additional architectural mappings. It is a component of the Debug Communications Channel.

Configurations

AArch64 System register DBGDTRRX_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRRXint[31:0].

AArch64 System register DBGDTRRX_EL0[31:0] is architecturally mapped to External register DBGDTRRX_EL0[31:0].

Attributes

DBGDTRRX_EL0 is a 64-bit register.

Field descriptions

The DBGDTRRX_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Update DTRRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0.</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:0]

Update DTRRX.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRRX.
- If RXfull is set to 0, return an **UNKNOWN** value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally **UNKNOWN** value.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGDTRRX_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DBGDTRRX_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if Halted() then
 return DBGDTRRX_EL0;
elsif PSTATE.EL == EL0 then
if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return DBGDTRRX_EL0;
 elsif PSTATE.EL == EL3 then
 return DBGDTRRX_EL0;
D13.3.8 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication Channel.

Configurations

AArch64 System register DBGDTRTX_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRTXint[31:0].
AArch64 System register DBGDTRTX_EL0[31:0] is architecturally mapped to External register DBGDTRTX_EL0[31:0].

Attributes

DBGDTRTX_EL0 is a 64-bit register.

Field descriptions

The DBGDTRTX_EL0 bit assignments are:

Bits [63:32]
Reserved, RES0.

Bits [31:0]
Return DTRTX.

Writes to this register:
- If TXfull is set to 1, set DTRRX and DTRTX to UNKNOWN.
- If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGDTRTX_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MSR DBGDTRTX_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if Halted() then
 DBGDTRTX_EL0 = X[t];
elsif PSTATE_EL == EL0 then
if MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
elsif EL2Enabled() & MDSCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() & (HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) & MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
 DBGDTRTX_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & MDSCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & MDSCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elseif HaveEL(EL3) & MDSCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTRTX_EL0 = X[t];
 endif
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) & MDSCR_EL3.TDCC == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 elseif HaveEL(EL3) & MDSCR_EL3.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 DBGDTRTX_EL0 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 DBGDTRTX_EL0 = X[t];
else
 DBGDTRTX_EL0 = X[t];
endif
D13.3.9 DBGPRCR_EL1, Debug Power Control Register

The DBGPRCR_EL1 characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch64 System register DBGPRCR_EL1[31:0] is architecturally mapped to AArch32 System register DBGPRCR[31:0].

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR_EL1 is a 64-bit register.

Field descriptions

The DBGPRCR_EL1 bit assignments are:

![Diagram of DBGPRCR_EL1 bit assignments]

Bits [63:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

- **0b0** If the system responds to a powerdown request, it powers down Core power domain.
- **0b1** If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to its Cold reset value on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see [Core power domain power states on page H6-7118](#).

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On a Cold reset, if the powerup request is implemented and the powerup request has been asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request is not asserted, this field is set to 0.
On a Warm reset, the value of this field is unchanged.

Otherwise:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

| 0b0 | If the system responds to a powerdown request, it powers down Core power domain. |
| 0b1 | If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain. |

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see [Core power domain power states on page H6-7118](#).

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGPRCR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{c|c|c|c|c}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\hline
0b10 & 0b000 & 0b0001 & 0b0100 & 0b100 \\
\end{array}
\]

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HaveEL(EL3) && MDCR_EL3.FGTEn == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif haveEL(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return DBGPRCR_EL1;
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return DBGPRCR_EL1;
    end
else
```
AArch64.SystemAccessTrap(EL3, 0x18);
else
 return DBGPRCR_EL1;
elsif PSTATE_EL == EL3 then
 return DBGPRCR_EL1;

MSR DBGPRCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGPRCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 else
 DBGPRCR_EL1 = X[t];
 endif
else
 DBGPRCR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 else
 DBGPRCR_EL1 = X[t];
 endif
else
 DBGPRCR_EL1 = X[t];
elsif PSTATE_EL == EL3 then
 DBGPRCR_EL1 = X[t];
D13.3.10 DBGVCR32_EL2, Debug Vector Catch Register

The DBGVCR32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register DBGVCR from AArch64 state only. Its value has no effect on execution in AArch64 state.

Configurations

AArch64 System register DBGVCR32_EL2[31:0] is architecturally mapped to AArch32 System register DBGVCR[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to DBGVCR32_EL2 are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Attributes

DBGVCR32_EL2 is a 64-bit register.

Field descriptions

The DBGVCR32_EL2 bit assignments are:

When EL3 is implemented:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>62</td>
<td>NSF, bit 31</td>
</tr>
<tr>
<td>30</td>
<td>NSI, bit 30</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28</td>
<td>NSD, bit 28</td>
</tr>
<tr>
<td>27</td>
<td>NSP, bit 27</td>
</tr>
<tr>
<td>8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>4</td>
<td>SF</td>
</tr>
<tr>
<td>3</td>
<td>NSU, bit 3</td>
</tr>
<tr>
<td>2</td>
<td>NSS, bit 2</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

NSF, bit [31]

FIQ vector catch enable in Non-secure state.

The exception vector offset is 0x1C.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSI, bit [30]

IRQ vector catch enable in Non-secure state.

The exception vector offset is 0x18.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.

NSD, bit [28]

Data Abort vector catch enable in Non-secure state.
The exception vector offset is 0x10.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSP, bit [27]
Prefetch Abort vector catch enable in Non-secure state.
The exception vector offset is 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSS, bit [26]
Supervisor Call (SVC) vector catch enable in Non-secure state.
The exception vector offset is 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [25]
Undefined Instruction vector catch enable in Non-secure state.
The exception vector offset is 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:8]
Reserved, RES0.

SF, bit [7]
FIQ vector catch enable in Secure state.
The exception vector offset is 0x1C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SI, bit [6]
IRQ vector catch enable in Secure state.
The exception vector offset is 0x18.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

SD, bit [4]
Data Abort vector catch enable in Secure state.
The exception vector offset is 0x10.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SP, bit [3]
Prefetch Abort vector catch enable in Secure state.
The exception vector offset is 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]
Supervisor Call (SVC) vector catch enable in Secure state.
The exception vector offset is 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]
Undefined Instruction vector catch enable in Secure state.
The exception vector offset is 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]
Reserved, RES0.

When EL3 is not implemented:

![Diagram showing bit locations]

Bits [63:8]
Reserved, RES0.

F, bit [7]
FIQ vector catch enable.
The exception vector offset is 0x1C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]
IRQ vector catch enable.
The exception vector offset is 0x18.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

D, bit [4]
Data Abort vector catch enable.
The exception vector offset is 0x10.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]
Prefetch Abort vector catch enable.
The exception vector offset 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [2]
Supervisor Call (SVC) vector catch enable.
The exception vector offset 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]
Undefined Instruction vector catch enable.
The exception vector offset 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]
Reserved, RES0.
Accessing the DBGVCR32_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DBGVCR32_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18); 
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif HaveEL(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
elselse
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return DBGVCR32_EL2;
elsif PSTATE_EL == EL3 then
    return DBGVCR32_EL2;
else
    return DBGVCR32_EL2;
```

MSR DBGVCR32_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif HaveEL(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
elselse
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        DBGVCR32_EL2 = X[t];
elsif PSTATE_EL == EL3 then
    DBGVCR32_EL2 = X[t];
```
D13.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose
Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

Configurations
AArch64 System register DBGWCR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGWCR<n>[31:0].
AArch64 System register DBGWCR<n>_EL1[31:0] is architecturally mapped to External register DBGWCR<n>_EL1[31:0].
If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWCR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWCR<n>_EL1 bit assignments are:

![Diagram of DBGWCR bit assignments]

Bits [63:29]
Reserved, RES0.

MASK, bits [28:24]
Address mask. Only objects up to 2GB can be watched using a single mask.
0b00000 No mask.
0b00001 Reserved.
0b00010 Reserved.
If programmed with a reserved value, a watchpoint must behave as if either:
- MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
- The watchpoint is disabled.
Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.
Other values mask the corresponding number of address bits, from 0b000011 masking 3 address bits (0x00000007 mask for address) to 0b111111 masking 31 address bits (0x7FFFFFFF mask for address).
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Bits [23:21]
Reserved, RES0.
WT, bit [20]

Watchpoint type. Possible values are:

0b0 Unlinked data address match.
0b1 Linked data address match.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.
For more information, see Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442, and Reserved DBGBCR<n>_EL1.{SSC, HMC, PMC} values on page D2-2448.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC fields.
For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<n>_EL1 is being watched.

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx11x</td>
<td>Match byte at DBGWVR<n>_EL1 + 1</td>
</tr>
<tr>
<td>xxxx1xx</td>
<td>Match byte at DBGWVR<n>_EL1 + 2</td>
</tr>
<tr>
<td>xxxx1xxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 3</td>
</tr>
</tbody>
</table>

In cases where DBGWVR<n>_EL1 addresses a double-word:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description, if DBGWVR<n>_EL1[2] == 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx1xxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 4</td>
</tr>
</tbody>
</table>

The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used by software. See Reserved DBGWCR<n>_EL1.BAS values on page D2-2462.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

LSC, bits [4:3]
Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:
- 0b01 Match instructions that load from a watchpointed address.
- 0b10 Match instructions that store to a watchpointed address.
- 0b11 Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

PAC, bits [2:1]
Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable watchpoint n. Possible values are:
- 0b0 Watchpoint disabled.
- 0b1 Watchpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGWCR<n>_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description, if DBGWVR<n>_EL1[2] == 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx1xxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 5</td>
</tr>
<tr>
<td>x1xxxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 6</td>
</tr>
<tr>
<td>1xxxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 7</td>
</tr>
</tbody>
</table>
MRS <Xt>, DBGWCR<n>_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b0000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
elif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
elif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
elif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
elif PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
elif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWCRn_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
elif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
elif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
else
 DBGWCR_EL1[UInt(CRm<3:0>)] = X[t];
D13.3.12 DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>_EL1.

Configurations

AArch64 System register DBGWVR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGWVR<n>[31:0].

AArch64 System register DBGWVR<n>_EL1[63:0] is architecturally mapped to External register DBGWVR<n>_EL1[63:0].

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions

The DBGWVR<n>_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>53 52</th>
<th>49 48</th>
<th>2 1 0</th>
</tr>
</thead>
</table>

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

- The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always return the hardwired value.
- The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Otherwise:

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are RESS.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<\text{n}>_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DBGWVR<\text{n}>_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b110</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWVRn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
  else
    return DBGWVR_EL1[UInt(CRm<3:0>)];
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
  else
    return DBGWVR_EL1[UInt(CRm<3:0>)];
  end
elsif PSTATE.EL == EL3 then
  if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
  else
    return DBGWVR_EL1[UInt(CRm<3:0>)];
  end
```
MSR DBGWVR<n>_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b110</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGWVRn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
else
    DBGWVR_EL1[UInt(CRn<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
else
    OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        DBGWVR_EL1[UInt(CRn<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then
    if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        DBGWVR_EL1[UInt(CRn<3:0>)] = X[t];
```
D13.3.13 DLR_EL0, Debug Link Register

The DLR_EL0 characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch64 System register DLR_EL0[31:0] is architecturally mapped to AArch32 System register DLR[31:0].

Attributes

DLR_EL0 is a 64-bit register.

Field descriptions

The DLR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Restart address</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the DLR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, DLR_EL0

```plaintext
if !Halted() then
    UNDEFINED;
else
    return DLR_EL0;
```

MSR DLR_EL0, <Xt>

```plaintext
if !Halted() then
    UNDEFINED;
else
    DLR_EL0 = X[t];
```
D13.3.14 DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch64 System register DSPSR_EL0[31:0] is architecturally mapped to AArch32 System register DSPSR[31:0].

Attributes

DSPSR_EL0 is a 64-bit register.

Field descriptions

The DSPSR_EL0 bit assignments are:

When AArch32 is supported at any Exception level and exiting Debug state to AArch32 state:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>RES0</td>
<td>00</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[31]</td>
<td>N</td>
<td>0</td>
<td>Negative Condition flag. Copied to PSTATE.N on exiting Debug state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>[29]</td>
<td>C</td>
<td>0</td>
<td>Carry Condition flag. Copied to PSTATE.C on exiting Debug state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>[28]</td>
<td>V</td>
<td>0</td>
<td>Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>[27]</td>
<td>Q</td>
<td>0</td>
<td>Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>
IT[1:0], bits [26:25]

If-Then. Copied to PSTATE.IT[1:0] on exiting Debug state.
On exiting Debug state DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:
Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:
Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:
Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Copied to PSTATE.IT[7:2] on exiting Debug state.
DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.
If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the implementation does not support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug state, if the implementation does not support big-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES1.
This field resets to an architecturally **UNKNOWN** value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

- **0b1** AArch32 execution state.

This field resets to an architecturally **UNKNOWN** value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

- **0b0000** User.
- **0b0001** FIQ.
- **0b0010** IRQ.
- **0b0011** Supervisor.
- **0b0100** Monitor.
- **0b0110** Abort.
- **0b1000** Hyp.
- **0b1011** Undefined.
- **0b1111** System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, exiting Debug state is an illegal return event, as described in *Illegal return events from AArch64 state* on page D1-2345.

This field resets to an architecturally **UNKNOWN** value.
When AArch64 is supported at any Exception level and entering or exiting Debug state from or to AArch64 state:

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to PSTATE.TCO on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on exiting Debug state.

This field resets to an architecturally UNKNOWN value.
D13.3 Debug registers

Otherwise:
Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:
User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

Otherwise:
Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

Otherwise:
Reserved, RES0.

SS, bit [21]
Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

Bits [19:13]
Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

Otherwise:
Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:
Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to PSTATE.BTYPE on exiting Debug state.
This field resets to an architecturally **UNKNOWN** value.

Otherwise:
Reserved, RES0.

D, bit [9]
Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to PSTATE.D on exiting Debug state.
This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state, and copied to PSTATE.nRW on exiting Debug state.

0b0 AArch64 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal return events from AArch64 state on page D1-2345.

The bits in this field are interpreted as follows:

- M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL on exiting Debug state.
- M[1] is unused and is 0 for all non-reserved values.
- M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on exiting Debug state

This field resets to an architecturally UNKNOWN value.

Accessing the DSPSR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, DSPSR_EL0

```plaintext
if !Halted() then
    UNDEFINED;
else
    return DSPSR_EL0;
```

MSR DSPSR_EL0, <Xt>

```plaintext
if !Halted() then
    UNDEFINED;
else
    DSPSR_EL0 = X[t];
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.3.15 MDCCINT_EL1, Monitor DCC Interrupt Enable Register

The MDCCINT_EL1 characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configurations

AArch64 System register MDCCINT_EL1[31:0] is architecturally mapped to AArch32 System register DBGDCCINT[31:0].

Attributes

MDCCINT_EL1 is a 64-bit register.

Field descriptions

The MDCCINT_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
<td></td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31-30</td>
<td>RX, bit [30]</td>
<td></td>
<td>DCC interrupt request enable control</td>
</tr>
<tr>
<td>29</td>
<td>TX, bit [29]</td>
<td></td>
<td>DCC interrupt request enable control</td>
</tr>
<tr>
<td>28</td>
<td>RES0</td>
<td></td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28-0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessing the MDCCINT_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, MDCCINT_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() & MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
else
 return MDCCINT_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & MDCR_EL3.TDCC == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) & MDCR_EL3.TDA == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return MDCCINT_EL1;
 end
elsif PSTATE.EL == EL3 then
 return MDCCINT_EL1;

MSR MDCCINT_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDCCINT_EL1 = X[t];
 end
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
 priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 MDCCINT_EL1 = X[t];
 end
 elsif PSTATE.EL == EL3 then
 MDCCINT_EL1 = X[t];
 else
 MDCCINT_EL1 = X[t];
 end

D13.3.16 MDCCSR_EL0, Monitor DCC Status Register

The MDCCSR_EL0 characteristics are:

Purpose

Read-only register containing control status flags for the DCC.

Configurations

AArch64 System register MDCCSR_EL0[30:29] is architecturally mapped to External register EDSCR[30:29].

AArch64 System register MDCCSR_EL0[30:29] is architecturally mapped to AArch32 System register DBGDSCRint[30:29].

Attributes

MDCCSR_EL0 is a 64-bit register.

Field descriptions

The MDCCSR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>30</td>
<td>RXfull, bit [30] DTRRX full. Read-only view of the equivalent bit in the EDSCR.</td>
</tr>
<tr>
<td>29</td>
<td>TXfull, bit [29] DTRTX full. Read-only view of the equivalent bit in the EDSCR.</td>
</tr>
<tr>
<td>28-19</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>18-15</td>
<td>Reserved, RAZ.</td>
</tr>
<tr>
<td>14-13</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>12</td>
<td>Reserved, RAZ.</td>
</tr>
<tr>
<td>11-6</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>5-2</td>
<td>Reserved, RAZ.</td>
</tr>
</tbody>
</table>
Bits [1:0]

Reserved, RES0.

Accessing the MDCCSR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDCCSR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b011</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif MDSCR_EL1.TDCC == '1' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
else
 AArch64.SystemAccessTrap(EL2, 0x18);
end
else
 AArch64.SystemAccessTrap(EL2, 0x18);
end
else
 if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return MDCCSR_EL0;
 end
 else
 PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return MDCCSR_EL0;
 end
 end
end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return MDCCSR_EL0;
 end
elsif PSTATE.EL == EL3 then
 return MDCCSR_EL0;
D13.3.17 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL2[31:0] is architecturally mapped to AArch32 System register HDCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MDCR_EL2 is a 64-bit register.

Field descriptions

The MDCR_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>29 - 28</td>
<td>MTPME</td>
</tr>
<tr>
<td>27 - 26</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>25 - 24</td>
<td>E2PB</td>
</tr>
<tr>
<td>23 - 22</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>21 - 19</td>
<td>HPMN</td>
</tr>
<tr>
<td>18 - 17</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>16 - 15</td>
<td>TP_MCR</td>
</tr>
<tr>
<td>14 - 13</td>
<td>TPM</td>
</tr>
<tr>
<td>12 - 11</td>
<td>HP_ME</td>
</tr>
<tr>
<td>10 - 9</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8 - 7</td>
<td>TDE</td>
</tr>
<tr>
<td>6 - 5</td>
<td>TDA</td>
</tr>
<tr>
<td>4 - 3</td>
<td>TD_OS_A</td>
</tr>
<tr>
<td>2 - 1</td>
<td>TD_R_A</td>
</tr>
<tr>
<td>0</td>
<td>TPM_S</td>
</tr>
</tbody>
</table>

Bits [63:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

- **0b0** FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<n>_EL0.MT is zero.
- **0b1** PMEVTYPER<n>_EL0.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.
TDCC, bit [27]

When FEAT_FGT is implemented:

Traps DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

\[\begin{align*}
0b0 & \text{ This control does not cause any register accesses to be trapped.} \\
0b1 & \text{ If EL2 is implemented and enabled in the current Security state, accesses to the DCC} \\
& \text{ registers at EL1 and EL0 generate a Trap exception to EL2, unless the access also} \\
& \text{ generates a higher priority exception. Traps on the DCC data transfer registers are} \\
& \text{ ignored when the PE is in Debug state. }
\end{align*}\]

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

\[\begin{align*}
0x05 & \text{ for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.} \\
0x06 & \text{ for trapped AArch32 LDC to DBGDTRRXint and STC from DBGDTRRXint.} \\
0x18 & \text{ for trapped AArch64 MSR accesses.}
\end{align*}\]

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMu3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

\[\begin{align*}
0b0 & \text{ Event counter overflow on increment that causes unsigned overflow of} \\
& \text{ PMEVCNTR<\text{n}>_EL0[31:0].} \\
0b1 & \text{ Event counter overflow on increment that causes unsigned overflow of} \\
& \text{ PMEVCNTR<\text{n}>_EL0[63:0].}
\end{align*}\]

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, this bit affects the operation of event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event counters.

\[\text{Note}\]

The effect of MDCR_EL2.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the MDCR_EL2.HPMN field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.
HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:
Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:
Reserved, RES0.

Bits [22:20]
Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:
Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:
- Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.
- Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x3.

0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by this control.
0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap exception to EL2 when EL2 is enabled in the current Security state.

Otherwise:
Reserved, RES0.

Bit [18]
Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented:
Guest Performance Monitors Disable. This control prohibits event counting at EL2.

0b0 Event counting allowed at EL2.
0b1 Event counting prohibited at EL2.

If FEAT_Debugv8p2 is not implemented, event counting is prohibited unless enabled by the IMPLEMENTATION DEFINED authentication interface ExternalSecureNoninvasiveDebugEnabled().

This control applies only to:
- The event counters in the range [0..(MDCR_EL2.HPMN-1)].
- If PMCR_EL0.DP is set to 1, PMCCNTR_EL0.

The other event counters are unaffected, and when PMCR_EL0.DP is set to 0, PMCCNTR_EL0 is unaffected.

On a Warm reset, this field resets to 0.

Otherwise:
Reserved, RES0.

Bits [16:15]
Reserved, RES0.
TPMS, bit [14]

When FEAT_SPE is implemented:

Trap Performance Monitor Sampling. When EL2 is enabled in the current Security state, this field controls access to Statistical Profiling control registers from EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Do not trap Statistical Profiling controls to EL2.</td>
</tr>
<tr>
<td>0b1</td>
<td>Accesses to Statistical Profiling controls at EL1 generate a Trap exception to EL2 when EL2 is enabled in the current Security state.</td>
</tr>
</tbody>
</table>

The Statistical Profiling control registers trapped by this control are: PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

Otherwise:

Reserved, RES0.

E2PB, bits [13:12]

When FEAT_SPE is implemented:

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security state, this field controls the owning translation regime. If EL2 is implemented and enabled in the current Security state, this field controls access to Profiling Buffer control registers from EL1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>If EL2 is implemented and enabled in the Profiling Buffer owning Security state, the Profiling Buffer uses the EL2 or EL2&0 stage 1 translation regime. Otherwise the Profiling Buffer uses the EL1&0 stage 1 translation regime. If EL2 is implemented and enabled in the current Security state, accesses to Profiling Buffer control registers at EL1 generate a Trap exception to EL2.</td>
</tr>
<tr>
<td>0b10</td>
<td>Profiling Buffer uses the EL1&0 stage 1 translation regime. If EL2 is implemented and enabled in the current Security state, accesses to Profiling Buffer control registers at EL1 generate a Trap exception to EL2.</td>
</tr>
<tr>
<td>0b11</td>
<td>Profiling Buffer uses the EL1&0 stage 1 translation regime. Accesses to Profiling Buffer control registers at EL1 are not trapped to EL2.</td>
</tr>
</tbody>
</table>

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMLIMITR_EL1, PMBPTR_EL1, and PMBSR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM registers to EL2 when EL2 is enabled in the current Security state as follows:

- If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.
- If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x05 and MRRC or MCRR accesses are trapped to EL2, reported using EC syndrome value 0x0C:
 - DBGDRAR, DBGDSAR.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 System register accesses to the Debug ROM registers are trapped to EL2 when EL2 is enabled in the current Security state, unless it is trapped by DBGDSCRext.UDCDis or MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

- MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

--- Note ---

EL2 does not provide traps on debug register accesses through the optional memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to EL2, no side-effects occur before the exception is taken to EL2. On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x18:
 — OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.
 — Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x05:
 — DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
 — Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2 when EL2 is enabled in the current Security state.

--- Note ---

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to EL2, no side-effects occur before the exception is taken to EL2. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x18:
 — OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.
 — Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x05:
 — DBGOSLSR, DBGOSLAR, and DBGPRCR.
 — Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.
It is IMPLEMENTATION DEFINED whether accesses to `OSDLR_EL1` are trapped.

It is IMPLEMENTATION DEFINED whether accesses to `DBGOSDLR` are trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2 when EL2 is enabled in the current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

- `MDCR_EL2.TDE` == 1.
- `HCR_EL2.TGE` == 1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are not trapped by MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

- In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC syndrome value 0x18:
 - `MDCCSR_EL0`, `MDCCINT_EL1`, `OSDTRRX_EL1`, `MDSCR_EL1`,
 `OSDTRTX_EL1`, `OSECCR_EL1`, `DBGVR<n>_EL1`, `DBGCR<n>_EL1`,
 `DBGWVR<n>_EL1`, `DBGWCR<n>_EL1`, `DBGCLAIMSET_EL1`,
 `DBGCLAIMCLR_EL1`, `DBGAUTHSTATUS_EL1`.
 - When not in Debug state, `DBGDTR_EL0`, `DBGDTRRX_EL0`, `DBGDTRTX_EL0`.
- In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x95.
 - `DBGIDR`, `DBGIDCINT`, `DBGIDCXINT`, `DBGFR`, `DBGIDCR`,
 `DBGIDCRX`, `DBGIDCRXX`, `DBGVR<n>`, `DBGCR<n>`,
 `DBGXVR<n>`, `DBGXCR<n>`, `DBGXVR<n>`,
 `DBGCLAIMSET`, `DBGCLAIMCLR`,
 `DBGAUTHSTATUS`, `DBGDEVID`, `DBGDEVID1`, `DBGDEVID2`,
 `DBGSECCR`.
 - When not in Debug state, `DBGDTRRXint` and `DBGDTRXXint`.
- In AArch32 state, STC accesses to `DBGDTRRXint` and LDC accesses to `DBGDTRXXint` are trapped to EL2, reported using EC syndrome value 0x96.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 or EL1 System register accesses to the debug registers are trapped from both Execution states to EL2 when EL2 is enabled in the current Security state, unless the access generates a higher priority exception.

Traps of AArch32 accesses to `DBGDTRRXint` and `DBGDTRXXint` are ignored in Debug state.

Traps of AArch64 accesses to `DBGDTR_EL0`, `DBGDTRRX_EL0`, and `DBGDTRTX_EL0` are ignored in Debug state.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

- `MDCR_EL2.TDE` == 1
- `HCR_EL2.TGE` == 1
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, EL_D.

- **0b0**: The debug target Exception level is EL1.
- **0b1**: If EL2 is enabled for the current Effective value of SCR_EL3.NS, the debug target Exception level is EL2, otherwise the debug target Exception level is EL1.

The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes other than returning the result of a direct read of the register.

For more information, see *Routing debug exceptions* on page D2-2423.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

[MDCR_EL2.HPMN..(N-1)] event counters enable.

- **0b0**: Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.
- **0b1**: Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, the event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [HDCR.HPMN..(PMCR.N-1)], are enabled and disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

--- **Note**

The effect of MDCR_EL2.HPMN on the operation of this bit applies regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor registers to EL2 when EL2 is enabled in the current Security state, from both Execution states, as follows:

- In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value 0x18:
 - PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0, PMSERL_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTPER_EL0, PMXEVCTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSET_EL0, PMEVCNTR<sp><sp>N_EL0, PMEVTYPER<sp><sp>N_EL0, PMCCFILTR_EL0.
 - If FEAT_PMUv3p4 is implemented, PMMIR_EL1
In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using EC syndrome value 0x03, MRRC or MCRR accesses are trapped to EL2 and reported using EC syndrome value 0x04:

- PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSS, PMEVCNTR<n>, PMEVTYPER<\n>, PMCCFILTER.

- If FEAT_PMUv3p4 is implemented, PMMIR.
- If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to all Performance Monitor registers are trapped to EL2 when EL2 is enabled in the current Security state.

--- Note ---

EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in the current Security state, as follows:

- In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
- In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped to EL2 when EL2 is enabled in the current Security state, unless it is trapped by PMUSERENR.EN or PMUSERENR_EL0.EN.

--- Note ---

EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if permitted.

If HPMN is less than PMCR_EL0.N, HPMN divides the Performance Monitors into two ranges: [0..(HPMN-1)] and [HPMN..(PMCR_EL0.N-1)].

For an event counter in the range [0..(HPMN-1)]:

- The counter is accessible from EL3, EL2, and EL1, and from EL0 if permitted by PMUSERENR_EL0 or PMUSERENR.
If FEAT_PMUv3p5 is implemented, PMCR_EL0.LP or PMCR.LP determines whether the counter overflow flag is set on unsigned overflow of PMEVCNTR\(_n\)_EL0[31:0] or PMEVCNTR\(_n\)_EL0[63:0].

The counter is enabled by PMCR_EL0.E or PMCR.E and bit \(<n>\) of PMCNTENSET_EL0.

--- Note ---

If HPMN is equal to PMCR_EL0.N, this applies to all event counters.

If HPMN is less than PMCR_EL0.N, for an event counter in the range \([HPMN..(PMCR_EL0.N-1)]\):

- The counter is accessible from EL2 and EL3.
- If FEAT_SEL2 is disabled or is not implemented, the counter is also accessible from Secure EL1, and from Secure EL0 if permitted by PMUSERENR_EL0.
- If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP or HDCR.HLP determines whether the counter overflow flag is set on unsigned overflow of PMEVCNTR\(_n\)_EL0[31:0] or PMEVCNTR\(_n\)_EL0[63:0].
- The counter is enabled by MDCR_EL2.HPME or HDCR.HPME and bit \(<n>\) of PMCNTENSET_EL0.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following constrained unpredictable behaviors apply:

- The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
- Either:
 - An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE behaves as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR_EL0.N.
 - All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing the MDCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MRS <Xt>, MDCR_EL2
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
        when SDD == '1'" && MDCR_EL3.TDA == '1' then
            UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
```
AArch64.SystemAccessTrap(EL3, 0x18);
else
 return MDCR_EL2;
elsif PSTATE.EL == EL3 then
 return MDCR_EL2;

MSR MDCR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
elif HaveEL(EL3) && MDCR_EL3.TDA == '1'
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 MDCR_EL2 = X[t];
elif PSTATE.EL == EL3 then
 MDCR_EL2 = X[t];
D13.3.18 MDCR_EL3, Monitor Debug Configuration Register (EL3)

The MDCR_EL3 characteristics are:

Purpose

Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

AArch64 System register MDCR_EL3[31:0] can be mapped to AArch32 System register SDCR[31:0], but this is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3 are UNDEFINED.

Attributes

MDCR_EL3 is a 64-bit register.

Field descriptions

The MDCR_EL3 bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:29</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28</td>
<td>MTPME, bit [28]</td>
</tr>
<tr>
<td>27:21</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>20:16</td>
<td>NSPB</td>
</tr>
<tr>
<td>15:0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>50</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>49:35</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>34:28</td>
<td>TPM</td>
</tr>
<tr>
<td>27:22</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>21:16</td>
<td>TDA</td>
</tr>
<tr>
<td>15:10</td>
<td>TDOSA</td>
</tr>
<tr>
<td>9:4</td>
<td>RES0</td>
</tr>
<tr>
<td>3:2</td>
<td>SPD32</td>
</tr>
<tr>
<td>1</td>
<td>TDD</td>
</tr>
<tr>
<td>0:0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>
```

Bits [63:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

When FEAT_MTPMU is enabled. Enables use of the PMEVTYPE<\textit{n}>_EL0.MT bits.

- \texttt{0b0} FEAT_MTPMU is disabled. The Effective value of PMEVTYPE<\textit{n}>_EL0.MT is zero.
- \texttt{0b1} PMEVTYPE<\textit{n}>_EL0.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.
TDCC, bit [27]

When FEAT_FGT is implemented:

- Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.
 - 0b0: This control does not cause any register accesses to be trapped.
 - 0b1: Accesses to the DCC registers at EL2, EL1, and EL0 generate a Trap exception to EL3, unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state, DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCINT, and, when the PE is in Non-debug state, DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

- 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
- 0x06 for trapped AArch32 LDC to DBGDTRRXint and STC from DBGDTRRXint.
- 0x18 for trapped AArch64 MSR and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

- 0b0: Cycle counting by PMCCNTR_EL0 is not affected by this bit.
- 0b1: Cycle counting by PMCCNTR_EL0 is prohibited in Secure state.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to Performance Monitor registers by an external debugger.

- 0b0: Non-secure access to Performance Monitor registers from external debugger is permitted.
- 0b1: Non-secure access to Performance Monitor registers from external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.
Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:
External Performance Monitors Access Disable. Controls access to Performance Monitor registers by an external debugger.

- **0b0**: Access to Performance Monitor registers from external debugger is permitted.
- **0b1**: Access to Performance Monitor registers from external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:
Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:
External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external debugger.

- **0b0**: Non-secure access to debug registers from external debugger is permitted.
- **0b1**: Non-secure access to breakpoint and watchpoint registers, and OSLAR_EL1 from external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:
External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external debugger.

- **0b0**: Access to debug registers, and to OSLAR_EL1 from external debugger is permitted.
- **0b1**: Access to breakpoint and watchpoint registers, and to OSLAR_EL1 from external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:
External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an external debugger.

- **0b0**: Access to debug registers from external debugger is permitted.
- **0b1**: Access to breakpoint and watchpoint registers from an external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface. It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.
TTRF, bit [19]

When FEAT_TRF is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.
The Trace Filter registers trapped by this control are:

- **TRFCR_EL2, TRFCR_EL12, TRFCR_EL1**, reported using EC syndrome value 0x18.
- **HTRFCR and TRFCR**, reported using EC syndrome value 0x03.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Accesses to Trace Filter registers at EL2 and EL1 are not affected by this bit.</td>
</tr>
<tr>
<td>0b1</td>
<td>Accesses to Trace Filter registers at EL2 and EL1 generate a Trap exception to EL3, unless the access generates a higher priority exception.</td>
</tr>
</tbody>
</table>

Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

Secure Trace enable. Enables tracing in Secure state.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Trace prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED authentication interface.</td>
</tr>
<tr>
<td>0b1</td>
<td>Trace in Secure state is not affected by this bit.</td>
</tr>
</tbody>
</table>

This bit also controls the level of authentication required by an external debugger to enable external tracing. See [Register controls to enable self-hosted trace](#) on page G3-5920.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Event counting prohibited in Secure state.</td>
</tr>
<tr>
<td>0b1</td>
<td>Event counting in Secure state not affected by this bit.</td>
</tr>
</tbody>
</table>

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Event counting prohibited in Secure state, unless <code>ExternalSecureNoninvasiveDebugEnabled()</code> is TRUE.</td>
</tr>
<tr>
<td>0b1</td>
<td>Event counting in Secure state not affected by this bit.</td>
</tr>
</tbody>
</table>

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.
SDD, bit [16]

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than Breakpoint Instruction exceptions.

0b0 Debug exceptions in Secure state are not affected by this bit.
0b1 Debug exceptions, other than Breakpoint Instruction exceptions, are disabled from all Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:
- The PE is in Secure state.
- The Effective value of SCR_EL3.RW is 0b1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPD32, bits [15:14]

When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure EL1 using AArch32, other than Breakpoint Instruction exceptions.

0b00 Legacy mode. Debug exceptions from Secure EL1 are enabled by the IMPLEMENTATION DEFINED authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from Secure EL1 are disabled.
0b11 Secure privileged debug enabled. Debug exceptions from Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored if the PE is either:
- In Non-secure state.
- In Secure state and Secure EL1 is using AArch64.

If Secure EL1 is using AArch32 then:
- If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
- Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b11.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]

When FEAT_SPE is implemented:

Non-secure Profiling Buffer. This field controls the owning translation regime and accesses to Statistical Profiling and Profiling Buffer control registers.

0b00 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in both security states generate Trap exceptions to EL3.
0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical Profiling enabled in Secure state and disabled in Non-secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Non-secure state generate Trap exceptions to EL3.
0b10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in both security states generate Trap exceptions to EL3.

0b11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical Profiling enabled in Non-secure state and disabled in Secure state. Accesses to Statistical Profiling and Profiling Buffer control registers at EL2 and EL1 in Secure state generate Trap exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b1, the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of this field is 0b01.

On a Warm reset, this field resets to an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

 Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3.

Accesses to the registers are trapped as follows:

- Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1 and any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit, are trapped to EL3 and reported using EC syndrome value 0x18.

- Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and DBGPRCR, are trapped to EL3 and reported using EC syndrome value 0x05.

- Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

--- **Note** ---

The powerdown debug registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug registers to EL3.

The following registers are affected by this trap:

- AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.
- AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
- AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped by this bit.
• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are trapped.

0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown debug registers are trapped to EL3, unless it is trapped by HDCR.TDOSA or MDCR_EL2.TDOSA.

--- Note ---
The powerdown debug registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that cannot be trapped using the MDCR_EL3.TDOSA field.

Accesses to the debug registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported using EC syndrome value 0x18:
 - DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_EL1,
 DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1,
 DBGVCR32_EL2.
 - AArch64: MDCR_EL2, MDRAR_EL1, MDCCSR_EL0, MDCCINT_EL1,
 MDSCR_EL1, OSDTRRX_EL1, OSDTRTX_EL1, OSECCR_EL1.

• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome value 0x05, accesses using MCRR or MRRC are reported using EC syndrome value 0x0C:
 - HDCR, DBGDRAR, DBGDSAR, DBGDIR, DBGDCINT, DBGWFAR,
 DBGVC, DBGBVR<n>, DBGBCR<n>, DBGXVR<n>, DBGWCR<n>,
 DBGWVR<n>.
 - DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID,
 DBGDEVID1, DBGDEVID2, DBGOSECCR.

• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are reported using EC syndrome value 0x06.
• When not in Debug state, the following registers are also trapped to EL3:
 - AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0, reported using EC syndrome value 0x18.
 - AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRXTint, reported using EC syndrome value 0x05.

0b0 This control does not cause any instructions to be trapped.
0b1 EL0, EL1, and EL2 accesses to the debug registers, other than the registers that can be trapped by MDCR_EL3.TDOSA, are trapped to EL3, from both Security states and both Execution states, unless it is trapped by DBGDSCExt.UDCCdis,
 MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES0.
TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap Performance Monitor register accesses. Accesses to all Performance Monitor registers from EL0, EL1 and EL2 to EL3, from both Security states and both Execution states are trapped as follows:

- In AArch64 state, accesses to the following registers are trapped to EL3 and are reported using EC syndrome value 0x18:
 - PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCl EL0, PMSWINC_EL0, PMSELr_EL0, PMCEID0_EL0, PMCEID1_EL0,
 - PMCSS0_EL0, PMXEVYPER_EL0, PXEVENTR_EL0, PMUSERENR_EL0, PMSWINC_EL0, PMINTENSET_EL0, PMINTENCLR_EL0,
 - PMOVSCLR_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMCCNTR_EL1, PMOEVCNTR<0>_EL0, PMOEVYPER<0>_EL0, PMCCFILTR_EL0.
 - If FEAT_PMUv3p4 is implemented, PMMIR_EL1

- In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome value 0x03, accesses using MCRR or MRRC are reported using EC syndrome value 0x04:
 - PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELr, PMCEID0, PMCEID1, PMCCNTR, PMXEVYPER, PXEVENTR,
 - PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSSET, PMOEVCNTR<0>, PMOEVYPER<0>, PMCCFILTR.
 - If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.
 - If FEAT_PMUv3p4 is implemented, PMMIR.

0b0 This control does not cause any instructions to be trapped.
0b1 EL2, EL1, and EL0 System register accesses to all Performance Monitor registers are trapped to EL3, unless it is trapped by HDCR.TPM or MDCR_EL2.TPM.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing the MDCR_EL3

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDCR_EL3

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b110</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return MDCR_EL3;
```
MSR MDCR_EL3, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b10</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MDCR_EL3 = X[t];
D13.3.19 MDRAR_EL1, Monitor Debug ROM Address Register

The MDRAR_EL1 characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a
ROM table that locates and describes the memory-mapped debug components in the system. Armv8
deprecates any use of this register.

Configurations

AArch64 System register MDRAR_EL1[63:0] is architecturally mapped to AArch32 System
register DBGDRAR[63:0].

Attributes

MDRAR_EL1 is a 64-bit register.

Field descriptions

The MDRAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>52</td>
<td>ROMADDR[51:48]</td>
</tr>
<tr>
<td>51</td>
<td>ROMADDR[47:12]</td>
</tr>
<tr>
<td>48</td>
<td>Bits [63:52]</td>
</tr>
<tr>
<td>47</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>12</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>11</td>
<td>Valid</td>
</tr>
<tr>
<td>2</td>
<td>ROMADDR[51:48], bits [51:48]</td>
</tr>
<tr>
<td>1</td>
<td>Bits [47:12]</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Bits [63:52]

Reserved, RES0.

ROMADDR[51:48], bits [51:48]

When FEAT_LPA is implemented:

If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

Otherwise:

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.
When FEAT_LPA is implemented, ROMADDR[51:48] forms the upper part of the address value.
Otherwise, ROMADDR[51:48] is RES0.
If the physical address size in bits (PAsize) is less than 52, then the register bits corresponding to
ROMADDR [51:PAsize] are RES0.
Bits [11:0] of the ROM table physical address are zero.
Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that
supports AArch32 at the highest implemented Exception level.
In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is
IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.
If MDRAR_EL1.Valid == 0b00, then this field is UNKNOWN.

Bits [11:2]

Reserved, RES0.
Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

0b00 ROM Table address is not valid. Software must ignore ROMADDR.
0b11 ROM Table address is valid.

Other values are reserved.

Accessing the MDRAR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDRAR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b00</td>
<td>0b0001</td>
<td>0b000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDRA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDRAR_EL1;
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MDRAR_EL1;
 elsif PSTATE.EL == EL3 then
 return MDRAR_EL1;
elsif PSTATE.EL == EL3 then
 return MDRAR_EL1;
D13.3.20 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

AArch64 System register MDSCR_EL1[31:0] is architecturally mapped to AArch32 System register DBGDSCRext[31:0].

Attributes

MDSCR_EL1 is a 64-bit register.

Field descriptions

The MDSCR_EL1 bit assignments are:

Bits [63:32]	Reserved, RES0.
TFO	ERR
RXfull	TDCC
TXfull	KDE
RES0	HDE
RX0	MDE
TXU	RAZ/WI
RES0	SC2
INTdis	RES0
TDA	TDA

When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCHR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCHR.TFO. Reads and writes of this bit are indirect accesses to EDSCHR.TFO.

Accessing this field has the following behavior:
• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCHR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCHR.RXfull. Reads and writes of this bit are indirect accesses to EDSCHR.RXfull.

The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
- When OSLR_EL1.OSLK == 1, access to this field is RW.
- When OSLR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]
Used for save/restore of EDSCR.TXfull.
When OSLR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect accesses to EDSCR.TXfull.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
- When OSLR_EL1.OSLK == 1, access to this field is RW.
- When OSLR_EL1.OSLK == 0, access to this field is RO.

Bit [28]
Reserved, RES0.

RXO, bit [27]
Used for save/restore of EDSCR.RXO.
When OSLR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect accesses to EDSCR.RXO.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
- When OSLR_EL1.OSLK == 1, access to this field is RW.
- When OSLR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]
Used for save/restore of EDSCR.TXU.
When OSLR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect accesses to EDSCR.TXU.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
- When OSLR_EL1.OSLK == 1, access to this field is RW.
- When OSLR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]
Reserved, RES0.

INTdis, bits [23:22]
Used for save/restore of EDSCR.INTdis.
When OSLR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.
When OSLR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of this field are indirect accesses to EDSCR.INTdis.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
- When OSLR_EL1.OSLK == 1, access to this field is RW.
- When OSLR_EL1.OSLK == 0, access to this field is RO.
TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:
• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.
KDE, bit [13]

Local (kernel) debug enable. If EL_D is using AArch64, enable debug exceptions within EL_D.
Permitted values are:

- 0b0: Debug exceptions, other than Breakpoint Instruction exceptions, disabled within EL_D.
- 0b1: All debug exceptions enabled within EL_D.
- RES0 if EL_D is using AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, as follows:

- In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped, reported using EC syndrome value 0x18:
 - MDCCSR_EL0.
 - If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.
- In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported using EC syndrome value 0x05.
 - DBGDSCRInt, DBGDIDR, DBGDSAR, DBGDRAR.
 - If not in Debug state, DBGDTRRXint, and DBGDTRTXint.
- In AArch32 state, LDC access to DBGDTRXint and STC access to DBGDTRTXint are trapped, reported using EC syndrome value 0x06.
- In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported using EC syndrome value 0x0C.

- 0b0: This control does not cause any instructions to be trapped.
- 0b1: EL0 using AArch64: EL0 accesses to the AArch64 DCC registers are trapped.
 EL0 using AArch32: EL0 accesses to the AArch32 DCC registers are trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.
When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.
When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:

- When OSLSR_EL1.OSLK == 1, access to this field is RW.
- When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If EL_D is using AArch64, enable Software step. Permitted values are:

- 0b0: Software step disabled
- 0b1: Software step enabled.
- RES0 if EL_D is using AArch32.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Accessing the MDSCR_EL1

Individual fields within this register might have restricted accessibility when OSLSR_EL1.OSLK == 0 (the OS lock is unlocked). See the field descriptions for more detail.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, MDSCR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
  UNDEFINED;
elif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif EL2Enabled() && (HaveEL(EL3)) && EDSCR.SODD == '1' && HDFGRTR_EL2.MDSCR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SODD == '1' then
      UNDEFINED;
elif EL2Enabled() && (HaveEL(EL3)) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    AArch64.SystemAccessTrap(EL3, 0x18);
elif PSTATE_EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SODD == '1' then
      UNDEFINED;
elif PSTATE_EL == EL3 then
    UNDEFINED;
elif PSTATE_EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif EL2Enabled() && (HaveEL(EL3)) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
```

MSR MDSCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
  UNDEFINED;
elif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif EL2Enabled() && (HaveEL(EL3)) && EDSCR.SODD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
```
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x158] = X[t];
else
 MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MDSCR_EL1 = X[t];
 elsif PSTATE.EL == EL3 then
 MDSCR_EL1 = X[t];
else
 MDSCR_EL1 = X[t];
D13.3.21 OSDLR_EL1, OS Double Lock Register

The OSDLR_EL1 characteristics are:

Purpose

Used to control the OS Double Lock.

Configurations

AArch64 System register OSDLR_EL1[31:0] is architecturally mapped to AArch32 System register DBGOSDLR[31:0].

Attributes

OSDLR_EL1 is a 64-bit register.

Field descriptions

The OSDLR_EL1 bit assignments are:

![Diagram of OSDLR_EL1 register]

Bits [63:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

- **0b0** OS Double Lock unlocked.
- **0b1** OS Double Lock locked, if DBGPRCR_EL1.CORENPDRQ (Core no powerdown request) bit is set to 0 and the PE is in Non-debug state.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing the OSDLR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

* MRS <Xt>, OSDLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(el3) && ESCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 UNDEFINED;
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented("FEAT_DoubleLock") && HDFGWTR_EL2.OSDLR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA") then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return OSDLR_EL1;
 end
else
 AArch64.SystemAccessTrap(EL3, 0x18);
end

elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return OSDLR_EL1;
 end
elsif PSTATE.EL == EL3 then
 return OSDLR_EL1;
end

MSR OSDLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>Crm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL3 then
 return OSDLR_EL1;
end

OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA") then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL3 then
 return OSDLR_EL1;
end

D13-3652 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
UNDEFINED;
else
 AArch64.SystemAccessTrap(EL1, 0x18);
else
 OSDLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSDLR_EL1 = X[t];
D13.3.22 OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

The OSDTRRX_EL1 characteristics are:

Purpose

Used for save/restore of DBGDTRRX_EL0. It is a component of the Debug Communications Channel.

Configurations

AArch64 System register OSDTRRX_EL1[31:0] is architecturally mapped to AArch32 System register DBGDTRRXext[31:0].

Attributes

OSDTRRX_EL1 is a 64-bit register.

Field descriptions

The OSDTRRX_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>Update DTRRX without side-effect.</td>
</tr>
</tbody>
</table>

Writes to this register update the value in DTRRX and do not change RXfull.
Reads of this register return the last value written to DTRRX and do not change RXfull.
For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

Accessing the OSDTRRX_EL1

Arm deprecates reads and writes of OSDTRRX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, OSDTRRX_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then

elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE, TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
else
 return OSDTRRX_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 else
 return OSDTRRX_EL1;
 endif
elsif PSTATE.EL == EL3 then
 return OSDTRRX_EL1;
endif

MSR OSDTRRX_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
else
 OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 OSDTRRX_EL1 = X[t];
 end
elsif PSTATE.EL == EL3 then
 OSDTRRX_EL1 = X[t];
D13.3.23 OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

The OSDTRTX_EL1 characteristics are:

Purpose
Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications Channel.

Configurations
AArch64 System register OSDTRTX_EL1[31:0] is architecturally mapped to AArch32 System register DBGDTRTXext[31:0].

Attributes
OSDTRTX_EL1 is a 64-bit register.

Field descriptions
The OSDTRTX_EL1 bit assignments are:

```
  Bits [63:32]  Reserved, RES0.
  Bits [31:0]   Return DTRTX without side-effect.
```

Reads of this register return the value in DTRTX and do not change TXfull.
Writes of this register update the value in DTRTX and do not change TXfull.
For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

Accessing the OSDTRTX_EL1
Arm deprecates reads and writes of OSDTRTX_EL1 when the OS Lock is unlocked.
Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, OSDTRTX_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```cpp
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' 
        && boolean IMPLEMENTATION_DEFINED "EL3 trap priority 
        when SDD == '1'" 
        && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) 
        && EDSCR.SDD == '1' 
        && boolean IMPLEMENTATION_DEFINED "EL3 trap 
        priority when SDD == '1'" 
        && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() 
        && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
```
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return OSDTRTX_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSDTRTX_EL1;
elsif PSTATE.EL == EL3 then
 return OSDTRTX_EL1;
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);

MSR OSDTRTX_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>
else
 OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDSCR_EL3.TDCC == '1' then
 UNDEFINED;
 elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDSCR_EL3.TDA == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elseif HaveEL(EL3) && MDSCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 end
else
 OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 OSDTRTX_EL1 = X[t];
D13.3.24 OSECCR_EL1, OS Lock Exception Catch Control Register

The OSECCR_EL1 characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configurations

AArch64 System register OSECCR_EL1[31:0] is architecturally mapped to AArch32 System register DBGOSECCR[31:0].

AArch64 System register OSECCR_EL1[31:0] is architecturally mapped to External register EDECCR[31:0].

If OSLSR_EL1.OSLK == 0, then OSECCR_EL1 returns an UNKNOWN value on reads and ignores writes.

Attributes

OSECCR_EL1 is a 64-bit register.

Field descriptions

The OSECCR_EL1 bit assignments are:

When OSLSR_EL1.OSLK == 1:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[31:0]</td>
<td>EDECCR, used for save/restore to EDECCR over powerdown. Reads or writes to this field are indirect accesses to EDECCR.</td>
</tr>
</tbody>
</table>

Accessing the OSECCR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS} \ <Xt>, \ OSECCR_EL1
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.OSECCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
 when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return OSECCR_EL1;
 elsif PSTATE.EL == EL3 then
 return OSECCR_EL1;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
 when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.OSECCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSECCR_EL1 = X[t];
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
 when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 OSECCR_EL1 = X[t];
 elsif PSTATE.EL == EL3 then
 OSECCR_EL1 = X[t];
else
 OSECCR_EL1 = X[t];
elseif PSTATE.EL == EL3 then
 return OSECCR_EL1;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return OSECCR_EL1;
end

MSR OSECCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0bo00</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>
D13.3.25 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS Lock.

Configurations

AArch64 System register OSLAR_EL1[31:0] is architecturally mapped to AArch32 System register DBGOSLAR[31:0].

AArch64 System register OSLAR_EL1[31:0] is architecturally mapped to External register OSLAR_EL1[31:0].

Attributes

OSLAR_EL1 is a 64-bit register.

Field descriptions

The OSLAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:1</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>OSLK, bit [0] On writes to OSLAR_EL1, bit[0] is copied to the OS Lock. Use OSLSR_EL1.OSLK to check the current status of the lock.</td>
</tr>
</tbody>
</table>

Accessing the OSLAR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MSR OSLAR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 OSLAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 OSLAR_EL1 = X[t];
 end
elsif PSTATE.EL == EL3 then
 OSLAR_EL1 = X[t];
else
 OSLAR_EL1 = X[t];
D13.3.26 OSLSR_EL1, OS Lock Status Register

The OSLSR_EL1 characteristics are:

Purpose

Provides the status of the OS Lock.

Configurations

AArch64 System register OSLSR_EL1[31:0] is architecturally mapped to AArch32 System register `DBGOSLSR[31:0]`.

Attributes

OSLSR_EL1 is a 64-bit register.

Field descriptions

The OSLSR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>62</td>
<td>OSLM[1], bit [3]</td>
</tr>
<tr>
<td>61</td>
<td>nTT, bit [2]</td>
</tr>
<tr>
<td>60</td>
<td>OSLK, bit [1]</td>
</tr>
<tr>
<td>59</td>
<td>Reserved</td>
</tr>
<tr>
<td>58</td>
<td>Reserved</td>
</tr>
<tr>
<td>57</td>
<td>Reserved</td>
</tr>
<tr>
<td>56</td>
<td>Reserved</td>
</tr>
<tr>
<td>55</td>
<td>Reserved</td>
</tr>
<tr>
<td>54</td>
<td>Reserved</td>
</tr>
<tr>
<td>53</td>
<td>Reserved</td>
</tr>
<tr>
<td>52</td>
<td>Reserved</td>
</tr>
<tr>
<td>51</td>
<td>Reserved</td>
</tr>
<tr>
<td>50</td>
<td>Reserved</td>
</tr>
<tr>
<td>49</td>
<td>Reserved</td>
</tr>
<tr>
<td>48</td>
<td>Reserved</td>
</tr>
<tr>
<td>47</td>
<td>Reserved</td>
</tr>
<tr>
<td>46</td>
<td>Reserved</td>
</tr>
<tr>
<td>45</td>
<td>Reserved</td>
</tr>
<tr>
<td>44</td>
<td>Reserved</td>
</tr>
<tr>
<td>43</td>
<td>Reserved</td>
</tr>
<tr>
<td>42</td>
<td>Reserved</td>
</tr>
<tr>
<td>41</td>
<td>Reserved</td>
</tr>
<tr>
<td>40</td>
<td>Reserved</td>
</tr>
<tr>
<td>39</td>
<td>Reserved</td>
</tr>
<tr>
<td>38</td>
<td>Reserved</td>
</tr>
<tr>
<td>37</td>
<td>Reserved</td>
</tr>
<tr>
<td>36</td>
<td>Reserved</td>
</tr>
<tr>
<td>35</td>
<td>Reserved</td>
</tr>
<tr>
<td>34</td>
<td>Reserved</td>
</tr>
<tr>
<td>33</td>
<td>Reserved</td>
</tr>
<tr>
<td>32</td>
<td>Reserved</td>
</tr>
<tr>
<td>31</td>
<td>Reserved</td>
</tr>
<tr>
<td>30</td>
<td>Reserved</td>
</tr>
<tr>
<td>29</td>
<td>Reserved</td>
</tr>
<tr>
<td>28</td>
<td>Reserved</td>
</tr>
<tr>
<td>27</td>
<td>Reserved</td>
</tr>
<tr>
<td>26</td>
<td>Reserved</td>
</tr>
<tr>
<td>25</td>
<td>Reserved</td>
</tr>
<tr>
<td>24</td>
<td>Reserved</td>
</tr>
<tr>
<td>23</td>
<td>Reserved</td>
</tr>
<tr>
<td>22</td>
<td>Reserved</td>
</tr>
<tr>
<td>21</td>
<td>Reserved</td>
</tr>
<tr>
<td>20</td>
<td>Reserved</td>
</tr>
<tr>
<td>19</td>
<td>Reserved</td>
</tr>
<tr>
<td>18</td>
<td>Reserved</td>
</tr>
<tr>
<td>17</td>
<td>Reserved</td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bits [63:4]

Reserved, RES0.

OSLM[1], bit [3]

This field is bit[1] of OSLM[1:0].

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented.

- **0b00**: OS Lock not implemented.
- **0b10**: OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value **0b00** is not permitted.

The OSLM field is split as follows:

- OSLM[1] is OSLSR_EL1[3].
- OSLM[0] is OSLSR_EL1[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status.

- **0b0**: OS Lock unlocked.
- **0b1**: OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

On a Cold reset, this field resets to 1.

On a Warm reset, the value of this field is unchanged.
OSLM[0], bit [0]

This field is bit[0] of OSLM[1:0].

See OSLM[1] for the field description.

Accessing the OSLSR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } <Xt>, \text{ OSLSR_EL1}
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b10 & 0b000 & 0b0001 & 0b0001 & 0b100 \\
\end{array}
\]

if PSTATE.EL == EL0 then
 UNDEFINED;
else if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.OSLSR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return OSLSR_EL1;
 end
else if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return OSLSR_EL1;
 end
else if PSTATE.EL == EL3 then
 return OSLSR_EL1;
else
 return OSLSR_EL1;
end
D13.3.27 SDER32_EL2, AArch32 Secure Debug Enable Register

The SDER32_EL2 characteristics are:

Purpose

Allows access to the AArch32 register SDER from Secure EL2 and EL3 only.

Configurations

This register is present only when EL2 is implemented, AArch32 is supported at any Exception level, FEAT_SEL2 is implemented and EL1 supports AArch32. Otherwise, direct accesses to SDER32_EL2 are **UNDEFINED**.

This register is ignored by the PE when one or more of the following are true:
- The PE is in Non-secure state.
- EL1 is using AArch64.

Attributes

SDER32_EL2 is a 64-bit register.

Field descriptions

The SDER32_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:2</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>1</td>
<td>Secure User Non-Invasive Debug Enable.</td>
</tr>
<tr>
<td>0</td>
<td>This bit does not affect Performance Monitors event counting at Secure EL0.</td>
</tr>
<tr>
<td>1</td>
<td>If EL1 is using AArch32, Performance Monitors event counting is allowed in Secure EL0.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Secure User Invasive Debug Enable.</td>
</tr>
<tr>
<td>0</td>
<td>This bit does not affect the generation of debug exceptions at Secure EL0.</td>
</tr>
<tr>
<td>1</td>
<td>If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Accessing the SDER32_EL2

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, SDER32_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return SDER32_EL2;
else
 PSTATE.EL == EL3 then
 return SDER32_EL2;

MSR SDER32_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 SDER32_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 SDER32_EL2 = X[t];
D13.3.28 SDER32_EL3, AArch32 Secure Debug Enable Register

The SDER32_EL3 characteristics are:

Purpose

Allows access to the AArch32 register SDER from AArch64 state only. Its value has no effect on execution in AArch64 state.

Configurations

AArch64 System register SDER32_EL3[31:0] is architecturally mapped to AArch32 System register SDER[31:0].

This register is present only when EL3 is implemented, AArch32 is supported at any Exception level and EL1 supports AArch32. Otherwise, direct accesses to SDER32_EL3 are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.
• EL1 is using AArch64.

Attributes

SDER32_EL3 is a 64-bit register.

Field descriptions

The SDER32_EL3 bit assignments are:

Bits [63:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit does not affect Performance Monitors event counting at Secure EL0.
0b1 If EL1 is using AArch32, Performance Monitors event counting is allowed in Secure EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.
0b1 If EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SDER32_EL3

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, SDER32_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return SDER32_EL3;

MRS SDER32_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 SDER32_EL3 = X[t];
D13.3.29 TRFCR_EL1, Trace Filter Control Register (EL1)

The TRFCR_EL1 characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch64 System register TRFCR_EL1[31:0] is architecturally mapped to AArch32 System register TRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to TRFCR_EL1 are **UNDEFINED**.

Attributes

TRFCR_EL1 is a 64-bit register.

Field descriptions

The TRFCR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:7]</th>
<th>RES0</th>
<th>TS</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0TRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1TRE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control

- **0b01** Virtual timestamp. The traced timestamp is the physical counter value, minus the value of CNTVOFF_EL2.
- **0b10** When FEAT_ECV is implemented Guest Physical timestamp. The traced timestamp is the physical counter value, minus the value of CNTPOFF_EL2.
- **0b11** Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved

This field is ignored if any of the following are true:

- SelfHostedTraceEnabled() == FALSE.
- EL2 is implemented and TRFCR_EL2.TS != 0b0.

If FEAT_ECV is implemented, and EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset of zero if any of the following are true:

- CNTHCTL_EL2.ECV is 0.
- SCR_EL3.ECVEn is 0.
- HCR_EL2.{E2H, TGE} is {1, 1}.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Bits [4:2]

Reserved, RES0.
E1TRE, bit [1]

EL1 Trace Enable.
0b0 Trace is prohibited at EL1.
0b1 Trace is allowed at EL1.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

On a Warm reset, this field resets to 0.

E0TRE, bit [0]

EL0 Trace Enable.
0b0 Trace is prohibited at EL0.
0b1 Trace is allowed at EL0.

This field is ignored if any of the following are true:
- SelfHostedTraceEnabled() == FALSE.
- EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE == 1.

On a Warm reset, this field resets to 0.

Accessing the TRFCR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TRFCR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return NVMem[0x880];
 end if;
 else
 return TRFCR_EL1;
 end if;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 elsif HCR_EL2.E2H == '1' then
 return TRFCR_EL2;
 else
 return TRFCR_EL1;
elsif PSTATE.EL == EL3 then
 return TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
elif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x880] = X[t];
elif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
elif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
elif HCR_EL2.E2H == '1' then
 TRFCR_EL2 = X[t];
else
 TRFCR_EL1 = X[t];
elif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t];

MRS <Xt>, TRFCR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x880];
elif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
elif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 TRFCR_EL2 = X[t];
else
 TRFCR_EL1 = X[t];
elif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t];
priority when SDD == '1' && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
elsf HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && ESCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return TRFCR_EL1;

else
 return TRFCR_EL1;
else
 UNDEFINED;
elsf PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return TRFCR_EL1;
 else
 UNDEFINED;
else
 UNDEFINED;

MSR TRFCR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsf PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x880] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
else
 UNDEFINED;
elsf PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if Halted() && HaveEL(EL3) && ESCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && ESCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL1 = X[t];
 else
 UNDEFINED;
 else
 UNDEFINED;
elsf PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 TRFCR_EL1 = X[t];
 else
 UNDEFINED;
D13.3.30 TRFCR_EL2, Trace Filter Control Register (EL2)

The TRFCR_EL2 characteristics are:

Purpose
Provides EL2 controls for Trace.

Configurations
AArch64 System register TRFCR_EL2[31:0] is architecturally mapped to AArch32 System register HTRFCR[31:0].

This register is present only when FEAT_TRF is implemented. Otherwise, direct accesses to TRFCR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
TRFCR_EL2 is a 64-bit register.

Field descriptions
The TRFCR_EL2 bit assignments are:

Bits [63:7]	Reserved, RES0.
TS, bits [6:5]	Timestamp Control. Controls which timebase is used for trace timestamps.
0b00	Timestamp controlled by TRFCR_EL1.TS or TRFCR.TS.
0b01	Virtual timestamp. The traced timestamp is the physical counter value, minus the value of CNTVOFF_EL2.
0b10	When FEAT_ECV is implemented Guest Physical timestamp. The traced timestamp is the physical counter value, minus the value of CNTPOFF_EL2.
0b11	Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored if SelfHostedTraceEnabled() == FALSE.

If FEAT_ECV is implemented, and EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset of zero if any of the following are true:

- CNTHCTL_EL2.ECV is 0.
- SCR_EL3.ECVEn is 0.
- HCR_EL2.{E2H, TGE} is \{1, 1\}.

On a Warm reset, this field resets to 0.
Bit [4]

 Reserved, RES0.

CX, bit [3]

 CONTEXTIDR_EL2 and VMID trace enable.
 0b0 CONTEXTIDR_EL2 and VMID trace prohibited.
 0b1 CONTEXTIDR_EL2 and VMID trace allowed.

 This field is ignored if SelfHostedTraceEnabled() == FALSE.
 On a Warm reset, this field resets to 0.

Bit [2]

 Reserved, RES0.

E2TRE, bit [1]

 EL2 Trace Enable.
 0b0 Trace is prohibited at EL2.
 0b1 Trace is allowed at EL2.

 This field is ignored if SelfHostedTraceEnabled() == FALSE.
 On a Warm reset, this field resets to 0.

E0HTRE, bit [0]

 EL0 Trace Enable.
 0b0 Trace is prohibited at EL0 when HCR_EL2.TGE == 1.
 0b1 Trace is allowed at EL0 when HCR_EL2.TGE == 1.

 This field is ignored if any of the following are true:
 - SelfHostedTraceEnabled() == FALSE.
 - EL2 is disabled in the current security state.
 - HCR_EL2.TGE == 0.

 On a Warm reset, this field resets to 0.

Accessing the TRFCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

 MRS <Xt>, TRFCR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

 if PSTATE.EL == EL0 then
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return TRFCR_EL2;
else PSTATE.EL == EL3 then
 return TRFCR_EL2;

MSR TRFCR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
else PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
else PSTATE.EL == EL2 then
 if Halted() && haveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
else haveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 TRFCR_EL2 = X[t];
else PSTATE.EL == EL3 then
 TRFCR_EL2 = X[t];

MRS <Xt>, TRFCR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
else PSTATE.EL == EL1 then
 if Halted() && haveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
else EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else haveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x880];
else
 return TRFCR_EL1;
else PSTATE.EL == EL2 then
 if Halted() && haveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
else haveEL(EL3) && MDCR_EL3.TTRF == '1' then
 UNDEFINED;

D13-3676 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential ARM DDI 0487F.c ID072120
if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then
 return TRFCR_EL2;
else
 return TRFCR_EL1;
elsif PSTATE.EL == EL3 then
 return TRFCR_EL1;

MSR TRFCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRFCR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TTRF == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x880] = X[t];
 else
 TRFCR_EL1 = X[t];
 else
 if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HCR_EL2.E2H == '1' then
 TRFCR_EL2 = X[t];
 else
 TRFCR_EL1 = X[t];
 end
 elsif PSTATE.EL == EL3 then
 TRFCR_EL1 = X[t];
 end
 end
end

D13.4 Performance Monitors registers

This section lists the Performance Monitoring registers in AArch64.
D13.4.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

AArch64 System register PMCCFILTR_EL0[31:0] is architecturally mapped to AArch32 System register PMCCFILTR[31:0].

AArch64 System register PMCCFILTR_EL0[31:0] is architecturally mapped to External register PMCCFILTR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCCFILTR_EL0 are **UNDEFINED**.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
<th>Value</th>
<th>Contextual Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:32]</td>
<td>Reserved, RES0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P, bit [31]</td>
<td>Privileged filtering bit. Controls counting in EL1.</td>
<td></td>
<td>If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR_EL0.NSK bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0</td>
<td>Count cycles in EL1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1</td>
<td>Do not count cycles in EL1.</td>
</tr>
<tr>
<td></td>
<td>On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U, bit [30]</td>
<td>User filtering bit. Controls counting in EL0.</td>
<td></td>
<td>If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR_EL0.NSU bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0</td>
<td>Count cycles in EL0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1</td>
<td>Do not count cycles in EL0.</td>
</tr>
<tr>
<td></td>
<td>On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the PMCCFILTR_EL0.SH bit.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

--- Note ---

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.
SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is not implemented or is disabled, this field is RES0.

--- Note ---

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMCCFILTR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b0</td>
<td>0b1</td>
<td>0b1</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCCFILTR_EL0;
 end
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGRTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMCCFILTR_EL0;
end
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
else
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 return PMCCFILTR_EL0;
 end if;
elsif PSTATE.EL == EL3 then
 return PMCCFILTR_EL0;
else
 MSR PMCCFILTR_EL0, <Xt>;
end if;

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if;
 elsif EL2Enabled() && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 PMCCFILTR_EL0 = X[t];
 end if;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 PMCCFILTR_EL0 = X[t];
 end if;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HDFGWTR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 PMCCFILTR_EL0 = X[t];
 end if;
else
 PMCCFILTR_EL0 = X[t];
end if;

MSR PMCCFILTR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b110</td>
<td>0b111</td>
<td>0b111</td>
</tr>
</tbody>
</table>

D13-3682

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0487F.c

Non-Confidential

ID072120
when SDD == '1' && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
 elseif PSTATE.EL == EL3 then
 PMCCFILTR_EL0 = X[t];
D13.4.2 PMCCNTR_EL0, Performance Monitors Cycle Count Register

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See *Time as measured by the Performance Monitors cycle counter on page D7-2696* for more information. PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configurations

AArch64 System register PMCCNTR_EL0[63:0] is architecturally mapped to AArch32 System register PMCCNTR[63:0].

AArch64 System register PMCCNTR_EL0[63:0] is architecturally mapped to External register PMCCNTR_EL0[63:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCCNTR_EL0 are UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR_EL0 continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

The PMCCNTR_EL0 bit assignments are:

```
| 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| CCNT | bits [63:0] | Cycle count. Depending on the values of PMCR_EL0.{LC,D}, this field increments in one of the following ways:
| • Every processor clock cycle.
| • Every 64th processor clock cycle.
| Writing 1 to PMCR_EL0.C sets this field to 0.
| On a Warm reset, this field resets to an architecturally UNKNOWN value.
```

Accessing the PMCCNTR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMCCNTR_EL0

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>CRn</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01</td>
<td>0b01001</td>
<td>0b101</td>
<td>0b1101</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if Halted() && Have(EL3) && EDCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;
elif PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() \&\& HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elseif EL2Enabled() \&\& HCR_EL2.<E2H,TGE> != '11' \&\& (!HaveEL(EL3) \| SCR_EL3.FGTEn == '1') \&\& HDFGRTR_EL2ค่อย(0b11 0b011 0b1001 0b1101 0b000)
 endif
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1"' \&\& HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
 endif
 elseif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() \&\& HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 if PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() \&\& HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
 elif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
 endif
 elseif PSTATE.EL == EL2 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1"' \&\& HDFGRTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCCNTR_EL0;
 endif
 elseif PSTATE.EL == EL3 then
 return PMCCNTR_EL0;
 endif
 elseif PSTATE.EL == EL0 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1"' \&\& MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() \&\& HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() \&\& HDFGRWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 endif
end

MSR PMCCNTR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b000</td>
</tr>
</tbody>
</table>
AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 PMCCNTR_EL0 = X[t];
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCCNTR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 PMCCNTR_EL0 = X[t];
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 PMCCNTR_EL0 = X[t];
elsif PSTATE_EL == EL3 then
 PMCCNTR_EL0 = X[t];
D13.4.3 PMCEID0_EL0, Performance Monitors Common Event Identification register 0

The PMCEID0_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0000 to 0x001F and 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

--- **Note** ---

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see *The PMU event number space and common events on page D7-2715.*

Configurations

AArch64 System register PMCEID0_EL0[31:0] is architecturally mapped to AArch32 System register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0[63:32] is architecturally mapped to AArch32 System register PMCEID2[31:0].

AArch64 System register PMCEID0_EL0[31:0] is architecturally mapped to External register PMCEID0[31:0].

AArch64 System register PMCEID0_EL0[63:32] is architecturally mapped to External register PMCEID2[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID0_EL0 are UNDEFINED.

Attributes

PMCEID0_EL0 is a 64-bit register.

Field descriptions

The PMCEID0_EL0 bit assignments are:
IDhi<n>, bit [n+32], for n = 0 to 31

When FEAT_PMUv3p1 is implemented:
IDhi[n] corresponds to common event (0x4000 + n).

For each bit:
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---
Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Otherwise:
Reserved, RES0.

ID<n>, bit [n], for n = 0 to 31
ID[n] corresponds to common event n.

For each bit:
0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---
Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n>_EL0 registers of that earlier version of the PMU architecture.

Accessing the PMCEID0_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMCEID0_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 AArch64.SystemAccessTrap(EL3, 0x18);
UNDEFINED;
else
 AArch64.SystemAccessTrap(EL1, 0x18);
else
 return PMCEID0_EL0;
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(EL1) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID0_EL0;
 elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return PMCEID0_EL0;
 elsif PSTATE_EL == EL3 then
 return PMCEID0_EL0;
D13.4.4 PMCEID1_EL0, Performance Monitors Common Event Identification register 1

The PMCEID1_EL0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the ranges 0x0020 to 0x003F and 0x4020 to 0x403F. When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEID<n>_EL0 registers see *The PMU event number space and common events* on page D7-2715.

Configurations

AArch64 System register PMCEID1_EL0[31:0] is architecturally mapped to AArch32 System register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0[63:32] is architecturally mapped to AArch32 System register PMCEID3[31:0].

AArch64 System register PMCEID1_EL0[31:0] is architecturally mapped to External register PMCEID1[31:0].

AArch64 System register PMCEID1_EL0[63:32] is architecturally mapped to External register PMCEID3[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID1_EL0 are UNDEFINED.

Attributes

PMCEID1_EL0 is a 64-bit register.

Field descriptions

The PMCEID1_EL0 bit assignments are:
IDhi<\textit{n}>>, bit [\textit{n}+32], for \textit{n} = 0 to 31

\textbf{When FEAT\textunderscore PMUv3p1 is implemented:}

IDhi[n] corresponds to common event (0x4020 + \textit{n}).

For each bit:

- 0b0 The common event is not implemented, or not counted.
- 0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

\textbf{Note}

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID\textit{<n>_EL0} registers of that earlier version of the PMU architecture.

\textbf{Otherwise:}

Reserved, RES0.

ID<\textit{n}>, bit [\textit{n}], for \textit{n} = 0 to 31

ID[n] corresponds to common event (0x0020 + \textit{n}).

For each bit:

- 0b0 The common event is not implemented, or not counted.
- 0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

\textbf{Note}

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID\textit{<n>_EL0} registers of that earlier version of the PMU architecture.

\textbf{Accessing the PMCEID1_EL0}

Accesses to this register use the following encodings in the System instruction encoding space:

\textbf{MRS <Xt>, PMCEID1_EL0}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then

if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then

UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then

if EL2Enabled() & HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

else

AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() & MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then

if Halted() & EDSCR.SDD == '1' then

UNDEFINED;

else

AArch64.SystemAccessTrap(EL1, 0x18);
else
 return PMCEID1_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL1) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL1 trap priority when SDD == '1'" && MDCR_EL1.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCEID1_EL0;
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL2) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL2 trap priority when SDD == '1'" && MDCR_EL2.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCEID1_EL0;
 end
elsif PSTATE.EL == EL3 then
 return PMCEID1_EL0;
D13.4.5 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<->. Reading this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENCLR_EL0[31:0] is architecturally mapped to AArch32 System register PMCNTENCLR[31:0].

AArch64 System register PMCNTENCLR_EL0[31:0] is architecturally mapped to External register PMCNTENCLR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCNTENCLR_EL0 are UNDEFINED.

Attributes

PMCNTENCLR_EL0 is a 64-bit register.

Field descriptions

The PMCNTENCLR_EL0 bit assignments are:

```
| 63  | 56  | 48  | 40  | 32  | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| RES0 |     | C   |     |     |     | P<->, bit [n] |
```

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

- **0b0** When read, means the cycle counter is disabled. When written, has no effect.
- **0b1** When read, means the cycle counter is enabled. When written, disables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<->, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<->_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

- **0b0** When read, means that PMEVCNTR<->_EL0 is disabled. When written, has no effect.
- **0b1** When read, means that PMEVCNTR<->_EL0 is enabled. When written, disables PMEVCNTR<->_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENCLR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMCNTENCLR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCNTENCLR_EL0;
 end
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCNTENCLR_EL0;
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMCNTENCLR_EL0;
 end
elsif PSTATE.EL == EL3 then
 return PMCNTENCLR_EL0;
MSR PMCNTENCLR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
else
 PMCNTENCLR_EL0 = X[t];
end if

elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
else
 PMCNTENCLR_EL0 = X[t];
end if

elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if
 else
 PMCNTENCLR_EL0 = X[t];
 end if
else
 PMCNTENCLR_EL0 = X[t];
end if

elsif PSTATE.EL == EL3 then
 PMCNTENCLR_EL0 = X[t];
else
 PMCNTENCLR_EL0 = X[t];
end if
D13.4.6 PMCNTENSET_EL0, Performance Monitors Count Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<\textit{n}>. Reading this register shows which counters are enabled.

Configurations

AArch64 System register PMCNTENSET_EL0[31:0] is architecturally mapped to AArch32 System register PMCNTENSET[31:0].

AArch64 System register PMCNTENSET_EL0[31:0] is architecturally mapped to External register PMCNTENSET_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCNTENSET_EL0 are UNDEFINED.

Attributes

PMCNTENSET_EL0 is a 64-bit register.

Field descriptions

The PMCNTENSET_EL0 bit assignments are:

![Bit assignments](image)

Bits [63:32]

Reserved, RES0.

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

0b0 When read, means the cycle counter is disabled. When written, has no effect.

0b1 When read, means the cycle counter is enabled. When written, enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<\textit{n}>, bit [\textit{n}], for \textit{n} = 0 to 30

Event counter enable bit for PMEVCNTR<\textit{n}>_EL0.

If \textit{N} is less than 31, then bits [30:30] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, \textit{N} is the value in MDCR_EL2.HPMN. Otherwise, \textit{N} is the value in PMCR_EL0.N.

0b0 When read, means that PMEVCNTR<\textit{n}>_EL0 is disabled. When written, has no effect.

0b1 When read, means that PMEVCNTR<\textit{n}>_EL0 event counter is enabled. When written, enables PMEVCNTR<\textit{n}>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENSET_EL0

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMCNTENSET_EL0

```
if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    end
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return PMCNTENSET_EL0;
  end
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCNTEN == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return PMCNTENSET_EL0;
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return PMCNTENSET_EL0;
  end
elsif PSTATE.EL == EL3 then
  return PMCNTENSET_EL0;
else
  return PMCNTENSET_EL0;
end
```
if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 else
 if EL2Enabled() && HDFGWTR_EL2.PMCNTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 endif
else
 if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
else
 if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
else
 if PSTATE.EL == EL3 then
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 PMCNTENSEL_EL0 = X[t];
endif

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
D13.4.7 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

AArch64 System register PMCR_EL0[31:0] is architecturally mapped to AArch32 System register PMCR[31:0].

AArch64 System register PMCR_EL0[7:0] is architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR_EL0 are UNDEFINED.

Attributes

PMCR_EL0 is a 64-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31-24</td>
<td>IMP, implementer code</td>
</tr>
<tr>
<td>23-16</td>
<td>IDCODE, identification code</td>
</tr>
<tr>
<td>15-8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7-0</td>
<td>LP</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

IMP, bits [31:24]

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The implementer codes are allocated by Arm. A non-zero value has the same interpretation as MIDR_EL1.Implementer.

Use of this field is deprecated.

This field reads as an IMPLEMENTATION DEFINED value.

Access to this field is RO.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0x00:

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.
N, bits [15:11]
Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is 0b00000 then only PMCCNTR_EL0 is implemented. If the value is 0b11111 PMCCNTR_EL0 and 31 event counters are implemented.
When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return the value of MDCR_EL2.HPMN.
Access to this field is RO.

Bits [10:8]
Reserved, RES0.

LP, bit [7]
When FEAT_PMUv3p5 is implemented:
Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.
0b0 Event counter overflow on increment that causes unsigned overflow of PMEVCTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned overflow of PMEVCTR<n>_EL0[63:0].
If EL2 is implemented and MDCR_EL2.HPMN or HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

Note
The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of MDCR_EL2.HPMN or HDCR.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

LC, bit [6]
When AArch32 is supported at any Exception level:
Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.
0b0 Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR_EL0[63:0].
Arm deprecates use of PMCR_EL0.LC = 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

DP, bit [5]
When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):
Disable cycle counter when event counting is prohibited.
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by PMCCNTR_EL0 is disabled.
For more information see *Prohibiting event counting* on page D7-2703.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

- **0b0** Do not export events.
- **0b1** Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

- **0b0** When enabled, PMCCNTR_EL0 counts every clock cycle.
- **0b1** When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

- **0b0** No action.
- **0b1** Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

- **0b0** No action.
- **0b1** Reset all event counters accessible in the current Exception level, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.
In EL0 and EL1:

- If EL2 is implemented and enabled in the current Security state, and \texttt{MDCR_EL2.HPMN} is less than \texttt{PMCR_EL0.N}, a write of 1 to this bit does not reset event counters in the range \([\texttt{MDCR_EL2.HPMN..(PMCR_EL0.N-1)}]\).
- If EL2 is not implemented, EL2 is disabled in the current Security state, or \texttt{MDCR_EL2.HPMN} equals \texttt{PMCR_EL0.N}, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

\textbf{Note}

Resetting the event counters does not change the event counter overflow bits.

If \texttt{FEAT_PMUv3p5} is implemented, the values of \texttt{MDCR_EL2.HLP} and \texttt{PMCR_EL0.LP} are ignored, and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

\textbf{E, bit [0]}

Enable.

0b0 All event counters in the range [0..(PMN-1)] and \texttt{PMCCNTR_EL0}, are disabled.

0b1 All event counters in the range [0..(PMN-1)] and \texttt{PMCCNTR_EL0}, are enabled by \texttt{PMCNTENSET_EL0}.

If EL2 is implemented, then:

- If EL2 is using AArch32, PMN is \texttt{HDCR.HPMN}.
- If EL2 is using AArch64, PMN is \texttt{MDCR_EL2.HPMN}.
- If PMN is less than \texttt{PMCR_EL0.N}, this bit does not affect the operation of event counters in the range \([\texttt{PMN..(PMCR_EL0.N-1)}]\).

If EL2 is not implemented, PMN is \texttt{PMCR_EL0.N}.

\textbf{Note}

The effect of \texttt{MDCR_EL2.HPMN} or \texttt{HDCR.HPMN} on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of \texttt{MDCR_EL2.HPMN} or \texttt{HDCR.HPMN}.

On a Warm reset, this field resets to 0.

\section*{Accessing the PMCR_EL0}

Accesses to this register use the following encodings in the System instruction encoding space:

\textbf{MRS <Xt>, PMCR_EL0}

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

\begin{verbatim}
if \text{PSTATE.EL == EL0} then
 if \text{Halted()} \&\& \text{HaveEL(EL3)} \&\& \text{EDSCR.SDD == '1'} \&\& boolean \text{IMPLEMENTATION_DEFINED} "EL3 trap priority when SDD == '1'" \&\& \text{MDCR_EL3.TPM == '1'} then
 UNDEFINED;
 elsif \text{PMUSERENR_EL0.EN == '0'} then
 if \text{EL2Enabled()} \&\& \text{HCR_EL2.TGE == '1'} then
 \text{AArch64.SystemAccessTrap(EL2, 0x18)};
 else
 \text{AArch64.SystemAccessTrap(EL1, 0x18)};
 else
 \text{AArch64.SystemAccessTrap(EL0, 0x18)};
\end{verbatim}


```c

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end if
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    else
        return PMCR_EL0;
    end if
else
    if PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
            UNDEFINED;
        elseif PMUSERENR_EL0.EN == '0' then
            if EL2Enabled() && HCR_EL2.TGE == '1' then
                AArch64.SystemAccessTrap(EL2, 0x18);
            else
                AArch64.SystemAccessTrap(EL1, 0x18);
            end if
        elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end if
        else
            return PMCR_EL0;
        end if
    elseif PSTATE.EL == EL3 then
        return PMCR_EL0;
    else
        return PMCR_EL0;
    end if

MSR PMCR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
 elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if
 else
 return PMCR_EL0;
 end if
else
 if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
 elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if
 else
 return PMCR_EL0;
 end if
 elseif PSTATE.EL == EL3 then
 return PMCR_EL0;
 else
 return PMCR_EL0;
 end if

```
else
  AArch64.SystemAccessTrap(EL1, 0x18);
else
  PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL1) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL1.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      PMCR_EL0 = X[t];
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        PMCR_EL0 = X[t];
  elsif PSTATE.EL == EL3 then
    PMCR_EL0 = X[t];
D13.4.8 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

**Purpose**
Holds event counter n, which counts events, where n is 0 to 30.

**Configurations**
AArch64 System register PMEVCNTR<n>_EL0[31:0] is architecturally mapped to AArch32 System register PMEVCNTR<n>[31:0].
AArch64 System register PMEVCNTR<n>_EL0[31:0] is architecturally mapped to External register PMEVCNTR<n>_EL0[31:0].
This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<n>_EL0 are UNDEFINED.

**Attributes**
PMEVCNTR<n>_EL0 is a 64-bit register.

**Field descriptions**
The PMEVCNTR<n>_EL0 bit assignments are:

*When FEAT_PMUv3p5 is implemented:*

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 to 0</td>
<td>Event counter n</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 to 32</td>
<td>RES0</td>
</tr>
<tr>
<td>31 to 0</td>
<td>Event counter n</td>
</tr>
</tbody>
</table>

Reserved, RES0.

*Bits [31:0]*
Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Accessing the PMEVCNTR<n>_EL0**
PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of <n>.
If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

- If <n> is an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.
- If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

--- Note ---

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.<ER,EN>.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number
of implemented event counters. See MDCR_EL2.HPMN for more details.

---

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>MRS &lt;Xt&gt;, PMEVCNTR&lt;n&gt;_EL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && \( \text{EDSCR.SDD} = '1' \) && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif PMUSERENR_EL0.<ER,EN> == '00' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        elseif EL2Enabled() && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
    elseif PSTATE.EL == EL1 then
        if Halted() && HaveEL(EL3) && \( \text{EDSCR.SDD} = '1' \) && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
            UNDEFINED;
        elseif EL2Enabled() && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
    end
else
    return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
end

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
else
  if PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
  elsif PSTATE.EL == EL3 then
    return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVCNTR<n>_EL0, <Xt>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b10:n[4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    else
      EL2Enabled() && HCR_EL2.E2H,TGE) != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch64.SystemAccessTrap(EL3, 0x18);
        else
          PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
  elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && MDCR_EL3.TPM == '1' then
  UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end if
else
  PMEVCNTR_EL0(UInt(CRm<1:0>:op2<2:0>)) = X[t];
elsif PSTATE.EL == EL3 then
  PMEVCNTR_EL0(UInt(CRm<1:0>:op2<2:0>)) = X[t];
D13.4.9 PMEVTYPER<\text{n}>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<\text{n}>_EL0 characteristics are:

**Purpose**

Configures event counter n, where n is 0 to 30.

**Configurations**

AArch64 System register PMEVTYPER<\text{n}>_EL0[31:0] is architecturally mapped to AArch32 System register PMEVTYPER<\text{n}>[31:0].
AArch64 System register PMEVTYPER<\text{n}>_EL0[31:0] is architecturally mapped to External register PMEVTYPER<\text{n}>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<\text{n}>_EL0 are UNDEFINED.

**Attributes**

PMEVTYPER<\text{n}>_EL0 is a 64-bit register.

**Field descriptions**

The PMEVTYPER<\text{n}>_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>P, bit [31] Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER&lt;\text{n}&gt;_EL0.NSK bit. 0b0: Count events in EL1. 0b1: Do not count events in EL1. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>30</td>
<td>U, bit [30] User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER&lt;\text{n}&gt;_EL0.NSU bit. 0b0: Count events in EL0. 0b1: Do not count events in EL0. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>
NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.
Otherwise, events in Non-secure EL1 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.
Otherwise, events in Non-secure EL0 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.
If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the PMEVTYPER<n>_EL0.SH bit.

0b0      Do not count events in EL2.
0b1      Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.
Otherwise, events in Secure EL3 are not counted.
Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
MT, bit [25]

When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:

- Count events only on controlling PE.
- Count events from any PE with the same affinity at level 1 and above as this PE.

Note

- When the lowest level of affinity consists of logical PEs that are implemented using a multi-threading type approach, an implementation is described as multi-threaded. That is, the performance of PEs at the lowest affinity level is highly interdependent.
- Events from a different thread of a multithreaded implementation are not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in Table D7-7 on page D7-2715.
If `evtCount` is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value written:

- For the range `0x0000` to `0x003F`, no events are counted, and the value returned by a direct or external read of the `evtCount` field is the value written to the field.
- If 16-bit `evtCount` is implemented, for the range `0x4000` to `0x403F`, no events are counted, and the value returned by a direct or external read of the `evtCount` field is the value written to the field.
- For IMPLEMENTATIONDEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external read of the `evtCount` field is UNKNOWN.

--- Note

UNPREDICTABLE means the event must not expose privileged information.

---

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event from a set of common IMPLEMENTATIONDEFINED events, then no event is counted and the value read back on `evtCount` is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Accessing the PMEVTYPER<n>_EL0**

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTPYPER_EL0 with PMSELR_EL0.SEL set to n.

If FEAT_FGT is implemented and `<n>` is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

- If `<n>` is an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and `<n>` is greater than or equal to the number of accessible counters, then reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.
- If EL2 is implemented and enabled in the current Security state, and `<n>` is less than the number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

--- Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies the number of accessible event counters. Otherwise, the number of accessible event counters is the number of implemented event counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:
### MRS <Xt>, PMEVTYPE<n>_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b11:n[4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
        UNDEFINED;
    elsif PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
    end else
        PMEVTYPERn_EL0 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end else
                PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
            end else
                PSTATE.EL == EL1 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
            UNDEFINED;
        elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end else
                PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
            end else
                PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
            UNDEFINED;
        elseif Halted() && SCR_EL3.FGTEn == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
        end else
            PSTATE.EL == EL3 then
        if Halted() && SCR_EL3.FGTEn == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
        end
    end
end
**MSR PMEVTYPER<n>_EL0, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b11:n[4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end if
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL3 then
    PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else
    PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
end if

if PSTATE.EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() & HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL1, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end if
    if PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else if PSTATE.EL == EL3 then
    PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
else
    PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
end if

D13-3714  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  ARM DDI 0487F.c  Non-Confidential
D13.4.10 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR_EL1 characteristics are:

**Purpose**

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

**Configurations**

AArch64 System register PMINTENCLR_EL1[31:0] is architecturally mapped to AArch32 System register PMINTENCLR[31:0].

AArch64 System register PMINTENCLR_EL1[31:0] is architecturally mapped to External register PMINTENCLR_EL1[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMINTENCLR_EL1 are UNDEFINED.

**Attributes**

PMINTENCLR_EL1 is a 64-bit register.

**Field descriptions**

The PMINTENCLR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, bit [31]</td>
<td>PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:</td>
</tr>
<tr>
<td>P&lt;n&gt;, bit [n], for n = 0 to 30</td>
<td>Event counter overflow interrupt request disable bit for PMEVCNTR&lt;n&gt;_EL0.</td>
</tr>
</tbody>
</table>

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

| 0b0 | When read, means the PMEVCNTR<n>_EL0 event counter interrupt request is disabled. When written, has no effect. |
| 0b1 | When read, means the PMEVCNTR<n>_EL0 event counter interrupt request is enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request. |

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Accessing the PMINTENCLR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMINTENCLR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.PMINTEN == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        return PMINTENCLR_EL1;
    end if;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        return PMINTENCLR_EL1;
    end if;
elsif PSTATE.EL == EL3 then
    return PMINTENCLR_EL1;

MSR PMINTENCLR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.PMINTEN == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        PMINTENCLR_EL1 = X[t];
    end if;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        return PMINTENCLR_EL1;
    end if;
elsif PSTATE.EL == EL3 then
    return PMINTENCLR_EL1;

UNDEFINED;
elif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
  if Halted() \&\& EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMINTENCLR_EL1 = X[t];
  endif
else
  PMINTENCLR_EL1 = X[t];
endif
D13.4.11 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

The PMINTENSET_EL1 characteristics are:

**Purpose**

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

**Configurations**

AArch64 System register PMINTENSET_EL1[31:0] is architecturally mapped to AArch32 System register PMINTENSET[31:0].

AArch64 System register PMINTENSET_EL1[31:0] is architecturally mapped to External register PMINTENSET_EL1[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMINTENSET_EL1 are UNDEFINED.

**Attributes**

PMINTENSET_EL1 is a 64-bit register.

**Field descriptions**

The PMINTENSET_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>[31]</td>
<td>CPMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>0b0 When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.</td>
</tr>
<tr>
<td></td>
<td>0b1 When read, means the cycle counter overflow interrupt request is enabled. When written, enables the cycle count overflow interrupt request.</td>
</tr>
<tr>
<td>[n] for n = 0 to 30</td>
<td>PMEVCNTR&lt;n&gt;_EL0 event counter overflow interrupt request enable bit for PMEVCNTR&lt;n&gt;_EL0.</td>
</tr>
<tr>
<td></td>
<td>If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.</td>
</tr>
<tr>
<td></td>
<td>0b0 When read, means that the PMEVCNTR&lt;n&gt;_EL0 event counter interrupt request is disabled. When written, has no effect.</td>
</tr>
<tr>
<td></td>
<td>0b1 When read, means that the PMEVCNTR&lt;n&gt;_EL0 event counter interrupt request is enabled. When written, enables the PMEVCNTR&lt;n&gt;_EL0 interrupt request.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Accessing the PMINTENSET_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMINTENSEL1

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMINTEN == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      return PMINTENSEL1;
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        return PMINTENSEL1;
      elsif PSTATE.EL == EL3 then
        return PMINTENSEL1;

MSR PMINTENSEL1, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMINTEN == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      PMINTENSEL1 = X[t];
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && MDCR_EL3.TPM == '1' then

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b001</td>
</tr>
</tbody>
</table>
UNDEFINED;
elsif HaveEl(EL3) && MDCR_EL3.TPM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMINTENSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  PMINTENSET_EL1 = X[t];
D13.4.12 PMMIR_EL1, Performance Monitors Machine Identification Register

The PMMIR_EL1 characteristics are:

**Purpose**

Describes Performance Monitors parameters specific to the implementation to software.

**Configurations**

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to PMMIR_EL1 are UNDEFINED.

**Attributes**

PMMIR_EL1 is a 64-bit register.

**Field descriptions**

The PMMIR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:8]</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>[7:0]</td>
<td>SLOTS</td>
</tr>
</tbody>
</table>

**Bits [63:8]**

Reserved, RES0.

**SLOTS, bits [7:0]**

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is not implemented, this field might read as zero.

**Accessing the PMMIR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMMIR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b1110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDSCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGRTR_EL2.PMMIR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
  end
elsif HaveEL(EL3) & MDSCR_EL3.TPM == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    return PMMIR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && MDCR_EL3.TPM == '1' then
  UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return PMMIR_EL1;
  endif
else
  return PMMIR_EL1;
endif
D13.4.13 PMOVCSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register

The PMOVCSCLR_EL0 characteristics are:

**Purpose**

Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<n>. Writing to this register clears these bits.

**Configurations**

AArch64 System register PMOVCSCLR_EL0[31:0] is architecturally mapped to AArch32 System register PMOVSR[31:0].

AArch64 System register PMOVCSCLR_EL0[31:0] is architecturally mapped to External register PMOVCSCLR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMOVCSCLR_EL0 are UNDEFINED.

**Attributes**

PMOVCSCLR_EL0 is a 64-bit register.

**Field descriptions**

The PMOVCSCLR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>C</td>
<td>P&lt;n&gt;, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:32]**

Reserved, RES0.

**C, bit [31]**

Cycle counter overflow clear bit.

0b0  When read, means the cycle counter has not overflowed since this bit was last cleared. When written, has no effect.

0b1  When read, means the cycle counter has overflowed since this bit was last cleared. When written, clears the cycle counter overflow bit to 0.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**P<n>, bit [n], for n = 0 to 30**

Event counter overflow clear bit for PMEVCNTR<n>_EL0.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

0b0  When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last cleared. When written, has no effect.

0b1  When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last cleared. When written, clears the PMEVCNTR<n>_EL0 overflow bit to 0.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMOVSLR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRS <Xt>, PMOVSLR_EL0
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() \&\& HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    end
  elsif EL2Enabled() \&\& MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
    if Halted() \&\& EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return PMOVSLR_EL0;
  end
elsif PSTATE_EL == EL1 then
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() \&\& EDSCR.SDD == '1' \&\& HDFGRTR_EL2.PMOVSL == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() \&\& HDFGRTR_EL2.PMOVS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() \&\& HDFGRTR_EL2.PMOVS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() \&\& HDFGRTR_EL2.PMOVS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    return PMOVSLR_EL0;
  end
elsif PSTATE_EL == EL2 then
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) \&\& MDCR_EL3.TPM == '1' then
    if Halted() \&\& EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return PMOVSLR_EL0;
  end
elsif PSTATE_EL == EL3 then
  return PMOVSLR_EL0;
MSR PMOVSLR\_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1000</td>
<td>0b1100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1'" && MDCR\_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSEREN\_EL0.EN == '0' then
    if EL2Enabled() && HCR\_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    if EL2Enabled() && HCR\_EL2.\<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR\_EL3.FGTEn == '1') && HDFGWR\_EL2.PMOV\_S == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end if;
    end if;
  end if;
else
  PMOVSCLR\_EL0 = X[t];
end if;
D13.4.14  **PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register**

The PMOVSSET_EL0 characteristics are:

**Purpose**
Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<i>.

**Configurations**
AArch64 System register PMOVSSET_EL0[31:0] is architecturally mapped to AArch32 System register PMOVSSET[31:0].
AArch64 System register PMOVSSET_EL0[31:0] is architecturally mapped to External register PMOVSSET_EL0[31:0].
This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMOVSSET_EL0 are UNDEFINED.

**Attributes**
PMOVSSET_EL0 is a 64-bit register.

**Field descriptions**
The PMOVSSET_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:32]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>C, bit [31]</td>
<td>Cycle counter overflow set bit.</td>
</tr>
<tr>
<td>P&lt;n&gt;, bit [n], for n = 0 to 30</td>
<td>Event counter overflow set bit for PMEVCNTR&lt;i&gt;_EL0.</td>
</tr>
</tbody>
</table>

- **RES0**

- **C**

- **P<n>, bit [n]**

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**PMCR_EL0.LC** controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<i>_EL0[31:0] or unsigned overflow of PMEVCNTR<i>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMOVSSET_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } <Xt>, \text{ PMOVSSET_EL0}
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b011 & 0b1001 & 0b1110 & 0b011
\end{array}
\]

if PSTATE_EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end if;
    else
        if EL2Enabled() && MDCR_EL2.TPM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    end if;
else
    return PMOVSSET_EL0;
end if;

if PSTATE_EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        return PMOVSSET_EL0;
    end if;
else
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif EL2Enabled() && SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.PMOVS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HaveEL(EL3) && HDFGRTR_EL2.PMOVS == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        return PMOVSSET_EL0;
    end if;
else
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif EL2Enabled() && HDSCR_EL3.TPM == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return PMOVSSET_EL0;
    end if;
end if;
MSR PMOVSET_EL0, <X[t]>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    AArch64.SystemAccessTrap(EL1, 0x18);
  else
    AArch64.SystemAccessTrap(EL2, 0x18);
  endif
elsif EL2Enabled() && HCR_EL2.TGE == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  AArch64.SystemAccessTrap(EL1, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif

PMOVSET_EL0 = X[t];
else
  PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMOVSET = '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && HDFGWTR_EL2.PMOVSET == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endif
    endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL2, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
  AArch64.SystemAccessTrap(EL3, 0x18);
endif
else
  PMOVSET_EL0 = X[t];
else
  PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && HDFGWTR_EL2.PMOVSET == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endif
    endif
else
  PSTATE.EL == EL3 then
    PMOVSET_EL0 = X[t];
endif

D13.4.15 PMSEL_EL0, Performance Monitors Event Counter Selection Register

The PMSEL_EL0 characteristics are:

Purpose

Selects the current event counter PMEVCNTR<\texttt{n}>_EL0 or the cycle counter, CCNT.

PMSEL_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected event counter, and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCTR_EL0, to determine the value of a selected event counter.

Configurations

AArch64 System register PMSEL_EL0[31:0] is architecturally mapped to AArch32 System register PMSEL[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMSEL_EL0 are UNDEFINED.

Attributes

PMSEL_EL0 is a 64-bit register.

Field descriptions

The PMSEL_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<\texttt{n}>_EL0, where \texttt{n} is the value held in this field. This value identifies which event counter is accessed when a subsequent access to PMXEVTYPER_EL0 or PMXEVCTR_EL0 occurs.

This field can take any value from 0 (\texttt{0b00000}) to (PMCR.N)-1, or 31 (\texttt{0b11111}).

When PMSEL_EL0.SEL is \texttt{0b11111}, it selects the cycle counter and:

- A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.
- A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.
- A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects. See PMXEVCNTR_EL0 for more details.

For details of the results of accesses to the event counters, see PMXEVTYPER_EL0 and PMXEVCNTR_EL0.

For information about the number of counters accessible at each Exception level, see MDCR_EL2.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSEL_EL0

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMSEL_R_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif PMUSERENR_EL0.<ER,EN> == '00' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return PMSEL_R_EL0;
    end
elseif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return PMSEL_R_EL0;
    end
elseif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return PMSEL_R_EL0;
    end
elseif PSTATE.EL == EL3 then
    return PMSEL_R_EL0;
else
    return PMSEL_R_EL0;
end


MLR PMSELR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elseif PMUSERENR_EL0.<ER,EN> == '00' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    end
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    PMSELR_EL0 = X[t];
  end
elseif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elseif EL2Enabled() && HDFGWTR_EL2.PMSELR_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && HDFGWTR_EL2.PMSELR_EL0 == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    PMSELR_EL0 = X[t];
  end
elseif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elseif HaveEL(EL3) && HDFGWTR_EL2.PMSELR_EL0 == '1' then
    AArch64.SystemAccessTrap(EL3, 0x18);
  elseif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    PMSELR_EL0 = X[t];
  end
elseif PSTATE.EL == EL3 then
  PMSELR_EL0 = X[t];
D13.4.16  PMSWINC_EL0, Performance Monitors Software Increment register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see SW_INCR.

Configurations

AArch64 System register PMSWINC_EL0[31:0] is architecturally mapped to AArch32 System register PMSWINC[31:0].
AArch64 System register PMSWINC_EL0[31:0] is architecturally mapped to External register PMSWINC_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMSWINC_EL0 are UNDEFINED.

Attributes

PMSWINC_EL0 is a 64-bit register.

Field descriptions

The PMSWINC_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:31]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P&lt;n&gt;, bit [n], for n = 0 to 30</td>
<td>Event counter software increment bit for PMEVCNTR&lt;n&gt;_EL0.</td>
</tr>
</tbody>
</table>

If N is less than 31, then bits [30:N] are W1. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN. Otherwise, N is the value in PMCR_EL0.N.

0b0 No action. The write to this bit is ignored.
0b1 If PMEVCNTR<n>_EL0 is enabled and configured to count the software increment event, increments PMEVCNTR<n>_EL0 by 1. If PMEVCNTR<n>_EL0 is disabled, or not configured to count the software increment event, the write to this bit is ignored.

Accessing the PMSWINC_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

**MSR PMSWINC_EL0, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif PMUSERENR_EL0.<SW,EN> == '00' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL1, 0x18);
    end
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end
else
    PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    PMSWINC_EL0 = X[t];
else
    PMSWINC_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    PMSWINC_EL0 = X[t];
D13.4.17 PMUSERENR_EL0, Performance Monitors User Enable Register

The PMUSERENR_EL0 characteristics are:

**Purpose**

Enables or disables EL0 access to the Performance Monitors.

**Configurations**

AArch64 System register PMUSERENR_EL0[31:0] is architecturally mapped to AArch32 System register PMUSERENR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMUSERENR_EL0 are UNDEFINED.

**Attributes**

PMUSERENR_EL0 is a 64-bit register.

**Field descriptions**

The PMUSERENR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:4]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ER, bit [3]</th>
<th>Event counter Read. Traps EL0 access to event counters to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.</th>
</tr>
</thead>
</table>

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

<table>
<thead>
<tr>
<th>0b0</th>
<th>EL0 using AArch64: EL0 reads of the PMXEVCNTR_EL0 and PMEVCNTR&lt;n&gt;_EL0, and EL0 read/write accesses to the PMSELR_EL0, are trapped if PMUSERENR_EL0.EN is also 0. EL0 using AArch32: EL0 reads of the PMXEVCNTR and PMEVCNTR&lt;n&gt;, and EL0 read/write accesses to the PMSELR, are trapped if PMUSERENR_EL0.EN is also 0.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0b1</th>
<th>Overrides PMUSERENR_EL0.EN and enables:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• RO access to PMXEVCNTR_EL0 and PMEVCNTR&lt;n&gt;_EL0 at EL0.</td>
</tr>
<tr>
<td></td>
<td>• RW access to PMSELR_EL0 at EL0.</td>
</tr>
<tr>
<td></td>
<td>• RW access to PMSELR at EL0.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally UNKNOWN value.

<table>
<thead>
<tr>
<th>CR, bit [2]</th>
<th>Cycle counter Read. Traps EL0 access to cycle counter reads to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.</th>
</tr>
</thead>
</table>

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.
In AArch32 state, trapped MRC accesses are reported using EC syndrome value 0x03, trapped MRRC accesses are reported using EC syndrome value 0x04.

0b0
EL0 using AArch64: EL0 read accesses to the PMCCNTR_EL0 are trapped if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 read accesses to the PMCCNTR are trapped if PMUSERENR_EL0.EN is also 0.

0b1
Overrides PMUSERENR_EL0.EN and enables access to:
- PMCCNTR_EL0 at EL0.
- PMCCNTR at EL0.

SW, bit [1]
Traps Software Increment writes to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

In AArch64 state, trapped accesses are reported using EC syndrome value 0x18.

In AArch32 state, trapped accesses are reported using EC syndrome value 0x03.

0b0
EL0 using AArch64: EL0 writes to the PMSWINC_EL0 are trapped if PMUSERENR_EL0.EN is also 0.
EL0 using AArch32: EL0 writes to the PMSWINC are trapped if PMUSERENR_EL0.EN is also 0.

0b1
Overrides PMUSERENR_EL0.EN and enables access to:
- PMSWINC_EL0 at EL0.
- PMSWINC at EL0.

On a Warm reset, this field reset to an architecturally UNKNOWN value.

EN, bit [0]
Traps EL0 accesses to the Performance Monitor registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states as follows:

- In AArch64 state, MRS or MSR accesses to the following registers are reported using EC syndrome value 0x18:
  - PMCR_EL0, PMOVSCLR_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTPER_EL0, PMXEVNTR_EL0, PMCNTENSET_EL0, PMCNTENSET_EL0, PMOVSSET_EL0, PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.
  - PMSWINC_EL0, MSR accesses only.
  - If FEAT_PMUv3p4 is implemented, PMMIR_EL1.

- In AArch32 state, MRC or MCR accesses to the following registers are reported using EC syndrome value 0x03:
  - PMCR, PMOVSR, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTPER, PMXEVNTR, PMCNTENSET, PMCNTENCLR, PMOVSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.
  - PMSWINC, MCR accesses only.
  - If FEAT_PMUv3p4 is implemented, PMMIR.
  - If FEAT_PMUv3p1 is implemented, in AArch32 state, PMCEID2, and PMCEID3.

- In AArch32 state, MRRC or MCRR accesses to PMCCNTR are reported using EC syndrome value 0x04.

0b0
While at EL0, accesses to the specified registers at EL0 are trapped, unless overridden by one of PMUSERENR_EL0.{ER, CR, SW}.

0b1
While at EL0, software can access all of the specified registers.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing to the PMUSERENR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMUSERENR_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMUSERENR_EL0;
 end
else
 PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMUSERENR_EL0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMUSERENR_EL0;
 end
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return PMUSERENR_EL0;
 end
 elsif PSTATE.EL == EL3 then
 return PMUSERENR_EL0;
 end
```

D13-3736 © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c Non-Confidential ID072120
MSR PMUSERENR_EL0, <xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HaveEL(EL3) && EDSCR.SDD == '1' && HDFGWTR_EL2.PMUSERENR_EL0 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        PMUSERENR_EL0 = X[t];
    end if;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if;
    else
        PMUSERENR_EL0 = X[t];
    end if;
elsif PSTATE.EL == EL3 then
    PMUSERENR_EL0 = X[t];
else
    PMUSERENR_EL0 = X[t];
D13.4.18 PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

The PMXEVCNTR_EL0 characteristics are:

### Purpose
Reads or writes the value of the selected event counter, PMEVCNTR\(n\)\_EL0. PMSELR\_EL0.SEL determines which event counter is selected.

### Configurations
AArch64 System register PMXEVCNTR\_EL0[31:0] is architecturally mapped to AArch32 System register PMXEVCNTR[31:0].

This register is present only when FEAT\_PMUv3 is implemented. Otherwise, direct accesses to PMXEVCNTR\_EL0 are UNDEFINED.

### Attributes
PMXEVCNTR\_EL0 is a 64-bit register.

### Field descriptions
The PMXEVCNTR\_EL0 bit assignments are:

#### When FEAT\_PMUv3p5 is implemented:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>PMEVCNTR(n)</td>
</tr>
<tr>
<td>32-31</td>
<td>RESERVED (RES0)</td>
</tr>
<tr>
<td>0</td>
<td>PMEVCNTR(n)</td>
</tr>
</tbody>
</table>

PMEVCNTR\(n\), bits [63:0]

Value of the selected event counter, PMEVCNTR\(n\)\_EL0, where n is the value stored in PMSELR\_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

#### Otherwise:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>PMEVCNTR(n)</td>
</tr>
<tr>
<td>32-31</td>
<td>RESERVED (RES0)</td>
</tr>
<tr>
<td>31-32</td>
<td>PMEVCNTR(n)</td>
</tr>
<tr>
<td>0</td>
<td>PMEVCNTR(n)</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

PMEVCNTR\(n\), bits [31:0]

Value of the selected event counter, PMEVCNTR\(n\)\_EL0, where n is the value stored in PMSELR\_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

### Accessing the PMXEVCNTR\_EL0

If FEAT\_FGT is implemented and PMSELR\_EL0.SEL is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMXEVCNTR\_EL0 is as follows:

- If PMSELR\_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.

---

D13-3738  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible counters, then reads and writes of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of counters accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.<ER,EN>.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies the number of accessible event counters. Otherwise, the number of accessible event counters is the number of implemented event counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccc}
\text{MRS} & \text{<Xi>}, \text{PMXEVCNTR_EL0} & \text{op0} & \text{op1} \\
\hline
\text{0b11} & \text{0b011} & \text{0b1101} & \text{0b1101} & \text{0b010} \\
\end{array}
\]
elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when
    SDD == '1'' & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL3 then
  return PMXEVCNTR_EL0;
endif

MSR PMXEVCNTR_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when
    SDD == '1'' & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() & HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        PMXEVCNTR_EL0 = X[t];
  elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when
    SDD == '1'' & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMXEVCNTR_EL0 = X[t];
  elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TPM == '1' then
  UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end when;
else
  PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
  PMXEVCNTR_EL0 = X[t];
D13.4.19 PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

The PMXEVTYPER_EL0 characteristics are:

**Purpose**

When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0 register. When PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

**Configurations**

AArch64 System register PMXEVTYPER_EL0[31:0] is architecturally mapped to AArch32 System register PMXEVTYPER[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVTYPER_EL0 are UNDEFINED.

**Attributes**

PMXEVTYPER_EL0 is a 64-bit register.

**Field descriptions**

The PMXEVTYPER_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Bits [31:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>Event type register or PMCCFILTR_EL0</td>
</tr>
</tbody>
</table>

**Accessing the PMXEVTYPER_EL0**

If FEAT_FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

- If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of accessible counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP
- Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of event counters accessible at the current Exception level and Security state.
- Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

**Note**

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies the number of accessible event counters. Otherwise, the number of accessible event counters is the number of implemented event counters. See MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMXEVTYPER_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() & HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end
else
  return PMXEVTYPER_EL0;
end

if PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.HTEn == '1') & HDFGCR_EL2.PMEVTYPERn_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  end
else
  return PMXEVTYPER_EL0;
end

if PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) & MDCR_EL3.TPM == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  end
else
  return PMXEVTYPER_EL0;
end
else
  return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL3 then
  return PMXEVTYPER_EL0;

MSR PMXEVTYPER_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif PMUSERENR_EL0.EN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
  else
    PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL3 then
  PMXEVTYPER_EL0 = X[t];
D13.5  Activity Monitors registers

This section lists the Activity Monitors registers in AArch64.
D13.5.1  AMCFGR_EL0, Activity Monitors Configuration Register

The AMCFGR_EL0 characteristics are:

**Purpose**

Global configuration register for the activity monitors.
Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters.
AMCFGR_EL0 is applicable to both the architected and the auxiliary counter groups.

**Configurations**

AArch64 System register AMCFGR_EL0[31:0] is architecturally mapped to AArch32 System register AMCFGR[31:0].
AArch64 System register AMCFGR_EL0[31:0] is architecturally mapped to External register AMCFGR[31:0].
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCFGR_EL0 are UNDEFINED.

**Attributes**

AMCFGR_EL0 is a 64-bit register.

**Field descriptions**

The AMCFGR_EL0 bit assignments are:

```
 63 32 28 25 24 14 8 0
 RES0 NCG RES0 RAZ SIZE N
 HDBG

Bits [63:32]
Reserved, RES0.

NCG, bits [31:28]
Defines the number of counter groups.
The number of implemented counter groups is defined as [AMCFGR_EL0.NCG + 1].
If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of 0b0000. Otherwise, this field has a value of 0b0001.

Bits [27:25]
Reserved, RES0.

HDBG, bit [24]
Halt-on-debug supported.
From Armv8, this feature must be supported, and so this bit is 0b1.

0b0 AMCR_EL0.HDBG is RES0.
0b1 AMCR_EL0.HDBG is read/write.

Bits [23:14]
Reserved, RAZ.
SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the activity monitors Extension is defined as \([\text{AMCFGR_EL0.SIZE} + 1]\).

From Armv8, the counters are 64-bit, and so this field is 0b111111.

--- Note ---

Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as \([\text{AMCFGR_EL0.N} + 1]\).

Accessing the AMCFGR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

\(\text{MRS <Xt>, AMCFGR_EL0} \)

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b011 & 0b1101 & 0b0010 & 0b001
\end{array}
\]

if \text{PSTATE.EL} == EL0 then
 if \text{Halted()} && \text{HaveEL(EL3)} && \text{EDSCR.SDD} == '1' && \text{boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1'} then
 UNDEFINED;
 elseif \text{AMUSERENR_EL0.EN} == '0' then
 if \text{EL2Enabled()} && \text{HCR_EL2.TGE} == '1' then
 \text{AArch64.SystemAccessTrap(EL2, 0x18)};
 else
 \text{AArch64.SystemAccessTrap(EL1, 0x18)};
 endif
 else
 \text{AArch64.SystemAccessTrap(EL3, 0x18)};
 endif
else
 return AMCFGR_EL0;
endif
else
 if \text{PSTATE.EL} == EL1 then
 if \text{Halted()} && \text{HaveEL(EL3)} && \text{EDSCR.SDD} == '1' && \text{boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1'} then
 UNDEFINED;
 elseif \text{EL2Enabled()} && \text{CPTR_EL2.TAM} == '1' then
 \text{AArch64.SystemAccessTrap(EL2, 0x18)};
 else
 \text{AArch64.SystemAccessTrap(EL3, 0x18)};
 endif
 else
 return AMCFGR_EL0;
 endif
else
 if \text{PSTATE.EL} == EL2 then
 if \text{Halted()} && \text{HaveEL(EL3)} && \text{EDSCR.SDD} == '1' && \text{boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1'} then
 UNDEFINED;
 endif
 endif
endif
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCFGR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCFGR_EL0;
D13.5.2 AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register

The AMCG1IDR_EL0 characteristics are:

Purpose

Defines which auxiliary counters are implemented, and which of them have a corresponding virtual offset register, AMEVCNTVOFF1<n>_EL2 implemented.

Configurations

This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to AMCG1IDR_EL0 are UNDEFINED.

Attributes

AMCG1IDR_EL0 is a 64-bit register.

Field descriptions

The AMCG1IDR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 32 31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>16 15</td>
<td>AMEVCNTR1<n>_EL0, bit[n], for n = 0 to 15</td>
</tr>
<tr>
<td></td>
<td>AMEVCNTVOFF1<n>_EL2, bit[n+16], for n = 0 to 15</td>
</tr>
</tbody>
</table>

Accessing the AMCG1IDR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

* MRS <Xt>, AMCG1IDR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
UNDEFINED;
elif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else if HaveEL(EL3) & CPTR_EL3.TAM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
 elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
 elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCG1IDR_EL0;
 elsif PSTATE.EL == EL3 then
 return AMCG1IDR_EL0;
D13.5.3 AMCGCR_EL0, Activity Monitors Counter Group Configuration Register

The AMCGCR_EL0 characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

AArch64 System register AMCGCR_EL0[31:0] is architecturally mapped to AArch32 System register AMCGCR[31:0].

AArch64 System register AMCGCR_EL0[31:0] is architecturally mapped to External register AMCGCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCGCR_EL0 are UNDEFINED.

Attributes

AMCGCR_EL0 is a 64-bit register.

Field descriptions

The AMCGCR_EL0 bit assignments are:

63 16 8 7 0

RES0 CG1NC CG0NC

Bits [63:16]

Reserved, RES0.

CG1NC, bits [15:8]

Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group.

In an implementation that includes FEAT_AMUv1, the permitted range of values is 0x0 to 0x10.

CG0NC, bits [7:0]

Counter Group 0 Number of Counters. The number of counters in the architected counter group.

In an implementation that includes FEAT_AMUv1, the value of this field is 0x4.

Accessing the AMCGCR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AMCGCR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
else
 AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() \&\& CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) \&\& CPTR_EL3.TAM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
else
 return AMCGCR_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() \&\& CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) \&\& CPTR_EL3.TAM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCGCR_EL0;
 end
elsif PSTATE.EL == EL2 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) \&\& CPTR_EL3.TAM == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCGCR_EL0;
 end
elsif PSTATE.EL == EL3 then
 return AMCGCR_EL0;
elsif PSTATE.EL == EL3 then
 return AMCGCR_EL0;
D13.5.4 AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0_EL0 characteristics are:

Purpose

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENCLR0_EL0[31:0] is architecturally mapped to AArch32 System register AMCNTENCLR0[31:0].

AArch64 System register AMCNTENCLR0_EL0[31:0] is architecturally mapped to External register AMCNTENCLR0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0_EL0 are UNDEFINED.

Attributes

AMCNTENCLR0_EL0 is a 64-bit register.

Field descriptions

The AMCNTENCLR0_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:16]</th>
<th>(\text{RES0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<(n>), bit [n], for n = 0 to 15</td>
<td>(\text{AMEVCNTR0}<n>_\text{EL0})</td>
</tr>
</tbody>
</table>

Activity monitor event counter disable bit for \(\text{AMEVCNTR0}<n>_\text{EL0}\).

Bits [31:16] are \(\text{RES0}\). Bits [15:N] are RAZ/WI. \(N\) is the value in AMCGCR_EL0.CG0NC.

Possible values of each bit are:

\(0b0\) When read, means that \(\text{AMEVCNTR0}<n>_\text{EL0}\) is disabled. When written, has no effect.

\(0b1\) When read, means that \(\text{AMEVCNTR0}<n>_\text{EL0}\) is enabled. When written, disables \(\text{AMEVCNTR0}<n>_\text{EL0}\).

On a Cold reset, this field resets to \(0\).

Accessing the AMCNTENCLR0_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } <Xt>, \text{AMCNTENCLR0_EL0}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 UNDEFINED;
 else
 \text{MRS } <Xt>, \text{AMCNTENCLR0_EL0}
 end

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. D13-3753
ID072120 Non-Confidential
if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL3.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR0_EL0;
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR0_EL0;
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR0_EL0;
 elsif PSTATE.EL == EL3 then
 return AMCNTENCLR0_EL0;
 end
 else
 return AMCNTENCLR0_EL0;
 elsif PSTATE.EL == EL1 then
 if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0_EL0 = X[t];
 else
 UNDEFINED;
 end
 op0 op1 CRn CRm op2
 0b11 0b011 0b1101 0b0010 0b100

if IsHighestEL(PSTATE.EL) then
 AMCNTENCLR0_EL0 = X[t];
else
 UNDEFINED;
D13.5.5 AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1_EL0 characteristics are:

Purpose
Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations
AArch64 System register AMCNTENCLR1_EL0[31:0] is architecturally mapped to AArch32 System register AMCNTENCLR1[31:0].
AArch64 System register AMCNTENCLR1_EL0[31:0] is architecturally mapped to External register AMCNTENCLR1[31:0].
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1_EL0 are UNDEFINED.

Attributes
AMCNTENCLR1_EL0 is a 64-bit register.

Field descriptions
The AMCNTENCLR1_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:16]</th>
<th>Reserved, RES0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<n>, bit [n], for n = 0 to 15</td>
<td></td>
</tr>
<tr>
<td>Activity monitor event counter disable bit for AMEVCNTR1<n>_EL0.</td>
<td></td>
</tr>
<tr>
<td>Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.</td>
<td></td>
</tr>
<tr>
<td>Possible values of each bit are:</td>
<td></td>
</tr>
<tr>
<td>0b0</td>
<td>When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no effect.</td>
</tr>
<tr>
<td>0b1</td>
<td>When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, disables AMEVCNTR1<n>_EL0.</td>
</tr>
<tr>
<td>On a Cold reset, this field resets to 0.</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the AMCNTENCLR1_EL0

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENCLR1_EL0 are UNDEFINED.

Note
The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xi>, AMCNTECLR1_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR1_EL0;
 end
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTE1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR1_EL0;
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 else
 return AMCNTENCLR1_EL0;
 end
elsif PSTATE.EL == EL3 then
 return AMCNTENCLR1_EL0;
else
 return AMCNTENCLR1_EL0;
end
MSR AMCNTENCLR1_EL0, <Xt>

```
if IsHighestEL(PSTATE.EL) then
  AMCNTENCLR1_EL0 = X[t];
else
  UNDEFINED;
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.5.6 AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0_EL0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.

Configurations

AArch64 System register AMCNTENSET0_EL0[31:0] is architecturally mapped to AArch32 System register AMCNTENSET0[31:0].

AArch64 System register AMCNTENSET0_EL0[31:0] is architecturally mapped to External register AMCNTENSET0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0_EL0 are UNDEFINED.

Attributes

AMCNTENSET0_EL0 is a 64-bit register.

Field descriptions

The AMCNTENSET0_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:16]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>P<n>, bit [n], for n = 0 to 15</td>
<td>Activity monitor event counter enable bit for AMEVCNTR0<n>_EL0.</td>
</tr>
</tbody>
</table>

Bits [31:16] are res0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG0NC. Possible values of each bit are:

- **0b0**: When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no effect.
- **0b1**: When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, enables AMEVCNTR0<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AMCNTENSET0_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1' || CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return AMCNTENSET0_EL0;
else
 return AMCNTENSET0_EL0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return AMCNTENSET0_EL0;
else
 PSTATE.EL == EL3 then
 return AMCNTENSET0_EL0;
else
 return AMCNTENSET0_EL0;

MSR AMCNTENSET0_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if IsHighestEL(PSTATE.EL) then
 AMCNTENSET0_EL0 = X[t];
else
 UNDEFINED;
D13.5.7 AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1_EL0 characteristics are:

Purpose
Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>_EL0.

Configurations
- AArch64 System register AMCNTENSET1_EL0[31:0] is architecturally mapped to AArch32 System register AMCNTENSET1[31:0].
- AArch64 System register AMCNTENSET1_EL0[31:0] is architecturally mapped to External register AMCNTENSET1[31:0].
- This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1_EL0 are UNDEFINED.

Attributes
AMCNTENSET1_EL0 is a 64-bit register.

Field descriptions
The AMCNTENSET1_EL0 bit assignments are:

![Bit assignments diagram]

Bits [63:16]
Reserved, RES0.

P<n>, bit [n], for n = 0 to 15
Activity monitor event counter enable bit for AMEVCNTR1<n>_EL0.
Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC. Possible values of each bit are:
- 0b0 When read, means that AMEVCNTR1<n>_EL0 is disabled. When written, has no effect.
- 0b1 When read, means that AMEVCNTR1<n>_EL0 is enabled. When written, enables AMEVCNTR1<n>_EL0.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET1_EL0
If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENSET1_EL0 are UNDEFINED.

--- Note ---
The number of auxiliary activity monitor counters implemented is zero when AMCFGR_EL0.NCG == 0b0000.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, AMCNTENSET1_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1') then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1') then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && ((HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
 HAFGRTR_EL2.AMCNTEN1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return AMCNTENSET1_EL0;
 end
 else
 return AMCNTENSET1_EL0;
 end
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1') then
 UNDEFINED;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return AMCNTENSET1_EL0;
 end
 else
 return AMCNTENSET1_EL0;
 end
 elsif PSTATE.EL == EL3 then
 return AMCNTENSET1_EL0;
 else
 return AMCNTENSET1_EL0;
 end
 end
end
MSR AMCNTENSET1_EL0, <Xt>

```plaintext
if IsHighestEL(PSTATE.EL) then
    AMCNTENSET1_EL0 = X[t];
else
    UNDEFINED;
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>
D13.5.8 AMCR_EL0, Activity Monitors Control Register

The AMCR_EL0 characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR_EL0 is applicable to both the architectured and the auxiliary counter groups.

Configurations

AArch64 System register AMCR_EL0[31:0] is architecturally mapped to AArch32 System register AMCR[31:0].

AArch64 System register AMCR_EL0[31:0] is architecturally mapped to External register AMCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCR_EL0 are UNDEFINED.

Attributes

AMCR_EL0 is a 64-bit register.

Field descriptions

The AMCR_EL0 bit assignments are:

![AMCR_EL0 Bit Assignments Diagram]

Bits [63:18]

Reserved, RES0.

CG1RZ, bit [17]

When FEAT_AMUv1p1 is implemented:

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCTR1<n>_EL0 return the event count at all implemented and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system register reads of AMEVCTR1<n>_EL0 return the event count. Otherwise, reads of AMEVCTR1<n>_EL0 return a zero value.

Note

Reads from the memory-mapped view are unaffected by this field.

Otherwise:

Reserved, RES0.

Bits [16:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.
Activity monitors halt counting when the PE is halted in Debug state.

Bits [9:0]
Reserved, RES0.

Accessing the AMCR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, AMCR_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b01</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPR_EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR_EL0.EN == '0' then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    elsif EL2Enabled() & CPR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & CPR_EL3.TAM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return AMCR_EL0;
    end
elsif PSTATE_EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPR_EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() & CPR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & CPR_EL3.TAM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return AMCR_EL0;
    end
elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPR_EL3.TAM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & CPR_EL3.TAM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return AMCR_EL0;
    end
elsif PSTATE_EL == EL3 then
    return AMCR_EL0;
```

MSR AMCR_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMCR_EL0 = X[t];
else
 UNDEFINED;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.5.9 AMEVCNTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 15

The AMEVCNTR0<n>_EL0 characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR0<n>_EL0[63:0] is architecturally mapped to AArch32 System register AMEVCNTR0<n>[63:0].

AArch64 System register AMEVCNTR0<n>_EL0[63:0] is architecturally mapped to External register AMEVCNTR0<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR0<n>_EL0 is a 64-bit register.

Field descriptions

The AMEVCNTR0<n>_EL0 bit assignments are:

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not {1,1}, and EL2 is implemented in the current Security state, access to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTRVOFF0<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR0<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVCNTR0<n>_EL0 are UNDEFINED.

--- Note ---

AMECGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, AMEVCNTR0<n>_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b010:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 end
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end
 end
else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
end

if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
 elsif EL2Enabled() && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 end
else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
end

if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif EL2Enabled() && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 end
else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
end

if PSTATE.EL == EL3 then
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
else
 return AMEVCNTR0_EL0[UInt(CRm<0>:op2<2:0>)];
end
MSR AMEVCNTR0<n>_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b010:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if IsHighestEl(PSTATE.EL) then
 AMEVCNTR0_EL0[UInt(CRn<0>:op2<2:0>)] = X[t];
else
 UNDEFINED;
D13.5.10 AMEVCNTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n>_EL0 characteristics are:

Purpose

Provides access to the auxiliary activity monitor event counters.

Configurations

AArch64 System register AMEVCNTR1<n>_EL0[63:0] is architecturally mapped to AArch32 System register AMEVCNTR1<n>[63:0].

AArch64 System register AMEVCNTR1<n>_EL0[63:0] is architecturally mapped to External register AMEVCNTR1<n>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n>_EL0 are UNDEFINED.

Attributes

AMEVCNTR1<n>_EL0 is a 64-bit register.

Field descriptions

The AMEVCNTR1<n>_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>??</td>
<td>ACNT</td>
</tr>
<tr>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

ACNT, bits [63:0]

Auxiliary activity monitor event counter n.

Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not {1,1}, EL2 is implemented in the current Security state, and AMCR_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTRVOFF1<n>_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<n>_EL0 is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR1<n>_EL0

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<n>_EL0 are UNDEFINED.

--- **Note** ---

AMCGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, AMEVCNTR1<n>_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b110:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif AMUSERENER_EL0.EN == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
 end if
 if Halted() & EDSCR.SDD == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 end if
else
 AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 AMEVCNTR1_EL0[(UInt(CRm<0>:op2<2:0>)]
 end if
end if

if PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() & CPTR_EL2.TAM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif Halted() & !HaveEL(EL3) & SCR_EL3.FGTEn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if
 end if
else
 AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 AMEVCNTR1_EL0[(UInt(CRm<0>:op2<2:0>)]
 end if
end if

if PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMCR_EL0.CG1RZ == '1' then
 return Zeros();
 else
 AMEVCNTR1_EL0[(UInt(CRm<0>:op2<2:0>)]
 end if
end if

if PSTATE.EL == EL3 then
 return AMEVCNTR1_EL0[(UInt(CRm<0>:op2<2:0>)]
end if
MSR AMEVCNTR1<n>_EL0, <Xt>

if IsHighestEL(PSTATE.EL) then
 AMEVCNTR1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];
else
 UNDEFINED;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b110:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>
D13.5.11 AMEVCNTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15

The AMEVCNTVOFF0<n>_EL2 characteristics are:

Purpose
Holds the 64-bit virtual offset for architected activity monitor events.

Configurations
This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Attributes
AMEVCNTVOFF0<n>_EL2 is a 64-bit register.

Field descriptions
The AMEVCNTVOFF0<n>_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual offset</th>
</tr>
</thead>
</table>

Bits [63:0]
Virtual offset.
This field resets to an architecturally UNKNOWN value.

Accessing the AMEVCNTVOFF0<n>_EL2
If <n> is not 0, 2 or 3, reads and writes of AMEVCNTVOFF0<n>_EL2 are UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>MRS <Xt>, AMEVCNTVOFF0<n>_EL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
</tr>
<tr>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL<2, NV> == '11' then
return NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
UNDEFINED;

...
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
else
 return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];
elsif PSTATE.EL == EL3 then
 return AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)];

MSR AMEVCNTVOFF0<n>_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b101</td>
<td>0b100:3</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0xA00+8*UInt(CRm<0>:op2<2:0>)] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elseif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
 elsif PSTATE.EL == EL3 then
 AMEVCNTVOFF0_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];

else
 AArch64.SystemAccessTrap(EL3, 0x18);
D13.5.12 AMEVCNTVOFF1\(<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15

The AMEVCNTVOFF1\(<n>_EL2 characteristics are:

Purpose
Holds the 64-bit virtual offset for auxiliary activity monitor events.

Configurations
This register is present only when FEAT_AMUv1p1 is implemented. Otherwise, direct accesses to AMEVCNTVOFF1\(<n>_EL2 are UNDEFINED.

Attributes
AMEVCNTVOFF1\(<n>_EL2 is a 64-bit register.

Field descriptions
The AMEVCNTVOFF1\(<n>_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual offset</th>
</tr>
</thead>
</table>

Accessing the AMEVCNTVOFF1\(<n>_EL2

Note
AMCG1IDR_EL0 identifies which auxiliary activity monitor event counters have a corresponding virtual offset implemented.

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRS <Xt>, AMEVCNTVOFF1\(<n>_EL2 \]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
\hline
0b11 & 0b100 & 0b101 & 0b101:n[3] & n[2:0] \\
\end{array}
\]

if PSTATE.EL == EL0 then
UNDEFINED;
elsi
if EL2Enabled() \&\& HCR_EL2.NV2,NV == '1' then
return NVMem[0xA80+8&UInt(CRm<0>:op2<2:0>)];
elsi EL2Enabled() \&\& HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsi PSTATE.EL == EL2 then
if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" \&\& CPTR_EL3.TAM == '1' then
UNDEFINED;
elsi Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" \&\& SCR_EL3.AMVOFFEN == '0' then

UNDEFINED;
elsif HaveEl(EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
elsif HaveEl(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
else
 return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];
endif;
else
 if PSTATE.EL == EL3 then
 return AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)];
 else
 AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
 endif;
endif;
else
 if PSTATE.EL == EL0 then
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0xA80+8+UInt(CRm<0>:op2<2:0>)] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 end if;
 elseif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.AMVOFFEN == '0' then
 UNDEFINED;
 elsif HaveEL_EL3) && SCR_EL3.AMVOFFEN == '0' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end if;
 else
 AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
 endif;
 endif;
endif;
else
 AMEVCNTVOFF1_EL2[UInt(CRm<0>:op2<2:0>)] = X[t];
endif;

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1101</td>
<td>0b101:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>
D13.5.13 AMEVTYPER0<n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 15

The AMEVTYPER0<n>_EL0 characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n>_EL0 counts.

Configurations

AArch64 System register AMEVTYPER0<n>_EL0[31:0] is architecturally mapped to AArch32 System register AMEVTYPER0<n>[31:0].

AArch64 System register AMEVTYPER0<n>_EL0[31:0] is architecturally mapped to External register AMEVTYPER0<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n>_EL0 are UNDEFINED.

Attributes

AMEVTYPER0<n>_EL0 is a 64-bit register.

Field descriptions

The AMEVTYPER0<n>_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:16]</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [15:0]</td>
<td>evtCount</td>
</tr>
</tbody>
</table>

Bits [63:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor event counter AMEVCNTR0<n>_EL0. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

0x0011 When n == 0	Processor frequency cycles
0x4004 When n == 1	Constant frequency cycles
0x0008 When n == 2	Instructions retired
0x4005 When n == 3	Memory stall cycles

Accessing the AMEVTYPER0<n>_EL0

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPER0<n>_EL0 are UNDEFINED.

--- Note ---

AMECGCR_EL0.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS `<Xt>`, AMEVTYPE0<`n>` _EL0_

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b011:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        endif
    else
        if EL2Enabled() && CPTR_EL2.TAM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        endif
    endelse
    return AMEVTYPE0_EL0[UInt(CRm<0>:op2<2:0>)];
elif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        if EL2Enabled() && CPTR_EL3.TAM == '1' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    endelse
    return AMEVTYPE0_EL0[UInt(CRm<0>:op2<2:0>)];
elif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    endelse
    return AMEVTYPE0_EL0[UInt(CRm<0>:op2<2:0>)];
elif PSTATE.EL == EL3 then
    return AMEVTYPE0_EL0[UInt(CRm<0>:op2<2:0>)];
```

```
D13.5.14  AMEVTPER1<\(n\)>_EL0, Activity Monitors Event Type Registers 1, \(n = 0 - 15\)

The AMEVTPER1<\(n\)>_EL0 characteristics are:

**Purpose**

Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<\(n\)>_EL0 counts.

**Configurations**

AArch64 System register AMEVTPER1<\(n\)>_EL0[31:0] is architecturally mapped to AArch32 System register AMEVTPER1<\(n\)>[31:0].

AArch64 System register AMEVTPER1<\(n\)>_EL0[31:0] is architecturally mapped to External register AMEVTPER1<\(n\)>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTPER1<\(n\)>_EL0 are UNDEFINED.

**Attributes**

AMEVTPER1<\(n\)>_EL0 is a 64-bit register.

**Field descriptions**

The AMEVTPER1<\(n\)>_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>evtCount</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:16]**

Reserved, RES0.

**evtCount, bits [15:0]**

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR1<\(n\)>_EL0.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<\(n\)>_EL0, then:

- It is UNPREDICTABLE which event will be counted.
- The value read back is UNKNOWN.

The event counted by AMEVCNTR1<\(n\)>_EL0 might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<\(n\)>_EL0 is enabled, writes to this register have UNPREDICTABLE results.

**Accessing the AMEVTPER1<\(n\)>_EL0**

If \(<n\>\) is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVTPER1<\(n\)>_EL0 are UNDEFINED.

--- **Note** ---

AMECGCR_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS \texttt{<Xt>}, AMEVTYPER1_\texttt{n}_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b111:n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif AMUSERENR_EL0.EN == '0' then
        if EL2Enabled() & HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        end
    else
        if EL2Enabled() & CPTR_EL2.TAM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif EL2Enabled() & CPTR_EL2.TAM == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif EL2Enabled() & !HaveEL(EL3) || SCR_EL3.FGTEn == '1' & HAFGRTR_EL2.AMEVTYPER1_\texttt{n}_EL0 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
            if Halted() & EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end
        elsif PSTATE.EL == EL1 then
            if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
                UNDEFINED;
            elsif EL2Enabled() & CPTR_EL2.TAM == '1' then
                AArch64.SystemAccessTrap(EL2, 0x18);
            elsif EL2Enabled() & !HaveEL(EL3) || SCR_EL3.FGTEn == '1' & HAFGRTR_EL2.AMEVTYPER1_\texttt{n}_EL0 == '1' then
                AArch64.SystemAccessTrap(EL2, 0x18);
            elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
                if Halted() & EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.SystemAccessTrap(EL3, 0x18);
                end
            else
                return AMEVTYPER1_\texttt{n}_EL0[UInt(CRm<0>:op2<2:0>)];
            end
        elsif PSTATE.EL == EL2 then
            if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & CPTR_EL3.TAM == '1' then
                UNDEFINED;
            elsif HaveEL(EL3) & CPTR_EL3.TAM == '1' then
                if Halted() & EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.SystemAccessTrap(EL3, 0x18);
                end
            else
                return AMEVTYPER1_\texttt{n}_EL0[UInt(CRm<0>:op2<2:0>)];
            end
        elsif PSTATE.EL == EL3 then
            return AMEVTYPER1_\texttt{n}_EL0[UInt(CRm<0>:op2<2:0>)];
        end
    end
end

return AMEVTYPER1_\texttt{n}_EL0[UInt(CRm<0>:op2<2:0>)];
MSR AMEVTYPER1<\text{n}_EL0, <Xt>

\begin{verbatim}
if IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1<\text{n}_EL0 is fixed" then
  AMEVTYPER1_EL0[UInt(CRm<0>:op2<2:0>)] = X[t];
else
  UNDEFINED;
\end{verbatim}
D13.5.15 AMUSERENR_EL0, Activity Monitors User Enable Register

The AMUSERENR_EL0 characteristics are:

**Purpose**

Global user enable register for the activity monitors. Enables or disables EL0 access to the activity monitors. AMUSERENR_EL0 is applicable to both the architected and the auxiliary counter groups.

**Configurations**

AArch64 System register AMUSERENR_EL0[31:0] is architecturally mapped to AArch32 System register AMUSERENR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMUSERENR_EL0 are UNDEFINED.

**Attributes**

AMUSERENR_EL0 is a 64-bit register.

**Field descriptions**

The AMUSERENR_EL0 bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSZ 63 1
EN
```

**Bits [63:1]**

Reserved, RES0.

**EN, bit [0]**

Traps EL0 accesses to the activity monitors registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- **In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value 0x18:**
  - AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCTR0<n>_EL0, AMEVCTR1<n>_EL0, AMEVTPYR0<n>_EL0, and AMEVTPYR1<n>_EL0.
- **In AArch32 state, MRC and MCRR accesses to the following registers are trapped and reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped and reported using EC syndrome value 0x04:**
  - AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR, AMEVCTR0<n>, AMEVCTR1<n>, AMEVTPYR0<n>, and AMEVTPYR1<n>.

0b0 EL0 accesses to the activity monitors registers are trapped.

0b1 This control does not cause any instructions to be trapped. Software can access all activity monitor registers at EL0.

**Note**

- AMUSERENR_EL0 can always be read at EL0 and is not governed by this bit.
Accessing the AMUSERENR_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, AMUSERENR_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return AMUSERENR_EL0;
  end
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return AMUSERENR_EL0;
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    return AMUSERENR_EL0;
  end
elsif PSTATE.EL == EL3 then
  return AMUSERENR_EL0;
else
  return AMUSERENR_EL0;
end

**MSR AMUSERENR_EL0, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  else
    return AMUSERENR_EL0;
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  else
    return AMUSERENR_EL0;
  end
elsif PSTATE.EL == EL3 then
  return AMUSERENR_EL0;
elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
  AMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      AMUSERENR_EL0 = X[t];
  else
    AMUSERENR_EL0 = X[t];
elsif PSTATE.EL == EL3 then
  AMUSERENR_EL0 = X[t];
D13.6  Statistical Profiling Extension registers

This section lists the Statistical Profiling Extension registers in AArch64.
### D13.6.1 PMBIDR_EL1, Profiling Buffer ID Register

The PMBIDR_EL1 characteristics are:

**Purpose**

Provides information to software as to whether the buffer can be programmed at the current Exception level.

**Configurations**

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBIDR_EL1 are **UNDEFINED**.

**Attributes**

PMBIDR_EL1 is a 64-bit register.

**Field descriptions**

The PMBIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>6</td>
<td>F, bit [5]</td>
</tr>
<tr>
<td>5</td>
<td>Flags updates. Defines whether the address translation performed by the Profiling Buffer manages the Access Flag and dirty state.</td>
</tr>
<tr>
<td>4</td>
<td>P, bit [4]</td>
</tr>
<tr>
<td>3</td>
<td>Programming not allowed. The Profiling Buffer is owned by a higher Exception level or the other Security state.</td>
</tr>
</tbody>
</table>

#### Bits [63:6]

Reserved, RES0.

#### F, bit [5]

Flag updates. Defines whether the address translation performed by the Profiling Buffer manages the Access Flag and dirty state.

- **0b0**: Hardware management of the Access Flag and dirty state for accesses made by the Statistical Profiling Extension is always disabled for all translation stages.
- **0b1**: Hardware management for the Access Flag and dirty state for accesses made by the Statistical Profiling Extension is controlled in the same way as explicit memory accesses in the owning translation regime.

If hardware management of the Access Flag is disabled for a stage of translation, an access to Page or Block with the Access flag bit not set in the descriptor will generate an Access Flag fault.

If hardware management of the dirty state is disabled for a stage of translation, an access to a Page or Block will ignore the Dirty Bit Modifier in the descriptor might generate a Permission fault, depending on the values of the access permission bits in the descriptor.

#### P, bit [4]

Programming not allowed. The Profiling Buffer is owned by a higher Exception level or the other Security state.

- **0b0**: Profiling Buffer is owned by the current or a lower Exception level in the current Security state.
- **0b1**: Profiling Buffer is owned by a higher Exception level or the other Security state.

The value read from this field depends on the current Exception level and the Effective values of MDCR_EL3.NSPB and MDCR_EL2.E2PB:

- If EL3 is implemented, and either MDCR_EL3.NSPB == 0b00 or MDCR_EL3.NSPB == 0b01, this bit reads as one from:
  - Non-secure EL1.
  - Non-secure EL2.
— If Secure EL2 is implemented and enabled, and `MDCR_EL2.E2PB == 0b00`, Secure EL1.

- If EL3 is implemented, and either `MDCR_EL3.NSPB == 0b10` or `MDCR_EL3.NSPB == 0b11`, this bit reads as one from:
  — Secure EL1.
  — If Secure EL2 is implemented, Secure EL2.
  — If EL2 is implemented and `MDCR_EL2.E2PB == 0b00`, Non-secure EL1.

- If EL3 is not implemented, EL2 is implemented, and `MDCR_EL2.E2PB == 0b00`, this bit reads as one from EL1.
- Otherwise, this bit reads as zero.

Align, bits [3:0]
Defines the minimum alignment constraint for `PMBPTR_EL1`. If this field is non-zero, then the PE must pad every record up to a multiple of this size.

- `0b0000` Byte
- `0b0001` Halfword.
- `0b0010` Word.
- `0b0011` Doubleword.
- `0b0100` 16 Bytes.
- `0b0101` 32 Bytes.
- `0b0110` 64 Bytes.
- `0b0111` 128 Bytes.
- `0b1000` 256 Bytes.
- `0b1001` 512 Bytes.
- `0b1010` 1KB.
- `0b1011` 2KB.

For more information, see *Restrictions on the current write pointer* on page D9-2792.

Accessing the PMBIDR_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRS <Xt>, PMBIDR_EL1 \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b100</td>
<td>0b101</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if `PSTATE.EL == EL0` then
  UNDEFINED;
elif `PSTATE.EL == EL1` then
  return PMBIDR_EL1;
elif `PSTATE.EL == EL2` then
  return PMBIDR_EL1;
elif `PSTATE.EL == EL3` then
  return PMBIDR_EL1;
D13.6.2 PMBLIMITR_EL1, Profiling Buffer Limit Address Register

The PMBLIMITR_EL1 characteristics are:

Purpose

Defines the upper limit for the profiling buffer, and enables the profiling buffer

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBLIMITR_EL1 are UNDEFINED.

Attributes

PMBLIMITR_EL1 is a 64-bit register.

Field descriptions

The PMBLIMITR_EL1 bit assignments are:

LIMIT, bits [63:12]

Limit address. PMBLIMITR_EL1.LIMIT:Zeros(12) is the address of the first byte in memory after the last byte in the profiling buffer. If the smallest implemented translation granule is not 4KB, then bits[N-1:12] are RES0, where N is the IMPLEMENTATION DEFINED value, Log2(smallest implemented translation granule).

This field resets to an architecturally UNKNOWN value.

Bits [11:3]

Reserved, RES0.

FM, bits [2:1]

Fill mode.

0b00 Fill mode. Stop collection and raise maintenance interrupt on buffer fill.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

E, bit [0]

Profiling Buffer enable

0b0 All output is discarded.

0b1 Profiling buffer enabled.

On a Warm reset, this field resets to 0.

Accessing the PMBLIMITR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
## MRS <Xt>, PMBLIMITR_EL1

### ARM System Register Descriptions

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMBLIMITR_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
  return NVMem[0x800];
else
  return PMBLIMITR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  return PMBLIMITR_EL1;
elsif PSTATE.EL == EL3 then
  return PMBLIMITR_EL1;
MSR PMBLIMITR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBLIMITR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDSCR_EL2.E2PB == 'x0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
    NVMem[0x800] = X[t];
  else
    PMBLIMITR_EL1 = X[t];
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    PMBLIMITR_EL1 = X[t];
  end
elsif PSTATE.EL == EL3 then
  PMBLIMITR_EL1 = X[t];
### D13.6.3 PMBPTR_EL1, Profiling Buffer Write Pointer Register

The PMBPTR_EL1 characteristics are:

**Purpose**
Defines the current write pointer for the profiling buffer.

**Configurations**
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBPTR_EL1 are UNDEFINED.

**Attributes**
PMBPTR_EL1 is a 64-bit register.

**Field descriptions**
The PMBPTR_EL1 bit assignments are:

![Register Diagram]

**PTR, bits [63:0]**
Current write address. Defines the virtual address of the next entry to be written to the buffer.

The architecture places restrictions on the values software can write to the pointer. For more information see *Restrictions on the current write pointer on page D9-2792.*

**Note**
As a result, an implementation might treat some of bits[M:0], where M is defined by PMBIDR_EL1.Align, as RES0.

On a management interrupt, PMBPTR_EL1 is frozen.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

### Accessing the PMBPTR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMBPTR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGTR_EL2.PMBPTR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
    PTR

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsif haveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
  return NVMem[0x810];
else
  return PMBPTR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elfs If haveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL1, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  return PMBPTR_EL1;
elsif PSTATE.EL == EL3 then
  return PMBPTR_EL1;

MSR PMBPTR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && CRF_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBPTR_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
else
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  return PMBPTR_EL1;
AArch64 System Register Descriptions
D13.6 Statistical Profiling Extension registers

AArch64.SystemAccessTrap(EL3, 0x18);
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
  NVMem[0x810] = X[t];
else
  PMBPTR_EL1 = X[t];
elif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  PMBPTR_EL1 = X[t];
elif PSTATE.EL == EL3 then
  PMBPTR_EL1 = X[t];
### D13.6.4 PMBSR_EL1, Profiling Buffer Status/syndrome Register

The PMBSR_EL1 characteristics are:

**Purpose**

Provides syndrome information to software when the buffer is disabled because the management interrupt has been raised.

**Configurations**

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBSR_EL1 are UNDEFINED.

**Attributes**

PMBSR_EL1 is a 64-bit register.

**Field descriptions**

The PMBSR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RES0</strong></td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td><strong>EC</strong></td>
<td>Exception class</td>
</tr>
<tr>
<td><strong>RES0</strong></td>
<td>Top-level description of the cause of the buffer management event</td>
</tr>
<tr>
<td><strong>DL</strong></td>
<td>stage 1 Data Abort on write to Profiling Buffer.</td>
</tr>
<tr>
<td><strong>S</strong></td>
<td>See MSS encoding for stage 1 or stage 2 Data Abort on write to buffer.</td>
</tr>
<tr>
<td><strong>MSS</strong></td>
<td>See MSS encoding for buffer management event for an IMPLEMENTATION DEFINED reason.</td>
</tr>
<tr>
<td><strong>COLL</strong></td>
<td>Stage 2 Data Abort on write to Profiling Buffer.</td>
</tr>
<tr>
<td><strong>EA</strong></td>
<td>See MSS encoding for stage 1 or stage 2 Data Abort on write to buffer.</td>
</tr>
</tbody>
</table>

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act as reserved values when writing to this register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [25:20]

Reserved, RES0.

DL, bit [19]

Partial record lost.
Following a buffer management event other than an asynchronous External abort, indicates whether the last record written to the Profiling Buffer is complete.

0b0  PMBPTR_EL1 points to the first byte after the last complete record written to the Profiling Buffer.

0b1  Part of a record was lost because of a buffer management event or synchronous External abort. PMBPTR_EL1 might not point to the first byte after the last complete record written to the buffer, and so restarting collection might result in a data record stream that software cannot parse. All records prior to the last record have been written to the buffer.

When the buffer management event was because of an asynchronous external abort, this bit is set to 1 and software must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous External abort.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

0b0  An external abort has not been asserted.

0b1  An external abort has been asserted and detected by the Statistical Profiling Extension.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

0b0  PMBIRQ is not asserted.

0b1  PMBIRQ is asserted. All profiling data has either been written to the buffer or discarded.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

0b0  No collision events detected.

0b1  At least one collision event was recorded.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.
Contains syndrome specific to the management event.
The syndrome contents for each management event are described in the following sections.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

<table>
<thead>
<tr>
<th>Bits [15:6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

FSC, bits [5:0]

Fault status code

- 0b000000  Address size fault, level 0 of translation or translation table base register.
- 0b000001  Address size fault, level 1.
- 0b000010  Address size fault, level 2.
- 0b000011  Address size fault, level 3.
- 0b000100  Translation fault, level 0.
- 0b000101  Translation fault, level 1.
- 0b000110  Translation fault, level 2.
- 0b000111  Translation fault, level 3.
- 0b001001  Access flag fault, level 1.
- 0b001010  Access flag fault, level 2.
- 0b001011  Access flag fault, level 3.
- 0b001101  Permission fault, level 1.
- 0b001110  Permission fault, level 2.
- 0b001111  Permission fault, level 3.
- 0b010000  Synchronous External abort, not on translation table walk or hardware update of translation table.
- 0b010001  Asynchronous External abort.
- 0b010100  Synchronous External abort on translation table walk or hardware update of translation table, level 0.
- 0b010101  Synchronous External abort on translation table walk or hardware update of translation table, level 1.
- 0b010110  Synchronous External abort on translation table walk or hardware update of translation table, level 2.
- 0b010111  Synchronous External abort on translation table walk or hardware update of translation table, level 3.
- 0b010001  Alignment fault.
- 0b110000  TLB conflict abort.
- 0b110001  When FEAT_HAFDBS is implemented Unsupported atomic hardware update fault.

All other values are reserved.

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort and synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the PE. For more information see Faults and watchpoints on page D9-2797.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
MSS encoding for other buffer management events

| BSC, bits [5:0] | Buffer status code |
| | 0b000000 Buffer not filled |
| | 0b000001 Buffer filled |
| | All other values are reserved. Reserved values might be defined in a future version of the architecture. |
| | Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act as reserved values when writing to this register. |
| | On a Warm reset, this field resets to an architecturally UNKNOWN value. |

MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

| IMPLEMENTATION DEFINED, bits [15:0] | IMPLEMENTATION DEFINED. |
| | This field resets to an architecturally UNKNOWN value. |

Accessing the PMBSR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, PMBSR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b100</td>
<td>0b101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;
elif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
UNDEFINED;
elif EL2Enabled() && HaveEL(EL3) || SCR_EL3.FGTEn == '1' && HDFGRTR_EL2.PMBSR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18); 
elif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x18); 
elif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    endif
else EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1'x1' then
    UNDEFINED;
else return PMBSR_EL1;
elsif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then bool IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then bool IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    else
        return PMBSR_EL1;
    endif
elsif PSTATE_EL == EL3 then
    return PMBSR_EL1;
endif

MSR PMBSR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>Crn</th>
<th>Crm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then bool IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then bool IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        endif
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        endif
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    endif
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    endif
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1'x1' then
    UNDEFINED;
NVMem[0x820] = X[t];
else
    PMBSR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        endif
    else
        PMBSR_EL1 = X[t];
    endif
elsif PSTATE_EL == EL3 then
    PMBSR_EL1 = X[t];

D13.6.5 PMSCR_EL1, Statistical Profiling Control Register (EL1)

The PMSCR_EL1 characteristics are:

**Purpose**
Provides EL1 controls for Statistical Profiling

**Configurations**
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSCR_EL1 are UNDEFINED.

**Attributes**
PMSCR_EL1 is a 64-bit register.

**Field descriptions**
The PMSCR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:8</td>
</tr>
<tr>
<td>8:7</td>
</tr>
<tr>
<td>7:6</td>
</tr>
<tr>
<td>6:5</td>
</tr>
<tr>
<td>5:4</td>
</tr>
<tr>
<td>4:3</td>
</tr>
<tr>
<td>3:2</td>
</tr>
<tr>
<td>2:1</td>
</tr>
<tr>
<td>1:0</td>
</tr>
</tbody>
</table>

**Bits [63:8]**
Reserved, RES0.

**PCT, bits [7:6]**

*When EL2 is implemented:*

Physical Timestamp. If timestamp sampling is enabled and the Profiling Buffer is owned by EL1, requests which timestamp counter value is collected.

If FEAT_ECV is implemented, this is a two bit field as shown. Otherwise, bit[7] is RES0.

- **0b00** Virtual counter, CNTVCT_EL0, is collected.
- **0b01** Physical counter, CNTPCT_EL0, is collected.
- **0b11 When FEAT_ECV is implemented** Physical counter, CNTPCT_EL0, minus CNTPOFF_EL2 is collected.

If the Profiling Buffer owning Exception level is EL2, this field is ignored.

If the Profiling Buffer owning Exception level is EL1, this field is combined with PMSCR_EL2.PCT to determine which timestamp counter value is collected. For more information, see *Controlling the data that is collected on page D9-2789*.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset of zero if either of the following are true:

- CNTHCTL_EL2.ECV is 0.
- SCR_EL3.ECVEn is 0.
- HCR_EL2.{E2H, TGE} is {1, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Physical Timestamp. Reserved. This field reads as 0b01 and ignores writes. Software should treat this field as UNK/SBZP.

When EL2 is not implemented, the Effective values of CNTVOFF_EL2 and CNTPOFF_EL2 are zero, meaning the virtual counter and physical counter have the same value.

TS, bit [5]

Timestamp enable.
0b0 Timestamp sampling disabled.
0b1 Timestamp sampling enabled.

This bit is ignored by the PE if EL2 is implemented and the Profiling Buffer is owned by EL2. For more information, see Controlling the data that is collected on page D9-2789.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address sample enable.
0b0 Physical addresses are not collected.
0b1 Physical addresses are collected.

If EL2 is implemented:
• If the Profiling Buffer is owned by EL1, this bit is combined with PMSCR_EL2.PA to determine which address is collected. For more information, see Controlling the data that is collected on page D9-2789.
• If the Profiling Buffer is owned by EL2, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL1 sample enable.
0b0 CONTEXTIDR_EL1 is not collected.
0b1 CONTEXTIDR_EL1 is collected.

If EL2 is implemented and enabled in the current Security state when an operation is sampled:
• If the PE is at EL2, this bit is ignored by the PE.
• If HCR_EL2.TGE == 1, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E1SPE, bit [1]

EL1 Statistical Profiling Enable.
0b0 Sampling disabled at EL1.
0b1 Sampling enabled at EL1.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0SPE, bit [0]

EL0 Statistical Profiling Enable. Controls sampling at EL0 when HCR_EL2.TGE == 0 or if EL2 is disabled or not implemented.
0b0 Sampling disabled at EL0.
0b1 Sampling enabled at EL0.
If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSCR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMSCR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end;
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        return NVMem[0x828];
    else
        return PMSCR_EL1;
    end;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end;
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    end;
elsif HCR_EL2.E2H == '1' then
    return PMSCR_EL2;
else
    return PMSCR_EL1;
elsif PSTATE.EL == EL3 then
    return PMSCR_EL1;

```assembly
MSR PMSCR_EL1, <Xt>
```

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDSCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        UNDEFINED;
    else
        PMSCR_EL1 = X[t];
    elsif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
            UNDEFINED;
        elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
            UNDEFINED;
        elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDSCR_EL3.NSPB != '01' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDSCR_EL3.NSPB != '11' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        elsif HCR_EL2.E2H == '1' then
            PMSCR_EL2 = X[t];
        else
            PMSCR_EL1 = X[t];
    elsif PSTATE.EL == EL3 then
        PMSCR_EL1 = X[t];
MRS <Xt>, PMSCR_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
      return NVMem[0x828];
   elsif EL2Enabled() && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      UNDEFINED;
   elsif PSTATE.EL == EL2 then
      if HCR_EL2.E2H == '1' then
         if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && SCRE.L3.NS == '0' && MDCR_EL3.NSPB != '01' then
            UNDEFINED;
         elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && bool IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '11' then
            UNDEFINED;
         elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
            if Halted() && EDSCR.SDD == '1' then
               UNDEFINED;
            else
               AArch64.SystemAccessTrap(EL3, 0x18);
            end
         elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
            if Halted() && EDSCR.SDD == '1' then
               UNDEFINED;
            else
               AArch64.SystemAccessTrap(EL3, 0x18);
            end
         else
            return PMSCR_EL1;
         end
      end
   end
else
   UNDEFINED;
elsif PSTATE.EL == EL3 then
   if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
      return PMSCR_EL1;
   else
      UNDEFINED;
   end
else
   UNDEFINED;
endif

MSR PMSCR_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
      NVMem[0x828] = X[t];
   elsif EL2Enabled() && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
   else
      UNDEFINED:
   elsif PSTATE.EL == EL2 then
      if HCR_EL2.E2H == '1' then
         if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && bool IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
            UNDEFINED;
         elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && bool IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
            UNDEFINED;
         elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
            if Halted() && EDSCR.SDD == '1' then
               UNDEFINED;
            else
               AArch64.SystemAccessTrap(EL3, 0x18);
            end
         elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
            if Halted() && EDSCR.SDD == '1' then
               UNDEFINED;
            else
               AArch64.SystemAccessTrap(EL3, 0x18);
            end
         else
            return PMSCR_EL1;
         end
      end
   end
   return PMSCR_EL1;
else
   UNDEFINED;
endif
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  endif
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  endif
else
  PMSCR_EL1 = X[t];
else
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    PMSCR_EL1 = X[t];
  else
    UNDEFINED;

D13.6.6 PMSCR_EL2, Statistical Profiling Control Register (EL2)

The PMSCR_EL2 characteristics are:

Purpose

Provides EL2 controls for Statistical Profiling

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSCR_EL2 are UNDEFINED.

Attributes

PMSCR_EL2 is a 64-bit register.

Field descriptions

The PMSCR_EL2 bit assignments are:

Bits [63:8]

Reserved, RES0.

PCT, bits [7:6]

Physical Timestamp. If timestamp sampling is enabled, determines which counter is collected. The behavior depends on the Profiling Buffer owning Exception level.

If FEAT_ECV is implemented, this is a two bit field as shown. Otherwise, bit[7] is RES0.

0b00 Virtual counter, CNTVCT_EL0, is collected.
0b01 If the Profiling Buffer owning Exception level is EL2: Physical counter, CNTPCT_EL0, is collected.
If the Profiling Buffer owning Exception level is EL1: Timestamp value is selected by PMSCR_EL1.PCT.
0b11 When FEAT_ECV is implemented If the Profiling Buffer owning Exception level is EL2: Physical counter, CNTPCT_EL0, minus CNTPOFF_EL2 is collected.
If the Profiling Buffer owning Exception level is EL1: If PMSCR_EL1.PCT == 0b00, the virtual counter, CNTVCT_EL0 is collected. Otherwise, the physical counter, CNTPCT_EL0, minus CNTPOFF_EL2 is collected.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset of zero if either of the following are true:

• CNTHCTL_EL2.ECV is 0.
• SCR_EL3.ECVEn is 0.
• HCR_EL2.{E2H, TGE} is {1, 1}.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE behaves as if this field is set to 0b001, other than for a direct read of the register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
TS, bit [5]

Timestamp Enable.

0b0    Timestamp sampling disabled.
0b1    Timestamp sampling enabled.

This bit is ignored by the PE when any of the following are true:
• The Profiling Buffer owning Exception level is EL1.
• In Secure state, and either FEAT_SEL2 is not implemented or Secure EL2 is disabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PA, bit [4]

Physical Address Sample Enable.

0b0    Physical addresses are not collected.
0b1    Physical addresses are collected.

If the Profiling Buffer owning Exception level is EL1, and EL2 is enabled in the current Security state, this bit is combined with PMSCR_EL1.PA to determine which address is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit and behaves as if this bit is set to 1, other than for a direct read of the register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CX, bit [3]

CONTEXTIDR_EL2 Sample Enable.

0b0    CONTEXTIDR_EL2 is not collected.
0b1    CONTEXTIDR_EL2 is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RES0.

E2SPE, bit [1]

EL2 Statistical Profiling Enable.

0b0    Sampling disabled at EL2.
0b1    Sampling enabled at EL2.

This bit is RES0 if MDCR_EL2.E2PB != 0b00.

If EL2 is disabled in the current Security state, this bit is ignored by the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E0HSPE, bit [0]

EL0 Statistical Profiling Enable.

0b0    Sampling disabled at EL0.
0b1    Sampling enabled at EL0.

If MDCR_EL2.E2PB != 0b00, this bit is RES0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when HCR_EL2.TGE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMSCR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

### MRS <Xt>, PMSCR_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```arm
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& SCR_EL3.NS == '0' \&\& MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() \&\& HaveEL(EL3) \&\& SCR_EL3.NS == '0' \&\& MDCR_EL3.NSPB != '01' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif PSTATE.EL == EL3 then
 return PMSCR_EL2;
else
 return PMSCR_EL2;
endif
```

### MSR PMSCR_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```arm
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& SCR_EL3.NS == '0' \&\& MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() \&\& HaveEL(EL3) \&\& SCR_EL3.NS == '0' \&\& MDCR_EL3.NSPB != '01' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
 endif
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 endif
elsif PSTATE.EL == EL3 then
 return PMSCR_EL2;
else
 return PMSCR_EL2;
endif
```
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
  PMSCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  PMSCR_EL2 = X[t];

MRS <Xt>, PMSCR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSCR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif Halted() && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    elsif Halted() && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
      return NVMem[0x828];
    else
      return PMSCR_EL1;
    end
  elsif HCR_EL2.E2H == '1' then
    return PMSCR_EL2;
else:
  return PMSCR_EL2;
return PMSCR_EL1;
elsif PSTATE_EL == EL1 then
  return PMSCR_EL1;

MSR PMSCR_EL1, <Xt>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDO == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() & HaveEL(EL3) & EDSCR.SDO == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif Halted() & EDSCR.SDO == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif Halted() & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
    if Halted() & EDSCR.SDO == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    elsif Halted() & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
      if Halted() & EDSCR.SDO == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
    elseif HCR_EL2.<NV2,NV1,NV> == '111' then
      PMSCR_EL1 = X[t];
    else
      PMSCR_EL1 = X[t];
  elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDO == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
      UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDO == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
      UNDEFINED;
    elseif HaveEL(EL3) & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
      if Halted() & EDSCR.SDO == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
    elseif HaveEL(EL3) & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
      if Halted() & EDSCR.SDO == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
    elseif HCR_EL2.E2H == '1' then
      PMSCR_EL2 = X[t];
    else
      PMSCR_EL2 = X[t];
  elsif PSTATE_EL == EL3 then
    PMSCR_EL1 = X[t];
D13.6.7  PMSEVFR_EL1, Sampling Event Filter Register

The PMSEVFR_EL1 characteristics are:

**Purpose**
Controls sample filtering by events. The overall filter is the logical AND of these filters. For example, if E[3] and E[5] are both set to 1, only samples that have both event 3 (Level 1 unified or data cache refill) and event 5 set (TLB walk) are recorded.

**Configurations**
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSEVFR_EL1 are UNDEFINED.

**Attributes**
PMSEVFR_EL1 is a 64-bit register.

**Field descriptions**
The PMSEVFR_EL1 bit assignments are:

```
E[63], bit [63]
E[63] is the event filter for event 63. If event 63 is not implemented, or filtering on event 63 is not supported, the corresponding bit is RAZ/WI.
0b0 Event 63 is ignored.
0b1 Do not record samples that have event 63 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSCCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.
```
E[62], bit [62]

E[62] is the event filter for event 62. If event 62 is not implemented, or filtering on event 62 is not supported, the corresponding bit is RAZ/WI.

- 0b0 Event 62 is ignored.
- 0b1 Do not record samples that have event 62 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[61], bit [61]

E[61] is the event filter for event 61. If event 61 is not implemented, or filtering on event 61 is not supported, the corresponding bit is RAZ/WI.

- 0b0 Event 61 is ignored.
- 0b1 Do not record samples that have event 61 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[60], bit [60]

E[60] is the event filter for event 60. If event 60 is not implemented, or filtering on event 60 is not supported, the corresponding bit is RAZ/WI.

- 0b0 Event 60 is ignored.
- 0b1 Do not record samples that have event 60 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[59], bit [59]

E[59] is the event filter for event 59. If event 59 is not implemented, or filtering on event 59 is not supported, the corresponding bit is RAZ/WI.

- 0b0 Event 59 is ignored.
- 0b1 Do not record samples that have event 59 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[58], bit [58]

E[58] is the event filter for event 58. If event 58 is not implemented, or filtering on event 58 is not supported, the corresponding bit is RAZ/WI.

- 0b0 Event 58 is ignored.
- 0b1 Do not record samples that have event 58 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.
E[57], bit [57]

E[57] is the event filter for event 57. If event 57 is not implemented, or filtering on event 57 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 57 is ignored.
0b1  Do not record samples that have event 57 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[56], bit [56]

E[56] is the event filter for event 56. If event 56 is not implemented, or filtering on event 56 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 56 is ignored.
0b1  Do not record samples that have event 56 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[55], bit [55]

E[55] is the event filter for event 55. If event 55 is not implemented, or filtering on event 55 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 55 is ignored.
0b1  Do not record samples that have event 55 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[54], bit [54]

E[54] is the event filter for event 54. If event 54 is not implemented, or filtering on event 54 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 54 is ignored.
0b1  Do not record samples that have event 54 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[53], bit [53]

E[53] is the event filter for event 53. If event 53 is not implemented, or filtering on event 53 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 53 is ignored.
0b1  Do not record samples that have event 53 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.
E[52], bit [52]

E[52] is the event filter for event 52. If event 52 is not implemented, or filtering on event 52 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 52 is ignored.
0b1  Do not record samples that have event 52 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[51], bit [51]

E[51] is the event filter for event 51. If event 51 is not implemented, or filtering on event 51 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 51 is ignored.
0b1  Do not record samples that have event 51 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[50], bit [50]

E[50] is the event filter for event 50. If event 50 is not implemented, or filtering on event 50 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 50 is ignored.
0b1  Do not record samples that have event 50 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[49], bit [49]

E[49] is the event filter for event 49. If event 49 is not implemented, or filtering on event 49 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 49 is ignored.
0b1  Do not record samples that have event 49 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[48], bit [48]

E[48] is the event filter for event 48. If event 48 is not implemented, or filtering on event 48 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 48 is ignored.
0b1  Do not record samples that have event 48 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Bits [47:32]

Reserved, RAZ/WI.

E[31], bit [31]

E[31] is the event filter for event 31. If event 31 is not implemented, or filtering on event 31 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 31 is ignored.
0b1  Do not record samples that have event 31 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[30], bit [30]

E[30] is the event filter for event 30. If event 30 is not implemented, or filtering on event 30 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 30 is ignored.
0b1  Do not record samples that have event 30 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[29], bit [29]

E[29] is the event filter for event 29. If event 29 is not implemented, or filtering on event 29 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 29 is ignored.
0b1  Do not record samples that have event 29 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[28], bit [28]

E[28] is the event filter for event 28. If event 28 is not implemented, or filtering on event 28 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 28 is ignored.
0b1  Do not record samples that have event 28 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event. This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[27], bit [27]

E[27] is the event filter for event 27. If event 27 is not implemented, or filtering on event 27 is not supported, the corresponding bit is RAZ/WI.

0b0  Event 27 is ignored.
0b1  Do not record samples that have event 27 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when \texttt{PMSFCR\_EL1.FE} == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**E[26], bit [26]**

\texttt{E[26]} is the event filter for event 26. If event 26 is not implemented, or filtering on event 26 is not supported, the corresponding bit is RAZ/WI.

0b0 Event 26 is ignored.
0b1 Do not record samples that have event 26 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of \texttt{PMSEVFR\_EL1} define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when \texttt{PMSFCR\_EL1.FE} == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**E[25], bit [25]**

\texttt{E[25]} is the event filter for event 25. If event 25 is not implemented, or filtering on event 25 is not supported, the corresponding bit is RAZ/WI.

0b0 Event 25 is ignored.
0b1 Do not record samples that have event 25 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of \texttt{PMSEVFR\_EL1} define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when \texttt{PMSFCR\_EL1.FE} == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**E[24], bit [24]**

\texttt{E[24]} is the event filter for event 24. If event 24 is not implemented, or filtering on event 24 is not supported, the corresponding bit is RAZ/WI.

0b0 Event 24 is ignored.
0b1 Do not record samples that have event 24 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of \texttt{PMSEVFR\_EL1} define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when \texttt{PMSFCR\_EL1.FE} == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bits [23:19]**

Reserved, RAZ/WI.

**E[18], bit [18]**

\textit{When FEAT\_SPEv1p1 is implemented and FEAT\_SVE is implemented:}

Empty predicate.

0b0 Empty predicate event is ignored.
0b1 Do not record samples that have the Empty predicate event == 0.

This bit is ignored by the PE when \texttt{PMSFCR\_EL1.FE} == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

\textit{Otherwise:}

Reserved, RAZ/WI.

**E[17], bit [17]**

\textit{When FEAT\_SPEv1p1 is implemented and FEAT\_SVE is implemented:}

Partial predicate.

0b0 Partial predicate event is ignored.
0b1 Do not record samples that have the Partial predicate event == 0.
This bit is ignored by the PE when PMSFCR_EL1.FE == 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RAZ/WI.

Bit [16]
Reserved, RAZ/WI.

E[15], bit [15]
E[15] is the event filter for event 15. If event 15 is not implemented, or filtering on event 15 is not supported, the corresponding bit is RAZ/WI.
0b0 Event 15 is ignored.
0b1 Do not record samples that have event 15 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[14], bit [14]
E[14] is the event filter for event 14. If event 14 is not implemented, or filtering on event 14 is not supported, the corresponding bit is RAZ/WI.
0b0 Event 14 is ignored.
0b1 Do not record samples that have event 14 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[13], bit [13]
E[13] is the event filter for event 13. If event 13 is not implemented, or filtering on event 13 is not supported, the corresponding bit is RAZ/WI.
0b0 Event 13 is ignored.
0b1 Do not record samples that have event 13 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[12], bit [12]
E[12] is the event filter for event 12. If event 12 is not implemented, or filtering on event 12 is not supported, the corresponding bit is RAZ/WI.
0b0 Event 12 is ignored.
0b1 Do not record samples that have event 12 == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.
This field is ignored by the PE when PMSFCR_EL1.FE == 0
On a Warm reset, this field resets to an architecturally UNKNOWN value.

*When FEAT_SPEv1p1 is implemented:*

Alignment.

0b0 Alignment event is ignored.
0b1 Do not record samples that have the Alignment event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RAZ/WI.

Bits [10:8]

Reserved, RAZ/WI.

E[7], bit [7]

Mispredicted.

0b0 Mispredicted event is ignored.
0b1 Do not record samples that have the Mispredicted event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RAZ/WI.

E[5], bit [5]

TLB walk.

0b0 TLB walk event is ignored.
0b1 Do not record samples that have the TLB walk event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache refill.

0b0 Level 1 data or unified cache refill event is ignored.
0b1 Do not record samples that have the Level 1 data or unified cache refill event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RAZ/WI.

E[1], bit [1]

*When the PE supports sampling of speculative instructions:*

Architecturally retired.

When the PE supports sampling of speculative instructions:

0b0 Architecturally retired event is ignored.
0b1 Do not record samples that have the Architecturally retired event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.
If the PE does not support the sampling of speculative instructions, or always discards the sample record for speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value. On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, UNKNOWN.

**Bit [0]**

Reserved, RAZ/WI.

### Accessing the PMSEVFR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMSEVFR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```python
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
else
 AArch64.SystemAccessTrap(EL2, 0x8);
end
```

### (continued)

```python
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
```

### (continued)

```python
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
```

### (continued)

```python
elsif EL2Enabled() && SCR_EL3.FGTEn == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 return PMSEVFR_EL1;
end
```

### (continued)

```python
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 UNDEFINED;
```

### (continued)

```python
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
```

### (continued)
AArch64.SystemAccessTrap(EL3, 0x18);
else
    return PMSEVFR_EL1;
elsif PSTATE_EL == EL3 then
    return PMSEVFR_EL1;

**MSR PMSEVFR_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elif PSTATE_EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
elif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
elif EL2Enabled() && | HaveEL(EL3) | SCR_EL3.FGTEn == '1' | HDCGWTR_EL2.PMSEVFR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
elif Halted() && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
        NVMem[0x830] = X[t];
elif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
elif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
elif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
elif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
        NVMem[0x830] = X[t];
elif PSTATE_EL == EL3 then
    PMSEVFR_EL1 = X[t];
elif PSTATE_EL == EL3 then
    PMSEVFR_EL1 = X[t];
D13.6.8 PMSFCR_EL1, Sampling Filter Control Register

The PMSFCR_EL1 characteristics are:

Purpose

Controls sample filtering. The filter is the logical AND of the FL, FT and FE bits. For example, if FE == 1 and FT == 1 only samples including the selected operation types and the selected events will be recorded

Configurations

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSFCR_EL1 are UNDEFINED.

Attributes

PMSFCR_EL1 is a 64-bit register.

Field descriptions

The PMSFCR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>63</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
<td>ST</td>
<td>LD</td>
<td>B</td>
<td>RES0</td>
<td>FL</td>
<td>FT</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:19]

Reserved, RES0.

ST, bit [18]

Store filter enable

0b0   Do not record store operations
0b1   Record all store operations, including vector stores and all atomic operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

LD, bit [17]

Load filter enable

0b0   Do not record load operations
0b1   Record all load operations, including vector loads and atomic operations that return data

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

B, bit [16]

Branch filter enable

0b0   Do not record branch and exception return operations
0b1   Record all branch and exception return operations

This bit is ignored by the PE when PMSFCR_EL1.FT == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:3]

Reserved, RES0.
FL, bit [2]
Filter by latency
0b0  Latency filtering disabled
0b1  Latency filtering enabled. Samples with a total latency less than PMSLATFR_EL1.MINLAT will not be recorded

If this field is set to 1 and PMSLATFR_EL1.MINLAT is set to zero, it is CONSTRAINED UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FL is set to 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FT, bit [1]
Filter by operation type. The filter is the logical OR of the ST, LD and B bits. For example, if LD and ST are both set, both load and store operations are recorded
0b0  Type filtering disabled
0b1  Type filtering enabled. Samples not one of the selected operation types will not be recorded

If this field is set to 1 and the PMSFCR_EL1.{ST, LD, B} bits are all set to zero, it is CONSTRAINED UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FT is set to 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FE, bit [0]
Filter by event.
0b0  Event filtering disabled.
0b1  Event filtering enabled. Samples not including the events selected by PMSEVFR_EL1 will not be recorded.

If PMSFCR_EL1.FE == 0b1 and PMSEVFR_EL1 is zero, it is CONSTRAINED UNPREDICTABLE whether no samples are recorded or the PE behaves as if PMSFCR_EL1.FE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSFCR_EL1
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS \ } <Xt>, \ \text{PMSFCR\_EL1}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSFCR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() && MDCR_EL2.TPMS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  return PMSFCR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  return PMSFCR_EL1;
elsif PSTATE.EL == EL3 then
  return PMSFCR_EL1;

MSR PMSFCR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>Crm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.SystemAccessTrap(EL3, 0x18);
else
  PMSFCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
  UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      PMSFCR_EL1 = X[t];
    endif;
  endif;
elseif PSTATE.EL == EL3 then
  PMSFCR_EL1 = X[t];
D13.6.9 PMSICR_EL1, Sampling Interval Counter Register

The PMSICR_EL1 characteristics are:

**Purpose**
Software must write zero to PMSICR_EL1 before enabling sample profiling for a sampling session. Software must then treat PMSICR_EL1 as an opaque, 64-bit, read/write register used for context switches only.

**Configurations**
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSICR_EL1 are UNDEFINED.

**Attributes**
The value of PMSICR_EL1 does not change whilst profiling is disabled.

**Field descriptions**
The PMSICR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>56</th>
<th>55</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOUNT</td>
<td>RES0</td>
<td>COUNT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ECOUNT, bits [63:56]**

*When PMSIDR_EL1.ERnd == 1:*
Secondary sample interval counter.
This field provides the secondary counter used after the primary counter reaches zero. Whilst the secondary counter is nonzero and profiling is enabled, the secondary counter decrements by 1 for each member of the sample population. The primary counter also continues to decrement since it is also nonzero. When the secondary counter reaches zero, a member of the sampling population is selected for sampling.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

*Otherwise:*
Reserved, RES0.

**Bits [55:32]**
Reserved, RES0.

**COUNT, bits [31:0]**
Primary sample interval counter
Provides the primary counter used for sampling.

The primary counter is reloaded when the value of this register is zero and the PE moves from a state or Exception level where profiling is disabled to a state or Exception level where profiling is enabled whilst the primary counter is nonzero and sampling is enabled, the primary counter decrements by 1 for each member of the sample population.

When the counter reaches zero, the behavior depends on the values of PMSIDR_EL1.ERnd and PMSIRR_EL1.RND

- If PMSIRR_EL1.RND == 0 or PMSIDR_EL1.ERnd == 0:
  - A member of the sampling population is selected for sampling
  - The primary counter is reloaded
• If \texttt{PMSIRR\_EL1.RND == 1} and \texttt{PMSIDR\_EL1.ERnd == 1}:  
  — The secondary counter is set to a random or pseudorandom value in the range 0x00 to 
    0xFF  
  — The primary counter is reloaded  

On a Warm reset, this field resets to an architecturally \textit{UNKNOWN} value.

**Accessing the PMSICR\_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**\texttt{MRS <Xt>, PMSICR\_EL1}**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then 
  UNDEFINED;
elsif PSTATE.EL == EL1 then 
  if Halted() \&\& Have\(EL3) \&\& EDSCR.SDD == '1' \&\& boolean \textit{IMPLEMENTATION\_DEFINED} "EL3 trap priority when \texttt{SDD == '1'}" \&\& SCR\_EL3.NS == '0' \&\& MDCR\_EL3.NSPB != '01' then 
    UNDEFINED;
elsif Halted() \&\& Have\(EL3) \&\& EDSCR.SDD == '1' \&\& boolean \textit{IMPLEMENTATION\_DEFINED} "EL3 trap priority when \texttt{SDD == '1'}" \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '11' then 
    UNDEFINED;
elsif EL2Enabled() \&\& (Have\(EL3) || SCR\_EL3.FGETn == '1') \&\& HDGRTR\_EL2.PMSICR\_EL1 == '1' then 
  AArch64.SystemAccessTrap\(EL2, 0x18\); 
elsif EL2Enabled() \&\& MDCR\_EL2.TPMS == '1' then 
  AArch64.SystemAccessTrap\(EL2, 0x18\); 
elsif Have\(EL3) \&\& SCR\_EL3.NS == '0' \&\& MDCR\_EL3.NSPB != '01' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
elsif Have\(EL3) \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '11' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
elsif EL2Enabled() \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '01' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
elsif Have\(EL3) \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '11' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
else 
  return PMSICR\_EL1;

if PSTATE.EL == EL2 then 
  if Halted() \&\& Have\(EL3) \&\& EDSCR.SDD == '1' \&\& boolean \textit{IMPLEMENTATION\_DEFINED} "EL3 trap priority when \texttt{SDD == '1'}" \&\& SCR\_EL3.NS == '0' \&\& MDCR\_EL3.NSPB != '01' then 
    UNDEFINED;
elsif Halted() \&\& Have\(EL3) \&\& EDSCR.SDD == '1' \&\& boolean \textit{IMPLEMENTATION\_DEFINED} "EL3 trap priority when \texttt{SDD == '1'}" \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '11' then 
    UNDEFINED;
elsif Have\(EL3) \&\& SCR\_EL3.NS == '0' \&\& MDCR\_EL3.NSPB != '01' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
elsif Have\(EL3) \&\& SCR\_EL3.NS == '1' \&\& MDCR\_EL3.NSPB != '11' then 
  if Halted() \&\& EDSCR.SDD == '1' then 
    UNDEFINED;
else 
  AArch64.SystemAccessTrap\(EL3, 0x18\); 
else 
  return PMSICR\_EL1;
```plaintext
elseif PSTATE.EL == EL3 then
 return PMSICR_EL1;

MSR PMSICR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif EL2Enabled() && Halted() && MDCR_EL2.TPMS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && Halted() && EDSCR.SDD == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  else
    PMSICR_EL1 = X[t];
  endif
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
  else
    PMSICR_EL1 = X[t];
  endif
elsif PSTATE.EL == EL3 then
  PMSICR_EL1 = X[t];
```

```
D13.6.10 PMSIDR_EL1, Sampling Profiling ID Register

The PMSIDR_EL1 characteristics are:

**Purpose**

Describes the Statistical Profiling implementation to software

**Configurations**

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSIDR_EL1 are UNDEFINED.

**Attributes**

PMSIDR_EL1 is a 64-bit register.

**Field descriptions**

The PMSIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-20</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>19-16</td>
<td>CountSize</td>
<td>0b0010 12-bit saturating counters</td>
</tr>
<tr>
<td>15-12</td>
<td>MaxSize</td>
<td>0b0100 16 bytes</td>
</tr>
<tr>
<td>11-8</td>
<td>Interval</td>
<td></td>
</tr>
<tr>
<td>7-0</td>
<td>Flag</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [63:20]**

Reserved, RES0.

**CountSize, bits [19:16]**

Defines the size of the counters

0b0010 12-bit saturating counters

All other values are reserved. Reserved values might be defined in a future version of the architecture.

**MaxSize, bits [15:12]**

Defines the largest size for a single record, rounded up to a power-of-two. If this is the same as the minimum alignment (PMBIDR_EL1.Align), then each record is exactly this size

0b0010 16 bytes
0b0100 32 bytes
0b0110 64 bytes
0b0111 128 bytes
0b1000 256 bytes
0b1001 512 bytes
0b1010 1024 bytes
0b1011 2KB

All other values are reserved. Reserved values might be defined in a future version of the architecture.
Interval, bits [11:8]

Recommended minimum sampling interval. This provides guidance from the implementer to the smallest minimum sampling interval, N.

- 0b0000 256
- 0b0010 512
- 0b0011 768
- 0b0100 1,024
- 0b0101 1,536
- 0b0110 2,048
- 0b0111 3,072
- 0b1000 4,096

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Bits [7:6]

Reserved, RES0.

ERnd, bit [5]

Defines how the random number generator is used in determining the interval between samples, when enabled by PMSIRR_EL1.RND.

- 0b0 The random number is added at the start of the interval, and the sample is taken and a new interval started when the combined interval expires.
- 0b1 The random number is added and the new interval started after the interval programmed in PMSIRR_EL1.INTERVAL expires, and the sample is taken when the random interval expires.

LDS, bit [4]

Data source indicator for sampled load instructions

- 0b0 Loaded data source not implemented
- 0b1 Loaded data source implemented

ArchInst, bit [3]

Architectural instruction profiling

- 0b0 Micro-op sampling implemented
- 0b1 Architecture instruction sampling implemented

FL, bit [2]

Filtering by latency. This bit is RAO.

FT, bit [1]

Filtering by operation type. This bit is RAO.

FE, bit [0]

Filtering by events. This bit is RAO.

Accessing the PMSIDR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMSIDR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsiif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsiif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elsiif EL2Enabled() && ((!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSIDR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsiif EL2Enabled() && MDCR_EL2.TPMS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsiif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elsiif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsiif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elsiif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
else
    return PMSIDR_EL1;
elsiif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
elsiif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
elsiif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elsiif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
elsiif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
elsiif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
else
    return PMSIDR_EL1;
elsiif PSTATE.EL == EL3 then
  return PMSIDR_EL1;
D13.6.11   PMSIRR_EL1, Sampling Interval Reload Register

The PMSIRR_EL1 characteristics are:

Purpose
Defines the interval between samples

Configurations
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSIRR_EL1 are UNDEFINED.

Attributes
PMSIRR_EL1 is a 64-bit register.

Field descriptions
The PMSIRR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit position</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>32-31</td>
<td>INTERVAL, bits [31:8]</td>
<td></td>
</tr>
<tr>
<td>8-7</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>RND, bit [0]</td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:32] Reserved, RES0.

INTERVAL, bits [31:8]
Bits [31:8] of the PMSICR_EL1 interval counter reload value. Software must set this to a non-zero value. If software sets this to zero, an UNKNOWN sampling interval is used. Software should set this to a value greater than the minimum indicated by PMSIDR_EL1.Interval.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:1] Reserved, RES0.

RND, bit [0]
Controls randomization of the sampling interval
0b0 Disable randomization of sampling interval
0b1 Add (pseudo-)random jitter to sampling interval
The random number generator is not architected.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSIRR_EL1

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, PMSIRR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
else if PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSIRR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
                return NVMem[0x840];
            else
                return PMSIRR_EL1;
        elsif PSTATE.EL == EL2 then
            if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
                UNDEFINED;
            elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
                UNDEFINED;
            elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
                if Halted() && EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.SystemAccessTrap(EL3, 0x18);
                elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
                    if Halted() && EDSCR.SDD == '1' then
                        UNDEFINED;
                    else
                        AArch64.SystemAccessTrap(EL3, 0x18);
                    else
                        return PMSIRR_EL1;
            elsif PSTATE.EL == EL3 then
                return PMSIRR_EL1;
### MSR PMSIRR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
    UNDEFINED;
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSIRR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    endif
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endif
    else
      PMSIRR_EL1 = X[t];
    endif
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
      UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
      UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endif
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      endif
    else
      PMSIRR_EL1 = X[t];
    else
      PSTATE.EL = EL3 then
      PMSIRR_EL1 = X[t];
    endif
D13.6.12  PMSLATFR_EL1, Sampling Latency Filter Register

The PMSLATFR_EL1 characteristics are:

**Purpose**
Controls sample filtering by latency

**Configurations**
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSLATFR_EL1 are UNDEFINED.

**Attributes**
PMSLATFR_EL1 is a 64-bit register.

**Field descriptions**
The PMSLATFR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:12]</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINLAT, bits [11:0]</td>
<td></td>
</tr>
</tbody>
</table>

Minimum latency. When PMSFCR_EL1.FL == 1, defines the minimum total latency for filtered operations. Samples with a total latency less than MINLAT will not be recorded

This field is ignored by the PE when PMSFCR_EL1.FL == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Accessing the PMSLATFR_EL1**
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, PMSLATFR_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
UNDEFINED;
elsif PSTATE_EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRT_EL2.PMSLATFR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then if Halted() && EDSCR.SDD == '1' then UNDEFINED;
```
else
 AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '1x1' then
 return NVMem[0x848];
else
 return PMSLATFR_EL1;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
 UNDEFINED;
 elsif HaveEL(EL3) & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif HaveEL(EL3) & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '1x1' then
 NVMem[0x848] = X[t];
else
 return PMSLATFR_EL1;
elsif PSTATE.EL == EL3 then
 return PMSLATFR_EL1;
endif
MSR PMSLATFR_EL1, <Xi>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
 UNDEFINED;
 elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
 UNDEFINED;
 elsif Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 end
elsif EL2Enabled() & HaveEL(EL3) & MDCR_EL3.NSPB != '11' then
 UNDEFINED;
if HDFGWTR_EL2.PMSLATFR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
else
 if HaveEL(EL3) & SCR_EL3.NS == '0' & MDCR_EL3.NSPB != '01' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
 elsif HaveEL(EL3) & SCR_EL3.NS == '1' & MDCR_EL3.NSPB != '11' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 end
else
 return PMSLATFR_EL1;
else
 return PMSLATFR_EL1;
endif
```
PMSLATFR_EL1 = X[t];
elsif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
        && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
        && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    else
        PMSLATFR_EL1 = X[t];
    end if
elsif PSTATE_EL == EL3 then
    PMSLATFR_EL1 = X[t];
D13.7  RAS registers

This section lists The Reliability, Availability, and Serviceability Extension registers in AArch64.
D13.7.1 DISR_EL1, Deferred Interrupt Status Register

The DISR_EL1 characteristics are:

Purpose

Records that an SError interrupt has been consumed by an ESB instruction.

Configurations

AArch64 System register DISR_EL1[31:0] is architecturally mapped to AArch32 System register DISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR_EL1 are UNDEFINED.

Attributes

DISR_EL1 is a 64-bit register.

Field descriptions

The DISR_EL1 bit assignments are:

When DISR_EL1.IDS == 0:

<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>30</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>13</th>
<th>12</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>A</td>
<td>RES0</td>
<td>RES0</td>
<td>AET</td>
<td>RES0</td>
<td>DFSC</td>
<td>EA</td>
<td>IDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

0b0 Deferred error uses architecturally-defined format.

This field resets to an architecturally UNKNOWN value.

Bits [23:13]

Reserved, RES0.

AET, bits [12:10]

Asynchronous Error Type. See the description of ESR_ELx.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.
EA, bit [9]

External abort Type. See the description of ESR_ELx.EA for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of ESR_ELx.DFSC for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

When DISR_EL1.IDS == 1:

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does
not include any sources of SError interrupt that can be synchronized by an Error Synchronization
Barrier, then this bit is RES0.
This field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.
0b1 Deferred error uses IMPLEMENTATION DEFINED format.
This field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

IMPLEMENTATION DEFINED syndrome. See the description of ESR_ELx[23:0] for an SError interrupt.
This field resets to an architecturally UNKNOWN value.
The following subsections describe each ISS format.

Accessing the DISR_EL1

An indirect write to DISR_EL1 made by an ESB instruction does not require an explicit synchronization operation
for the value that is written to be observed by a direct read of DISR_EL1 occurring in program order after the ESB
instruction.

DISR_EL1 is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, SCR_EL3.EA == 1, and any of the
following apply:
• At EL2.
• At EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO == 0).
Accesses to this register use the following encodings in the System instruction encoding space:

### MRS <Xt>, DISR_EL1

![Instruction Encoding Table]

```plaintext
table
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 return VDISR_EL2;
 else
 return DISR_EL1;
elsif PSTATE.EL == EL2 then
 return DISR_EL1;
elsif PSTATE.EL == EL3 then
 return DISR_EL1;
```

### MSR DISR_EL1, <Xt>

![Instruction Encoding Table]

```plaintext
table
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.AMO == '1' then
 VDISR_EL2 = X[t];
 else
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 DISR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 DISR_EL1 = X[t];
```
D13.7.2 ERRIDR_EL1, Error Record ID Register

The ERRIDR_EL1 characteristics are:

**Purpose**

Defines the highest numbered index of the error records that can be accessed through the Error Record System registers.

**Configurations**

AArch64 System register ERRIDR_EL1[31:0] is architecturally mapped to AArch32 System register ERRIDR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERRIDR_EL1 are UNDEFINED.

**Attributes**

ERRIDR_EL1 is a 64-bit register.

**Field descriptions**

The ERRIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:16</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>15:0</td>
<td>NUM</td>
</tr>
</tbody>
</table>

**Bits [63:16]**

Reserved, RES0.

**NUM, bits [15:0]**

Highest numbered index of the records that can be accessed through the Error Record System registers plus one. Zero indicates no records can be accessed through the Error Record System registers.

Each implemented record is owned by a node. A node might own multiple records.

**Accessing the ERRIDR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

*MRS <Xt>, ERRIDR_EL1*

```plaintext
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```
UNDEFINED;
else
    AArch64.SystemAccessTrap(EL3, 0x18);
else
    return ERRIDR_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return ERRIDR_EL1;
    end
elsif PSTATE.EL == EL3 then
    return ERRIDR_EL1;
D13.7.3 ERRSELR_EL1, Error Record Select Register

The ERRSELR_EL1 characteristics are:

**Purpose**

Selects an error record to be accessed through the Error Record System registers.

**Configurations**

AArch64 System register ERRSELR_EL1[31:0] is architecturally mapped to AArch32 System register ERRSELR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERRSELR_EL1 are UNDEFINED.

If ERRIDR_EL1 indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether ERRSELR_EL1 is UNDEFINED or RES0.

**Attributes**

ERRSELR_EL1 is a 64-bit register.

**Field descriptions**

The ERRSELR_EL1 bit assignments are:

```
63 16 15 0
 RES0 SEL
```

**Bits [63:16]**

Reserved, RES0.

**SEL, bits [15:0]**

Selects the error record accessed through the ERX registers.

For example, if ERRSELR_EL1.SEL is set to 0x0004, then direct reads and writes of ERRXSTATUS_EL1 access ERR4STATUS.

If ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then all of the following apply:

- The value read back from ERRSELR_EL1.SEL is UNKNOWN.
- One of the following occurs:
  - An UNKNOWN error record is selected.
  - The ERX* EL1 registers are RAZ/WI.
  - ERX* EL1 register reads and writes are NOPs.
  - ERX* EL1 register reads and writes are UNDEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the ERRSELR_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ERRSELR_EL1

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL2(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERRSELR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL2, 0x18);
    end
else
    return ERRSELR_EL1;
else
    return ERRSELR_EL1;
else
    PSTATE.EL == EL2 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif HaveEL2(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        ERRSELR_EL1 = X[t];
    end
else
    PSTATE.EL == EL3 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
else
    end
else
    ERRSELR_EL1 = X[t];
else
    return ERRSELR_EL1;
else
    return ERRSELR_EL1;
end

MSR ERRSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL2(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERRSELR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        AArch64.SystemAccessTrap(EL2, 0x18);
    end
else
    return ERRSELR_EL1;
else
    PSTATE.EL == EL2 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
else
    end
else
    PSTATE.EL == EL3 then
    if Halted() && HaveEL2(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
else
    end
else
    ERRSELR_EL1 = X[t];
else
    return ERRSELR_EL1;
else
    return ERRSELR_EL1;
end
UNDEFINED;
elsif HaveEl(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    ERRSELR_EL1 = X[t];
    elsif PSTATE.EL == EL3 then
      ERRSELR_EL1 = X[t];
D13.7.4 ERXADDR_EL1, Selected Error Record Address Register

The ERXADDR_EL1 characteristics are:

Purpose

Accesses \texttt{ERR}<n>ADDR for the error record \texttt{<n>} selected by \texttt{ERRSELR_EL1.SEL}.

For details of this, see the \textit{Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8}, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXADDR_EL1[31:0] is architecturally mapped to AArch32 System register ERXADDR[31:0].

AArch64 System register ERXADDR_EL1[63:32] is architecturally mapped to AArch32 System register ERXADDR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXADDR_EL1 are \texttt{UNDEFINED}.

Attributes

ERXADDR_EL1 is a 64-bit register.

Field descriptions

The ERXADDR_EL1 bit assignments are:

```
63 0
 ERR<n>ADDR
```

Bits [63:0]

ERXADDR_EL1 accesses ERR\texttt{<n>}ADDR, where \texttt{<n>} is the value in ERRSELR_EL1.SEL.

Accessing the ERXADDR_EL1

If ERRIDR_EL1.NUM \texttt{== 0x0000} or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An \texttt{UNKNOWN} error record is selected.
- ERXADDR_EL1 is RAZ/WI.
- Direct reads and writes of ERXADDR_EL1 are NOPs.
- Direct reads and writes of ERXADDR_EL1 are \texttt{UNDEFINED}.

ERR\texttt{<n>}ADDR describes additional constraints that also apply when ERR\texttt{<n>}ADDR is accessed through ERXADDR_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:
### MRS <Xt>, ERXADDR_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

If PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
UNDEFINED;
elif EL2Enabled() & HCR_EL2.TERR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCR_EL2.ERXADDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) & SCR_EL3.TERR == '1' then
if Halted() & EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.SystemAccessTrap(EL3, 0x18);
else
return ERXADDR_EL1;
elif PSTATE.EL == EL2 then
if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
UNDEFINED;
elif HaveEL(EL3) & SCR_EL3.TERR == '1' then
if Halted() & EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.SystemAccessTrap(EL3, 0x18);
else
return ERXADDR_EL1;
elif PSTATE.EL == EL3 then
return ERXADDR_EL1;

### MSR ERXADDR_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

If PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
UNDEFINED;
elif EL2Enabled() & HCR_EL2.TERR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFCWTR_EL2.ERXADDR_EL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
elif HaveEL(EL3) & SCR_EL3.TERR == '1' then
if Halted() & EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.SystemAccessTrap(EL3, 0x18);
else
ERXADDR_EL1 = X[t];
elif PSTATE.EL == EL2 then
if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
UNDEFINED;
elsif HaveEl(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    ERXADDR_EL1 = X[t];
  endif
elsif PSTATE.EL == EL3 then
  ERXADDR_EL1 = X[t];
D13.7.5 ERXCTLR_EL1, Selected Error Record Control Register

The ERXCTLR_EL1 characteristics are:

**Purpose**

Accesses ERR<n>CTLR for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch64 System register ERXCTLR_EL1[31:0] is architecturally mapped to AArch32 System register ERXCTLR[31:0].

AArch64 System register ERXCTLR_EL1[63:32] is architecturally mapped to AArch32 System register ERXCTLR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXCTLR_EL1 are UNDEFINED.

**Attributes**

ERXCTLR_EL1 is a 64-bit register.

**Field descriptions**

The ERXCTLR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit position</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-0</td>
<td>ERR&lt;n&gt;CTLR</td>
</tr>
</tbody>
</table>

ERXCTLR_EL1 accesses ERR<n>CTLR, where <n> is the value in ERRSELR_EL1.SEL.

**Accessing the ERXCTLR_EL1**

If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXCTLR_EL1 is RAZ/WI.
- Direct reads and writes of ERXCTLR_EL1 are NOPs.
- Direct reads and writes of ERXCTLR_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>CTLR is not present, meaning reads and writes of ERXCTLR_EL1 are RES0.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ERXCTLR_EL1

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() & HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFGWTR_EL2.ERXCTLR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.TERR == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.TERR == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end
    else
      return ERXCTLR_EL1;
    end
  elsif PSTATE.EL == EL3 then
    return ERXCTLR_EL1;
else
  return ERXCTLR_EL1;
end

MSR ERXCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() & HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFWTR_EL2.ERXCTLR_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.TERR == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    end
  else
    ERXCTLR_EL1 = X[t];
  end
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.TERR == '1' then
UNDEFINED;
elif HaveEl(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    ERXCTLR_EL1 = X[t];
else
  ERXCTLR_EL1 = X[t];
elesif PSTATE.EL == EL3 then
  ERXCTLR_EL1 = X[t];
D13.7.6 ERXFR_EL1, Selected Error Record Feature Register

The ERXFR_EL1 characteristics are:

Purpose

Accesses ERR<n>FR for the error record <n> selected by ERRSEL_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

AArch64 System register ERXFR_EL1[31:0] is architecturally mapped to AArch32 System register ERXFR[31:0].

AArch64 System register ERXFR_EL1[63:32] is architecturally mapped to AArch32 System register ERXFR2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXFR_EL1 are UNDEFINED.

Attributes

ERXFR_EL1 is a 64-bit register.

Field descriptions

The ERXFR_EL1 bit assignments are:

ERXFR_EL1 accesses ERR<n>FR, where <n> is the value in ERRSEL_EL1.SEL.

Accessing the ERXFR_EL1

If ERRIDR_EL1.NUM == 0x0000 or ERRSEL_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXFR_EL1 is RAZ.
• Direct reads of ERXFR_EL1 are NOPs.
• Direct reads of ERXFR_EL1 are UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b000 & 0b0101 & 0b0100 & 0b000
\end{array}
\]

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TERR == '1' then
  UNDEFINED;
elsif EL2Enabled() && HCR_EL2.TERR == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXFR_EL1 == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return ERXFR_EL1;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    return ERXFR_EL1;
elsif PSTATE.EL == EL3 then
  return ERXFR_EL1;
D13.7.7 ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0

The ERXMISC0_EL1 characteristics are:

**Purpose**

Accesses ERR<\text{n}>MISC0 for the error record \text{n} selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch64 System register ERXMISC0_EL1[31:0] is architecturally mapped to AArch32 System register ERXMISC0[31:0].

AArch64 System register ERXMISC0_EL1[63:32] is architecturally mapped to AArch32 System register ERXMISC1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC0_EL1 are UNDEFINED.

**Attributes**

ERXMISC0_EL1 is a 64-bit register.

**Field descriptions**

The ERXMISC0_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR&lt;\text{n}&gt;MISC0</td>
<td>ERXMISC0_EL1 accesses ERR&lt;\text{n}&gt;MISC0, where \text{n} is the value in ERRSELR_EL1.SEL.</td>
</tr>
</tbody>
</table>

**Accessing the ERXMISC0_EL1**

If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC0_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC0_EL1 are NOPs.
- Direct reads and writes of ERXMISC0_EL1 are UNDEFINED.

ERR<\text{n}>MISC0 describes additional constraints that also apply when ERR<\text{n}>MISC0 is accessed through ERXMISC0_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ERXMISC0_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    Undefined;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        Undefined;
    elsif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGTR_EL2.ERXMISCn_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            Undefined;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elseif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
            Undefined;
        elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                Undefined;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end if
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elseif PSTATE.EL == EL3 then
        return ERXMISCO_EL1;
    else
        return ERXMISCO_EL1;
    end if

MSR ERXMISCO_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    Undefined;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        Undefined;
    elseif EL2Enabled() && HCR_EL2.TERR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            Undefined;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elseif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
            Undefined;
        elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                Undefined;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            end if
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    elseif PSTATE.EL == EL3 then
        return ERXMISCE_EL1;
    else
        return ERXMISCO_EL1;
    end if
UNDEFINED;
elso HaveEL(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  else
    ERXMISC0_EL1 = X[t];
elso PSTATE.EL == EL3 then
  ERXMISC0_EL1 = X[t];
D13.7.8 ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1

The ERXMISC1_EL1 characteristics are:

**Purpose**

Accesses ERR<n>MISC1 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch64 System register ERXMISC1_EL1[31:0] is architecturally mapped to AArch32 System register ERXMISC2[31:0].

AArch64 System register ERXMISC1_EL1[63:32] is architecturally mapped to AArch32 System register ERXMISC3[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC1_EL1 are UNDEFINED.

**Attributes**

ERXMISC1_EL1 is a 64-bit register.

**Field descriptions**

The ERXMISC1_EL1 bit assignments are:

![Bit assignments](image)

**Accessing the ERXMISC1_EL1**

If ERRDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC1_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC1_EL1 are NOPs.
- Direct reads and writes of ERXMISC1_EL1 are UNDEFINED.

ERR<n>MISC1 describes additional constraints that also apply when ERR<n>MISC1 is accessed through ERXMISC1_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:
**MRS <Xt>, ERXMISC1_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TERR == '1' then
    AAarch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
    AAarch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AAarch64.SystemAccessTrap(EL3, 0x18);
    end if
  else
    return ERXMISC1_EL1;
  end if
end if

**MSR ERXMISC1_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TERR == '1' then
    AAarch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
    AAarch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AAarch64.SystemAccessTrap(EL3, 0x18);
    end if
  else
    ERXMISC1_EL1 = X[t];
  end if
end if
UNDEFINED;
elsif HaveEl(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end
elsif PSTATE.EL == EL3 then
  ERXMISC1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  ERXMISC1_EL1 = X[t];
D13.7.9  ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2

The ERXMISC2_EL1 characteristics are:

Purpose
Accesses ERR<n>MISC2 for the error record <n> selected by ERRSELR_EL1.SEL.
For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations
AArch64 System register ERXMISC2_EL1[31:0] is architecturally mapped to AArch32 System register ERXMISC4[31:0].
AArch64 System register ERXMISC2_EL1[63:32] is architecturally mapped to AArch32 System register ERXMISC5[31:0].
This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC2_EL1 are UNDEFINED.

Attributes
ERXMISC2_EL1 is a 64-bit register.

Field descriptions
The ERXMISC2_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR&lt;n&gt;MISC2</td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:0]
ERXMISC2_EL1 accesses ERR<n>MISC2, where <n> is the value in ERRSELR_EL1.SEL.

Accessing the ERXMISC2_EL1
If ERRDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRDR_EL1.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC2_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC2_EL1 are NOPs.
- Direct reads and writes of ERXMISC2_EL1 are UNDEFINED.

ERR<n>MISC2 describes additional constraints that also apply when ERR<n>MISC2 is accessed through ERXMISC2_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:
**MRS <xt>, ERXMISC2_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      return ERXMISC2_EL1;
  elseif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        return ERXMISC2_EL1;
    elseif PSTATE.EL == EL3 then
      return ERXMISC2_EL1;
  else
    ERXMISC2_EL1 = X[<t>];
  elseif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
      UNDEFINED;
    elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        ERXMISC2_EL1 = X[<t>];
    elseif PSTATE.EL == EL1 then
      if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
        UNDEFINED;
      elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch64.SystemAccessTrap(EL3, 0x18);
        else
          ERXMISC2_EL1 = X[<t>];
      else
        UNDEFINED;
    else
      UNDEFINED;
  else
    UNDEFINED;

**MSR ERXMISC2_EL1, <xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      ERXMISC2_EL1 = X[<t>];
  elseif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
      UNDEFINED;
    elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      else
        ERXMISC2_EL1 = X[<t>];
  else
    UNDEFINED;

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.SystemAccessTrap(EL3, 0x18);
  end;
else
  ERXMISC2_EL1 = X[t];
elsif PSTATE.EL == EL3 then
  ERXMISC2_EL1 = X[t];
end;
D13.7.10 ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3

The ERXMISC3_EL1 characteristics are:

**Purpose**

Accesses ERR<n>MISC3 for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch64 System register ERXMISC3_EL1[31:0] is architecturally mapped to AArch32 System register ERXMISC6[31:0].

AArch64 System register ERXMISC3_EL1[63:32] is architecturally mapped to AArch32 System register ERXMISC7[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC3_EL1 are UNDEFINED.

**Attributes**

ERXMISC3_EL1 is a 64-bit register.

**Field descriptions**

The ERXMISC3_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-0</td>
<td>ERR&lt;n&gt;MISC3</td>
</tr>
</tbody>
</table>

**Accessing the ERXMISC3_EL1**

If ERRDR_EL1.NUM != 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC3_EL1 is RAZ/WI.
- Direct reads and writes of ERXMISC3_EL1 are NOPs.
- Direct reads and writes of ERXMISC3_EL1 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through ERXMISC3_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, ERXMISC3_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elseif EL2Enabled() && HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFCRTR_EL2.ERXMISCn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXMISC3_EL1;
    end
  else
    return ERXMISC3_EL1;
  endif
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXMISC3_EL1;
    endif
  else
    return ERXMISC3_EL1;
  endif
elsif PSTATE.EL == EL3 then
  return ERXMISC3_EL1;
else
  return ERXMISC3_EL1;
endif

MSR ERXMISC3_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elseif EL2Enabled() && HCR_EL2.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ERXMISCn_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXMISC3_EL1;
    endif
  else
    return ERXMISC3_EL1;
  endif
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXMISC3_EL1;
    endif
  else
    return ERXMISC3_EL1;
  endif
elsif PSTATE.EL == EL3 then
  return ERXMISC3_EL1;
else
  return ERXMISC3_EL1;
endif

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
ID072120
Non-Confidential
UNDEFINED;
else if HaveEl(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        ERXMISC3_EL1 = X[t];
    endif
else if PSTATE.EL == EL3 then
    ERXMISC3_EL1 = X[t];
else
D13.7.11 ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register

The ERXPFGCDN_EL1 characteristics are:

**Purpose**

Accesses ERR<n>PFGCDN for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXPFGCDN_EL1 are UNDEFINED.

**Attributes**

ERXPFGCDN_EL1 is a 64-bit register.

**Field descriptions**

The ERXPFGCDN_EL1 bit assignments are:

63 0

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERXPFGCDN_EL1 accesses ERR&lt;n&gt;PFGCDN, where &lt;n&gt; is the value in ERRSELR_EL1.SEL.</td>
</tr>
</tbody>
</table>

**Accessing the ERXPFGCDN_EL1**

If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXPFGCDN_EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCDN_EL1 are NOPs.
- Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGCDN_EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCDN_EL1 are NOPs.
- Direct reads and writes of ERXPFGCDN_EL1 are UNDEFINED.

--- Note ---

A node does not implement the RAS Common Fault Injection Model Extension when ERR<n>FR.INJ == 0b00. <q> is the index of the first error record owned by the same node as error record <n>, where <n> is the value in ERRSELR_EL1.SEL. If the node owns a single record, then q = n.

--- Note ---

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<n>PFGCDN is not present, meaning reads and writes of ERXPFGCDN_EL1 are RES0.
ERR<\textless{}n\textgreater{}>PFGCDN describes additional constraints that also apply when ERR<\textless{}n\textgreater{}>PFGCDN is accessed through ERXPFGCDN_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:

\textbf{MRS <Xt>, ERXPFGCDN_EL1}

\begin{verbatim}
\begin{tabular}{cccccc}
op0 & op1 & CRn & CRm & op2 \\
0b11 & 0b000 & 0b0101 & 0b0100 & 0b110
\end{tabular}
\end{verbatim}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() & HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFWTR_EL2.ERXPFGCDN_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    end if
elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    end if
elsif PSTATE.EL == EL3 then
    return ERXPFGCDN_EL1;
else
    return ERXPFGCDN_EL1;
end if
\end{verbatim}

\textbf{MSR ERXPFGCDN_EL1, <Xt>}

\begin{verbatim}
\begin{tabular}{cccccc}
op0 & op1 & CRn & CRm & op2 \\
0b11 & 0b000 & 0b0101 & 0b0100 & 0b110
\end{tabular}
\end{verbatim}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() & HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFWTR_EL2.ERXPFGCDN_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    end if
elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    end if
elsif PSTATE.EL == EL3 then
    return ERXPFGCDN_EL1;
else
    return ERXPFGCDN_EL1;
end if
AArch64.SystemAccessTrap(EL3, 0x18);
else
    ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end if
    end if
else
    ERXPFGCDN_EL1 = X[t];
elsif PSTATE.EL == EL3 then
    ERXPFGCDN_EL1 = X[t];
else
    AArch64.SystemAccessTrap(EL3, 0x18);
end if

D13.7.12 ERXPFGCTL_EL1, Selected Pseudo-fault Generation Control register

The ERXPFGCTL_EL1 characteristics are:

**Purpose**

Accesses ERR<\textit{n}>PFGCTL for the error record \textit{n} selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXPFGCTL_EL1 are UNDEFINED.

**Attributes**

ERXPFGCTL_EL1 is a 64-bit register.

**Field descriptions**

The ERXPFGCTL_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>ERR&lt;\textit{n}&gt;PFGCTL</td>
</tr>
</tbody>
</table>

**Accessing the ERXPFGCTL_EL1**

If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXPFGCTL_EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCTL_EL1 are NOPs.
- Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

If ERRSELR_EL1.SEL selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGCTL_EL1 is RAZ/WI.
- Direct reads and writes of ERXPFGCTL_EL1 are NOPs.
- Direct reads and writes of ERXPFGCTL_EL1 are UNDEFINED.

**Note**

A node does not implement the RAS Common Fault Injection Model Extension when ERR<\textit{n}>FR.INJ == 0b00. \textit{q} is the index of the first error record owned by the same node as error record \textit{n}, where \textit{n} is the value in ERRSELR_EL1.SEL. If the node owns a single record, then \textit{q} = \textit{n}.

If ERRSELR_EL1.SEL is not the index of the first error record owned by a node, then ERR<\textit{n}>PFGCTL is not present, meaning reads and writes of ERXPFGCTL_EL1 are RES0.
ERR<n>PFGCTL describes additional constraints that also apply when ERR<n>PFGCTL is accessed through ERXPFGCTL_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ERXPFGCTL_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b010</td>
<td>0b0100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
    UNDEFINED;
  elsif EL2Enabled() & HCR_EL2.FIEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFWTR_EL2.ERXPFGCTL_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
    if Halted() & EDCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXPFGCTL_EL1;
    end;
  elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
      UNDEFINED;
    elsif EL2Enabled() & SCR_EL3.FIEN == '0' then
      if Halted() & EDCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.SystemAccessTrap(EL3, 0x18);
      end;
    else
      return ERXPFGCTL_EL1;
    end;
  elsif PSTATE.EL == EL3 then
    return ERXPFGCTL_EL1;
else
  return ERXPFGCTL_EL1;
end;

**MSR ERXPFGCTL_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b010</td>
<td>0b0100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
    UNDEFINED;
  elsif EL2Enabled() & HCR_EL2.FIEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') & HFWTR_EL2.ERXPFGCTL_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
    if Halted() & EDCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXPFGCTL_EL1;
    end;
  elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & SCR_EL3.FIEN == '0' then
      UNDEFINED;
    elsif HaveEL(EL3) & SCR_EL3.FIEN == '0' then
      if Halted() & EDCR.SDD == '1' then
        UNDEFINED;
      else
        return ERXPFGCTL_EL1;
      end;
    else
      return ERXPFGCTL_EL1;
    end;
  elsif PSTATE.EL == EL3 then
    return ERXPFGCTL_EL1;
end;
AArch64.SystemAccessTrap(EL3, 0x18);
else
  ERXPFGCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FIEN == '0' then
    UNDEFINED;
  elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      ERXPFGCTL_EL1 = X[t];
  elsif PSTATE.EL == EL3 then
    ERXPFGCTL_EL1 = X[t];
else
  ERXPFGCTL_EL1 = X[t];
D13.7.13   ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register

The ERXPFGF_EL1 characteristics are:

**Purpose**

Accesses \( \text{ERR}<n>\text{PFGF} \) for the error record \(<n>\) selected by \( \text{ERRSELR_EL1.SEL} \).

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXPFGF_EL1 are UNDEFINED.

**Attributes**

ERXPFGF_EL1 is a 64-bit register.

**Field descriptions**

The ERXPFGF_EL1 bit assignments are:

```
63 0
```

\( \text{ERR}<n>\text{PFGF} \)

Bits [63:0]

ERXPFGF_EL1 accesses \( \text{ERR}<n>\text{PFGF} \), where \(<n>\) is the value in \( \text{ERRSELR_EL1.SEL} \).

**Accessing the ERXPFGF_EL1**

If \( \text{ERRIDR_EL1.NUM} \) is set to a value greater than or equal to \( \text{ERRSELR_EL1.SEL} \), then one of the following occurs:

- An \text{UNKNOWN} error record is selected.
- ERXPFGF_EL1 is RAZ.
- Direct reads of ERXPFGF_EL1 are NOPs.
- Direct reads of ERXPFGF_EL1 are UNDEFINED.

If \( \text{ERRSELR_EL1.SEL} \) selects an error record owned by a node that does not implement the RAS Common Fault Injection Model Extension, then one of the following occurs:

- ERXPFGF_EL1 is RAZ.
- Direct reads of ERXPFGF_EL1 are NOPs.
- Direct reads of ERXPFGF_EL1 are UNDEFINED.

**Note**

A node does not implement the RAS Common Fault Injection Model Extension when \( \text{ERR}<n>\text{FR.INJ} \) is set to a value greater than \( \text{ERRSELR_EL1.SEL} \). If the node owns a single record, then \( q = n \).

If \( \text{ERRSELR_EL1.SEL} \) is not the index of the first error record owned by a node, then \( \text{ERR}<n>\text{PFGF} \) is not present, meaning reads of ERXPFGF_EL1 are \text{RES0}.

A node does not implement the RAS Common Fault Injection Model Extension when \( \text{ERR}<n>\text{FR.INJ} \) is set to a value greater than \( \text{ERRSELR_EL1.SEL} \). If the node owns a single record, then \( q = n \).
ERR<n>PFGF describes additional constraints that also apply when ERR<n>PFGF is accessed through ERXPFGF_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, ERXPFGF_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.FIEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!(HaveEL(EL3) | SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ERXPFGF_EL1 == '1') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.FIEN == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return ERXPFGF_EL1;
    else
        return ERXPFGF_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FIEN == '0' then
        UNDEFINED;
    elsif Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        return ERXPFGF_EL1;
elsif PSTATE.EL == EL3 then
    return ERXPFGF_EL1;
D13.7.14 ERXSTATUS_EL1, Selected Error Record Primary Status Register

The ERXSTATUS_EL1 characteristics are:

**Purpose**

Accesses ERR<n>STATUS for the error record <n> selected by ERRSELR_EL1.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch64 System register ERXSTATUS_EL1[31:0] is architecturally mapped to AArch32 System register ERXSTATUS[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXSTATUS_EL1 are UNDEFINED.

**Attributes**

ERXSTATUS_EL1 is a 64-bit register.

**Field descriptions**

The ERXSTATUS_EL1 bit assignments are:

![ERXSTATUS_EL1 diagram]

**Accessing the ERXSTATUS_EL1**

If ERRIDR_EL1.NUM == 0x0000 or ERRSELR_EL1.SEL is set to a value greater than or equal to ERRIDR_EL1.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXSTATUS_EL1 is RAZ/WI.
- Direct reads and writes of ERXSTATUS_EL1 are NOPs.
- Direct reads and writes of ERXSTATUS_EL1 are UNDEFINED.

ERR<n>STATUS describes additional constraints that also apply when ERR<n>STATUS is accessed through ERXSTATUS_EL1.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <xt>, ERXSTATUS_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && SCR_EL3.TERR == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDQWER_EL2.ERXSTATUS_EL1 == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        return ERXSTATUS_EL1;
    elsif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            else
                return ERXSTATUS_EL1;
            elsif PSTATE.EL == EL3 then
                return ERXSTATUS_EL1;
else
    if PSTATE.EL == EL0 then
        UNDEFINED;
    elseif PSTATE.EL == EL1 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
            UNDEFINED;
        elseif EL2Enabled() && HCR_EL2.TERR == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && (HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDQWTR_EL2.ERXSTATUS_EL1 == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
            else
                return ERXSTATUS_EL1;
        elseif PSTATE.EL == EL2 then
            if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
                UNDEFINED;
            elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
                if Halted() && EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.SystemAccessTrap(EL3, 0x18);
                else
                    ERXSTATUS_EL1 = X[t];
        elseif PSTATE.EL == EL3 then
            if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.TERR == '1' then
                UNDEFINED;
            elseif HaveEL(EL3) && SCR_EL3.TERR == '1' then
                if Halted() && EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.SystemAccessTrap(EL3, 0x18);
                else
                    ERXSTATUS_EL1 = X[t];
        elseif PSTATE.EL == EL3 then
            ERXSTATUS_EL1 = X[t];
else
    ERXSTATUS_EL1 = X[t];
else
    ERXSTATUS_EL1 = X[t];

---

**MSR ERXSTATUS_EL1, <X>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

---

D13-3874  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  ARM DDI 0487F.c  Non-Confidential  ID072120
D13.7.15 VDISR_EL2, Virtual Deferred Interrupt Status Register

The VDISR_EL2 characteristics are:

**Purpose**

Records that a virtual SError interrupt has been consumed by an ESB instruction executed at EL1.

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for the value written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB instruction.

**Configurations**

AArch64 System register VDISR_EL2[31:0] is architecturally mapped to AArch32 System register VDISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDISR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is res0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

VDISR_EL2 is a 64-bit register.

**Field descriptions**

The VDISR_EL2 bit assignments are:

*When EL1 is using AArch64:*

```
 63 | 32 | 31 | 30 | 25 | 24 | 23 | 0
 +(-----+-----+-----+-----+-----+-----+-----+-----+)
 | | | | | | | |
 | RES0| | A | RES0| | ISS | |
 | | | | | | | |
 | IDS |
```

**Bits [63:32]**

Reserved, res0.

**A, bit [31]**

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

**Bits [30:25]**

Reserved, res0.

**IDS, bit [24]**

The value copied from VSESR_EL2.IDS.

This field resets to an architecturally UNKNOWN value.

**ISS, bits [23:0]**

The value copied from VSESR_EL2.ISS.

This field resets to an architecturally UNKNOWN value.

The following subsections describe each ISS format.
When EL1 is using AArch32 and VDISR_EL2.LPAE == 0:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31</td>
<td>A, bit set to 1 when an ESB instruction defers a virtual SError interrupt. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>30:16</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>15:14</td>
<td>AET, the value copied from VSESR_EL2.AET.</td>
</tr>
<tr>
<td>13</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>12</td>
<td>ExT, the value copied from VSESR_EL2.ExT.</td>
</tr>
<tr>
<td>11</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>10</td>
<td>FS[4], fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt. 0b10110 is asynchronous SError interrupt. All other values are reserved. The FS field is split as follows: • FS[4] is VDISR_EL2[10]. • FS[3:0] is VDISR_EL2[3:0]. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>9</td>
<td>LPAE, format. Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt. 0b0 is using the Short-descriptor translation table format. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

RES0 63 32 31 30 16 15 14 13 12 11 10 9 4 3 0

LPAE
FS[4]
RES0
ExT
RES0

RES0

RES0

RES0

RES0
Bits [8:4]
Reserved, RES0.

FS[3:0], bits [3:0]
This field is bits[3:0] of FS[4:0].

When EL1 is using AArch32 and VDISR_EL2.LPAE == 1:

Bits [63:32]
Reserved, RES0.

A, bit [31]
Set to 1 when an ESB instruction defers a virtual SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bits [30:16]
Reserved, RES0.

AET, bits [15:14]
The value copied from VSESRL2.AET.
This field resets to an architecturally UNKNOWN value.

Bit [13]
Reserved, RES0.

ExT, bit [12]
The value copied from VSESRL2.ExT.
This field resets to an architecturally UNKNOWN value.

Bits [11:10]
Reserved, RES0.

LPAE, bit [9]
Format.
Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.
0b1 Using the Long-descriptor translation table format.
This field resets to an architecturally UNKNOWN value.

Bits [8:6]
Reserved, RES0.
STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

0b010001  Asynchronous SError interrupt.

All other values are reserved.

This field resets to an architecturally UNKNOWN value.

Accessing the VDISR_EL2

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for the value that is written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB instruction.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, VDISR_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    return NVMem[0x500];
elif EL2Enabled() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  return VDISR_EL2;
elif PSTATE.EL == EL3 then
  return VDISR_EL2;

**MSR VDISR_EL2, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x500] = X[t];
elif EL2Enabled() && HCR_EL2.NV == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  VDISR_EL2 = X[t];
elif PSTATE.EL == EL3 then
  VDISR_EL2 = X[t];
MRS <Xt>, DISR_EL1

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.AMO == '1' then
        return VDISR_EL2;
    else
        return DISR_EL1;
elsif PSTATE.EL == EL2 then
    return DISR_EL1;
elsif PSTATE.EL == EL3 then
    return DISR_EL1;

MSR DISR_EL1, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.AMO == '1' then
        VDISR_EL2 = X[t];
    else
        DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
    DISR_EL1 = X[t];
eisif PSTATE.EL == EL3 then
    DISR_EL1 = X[t];
D13.7.16 VSESR_EL2, Virtual SError Exception Syndrome Register

The VSESR_EL2 characteristics are:

**Purpose**

Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on executing an E58 instruction at EL1.

When the virtual SError interrupt is taken to EL1 using AArch64, then the syndrome value is reported in ESR_EL1.

When the virtual SError interrupt is taken to EL1 using AArch32, then the syndrome value is reported in DFSR.{AET, ExT} and the remainder of DFSR is set as defined by VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory System Architecture.

When the virtual SError interrupt is deferred by an E58 instruction, then the syndrome value is written to VDISR_EL2.

**Configurations**

AArch64 System register VSESR_EL2[31:0] is architecturally mapped to AArch32 System register VDFSR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VSESR_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

VSESR_EL2 is a 64-bit register.

**Field descriptions**

The VSESR_EL2 bit assignments are:

*When EL1 is using AArch32:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>16-15</td>
<td>AET</td>
</tr>
<tr>
<td>13-11</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>ExT</td>
</tr>
</tbody>
</table>

**Bits [63:16]**

Reserved, RES0.

**AET, bits [15:14]**

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VSESR_EL2.AET.

When a virtual SError interrupt is deferred by an E58 instruction, VDISR_EL2[15:4] is set to VSESR_EL2.AET.

This field resets to an architecturally UNKNOWN value.

**Bit [13]**

Reserved, RES0.
ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VSESR_EL2.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[12] is set to VSESR_EL2.ExT.

This field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When EL1 is using AArch64:

<table>
<thead>
<tr>
<th>63</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDS</td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:25]

Reserved, RES0.

IDS, bit [24]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[24] is set to VSESR_EL2.IDS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[24] is set to VSESR_EL2.IDS.

This field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[23:0] is set to VSESR_EL2.ISS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[23:0] is set to VSESR_EL2.ISS.

This field resets to an architecturally UNKNOWN value.

The following subsections describe each ISS format.

Accessing the VSESR_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS <Xt>, VSESR_EL2}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() & HCR_EL2.<NV2,NV> == '11' then
        return NVMem[0x508];
    elsif EL2Enabled() & HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  return VSESR_EL2;
elsif PSTATE.EL == EL3 then
  return VSESR_EL2;

---

**MSR VSESR_EL2, <XT>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

else
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x508] = X[t];
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  VSESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  VSESR_EL2 = X[t];
D13.8  Generic Timer registers

This section lists the Generic Timer registers in AArch64.
D13.8.1  CNTFRQ_EL0, Counter-timer Frequency register

The CNTFRQ_EL0 characteristics are:

**Purpose**

This register is provided so that software can discover the frequency of the system counter. It must be programmed with this value as part of system initialization. The value of the register is not interpreted by hardware.

**Configurations**

AArch64 System register CNTFRQ_EL0[31:0] is architecturally mapped to AArch32 System register CNTFRQ[31:0].

**Attributes**

CNTFRQ_EL0 is a 64-bit register.

**Field descriptions**

The CNTFRQ_EL0 bit assignments are:

| Bits [63:32] | Reserved, RES0. |
|---------------|----------------|---|
| Bits [31:0]   | Clock frequency | Clock frequency indicates the system counter clock frequency, in Hz. This field resets to an architecturally UNKNOWN value.

**Accessing the CNTFRQ_EL0**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CNTFRQ_EL0**

```
if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '1') & CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if PSTATE.EL == EL1 then
 return CNTFRQ_EL0;
 elsif PSTATE.EL == EL2 then
 return CNTFRQ_EL0;
 endif
 return CNTFRQ_EL0;
endif
```
elsif PSTATE.EL == EL3 then
    return CNTFRQ_EL0;

    MSR CNTFRQ_EL0, <x[t]>

    if IsHighestEL(PSTATE.EL) then
        CNTFRQ_EL0 = X[t];
    else
        UNDEFINED;

---

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
D13.8.2 CNTHCTL_EL2, Counter-timer Hypervisor Control register

The CNTHCTL_EL2 characteristics are:

**Purpose**

Controls the generation of an event stream from the physical counter, and access from EL1 to the physical counter and the EL1 physical timer.

**Configurations**

AArch64 System register CNTHCTL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHCTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

**Attributes**

CNTHCTL_EL2 is a 64-bit register.

**Field descriptions**

The CNTHCTL_EL2 bit assignments are:

*When FEAT_VHE is implemented and HCR_EL2.E2H == 1:*

![Diagram of CNTHCTL_EL2 bit assignments](image)

**Bits [63:18]**

Reserved, RES0.

**EVNTIS, bit [17]**

*When FEAT_ECV is implemented:*

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

EL1NVVCT, bit [16]

When FEAT_ECV is implemented:
Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 || HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions to be trapped.
   If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 && HCR_EL2.NV1==0 && HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct read.
This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

EL1NVPCT, bit [15]

When FEAT_ECV is implemented:
Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.
0b1 If ((HCR_EL2.E2H==1 && HCR_EL2.TGE==1) || HCR_EL2.NV2==0 || HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions to be trapped.
   If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 && HCR_EL2.NV1==0 && HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02 and CNTP_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct read.
This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.
This field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

EL1TVCT, bit [14]

When FEAT_ECV is implemented:
Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.
0b1 If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.
   If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:
   • In AArch64 state, traps EL0 and EL1 accesses to CNTVCT_EL0 to EL2, unless they are trapped by CNTKCTL_EL1.EL0VCTEN.
   • In AArch32 state, traps EL0 and EL1 accesses to CNTVCT to EL2, unless they are trapped by CNTKCTL_EL1.EL0VCTEN or CNTKCTL.PL0VCTEN.
If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**EL1TVT, bit [13]**

**When FEAT_ECV is implemented:**

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the current Security state.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
<tr>
<td>0b1</td>
<td>If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped. If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:</td>
</tr>
</tbody>
</table>

- In AArch64 state, traps EL0 and EL1 accesses to CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0 to EL2, unless they are trapped by CNTKCTL_EL1.ELOVTEN.
- In AArch32 state, traps EL0 and EL1 accesses to CNTV_CTL, CNTV_CVAL, and CNTV_TVAL to EL2, unless they are trapped by CNTKCTL_EL1.ELOVTEN or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**ECV, bit [12]**

**When FEAT_ECV is implemented:**

Enables the Enhanced Counter Virtualization functionality registers.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Enhanced Counter Virtualization functionality is disabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2} == {0, 0}, then Enhanced Counter Virtualization functionality is disabled. When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H or HCR_EL2.TGE are 0, then Enhanced Counter Virtualization functionality is enabled when EL2 is enabled for the current Security state. This means that:</td>
</tr>
</tbody>
</table>

- An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return the value (PCount<63:0> - CNTPOFF_EL2<63:0>).
- The EL1 physical timer interrupt is triggered when ((PCount<63:0> - CNTPOFF_EL2<63:0>) - PCVal<63:0>) is greater than or equal to 0. PCount<63:0> is the physical count returned when CNTPCT_EL0 is read from EL2 or EL3. PCVal<63:0> is the EL1 physical timer compare value for this timer.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.
EL1PTEN, bit [11]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the E1 physical timer registers to EL2 when EL2 is enabled in the current Security state.

- **0b0**: From AArch64 state: EL0 and EL1 accesses to the CNTP_CTL_EL0, CNTP_CV AL_EL0, and CNTP_TV AL_EL0 are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PTEN.
  
  From AArch32 state: EL0 and EL1 accesses to the CNTP_CTL, CNTP_CV AL, and CNTP_TV AL are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PTEN or CNTKCTL.PL0PTEN.

- **0b1**: This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL1PCTEN, bit [10]

When HCR_EL2.TGE is 0, traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is enabled in the current Security state, as follows:

- In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.

- In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome value 0x04.

- **0b0**: From AArch64 state: EL0 and EL1 accesses to the CNTPCT_EL0 are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PCTEN.

  From AArch32 state: EL0 and EL1 accesses to the CNTPCT are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

- **0b1**: This control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0PTEN, bit [9]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the physical timer registers to EL2.

- **0b0**: EL0 using AArch64: EL0 accesses to the CNTP_CTL_EL0, CNTP_CV AL_EL0, and CNTP_TV AL_EL0 registers are trapped to EL2.

- **0b1**: This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.

When HCR_EL2.TGE is 1, traps EL0 accesses to the virtual timer registers to EL2.

- **0b0**: EL0 using AArch64: EL0 accesses to the CNTV_CTL_EL0, CNTV_CV AL_EL0, and CNTV_TV AL_EL0 registers are trapped to EL2.

- **0b1**: This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.
EVNTI, bits [7:4]
Selects which bit of the counter register CNTPCT_EL0 is the trigger for the event stream generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL_EL2.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of the counter register CNTPCT_EL0.
Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.
This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]
Controls which transition of the counter register CNTPCT_EL0 trigger bit, defined by EVNTI, generates an event when the event stream is enabled.

0b0  A 0 to 1 transition of the trigger bit triggers an event.
0b1  A 1 to 0 transition of the trigger bit triggers an event.
This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]
Enables the generation of an event stream from the counter register CNTPCT_EL0.

0b0  Disables the event stream.
0b1  Enables the event stream.
This field resets to an architecturally UNKNOWN value.

EL0VCTEN, bit [1]
When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.
When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and virtual counter register to EL2.

0b0  EL0 using AArch64: EL0 accesses to the CNTVCT_EL0 are trapped to EL2.
     EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if CNTHCTL_EL2.EL0PCTEN is also 0.
     EL0 using AArch32: EL0 accesses to the CNTVCT are trapped to EL2.
     EL0 using AArch32: EL0 accesses to the CNTFRQ register are trapped to EL2, if CNTHCTL_EL2.EL0VCTEN is also 0.
0b1  This control does not cause any instructions to be trapped.
This field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]
When HCR_EL2.TGE is 0, this control does not cause any instructions to be trapped.
When HCR_EL2.TGE is 1, traps EL0 accesses to the frequency register and physical counter register to EL2.

0b0  EL0 using AArch64: EL0 accesses to the CNTPCT_EL0 are trapped to EL2.
     EL0 using AArch64: EL0 accesses to the CNTFRQ_EL0 register are trapped to EL2, if CNTHCTL_EL2.EL0VCTEN is also 0.
     EL0 using AArch32: EL0 accesses to the CNTPCt are trapped to EL2.
     EL0 using AArch32: EL0 accesses to the CNTFRQ and register are trapped to EL2, if CNTHCTL_EL2.EL0VCTEN is also 0.
0b1  This control does not cause any instructions to be trapped.
This field resets to an architecturally UNKNOWN value.
Otherwise:

This format applies in all Armv8.0 implementations, and it also contains a description of the behavior when EL3 is implemented and EL2 is not implemented.

Bits [63:18]

Reserved, RES0.

EVNTIS, bit [17]

Controls the scale of the generation of the event stream.

0b0 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[15:0].

0b1 The CNTHCTL_EL2.EVNTI field applies to CNTPCT_EL0[23:8].

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

EL1NVVCT, bit [16]

Traps EL1 accesses to the specified EL1 virtual timer registers using the EL02 descriptors to EL2, when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 & HCR_EL2.TGE==1) || HCR_EL2.NV2==0 || HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions to be trapped.

If ((HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 && HCR_EL2.NV1==0 && HCR_EL2.NV==1), then EL1 accesses to CNTV_CTL_EL02 and CNTV_CVAL_EL02 are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

EL1NVPCT, bit [15]

Traps EL1 accesses to the specified EL1 physical timer registers using the EL02 descriptors to EL2, when EL2 is enabled for the current Security state.

0b0 This control does not cause any instructions to be trapped.

0b1 If ((HCR_EL2.E2H==1 & HCR_EL2.TGE==1) || HCR_EL2.NV2==0 || HCR_EL2.NV1==1 || HCR_EL2.NV==0), this control does not cause any instructions to be trapped.
If (HCR_EL2.E2H==0 || HCR_EL2.TGE==0) && HCR_EL2.NV2==1 &&
HCR_EL2.NV1==0 && HCR_EL2.NV==1, then EL1 accesses to CNTP_CTL_EL02
and CNTP_CVAL_EL02, are trapped to EL2.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

**EL1TVCT, bit [14]**

Traps EL0 and EL1 accesses to the EL1 virtual counter registers to EL2, when EL2 is enabled for
the current Security state.

0b0  This control does not cause any instructions to be trapped.

0b1  If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

In AArch64 state, traps EL0 and EL1 accesses to CNTVCTL_EL0 to EL2, unless they
are trapped by CNTKCTL_EL1.EL0VTEN. In AArch32 state, traps EL0 and EL1
accesses to CNTVCT to EL2, unless they are trapped by CNTKCTL_EL1.EL0VTEN
or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

**EL1TVM, bit [13]**

Traps EL0 and EL1 accesses to the EL1 virtual timer registers to EL2, when EL2 is enabled for the
current Security state.

0b0  This control does not cause any instructions to be trapped.

0b1  If HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be
trapped.

If HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, then:

- In AArch64 state, traps EL0 and EL1 accesses to CNTV_CTL_EL0,
  CNTV_CVAL_EL0, and CNTV_TVAL_EL0 to EL2, unless they are trapped by
  CNTKCTL_EL1.EL0VTEN.

- In AArch32 state, traps EL0 and EL1 accesses to CNTV_CTL, CNTV_CVAL,
  and CNTV_TVAL to EL2, unless they are trapped by
  CNTKCTL_EL1.EL0VTEN or CNTKCTL.PL0VTEN.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 0 other than for the
purpose of a direct read.

This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.

This field resets to an architecturally UNKNOWN value.

**ECV, bit [12]**

Enables the Enhanced Counter Virtualization functionality registers.

0b0  Enhanced Counter Virtualization functionality is disabled.

0b1  When HCR_EL2.{E2H, TGE} == {1, 1} or SCR_EL3.{NS, EEL2} == {0, 0}, then
Enhanced Counter Virtualization functionality is disabled.

When SCR_EL3.NS or SCR_EL3.EEL2 are 1, and HCR_EL2.E2H or HCR_EL2.TGE
are 0, then Enhanced Counter Virtualization functionality is enabled when EL2 is
enabled for the current Security state. This means that:

- An MRS to CNTPCT_EL0 from either EL0 or EL1 that is not trapped will return
  the value (PCount<63:0> - CNTPOFF_EL2<63:0> ).
The EL1 physical timer interrupt is triggered when 
\((\text{PCount}_{63:0} - \text{CNTPOFF}_{EL2}_{63:0} - \text{PCVal}_{63:0})\) is greater than or equal to 0. PCount is the physical count returned when \(\text{CNTPCT}_{EL0}\) is read from EL2 or EL3. PCVal\(_{63:0}\) is the EL1 physical timer compare value for this timer.

This field resets to an architecturally UNKNOWN value.

**Bits [11:8]**

Reserved, RES0.

**EVNTI, bits [7:4]**

Selects which bit of the counter register \(\text{CNTPCT}_{EL0}\) is the trigger for the event stream generated from that counter, when that stream is enabled.

If \(\text{FEAT}_E\text{CV}\) is implemented, and \(\text{CNTHCTL}_{EL2}.\text{EVNTIS}\) is 1, this field selects a trigger bit in the range 8 to 23 of the counter register \(\text{CNTPCT}_{EL0}\).
Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

This field resets to an architecturally UNKNOWN value.

**EVNTDIR, bit [3]**

Controls which transition of the counter register \(\text{CNTPCT}_{EL0}\) trigger bit, defined by EVNTI, generates an event when the event stream is enabled.

0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

**EVNTEN, bit [2]**

Enables the generation of an event stream from the counter register \(\text{CNTPCT}_{EL0}\).

0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to 0.

**EL1PCEN, bit [1]**

Traps EL0 and EL1 accesses to the EL1 physical timer registers to EL2 when EL2 is enabled in the current Security state, as follows:

- In AArch64 state, accesses to \(\text{CNTP_CTL}_{EL0}\), \(\text{CNTP_CVAL}_{EL0}\), \(\text{CNTP_TVAL}_{EL0}\) are trapped to EL2, reported using EC syndrome value 0x18.
- In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 reported using EC syndrome value 0x3 and MRRC and MCRR accesses are trapped to EL2, reported using EC syndrome value 0x04:
  - \(\text{CNTP_CTL}\), \(\text{CNTP_CVAL}\), \(\text{CNTP_TVAL}\).

0b0 From AArch64 state: EL0 and EL1 accesses to the \(\text{CNTP_CTL}_{EL0}\), \(\text{CNTP_CVAL}_{EL0}\), \(\text{CNTP_TVAL}_{EL0}\) are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by \(\text{CNTKCTL}_{EL1}.\text{EL0PTEN}\).

From AArch32 state: EL0 and EL1 accesses to the \(\text{CNTP_CTL}\), \(\text{CNTP_CVAL}\), \(\text{CNTP_TVAL}\) are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by \(\text{CNTKCTL}_{EL1}.\text{EL0PTEN}\) or \(\text{CNTKCTL}.\text{PL0PTEN}\).
0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

This field resets to an architecturally UNKNOWN value.
EL1PCTEN, bit [0]

Traps EL0 and EL1 accesses to the EL1 physical counter register to EL2 when EL2 is enabled in the current Security state, as follows:

- In AArch64 state, accesses to CNTPCT_EL0 are trapped to EL2, reported using EC syndrome value 0x18.
- In AArch32 state, MRRC or MCRR accesses to CNTPCT are trapped to EL2, reported using EC syndrome value 0x04.

0b0 From AArch64 state: EL0 and EL1 accesses to the CNTPCT_EL0 are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PCTEN.

From AArch32 state: EL0 and EL1 accesses to the CNTPCT are trapped to EL2 when EL2 is enabled in the current Security state, unless they are trapped by CNTKCTL_EL1.EL0PCTEN or CNTKCTL.PL0PCTEN.

0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHCTL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHCTL_EL2 or CNTKCTL_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRS \langle Xt \rangle, \text{CNTHCTL}_\text{EL2} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

\[ MSR \text{CNTHCTL}_\text{EL2}, \langle Xt \rangle \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
MRS <Xt>, CNTKCTL_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

MSR CNTKCTL_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTKCTL_EL2 = X[t];
 else
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t];

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTKCTL_EL2;
 else
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 return CNTKCTL_EL1;
```
D13.8.3  **CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register**

The CNTHP_CTL_EL2 characteristics are:

**Purpose**

Control register for the EL2 physical timer.

**Configurations**

AArch64 System register CNTHP_CTL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHP_CTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

CNTHP_CTL_EL2 is a 64-bit register.

**Field descriptions**

The CNTHP_CTL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>62</td>
<td>ISTATUS, bit [2]</td>
</tr>
<tr>
<td>61</td>
<td>IMASK, bit [1]</td>
</tr>
<tr>
<td>60</td>
<td>ENABLE, bit [0]</td>
</tr>
</tbody>
</table>

**Bits [63:3]**

Reserved, RES0.

**ISTATUS, bit [2]**

The status of the timer. This bit indicates whether the timer condition is met:

- 0b0: Timer condition is not met.
- 0b1: Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN. This bit is read-only.

**IMASK, bit [1]**

Timer interrupt mask bit. Permitted values are:

- 0b0: Timer interrupt is not masked by the IMASK bit.
- 0b1: Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit. This field resets to an architecturally UNKNOWN value.

**ENABLE, bit [0]**

Enables the timer. Permitted values are:

- 0b0: Timer disabled.
- 0b1: Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from 
\texttt{CNTHP\_TV\_AL\_EL2} continues to count down.

\textbf{Note}

Disabling the output signal might be a power-saving option.

This field resets to an architecturally \texttt{UNKNOWN} value.

\textbf{Accessing the \texttt{CNTHP\_CTL\_EL2}}

When \texttt{HCR\_EL2.E2H} is 1, without explicit synchronization, access from EL2 using the mnemonic \texttt{CNTHP\_CTL\_EL2} or \texttt{CNTP\_CTL\_EL0} are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\texttt{MRS <Xt>, CNTHP\_CTL\_EL2}

\begin{align*}
\text{op0} & \quad \text{op1} & \quad \text{CRn} & \quad \text{CRm} & \quad \text{op2} \\
0b11 & \quad 0b100 & \quad 0b1110 & \quad 0b0010 & \quad 0b001
\end{align*}

\begin{verbatim}
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR\_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return CNTHP\_CTL\_EL2;
elsif PSTATE.EL == EL3 then
  return CNTHP\_CTL\_EL2;
\end{verbatim}

\texttt{MSR CNTHP\_CTL\_EL2, <Xt>}

\begin{align*}
\text{op0} & \quad \text{op1} & \quad \text{CRn} & \quad \text{CRm} & \quad \text{op2} \\
0b11 & \quad 0b100 & \quad 0b1110 & \quad 0b0010 & \quad 0b001
\end{align*}

\begin{verbatim}
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR\_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  CNTHP\_CTL\_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  CNTHP\_CTL\_EL2 = X[t];
\end{verbatim}
MRS <Xt>, CNTP_CTL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL1.EL0PTEN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAddressTrap(EL1, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    return CNTHPS_CTL_EL2;
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    return CNTHP_CTL_EL2;
else
  return CNTP_CTL_EL0;
endif

elself PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
else
  return CNTP_CTL_EL0;
endif

elself PSTATE.EL == EL2 then
  if HCR_EL2.<E2H>TGE == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    return CNTHPS_CTL_EL2;
  elseif HCR_EL2.<E2H>TGE == '1' && SCR_EL3.NS == '1' then
    return CNTHP_CTL_EL2;
else
  return CNTP_CTL_EL0;
endif

elself PSTATE.EL == EL3 then
  return CNTP_CTL_EL0;
endif

MSR CNTP_CTL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL1.EL0PTEN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAddressTrap(EL1, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2") then
    CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    CNTHP_CTL_EL2 = X[t];
else
    CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
        NVMem[0x180] = X[t];
    else
        CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
        CNTHPS_CTL_EL2 = X[t];
    elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
        CNTHP_CTL_EL2 = X[t];
    else
        CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
    CNTP_CTL_EL0 = X[t];
D13.8.4  **CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2)**

The CNTHP_CVAL_EL2 characteristics are:

**Purpose**

Holds the compare value for the EL2 physical timer.

**Configurations**

AArch64 System register CNTHP_CVAL_EL2[63:0] is architecturally mapped to AArch32 System register CNTHP_CVAL[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

CNTHP_CVAL_EL2 is a 64-bit register.

**Field descriptions**

The CNTHP_CVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-0</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>

**CompareValue, bits [63:0]**

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- **CNTHP_CTL_EL2.ISTATUS** is set to 1.
- If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally **UNKNOWN** value.

**Accessing the CNTHP_CVAL_EL2**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CVAL_EL2 or CNTP_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHP_CVAL_EL2

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return CNTHP_CVAL_EL2;
elsif PSTATE.EL == EL3 then
  return CNTHP_CVAL_EL2;

MSR CNTHP_CVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  CNTHP_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
  CNTHP_CVAL_EL2 = X[t];

MRS <Xt>, CNTP_CVAL_EL0

if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTKCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    return CNTHPS_CVAL_EL2;
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    return CNTHP_CVAL_EL2;
  else
    return CNTHP_CVAL_EL2;
return CNTP_CVAL_EL0;

elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2..<NV2,NV1,NV> == '111' then
    return NVMem[0x178];
  else
    return CNTP_CVAL_EL0;
  end
else
  return CNTP_CVAL_EL0;
endif

elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    return CNTHPS_CVAL_EL2;
  elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
    return CNTHP_CVAL_EL2;
  else
    return CNTP_CVAL_EL0;
  endif
else
  return CNTP_CVAL_EL0;
endif

if PSTATE.EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHK_ELOPTEN == '0' then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      return CNTP_CVAL_EL0;
    endif
  elseif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PCEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
    return CNTHPS_CVAL_EL2 = X[t];
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
    IsFeatureImplemented("FEAT_SEL2") then
    CNTHPS_CVAL_EL2 = X[t];
  elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    CNTHP_CVAL_EL2 = X[t];
else
  return CNTP_CVAL_EL0 = X[t];
endif

if PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elseif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x178] = X[t];
else
  return CNTP_CVAL_EL0 = X[t];
endif

if PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    CNTHPS_CVAL_EL2 = X[t];
  elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
    CNTHP_CVAL_EL2 = X[t];
else
  return CNTP_CVAL_EL0 = X[t];
endif

if PSTATE.EL == EL3 then
  return CNTP_CVAL_EL0 = X[t];
end

---

**MSR CNTP_CVAL_EL0, <X>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>
### D13.8.5 CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2)

The CNTHP_TVAL_EL2 characteristics are:

#### Purpose

Holds the timer value for the EL2 physical timer.

#### Configurations

AArch64 System register CNTHP_TVAL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHP_TVAL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

#### Attributes

CNTHP_TVAL_EL2 is a 64-bit register.

#### Field descriptions

The CNTHP_TVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31:0</td>
<td>TimerValue</td>
</tr>
</tbody>
</table>

#### TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

- If CNTHP_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
- If CNTHP_CTL_EL2.ENABLE is 1, the value returned is (CNTHP_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHP_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHP_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTHP_CTL_EL2.ISTATUS is set to 1.
- If CNTHP_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHP_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

#### Accessing the CNTHP_TVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_TVAL_EL2 or CNTP_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHP_TVAL_EL2

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHP_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHP_TVAL_EL2;

MSR CNTHP_TVAL_EL2, <Xt>

```

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHP_TVAL_EL2 = X[t];

MRS <Xt>, CNTP_TVAL_EL0

```

```
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_TVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
else
```

```
return CNTP_TVAL_EL0;

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTP_TVAL_EL0;
 end

elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_TVAL_EL2;
 elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
 else
 return CNTP_TVAL_EL0;
 end

elsif PSTATE.EL == EL3 then
 return CNTP_TVAL_EL0;

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHKP_EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_TVAL_EL2 = X[t];
 elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
 end
 else
 CNTP_TVAL_EL0 = X[t];
 end

elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
 end

elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_TVAL_EL2 = X[t];
 elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
 end

elsif PSTATE.EL == EL3 then
 CNTP_TVAL_EL0 = X[t];

MSR CNTP_TVAL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b0000</td>
</tr>
</tbody>
</table>
D13.8.6 **CNGTHS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)**

The CNGTHS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 physical timer.

Configurations

AArch64 System register CNGTHS_CTL_EL2[31:0] is architecturally mapped to AArch32 System register CNGTHS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to CNGTHS_CTL_EL2 are UNDEFINED.

Attributes

CNGTHS_CTL_EL2 is a 64-bit register.

Field descriptions

The CNGTHS_CTL_EL2 bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS</td>
</tr>
<tr>
<td>2</td>
<td>IMASK</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE</td>
</tr>
</tbody>
</table>
```

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

- **0b0**: Timer condition is not met.
- **0b1**: Timer condition is met.

When the value of the CNGTHS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNGTHS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

- **0b0**: Timer interrupt is not masked by the IMASK bit.
- **0b1**: Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

- **0b0**: Timer disabled.
- **0b1**: Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2 continues to count down.

--- Note ---
Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CNTHPS_CTL_EL2

```plaintext
<table>
<thead>
<tr>
<th>op</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end if;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end if;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
        return CNTHPS_CTL_EL2;
    end if;
else
    return CNTHPS_CTL_EL2;
end if;
```

MSR CNTHPS_CTL_EL2, <Xt>

```plaintext
<table>
<thead>
<tr>
<th>op</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end if;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end if;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
        CNTHPS_CTL_EL2 = X[t];
    end if;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
        CNTHPS_CTL_EL2 = X[t];
    end if;
else
    return CNTHPS_CTL_EL2;
end if;
```
else
 CNTHPS_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x180];
 else
 return CNTP_CTL_EL0;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
 elsif PSTATE.EL == EL3 then
 return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x180] = X[t];
else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = X[t];
else
 CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t];
D13.8.7 CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2)

The CNTHPS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_CVAL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHPS_CVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_CVAL_EL2 are UNDEFINED.

Attributes

CNTHPS_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHPS_CVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompareValue, bits [63:0]</td>
<td>Holds the EL2 physical timer CompareValue. When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met: • CNTHPS_CTL_EL2.ISTATUS is set to 1. • If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated. When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count. If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0. The value of this field is treated as zero-extended in all counter calculations. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

Accessing the CNTHPS_CVAL_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xi>, CNTHPS_CVAL_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) & SCR_EL3.NS == '1' then
 UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 return CNTHPS_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHPS_CVAL_EL2;
elsif PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
 else
 CNTHPS_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_CVAL_EL2 = X[t];

\[\]

MSR CNTHPS_CVAL_EL2, \(<Xt>\)

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

\[\]

MRS \(<Xt>\), CNTP_CVAL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
else
 return CNTP_CVAL_EL0;
endif

if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x178];
 else
 return CNTP_CVAL_EL0;
 endif
endif

if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
 endif
endif

if PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;
endif

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
endif

 MSR CNTP_CVAL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x178] = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
 endif
endif

if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
 endif
endif

if PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;
else
 return CNTP_CVAL_EL0;
endif

elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t];
D13.8.8 CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2)

The CNTHPS_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the Secure EL2 physical timer.

Configurations

AArch64 System register CNTHPS_TVAL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHPS_TVAL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_TVAL_EL2 are UNDEFINED.

Attributes

CNTHPS_TVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHPS_TVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>32-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>TimerValue</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

- If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
- If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTHPS_CTL_EL2.ISTATUS is set to 1.
- If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_TVAL_EL2

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHPS_TVAL_EL2

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 return CNTHPS_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 return CNTHPS_TVAL_EL2;
else
 CNTHPS_TVAL_EL2 = X[t];

MSR CNTHPS_TVAL_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 CNTHPS_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHPS_TVAL_EL2 = X[t];
MRS <Xt>, CNTP_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
 end if
 end if
else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
end if

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
 end if
 end if
else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
end if

MSR CNTP_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 if EL2Enabled() && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
 end if
 end if
else
 if EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then
 return CNTHPS_TVAL_EL2;
 else
 return CNTHP_TVAL_EL2;
 end if
end if
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTP_TVAL_EL2 = X[t];
else
 CNTP_TVAL_EL0 = X[t];
else if PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
 else if PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
 else if PSTATE_EL == EL3 then
 CNTP_TVAL_EL0 = X[t];
 end
 end
end

D13.8.9 CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose

Control register for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CTL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHV_CTL[31:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_CTL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_CTL_EL2 bit assignments are:

![Diagram of CNTHV_CTL_EL2]

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Timer condition is not met.</td>
</tr>
<tr>
<td>1</td>
<td>Timer condition is met.</td>
</tr>
</tbody>
</table>

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is **UNKNOWN**. This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Timer interrupt is not masked by the IMASK bit.</td>
</tr>
<tr>
<td>1</td>
<td>Timer interrupt is masked by the IMASK bit.</td>
</tr>
</tbody>
</table>

For more information, see the description of the ISTATUS bit. This field resets to an architecturally **UNKNOWN** value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Timer disabled.</td>
</tr>
</tbody>
</table>

0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TV_AL_EL2 continues to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHV_CTL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CTL_EL2 or CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } <Xt>, \text{ CNTHV_CTL_EL2}
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b100 & 0b1110 & 0b0011 & 0b001
\end{array}
\]

\[
\text{MSR CNTHV_CTL_EL2, } <Xt>
\]

\[
\begin{array}{cccccc}
\text{op0} & \text{op1} & \text{CRn} & \text{CRm} & \text{op2} \\
0b11 & 0b100 & 0b1110 & 0b0011 & 0b001
\end{array}
\]
MRS <Xt>, CNTV_CTL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 if EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & CNTKCTL_EL1.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & CNTHCTL_EL1.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' &
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() & CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x170];
 else
 return CNTV_CTL_EL0;
 elseif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elseif HCR_EL2.E2H == '1' & SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elseif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;
endif

MSR CNTV_CTL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() & HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & CNTKCTL_EL1.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & CNTHCTL_EL1.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' &
 IsFeatureImplemented("FEAT_SEL2") then
 CNTNHS_CTL_EL2 = X[t];
 elseif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 CNTNV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
else
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() & CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x170];
 else
 return CNTV_CTL_EL0;
 elseif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elseif HCR_EL2.E2H == '1' & SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elseif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;
endif
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
 end
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
 end
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];
D13.8.10 CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_CVAL_EL2[63:0] is architecturally mapped to AArch32 System register CNTHV_CVAL[63:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_CVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_CVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 to 0</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTHV_CTL_EL2.ISTATUS is set to 1.
- If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHV_CVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CVAL_EL2 or CNTV_CVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHV_CVAL_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHV_CVAL_EL2;
elsif PSTATE.EL == EL3 then
 return CNTHV_CVAL_EL2;
MRS CNTHV_CVAL_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHV_CVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 CNTHV_CVAL_EL2 = X[t];
MRS <Xt>, CNTV_CVAL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTVS_CVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
 elsif PSTATE.EL == EL1 then

AArch64 System Register Descriptions
D13.8 Generic Timer registers
if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x168];
else
 return CNTV_CVAL_EL0;
else if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHS_CVAL_EL2;
 else if HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
else if PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0;

MSR CNTV_CVAL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 return CNTV_CVAL_EL0 = X[t];
else if PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else if EL2Enabled() && SCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x168] = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
else if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHS_CVAL_EL2 = X[t];
 else if HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
else if PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0 = X[t];

D13.8.11 CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2)

The CNTHV_TVAL_EL2 characteristics are:

Purpose

Holds the timer value for the EL2 virtual timer.

Configurations

AArch64 System register CNTHV_TVAL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHV_TVAL[31:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_TVAL_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHV_TVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHV_TVAL_EL2 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>61</th>
<th>32</th>
<th>31</th>
<th>30</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td>TimerValue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:
- If CNTHV_CTL_EL2.ENABLE is 0, the value returned is **UNKNOWN**.
- If CNTHV_CTL_EL2.ENABLE is 1, the value returned is (CNTHV_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHV_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTHV_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:
- CNTHV_CTL_EL2.ISTATUS is set to 1.
- If CNTHV_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHV_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally **UNKNOWN** value.

Accessing the CNTHV_TVAL_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_TVAL_EL2 or CNTV_TVAL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHV_TVAL_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elif PSTATE.EL == EL2 then
 return CNTHV_TVAL_EL2;
elif PSTATE.EL == EL3 then
 return CNTHV_TVAL_EL2;

MSR CNTHV_TVAL_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elif PSTATE.EL == EL2 then
 CNTHV_TVAL_EL2 = X[t];
elif PSTATE.EL == EL3 then
 CNTHV_TVAL_EL2 = X[t];

MRS <Xt>, CNTV_TVAL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elf EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 return CNTHVS_TVAL_EL2;
elif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_TVAL_EL2;
elif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
else
 return CNTV_TVAL_EL0;
elif PSTATE.EL == EL1 then
if EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHV_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTV_TVAL_EL0;

MSR CNTV_TVAL_EL0, <Xt>

<table>
<thead>
<tr>
<th></th>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0b11</td>
<td>0b011</td>
<td>b1110</td>
<td>b0011</td>
<td>b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_TVAL_EL2 = X[t];
 elseif EL2Enabled() && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTV_TVAL_EL0 = X[t];
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_TVAL_EL2 = X[t];
 elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
 elsif PSTATE.EL == EL3 then
 CNTV_TVAL_EL0 = X[t];

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

ID072120
Non-Confidential

D13-3927
D13.8.12 **CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)**

The CNTHVS_CTL_EL2 characteristics are:

Purpose

Control register for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CTL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHVS_CTL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHVS_CTL_EL2 are UNDEFINED.

Attributes

CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions

The CNTHVS_CTL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS, bit [2]</td>
</tr>
<tr>
<td>2</td>
<td>IMASK, bit [1]</td>
</tr>
<tr>
<td>0</td>
<td>ENABLE, bit [0]</td>
</tr>
</tbody>
</table>

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

- 0b0 Timer condition is not met.
- 0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

- 0b0 Timer interrupt is not masked by the IMASK bit.
- 0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

- 0b0 Timer disabled.
- 0b1 Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL_EL2 continues to count down.

Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_CTL_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CNTHVS_CTL_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if HaveEL(EL3) && SCR_EL3.NS == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
      UNDEFINED;
    else
      return CNTHVS_CTL_EL2;
    elsif PSTATE.EL == EL3 then
      if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
      else
        return CNTHVS_CTL_EL2;
      endif
    endif
  else
    CNTHVS_CTL_EL2 = X[t];
  endif
else
  UNDEFINED;
endif
```

MSR CNTHVS_CTL_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if HaveEL(EL3) && SCR_EL3.NS == '1' then
    UNDEFINED;
  elsif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
  elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
      UNDEFINED;
    else
      CNTHVS_CTL_EL2 = X[t];
    elsif PSTATE.EL == EL3 then
      if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
      endif
    endif
  else
    CNTHVS_CTL_EL2 = X[t];
  endif
else
  UNDEFINED;
endif
```
else
 CNTHVS_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHKVTELS.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHKVTELS.EL1VTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && NVMem[0x170];
 else
 return CNTV_CTL_EL0;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elsif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHTKVTELS.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHKVTELS.EL1VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 CNTV_CTL_EL2 = X[t];
else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 CNTV_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' & SCR_EL3.NS == '1' then
 CNTV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];
D13.8.13 CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2)

The CNTHVS_CVAL_EL2 characteristics are:

Purpose

Holds the compare value for the Secure EL2 virtual timer.

Configurations

AArch64 System register CNTHVS_CVAL_EL2[63:0] is architecturally mapped to AArch32 System register CNTHVS_CVAL[63:0].

This register is present only when EL2 is implemented and FEB SEL2 is implemented. Otherwise, direct accesses to CNTHVS_CVAL_EL2 are UNDEFINED.

Attributes

CNTHVS_CVAL_EL2 is a 64-bit register.

Field descriptions

The CNTHVS_CVAL_EL2 bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
   64-bit CompareValue
```

CompareValue, bits [63:0]

Holds the Secure EL2 virtual timer CompareValue.

When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTHVS_CTL_EL2.ISTATUS is set to 1.
- If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_CVAL_EL2

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CNTHVS_CVAL_EL2

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '1' then
        UNDEFINED;
    end if;
end if;
```

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```
```c

#ifdef EL1Enabled() && HCR_EL1.NV == '1'
  AArch64.SystemAccessTrap(EL2, 0x18);
#else
  UNDEFINED;
#endif

if (EL1Enabled() && SCR_EL3.NS == '1')
  return CNTHVS_CVAL_EL2;
#else
  UNDEFINED;
#endif

if (PSTATE_EL == EL1 then
  if HaveEL(EL3) && SCR_EL3.NS == '1' then
    UNDEFINED;
  else
    return CNTHVS_CVAL_EL2;
#else
  UNDEFINED;
#endif

if (PSTATE_EL == EL2 then
  if SCR_EL3.EEL2 == '0' then
    UNDEFINED;
  else
    return CNTHVS_CVAL_EL2;
#else
  UNDEFINED;
#endif

MRS CNTHVS_CVAL_EL2, <Xt>

if (PSTATE_EL == EL0 then
  UNDEFINED;
else (PSTATE_EL == EL1 then
  if (HaveEL(EL3) && SCR_EL3.NS == '1') then
    UNDEFINED;
  elif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
#endif

if (PSTATE_EL == EL2 then
  if (HaveEL(EL3) && SCR_EL3.NS == '1') then
    UNDEFINED;
  else
    CNTHVS_CVAL_EL2 = X[t];
#else
  UNDEFINED;
#endif

MRS <Xt>, CNTV_CVAL_EL0

if (PSTATE_EL == EL0 then
  if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
    if (EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL1.EL0VTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTKCTL_EL1.EL1VTEN == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
  IsFeatureImplemented("FEAT_SEL2") then
    return CNTHVS_CVAL_EL2;
  elif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    return CNTHVS_CVAL_EL2;
#endif
```
else
 return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x168];
 else
 return CNTV_CVAL_EL0;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL_EL0;
 endif
elsif PSTATE.EL == EL3 then
 return CNTV_CVAL_EL0;
endif

MSR CNTV_CVAL_EL0, <X>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
 endif
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x168] = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = X[t];
 else
 CNTV_CVAL_EL0 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 CNTV_CVAL_EL0 = X[t];
D13.8.14 CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2)

The CNTHVS_TVAL_EL2 characteristics are:

Purpose
Holds the timer value for the Secure EL2 virtual timer.

Configurations
AArch64 System register CNTHVS_TVAL_EL2[31:0] is architecturally mapped to AArch32 System register CNTHVS_TVAL[31:0].
This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHVS_TVAL_EL2 are UNDEFINED.

Attributes
CNTHVS_TVAL_EL2 is a 64-bit register.

Field descriptions
The CNTHVS_TVAL_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>RES0</td>
</tr>
<tr>
<td>31-0</td>
<td>TimerValue</td>
</tr>
</tbody>
</table>

Bits [63:32]
Reserved, RES0.

TimerValue, bits [31:0]
The TimerValue view of the EL2 virtual timer.
On a read of this register:
- If CNTHVS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
- If CNTHVS_CTL_EL2.ENABLE is 1, the value returned is (CNTHVS_CVAL_EL2 - CNTVCT_EL0).

On a write of this register, CNTHVS_CVAL_EL2 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.
When CNTHVS_CTL_EL2.ENABLE is 1, the timer condition is met when ((CNTVCT_EL0 - CNTHVS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:
- CNTHVS_CTL_EL2.ISTATUS is set to 1.
- If CNTHVS_CTL_EL2.IMASK is 0, an interrupt is generated.
When CNTHVS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears to continue to count down.
This field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_TVAL_EL2
Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTHVS_TVAL_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elseif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 return CNTHVS_TVAL_EL2;
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_TVAL_EL2 = X[t];
else
 return CNTHVS_TVAL_EL2;

MSR CNTHVS_TVAL_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 elseif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && SCR_EL3.NS == '1' then
 UNDEFINED;
 else
 CNTHVS_TVAL_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 if SCR_EL3.EEL2 == '0' then
 UNDEFINED;
 else
 CNTHVS_TVAL_EL2 = X[t];
MRS $<Xt>$, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTV_TVAL_EL0;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
 elsif PSTATE.EL == EL3 then
 return CNTV_TVAL_EL0;
endif

MSR CNTV_TVAL_EL0, $<Xt>$

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTV_TVAL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTV_TVAL_EL0;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_TVAL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL_EL0;
 else
 return CNTV_TVAL_EL0;
endif

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>
AArch64.SystemAccessTrap(EL2, 0x18);
else
 CNTV_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = X[t];
 else
 CNTV_TVAL_EL0 = X[t];
 end
elsif PSTATE.EL == EL3 then
 CNTV_TVAL_EL0 = X[t]
D13.8.15 CNTKCTL_EL1, Counter-timer Kernel Control register

The CNTKCTL_EL1 characteristics are:

Purpose

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not \{1, 1\}, this register controls the generation of an event stream from the virtual counter, and access from EL0 to the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is \{1, 1\}, this register does not cause any event stream from the virtual counter to be generated, and does not control access to the counters and timers. The access to counters and timers at EL0 is controlled by CNTHCTL_EL2.

Configurations

AArch64 System register CNTKCTL_EL1[31:0] is architecturally mapped to AArch32 System register CNTKCTL[31:0].

Attributes

CNTKCTL_EL1 is a 64-bit register.

Field descriptions

The CNTKCTL_EL1 bit assignments are:

Bits [63:18]	Reserved, RES0.
Bits [16:10]	Reserved, RES0.
EVNTIS, bit [17]	When FEAT_ECV is implemented:
	Controls the scale of the generation of the event stream.
	0b0 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[15:0].
	0b1 The CNTKCTL_EL1.EVNTI field applies to CNTVCT_EL0[23:8].
	This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.
	This field resets to an architecturally UNKNOWN value.
bits [16:10]	Reserved, RES0.
EL0PTEN, bit [9]
Traps EL0 accesses to the physical timer registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- In AArch64 state, the following registers are trapped, reported using EC syndrome value 0x18:
 - CNTP_CTL_EL0, CNTP_CVAL_EL0, and CNTP_TVAL_EL0.
- In AArch32 state, MRC and MCR accesses to the following registers are trapped, reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped, reported using EC syndrome value 0x04:
 - CNTP_CTL, CNTP_CVAL, CNTP_TVAL.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>EL0 accesses to the physical timer registers are trapped to EL1.</td>
</tr>
<tr>
<td>0b1</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
</tbody>
</table>

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

EL0VTEN, bit [8]
Traps EL0 accesses to the virtual timer registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- In AArch64 state, accesses to the following registers are trapped, reported using EC syndrome value 0x18:
 - CNTV_CTL_EL0, CNTV_CVAL_EL0, and CNTV_TVAL_EL0.
- In AArch32 state, MRC and MCR accesses to the following registers are trapped and reported using EC syndrome value 0x03, MRRC and MCRR accesses are trapped using EC syndrome value 0x04:
 - CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>EL0 accesses to the virtual timer registers are trapped.</td>
</tr>
<tr>
<td>0b1</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
</tbody>
</table>

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, this control does not cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

EVNTI, bits [7:4]
Selects which bit of the counter register CNTVCT_EL0 is the trigger for the event stream generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTKCTL_EL1.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of the counter register CNTVCT_EL0.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

This field resets to an architecturally **UNKNOWN** value.

EVNTDIR, bit [3]
Controls which transition of the counter register CNTVCT_EL0 trigger bit, defined by EVNTI, generates an event when the event stream is enabled.

<table>
<thead>
<tr>
<th>Bit Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>A 0 to 1 transition of the trigger bit triggers an event.</td>
</tr>
<tr>
<td>0b1</td>
<td>A 1 to 0 transition of the trigger bit triggers an event.</td>
</tr>
</tbody>
</table>

This field resets to an architecturally **UNKNOWN** value.
EVNTEN, bit [2]

When FEAT_VHE is not implemented, or when HCR_EL2.{E2H, TGE} is not \{1, 1\}, enables the
generation of an event stream from the counter register CNTVCT_EL0.

- **0b0**: Disables the event stream.
- **0b1**: Enables the event stream.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is \{1, 1\}, this control does not
enable the event stream.

This field resets to **0**.

EL0VCTEN, bit [1]

Traps EL0 accesses to the frequency register and virtual counter register to EL1, or to EL2 when it
is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- In AArch64 state, accesses to the following registers are trapped and reported using EC
 syndrome value **0x18**:
 - CNTVCT_EL0 and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.

- In AArch32 state, MRC and MCR accesses to the following registers are trapped and
 reported using EC syndrome value **0x03**, MRRC and MCRR accesses are trapped and
 reported using EC syndrome value **0x04**:
 - CNTVT and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.

- **0b0**: EL0 accesses to the frequency register and virtual counter registers are trapped.
- **0b1**: This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is \{1, 1\}, this control does not
cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

EL0PCTEN, bit [0]

Traps EL0 accesses to the frequency register and physical counter register to EL1, or to EL2 when it
is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, as follows:

- In AArch64 state, the following registers are trapped, reported using EC syndrome value
 0x18:
 - CNTPTC_EL0 and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ_EL0.

- In AArch32 state, MCR or MRC accesses the following registers are trapped, reported using
 EC syndrome value **0x03**, MCRR or MRRC accesses are trapped and reported using EC
 syndrome value **0x04**:
 - CNTPTC and if CNTKCTL_EL1.EL0PCTEN is 0, CNTFRQ.

- **0b0**: EL0 accesses to the frequency register and physical counter register are trapped.
- **0b1**: This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented and HCR_EL2.{E2H, TGE} is \{1, 1\}, this control does not
cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

Accessing the CNTKCTL_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic
CNTKCTL_EL1 or CNTKCTL_EL12 are not guaranteed to be ordered with respect to accesses using the other
mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTKCTL_EL1

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTHCTL_EL2;
 else
 return CNTKCTL_EL1;
elsif PSTATE.EL == EL3 then
 return CNTKCTL_EL1;

MSR CNTKCTL_EL1, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTHCTL_EL2 = X[t];
 else
 CNTKCTL_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL_EL1 = X[t];

MRS <Xt>, CNTKCTL_EL12

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTKCTL_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTKCTL_EL1;
 else
 UNDEFINED;
MSR CNTKCTL_EL12, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTKCTL_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE_EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTKCTL_EL1 = X[t];
 else
 UNDEFINED;
D13.8.16 CNTP_CTL_EL0, Counter-timer Physical Timer Control register

The CNTP_CTL_EL0 characteristics are:

Purpose
Control register for the EL1 physical timer.

Configurations
AArch64 System register CNTP_CTL_EL0[31:0] is architecturally mapped to AArch32 System register CNTP_CTL[31:0].

Attributes
CNTP_CTL_EL0 is a 64-bit register.

Field descriptions
The CNTP_CTL_EL0 bit assignments are:

```
+-------------------+-------------------+
| Bits [63:3]       | 63  3  2  1  0    |
| Reserved, RES0    |                3 2 1 0 0 |
| ISTATUS, bit [2]  | ENABLE          |
| IMASK, bit [1]    | IMASK           |
| ENABLE, bit [0]   | ISTATUS         |
```

Bits [63:3]
Reserved, RES0.

ISTATUS, bit [2]
The status of the timer. This bit indicates whether the timer condition is met:
- 0b0 Timer condition is not met.
- 0b1 Timer condition is met.
When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.
When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.
This bit is read-only.

IMASK, bit [1]
Timer interrupt mask bit. Permitted values are:
- 0b0 Timer interrupt is not masked by the IMASK bit.
- 0b1 Timer interrupt is masked by the IMASK bit.
For more information, see the description of the ISTATUS bit.
This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]
Enables the timer. Permitted values are:
- 0b0 Timer disabled.
- 0b1 Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL_EL0 continues to count down.
Note
Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CTL_EL0 or CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRS} \langle \text{Xt} \rangle, \text{CNTP_CTL_EL0} \]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if (!EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTKCTL_EL1.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.E2H == '0' & CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '10' & CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 return CNTP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
 endif

else
 return CNTP_CTL_EL0;
endif

if PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.E2H == '0' & CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.E2H == '1' & CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x180];
 else
 return CNTP_CTL_EL0;
 endif
endif

if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' & SCR_EL3.NS == '1' then
 return CNTP_CTL_EL2;
 else
 return CNTP_CTL_EL0;
 endif
endif

if PSTATE.EL == EL3 then
 return CNTP_CTL_EL0;
endif
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &
 && CNTHCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' &
 && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' &
 && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = X[t];
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' &
 && SCR_EL3.NS == '0' &
 && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = X[t];
 else
 return NVMem[0x180];
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' &
 && CNTHCTL_EL1.NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x180];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' &
 && SCR_EL3.NS == '0' &
 && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' &
 && SCR_EL3.NS == '1' then
 CNTHPS_CTL_EL2 = X[t];
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 CNTP_CTL_EL0 = X[t];
else
 if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' &
 && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x180];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
 return CNTP_CTL_EL0;
else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_CTL_EL0;
 else
 UNDEFINED;

MSR CNTP_CTL_EL02, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.E1INVPC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x180] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTP_CTL_EL0 = X[t];
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTP_CTL_EL0 = X[t];
 else
 UNDEFINED;
D13.8.17 **CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register**

The CNTP_CVAL_EL0 characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_CVAL_EL0[63:0] is architecturally mapped to AArch32 System register CNTP_CVAL[63:0].

Attributes

CNTP_CVAL_EL0 is a 64-bit register.

Field descriptions

The CNTP_CVAL_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:0</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>

- **CompareValue**
 - Holds the EL1 physical timer CompareValue.
 - When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:
 - CNTP_CTL_EL0.ISTATUS is set to 1.
 - If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.
 - When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.
 - If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.
 - The value of this field is treated as zero-extended in all counter calculations.
 - This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CVAL_EL0 or CNTP_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CNTP_CVAL_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b011</td>
<td>0b110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```chc
if PSTATE.EL == EL0 then
    if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
```
else
 AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '1' then
 return CNTP_CVAL_EL2;
else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '1' then
 return CNTP_CVAL_EL2;
else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
else
 return CNTP_CVAL_EL0;
elsif PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;

MSR CNTP_CVAL_EL0, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b01</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.E2H == '11') && CNTHKT_EL1.EL0PTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 endif
 elseif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CVAL_EL2 = X[t];
 elseif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
 endif
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elseif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
 elseif EL2Enabled() && HCR_EL2.E2H == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
 endif
 elseif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
 elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL_EL0;
 endif
 elseif PSTATE.EL == EL3 then
 return CNTP_CVAL_EL0;
 endif
endif
NVMem[0x178] = X[t];
else
 CNTP_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CVAL_EL2 = X[t];
 elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = X[t];
 else
 CNTP_CVAL_EL0 = X[t];
 endif
elsif PSTATE.EL == EL3 then
 CNTP_CVAL_EL0 = X[t];
endif

MRS <Xt>, CNTP_CVAL_EL02

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x178];
 endif
 endif
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_CVAL_EL0;
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_CVAL_EL0;
 else
 UNDEFINED;
 endif
endif

MSR CNTP_CVAL_EL02, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 NVMem[0x178] = X[t];
 endif
 endif
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_CVAL_EL0;
 else
 UNDEFINED;
 endif
endif
CNTP_CVAL_EL0 = X[t];
else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 CNTP_CVAL_EL0 = X[t];
 else
 UNDEFINED;

D13.8.18 **CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register**

The CNTP_TVAL_EL0 characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch64 System register CNTP_TVAL_EL0[31:0] is architecturally mapped to AArch32 System register CNTP_TVAL[31:0].

Attributes

CNTP_TVAL_EL0 is a 64-bit register.

Field descriptions

The CNTP_TVAL_EL0 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
<td>TimerValue</td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [63:32]

Reserved, RES0.

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

- If CNTP_CTL_EL0.ENABLE is 0, the value returned is **UNKNOWN**.
- If CNTP_CTL_EL0.ENABLE is 1, the value returned is (CNTP_CVAL_EL0 - CNTPCT_EL0).

On a write of this register, CNTP_CVAL_EL0 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTP_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTP_CTL_EL0.ISTATUS is set to 1.
- If CNTP_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTP_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTPC_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally **UNKNOWN** value.

Accessing the CNTP_TVAL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_TVAL_EL0 or CNTP_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTP_TVAL_EL0

```c
if PSTATE.EL == EL0 then
    if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0PTEN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elseif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
        IsFeatureImplemented("FEAT_SEL2") then
        return CNTHPS_TVAL_EL2;
    elseif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
        return CNTHP_TVAL_EL2;
    else
        return CNTP_TVAL_EL0;
    endif
else
    if PSTATE.EL == EL1 then
        if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        elseif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return CNTP_TVAL_EL0;
        endif
    elseif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
            return CNTHPS_TVAL_EL2;
        elseif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
            return CNTHP_TVAL_EL2;
        else
            return CNTP_TVAL_EL0;
        endif
    elseif PSTATE.EL == EL3 then
        return CNTP_TVAL_EL0;
    else
        return CNTP_TVAL_EL0;
    endif
endif

MSR CNTP_TVAL_EL0, <Xt>

```
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTP_TVAL_EL2 = X[t];
else
 CNTP_TVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CNTP_TVAL_EL0 = X[t];
else
 if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_TVAL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = X[t];
 else
 CNTP_TVAL_EL0 = X[t];
 elseif PSTATE.EL == EL3 then
 CNTP_TVAL_EL0 = X[t];
 endif;
endif;

MRS <Xt>, CNTP_TVAL_EL02

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
else
 if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTP_TVAL_EL0;
 else
 UNDEFINED;
else
 if PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_TVAL_EL0;
 else
 UNDEFINED;
endif;

MSR CNTP_TVAL_EL02, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
else
 if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 CNTP_TVAL_EL0 = X[t];
 else
 UNDEFINED;
else
 if PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTP_TVAL_EL0;
 else
 UNDEFINED;
endif;
UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '1' then
 CNTP_TVAL_EL0 = X[t];
 else
 UNDEFINED;
else
 UNDEFINED;
D13.8.19 CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register

The CNTPCTSS_EL0 characteristics are:

Purpose

Holds the self-synchronized view of the 64-bit physical count value.

Configurations

AArch64 System register CNTPCTSS_EL0[63:0] is architecturally mapped to AArch32 System register CNTPCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to CNTPCTSS_EL0 are **UNDEFINED**.

All reads to the CNTPCTSS_EL0 occur in program order relative to reads to CNTPCT_EL0 or CNTPCTSS_EL0.

This register is a self-synchronised view of the CNTPCT_EL0 counter, and cannot be read speculatively.

Attributes

CNTPCTSS_EL0 is a 64-bit register.

Field descriptions

The CNTPCTSS_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Self-synchronized physical count value</td>
</tr>
<tr>
<td>62</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the CNTPCTSS_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, CNTPCTSS_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTPCTSS_EL0;
 elsif PSTATE.EL == EL1 then

D13-3956 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential ARM DDI 0487F.c ID072120
if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
else
 return CNTPCTSS_EL0;
elsif PSTATE.EL == EL2 then
 return CNTPCTSS_EL0;
elsif PSTATE.EL == EL3 then
 return CNTPCTSS_EL0;
D13.8.20 CNTPCT_EL0, Counter-timer Physical Count register

The CNTPCT_EL0 characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch64 System register CNTPCT_EL0[63:0] is architecturally mapped to AArch32 System register CNTPCT[63:0].

All reads to the CNTPCT_EL0 occur in program order relative to reads to CNTPCTSS_EL0 or CNTPCT_EL0.

Attributes

CNTPCT_EL0 is a 64-bit register.

Field descriptions

The CNTPCT_EL0 bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Physical count value
```

Bits [63:0]

Physical count value.

Reads of CNTPCT_EL0 from EL0 or EL1 return (PCount<63:0> - CNTPOFF_EL2<63:0>) if the access is not trapped, and all of the following are true:

- CNTHCTL_EL2.ECV is 1.
- HCR_EL2.{E2H, TGE} is not {1, 1}.

Where PCount<63:0> is the physical count returned when CNTPCT_EL0 is read from EL2 or EL3.

Accessing the CNTPCT_EL0

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xi>, CNTPCT_EL0

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b110</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
```
return CNTPCT_EL0;
elsrif PSTATE.EL == EL1 then
    if EL2Enabled() && CNTHCTL_EL2.EL1PCTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return CNTPCT_EL0;
else
    return CNTPCT_EL0;
else
    elseif PSTATE.EL == EL2 then
        return CNTPCT_EL0;
    elsif PSTATE.EL == EL3 then
        return CNTPCT_EL0;
### D13.8.21 CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

The CNTPS_CTL_EL1 characteristics are:

**Purpose**

Control register for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

**Configurations**

There are no configuration notes.

**Attributes**

CNTPS_CTL_EL1 is a 64-bit register.

**Field descriptions**

The CNTPS_CTL_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>RES0</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS, bit [2]</td>
</tr>
<tr>
<td>2</td>
<td>IMASK, bit [1]</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE, bit [0]</td>
</tr>
</tbody>
</table>

**Bits [63:3]**

Reserved, RES0.

**ISTATUS, bit [2]**

The status of the timer. This bit indicates whether the timer condition is met:

- 0b0 Timer condition is not met.
- 0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is unknown.

This bit is read-only.

**IMASK, bit [1]**

Timer interrupt mask bit. Permitted values are:

- 0b0 Timer interrupt is not masked by the IMASK bit.
- 0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally unknown value.

**ENABLE, bit [0]**

Enables the timer. Permitted values are:

- 0b0 Timer disabled.
- 0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTPS_TVAL_EL1 continues to count down.
Note

Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTPS_CTL_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CNTPS_CTL_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b111</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return CNTPS_CTL_EL1;
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 return CNTPS_CTL_EL1;
```  

**MSR CNTPS_CTL_EL1, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b111</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && SCR_EL3.NS == '0' then
 if SCR_EL3.EEL2 == '1' then
 UNDEFINED;
 elsif SCR_EL3.ST == '0' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 CNTPS_CTL_EL1 = X[t];
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 CNTPS_CTL_EL1 = X[t];
```
D13.8.22  CNTPOFF_EL2, Counter-timer Physical Offset register

The CNTPOFF_EL2 characteristics are:

**Purpose**

Holds the 64-bit physical offset. This is the offset for the AArch64 physical timers and counters when Enhanced Counter Virtualization is enabled.

**Configurations**

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to CNTPOFF_EL2 are UNDEFINED.

The offsetting of the timers and counters based on EL2 using AArch64 apply at:

- EL1 when EL1 is using AArch64 or AArch32.
- EL0 when EL0 is using AArch64 or AArch32.

When EL2 is implemented and enabled in the current Security state, the physical counter uses a fixed physical offset of zero if either of the following are true:

- CNTHCTL_EL2.ECV is 0.
- SCR_EL3.ECVEn is 0.
- HCR_EL2.{E2H, TGE} is {1, 1}.

**Attributes**

CNTPOFF_EL2 is a 64-bit register.

**Field descriptions**

The CNTPOFF_EL2 bit assignments are:

![Physical offset diagram]

Bits [63:0]

Physical offset.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTPOFF_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CNTPOFF_EL2**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 return NVMem(0x1A8);
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
```
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ECVEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        return CNTPOFF_EL2;
    end
elsif PSTATE.EL == EL3 then
    return CNTPOFF_EL2;
end

MSR CNTPOFF_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b10</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x1A8] = X[t];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.ECVEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        end
    else
        CNTPOFF_EL2 = X[t];
    end
elsif PSTATE.EL == EL3 then
    CNTPOFF_EL2 = X[t];
D13.8.23  CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register

The CNTPS_CVAL_EL1 characteristics are:

**Purpose**

Holds the compare value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

**Configurations**

There are no configuration notes.

**Attributes**

CNTPS_CVAL_EL1 is a 64-bit register.

**Field descriptions**

The CNTPS_CVAL_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CompareValue</td>
<td></td>
</tr>
</tbody>
</table>

**CompareValue, bits [63:0]**

Holds the secure physical timer CompareValue.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTPS_CTL_EL1.ISTATUS is set to 1.
- If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTPS_CVAL_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <Xt>, CNTPS_CVAL_EL1**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b111</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if HaveEL(EL3) && SCR_EL3.NS == '0' then
    if SCR_EL3.EEL2 == '1' then
      UNDEFINED;
    elsif SCR_EL3.ST == '0' then
      AArch64.SystemAccessTrap(EL3, 0x18);
else
  return CNTPS_CVAL_EL1;
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return CNTPS_CVAL_EL1;

MSR CNTPS_CVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if HaveEL(EL3) && SCR_EL3.NS == '0' then
    if SCR_EL3.EEL2 == '1' then
      UNDEFINED;
    elsif SCR_EL3.ST == '0' then
      AArch64.SystemAccessTrap(EL3, 0x18);
    else
      CNTPS_CVAL_EL1 = X[t];
    end
  end
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  CNTPS_CVAL_EL1 = X[t];

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b11</td>
<td>0b11</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>
D13.8.24  **CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register**

The CNTPS_TVAL_EL1 characteristics are:

**Purpose**

Holds the timer value for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure state.

**Configurations**

There are no configuration notes.

**Attributes**

CNTPS_TVAL_EL1 is a 64-bit register.

**Field descriptions**

The CNTPS_TVAL_EL1 bit assignments are:

```
 Bits [63:32] 32 31 0
 RES0 TimerValue
```

**Bits [63:32]**

Reserved, RES0.

**TimerValue, bits [31:0]**

The TimerValue view of the secure physical timer.

On a read of this register:

- If CNTPS_CTL_EL1.ENABLE is 0, the value returned is UNKNOWN.
- If CNTPS_CTL_EL1.ENABLE is 1, the value returned is (CNTPS_CVAL_EL1 - CNTPCT_EL0).

On a write of this register, CNTPS_CVAL_EL1 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTPS_CTL_EL1.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTPS_CVAL_EL1) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTPS_CTL_EL1.ISTATUS is set to 1.
- If CNTPS_CTL_EL1.IMASK is 0, an interrupt is generated.

When CNTPS_CTL_EL1.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTPS_TVAL_EL1**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTPS_TVAL_EL1

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '0' then
        if SCR_EL3.EEL2 == '1' then
            UNDEFINED;
        elsif SCR_EL3.ST == '0' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            return CNTPS_TVAL_EL1;
        end
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    return CNTPS_TVAL_EL1;

MSR CNTPS_TVAL_EL1, <Xt>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && SCR_EL3.NS == '0' then
        if SCR_EL3.EEL2 == '1' then
            UNDEFINED;
        elsif SCR_EL3.ST == '0' then
            AArch64.SystemAccessTrap(EL3, 0x18);
        else
            CNTPS_TVAL_EL1 = X[t];
        end
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    CNTPS_TVAL_EL1 = X[t];
D13.8.25 CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

The CNTV_CTL_EL0 characteristics are:

**Purpose**
Control register for the virtual timer.

**Configurations**
AArch64 System register CNTV_CTL_EL0[31:0] is architecturally mapped to AArch32 System register CNTV_CTL[31:0].

**Attributes**
CNTV_CTL_EL0 is a 64-bit register.

**Field descriptions**
The CNTV_CTL_EL0 bit assignments are:

![Bit assignments diagram]

**Bits [63:3]**
Reserved, RES0.

**ISTATUS, bit [2]**
The status of the timer. This bit indicates whether the timer condition is met:

- 0b0  Timer condition is not met.
- 0b1  Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is **UNKNOWN**.

This bit is read-only.

**IMASK, bit [1]**
Timer interrupt mask bit. Permitted values are:

- 0b0  Timer interrupt is not masked by the IMASK bit.
- 0b1  Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally **UNKNOWN** value.

**ENABLE, bit [0]**
Enables the timer. Permitted values are:

- 0b0  Timer disabled.
- 0b1  Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL_EL0 continues to count down.
--- Note ---

Disabling the output signal might be a power-saving option.

---

This field resets to an architecturally UNKNOWN value.

### Accessing the CNTV_CTL_EL0

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CTL_EL0 or CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS } \langle Xt \rangle, \text{ CNTV_CTL_EL0}
\]

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL0.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL1VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && CNTHCTL_EL2.EL1VTEN == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTHV_CTL_EL2;
 elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL_EL0;
 elsif PSTATE.EL == EL3 then
 return CNTV_CTL_EL0;
 else
 return CNTV_CTL_EL0;
```

---
**MSR CNTV_CTL_EL0, <Xt>**

```
if PSTATE.EL == EL0 then
 if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTKCTL_EL1.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' &
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CTL_EL2 = X[t];
 elsif EL2Enabled() & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
else if PSTATE.EL == EL1 then
 if EL2Enabled() & CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x170] = X[t];
 else
 CNTV_CTL_EL0 = X[t];
else if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CTL_EL2 = X[t];
 elsif HCR_EL2.E2H == '1' & SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = X[t];
 else
 CNTV_CTL_EL0 = X[t];
else if PSTATE.EL == EL3 then
 CNTV_CTL_EL0 = X[t];
```

**MRS <Xt>, CNTV_CTL_EL02**

```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HCR_EL2.<NV2,NV1,NV> == '101' then
 if EL2Enabled() & HCR_EL2.<E2H,TGE> != '11' & CNTHCTL_EL2.EL1NVVCT == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return NVMem[0x170];
 elsif EL2Enabled() & HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
 elsif HCR_EL2.E2H == '1' then
 return CNTV_CTL_EL0;
 else
 UNDEFINED;
```

---

**Table 1:**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

**Table 2:**

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    return CNTV_CTL_EL0;
  else
    UNDEFINED;
  endif
endif

MSR CNTV_CTL_EL02, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
    if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVT == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      NVMem[0x170] = X[t];
    endif
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' then
    CNTV_CTL_EL0 = X[t];
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL3 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    CNTV_CTL_EL0 = X[t];
  else
    UNDEFINED;
  endif
}
D13.8.26  CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL_EL0 characteristics are:

**Purpose**

Holds the compare value for the virtual timer.

**Configurations**

AArch64 System register CNTV_CVAL_EL0[63:0] is architecturally mapped to AArch32 System register CNTV_CVAL[63:0].

**Attributes**

CNTV_CVAL_EL0 is a 64-bit register.

**Field descriptions**

The CNTV_CVAL_EL0 bit assignments are:

```
63 0

CompareValue
```

**CompareValue, bits [63:0]**

Holds the EL1 virtual timer CompareValue.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTV_CTL_EL0.ISTATUS is set to 1.
- If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTV_CVAL_EL0**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CVAL_EL0 or CNTV_CVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRS <Xt>, CNTV_CVAL_EL0
```

```
<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b01</td>
<td>0b110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
  if !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTKCTL_EL1.EL0VTEN == '0' then
    if EL2Enabled() & HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap_EL2(0x18);
else
  AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
  AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
  return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
  return CNTHV_CVAL_EL2;
else
  return CNTV_CVAL_EL0;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    return NVMem[0x168];
  else
    return CNTV_CVAL_EL0;
  elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
      return CNTHVS_CVAL_EL2;
    elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
      return CNTHV_CVAL_EL2;
    else
      return CNTV_CVAL_EL0;
    elsif PSTATE.EL == EL3 then
      return CNTV_CVAL_EL0;
else
  MSR CNTV_CVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
  if !((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0VTEN == '0') then
    if EL2Enabled() && HCR_EL2.TGE == '1' then
      AArch64.SystemAccessTrap(EL2, 0x18);
    else
      AArch64.SystemAccessTrap(EL1, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
  CNTHVS_CVAL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
  CNTHV_CVAL_EL2 = X[t];
else
  CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
    NVMem[0x168] = X[t];
else
  CNTV_CVAL_EL0 = X[t];
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    CNTHVS_CVAL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
  CNTHV_CVAL_EL2 = X[t];
else
    CNTV_CVAL_EL0 = X[t];
elsif PSTATE_EL == EL3 then
    CNTV_CVAL_EL0 = X[t];

**MRS <Xt>, CNTV_CVAL_EL02**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '101' then
        if EL2Enabled() \&\& HCR_EL2.<E2H,TGE> != '11' \&\& CNTHCTL_EL2.EL1NVVCT == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            NVMem[0x168] = X[t];
        elsif EL2Enabled() \&\& HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            UNDEFINED;
    elsif PSTATE_EL == EL2 then
        if HCR_EL2.E2H == '1' then
            return CNTV_CVAL_EL0;
        else
            UNDEFINED;
    elsif PSTATE_EL == EL3 then
        if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '1' then
            return CNTV_CVAL_EL0;
        else
            UNDEFINED;

**MSR CNTV_CVAL_EL02, <Xt>**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() \&\& HCR_EL2.<NV2,NV1,NV> == '101' then
        if EL2Enabled() \&\& HCR_EL2.<E2H,TGE> != '11' \&\& CNTHCTL_EL2.EL1NVVCT == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            NVMem[0x168] = X[t];
        elsif EL2Enabled() \&\& HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            UNDEFINED;
    elsif PSTATE_EL == EL2 then
        if HCR_EL2.E2H == '1' then
            CNTV_CVAL_EL0 = X[t];
        else
            UNDEFINED;
    elsif PSTATE_EL == EL3 then
        if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '1' then
            CNTV_CVAL_EL0 = X[t];
else
    UNDEFINED;
D13.8.27 CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL_EL0 characteristics are:

**Purpose**

Holds the timer value for the EL1 virtual timer.

**Configurations**

AArch64 System register CNTV_TVAL_EL0[31:0] is architecturally mapped to AArch32 System register CNTV_TVAL[31:0].

**Attributes**

CNTV_TVAL_EL0 is a 64-bit register.

**Field descriptions**

The CNTV_TVAL_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>31-0</td>
<td>TimerValue, bits [31:0]</td>
</tr>
</tbody>
</table>

**TimerValue, bits [31:0]**

The TimerValue view of the EL1 virtual timer.

On a read of this register:

- If CNTV_CTL_EL0.ENABLE is 0, the value returned is UNKNOWN.
- If CNTV_CTL_EL0.ENABLE is 1, the value returned is (CNTV_CVAL_EL0 - CNTVCT_EL0).

On a write of this register, CNTV_CVAL_EL0 is set to (CNTVCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL_EL0.ENABLE is 1, the timer condition is met when (CNTVCT_EL0 - CNTV_CVAL_EL0) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTV_CTL_EL0.ISTATUS is set to 1.
- If CNTV_CTL_EL0.IMASK is 0, an interrupt is generated.

When CNTV_CTL_EL0.ENABLE is 0, the timer condition is not met, but CNTVCT_EL0 continues to count, so the TimerValue view appears to continue to count down. This field resets to an architecturally UNKNOWN value.

**Accessing the CNTV_TVAL_EL0**

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_TVAL_EL0 or CNTV_TVAL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTV_TVAL_EL0

if PSTATE.EL == EL0 then
    if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTKCTL_EL2.EL1TVT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
        IsFeatureImplemented("FEAT_SEL2") then
        return CNTHVS_TVAL_EL2;
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
        return CNTHV_TVAL_EL2;
    else
        return CNTV_TVAL_EL0;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return CNTV_TVAL_EL0;
    elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
            IsFeatureImplemented("FEAT_SEL2") then
            return CNTHVS_TVAL_EL2;
        elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
            return CNTHV_TVAL_EL2;
        else
            return CNTV_TVAL_EL0;
    elsif PSTATE.EL == EL3 then
        return CNTV_TVAL_EL0;
endif

MSR CNTV_TVAL_EL0, <Xt>

if PSTATE.EL == EL0 then
    if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTKCTL_EL2.EL1TVT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
        IsFeatureImplemented("FEAT_SEL2") then
        CNTHVS_TVAL_EL2 = X[t];
    elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
        CNTHV_TVAL_EL2 = X[t];
    else
        CNTV_TVAL_EL0 = X[t];
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            return CNTV_TVAL_EL0;
    elsif PSTATE.EL == EL2 then
        if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' &&
            IsFeatureImplemented("FEAT_SEL2") then
            return CNTHVS_TVAL_EL2;
        elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
            return CNTHV_TVAL_EL2;
        else
            return CNTV_TVAL_EL0;
    elsif PSTATE.EL == EL3 then
        return CNTV_TVAL_EL0;
endif
AArch64 System Register Descriptions

D13.8 Generic Timer registers

```
AArch64.SystemAccessTrap(EL2, 0x18);
elif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTTHV.TVAL_EL2 = X[t];
elif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then
 CNTTHV.TVAL_EL2 = X[t];
 else
 CNTV.TVAL_EL0 = X[t];
elif PSTATE.EL == EL3 then
 CNTV.TVAL_EL0 = X[t];

MRS <Xt>, CNTV.TVAL_EL02

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;

MSR CNTV.TVAL_EL02, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b101</td>
<td>0b110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
elif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
elif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return CNTV.TVAL_EL0;
```
D13.8.28 CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register

The CNTVCTSS_EL0 characteristics are:

**Purpose**
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPCT_EL0 minus the virtual offset visible in CNTVOFF_EL2.

**Configurations**
AArch64 System register CNTVCTSS_EL0[63:0] is architecturally mapped to AArch32 System register CNTVCTSS[63:0].

This register is present only when FEAT_ECV is implemented. Otherwise, direct accesses to CNTVCTSS_EL0 are **UNDEFINED**.

All reads to the CNTVCTSS_EL0 occur in program order relative to reads to CNTVCT_EL0 or CNTVCTSS_EL0.

This register is a self-synchronised view of the CNTVCT_EL0 counter, and cannot be read speculatively.

**Attributes**
CNTVCTSS_EL0 is a 64-bit register.

**Field descriptions**
The CNTVCTSS_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-0</td>
<td>Self-synchronized virtual count value</td>
</tr>
</tbody>
</table>

**Accessing the CNTVCTSS_EL0**
Accesses to this register use the following encodings in the System instruction encoding space:

**MRS <x>, CNTVCTSS_EL0**

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b011</td>
<td>0b110</td>
<td>0b0000</td>
<td>0b11</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VCTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
return CNTVCTSS_EL0;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
  return CNTVCTSS_EL0;
elsif PSTATE_EL == EL2 then
  return CNTVCTSS_EL0;
elsif PSTATE_EL == EL3 then
  return CNTVCTSS_EL0;
D13.8.29 CNTVCT_EL0, Counter-timer Virtual Count register

The CNTVCT_EL0 characteristics are:

**Purpose**

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value minus the virtual offset visible in CNTVOFF_EL2.

**Configurations**

AArch64 System register CNTVCT_EL0[63:0] is architecturally mapped to AArch32 System register CNTVCT[63:0].

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

- When EL2 is not implemented.
- When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.
- When EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from EL0 or EL2.

All reads to the CNTVCT_EL0 occur in program order relative to reads to CNTVCTSS_EL0 or CNTVCT_EL0.

**Attributes**

CNTVCT_EL0 is a 64-bit register.

**Field descriptions**

The CNTVCT_EL0 bit assignments are:

- Bits [63:0] Virtual count value.

**Accessing the CNTVCT_EL0**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRS \langle \text{Xi} \rangle, \text{CNTVCT_EL0}
\]

```plaintext
if PSTATE.EL == EL0 then
 if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CNTVCT_EL0;
```
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && CNTHCTL_EL2.EL1TVCT == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        return CNTVCT_EL0;
    endif
elsif PSTATE.EL == EL2 then
    return CNTVCT_EL0;
elsif PSTATE.EL == EL3 then
    return CNTVCT_EL0;
D13.8.30  CNTVOFF_EL2, Counter-timer Virtual Offset register

The CNTVOFF_EL2 characteristics are:

**Purpose**

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT_EL0 and the virtual count value visible in CNTVCT_EL0.

**Configurations**

AArch64 System register CNTVOFF_EL2[63:0] is architecturally mapped to AArch32 System register CNTVOFF[63:0].

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

--- Note ---

When EL2 is implemented and enabled in the current Security state, and is using AArch64, the virtual counter uses a fixed virtual offset of zero in the following situations:

- HCR_EL2.E2H is 1, and CNTVCT_EL0 is read from EL2.
- HCR_EL2.{E2H, TGE} is {1, 1}, and either:
  - CNTVCT_EL0 is read from EL0 or EL2.
  - CNTVCT is read from EL0.

**Attributes**

CNTVOFF_EL2 is a 64-bit register.

**Field descriptions**

The CNTVOFF_EL2 bit assignments are:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virtual offset

Bits [63:0]

Virtual offset.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTVOFF_EL2**

Accesses to this register use the following encodings in the System instruction encoding space:
MRS <Xt>, CNTVOFF_EL2

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    return NVMem[0x060];
elif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  return CNTVOFF_EL2;
elif PSTATE.EL == EL3 then
  return CNTVOFF_EL2;

MSR CNTVOFF_EL2, <Xt>

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>CRn</th>
<th>CRm</th>
<th>op2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b11</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
    NVMem[0x060] = X[t];
elif EL2Enabled() && HCR_EL2.NV == '1' then
    AArch64.SystemAccessTrap(EL2, 0x18);
  else
    UNDEFINED;
elif PSTATE.EL == EL2 then
  CNTVOFF_EL2 = X[t];
elif PSTATE.EL == EL3 then
  CNTVOFF_EL2 = X[t];
Part E

The AArch32 Application Level Architecture
Chapter E1
The AArch32 Application Level Programmers’ Model

This chapter gives an Application level description of the programmers’ model for software executing in AArch32 state. This means it describes execution in EL0 when EL0 is using AArch32. It contains the following sections:

• About the Application level programmers’ model on page E1-3988.
• The Application level programmers’ model in AArch32 state on page E1-3989.
• Advanced SIMD and floating-point instructions on page E1-4000.
• About the AArch32 System register interface on page E1-4011.
• Exceptions on page E1-4012.
E1.1  About the Application level programmers’ model

This chapter contains the programmers’ model information required for the development of applications that will execute in AArch32 state.

The information in this chapter is distinct from the system information required to service and support application execution under an operating system, or higher level of system software. However, some knowledge of that system information is needed to put the Application level programmers' model into context.

Depending on the implementation, the architecture supports multiple levels of execution privilege. These privilege levels are indicated by different Exception levels that number upwards from EL0, where EL0 corresponds to the lowest privilege level and is often described as unprivileged. The Application level programmers’ model is the programmers’ model for software executing at EL0. For more information see Armv8 architectural concepts on page A1-37.

System software determines the Exception level, and therefore the level of privilege, at which application software runs. When an operating system supports execution at both EL1 and EL0, an application usually runs unprivileged. This has the following effects:

- It means that the operating system can allocate system resources to an application in a unique or shared manner.
- It provides a degree of protection from other processes, and so helps protect the operating system from malfunctioning software.

This chapter indicates where some System level understanding is helpful, and if appropriate it gives a reference to the System level description.

Application level software is generally unaware of its Security state, and of any virtualization. For more information, see The Armv8-A security model on page G1-5719 and The effect of implementing EL2 on the Exception model on page G1-5724.

______ Note ________

- When an implementation includes EL3, application and operating system software normally executes in Non-secure state.
- Older documentation, describing implementations or architecture versions that support only two privilege levels, often refers to execution at EL1 as privileged execution.
- In this manual, the terms CONSTRAINED UNPREDICTABLE, IMPLEMENTATION DEFINED, OPTIONAL, RES0, RES1, UNDEFINED, UNKNOWN, and UNPREDICTABLE have Arm-specific meanings, as defined in the Glossary. In body text, these terms are shown in SMALL CAPS, for example IMPLEMENTATION DEFINED.
E1.2 The Application level programmers' model in AArch32 state

The following sections give more information about the Application level programmers’ model in AArch32 state:

- Instruction sets, arithmetic operations, and register files.
- Core data types and arithmetic in AArch32 state.
- The general-purpose registers, and the PC, in AArch32 state on page E1-3991.
- Process state, PSTATE on page E1-3993.
- Jazelle support on page E1-3999.

E1.2.1 Instruction sets, arithmetic operations, and register files

The A32 and T32 instruction sets both provide a wide range of integer arithmetic and logical operations, that operate on a register file of sixteen 32-bit registers, that are comprised of the AArch32 general-purpose registers and the PC. As described in The general-purpose registers, and the PC, in AArch32 state on page E1-3991, these registers include the registers SP (R13) and LR (R14), which have specialized uses. Core data types and arithmetic in AArch32 state gives more information about these operations.

In addition, an implementation that implements the T32 and A32 instruction sets includes both:
- Scalar floating-point instructions.
- The Advanced SIMD vector instructions.

Floating-point and vector instructions operate on a separate common register file, described in The SIMD and floating-point register file on page E1-4000. Advanced SIMD and floating-point instructions on page E1-4000 gives more information about these instructions.

E1.2.2 Core data types and arithmetic in AArch32 state

When executing in AArch32 state, a PE supports the following data types in memory:

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>8 bits.</td>
</tr>
<tr>
<td>Halfword</td>
<td>16 bits.</td>
</tr>
<tr>
<td>Word</td>
<td>32 bits.</td>
</tr>
<tr>
<td>Doubleword</td>
<td>64 bits.</td>
</tr>
</tbody>
</table>

PE registers are 32 bits in size. The instruction sets provide instructions that use the following data types for data held in registers:

- 32-bit pointers.
- Unsigned or signed 32-bit integers.
- Unsigned 16-bit or 8-bit integers, held in zero-extended form.
- Signed 16-bit or 8-bit integers, held in sign-extended form.
- Two 16-bit integers packed into a register.
- Four 8-bit integers packed into a register.
- Unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or halfwords zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory. Software can load and store doublewords using these instructions.

Note

For information about the atomicity of memory accesses see Atomicity in the Arm architecture on page E2-4016.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer in the range 0 to $2^N-1$, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range $-2^{(N-1)}$ to $+2^{(N-1)}-1$, using two's complement format.
The instructions that operate on packed halfwords or bytes include some multiply instructions that use only one of
two halfwords, and SIMD instructions that perform parallel addition or subtraction on all of the halfwords or bytes.

--- Note ---
These SIMD instructions operate on values held in the general-purpose registers, and must not be confused with the
Advanced SIMD instructions that operate on a separate register file that provides registers of up to 128 bits.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two or more
instructions to synthesize them.

Integer arithmetic

The instruction set provides a wide range of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and divisions. The pseudocode described in
Appendix K14 Arm Pseudocode Definition defines these operations, usually in one of three ways:

- By direct use of the pseudocode operators and built-in functions defined in Operators on page K14-8139.
- By use of pseudocode helper functions defined in the main text. See Appendix K12 Pseudocode Index.
- By a sequence of the form:
  1. Use of the $\text{SInt}()$, $\text{UInt}()$, and $\text{Int}()$ built-in functions defined in Converting bitstrings to integers on
     page K14-8151 to convert the bitstring contents of the instruction operands to the unbounded integers
     that they represent as two's complement or unsigned integers.
  2. Use of mathematical operators, built-in functions and helper functions on those unbounded integers to
calculate other such integers.
  3. Use of either the bitstring extraction operator defined in Bitstring concatenation and slicing on
     page K14-8140 or of the saturation helper functions described in Pseudocode description of saturation
     on page E1-3991 to convert an unbounded integer result into a bitstring result that can be written to a
     register.

Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

The $\text{LSL}()$ pseudocode function moves each bit of a bitstring left by a specified number of bits. Zeros
are shifted in at the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

The $\text{LSR}()$ pseudocode function moves each bit of a bitstring right by a specified number of bits.
Zeros are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

The $\text{ASR}()$ pseudocode function moves each bit of a bitstring right by a specified number of bits.
Copies of the leftmost bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right

The $\text{ROR}()$ pseudocode function moves each bit of a bitstring right by one bit. A carry input is shifted
in at the left end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a
carry output.
Pseudocode description of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length. The result is another unbounded integer if both operands are unbounded integers, and a bitstring of the same length as the bitstring operand or operands otherwise. For the definition of these operations, see *Addition and subtraction on page K14-8141*.

The main addition and subtraction instructions can produce status information about both unsigned carry and signed overflow conditions. When necessary, multi-word additions and subtractions can be synthesized from this status information. In pseudocode the *AddWithCarry()* function provides an addition with a carry input and a set of output Condition flags including carry output and overflow:

An important property of the *AddWithCarry()* function is that if:

\[(\text{result, nzcv}) = \text{AddWithCarry}(x, \text{NOT}(y), \text{carry\_in})\]

Then:

- If \(\text{carry\_in} == '1'\), then \(\text{result} == x-y\) with:
  - \(\text{nzcv<0>} == '1'\) if signed overflow occurred during the subtraction.
  - \(\text{nzcv<1>} == '1'\) if unsigned borrow did not occur during the subtraction, that is, if \(x\leq y\).
- If \(\text{carry\_in} == '0'\), then \(\text{result} == x-y-1\) with:
  - \(\text{nzcv<0>} == '1'\) if signed overflow occurred during the subtraction.
  - \(\text{nzcv<1>} == '1'\) if unsigned borrow did not occur during the subtraction, that is, if \(x\leq y\).

Taken together, this means that the \(\text{carry\_in}\) and \(\text{nzcv<1>}\) output in *AddWithCarry()* calls can act as NOT borrow flags for subtractions as well as carry flags for additions.

Pseudocode description of saturation

Some instructions perform *saturating arithmetic*, that is, if the result of the arithmetic overflows the destination signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than wrapping around modulo \(2^N\). This is supported in pseudocode by:

- The *SignedSatQ()* and *UnsignedSatQ()* functions when an operation requires, in addition to the saturated result, a Boolean argument that indicates whether saturation occurred.
- The *SignedSat()* and *UnsignedSat()* functions when only the saturated result is required.

\[\text{SatQ}(i, N, \text{unsigned})\] returns either \(*\text{UnsignedSatQ}(i, N)\) or *SignedSatQ*(i, N) depending on the value of its third argument, and \[\text{Sat}(i, N, \text{unsigned})\] returns either \(*\text{UnsignedSat}(i, N)\) or *SignedSat*(i, N) depending on the value of its third argument.

E1.2.3 The general-purpose registers, and the PC, in AArch32 state

In the AArch32 Application level view, a PE has:

- Fifteen general-purpose 32-bit registers, R0 to R14, of which R13 and R14 have alternative names reflecting how they are, or can be, used:
  - R13 is usually identified as SP.
  - R14 is usually identified as LR.
- The PC (*program counter*), that can be described as R15.

The specialized uses of the SP (R13), LR (R14), and PC (R15) are:

**SP, the stack pointer**

The PE uses SP as a pointer to the active stack.

In the T32 instruction set, some instructions cannot access SP. Instructions that can access SP can use SP as a general-purpose register.
The A32 instruction set provides more general access to SP, and it can be used as a general-purpose register.

--- Note ---

Using SP for any purpose other than as a stack pointer might break the requirements of operating systems, debuggers, and other software systems, causing them to malfunction.

Software can refer to SP as R13.

**LR, the link register**

The link register can be used to hold return link information, and some cases described in this manual require this use of the LR. When software does not require the LR for linking, it can use it for other purposes. Software can refer to LR as R14.

**PC, the program counter**

- When executing an A32 instruction, PC reads as the address of the current instruction plus 8.
- When executing a T32 instruction, PC reads as the address of the current instruction plus 4.
- Writing an address to PC causes a branch to that address.

Most T32 instructions cannot access PC.

The A32 instruction set provides more general access to the PC, and many A32 instructions can use the PC as a general-purpose register. However, Arm deprecates the use of PC for any purpose other than as the program counter. See Writing to the PC for more information.

Software can refer to PC as R15.

See AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-5731 for the system level view of these registers.

--- Note ---

In general, Arm strongly recommends using the names SP, LR and PC instead of R13, R14 and R15. However, sometimes it is simpler to use the R13-R15 names when referring to a group of registers. For example, it is simpler to refer to registers R8 to R15, rather than to registers R8 to R12, the SP, LR and PC. These two descriptions of the group of registers have exactly the same meaning.

--- Writing to the PC ---

In the A32 and T32 instruction sets, many data-processing instructions can write to the PC. Writes to the PC are handled as follows:

- In T32 state, the following 16-bit T32 instruction encodings branch to the value written to the PC:
  - Encoding T2 of **ADD, ADDS (register)** on page F5-4294.
  - Encoding T1 of **MOV, MOVS (register)** on page F5-4555.

  The value written to the PC is forced to be halfword-aligned by ignoring its least significant bit, treating that bit as being 0.

- The 8, **BL, CBNZ, CBZ, CHKA, HB, HBL, HBLP, HBP, TBB, and TBH** instructions remain in the same instruction set state and branch to the value written to the PC.

  The definition of each of these instructions ensures that the value written to the PC is correctly aligned for the current instruction set state.

- The **BLX (immediate)** instruction switches between A32 and T32 states and branches to the value written to the PC. Its definition ensures that the value written to the PC is correctly aligned for the new instruction set state.

- The following instructions write a value to the PC, treating that value as an interworking address to branch to, with low-order bits that determine the new instruction set state:
  - **BLX (register), BX, and BXJ.**
The AArch32 Application Level Programmers’ Model

E1.2 The Application level programmers’ model in AArch32 state

— LDR instructions with <Rt> equal to the PC.
— POP and all forms of LDM except LDM (exception return), when the register list includes the PC.
— In A32 state only, ADD, ADDS, AND, ASR (immediate), BIC, EOR, LSL (immediate), LSR (immediate), MOV, MVN, ORR, ROR (immediate), RXR, RSB, SBC, and SUB instructions with <Rd> equal to the PC and without flag-setting specified.

For details of how an interworking address specifies the new instruction set state and instruction address, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

Note

The register-shifted register instructions, that are available only in the A32 instruction set and are summarized in Data-processing register (register shift) on page F4-4229, are CONSTRAINED UNPREDICTABLE if they attempt to write to the PC, see Using R15 on page K1-7941.

• Some instructions are treated as exception return instructions, and write both the PC and the CPSR. For more information, including which instructions are exception return instructions, see Exception return to an Exception level using AArch32 on page G1-5765.

• Some instructions cause an exception, and the exception handler address is written to the PC as part of the exception entry.

Pseudocode description of operations on the AArch32 general-purpose registers and the PC

In pseudocode, the uses of the R[] function, with an index parameter n, are:

• Reading or writing R0-R12, SP, and LR, using n = 0-12, 13, and 14 respectively.
• Reading the PC, using n = 15.

Pseudocode description of general-purpose register and PC operations on page G1-5733 describes accesses to these registers.

Descriptions of A32 store instructions that store the PC value use the PCStoreValue() pseudocode function to specify the PC value stored by the instruction.

Writing an address to the PC causes either a simple branch to that address or an interworking branch that also selects the instruction set to execute after the branch. A simple branch is performed by the BranchWritePC() function.

An interworking branch is performed by the BXWritePC() function.

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically modified between architecture versions.

E1.2.4 Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide instructions that operate on elements of PSTATE.

Note

In this chapter, references to PSTATE link to the more appropriate of:

• The Application-level view of PSTATE given in this section.
• The System-level description in Process state, PSTATE on page G1-5735.
The following PSTATE information is accessible at EL0:

The Condition flags

Flag-setting instructions set these. They are:

N  Negative Condition flag. If the result of the instruction is regarded as a two's complement signed integer, the PE sets this to:
  • 1 if the result is negative.
  • 0 if the result is positive or zero.

Z  Zero Condition flag. Set to:
  • 1 if the result of the instruction is zero.
  • 0 otherwise.

A result of zero often indicates an equal result from a comparison.

C  Carry Condition flag. Set to:
  • 1 if the instruction results in a carry condition, for example an unsigned overflow that is the result of an addition.
  • 0 otherwise.

V  Overflow Condition flag. Set to:
  • 1 if the instruction results in an overflow condition, for example a signed overflow that is the result of an addition.
  • 0 otherwise.

Conditional instructions test the N, Z, C, and V Condition flags, combining them with the Condition code for the instruction, to determine whether the instruction must be executed. In this way, execution of the instruction is conditional on the result of a previous operation. For more information about conditional execution, see Conditional execution on page F2-4121.

The overflow or saturation flag

Q  Some instructions can set this. For those instructions that can, the PE:
  • Sets it to 1 if the instruction indicates overflow or saturation.
  • Leaves it unchanged otherwise.

For more information, see Pseudocode description of saturation on page E1-3991.

The greater than or equal flags

GE[3:0]  The instructions described in Parallel addition and subtraction instructions on page F1-4086 update these to indicate the results from individual bytes or halfwords of the operation. These flags can control a later SEL instruction. For more information, see SEL on page F5-4712.

PSTATE also contains PE state controls. There is no direct access to these from application level instructions, but they can be changed by side-effects of application level instructions. They are:

Instruction set state

J, T  The current instruction set state, as shown in Table E1-1. In Armv8, the J bit is RES0, see the Note in this section.

<table>
<thead>
<tr>
<th>J</th>
<th>T</th>
<th>Instruction set state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>A32</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>T32</td>
</tr>
</tbody>
</table>

A32  The PE is executing the A32 instruction set, summarized in Chapter F4 A32 Instruction Set Encoding.
The PE is executing the T32 instruction set, summarized in Chapter F3 T32 Instruction Set Encoding.

Note

Encoding with J==1 before Armv8, Jazelle and T32EE states

In previous versions of the Arm architecture, the encoding {1, 0} selected Jazelle state, and encoding {1, 1} selected T32EE state. Armv8 does not support either of these states, and these are encodings for unimplemented instruction set states, see Unimplemented instruction sets on page G1-5741. Armv8 AArch32 state requires a Trivial Jazelle implementation, see Trivial implementation of the Jazelle extension on page G1-5741.

The IT block state

IT[7:0]
The If-Then controls for the T32 IT instruction, that applies to the IT block of instructions that immediately follow the IT instruction. See IT on page F5-4416 for a description of the IT instruction and its associated IT block.

For more information about the use of PSTATE.IT see Use of PSTATE.IT on page E1-3997.

Endianness mapping

E
For data accesses, controls the endianness:

0 Little-endian.
1 Big-endian.

If an implementation does not provide:

• Big-endian support for data accesses, this bit is RES0.
• Little-endian support for data accesses, this bit is RES1.

Instruction fetches are always little-endian, and ignore PSTATE.E.

Timing control bits

DIT
Data Independent Timing (DIT) bit. For more information, see About the DIT bit on page E1-3999.

This bit is implemented only when FEAT_DIT is implemented.

On a reset to AArch32 state, this bit is set to 0.

Accessing PSTATE fields at EL0

The following sections describe which PSTATE fields can be directly accessed at EL0, and how they can be accessed:

• The Application Program Status Register, APSR.
• The SETEND instruction on page E1-3996.

The Application Program Status Register, APSR

At EL0, some PSTATE fields can be accessed using the Special-purpose Application Program Status Register (APSR). The APSR can be directly read using the MRS instruction, and directly written using the MSR (register) and MSR (immediate) instructions.
### APSR Bit Assignments

The APSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-28</td>
<td>APSR Condition flags: N, Z, C, V, Q, GE[3:0]</td>
</tr>
<tr>
<td>27</td>
<td>PSTATE overflow or saturation flag, Q</td>
</tr>
<tr>
<td>26-24</td>
<td>Reserved bits, RES0</td>
</tr>
<tr>
<td>23-20</td>
<td>Reserved bits, allocated to system features or future expansion</td>
</tr>
<tr>
<td>19-16</td>
<td>Reserved bits, not accessible</td>
</tr>
<tr>
<td>15-0</td>
<td>PSTATE greater than or equal flags, GE[3:0]</td>
</tr>
</tbody>
</table>

#### Condition Flags [31:28]

- **N**, **Z**, **C**, **V**, **Q**
  - The PSTATE Condition flags.

#### Q, bit [27]

- **Q**
  - The PSTATE overflow or saturation flag.

#### Bits[26:24]

- **RES0**
  - Reserved, write zeros to these bits.

#### Bits[23:20, 15:0]

- **RES0**
  - Reserved bits.

#### GE[3:0], bits [19:16]

- **RES0**
  - Reserved bit.

### Notes

- These bits are **UNKNOWN** on a Read, and it is permitted that, on a read of APSR:
  - Bit[22] returns the value of PSTATE.PAN.
  - Bit[9] returns the value of PSTATE.E.
  - Bits[4:0] return the value of PSTATE.M[4:0]. Bit[4] is RES1 indicating that the PE is in AArch32 state.

### Note

This is an exception to the general rule that an **UNKNOWN** field must not return information that cannot be obtained, at the current Privilege level, by an architected mechanism.

### GE[3:0], bits [19:16]

- **RES0**
  - Reserved bit.

### SETEND Instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

- **SETEND BE**
  - Sets PSTATE.E to 1, for big-endian operation.
- **SETEND LE**
  - Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see **SETEND** on page F5-4714. Arm deprecates use of the SETEND instruction.
Use of PSTATE.IT

PSTATE.IT provides the If-Then controls for the T32 IT instruction, that applies to the IT block of instructions that immediately follow the IT instruction.

PSTATE.IT divides into two subfields:

IT[7:5]  Holds the base condition for the current IT block. The base condition is the top three bits of the Condition code specified by the <firstcond> field of the IT instruction.

IT[4:0]  Encodes:

- Implicitly, the size of the IT block. This is the number of instructions that are to be conditionally executed. The size of the block is indicated by the position of the least significant 1 in this field, as shown in Table E1-2.
- For each instruction in the IT block, the least significant bit of the Condition code. This is encoded in the IT block entries that Table E1-2 shows as Nx.

Note

Changing the least significant bit of a Condition code from 0 to 1 has the effect of inverting the Condition code.

Both subfields are all zeros when no IT block is active.

When an IT instruction is executed, PSTATE.IT is set according to the <firstcond> field of the instruction and the Then and Else (T and E) parameters in the instruction, see IT on page F5-4416. This means that, on executing an IT instruction, the initial state of PSTATE.IT depends on the number of instructions in the IT block, as Table E1-2 shows:

<table>
<thead>
<tr>
<th>Number of instructions in IT block</th>
<th>PSTATE.IT bitsa</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[7:5]</td>
<td>[4]</td>
</tr>
<tr>
<td>4</td>
<td>cond_base</td>
<td>N1</td>
</tr>
<tr>
<td>3</td>
<td>cond_base</td>
<td>N1</td>
</tr>
<tr>
<td>2</td>
<td>cond_base</td>
<td>N1</td>
</tr>
<tr>
<td>1</td>
<td>cond_base</td>
<td>N1</td>
</tr>
<tr>
<td>Not executing an IT instruction</td>
<td>000</td>
<td>0</td>
</tr>
</tbody>
</table>

In Table E1-2, N1 refers to the first instruction in the IT block, and N2, N3, and N4 refer to the second, third, and fourth instructions in the IT block if they are present.

When permitted, an instruction in an IT block is conditional, see Conditional instructions on page F1-4077 and Conditional execution on page F2-4121. The Condition code used is the current value of IT[7:4]. When an instruction in an IT block completes its execution normally, PSTATE.IT[4:0] is left-shifted by one bit, so that PSTATE[4] always relates to the next instruction to be executed. Table E1-3 on page E1-3998 shows how PSTATE.IT during the execution of an IT instruction with four instructions in the IT block.
A few instructions, for example BKPT, cannot be conditional and therefore are always executed ignoring the current value of PSTATE.IT.

For details of what happens if an instruction in an IT block takes an exception, see Overview of exception entry on page G1-5750.

An instruction that might complete its normal execution by branching is only permitted in an IT block as the last instruction in the block. This means that normal execution of the instruction always results in PSTATE.IT advancing to execution where no IT block is active.

For performance reasons, Armv8 deprecates the use of IT other than with a single 16-bit T32 instruction from a specified subset of the 16-bit T32 instructions, see Partial deprecation of IT on page F1-4094. In addition, implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to disable these deprecated uses, making them UNDEFINED. When an implementation includes ITD control fields, Changes to an ITD control by an instruction in an IT block describes the permitted CONSTRAINED UNPREDICTABLE behaviors if an instruction in an IT block changes the value of an ITD control to disable the use of the IT instruction.

On a branch or an exception return, if PSTATE.IT is set to a value that is not consistent with the instruction stream being branched to or returned to, then instruction execution is CONSTRAINED UNPREDICTABLE.

PSTATE.IT affects instruction execution only in T32 state. In A32 state, PSTATE.IT must be 0b00000000, otherwise the behavior is CONSTRAINED UNPREDICTABLE.

For more information see CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT on page K1-7942.

### Changes to an ITD control by an instruction in an IT block

In an implementation that includes SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD controls, if an instruction in an IT block changes an ITD control so that the IT instruction using the IT block would be disabled, then one of the following behaviors applies:

- The change to the ITD field, once synchronized, has no effect on the execution of instructions in the current IT block, but applies only to any subsequent execution of an IT instruction to which the control applies.
- Synchronizing the change to the ITD field guarantees that all bits of PSTATE.IT are cleared to 0.

In addition, after the change to the ITD field has been synchronized, any remaining instructions in the IT block that would be made UNDEFINED by the new value of ITD are either:

- Executed normally.
- Treated as UNDEFINED.

The choice between the options described in this section is determined by the implementation, and any choice can vary between different changes to an ITD control by an instruction in an IT block.

### Table E1-3 Updates to PSTATE.IT when executing an IT instruction with a four-instruction IT block

<table>
<thead>
<tr>
<th>IT block instruction being executed</th>
<th>PSTATE.IT bits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[7:5]</td>
<td>[4]</td>
</tr>
<tr>
<td>First</td>
<td>cond_base</td>
<td>N1</td>
</tr>
<tr>
<td>Second</td>
<td>cond_base</td>
<td>N2</td>
</tr>
<tr>
<td>Third</td>
<td>cond_base</td>
<td>N3</td>
</tr>
<tr>
<td>Fourth</td>
<td>cond_base</td>
<td>N4</td>
</tr>
<tr>
<td>Not executing an IT instruction</td>
<td>000</td>
<td>0</td>
</tr>
</tbody>
</table>
Pseudocode description of PSTATE PE state fields

The pseudocode function `CurrentInstrSet()` returns the current instruction set. The pseudocode function `SelectInstrSet()` selects a new instruction set.

The pseudocode function `PSTATE.IT` advances after normal execution of an IT block instruction. This is described by the `AArch32.ITAdvance()` pseudocode function.

The pseudocode function `InITBlock()` tests whether the current instruction is in an IT block. The pseudocode function `LastInITBlock()` tests whether the current instruction is the last instruction in an IT block.

The `BigEndian()` pseudocode function tests whether big-endian data memory accesses are currently selected.

E1.2.5 About the DIT bit

When the value of `CPSR.DIT` is 1:

- The instructions listed in `CPSR` are required to have:
  - Timing which is independent of the values of the data supplied in any of its registers, and the values of the NZCV flags.
  - Responses to asynchronous exceptions which do not vary based on the values supplied in any of their registers, or the values of the NZCV flags.
- All loads and stores have their timing insensitive to the value of the data being loaded or stored.

Note

When the value of `CPSR.DIT` is 0, the architecture makes no statement about the timing properties of any instructions.

A corresponding DIT bit is added to `PSTATE` in AArch64 state, and to `CPSR` in AArch32 state.

When an exception is taken from AArch32 state to AArch32 state, `CPSR.DIT` is copied to `SPSR.DIT`.

When an exception is taken from AArch32 state to AArch64 state, `CPSR.DIT` is copied to `SPSR_ELx.DIT`.

When an exception returns to AArch32 state from AArch32 state, `SPSR.DIT` is copied to `CPSR.DIT`.

When an exception returns to AArch32 state from AArch64 state, `SPSR_ELx.DIT` is copied to `CPSR.DIT`.

`CPSR.DIT` bit can be written using an `MSR` instruction at any exception level in AArch32 state, and read using an `MRS` instruction at any exception level.

E1.2.6 Jazelle support

Armv8 requires AArch32 state to include a trivial implementation of the Jazelle extension, as described in `Trivial implementation of the Jazelle extension` on page G1-5741.
E1.3 Advanced SIMD and floating-point instructions

In general, Armv8 requires implementation of Advanced SIMD and floating-point instructions in the T32 and A32 instruction sets, but see Implications of not including Advanced SIMD and floating-point support on page E1-4006.

The Advanced SIMD instructions perform packed Single Instruction Multiple Data (SIMD) operations, either integer or single-precision floating-point. The floating-point instructions perform single-precision or double-precision scalar floating-point operations. When FEAT_FP16 is implemented, half-precision floating-point can also be used for data processing.

These instructions permit floating-point exceptions, such as Overflow or Divide by Zero, to be handled without trapping. When handled in this way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be produced by the operation. Armv8 also optionally supports the trapping of floating-point exceptions, see Floating-point exceptions and exception traps on page G1-5816. For more information about floating-point exceptions see Floating-point exceptions and exception traps on page E1-4003.

The Advanced SIMD and floating-point instructions also provide the following conversion functions:

- Between half-precision floating-point and single-precision floating point, in both directions.
- From double-precision, floating point to a signed single precision integer.
- When FEAT_AA32BF16 is implemented, between single-precision floating-point and BFloat16 floating-point.

Some Advanced SIMD instructions support polynomial arithmetic over \{0, 1\}, as described in Polynomial arithmetic over \{0, 1\} on page A1-50.

For system level information about the Advanced SIMD and Floating-point implementation see Advanced SIMD and floating-point support on page G1-5812.

The following sections give more information about the Advanced SIMD and floating-point instructions:

- Floating-point standards, and terminology on page A1-54.
- The SIMD and floating-point register file.
- Data types supported by the Advanced SIMD implementation on page E1-4002.
- Advanced SIMD and floating-point System registers on page E1-4002.
- Floating-point data types and arithmetic on page E1-4002.
- Floating-point exceptions and exception traps on page E1-4003.
- Controls of Advanced SIMD operation that do not apply to floating-point operation on page E1-4006.
- Implications of not including Advanced SIMD and floating-point support on page E1-4006.
- Pseudocode description of floating-point operations on page E1-4007.

E1.3.1 The SIMD and floating-point register file

The Advanced SIMD and floating-point instructions use the same register file, that comprises 32 registers. This is distinct from the register file that holds the general-purpose registers and the PC.

The Advanced SIMD and floating-point views of the register file are different. The following sections describe these different views. Figure E1-1 on page E1-4001 shows the views of the register file, and the way the word, doubleword, and quadword registers overlap.

Advanced SIMD views of the register file

Advanced SIMD can view this register file as:

- Sixteen 128-bit quadword registers, Q0-Q15.
- Thirty-two 64-bit doubleword registers, D0-D31.

These views can be used simultaneously. For example, a program might hold 64-bit vectors in D0 and D1 and a 128-bit vector in Q1.
Floating-point views of the register file

The Advanced SIMD and floating-point register file consists of thirty-two doubleword registers, that can be viewed as:

- Thirty-two 64-bit doubleword registers, D0-D31. This view is also available to Advanced SIMD instructions.
- Thirty-two 32-bit single word registers, S0-S31. Only half of the set is accessible in this view.

Note

In AArch32 state, half-precision floating point values are always represented using the bottom 16 bits of a single word register, S0-S31. When a half-precision value is written to a single word register, the top 16 bits of that register are set to 0.

The two views can be used simultaneously.

SIMD and Floating-point register file mapping onto registers

Figure E1-1 shows the different views of the SIMD and floating-point register file, and the relationship between them.

<table>
<thead>
<tr>
<th>S0-S31 Floating-point only</th>
<th>D0-D31 Floating-point or Advanced SIMD</th>
<th>Q0-Q15 Advanced SIMD only</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>D0</td>
<td>Q0</td>
</tr>
<tr>
<td>S1</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>D2</td>
<td>Q1</td>
</tr>
<tr>
<td>S3</td>
<td>D3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>D4</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>D7</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>D8</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>D9</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>D10</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>D11</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>D12</td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>D13</td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>D14</td>
<td>Q7</td>
</tr>
<tr>
<td>S15</td>
<td>D15</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>D16</td>
<td>Q8</td>
</tr>
<tr>
<td>S17</td>
<td>D17</td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td>D18</td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>D19</td>
<td></td>
</tr>
<tr>
<td>S20</td>
<td>D20</td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td>D21</td>
<td></td>
</tr>
<tr>
<td>S22</td>
<td>D22</td>
<td></td>
</tr>
<tr>
<td>S23</td>
<td>D23</td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td>D24</td>
<td></td>
</tr>
<tr>
<td>S25</td>
<td>D25</td>
<td></td>
</tr>
<tr>
<td>S26</td>
<td>D26</td>
<td></td>
</tr>
<tr>
<td>S27</td>
<td>D27</td>
<td></td>
</tr>
<tr>
<td>S28</td>
<td>D28</td>
<td></td>
</tr>
<tr>
<td>S29</td>
<td>D29</td>
<td></td>
</tr>
<tr>
<td>S30</td>
<td>D30</td>
<td>Q15</td>
</tr>
<tr>
<td>S31</td>
<td>D31</td>
<td></td>
</tr>
</tbody>
</table>

Figure E1-1 SIMD and floating-point register file, AArch32 operation

The mapping between the registers is as follows:

- \( S_{2n} \) maps to the least significant half of \( D_{2n} \).
- \( S_{2n+1} \) maps to the most significant half of \( D_{2n} \).
- \( D_{2n} \) maps to the least significant half of \( Q_{2n} \).
- \( D_{2n+1} \) maps to the most significant half of \( Q_{2n} \).
For example, software can access the least significant half of the elements of a vector in Q6 by referring to D12, and the most significant half of the elements by referring to D13.

**Pseudocode description of the SIMD and Floating-point register file**

The functions _Dclone[], S[], and D[] provide the S0-S31, D0-D31, and Q0-Q15 views of the Advanced SIMD and floating-point registers:

The D[n] function returns a Doubleword register from the _Dclone[] copy of the SIMD and Floating-point register file, and the Q[n] function returns a Quadword register from that register file.

--- Note ---

The CheckAdvSIMDEnabled() function copies the D[] register file to _Dclone[], see Pseudocode description of enabling SIMD and floating-point functionality on page G1-5851.

---

**E1.3.2 Data types supported by the Advanced SIMD implementation**

Advanced SIMD instructions can operate on integer and floating-point data, and the implementation defines a set of data types that support the required data formats. Vector formats in AArch32 state on page A1-42 describes these formats.

**Advanced SIMD vectors**

In an implementation that includes support for Advanced SIMD operation, a register can hold one or more packed elements, all of the same size and type. The combination of a register and a data type describes a vector of elements. The vector is considered to be an array of elements of the data type specified in the instruction. The number of elements in the vector is implied by the size of the data elements and the size of the register.

Vector indices are in the range 0 to (number of elements – 1). An index of 0 refers to the least significant end of the vector. In Vector formats in AArch32 state on page A1-42, Figure A1-3 on page A1-44 shows the Advanced SIMD vector formats.

**Pseudocode description of Advanced SIMD vectors**

The pseudocode function Elen[] accesses the element of a specified index and size in a vector.

---

**E1.3.3 Advanced SIMD and floating-point System registers**

The Advanced SIMD and floating-point instructions have a shared register space for System registers. The only register in this space that is accessible at the Application level is the FPSCR.

Writes to the FPSCR can have side-effects on various aspects of PE operation. All of these side-effects are synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier instructions in the execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

See Advanced SIMD and floating-point System registers on page G1-5814 for the system level view of the registers.

These registers can be described as the SIMD and floating-point System registers.

---

**E1.3.4 Floating-point data types and arithmetic**

The T32 and A32 floating-point instructions support single-precision (32-bit) and double-precision (64-bit) data types and arithmetic as defined by the IEEE 754 floating-point standard. They also support the half-precision (16-bit) floating-point data type for data storage, by supporting conversions between single-precision and half-precision data types. When FEAT_FP16 is implemented, it also supports the half-precision floating-point data type for data processing operations. When FEAT_AA32BF16 is implemented, it also supports the BFloat16 floating-point storage format.
Arm standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the restrictions described in Advanced SIMD and floating-point support on page A1-52, including supporting only the input and output values described in Arm standard floating-point input and output values on page A1-54.

The AArch32 Advanced SIMD instructions support single-precision and, when FEAT_FP16 is implemented, half-precision Arm standard floating-point arithmetic.

The following sections describe the Advanced SIMD and floating-point formats:

- Half-precision floating-point formats on page A1-44.
- Double-precision floating-point format on page A1-47.

The following sections describe features of Advanced SIMD and floating-point processing:

- NaN handling and the Default NaN on page A1-56.

### E1.3.5 Floating-point exceptions and exception traps

Arm Advanced SIMD and floating-point instructions record the following floating-point exceptions in the FPSCR cumulative bits, unless the floating-point exception is trapped and generates an exception:

**FPSCR.IOC**  
Invalid Operation. The bit is set to 1 if the result of an operation has no mathematical value or cannot be represented. Cases include, for example:

- \((\text{infinity}) \times 0\).
- \((+\text{infinity}) + (\text{--infinity})\).

These tests are made after flush-to-zero processing. For example, if flush-to-zero mode is selected, multiplying a denormalized number and an infinity is treated as \((0 \times \text{infinity})\), and causes an Invalid Operation floating-point exception.

IOC is also set on any floating-point operation with one or more signaling NaNs as operands, except for negation and absolute value, as described in Floating-point negation and absolute value on page E1-4007.

**FPSCR.DZC**  
Divide by Zero. The bit is set to 1 if a divide operation has a zero divisor and a dividend that is not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so if flush-to-zero processing is selected, a denormalized dividend is treated as zero and prevents Divide by Zero from occurring, and a denormalized divisor is treated as zero and causes Divide by Zero to occur if the dividend is a normalized number.

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0. This means that a zero or denormalized operand to these functions sets the DZC bit.

**FPSCR.OFC**  
Overflow. The bit is set to 1 if the absolute value of the result of an operation, produced after rounding, is greater than the maximum positive normalized number for the destination precision.

**FPSCR.UFC**  
Underflow. The bit is set to 1 if the absolute value of the result of an operation, produced before rounding, is less than the minimum positive normalized number for the destination precision, and the rounded result is inexact.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see Flush-to-zero on page A1-55.

**FPSCR.IXC**  
Inexact. The bit is set to 1 if the result of an operation is not equivalent to the value that would be produced if the operation were performed with unbounded precision and exponent range.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see Flush-to-zero on page A1-55.

**FPSCR.IDC**  
Input Denormal. The bit is set to 1 if a denormalized input operand is replaced in the computation by a zero, as described in Flush-to-zero on page A1-55.
For Advanced SIMD instructions, and for floating-point instructions when floating-point exception trapping is not supported, these are non-trapping exceptions and the data-processing instructions do not generate any trapped exceptions.

For floating-point instructions when floating-point exception trapping is supported:

- The floating-point exceptions can be trapped, by setting trap enable bits in the FPSCR, see Floating-point exceptions and exception traps on page G1-5816, and:
  - When a trap is not enabled the corresponding floating-point exception updates the corresponding FPSCR cumulative bit does not generate an exception.
  - When a trap is enabled the corresponding floating-point exception does not update the FPSCR, but generates an exception. In this case, bits in the FPEXC indicate which floating-point exceptions have occurred.

- The definition of the Underflow floating-point exception is different in the trapped and cumulative exception cases. In the trapped case the definition is:
  - The trapped Underflow floating-point exception occurs if the absolute value of the result of an operation, produced before rounding, is less than the minimum positive normalized number for the destination precision, regardless of whether the rounded result is inexact.

- As with cumulative exceptions, higher priority trapped exceptions can prevent lower priority exceptions from occurring, as described in Combinations of floating-point exceptions on page E1-4005.

- For Invalid Operation floating-point exceptions, for details of which quiet NaN is produced as the default result see NaN handling and the Default NaN on page A1-56.

- For Overflow floating-point exceptions, the sign bit of the default result is determined normally for the overflowing operation.

- For Divide by Zero floating-point exceptions, the sign bit of the default result is determined normally for a division. This means it is the exclusive OR of the sign bits of the two operands.

Table E1-4 shows the results of untrapped floating-point exceptions. That table uses the following abbreviations:

MaxNorm  The maximum normalized number of the destination precision.
RM  Round towards Minus Infinity mode, as defined in the IEEE 754 standard.
RN  Round to Nearest mode, as defined in the IEEE 754 standard.
RP  Round towards Plus Infinity mode, as defined in the IEEE 754 standard.
RZ  Round towards Zero mode, as defined in the IEEE 754 standard.

For more information about the IEEE 754 descriptions of the rounding modes see Floating-point standards, and terminology on page A1-54.

Table E1-4 Results of untrapped floating-point exceptions

<table>
<thead>
<tr>
<th>Exception type</th>
<th>Default result for positive sign</th>
<th>Default result for negative sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC, Invalid Operation</td>
<td>Quiet NaN</td>
<td>Quiet NaN</td>
</tr>
<tr>
<td>DZC, Divide by Zero</td>
<td>+infinity</td>
<td>-infinity</td>
</tr>
<tr>
<td>OFC, Overflow</td>
<td>RN, RP: +infinity</td>
<td>RN, RM: -infinity</td>
</tr>
<tr>
<td></td>
<td>RM, RZ: +MaxNorm</td>
<td>RP, RZ: -MaxNorm</td>
</tr>
<tr>
<td>UFC, Underflow</td>
<td>Normal rounded result</td>
<td>Normal rounded result</td>
</tr>
<tr>
<td>IXC, Inexact</td>
<td>Normal rounded result</td>
<td>Normal rounded result</td>
</tr>
<tr>
<td>IDC, Input Denormal</td>
<td>Normal rounded result</td>
<td>Normal rounded result</td>
</tr>
</tbody>
</table>
Combinations of floating-point exceptions

Many pseudocode functions perform floating-point operations, including FixedToFP(), FPAdd(), FPCmpare(), FPCompareEQ(), FPCompareGE(), FPCompareGT(), FPDiv(), FPMax(), FPMin(), FPMul(), FPMulAdd(), FPRecipEstimate(), FPRecipStep(), FPRsqrtEstimate(), FPRsqrtStep(), FPSqrt(), FPSub(), and FPtoFixed(). All of these operations can generate floating-point exceptions.

Note

FPAbs() and FPNeg() are not classified as floating-point operations because:

- They cannot generate floating-point exceptions.
- The floating-point operation behavior described in the following sections does not apply to them:
  - NaN handling and the Default NaN on page A1-56.

More than one exception can occur on the same operation. The only combinations of floating-point exceptions that can occur are:

- Overflow with Inexact.
- Underflow with Inexact.
- Input Denormal with other floating-point exceptions.

The priority order of these floating-point exceptions is that the Inexact exception is treated as lowest priority, and the Input Denormal exception is treated as highest priority.

When none of the floating-point exceptions caused by an operation is trapped, any floating-point exception that occurs causes the associated cumulative bit in the FPSCR to be set.

When one or more floating-point exceptions caused by an operation is trapped, the behavior of the instruction depends on the priority of the exceptions:

- If the higher priority floating-point exception is trapped, its trap handler is called. It is IMPLEMENTATION DEFINED whether any information about the lower priority floating-point exception is provided.
  
  Note

  Information about the lower priority floating-point exception might be provided in:
  
  - The FPEXC, if the exception generated by the trap is taken to an Exception level that is using AArch32.
  - The ESR_ELx.ISS field, if the exception generated by the trap is taken to an Exception level that is using AArch64.
  
  However, information might be provided in another IMPLEMENTATION DEFINED way, for example using an IMPLEMENTATION DEFINED register.

  Apart from this, the lower priority floating-point exception is ignored in this case.

- If the higher priority floating-point exception is untrapped, its cumulative bit is set to 1 and its default result is evaluated. Then the lower priority floating-point exception is handled normally, using this default result.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode descriptions of the instruction. In such cases, a floating-point exception on one operation is treated as higher priority than a floating-point exception on another operation if the occurrence of the second floating-point exception depends on the result of the first operation. Otherwise, it is CONSTRAINED UNPREDICTABLE which floating-point exception is treated as higher priority.

For example, a VMLA.F32 instruction specifies a floating-point multiplication followed by a floating-point addition. The addition can generate Overflow, Underflow and Inexact floating-point exceptions, all of which depend on both operands to the addition and so are treated as lower priority than any floating-point exception on the multiplication. The same applies to Invalid Operation floating-point exceptions on the addition caused by adding opposite-signed infinities. The addition can also generate an Input Denormal floating-point exception, caused by the addend being a denormalized number while in Flush-to-zero mode. It is CONSTRAINED UNPREDICTABLE which of an Input Denormal floating-point exception on the addition and a floating-point exception on the multiplication is treated as

...
higher priority, because the occurrence of the Input Denormal floating-point exception does not depend on the result of the multiplication. The same applies to an Invalid Operation floating-point exception on the addition caused by the addend being a signaling NaN.

Note

The \texttt{VFMA} instruction performs a vector addition and a vector multiplication as a single operation. The \texttt{VFMS} instruction performs a vector subtraction and a vector multiplication as a single operation.

E1.3.6 Controls of Advanced SIMD operation that do not apply to floating-point operation

Armv7 permitted implementation of either, both, or neither of the Advanced SIMD and floating-point additions to the base instruction set, and provided some controls that applied to the Advanced SIMD functionality but not to the floating-point functionality. In Armv8, Advanced SIMD functionality cannot be separated from floating-point functionality, but in AArch32 state these controls function as they did in Armv7. This means they apply only to the following instructions and instruction encodings:

- All instructions with encodings defined in:
  - \textit{Advanced SIMD data-processing} on page F3-4165, for the T32 instruction set.
  - \textit{Advanced SIMD data-processing} on page F4-4262, for the A32 instruction set.

- All instructions with encodings defined in:
  - \textit{Advanced SIMD element or structure load/store} on page F3-4198, for the T32 instruction set.
  - \textit{Advanced SIMD element or structure load/store} on page F4-4274, for the A32 instruction set.

- The form of the \texttt{VDUP} instruction described in \textit{VDUP (general-purpose register)} on page F6-5193.

- The byte and halfword forms of the \texttt{VMOV} instructions described in each of:
  - \textit{VMOV (general-purpose register to scalar)} on page F6-5369.
  - \textit{VMOV (scalar to general-purpose register)} on page F6-5373.

The controls of this functionality are:

- The \texttt{CPACR.ASEDIS} field.
- The \texttt{HCPTR.TASE} field.

In an implementation that supports Advanced SIMD functionality, support for each of these controls is optional:

- If the \texttt{CPACR.ASEDIS} control is not supported then the \texttt{CPACR.ASEDIS} field is RAZ/WI. This is equivalent to the control permitting the execution of Advanced SIMD instructions at EL1 and EL0.

- If the \texttt{HCPTR.TASE} control is not supported then the \texttt{HCPTR.TASE} field is RAZ/WI. This means the \texttt{HCPTR} does not provide a control that can trap Non-secure execution of Advanced SIMD instructions to Hyp mode.

E1.3.7 Implications of not including Advanced SIMD and floating-point support

In general, Armv8 requires the inclusion of the Advanced SIMD and floating-point instructions in all instruction sets. Exceptionally, for implementation targeting specialized markets, Arm might produce or license an Armv8-A implementation that does not provide any support for Advanced SIMD and floating-point instructions. In such an implementation, in AArch32 state:

- Each of the \texttt{CPACR.(cp10, cp11)} fields is RES0.
- The \texttt{CPACR.ASEDIS} bit is RES0.
- Each of the \texttt{HCPTR.(TASE, TCP10, TCP11)} fields is RES1.
- Each of the \texttt{NSACR.(NSASEDIS, cp10, cp11)} fields is RES0.
- The \texttt{FPEXC} register is UNDEFINED.
E1.3.8 Pseudocode description of floating-point operations

The following subsections contain pseudocode definitions of the floating-point functionality supported by the Armv8 architecture:

- Generation of specific floating-point values.
- Floating-point negation and absolute value.
- Floating-point value unpacking.
- Floating-point exception and NaN handling.
- Floating-point rounding on page E1-4008.
- Selection of Arm standard floating-point arithmetic on page E1-4008.
- Floating-point comparisons on page E1-4008.
- Floating-point maximum and minimum on page E1-4008.
- Floating-point addition and subtraction on page E1-4008.
- Floating-point multiplication and division on page E1-4008.
- Floating-point fused multiply-add on page E1-4008.
- Floating-point reciprocal estimate and step on page E1-4009.
- Floating-point square root on page E1-4009.
- Floating-point reciprocal square root estimate and step on page E1-4009.
- Floating-point conversions on page E1-4010.

Generation of specific floating-point values

The following pseudocode functions generate specific floating-point values. The sign argument is '0' for the positive version and '1' for the negative version:

- FPInfinity().
- FPMaxNormal().
- FPZero().
- FPTwo().
- FPThree().
- FPDefaultNaN().

Floating-point negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not treat NaN operands specially, nor denormalized number operands when flush-to-zero is selected.

The floating-point negation operation is described by the pseudocode function FPNeg(). The floating-point absolute value operation is described by the pseudocode function FPAbs().

Floating-point value unpacking

The FPUnpack() function determines the type of a floating-point number, defined by FPType{}, and its numerical value. It also does flush-to-zero processing on input operands.

Floating-point exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it accordingly. The floating-point exception types are defined by FPExc{}.

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an Invalid Operation floating-point exception if necessary. The FPProcessNaNs() function performs the standard NaN processing for a two-operand operation. The FPProcessNaNs3() function performs the standard NaN processing for a three-operand operation.
Floating-point rounding

The \texttt{FPRound()} function rounds and encodes a floating-point result to a specified destination format. This includes processing Overflow, Underflow and Inexact floating-point exceptions and performing flush-to-zero processing on result values.

Selection of Arm standard floating-point arithmetic

The \texttt{StandardFPSCRValue()} function returns the \texttt{FPSCR} value that selects Arm standard floating-point arithmetic. Most of the arithmetic functions have a Boolean \texttt{fpscr\_controlled} argument that is \texttt{TRUE} for Floating-point operations and \texttt{FALSE} for Advanced SIMD operations, and that selects between using the real \texttt{FPSCR} value and this value.

Floating-point comparisons

The \texttt{FPCompare()} function compares two floating-point numbers, producing a \{N, Z, C, V\} Condition flags result as shown in Table E1-5:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Comparison result} & \textbf{N} & \textbf{Z} & \textbf{C} & \textbf{V} \\
\hline
Equal & 0 & 1 & 1 & 0 \\
\hline
Less than & 1 & 0 & 0 & 0 \\
\hline
Greater than & 0 & 0 & 1 & 0 \\
\hline
Unordered & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}
\caption{Effect of a Floating-point comparison on the Condition flags}
\end{table}

This result defines the operation of the \texttt{VCMP} floating-point instruction. The \texttt{VCMP} instruction writes these flag values in the \texttt{FPSCR}. After using a \texttt{VMRS} instruction to transfer them to the APSR, they can control conditional execution as shown in Table F2-1 on page F2-4121.

The \texttt{FPCompareEQ()}, \texttt{FPCompareGE()}, and \texttt{FPCompareGT()} functions describe the operation of Advanced SIMD instructions that perform floating-point comparisons.

Floating-point maximum and minimum

The \texttt{FPMax()} function returns the maximum of two floating-point numbers. The \texttt{FPMin()} function returns the minimum of two floating-point numbers.

Floating-point addition and subtraction

The \texttt{FPAdd()} function adds two floating-point numbers. The \texttt{FPSub()} function subtracts one floating-point number from another floating-point number.

Floating-point multiplication and division

The \texttt{FPMul()} function multiplies two floating-point numbers. The \texttt{FPDiv()} function divides one floating-point number by another floating-point number.

Floating-point fused multiply-add

The \texttt{FPMulAdd()} function performs a floating-point fused multiply-add.
Floating-point reciprocal estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the reciprocal of a number.

The VRECPE instruction produces the initial estimate of the reciprocal. It uses the pseudocode functions:
- FPRecipEstimate().
- UnsignedRecipEstimate().

Table E1-6 shows the results where input values are out of range.

<table>
<thead>
<tr>
<th>Number type</th>
<th>Input Vm[i]</th>
<th>Result Vd[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>&lt;= 0x7FFFFFFF</td>
<td>0xFFFFFFFF</td>
</tr>
<tr>
<td>Floating-point</td>
<td>NaN</td>
<td>Default NaN</td>
</tr>
<tr>
<td>Floating-point</td>
<td>±0 or denormalized number</td>
<td>±infinity a</td>
</tr>
<tr>
<td>Floating-point</td>
<td>±infinity</td>
<td>±0</td>
</tr>
<tr>
<td>Floating-point</td>
<td>Absolute value &gt;= 2^126</td>
<td>±0</td>
</tr>
</tbody>
</table>

a. FPSCR.DZC is set to 1

The Newton-Raphson iteration:

\[ x_{n+1} = x_n(2-dx_n) \]

converges to \(1/d\) if \(x_0\) is the result of VRECPE applied to \(d\).

The VRECPS instruction performs a \((2 - \text{op1} \times \text{op2})\) calculation and can be used with a multiplication to perform a step of this iteration. The functionality of this instruction is defined by the FPRecipStep() pseudocode function.

Table E1-7 shows the results where input values are out of range.

<table>
<thead>
<tr>
<th>Input Vn[i]</th>
<th>Input Vm[i]</th>
<th>Result Vd[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any NaN</td>
<td>-</td>
<td>Default NaN</td>
</tr>
<tr>
<td>-</td>
<td>Any NaN</td>
<td>Default NaN</td>
</tr>
<tr>
<td>±0.0 or denormalized number</td>
<td>±infinity</td>
<td>2.0</td>
</tr>
<tr>
<td>±infinity</td>
<td>±0.0 or denormalized number</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Floating-point square root

The FPSqrt() function returns the square root of a floating-point number.

Floating-point reciprocal square root estimate and step

The Advanced SIMD implementation includes instructions that support Newton-Raphson calculation of the reciprocal of the square root of a number.

The VRSQRTE instruction produces the initial estimate of the reciprocal of the square root. It uses the pseudocode functions:
- FPFRSqrtEstimate().
- UnsignedRSqrtEstimate().
Table E1-8 shows the results where input values are out of range.

<table>
<thead>
<tr>
<th>Number type</th>
<th>Input Vm[i]</th>
<th>Result Vd[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>&lt;= 0x3FFFFFFF</td>
<td>0xFFFFFFFF</td>
</tr>
<tr>
<td>Floating-point</td>
<td>NaN, -(normalized number), ∞-infinity</td>
<td>Default NaN</td>
</tr>
<tr>
<td>Floating-point</td>
<td>-0 or -(denormalized number)</td>
<td>-∞</td>
</tr>
<tr>
<td>Floating-point</td>
<td>+0 or +(denormalized number)</td>
<td>+∞</td>
</tr>
<tr>
<td>Floating-point</td>
<td>+∞</td>
<td>+0</td>
</tr>
<tr>
<td></td>
<td>a. FPSCR.DZC is set to 1.</td>
<td></td>
</tr>
</tbody>
</table>

The Newton-Raphson iteration:
\[ x_{n+1} = x_n \frac{3 - dx_n^2}{2} \]
converges to \( \frac{1}{\sqrt{d}} \) if \( x_0 \) is the result of VRSQRTE applied to \( d \).

The VRSQRTS instruction performs a \((3 - \text{op1} \times \text{op2})/2\) calculation and can be used with two multiplications to perform a step of this iteration. The functionality of this instruction is defined by the FPRSqrtStep() pseudocode function.

Table E1-9 shows the results where input values are out of range.

<table>
<thead>
<tr>
<th>Input Vn[i]</th>
<th>Input Vm[i]</th>
<th>Result Vd[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any NaN</td>
<td>-</td>
<td>Default NaN</td>
</tr>
<tr>
<td>-</td>
<td>Any NaN</td>
<td>Default NaN</td>
</tr>
<tr>
<td>±0.0 or denormalized number</td>
<td>±∞</td>
<td>1.5</td>
</tr>
<tr>
<td>±∞</td>
<td>±0.0 or denormalized number</td>
<td>1.5</td>
</tr>
</tbody>
</table>

FPR$\text{SqrtStep}()$ calls the FPHalvedSub() pseudocode function.

**Floating-point conversions**

The FPC$\text{onvert}()$ pseudocode function performs conversions between half-precision, single-precision, and double-precision floating-point numbers.

The FPT$\text{o}F\text{ixed}()$ and FixedToF$\text{P}()$ functions perform conversions between floating-point numbers and integers or fixed-point numbers.
E1.4 About the AArch32 System register interface

AArch32 state provides a System register encoding space, that is indexed by the parameter set \{coproc, opc1, CRn, CRm, opc2\}, and a set of System register access instructions. This encoding space is used for:

- System registers.
- System instructions, for:
  - Cache and branch predictor maintenance.
  - Address translation.
  - TLB maintenance.

In Armv8, this encoding space uses only the coproc values 0b111x.

**Note**
The encoding space with coproc values 0b101x is redefined to provide Advanced SIMD and floating-point functionality.

In Armv8:

- The (coproc==0b1111) encodings provide system control functionality, by providing access to System registers and System instructions. This includes architecture and feature identification, as well as control, status information and configuration support.

  The following sections give a general description of these encodings:
  - **About the System registers for VMSAv8-32 on page G5-6092.**
  - **VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6116.**
  - **Functional grouping of VMSAv8-32 System registers on page G5-6098.**

  These encodings also provide:
  - The Performance Monitor registers. For more information, see Chapter D7 The Performance Monitors Extension.
  - The Activity Monitor registers. For more information, see Chapter D8 The Activity Monitors Extension.

- The (coproc==0b1110) encodings provide access to additional registers, that support:
  - Debug, see Chapter G2 AArch32 Self-hosted Debug.
  - The Jazelle identification registers, see Jazelle support on page E1-3999.

**UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System register accesses on page G8-6135** gives information more information about permitted accesses to the System registers in AArch32 state.

Most functionality in the (coproc==0b111x) encoding space cannot be accessed by software executing at EL0. This manual clearly identifies those functions that can be accessed at EL0.

For more information:

- About this encoding space, including the naming of the parameters that index the space, see The AArch32 System register interface on page G1-5809.
- About the System interface access instructions, see System register access instructions on page F1-4097.
E1.5 Exceptions

The Arm architecture uses the following terms to describe various types of exceptional condition:

**Exceptions**

In the Arm architecture, an *exception* causes entry to EL1, EL2, or EL3. If the Exception level that is entered is using AArch32, it also causes entry to the PE mode in which the exception must be taken. A software handler for the exception is then executed.

**Note**

The term *floating-point exception* does not use this meaning of *exception*. This term is described later in this list.

Exceptions include:

- Reset.
- Interrupts.
- Memory system aborts.
- Undefined instructions.
- Supervisor calls (SVCs), Secure Monitor calls (SMCs), and hypervisor calls (HVCs).
- Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in *Handling exceptions that are taken to an Exception level using AArch32* on page G1-5743. In an Armv8 implementation that includes all the Exception levels, aspects that are visible to application level software are:

- The **SVC** instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to make a call to the operating system, or other system component that is accessible only at EL1.
- The **SMC** instruction causes a Secure Monitor Call exception, but only if software execution is at EL1 or higher. Unprivileged software can only cause a Secure Monitor Call exception by methods defined by the operating system, or by another component of the software system that executes at EL1 or higher.
- The **HVC** instruction causes a Hypervisor Call exception, but only if software execution is at EL1 or higher. Unprivileged software can only cause a Hypervisor Call exception by methods defined by the hypervisor, or by another component of the software system that executes at EL1 or higher.
- The **BKPT** instruction causes a Breakpoint Instruction exception, that is taken as a Prefetch Abort exception. This provides a mechanism for a debugger to insert breakpoints into unprivileged software, or for unprivileged software to make a call into a debugger that is accessible at EL1.
- The **WFI** (Wait for Interrupt) instruction provides a hint that nothing needs to be done until an interrupt or another WFI wake-up event occurs, see *Wait For Interrupt* on page G1-5807. This means the hardware might enter a low-power state until the wake-up event occurs.
- The **WFE** (Wait for Event) instruction provides a hint that nothing needs to be done until either an SEV instruction generates an event, or another WFE wake-up event occurs, see *Wait For Event and Send Event* on page G1-5804. This means the hardware might enter a low-power state until the wake-up event occurs.

**Floating-point exceptions**

These relate to exceptional conditions encountered during floating-point arithmetic, such as Divide by Zero or Overflow. For more information see:

- *Floating-point exceptions and exception traps* on page E1-4003.
- The FPEXC and FPSCR register descriptions.
Chapter E2
The AArch32 Application Level Memory Model

This chapter gives an application level description of the memory model for software executing in AArch32 state. This means it describes the memory model for execution in EL0 when EL0 is using AArch32 in the following sections:

- About the Arm memory model on page E2-4014.
- Atomicity in the Arm architecture on page E2-4016.
- Definition of the Armv8 memory model on page E2-4020.
- Ordering of translation table walks on page E2-4038.
- Caches and memory hierarchy on page E2-4039.
- Alignment support on page E2-4044.
- Endian support on page E2-4046.
- Memory types and attributes on page E2-4050.
- Mismatched memory attributes on page E2-4060.
- Synchronization and semaphores on page E2-4063

Note
In this chapter, System register names usually link to the description of the register in Chapter G8 AArch32 System Register Descriptions, for example SCTLR.
E2.1  About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of memory accesses in a different order from the program order. The following sections of this chapter provide the complete definition of the Armv8 memory model, this introduction is not intended to contradict the definition found in those sections. In general, the basic principles of the Armv8 memory model are:

- To provide a memory model that has similar weaknesses to those found in the memory models used by high-level programming languages such as C or Java. For example, by permitting independent memory accesses to be re-ordered as seen by other observers.
- To avoid the requirement for multi-copy atomicity in the majority of memory types.
- The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the cases where it would be needed.
- The use of address, data, and control dependencies in the creation of order so as to avoid having excessive numbers of barriers or other explicit instructions in common situations where some order is required by the programmer or the compiler.

This section contains:
- Address space.
- Memory type overview.

E2.1.1  Address space

Address calculations are performed using 32-bit registers. Supervisory software determines the valid address range. Attempting to access an address that is not valid generates an MMU fault.

Address calculations are performed modulo 2^32. The result of an address calculation isUNKNOWN if it overflows or underflows the 32-bit address range A[31:0].

Memory accesses use the MemA[], MemO[], MemU[], and MemU_unpriv[] pseudocode functions:
- The MemA[] function makes an aligned access of the required type.
- The MemO[] function makes an ordered access of the required type.
- The MemU[] function makes an unaligned access of the required type
- The MemU_unpriv[] function makes an unaligned, unprivileged access of the required type.

Each of these functions calls Mem_with_type[] function, that specifies the required access. This calls AArch32.MemSingle[], which performs an atomic, little-endian read of size bytes.

The AccType enumeration defines the different access types.

Note
- Chapter G4 The AArch32 System Level Memory Model and Chapter G5 The AArch32 Virtual Memory System Architecture include descriptions of memory system features that are transparent to the application, including memory access, address translation, memory maintenance instructions, and alignment checking and the associated fault handling. These chapters also reference pseudocode descriptions of these operations.
- For references to the pseudocode that relates to memory accesses, see Basic memory access on page G4-5957, Unaligned memory access on page G4-5958, and Aligned memory access on page G4-5957.

E2.1.2  Memory type overview

Armv8 provides the following mutually-exclusive memory types:

Normal  This is generally used for bulk memory operations, both read-write and read-only operations.
**Device**

The Arm architecture forbids speculative reads of any type of Device memory. This means Device memory types are suitable attributes for read-sensitive locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device memory attribute.

Device memory has additional attributes that have the following effects:

- They prevent aggregation of reads and writes, maintaining the number and size of the specified memory accesses. See *Gathering* on page E2-4056.
- They preserve the access order and synchronization requirements, both for accesses to a single peripheral and where there is a synchronization requirement on the observability of one or more memory write and read accesses. See *Reordering* on page E2-4057.
- They indicate whether a write can be acknowledged other than at the end point. See *Early Write Acknowledgement* on page E2-4058.

For more information on Normal memory and Device memory, see *Memory types and attributes* on page E2-4050.

---

**Note**

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-Ordered memory type. A Note in *Device memory* on page E2-4054 describes how these memory types map onto the Armv8 memory types.
E2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Armv8 architecture, the atomicity requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For more information see:

- Requirements for single-copy atomicity.
- Properties of single-copy atomic accesses on page E2-4017.
- Multi-copy atomicity on page E2-4017.
- Requirements for multi-copy atomicity on page E2-4018.
- Concurrent modification and execution of instructions on page E2-4018.

For more information about the memory types, see Memory type overview on page E2-4014.

E2.2.1 Requirements for single-copy atomicity

In AArch32 state, the single-copy atomic PE accesses are:

- All byte accesses.
- All halfword accesses to halfword-aligned locations.
- All word accesses to word-aligned locations.
- Memory accesses caused by LDREXD and STREXD instructions to doubleword-aligned locations.

LDM, LDC, LDRD, STM, STC, STR, PUSH, POP, RFE, SRS, VLDM, VLD, VSTM, and VSTR instructions are executed as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. The architecture does not require subsequences of two or more word accesses from the sequence to be single-copy atomic.

LDRD and STRD accesses to 64-bit aligned locations are 64-bit single-copy atomic as seen by translation table walks and accesses to translation tables.

Note

This requirement has been added to avoid the need for complex measures to avoid atomicity issues when changing translation table entries, without creating a requirement that all locations in the memory system are 64-bit single-copy atomic. This addition means:

- The system designer must ensure that all writable memory locations that might be used to hold translations, such as bulk SDRAM, can be accessed with 64-bit single-copy atomicity.
- Software must ensure that translation tables are not held in memory locations that cannot meet this atomicity requirement, such as peripherals that are typically accessed using a narrow bus.

This requirement places no burden on read-only memory locations for which reads have no side effects, since it is impossible to detect the size of memory accesses to such locations.

Advanced SIMD element and structure loads and stores are executed as a sequence of accesses of the element or structure size. The architecture requires the element accesses to be single-copy atomic if and only if both:

- The element size is 32 bits, or smaller.
- The elements are naturally aligned.

Accesses to 64-bit elements or structures that are 32-bit aligned are executed as a sequence of 32-bit accesses, each of which is single-copy atomic. The architecture does not require subsequences of two or more 32-bit accesses from the sequence to be single-copy atomic.

When an access is not single-copy atomic by the rules described in this section, it is executed as a sequence of one or more accesses that aggregate to the size of the original access. Each of the accesses in this sequence is single-copy atomic, at least at the byte level.
--- Note ---
In this section, the terms before the write operation and after the write operation mean before or after the write operation has had its effect on the coherence order of the bytes of the memory location accessed by the write operation.

---

If, according to these rules, an instruction is executed as a sequence of accesses, a synchronous Data Abort exception or Debug state entry can be taken during that sequence. This causes execution of the instruction to be abandoned. See Data Abort exception on page G1-5789 and, when FEAT_LSMAOC is implemented, Taking an interrupt or other exception during a multiple-register load or store on page G1-5777.

If the synchronous Data Abort exception is returned from using the preferred return address, the instruction that generated the sequence of accesses is re-executed and so any access that was performed before the exception was taken is repeated. This also applies to an exit from Debug state.

--- Note ---
The exception behavior for these multiple access instructions means they are not suitable for use for writes to memory for the purpose of software synchronization.

---

For implicit accesses:

- Cache line fills and evictions have no effect on the single-copy atomicity of explicit transactions or instruction fetches.

- Instruction fetches are single-copy atomic:
  - At 32-bit granularity in A32 state.
  - At 16-bit granularity in T32 state.

Concurrent modification and execution of instructions on page E2-4018 describes additional constraints on the behavior of instruction fetches.

- Translation table walks are performed using accesses that are single-copy atomic:
  - At 32-bit granularity when using Short-descriptor format translation tables.
  - At 64-bit granularity when using Long-descriptor format translation tables.

--- E2.2.2 Properties of single-copy atomic accesses ---
A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L1 that overlaps a single-copy atomic store instruction S2, if one of the overlapping reads generated by L1 Reads-from one of the overlapping writes generated by S2, then none of the overlapping writes generated by S2 are Coherence-after the corresponding overlapping reads generated by L1.

For more information, see Definition of the Armv8 memory model on page E2-4020.

--- E2.2.3 Multi-copy atomicity ---
In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both true:

- All writes to the same location are serialized, meaning they are observed in the same order by all observers, although some observers might not observe all of the writes.
• A read of a location does not return the value of a write until all observers observe that write.

--- Note ---
Writs that are not coherent are not multi-copy atomic.

E2.2.4 Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.

For Device memory, writes are not required to be multi-copy atomic.

The Armv8 memory model is Other-multi-copy atomic. For more information, see Ordering constraints on page E2-4024.

E2.2.5 Concurrent modification and execution of instructions

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior that can be achieved by executing any sequence of instructions that can be executed from the same Exception level, except where the instruction before modification and the instruction after modification are:

• When executing the A32 instruction set, a B, BKPT, BL, HVC, ISB, NOP, SMC, or SVC instruction.
• When executing the T32 instruction set, a 16-bit B, BKPT, BLX, BX, NOP, or SVC instruction.

In addition, for the 32-bit T32 instructions, for which Instruction encodings on page F2-4116 describes the meaning of \{hw1, hw2\}:

• hw1 of a 32-bit BL (immediate) instruction can be concurrently modified to hw1 of another BL (immediate) instruction:
  — This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw1 of another BLX immediate instruction:
  — This means that some of the most significant bits of the immediate value can be modified.

• hw1 of a 32-bit BL (immediate) or BLX (immediate) instruction can be concurrently modified to a T32 16-bit B, BX, BLX, BKPT, or SVC instruction. This modification also works in reverse.

• hw2 of a 32-bit BL (immediate) instruction can be concurrently modified to hw2 of another BL (immediate) instruction with a different immediate:
  — This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit BLX (immediate) instruction can be concurrently modified to hw2 of another BLX (immediate) instruction with a different immediate:
  — This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit B (immediate) instruction with a condition field can be concurrently modified to hw2 of another 32-bit B (immediate) instruction with a condition field with a different immediate:
  — This means that some bits of the immediate value, including the least significant bits, can be modified.

• hw2 of a 32-bit B (immediate) instruction without a condition field can be concurrently modified to hw2 of another 32-bit B (immediate) instruction without a condition field:
  — This means that some bits of the immediate value, including the least significant bits, can be modified.

--- Note ---
• In the T32 instruction set:
  — The only encodings of BKPT and SVC are 16-bit.
The only encoding of BL is 32-bit.

- The 15$^\text{th}$ instruction can be concurrently modified and executed in the A32 and A64 instruction sets, but not in the T32 instruction set.

For the instructions explicitly identified in this section, the architecture guarantees that, after modification of the instruction, behavior is consistent with execution of either:

- The instruction originally fetched.
- A fetch of the modified instruction.

The instructions to which this applies are the B, BL, NOP, BKPT, SVC, HVC, and SMC instructions.

For both instruction sets, if one thread of execution changes a conditional branch instruction to another conditional branch instruction, and the change affects both the condition field and the branch target, execution of the changed instruction by another thread of execution before the change is synchronized can lead to either:

- The old condition being associated with the new target address.
- The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch instruction, is the always condition.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the following sequence of instructions and operations:

   ; Coherency example for self-modifying code
   ; Enter this code with <Rt> containing a new 32-bit instruction,
   ; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first
   ; line instead of STR for a 16-bit instruction.
   STR <Rt>, [Rn]
   DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
   DSB ; Ensure visibility of the data stored
   ICIMVAU Rn ; Invalidate instruction cache by VA to PoU
   BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
   DSB

   __________Note_________

   - The DCCMVAU operation is not required if the area of memory is either Non-cacheable or Write-Through Cacheable.
   - If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs can cause the instructions to be concurrently modified by one PE and executed by another PE. If the modifications affect instructions other than those listed as being acceptable for modification, synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

3. In a multiprocessor system, the ICIMVAU and BPIMVA are broadcast to all PEs within the Inner Shareable domain of the PE running this sequence. However, once the modified instructions are observable, each PE that is executing the modified instructions must issue the following instruction to ensure execution of the modified instructions:

    ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues between data and instruction accesses on page E2-4041.

For information about memory accesses caused by instruction fetches, see Ordering constraints on page E2-4024.
E2.3 Definition of the Armv8 memory model

This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:

- Basic definitions.
- Dependency definitions on page E2-4022.
- Ordering relations on page E2-4023.
- Ordering constraints on page E2-4024.
- Internal visibility requirement on page E2-4024.
- External ordering constraints on page E2-4025.
- Completion and endpoint ordering on page E2-4027.
- Ordering of instruction fetches on page E2-4028.
- Restrictions on the effects of speculation on page E2-4029.
- Memory barriers on page E2-4031.

For more information on endpoint ordering of memory accesses, see Reordering on page E2-4057.

In the Armv8 memory model, the Shareability memory attribute indicates the degree to which hardware must ensure memory coherency between a set of observers, see Memory types and attributes on page E2-4050.

The Armv8 architecture defines additional memory attributes and associated behaviors, which are defined in the system level section of this manual. See:

- Chapter G4 The AArch32 System Level Memory Model.
- Chapter G5 The AArch32 Virtual Memory System Architecture.

See also Mismatched memory attributes on page E2-4060.

E2.3.1 Basic definitions

The Armv8 memory model provides a set of definitions that are used to construct conditions on the permitted sequences of accesses to memory.

Observer

An Observer refers to a processing element or mechanism in the system, such as a peripheral device, that can generate reads from, or writes to, memory.

Common Shareability Domain

For the purpose of this section, all Observers are assumed to belong to a Common Shareability Domain. All read and write effects access only Normal memory locations in a Common Shareability Domain, and excludes the situations described in Mismatched memory attributes on page E2-4060.

Location

A Location refers to a single byte in memory.

Effects

The Effects of an instruction can be:

- Register effects.
- Memory effects.
- Barrier effects.
- Points of divergence.

The effects of an instruction I1 are said to appear in program order before the effects of an instruction I2 if and only if I1 occurs before I2 in the order specified by the program. Each effect generated by an instruction has a unique identifier, which characterizes it amongst the events generated by the same instruction.
Register effect

The Register effects of an instruction are register reads or register writes of that instruction. For an instruction that accesses registers, a register read effect is generated for each register read by the instruction and a register write effect is generated for each register written by the instruction. An instruction may generate both read and write register Register effects.

Memory effect

The Memory effects of an instruction are the read or write effects of that instruction. For an instruction that accesses memory, a read effect is generated for each Location read by the instruction and a write effect is generated for each Location written by the instruction. An instruction may generate both read and write Memory effects.

Point of divergence

The Points of divergence of an instruction are effects which correspond to a branching decision being taken. At each point of divergence, the program order is split into two distinct branches, called executed and speculated branch respectively. The minimal Points of divergence in a program execution are the Points of divergence which have no other Point of divergence before them in program order.

Intrinsic order

There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that instruction, according to the operation of that instruction. The operation of an instruction is defined by the pseudocode in Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions.

Reads-from-register

The Reads-from-register relation couples reads and writes to the same register such that each register read is paired with exactly one register write in the execution of a program. A read $R_2$ Reads-from-register a write $W_1$ to the same register if and only if $R_2$ takes its data from $W_1$. By construction $W_1$ must be in program order before $R_2$ and there must be no intervening write to the same register in program order between $W_1$ and $R_2$.

Reads-from

The Reads-from relation couples reads and writes to the same Location such that each read is paired with exactly one write in the execution of a program. If a read $R_2$ from a Location Reads-from a write $W_1$ to the same Location if and only if $R_2$ takes its data from $W_1$.

Coherence order

There is a per-location Coherence order relation that provides a total order over all writes from all coherent Observers to that Location, starting with a notional write of the initial value. The Coherence order of a Location represents the order in which writes to the Location arrive at memory.

Local read successor

A read $R_2$ of a Location is the Local read successor of a write $W_1$ from the same Observer to the same Location if and only if $W_1$ appears in program order before $R_2$ and there is not a write $W_3$ from the same Observer to the same Location appearing in program order between $W_1$ and $R_2$.

Local write successor

A write $W_2$ of a Location is a Local write successor of a write $W_1$ from the same Observer to the same Location if and only if $W_1$ appears in program order before $W_2$.

Coherence-after

A write $W_2$ to a Location is Coherence-after another write $W_1$ to the same Location if and only if $W_2$ is sequenced after $W_1$ in the Coherence order of the Location. A write $W_2$ to a Location is Coherence-after a read $R_1$ of the same location if and only if $R_1$ Reads-from a write $W_3$ to the same Location and $W_2$ is Coherence-after $W_3$. 

---

The AArch32 Application Level Memory Model
E2.3 Definition of the Armv8 memory model
Observed-by

A read or a write RW₁ from an Observer is Observed-by a write W₂ from a different Observer if and only if W₂ is coherence-after RW₁.

A write W₁ from an Observer is Observed-by a read R₂ from a different Observer if and only if R₂ Reads-from W₁.

Note

The Observed-by relation only relates accesses generated by different Observers.

Overlapping accesses

Two Memory effects overlap if and only if they access the same Location. Two instructions overlap if and only if one or more of their generated Memory effects overlap.

Single-copy-atomic-ordered-before

A read R₁ is Single-copy-atomic-ordered-before another read R₂ if and only if all of the following statements are true:

* R₁ and R₂ are reads generated by the same instruction.
* R₁ is not a Local read successor of a write.
* R₂ is a Local read successor of a write.

DMB FULL

A DMB FULL is a DMB with neither the LD or the ST qualifier.

Where this section refers to DMB without any qualification, then it is referring to all types of DMB. Unless a specific shareability domain is defined, a DMB applies to the Common Shareability Domain.

All properties that apply to DMB also apply to the corresponding DSB.

Context synchronization instruction

A Context synchronization instruction is one of the following:

* An ISB instruction.
* An instruction that generates a synchronous exception.
* An exception return instruction.
* A DCPS or DRPS instruction.

E2.3.2 Dependency definitions

Dependency through registers

A Dependency through registers from a first effect E₁ to a second effect E₂ exists within a PE if and only if at least one of the following applies:

* E₁ is a register write W₁ which has not been generated by a Store Exclusive, E₂ is a register read R₂ and R₂ Reads-from-register W₁.
* E₁ and E₂ have been generated by the same instruction and E₁ is before E₂ in the Intrinsic order of that instruction.
* There is a Dependency through registers from E₁ to a third effect E₃, and there is a Dependency through registers from E₃ to E₂.

Address dependency

An Address dependency from a memory read R₁ to a Memory effect RW₂ exists if and only if there is a Dependency through registers from R₁ to a Register effect E₃ generated by RW₂, and E₃ affects the address part of RW₂, and either:

* RW₂ is a Memory write effect W₂.
* RW₂ is a Memory read effect R₂ and there is no Point of divergence D₄ such that there is a Dependency through registers from R₁ to D₄ and from D₄ to R₂.
Data dependency

A *Data dependency* from a memory read R₁ to a memory write W₂ exists if and only if there is a *Dependency through registers* from R₁ to a *Register effect* E₃ generated by W₂, and E₃ affects the data part of W₂.

Control dependency

A *Control dependency* from a memory read R₁ to a subsequent *Memory effect* RW₂ exists if and only if either:

* There is a *Dependency through registers* from R₁ to *Point of divergence* D₃ and RW₂ only occurs as a result of one of the two branches of that *Point of divergence*.
* There is a *Dependency through registers* from R₁ to the determination of a synchronous exception on an instruction generating an effect RW₃, and RW₂ appears in program order after RW₃.

E2.3.3 Ordering relations

Dependency-ordered-before

A dependency creates externally-visible order between a read and another *Memory effect* generated by the same *Observer*. A read R₁ is *Dependency-ordered-before* a read or write RW₂ from the same *Observer* if and only if R₁ appears in program order before RW₂ and any of the following cases apply:

* There is an *Address dependency* or a *Data dependency* from R₁ to RW₂.
* RW₂ is a write W₂ and there is a *Control dependency* from R₁ to W₂.
* RW₂ is a read R₂ generated by an instruction appearing in program order after an instruction that generates a *Context synchronization event* E₃, and there is a *Control dependency* from R₁ to E₃.
* RW₂ is a write W₂ appearing in program order after a read or a write RW₃ and there is an *Address dependency* from R₁ to RW₃.
* RW₂ is a *Local read successor* R₂ of a write W₃ and there is an *Address dependency* or a *Data dependency* from R₁ to W₃.

 Atomic-ordered-before

Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the absence of dependencies. A read or a write RW₁ is *Atomic-ordered-before* a read or a write RW₂ from the same *Observer* if and only if RW₁ appears in program order before RW₂ and either of the following cases apply:

* RW₁ is a read R₁ and RW₂ is a write W₂ such that R₁ and W₂ are generated by an atomic instruction or a successful Load-Exclusive/Store-Exclusive instruction pair to the same *Location*.
* RW₁ is a write W₁ generated by an atomic instruction or a successful Store-Exclusive instruction and RW₂ is a read R₂ generated by an instruction with Acquire semantics such that R₂ is a *Local read successor* of W₁.

For more information, see *Synchronization and semaphores* on page E2-4063.

Barrier-ordered-before

Barrier instructions order prior *Memory effects* before subsequent *Memory effects* generated by the same *Observer*. A read or a write RW₁ is *Barrier-ordered-before* a read or a write RW₂ from the same *Observer* if and only if RW₁ appears in program order before RW₂ and any of the following cases apply:

* RW₁ appears in program order before a *DMB FULL* that appears in program order before RW₂.
* RW₁ appears in program order before an atomic instruction with both Acquire and Release semantics that appears in program order before RW₂.
• RW₁ is a write W₁ generated by an instruction with Release semantics and RW₂ is a read R₂ generated by an instruction with Acquire semantics.
• RW₁ is a read R₁ and appears in program order before a DMB LD that appears in program order before RW₂.
• RW₁ is a read R₁ and is generated by an instruction with Acquire or AcquirePC semantics.
• RW₁ is a write W₁ and RW₂ is a write W₂ appearing in program order before a DMB ST that appears in program order before W₂.
• RW₂ is a write W₂ and is generated by an instruction with Release semantics.

Locally-ordered-before

Dependencies, Local write successor, Load/Store-Exclusive, atomic and barrier instructions can be composed within an Observer to create externally-visible order. A read or write RW₁ is Locally-ordered-before a read or write RW₂ from the same Observer if and only if any of the following apply:
• RW₁ is a write W₁ and RW₂ is a write W₂ that is equal to or generated by the same instruction as a Local write successor of RW₁.
• RW₁ is Dependency-ordered-before RW₂.
• RW₁ is Atomic-ordered-before RW₂.
• RW₁ is Barrier-ordered-before RW₂.
• RW₁ is Locally-ordered-before a read or a write that is Locally-ordered-before RW₂.

E2.3.4 Ordering constraints

The Armv8 memory model is described as being Other-multi-copy atomic. The definition of Other-multi-copy atomic is as follows:

Other-multi-copy atomic

In an Other-multi-copy atomic system, it is required that a write from an Observer, if observed by a different Observer, is then observed by all other Observers that access the Location coherently. It is, however, permitted for an Observer to observe its own writes prior to making them visible to other observers in the system.

The Other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the possible executions of a program. Those executions that meet the constraints given by the ordering model are said to be Architecturally well-formed. An implementation that is executing a program is only permitted to exhibit behavior consistent with an Architecturally well-formed execution.

Architecturally well-formed

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and any of the three alternative External ordering constraints.

E2.3.5 Internal visibility requirement

For a read or a write RW₁ that appears in program order before a read or a write RW₂ to the same Location, the Internal visibility requirement requires that exactly one of the following statements is true:
• RW₂ is a write W₂ that is Coherence-after RW₁.
• RW₁ is a write W₁, RW₂ is a read R₂ and either:
  — R₂ Reads-from W₁.
  — R₂ Reads-from a write that is Coherence-after W₁.
• RW₁ and RW₂ are both reads R₁, R₂, R₁ Reads-from a write W₃ and either:
  — R₂ Reads-from W₃.
  — R₂ Reads-from a write that is Coherence-after W₃.
Informally, if a Memory effect M₁ from an Observer appears in program order before a Memory effect M₂ from the same Observer, then M₁ will be seen to occur before M₂ by that Observer.

E2.3.6 External ordering constraints

The Armv8 memory model offers the following three alternative representations of the External ordering constraint:

• External visibility requirement.
• External completion requirement.
• External global completion requirement.

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and one of the three alternative representations in the External ordering constraints.

External visibility requirement

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses consistent with external observation. A read or a write RW₁ is Ordered-before a read or a write RW₂ if and only if any of the following cases apply:

• RW₁ is Observed-by a read or write RW₃ that is generated by the same instruction as RW₂.
• RW₁ is Locally-ordered-before RW₂.
• RW₁ is Ordered-before a read or a write that is Ordered-before RW₂.

For a read or a write RW₁ from an Observer that is Ordered-before a read or a write RW₂ from a different Observer, the External visibility requirement requires that RW₂ is not Observed-by RW₁. This means that an Architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation.

Informally, if a Memory effect M₁ from an Observer is Ordered-before another Memory effect M₂ from a different Observer, then M₁ will be seen to occur before M₂ by all Observers in the system.

Completes-before order

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within the system. The following effects constitute a single entry in the Completes-before order:

• Writes from the same instruction.
• Reads from the same instruction which read from external writes.
• Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Completes-before order.

Completes-before

A read or a write RW₁ Completes-before a read or a write RW₂ if and only if RW₁ appears in the Completes-before order before RW₂.

Deriving Reads-from and Coherence order from the Completes-before order

The Completes-before order can be used to resolve the Reads-from and Coherence order relations for every memory access in the system as follows:

• For a read R₁ of a memory location by an Observer, then:
  — If there is a write W₂ to the same Location from the same Observer and all of the following are true:
    — W₂ appears in program order before R₁.
    — R₁ Completes-before W₂.
— There are no writes to the Location appearing in program order between W2 and R1 then R1 Reads-from W2.
— Otherwise, R1 Reads-from its closest preceding write in the Completes-before order to the same Location. If no such write exists, then R1 Reads-from the initial value of the memory location.

- The Coherence order of writes to a memory location is the order in which those writes appear in the Completes-before order. The final value of each memory location is therefore determined by the final write to each Location in the Completes-before order. If no such write exists for a given Location, the final value is the initial value of that Location.

External completion requirement
A read or a write RW1 Globally-completes-before a read or a write RW2 if and only if any of the following statements are true:

- RW1 is Locally-ordered-before RW2.
- RW1 is a read R1 and RW2 is a read R2 and R1 is Single-copy-atomic-ordered-before R2.

Globally-completes-before order
The Globally-completes-before order is a total order that corresponds to the order in which Memory effects globally-complete within the system. The following effects constitute a single entry in the Globally-completes-before order:

- Writes from the same instruction.
- Reads from the same instruction which read from external writes.
- Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Globally-completes-before order.

Globally-completes-before
A read or a write RW1 globally-completes-before a read or a write RW2 if and only if RW1 appears in the Globally-completes-before order before RW2.

Deriving Reads-from and Coherence order from the Globally-completes-before order
The Globally-completes-before order can be used to resolve the Reads-from and Coherence order relations for every memory access in the system as follows:

- A read R1 of a memory location by an Observer Reads-from its closest preceding write in the Globally-completes-before order to the same Location. If no such write exists, then R1 Reads-from the initial value of the memory location.
- The Coherence order of writes to a memory location is the order in which those writes appear in the Globally-completes-before order. The final value of each memory location is therefore determined by the final write to each Location in the Globally-completes-before order. If no such write exists for a given Location, the final value is the initial value of that Location.

External global completion requirement
The External global completion requirement requires that a read or a write RW1 Globally-completes-before a read or a write RW2 if and only if any of the following statements are true:

- RW1 is Locally-ordered-before RW2 and either:
  — RW1 is a write.
  — RW1 is a read R1 and either:
    — R1 is not a Local read successor of a write.
    — R1 is a Local read successor of a write that is Locally-ordered-before RW2.
- RW1 is a read R1 and RW2 is a read R2 and R1 is Single-copy-atomic-ordered-before R2.
E2.3.7 Completion and endpoint ordering

Interaction between Observers in a system is not restricted to communication via shared variables in coherent memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer as a form of message passing. These interactions typically involve an additional agent, which defines the instruction sequence that is required to establish communication links between different Observers. When these forms of interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between them.

For all memory, the completion rules are defined as:

• A read $R_1$ to a Location is complete for a shareability domain when all of the following are true:
  — Any write to the same Location by an Observer within the shareability domain will be Coherence-after $R_1$.
  — Any translation table walks associated with $R_1$ are complete for that shareability domain.

• A write $W_1$ to a Location is complete for a shareability domain when all of the following are true:
  — Any write to the same Location by an Observer within the shareability domain will be Coherence-after $W_1$.
  — Any read to the same Location by an Observer within the shareability domain will either Reads-from $W_1$ or Reads-from a write that is Coherence-after $W_1$.
  — Any translation table walks associated with the write are complete for that shareability domain.

• A translation table walk is complete for a shareability domain when the memory accesses, including the updates to translation table entries, associated with the translation table walk are complete for that shareability domain, and the TLB is updated.

• A cache or branch predictor maintenance instruction is complete for a shareability domain when the memory effects of the instruction are complete for that shareability domain, and any translation table walks that arise from the instruction are complete for that shareability domain.

• A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been invalidated are complete.

The completion of any cache, branch predictor, or TLB maintenance instruction includes its completion on all PEs that are affected by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction.

—— Note ———
These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC completes only after memory at the PoC has been updated.

Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that exhibits side-effects is complete only when the read or write both:
• Can begin to affect the state of the Memory-mapped peripheral.
• Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

—— Note ———
This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral endpoint.
Peripherals

This section defines a Memory-mapped peripheral and the total order of reads and writes to a peripheral which is defined as the Peripheral coherence order:

**Memory-mapped peripheral**

A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral can have side-effects, such as causing the peripheral to perform an action. Values that are read from addresses within a Memory-mapped peripheral might not correspond to the last data value written to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in the Reads-from or Coherence order relations.

**Peripheral coherence order**

The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and writes to that peripheral.

--- Note ---

The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which accesses arrive at the endpoint.

---

For a read or a write RW₁ and a read or a write RW₂ to the same peripheral, then RW₁ will appear in the Peripheral coherence order for the peripheral before RW₂ if either of the following cases apply:

- RW₁ and RW₂ are accesses using Non-cacheable or Device attributes and RW₁ is Ordered-before RW₂.
- RW₁ and RW₂ are accesses using Device-nGnRE or Device-nGnRnE attributes and RW₁ appears in program order before RW₂.

**Out-of-band-ordered-before**

A read or a write RW₁ is Out-of-band-ordered-before a read or a write RW₂ if and only if either of the following cases apply:

- RW₁ appears in program order before a DSB instruction that begins an IMPLEMENTATION DEFINED instruction sequence indirectly leading to the generation of RW₂.
- RW₁ is Ordered-before a read or a write RW₃ and RW₃ is Out-of-band-ordered-before RW₂.

If a Memory effect M₁ is Out-of-band-ordered-before a read or a write M₂, then M₁ is seen to occur before M₂ by all Observers.

### E2.3.8 Ordering of instruction fetches

For two memory locations A and B, if A has been written to and been made coherent with the instruction fetches of the shareability domain, before an update to B by an observer in the same shareability domain, then the instruction stream of each observer in the shareability domain will not see the updated value of B without also seeing the updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

**CTR.\{DIC, IDC\} == \{0, 0\}**

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

**CTR.\{DIC, IDC\} == \{1, 0\}**

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain.
**CTR.\{DIC, IDC\} == \{0, 1\}**

The write is complete for the shareability domain. Subsequently the location has been invalidated to the **Point of unification (PoU)** from the instruction cache, and that invalidation is complete for the shareability domain.

**CTR.\{DIC, IDC\} == \{1, 1\}**

The write is complete for the shareability domain.

--- **Note** ---

Microarchitecturally, this means that these situations cannot both be true in an implementation:

- After delays in fetching from memory, the instruction queue can have entries written into it out of order.
- For an implementation:
  - When CTR.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries in the instruction queue are not impacted by the **ICIMVAU** instructions of a different core.
  - When CTR.DIC == 1, if there is a write to the location that is held in the queue when there is an outstanding entry in the instruction queue for an older entry, then the instruction queue does not have entries invalidated from it.

---

### E2.3.9 Restrictions on the effects of speculation

This section covers restrictions on speculation effects, including:

- **Restrictions on the effects of speculation.**
- **Speculative Store Bypass Safe (SSBS) on page E2-4030.**
- **Further restrictions on the effects of speculation from Armv8.5 on page E2-4030.**

**Restrictions on the effects of speculation**

The Arm architecture places certain restrictions on the effects of speculation. These are:

- Each load from a location using a particular VA after an exception return that is a **Context synchronization event** will not speculatively read an entry from earlier in the coherence order for the location being loaded from than the entry generated by the latest store to that location using the same VA before the exception exit.

- Each load from a location using a particular VA after an exception entry that is a **Context synchronization event** will not speculatively read an entry from earlier in the coherence order for the location being loaded from than the entry generated by the latest store to that location using the same VA before the exception entry.

- Any load from a location using a particular VA before an exception entry that is a **Context synchronization event** will not speculatively read data from a store to the same location using the same VA after the exception entry.

- Any load from a location using a particular VA before an exception return that is a **Context synchronization event** will not speculatively read data from a store to the same location using the same VA after the exception exit.

- When data is loaded under speculation with a translation fault, it cannot be used to form an address or generate condition codes to be used by instructions newer than the load in the speculative sequence.

- When data is loaded under speculation from a location without a translation for the translation regime being speculated in, the data cannot be used to form an address or generate condition codes to be used by instructions newer than the load in the speculative sequence.

- Changes to System registers must not occur speculatively in a way that can affect a speculative memory access that can cause a change to the micro-architectural state.
• Changes to Special-purpose registers can occur speculatively.

**Speculative Store Bypass Safe (SSBS)**

When `FEAT_SSBS` is implemented, `CPSR.SSBS` is a control that can be set by software to indicate whether hardware is permitted to load or store speculatively, in a manner that could be exploited to produce a cache timing side channel using an address derived from a register value that has been loaded from memory using a load instruction that speculatively read an entry for the location being loaded from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of `CPSR.SSBS` is 0, hardware is not permitted to load or store speculatively in this way.

When the value of `CPSR.SSBS` is 1, hardware is permitted to load or store speculatively in this way.

---

**Note**

- If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads of address values that have been speculatively loaded from memory to a register.

- Software written for architectures from Armv8.0 to Armv8.4 will set `SPSR.SSBS` to 0. This means that `CPSR.SSBS` will not set, so hardware will not be permitted to use speculative loads with outstanding memory disambiguation issues for any subsequent speculative memory accesses if there is any possibility of those subsequent memory accesses creating a cache timing side channel.

---

**Further restrictions on the effects of speculation from Armv8.5**

From Armv8.5, there are some further restrictions on the effects of speculation in addition to those in Armv8.0:

- Data loaded under speculation with a permission or domain fault cannot be used to form an address or to generate condition codes to be used by instructions newer than the load in the speculative sequence.

- Any System register read under speculation to a register that is not architecturally accessible from the current Exception level cannot be used to form an address or to generate condition codes to be used by instructions newer than the load in the speculative sequence.

---

**Note**

As the effects of speculation are not architecturally visible, this restriction level requires that the effect of any speculation cannot give rise to side channels that will leak the values of memory locations, System registers, or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

---

- For all execution prediction resources that predict address or register values, speculative execution at one hardware defined context should be separated in a hard-to-determine manner from the predictions trained in a different hardware defined context. In the case of this definition, the hardware defined context is determined by:
  - The Exception level.
  - The Security state.
  - When executing at EL1 and when EL2 is enabled in the current Security state, the VMID.
  - When executing at EL0 and using the EL1&0 translation regime, the ASID and, when EL2 is enabled in the current Security state, the VMID.
  - When executing at EL0 and using the EL2&0 translation regime, the ASID.

---

**Note**

- The definition of “hard-to-determine manner” is left open to implementations. Examples could include the complete separation of prediction resources, or the isolation of the predictions using a cryptographic or pseudo-random mechanism to separate each context.
— The architecture does not require that prediction resources that simply predict the direction of a branch are separated in this way.

• Changes to System registers must not occur speculatively in a way that can affect a speculative memory access that can cause a change to the micro-architectural state.

• Changes to Special-purpose registers can occur speculatively.

### E2.3.10 Memory barriers

The Arm architecture is a weakly ordered memory architecture that supports out of order completion. *Memory barrier* is the general term applied to an instruction, or sequence of instructions, that forces synchronization events by a PE with respect to retiring Load/Store instructions. The memory barriers defined by the Armv8 architecture provide a range of functionality, including:

• Ordering of Load/Store instructions.
• Completion of Load/Store instructions.
• Context synchronization.

The following subsections describe the Armv8 memory barrier instructions:

• *Instruction Synchronization Barrier (ISB)* on page E2-4032.
• *Data Memory Barrier (DMB)* on page E2-4032.
• *Data Synchronization Barrier (DSB)* on page E2-4032.
• *Speculation Barrier (SB)* on page E2-4033.
• *Consumption of Speculative Data Barrier (CSDB)* on page E2-4033.
• *Speculative Store Bypass Barrier (SSBB)* on page E2-4034.
• *Physical Speculative Store Bypass Barrier (PSSBB)* on page E2-4034.
• *Trace Synchronization Barrier (TSB CSYNC)* on page E2-4034.
• *Shareability and access limitations on the data barrier operations* on page E2-4035.
• *Load-Acquire, Store-Release* on page E2-4036.

**Note**

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them in conjunction with cache maintenance and memory management instructions that in general are only available when software execution is at EL1 or higher.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by Load/Store instructions and data or unified cache maintenance instructions being executed by the PE. Instruction fetches or accesses caused by a hardware translation table access are not explicit accesses.

AArch32 state also supports the legacy barrier instructions CP15DMB, CP15DSB, and CP15ISB. These instructions are executed as MCRs using the appropriate encoding, and are accessible from EL0. However, for performance reasons Arm deprecates any use of these operations, and strongly recommends that software uses the DMB, DSB, and ISB instructions described in this section instead. Optionally, an implementation can support a CP15BEN control that supervisory software can use to disable use of these instructions, meaning the corresponding MCR encodings are UNDEFINED. When the CP15BEN control is supported, setting one of the following CP15BEN fields to 0 makes execution of CP15DMB, CP15DSB, and CP15ISB UNDEFINED:

- SCTLR_EL1.CP15BEN, for execution of these instructions at EL0 using AArch32 when EL1 is using AArch64.
- SCTLR.CP15BEN, for execution of these instructions at EL0 or EL1 when EL1 is using AArch32.
- HSCTLR.CP15BEN, for execution of these instructions at EL2 when EL2 is using AArch32.
Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction. Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the operation are visible to instructions fetched after the ISB instruction are:

- Completed cache and TLB maintenance instructions.
- Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers on page G4-5959.

Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the Definition of the Armv8 memory model on page E2-4020 and this introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB instruction and those which originate from a different PE, to the extent required by the DMB options, which have been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are Observed-by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().

Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB at EL2 ensures that any memory accesses caused by speculative translation table walks from the Non-secure PL1&0 translation regime have been observed.

For more information, see Use of out-of-context translation regimes on page G5-5968.

A DSB executed by a PE, PEe, completes when all of the following apply:

- All explicit memory accesses of the required access types appearing in program order before the DSB are complete for the set of observers in the required shareability domain.
- If the required access types of the DSB is reads and writes, then all cache maintenance instructions, all TLB maintenance instructions, and all PSB CYNC instructions issued by PEe before the DSB are complete for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system or perform any part of its functionality until the DSB completes, other than:

- Being fetched from memory and decoded.
• Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly or indirectly read without causing side-effects.

The pseudocode function for the operation of a DSB is `DataSynchronizationBarrier()`.

See also Memory barrier instructions on page G4-5956 and Memory barriers on page G4-5959.

Speculation Barrier (SB)

An SB is a memory barrier that prevents speculative execution of instructions until after the barrier has completed when those instructions could be observed through side-channels.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than the barrier:
• Cannot be performed to the extent that such speculation can be observed through side-channels as a result of control flow speculation or data value speculation.
• Can be performed when predicting that an instruction that could generate an exception does not generate an exception.

Speculative execution of an SB instruction:
• Cannot be as a result of control flow speculation.
• Cannot be as a result of data value speculation.
• Can be as a result of predicting that an instruction that could generate an exception does not generate an exception.

An SB instruction can complete when:
• It is known that it is not speculative.
• All the predicted data values generated by instructions appearing in program order before the SB instruction have their predicted values confirmed.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs of the speculative execution of instructions appearing in program order after an uncompleted SB instruction.

Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution and data value prediction. This includes:
• Data value predictions of any instructions.
• PSTATE.\{N,Z,C,V\} predictions of any instructions other than conditional branch instructions appearing in program order before the CSDB that have not been architecturally resolved.
• Predictions of SVE prediction state for any SVE instructions.

For purposes of the definition of CSDB, PSTATE.\{N,Z,C,V\} is not considered a data value. This definition permits:
• Control flow speculation before and after the CSDB.
• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results of data value or PSTATE.\{N,Z,C,V\} predictions of instructions appearing in program order before the CSDB that have not been architecturally resolved.
Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the SSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
  - The store is to the same location as the load.
  - The store uses the same virtual address as the load.
  - The store appears in program order before the SSBB instruction.

- When a load to a location appears in program order before the SSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
  - The store is to the same location as the load.
  - The store uses the same virtual address as the load.
  - The store appears in program order after the SSBB instruction.

Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same physical address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the PSSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
  - The store is to the same location as the load.
  - The store appears in program order before the PSSBB instruction.

- When a load to a location appears in program order before the PSSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
  - The store is to the same location as the load.
  - The store appears in program order after the PSSBB instruction.

--- Note ---

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual addresses and from different Exception levels.

---

Trace Synchronization Barrier (TSB CSYNC)

The TSB CSYNC is a memory barrier instruction that preserves the relative order of memory accesses to System registers due to trace operations and other memory accesses to the same registers.

A trace operation is an operation of the PE Trace Unit generating trace for an instruction when FEAT_TRF is implemented and enabled.

A TSB CSYNC is not required to execute in program order with respect to other instructions. This includes being reordered with respect to other trace instructions. One or more context synchronization events are required to ensure that TSB CSYNC is executed in the necessary order.

If trace is generated between a context synchronization event and a TSB CSYNC operation, these trace operations may be reordered with respect to the TSB CSYNC operation, and therefore may not be synchronized.
The following situations are synchronized using a TSB CSYNC:

- A direct write B to a System register is ordered after an indirect read or indirect write of the same register by a trace operation of a traced instruction A, if all of the following are true:
  - A is executed in program order before a context synchronization event C.
  - C is in program order before a TSB CSYNC operation T.
  - B is executed in program order after T.

- A direct read B of a System register is ordered after an indirect write to the same register by a trace operation of a traced instruction A if all the following are true:
  - A is executed in program order before a context synchronization event C1.
  - C1 is in program order before TSB CSYNC operation T.
  - T is executed in program order before a second context synchronization event C2.
  - B is executed in program order after C2.

A TSB CSYNC is not needed when a direct write B to a System register is ordered before an indirect read or indirect write of the same register by a trace operation of a traced instruction A, if all the following are true:

- A is executed in program order after a context synchronization event C.
- B is executed in program order before C.

The pseudocode function for the operation of a TSB CSYNC is `TraceSynchronizationBarrier()`.

**Shareability and access limitations on the data barrier operations**

The DMB and DSB instructions can each take an optional limitation argument that specifies:

- The shareability domain over which the instruction must operate. This is one of:
  - Full system.
  - Outer Shareable.
  - Inner Shareable.
  - Non-shareable.

  Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable domains of the processor.

  ______ Note _______

  The distinction between Full system and Outer Shareable is only applicable for Normal Non-Cacheable memory accesses and Device memory accesses.

  ______ Note _______

  The accesses for which the instruction operates. This is one of:
  - Read and write accesses, both before and after the barrier instruction.
  - Write accesses only, before and after the barrier instruction.
  - Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

  ______ Note _______

  This form of a DMB or DSB instruction can be described as a Load-Load/Store barrier.

For more information on whether an access is before or after a barrier instruction, see `Data Memory Barrier (DMB)` on page E2-4032 or `Data Synchronization Barrier (DSB)` on page E2-4032.
Table E2-1 shows how these options are encoded in the <option> field of the instruction.

<table>
<thead>
<tr>
<th>Accesses</th>
<th>Shareability domain</th>
<th>Before the barrier</th>
<th>After the barrier</th>
<th>Full system</th>
<th>Outer Shareable</th>
<th>Inner Shareable</th>
<th>Non-shareable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reads and writes</td>
<td>SY</td>
<td>OSH</td>
<td>ISH</td>
<td>NSH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writes</td>
<td>ST</td>
<td>OSHST</td>
<td>ISHST</td>
<td>NSHST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reads</td>
<td>LD</td>
<td>OSHLD</td>
<td>ISHLD</td>
<td>NSHLD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If no <option> is specified then the instruction operates for read and write accesses, over the full system, meaning the operation is the same as for the SY option. See the instruction descriptions for more information:
- DMB on page F5-4392.
- DSB on page F5-4395.

**Note**

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system operation, see ISB on page F5-4415.

### Load-Acquire, Store-Release

Armv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores.

The full definition of the Load-Acquire instruction is covered formally in the Definition of the Armv8 memory model on page E2-4020 and this introduction to the Load-Acquire instruction is not intended to contradict that section.

The basic principle of a Load-Acquire instruction is to introduce order between the memory access generated by the Load-Acquire instruction and the memory accesses appearing in program order after the Load-Acquire instruction, such that the memory access generated by the Load-Acquire instruction is Observed-by each PE, to the extent that that PE is required to observe the access coherently, before any of the memory accesses appearing in program order after the Load-Acquire instruction are Observed-by that PE, to the extent that the PE is required to observe the accesses coherently.

The use of a Load-Acquire instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Armv8 memory model on page E2-4020 and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the memory accesses generated by the PEe executing the Store-Release instruction, together with those which originate from a different PE, to the extent that the PEe is required to observe them coherently, Observed-by the PEe before executing the Store-release.

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the definition of Barrier-ordered-before.

In addition, the use of a Load-Acquire or a Store-Release instruction on accesses to a Memory-mapped peripheral introduces order between the Memory effects of the instructions that access that peripheral, as described in the definition of Peripheral coherence order.

Load-Acquire and Store-Release, other than LDAEXD and STLEXD, access only a single data element. This access is single-copy atomic. The address of the data object must be aligned to the size of the data element being accessed, otherwise the access generates an Alignment fault.

LDAEXD and STLEXD access two data elements. The address supplied to the instructions must be doubleword aligned, otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.
Note

- Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity properties:
  - That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
  - That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.
- The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory barrier instruction.

Table E2-2 summarizes the Load-Acquire/Store-release instructions.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Load-Acquire</th>
<th>Store-Release</th>
<th>Load-Acquire Exclusive</th>
<th>Store-Release Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit word</td>
<td>LDA</td>
<td>STL</td>
<td>LDAEX</td>
<td>STLEX</td>
</tr>
<tr>
<td>16-bit halfword</td>
<td>LDAH</td>
<td>STLH</td>
<td>LDAEXH</td>
<td>STLEXH</td>
</tr>
<tr>
<td>8-bit byte</td>
<td>LDAB</td>
<td>STLB</td>
<td>LDAEXB</td>
<td>STLEXB</td>
</tr>
<tr>
<td>64-bit doubleword</td>
<td>-</td>
<td>-</td>
<td>LDAEXD</td>
<td>STLEXD</td>
</tr>
</tbody>
</table>
E2.4 Ordering of translation table walks

If FEAT_ETS is implemented, and a memory access RW₁ is Ordered-before a second memory access RW₂, then RW₁ is also Ordered-before any translation table walk generated by RW₂ that generates any of the following:

- A Translation fault.
- An Address size fault.
- An Access flag fault.
E2.5 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of the memory system are IMPLEMENTATION DEFINED. Armv8 defines the application level interface to the memory system, including a hierarchical memory system with multiple levels of cache. This section describes an application level view of this system. It contains the subsections:

- Introduction to caches.
- Memory hierarchy.
- Implication of caches for the application programmer on page E2-4040.
- Preloading caches on page E2-4042.

E2.5.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:

- Main memory address information, commonly known as a tag.
- The associated data.

Caches increase the average speed of a memory access and take account of two principles of locality:

**Spatial locality**

An access to one location is likely to be followed by accesses to adjacent locations. Examples of this principle are:

- Sequential instruction execution.
- Accessing a data structure.

**Temporal locality**

An access to an area of memory is likely to be repeated in a short time period. An example of this principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache. Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the cache line loaded from memory. Armv8 permits different cache topologies and access policies, provided they comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

- Memory accesses can occur at times other than when the programmer would expect them.
- A data item can be held in multiple physical locations.

E2.5.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory system that exploits this trade-off between size and latency. Figure E2-1 on page E2-4040 shows an example of such a system in an Armv8-A system that supports virtual addressing.
The AArch32 Application Level Memory Model

E2.5 Caches and memory hierarchy

Note
In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the PE, as shown in Figure E2-1.

Note
Armv8 FEAT_DPB adds architectural support for an additional conceptual point, Point of Persistence, but this support is provided only in AArch64 state. For more information see About cache maintenance in AArch64 state on page D4-2500.

The Cacheability and Shareability memory attributes

Cacheability and Shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

**Cacheability** This term defines whether memory locations are allowed to be allocated into a cache or not. Cacheability is defined independently for Inner and Outer Cacheability locations.

**Shareability** This term defines whether memory locations are shareable between different agents in a system. Marking a memory location as shareable for a particular domain requires hardware to ensure that the location is coherent for all agents in that domain. Shareability is defined independently for Inner and Outer Shareability domains.

For more information about the Cacheability and Shareability attributes see Memory types and attributes on page E2-4050.

E2.5.3 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

- When memory locations are updated by other agents in the system that do not use hardware management of coherency.
- When memory updates made from the application software must be made visible to other agents in the system, without the use of hardware management of coherency.
For example:

- In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

- In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of coherency occurs when new instruction data has been written into the data cache, but the instruction cache still contains the old instruction data.

**Data coherency issues**

Software can ensure the data coherency of caches in the following ways:

- By not using the caches in situations where coherency issues can arise. This can be achieved by:
  - Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
  - Not enabling caches in the system.

- By using system calls to functions using cache maintenance instructions that execute at a higher Exception level.

- By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable locations by observers within the different shareability domains, see Non-shareable Normal memory on page E2-4052 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page E2-4051.

**Note**

The performance of these hardware coherency mechanisms is highly implementation-specific. In some implementations the mechanism suppresses the ability to cache shareable locations. In other implementations, cache coherency hardware can hold data in caches while managing coherency between observers within the shareability domains.

**Synchronization and coherency issues between data and instruction accesses**

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible future execution paths. For all types of memory:

- The PE might have fetched the instructions from memory at any time since the last Context synchronization event on that PE.

- Any instructions fetched in this way might be executed multiple times, if this is required by the execution of the program, without being re-fetched from memory.

The Arm architecture does not require the hardware to ensure coherency between instruction caches and memory, even for locations of shared memory.

If software requires coherency between instruction execution and memory, it must manage this coherency using Context synchronization events and cache maintenance instructions. These can only be accessed from an Exception level that is higher than EL0, and therefore require a system call, see Exception-generating and exception-handling instructions on page F1-4095. The following code sequence can be used for this purpose:

```asm
; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
STR Rt, [Rn]
DCCMVAU Rn ; Clean data cache by MVA to point of unification (PoU)
DSB ; Ensure visibility of the data cleaned from cache
ICIMVAU Rn ; Invalidate instruction cache by MVA to PoU
BPIMVA Rn ; Invalidate branch predictor by MVA to PoU
DSB ; Ensure completion of the invalidations
ISB ; Synchronize the fetched instruction stream
```
A write has been made coherent with an instruction fetch of a shareability domain when:

CTR.{DIC, IDC} == \{0, 0\}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

CTR.{DIC, IDC} == \{1, 0\}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and that clean is complete for the shareability domain.

CTR.{DIC, IDC} == \{0, 1\}

The write is complete for the shareability domain. Subsequently the location has been invalidated to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for the shareability domain.

CTR.{DIC, IDC} == \{1, 1\}

The write is complete for the shareability domain.

---

**Note**

- For accesses that are Non-cacheable or Write-Through, the clean data cache instruction is not required. For accesses that are Non-cacheable, the invalidate instruction cache is not required, because in AArch32 state these accesses are not permitted to be held in an instruction cache.

- This code can be used when the thread of execution modifying the code is the same thread of execution that is executing the code. The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are being modified by another thread of execution without requiring explicit synchronization. See *Concurrent modification and execution of instructions* on page E2-4018.

---

**E2.5.4 Preloading caches**

The Arm architecture provides the memory system hints PLD (Preload Data), PLDW (Preload Data With Intent To Write) and PLI (Preload Instruction) that software can use to communicate the expected use of memory locations to the hardware. The memory system can respond by taking actions that are expected to speed up the memory accesses if they occur. The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations use this information to bring data or instruction locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting memory system operations might, under exceptional circumstances, generate an asynchronous External abort, which is reported using an SError interrupt and taken using an asynchronous Data Abort exception. For more information, see *Data Abort exception* on page G1-5789.

A PLD, PLDW, or PLI instruction can only cause allocation to software-visible caching structures such caches or TLBs for memory locations that can be accessed, according to the permissions defined by the current translation regime or a translation regime for a higher Exception level in the current Security state, by any of:

- Reads.
- Writes.
- Instruction fetches.

A PLD, PLDW, or PLI instruction can access any memory location in Normal memory that can be accessed, according to the permissions defined by the current translation regime or a translation regime for a higher Exception level in the current Security state, by any of:

- Reads.
- Writes.
- Instruction fetches.
Note

In each case, the entire list applies to each of PLD, PLD\textsubscript{w}, and PLI.

A PLD, PLD\textsubscript{w}, or PLI instruction is guaranteed not to access any type of Device memory.

A PLI instruction must not perform any access that cannot be performed by a speculative instruction fetch by the processor. Therefore in a VMSA implementation, if all associated MMUs are disabled, a PLI instruction cannot access any memory location that cannot be accessed by instruction fetches.

The pseudocode enumeration \texttt{PrefetchHint} defines the prefetch hint types.

The \texttt{Hint_Prefetch()} pseudocode function signals to the memory system that memory accesses of the type hint to or from the specified address are likely to occur in the near future. The memory system might take some action to speed up the memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated by the innermost cache level target and non-temporal hint stream.

For more information on PLD, PLI, and PLD\textsubscript{w}, see:

- \texttt{PLD, PLDW (immediate)} on page F5-4612.
- \texttt{PLD (literal)} on page F5-4614.
- \texttt{PLD, PLDW (register)} on page F5-4616.
- \texttt{PLI (immediate, literal)} on page F5-4618.
- \texttt{PLI (register)} on page F5-4621.
E2.6 Alignment support

This section describes alignment support. It contains the following subsections:

- Instruction alignment.
- Unaligned data access.
- Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE on page E2-4045.
- Unaligned data access restrictions on page E2-4045.
- Generation of Alignment faults by Load/store multiple accesses to Device memory on page E2-4045.

For more information about Alignment faults see Alignment faults on page G5-6060.

E2.6.1 Instruction alignment

A32 instructions are word-aligned.

T32 instructions are halfword-aligned.

E2.6.2 Unaligned data access

An Armv8 implementation must support unaligned data accesses to Normal memory by some load and store instructions. As Table E2-3 shows, software can control whether a misaligned access to Normal memory by one of these instructions causes an Alignment fault Data Abort exception:

- By setting SCTLR.A, for unaligned accesses from any mode other than Hyp mode.
- By setting HSCTLR.A, for unaligned accesses from Hyp mode.

### Table E2-3 Alignment requirements of load/store instructions

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Alignment check</th>
<th>Result if check fails when:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCTLR.A or</td>
<td>SCLTR.A or</td>
</tr>
<tr>
<td></td>
<td>HSCTLR.A is 0</td>
<td>HSCTLR.A is 1</td>
</tr>
<tr>
<td>LDRB, LDEXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>LDRH, LDRHT, LDRSH, LDRSHT, STRH, STRHT, TBB</td>
<td>Halfword Unaligned access</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>LDREXH, STREXH, LDAH, STLH, LDAEXH, STLEXH</td>
<td>Halfword</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>LDR, LDRT, STR, STRT</td>
<td>Word Unaligned access</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>push, encodings T3 and A2 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop, encodings T3 and A2 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDREX, STREX, LDA, STL, LDAEX, STLEX</td>
<td>Word</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>LDREXD, STREXD, LDAEXD, STLEXD</td>
<td>Doubleword</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>All forms of LDM and STM, LDRD, RFE, SRS, STRD</td>
<td>Word</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>LDC, STC</td>
<td>Word</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR</td>
<td>Word</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with standard alignment</td>
<td>Element size Unaligned access</td>
<td>Alignment fault</td>
</tr>
<tr>
<td>VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4, all with :align specified</td>
<td>As specified by :align</td>
<td>Alignment fault</td>
</tr>
</tbody>
</table>

a. Previous versions of this manual used @<align> to specify alignment. Both forms are supported, see Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions for more information.
Note
Any unaligned access to any type of Device memory generates an Alignment fault, see Alignment faults on page G5-6060.

E2.6.3 Cases where unaligned accesses are CONSTRAINED UNPREDICTABLE

Any load instruction that is not faulted by the alignment restrictions shown in Table E2-3 on page E2-4044 and that loads the PC has CONSTRAINED UNPREDICTABLE behavior if the address it loads from is not word-aligned, see Loads and Stores to unaligned locations on page K1-7942. This overrules any permitted Load/Store behavior shown in Table E2-3 on page E2-4044.

E2.6.4 Unaligned data access restrictions

The following points apply to unaligned data accesses in Armv8:

- Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the Arm architecture on page E2-4016.
- Unaligned accesses typically take a number of additional cycles to complete compared to a naturally-aligned access.
- An operation that performs an unaligned access can abort on any memory access that it makes, and can abort on more than one access. This means that an unaligned access that occurs across a page boundary can generate an abort on either side of the boundary.

E2.6.5 Generation of Alignment faults by Load/store multiple accesses to Device memory

When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory access by an AArch32 Load Multiple or Store Multiple instruction to an address that the stage 1 translation assigns as Device-nGRE, Device-nGnRE, or Device-nGnRnE generates an Alignment fault.

The applicable nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that applies to the Exception level and Security state at which the LDM or STM instruction is executed.
E2.7 Endian support

General description of endianness in the Arm architecture describes the relationship between endianness and memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:
- Instruction endianness.
- Data endianness on page E2-4047.
- Endianness of memory-mapped peripherals on page E2-4048.

E2.7.1 General description of endianness in the Arm architecture

This section only describes memory addressing and the effects of endianness for data elements up to doubleword of 64 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure E2-2 shows, for big-endian and little-endian memory systems, the relationship between:
- The doubleword at address A.
- The words at addresses A and A+4.
- The halfwords at addresses A, A+2, A+4, and A+6.
- The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, and A+7.

The terms in Figure E2-2 have the following definitions:
- MSByte Most-significant byte.
- LSBYTE Least-significant byte.

![Diagram showing endianness relationships in AArch32 state](image)

In this figure, Byte, A+1 is an abbreviation for Byte at address A+1

E2.7.2 Instruction endianness

In Armv8-A, the mapping of instruction memory is always little-endian.
### E2.7.3 Data endianness

The size of the data value that is loaded or stored is the size that is used for the purpose of endian conversion for floating-point, Advanced SIMD, and general-purpose register loads and stores.

Table E2-4 shows the element sizes of all the load/store instructions, for all instruction sets.

<table>
<thead>
<tr>
<th>Instructions</th>
<th>Element size</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDRB, LDREXB, LDRBT, LDRSB, LDRSBT, STRB, STREXB, STRBT, TBB</td>
<td>Byte</td>
</tr>
<tr>
<td>LDRH, LDREXH, LDRHT, LDRSH, LDRSHT, STRH, STREXH, STRHT, TBH</td>
<td>Halfword</td>
</tr>
<tr>
<td>LDR, LDRT, LDREX, STR, STRT, STREX</td>
<td>Word</td>
</tr>
<tr>
<td>LDRD, LDREXD, STRD, STREXD</td>
<td>Word</td>
</tr>
<tr>
<td>All forms of LDM, PUSH, POP, RFE, SRS, all forms of STM,</td>
<td>Word</td>
</tr>
<tr>
<td>LDC, STC</td>
<td>Word</td>
</tr>
<tr>
<td>Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 32-bit Si registers</td>
<td>Word</td>
</tr>
<tr>
<td>Forms of VLDM, VLDR, VPOP, VPUSH, VSTM, VSTR that transfer 64-bit Di registers</td>
<td>Doubleword</td>
</tr>
<tr>
<td>VLD1, VLD2, VLD3, VLD4, VST1, VST2, VST3, VST4</td>
<td>Element size of the Advanced SIMD access</td>
</tr>
</tbody>
</table>

CPSR.E determines the data endianness.

The data size used for endianness conversions:

- Is the size of the data value that is loaded or stored for Advanced SIMD and floating-point register and general-purpose register loads and stores.
- Is the size of the data element that is loaded or stored for Advanced SIMD element and data structure loads and stores. For more information see *Endianness in Advanced SIMD* on page E2-4048.

### Instructions to reverse bytes in registers

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient method to transform explicitly the endianness of the data.

Table E2-5 shows the instructions that provide this functionality in the A32 and T32 instruction sets.

<table>
<thead>
<tr>
<th>Function</th>
<th>T32 / A32 instruction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse bytes in whole register</td>
<td>REV</td>
<td>For use with general purpose registers.</td>
</tr>
<tr>
<td>Reverse bytes in 16-bit halfwords</td>
<td>REV16</td>
<td>For use with general purpose registers.</td>
</tr>
<tr>
<td>Reverse bytes in halfword and sign-extend</td>
<td>REVSH</td>
<td>For use with general purpose registers.</td>
</tr>
</tbody>
</table>
Endianness in Advanced SIMD

Advanced SIMD element Load/Store instructions transfer vectors of elements between memory and the SIMD and floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements being transferred. This information is used by the PE to load and store data correctly in both big-endian and little-endian systems.

Consider, for example, the A32 or T32 instruction:

\[
\text{VLD1.16 \{D0\}, \[R1\]}
\]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the endianness configuration, as shown in Figure E2-3. Therefore, the order of the elements in the registers is the same regardless of the endianness configuration.

### Table E2-5 Byte reversal instructions (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>T32 / A32 instruction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse elements in doublewords, vector</td>
<td>VREV64</td>
<td>For use with registers in the SIMD and floating-point register file</td>
</tr>
<tr>
<td>Reverse elements in words, vector</td>
<td>VREV32</td>
<td>For use with registers in the SIMD and floating-point register file</td>
</tr>
<tr>
<td>Reverse elements in halfwords, vector</td>
<td>VREV16</td>
<td>For use with registers in the SIMD and floating-point register file</td>
</tr>
</tbody>
</table>

#### Endianness in Advanced SIMD

For information about the alignment of Advanced SIMD instructions see Alignment support on page E2-4044.

The \texttt{BigEndian()} pseudocode function determines the current endianness of the data.

The \texttt{BigEndianReverse()} pseudocode function reverses the endianness of a bitstring.

The \texttt{BigEndian()} and \texttt{BigEndianReverse()} functions are defined in Chapter J1 Armv8 Pseudocode.

#### E2.7.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.
Peripherals to which this requirement applies include:

- Memory-mapped register interfaces to a debugger, or to a cross-trigger interface, see Chapter H8 About the External Debug Registers.
- The memory-mapped register interface to the system level implementation of the Generic Timer, see Chapter I2 System Level Implementation of the Generic Timer.
- A memory-mapped register interface to the Performance Monitors, see Chapter I3 Recommended External Interface to the Performance Monitors.
- A memory-mapped register interface to the Activity Monitors, see Chapter I4 Recommended External Interface to the Activity Monitors.
- Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.
- The memory-mapped register interface to an Arm trace component. See, for example, the ARM® Embedded Trace Macrocell Architecture Specification, ETMv4.
E2.8 Memory types and attributes

In Armv8 the ordering of accesses for addresses in memory, referred to as the memory order model, is defined by the memory attributes. The following sections describe this model:

- Normal memory.
- Device memory on page E2-4054.
- Memory access restrictions on page E2-4059.

E2.8.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions for these locations.

The Normal memory type has the following properties:

- A write to a memory location with the Normal attribute completes in finite time.
- Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-through cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory system in finite time. Two writes to the same location, where at least one is using the Normal memory type, might be merged before they reach the endpoint unless there is an ordered-before relationship between the two writes.
- Unaligned memory accesses can access Normal memory if the system is configured to generate such accesses.
- There is no requirement for the memory system beyond the PE to be able to identify the elements accessed by multi-register Load/Store instructions. See Multi-register loads and stores that access Normal memory on page E2-4054.

Note:
- The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they exhibit all of the following properties:
  - Read accesses can be repeated with no side-effects.
  - Repeated read accesses return the last value written to the resource being read.
  - Read accesses can fetch additional memory locations with no side-effects.
  - Write accesses can be repeated with no side-effects if the contents of the location accessed are unchanged between the repeated writes or as the result of an exception, as described in this section.
  - Unaligned accesses can be supported.
  - Accesses can be merged before accessing the target memory system.
- Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:
  - Memory accesses return UNKNOWN values.
  - UNPREDICTABLE effects on memory-mapped peripherals.
- An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on page E2-4016 might be abandoned as a result of an exception being taken during the sequence of accesses. On return from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed multiple times. This can result in repeated write accesses to a location that has been changed between the write accesses.

The following sections describe the other attributes for Normal memory:

- Shareable Normal memory on page E2-4051.
- Non-shareable Normal memory on page E2-4052.
- Cacheability attributes for Normal memory on page E2-4052.
See also:

- Multi-register loads and stores that access Normal memory on page E2-4054.
- Atomicity in the Arm architecture on page E2-4016.
- Memory barriers on page E2-4031. For accesses to Normal memory, a DMB instruction is required to ensure the required ordering.
- Concurrent modification and execution of instructions on page E2-4018.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is defined as one of:

- Inner Shareable.
- Outer Shareable.
- Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between data and instruction accesses on page E2-4041.

Note

- System designers can use the Shareability attribute to specify the locations in Normal memory for which coherency must be maintained. However, software developers must not assume that specifying a memory location as Non-shareable permits software to make assumptions about the incoherency of the location between different PEs in a shared memory system. Such assumptions are not portable between different multiprocessing implementations that might use the Shareability attribute. Any multiprocessing implementation might implement caches that are shared, inherently, between different PEs.
- This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory

The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains. Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for data accesses with the Inner Shareable attribute made by any member of that set. Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

- Each observer is only a member of a single Inner Shareability domain.
- Each observer is only a member of a single Outer Shareability domain.
- All observers in an Inner Shareability domain are always members of the same Outer Shareability domain. This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not required to be a proper subset.

Note

- Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable locations are always treated as Outer Shareable.
- The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating system.
The details of the use of the Shareability attributes are system-specific. Example E2-1 shows how they might be used.

Example E2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

- In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses to memory locations with the Inner Shareable attribute.

- However, between the two clusters, the caches:
  - Are not required to be coherent for data accesses that have only the Inner Shareable attribute.
  - Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different Shareability domain for the Inner Shareable attribute, but all components of the subsystem are in the same Shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not transparent to the accesses from the other subsystem, this system has two Outer Shareable Shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for shared memory locations that do not need to be part of the Outer Shareable Shareability domain.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other observers share the memory system, software must use cache maintenance instructions, if the presence of caches might lead to coherency issues when communicating between the observers. This cache maintenance requirement is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned a Cacheability attribute that is one of:

- Write-Through Cacheable.
- Write-Back Cacheable.
- Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:

- A region might be assigned cache allocation hints for read and write accesses.
- It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of Transient or Non-transient.

For more information see Cacheability, cache allocation hints, and cache transient hints on page G4-5932.
A memory location can be marked as having different cacheability attributes, for example when using aliases in a VA to PA mapping:

- If the attributes differ only in the cache allocation hint this does not affect the behavior of accesses to that location.
- For other cases see Mismatched memory attributes on page E2-4060.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the Shareability domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of memory might provide a better mechanism for controlling coherency than the use of hardware coherency mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties for Non-cacheable or Write-Through Cacheable memory:

- A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of cache made by an observer accessing the memory system inside the level of cache is visible to all observers accessing the memory system outside the level of cache without the need of explicit cache maintenance.
- A completed write to a memory location that is Non-cacheable for a level of cache made by an observer accessing the memory system outside the level of cache is visible to all observers accessing the memory system inside the level of cache without the need of explicit cache maintenance.

--- Note ---
Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For example, a programmer might know that a piece of memory is not going to be accessed again and would be better treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the boundaries between the Inner and Outer Shareability domains. However:

- Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the lowest level of cache.
- No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the Outer cacheability attributes.
- An implementation might not have any outer cache.

Example E2-2, Example E2-3 on page E2-4054, and Example E2-4 on page E2-4054 describe the possible ways of implementing a system with three levels of cache, level 1 (L1) to level 3 (L3).

--- Note ---
- L1 cache is the level closest to the PE, see Memory hierarchy on page E2-4039.
- When managing coherency, system designs must consider both the inner and outer cacheability attributes, as well as the Shareability attributes. This is because hardware might have to manage the coherency of caches at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example E2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

- The Inner cacheability attribute applied to L1 and L2 cache.
- The Outer cacheability attribute applied to L3 cache.
Example E2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2, and L3 cache. Do not use the Outer cacheability attribute.

Example E2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:

• The Inner cacheability attribute applied to L1 cache.
• The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more registers from the SIMD and floating-point register file from an Exception level there is no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these load or store instructions.

E2.8.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects, or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:

Gathering  Identified as G or nG, see Gathering on page E2-4056.
Reordering  Identified as R or nR, see Reordering on page E2-4057.
Early Write Acknowledgement  Identified as E or nE, see Early Write Acknowledgement on page E2-4058.

The Armv8 Device memory types are:

Device-nGnRnE  Device non-Gathering, non-Reordering, No Early write acknowledgement. Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.
Device-nGnRE  Device non-Gathering, non-Reordering, Early Write Acknowledgement. Equivalent to the Device memory type in earlier versions of the architecture.
Device-nGRE  Device non-Gathering, Reordering, Early Write Acknowledgement. Armv8 adds this memory type to the translation table formats found in earlier versions of the architecture. The use of barriers is required to order accesses to Device-nGRE memory. The Device-nGRE memory type is introduced into the AArch32 translation table formats when the PE is using the Long Descriptor Translation Table format.
Device-GRE  Device Gathering, Reordering, Early Write Acknowledgement.
Armv8 adds this memory type to the translation table formats found in earlier versions of the architecture. Device-GRE memory has the fewest constraints. It behaves similar to Normal memory, with the restriction that speculative accesses to Device-GRE memory is forbidden.

The Device-GRE memory type is introduced into the AArch32 translation table formats when the PE is using the Long Descriptor Translation Table format. Collectively these are referred to as any Device memory type. Going down the list, the memory types are described as getting weaker; conversely the going up the list the memory types are described as getting stronger.

--- Note ---

- As the list of types shows, these additional attributes are hierarchical. For example, a memory location that permits Gathering must also permit Reordering and Early Write Acknowledgement.

- The architecture does not require an implementation to distinguish between each of these memory types and Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes, describes the implementation rules for the attribute.

- Earlier versions of the Arm architecture defined the following memory types:
  - Strongly-ordered memory. This is the equivalent of the Device-nGnRnE memory type.
  - Device memory. This is the equivalent of the Device-nGnRE memory type.

All of these memory types have the following properties:

- Speculative data accesses are not permitted to any memory location with any Device memory attribute. This means that each memory access to any Device memory type must be one that would be generated by a simple sequential execution of the program.

An exception to this applies:
- Reads generated by the Advanced SIMD and floating-point instructions can access bytes that are not explicitly accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that contains at least one byte that is explicitly accessed by the instruction.

--- Note ---

- An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on page E2-4016 might be abandoned as a result of an exception being taken during the sequence of accesses. On return from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed multiple times. This can result in repeated accesses to a location where the program only defines a single access. For this reason, Arm strongly recommends that no accesses to Device memory are performed from a single instruction that spans the boundary of a translation granule or which in some other way could lead to some of the accesses being aborted.

- Write speculation that is visible to other observers is prohibited for all memory types.

- A write to a memory location with any Device memory type completes in finite time.

- If a value that would be returned from a read of a memory location with the Device memory type changes without an explicit write by an observer, this change must also be globally observed for all observers in the system in finite time. Such a change might occur in a peripheral location that holds status information.

- Data accesses to memory locations are coherent for all observers in the system, and correspondingly are treated as being Outer Shareable.

- A memory location with any Device memory attribute cannot be allocated into a cache.

- Writes to a memory location with any Device memory attribute must reach the endpoint for that address in the memory system in finite time. Two writes of Device memory type to the same location might be merged before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an ordered-before relationship between the two writes.
• All accesses to memory with any Device memory attribute must be aligned. Any unaligned access generates an Alignment fault at the first stage of translation that defined the location as being Device.

**Note**

In the Non-secure PL1&0 translation regime in systems where HCR.TGE==1 and HCR.DC==0, any Alignment fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This causes the value of HSR.ISS.[24] to be 0.

• Hardware does not prevent speculative instruction fetches from a memory location with any of the Device memory attributes unless the memory location is also marked as Execute-never for all Exception levels.

**Note**

This means that to prevent speculative instruction fetches from memory locations with Device memory attributes, any location that is assigned any Device memory type must also be marked as Execute-never for all Exception levels. Failure to mark a memory location with any Device memory attribute as Execute-never for all Exception levels is a programming error.

See also *Memory access restrictions* on page E2-4059.

The memory types for Translation table walks cannot be defined as any Device memory type within the TCR. For the Non-secure EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are subject to a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage translation table walk might be made to memory locations with any Device memory type. These accesses might be made speculatively. When the value of the HCR.PTW bit is 1, a stage 2 permission fault is generated if a first stage translation table walk is made to any Device memory type.

For instruction fetches, if branches cause the program counter to point to an area of memory with the Device attribute which is not marked as Execute-never for the current Exception level, an implementation can either:

• Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.
• Take a Permission fault.

**Gathering**

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

• Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a single transaction.

• Multiple memory accesses of the same type, read or write, to different memory locations to be merged into a single memory transaction on an interconnect.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

• The number of memory accesses that are made corresponds to the number that would be generated by a simple sequential execution of the program.

• All access occur at their programmed size, except that there is no requirement for the memory system beyond the PE to be able to identify the elements accessed by multi-register Load/Store instructions. See *Multi-register loads and stores that access Device memory* on page E2-4058.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.
A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

--- Note ---

- A read from a memory location with the Gathering attribute can come from intermediate buffering of a previous write, provided that:
  - The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.
  - The accesses are not separated by other ordering constructions that require that the accesses are in order. Such a construction might be a combination of Load-Acquire and Store-Release.
  - The accesses are not generated by a Store-Release instruction.

- The Arm architecture only defines programmer visible behavior. Therefore, gathering can be performed if a programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent with the relaxations allowed by the Gathering attribute.

**Reordering**

In the Device memory attribute:

| R  | Indicates that the location has the Reordering attribute. |
| nR | Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering. |

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory accesses are not to a peripheral, then this attribute imposes no restrictions.

--- Note ---

- The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee provided by the DMB instruction.

- The Arm architecture only defines programmer visible behavior. Therefore, reordering can be performed if a programmer cannot tell whether reordering has occurred.

An implementation is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements specified by the non-Reordering attribute.

An additional relaxation is that an implementation is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal memory, between:

- Accesses to one physical address with the non-Reordering attribute and accesses to a different physical address with the Reordering attribute.
- Access to one physical address with the non-Reordering attribute and access to a different physical address to Normal memory.
- Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION DEFINED size.
Early Write Acknowledgement

In the Device memory attribute:

- Indicates that the location has the Early Write Acknowledgement attribute.
- Indicates that the location has the No Early Write Acknowledgement attribute.

For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgement of a write comes from the endpoint, assigning the No Early Write Acknowledgement attribute to
a Device memory location guarantees that:

- Only the endpoint of the write access returns a write acknowledgement of the access.
- No earlier point in the memory system returns a write acknowledgement.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system.

Peripherals are an example of system endpoints that require that the acknowledgement of a write comes from the
endpoint.

Note

- The Early Write Acknowledgement attribute only affects where the endpoint acknowledgement is returned
  from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
  either the Device Reordering attribute, or the use of barriers to create order.
- The areas of the physical memory map for which write acknowledgement from the endpoint is required is
  outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
  in which the PE is operating. In particular, regions of memory handled as PCIe configuration writes are
  expected to support write acknowledgement from the endpoint.
- Arm recognizes that not all areas of a physical memory map will be capable of supporting write
  acknowledgement from the endpoint. In particular, Arm expects that regions of memory handled as posted
  writes under PCIe will not support write acknowledgement from the endpoint.
- For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
  software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
  are placed in areas of the physical memory map that support write acknowledgement from the endpoint.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register there is no requirement for the memory
system beyond the PE to be able to identify the size of the elements accessed by these load and store instructions.

For all instructions that load or store one or more registers from the SIMD and floating-point register file there is
no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load and store instructions.

For an LDRD, STRD, or LDM instruction with a register list that includes the PC, or an STM instruction with a register list
that includes the PC, the order in which the registers are accessed is not defined by the architecture.

For a load or store of an Advanced SIMD element or structure, the order in which the registers are accessed is not
defined by the architecture.

For a VLDM and VSTM instruction with a register list that does not include the PC, all registers are accessed in ascending
address order for accesses to Device memory with the non-Reordering attribute.

For a LDM or STM instruction with a register list that does not include the PC:

- When FEAT_LSMAOC is not implemented, and when FEAT_LSMAOC is implemented and the value of
  the applicable LSMAOE field is 1, all registers are accessed in ascending address order for accesses to Device
  memory with the non-Reordering attribute.
- When FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field is 0, no memory
  accesses are required to be ordered.
• When FEAT_LSMAOC is implemented and the value of the applicable nTLSMD field is 0, any memory access to an address that the stage 1 translation assigns as Device-nGRE, Device-nGnRE, or Device-nGnRnE generates an Alignment fault.

The applicable LSMAOE or nTLSMD field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that applies to the Exception level and Security state at which the LDM or STM instruction is executed.

Armv8.2 deprecates software relying on accesses to Device memory made by a single LDM or STM instruction not being reordered.

E2.8.3 Memory access restrictions

The following restrictions apply to memory accesses:

• For accesses to any two bytes, \( p \) and \( q \), that are generated by the same instruction:
  — The bytes \( p \) and \( q \) must have the same memory type and Shareability attributes. otherwise the results are CONSTRAINED UNPREDICTABLE. For example, an LDC, LDM, LDRD STC, STM or STRD instruction, or an unaligned load or store that spans the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.
  — Except for possible differences in the cache allocation hints, Arm deprecates having different cacheability attributes for bytes \( p \) and \( q \).

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different memory types or Shareability attributes on page K1-7951.

• If the accesses of an instruction that causes multiple accesses to any type of Device memory cross a 4KB address boundary then behavior is CONSTRAINED UNPREDICTABLE and Crossing a 4KB boundary with a Device access on page K1-7951 describes the permitted behaviors.

Note

— The boundary referred to is between two Device memory regions that are both of 4KB and aligned to 4KB.
— This restriction means it is important that an access to a volatile memory device is not made using a single instruction that crosses a 4KB address boundary.
— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory map, rather than expecting a compiler to be aware of the alignment of memory accesses.
E2.9 Mismatched memory attributes

In the Armv8 architecture mismatched memory attributes are controlled by privileged software. For more information, see Chapter G5 The AArch32 Virtual Memory System Architecture.

Physical memory Locations are accessed with mismatched attributes if all accesses to the Location do not use a common definition of all of the following attributes of that Location:

- Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.
- Shareability.
- Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

--- Note ---

In this document, the terms location and memory location refer to any byte within the current coherency granule and are used interchangeably.

---

When a memory Location is accessed with mismatched attributes the only software visible effects are one or more of the following:

- Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:
  - A read of the memory Location by one agent might not return the value most recently written to that memory Location by the same agent.
  - Multiple writes to the memory Location by one agent with different memory attributes might not be ordered in program order.
- There might be a loss of coherency when multiple agents attempt to access a memory Location.
- There might be a loss of properties derived from the memory type, as described in later bullets in this section.
- If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.
- Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes written with the Write-Back cacheable attribute might have their values reverted to the old values as a result of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of Device memory that are additional to the properties of Normal memory:

- Prohibition of speculative read accesses.
- Prohibition on Gathering.
- Prohibition on Re-ordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type, Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that common definition of the memory attributes, only if all the following conditions are met:
   - All writes are performed to an alias of the memory Location that uses the same definition of the Memory type, Shareability and Cacheability attributes.
   - Either:
     - In the Non-secure PL1&0 translation regime, HCR2.MIOCNCE has a value of 0.
     - All aliases with write permission have the Inner Cacheability attribute the same as the Outer Cacheability attribute.
   - Either:
     - All writes are performed to an alias of the memory Location that has Inner Cacheability and Outer Cacheability attributes both as Non-cacheable.
All aliases to a memory Location use a definition of the Shareability attributes that encompasses all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined more precisely if all of the mismatched attributes define the memory Location as one of:
   • Any Device memory type.
   • Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the following:
   • Possible loss of properties derived from the memory type when multiple agents attempt to access the memory Location.
   • Possible reordering of memory transactions to the same memory Location with different memory attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of coherency or uniprocessor semantics can be avoided by inserting DM_B barrier instructions between accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory Location all assign the same Shareability attribute to a Location that has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a Shareability domain can be avoided by use of software cache management. To do so, software must use the techniques that are required for the software management of the ordering or coherency of cacheable Locations between agents in different shareability domains. This means:
   • Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate, or clean, a Location from the caches if any agent might have written to the Location with the Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.
   • After writing to a cacheable Location with the Write-Back attribute, software must clean the Location from the caches, to make the write visible to external memory.
   • Before reading the Location with a cacheable attribute, software must invalidate, or clean and invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last value made visible in external memory.
   • Executing a DM_B barrier instruction, with scope that applies to the common Shareability of the accesses, between any accesses to the same cacheable Location that use different attributes.

Note

In AArch32 state, cache maintenance instructions can only be accessed from an Exception level that is higher than EL0, and therefore require a system call. For information on system calls, see Exception-generating and exception-handling instructions on page F1-4095. For information about the AArch32 cache maintenance instructions, see AArch32 cache and branch predictor support on page G4-5929.

In all cases:
   • Location refers to any byte within the current coherency granule.
   • A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate instruction.
   • In the sequences outlined in this section, all cache maintenance instructions and memory transactions must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the use of a common address, see Ordering of cache and branch predictor maintenance instructions on page G4-5947.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write, clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also occurs if the first operation of either sequence is a clean, rather than an invalidate.
2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be made with different Shareability attributes, then ordering and coherency are guaranteed only if:

   - Software running on a PE cleans and invalidates a Location from cache before and after each read or write to that Location by that PE.
   - A DMB barrier with scope that covers the full Shareability of the accesses is placed between any accesses to the same memory Location that use different attributes.

   **Note**

   The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location, and the accesses from the different agents have different memory attributes associated with the Location, the Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An implementation might not optimize the performance of a system that uses mismatched aliases.
E2.10 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The information in this section about memory accesses by synchronization primitives applies to accesses to both Normal and Device memory.

Note

Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table E2-6 shows the synchronization primitives and the associated CLREX instruction.

**Table E2-6 Synchronization primitives and associated instruction, T32 and A32 instruction sets**

<table>
<thead>
<tr>
<th>Transaction size</th>
<th>Additional semantics</th>
<th>Load-Exclusive</th>
<th>Store-Exclusive</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td></td>
<td>LDREXB</td>
<td>STREXB</td>
<td>-</td>
</tr>
<tr>
<td>Load-Acquire/Store-Release</td>
<td></td>
<td>LDAXEB</td>
<td>STLEXB</td>
<td>-</td>
</tr>
<tr>
<td>Halfword</td>
<td></td>
<td>LDREXH</td>
<td>STREXH</td>
<td>-</td>
</tr>
<tr>
<td>Load-Acquire/Store-Release</td>
<td></td>
<td>LDAXEH</td>
<td>STLEXH</td>
<td>-</td>
</tr>
<tr>
<td>Word</td>
<td></td>
<td>LDREX</td>
<td>STREX</td>
<td>-</td>
</tr>
<tr>
<td>Load-Acquire/Store-Release</td>
<td></td>
<td>LDAXE</td>
<td>STLEX</td>
<td>-</td>
</tr>
<tr>
<td>Doubleword</td>
<td></td>
<td>LDREXD</td>
<td>STREXD</td>
<td>-</td>
</tr>
<tr>
<td>Load-Acquire/Store-Release</td>
<td></td>
<td>LDAXED</td>
<td>STLEXD</td>
<td>-</td>
</tr>
<tr>
<td>None</td>
<td>Clear-Exclusive</td>
<td>-</td>
<td>-</td>
<td>CLREX</td>
</tr>
</tbody>
</table>

a. Instruction in the T32 and A32 instruction sets.

Except for the row showing the CLREX instruction, the two instructions in a single row are a Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive instruction pair accessing a non-aborting memory address $x$ is:

- The Load-Exclusive instruction reads a value from memory address $x$.
- The corresponding Store-Exclusive instruction succeeds in writing back to memory address $x$ only if no other observer, process, or thread has performed a more recent store to address $x$. The Store-Exclusive instruction returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page E2-4069. A Store-Exclusive instruction to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive instruction.

The following sections give more information:

- Exclusive access instructions and Non-shareable memory locations on page E2-4064.
- Exclusive access instructions and shareable memory locations on page E2-4065.
- Marking and the size of the marked memory block on page E2-4069.
- Context switch support on page E2-4069.
- Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4069.
- Use of WFE and SEV instructions by spin-locks on page E2-4072.
E2.10.1 **Exclusive access instructions and Non-shareable memory locations**

For memory locations for which the Shareability attribute is Non-shareable, the exclusive access instructions rely on a *local Exclusives monitor*, or *local monitor*, that marks any address from which the PE executes a Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

- The executing PE marks the physical memory address for exclusive access.
- The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

**If the local monitor is in the Exclusive Access state**

- If the address of the Store-Exclusive instruction is the same as the address that has been marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
  
  Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

- A status value is returned to a register:
  - If the store took place the status value is 0.
  - Otherwise, the status value is 1.

- The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is set.

**If the local monitor is in the Open Access state**

- No store takes place.
- A status value of 1 is returned to a register.
- The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Exclusive Access state the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

- If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in the Exclusive Access state it is IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

- If the write is to a PA that is marked as Exclusive Access by its local monitor it is IMPLEMENTATION DEFINED whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if that store is by an observer other than the one that caused the PA to be marked.

Figure E2-4 on page E2-4065 shows the state machine for the local monitor and the effect of each of the operations shown in the figure.
For more information about marking see Marking and the size of the marked memory block on page E2-4069.

--- Note ---

For the local monitor state machine, as shown in Figure E2-4:

- The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being constructed so that it does not hold any PA, but instead treats any access as matching the address of the previous Load-Exclusive instruction.

- A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from other PEs.

- The architecture does not require a load instruction, by another PE, that is not a Load-Exclusive instruction, to have any effect on the local monitor.

- It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs when the Store or StoreExcl is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution of an operation shown in Figure E2-4.

An implementation must ensure that:

- The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the architectural execution of one of the operations shown in Figure E2-4.

- Any transition of the local monitor to the Open Access state not caused by the architectural execution of an operation shown in Figure E2-4 must not indefinitely delay forward progress of execution.

E2.10.2 Exclusive access instructions and shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a Shareability attribute of Inner Shareable or Outer Shareable.
For shareable memory locations, exclusive access instructions rely on:

- A **local monitor** for each PE in the system, that marks any address from which the PE executes a Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable memory locations on page E2-4064, except that for shareable memory any Store-Exclusive is then subject to checking by the global monitor if it is described in that section as doing at least one of the following:
  - Updating memory.
  - Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

- A **global monitor** that marks a PA as exclusive access for a particular PE. This marking is used later to determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur. Any successful write to the marked block by any other observer in the Shareability domain of the memory location is guaranteed to clear the marking. For each PE in the system, the global monitor:
  - Can hold at least one marked block.
  - Maintains a state machine for each marked block it can hold.

**Note**

For each PE, the architecture only requires global monitor support for a single marked address. Any situation that might benefit from the use of multiple marked addresses on a single PE is CONSTRAINED UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4069.

**Note**

The global monitor can either reside in a block that is part of the hardware on which the PE executes or exist as a secondary monitor at the memory interfaces. The IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global monitor require functionality outside the PE. Some system implementations might not implement this functionality for all locations of memory. In particular, this can apply to:

- Any type of memory in the system implementation that does not support hardware cache coherency.
- Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support hardware cache coherency.

In such a system, it is defined by the system:

- Whether the global monitor is implemented.
- If the global monitor is implemented, which address ranges or memory types it monitors.

**Note**

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system might define at least one location of memory, of at least the size of the translation granule, in the system memory map to support the global monitor for all PEs within a common Inner Shareable domain. However, this is not an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as Lamport’s Bakery algorithm to achieve mutual exclusion.

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

- Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write allocation hint and not transient.
- Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hint and Write allocation hints and not transient.
If the global monitor is not implemented for an address range or memory type, then performing a Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:

- The instruction generates an External abort.
- The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Fault status code of:
  - DFSR.STATUS = 0b110101 when using the Long-descriptor translation table format. The fault can also be reported in the HSR.ISS[5:0] field for exceptions to Hyp mode.
  - DFSR.FS = 0b10101 when using the Short-descriptor translation table format.

If the IMPLEMENTATION DEFINED MMU fault is generated for the Non-secure PL1&0 translation regime then:

- If the fault is generated because of the memory type defined in the first stage of translation, or if the second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.
- Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.

- The instruction is treated as a NOP.
- The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the local monitor becomes UNKNOWN.
- The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the local monitor becomes UNKNOWN.
- The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other atomic access mechanisms, the effect that writes have on the global and local monitors used by an Arm PE is IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

- Some address ranges.
- Some memory types.

**Operation of the global Exclusives monitor**

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark to be removed from any other PA that has been marked by the requesting PE.

---

**Note**

The global monitor only supports a single outstanding exclusive access to shareable memory for each PE.

---

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.

A Store-Exclusive instruction performs a conditional store to memory:

- The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in the Exclusive Access state. In this case:
  - A status value of 0 is returned to a register to acknowledge the successful store.
  - The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.
  - If the address accessed is marked for exclusive access in the global monitor state machine for any other PE then that state machine transitions to Open Access state.

- If no address is marked as exclusive access for the requesting PE, the store does not succeed:
  - A status value of 1 is returned to a register to indicate that the store failed.
  - The global monitor is not affected and remains in Open Access state for the requesting PE.

- If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether the store succeeds or not:
  - If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.
If the global monitor state machine for the PE was in the Exclusive Access state before the Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible to it. This means it responds to:

- Accesses generated by PE(n).
- Accesses generated by the other observers in the Shareability domain of the memory location. These accesses are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:

- In the Exclusive Access state is set.
- In the Open Access state is clear.

**Clear global monitor event**

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see *Wait For Event and Send Event* on page G1-5804.

Figure E2-5 shows the state machine for PE(n) in a global monitor.

---

**Note**

For the global monitor state machine, as shown in Figure E2-5:

- The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction, to have any effect on the global monitor.
• Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction, and whether the local and global monitors are in the exclusive state. For this reason, Figure E2-5 on page E2-4068 only shows how the operations by '(n) cause state transitions of the state machine for PE(n).

• A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the Load-Exclusive instruction.

• When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX instruction causes the global monitor to transition from Exclusive Access to Open Access state.

• It is IMPLEMENTATION DEFINED:
  — Whether a modification to a Non-shareable memory location can cause a global monitor to transition from Exclusive Access to Open Access state.
  — Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor to transition from Open Access to Exclusive Access state.

E2.10.3  Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the 64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size $2^a$ bytes is created by ignoring the least significant bits of the memory address. A marked address is any address within this marked block. The size of the marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is IMPLEMENTATION DEFINED in the range 4 - 512 words.

——— Note ————
This definition means that the Exclusives reservation granule is:
• 4 words in an implementation where $a$ is 4.
• 512 words in an implementation where $a$ is 11.

For example, in an implementation where $a$ is 4, a successful LDREXB of address 0x341B4 defines a marked block using bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR. Otherwise, software must assume that the maximum Exclusives reservation granule, 512 words, is implemented.

E2.10.4  Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch is not required in most situations.

——— Note ————
Context switching is not an application level operation. However, this information is included here to complete the description of the exclusive operations.

E2.10.5  Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a LDREX/STREX pair or a LDREXB/STREXB pair. To support different implementations of these functions, software must follow the notes and restrictions given in this subsection.
The following notes describe use of a Load-Exclusive/Store-Exclusive instruction pair, LoadExcl/StoreExcl, to indicate the use of any of the Load-Exclusive/Store-Exclusive instruction pairs shown in Table E2-6 on page E2-4063. In this context, a LoadExcl/StoreExcl pair comprises two instructions in the same thread of execution:

- The exclusives support a single outstanding exclusive access for each PE thread that is executed. The architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal() function. If the target VA of a StoreExcl is different from the VA of the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:
  - The StoreExcl either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the states of the local and global monitors for that PE are UNKNOWN.

  **Note**

  This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched addresses, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched addresses.

  — The data at the address accessed by the LoadExcl, and at the address accessed by the StoreExcl, is UNKNOWN.

  This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the StoreExcl are executed with the same VA.

- An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of execution, the transaction size of a StoreExcl instruction is the same as the transaction size of the preceding LoadExcl instruction executed in that thread. If the transaction size of a StoreExcl instruction is different from the preceding LoadExcl instruction in the same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:
  - The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

  **Note**

  This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with mismatched transaction sizes, and fail for other instances of a LoadExcl/StoreExcl pair with mismatched transaction sizes.

  — The block of data of the size of the larger of the transaction sizes used by the LoadExcl/StoreExcl pair at the address accessed by the LoadExcl/StoreExcl pair, is UNKNOWN.

  This means software can rely on a LoadExcl/StoreExcl pair to eventually succeed only if the LoadExcl and the StoreExcl have the same transaction size.

- LoadExcl/StoreExcl loops are guaranteed to make forward progress only if, for any LoadExcl/StoreExcl loop within a single thread of execution, the software meets all of the following conditions:

  1. Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory accesses, preloads, direct or indirect System register writes, address translation instructions, cache or TLB maintenance instructions, exception generating instructions, exception returns, or indirect branches.

  2. Between the Store-Exclusive returning a failing result and the retry of the corresponding Load-Exclusive:

     • There are no stores or PLDW instructions to any address within the Exclusives reservation granule accessed by the Store-Exclusive.

     • There are no loads or preloads to any address within the Exclusives reservation granule accessed by the Store-Exclusive that use a different VA alias to that address.

     • There are no direct or indirect System register writes, other than changes to the flag fields in the CPSR or FPSCR, caused by data processing or comparison instructions.

     • There are no direct or indirect address translation instructions, cache or TLB maintenance instructions, exception generating instructions, exception returns, or indirect branches.

     • All loads and stores are to a block of contiguous virtual memory of not more than 512 bytes in size.
The Exclusives monitor can be cleared at any time without an application-related cause, provided that such clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExcl/StoreExcl loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

- Performing stores to a PA covered by the Exclusives monitor.
- Prefetching with intent to write to a PA covered by the Exclusives monitor.
- Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a PA covered by the Exclusives monitor.
- Executing instruction cache invalidate all instructions.
- Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

• Implementations can benefit from keeping the LoadExcl and StoreExcl operations close together in a single thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the LoadExcl instruction and the StoreExcl instruction. Therefore, for best performance, Arm strongly recommends a limit of 128 bytes between LoadExcl and StoreExcl instructions in a single thread of execution.

• The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a functional requirement.

• After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

• For the memory location accessed by a LoadExcl/StoreExcl pair, if the memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the accessed address changes between the LoadExcl instruction and the StoreExcl instruction, the CONSTRAINED UNPREDICTABLE behavior is as follows:

  - The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

  ___ Note ___

  This means the StoreExcl might pass for some instances of a LoadExcl/StoreExcl pair with changed memory attributes, and fail for other instances of a LoadExcl/StoreExcl pair with changed memory attributes.

  ___ Note ___

  The data at the address accessed by the StoreExcl is UNKNOWN.

  Another bullet point in this list covers the case where the memory attributes of a LoadExcl/StoreExcl pair differ as a result of using different VAs with different attributes that point to the same PA.

  ___ Note ___

  The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance instructions, this also applies to the monitors of other PEs in the same Shareability domain as the PE executing the cache maintenance instruction, as determined by the Shareability domain of the address being maintained.

  ___ Note ___

  Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

  ___ Note ___

  If the mapping of the VA to PA is changed between the LoadExcl instruction and the StoreExcl instruction, and the change is performed using a break-before-make sequence as described in Using break-before-make when updating translation table entries on page G5-6036, if the StoreExcl is performed after another write
to the same PA as the StoreExcl, and that other write was performed after the old translation was properly invalidated and that invalidation was properly synchronized, then the StoreExcl will not pass its monitor check.

--- Note ---

Arm expects that, in many implementations, either:

— The TLB invalidation will clear either the local or global monitor.
— The PA will be checked between the LoadExcl and StoreExcl.

---

- The Exclusive Access state for an address accessed by a PE can be lost as a result of a PLDW instruction to the same PA executed by another PE. This means that a very high rate of repeated PLDW accesses to a memory location might impede the forward progress of another PE.

--- Note ---

In the event of repeatedly-contending LoadExcl/StoreExcl instruction sequences from multiple PEs, an implementation must ensure that forward progress is made by at least one PE.

---

E2.10.6   Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, SEVL, that can assist with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock. These instructions can be used at the application level, but a complete understanding of what they do depends on a system level understanding of exceptions. They are described in Wait For Event and Send Event on page G1-5804. However, in Armv8, when the global monitor for a PE changes from Exclusive Access state to Open Access state, an event is generated.

--- Note ---

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the need for spinlock code to include an SEV instruction after clearing a spinlock.

---
Part F
The AArch32 Instruction Sets
Chapter F1
The AArch32 Instruction Sets Overview

This chapter describes the T32 and A32 instruction sets. It contains the following sections:

- Support for instructions in different versions of the Arm architecture on page F1-4076.
- Unified Assembler Language on page F1-4077.
- Branch instructions on page F1-4079.
- Data-processing instructions on page F1-4080.
- PSTATE and banked register access instructions on page F1-4088.
- Load/store instructions on page F1-4089.
- Load/store multiple instructions on page F1-4092.
- Miscellaneous instructions on page F1-4093.
- Exception-generating and exception-handling instructions on page F1-4095.
- System register access instructions on page F1-4097.
- Advanced SIMD and floating-point load/store instructions on page F1-4098.
- Advanced SIMD and floating-point register transfer instructions on page F1-4100.
- Advanced SIMD data-processing instructions on page F1-4101.
- Floating-point data-processing instructions on page F1-4112.
F1.1  Support for instructions in different versions of the Arm architecture

This manual describes the T32 and A32 instruction sets for the Armv8 architecture. Therefore, it indicates how any options or extensions in the Armv8 architecture affect the available instructions.
F1.2 Unified Assembler Language

This manual uses the Arm Unified Assembler Language (UAL). This assembly language syntax provides a canonical form for all T32 and A32 instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what assembler directives and options are available. See your assembler documentation for these details.

Most earlier Arm assembly language mnemonics are still supported as synonyms, as described in the instruction details.

——— Note ————

Most earlier T32 assembly language mnemonics are not supported.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0, R1, R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code, and in some other situations.

F1.2.1 Conditional instructions

For maximum portability of UAL assembly language between the T32 and A32 instruction sets, Arm recommends that:

• IT instructions are written before conditional instructions in the correct way for the T32 instruction set.

• When assembling to the A32 instruction set, assemblers check that any IT instructions are correct, but do not generate any code for them.

Although other T32 instructions are unconditional, all instructions that are made conditional by an IT instruction must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a Condition code field cannot be made conditional by an IT instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is assembled using a branch instruction encoding that does not include a Condition code field.

——— Note ————

For performance reasons Armv8 deprecates many uses of IT, see Partial deprecation of IT on page F1-4094. As described in that section, an implementation can include ITD controls that disable those uses of IT, making them UNDEFINED.

F1.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC, 4) value of the instruction. The PC value of an instruction is its address plus 4 for a T32 instruction, or plus 8 for an A32 instruction. The Align(PC, 4) value of an instruction is its PC value ANDed with 0xFFFFFFFF to force it to be word-aligned. There is no difference between the PC and Align(PC, 4) values for an A32 instruction, but there can be for a T32 instruction.
2. Calculate the offset from the PC or Align(PC, 4) value of the instruction to the address of the labeled instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC, 4) value and adds the calculated offset to form the required address.

   **Note**
   For instructions that can encode a subtraction operation, if the instruction cannot encode the calculated offset but can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the calculated offset.

The syntax of the following instructions includes a label:

- **B, BL, and BLX (immediate).** The assembler syntax for these instructions always specifies the label of the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is added to the PC value of the instruction to form the target address of the branch.

- **CBNZ and CBZ.** The assembler syntax for these instructions always specifies the label of the instruction that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the instruction to form the target address of the branch. They do not support backward branches.

- **LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR.** The normal assembler syntax of these load instructions can specify the label of a literal data item that is to be loaded. The encodings of these instructions specify a zero-extended immediate offset that is either added to or subtracted from the Align(PC, 4) value of the instruction to form the address of the data item. A few such encodings perform a fixed addition or a fixed subtraction and must only be used when that operation is required, but most contain a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an encoding that adds 0 to the Align(PC, 4) value of the instruction. Encodings that subtract 0 from the Align(PC, 4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-imm], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC, 4) value, or - if it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC, 4) value, and to disassemble them to a syntax that can be re-assembled correctly.

- **ADR.** The normal assembler syntax for this instruction can specify the label of an instruction or literal data item whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added to or subtracted from the Align(PC, 4) value of the instruction to form the address of the data item, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the encoding that adds 0 to the Align(PC, 4) value of the instruction. The encoding that subtracts 0 from the Align(PC, 4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate value explicitly, by writing them as additions ADD <Rd>, PC, #<imm> or subtractions SUB <Rd>, PC, #<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts 0 from the Align(PC, 4) value, and to disassemble it to a syntax that can be re-assembled correctly.

   **Note**
   Arm recommends that where possible, software avoids using:

   - The alternative syntax for the ADR, LDC, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLDW, PLI, and VLDR instructions.

   - The encodings of these instructions that subtract 0 from the Align(PC, 4) value.
F1.3 Branch instructions

Table F1-1 summarizes the branch instructions in the T32 and A32 instruction sets. In addition to providing for changes in the flow of execution, some branch instructions can change instruction set.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Range, T32</th>
<th>Range, A32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch to target address</td>
<td>$B$ on page F5-4329</td>
<td>±16MB</td>
<td>±32MB</td>
</tr>
<tr>
<td>Compare and Branch on Nonzero, Compare and Branch on Zero</td>
<td>$CBNZ, CBZ$ on page F5-4354</td>
<td>0-126 bytes</td>
<td>a</td>
</tr>
<tr>
<td>Call a subroutine</td>
<td>$BL, BLX$ (immediate) on page F5-4347</td>
<td>±16MB</td>
<td>±32MB</td>
</tr>
<tr>
<td>Call a subroutine, change instruction setb</td>
<td></td>
<td>±16MB</td>
<td>±32MB</td>
</tr>
<tr>
<td>Call a subroutine, optionally change instruction set</td>
<td>$BLX$ (register) on page F5-4349</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Branch to target address, change instruction set</td>
<td>$BX$ on page F5-4351</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Change to Jazelle state</td>
<td>$BXJ$ on page F5-4353</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Table Branch (byte offsets)</td>
<td>$TBB, TBH$ on page F5-4899</td>
<td>0-510 bytes</td>
<td>a</td>
</tr>
<tr>
<td>Table Branch (halfword offsets)</td>
<td>-</td>
<td>0-131070 bytes</td>
<td></td>
</tr>
</tbody>
</table>

a. These instructions do not exist in the A32 instruction set.

Branches to loaded and calculated addresses can be performed by $LDR, LDM$ and data-processing instructions. For details see Load/store instructions on page F1-4089, Load/store multiple instructions on page F1-4092, Standard data-processing instructions on page F1-4080, and Shift instructions on page F1-4082.

In addition to the branch instructions shown in Table F1-1:

- In the A32 instruction set, a data-processing instruction that targets the PC behaves as a branch instruction. For more information, see Data-processing instructions on page F1-4080.
- In the T32 and A32 instruction sets, a load instruction that targets the PC behaves as a branch instruction. For more information, see Load/store instructions on page F1-4089.
F1.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

- **Standard data-processing instructions.**
  These instructions perform basic data-processing operations, and share a common format with some variations.
- **Shift instructions on page F1-4082.**
- **Multiply instructions on page F1-4082.**
- **Saturating instructions on page F1-4084.**
- **Saturating addition and subtraction instructions on page F1-4084.**
- **Packing and unpacking instructions on page F1-4085.**
- **Parallel addition and subtraction instructions on page F1-4086.**
- **Divide instructions on page F1-4087.**
- **Miscellaneous data-processing instructions on page F1-4087.**

For related Advanced SIMD and floating-point instructions see *Advanced SIMD data-processing instructions on page F1-4101* and *Floating-point data-processing instructions on page F1-4112."

F1.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second operand. The second operand can be another register Rm, or an immediate constant.

If the second operand is an immediate constant, it can be:

- Encoded directly in the instruction.
- A modified immediate constant that uses 12 bits of the instruction to encode a range of constants. T32 and A32 instructions have slightly different ranges of modified immediate constants. For more information, see *Modified immediate constants in T32 instructions on page F2-4135* and *Modified immediate constants in A32 instructions on page F2-4136.*

If the second operand is another register, it can optionally be shifted in any of the following ways:

- **LSL** Logical Shift Left by 1-31 bits.
- **LSR** Logical Shift Right by 1-32 bits.
- **ASR** Arithmetic Shift Right by 1-32 bits.
- **ROR** Rotate Right by 1-31 bits.
- **RRX** Rotate Right with Extend. For details see *Shift and rotate operations on page E1-3990.*

In T32 code, the amount to shift by is always a constant encoded in the instruction. In A32 code, the amount to shift by is either a constant encoded in the instruction, or the value of a register, Rs.

For instructions other than CMN, CMP, TEQ, and TST, the result of the data-processing operation is placed in the destination register. In the A32 instruction set, the destination register can be the PC, causing the result to be treated as a branch address. In the T32 instruction set, this is only permitted for some 16-bit forms of the ADD and MOV instructions.

These instructions can optionally set the Condition flags, according to the result of the operation. If they do not set the flags, existing flag settings from a previous instruction are preserved.

Table F1-2 on page F1-4081 summarizes the main data-processing instructions in the T32 and A32 instruction sets. Generally, each of these instructions is described in three sections in *Chapter F2 About the T32 and A32 Instruction Descriptions*, one section for each of the following:

- **INSTRUCTION (immediate) where the second operand is a modified immediate constant.**
- **INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.**
- **INSTRUCTION (register-shifted register) where the second operand is a register shifted by a value obtained from another register. These are only available in the A32 instruction set.**
### Table F1-2 Standard data-processing instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Mnemonic</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add with Carry</td>
<td>ADC</td>
<td>T32 instruction set permits use of a modified immediate constant or a zero-extended 12-bit immediate constant.</td>
</tr>
<tr>
<td>Add</td>
<td>ADD</td>
<td>T32 instruction set permits use of a modified immediate constant or a zero-extended 12-bit immediate constant.</td>
</tr>
<tr>
<td>Form PC-relative Address</td>
<td>ADR</td>
<td>First operand is the PC. Second operand is an immediate constant. T32 instruction set uses a zero-extended 12-bit immediate constant. Operation is an addition or a subtraction.</td>
</tr>
<tr>
<td>Bitwise AND</td>
<td>AND</td>
<td></td>
</tr>
<tr>
<td>Bitwise Bit Clear</td>
<td>BIC</td>
<td></td>
</tr>
<tr>
<td>Compare Negative</td>
<td>CMN</td>
<td>Sets flags. Like ADD but with no destination register.</td>
</tr>
<tr>
<td>Compare</td>
<td>CMP</td>
<td>Sets flags. Like SUB but with no destination register.</td>
</tr>
<tr>
<td>Bitwise Exclusive OR</td>
<td>EOR</td>
<td></td>
</tr>
<tr>
<td>Copy operand to destination</td>
<td>MOV</td>
<td>Has only one operand, with the same options as the second operand in most of these instructions. If the operand is a shifted register, the instruction is an LSL, LSR, ASR, or ROR instruction instead. For details see Shift instructions on page F1-4082. The T32 and A32 instruction sets permit use of a modified immediate constant or a zero-extended 16-bit immediate constant.</td>
</tr>
<tr>
<td>Bitwise NOT</td>
<td>MVN</td>
<td>Has only one operand, with the same options as the second operand in most of these instructions.</td>
</tr>
<tr>
<td>Bitwise OR NOT</td>
<td>ORN</td>
<td>Not available in the A32 instruction set.</td>
</tr>
<tr>
<td>Bitwise OR</td>
<td>ORR</td>
<td></td>
</tr>
<tr>
<td>Reverse Subtract</td>
<td>RSB</td>
<td>Subtracts first operand from second operand. This permits subtraction from constants and shifted registers.</td>
</tr>
<tr>
<td>Reverse Subtract with Carry</td>
<td>RSC</td>
<td>Not available in the T32 instruction set.</td>
</tr>
<tr>
<td>Subtract with Carry</td>
<td>SBC</td>
<td></td>
</tr>
<tr>
<td>Subtract</td>
<td>SUB</td>
<td>T32 instruction set permits use of a modified immediate constant or a zero-extended 12-bit immediate constant.</td>
</tr>
<tr>
<td>Test Equivalence</td>
<td>TEQ</td>
<td>Sets flags. Like EOR but with no destination register.</td>
</tr>
<tr>
<td>Test</td>
<td>TST</td>
<td>Sets flags. Like AND but with no destination register.</td>
</tr>
</tbody>
</table>
### F1.4.2 Shift instructions

Table F1-3 lists the shift instructions in the T32 and A32 instruction sets.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
</table>
| Arithmetic Shift Right | ARS (immediate) on page F5-4321  
ARS (register) on page F5-4323  
ARSR (immediate) on page F5-4325  
ARSR (register) on page F5-4327 |
| Logical Shift Left | LSL (immediate) on page F5-4527  
LSL (register) on page F5-4529  
LSLS (immediate) on page F5-4531  
LSLS (register) on page F5-4533 |
| Logical Shift Right | LSR (immediate) on page F5-4535  
LSR (register) on page F5-4537  
LSRS (immediate) on page F5-4539  
LSRS (register) on page F5-4541 |
| Rotate Right | ROR (immediate) on page F5-4665  
ROR (register) on page F5-4667  
RORS (immediate) on page F5-4669  
RORS (register) on page F5-4671 |
| Rotate Right with Extend | RXR on page F5-4673  
RXRS on page F5-4675 |

In the A32 instruction set only, the destination register of these instructions can be the PC, causing the result to be treated as an address to branch to.

### F1.4.3 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are the same whether the operands are signed or unsigned.

- Table F1-4 summarizes the multiply instructions where there is no distinction between signed and unsigned quantities.
  
  The least significant 32 bits of the result are used. More significant bits are discarded.

- Table F1-5 on page F1-4083 summarizes the signed multiply instructions.

- Table F1-6 on page F1-4083 summarizes the unsigned multiply instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation (number of bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply Accumulate</td>
<td>MLA, MLAS on page F5-4547</td>
<td>$32 = 32 + 32 \times 32$</td>
</tr>
<tr>
<td>Multiply and Subtract</td>
<td>MLS on page F5-4549</td>
<td>$32 = 32 - 32 \times 32$</td>
</tr>
<tr>
<td>Multiply</td>
<td>MUL, MULS on page F5-4585</td>
<td>$32 = 32 \times 32$</td>
</tr>
</tbody>
</table>
### Table F1-5 Signed multiply instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation (number of bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed Multiply Accumulate (halfwords)</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT</td>
<td>32 = 32 + 16 × 16</td>
</tr>
<tr>
<td>on page F5-4734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed Multiply Accumulate Dual</td>
<td>SMLAD, SMLADX</td>
<td>32 = 32 + 16 × 16 + 16 × 16</td>
</tr>
<tr>
<td>Signed Multiply Accumulate Long</td>
<td>SMLAL, SMLALS</td>
<td>64 = 64 + 32 × 32</td>
</tr>
<tr>
<td>Signed Multiply Accumulate Long (halfwords)</td>
<td>SMLALBB, SMLALBT, SMLALTB, SMLALTT</td>
<td>64 = 64 + 16 × 16</td>
</tr>
<tr>
<td>on page F5-4740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed Multiply Accumulate Long Dual</td>
<td>SMLALD, SMLALDX</td>
<td>64 = 64 + 16 × 16 + 16 × 16</td>
</tr>
<tr>
<td>Signed Multiply Accumulate (word by halfword)</td>
<td>SMLAWB, SMLAWT</td>
<td>32 = 32 + 32 × 16 a</td>
</tr>
<tr>
<td>Signed Multiply Subtract Dual</td>
<td>SMLSD, SMLSDX</td>
<td>32 = 32 + 16 × 16 – 16 × 16</td>
</tr>
<tr>
<td>Signed Multiply Subtract Long Dual</td>
<td>SMLSDL, SMLSDLX</td>
<td>64 = 64 + 16 × 16 – 16 × 16</td>
</tr>
<tr>
<td>Signed Most Significant Word Multiply Accumulate</td>
<td>SMMLA, SMMLAR</td>
<td>32 = 32 + 32 × 32 b</td>
</tr>
<tr>
<td>on page F5-4751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed Most Significant Word Multiply Subtract</td>
<td>SMMLS, SMMLSR</td>
<td>32 = 32 – 32 × 32 b</td>
</tr>
<tr>
<td>Signed Most Significant Word Multiply</td>
<td>SMMUL, SMMULR</td>
<td>32 = 32 × 32 b</td>
</tr>
<tr>
<td>Signed Dual Multiply Add</td>
<td>SMUAD, SMUADX</td>
<td>32 = 16 × 16 + 16 × 16</td>
</tr>
<tr>
<td>Signed Multiply (halfwords)</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT</td>
<td>32 = 16 × 16</td>
</tr>
<tr>
<td>on page F5-4759</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed Multiply Long</td>
<td>SMULL, SMULLS</td>
<td>64 = 32 × 32</td>
</tr>
<tr>
<td>Signed Multiply (word by halfword)</td>
<td>SMULWB, SMULWT</td>
<td>32 = 32 × 16 a</td>
</tr>
<tr>
<td>Signed Dual Multiply Subtract</td>
<td>SMUSD, SMUSDX</td>
<td>32 = 16 × 16 – 16 × 16</td>
</tr>
</tbody>
</table>

a. The most significant 32 bits of the 48-bit product are used. Less significant bits are discarded.
b. The most significant 32 bits of the 64-bit product are used. Less significant bits are discarded.

### Table F1-6 Unsigned multiply instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation (number of bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned Multiply Accumulate Accumulate Long</td>
<td>UMAAL on page F5-4939</td>
<td>64 = 32 + 32 + 32 × 32</td>
</tr>
<tr>
<td>Unsigned Multiply Accumulate Long</td>
<td>UMLAL, UMLALS</td>
<td>64 = 64 × 32 + 32 × 32</td>
</tr>
<tr>
<td>Unsigned Multiply Long</td>
<td>UMULL, UMULLS</td>
<td>64 = 32 × 32</td>
</tr>
</tbody>
</table>
F1.4.4 Saturating instructions

Table F1-7 lists the saturating instructions in the T32 and A32 instruction sets. For more information, see Pseudocode description of saturation on page E1-3991.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed Saturate</td>
<td>SSAT on page F5-4771</td>
<td>Saturates optionally shifted 32-bit value to selected range</td>
</tr>
<tr>
<td>Signed Saturate 16</td>
<td>SSAT16 on page F5-4773</td>
<td>Saturates two 16-bit values to selected range</td>
</tr>
<tr>
<td>Unsigned Saturate</td>
<td>USAT on page F5-4961</td>
<td>Saturates optionally shifted 32-bit value to selected range</td>
</tr>
<tr>
<td>Unsigned Saturate 16</td>
<td>USAT16 on page F5-4963</td>
<td>Saturates two 16-bit values to selected range</td>
</tr>
</tbody>
</table>

F1.4.5 Saturating addition and subtraction instructions

Table F1-8 lists the saturating addition and subtraction instructions in the T32 and A32 instruction sets. For more information, see Pseudocode description of saturation on page E1-3991.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturating Add</td>
<td>QADD on page F5-4635</td>
<td>Add, saturating result to the 32-bit signed integer range</td>
</tr>
<tr>
<td>Saturating Subtract</td>
<td>QSUB on page F5-4648</td>
<td>Subtract, saturating result to the 32-bit signed integer range</td>
</tr>
<tr>
<td>Saturating Double and Add</td>
<td>QADD on page F5-4635</td>
<td>Doubles one value and adds a second value, saturating the doubling and the addition to the 32-bit signed integer range</td>
</tr>
<tr>
<td>Saturating Double and Subtract</td>
<td>QDSUB on page F5-4644</td>
<td>Doubles one value and subtracts the result from a second value, saturating the doubling and the subtraction to the 32-bit signed integer range</td>
</tr>
</tbody>
</table>
### F1.4.6 Packing and unpacking instructions

Table F1-9 lists the packing and unpacking instructions in the T32 and A32 instruction sets.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack Halfword</td>
<td><em>PKHBT, PKHTB on page F5-4609</em></td>
<td>Combine halfwords</td>
</tr>
<tr>
<td>Signed Extend and Add Byte</td>
<td><em>SXTAB on page F5-4887</em></td>
<td>Extend 8 bits to 32 and add</td>
</tr>
<tr>
<td>Signed Extend and Add Byte 16</td>
<td><em>SXTAB16 on page F5-4889</em></td>
<td>Dual extend 8 bits to 16 and add</td>
</tr>
<tr>
<td>Signed Extend and Add Halfword</td>
<td><em>SXTAH on page F5-4891</em></td>
<td>Extend 16 bits to 32 and add</td>
</tr>
<tr>
<td>Signed Extend Byte</td>
<td><em>SXTB on page F5-4893</em></td>
<td>Extend 8 bits to 32</td>
</tr>
<tr>
<td>Signed Extend Byte 16</td>
<td><em>SXTB16 on page F5-4895</em></td>
<td>Dual extend 8 bits to 16</td>
</tr>
<tr>
<td>Signed Extend Halfword</td>
<td><em>SXTH on page F5-4897</em></td>
<td>Extend 16 bits to 32</td>
</tr>
<tr>
<td>Unsigned Extend and Add Byte</td>
<td><em>UXTAB on page F5-4971</em></td>
<td>Extend 8 bits to 32 and add</td>
</tr>
<tr>
<td>Unsigned Extend and Add Byte 16</td>
<td><em>UXTAB16 on page F5-4973</em></td>
<td>Dual extend 8 bits to 16 and add</td>
</tr>
<tr>
<td>Unsigned Extend and Add Halfword</td>
<td><em>UXTAH on page F5-4975</em></td>
<td>Extend 16 bits to 32 and add</td>
</tr>
<tr>
<td>Unsigned Extend Byte</td>
<td><em>UXTB on page F5-4977</em></td>
<td>Extend 8 bits to 32</td>
</tr>
<tr>
<td>Unsigned Extend Byte 16</td>
<td><em>UXTB16 on page F5-4979</em></td>
<td>Dual extend 8 bits to 16</td>
</tr>
<tr>
<td>Unsigned Extend Halfword</td>
<td><em>UXTH on page F5-4981</em></td>
<td>Extend 16 bits to 32</td>
</tr>
</tbody>
</table>
F1.4.7 Parallel addition and subtraction instructions

These instructions perform additions and subtractions on the values of two registers and write the result to a destination register, treating the register values as sets of two halfwords or four bytes. That is, they perform SIMD additions or subtractions on the general-purpose registers.

These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:

- **S**: Signed arithmetic modulo $2^8$ or $2^{16}$.
- **Q**: Signed saturating arithmetic.
- **SH**: Signed arithmetic, halving the results.
- **U**: Unsigned arithmetic modulo $2^8$ or $2^{16}$.
- **UQ**: Unsigned saturating arithmetic.
- **UH**: Unsigned arithmetic, halving the results.

The main instruction mnemonics are as follows:

- **ADD16**: Adds the top halfwords of two operands to form the top halfword of the result, and the bottom halfwords of the same two operands to form the bottom halfword of the result.
- **ASX**: Exchanges halfwords of the second operand, and then adds top halfwords and subtracts bottom halfwords.
- **SAX**: Exchanges halfwords of the second operand, and then subtracts top halfwords and adds bottom halfwords.
- **SUB16**: Subtracts each halfword of the second operand from the corresponding halfword of the first operand to form the corresponding halfword of the result.
- **ADD8**: Adds each byte of the second operand to the corresponding byte of the first operand to form the corresponding byte of the result.
- **SUB8**: Subtracts each byte of the second operand from the corresponding byte of the first operand to form the corresponding byte of the result.

The instruction set permits all 36 combinations of prefix and main instruction operand, as Table F1-10 shows.

See also *Advanced SIMD parallel addition and subtraction* on page F1-4102.

### Table F1-10 Parallel addition and subtraction instructions

<table>
<thead>
<tr>
<th>Main instruction</th>
<th>Signed</th>
<th>Saturating</th>
<th>Signed halving</th>
<th>Unsigned</th>
<th>Unsigned saturating</th>
<th>Unsigned halving</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD16, add, two halfwords</td>
<td>SADD16</td>
<td>QADD16</td>
<td>SHADD16</td>
<td>UADD16</td>
<td>UQADD16</td>
<td>UHADD16</td>
</tr>
<tr>
<td>ASX, add and subtract with exchange</td>
<td>SASX</td>
<td>QASX</td>
<td>SHASX</td>
<td>UASX</td>
<td>UQASX</td>
<td>UHASX</td>
</tr>
<tr>
<td>SAX, subtract and add with exchange</td>
<td>SSAX</td>
<td>QSAX</td>
<td>SHSAX</td>
<td>USAX</td>
<td>UQSAX</td>
<td>UHSAX</td>
</tr>
<tr>
<td>SUB16, subtract, two halfwords</td>
<td>SSUB16</td>
<td>QSUB16</td>
<td>SHSUB16</td>
<td>USUB16</td>
<td>UQSUB16</td>
<td>UHSUB16</td>
</tr>
<tr>
<td>ADD8, add, four bytes</td>
<td>SADD8</td>
<td>QADD8</td>
<td>SHADD8</td>
<td>UADD8</td>
<td>UQADD8</td>
<td>UHADD8</td>
</tr>
<tr>
<td>SUB8, subtract, four bytes</td>
<td>SSUB8</td>
<td>QSUB8</td>
<td>SHSUB8</td>
<td>USUB8</td>
<td>UQSUB8</td>
<td>UHSUB8</td>
</tr>
</tbody>
</table>
F1.4.8 Divide instructions

In Armv8, signed and unsigned integer divide instructions are included in both the T32 instruction set and the A32 instruction set.

For descriptions of the instructions see:
• SDIV on page F5-4710.
• UDIV on page F5-4925.

For the SDIV and UDIV instructions, division by zero always returns a zero result.

The ID_ISAR0.Divide_instrs field indicates the level of support for these instructions. The field value of 0b0010 indicates they are implemented in both the T32 and A32 instruction sets.

F1.4.9 Miscellaneous data-processing instructions

Table F1-11 lists the miscellaneous data-processing instructions in the T32 and A32 instruction sets. Immediate values in these instructions are simple binary numbers.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BitField Clear</td>
<td>BFC on page F5-4332</td>
<td>-</td>
</tr>
<tr>
<td>BitField Insert</td>
<td>BFI on page F5-4334</td>
<td>-</td>
</tr>
<tr>
<td>Count Leading Zeros</td>
<td>CLZ on page F5-4356</td>
<td>-</td>
</tr>
<tr>
<td>Move Top</td>
<td>MOVVT on page F5-4564</td>
<td>Moves 16-bit immediate value to top halfword. Bottom halfword unchanged.</td>
</tr>
<tr>
<td>Reverse Bits</td>
<td>RBIT on page F5-4654</td>
<td>-</td>
</tr>
<tr>
<td>Byte-Reverse Word</td>
<td>REV on page F5-4656</td>
<td>-</td>
</tr>
<tr>
<td>Byte-Reverse Packed Halfword</td>
<td>REV16 on page F5-4658</td>
<td>-</td>
</tr>
<tr>
<td>Byte-Reverse Signed Halfword</td>
<td>REVSH on page F5-4660</td>
<td>-</td>
</tr>
<tr>
<td>Signed BitField Extract</td>
<td>SBFX on page F5-4708</td>
<td>-</td>
</tr>
<tr>
<td>Select Bytes using GE flags</td>
<td>SEL on page F5-4712</td>
<td>-</td>
</tr>
<tr>
<td>Unsigned BitField Extract</td>
<td>UBFX on page F5-4921</td>
<td>-</td>
</tr>
<tr>
<td>Unsigned Sum of Absolute Differences</td>
<td>USAD8 on page F5-4957</td>
<td>-</td>
</tr>
<tr>
<td>Unsigned Sum of Absolute Differences and Accumulate</td>
<td>USADA8 on page F5-4959</td>
<td>-</td>
</tr>
</tbody>
</table>
F1.5  PSTATE and banked register access instructions

These instructions transfer PE state information to or from a general-purpose register.

F1.5.1  PSTATE access instructions

PSTATE holds process state information, see Process state, PSTATE on page E1-3993. In AArch32 state:

- At EL1 or higher, PSTATE is accessible using the Current Program Status Register (CPSR).
- At EL0, a subset of the CPSR is accessible as the Application Program Status Register (APSR).
- On taking an exception, the contents of the CPSR are copied to the Saved Program Status Register (SPSR) of the mode from which the exception is taken.

The MRS and MSR instructions move the contents of the CPSR, APSR, or the SPSR of the current mode to or from a general-purpose register, see:

- MRS on page F5-4570.
- MSR (immediate) on page F5-4580.
- MSR (register) on page F5-4582.

When executed at EL0, MRS and MSR instructions can only access the APSR.

The PSTATE Condition flags, PSTATE.\{N, Z, C, V\} are set by the execution of data-processing instructions, and can control the execution of conditional instructions. However, software can set the Condition flags explicitly using the MSR instruction, and can read the current state of the Condition flags explicitly using the MRS instruction.

In addition, at EL1 or higher, software can use the CPS instruction to change the PSTATE.M field and the PSTATE.\{A, I, F\} interrupt mask bits, see CPS, CPSID, CPSIE on page F5-4372.

F1.5.2  Banked register access instructions

At EL1 or higher, the MRS (banked register) and MSR (banked register) instructions move the contents of a banked general-purpose register, the SPSR, or the ELR_hyp, to or from a general-purpose register. See:

- MRS (Banked register) on page F5-4572.
- MSR (Banked register) on page F5-4576.
F1.6 Load/store instructions

Table F1-12 summarizes the general-purpose register load/store instructions in the T32 and A32 instruction sets. Some of these instructions can also operate on the PC. See also:

- *Load/store multiple instructions* on page F1-4092.
- *Synchronization and semaphores* on page E2-4063, for more information about the Load-Exclusive and Store-Exclusive instructions.
- *Advanced SIMD and floating-point load/store instructions* on page F1-4098.

Load/store instructions have several options for addressing memory. For more information, see *Addressing modes* on page F1-4090.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Load</th>
<th>Store</th>
<th>Unprivileged</th>
<th>Exclusive</th>
<th>Load-Acquire</th>
<th>Store-Release</th>
<th>Exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Load</td>
<td>Store</td>
<td>Load</td>
<td>Store</td>
<td>Load-Acquire</td>
</tr>
<tr>
<td>32-bit word</td>
<td>LDR</td>
<td>STR</td>
<td>LDRT</td>
<td>STRT</td>
<td>LDREX</td>
<td>STREX</td>
<td>LDA</td>
</tr>
<tr>
<td>16-bit halfword</td>
<td>-</td>
<td>STRH</td>
<td>STRHT</td>
<td>-</td>
<td>STREXH</td>
<td>LDAH</td>
<td>STLH</td>
</tr>
<tr>
<td>16-bit unsigned halfword</td>
<td>LDRH</td>
<td>-</td>
<td>LDRHT</td>
<td>-</td>
<td>LDREXH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16-bit signed halfword</td>
<td>LDRSH</td>
<td>-</td>
<td>LDRSHT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8-bit byte</td>
<td>-</td>
<td>STRB</td>
<td>STRBT</td>
<td>-</td>
<td>STREXB</td>
<td>LDAB</td>
<td>STLB</td>
</tr>
<tr>
<td>8-bit unsigned byte</td>
<td>LDRB</td>
<td>-</td>
<td>LDRBT</td>
<td>-</td>
<td>LDREXB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8-bit signed byte</td>
<td>LDRSB</td>
<td>-</td>
<td>LDRSBT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Two 32-bit words</td>
<td>LDRD</td>
<td>STRD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64-bit doubleword</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>LDREXD</td>
<td>STREXD</td>
<td>-</td>
</tr>
</tbody>
</table>

F1.6.1 Loads to the PC

The LDR instruction can load a value into the PC. The value loaded is treated as an interworking address, as described by the `LoadWritePC()` pseudocode function in *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.

F1.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of memory respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a register. Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to 32 bits.
F1.6.3 Load unprivileged and Store unprivileged

When executing at EL0, a Load unprivileged or Store unprivileged instruction operates in exactly the same way as the corresponding ordinary load or store instruction. For example, an LDRT instruction executes in exactly the same way as the equivalent LDR instruction. When executed at PL1, Load unprivileged and Store unprivileged instructions behave as they would if they were executed at EL0. For example, an LDRT instruction executes in exactly the way that the equivalent LDR instruction would execute at EL0. In particular, the instructions make unprivileged memory accesses.

--- Note ---
As described in Security state, Exception levels, and AArch32 execution privilege on page G1-5722, execution at PL1 describes all of the following:
- Execution at Non-secure EL1 using AArch32.
- Execution at Secure EL1 using AArch32 when EL3 is not implemented.
- Execution at Secure EL1 using AArch32 when EL3 is implemented and is using AArch64.
- Execution at Secure EL3 when EL3 is implemented and is using AArch32.

The Load unprivileged and Store unprivileged instructions are CONSTRAINED UNPREDICTABLE if executed at EL2, see Execution of Load/Store unprivileged instructions in Hyp mode on page K1-7961.

For more information about execution privilege, see About access permissions on page G5-6008.

F1.6.4 Load-Exclusive and Store-Exclusive

Load-Exclusive and Store-Exclusive instructions provide shared memory synchronization. For more information, see Synchronization and semaphores on page E2-4063.

F1.6.5 Load-Acquire and Store-Release

Load-Acquire and Store-Release instructions provide memory barriers. Load-Acquire Exclusive and Store-Release Exclusive instructions provide memory barriers with shared memory synchronization. For more information, see Load-Acquire, Store-Release on page E2-4036.

F1.6.6 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers R0-R12, SP, or LR.

For loads, the base register can be the PC. This provides PC-relative addressing for position-independent code.

Instructions marked (literal) in their title in Chapter F2 About the T32 and A32 Instruction Descriptions are PC-relative loads.

The offset takes one of three formats:

Immediate
The offset is an unsigned number that can be added to or subtracted from the base register value. Immediate offset addressing is useful for accessing data elements that are a fixed distance from the start of the data object, such as structure fields, stack offsets, and input/output registers.

Register
The offset is a value from a general-purpose register. The value can be added to, or subtracted from, the base register value. Register offsets are useful for accessing arrays or blocks of data.

Scaled register
The offset is a general-purpose register, shifted by an immediate value, then added to or subtracted from the base register. This means an array index can be scaled by the size of each array element.
The offset and base register can be used in three different ways to form the memory address. The addressing modes are described as follows:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset</td>
<td>The offset is added to or subtracted from the base register to form the memory address.</td>
</tr>
<tr>
<td>Pre-indexed</td>
<td>The offset is added to or subtracted from the base register to form the memory address. The base register is then updated with this new address, to permit automatic indexing through an array or memory block.</td>
</tr>
<tr>
<td>Post-indexed</td>
<td>The value of the base register alone is used as the memory address. The offset is then added to or subtracted from the base register. The result is stored back in the base register, to permit automatic indexing through an array or memory block.</td>
</tr>
</tbody>
</table>

--- Note ---

Not every variant is available for every instruction, and the range of permitted immediate values and the options for scaled registers vary from instruction to instruction. See Chapter F2 About the T32 and A32 Instruction Descriptions for full details for each instruction.
F1.7 Load/store multiple instructions

Load Multiple instructions load from memory a subset, or possibly all, of the general-purpose registers and the PC.
Store Multiple instructions store to memory a subset, or possibly all, of the general-purpose registers.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base register, and can be either above or below the value in the base register. The base register can optionally be updated by the total size of the data transferred.

Table F1-13 summarizes the load/store multiple instructions in the T32 and A32 instruction sets.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Multiple, Increment After or Full Descending</td>
<td></td>
</tr>
<tr>
<td>Load Multiple, Decrement After or Full Ascending</td>
<td>\textit{LDMDA, LDMFA} on page F5-4444</td>
</tr>
<tr>
<td>Load Multiple, Decrement Before or Empty Ascending</td>
<td>\textit{LDMDB, LDMEA} on page F5-4446</td>
</tr>
<tr>
<td>Load Multiple, Increment Before or Empty Descending</td>
<td>\textit{LDMIB, LDmed} on page F5-4449</td>
</tr>
<tr>
<td>Pop multiple registers off the stack \textsuperscript{b}</td>
<td>\textit{POP} on page F5-4623</td>
</tr>
<tr>
<td>Push multiple registers onto the stack \textsuperscript{c}</td>
<td>\textit{PUSH} on page F5-4630</td>
</tr>
<tr>
<td>Store Multiple, Increment After or Empty Ascending</td>
<td>\textit{STM, STMIA, STMEA} on page F5-4803</td>
</tr>
<tr>
<td>Store Multiple, Decrement After or Empty Descending</td>
<td>\textit{STMDA, STMED} on page F5-4809</td>
</tr>
<tr>
<td>Store Multiple, Decrement Before or Full Descending</td>
<td>\textit{STMDB, STMFD} on page F5-4811</td>
</tr>
<tr>
<td>Store Multiple, Increment Before or Full Ascending</td>
<td>\textit{STMIB, STMFA} on page F5-4814</td>
</tr>
</tbody>
</table>

\textsuperscript{a} Not available in the T32 instruction set.
\textsuperscript{b} This instruction is equivalent to an \textit{LDM} instruction with the SP as base register, and base register updating.
\textsuperscript{c} This instruction is equivalent to an \textit{STM} instruction with the SP as base register, and base register updating.

When executing at EL1, variants of the \textit{LDM} and \textit{STM} instructions load and store User mode registers. Another system level variant of the \textit{LDM} instruction performs an exception return.

F1.7.1 Loads to the PC

The \textit{LDM}, \textit{LDMDA}, \textit{LDMDB}, \textit{LDMIB}, and \textit{POP} instructions can load a value into the PC. The value loaded is treated as an interworking address, as described by the \texttt{LoadWritePC()} pseudocode function in \textit{Pseudocode description of operations on the AArch32 general-purpose registers and the PC} on page E1-3993.
F1.8 Miscellaneous instructions

Table F1-14 summarizes the miscellaneous instructions in the T32 and A32 instruction sets.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear-Exclusive</td>
<td>\texttt{CLREX} on page F5-4355</td>
</tr>
<tr>
<td>Data Memory Barrier</td>
<td>\texttt{DMB} on page F5-4392</td>
</tr>
<tr>
<td>Data Synchronization Barrier</td>
<td>\texttt{DSB} on page F5-4395</td>
</tr>
<tr>
<td>Error Synchronization Barrier</td>
<td>\texttt{ESB} on page F5-4409</td>
</tr>
<tr>
<td>Instruction Synchronization Barrier</td>
<td>\texttt{ISB} on page F5-4415</td>
</tr>
<tr>
<td>If-Then</td>
<td>\texttt{IT} on page F5-4416\textsuperscript{a}</td>
</tr>
<tr>
<td>No Operation</td>
<td>\texttt{NOP} on page F5-4594</td>
</tr>
<tr>
<td>Preload Data</td>
<td>\texttt{PLD, PLDW (immediate)} on page F5-4612</td>
</tr>
<tr>
<td></td>
<td>\texttt{PLD (literal)} on page F5-4614</td>
</tr>
<tr>
<td></td>
<td>\texttt{PLD, PLDW (register)} on page F5-4616</td>
</tr>
<tr>
<td>Preload Instruction</td>
<td>\texttt{PLI (immediate, literal)} on page F5-4618</td>
</tr>
<tr>
<td></td>
<td>\texttt{PLI (register)} on page F5-4621</td>
</tr>
<tr>
<td>Speculation Barrier</td>
<td>\texttt{SB} on page F5-4697</td>
</tr>
<tr>
<td>Set Endianness</td>
<td>\texttt{SETEND} on page F5-4714\textsuperscript{b}</td>
</tr>
<tr>
<td>Set Privileged Access Never</td>
<td>\texttt{SETPAN} on page F5-4715</td>
</tr>
<tr>
<td>Send Event</td>
<td>\texttt{SEV} on page F5-4716</td>
</tr>
<tr>
<td>Send Event Local</td>
<td>\texttt{SEVL} on page F5-4718</td>
</tr>
<tr>
<td>Wait For Event</td>
<td>\texttt{WFE} on page F5-4983</td>
</tr>
<tr>
<td>Wait For Interrupt</td>
<td>\texttt{WFI} on page F5-4985</td>
</tr>
<tr>
<td>Yield</td>
<td>\texttt{YIELD} on page F5-4987\textsuperscript{c}</td>
</tr>
</tbody>
</table>

\textsuperscript{a} For performance reasons, Arm deprecates many uses of the \texttt{IT} instruction, see \textit{Partial deprecation of IT} on page F1-4094.  
\textsuperscript{b} Arm deprecates any use of the \texttt{SETEND} instruction.  
\textsuperscript{c} See also \textit{The Yield instruction}.

---

\textbf{Note}

Previous versions of the architecture defined the \texttt{DBG} instruction, that could provide a hint to the debug system, in this group. In Armv8, this instruction executes as a \texttt{NOP}. Arm deprecates any use of the \texttt{DBG} instruction.

---

\textbf{F1.8.1 The Yield instruction}

In a \textit{Symmetric Multithreading} (SMT) design, a thread can use the \texttt{YIELD} instruction to give a hint to the PE that it is running on. The \texttt{YIELD} hint indicates that whatever the thread is currently doing is of low importance, and so could yield. For example, the thread might be sitting in a spin-lock. A similar use might be in modifying the arbitration priority of the snoop bus in a multiprocessor (MP) system. Defining such an instruction permits binary compatibility between SMT and SMP systems.
AArch32 state defines a \texttt{YIELD} instruction as a specific NOP (No Operation) hint instruction.

The \texttt{YIELD} instruction has no effect in a single-threaded system, but developers of such systems can use the instruction to flag its intended use on migration to a multiprocessor or multithreading system. Operating systems can use \texttt{YIELD} in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no implementation benefit.

### F1.8.2 Partial deprecation of IT

Armv8-A deprecates some uses of the T32 IT instruction, for performance reasons. All uses of IT that apply to instructions other than a single subsequent 16-bit instruction from a restricted set are deprecated, as are explicit references to the PC within that single 16-bit instruction. This permits the non-deprecated forms of IT and subsequent instructions to be treated as a single 32-bit conditional instruction. Table F1-15 shows the restricted set of 16-bit instructions that are not deprecated when used in conjunction with IT.

<table>
<thead>
<tr>
<th>Non-deprecated 16-bit instructions</th>
<th>Class</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV, MVN</td>
<td>Move</td>
<td>Deprecated when ( Rn ) or ( Rd ) is the PC.</td>
</tr>
<tr>
<td>LDR, LDRB, LDRH, LDRSB, LDRSH</td>
<td>Load</td>
<td>Deprecated for PC-relative load literal forms</td>
</tr>
<tr>
<td>STR, STRB, STRH</td>
<td>Store</td>
<td></td>
</tr>
<tr>
<td>ADD, ADC, RSB, SBC, SUB</td>
<td>Add/Subtract</td>
<td>Deprecated for ADD SP, SP, #imm, SUB SP, SP, #imm, and when ( Rn ), ( Rdn ), or ( Rdn ) is the PC</td>
</tr>
<tr>
<td>CMP, CMN</td>
<td>Compare</td>
<td>Deprecated when ( Rn ) or ( Rn ) is the PC</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply</td>
<td></td>
</tr>
<tr>
<td>ASR, LSL, LSR, ROR</td>
<td>Shift</td>
<td></td>
</tr>
<tr>
<td>AND, BIC, EOR, ORR, TST</td>
<td>Logical</td>
<td></td>
</tr>
<tr>
<td>BX, BLX</td>
<td>Branch to register</td>
<td>Deprecated when ( Rn ) is the PC</td>
</tr>
</tbody>
</table>

The full Armv7 IT instruction functionality remains available in order to execute legacy T32 code. It is \textsc{Implementation Defined} whether an Armv8 implementation provides an ITD control, that software can use to disable the deprecated uses of the IT instruction. In an implementation that included the ITD control, setting an ITD field to 1 disables the deprecated uses of the IT instruction, making those uses of the IT instruction \textsc{Undefined}. The ITD control fields are:

- **HSCTLR.ITD** When EL2 is using AArch32, makes execution of the deprecated uses of the IT \textsc{Undefined} at EL2.
- **SCTLR.ITD** When EL1 is using AArch32, makes execution of the deprecated uses of the IT \textsc{Undefined} at EL0 and EL1.
- **SCTLR_EL1.ITD** When EL1 is using AArch64, makes execution of the deprecated uses of the IT \textsc{Undefined} at EL0 when EL0 is using AArch32.
F1.9 Exception-generating and exception-handling instructions

The following instructions are intended specifically to cause a synchronous exception to occur:

- The `SVC` instruction generates a Supervisor Call exception. For more information, see `Supervisor Call (SVC) exception` on page `G1-5782`.
- The `BKPT` instruction provides software breakpoints. For more information, see `Breakpoint Instruction exceptions` on page `G2-5867`.
- In an implementation that includes EL3 the `SMC` instruction generates a Secure Monitor Call exception. For more information, see `Secure Monitor Call (SMC) exception` on page `G1-5783`.
- In an implementation that includes EL2 the `HVC` instruction generates a Hypervisor Call exception. For more information, see `Hypervisor Call (HVC) exception` on page `G1-5784`.

`Debug state` on page `F1-4096` summarizes the Debug state instructions.

For an exception taken to an EL1 mode:

- The system level variants of the `SUBS` and `LDM` instructions can perform a return from an exception.

  Note

  The variants of `SUBS` include `MOVS`. See the references to `Subtract (exception return)`, `Move (exception return)`, and `Load Multiple (exception return)` in Table `F1-16` for more information.

- The `SRS` instruction can be used near the start of the handler, to store return information. The `RFE` instruction can then perform a return from the exception using the stored return information.

In an implementation that includes EL2, the `ERET` instruction performs a return from an exception taken to Hyp mode.

For more information, see `Exception return to an Exception level using AArch32` on page `G1-5765`.

Table `F1-16` summarizes the instructions, in the T32 and A32 instruction sets, for generating or handling an exception. Except for `BKPT` and `SVC`, these are system level instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor Call</td>
<td><code>SVC</code> on page <code>F5-4885</code></td>
</tr>
<tr>
<td>Breakpoint</td>
<td><code>BKPT</code> on page <code>F5-4345</code></td>
</tr>
<tr>
<td>Secure Monitor Call</td>
<td><code>SMC</code> on page <code>F5-4732</code></td>
</tr>
<tr>
<td>Return From Exception</td>
<td><code>RFE, RFEDA, RFEDB, RFEIA, RFEIB</code> on page <code>F5-4662</code></td>
</tr>
<tr>
<td>Subtract (exception return)a</td>
<td><code>SUB, SUBS (immediate)</code> on page <code>F5-4869a</code></td>
</tr>
<tr>
<td>Move (exception return)a</td>
<td><code>MOV, MOVS (register)</code> on page <code>F5-4555a</code></td>
</tr>
<tr>
<td>Hypervisor Call</td>
<td><code>HVC</code> on page <code>F5-4413</code></td>
</tr>
<tr>
<td>Exception Return</td>
<td><code>ERET</code> on page <code>F5-4407</code></td>
</tr>
<tr>
<td>Load Multiple (exception return)</td>
<td><code>LDM (exception return)</code> on page <code>F5-4440</code></td>
</tr>
<tr>
<td>Store Return State</td>
<td><code>SRS, SRSDA, SRSDB, SRSIA, SRSIB</code> on page <code>F5-4767</code></td>
</tr>
</tbody>
</table>

a. The A32 instruction set includes other instruction forms that can be used for an exception return, that have previously been described as variants of `SUBS PC, LR`. Arm deprecates any use of these instruction forms.
F1.9.1 Debug state

Table F1-17 shows the Debug state instructions that are implemented in the T32 instruction set:

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCPSn</td>
<td>Debug switch to ELn</td>
<td>DCPS1 on page F5-4386, DCPS2 on page F5-4388, DCPS3 on page F5-4390</td>
<td></td>
</tr>
<tr>
<td>ERET</td>
<td>Debug restore PE state (DRPS)</td>
<td>ERET on page F5-4407</td>
<td>When executed in Debug state, the T1 encoding of ERET performs the DRPS operation</td>
</tr>
</tbody>
</table>

Table F1-17 T32 Debug state instructions
F1.10 System register access instructions

The System register encoding space is indexed using the parameters \{coproc, opc1, CRn, CRm, opc2\}, see The AArch32 System register interface on page G1-5809. This encoding space provides System registers and System instructions. In Armv8, the only permitted values of coproc are 0b1110 and 0b1111, and the following instructions give access to this encoding space:

- Instructions that transfer data between general-purpose registers and System registers. See:
  - \textit{MCR} on page F5-4543.
  - \textit{MCRR} on page F5-4545.
  - \textit{MRC} on page F5-4566.
  - \textit{MRRC} on page F5-4568.

- Instructions that load or store from memory to a System register. See:
  - \textit{LDC} (immediate) on page F5-4432.
  - \textit{LDC} (literal) on page F5-4434.
  - \textit{STC} on page F5-4783.

\textbf{Note}

The System register encoding space with coproc==0b101x is redefined to provide some of the Advanced SIMD and floating-point functionality. That is, to:

- Initiate a floating-point data-processing operation, see Floating-point data-processing instructions on page F1-4112.
- Transfer data between general-purpose registers and the Advanced SIMD and floating-point registers, see Advanced SIMD and floating-point register transfer instructions on page F1-4100.
- Load or store data to the Advanced SIMD and floating-point registers, see Advanced SIMD and floating-point load/store instructions on page F1-4098.

System register access instructions are part of the instruction stream executed by the PE, and therefore any System register access instruction that cannot be executed by the implementation causes an Undefined Instruction exception. In Armv8-A and Armv8-R, the instruction encodings in the System register access instruction encoding space are unallocated, and generate Undefined Instruction exceptions, except for:

- The instructions summarized in this section that access the coproc==0b111x encoding space.
- The instructions in the coproc==0b101x encoding space that are redefined to provide Advanced SIMD and floating-point functionality, as summarized in the Note in this section.
F1.11 Advanced SIMD and floating-point load/store instructions

Table F1-18 summarizes the SIMD and floating-point register file load/store instructions in the Advanced SIMD and floating-point instruction sets.

Advanced SIMD also provides instructions for loading and storing multiple elements, or structures of elements, see Element and structure load/store instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Load Multiple</td>
<td>VLDM, VLDMDB, VLDMIA on page F6-5297</td>
<td>Load 1-16 consecutive 64-bit registers, Advanced SIMD and floating-point. Load 1-16 consecutive 32-bit registers, floating-point only.</td>
</tr>
<tr>
<td>Vector Load Register</td>
<td>VLDR (immediate) on page F6-5302</td>
<td>Load one 64-bit register, Advanced SIMD and floating-point.</td>
</tr>
<tr>
<td></td>
<td>VLDR (literal) on page F6-5305</td>
<td>Load one 32-bit register, floating-point only.</td>
</tr>
<tr>
<td>Vector Store Multiple</td>
<td>VSTM, VSTMDB, VSTMIA on page F6-5656</td>
<td>Store 1-16 consecutive 64-bit registers, Advanced SIMD and floating-point. Store 1-16 consecutive 32-bit registers, floating-point only.</td>
</tr>
<tr>
<td>Vector Store Register</td>
<td>VSTR on page F6-5661</td>
<td>Store one 64-bit register, Advanced SIMD and floating-point. Store one 32-bit register, floating-point only.</td>
</tr>
</tbody>
</table>

F1.11.1 Element and structure load/store instructions

Table F1-19 shows the element and structure load/store instructions available in the Advanced SIMD instruction set. Loading and storing structures of more than one element automatically de-interleaves or interleaves the elements, see Figure F1-1 on page F1-4099 for an example of de-interleaving. Interleaving is the inverse process.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load single element</td>
<td></td>
</tr>
<tr>
<td>Multiple elements</td>
<td>VLD1 (multiple single elements) on page F6-5251</td>
</tr>
<tr>
<td>To one lane</td>
<td>VLD1 (single element to one lane) on page F6-5243</td>
</tr>
<tr>
<td>To all lanes</td>
<td>VLD1 (single element to all lanes) on page F6-5248</td>
</tr>
<tr>
<td>Load 2-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VLD2 (multiple 2-element structures) on page F6-5268</td>
</tr>
<tr>
<td>To one lane</td>
<td>VLD2 (single 2-element structure to one lane) on page F6-5259</td>
</tr>
<tr>
<td>To all lanes</td>
<td>VLD2 (single 2-element structure to all lanes) on page F6-5265</td>
</tr>
<tr>
<td>Load 3-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VLD3 (multiple 3-element structures) on page F6-5282</td>
</tr>
<tr>
<td>To one lane</td>
<td>VLD3 (single 3-element structure to one lane) on page F6-5273</td>
</tr>
<tr>
<td>To all lanes</td>
<td>VLD3 (single 3-element structure to all lanes) on page F6-5279</td>
</tr>
</tbody>
</table>
Table F1-19 Element and structure load/store instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load 4-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VLD4 (multiple 4-element structures) on page F6-5294</td>
</tr>
<tr>
<td>To one lane</td>
<td>VLD4 (single 4-element structure to one lane) on page F6-5285</td>
</tr>
<tr>
<td>To all lanes</td>
<td>VLD4 (single 4-element structure to all lanes) on page F6-5291</td>
</tr>
<tr>
<td>Store single element</td>
<td></td>
</tr>
<tr>
<td>Multiple elements</td>
<td>VST1 (multiple single elements) on page F6-5619</td>
</tr>
<tr>
<td>From one lane</td>
<td>VST1 (single element from one lane) on page F6-5614</td>
</tr>
<tr>
<td>Store 2-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VST2 (multiple 2-element structures) on page F6-5633</td>
</tr>
<tr>
<td>From one lane</td>
<td>VST2 (single 2-element structure from one lane) on page F6-5627</td>
</tr>
<tr>
<td>Store 3-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VST3 (multiple 3-element structures) on page F6-5644</td>
</tr>
<tr>
<td>From one lane</td>
<td>VST3 (single 3-element structure from one lane) on page F6-5638</td>
</tr>
<tr>
<td>Store 4-element structure</td>
<td></td>
</tr>
<tr>
<td>Multiple structures</td>
<td>VST4 (multiple 4-element structures) on page F6-5653</td>
</tr>
<tr>
<td>From one lane</td>
<td>VST4 (single 4-element structure from one lane) on page F6-5647</td>
</tr>
</tbody>
</table>

Figure F1-1 shows the de-interleaving of a VLD3.16 (multiple 3-element structures) instruction:

![De-interleaving an array of 3-element structures](image)

A is a packed array of 3-element structures. Each element is a 16-bit halfword.

Figure F1-1 shows the VLD3.16 instruction operating to three 64-bit registers that comprise four 16-bit elements:

- Different instructions in this group would produce similar figures, but operate on different numbers of registers. For example, VLD4 and VST4 instructions operate on four registers.
- Different element sizes would produce similar figures but with 8-bit or 32-bit elements.
- These instructions operate only on doubleword (64-bit) registers.
### F1.12 Advanced SIMD and floating-point register transfer instructions

Table F1-20 summarizes the SIMD and floating-point register file transfer instructions in the Advanced SIMD and floating-point instruction sets. These instructions transfer data between the general-purpose registers and the registers in the SIMD and floating-point register file.

Advanced SIMD vectors, and single-precision and double-precision floating-point registers, are all views of the same register file. For details see The SIMD and floating-point register file on page E1-4000.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy element from general-purpose register to every element of an Advanced SIMD vector</td>
<td>VDUP (general-purpose register) on page F6-5193</td>
</tr>
<tr>
<td>Copy byte, halfword, or word from general-purpose register to a register in the SIMD and floating-point register file</td>
<td>VMOV (general-purpose register to scalar) on page F6-5369</td>
</tr>
<tr>
<td>Copy byte, halfword, or word from a register in the SIMD and floating-point register file to a general-purpose register</td>
<td>VMOV (scalar to general-purpose register) on page F6-5373</td>
</tr>
<tr>
<td>Copy from half-precision floating-point register to general-purpose register, or from general-purpose register to half-precision floating-point register Only supported if FEAT_FP16 is implemented</td>
<td>VMOV (between general-purpose register and half-precision) on page F6-5356</td>
</tr>
<tr>
<td>Copy from single-precision floating-point register to general-purpose register, or from general-purpose register to single-precision floating-point register</td>
<td>VMOV (between general-purpose register and single-precision) on page F6-5371</td>
</tr>
<tr>
<td>Copy two words from general-purpose registers to consecutive single-precision floating-point registers, or from consecutive single-precision floating-point registers to general-purpose registers</td>
<td>VMOV (between two general-purpose registers and two single-precision registers) on page F6-5375</td>
</tr>
<tr>
<td>Copy two words from general-purpose registers to a doubleword register in the SIMD and floating-point register file, or from a doubleword register in the SIMD and floating-point register file to general-purpose registers</td>
<td>VMOV (between two general-purpose registers and a doubleword floating-point register) on page F6-5354</td>
</tr>
<tr>
<td>Copy from an Advanced SIMD and floating-point System Register to a general-purpose register</td>
<td>VMRS on page F6-5384</td>
</tr>
<tr>
<td>Copy from a general-purpose register to an Advanced SIMD and floating-point System Register</td>
<td>VMSR on page F6-5387</td>
</tr>
</tbody>
</table>
F1.13 Advanced SIMD data-processing instructions

Advanced SIMD data-processing instructions process registers containing vectors of elements of the same type packed together, enabling the same operation to be performed on multiple items in parallel.

Instructions operate on vectors held in 64-bit or 128-bit registers. Figure F1-2 shows an operation on two 64-bit operand vectors, generating a 64-bit vector result.

--- Note ---

Figure F1-2 and other similar figures show 64-bit vectors that consist of four 16-bit elements, and 128-bit vectors that consist of four 32-bit elements. Other element sizes produce similar figures, but with 1, 2, 8, or 16 operations performed in parallel instead of 4.

Figure F1-2 Advanced SIMD instruction operating on 64-bit registers

Many Advanced SIMD instructions have variants that produce vectors of elements double the size of the inputs. In this case, the number of elements in the result vector is the same as the number of elements in the operand vectors, but each element, and the whole vector, is double the size.

Figure F1-3 shows an example of an Advanced SIMD instruction operating on 64-bit registers, and generating a 128-bit result.

Figure F1-3 Advanced SIMD instruction producing wider result

There are also Advanced SIMD instructions that have variants that produce vectors containing elements half the size of the inputs. Figure F1-4 on page F1-4102 shows an example of an Advanced SIMD instruction operating on one 128-bit register, and generating a 64-bit result.
Some Advanced SIMD instructions do not conform to these standard patterns. Their operation patterns are described in the individual instruction descriptions.

Advanced SIMD instructions that perform floating-point arithmetic use the Arm standard floating-point arithmetic defined in *Advanced SIMD and floating-point support* on page A1-52.

The following sections summarize the Advanced SIMD data-processing instructions:

- Advanced SIMD parallel addition and subtraction.
- Bitwise Advanced SIMD data-processing instructions on page F1-4103.
- Advanced SIMD comparison instructions on page F1-4104.
- Advanced SIMD shift instructions on page F1-4105.
- Advanced SIMD multiply instructions on page F1-4106.
- Advanced SIMD dot product instructions on page F1-4107.
- Miscellaneous Advanced SIMD data-processing instructions on page F1-4109.
- Advanced SIMD BFloat16 instructions on page F1-4108.
- Advanced SIMD matrix multiply instructions on page F1-4108.
- The Cryptographic Extension in AArch32 state on page F1-4110.

### F1.13.1 Advanced SIMD parallel addition and subtraction

Table F1-21 shows the Advanced SIMD parallel add and subtract instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Add</td>
<td><em>VADD (integer)</em> on page F6-5057</td>
</tr>
<tr>
<td></td>
<td><em>VADD (floating-point)</em> on page F6-5053</td>
</tr>
<tr>
<td>Vector Add and Narrow, returning High Half</td>
<td><em>VADDHN</em> on page F6-5059</td>
</tr>
<tr>
<td>Vector Add Long</td>
<td><em>VADDL</em> on page F6-5061</td>
</tr>
<tr>
<td>Vector Add Wide</td>
<td><em>VADDW</em> on page F6-5063</td>
</tr>
<tr>
<td>Vector Halving Add</td>
<td><em>VHADD</em> on page F6-5233</td>
</tr>
<tr>
<td>Vector Halving Subtract</td>
<td><em>VHSUB</em> on page F6-5236</td>
</tr>
<tr>
<td>Vector Pairwise Add and Accumulate Long</td>
<td><em>VPADAL</em> on page F6-5434</td>
</tr>
<tr>
<td>Vector Pairwise Add</td>
<td><em>VPADD (integer)</em> on page F6-5439</td>
</tr>
<tr>
<td></td>
<td><em>VPADD (floating-point)</em> on page F6-5437</td>
</tr>
<tr>
<td>Vector Pairwise Add Long</td>
<td><em>VPADDL</em> on page F6-5441</td>
</tr>
<tr>
<td>Vector Rounding Add and Narrow, returning High Half</td>
<td><em>VRADDHN</em> on page F6-5510</td>
</tr>
</tbody>
</table>
### Table F1-21 Advanced SIMD parallel add and subtract instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Rounding Halving Add</td>
<td>VRHADD on page F6-5525</td>
</tr>
<tr>
<td>Vector Rounding Subtract and Narrow, returning High Half</td>
<td>VRSUBHN on page F6-5573</td>
</tr>
<tr>
<td>Vector Saturating Add</td>
<td>VQADD on page F6-5458</td>
</tr>
<tr>
<td>Vector Saturating Subtract</td>
<td>VQSUB on page F6-5508</td>
</tr>
<tr>
<td>Vector Subtract</td>
<td>VSUB (integer) on page F6-5668</td>
</tr>
<tr>
<td>Vector Subtract (floating-point)</td>
<td>VSUB (floating-point) on page F6-5664</td>
</tr>
<tr>
<td>Vector Subtract and Narrow, returning High Half</td>
<td>VSUBHN on page F6-5670</td>
</tr>
<tr>
<td>Vector Subtract Long</td>
<td>VSUBL on page F6-5672</td>
</tr>
<tr>
<td>Vector Subtract Wide</td>
<td>VSUBW on page F6-5674</td>
</tr>
</tbody>
</table>

### F1.13.2 Bitwise Advanced SIMD data-processing instructions

Table F1-22 shows bitwise Advanced SIMD data-processing instructions. These operate on the doubleword (64-bit) or quadword (128-bit) registers in the SIMD and floating-point register file, and there is no division into vector elements.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Bitwise AND</td>
<td>VAND (register) on page F6-5068</td>
</tr>
<tr>
<td>Vector Bitwise Bit Clear (AND complement)</td>
<td>VBIC (immediate) on page F6-5070</td>
</tr>
<tr>
<td>Vector Bitwise Exclusive OR</td>
<td>VEOR on page F6-5197</td>
</tr>
<tr>
<td>Vector Bitwise Insert if False</td>
<td>VBIF on page F6-5075</td>
</tr>
<tr>
<td>Vector Bitwise Insert if True</td>
<td>VBIT on page F6-5077</td>
</tr>
<tr>
<td>Vector Bitwise Move</td>
<td>VMOV (immediate) on page F6-5358</td>
</tr>
<tr>
<td>Vector Bitwise NOT</td>
<td>VMVN (immediate) on page F6-5405</td>
</tr>
<tr>
<td>Vector Bitwise OR</td>
<td>VORR (immediate) on page F6-5429</td>
</tr>
<tr>
<td>Vector Bitwise OR NOT</td>
<td>VORN (register) on page F6-5427</td>
</tr>
<tr>
<td>Vector Bitwise Select</td>
<td>VBSL on page F6-5079</td>
</tr>
</tbody>
</table>
### F1.13.3 Advanced SIMD comparison instructions

Table F1-23 shows Advanced SIMD comparison instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Absolute Compare Greater Than or Equal</td>
<td>VACGE on page F6-5043</td>
</tr>
<tr>
<td>Vector Absolute Compare Greater Than</td>
<td>VACGT on page F6-5048</td>
</tr>
<tr>
<td>Vector Compare Equal</td>
<td>VCEQ (register) on page F6-5085</td>
</tr>
<tr>
<td>Vector Compare Equal to Zero</td>
<td>VCEQ (immediate #0) on page F6-5083</td>
</tr>
<tr>
<td>Vector Compare Greater Than or Equal</td>
<td>VCGE (register) on page F6-5091</td>
</tr>
<tr>
<td>Vector Compare Greater Than or Equal to Zero</td>
<td>VCGE (immediate #0) on page F6-5088</td>
</tr>
<tr>
<td>Vector Compare Greater Than</td>
<td>VCGT (register) on page F6-5098</td>
</tr>
<tr>
<td>Vector Compare Greater Than Zero</td>
<td>VCGT (immediate #0) on page F6-5095</td>
</tr>
<tr>
<td>Vector Compare Less Than or Equal</td>
<td>VCLE (immediate #0) on page F6-5102</td>
</tr>
<tr>
<td>Vector Compare Less Than Zero</td>
<td>VCLT (immediate #0) on page F6-5110</td>
</tr>
<tr>
<td>Vector Test Bits</td>
<td>VTST on page F6-5686</td>
</tr>
</tbody>
</table>
## F1.13.4 Advanced SIMD shift instructions

Table F1-24 lists the shift instructions in the Advanced SIMD instruction set.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Saturating Rounding Shift Left</td>
<td>VQRSHL on page F6-5487</td>
</tr>
<tr>
<td>Vector Saturating Rounding Shift Right and Narrow</td>
<td>VQRSHRN, VQRSHRUN on page F6-5491</td>
</tr>
<tr>
<td>Vector Saturating Shift Left</td>
<td>VQSHL (register) on page F6-5499</td>
</tr>
<tr>
<td></td>
<td>VQSHL, VQSHLU (immediate) on page F6-5496</td>
</tr>
<tr>
<td>Vector Saturating Shift Right and Narrow</td>
<td>VQSHRN on page F6-5503</td>
</tr>
<tr>
<td>Vector Rounding Shift Left</td>
<td>VRSHL on page F6-5554</td>
</tr>
<tr>
<td>Vector Rounding Shift Right</td>
<td>VRSHR on page F6-5557</td>
</tr>
<tr>
<td>Vector Rounding Shift Right and Accumulate</td>
<td>VRSRA on page F6-5570</td>
</tr>
<tr>
<td>Vector Rounding Shift Right and Narrow</td>
<td>VRSHRN on page F6-5562</td>
</tr>
<tr>
<td>Vector Shift Left</td>
<td>VSHL (immediate) on page F6-5583</td>
</tr>
<tr>
<td></td>
<td>VSHL (register) on page F6-5586</td>
</tr>
<tr>
<td>Vector Shift Left Long</td>
<td>VSHLL on page F6-5589</td>
</tr>
<tr>
<td>Vector Shift Right</td>
<td>VSHR on page F6-5592</td>
</tr>
<tr>
<td>Vector Shift Right and Narrow</td>
<td>VSHRN on page F6-5597</td>
</tr>
<tr>
<td>Vector Shift Left and Insert</td>
<td>VSLI on page F6-5601</td>
</tr>
<tr>
<td>Vector Shift Right and Accumulate</td>
<td>VSRA on page F6-5608</td>
</tr>
<tr>
<td>Vector Shift Right and Insert</td>
<td>VSRI on page F6-5611</td>
</tr>
</tbody>
</table>
F1.13.5   Advanced SIMD multiply instructions

Table F1-25 summarizes the Advanced SIMD multiply instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Multiply Accumulate</td>
<td>VMLA (integer) on page F6-5330</td>
</tr>
<tr>
<td></td>
<td>VMLA (floating-point) on page F6-5326</td>
</tr>
<tr>
<td></td>
<td>VMLA (by scalar) on page F6-5332</td>
</tr>
<tr>
<td>Vector Multiply Accumulate Long</td>
<td>VMLAL (integer) on page F6-5335</td>
</tr>
<tr>
<td></td>
<td>VMLAL (by scalar) on page F6-5337</td>
</tr>
<tr>
<td>Vector Multiply Subtract</td>
<td>VMLS (integer) on page F6-5343</td>
</tr>
<tr>
<td></td>
<td>VMLS (floating-point) on page F6-5339</td>
</tr>
<tr>
<td></td>
<td>VMLS (by scalar) on page F6-5345</td>
</tr>
<tr>
<td>Vector Multiply Subtract Long</td>
<td>VMLSL (integer) on page F6-5348</td>
</tr>
<tr>
<td></td>
<td>VMLSL (by scalar) on page F6-5350</td>
</tr>
<tr>
<td>Vector Multiply</td>
<td>VMUL (integer and polynomial) on page F6-5394</td>
</tr>
<tr>
<td></td>
<td>VMUL (floating-point) on page F6-5390</td>
</tr>
<tr>
<td></td>
<td>VMUL (by scalar) on page F6-5397</td>
</tr>
<tr>
<td>Vector Multiply Long</td>
<td>VMULL (integer and polynomial) on page F6-5400</td>
</tr>
<tr>
<td></td>
<td>VMULL (by scalar) on page F6-5403</td>
</tr>
<tr>
<td>Vector Fused Multiply Accumulate</td>
<td>VFMA on page F6-5203</td>
</tr>
<tr>
<td>Vector Floating-Point Multiply-Add Long</td>
<td>VFMAL (vector) on page F6-5211</td>
</tr>
<tr>
<td></td>
<td>VFMAL (by scalar) on page F6-5214</td>
</tr>
<tr>
<td>Vector Fused Multiply Subtract</td>
<td>VFMS on page F6-5217</td>
</tr>
<tr>
<td>Vector Floating-Point Multiply-Subtract Long</td>
<td>VFMSL (vector) on page F6-5221</td>
</tr>
<tr>
<td></td>
<td>VFMSL (by scalar) on page F6-5224</td>
</tr>
<tr>
<td>Vector Saturating Doubling Multiply Accumulate Long</td>
<td>VQDMLAL on page F6-5460</td>
</tr>
<tr>
<td>Vector Saturating Doubling Multiply Subtract Long</td>
<td>VQDMLSL on page F6-5463</td>
</tr>
<tr>
<td>Vector Saturating Doubling Multiply Returning High Half</td>
<td>VQDMLULH on page F6-5466</td>
</tr>
<tr>
<td>Vector Saturating Doubling Multiply Long</td>
<td>VQDMULL on page F6-5469</td>
</tr>
<tr>
<td>Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half</td>
<td>VQRDMLAH on page F6-5476</td>
</tr>
<tr>
<td>Vector Saturating Rounding Doubling Multiply Subtract Returning High Half</td>
<td>VQRDMLSH on page F6-5480</td>
</tr>
<tr>
<td>Vector Saturating Rounding Doubling Multiply Returning High Half</td>
<td>VQRDMLULH on page F6-5484</td>
</tr>
</tbody>
</table>

Advanced SIMD multiply instructions can operate on vectors of:

- 8-bit, 16-bit, or 32-bit unsigned integers.
- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit polynomials over \{0, 1\}. VMUL and VMULL are the only instructions that operate on polynomials. VMULL produces a 16-bit polynomial over \{0, 1\}.
• Single-precision (32-bit) or half-precision (16-bit) floating-point numbers.

They can also act on one vector and one scalar.

Long instructions have doubleword (64-bit) operands, and produce quadword (128-bit) results. Other Advanced SIMD multiply instructions can have either doubleword or quadword operands, and produce results of the same size.

Floating-point multiply instructions can operate on:
• Half-precision (16-bit) floating-point numbers.
• Single-precision (32-bit) floating-point numbers.
• Double-precision (64-bit) floating-point numbers.

**F1.13.6 Advanced SIMD dot product instructions**

**FEAT_DotProd** provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions, each with signed and unsigned versions:

**Vector form**

The dot product is calculated for each element of the first vector with the corresponding element of the second element.

**Indexed form**

The dot product is calculated for each element of the first vector with the element of the second vector that is indicated by the index argument to the instruction.

---

**Note**

That is, a single element from the second vector is used, and the dot product is calculated between each element of the first vector and this single element from the second vector.

**Table F1-26 Advanced SIMD dot product instructions**

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSDOT</td>
<td>Signed dot product (vector form)</td>
<td>VSDOT (vector) on page F6-5577</td>
</tr>
<tr>
<td>VUDOT</td>
<td>Unsigned dot product (vector form)</td>
<td>VUDOT (vector) on page F6-5690</td>
</tr>
<tr>
<td>VSDOT</td>
<td>Signed dot product (indexed form)</td>
<td>VSDOT (by element) on page F6-5575</td>
</tr>
<tr>
<td>VSUDOT</td>
<td>Mixed sign integer dot product by indexed quadruplet&lt;sup&gt;a&lt;/sup&gt;</td>
<td>VSUDOT (by element) on page F6-5676</td>
</tr>
<tr>
<td>VUDOT</td>
<td>Unsigned dot product (indexed form)</td>
<td>VUDOT (by element) on page F6-5688</td>
</tr>
<tr>
<td>VUSDOT</td>
<td>Mixed sign integer dot product (vector format)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>VUSDOT (vector) on page F6-5696</td>
</tr>
<tr>
<td></td>
<td>Mixed sign integer dot product by indexed quadruplet&lt;sup&gt;a&lt;/sup&gt;</td>
<td>VUSDOT (by element) on page F6-5694</td>
</tr>
</tbody>
</table>

<sup>a</sup> This instruction is only supported when FEAT_AA32I8MM is implemented.

**F1.13.7 Advanced SIMD complex number arithmetic instructions**

**FEAT_FCMA** provides AArch32 Advanced SIMD instructions that perform arithmetic on complex numbers held in element pairs in vector registers, where the less significant element of the pair contains the real component and the more significant element contains the imaginary component.

These instructions provide single-precision versions. If FEAT_FP16 is implemented they also provide half-precision versions, otherwise the half-precision encodings are UNDEFINED.
Table F1-27 shows the FEAT_FCMA AArch32 Advanced SIMD instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCADD</td>
<td>Floating-point complex add</td>
<td>VCADD on page F6-5081</td>
</tr>
<tr>
<td>VOMLA</td>
<td>Floating-point complex multiply accumulate (vector form)</td>
<td>VCMLA on page F6-5118</td>
</tr>
<tr>
<td>VOMLA</td>
<td>Floating-point complex multiply accumulate (indexed form)</td>
<td>VCMLA (by element) on page F6-5121</td>
</tr>
</tbody>
</table>

A pair of VOMLA instructions can be used to perform a complex number multiplication. In Complex multiplication on page K10-8068, this is demonstrated for the similar AArch64 instruction FCMLA. The usage of VOMLA in this manner is identical.

F1.13.8 Advanced SIMD BFloat16 instructions

When FEAT_AA32BF16 is implemented, BFloat16 instructions are available in AArch32 state.

Table F1-28 shows the Advanced SIMD BFloat16 instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDOT</td>
<td>BFloat16 floating-point vector dot product (vector and by scalar formats)</td>
<td>VDOT (vector) on page F6-5189, VDOT (by element) on page F6-5191</td>
</tr>
<tr>
<td>VMMLA</td>
<td>BFloat16 floating-point matrix multiply-accumulate</td>
<td>VMMLA on page F6-5352</td>
</tr>
<tr>
<td>VFMA4, VFMA7</td>
<td>BFloat16 floating-point widening multiply-add long (vector and by scalar formats)</td>
<td>VFMA4, VFMA7 (BFloat16, vector) on page F6-5207, VFMA4, VFMA7 (BFloat16, by scalar) on page F6-5209</td>
</tr>
<tr>
<td>VCVT</td>
<td>BFloat16 convert from single-precision to BF16 format</td>
<td>VCVT (from single-precision to BFloat16, Advanced SIMD) on page F6-5134</td>
</tr>
</tbody>
</table>

F1.13.9 Advanced SIMD matrix multiply instructions

When FEAT_AA32I8MM is implemented, these instructions are available in AArch32 state. They include integer and mixed sign dot product instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each segment:
• The first source vector matrix is organized in row-by-row order.
• The second source vector matrix elements are organized in a column-by-column order.
• The destination vector matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

Table F1-29 shows the Advanced SIMD matrix multiply instructions.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSMMLA</td>
<td>Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix</td>
<td>VSMMLA on page F6-5604</td>
</tr>
<tr>
<td>VUMMLA</td>
<td>Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix</td>
<td>VUMMLA on page F6-5692</td>
</tr>
<tr>
<td>VUSMMLA</td>
<td>Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix</td>
<td>VUSMMLA on page F6-5698</td>
</tr>
</tbody>
</table>
## F1.13.10 Miscellaneous Advanced SIMD data-processing instructions

Table F1-30 shows miscellaneous Advanced SIMD data-processing instructions.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Absolute Difference and Accumulate</td>
<td><em>VABA</em> on page F6-5029</td>
</tr>
<tr>
<td>Vector Absolute Difference and Accumulate Long</td>
<td><em>VABAL</em> on page F6-5031</td>
</tr>
<tr>
<td>Vector Absolute Difference</td>
<td><em>VABD</em> (integer) on page F6-5035</td>
</tr>
<tr>
<td>Vector Absolute Difference</td>
<td><em>VABD</em> (floating-point) on page F6-5033</td>
</tr>
<tr>
<td>Vector Absolute Difference Long</td>
<td><em>VABDL</em> (integer) on page F6-5037</td>
</tr>
<tr>
<td>Vector Absolute</td>
<td><em>VABS</em> on page F6-5039</td>
</tr>
<tr>
<td>Vector Convert between floating-point and fixed point</td>
<td><em>VCVT</em> (between floating-point and fixed-point, Advanced SIMD) on page F6-5150</td>
</tr>
<tr>
<td>Vector Convert between floating-point and integer</td>
<td><em>VCVT</em> (between floating-point and integer, Advanced SIMD) on page F6-5140</td>
</tr>
<tr>
<td>Vector Convert between half-precision and single-precision</td>
<td><em>VCVT</em> (between half-precision and single-precision, Advanced SIMD) on page F6-5138</td>
</tr>
<tr>
<td>Vector Count Leading Sign Bits</td>
<td><em>VCLS</em> on page F6-5108</td>
</tr>
<tr>
<td>Vector Count Leading Zeros</td>
<td><em>VCLZ</em> on page F6-5116</td>
</tr>
<tr>
<td>Vector Count Set Bits</td>
<td><em>VCNT</em> on page F6-5132</td>
</tr>
<tr>
<td>Vector Duplicate scalar</td>
<td><em>VDUP</em> (scalar) on page F6-5195</td>
</tr>
<tr>
<td>Vector Extract</td>
<td><em>VEXT</em> (byte elements) on page F6-5199</td>
</tr>
<tr>
<td>Vector move Insertion</td>
<td><em>VINS</em> on page F6-5239</td>
</tr>
<tr>
<td>Vector Move and Narrow</td>
<td><em>VMOVN</em> on page F6-5380</td>
</tr>
<tr>
<td>Vector Move Long</td>
<td><em>VMOVL</em> on page F6-5378</td>
</tr>
<tr>
<td>Vector Move extraction</td>
<td><em>VMOVX</em> on page F6-5382</td>
</tr>
<tr>
<td>Vector Maximum</td>
<td><em>VMAX</em> (integer) on page F6-5310</td>
</tr>
<tr>
<td>Vector Minimum</td>
<td><em>VMIN</em> (integer) on page F6-5319</td>
</tr>
<tr>
<td>Vector Negate</td>
<td><em>VNEG</em> on page F6-5411</td>
</tr>
<tr>
<td>Vector Pairwise Maximum</td>
<td><em>VPMAX</em> (integer) on page F6-5446</td>
</tr>
<tr>
<td>Vector Pairwise Minimum</td>
<td><em>VPMIN</em> (integer) on page F6-5450</td>
</tr>
<tr>
<td>Vector Reciprocal Estimate</td>
<td><em>VRECPE</em> on page F6-5512</td>
</tr>
<tr>
<td>Vector Reciprocal Step</td>
<td><em>VRECPS</em> on page F6-5514</td>
</tr>
<tr>
<td>Vector Reciprocal Square Root Estimate</td>
<td><em>VRSQRTE</em> on page F6-5566</td>
</tr>
</tbody>
</table>
The AArch32 Instruction Sets Overview
F1.13 Advanced SIMD data-processing instructions

F1.13.11 The Cryptographic Extension in AArch32 state

The instructions provided by the optional Cryptographic Extension use the Advanced SIMD and floating-point register file. For more information about the functions they provide see:
• Announcing the Advanced Encryption Standard.
• The Galois/Counter Mode of Operation.
• Announcing the Secure Hash Standard.

Table F1-31 shows the AArch32 Cryptographic Extension instructions.

Table F1-30 Miscellaneous Advanced SIMD data-processing instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Reciprocal Square Root Step</td>
<td>VRSQRTS on page F6-5568</td>
</tr>
<tr>
<td>Vector Reverse in halfwords</td>
<td>VREV16 on page F6-5516</td>
</tr>
<tr>
<td>Vector Reverse in words</td>
<td>VREV32 on page F6-5519</td>
</tr>
<tr>
<td>Vector Reverse in doublewords</td>
<td>VREV64 on page F6-5522</td>
</tr>
<tr>
<td>Vector Saturating Absolute</td>
<td>VQABS on page F6-5456</td>
</tr>
<tr>
<td>Vector Saturating Move and Narrow</td>
<td>VQMOVN, VQMOVUN on page F6-5472</td>
</tr>
<tr>
<td>Vector Saturating Negate</td>
<td>VQNEG on page F6-5474</td>
</tr>
<tr>
<td>Vector Swap</td>
<td>VSWP on page F6-5678</td>
</tr>
<tr>
<td>Vector Table Lookup</td>
<td>VTBL, VTBX on page F6-5680</td>
</tr>
<tr>
<td>Vector Transpose</td>
<td>VTRN on page F6-5683</td>
</tr>
<tr>
<td>Vector Unzip</td>
<td>VUZP on page F6-5700</td>
</tr>
<tr>
<td>Vector Zip</td>
<td>VZIP on page F6-5704</td>
</tr>
</tbody>
</table>

Table F1-31 AArch32 Cryptographic Extension instructions

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESD</td>
<td>AES single round decryption</td>
<td>AESD on page F6-4995</td>
</tr>
<tr>
<td>AESE</td>
<td>AES single round encryption</td>
<td>AESE on page F6-4997</td>
</tr>
<tr>
<td>AESIMC</td>
<td>AES inverse mix columns</td>
<td>AESIMC on page F6-4999</td>
</tr>
<tr>
<td>AESMC</td>
<td>AES mix columns</td>
<td>AESMC on page F6-5001</td>
</tr>
<tr>
<td>VMULL</td>
<td>Polynomial multiply long</td>
<td>VMULL (integer and polynomial) on page F6-5400a</td>
</tr>
<tr>
<td>SHA1C</td>
<td>SHA1 hash update (choose)</td>
<td>SHA1C on page F6-5009</td>
</tr>
<tr>
<td>SHA1H</td>
<td>SHA1 fixed rotate</td>
<td>SHA1H on page F6-5011</td>
</tr>
<tr>
<td>SHA1M</td>
<td>SHA1 hash update (majority)</td>
<td>SHA1M on page F6-5013</td>
</tr>
<tr>
<td>SHA1P</td>
<td>SHA1 hash update (parity)</td>
<td>SHA1P on page F6-5015</td>
</tr>
<tr>
<td>SHA1SU0</td>
<td>SHA1 schedule update 0</td>
<td>SHA1SU0 on page F6-5017</td>
</tr>
<tr>
<td>SHA1SU1</td>
<td>SHA1 schedule update 1</td>
<td>SHA1SU1 on page F6-5019</td>
</tr>
<tr>
<td>SHA256H</td>
<td>SHA256 hash update (part 1)</td>
<td>SHA256H on page F6-5021</td>
</tr>
</tbody>
</table>
The AArch32 Instruction Sets Overview
F1.13 Advanced SIMD data-processing instructions

See The Armv8 Cryptographic Extension on page A2-67 for information about the permitted implementation options for the Cryptographic Extension.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA256H2</td>
<td>SHA256 hash update (part 2)</td>
<td>SHA256H2 on page F6-5023</td>
</tr>
<tr>
<td>SHA256SU0</td>
<td>SHA256 schedule update 0</td>
<td>SHA256SU0 on page F6-5025</td>
</tr>
<tr>
<td>SHA256SU1</td>
<td>SHA256 schedule update 1</td>
<td>SHA256SU1 on page F6-5027</td>
</tr>
</tbody>
</table>

a. The Cryptographic Extension adds the variant of the instruction that operates on two 64-bit polynomials.
F1.14 Floating-point data-processing instructions

Table F1-32 summarizes the data-processing instructions in the floating-point instruction set. In this table, floating-point register means a register in the SIMD and floating-point register file. The BFloat16 floating-point instructions are provided by FEAT_AA32BF16.

For details of the floating-point arithmetic used by floating-point instructions, see Advanced SIMD and floating-point support on page A1-52.

Table F1-32 Floating-point data-processing instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFloat16 convert from single-precision to BF16 format writing to bottom half of single-precision register</td>
<td>VCVTB (BFloat16) on page F6-5164</td>
</tr>
<tr>
<td>BFloat16 convert from single-precision to BF16 format writing to top half of single-precision register</td>
<td>VCVTT (BFloat16) on page F6-5185</td>
</tr>
<tr>
<td>Convert between double-precision and single-precision</td>
<td>VCVT (between double-precision and single-precision) on page F6-5135</td>
</tr>
<tr>
<td>Convert between floating-point and fixed-point</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>Convert between half-precision and single-precision, writing to bottom half of single-precision register</td>
<td>VCVTB on page F6-5161</td>
</tr>
<tr>
<td>Convert between half-precision and single-precision, writing to top half of single-precision register</td>
<td>VCVTT on page F6-5182</td>
</tr>
<tr>
<td>Convert from floating-point to integer</td>
<td>VCVT (floating-point to integer, floating-point) on page F6-5143</td>
</tr>
<tr>
<td>Convert from floating-point to integer using FPSCR rounding mode</td>
<td>VCVTR on page F6-5178</td>
</tr>
<tr>
<td>Convert from integer to floating-point</td>
<td>VCVT (integer to floating-point, floating-point) on page F6-5147</td>
</tr>
<tr>
<td>Floating-point Javascript convert to signed fixed-point, rounding toward zero</td>
<td>VJCVT on page F6-5241</td>
</tr>
<tr>
<td>Copy from one floating-point register to another</td>
<td>VMOV (register) on page F6-5365</td>
</tr>
<tr>
<td>Divide</td>
<td>VDIV on page F6-5187</td>
</tr>
<tr>
<td>Move immediate value to a floating-point register</td>
<td>VMOV (immediate) on page F6-5358</td>
</tr>
<tr>
<td>Square Root</td>
<td>VSQRT on page F6-5606</td>
</tr>
<tr>
<td>Vector Absolute value</td>
<td>VABS on page F6-5039</td>
</tr>
<tr>
<td>Vector Add</td>
<td>VADD (floating-point) on page F6-5053</td>
</tr>
<tr>
<td>Vector Compare with exceptions disabled</td>
<td>VCMPE on page F6-5128</td>
</tr>
<tr>
<td>Vector Compare with exceptions enabled</td>
<td>VCMP on page F6-5124</td>
</tr>
<tr>
<td>Vector Fused Multiply Accumulate</td>
<td>VFMA on page F6-5203</td>
</tr>
<tr>
<td>Vector Fused Multiply Subtract</td>
<td>VFMS on page F6-5217</td>
</tr>
<tr>
<td>Vector Fused Negate Multiply Accumulate</td>
<td>VFNMA on page F6-5227</td>
</tr>
<tr>
<td>Vector Fused Negate Multiply Subtract</td>
<td>VFNMS on page F6-5230</td>
</tr>
<tr>
<td>Vector Multiply</td>
<td>VMUL (floating-point) on page F6-5390</td>
</tr>
</tbody>
</table>
Table F1-32 Floating-point data-processing instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Multiply Accumulate</td>
<td>VMLA (floating-point) on page F6-5326</td>
</tr>
<tr>
<td>Vector Multiply Subtract</td>
<td>VMLS (floating-point) on page F6-5339</td>
</tr>
<tr>
<td>Vector Negate Multiply</td>
<td>VNMUL on page F6-5421</td>
</tr>
<tr>
<td>Vector Negate Multiply Accumulate</td>
<td>VNMLA on page F6-5415</td>
</tr>
<tr>
<td>Vector Negate Multiply Subtract</td>
<td>VNMLS on page F6-5418</td>
</tr>
<tr>
<td>Vector Negate, by inverting the sign bit</td>
<td>VNEG on page F6-5411</td>
</tr>
<tr>
<td>Vector Subtract</td>
<td>VSUB (floating-point) on page F6-5664</td>
</tr>
</tbody>
</table>
Chapter F2
About the T32 and A32 Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

- Format of instruction descriptions on page F2-4116.
- Standard assembler syntax fields on page F2-4120.
- Conditional execution on page F2-4121.
- Shifts applied to a register on page F2-4123.
- Memory accesses on page F2-4125.
- Encoding of lists of general-purpose registers and the PC on page F2-4126.
- General information about the T32 and A32 instruction descriptions on page F2-4127.
- Additional pseudocode support for instruction descriptions on page F2-4140.
- Additional information about Advanced SIMD and floating-point instructions on page F2-4141.
F2.1 Format of instruction descriptions

The instruction descriptions in Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions and Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions normally use the following format:

- Instruction section title.
- Introduction to the instruction.
- A description of each encoding of the instruction.
- Assembler syntax.
- Pseudocode describing how the instruction operates.
- Notes, if applicable.

Each of these items is described in more detail in the following subsections.

F2.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instruction or instructions described in the section. When one mnemonic has multiple forms described in separate instruction sections, this is followed by a short description of the form in parentheses. The most common use of this is to distinguish between forms of an instruction in which one of the operands is an immediate value and forms in which it is a register.

F2.1.2 Introduction to the instruction

The introduction to the instruction briefly describes the main features of the instruction. This description is not necessarily complete and is not definitive. If there is any conflict between it and the more detailed information that follows, the latter takes priority.

F2.1.3 Instruction encodings

This is a list of one or more instruction encodings. Each instruction encoding is labeled as:

- A1, A2, A3 … for the first, second, third, and any additional A32 encodings.
- T1, T2, T3 … for the first, second, third, and any additional T32 encodings.

Each instruction encoding description consists of:

- An assembly syntax that ensures that the assembler selects the encoding in preference to any other encoding. Sometimes, multiple syntax variants are given. These are written in a typewriter font using the conventions described in Assembler syntax prototype line conventions on page F2-4118. The correct one to use can be indicated by:
  - A subheading that identifies the encodings that correspond to the syntax. See, for example, the subheading Flag setting, rotate right with extend variant in the description of the A1 encoding of the ADC, ADCS (register) instructions in A1 on page F5-4284.
  - An annotation to the syntax, such as Inside IT block or Outside IT block. See, for example, the syntax descriptions of the T1 encoding of the ADC, ADCS (register) instructions in T1 on page F5-4285.
In other cases, the correct one to use can be determined by looking at the assembler syntax description and using it to determine which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax variant that ensures re-assembly to any particular encoding, and the exact set of syntaxes that do so usually depends on the register numbers, immediate constants, and other operands to the instruction. For example, when assembling to the T32 instruction set, the syntax AND R0, R0, R8 ensures selection of a 32-bit encoding but AND R0, R0, R1 selects a 16-bit encoding.
For each instruction encoding belonging to a target instruction set, an assembler can use this information to
determine whether it can use that encoding to encode the instruction requested by the UAL source. If multiple
encodings can encode the instruction, then:

— If both a 16-bit encoding and a 32-bit encoding can encode the instruction, the architecture prefers the
16-bit encoding. This means the assembler must use the 16-bit encoding rather than the 32-bit
encoding.

Software can use the .W and .N qualifiers to specify the required encoding width, see Standard
assembler syntax fields on page F2-4120.

— If multiple encodings of the same length can encode the instruction, the Assembler syntax subsection
says which encoding is preferred, and how software can, instead, select the other encodings.

Each encoding also documents UAL syntax that selects it in preference to any other encoding.

If no encodings of the target instruction set can encode the instruction requested by the UAL source, normally
the assembler generates an error saying that the instruction is not available in that instruction set.

Note
In some cases, an instruction is available in one instruction set but not in another. The Assembler syntax
subsection identifies many of these cases. For example, the A32 instructions with bits<31:28> == 0b1111
described in Branch, branch with link, and block data transfer on page F4-4244, System register access,
Advanced SIMD, floating-point, and Supervisor call on page F4-4246, and Unconditional instructions on
page F4-4261 cannot have a Condition code, but the equivalent T32 instructions often can, and this usually
appears in the Assembler syntax subsection as a statement that the A32 instruction cannot be conditional.

However, some such cases are too complex to describe in the available space, so the definitive test of whether
an instruction is available in a given instruction set is whether there is an available encoding for it in that
instruction set.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to disassemble that
encoding to. However, disassemblers might wish to use simpler syntaxes when they are suitable for the
operand combination, to produce more readable disassembled code.

• An encoding diagram, where:
  — For a 32-bit A32 encoding diagram, the bits are numbered from 31-0.
  — For a 16-bit T32 encoding diagram, the bits are numbered from 15-0.

This halfword can be described as hw1 of the instruction.

  — For a 32-bit T32 encoding diagram, the bits are numbered from 15-0 for each halfword, as a reminder
that a 32-bit T32 instruction consists of two consecutive halfwords rather than a word.

In this case, the left-hand halfword in the diagram is identified as hw1, and the right-hand halfword is
identified as hw2.

Where instructions are stored using the standard little-endian instruction endianness:

  — The encoding diagram for an A32 instruction at address A shows, from left to right, the bytes at
addresses A+3, A+2, A+1, A.

  — The encoding diagram for a 32-bit T32 instruction shows bytes in the order A+1, A for hw1, followed
by bytes A+3, A+2 for hw2.

• Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction fields
into inputs to the encoding-independent pseudocode in the Operation subsection, and that picks out any
special cases in the encoding. For a detailed description of the pseudocode used and of the relationship
between the encoding diagram, the encoding-specific pseudocode and the encoding-independent
pseudocode, see Appendix K14 Arm Pseudocode Definition.

F2.1.4 Assembler symbols

The Assembly symbols describe the standard UAL syntax for the instruction.

Each syntax description consists of the following elements:

• Descriptions of all variable or optional fields of the syntax.
Some syntax fields are standardized across all or most instructions. *Standard assembler syntax fields on page F2-4120* describes these fields.

By default, syntax fields that specify registers, such as `<Rd>`, `<Rn>`, or `<Rt>`, can be any of R0-R12 or LR in T32 instructions, and any of R0-R12, SP, or LR in A32 instructions. These require that the encoding-specific pseudocode set the corresponding integer variable (such as `d`, `n`, or `t`) to the corresponding register number, using 0-12 for R0-R12, 13 for SP, or 14 for LR:

- Normally, software can do this by setting the corresponding field in the instruction, typically named `Rd`, `Rn`, `Rt`, to the binary encoding of that number.
- In the case of 16-bit T32 encodings, the field is normally of length 3, and so the encoding is only available when the assembler syntax specifies one of R0-R7. Such encodings often use a register field name like `Rdn`. This indicates that the encoding is only available if `<Rd>` and `<Rn>` specify the same register, and that the register number of that register is encoded in the field if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted range of registers or documents other differences from the default rules for such fields. Examples of extensions are permitting the use of the SP in a T32 instruction, or permitting the use of the PC, identified using register number 15.

- Where appropriate, text that briefly describes changes from the pre-UAL assembler syntax. Where present, this usually consists of an alternative pre-UAL form of the assembler mnemonic. The pre-UAL assembler syntax does not conflict with UAL. Arm recommends that it is supported, as an optional extension to UAL, so that pre-UAL assembler source files can be assembled.

### Assembler syntax prototype line conventions

The following conventions are used in assembler syntax prototype lines and their subfields:

- **< >** Any item bracketed by `<` and `>` is a short description of a type of value to be supplied by the user in that position. A longer description of the item is normally supplied by subsequent text. Such items often correspond to a similarly named field in an encoding diagram for an instruction. When the correspondence only requires the binary encoding of an integer value or register number to be substituted into the instruction encoding, it is not described explicitly. For example, if the assembler syntax for an instruction contains an item `<Rn>` and the instruction encoding diagram contains a 4-bit field named `Rn`, the number of the register specified in the assembler syntax is encoded in binary in the instruction field.

  If the correspondence between the assembler syntax item and the instruction encoding is more complex than simple binary encoding of an integer or register number, the item description indicates how it is encoded. This is often done by specifying a required output from the encoding-specific pseudocode, such as `add = TRUE`. The assembler must only use encodings that produce that output.

- **{ }** Any item bracketed by `{` and `}` is optional. A description of the item and of how its presence or absence is encoded in the instruction is normally supplied by subsequent text.

  Many instructions have an optional destination register. Unless otherwise stated, if such a destination register is omitted, it is the same as the immediately following source register in the instruction syntax.

- **#** In the assembler syntax, numeric constants are normally preceded by a #. Some UAL instruction syntax descriptions explicitly show this # as optional. Any UAL assembler:

  - Must treat the # as optional where an instruction syntax description shows it as optional.
  - Can treat the # either as mandatory or as optional where an instruction syntax description does not show it as optional.

    ——— Note ———

    Arm recommends that UAL assemblers treat all uses of # shown in this manual as optional.

- **spaces** Single spaces are used for clarity, to separate items. When a space is obligatory in the assembler syntax, two or more consecutive spaces are used.
+/− This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and }, the special characters described above do not appear in the basic forms of assembler instructions documented in this manual. In a few places, the { and } characters must be encoded as part of a variable item. When this happens, the long description of the variable item indicates how they must be used.

**F2.1.5 Pseudocode describing how the instruction operates**

The *Operation for all classes* subsection contains encoding-independent pseudocode that describes the main operation of the instruction. For a detailed description of the pseudocode used and of the relationship between the encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see *Appendix K14 Arm Pseudocode Definition*. 
F2.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

\(<c>\)

Is an optional field. It specifies the condition under which the instruction is executed. See Conditional execution on page F2-4121 for the range of available conditions and their encoding. If \(<c>\) is omitted, it defaults to always (AL).

\(<q>\)

Specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

\(\cdot N\)

Meaning narrow, specifies that the assembler must select a 16-bit encoding for the instruction. If this is not possible, an assembler error is produced.

\(\cdot W\)

Meaning wide, specifies that the assembler must select a 32-bit encoding for the instruction. If this is not possible, an assembler error is produced.

If neither \(\cdot W\) nor \(\cdot N\) is specified, the assembler can select either 16-bit or 32-bit encodings. If both are available, it must select a 16-bit encoding. In a few cases, more than one encoding of the same length can be available for an instruction. The rules for selecting between such encodings are instruction-specific and are part of the instruction description. The assembler syntax includes a mandatory \(\cdot W\) qualifier, along with a note describing the cases in which it applies, where this qualifier is required to select a particular encoding for an instruction. Additional assembler syntax will describe the syntax when the conditions are not met.

Note

When assembling to the A32 instruction set, the \(\cdot N\) qualifier produces an assembler error and the \(\cdot W\) qualifier has no effect.
F2.3 Conditional execution

Most T32 and A32 instructions can be executed conditionally, based on the values of the APSR Condition flags. Table F2-1 lists the available conditions.

Table F2-1 Condition codes

<table>
<thead>
<tr>
<th>cond</th>
<th>Mnemonic extension</th>
<th>Meaning (integer)</th>
<th>Meaning (floating-point)</th>
<th>Condition flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>EQ</td>
<td>Equal</td>
<td>Equal</td>
<td>Z == 1</td>
</tr>
<tr>
<td>0001</td>
<td>NE</td>
<td>Not equal</td>
<td>Not equal, or unordered</td>
<td>Z == 0</td>
</tr>
<tr>
<td>0010</td>
<td>CS b</td>
<td>Carry set</td>
<td>Greater than, equal, or unordered</td>
<td>C == 1</td>
</tr>
<tr>
<td>0011</td>
<td>CC c</td>
<td>Carry clear</td>
<td>Less than</td>
<td>C == 0</td>
</tr>
<tr>
<td>0100</td>
<td>MI</td>
<td>Minus, negative</td>
<td>Less than</td>
<td>N == 1</td>
</tr>
<tr>
<td>0101</td>
<td>PL</td>
<td>Plus, positive or zero</td>
<td>Greater than, equal, or unordered</td>
<td>N == 0</td>
</tr>
<tr>
<td>0110</td>
<td>VS</td>
<td>Overflow</td>
<td>Unordered</td>
<td>V == 1</td>
</tr>
<tr>
<td>0111</td>
<td>VC</td>
<td>No overflow</td>
<td>Not unordered</td>
<td>V == 0</td>
</tr>
<tr>
<td>1000</td>
<td>HI</td>
<td>Unsigned higher</td>
<td>Greater than, or unordered</td>
<td>C == 1 and Z == 0</td>
</tr>
<tr>
<td>1001</td>
<td>LS</td>
<td>Unsigned lower or same</td>
<td>Less than or equal</td>
<td>C == 0 or Z == 1</td>
</tr>
<tr>
<td>1010</td>
<td>GE</td>
<td>Signed greater than or equal</td>
<td>Greater than or equal</td>
<td>N == V</td>
</tr>
<tr>
<td>1011</td>
<td>LT</td>
<td>Signed less than</td>
<td>Less than, or unordered</td>
<td>N != V</td>
</tr>
<tr>
<td>1100</td>
<td>GT</td>
<td>Signed greater than</td>
<td>Greater than</td>
<td>Z == 0 and N == V</td>
</tr>
<tr>
<td>1101</td>
<td>LE</td>
<td>Signed less than or equal</td>
<td>Less than, equal, or unordered</td>
<td>Z == 1 or N != V</td>
</tr>
<tr>
<td>1110</td>
<td>None (AL) d</td>
<td>Always (unconditional)</td>
<td>Always (unconditional)</td>
<td>Any</td>
</tr>
</tbody>
</table>

- a. Unordered means at least one NaN operand.
- b. HS (unsigned higher or same) is a synonym for CS.
- c. LO (unsigned lower) is a synonym for CC.
- d. AL is an optional mnemonic extension for always, except in IT instructions. For details, see IT on page F5-4416.

In T32 instructions, the condition, if it is not AL, is normally encoded in a preceding IT instruction. For more information, see Conditional instructions on page F1-4077 and IT on page F5-4416. Some conditional branch instructions do not require a preceding IT instruction, because they include a Condition code in their encoding.

For performance reasons, Armv8 deprecates the use of IT other than with a single 16-bit T32 instruction from a specified subset of the 16-bit T32 instructions, see Partial deprecation of IT on page F1-4094. In addition, implementations can provide a set of ITD control fields, SCTLR.ITD, SCTLR_EL1.ITD, and HSCTLR.ITD, to disable these deprecated uses, making them UNDEFINED. For more information, see:

- Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality on page G1-5821.
- Disabling or enabling EL2 use of AArch32 deprecated functionality on page G1-5830.

In A32 instructions, bits[31:28] of the instruction contain either:

- The Condition code, see The Condition code field in A32 instruction encodings on page F2-4122.
- 0b1111 for some A32 instructions that can only be executed unconditionally.
### F2.3.1 The Condition code field in A32 instruction encodings

Every conditional A32 instruction contains a 4-bit Condition code field, the \textit{cond} field, in bits 31-28:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

This field contains one of the values \texttt{0b0000-0b1110}, as shown in Table F2-1 on page F2-4121. Most instruction mnemonics can be extended with the letters defined in the \textit{Mnemonic extension} on page F2-4121 column of that table.

If the \textit{always} (AL) condition is specified, the instruction is executed irrespective of the value of the Condition flags. The absence of a Condition code on an instruction mnemonic implies the AL Condition code.

### F2.3.2 Pseudocode description of conditional execution

The \texttt{AArch32.CurrentCond()} function returns a 4-bit condition specifier as follows:

- For A32 instructions, it returns bits[31:28] of the instruction.
- For the T1 and T3 encodings of the Branch instruction (see \texttt{B} on page F5-4329), it returns the 4-bit \textit{cond} field of the encoding.
- For all other T32 instructions:
  - If \texttt{PSTATE.IT<3:0> != '0000'} it returns \texttt{PSTATE.IT<7:4>}
  - If \texttt{PSTATE.IT<7:0> == '00000000'} it returns \texttt{'1110'}
  - Otherwise, execution of the instruction is \texttt{CONSTRAINED UNPREDICTABLE}.

For more information, see \textit{Process state, PSTATE} on page E1-3993.

The \texttt{ConditionPassed()} function uses this condition specifier and the Condition flags to determine whether the instruction must be executed, by calling the \texttt{ConditionHolds()} function.

Chapter J1 \textit{Armv8 Pseudocode} includes the definitions of these functions.

\textit{Undefined Instruction exception} on page G1-5778 describes the handling of conditional instructions that are \texttt{UNDEFINED}, \texttt{UNPREDICTABLE}, or \texttt{CONSTRAINED UNPREDICTABLE}. The pseudocode in the manual, as a sequential description of the instructions, has limitations in this respect. For more information, see \textit{Limitations of the instruction pseudocode} on page K14-8132.
F2.4 Shifts applied to a register

A32 register offset load/store word and unsigned byte instructions can apply a wide range of different constant shifts to the offset register. Both T32 and A32 data-processing instructions can apply the same range of different constant shifts to the second operand register. For details, see Constant shifts.

A32 data-processing instructions can apply a register-controlled shift to the second operand register.

F2.4.1 Constant shifts

These are the same in T32 and A32 instructions, except that the input bits come from different positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:

- (omitted) No shift.
- LSL #<n> Logical shift left <n> bits. 1 <= <n> <= 31.
- LSR #<n> Logical shift right <n> bits. 1 <= <n> <= 32.
- ASR #<n> Arithmetic shift right <n> bits. 1 <= <n> <= 32.
- ROR #<n> Rotate right <n> bits. 1 <= <n> <= 31.
- RRX Rotate right one bit, with extend. Bit[0] is written to shifter_carry_out, bits[31:1] are shifted right one bit, and the Carry flag is shifted into bit[31].

Note

Assemblers can permit the use of some or all of ASR #0, LSL #0, LSR #0, and ROR #0 to specify that no shift is to be performed. This is not standard UAL, and the encoding selected for T32 instructions might vary between UAL assemblers if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must omit the shift specifier when the instruction specifies no shift.

Similarly, assemblers can permit the use of #0 in the immediate forms of ASR, LSL, LSR, and ROR instructions to specify that no shift is to be performed, that is, that a MOV (register) instruction is wanted. Again, this is not standard UAL, and the encoding selected for T32 instructions might vary between UAL assemblers if it is used. To ensure disassembled code assembles to the original instructions, disassemblers must use the MOV (register) syntax when the instruction specifies no shift.

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:

- (omitted) type = 0b00, immediate = 0.
- LSL #<n> type = 0b00, immediate = <n>.
- LSR #<n> type = 0b01.
  - If <n> < 32, immediate = <n>.
  - If <n> == 32, immediate = 0.
- ASR #<n> type = 0b10.
  - If <n> < 32, immediate = <n>.
  - If <n> == 32, immediate = 0.
- ROR #<n> type = 0b11, immediate = <n>.
- RRX type = 0b11, immediate = 0.
F2.4.2 Register controlled shifts

These are only available in A32 instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:
- **AR**  Arithmetic shift right, encoded as type = 0b10.
- **LSL** Logical shift left, encoded as type = 0b00.
- **LSR** Logical shift right, encoded as type = 0b01.
- **ROR** Rotate right, encoded as type = 0b11.

The bottom byte of <Rs> contains the shift amount.

F2.4.3 Pseudocode description of instruction-specified shifts and rotates

The pseudocode enumeration **SRTType{}** defines the shift types. Shift and rotate instruction decode is described by the pseudocode function:

- **DecodeImmShift()** for a constant shift.
- **DecodeRegShift()** for a register controlled shift.

Shift and rotate operations are made by the pseudocode function **Shift()**.
F2.5 Memory accesses

Commonly, the following addressing modes are permitted for memory access instructions:

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used as the address for the memory access. The value of the base register is unchanged.

The assembly language syntax for this mode is:

\[ [<Rn>, <offset>] \]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used as the address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

\[ [<Rn>, <offset>!] \]

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the memory access. The offset value is applied to the address, and written back into the base register.

The assembly language syntax for this mode is:

\[ [<Rn>, <offset>] \]

In each case, \( <Rn> \) is the base register. \( <offset> \) can be:

- An immediate constant, such as \( <\text{imm8}> \) or \( <\text{imm12}> \).
- An index register, \( <Rm> \).
- A shifted index register, such as \( <Rm>, \text{LSL} \ #\text{shift}\).

For information about unaligned access, endianness, and exclusive access, see:

- *Alignment support on page E2-4044.*
- *Endian support on page E2-4046.*
- *Synchronization and semaphores on page E2-4063.*
F2.6 Encoding of lists of general-purpose registers and the PC

A number of instructions operate on lists of general-purpose registers. For some load instructions, the list of registers to be loaded can include the PC. For these instructions, the assembler syntax includes a <registers> field, that provides a list of the registers to be operated on, with list entries separated by commas.

The registers list is encoded in the instruction encoding. Most often, this is done using an 8-bit, 13-bit, or 16-bit register_list field. This section gives more information about these and other possible register list encodings.

In a register_list field, each bit corresponds to a single register, and if the <registers> field of the assembler instruction includes Rt then register_list<0> is set to 1, otherwise it is set to 0.

The full rules for the encoding of lists of general-purpose registers, and possibly the PC, are:

- Except for the cases listed here, 16-bit T32 encodings use an 8-bit register list, and can access only registers R0-R7.

  The exceptions to this rule are:
  - The T1 encoding of POP uses an 8-bit register list, and an additional bit, \( p \), that corresponds to the PC. This means it can access any of R0-R7 and the PC.
  - The T1 encoding of PUSH uses an 8-bit register list, and an additional bit, \( m \), that corresponds to the LR. This means it can access any of R0-R7 and the LR.

- 32-bit T32 encodings of load operations use a 13-bit register list, and two additional bits, \( m \) and \( p \), corresponding to the LR and the PC. This means these instructions can access any of R0-R12 and the LR and PC.

- 32-bit T32 encodings of store operations use a 13-bit register list, and one additional bit, \( m \), corresponding to the LR. This means these instructions can access any of R0-R12 and the LR.

- Except for the case listed here, A32 encodings use a 16-bit register list. This means these instructions can access any of R0-R12 and the SP, LR, and PC.

  The exception to this rule is:
  - The System instructions LDM (exception return) and LDM (User registers) use a 15-bit register list. This means these instructions can access any of R0-R12 and the SP and LR.

- The T3 and A2 encodings of POP, and the T3 and A2 encodings of PUSH, access a single register from the set of registers \{R0-R12, LR, PC\} and encode the register number in the \( Rt \) field.

--- Note ---

POP is a load operation, and PUSH is a store operation.

--- Note ---

Some Advanced SIMD and floating-point instructions operate on lists of SIMD and floating-point registers. The assembler syntax of these instructions includes a <list> field that specifies the registers to be operated on, and the description of the instruction in Alphabetical list of T32 and A32 base instruction set instructions on page F5-4280 defines the use and encoding of this field.
F2.7 General information about the T32 and A32 instruction descriptions

Chapter F3 T32 Instruction Set Encoding describes the T32 instruction encodings, and Chapter F4 A32 Instruction Set Encoding describes the A32 instruction encodings. The following subsections give more information about the descriptions of these instructions and their encodings:

- **Execution of instructions in debug state.**
- **Fixed values in AArch32 instruction and System register descriptions.**
- **UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space on page F2-4128.**
- **T32 and A32 Advanced SIMD and floating-point instruction encodings on page F2-4129.**
- **The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions on page F2-4133.**
- **The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions on page F2-4134.**
- **Modified immediate constants in T32 and A32 instructions on page F2-4134.**

F2.7.1 Execution of instructions in debug state

In general, except for the instructions described in Debug state on page F1-4096, the T32 instruction descriptions do not indicate any differences in the behavior of the instruction if it is executed in Debug state. For this information, see Executing instructions in Debug state on page H2-7025.

---

**Note**

- A32 instructions cannot be executed in Debug state.
- For many T32 instructions, execution is unchanged in Debug state. Executing instructions in Debug state on page H2-7025 identifies these instructions.

F2.7.2 Fixed values in AArch32 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions. The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the corresponding Glossary entry.

---

**Note**

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RES0 and RES1, as shown in the Glossary.

---

The following terms are used to describe bits or fields with fixed values:

- **RAZ** Read-As-Zero. See Read-As-Zero (RAZ).
- **(0), RES0** Reserved, Should-Be-Zero (SBZ) or RES0.

In diagrams, a RAZ bit can be shown as 0.

In instruction encoding diagrams, and sometimes in other descriptions, (0) indicates an SBZ bit. If the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if the value of the bit was 0.
- Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0)(0) or as (000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be shown as RES0. For more information, see the Glossary definition of RES0.

---

**Note**

Some of the System instruction descriptions in this chapter are based on the field description of the input value for the instruction. These are register descriptions and therefore can include RES0 fields,
The (0) and RES0 descriptions can be applied to bits or bitfields that are read-only, or are write-only. The Glossary definitions cover these cases.

**RAO**
Read-As-One. See Read-As-One (RAO).
In diagrams, a RAO bit can be shown as 1.

**(1), RES1**
Reserved, Should-Be-One (SBO) or RES1.
In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates a SBO bit. If the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:
- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if the value of the bit was 1.
- Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as (111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be shown as RES1. For more information, see the Glossary definition of RES1.

---

**Note**

Some of the System instruction descriptions in this chapter are based on the field description of the input value for the instruction. These are register descriptions and therefore can include RES1 fields, as shown above.

The (1) and RES1 descriptions can be applied to bits or bitfields that are read-only, or are write-only. The Glossary definitions cover these cases.

---

**Note**

In register diagrams, (0) is a synonym for RES0, and (1) is a synonym for RES1, where RES0 and RES1 are defined in the Glossary. However, when used in an instruction encoding diagram, (0) and (1) have the narrower definition that behavior is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE if either:
- A bit marked as (0) has the value 1.
- A bit marked as (1) has the value 0.

---

**F2.7.3 UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space**

An attempt to execute an unallocated instruction results in either:

- Unpredictable behavior. The instruction is described as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE. Armv8-A greatly reduces the architecturally UNPREDICTABLE behavior in AArch32 state. Most cases that earlier versions of the architecture describe as UNPREDICTABLE become either:
  - CONSTRAINED UNPREDICTABLE, meaning the architecture defines a limited range of permitted behaviors.
  - Fully predictable.
  For more information, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

- An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in Chapter F3 T32 Instruction Set Encoding or Chapter F4 A32 Instruction Set Encoding.

An instruction is UNPREDICTABLE only if:

- It is declared as UNPREDICTABLE in an instruction description or in Chapter F3 or Chapter F4, and Appendix K1 does not redefine the behavior as CONSTRAINED UNPREDICTABLE.

- The pseudocode for that encoding does not indicate that a different special case applies, and a bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1 respectively. In most cases, Armv8 makes these cases CONSTRAINED UNPREDICTABLE, as described in SBZ or SBO fields T32 and A32 in instructions on page K1-7944.
Unless otherwise specified, T32 and A32 instructions provided as part of an architectural extension, or by an optional feature of the architecture, are UNDEFINED in an implementation that does not include that extension or feature.

--- Note ---
Examples of where this rule applies are:

- The instructions provided by the Cryptographic Extension.
- The System instructions that provide access to the System registers of the OPTIONAL Performance Monitors Extension.
- The Advanced SIMD and floating-point instructions.

---

For more information about UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction behavior, see *Undefined Instruction exception on page G1-5778.*

### F2.7.4 T32 and A32 Advanced SIMD and floating-point instruction encodings

The T32 and A32 encodings of Advanced SIMD and floating-point instructions that are described in Chapter F3 *T32 Instruction Set Encoding* and in Chapter F4 *A32 Instruction Set Encoding* are common to the T32 and A32 instruction sets. This means:

- The instruction groups, and the set of instructions in each group, are identical for T32 and A32.
- For each instruction:
  - Each T32 encoding is exactly equivalent to an A32 encoding.
  - There is no T32 encoding without an equivalent A32 encoding, and no A32 encoding without an equivalent T32 encoding.

--- Note ---
In the T32 instruction sets, the Advanced SIMD and floating-point instructions have 32-bit encodings.

---

32-bit T32 encodings are described as two contiguous halfwords, \{hw1:hw2\}, as described in *Instruction encodings on page F2-4116.* In general:

- hw1 of a T32 encoding maps onto bits[31:16] of an equivalent A32 encoding.
- hw2 of a T32 encoding maps onto bits[15:0] of an equivalent A32 encoding.

However, the different structures of the T32 instruction encoding space and the A32 instruction encoding space mean that:

- For a given Advanced SIMD and floating-point instruction group:
  - The positions of the fields that identify the instruction, or instruction encoding, within the instruction group might differ between the T32 encodings and the A32 encodings.
  - However, the field values that identify the instruction of instruction encoding are identical for the T32 encoding and the A32 encoding.

The remainder of this section describes the equivalence of the T32 and A32 encodings for each of the Advanced SIMD and floating-point instruction groups.

#### Advanced SIMD data-processing

The T32 encoding of the Advanced SIMD data-processing group is:
The A32 encoding of the Advanced SIMD data-processing group is:

```
| 31 | 25 24 23 22 | | | | | | | | 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1111001 | | | | | | | | | | | | |
```

The encodings in this group are identified by:

- \( \text{hw1}[15:13] \) of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and:
  - Has the value \( 0b111 \) in the T32 encoding.
  - Has the value \( 0b001 \) in the A32 encoding.

- \( \text{hw1}[11:8] \) of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value \( 0b1111 \).

This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this group:

<table>
<thead>
<tr>
<th>T32 encoding</th>
<th>A32 encoding</th>
<th>Field size</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0:op1</td>
<td>op0</td>
<td>2 bits</td>
</tr>
<tr>
<td>op2</td>
<td>op1</td>
<td>15 bits</td>
</tr>
<tr>
<td>op3</td>
<td>op2</td>
<td>1 bit</td>
</tr>
<tr>
<td>op4</td>
<td>op3</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

**Advanced SIMD element or structure load/store**

The T32 encoding of the Advanced SIMD element or structure load/store group is:

```
| 15 | 13 12|11 8 7 6 | 0 |15 | | 5 4 3 0 | |
|---|---|---|---|---|---|---|---|
| 111 1111001 | | | | | | | |
```

The A32 encoding of the Advanced SIMD element or structure load/store group is:

```
| 31 | 24 23 22 21 20 |19 | | | | | | | | 12|11|10|9 | | | | 0 |
| 11110100 |
```

The encodings in this group are identified by:

- \( \text{hw1}[15:12] \) of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and has the value \( 0b1111 \).
• hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and:
  — Has the value 0b1001 in the T32 encoding.
  — Has the value 0b0100 in the A32 encoding.

• hw1[4] of the T32 encoding is equivalent to bit[20] of the A32 encoding, and has the value 0b0.

op0, op1, and op2 are the fields that identify the instructions, or instruction encodings, within this group, and they are in equivalent positions in the T32 and A32 encodings.

Floating-point and Advanced SIMD load/store and 64-bit register moves

The T32 encoding of the Floating-point and Advanced SIMD load/store and 64-bit register moves group is:

<table>
<thead>
<tr>
<th>15</th>
<th>8</th>
<th>5 4</th>
<th>0</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110110</td>
<td>op0</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The A32 encoding of the Floating-point and Advanced SIMD load/store and 64-bit register moves group is:

31	27	24	21 20		12	11	8	0
----	----	----	------		----	----	---	---
!=1111	110	op0	101					

The encodings in the group are identified by:

• hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:
  — Has the value 0b1110 in the T32 encoding.
  — Can have any value other than 0b1111 in the A32 encoding.
  This range of values is required because A32 instructions in this group can be executed conditionally, see Conditional execution on page F2-4121.

• hw1[11:9] of the T32 encoding is equivalent to bits[27:25] of the A32 encoding, and has the value 0b110.

• hw2[11:9] of the T32 encoding is equivalent to bits[11:9] of the A32 encoding, and has the value 0b101.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent positions in the T32 and A32 encodings.

Floating-point and Advanced SIMD 32-bit register moves

The T32 encoding of the Floating-point and Advanced SIMD 32-bit register moves group is:

15		7 5 4	0	12	11	8	7 5 4	0
----		-----	---	----	----	---	-----	---
11101110	op0	101	1					

The A32 encoding of the Advanced SIMD 32-bit register moves group is:

31	27	23	21 20		12	11	8	7 5 4	0
----	----	----	------		----	----	---	-----	---
!=1111	1110	op0	101	1					
The encodings in this group are identified by:

- hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:
  - Has the value 0b1110 in the T32 encoding.
  - Can have any value other than 0b1111 in the A32 encoding.
  - This range of values is required because A32 instructions in this group can be executed conditionally, see Conditional execution on page F2-4121.

- hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.
- hw1[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b1.

op0 is the field that identifies the instructions, or instruction encodings, within this group, and is in equivalent positions in the T32 and A32 encodings.

**Floating-point data-processing**

The T32 encoding of the Floating-point data-processing group is:

<table>
<thead>
<tr>
<th>15</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>10</th>
<th>9</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101110</td>
<td>op0</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The A32 encoding of the Floating-point data-processing group is:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1110</td>
<td>op0</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The encodings in this group are identified by:

- hw1[15:12] of the T32 encoding is equivalent to bits[31:28] of the A32 encoding, and:
  - In the T32 encoding, hw1[15:13] has the value 0b111, and hw1[12] is the op0 parameter used in identifying instruction encodings within this group.
  - In the A32 encoding, cond is the cond field and also implies the value of bit[28] of some A32 instruction encodings within this group, as the following table shows:

<table>
<thead>
<tr>
<th>cond</th>
<th>Significance of bit[28] in A32 encodings</th>
</tr>
</thead>
<tbody>
<tr>
<td>!= 0b1111</td>
<td>Part of the cond field.</td>
</tr>
<tr>
<td>0b1111</td>
<td>Has fixed value of 1.</td>
</tr>
</tbody>
</table>

The range of cond values other than 0b1111 is required because A32 instructions in this group can be executed conditionally, see Conditional execution on page F2-4121.

- hw1[11:8] of the T32 encoding is equivalent to bits[27:24] of the A32 encoding, and has the value 0b1110.
- hw1[4] of the T32 encoding is equivalent to bit[4] of the A32 encoding, and has the value 0b0.
This table shows the equivalence of the fields that identify the instructions, or instruction encodings, within this group:

<table>
<thead>
<tr>
<th>T32 encoding</th>
<th>A32 encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>Bit[28] of the instruction encoding is 1 when cond is 0b1111.</td>
</tr>
<tr>
<td>op1</td>
<td>op0</td>
</tr>
<tr>
<td>op2</td>
<td>op1</td>
</tr>
<tr>
<td>op3</td>
<td>op2</td>
</tr>
</tbody>
</table>

**F2.7.5 The PC and the use of 0b1111 as a register specifier in T32 and A32 instructions**

Restrictions on the use of PC or 0b1111 as a register specifier differ between the T32 and the A32 instruction sets, as described in:

- T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier.
- A32 restrictions on the use of PC or 0b1111 as a register specifier on page F2-4134.

**T32 restrictions on the use of the PC, and use of 0b1111 as a register specifier**

The use of 0b1111 as a register specifier is not normally permitted in T32 instructions. When a value of 0b1111 is permitted, a variety of meanings is possible. For register reads, these meanings include:

- Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch instructions TBB and TBH can be the PC. This means branch tables can be placed in memory immediately after the instruction.

  _________ Note _________

  Arm deprecates use of the PC as the base register in the STC instruction.

- Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits[1:0] forced to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and LDRSH instructions can be the word-aligned PC. This provides PC-relative data addressing. In addition, some encodings of the ADD and SUB instructions permit their source registers to be 0b1111 for the same purpose.

- Read zero. This is done in some cases when one instruction is a special case of another, more general instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the other page.

For register writes, these meanings include:

- The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as 0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. Bit[0] of the loaded value selects whether to execute A32 or T32 instructions after the branch.

- Some other instructions write the PC in similar ways. An instruction can specify that the PC is written:
  - Implicitly, for example, branch instructions.
  - Explicitly by a register specifier of 0b1111, for example 16-bit MOV (register) instructions.
  - Explicitly by using a register mask, for example LDM instructions.

  The address to branch to can be:
  - A loaded value, for example, RFE.
  - A register value, for example, BX.
  - The result of a calculation, for example, TBB or TBH.
The method of choosing the instruction set used after the branch can be:

- Similar to the LDR case, for example, LDM or BX.
- A fixed instruction set other than the one currently being used, for example, the immediate form of BLX.
- Unchanged, for example, branch instructions or 16-bit MOV (register) instructions.
- Set from the SPSR.T bit, for RFE and SUBS PC, LR, #imm8.

- Discard the result of a calculation. This is done in some cases when one instruction is a special case of another, more general instruction, but with the result discarded. In these cases, the instructions are listed on separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the other page.

- If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the instruction is a memory hint instead of a load operation.

- If the destination register specifier of an MRC instruction is 0b1111, bits[31:28] of the value transferred from the System register are written to the N, Z, C, and V Condition flags in the APSR, and bits[27:0] are discarded.

**A32 restrictions on the use of PC or 0b1111 as a register specifier**

In A32 instructions, the use of 0b1111 as a register specifier specifies the PC.

Many instructions are CONSTRAINED UNPREDICTABLE if they use 0b1111 as a register specifier. This is specified by pseudocode in the instruction description. Armv8-A constrains the resulting CONSTRAINED UNPREDICTABLE behavior, see *Using R15 on page K1-7941.*

---

**Note**

Arm deprecates use of the PC as the base register in any store instruction.

---

**F2.7.6 The SP and the use of 0b1101 as a register specifier in T32 and A32 instructions**

In the T32 and A32 instruction sets, Arm recommends that the use of 0b1101 as a register specifier specifies the SP.

---

**Note**

- The recommendation that the register specifier 0b1101 is only used to specify the SP applies to both the T32 and the A32 instruction sets.

- Despite this recommendation, T32 instructions that can access R13, or the SP, behave predictably in Armv8. This differs from Armv7, where many uses of R13 are defined as UNPREDICTABLE. For more information about these cases, see the *ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.*

---

**F2.7.7 Modified immediate constants in T32 and A32 instructions**

The following sections describe the encoding of modified immediate constants:

- *Modified immediate constants in T32 instructions on page F2-4135.*
- *Modified immediate constants in A32 instructions on page F2-4136.*
- *Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137.*
- *Modified immediate constants in T32 and A32 floating-point instructions on page F2-4138.*
Modified immediate constants in T32 instructions

The encoding of a modified immediate constant in a 32-bit T32 instruction is:

Table F2-2 shows the range of modified immediate constants available in T32 data-processing instructions, and their encoding in the a, b, c, d, e, f, g, h, and i bits, and the imm3 field, in the instruction.

Table F2-2 Encoding of modified immediates in T32 data-processing instructions

<table>
<thead>
<tr>
<th>i:imm3:a</th>
<th>&lt;const&gt; a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000x</td>
<td>00000000 00000000 00000000 abcdefgh</td>
</tr>
<tr>
<td>0001x</td>
<td>00000000 abcdefgh 00000000 abcdefgh b</td>
</tr>
<tr>
<td>0010x</td>
<td>abcdefgh 00000000 abcdefgh 00000000 b</td>
</tr>
<tr>
<td>0011x</td>
<td>abcdefgh abcdefgh abcdefgh abcdefgh b</td>
</tr>
<tr>
<td>01000</td>
<td>1bcdefgh 00000000 00000000 00000000</td>
</tr>
<tr>
<td>01001</td>
<td>01bcdefgh 00000000 00000000 00000000 c</td>
</tr>
<tr>
<td>01010</td>
<td>001bcdefgh 00000000 00000000 00000000 c</td>
</tr>
<tr>
<td>01011</td>
<td>0001bcdefgh 00000000 00000000 00000000 c</td>
</tr>
<tr>
<td>11101</td>
<td>00000000 00000000 000001bcdefgh000 c</td>
</tr>
<tr>
<td>11110</td>
<td>00000000 00000000 00000001bcdefgh0</td>
</tr>
<tr>
<td>11111</td>
<td>00000000 00000000 0000000001bcdefgh0 c</td>
</tr>
</tbody>
</table>

a. This table shows the immediate constant value in binary form, to relate abcdefgh to the encoding diagram. In assembly syntax, the immediate value is specified in the usual way (a decimal number by default).
b. Arm deprecates using a modified immediate with abcdefgh == 00000000, and these cases are CONSTRAINED UNPREDICTABLE, see UNPREDICTABLE cases in immediate constants in T32 data-processing instructions on page K1-7944.
c. Not available in A32 instructions if h == 1.

Note

As the footnotes to Table F2-2 show, the range of values available in T32 modified immediate constants is slightly different from the range of values available in A32 instructions. See Modified immediate constants in A32 instructions on page F2-4136 for the A32 values.

Carry out

A logical instruction with i:imm3:a == '00xxx' does not affect the Carry flag. Otherwise, a logical flag-setting instruction sets the Carry flag to the value of bit[31] of the modified immediate constant.

Operation of modified immediate constants, T32 instructions

For a T32 data-processing instruction, the T32ExpandImm() pseudocode function returns the value of the 32-bit immediate constant, calling T32ExpandImm_C() to evaluate the constant.
Modified immediate constants in A32 instructions

The encoding of a modified immediate constant in an A32 instruction is:

<table>
<thead>
<tr>
<th>rotation</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table F2-3 shows the range of modified immediate constants available in A32 data-processing instructions, and their encoding in the a, b, c, d, e, f, g, and h bits and the rotation field in the instruction.

Table F2-3 Encoding of modified immediates in A32 processing instructions

<table>
<thead>
<tr>
<th>rotation</th>
<th>&lt;const&gt; a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>00000000 00000000 00000000 abcdefgh</td>
</tr>
<tr>
<td>0001</td>
<td>00000000 00000000 00000000 00abcdef</td>
</tr>
<tr>
<td>0010</td>
<td>00000000 00000000 00000000 0000abcd</td>
</tr>
<tr>
<td>0011</td>
<td>00000000 00000000 00000000 0000abab</td>
</tr>
<tr>
<td>0100</td>
<td>00000000 00000000 00000000 000000ab</td>
</tr>
<tr>
<td>1001</td>
<td>00000000 00000000 000000ab 000000gh</td>
</tr>
<tr>
<td>1100</td>
<td>00000000 00000000 00000000 0000abcd</td>
</tr>
<tr>
<td>1101</td>
<td>00000000 00000000 000000ab 000000cd</td>
</tr>
</tbody>
</table>

The range of values available in A32 modified immediate constants is slightly different from the range of values available in 32-bit T32 instructions. See Modified immediate constants in T32 instructions on page F2-4135.

---

**Note**

A logical instruction with the rotation field set to 0b0000 does not affect APSR.C. Otherwise, a logical flag-setting instruction sets APSR.C to the value of bit[31] of the modified immediate constant.

---

**Carry out**

A logical instruction with the rotation field set to 0b0000 does not affect APSR.C. Otherwise, a logical flag-setting instruction sets APSR.C to the value of bit[31] of the modified immediate constant.

---

**Constants with multiple encodings**

Some constant values have multiple possible encodings. In this case, a UAL assembler must select the encoding with the lowest unsigned value of the rotation field. This is the encoding that appears first in Table F2-3. For example, the constant #3 must be encoded with (rotation, abcdefgh) = (0b0000, 0b00000001), not (0b0001, 0b00001100), (0b0010, 0b00110000), or (0b0011, 0b11000000).
In particular, this means that all constants in the range 0-255 are encoded with rotation == 0b0000, and permitted constants outside that range are encoded with rotation != 0b0000. A flag-setting logical instruction with a modified immediate constant therefore leaves APSR.C unchanged if the constant is in the range 0-255 and sets it to the most significant bit of the constant otherwise. This matches the behavior of T32 modified immediate constants for all constants that are permitted in both the A32 and T32 instruction sets.

An alternative syntax is available for a modified immediate constant that permits the programmer to specify the encoding directly. In this syntax, #<const> is instead written as #<byte>, #<rot>, where:

<byte>  Is the numeric value of abcdefgh, in the range 0-255.
<rot>  Is twice the numeric value of rotation, an even number in the range 0-30.

This syntax permits all A32 data-processing instructions with modified immediate constants to be disassembled to assembler syntax that assembles to the original instruction.

This syntax also makes it possible to write variants of some flag-setting logical instructions that have different effects on APSR.C to those obtained with the normal #<const> syntax. For example, ANDS R1, R2, #12, #2 has the same behavior as ANDS R1, R2, #3 except that it sets APSR.C to 0 instead of leaving it unchanged. Such variants of flag-setting logical instructions do not have equivalents in the T32 instruction set, and Arm deprecates their use.

**Operation of modified immediate constants, A32 instructions**

For an A32 data-processing instruction, the A32ExpandImm() pseudocode function returns the value of the 32-bit immediate constant, calling A32ExpandImm_C() to evaluate the constant.

**Modified immediate constants in T32 and A32 Advanced SIMD instructions**

Table F2-4 shows the modified immediate constants available with Advanced SIMD instructions, and how they are encoded.

<table>
<thead>
<tr>
<th>op</th>
<th>cmode</th>
<th>Constanta</th>
<th>&lt;dt&gt;b</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>000x</td>
<td>00000000 00000000 00000000 00000000</td>
<td>I32</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>001x</td>
<td>00000000 00000000 abcdefgh 00000000</td>
<td>I32</td>
<td>c, d</td>
</tr>
<tr>
<td></td>
<td>010x</td>
<td>00000000 abcdefgh 00000000 00000000</td>
<td>I32</td>
<td>c, d</td>
</tr>
<tr>
<td></td>
<td>011x</td>
<td>abcdefgh 00000000 00000000 00000000</td>
<td>I32</td>
<td>c, d</td>
</tr>
<tr>
<td></td>
<td>100x</td>
<td>00000000 abcdefgh 00000000 abcdefgh</td>
<td>I16</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>101x</td>
<td>abcdefgh 00000000 abcdefgh 00000000</td>
<td>I16</td>
<td>c, d</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>00000000 00000000 abcdefgh 00000000</td>
<td>I16</td>
<td>c, d</td>
</tr>
<tr>
<td></td>
<td>1101</td>
<td>00000000 abcdefgh 11111111 11111111</td>
<td>I32</td>
<td>d, e</td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>abcdefgh abcdefgh abcdefgh abcdefgh</td>
<td>I8</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>abbbbbbc defgh00 00000000 00000000</td>
<td>F32</td>
<td>f, g</td>
</tr>
<tr>
<td>1</td>
<td>1110</td>
<td>aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeee ffffffff gggggggg hhhhhhh</td>
<td>I64</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>UNDEFINED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. In this table, the immediate value is shown in binary form, to relate abcdefgh to the encoding diagram. In assembler syntax, the constant is specified by a data type and a value of that type. That value is specified in the normal way (a decimal number by default) and is replicated enough times to fill the 64-bit immediate. For example, a data type of I32 and a value of 10 specify the 64-bit constant 0x0000000A0000000A.
b. This specifies the data type used when the instruction is disassembled. On assembly, the data type must be matched in the table if possible. Other data types are permitted as pseudo-instructions when a program is assembled, provided the 64-bit constant specified by the data type and value is available for the instruction. If a constant is available in more than one way, the first entry in the table that can produce it is used. For example, \texttt{VMOV.I64 D0, #0x8000000080000000} does not specify a 64-bit constant that is available from the I64 line of the table, but does specify one that is available from the fourth I32 line or the F32 line. It is assembled to the first of these, and therefore is disassembled as \texttt{VMOV.I32 D0, #0x80000000}.

c. This constant is available for the \texttt{VBLE}, \texttt{VMax}, \texttt{VMin}, and \texttt{VORR} instructions.

d. \texttt{CONSTRAINED UNPREDICTABLE} if \texttt{abcdefgh = 0b00000000}, see \texttt{UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions} on page F1-7945. The required behavior is that these encodings produce an immediate constant of zero.

e. This constant is available for the \texttt{VMOV} and \texttt{VMVN} instructions only.

f. This constant is available for the \texttt{VMOV} instruction only.

g. In this entry, \texttt{B} = \texttt{NOT(b)}. The bit pattern represents the floating-point number \((-1)^s \times 2^{\text{exp}} \times \text{mantissa}, \text{where} \ S = \text{UInt(a)}, \text{exp} = \text{UInt(NOT(b):c:d)}-3\) and \text{mantissa} = \((16+\text{UInt(e:f:g:h)})/16.

---

### Operation of modified immediate constants, Advanced SIMD instructions

For a T32 or A32 Advanced SIMD instruction that uses a modified immediate constant, the operation described by the \texttt{AdvSIMDEnumExpandImm()} pseudocode function returns the value of the 64-bit immediate constant.

### Modified immediate constants in T32 and A32 floating-point instructions

Table F2-5 shows the immediate constants available in the \texttt{VMOV} (immediate) floating-point instruction, and Table F2-6 shows the resulting floating-point values.

#### Table F2-5 Floating-point modified immediate constants

<table>
<thead>
<tr>
<th>Data type</th>
<th>imm4H</th>
<th>imm4L</th>
<th>Constant a</th>
</tr>
</thead>
<tbody>
<tr>
<td>F16</td>
<td>abcd</td>
<td>efgh</td>
<td>aBbcdef gh000000</td>
</tr>
<tr>
<td>F32</td>
<td>abcd</td>
<td>efgh</td>
<td>aBbbbbbc defgh000 00000000 00000000</td>
</tr>
<tr>
<td>F64</td>
<td>abcd</td>
<td>efgh</td>
<td>aBbbbbbb bcdedefgh 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

a. In this column, \texttt{B} = \texttt{NOT(b)}. The bit pattern represents the floating-point number \((-1)^s \times 2^{\text{exp}} \times \text{mantissa}, \text{where} \ S = \text{UInt(a)}, \text{exp} = \text{UInt(NOT(b):c:d)}-3\) and \text{mantissa} = \((16+\text{UInt(e:f:g:h)})/16.

#### Table F2-6 Floating-point constant values

<table>
<thead>
<tr>
<th>bcd</th>
<th>efgh</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>2.0</td>
<td>4.0</td>
<td>8.0</td>
<td>16.0</td>
<td>0.125</td>
<td>0.25</td>
<td>0.5</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>2.125</td>
<td>4.25</td>
<td>8.5</td>
<td>17.0</td>
<td>0.1328125</td>
<td>0.265625</td>
<td>0.53125</td>
<td>1.0625</td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>2.25</td>
<td>4.5</td>
<td>9.0</td>
<td>18.0</td>
<td>0.140625</td>
<td>0.28125</td>
<td>0.5625</td>
<td>1.125</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>2.375</td>
<td>4.75</td>
<td>9.5</td>
<td>19.0</td>
<td>0.1484375</td>
<td>0.296875</td>
<td>0.59375</td>
<td>1.1875</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>2.5</td>
<td>5.0</td>
<td>10.0</td>
<td>20.0</td>
<td>0.15625</td>
<td>0.3125</td>
<td>0.625</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>2.625</td>
<td>5.25</td>
<td>10.5</td>
<td>21.0</td>
<td>0.1640625</td>
<td>0.328125</td>
<td>0.65625</td>
<td>1.3125</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>2.75</td>
<td>5.5</td>
<td>11.0</td>
<td>22.0</td>
<td>0.171875</td>
<td>0.34375</td>
<td>0.6875</td>
<td>1.375</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>2.875</td>
<td>5.75</td>
<td>11.5</td>
<td>23.0</td>
<td>0.1796875</td>
<td>0.359375</td>
<td>0.71875</td>
<td>1.4375</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>3.0</td>
<td>6.0</td>
<td>12.0</td>
<td>24.0</td>
<td>0.1875</td>
<td>0.375</td>
<td>0.75</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
**Table F2-6 Floating-point constant values (continued)**

<table>
<thead>
<tr>
<th>efgh</th>
<th>bcd</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td></td>
<td>3.125</td>
<td>6.25</td>
<td>12.5</td>
<td>25.0</td>
<td>0.1953125</td>
<td>0.390625</td>
<td>0.78125</td>
<td>1.5625</td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td>3.25</td>
<td>6.5</td>
<td>13.0</td>
<td>26.0</td>
<td>0.203125</td>
<td>0.40625</td>
<td>0.8125</td>
<td>1.625</td>
</tr>
<tr>
<td>1011</td>
<td></td>
<td>3.375</td>
<td>6.75</td>
<td>13.5</td>
<td>27.0</td>
<td>0.2109375</td>
<td>0.421875</td>
<td>0.84375</td>
<td>1.6875</td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td>3.5</td>
<td>7.0</td>
<td>14.0</td>
<td>28.0</td>
<td>0.21875</td>
<td>0.4375</td>
<td>0.875</td>
<td>1.75</td>
</tr>
<tr>
<td>1101</td>
<td></td>
<td>3.625</td>
<td>7.25</td>
<td>14.5</td>
<td>29.0</td>
<td>0.2265625</td>
<td>0.453125</td>
<td>0.90625</td>
<td>1.8125</td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td>3.75</td>
<td>7.5</td>
<td>15.0</td>
<td>30.0</td>
<td>0.234375</td>
<td>0.46875</td>
<td>0.9375</td>
<td>1.875</td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td>3.875</td>
<td>7.75</td>
<td>15.5</td>
<td>31.0</td>
<td>0.2421875</td>
<td>0.484375</td>
<td>0.96875</td>
<td>1.9375</td>
</tr>
</tbody>
</table>

**Operation of modified immediate constants, floating-point instructions**

For a T32 or A32 floating-point instruction that uses a modified immediate constant, the operation described by the `VFPExpandImm()` pseudocode function returns the value of the immediate constant.
F2.8 Additional pseudocode support for instruction descriptions

Earlier sections of this chapter include pseudocode that describes features of the execution of A32 and T32 instructions, see:

- Pseudocode description of conditional execution on page F2-4122.
- Pseudocode description of instruction-specified shifts and rotates on page F2-4124.

The following subsection gives additional pseudocode support functions for some of the instructions described in Alphabetical list of T32 and A32 base instruction set instructions on page F5-4280. See also Pseudocode support for the banked register transfer instructions on page F5-4992.

F2.8.1 Pseudocode description of operations for System register access instructions

The AArch32.SysRegRead() function obtains the word for an MRC instruction from the System register.

The AArch32.SysRegRead64() function obtains the two words for an MRRC instruction from the System register.

Note

The relative significance of the two words returned is IMPLEMENTATION DEFINED, but all uses within this manual present the two words in the order (most significant, least significant).

The AArch32.SysRegWrite() procedure sends the word for an MCR instruction to the System register.

The AArch32.SysRegWrite64() procedure sends the two words for an MCRR instruction to the System register.

Note

The relative significance of word2 and word1 is IMPLEMENTATION DEFINED, but all uses within this manual treat word2 as more significant than word1.

F2.8.2 Pseudocode details of system calls

The AArch32.CallSupervisor() pseudocode function generates a Supervisor Call exception. Valid execution of the SVC instruction calls this function.

The AArch32.CallHypervisor() pseudocode function generates an HVC exception. Valid execution of the HVC instruction calls this function.
F2.9 Additional information about Advanced SIMD and floating-point instructions

The following subsections give additional information about the Advanced SIMD and floating-point instructions:

- Advanced SIMD and floating-point instruction syntax.
- The Advanced SIMD addressing mode.
- Advanced SIMD instruction modifiers on page F2-4142.
- Advanced SIMD operand shapes on page F2-4142.
- Data type specifiers on page F2-4143.
- Register specifiers on page F2-4144.
- Register lists on page F2-4145.
- Register encoding on page F2-4145.
- Advanced SIMD scalars on page F2-4146.

--- Note ---

The Advanced SIMD architecture, its associated implementations, and supporting software, are commonly referred to as NEON™ technology.

F2.9.1 Advanced SIMD and floating-point instruction syntax

Advanced SIMD and floating-point instructions use the general conventions of the T32 and A32 instruction sets. Advanced SIMD and floating-point data-processing instructions use the following general format:

V{<modifier>}<operation>{<shape>}{<c>}{<q>}{.<dt>} {<dest>,} <src1>, <src2>

All Advanced SIMD and floating-point instructions begin with a V. This distinguishes Advanced SIMD vector and floating-point instructions from scalar instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or similar to the corresponding scalar integer instruction.

The <c> and <q> fields are standard assembler syntax fields. For details, see Standard assembler syntax fields on page F2-4120.

F2.9.2 The Advanced SIMD addressing mode

All the element and structure load/store instructions use this addressing mode. There is a choice of three formats:

[<Rn>{:<align>}] The address is contained in general-purpose register Rn.

Rn is not updated by this instruction.

Encoded as Rm = 0b11111.

If Rn is encoded as 0b11111, the instruction is CONSTRAINED UNPREDICTABLE.

[<Rn>{:<align}>!] The address is contained in general-purpose register Rn.

Rn is updated by this instruction: Rn = Rn + transfer_size

Encoded as Rm = 0b11101.

transfer_size is the number of bytes transferred by the instruction. This means that, after the instruction is executed, Rn points to the address in memory immediately following the last address loaded from or stored to.

If Rn is encoded as 0b11111, the instruction is CONSTRAINED UNPREDICTABLE.

This addressing mode can also be written as:

[<Rn>{:<align}], #<transfer_size>

However, disassembly produces the [<Rn>{:<align}>!] form.
The address is contained in general-purpose register \(<Rn>\).

\(<Rn>\) is updated by this instruction: \(Rn = Rn + Rm\)

Encoded as \(Rm = Rn\). \(Rm\) must not be encoded as 0b1111 or 0b1101, the PC or the SP.

If \(Rn\) is encoded as 0b1111, the instruction is CONSTRAINED UNPREDICTABLE.

The CONSTRAINED UNPREDICTABLE behavior of encodings where \(Rn\) is 0b1111 is described in the section: Using \(R15\) on page K1-7941.

In all cases, \(<align>\) specifies an alignment, as specified by the individual instruction descriptions.

Previous versions of the manual used the @ character for alignment. So, for example, the first format in this section was shown as \(<Rn>@<align>\). Both @ and : are supported. However, to ensure portability of code to assemblers that treat @ as a comment character, : is preferred.

### F2.9.3 Advanced SIMD instruction modifiers

The \(<modifier>\) field provides additional variants of some instructions. Table F2-7 provides definitions of the modifiers. Modifiers are not available for every instruction.

<table>
<thead>
<tr>
<th>(&lt;modifier&gt;)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>The operation uses saturating arithmetic.</td>
</tr>
<tr>
<td>R</td>
<td>The operation performs rounding.</td>
</tr>
<tr>
<td>D</td>
<td>The operation doubles the result (before accumulation, if any).</td>
</tr>
<tr>
<td>H</td>
<td>The operation halves the result.</td>
</tr>
</tbody>
</table>

### F2.9.4 Advanced SIMD operand shapes

The \(<shape>\) field provides additional variants of some instructions. Table F2-8 provides definitions of the shapes. Operand shapes are not available for every instruction.

<table>
<thead>
<tr>
<th>(&lt;shape&gt;)</th>
<th>Meaning</th>
<th>Typical register shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td>The operands and result are all the same width.</td>
<td>Dd, Dn, Dm Qd, Qn, Qm</td>
</tr>
<tr>
<td>L</td>
<td>Long operation - result is twice the width of both operands</td>
<td>Qd, Dn, Dm</td>
</tr>
<tr>
<td>N</td>
<td>Narrow operation - result is half the width of both operands</td>
<td>Dd, Qn, Qm</td>
</tr>
<tr>
<td>W</td>
<td>Wide operation - result and first operand are twice the width of the second operand</td>
<td>Qd, Qn, Dm</td>
</tr>
</tbody>
</table>

**Note**

- Some assemblers support a Q shape specifier, that requires all operands to be Q registers. An example of using this specifier is VADDQ.S32 q0, q1, q2. This is not standard UAL, and Arm recommends that programmers do not use a Q shape specifier.

- A disassembler must not generate any shape specifier not shown in Table F2-8.
F2.9.5 Data type specifiers

The `<dt>` field normally contains one data type specifier. Unless the assembler syntax description for the instruction indicates otherwise, this indicates the data type contained in:

- The second operand, if any.
- The operand, if there is no second operand.
- The result, if there are no operand registers.

The data types of the other operand and result are implied by the `<dt>` field combined with the instruction shape. For information about data type formats, see "Data types supported by the Advanced SIMD implementation on page E1-4002".

In the instruction syntax descriptions in Chapter F2 About the T32 and A32 Instruction Descriptions, the `<dt>` field is usually specified as a single field. However, where more convenient, it is sometimes specified as a concatenation of two fields, `<type><size>`.

Syntax flexibility

There is some flexibility in the data type specifier syntax:

- Software can specify three data types, specifying the result and both operand data types. For example:
  
  \[ \text{VSUBW.I16.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0} \]

- Software can specify two data types, specifying the data types of the two operands. The data type of the result is implied by the instruction shape. For example:
  
  \[ \text{VSUBW.I16.S8 Q3, Q5, D0 instead of VSUBW.S8 Q3, Q5, D0} \]

- Software can specify two data types, specifying the data types of the single operand and the result. For example:
  
  \[ \text{VMOVN.I16.I32 D0, Q1 instead of VMOVN.I32 D0, Q1} \]

- Where an instruction requires a less specific data type, software can instead specify a more specific type, as shown in Table F2-9.

- Where an instruction does not require a data type, software can provide one.

- The F32 data type can be abbreviated to F.

- The F64 data type can be abbreviated to D.

In all cases, if software provides additional information, the additional information must match the instruction shape. Disassembly does not regenerate this additional information.

<table>
<thead>
<tr>
<th>Specified data type</th>
<th>Permitted more specific data types</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Any</td>
</tr>
<tr>
<td>.I&lt;size&gt;</td>
<td>-</td>
</tr>
<tr>
<td>.S&lt;size&gt;</td>
<td>-</td>
</tr>
<tr>
<td>.U&lt;size&gt;</td>
<td>-</td>
</tr>
<tr>
<td>.32</td>
<td>.I32 .S32 .U32 .P32 .F32 or .F</td>
</tr>
<tr>
<td>.64</td>
<td>.I64 .S64 .U64 .P64 .F64 or .D</td>
</tr>
</tbody>
</table>
F2.9.6 Register specifiers

The <dest>, <src1>, and <src2> fields contain register specifiers, or in some cases scalar specifiers or register lists. Table F2-10 shows the register and scalar specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it is the same as <src1>.

Table F2-10 Advanced SIMD and floating-point register specifier formats

<table>
<thead>
<tr>
<th>&lt;specifier&gt;</th>
<th>Usual meaning a</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Qd&gt;</td>
<td>A quadword destination register for the result vector.</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Qn&gt;</td>
<td>A quadword source register for the first operand vector.</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Qm&gt;</td>
<td>A quadword source register for the second operand vector.</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Dd&gt;</td>
<td>A doubleword destination register for the result vector.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Dn&gt;</td>
<td>A doubleword source register for the first operand vector.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Dm&gt;</td>
<td>A doubleword source register for the second operand vector.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Sd&gt;</td>
<td>A singleword destination register for the result vector.</td>
<td>Floating-point</td>
</tr>
<tr>
<td>&lt;Sn&gt;</td>
<td>A singleword source register for the first operand vector.</td>
<td>Floating-point</td>
</tr>
<tr>
<td>&lt;Sm&gt;</td>
<td>A singleword source register for the second operand vector.</td>
<td>Floating-point</td>
</tr>
<tr>
<td>&lt;Dd[x]&gt;</td>
<td>A destination scalar for the result. Element x of vector &lt;Dd&gt;.</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Dn[x]&gt;</td>
<td>A source scalar for the first operand. Element x of vector &lt;Dn&gt;.</td>
<td>Bothb</td>
</tr>
<tr>
<td>&lt;Dm[x]&gt;</td>
<td>A source scalar for the second operand. Element x of vector &lt;Dm&gt;.</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Rt&gt;</td>
<td>A general-purpose register, used for a source or destination address.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Rt2&gt;</td>
<td>A general-purpose register, used for a source or destination address.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Rn&gt;</td>
<td>A general-purpose register, used as a load or store base address.</td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Rm&gt;</td>
<td>A general-purpose register, used as a post-indexed address source.</td>
<td>Both</td>
</tr>
</tbody>
</table>

a. In some instructions the roles of registers are different.
b. In the floating-point instructions, <Dn[x]> is used only in VMOV (scalar to general-purpose register), see VMOV (scalar to general-purpose register) on page F6-5373.
F2.9.7   Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets { and }. There are restrictions on what registers can appear in a register list. These restrictions are described in the individual instruction descriptions. Table F2-11 shows some register list formats, with examples of actual register lists corresponding to those formats.

---Note---

Register lists must not wrap around the end of the register bank.

---Syntax flexibility---

There is some flexibility in the register list syntax:

- Where a register list contains consecutive registers, they can be specified as a range, instead of listing every register, for example {D0-D3} instead of {D0, D1, D2, D3}.
- Where a register list contains an even number of consecutive doubleword registers starting with an even numbered register, it can be written as a list of quadword registers instead, for example {Q1, Q2} instead of {D2-D5}.
- Where a register list contains only one register, the enclosing braces can be omitted, for example VLD1.8 D0, [R0] instead of VLD1.8 {D0}, [R0].

<table>
<thead>
<tr>
<th>Format</th>
<th>Example</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>{&lt;Dd&gt;}</td>
<td>{D3}</td>
<td>D3</td>
</tr>
<tr>
<td>{&lt;Dd&gt;, &lt;Dd+1&gt;, &lt;Dd+2&gt;}</td>
<td>{D3, D4, D5}</td>
<td>{D3-D5}</td>
</tr>
<tr>
<td>{&lt;Dd[x]&gt;, &lt;Dd+2[x]}</td>
<td>{D0[3], D2[3]}</td>
<td>-</td>
</tr>
<tr>
<td>{&lt;Dd[&gt;]}</td>
<td>{D7[]}</td>
<td>D7[]</td>
</tr>
</tbody>
</table>

F2.9.8   Register encoding

An Advanced SIMD register is either:

- **Quadword**, meaning it is 128 bits wide.
- **Doubleword**, meaning it is 64 bits wide.

Some instructions have options for either doubleword or quadword registers. This is normally encoded in Q, bit[6], as Q = 0 for doubleword operations, or Q = 1 for quadword operations.

A floating-point register is either:

- Double-precision, meaning it is 64 bits wide.
- Single-precision, meaning it is 32 bits wide.

This is encoded in the sz field, bit[8], as sz = 1 for double-precision operations, or sz = 0 for single-precision operations.

The T32 instruction encoding of Advanced SIMD or floating-point registers is:

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>D Vn Vd sz N Q M Vm</th>
</tr>
</thead>
</table>

The A32 instruction encoding of Advanced SIMD or floating-point registers is:

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>D Vn Vd sz N Q M Vm</th>
</tr>
</thead>
</table>
Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.

Table F2-12 shows the encodings for the registers.

### Table F2-12 Encoding of register numbers

<table>
<thead>
<tr>
<th>Register mnemonic</th>
<th>Usual usage</th>
<th>Register number encoded in&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Notes&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Qd&gt;</td>
<td>Destination (quadword)</td>
<td>D, Vd (bits[22, 15:13])</td>
<td>bit[12] == 0&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Qn&gt;</td>
<td>First operand (quadword)</td>
<td>N, Vn (bits[7, 19:17])</td>
<td>bit[16] == 0&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Qm&gt;</td>
<td>Second operand (quadword)</td>
<td>M, Vm (bits[5, 3:1])</td>
<td></td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Dd&gt;</td>
<td>Destination (doubleword)</td>
<td>D, Vd (bits[22, 15:12])</td>
<td>bit[0] == 0&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Advanced SIMD</td>
</tr>
<tr>
<td>&lt;Dn&gt;</td>
<td>First operand (doubleword)</td>
<td>N, Vn (bits[7, 19:16])</td>
<td></td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Dm&gt;</td>
<td>Second operand (doubleword)</td>
<td>M, Vm (bits[5, 3:0])</td>
<td></td>
<td>Both</td>
</tr>
<tr>
<td>&lt;Sd&gt;</td>
<td>Destination (single-precision)</td>
<td>Vd, D (bits[15:12, 22])</td>
<td></td>
<td>Floating-point</td>
</tr>
<tr>
<td>&lt;Sn&gt;</td>
<td>First operand (single-precision)</td>
<td>Vn, N (bits[19:16, 7])</td>
<td></td>
<td>Floating-point</td>
</tr>
<tr>
<td>&lt;Sm&gt;</td>
<td>Second operand (single-precision)</td>
<td>Vm, M (bits[3:0, 5])</td>
<td></td>
<td>Floating-point</td>
</tr>
</tbody>
</table>

<sup>a</sup> Bit numbers given for the A32 instruction encoding. See the figures in this section for the equivalent bits in the T32 encoding.

<sup>b</sup> If this bit is 1, the instruction is UNDEFINED.

### F2.9.9 Advanced SIMD scalars

Advanced SIMD scalars can be 8-bit, 16-bit, 32-bit, or 64-bit. Instructions other than multiply instructions can access any element in the register set. The instruction syntax refers to the scalars using an index into a doubleword vector. The descriptions of the individual instructions contain details of the encodings.

Table F2-13 shows the form of encoding for scalars used in multiply instructions. These instructions cannot access scalars in some registers. The descriptions of the individual instructions contain cross references to this section where appropriate.

32-bit Advanced SIMD scalars, when used as single-precision floating-point numbers, are equivalent to Floating-point single-precision registers. That is, <Dm[x]> in a 32-bit context (0 <= m <= 15, 0 <= x <= 1) is equivalent to S(2m + x).

### Table F2-13 Encoding of scalars in multiply instructions

<table>
<thead>
<tr>
<th>Scalar mnemonic</th>
<th>Usual usage</th>
<th>Scalar size</th>
<th>Register specifier</th>
<th>Index specifier</th>
<th>Accessible registers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>32-bit</td>
<td>Vm[3:0]</td>
<td>M</td>
<td>D0-D15</td>
</tr>
</tbody>
</table>
Chapter F3
T32 Instruction Set Encoding

This chapter describes the encoding of the T32 instruction set. It contains the following sections:

- T32 instruction set encoding on page F3-4148.
- About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4216.

In this chapter:

- In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.
- In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
F3.1 T32 instruction set encoding

The T32 instruction stream is a sequence of halfword-aligned halfwords. Each T32 instruction is either a single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If the value of bits[15:11] of the halfword being decoded is one of the following, the halfword is the first halfword of a 32-bit instruction:

- \(0b11101\)
- \(0b11110\)
- \(0b11111\).

Otherwise, the halfword is a 16-bit instruction.

The T32 instruction encoding is:

<table>
<thead>
<tr>
<th>15 13 12 11 10</th>
<th>0 15 0 0 0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
<td></td>
</tr>
</tbody>
</table>

Table F3-1 Main encoding table for the T32 instruction set

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>(\neq 111)</td>
<td>15-bit</td>
</tr>
<tr>
<td>111 00</td>
<td>B - T2 variant</td>
</tr>
<tr>
<td>111 (\neq 00)</td>
<td>32-bit on page F3-4159</td>
</tr>
</tbody>
</table>

F3.1.1 16-bit

This section describes the encoding of the 16-bit group. The encodings in this section are decoded from T32 instruction set encoding.

| 15 10 9 0 |
|---|---|---|---|
| op0 |

This decode also imposes the constraint:

- \(op0<5:3> \neq 111\).

Table F3-2 Encoding table for the 16-bit group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>00xxxx</td>
<td>Shift (immediate), add, subtract, move, and compare on page F3-4152</td>
</tr>
<tr>
<td>010000</td>
<td>Data-processing (two low registers) on page F3-4149</td>
</tr>
<tr>
<td>010001</td>
<td>Special data instructions and branch and exchange on page F3-4154</td>
</tr>
<tr>
<td>01001x</td>
<td>LDR (literal) - T1 variant</td>
</tr>
<tr>
<td>0101xx</td>
<td>Load/store (register offset) on page F3-4150</td>
</tr>
</tbody>
</table>
Table F3-2 Encoding table for the 16-bit group (continued)

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>AND, ANDS (register)</td>
</tr>
<tr>
<td>0001</td>
<td>EOR, EORS (register)</td>
</tr>
<tr>
<td>0010</td>
<td>MOV, MOVS (register-shifted register) - Logical shift left variant</td>
</tr>
<tr>
<td>0011</td>
<td>MOV, MOVS (register-shifted register) - Logical shift right variant</td>
</tr>
<tr>
<td>0100</td>
<td>MOV, MOVS (register-shifted register) - Arithmetic shift right variant</td>
</tr>
<tr>
<td>0101</td>
<td>ADC, ADCS (register)</td>
</tr>
<tr>
<td>0110</td>
<td>SBC, SBCS (register)</td>
</tr>
<tr>
<td>0111</td>
<td>MOV, MOVS (register-shifted register) - Rotate right variant</td>
</tr>
<tr>
<td>1000</td>
<td>TST (register)</td>
</tr>
<tr>
<td>1001</td>
<td>RSB, RSBS (immediate)</td>
</tr>
<tr>
<td>1010</td>
<td>CMP (register)</td>
</tr>
<tr>
<td>1011</td>
<td>CMN (register)</td>
</tr>
<tr>
<td>1100</td>
<td>ORR, ORRS (register)</td>
</tr>
</tbody>
</table>
Load/store (register offset)

This section describes the encoding of the Load/store (register offset) instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

\[
\begin{array}{ccccccccc}
|15|14|13|12|11|10| 9 | 8 | 6 | 5 | 3 | 2 | 0 |
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 1 \\
B & H & Rm & Rn & Rt
\end{array}
\]

Load/store word/byte (immediate offset)

This section describes the encoding of the Load/store word/byte (immediate offset) instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

\[
\begin{array}{cccc}
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
B & L & immS & Rn & Rt
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
\end{array}
\]

\[
\begin{array}{cccc}
B & L \\
0 & 0 & STR (immediate)
\end{array}
\]
Load/store halfword (immediate offset)

This section describes the encoding of the Load/store halfword (immediate offset) instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

\[
\begin{array}{|cccccc|}
\hline
15 & 14 & 13 & 12 & 11 & 10 \\
L & 0 & 0 & 0 & \text{imm5} & Rn \\
\hline
0 & 1 & LDR (immediate) \\
1 & 0 & STRB (immediate) \\
1 & 1 & LDRB (immediate) \\
\end{array}
\]

Load/store (SP-relative)

This section describes the encoding of the Load/store (SP-relative) instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

\[
\begin{array}{|cccccc|}
\hline
15 & 14 & 13 & 12 & 11 & 10 \\
L & 0 & 0 & 1 & \text{imm8} & Rt \\
\hline
0 & STRH (immediate) \\
1 & LDRH (immediate) \\
\end{array}
\]

Add PC/SP (immediate)

This section describes the encoding of the Add PC/SP (immediate) instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

\[
\begin{array}{|cccccc|}
\hline
15 & 14 & 13 & 12 & 11 & 8 \\
L & 0 & 0 & 1 & \text{imm8} & \\
\hline
0 & STR (immediate) \\
1 & LDR (immediate) \\
\end{array}
\]

Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are decoded from 16-bit on page F3-4148.

| 15 14 13 12|11 10 8 7 | 0 |
| 1 0 1 0 | SP | Rd | imm8 |

### Decode fields

<table>
<thead>
<tr>
<th>SP</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADR</td>
</tr>
<tr>
<td>1</td>
<td>ADD, ADDS (SP plus immediate)</td>
</tr>
</tbody>
</table>

### Table F3-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td><em>Add, subtract (three low registers)</em> on page F3-4153</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1</td>
<td><em>Add, subtract (two low registers and immediate)</em> on page F3-4153</td>
</tr>
<tr>
<td>0</td>
<td>!= 11</td>
<td>-</td>
<td>MOV, MOVS (register) - T2 variant</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td><em>Add, subtract, compare, move (one low register and immediate)</em> on page F3-4153</td>
</tr>
</tbody>
</table>

F3.1.2 Shift (immediate), add, subtract, move, and compare

This section describes the encoding of the Shift (immediate), add, subtract, move, and compare group. The encodings in this section are decoded from 16-bit on page F3-4148.

| 15 14 13 12|11 10 8 7 | 0 |
| 1 1 0 0 | L | Rn | register_list |

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STM, STMIA, STMEA</td>
</tr>
<tr>
<td>1</td>
<td>LDM, LDMIA, LDMFD</td>
</tr>
</tbody>
</table>

### Table F3-3 Encoding table for the Shift (immediate), add, subtract, move, and compare group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td><em>Add, subtract (three low registers)</em> on page F3-4153</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1</td>
<td><em>Add, subtract (two low registers and immediate)</em> on page F3-4153</td>
</tr>
<tr>
<td>0</td>
<td>!= 11</td>
<td>-</td>
<td>MOV, MOVS (register) - T2 variant</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td><em>Add, subtract, compare, move (one low register and immediate)</em> on page F3-4153</td>
</tr>
</tbody>
</table>

F3-4152 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c Non-Confidential ID072120
Add, subtract (three low registers)

This section describes the encoding of the Add, subtract (three low registers) instruction class. The encodings in this section are decoded from Shift (immediate), add, subtract, move, and compare on page F3-4152.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 0</td>
<td>S Rm Rn Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ADD, ADDS (register)</td>
</tr>
<tr>
<td>1</td>
<td>SUB, SUBS (register)</td>
</tr>
</tbody>
</table>

Add, subtract (two low registers and immediate)

This section describes the encoding of the Add, subtract (two low registers and immediate) instruction class. The encodings in this section are decoded from Shift (immediate), add, subtract, move, and compare on page F3-4152.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 1</td>
<td>S imm3 Rn Rd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>ADD, ADDS (immediate)</td>
</tr>
<tr>
<td>1</td>
<td>SUB, SUBS (immediate)</td>
</tr>
</tbody>
</table>

Add, subtract, compare, move (one low register and immediate)

This section describes the encoding of the Add, subtract, compare, move (one low register and immediate) instruction class. The encodings in this section are decoded from Shift (immediate), add, subtract, move, and compare on page F3-4152.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1</td>
<td>op Rd imm8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>MOV, MOVS (immediate)</td>
</tr>
</tbody>
</table>
F3.1.3 Special data instructions and branch and exchange

This section describes the encoding of the Special data instructions and branch and exchange group. The encodings in this section are decoded from 16-bit on page F3-4148.

<table>
<thead>
<tr>
<th>15</th>
<th>10 9 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>010001</td>
<td>op0</td>
<td></td>
</tr>
</tbody>
</table>

Table F3-4 Encoding table for the Special data instructions and branch and exchange group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Branch and exchange</td>
</tr>
<tr>
<td>!= 11</td>
<td>Add, subtract, compare, move (two high registers)</td>
</tr>
</tbody>
</table>

Branch and exchange

This section describes the encoding of the Branch and exchange instruction class. The encodings in this section are decoded from Special data instructions and branch and exchange.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 1 L Rm</td>
<td>(0) (0) (0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>BX</td>
</tr>
<tr>
<td>1</td>
<td>BLX (register)</td>
</tr>
</tbody>
</table>

Add, subtract, compare, move (two high registers)

This section describes the encoding of the Add, subtract, compare, move (two high registers) instruction class. The encodings in this section are decoded from Special data instructions and branch and exchange.
F3.1.4 Miscellaneous 16-bit instructions

This section describes the encoding of the Miscellaneous 16-bit instructions group. The encodings in this section are decoded from 16-bit on page F3-4148.

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6</th>
<th>5 4</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1011</td>
<td>op0</td>
<td>op1</td>
<td>op3</td>
<td></td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>Decode group or instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjust SP (immediate) on page F3-4156</td>
<td>-</td>
</tr>
<tr>
<td>Extend on page F3-4156</td>
<td>-</td>
</tr>
<tr>
<td>SETPAN</td>
<td>Armv8.1</td>
</tr>
<tr>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>Change Processor State on page F3-4156</td>
<td>-</td>
</tr>
<tr>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>HLT</td>
<td>-</td>
</tr>
<tr>
<td>Reverse bytes on page F3-4157</td>
<td>-</td>
</tr>
<tr>
<td>BKPT</td>
<td>-</td>
</tr>
<tr>
<td>Hints on page F3-4157</td>
<td>-</td>
</tr>
</tbody>
</table>
```
Adjust SP (immediate)

This section describes the encoding of the Adjust SP (immediate) instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.

\[
\begin{array}{cccccc}
|15|14|13|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0|
\end{array}
\begin{array}{c}
1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ S \ \text{imm7}
\end{array}
\]

### Extend

This section describes the encoding of the Extend instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.

\[
\begin{array}{cccccc}
|15|14|13|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0|
\end{array}
\begin{array}{c}
1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ U \ B \ \text{Rm} \ \text{Rd}
\end{array}
\]

### Change Processor State

This section describes the encoding of the Change Processor State instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.
Reverse bytes

This section describes the encoding of the Reverse bytes instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.

```
|15 14 13 12|11 10 9 8|7 6 5 | 4 3 2 1 0 |
1 0 1 1 0 1 1 0 0 1 |op flags |
```

```
<table>
<thead>
<tr>
<th>op flags</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SETEND</td>
</tr>
<tr>
<td>1</td>
<td>CPS, CPSID, CPSIE</td>
</tr>
</tbody>
</table>
```

Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.

```
|15 14 13 12|11 10 9 8|7 6 5 | 3 2 1 0 |
1 0 1 1 0 1 0 |1=10 Rm Rd |

op
```

```
<table>
<thead>
<tr>
<th>op</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>REV</td>
</tr>
<tr>
<td>01</td>
<td>REV16</td>
</tr>
<tr>
<td>11</td>
<td>REVSH</td>
</tr>
</tbody>
</table>
```

```
|15 14 13 12|11 10 9 8|7 6 5 | 4 3 2 1 0 |
1 0 1 1 1 1 1 1 1 hint |0 0 0 0 |

hint
```

```
<table>
<thead>
<tr>
<th>hint</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
</tr>
<tr>
<td>0001</td>
<td>YIELD</td>
</tr>
<tr>
<td>0010</td>
<td>WFE</td>
</tr>
<tr>
<td>0011</td>
<td>WFI</td>
</tr>
<tr>
<td>0100</td>
<td>SEV</td>
</tr>
</tbody>
</table>
```
This section describes the encoding of the Push and Pop instruction class. The encodings in this section are decoded from Miscellaneous 16-bit instructions on page F3-4155.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10  9  8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 L 1 0 P</td>
<td>register_list</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### F3.1.5 Conditional branch, and Supervisor Call

This section describes the encoding of the Conditional branch, and Supervisor Call group. The encodings in this section are decoded from 16-bit on page F3-4148.

<table>
<thead>
<tr>
<th>15 12 11</th>
<th>8  7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>op0</td>
<td></td>
</tr>
</tbody>
</table>

#### Table F3-6 Encoding table for the Conditional branch, and Supervisor Call group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>Exception generation</td>
</tr>
<tr>
<td>!= 111x</td>
<td>B - T1 variant</td>
</tr>
</tbody>
</table>

### Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are decoded from Conditional branch, and Supervisor Call.
F3.1.6 32-bit

This section describes the encoding of the 32-bit group. The encodings in this section are decoded from T32 instruction set encoding on page F3-4148.

This decode also imposes the constraint:

• \( \text{op0}<3:2> \neq 00 \).

### Table F3-7 Encoding table for the 32-bit group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op3</td>
<td></td>
</tr>
<tr>
<td>x1lx</td>
<td>System register access, Advanced SIMD, and floating-point on page F3-4164</td>
</tr>
<tr>
<td>0100 xx0xx</td>
<td>Load/store multiple on page F3-4160</td>
</tr>
<tr>
<td>0100 xx1xx</td>
<td>Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188</td>
</tr>
<tr>
<td>0101</td>
<td>Data-processing (shifted register) on page F3-4160</td>
</tr>
<tr>
<td>10xx</td>
<td>Branches and miscellaneous control on page F3-4192</td>
</tr>
<tr>
<td>10x0</td>
<td>Data-processing (modified immediate) on page F3-4162</td>
</tr>
<tr>
<td>10x1 xxxx0</td>
<td>Data-processing (plain binary immediate) on page F3-4196</td>
</tr>
<tr>
<td>10x1 xxxx1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1100 1xxx0</td>
<td>Advanced SIMD element or structure load/store on page F3-4198</td>
</tr>
<tr>
<td>1100 != 1xxx0</td>
<td>Load/store single on page F3-4201</td>
</tr>
<tr>
<td>1101 0xxxx</td>
<td>Data-processing (register) on page F3-4209</td>
</tr>
<tr>
<td>1101 10xxx</td>
<td>Multiply, multiply accumulate, and absolute difference on page F3-4213</td>
</tr>
<tr>
<td>1101 11xxx</td>
<td>Long multiply and divide on page F3-4163</td>
</tr>
</tbody>
</table>
### Load/store multiple

This section describes the encoding of the Load/store multiple instruction class. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
<th>15 14 13</th>
<th>12 11</th>
<th>8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0</td>
<td>opc</td>
<td>0</td>
<td>W</td>
<td>L</td>
<td>Rn</td>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>register_list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>L</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>SRS, SRSDA, SRSDB, SRSIA, SRSIB - <em>T1</em> on page F5-4767</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>RFE, RFEDA, RFEDB, RFEIA, RFEIB - <em>T1</em> on page F5-4662</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>STM, STMIA, STMEA</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>LDM, LDMIA, LDMFD</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>STMDB, STMFD</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>LDMDB, LDMEA</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>SRS, SRSDA, SRSDB, SRSIA, SRSIB - <em>T2</em> on page F5-4768</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>RFE, RFEDA, RFEDB, RFEIA, RFEIB - <em>T2</em> on page F5-4663</td>
</tr>
</tbody>
</table>

### Data-processing (shifted register)

This section describes the encoding of the Data-processing (shifted register) instruction class. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
<th>15 14 12</th>
<th>11</th>
<th>8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1</td>
<td>op1</td>
<td>S</td>
<td>Rn</td>
<td>imm3:imm2:stype</td>
<td>Rd</td>
<td>imm2</td>
<td>stype</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>S</th>
<th>Rn</th>
<th>imm3:imm2:stype</th>
<th>Rd</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>AND, ANDS (register) - AND, rotate right with extend variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>!= 0000011</td>
<td>!= 1111</td>
<td>AND, ANDS (register) - ANDS, shift or rotate by value variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>!= 0000011</td>
<td>1111</td>
<td>TST (register) - Shift or rotate by value variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>0000011</td>
<td>!= 1111</td>
<td>AND, ANDS (register) - ANDS, rotate right with extend variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>0000011</td>
<td>1111</td>
<td>TST (register) - Rotate right with extend variant</td>
</tr>
<tr>
<td>0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BIC, BICS (register)</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>!= 1111</td>
<td>-</td>
<td>-</td>
<td>ORR, ORRS (register) - ORR, rotate right with extend variant</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>MOV, MOVS (register) - MOV, rotate right with extend variant</td>
</tr>
<tr>
<td>0010</td>
<td>1</td>
<td>!= 1111</td>
<td>-</td>
<td>-</td>
<td>ORR, ORRS (register) - ORRS, rotate right with extend variant</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>S</th>
<th>Rn</th>
<th>imm3:imm2:stype</th>
<th>Rd</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>MOV, MOVS (register) - MOVS, rotate right with extend variant</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>!= 1111</td>
<td>-</td>
<td>-</td>
<td>ORN, ORNS (register) - ORN, rotate right with extend variant</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>MVN, MVNS (register) - MVN, rotate right with extend variant</td>
</tr>
<tr>
<td>0011</td>
<td>1</td>
<td>!= 1111</td>
<td>-</td>
<td>-</td>
<td>ORN, ORNS (register) - ORNS, rotate right with extend variant</td>
</tr>
<tr>
<td>0011</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>MVN, MVNS (register) - MVNS, rotate right with extend variant</td>
</tr>
<tr>
<td>0100</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EOR, EORS (register) - EOR, rotate right with extend variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>-</td>
<td>!= 000011</td>
<td>1111</td>
<td>EOR, EORS (register) - EORS, shift or rotate by value variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>-</td>
<td>000011</td>
<td>!= 1111</td>
<td>TEQ (register) - Shift or rotate by value variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>-</td>
<td>000011</td>
<td>1111</td>
<td>EOR, EORS (register) - EORS, rotate right with extend variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>-</td>
<td>000011</td>
<td>1111</td>
<td>TEQ (register) - Rotate right with extend variant</td>
</tr>
<tr>
<td>0101</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>-</td>
<td>xxxxx00</td>
<td>-</td>
<td>PKHBT, PKHTB - PKHBT variant</td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>-</td>
<td>xxxxx01</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>-</td>
<td>xxxxx10</td>
<td>-</td>
<td>PKHBT, PKHTB - PKHTB variant</td>
</tr>
<tr>
<td>0110</td>
<td>0</td>
<td>-</td>
<td>xxxxx11</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>!= 1101</td>
<td>-</td>
<td>-</td>
<td>ADD, ADDS (register) - ADD, rotate right with extend variant</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>1101</td>
<td>-</td>
<td>-</td>
<td>ADD, ADDS (SP plus register) - ADD, rotate right with extend variant</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>!= 1101</td>
<td>-</td>
<td>!= 1111</td>
<td>ADD, ADDS (register) - ADDS, rotate right with extend variant</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1101</td>
<td>-</td>
<td>!= 1111</td>
<td>ADD, ADDS (SP plus register) - ADDS, rotate right with extend variant</td>
</tr>
<tr>
<td>1001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1111</td>
<td>CMN (register)</td>
</tr>
<tr>
<td>1010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADC, ADCS (register)</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SBC, SBCS (register)</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>!= 1101</td>
<td>-</td>
<td>-</td>
<td>SUB, SUBS (register) - SUB, rotate right with extend variant</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>1101</td>
<td>-</td>
<td>-</td>
<td>SUB, SUBS (SP minus register) - SUB, rotate right with extend variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>!= 1101</td>
<td>-</td>
<td>!= 1111</td>
<td>SUB, SUBS (register) - SUBS, rotate right with extend variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>1101</td>
<td>-</td>
<td>!= 1111</td>
<td>SUB, SUBS (SP minus register) - SUBS, rotate right with extend variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1111</td>
<td>CMP (register)</td>
</tr>
<tr>
<td>1110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RSB, RSBS (register)</td>
</tr>
<tr>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
## Data-processing (modified immediate)

This section describes the encoding of the Data-processing (modified immediate) instruction class. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>op1</th>
<th>S</th>
<th>Rn</th>
<th>Rd</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>AND, ANDS (immediate) - AND variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>!=1111</td>
<td>AND, ANDS (immediate) - ANDS variant</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>-</td>
<td>1111</td>
<td>TST (immediate)</td>
</tr>
<tr>
<td>0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BIC, BICS (immediate)</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>!=1111</td>
<td>-</td>
<td>ORR, ORRS (immediate) - ORR variant</td>
</tr>
<tr>
<td>0010</td>
<td>0</td>
<td>1111</td>
<td>-</td>
<td>MOV, MOVS (immediate) - MOV variant</td>
</tr>
<tr>
<td>0010</td>
<td>1</td>
<td>!=1111</td>
<td>-</td>
<td>ORR, ORRS (immediate) - ORRS variant</td>
</tr>
<tr>
<td>0010</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>MOV, MOVS (immediate) - MOVS variant</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>!=1111</td>
<td>-</td>
<td>ORN, ORNS (immediate) - Not flag setting variant</td>
</tr>
<tr>
<td>0011</td>
<td>0</td>
<td>1111</td>
<td>-</td>
<td>MVN, MVNS (immediate) - MVN variant</td>
</tr>
<tr>
<td>0011</td>
<td>1</td>
<td>!=1111</td>
<td>-</td>
<td>ORN, ORNS (immediate) - Flag setting variant</td>
</tr>
<tr>
<td>0011</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>MVN, MVNS (immediate) - MVNS variant</td>
</tr>
<tr>
<td>0100</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>EOR, EORS (immediate) - EOR variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>-</td>
<td>!=1111</td>
<td>EOR, EORS (immediate) - EORS variant</td>
</tr>
<tr>
<td>0100</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>TEQ (immediate)</td>
</tr>
<tr>
<td>0101</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>!=1101</td>
<td>-</td>
<td>ADD, ADDS (immediate) - ADD variant</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>1101</td>
<td>-</td>
<td>ADD, ADDS (SP plus immediate) - ADD variant</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>!=1101</td>
<td>!=1111</td>
<td>ADD, ADDS (immediate) - ADDS variant</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1101</td>
<td>!=1111</td>
<td>ADD, ADDS (SP plus immediate) - ADDS variant</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>CMN (immediate)</td>
</tr>
<tr>
<td>1001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ADC, ADCS (immediate)</td>
</tr>
<tr>
<td>1011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SBC, SBSCS (immediate)</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Long multiply and divide instruction class. The encodings in this section are decoded from 32-bit on page F3-4159.

### Long multiply and divide

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 4 3</th>
<th>0 15 12 11 8 7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 1</td>
<td>op1</td>
<td>Rn</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>S</th>
<th>Rn</th>
<th>Rd</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>0</td>
<td>!= 1101</td>
<td>-</td>
<td>SUB, SUBS (immediate) - SUB variant</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>1101</td>
<td>-</td>
<td>SUB, SUBS (SP minus immediate) - SUB variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>!= 1101</td>
<td>!= 1111</td>
<td>SUB, SUBS (immediate) - SUBS variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>1101</td>
<td>!= 1111</td>
<td>SUB, SUBS (SP minus immediate) - SUBS variant</td>
</tr>
<tr>
<td>1101</td>
<td>1</td>
<td>-</td>
<td>1111</td>
<td>CMP (immediate)</td>
</tr>
<tr>
<td>1110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RSB, RSBS (immediate)</td>
</tr>
<tr>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
F3.1.7 System register access, Advanced SIMD, and floating-point

This section describes the encoding of the System register access, Advanced SIMD, and floating-point group. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
<th>15 12 11</th>
<th>10</th>
<th>5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>11</td>
<td>op1</td>
<td></td>
<td>0</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Table F3-8 Encoding table for the System register access, Advanced SIMD, and floating-point group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>-</td>
<td>0x</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>
F3.1.8 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on page F3-4164.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4216.

### Table F3-9 Encoding table for the Advanced SIMD data-processing group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Advanced SIMD and System register load/store and 64-bit move on page F3-4174</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>Floating-point data-processing on page F3-4178</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>Advanced SIMD and System register 32-bit move on page F3-4181</td>
</tr>
<tr>
<td>1</td>
<td>!= 11</td>
<td>Additional Advanced SIMD and floating-point instructions on page F3-4183</td>
</tr>
</tbody>
</table>

### Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The encodings in this section are decoded from Advanced SIMD data-processing.
### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opc</th>
<th>Q</th>
<th>o1</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x</td>
<td>1100</td>
<td>-</td>
<td>1</td>
<td>VFMA</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VADD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>1</td>
<td>VMLA (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>VCEQ (register) - T2 on page F6-5086</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>1111</td>
<td>-</td>
<td>0</td>
<td>VMAX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VRECPs</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>-</td>
<td>0</td>
<td>VHADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VAND (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0000</td>
<td>-</td>
<td>1</td>
<td>VQADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0001</td>
<td>-</td>
<td>0</td>
<td>VRHADD</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1C</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0010</td>
<td>-</td>
<td>0</td>
<td>VHSUB</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VBIC (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0010</td>
<td>-</td>
<td>1</td>
<td>VQSUB</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0011</td>
<td>-</td>
<td>0</td>
<td>VCGT (register) - T1 on page F6-5099</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0011</td>
<td>-</td>
<td>1</td>
<td>VCGE (register) - T1 on page F6-5092</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1P</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1100</td>
<td>-</td>
<td>1</td>
<td>VFMS</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VSUB (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1101</td>
<td>-</td>
<td>1</td>
<td>VMLS (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1111</td>
<td>-</td>
<td>0</td>
<td>VMIN (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VRSQRTS</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>0100</td>
<td>-</td>
<td>0</td>
<td>VSHL (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>0</td>
<td>VADD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VORR (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>1</td>
<td>VTST</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0100</td>
<td>-</td>
<td>1</td>
<td>VQSHL (register)</td>
<td>-</td>
</tr>
</tbody>
</table>
## Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opc</th>
<th>Q</th>
<th>o1</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>1001</td>
<td>-</td>
<td>0</td>
<td>VMLA (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>0</td>
<td>VRSHL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>1</td>
<td>VQRSHL</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1011</td>
<td>-</td>
<td>0</td>
<td>VQDMULH</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1M</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1011</td>
<td>-</td>
<td>1</td>
<td>VPADD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0110</td>
<td>-</td>
<td>0</td>
<td>VMAX (integer)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VORN (register)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0110</td>
<td>-</td>
<td>1</td>
<td>VMIN (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0111</td>
<td>-</td>
<td>0</td>
<td>VABD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0111</td>
<td>-</td>
<td>1</td>
<td>VABA</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1SU0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VPADD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>1</td>
<td>VMUL (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>VCGE (register) - T2 on page F6-5092</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1110</td>
<td>-</td>
<td>1</td>
<td>VACGE</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>VPMAX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VMAXNM</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VEOR</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1001</td>
<td>-</td>
<td>1</td>
<td>VMUL (integer and polynomial)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA256H</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1010</td>
<td>0</td>
<td>0</td>
<td>VPMAX (integer)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VBSL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1010</td>
<td>0</td>
<td>1</td>
<td>VPMIN (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1010</td>
<td>1</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA256H2</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VABD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>VCGT (register) - T2 on page F6-5099</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1110</td>
<td>-</td>
<td>1</td>
<td>VACGT</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>VPMIN (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VMINNM</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>0</td>
<td>VSUB (integer)</td>
<td>-</td>
</tr>
</tbody>
</table>
F3.1.9   Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths group. The encodings in this section are decoded from Advanced SIMD data-processing on page F3-4165.

|15|13|12|11| 7 |6 |5 |4 |3 |0 |15|12|11|10| 9 | 7 |6 |5 |4 |3 |0 |
|111|1111| op1| | op2| | 0 | | op3| |

Table F3-10 Encoding table for the Advanced SIMD two registers, or three registers of different lengths group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>VEXT (byte elements)</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0x</td>
<td>-</td>
<td>Advanced SIMD two registers misc</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>10</td>
<td>-</td>
<td>VTBL, VTBX</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>Advanced SIMD duplicate (scalar) on page F3-4170</td>
</tr>
<tr>
<td>-</td>
<td>!= 11</td>
<td>-</td>
<td>0</td>
<td>Advanced SIMD three registers of different lengths on page F3-4171</td>
</tr>
<tr>
<td>-</td>
<td>!= 11</td>
<td>-</td>
<td>1</td>
<td>Advanced SIMD two registers and a scalar on page F3-4172</td>
</tr>
</tbody>
</table>

Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths.
<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>size opc1 opc2 Q</td>
<td>-</td>
<td>VREV64</td>
</tr>
<tr>
<td>- 00 0000 -</td>
<td>VREV32</td>
<td></td>
</tr>
<tr>
<td>- 00 0010 -</td>
<td>VREV16</td>
<td></td>
</tr>
<tr>
<td>- 00 0011 -</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>- 00 010x -</td>
<td>VPADDL</td>
<td></td>
</tr>
<tr>
<td>- 00 0110 0</td>
<td>AESE</td>
<td></td>
</tr>
<tr>
<td>- 00 0110 1</td>
<td>AESD</td>
<td></td>
</tr>
<tr>
<td>- 00 0111 0</td>
<td>AESMC</td>
<td></td>
</tr>
<tr>
<td>- 00 0111 1</td>
<td>AESIMC</td>
<td></td>
</tr>
<tr>
<td>- 00 1000 -</td>
<td>VCLS</td>
<td></td>
</tr>
<tr>
<td>00 10 0000 -</td>
<td>VSWP</td>
<td></td>
</tr>
<tr>
<td>- 00 1001 -</td>
<td>VCLZ</td>
<td></td>
</tr>
<tr>
<td>- 00 1010 -</td>
<td>VCNT</td>
<td></td>
</tr>
<tr>
<td>- 00 1011 -</td>
<td>VMVN (register)</td>
<td></td>
</tr>
<tr>
<td>00 10 1100 1</td>
<td>Unallocated.</td>
<td></td>
</tr>
<tr>
<td>- 00 110x -</td>
<td>VPADAL</td>
<td></td>
</tr>
<tr>
<td>- 00 1110 -</td>
<td>VQABS</td>
<td></td>
</tr>
<tr>
<td>- 00 1111 -</td>
<td>VQNEG</td>
<td></td>
</tr>
<tr>
<td>- 01 x000 -</td>
<td>VCGT (immediate #0)</td>
<td></td>
</tr>
<tr>
<td>- 01 x001 -</td>
<td>VCGE (immediate #0)</td>
<td></td>
</tr>
<tr>
<td>- 01 x010 -</td>
<td>VCEQ (immediate #0)</td>
<td></td>
</tr>
<tr>
<td>- 01 x011 -</td>
<td>VCLE (immediate #0)</td>
<td></td>
</tr>
<tr>
<td>- 01 x100 -</td>
<td>VCLT (immediate #0)</td>
<td></td>
</tr>
<tr>
<td>- 01 x110 -</td>
<td>VABS</td>
<td></td>
</tr>
<tr>
<td>- 01 x111 -</td>
<td>VNNEG</td>
<td></td>
</tr>
<tr>
<td>- 01 0101 1</td>
<td>SHA1H</td>
<td></td>
</tr>
<tr>
<td>01 10 1100 1</td>
<td>VCVT (from single-precision to BFloat16, Advanced SIMD) Armv8.6</td>
<td></td>
</tr>
<tr>
<td>- 10 0001 -</td>
<td>VTRN</td>
<td></td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>opc1</th>
<th>opc2</th>
<th>Q</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>10</td>
<td>0010</td>
<td>-</td>
<td>VUZP</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0011</td>
<td>-</td>
<td>VZIP</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0100</td>
<td>0</td>
<td>VMOVN</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0100</td>
<td>1</td>
<td>VQMOVN, VQMOVUN - Unsigned result variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0101</td>
<td>-</td>
<td>VQMOVN, VQMOVUN - Signed result variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0110</td>
<td>0</td>
<td>VSHLL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0111</td>
<td>0</td>
<td>SHA1SU1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0111</td>
<td>1</td>
<td>SHA256SU0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1000</td>
<td>-</td>
<td>VRINTN (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1001</td>
<td>-</td>
<td>VRINTX (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1010</td>
<td>-</td>
<td>VRINTA (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1011</td>
<td>-</td>
<td>VRINTZ (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1100</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1100</td>
<td>0</td>
<td>VCVT (between half-precision and single-precision, Advanced SIMD) - Single-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1101</td>
<td>-</td>
<td>VRINTM (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1110</td>
<td>0</td>
<td>VCVT (between half-precision and single-precision, Advanced SIMD) - Half-precision to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1110</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1111</td>
<td>-</td>
<td>VRINTP (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>000x</td>
<td>-</td>
<td></td>
<td>VCVTA (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>001x</td>
<td>-</td>
<td></td>
<td>VCVTN (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>010x</td>
<td>-</td>
<td></td>
<td>VCVTP (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>011x</td>
<td>-</td>
<td></td>
<td>VCVTM (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>10x0</td>
<td>-</td>
<td></td>
<td>VRECPE</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>10x1</td>
<td>-</td>
<td></td>
<td>VRSQRTIE</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1100</td>
<td>1</td>
<td></td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>11xx</td>
<td>-</td>
<td></td>
<td>VCVT (between floating-point and integer, Advanced SIMD)</td>
<td>-</td>
</tr>
</tbody>
</table>

### Advanced SIMD duplicate (scalar)

This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in this section are decoded from *Advanced SIMD two registers, or three registers of different lengths* on page F3-4168.
Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F3-4168.

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 0 | 15 12|11 10 9 | 7 6 5 4 | 3 0 |
|----------------|-------------|----------------|
| 1 1 1 1 1 1 1 1 D 1 1 imm4 | Vd 1 1 opc | Q M 0 | Vm |
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>000 VDUP (scalar)</td>
</tr>
<tr>
<td></td>
<td>001 Unallocated.</td>
</tr>
<tr>
<td></td>
<td>01x Unallocated.</td>
</tr>
<tr>
<td></td>
<td>1xx Unallocated.</td>
</tr>
</tbody>
</table>

```
1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0
```

```
| size | imm4 | Vd | 1 1 1 U | 1 1 1 1 1 D | !=11 Vn | Vd | opc | N 0 | M 0 | Vm |
|----------------|-------------|----------------|
| Vn | | |
```

```
<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>opc</td>
</tr>
<tr>
<td>-</td>
<td>000 VADDL</td>
</tr>
<tr>
<td>-</td>
<td>001 VADDW</td>
</tr>
<tr>
<td>-</td>
<td>010 VSUBL</td>
</tr>
<tr>
<td>0</td>
<td>0100 VADDHN</td>
</tr>
<tr>
<td>-</td>
<td>0011 VSUBW</td>
</tr>
<tr>
<td>0</td>
<td>0110 VSUBHN</td>
</tr>
<tr>
<td>0</td>
<td>1001 VQDMLAL</td>
</tr>
<tr>
<td>-</td>
<td>0101 VABAL</td>
</tr>
<tr>
<td>0</td>
<td>1011 VQDMLSL</td>
</tr>
<tr>
<td>0</td>
<td>1101 VQDMULL</td>
</tr>
<tr>
<td>-</td>
<td>0111 VABDL (integer)</td>
</tr>
<tr>
<td>-</td>
<td>1000 VMLAL (integer)</td>
</tr>
<tr>
<td>-</td>
<td>1010 VMLSL (integer)</td>
</tr>
<tr>
<td>1</td>
<td>0100 VRADHN</td>
</tr>
<tr>
<td>1</td>
<td>0110 VRSUBHN</td>
</tr>
</tbody>
</table>
```
This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The encodings in this section are decoded from "Advanced SIMD two registers, or three registers of different lengths on page F3-4168."

<table>
<thead>
<tr>
<th>U</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1100</td>
<td>VMULL (integer and polynomial)</td>
</tr>
<tr>
<td>1</td>
<td>1001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>1101</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Advanced SIMD two registers and a scalar

<table>
<thead>
<tr>
<th>U</th>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>000x</td>
<td>VMLA (by scalar)</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>VQDMLAL</td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>VMLAL (by scalar)</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>VQDMLSL</td>
</tr>
<tr>
<td></td>
<td>010x</td>
<td>VMLS (by scalar)</td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>VQDMULL</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>VMLSL (by scalar)</td>
</tr>
<tr>
<td></td>
<td>100x</td>
<td>VMUL (by scalar)</td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>VMULL (by scalar)</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>VQDMULH</td>
</tr>
<tr>
<td></td>
<td>1101</td>
<td>VQRDMULH</td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>VQRDMLAH Armv8.1</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>VQRDMLSH Armv8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>opc</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001x</td>
<td>VMLA (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0011</td>
<td>VQDMLAL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>VMLAL (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>VQDMLSL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>010x</td>
<td>VMLS (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1011</td>
<td>VQDMULL</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>VMLSL (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>100x</td>
<td>VMUL (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>VMULL (by scalar)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>VQDMULH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1101</td>
<td>VQRDMULH</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>VQRDMLAH Armv8.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>VQRDMLSH Armv8.1</td>
<td>-</td>
</tr>
</tbody>
</table>
**F3.1.10 Advanced SIMD shifts and immediate generation**

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings in this section are decoded from *Advanced SIMD data-processing on page F3-4165*.

<table>
<thead>
<tr>
<th>15</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>0</th>
<th>15</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>11111</td>
<td>op0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Table F3-11 Encoding table for the Advanced SIMD shifts and immediate generation group**

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>000xxxxxxx0</td>
<td><em>Advanced SIMD one register and modified immediate</em></td>
</tr>
<tr>
<td>!= 000xxxxxxx0</td>
<td><em>Advanced SIMD two registers and shift amount on page F3-4174</em></td>
</tr>
</tbody>
</table>

**Advanced SIMD one register and modified immediate**

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class. The encodings in this section are decoded from *Advanced SIMD shifts and immediate generation*.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 | 15 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 1 1 | i | 1 | 1 | 1 | 1 | D | 0 | 0 | 0 | imm3 | Vd | cmode | 0 | Q | op | 1 | imm4 |

**Decode fields**

<table>
<thead>
<tr>
<th>cmode</th>
<th>op</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xx0</td>
<td>0</td>
<td>VMOV (immediate) - <em>T1</em> on page F6-5360</td>
</tr>
<tr>
<td>0xx0</td>
<td>1</td>
<td>VMVN (immediate) - <em>T1</em> on page F6-5406</td>
</tr>
<tr>
<td>0xx1</td>
<td>0</td>
<td>VORR (immediate) - <em>T1</em> on page F6-5430</td>
</tr>
<tr>
<td>0xx1</td>
<td>1</td>
<td>VBIC (immediate) - <em>T1</em> on page F6-5071</td>
</tr>
<tr>
<td>10x0</td>
<td>0</td>
<td>VMOV (immediate) - <em>T3</em> on page F6-5361</td>
</tr>
<tr>
<td>10x0</td>
<td>1</td>
<td>VMVN (immediate) - <em>T2</em> on page F6-5406</td>
</tr>
<tr>
<td>10x1</td>
<td>0</td>
<td>VORR (immediate) - <em>T2</em> on page F6-5430</td>
</tr>
<tr>
<td>10x1</td>
<td>1</td>
<td>VBIC (immediate) - <em>T2</em> on page F6-5071</td>
</tr>
<tr>
<td>11xx</td>
<td>0</td>
<td>VMOV (immediate) - <em>T4</em> on page F6-5362</td>
</tr>
<tr>
<td>11xx</td>
<td>1</td>
<td>VMVN (immediate) - <em>T3</em> on page F6-5407</td>
</tr>
<tr>
<td>1110</td>
<td>1</td>
<td>VMOV (immediate) - <em>T5</em> on page F6-5362</td>
</tr>
<tr>
<td>1111</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

*Unallocated.*
Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The encodings in this section are decoded from *Advanced SIMD shifts and immediate generation on page F3-4173*.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5</th>
<th>3 2 0</th>
<th>15 12</th>
<th>11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 U 1 1 1 1 D imm3H imm3L</td>
<td>Vd opc L Q M 1 Vm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>imm3H:L</th>
<th>imm3L</th>
<th>opc</th>
<th>Q</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>000</td>
<td>-</td>
<td>VSHR</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>0001</td>
<td>-</td>
<td>VSRA</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>000</td>
<td>1010</td>
<td>0</td>
<td>VMOVL</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>0010</td>
<td>-</td>
<td>VRSHR</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>0011</td>
<td>-</td>
<td>VRSRA</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>0111</td>
<td>-</td>
<td>VQSHL, VQSHLU (immediate) - VQSHL,quad,signed-result variant</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>1001</td>
<td>0</td>
<td>VQSHRN, VQSHRUN - Signed result variant</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>1001</td>
<td>1</td>
<td>VQSHRN, VQSHRUN - Signed result variant</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>1010</td>
<td>0</td>
<td>VSHLL</td>
</tr>
<tr>
<td>-</td>
<td>!= 0000</td>
<td>-</td>
<td>11xx</td>
<td>-</td>
<td>VCVT (between floating-point and fixed-point, Advanced SIMD)</td>
</tr>
<tr>
<td>0</td>
<td>!= 0000</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>VSHL (immediate)</td>
</tr>
<tr>
<td>0</td>
<td>!= 0000</td>
<td>-</td>
<td>1000</td>
<td>0</td>
<td>VSHRN</td>
</tr>
<tr>
<td>0</td>
<td>!= 0000</td>
<td>-</td>
<td>1000</td>
<td>1</td>
<td>VRSHRN</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>-</td>
<td>0100</td>
<td>-</td>
<td>VSRI</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>VSLI</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>-</td>
<td>0110</td>
<td>-</td>
<td>VQSHL, VQSHLU (immediate) - VQSHL,quad, unsigned-result variant</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>-</td>
<td>1000</td>
<td>0</td>
<td>VQSHRN, VQSHRUN - Unsigned result variant</td>
</tr>
<tr>
<td>1</td>
<td>!= 0000</td>
<td>-</td>
<td>1000</td>
<td>1</td>
<td>VQSHRN, VQSHRUN - Unsigned result variant</td>
</tr>
</tbody>
</table>

#### F3.1.11 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group. The encodings in this section are decoded from *System register access, Advanced SIMD, and floating-point on page F3-4164*.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see *About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4216*.
Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F3-4176.

Table F3-12 Encoding table for the Advanced SIMD and System register load/store and 64-bit move group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>00x0</td>
<td>11</td>
</tr>
<tr>
<td>!= 00x0</td>
<td>0x</td>
</tr>
<tr>
<td>!= 00x0</td>
<td>11</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

Advanced SIMD and floating-point 64-bit move

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>op</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this section are decoded from *Advanced SIMD and System register load/store and 64-bit move* on page F3-4174.

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
</table>
|1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | D | 0 | L | Rt2 | Rt | 1 | 1 | 1 | opc1 | CRm | cp15
```

**Decode fields**

**Instruction page**

<table>
<thead>
<tr>
<th>D</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The encodings in this section are decoded from *Advanced SIMD and System register load/store and 64-bit move* on page F3-4174.

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>D</td>
<td>W</td>
<td>L</td>
<td>Rn</td>
<td>Vd</td>
</tr>
</tbody>
</table>
```

**Decode fields**

**Instruction page**

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>W</th>
<th>L</th>
<th>Rn</th>
<th>size</th>
<th>imm8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>xxxx</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>xxxx</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>xxxx</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>xxxx</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>W</th>
<th>L</th>
<th>Rn</th>
<th>size</th>
<th>imm8</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>!111</td>
<td>-</td>
<td>-</td>
<td>VLDR (immediate)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0x</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>-</td>
<td>VSTM, VSTMDB, VSTMIA - Decrement Before variant on page F6-5658</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>xxxxx</td>
<td>x0</td>
<td>VSTM, VSTMDB, VSTMIA - Decrement Before variant on page F6-5657</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>xxxxx</td>
<td>x1</td>
<td>FSTMDBX, FSTMIAX - Decrement Before variant on page F6-5007</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>-</td>
<td>VLDM, VLDMDDB, VLDMIA - Decrement Before variant on page F6-5299</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>xxxxx</td>
<td>x0</td>
<td>VLDM, VLDMDDB, VLDMIA - Decrement Before variant on page F6-5298</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>xxxxx</td>
<td>x1</td>
<td>FLDM*X (FLDMDBX, FLDMIAX) - Decrement Before variant on page F6-5004</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>VLDR (literal)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td></td>
</tr>
</tbody>
</table>

### System register Load/Store

This section describes the encoding of the System register Load/Store instruction class. The encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F3-4174.

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0 1 15 12 11 10 9 8 7</th>
<th>0</th>
</tr>
</thead>
</table>
1 1 1 0 1 0 1 1 0 | P | U | D | W | L | Rn | CRd | 1 1 1 | imm8 | cp15 |
```

### Decode fields

<table>
<thead>
<tr>
<th>P:U:W</th>
<th>D</th>
<th>L</th>
<th>Rn</th>
<th>CRd</th>
<th>cp15</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>!= 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>!= 0101</td>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>!= 000</td>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>0101</td>
<td>0</td>
<td>LDC (literal)</td>
</tr>
<tr>
<td>!= 000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>!= 000</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0101</td>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0101</td>
<td>0</td>
<td>STC - Post-indexed variant</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>1</td>
<td>!= 1111</td>
<td>0101</td>
<td>0</td>
<td>LDC (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0101</td>
<td>0</td>
<td>STC - Unindexed variant</td>
</tr>
</tbody>
</table>
F3.1.12 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on page F3-4164.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4216.

Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The encodings in this section are decoded from Floating-point data-processing.
## Decode fields

<table>
<thead>
<tr>
<th>o1</th>
<th>opc2</th>
<th>size</th>
<th>o3</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>00</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>01</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>-</td>
<td>1</td>
<td>VABS</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>10</td>
<td>0</td>
<td>VMOV (register) - Single-precision scalar variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>11</td>
<td>0</td>
<td>VMOV (register) - Double-precision scalar variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-</td>
<td>0</td>
<td>VNEG</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-</td>
<td>1</td>
<td>VSQRT</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>-</td>
<td>0</td>
<td>VCVTB - Half-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>01</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>-</td>
<td>1</td>
<td>VCVTT - Half-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>01</td>
<td>0</td>
<td>VCVTB (BFloat16)</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>01</td>
<td>1</td>
<td>VCVTT (BFloat16)</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>10</td>
<td>0</td>
<td>VCVTB - Single-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>10</td>
<td>1</td>
<td>VCVTT - Single-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>11</td>
<td>0</td>
<td>VCVTB - Double-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>11</td>
<td>1</td>
<td>VCVTT - Double-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>-</td>
<td>0</td>
<td>VCM - T1 on page F6-5125</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>-</td>
<td>1</td>
<td>VCMPE - T1 on page F6-5129</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
<td>-</td>
<td>0</td>
<td>VCM - T2 on page F6-5126</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
<td>-</td>
<td>1</td>
<td>VCMPE - T2 on page F6-5130</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>-</td>
<td>0</td>
<td>VRINTR</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>-</td>
<td>1</td>
<td>VRINTZ (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>-</td>
<td>0</td>
<td>VRINTX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>01</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>10</td>
<td>1</td>
<td>VCVT (between double-precision and single-precision) - Single-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>11</td>
<td>1</td>
<td>VCVT (between double-precision and single-precision) - Double-precision to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>000</td>
<td>-</td>
<td>-</td>
<td>VCVT (integer to floating-point, floating-point)</td>
<td>-</td>
</tr>
</tbody>
</table>
Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this section are decoded from Floating-point data-processing on page F3-4178.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0</td>
<td>1 1 1 1 0</td>
<td>imm4H Vd</td>
<td>1 0</td>
<td>size 0 0 0</td>
<td>imm4L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>VMOV (immediate) - Half-precision scalar variant</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>10</td>
<td>VMOV (immediate) - Single-precision scalar variant</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>VMOV (immediate) - Double-precision scalar variant</td>
<td>-</td>
</tr>
</tbody>
</table>

Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The encodings in this section are decoded from Floating-point data-processing on page F3-4178.
F3.1.13 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on page F3-4164.

Table F3-14 Encoding table for the Advanced SIMD and System register 32-bit move group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000 000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>000 001</td>
<td>VMOV (between general-purpose register and half-precision)</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>000 010</td>
<td>VMOV (between general-purpose register and single-precision)</td>
<td>-</td>
</tr>
<tr>
<td>001 010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>01x 010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F3-4181.

<table>
<thead>
<tr>
<th>op0</th>
<th>010</th>
<th>110</th>
<th>010</th>
<th>111</th>
<th>010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unallocated.</td>
<td>Unallocated.</td>
<td>Floating-point special register</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F3-4181.

| L | VMSR |
|   | VMRS |

VMOV (general-purpose register to scalar)

VMOV (scalar to general-purpose register)

VDUP (general-purpose register)

Unallocated.
System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F3-4181.

```
|15 14 13 12|11 10 9 8 |7 5 4 3 |0 |
|1 1 1 0 1 1 0|opc1| L |CRn |Rt |1 1 1|opc2 |1|CRm |
```

cp15

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>MCR</td>
</tr>
<tr>
<td></td>
<td>MRC</td>
</tr>
</tbody>
</table>

F3.1.14 Additional Advanced SIMD and floating-point instructions

This section describes the encoding of the Additional Advanced SIMD and floating-point instructions group. The encodings in this section are decoded from System register access, Advanced SIMD, and floating-point on page F3-4164.

```
|15 |10 9 |7 6 5 |0 |12|11 10 9 8 |7 6 5 4 3 |0 |
|111111|opc0|opc1|1|opc3 |
```

This decode also imposes the constraint:

- \( \text{op0}<2:1> \neq 11 \).

**Table F3-15 Encoding table for the Additional Advanced SIMD and floating-point instructions group**

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op2 op3 op4 op5</td>
<td>Advanced SIMD three registers of the same length extension on page F3-4184</td>
</tr>
<tr>
<td>0xx - - 0x - -</td>
<td>VSELEQ, VSELGE, VSELGT, VSELVS</td>
</tr>
<tr>
<td>100 - 0 != 00 0 0</td>
<td>Floating-point minNum/maxNum on page F3-4185</td>
</tr>
<tr>
<td>101 00xxxx 0 != 00 - 0</td>
<td>Floating-point extraction and insertion on page F3-4186</td>
</tr>
<tr>
<td>101 110000 0 != 00 1 0</td>
<td>Floating-point directed convert to integer on page F3-4186</td>
</tr>
<tr>
<td>101 111xxx 0 != 00 1 0</td>
<td>Advanced SIMD and floating-point multiply with accumulate on page F3-4187</td>
</tr>
<tr>
<td>10x - 0 00 - -</td>
<td>Advanced SIMD and floating-point dot product on page F3-4187</td>
</tr>
</tbody>
</table>
## Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction class. The encodings in this section are decoded from *Additional Advanced SIMD and floating-point instructions on page F3-4183.*

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3</th>
<th>0 15 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0</td>
<td>op1 – D</td>
<td>op2 – Vn</td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>op4</th>
<th>Q</th>
<th>U</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>0x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>VCADD - 64-bit SIMD vector variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>x1</td>
<td>0x</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>x1</td>
<td>0x</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>VCADD - 128-bit SIMD vector variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>x1</td>
<td>0x</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0x</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>0x</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>VMMLA</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>VDOT (vector) - 64-bit SIMD vector variant</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>VDOT (vector) - 128-bit SIMD vector variant</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>VFMAL (vector)</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>VSMMLA</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>VUMMLA</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>VSDOT (vector) - 64-bit SIMD vector variant</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>VUDOT (vector) - 64-bit SIMD vector variant</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>VSDOT (vector) - 128-bit SIMD vector variant</td>
<td>Armv8.2</td>
</tr>
</tbody>
</table>
Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this section are decoded from *Additional Advanced SIMD and floating-point instructions* on page F3-4183.
T32 Instruction Set Encoding
F3.1 T32 instruction set encoding

Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4183.

Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4183.
Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4183.

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>Vn</th>
<th>Vd</th>
<th>D</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```
|15 14 13 12|11 10 9 | 8 7 6 5 4 3 0 12|11 10 9 | 8 7 6 5 4 3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 1 1 0 | D | op2 | Vn | Vd | 1 0 0 0 | N | Q | M | U | Vm |
```

Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The encodings in this section are decoded from Additional Advanced SIMD and floating-point instructions on page F3-4183.
F3.1.15  Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

This section describes the encoding of the Load/store dual, load/store exclusive, load-acquire/store-release, and table branch group. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 0</td>
<td>D op2</td>
<td>Vn Vd 1 1 0</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>op4</th>
<th>Q</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1x</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
This decode also imposes the constraint:

- $\text{op0}<1> == 1$

### Table F3-16 Encoding table for the Load/store dual, load/store exclusive, load-acquire/store-release, and table branch group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op2 op3</td>
<td></td>
</tr>
<tr>
<td>0010 - - -</td>
<td>Load/store exclusive</td>
</tr>
<tr>
<td>0110 0 - 000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0110 1 - 000</td>
<td>TBB, TBH</td>
</tr>
<tr>
<td>0110 - - 01x</td>
<td>Load/store exclusive byte/half/dual</td>
</tr>
<tr>
<td>0110 - - 1xx</td>
<td>Load-acquire / Store-release on page F3-4190</td>
</tr>
<tr>
<td>0x11 - != 1111 -</td>
<td>Load/store dual (immediate, post-indexed) on page F3-4191</td>
</tr>
<tr>
<td>1x10 - != 1111 -</td>
<td>Load/store dual (immediate) on page F3-4191</td>
</tr>
<tr>
<td>1x11 - != 1111 -</td>
<td>Load/store dual (immediate, pre-indexed) on page F3-4191</td>
</tr>
<tr>
<td>!= 0xx0 - 1111 -</td>
<td>LDRD (literal)</td>
</tr>
</tbody>
</table>

### Load/store exclusive

This section describes the encoding of the Load/store exclusive instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15 12</th>
<th>11 8 7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 0 0 1 0</td>
<td>L Rn Rt Rd</td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>STREX</td>
</tr>
<tr>
<td>1</td>
<td>LDREX</td>
</tr>
</tbody>
</table>

### Load/store exclusive byte/half/dual

This section describes the encoding of the Load/store exclusive byte/half/dual instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.
This section describes the encoding of the Load-acquire / Store-release instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>sz</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>STREXB</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>STREXH</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>STREXD</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>LDREXB</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>LDREXH</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>LDREXD</td>
</tr>
</tbody>
</table>

### Load-acquire / Store-release

This section describes the encoding of the Load-acquire / Store-release instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>op</th>
<th>sz</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>STLB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>01</td>
<td>STLH</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>STL</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>00</td>
<td>STLEXB</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>01</td>
<td>STLEXH</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>STLEX</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>11</td>
<td>STLEXD</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>00</td>
<td>LDAB</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>01</td>
<td>LDAH</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>LDA</td>
</tr>
</tbody>
</table>
Load/store dual (immediate, post-indexed)

This section describes the encoding of the Load/store dual (immediate, post-indexed) instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

```
| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 12|11 8 7 |0 | |
| 1 1 1 0 1 0 0 0 | | | | |
```

Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>op</th>
<th>sz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

Load/store dual (immediate)

This section describes the encoding of the Load/store dual (immediate) instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

```
| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 12|11 8 7 |0 | |
| 1 1 1 0 1 0 0 1 | | | | |
```

Decode fields

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Load/store dual (immediate, pre-indexed)

This section describes the encoding of the Load/store dual (immediate, pre-indexed) instruction class. The encodings in this section are decoded from Load/store dual, load/store exclusive, load-acquire/store-release, and table branch on page F3-4188.

```
| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 12|11 8 7 |0 | |
| 1 1 1 0 1 0 1 | | | | |
```

Decode fields

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
F3.1.16 Branches and miscellaneous control

This section describes the encoding of the Branches and miscellaneous control group. The encodings in this section are decoded from 32-bit on page F3-4159.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 1  | 1  | 0 | 1 | 0 | 1 | U | 1 | L | 1 | 1111 | Rt | Rt2 | imm8 |
| Rn |

**Table F3-17 Encoding table for the Branches and miscellaneous control group**

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op2 op3 op4 op5</td>
<td>MSR (register)</td>
</tr>
<tr>
<td>0 1110 0x 0x0 - 0</td>
<td>MSR (Banked register)</td>
</tr>
<tr>
<td>0 1110 0x 0x0 - 1</td>
<td>Hints on page F3-4193</td>
</tr>
<tr>
<td>0 1110 10 0x0 000 -</td>
<td>Change processor state on page F3-4194</td>
</tr>
<tr>
<td>0 1110 11 0x0 - -</td>
<td>Miscellaneous system on page F3-4194</td>
</tr>
<tr>
<td>0 1111 00 0x0 - -</td>
<td>BXJ</td>
</tr>
<tr>
<td>0 1111 01 0x0 - -</td>
<td>Exception return on page F3-4195</td>
</tr>
<tr>
<td>0 1111 1x 0x0 - 0</td>
<td>MRS</td>
</tr>
<tr>
<td>0 1111 1x 0x0 - 1</td>
<td>MRS (Banked register)</td>
</tr>
<tr>
<td>1 1110 00 000 - -</td>
<td>DCPS on page F3-4195</td>
</tr>
<tr>
<td>1 1110 00 010 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1110 01 0x0 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1110 1x 0x0 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1111 0x 0x0 - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1111 1x 0x0 - -</td>
<td>Exception generation on page F3-4195</td>
</tr>
<tr>
<td>- != 111x - 0x0 - -</td>
<td>B - T3 variant</td>
</tr>
</tbody>
</table>
### Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from *Branches and miscellaneous control* on page F3-4192.

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>1 1 1 1 0 1 1 0 1 0</th>
<th>hint</th>
<th>option</th>
</tr>
</thead>
</table>

#### Table F3-17 Encoding table for the Branches and miscellaneous control group (continued)

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>hint option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000 0000</td>
<td>NOP</td>
<td>-</td>
</tr>
<tr>
<td>0000 0001</td>
<td>YIELD</td>
<td>-</td>
</tr>
<tr>
<td>0000 0010</td>
<td>WFE</td>
<td>-</td>
</tr>
<tr>
<td>0000 0011</td>
<td>WFI</td>
<td>-</td>
</tr>
<tr>
<td>0000 0100</td>
<td>SEV</td>
<td>-</td>
</tr>
<tr>
<td>0000 0101</td>
<td>SEVL</td>
<td>-</td>
</tr>
<tr>
<td>0000 011x</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000 1xxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0001 0000</td>
<td>ESB</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0001 0001</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0001 0010</td>
<td>TSB CSYNC</td>
<td>Armv8.4</td>
</tr>
<tr>
<td>0001 0011</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0001 0100</td>
<td>CSDB</td>
<td>-</td>
</tr>
<tr>
<td>0001 0101</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0001 011x</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0001 1xxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>001x</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>01xx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>10xx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
</tbody>
</table>
Change processor state

This section describes the encoding of the Change processor state instruction class. The encodings in this section are decoded from Branches and miscellaneous control on page F3-4192.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 1 0</td>
<td>0 (1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>1 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>hint</th>
<th>option</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>110x</td>
<td>-</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>1110</td>
<td>-</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>1111</td>
<td>DBG</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Miscellaneous system

This section describes the encoding of the Miscellaneous system instruction class. The encodings in this section are decoded from Branches and miscellaneous control on page F3-4192.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 1 1</td>
<td>0 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>imod</th>
<th>M</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>CPS, CPSID, CPSIE - CPS variant</td>
</tr>
<tr>
<td>01</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>CPS, CPSID, CPSIE - CPSIE variant</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>CPS, CPSID, CPSIE - CPSID variant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>opc</th>
<th>option</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000x</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0010</td>
<td>-</td>
<td>CLREX</td>
</tr>
<tr>
<td>0011</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0100 != 0x00</td>
<td></td>
<td>DSB</td>
</tr>
<tr>
<td>0100 0000</td>
<td></td>
<td>SSBB</td>
</tr>
<tr>
<td>0100 0100</td>
<td></td>
<td>PSSBB</td>
</tr>
<tr>
<td>0101</td>
<td>-</td>
<td>DMB</td>
</tr>
</tbody>
</table>
## Exception return

This section describes the encoding of the Exception return instruction class. The encodings in this section are decoded from *Branches and miscellaneous control* on page F3-4192.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1 1 0 1</td>
<td>Rn</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### DCPS

This section describes the encoding of the DCPS instruction class. The encodings in this section are decoded from *Branches and miscellaneous control* on page F3-4192.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11</th>
<th></th>
<th>2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 1 0 0 0</td>
<td>imm4</td>
<td>1 0 0 0</td>
<td>0</td>
<td>0</td>
<td>imm10</td>
<td>opt</td>
<td></td>
</tr>
</tbody>
</table>

### Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are decoded from *Branches and miscellaneous control* on page F3-4192.
F3.1.17  Data-processing (plain binary immediate)

This section describes the encoding of the Data-processing (plain binary immediate) group. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0 15 14</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>1</td>
<td>op1 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table F3-18 Encoding table for the Data-processing (plain binary immediate) group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>0 0x</td>
<td>Data-processing (simple immediate)</td>
</tr>
<tr>
<td>0 10</td>
<td>Move Wide (16-bit immediate) on page F3-4197</td>
</tr>
<tr>
<td>0 11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 -</td>
<td>Saturate, Bitfield on page F3-4197</td>
</tr>
</tbody>
</table>

Data-processing (simple immediate)

This section describes the encoding of the Data-processing (simple immediate) instruction class. The encodings in this section are decoded from Data-processing (plain binary immediate).
### Move Wide (16-bit immediate)

This section describes the encoding of the Move Wide (16-bit immediate) instruction class. The encodings in this section are decoded from *Data-processing (plain binary immediate)* on page F3-4196.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
<th>15 14 12</th>
<th>11 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 1 0 o1 0 o2 0</td>
<td>Rn 0 imm3</td>
<td>Rd imm8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1 o2 Rn</td>
<td></td>
</tr>
<tr>
<td>0 0 1 != 11x1</td>
<td>ADD, ADDS (immediate)</td>
</tr>
<tr>
<td>0 0 1101</td>
<td>ADD, ADDS (SP plus immediate)</td>
</tr>
<tr>
<td>0 0 1111</td>
<td>ADR - T3 on page F5-4310</td>
</tr>
<tr>
<td>0 1 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 != 11x1</td>
<td>SUB, SUBS (immediate)</td>
</tr>
<tr>
<td>1 1 1101</td>
<td>SUB, SUBS (SP minus immediate)</td>
</tr>
<tr>
<td>1 1 1111</td>
<td>ADR - T2 on page F5-4309</td>
</tr>
</tbody>
</table>

### Saturate, Bitfield

This section describes the encoding of the Saturate, Bitfield instruction class. The encodings in this section are decoded from *Data-processing (plain binary immediate)* on page F3-4196.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
<th>15 14 12</th>
<th>11 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 1 0 o1 1 0 0</td>
<td>imm4 0 imm3</td>
<td>Rd imm8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>MOV, MOVS (immediate)</td>
</tr>
<tr>
<td>1</td>
<td>MOVT</td>
</tr>
</tbody>
</table>
Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in this section are decoded from 32-bit on page F3-4159.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the T32 Advanced SIMD and floating-point instructions and their encoding on page F3-4216.

Table F3-19 Encoding table for the Advanced SIMD element or structure load/store group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>Advanced SIMD load/store multiple structures on page F3-4199</td>
</tr>
<tr>
<td>1 1</td>
<td>Advanced SIMD load single structure to all lanes on page F3-4199</td>
</tr>
<tr>
<td>1 != 11</td>
<td>Advanced SIMD load/store single structure to one lane on page F3-4200</td>
</tr>
</tbody>
</table>
**Advanced SIMD load/store multiple structures**

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The encodings in this section are decoded from *Advanced SIMD element or structure load/store on page F3-4198*.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>L</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>itype</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>itype</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000x</td>
<td>VST4 (multiple 4-element structures)</td>
</tr>
<tr>
<td>0</td>
<td>0010</td>
<td>VST1 (multiple single elements) - <em>T4</em> on page F6-5624</td>
</tr>
<tr>
<td>0</td>
<td>0011</td>
<td>VST2 (multiple 2-element structures) - <em>T2</em> on page F6-5635</td>
</tr>
<tr>
<td>0</td>
<td>010x</td>
<td>VST3 (multiple 3-element structures)</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>VST1 (multiple single elements) - <em>T3</em> on page F6-5623</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>VST1 (multiple single elements) - <em>T1</em> on page F6-5622</td>
</tr>
<tr>
<td>0</td>
<td>100x</td>
<td>VST2 (multiple 2-element structures) - <em>T1</em> on page F6-5634</td>
</tr>
<tr>
<td>0</td>
<td>1010</td>
<td>VST1 (multiple single elements) - <em>T2</em> on page F6-5622</td>
</tr>
<tr>
<td>1</td>
<td>000x</td>
<td>VLD4 (multiple 4-element structures)</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
<td>VLD1 (multiple single elements) - <em>T4</em> on page F6-5256</td>
</tr>
<tr>
<td>1</td>
<td>0011</td>
<td>VLD2 (multiple 2-element structures) - <em>T2</em> on page F6-5270</td>
</tr>
<tr>
<td>1</td>
<td>010x</td>
<td>VLD3 (multiple 3-element structures)</td>
</tr>
<tr>
<td>-</td>
<td>1011</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>0110</td>
<td>VLD1 (multiple single elements) - <em>T3</em> on page F6-5255</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
<td>VLD1 (multiple single elements) - <em>T1</em> on page F6-5254</td>
</tr>
<tr>
<td>-</td>
<td>11xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>100x</td>
<td>VLD2 (multiple 2-element structures) - <em>T1</em> on page F6-5269</td>
</tr>
<tr>
<td>1</td>
<td>1010</td>
<td>VLD1 (multiple single elements) - <em>T2</em> on page F6-5254</td>
</tr>
</tbody>
</table>

**Advanced SIMD load single structure to all lanes**

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The encodings in this section are decoded from *Advanced SIMD element or structure load/store on page F3-4198*. 
This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class. The encodings in this section are decoded from *Advanced SIMD element or structure load/store* on page F3-4198.

### Decode fields

<table>
<thead>
<tr>
<th>L</th>
<th>N</th>
<th>a</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>-</td>
<td>VLD1 (single element to all lanes)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>-</td>
<td>VLD2 (single 2-element structure to all lanes)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>VLD3 (single 3-element structure to all lanes)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>-</td>
<td>VLD4 (single 4-element structure to all lanes)</td>
</tr>
</tbody>
</table>

### Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class. The encodings in this section are decoded from *Advanced SIMD element or structure load/store* on page F3-4198.

<table>
<thead>
<tr>
<th>L</th>
<th>size</th>
<th>N</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00</td>
<td>VST1 (single element from one lane) - <em>T1</em> on page F6-5615</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - <em>T1</em> on page F6-5629</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - <em>T1</em> on page F6-5640</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - <em>T1</em> on page F6-5649</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>00</td>
<td>VST1 (single element from one lane) - <em>T2</em> on page F6-5616</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - <em>T2</em> on page F6-5630</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - <em>T2</em> on page F6-5641</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - <em>T2</em> on page F6-5650</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>00</td>
<td>VST1 (single element from one lane) - <em>T3</em> on page F6-5616</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - <em>T3</em> on page F6-5630</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - <em>T3</em> on page F6-5641</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - <em>T3</em> on page F6-5650</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>00</td>
<td>VLD1 (single element to one lane) - <em>T1</em> on page F6-5244</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Load/store single group. The encodings in this section are decoded from 32-bit on page F3-4159.

This decode also imposes the constraint:

- $\text{op0<1>:op1} \neq 10$.

### Table F3-20 Encoding table for the Load/store single group

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>op3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$00$</td>
<td>-</td>
<td>$!=$</td>
<td>$1111$</td>
</tr>
</tbody>
</table>
Load/store, unsigned (register offset)

This section describes the encoding of the Load/store, unsigned (register offset) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

```
| 15 14 13 12|11 10 9 |8 7 6 5 4 3 |0 |15|12|11 10 9 8 7 6 5 4 3 |
|-------------|---------|----------|---|---|---|---------|---------|---------|
| 1 1 1 1 1 0 0 0 0 |size L |1=1111 |Rt 0 0 0 0 0 0 |mm2 Rm |
```

**Instruction page**

<table>
<thead>
<tr>
<th>size L Rt</th>
<th>STRB (register)</th>
<th>LDRB (register)</th>
<th>PLD, PLDW (register) - Preload read variant</th>
<th>STRH (register)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0 -</td>
<td>STRB (register)</td>
<td>LDRB (register)</td>
<td>PLD, PLDW (register) - Preload read variant</td>
<td>STRH (register)</td>
</tr>
<tr>
<td>00 1 != 1111</td>
<td>LDRB (register)</td>
<td>PLD, PLDW (register) - Preload read variant</td>
<td>STRH (register)</td>
<td></td>
</tr>
</tbody>
</table>
Load/store, unsigned (immediate, post-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, post-indexed) instruction class. The encodings in this section are decoded from *Load/store single on page F3-4201*.

\[
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|12|11|10|9|8|7|0|0|
|1|1|1|1|1|0|0|0|size|L|=1111|Rt|1|0|U|1|imm8|
\]

Rn

Load/store, unsigned (negative immediate)

This section describes the encoding of the Load/store, unsigned (negative immediate) instruction class. The encodings in this section are decoded from *Load/store single on page F3-4201*.

\[
00	0	L	STRB (immediate)
00	1	L	LDRB (immediate)
01	0	L	STRH (immediate)
01	1	L	LDRH (immediate)
10	0	L	STR (immediate)
10	1	L	LDR (immediate)
11	--	Unallocated.	
\]
Load/store, unsigned (unprivileged)

This section describes the encoding of the Load/store, unsigned (unprivileged) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

```
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15|
1 1 1 1 1 0 0 0 |size L |1=1111 |Rt |1 1 0 0 |imm8|
```

Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

```
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15|
1 1 1 1 1 0 0 0 |size L |1=1111 |Rt |1 1 1 0 |imm8|
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size L Rt</td>
<td></td>
</tr>
<tr>
<td>00 0 -</td>
<td>STRB (immediate)</td>
</tr>
<tr>
<td>00 1 != 1111</td>
<td>LDRB (immediate)</td>
</tr>
<tr>
<td>00 1 1111</td>
<td>PLD, PLDW (immediate) - Preload read variant</td>
</tr>
<tr>
<td>01 0 -</td>
<td>STRH (immediate)</td>
</tr>
<tr>
<td>01 1 != 1111</td>
<td>LDRH (immediate)</td>
</tr>
<tr>
<td>01 1 1111</td>
<td>PLD, PLDW (immediate) - Preload write variant</td>
</tr>
<tr>
<td>10 0 -</td>
<td>STR (immediate)</td>
</tr>
<tr>
<td>10 1 -</td>
<td>LDR (immediate)</td>
</tr>
<tr>
<td>11 - -</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Load/store, unsigned (immediate, pre-indexed)

This section describes the encoding of the Load/store, unsigned (immediate, pre-indexed) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

```
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15|
1 1 1 1 1 0 0 0 |size L |1=1111 |Rt |1 1 1 0 |imm8|
```

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size L</td>
<td></td>
</tr>
<tr>
<td>00 0</td>
<td>STRBT</td>
</tr>
<tr>
<td>00 1</td>
<td>LDRBT</td>
</tr>
<tr>
<td>01 0</td>
<td>STRHT</td>
</tr>
<tr>
<td>01 1</td>
<td>LDRHT</td>
</tr>
<tr>
<td>10 0</td>
<td>STRT</td>
</tr>
<tr>
<td>10 1</td>
<td>LDRT</td>
</tr>
<tr>
<td>11 -</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Load/store, unsigned (positive immediate)

This section describes the encoding of the Load/store, unsigned (positive immediate) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

Load, unsigned (literal)

This section describes the encoding of the Load, unsigned (literal) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.
Load/store, signed (register offset)

This section describes the encoding of the Load/store, signed (register offset) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0 15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 0 0 0 U</td>
<td>size L 1 1 1</td>
<td>Rt imm12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>L</th>
<th>Rt</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>1</td>
<td>1111</td>
<td>PLD (literal)</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>!= 1111</td>
<td>LDRB (literal)</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>!= 1111</td>
<td>LDRH (literal)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>-</td>
<td>LDR (literal)</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Load/store, signed (immediate, post-indexed)

This section describes the encoding of the Load/store, signed (immediate, post-indexed) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0 15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 0 0 1 0</td>
<td>size 1 1</td>
<td>l=1111</td>
<td>Rt 0 0 0 0 0 0</td>
<td>imm2</td>
<td>Rm</td>
</tr>
</tbody>
</table>

| Rn            |

### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>Rt</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>!= 1111</td>
<td>LDRSB (register)</td>
</tr>
<tr>
<td>00</td>
<td>1111</td>
<td>PLI (register)</td>
</tr>
<tr>
<td>01</td>
<td>!= 1111</td>
<td>LDRSH (register)</td>
</tr>
<tr>
<td>01</td>
<td>1111</td>
<td>Reserved hint, behaves as NOP.</td>
</tr>
<tr>
<td>1x</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Load/store, signed (immediate, post-indexed)
This section describes the encoding of the Load/store, signed (negative immediate) instruction class. The encodings in this section are decoded from *Load/store single* on page F3-4201.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>l=1111</td>
<td>Rt</td>
<td>1</td>
<td>0</td>
<td>U</td>
<td>1</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Load/store, signed (negative immediate)**

This section describes the encoding of the Load/store, signed (negative immediate) instruction class. The encodings in this section are decoded from *Load/store single* on page F3-4201.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>l=1111</td>
<td>Rt</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Load/store, signed (unprivileged)**

This section describes the encoding of the Load/store, signed (unprivileged) instruction class. The encodings in this section are decoded from *Load/store single* on page F3-4201.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>l=1111</td>
<td>Rt</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Load/store, signed (immediate, pre-indexed)

This section describes the encoding of the Load/store, signed (immediate, pre-indexed) instruction class. The encodings in this section are decoded from *Load/store single on page F3-4201*.

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 0 1 0</td>
<td>size 1</td>
<td>l=1111</td>
<td>Rt</td>
<td>1 1 1 0</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>
```

**Decode fields**

<table>
<thead>
<tr>
<th>size</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>LDRSBT</td>
</tr>
<tr>
<td>01</td>
<td>LDRSHT</td>
</tr>
<tr>
<td>1x</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Load/store, signed (positive immediate)

This section describes the encoding of the Load/store, signed (positive immediate) instruction class. The encodings in this section are decoded from *Load/store single on page F3-4201*.

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 0 1 0</td>
<td>size 1</td>
<td>l=1111</td>
<td>Rt</td>
<td>1 1 U 1</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>
```

**Decode fields**

<table>
<thead>
<tr>
<th>size</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>LDRSB (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>LDRSH (immediate)</td>
</tr>
<tr>
<td>1x</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Load/store single

The load/store single instruction set is used for loading and storing data in memory. Different formats are available to handle various types of data and addresses.

- **LDRSBT**: Load half word signed with back pointer
- **LDRSHT**: Load half word signed with high pointer
- **Unallocated**: Indicates unused fields
- **LDRSB (immediate)**: Load word signed with immediate
- **LDRSH (immediate)**: Load half word signed with immediate
- **Reserved hint, behaves as NOP**: Indicates a reserved instruction that behaves as no operation

These instructions are fundamental in memory management and data manipulation within ARM architectures.
Load, signed (literal)

This section describes the encoding of the Load, signed (literal) instruction class. The encodings in this section are decoded from Load/store single on page F3-4201.

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|15|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1|1|1|1|1|0|0|1|U|size|1|1|1|1|1|Rt|imm12|
```

F3.1.20 Data-processing (register)

This section describes the encoding of the Data-processing (register) group. The encodings in this section are decoded from 32-bit on page F3-4159.

```
<table>
<thead>
<tr>
<th>15</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111010</td>
<td>op0</td>
<td>op1</td>
<td>op2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Table F3-21 Encoding table for the Data-processing (register) group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op2</td>
<td></td>
</tr>
<tr>
<td>0 1111 0000</td>
<td>MOV, MOVS (register-shifted register) - Flag setting variant</td>
</tr>
<tr>
<td>0 1111 0001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 1111 001x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 1111 01xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0 1111 1xxx</td>
<td>Register extends on page F3-4210</td>
</tr>
<tr>
<td>1 1111 0xxx</td>
<td>Parallel add-subtract on page F3-4210</td>
</tr>
<tr>
<td>1 1111 10xx</td>
<td>Data-processing (two source registers) on page F3-4212</td>
</tr>
<tr>
<td>1 1111 11xx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>- 1111 -</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
### Register extends

This section describes the encoding of the Register extends instruction class. The encodings in this section are decoded from *Data-processing (register)* on page F3-4209.

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1</td>
<td>Rd 1 0 rotate Rm</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>U</th>
<th>Rd</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>!= 1111</td>
<td>SXTAH</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>1111</td>
<td>SXTH</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>!= 1111</td>
<td>UXTAH</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>1111</td>
<td>UXTH</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>!= 1111</td>
<td>SXTAB16</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>1111</td>
<td>SXTB16</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>!= 1111</td>
<td>UXTAB16</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1111</td>
<td>UXTB16</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>!= 1111</td>
<td>SXTAB</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1111</td>
<td>SXTB</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>!= 1111</td>
<td>UXTAB</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1111</td>
<td>UXTB</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Parallel add-subtract

This section describes the encoding of the Parallel add-subtract instruction class. The encodings in this section are decoded from *Data-processing (register)* on page F3-4209.

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 4 3 0</th>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 0 1 op1 U H S Rn 1 1 1 1</td>
<td>Rd 0 U H S Rm</td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>U</th>
<th>H</th>
<th>S</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SADD8</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QADD8</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHADD8</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>op1</td>
<td>U</td>
<td>H</td>
<td>S</td>
<td>Instruction page</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>UADD8</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQADD8</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHADD8</td>
</tr>
<tr>
<td>000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SADD16</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QADD16</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHADD16</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>UADD16</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQADD16</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHADD16</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SASX</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QASX</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHASX</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>UASX</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQASX</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHASX</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SSUB8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QSUB8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHSUB8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>USUB8</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQSUB8</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHSUB8</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SSUB16</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QSUB16</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHSUB16</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Data-processing (two source registers)

This section describes the encoding of the Data-processing (two source registers) instruction class. The encodings in this section are decoded from Data-processing (register) on page F3-4209.

```
|15 14 13 12|11 10 9 8 |7 6 4 3 |0 |15 14 13 12|11 8 7 6 5 4 3 |0 |
1 1 1 1 1 0 0 1 |op1 |Rn 1 1 1 1 |Rd 1 0 |op2 |Rm
```

Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>U</th>
<th>H</th>
<th>S</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>USUB16</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQSUB16</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHSUB16</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SSAX</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>QSAX</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>SHSAX</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>USAX</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>UQSA X</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>UHSAX</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>111</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
<td>QADD</td>
</tr>
<tr>
<td>000</td>
<td>01</td>
<td>QDADD</td>
</tr>
<tr>
<td>000</td>
<td>10</td>
<td>QSUB</td>
</tr>
<tr>
<td>000</td>
<td>11</td>
<td>QDSUB</td>
</tr>
<tr>
<td>001</td>
<td>00</td>
<td>REV</td>
</tr>
<tr>
<td>001</td>
<td>01</td>
<td>REV16</td>
</tr>
<tr>
<td>001</td>
<td>10</td>
<td>RBIT</td>
</tr>
<tr>
<td>001</td>
<td>11</td>
<td>REVSH</td>
</tr>
<tr>
<td>010</td>
<td>00</td>
<td>SEL</td>
</tr>
<tr>
<td>010</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-7952.

F3.1.21 Multiply, multiply accumulate, and absolute difference

This section describes the encoding of the Multiply, multiply accumulate, and absolute difference group. The encodings in this section are decoded from 32-bit on page F3-4159.

<table>
<thead>
<tr>
<th>15</th>
<th>7</th>
<th>6</th>
<th>0</th>
<th>15</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>111110110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F3-22 Encoding table for the Multiply, multiply accumulate, and absolute difference group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>Multiply and absolute difference</td>
</tr>
<tr>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1x</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

Multiply and absolute difference

This section describes the encoding of the Multiply and absolute difference instruction class. The encodings in this section are decoded from Multiply, multiply accumulate, and absolute difference.
## T32 Instruction Set Encoding

### F3.1 T32 instruction set encoding

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op1 Ra op2</td>
<td></td>
</tr>
<tr>
<td>000 != 1111</td>
<td>MLA, MLAS</td>
</tr>
<tr>
<td>000 - 01</td>
<td>MLS</td>
</tr>
<tr>
<td>000 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>000 1111 00</td>
<td>MUL, MULS</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant</td>
</tr>
<tr>
<td>001 1111 00</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant</td>
</tr>
<tr>
<td>001 1111 01</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>001 1111 10</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>001 1111 11</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>010 != 1111</td>
<td>SMLAD, SMLADX - SMLAD variant</td>
</tr>
<tr>
<td>010 != 1111</td>
<td>SMLAD, SMLADX - SMLADX variant</td>
</tr>
<tr>
<td>010 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010 1111 00</td>
<td>SMUAD, SMUADX - SMUAD variant</td>
</tr>
<tr>
<td>010 1111 01</td>
<td>SMUAD, SMUADX - SMUADX variant</td>
</tr>
<tr>
<td>011 != 1111</td>
<td>SMLAWB, SMLAWT - SMLAWB variant</td>
</tr>
<tr>
<td>011 != 1111</td>
<td>SMLAWB, SMLAWT - SMLAWT variant</td>
</tr>
<tr>
<td>011 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011 1111 00</td>
<td>SMULWB, SMULWT - SMULWB variant</td>
</tr>
<tr>
<td>011 1111 01</td>
<td>SMULWB, SMULWT - SMULWT variant</td>
</tr>
<tr>
<td>100 != 1111</td>
<td>SMLSD, SMLSDX - SMLSD variant</td>
</tr>
<tr>
<td>100 != 1111</td>
<td>SMLSD, SMLSDX - SMLSDX variant</td>
</tr>
<tr>
<td>100 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100 1111 00</td>
<td>SMUSD, SMUSDX - SMUSD variant</td>
</tr>
<tr>
<td>100 1111 01</td>
<td>SMUSD, SMUSDX - SMUSDX variant</td>
</tr>
<tr>
<td>101 != 1111</td>
<td>SMMLA, SMMLAR - SMMLA variant</td>
</tr>
</tbody>
</table>

---

**T32 Instruction Set Encoding**

**F3.1 T32 instruction set encoding**

<table>
<thead>
<tr>
<th>op1 Ra op2</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 != 1111</td>
<td>MLA, MLAS</td>
</tr>
<tr>
<td>000 - 01</td>
<td>MLS</td>
</tr>
<tr>
<td>000 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>000 1111 00</td>
<td>MUL, MULS</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLABB variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLABT variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLATB variant</td>
</tr>
<tr>
<td>001 != 1111</td>
<td>SMLABB, SMLABT, SMLATB, SMLATT - SMLATT variant</td>
</tr>
<tr>
<td>001 1111 00</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBB variant</td>
</tr>
<tr>
<td>001 1111 01</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>001 1111 10</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>001 1111 11</td>
<td>SMULBB, SMULBT, SMULTB, SMULTT - SMULBT variant</td>
</tr>
<tr>
<td>010 != 1111</td>
<td>SMLAD, SMLADX - SMLAD variant</td>
</tr>
<tr>
<td>010 != 1111</td>
<td>SMLAD, SMLADX - SMLADX variant</td>
</tr>
<tr>
<td>010 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010 1111 00</td>
<td>SMUAD, SMUADX - SMUAD variant</td>
</tr>
<tr>
<td>010 1111 01</td>
<td>SMUAD, SMUADX - SMUADX variant</td>
</tr>
<tr>
<td>011 != 1111</td>
<td>SMLAWB, SMLAWT - SMLAWB variant</td>
</tr>
<tr>
<td>011 != 1111</td>
<td>SMLAWB, SMLAWT - SMLAWT variant</td>
</tr>
<tr>
<td>011 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011 1111 00</td>
<td>SMULWB, SMULWT - SMULWB variant</td>
</tr>
<tr>
<td>011 1111 01</td>
<td>SMULWB, SMULWT - SMULWT variant</td>
</tr>
<tr>
<td>100 != 1111</td>
<td>SMLSD, SMLSDX - SMLSD variant</td>
</tr>
<tr>
<td>100 != 1111</td>
<td>SMLSD, SMLSDX - SMLSDX variant</td>
</tr>
<tr>
<td>100 - 1x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100 1111 00</td>
<td>SMUSD, SMUSDX - SMUSD variant</td>
</tr>
<tr>
<td>100 1111 01</td>
<td>SMUSD, SMUSDX - SMUSDX variant</td>
</tr>
<tr>
<td>101 != 1111</td>
<td>SMMLA, SMMLAR - SMMLA variant</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>op1</td>
<td>Ra</td>
</tr>
<tr>
<td>101</td>
<td>!= 1111</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
</tr>
<tr>
<td>101</td>
<td>1111</td>
</tr>
<tr>
<td>101</td>
<td>1111</td>
</tr>
<tr>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>!= 1111</td>
</tr>
<tr>
<td>111</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>1111</td>
</tr>
</tbody>
</table>
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP register file. This means:

- In general, the instructions that load or store registers in this file, or move data between general-purpose registers and this register file, are common to the Advanced SIMD and floating-point instructions.
- There are distinct Advanced SIMD data-processing instructions and floating-point data-processing instructions.

All T32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these instructions are decoded from different points in the 32-bit T32 instruction decode structure. Table F3-23 shows these instruction groups, and where each group is decoded from the overall T32 decode structure:

<table>
<thead>
<tr>
<th>Advanced SIMD and floating-point instruction group</th>
<th>T32 decode is from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced SIMD and System register load/store and 64-bit move on page F3-4174</td>
<td>System register access, Advanced SIMD, and floating-point on page F3-4164</td>
</tr>
<tr>
<td>Floating-point data-processing on page F3-4178</td>
<td>System register access, Advanced SIMD, and floating-point on page F3-4164</td>
</tr>
<tr>
<td>Advanced SIMD and System register 32-bit move on page F3-4181</td>
<td>System register access, Advanced SIMD, and floating-point on page F3-4164</td>
</tr>
<tr>
<td>Advanced SIMD data-processing on page F3-4165</td>
<td>System register access, Advanced SIMD, and floating-point on page F3-4164</td>
</tr>
<tr>
<td>Advanced SIMD element or structure load/store on page F3-4198</td>
<td>32-bit on page F3-4159</td>
</tr>
</tbody>
</table>
Chapter F4
A32 Instruction Set Encoding

This chapter describes the encoding of the A32 instruction set. It contains the following sections:

- *A32 instruction set encoding* on page F4-4218.
- *About the A32 Advanced SIMD and floating-point instructions and their encoding* on page F4-4278.

In this chapter:

- In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.
- In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
F4.1 A32 instruction set encoding

The A32 instruction stream is a sequence of word-aligned words. Each A32 instruction is either a single 32-bit word in that stream.

Most A32 instructions can be conditional, with a condition determined by bits[31:28] of the instruction, the cond field. For more information see The Condition code field in A32 instruction encodings on page F2-4122. This applies to all instructions except those with the cond field equal to 0b111.

The behavior of an attempt to execute an unallocated instruction is described in UNDEFINED, UNPREDICTABLE, and CONSTRAINED UNPREDICTABLE instruction set space on page F2-4128.

For more information on A32 instruction encodings see Chapter F2 About the T32 and A32 Instruction Descriptions.

The A32 instruction encoding is:

```
[31 28|27 25 24| | | | 5 4 3 0]
cond op0 op1
```

Table F4-1 Main encoding table for the A32 instruction set

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond 0x0</td>
<td>Data-processing and miscellaneous instructions</td>
</tr>
<tr>
<td>010</td>
<td>Load/Store Word, Unsigned Byte (immediate, literal) on page F4-4234</td>
</tr>
<tr>
<td>011 0</td>
<td>Load/Store Word, Unsigned Byte (register) on page F4-4235</td>
</tr>
<tr>
<td>011 1</td>
<td>Media instructions on page F4-4236</td>
</tr>
<tr>
<td>10x</td>
<td>Branch, branch with link, and block data transfer on page F4-4244</td>
</tr>
<tr>
<td>11x</td>
<td>System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246</td>
</tr>
<tr>
<td>1111 0xx</td>
<td>Unconditional instructions on page F4-4261</td>
</tr>
</tbody>
</table>

F4.1.1 Data-processing and miscellaneous instructions

This section describes the encoding of the Data-processing and miscellaneous instructions group. The encodings in this section are decoded from A32 instruction set encoding.
Multiply and Accumulate

This section describes the encoding of the Multiply and Accumulate instruction class. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

Table F4-2 Encoding table for the Data-processing and miscellaneous instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1 op2 op3 op4</td>
<td>EXTRA LOAD/STORE on page F4-4220</td>
</tr>
<tr>
<td>0 - 1 != 00 1</td>
<td>Multiply and Accumulate</td>
</tr>
<tr>
<td>0 0xxxx 1 00 1</td>
<td>Synchronization primitives and Load-Acquire/Store-Release on page F4-4223</td>
</tr>
<tr>
<td>0 1xxxx 1 00 1</td>
<td>Miscellaneous on page F4-4224</td>
</tr>
<tr>
<td>0 10xx0 0 - -</td>
<td>Halfword Multiply and Accumulate on page F4-4220</td>
</tr>
<tr>
<td>0 10xx0 1 - 0</td>
<td>Data-processing register (immediate shift) on page F4-4227</td>
</tr>
<tr>
<td>0 != 10xx0 - - 0</td>
<td>Data-processing register (register shift) on page F4-4229</td>
</tr>
<tr>
<td>1 - - - -</td>
<td>Data-processing immediate on page F4-4231</td>
</tr>
</tbody>
</table>

Multiply and Accumulate

This section describes the encoding of the Multiply and Accumulate instruction class. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

Table F4-2 Encoding table for the Data-processing and miscellaneous instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>opc S</td>
<td>MUL, MULS</td>
</tr>
<tr>
<td>000 -</td>
<td>MLA, MLAS</td>
</tr>
<tr>
<td>010 0</td>
<td>UMAAL</td>
</tr>
<tr>
<td>010 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011 0</td>
<td>MLS</td>
</tr>
<tr>
<td>011 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100 -</td>
<td>UMULL, UMULLS</td>
</tr>
</tbody>
</table>
Halfword Multiply and Accumulate

This section describes the encoding of the Halfword Multiply and Accumulate instruction class. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

<table>
<thead>
<tr>
<th>31 28 27 25 24 23 22 21 20</th>
<th>19 16 15</th>
<th>12 11</th>
<th>8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 0</td>
<td>opc 0</td>
<td>Rd Ra Rm 1 M N 0 Rn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F4.1.2 Extra load/store

This section describes the encoding of the Extra load/store group. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

<table>
<thead>
<tr>
<th>31 28 27 25 24 23 22 21</th>
<th></th>
<th>8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>000</td>
<td>!00 1</td>
</tr>
<tr>
<td>op0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F4-3 Encoding table for the Extra load/store group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Load/Store Dual, Half, Signed Byte (register) on page F4-4221</td>
</tr>
<tr>
<td>1</td>
<td>Load/Store Dual, Half, Signed Byte (immediate, literal) on page F4-4221</td>
</tr>
</tbody>
</table>
Load/Store Dual, Half, Signed Byte (register)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (register) instruction class. The encodings in this section are decoded from Extra load/store on page F4-4220.

31 28	27 26 25 24	23 22 21 20	19 16	15 12	11 10 9 8	7 6 5 4	3 0			
![1111	0 0 0	P	U	0	W	o1	Rn	Rt	![0 0 0 1]	STRH (register) - Post-indexed variant
![0 0 0 10]	LDRD (register) - Post-indexed variant									
![0 0 0 11]	STRD (register) - Post-indexed variant									
![0 0 1 01]	LDRH (register) - Post-indexed variant									
![0 0 1 10]	LDRSB (register) - Post-indexed variant									
![0 0 1 11]	LDRSH (register) - Post-indexed variant									
![0 1 0 01]	STRHT									
![0 1 0 10]	Unallocated.									
![0 1 1 11]	Unallocated.									
![0 1 1 01]	LDRHT									
![0 1 1 10]	LDRSBT									
![0 1 1 11]	LDRSHT									
![1 - 0 01]	STRH (register) - Pre-indexed variant									
![1 - 0 10]	LDRD (register) - Pre-indexed variant									
![1 - 0 11]	STRD (register) - Pre-indexed variant									
![1 - 1 01]	LDRH (register) - Pre-indexed variant									
![1 - 1 10]	LDRSB (register) - Pre-indexed variant									
![1 - 1 11]	LDRSH (register) - Pre-indexed variant									

Load/Store Dual, Half, Signed Byte (immediate, literal)

This section describes the encoding of the Load/Store Dual, Half, Signed Byte (immediate, literal) instruction class. The encodings in this section are decoded from Extra load/store on page F4-4220.
## A32 Instruction Set Encoding

### F4.1 A32 instruction set encoding

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>P:W o1 Rn op2</strong></td>
<td><strong>Instruction page</strong></td>
</tr>
<tr>
<td>- 0 1111 10</td>
<td>LDRD (literal)</td>
</tr>
<tr>
<td>!= 01 1 1111 01</td>
<td>LDRH (literal)</td>
</tr>
<tr>
<td>!= 01 1 1111 10</td>
<td>LDRSB (literal)</td>
</tr>
<tr>
<td>!= 01 1 1111 11</td>
<td>LDRSH (literal)</td>
</tr>
<tr>
<td>00 0 != 1111 10</td>
<td>LDRD (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 0 - 01</td>
<td>STRH (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 0 - 11</td>
<td>STRD (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 1 != 1111 01</td>
<td>LDRH (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 1 != 1111 10</td>
<td>LDRSB (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 1 != 1111 11</td>
<td>LDRSH (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>01 0 != 1111 10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01 0 - 01</td>
<td>STRHT</td>
</tr>
<tr>
<td>01 0 - 11</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01 1 - 01</td>
<td>LDRHT</td>
</tr>
<tr>
<td>01 1 - 10</td>
<td>LDRSBT</td>
</tr>
<tr>
<td>01 1 - 11</td>
<td>LDRSHT</td>
</tr>
<tr>
<td>10 0 != 1111 10</td>
<td>LDRD (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 0 - 01</td>
<td>STRH (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 0 - 11</td>
<td>STRD (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 1 != 1111 01</td>
<td>LDRH (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 1 != 1111 10</td>
<td>LDRSB (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 1 != 1111 11</td>
<td>LDRSH (immediate) - Offset variant</td>
</tr>
<tr>
<td>11 0 != 1111 10</td>
<td>LDRD (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 0 - 01</td>
<td>STRH (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 0 - 11</td>
<td>STRD (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 1 != 1111 01</td>
<td>LDRH (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 1 != 1111 10</td>
<td>LDRSB (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 1 != 1111 11</td>
<td>LDRSH (immediate) - Pre-indexed variant</td>
</tr>
</tbody>
</table>
F4.1.3 Synchronization primitives and Load-Acquire/Store-Release

This section describes the encoding of the Synchronization primitives and Load-Acquire/Store-Release group. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

Table F4-4 Encoding table for the Synchronization primitives and Load-Acquire/Store-Release group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>Load/Store Exclusive and Load-Acquire/Store-Release</td>
</tr>
</tbody>
</table>

Load/Store Exclusive and Load-Acquire/Store-Release

This section describes the encoding of the Load/Store Exclusive and Load-Acquire/Store-Release instruction class. The encodings in this section are decoded from Synchronization primitives and Load-Acquire/Store-Release.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size  L  ex  ord</td>
<td>STL</td>
</tr>
<tr>
<td>00 0 0 0</td>
<td>STL</td>
</tr>
<tr>
<td>00 0 0 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>00 0 1 0</td>
<td>STLEX</td>
</tr>
<tr>
<td>00 0 1 1</td>
<td>STREX</td>
</tr>
<tr>
<td>00 1 0 0</td>
<td>LDA</td>
</tr>
<tr>
<td>00 1 0 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>00 1 1 0</td>
<td>LDAEX</td>
</tr>
<tr>
<td>00 1 1 1</td>
<td>LDREX</td>
</tr>
<tr>
<td>01 0 0 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01 0 1 0</td>
<td>STLEXD</td>
</tr>
<tr>
<td>01 0 1 1</td>
<td>STREXD</td>
</tr>
<tr>
<td>01 1 0 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01 1 1 0</td>
<td>LDAEXD</td>
</tr>
</tbody>
</table>
### F4.1.4 Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from *Data-processing and miscellaneous instructions* on page F4-4218.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>L</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table F4-5 Encoding table for the Miscellaneous group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decode fields</td>
</tr>
<tr>
<td>op0</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>01</td>
</tr>
</tbody>
</table>
Exception Generation

This section describes the encoding of the Exception Generation instruction class. The encodings in this section are decoded from Miscellaneous on page F4-4224.

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th></th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>opc</td>
<td>0</td>
<td>imm12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>imm4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

decode fields

Instruction page

<table>
<thead>
<tr>
<th>opc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>HLT</td>
</tr>
<tr>
<td>01</td>
<td>BKPT</td>
</tr>
<tr>
<td>10</td>
<td>HVC</td>
</tr>
<tr>
<td>11</td>
<td>SMC</td>
</tr>
</tbody>
</table>

Move special register (register)

This section describes the encoding of the Move special register (register) instruction class. The encodings in this section are decoded from Miscellaneous on page F4-4224.
### Cyclic Redundancy Check

This section describes the encoding of the Cyclic Redundancy Check instruction class. The encodings in this section are decoded from *Miscellaneous on page F4-4224.*

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | cond |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 0 | 0 | 0 | 1 | 0 | opc | 0 | mask | Rd | 0 | 0 | B | m | 0 | 0 | 0 | 0 | Rn |

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>B</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>0</td>
<td>MRS</td>
</tr>
<tr>
<td>x0</td>
<td>1</td>
<td>MRS (Banked register)</td>
</tr>
<tr>
<td>x1</td>
<td>0</td>
<td>MSR (register)</td>
</tr>
<tr>
<td>x1</td>
<td>1</td>
<td>MSR (Banked register)</td>
</tr>
</tbody>
</table>

### Integer Saturating Arithmetic

This section describes the encoding of the Integer Saturating Arithmetic instruction class. The encodings in this section are decoded from *Miscellaneous on page F4-4224.*

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | cond |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 0 | 0 | 0 | 1 | 0 | sz | 0 | Rn | Rd | 0 | 0 | C | 0 | 0 | 1 | 0 | 0 | Rm |

#### Decode fields

<table>
<thead>
<tr>
<th>sz</th>
<th>C</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>CRC32 - CRC32B variant</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>CRC32C - CRC32CB variant</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>CRC32 - CRC32H variant</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>CRC32C - CRC32CH variant</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>CRC32C - CRC32W variant</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>CRC32C - CRC32CW variant</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>CONSTRAINED UNPREDICTABLE</td>
</tr>
</tbody>
</table>

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in *CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-7952.*
F4.1.5  Data-processing register (immediate shift)

This section describes the encoding of the Data-processing register (immediate shift) group. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

This decode also imposes the constraint:

- \( \text{op0:op1} \neq \text{100} \).

Table F4-6 Encoding table for the Data-processing register (immediate shift) group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>op0 op1</code></td>
<td></td>
</tr>
<tr>
<td>0x</td>
<td><code>Integer Data Processing (three register, immediate shift)</code></td>
</tr>
<tr>
<td>10 1</td>
<td><code>Integer Test and Compare (two register, immediate shift)</code> on page F4-4228</td>
</tr>
<tr>
<td>11</td>
<td><code>Logical Arithmetic (three register, immediate shift)</code> on page F4-4229</td>
</tr>
</tbody>
</table>

**Integer Data Processing (three register, immediate shift)**

This section describes the encoding of the Integer Data Processing (three register, immediate shift) instruction class. The encodings in this section are decoded from Data-processing register (immediate shift).
### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>S</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>010 0</td>
<td>!= 1101</td>
<td>SUB, SUBS (register) - SUB, rotate right with extend variant</td>
</tr>
<tr>
<td>010 0</td>
<td>1101</td>
<td>SUB, SUBS (SP minus register) - SUB, rotate right with extend variant</td>
</tr>
<tr>
<td>010 1</td>
<td>!= 1101</td>
<td>SUB, SUBS (register) - SUBS, rotate right with extend variant</td>
</tr>
<tr>
<td>010 1</td>
<td>1101</td>
<td>SUB, SUBS (SP minus register) - SUBS, rotate right with extend variant</td>
</tr>
<tr>
<td>011</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100 0</td>
<td>!= 1101</td>
<td>ADD, ADDS (register) - ADD, rotate right with extend variant</td>
</tr>
<tr>
<td>100 0</td>
<td>1101</td>
<td>ADD, ADDS (SP plus register) - ADD, rotate right with extend variant</td>
</tr>
<tr>
<td>100 1</td>
<td>!= 1101</td>
<td>ADD, ADDS (register) - ADDS, rotate right with extend variant</td>
</tr>
<tr>
<td>100 1</td>
<td>1101</td>
<td>ADD, ADDS (SP plus register) - ADDS, rotate right with extend variant</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Integer Test and Compare (two register, immediate shift)

This section describes the encoding of the Integer Test and Compare (two register, immediate shift) instruction class. The encodings in this section are decoded from Data-processing register (immediate shift) on page F4-4227.

<table>
<thead>
<tr>
<th>opc</th>
<th>S</th>
<th>Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical Arithmetic (three register, immediate shift)

This section describes the encoding of the Logical Arithmetic (three register, immediate shift) instruction class. The encodings in this section are decoded from Data-processing register (immediate shift) on page F4-4227.

| 31  | 28|27 26 25 24|23 22 21 20|19 | 16|15 | 12|11 | 7 | 6 | 5 | 4 | 3 | 0 |
|-----|----|-----------|------------|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 | 0 | 0 | 1 | 1 | opc | S | Rn | Rd | imm5 | stype | 0 | Rm |

cond

Table F4-7 Encoding table for the Data-processing register (register shift) group

<table>
<thead>
<tr>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>ORR, ORRS (register)</td>
</tr>
<tr>
<td>01</td>
<td>MOV, MOVS (register)</td>
</tr>
<tr>
<td>10</td>
<td>BIC, BICS (register)</td>
</tr>
<tr>
<td>11</td>
<td>MVN, MVNS (register)</td>
</tr>
</tbody>
</table>

This decode also imposes the constraint:

* op0:op1 != 100.

Integer Data Processing (three register, register shift)

This section describes the encoding of the Integer Data Processing (three register, register shift) instruction class. The encodings in this section are decoded from Data-processing register (register shift) on page F4-4227.

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>-</td>
<td>Integer Data Processing (three register, register shift)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Integer Test and Compare (two register, register shift) on page F4-4230</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>Logical Arithmetic (three register, register shift) on page F4-4230</td>
</tr>
</tbody>
</table>

This decode also imposes the constraint:

* op0:op1 != 100.
This section describes the encoding of the Integer Test and Compare (two register, register shift) instruction class. The encodings in this section are decoded from *Data-processing register (register shift)* on page F4-4229.

```
!1111 0 0 0 0 opc S Rn Rd Rs 0 stype 1 Rm
```

### Integer Test and Compare (two register, register shift)

This section describes the encoding of the Integer Test and Compare (two register, register shift) instruction class. The encodings in this section are decoded from *Data-processing register (register shift)* on page F4-4229.

```
!1111 0 0 0 1 opc 1 Rn 0 0 0 0 Rs 0 stype 1 Rm
```

### Logical Arithmetic (three register, register shift)

This section describes the encoding of the Logical Arithmetic (three register, register shift) instruction class. The encodings in this section are decoded from *Data-processing register (register shift)* on page F4-4229.

```
!1111 0 0 1 0 opc 1 Rn 0 0 0 0 Rs 0 stype 1 Rm
```
F4.1.7 Data-processing immediate

This section describes the encoding of the Data-processing immediate group. The encodings in this section are decoded from Data-processing and miscellaneous instructions on page F4-4218.

```
<table>
<thead>
<tr>
<th>[31 28]</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
</table>
 !=1111 0 0 1 1 | opc | S | Rn | Rd | Rs | 0 | stype | 1 | Rm |
```

**Table F4-8 Encoding table for the Data-processing immediate group**

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>0x</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>x1</td>
</tr>
</tbody>
</table>

**Integer Data Processing (two register and immediate)**

This section describes the encoding of the Integer Data Processing (two register and immediate) instruction class. The encodings in this section are decoded from Data-processing immediate.
Move Halfword (immediate)

This section describes the encoding of the Move Halfword (immediate) instruction class. The encodings in this section are decoded from Data-processing immediate on page F4-4231.
Move Special Register and Hints (immediate)

This section describes the encoding of the Move Special Register and Hints (immediate) instruction class. The encodings in this section are decoded from Data-processing immediate on page F4-4231.

| 31 | 28|27 26 25 24|23 22 21 20|19 |16|15 14 13 12|11 | | 0 |
|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 0 1 1 0 | R | 1 0 | imm4 | [1][1][1][1] | imm12 |

### Decode fields

<table>
<thead>
<tr>
<th>R:imm4</th>
<th>imm12</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>!= 0000</td>
<td>-</td>
<td>MSR (immediate)</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000000</td>
<td>NOP</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000001</td>
<td>YIELD</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000010</td>
<td>WFE</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000011</td>
<td>WFI</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000100</td>
<td>SEV</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx00000101</td>
<td>SEVL</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0000011x</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0001xxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010000</td>
<td>ESB</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010001</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010010</td>
<td>TSB CSYNC</td>
<td>Armv8.4</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010011</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010100</td>
<td>CSDB</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0010101</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx0011xxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx001111x</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx01xxxxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx01xxxxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx10xxxxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx110xxxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx111xxxx</td>
<td>Reserved hint, behaves as NOP.</td>
<td>-</td>
</tr>
<tr>
<td>0000</td>
<td>xxxx1111xxx</td>
<td>DBG</td>
<td>-</td>
</tr>
</tbody>
</table>

Integer Test and Compare (one register and immediate)

This section describes the encoding of the Integer Test and Compare (one register and immediate) instruction class. The encodings in this section are decoded from Data-processing immediate on page F4-4231.
### Logical Arithmetic (two register and immediate)

This section describes the encoding of the Logical Arithmetic (two register and immediate) instruction class. The encodings in this section are decoded from *Data-processing immediate* on page F4-4231.

<table>
<thead>
<tr>
<th>!=1111</th>
<th>0 0 1 1 0</th>
<th>opc 1</th>
<th>Rn (0) (0)</th>
<th>imm12</th>
</tr>
</thead>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>TST (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>TEQ (immediate)</td>
</tr>
<tr>
<td>10</td>
<td>CMP (immediate)</td>
</tr>
<tr>
<td>11</td>
<td>CMN (immediate)</td>
</tr>
</tbody>
</table>

---

### F4.1.8 Load/Store Word, Unsigned Byte (immediate, literal)

This section describes the encoding of the Load/Store Word, Unsigned Byte (immediate, literal) instruction class. The encodings in this section are decoded from *A32 instruction set encoding* on page F4-4218.

<table>
<thead>
<tr>
<th>!=1111</th>
<th>0 0 1 1 1</th>
<th>opc S</th>
<th>Rn</th>
<th>Rd</th>
<th>imm12</th>
</tr>
</thead>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>ORR, ORRS (immediate)</td>
</tr>
<tr>
<td>01</td>
<td>MOV, MOVS (immediate)</td>
</tr>
<tr>
<td>10</td>
<td>BIC, BICS (immediate)</td>
</tr>
<tr>
<td>11</td>
<td>MVN, MVNS (immediate)</td>
</tr>
</tbody>
</table>
### F4.1.9 Load/Store Word, Unsigned Byte (register)

This section describes the encoding of the Load/Store Word, Unsigned Byte (register) instruction class. The encodings in this section are decoded from *A32 instruction set encoding* on page F4-4218.

#### Decode fields

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P:W o2 o1 Rn</td>
<td>Instruction page</td>
</tr>
<tr>
<td>!= 01 0 1 1111</td>
<td>LDR (literal)</td>
</tr>
<tr>
<td>!= 01 1 1 1111</td>
<td>LDRB (literal)</td>
</tr>
<tr>
<td>00 0 0 -</td>
<td>STR (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 0 1 != 1111</td>
<td>LDR (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 1 0 -</td>
<td>STRB (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>00 1 1 != 1111</td>
<td>LDRB (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>01 0 0 -</td>
<td>STRT</td>
</tr>
<tr>
<td>01 0 1 -</td>
<td>LDRT</td>
</tr>
<tr>
<td>01 1 0 -</td>
<td>STRBT</td>
</tr>
<tr>
<td>01 1 1 -</td>
<td>LDRBT</td>
</tr>
<tr>
<td>10 0 0 -</td>
<td>STR (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 0 1 != 1111</td>
<td>LDR (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 1 0 -</td>
<td>STRB (immediate) - Offset variant</td>
</tr>
<tr>
<td>10 1 1 != 1111</td>
<td>LDRB (immediate) - Offset variant</td>
</tr>
<tr>
<td>11 0 0 -</td>
<td>STR (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 0 1 != 1111</td>
<td>LDR (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 1 0 -</td>
<td>STRB (immediate) - Pre-indexed variant</td>
</tr>
<tr>
<td>11 1 1 != 1111</td>
<td>LDRB (immediate) - Pre-indexed variant</td>
</tr>
</tbody>
</table>
F4.10 Media instructions

This section describes the encoding of the Media instructions group. The encodings in this section are decoded from A32 instruction set encoding on page F4-4218.

Table F4-9 Encoding table for the Media instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>00xxx</td>
<td>Parallel Arithmetic on page F4-4237</td>
</tr>
<tr>
<td>01000</td>
<td>SEL</td>
</tr>
<tr>
<td>01000 001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01000 xx0</td>
<td>PKHBT, PKHTB</td>
</tr>
<tr>
<td>01001 x01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01001 xx0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>0110x x01</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Parallel Arithmetic

This section describes the encoding of the Parallel Arithmetic instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.
### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>B</th>
<th>op2</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>00</td>
<td>SADD16</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>01</td>
<td>SASX</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>10</td>
<td>SSAX</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>11</td>
<td>SUB16</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>00</td>
<td>SADD8</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>11</td>
<td>SUB8</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>00</td>
<td>QADD16</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>01</td>
<td>QASX</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>10</td>
<td>QSAX</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>11</td>
<td>QSUB16</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>00</td>
<td>QADD8</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>11</td>
<td>QSUB8</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>00</td>
<td>SHADD16</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>01</td>
<td>SHASX</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>10</td>
<td>SHSAX</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>11</td>
<td>SHSUB16</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>00</td>
<td>SHADD8</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>11</td>
<td>SHSUB8</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>00</td>
<td>UADD16</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>01</td>
<td>UASX</td>
</tr>
</tbody>
</table>
**Saturate 16-bit**

This section describes the encoding of the Saturate 16-bit instruction class. The encodings in this section are decoded from *Media instructions* on page F4-4236.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op1 0 10</td>
<td>USAX</td>
</tr>
<tr>
<td>op1 0 11</td>
<td>USUB16</td>
</tr>
<tr>
<td>op1 1 00</td>
<td>UADD8</td>
</tr>
<tr>
<td>op1 1 01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>op1 1 10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>op1 1 11</td>
<td>USUB8</td>
</tr>
<tr>
<td>110 0 00</td>
<td>UQADD16</td>
</tr>
<tr>
<td>110 0 01</td>
<td>UQASX</td>
</tr>
<tr>
<td>110 0 10</td>
<td>UQSAX</td>
</tr>
<tr>
<td>110 0 11</td>
<td>UQSUB16</td>
</tr>
<tr>
<td>110 1 00</td>
<td>UQADD8</td>
</tr>
<tr>
<td>110 1 01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>110 1 10</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>110 1 11</td>
<td>UQSUB8</td>
</tr>
<tr>
<td>111 0 00</td>
<td>UHADD16</td>
</tr>
<tr>
<td>111 0 01</td>
<td>UHASX</td>
</tr>
<tr>
<td>111 0 10</td>
<td>UHSAX</td>
</tr>
<tr>
<td>111 0 11</td>
<td>UHSUB16</td>
</tr>
<tr>
<td>111 1 00</td>
<td>UHADD8</td>
</tr>
<tr>
<td>111 1 01</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>111 1 10</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
| 111 1 11      | UHSUB8
Reverse Bit/Byte

This section describes the encoding of the Reverse Bit/Byte instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

Saturate 32-bit

This section describes the encoding of the Saturate 32-bit instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.
Extend and Add

This section describes the encoding of the Extend and Add instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

31	28	27 26 25 24	23 22 21 20	19 16	15	12	11 10 9 8	7 6 5 4	3 0					
!=1111	0	1	1	0	U	op	Rn	Rd	rotate	0	1	1	1	Rm

cond

Decide fields

<table>
<thead>
<tr>
<th>U</th>
<th>op</th>
<th>Rn</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>!= 1111</td>
<td>SXTAB16</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>1111</td>
<td>SXTB16</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>!= 1111</td>
<td>SXTAB</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>1111</td>
<td>SXTB</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>!= 1111</td>
<td>SXTAH</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1111</td>
<td>SXTH</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>!= 1111</td>
<td>UXTAB16</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>1111</td>
<td>UXTB16</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>!= 1111</td>
<td>UXTAB</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1111</td>
<td>UXTB</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>!= 1111</td>
<td>UXTAH</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1111</td>
<td>UXTH</td>
</tr>
</tbody>
</table>

Signed multiply, Divide

This section describes the encoding of the Signed multiply, Divide instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

| 31 | 28|27 26 25 24|23 22 |20|19 16|15 |12|11 10 |9 8 |7 6 5 4 |3 |0 |
|----|----|---------|--------|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 | 1 | 1 | 0 | op1 | Rd | Ra | Rm | op2 | 1 | Rn |

cond

Decide fields

<table>
<thead>
<tr>
<th>op1</th>
<th>Ra</th>
<th>op2</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>!= 1111</td>
<td>000</td>
<td>SMLAD, SMLADX - SMLAD variant</td>
</tr>
<tr>
<td>000</td>
<td>!= 1111</td>
<td>001</td>
<td>SMLAD, SMLADX - SMLADX variant</td>
</tr>
<tr>
<td>000</td>
<td>!= 1111</td>
<td>010</td>
<td>SMLSD, SMLSDX - SMLSD variant</td>
</tr>
<tr>
<td>000</td>
<td>!= 1111</td>
<td>011</td>
<td>SMLSD, SMLSDX - SMLSDX variant</td>
</tr>
<tr>
<td>000</td>
<td>-</td>
<td>1xx</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
Unsigned Sum of Absolute Differences

This section describes the encoding of the Unsigned Sum of Absolute Differences instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

---

### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>Ra</th>
<th>op2</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>111</td>
<td>000</td>
<td>SMUAD, SMUADX - SMUAD variant</td>
</tr>
<tr>
<td>000</td>
<td>111</td>
<td>001</td>
<td>SMUAD, SMUADX - SMUADX variant</td>
</tr>
<tr>
<td>000</td>
<td>111</td>
<td>010</td>
<td>SMUSD, SMUSDX - SMUSD variant</td>
</tr>
<tr>
<td>000</td>
<td>111</td>
<td>011</td>
<td>SMUSD, SMUSDX - SMUSDX variant</td>
</tr>
<tr>
<td>001</td>
<td>-</td>
<td>000</td>
<td>SDIV</td>
</tr>
<tr>
<td>001</td>
<td>-</td>
<td>! = 000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>010</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>011</td>
<td>-</td>
<td>000</td>
<td>UDIV</td>
</tr>
<tr>
<td>011</td>
<td>-</td>
<td>! = 000</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>000</td>
<td>SMLALD, SMLALDX - SMLALD variant</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>001</td>
<td>SMLALD, SMLALDX - SMLALDX variant</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>010</td>
<td>SMLS, SMLSLDX - SMLSLD variant</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>011</td>
<td>SMLS, SMLSLDX - SMLSLDX variant</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>!x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>! = 111</td>
<td>000</td>
<td>SMMLA, SMMLAR - SMMLA variant</td>
</tr>
<tr>
<td>101</td>
<td>! = 111</td>
<td>001</td>
<td>SMMLA, SMMLAR - SMMLAR variant</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>01x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>10x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>110</td>
<td>SMMLS, SMMLSR - SMMLS variant</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>111</td>
<td>SMMLS, SMMLSR - SMMLSR variant</td>
</tr>
<tr>
<td>101</td>
<td>111</td>
<td>000</td>
<td>SMMUL, SMMULR - SMMUL variant</td>
</tr>
<tr>
<td>101</td>
<td>111</td>
<td>001</td>
<td>SMMUL, SMMULR - SMMULR variant</td>
</tr>
<tr>
<td>11x</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Bitfield Insert instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

### Bitfield Insert

This section describes the encoding of the Bitfield Insert instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

### Permanently UNDEFINED

This section describes the encoding of the Permanently UNDEFINED instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.
Bitfield Extract

This section describes the encoding of the Bitfield Extract instruction class. The encodings in this section are decoded from Media instructions on page F4-4236.

| 31 | 28|27 26 25 24|23 22 21 20 | 16|15 | 12|11 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----------------|----------------|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 0 | 1 | 1 | 1 | U | 1 | widthm1 | Rd | isb | 1 | 0 | 1 | Rn |

cond

---

Decode fields   Instruction page

U

0   SBFX

1   UBFX

F4.1.11 Branch, branch with link, and block data transfer

This section describes the encoding of the Branch, branch with link, and block data transfer group. The encodings in this section are decoded from A32 instruction set encoding on page F4-4218.

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>10</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>op0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F4-10 Encoding table for the Branch, branch with link, and block data transfer group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond op0</td>
<td></td>
</tr>
<tr>
<td>1111 0</td>
<td>Exception Save/Restore</td>
</tr>
<tr>
<td>!= 1111 0</td>
<td>Load/Store Multiple on page F4-4245</td>
</tr>
<tr>
<td>- 1</td>
<td>Branch (immediate) on page F4-4246</td>
</tr>
</tbody>
</table>

Exception Save/Restore

This section describes the encoding of the Exception Save/Restore instruction class. The encodings in this section are decoded from Branch, branch with link, and block data transfer.
Load/Store Multiple

This section describes the encoding of the Load/Store Multiple instruction class. The encodings in this section are decoded from *Branch, branch with link, and block data transfer* on page F4-4244.

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 | 16|15 | | | 5 | 4 | 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | P | U | S | W | L | Rn | op | mode |
```

**Decode fields**

**Instruction page**

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

**Load/Store Multiple**

This section describes the encoding of the Load/Store Multiple instruction class. The encodings in this section are decoded from *Branch, branch with link, and block data transfer* on page F4-4244.

```
| 31 28|27 26 25 24|23 22 21 20|19 | 16|15 | | | 5 | 4 | 0 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 | 0 | 0 | P | U | op | W | L | Rn | register_list | |
```

**Decode fields**

**Instruction page**

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>op</th>
<th>L</th>
<th>register_list</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>[\ldots]</td>
</tr>
</tbody>
</table>
Branch (immediate)

This section describes the encoding of the Branch (immediate) instruction class. The encodings in this section are decoded from Branch, branch with link, and block data transfer on page F4-4244.

<table>
<thead>
<tr>
<th>[31] 28 27 26 25 24</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cond 1 0 1</td>
<td>H</td>
<td>imm24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### F4.1.12 System register access, Advanced SIMD, floating-point, and Supervisor call

This section describes the encoding of the System register access, Advanced SIMD, floating-point, and Supervisor call group. The encodings in this section are decoded from A32 instruction set encoding on page F4-4218.

<table>
<thead>
<tr>
<th>[31] 28 27 26 25 24 23</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cond 1 1</td>
<td>op0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F4-11 Encoding table for the System register access, Advanced SIMD, floating-point, and Supervisor call group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>op0</td>
</tr>
<tr>
<td>-</td>
<td>0x</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>1111</td>
<td>!= 11</td>
</tr>
</tbody>
</table>
F4.13 Supervisor call

This section describes the encoding of the Supervisor call group. The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246.

Table F4-12 Encoding table for the Supervisor call group

| cond | | | | | | | | 0 |
|------|------|------|------|------|------|------|------|
| 1111  |  |  |  |  |  |  |  |  |
| SVC   | Unallocated. |
| != 1111 |  |  |  |  |  |  |  |  |
| SVC   |  |

F4.14 Unconditional Advanced SIMD and floating-point instructions

This section describes the encoding of the Unconditional Advanced SIMD and floating-point instructions group. The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246.
This decode also imposes the constraint:

- \( \text{op0}<2:1> \neq 11. \)

### Table F4-13 Encoding table for the Unconditional Advanced SIMD and floating-point instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>( 0xx ) - - ( \theta x ) - -</td>
<td><strong>Advanced SIMD three registers of the same length extension</strong></td>
</tr>
<tr>
<td>( 100 ) - 0 != 00 0 0</td>
<td>VSELEQ, VSELGE, VSELGT, VSELVS</td>
</tr>
<tr>
<td>( 101 ) 00xxxx 0 != 00 - 0</td>
<td>Floating-point minNum/maxNum on page F4-4250</td>
</tr>
<tr>
<td>( 101 ) 100000 0 != 00 1 0</td>
<td>Floating-point extraction and insertion on page F4-4250</td>
</tr>
<tr>
<td>( 101 ) 111xxx 0 != 00 1 0</td>
<td>Floating-point directed convert to integer on page F4-4250</td>
</tr>
<tr>
<td>( 10x ) - 0 00 - -</td>
<td>Advanced SIMD and floating-point multiply with accumulate on page F4-4251</td>
</tr>
<tr>
<td>( 10x ) - 1 0x - -</td>
<td>Advanced SIMD and floating-point dot product on page F4-4252</td>
</tr>
</tbody>
</table>

### Advanced SIMD three registers of the same length extension

This section describes the encoding of the Advanced SIMD three registers of the same length extension instruction class. The encodings in this section are decoded from **Unconditional Advanced SIMD and floating-point instructions** on page F4-4247.

<table>
<thead>
<tr>
<th>[31 30 29 28][27 26 25 24][23 22 21 20][19 16][15 12][11 10 9 8][7 6 5 4][3 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x1 ) 0x 0 0 0 0 0</td>
<td>VCADD - 64-bit SIMD vector variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>( x1 ) 0x 0 0 0 0 1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( x1 ) 0x 0 0 1 0 0</td>
<td>VCADD - 128-bit SIMD vector variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>( x1 ) 0x 0 0 1 1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 0x 0 0 - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 0x 0 1 - -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 00 1 0 0 0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 00 1 0 0 1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 00 1 0 1 0</td>
<td>VMMLA</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>( 00 ) 00 1 0 1 1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>( 00 ) 00 1 1 0 0</td>
<td>VDOT (vector) - 64-bit SIMD vector variant</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>op1</td>
<td>op2</td>
<td>op3</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>1x</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
Floating-point minNum/maxNum

This section describes the encoding of the Floating-point minNum/maxNum instruction class. The encodings in this section are decoded from *Unconditional Advanced SIMD and floating-point instructions* on page F4-4247.

```
<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>op4</th>
<th>Q</th>
<th>U</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
```

### Floating-point extraction and insertion

This section describes the encoding of the Floating-point extraction and insertion instruction class. The encodings in this section are decoded from *Unconditional Advanced SIMD and floating-point instructions* on page F4-4247.

```
<table>
<thead>
<tr>
<th>size</th>
<th>op</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>0</td>
<td>VMAXNM</td>
</tr>
<tr>
<td>0x0</td>
<td>1</td>
<td>VMINNM</td>
</tr>
</tbody>
</table>
```

### Floating-point directed convert to integer

This section describes the encoding of the Floating-point directed convert to integer instruction class. The encodings in this section are decoded from *Unconditional Advanced SIMD and floating-point instructions* on page F4-4247.

```
<table>
<thead>
<tr>
<th>size</th>
<th>op</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0x10</td>
<td>0</td>
<td>VMO VX</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0x10</td>
<td>1</td>
<td>VINS</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0x11</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
```
### Advanced SIMD and floating-point multiply with accumulate

This section describes the encoding of the Advanced SIMD and floating-point multiply with accumulate instruction class. The encodings in this section are decoded from *Unconditional Advanced SIMD and floating-point instructions* on page F4-4247.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10</th>
<th>9 8 7 6</th>
<th>5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>op2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

#### Decode fields

<table>
<thead>
<tr>
<th>op1</th>
<th>RM</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>VRINTA (floating-point)</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>VRINTN (floating-point)</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>VRINTP (floating-point)</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>VRINTM (floating-point)</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>VCVTA (floating-point)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>VCVTN (floating-point)</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>VCVTP (floating-point)</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>VCVTM (floating-point)</td>
</tr>
</tbody>
</table>

#### Architecture version

<table>
<thead>
<tr>
<th>op1</th>
<th>op2</th>
<th>Q</th>
<th>U</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>VCMLA (by element) - 128-bit SIMD vector of half-precision floating-point variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>-</td>
<td>1</td>
<td>VFMAL (by scalar)</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>-</td>
<td>1</td>
<td>VFMSL (by scalar)</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>-</td>
<td>1</td>
<td>VFMAB, VFMAT (BFloat16, by scalar)</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>VCMLA (by element) - 64-bit SIMD vector of single-precision floating-point variant</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>VCMLA (by element) - 128-bit SIMD vector of single-precision floating-point variant</td>
<td>Armv8.3</td>
</tr>
</tbody>
</table>
Advanced SIMD and floating-point dot product

This section describes the encoding of the Advanced SIMD and floating-point dot product instruction class. The encodings in this section are decoded from Unconditional Advanced SIMD and floating-point instructions on page F4-4247.

31 30 29 28	27 26 25 24	23 22 21 20	19 16	15 12	11 10 9	8 7 6 5 4	3 0				
1 1 1 1 1	1 1 0	D	op2	Vn	Vd	1 1 0	N	Q	M	U	Vm

F4.1.15 Advanced SIMD and System register load/store and 64-bit move

This section describes the encoding of the Advanced SIMD and System register load/store and 64-bit move group. The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on page F4-4278.
Advanced SIMD and floating-point 64-bit move

This section describes the encoding of the Advanced SIMD and floating-point 64-bit move instruction class. The encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F4-4252.

### Advanced SIMD and floating-point 64-bit move

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>00x0 0x</td>
<td>Advanced SIMD and floating-point 64-bit move</td>
</tr>
<tr>
<td>00x0 11</td>
<td>System register 64-bit move on page F4-4254</td>
</tr>
<tr>
<td>!= 00x0 0x</td>
<td>Advanced SIMD and floating-point load/store on page F4-4254</td>
</tr>
<tr>
<td>!= 00x0 11</td>
<td>System register load/store on page F4-4255</td>
</tr>
<tr>
<td>- 10</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Table F4-14 Encoding table for the Advanced SIMD and System register load/store and 64-bit move group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D op size opc2 o3</td>
<td></td>
</tr>
<tr>
<td>0 - - - -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 - - - 0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 - 0x 00 1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 - - 01 -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 0 10 00 1</td>
<td>VMOV (between two general-purpose registers and two single-precision registers) - From general-purpose registers variant</td>
</tr>
<tr>
<td>1 0 11 00 1</td>
<td>VMOV (between two general-purpose registers and a doubleword floating-point register) - From general-purpose registers variant</td>
</tr>
<tr>
<td>1 - - 1x -</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1 1 10 00 1</td>
<td>VMOV (between two general-purpose registers and two single-precision registers) - To general-purpose registers variant</td>
</tr>
<tr>
<td>1 1 11 00 1</td>
<td>VMOV (between two general-purpose registers and a doubleword floating-point register) - To general-purpose registers variant</td>
</tr>
</tbody>
</table>
System register 64-bit move

This section describes the encoding of the System register 64-bit move instruction class. The encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F4-4252.

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>!==1111</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D</td>
<td>L</td>
<td>R</td>
<td>T2</td>
<td>1</td>
<td>1</td>
<td>opc1</td>
<td>CRm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Decode fields

Instruction page

D  L
0  -  Unallocated.
1  0  MCRR
1  1  MRRC

Advanced SIMD and floating-point load/store

This section describes the encoding of the Advanced SIMD and floating-point load/store instruction class. The encodings in this section are decoded from Advanced SIMD and System register load/store and 64-bit move on page F4-4252.

```
| 31 | 28|27 26 25 24|23 22 21 20|19 | 16|15 | 12|11 | 10 | 9 | 8 | 7 | 0 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | !==1111 | 1 | 1 | P | U | D | W | L | Rn | Vd | 1 | 0 | size | imm8 |
```

Decode fields

Instruction page

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>W</th>
<th>L</th>
<th>Rn</th>
<th>size</th>
<th>imm8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0x</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11xxxxx0</td>
<td>VSTM, VSTMDB, VSTMIA - Increment After variant on page F6-5656</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11xxxxx1</td>
<td>FSTMDBX, FSTMIAX - Increment After variant on page F6-5006</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>11xxxxx0</td>
<td>VLDM, VLDLDB, VLMIA - Increment After variant on page F6-5297</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>11xxxxx1</td>
<td>FLDM*X (FLDMDBX, FLDMIAX) - Increment After variant on page F6-5003</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>!=1111</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0x</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
## System register load/store

This section describes the encoding of the System register load/store instruction class. The encodings in this section are decoded from *Advanced SIMD and System register load/store and 64-bit move on page F4-4252.*

### Decode fields

<table>
<thead>
<tr>
<th>P</th>
<th>U</th>
<th>W</th>
<th>L</th>
<th>Rn</th>
<th>size</th>
<th>imm8</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>xxxxxxx0</td>
<td>VSTM, VSTMDB, VSTMIA - Decrement Before variant on page F6-5656</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>xxxxxxx1</td>
<td>FSTMDBX, FSTMIAX - Decrement Before variant on page F6-5006</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>VLDM, VLDMSB, VLDMA - Decrement Before variant on page F6-5298</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>xxxxxxx0</td>
<td>VLDM, VLDMSB, VLDMA - Decrement Before variant on page F6-5297</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>xxxxxxx1</td>
<td>FLDMX (FLDMDBX, FLDMIA) - Decrement Before variant on page F6-5003</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>-</td>
<td>-</td>
<td>VLDR (literal)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>cond</th>
<th>P</th>
<th>U</th>
<th>D</th>
<th>W</th>
<th>L</th>
<th>Rn</th>
<th>CRd</th>
<th>cp15</th>
<th>imm8</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>D</td>
<td>W</td>
<td>L</td>
<td>Rn</td>
<td>CRd</td>
</tr>
<tr>
<td>!=1111</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>D</td>
<td>W</td>
<td>L</td>
<td>Rn</td>
<td>CRd</td>
</tr>
<tr>
<td>!=1111</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>D</td>
<td>W</td>
<td>L</td>
<td>Rn</td>
<td>CRd</td>
</tr>
</tbody>
</table>

### Decode fields

<table>
<thead>
<tr>
<th>P:U:W</th>
<th>D</th>
<th>L</th>
<th>Rn</th>
<th>CRd</th>
<th>cp15</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>!= 000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>!= 000</td>
<td>0</td>
<td>1</td>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>LDC (literal)</td>
</tr>
<tr>
<td>!= 000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>!= 000</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>1</td>
<td>!= 1111</td>
<td>0</td>
<td>0</td>
<td>LDC (immediate) - Post-indexed variant</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>!= 1111</td>
<td>0</td>
<td>0</td>
<td>LDC (immediate) - Unindexed variant</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>!= 1111</td>
<td>0</td>
<td>0</td>
<td>LDC (immediate) - Offset variant</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0</td>
<td>0</td>
<td>!= 1111</td>
<td>0</td>
<td>0</td>
<td>LDC (immediate) - Pre-indexed variant</td>
</tr>
</tbody>
</table>
F4.1.16 Floating-point data-processing

This section describes the encoding of the Floating-point data-processing group. The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on page F4-4278.

| 31 | 28|27 | 24|23 | 20|19 | 12|11 10 9 | 7 6 5 4 3 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 1110 | op0 | 10 | 0 |
| op1 |

Table F4-15 Encoding table for the Floating-point data-processing group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>op1</td>
</tr>
<tr>
<td>1x11</td>
<td>1</td>
</tr>
<tr>
<td>1x11</td>
<td>0</td>
</tr>
<tr>
<td>!=1x11</td>
<td>-</td>
</tr>
</tbody>
</table>

Floating-point data-processing (two registers)

This section describes the encoding of the Floating-point data-processing (two registers) instruction class. The encodings in this section are decoded from Floating-point data-processing.

31	28	27	26	25	24	23	22	21	20	19	18	16	15	12	11 10 9	8	7 6 5 4 3 0	
!=1111	1	1	0	1	D	1	0	opc2	Vd	1	0	size	0	3	1	M	0	Vm

Decode fields

<table>
<thead>
<tr>
<th>o1</th>
<th>op</th>
<th>c2</th>
<th>si</th>
<th>e</th>
<th>o3</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>00</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>01</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>-</td>
<td>1</td>
<td>VABS</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>10</td>
<td>0</td>
<td>VMOV (register) - Single-precision scalar variant</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>11</td>
<td>0</td>
<td>VMOV (register) - Double-precision scalar variant</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-</td>
<td>0</td>
<td>VNEG</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-</td>
<td>1</td>
<td>VSQRT</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>-</td>
<td>0</td>
<td>VCVTB - Half-precision to double-precision variant</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>01</td>
<td>-</td>
<td>Unallocated.</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>o 1</th>
<th>op c2</th>
<th>size o 3</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>010</td>
<td>-</td>
<td>VCVTT - Half-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>0</td>
<td>VCVTB (BFloat16)</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>1</td>
<td>VCVTT (BFloat16)</td>
<td>Armv8.6</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>10</td>
<td>VCVTB - Single-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>1</td>
<td>VCVTT - Single-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>11</td>
<td>VCVTB - Double-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>11</td>
<td>VCVTT - Double-precision to half-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>VCMP - A1 on page F6-5124</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>1</td>
<td>VCMPE - A1 on page F6-5128</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
<td>0</td>
<td>VCMP - A2 on page F6-5124</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>101</td>
<td>1</td>
<td>VCMPE - A2 on page F6-5128</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>0</td>
<td>VRINTR</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>1</td>
<td>VRINTZ (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>0</td>
<td>VRINTX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>01</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>10</td>
<td>VCVT (between double-precision and single-precision) - Single-precision to double-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>11</td>
<td>VCVT (between double-precision and single-precision) - Double-precision to single-precision variant</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>000</td>
<td>-</td>
<td>VCVT (integer to floating-point, floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>10</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>11</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>11</td>
<td>VJCVT</td>
<td>Armv8.3</td>
</tr>
<tr>
<td>1</td>
<td>01x</td>
<td>-</td>
<td>VCVT (between floating-point and fixed-point, floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>VCVT</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
<td>VCVT (floating-point to integer, floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>0</td>
<td>VCVT</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>1</td>
<td>VCVT (floating-point to integer, floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11x</td>
<td>-</td>
<td>VCVT (between floating-point and fixed-point, floating-point)</td>
<td>-</td>
</tr>
</tbody>
</table>
Floating-point move immediate

This section describes the encoding of the Floating-point move immediate instruction class. The encodings in this section are decoded from Floating-point data-processing on page F4-4256.

```
| 31 | 28| 27 26 25 24| 23 22 21 20| 19 | 16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1111 | 1 1 1 0 | 1 | D | 1 1 | imm4H | Vd | 1 0 | size | 0 | 0 | 0 | 0 | imm4L |
```
cond

#### Decode fields

**Instruction page**

- Unallocated.
- VMOV (immediate) - Half-precision scalar variant
- VMOV (immediate) - Single-precision scalar variant
- VMOV (immediate) - Double-precision scalar variant

**Architecture version**

- Armv8.2
- 

---

Floating-point data-processing (three registers)

This section describes the encoding of the Floating-point data-processing (three registers) instruction class. The encodings in this section are decoded from Floating-point data-processing on page F4-4256.

```
| 31 | 28| 27 26 25 24| 23 22 21 20| 19 | 16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 0 | Vm | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1111 | 1 1 1 0 | 1 | o0 | D | o1 | Vn | Vd | 1 0 | size | N | o2 | M | 0 | Vm |
```

#### Decode fields

**Instruction page**

- Unallocated.
- VMLA (floating-point)
- VMLS (floating-point)
- VNMLS
- VNMLA
- VMUL (floating-point)
- VNMUL
- VADD (floating-point)
- VSUB (floating-point)
- VDIV
- VFNMS
F4.1.17 Advanced SIMD and System register 32-bit move

This section describes the encoding of the Advanced SIMD and System register 32-bit move group. The encodings in this section are decoded from System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246.

| 31 | 28|27 | 24|23 | 21 | 20 | | | 12 | 11| 10 | 8 | 7 | 5 | 4 | 3 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1110 | op0 | | | | | | | 1 | op1 | | | | | |

Table F4-16 Encoding table for the Advanced SIMD and System register 32-bit move group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 00 000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 00 001</td>
<td>VMOV (between general-purpose register and half-precision)</td>
<td>Armv8.2</td>
</tr>
<tr>
<td>op0 00 010</td>
<td>VMOV (between general-purpose register and single-precision)</td>
<td>-</td>
</tr>
<tr>
<td>op0 01 001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 01 010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 10 001</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 10 010</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 11 001</td>
<td>Floating-point move special register</td>
<td>-</td>
</tr>
<tr>
<td>op0 11 010</td>
<td>Advanced SIMD 8/16/32-bit element move/duplicate on page F4-4260</td>
<td>-</td>
</tr>
<tr>
<td>op0 11 100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>op0 11 101</td>
<td>Advanced SIMD and System register 32-bit move on page F4-4260</td>
<td>-</td>
</tr>
</tbody>
</table>

Floating-point move special register

This section describes the encoding of the Floating-point move special register instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move.
Advanced SIMD 8/16/32-bit element move/duplicate

This section describes the encoding of the Advanced SIMD 8/16/32-bit element move/duplicate instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F4-4259.

System register 32-bit move

This section describes the encoding of the System register 32-bit move instruction class. The encodings in this section are decoded from Advanced SIMD and System register 32-bit move on page F4-4259.
F4.1.18   Unconditional instructions

This section describes the encoding of the Unconditional instructions group. The encodings in this section are decoded from A32 instruction set encoding on page F4-4218.

<table>
<thead>
<tr>
<th>31</th>
<th>27 26 25 24</th>
<th>21 20 19</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11110</td>
<td>op0</td>
<td>op1</td>
<td></td>
</tr>
</tbody>
</table>

Table F4-17 Encoding table for the Unconditional instructions group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>01</td>
<td>Advanced SIMD data-processing on page F4-4262</td>
</tr>
<tr>
<td>1x</td>
<td>Memory hints and barriers on page F4-4272</td>
</tr>
<tr>
<td>10</td>
<td>Advanced SIMD element or structure load/store on page F4-4274</td>
</tr>
<tr>
<td>11</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

F4.1.19   Miscellaneous

This section describes the encoding of the Miscellaneous group. The encodings in this section are decoded from Unconditional instructions.

<table>
<thead>
<tr>
<th>31</th>
<th>25 24</th>
<th>20 19</th>
<th>8 7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111000</td>
<td>op0</td>
<td>op1</td>
<td></td>
</tr>
</tbody>
</table>

Table F4-18 Encoding table for the Miscellaneous group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xxxx</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10000 xx0x</td>
<td>Change Process State on page F4-4262</td>
<td>-</td>
</tr>
<tr>
<td>10001 1000</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10001 x100</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10001 xx01</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10001 0000</td>
<td>SETPAN</td>
<td>Armv8.1</td>
</tr>
<tr>
<td>1000x 0111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>10010 0111</td>
<td>CONSTRAINED UNPREDICTABLE</td>
<td>-</td>
</tr>
<tr>
<td>10011 0111</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1001x xx0x</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-7952.

Change Process State

This section describes the encoding of the Change Process State instruction class. The encodings in this section are decoded from Miscellaneous on page F4-4261.

F4.1.20 Advanced SIMD data-processing

This section describes the encoding of the Advanced SIMD data-processing group. The encodings in this section are decoded from Unconditional instructions on page F4-4261.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on page F4-4278.
Advanced SIMD three registers of the same length

This section describes the encoding of the Advanced SIMD three registers of the same length instruction class. The encodings in this section are decoded from Advanced SIMD data-processing on page F4-4262.

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>U size opc Q o1</td>
<td>VFMA</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 1100 - 1</td>
<td>VADD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 1101 - 0</td>
<td>VMLA (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 1110 - 1</td>
<td>VCEQ (register) - A2 on page F6-5085</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 1111 - 0</td>
<td>VMAX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0 0x 1111 - 1</td>
<td>VRECPS</td>
<td>-</td>
</tr>
<tr>
<td>- - 0000 - 0</td>
<td>VHADD</td>
<td>-</td>
</tr>
<tr>
<td>0 00 0000 - 0</td>
<td>VAND (register)</td>
<td>-</td>
</tr>
<tr>
<td>- - 0000 - 1</td>
<td>VQADD</td>
<td>-</td>
</tr>
<tr>
<td>- - 0001 - 1</td>
<td>VRHADD</td>
<td>-</td>
</tr>
<tr>
<td>0 00 1100 - 0</td>
<td>SHA1C</td>
<td>-</td>
</tr>
<tr>
<td>- - 0010 - 0</td>
<td>VHSUB</td>
<td>-</td>
</tr>
<tr>
<td>0 01 0001 - 1</td>
<td>VVIC (register)</td>
<td>-</td>
</tr>
<tr>
<td>- - 0000 - 1</td>
<td>VQSUB</td>
<td>-</td>
</tr>
<tr>
<td>- - 0001 - 1</td>
<td>VCGT (register) - A1 on page F6-5098</td>
<td>-</td>
</tr>
</tbody>
</table>
### Decode fields

<table>
<thead>
<tr>
<th>U</th>
<th>size</th>
<th>opc</th>
<th>Q</th>
<th>o1</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0011</td>
<td>-</td>
<td>1</td>
<td>VCGE (register) - A1 on page F6-5091</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1P</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1100</td>
<td>-</td>
<td>1</td>
<td>VFMS</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VSUB (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1101</td>
<td>-</td>
<td>1</td>
<td>VMLS (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1111</td>
<td>-</td>
<td>0</td>
<td>VMIN (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VRSQRTS</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0100</td>
<td>-</td>
<td>0</td>
<td>VSHL (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>0</td>
<td>VADD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VORR (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>1</td>
<td>VTST</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0100</td>
<td>-</td>
<td>1</td>
<td>VQSHL (register)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1001</td>
<td>-</td>
<td>0</td>
<td>VMLA (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>0</td>
<td>VRSHL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0101</td>
<td>-</td>
<td>1</td>
<td>VQSHL</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1011</td>
<td>-</td>
<td>0</td>
<td>VQDMULH</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1M</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>1011</td>
<td>-</td>
<td>1</td>
<td>VPADD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0110</td>
<td>-</td>
<td>0</td>
<td>VMAX (integer)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VORN (register)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0110</td>
<td>-</td>
<td>1</td>
<td>VMIN (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0111</td>
<td>-</td>
<td>0</td>
<td>VABD (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0111</td>
<td>-</td>
<td>1</td>
<td>VABA</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>1100</td>
<td>-</td>
<td>0</td>
<td>SHA1SU0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>0</td>
<td>VPADD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1101</td>
<td>-</td>
<td>1</td>
<td>VMUL (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1110</td>
<td>-</td>
<td>0</td>
<td>VCGE (register) - A2 on page F6-5091</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1110</td>
<td>-</td>
<td>1</td>
<td>VACGE</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>VPMAX (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0x</td>
<td>1111</td>
<td>-</td>
<td>1</td>
<td>VMAXNM</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0001</td>
<td>-</td>
<td>1</td>
<td>VEOR</td>
<td>-</td>
</tr>
</tbody>
</table>
### F4.1.21 Advanced SIMD two registers, or three registers of different lengths

This section describes the encoding of the Advanced SIMD two registers, or three registers of different lengths group. The encodings in this section are decoded from *Advanced SIMD data-processing on page F4-4262.*

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>U  size  opc  Q  o1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-  -  1001  -  1</td>
<td>VMUL (integer and polynomial)</td>
<td>-</td>
</tr>
<tr>
<td>1  00  1100  -  0</td>
<td>SHA256H</td>
<td>-</td>
</tr>
<tr>
<td>-  -  1010  0  0</td>
<td>VPMAX (integer)</td>
<td>-</td>
</tr>
<tr>
<td>1  01  0001  -  1</td>
<td>VBSL</td>
<td>-</td>
</tr>
<tr>
<td>-  -  1010  0  1</td>
<td>VPMIN (integer)</td>
<td>-</td>
</tr>
<tr>
<td>-  -  1010  1 -</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>1  01  1100  -  0</td>
<td>SHA256H2</td>
<td>-</td>
</tr>
<tr>
<td>1  1x  1101  -  0</td>
<td>VABD (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1  1x  1110  -  0</td>
<td>VCGT (register) - A2 on page F6-5098</td>
<td>-</td>
</tr>
<tr>
<td>1  1x  1110  -  1</td>
<td>VACGT</td>
<td>-</td>
</tr>
<tr>
<td>1  1x  1111  0  0</td>
<td>VPMIN (floating-point)</td>
<td>-</td>
</tr>
<tr>
<td>1  1x  1111  -  1</td>
<td>VMINNM</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1000  -  0</td>
<td>VSUB (integer)</td>
<td>-</td>
</tr>
<tr>
<td>1  10  0001  -  1</td>
<td>VBIT</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1000  -  1</td>
<td>VCEQ (register) - A1 on page F6-5085</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1001  -  0</td>
<td>VMLS (integer)</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1011  -  0</td>
<td>VQRDMULH</td>
<td>-</td>
</tr>
<tr>
<td>1  10  1100  -  0</td>
<td>SHA256SU1</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1011  -  1</td>
<td>VQRDMLAH Armv8.1</td>
<td>-</td>
</tr>
<tr>
<td>1  11  0001  -  1</td>
<td>VBIF</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1100  -  1</td>
<td>VQRDLMSH Armv8.1</td>
<td>-</td>
</tr>
<tr>
<td>1  -  1111  1  0</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
</tbody>
</table>
### Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4265.

![Encoding table for Advanced SIMD two registers, or three registers of different lengths group](image)

#### Decode fields

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>op2</th>
<th>op3</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>VEXT (byte elements)</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0x</td>
<td>-</td>
<td>Advanced SIMD two registers misc</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>10</td>
<td>-</td>
<td>VTBL, VTBX</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td>Advanced SIMD duplicate (scalar) on page F4-4268</td>
</tr>
<tr>
<td>-</td>
<td>!= 11-0</td>
<td>0</td>
<td>Advanced SIMD three registers of different lengths on page F4-4268</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>!= 11-1</td>
<td>1</td>
<td>Advanced SIMD two registers and a scalar on page F4-4269</td>
<td></td>
</tr>
</tbody>
</table>

---

### Advanced SIMD two registers misc

This section describes the encoding of the Advanced SIMD two registers misc instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4265.

![Advanced SIMD two registers misc](image)

#### Decode fields

<table>
<thead>
<tr>
<th>size</th>
<th>opc1</th>
<th>opc2</th>
<th>Q</th>
<th>Instruction page</th>
<th>Architecture version</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>00</td>
<td>0000</td>
<td>-</td>
<td>VREV64</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0001</td>
<td>-</td>
<td>VREV32</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0010</td>
<td>-</td>
<td>VREV16</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0011</td>
<td>-</td>
<td>Unallocated</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>010x</td>
<td>-</td>
<td>VPADDL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0110</td>
<td>0</td>
<td>AESE</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0110</td>
<td>1</td>
<td>AESD</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0111</td>
<td>0</td>
<td>AESMC</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>0111</td>
<td>1</td>
<td>AESIMC</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1000</td>
<td>-</td>
<td>VCLS</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>0000</td>
<td>-</td>
<td>VSWP</td>
<td>-</td>
</tr>
<tr>
<td>Decode fields</td>
<td>Instruction page</td>
<td>Architecture version</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>size</td>
<td>opc1</td>
<td>opc2</td>
<td>Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1001</td>
<td>-</td>
<td>VCLZ</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1010</td>
<td>-</td>
<td>VCNT</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1011</td>
<td>-</td>
<td>VMVN (register)</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>1100</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>110x</td>
<td>-</td>
<td>VPADAL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1110</td>
<td>-</td>
<td>VQABS</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>00</td>
<td>1111</td>
<td>-</td>
<td>VQNEG</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x000</td>
<td>-</td>
<td>VCGT (immediate #0)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x001</td>
<td>-</td>
<td>VCGE (immediate #0)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x010</td>
<td>-</td>
<td>VCEQ (immediate #0)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x011</td>
<td>-</td>
<td>VCLE (immediate #0)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x100</td>
<td>-</td>
<td>VCLT (immediate #0)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x110</td>
<td>-</td>
<td>VABS</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>x111</td>
<td>-</td>
<td>VNEG</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>01</td>
<td>0101</td>
<td>1</td>
<td>SHA1H</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>10</td>
<td>1100</td>
<td>1</td>
<td>VCVT (from single-precision to BFloat16, Advanced SIMD) Armv8.6</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0001</td>
<td>-</td>
<td>VTRN</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0010</td>
<td>-</td>
<td>VUZP</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0011</td>
<td>-</td>
<td>VZIP</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0100</td>
<td>0</td>
<td>VMOVN</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0100</td>
<td>1</td>
<td>VQMOVN, VQMOVUN - Unsigned result variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0101</td>
<td>-</td>
<td>VQMOVN, VQMOVUN - Signed result variant</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0110</td>
<td>0</td>
<td>VSHLL</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0111</td>
<td>0</td>
<td>SHA1SU1</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>0111</td>
<td>1</td>
<td>SHA256SU0</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1000</td>
<td>-</td>
<td>VRINTN (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1001</td>
<td>-</td>
<td>VRINTX (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1010</td>
<td>-</td>
<td>VRINTA (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1011</td>
<td>-</td>
<td>VRINTZ (Advanced SIMD)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1100</td>
<td>1</td>
<td>Unallocated.</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>1100</td>
<td>0</td>
<td>VCVT (between half-precision and single-precision, Advanced SIMD) Single-precision to half-precision variant</td>
<td>-</td>
</tr>
</tbody>
</table>
This section describes the encoding of the Advanced SIMD duplicate (scalar) instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4265.

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>imm4</td>
<td>Vd</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Advanced SIMD three registers of different lengths

This section describes the encoding of the Advanced SIMD three registers of different lengths instruction class. The encodings in this section are decoded from Advanced SIMD two registers, or three registers of different lengths on page F4-4265.

```bash
<table>
<thead>
<tr>
<th>opc</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>VDUP (scalar)</td>
</tr>
<tr>
<td>001</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>01x</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1xx</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>
```
Advanced SIMD two registers and a scalar

This section describes the encoding of the Advanced SIMD two registers and a scalar instruction class. The encodings in this section are decoded from *Advanced SIMD two registers, or three registers of different lengths on page F4-4265.*
F4.1.22 Advanced SIMD shifts and immediate generation

This section describes the encoding of the Advanced SIMD shifts and immediate generation group. The encodings in this section are decoded from Advanced SIMD data-processing on page F4-4262.

Table F4-21 Encoding table for the Advanced SIMD shifts and immediate generation group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0</td>
<td>Advanced SIMD one register and modified immediate on page F4-4271</td>
</tr>
<tr>
<td>! = 000xxxxxxx0</td>
<td>Advanced SIMD two registers and shift amount on page F4-4271</td>
</tr>
</tbody>
</table>
Advanced SIMD one register and modified immediate

This section describes the encoding of the Advanced SIMD one register and modified immediate instruction class. The encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F4-4270.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 16	15	12	11	8	7 6 5 4	3	0		
1 1 1 1 0 0 1	i	1	D	0 0 0	imm3	Vd	cmode	0	Q	op	1	imm4

Decode fields

cmode	op	Instruction page
0xx0 0 | VMOV (immediate) - A1 on page F6-5358
0xx0 1 | VMVN (immediate) - A1 on page F6-5405
0xx1 0 | VORR (immediate) - A1 on page F6-5429
0xx1 1 | VBIC (immediate) - A1 on page F6-5460
10x0 0 | VMOV (immediate) - A3 on page F6-5470
10x0 1 | VMVN (immediate) - A2 on page F6-5450
10x1 0 | VORR (immediate) - A2 on page F6-5429
10x1 1 | VBIC (immediate) - A2 on page F6-5450
11xx 0 | VMOV (immediate) - A4 on page F6-5459
110x 1 | VMVN (immediate) - A3 on page F6-5460
1110 1 | VMOV (immediate) - A5 on page F6-5360
1111 1 | Unallocated.

Advanced SIMD two registers and shift amount

This section describes the encoding of the Advanced SIMD two registers and shift amount instruction class. The encodings in this section are decoded from Advanced SIMD shifts and immediate generation on page F4-4270.

31 30 29 28	27 26 25 24	23 22 21	19 18	16	15	12	11	8	7 6 5 4	3	0	
1 1 1 1 0 0 1	U	1	D	imm3H	imm3L	Vd	opc	L	Q	M	1	Vm

Decode fields

U	imm3H:L	imm3L	opc	Q	Instruction page
- | != 0000 | - | 0000 | - | VSHR
- | != 0000 | - | 0001 | - | VSRA
- | != 0000 | 000 | 1010 | 0 | VMOVVL
- | != 0000 | - | 0010 | - | VRSHR
- | != 0000 | - | 0011 | - | VRSRA
### F4.1.23 Memory hints and barriers

This section describes the encoding of the Memory hints and barriers group. The encodings in this section are decoded from *Unconditional instructions on page F4-4261*.

![Table F4-22 Encoding table for the Memory hints and barriers group](image)

**Table F4-22 Encoding table for the Memory hints and barriers group**
Table F4-22 Encoding table for the Memory hints and barriers group (continued)

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Decode group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>op0 op1</td>
<td></td>
</tr>
<tr>
<td>1xxx0 0</td>
<td>Preload (register) on page F4-4274</td>
</tr>
<tr>
<td>1xxx1 0</td>
<td>CONSTRAINED UNPREDICTABLE</td>
</tr>
<tr>
<td>1xxxx 1</td>
<td>Unallocated.</td>
</tr>
</tbody>
</table>

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in *CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings* on page K1-7952.

**Barriers**

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from *Memory hints and barriers on page F4-4272*.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 3 0</th>
<th>opcode</th>
<th>option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in *CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings* on page K1-7952.

**Preload (immediate)**

This section describes the encoding of the Preload (immediate) instruction class. The encodings in this section are decoded from *Memory hints and barriers on page F4-4272*. 
This section describes the encoding of the Preload (register) instruction class. The encodings in this section are decoded from Memory hints and barriers on page F4-4272.

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16 15 14 13 12|11 10 9 8 7 6 5 4 3 2 1 0 |
|----------|----------|----------|----------------|----------------|----------------|
| 1 1 1 1 0 1 0 D U R 0 1 | Rn | imm12 |

### Decode fields

<table>
<thead>
<tr>
<th>D</th>
<th>R</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>1111</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>!= 1111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>!= 1111</td>
</tr>
</tbody>
</table>

### Preload (register)

This section describes the encoding of the Preload (register) instruction class. The encodings in this section are decoded from Memory hints and barriers on page F4-4272.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0	
1 1 1 1 0 1 1 D U o2 0 1	Rn	imm5	stype	0	Rm

### Decode fields

<table>
<thead>
<tr>
<th>D</th>
<th>o2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### F4.1.24 Advanced SIMD element or structure load/store

This section describes the encoding of the Advanced SIMD element or structure load/store group. The encodings in this section are decoded from Unconditional instructions on page F4-4261.

This group has encodings in both the T32 and A32 instruction sets. For information about mappings between the encodings of this group, see About the A32 Advanced SIMD and floating-point instructions and their encoding on page F4-4278.
### Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4274.

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19</th>
<th>16 15</th>
<th>12 11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0 D</td>
<td>L</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>itype</td>
<td>size</td>
<td>align</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

#### Decode fields

<table>
<thead>
<tr>
<th>op0</th>
<th>op1</th>
<th>Group or instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Advanced SIMD load/store multiple structures</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Advanced SIMD load single structure to all lanes on page F4-4276</td>
</tr>
<tr>
<td>1</td>
<td>!= 11</td>
<td>Advanced SIMD load/store single structure to one lane on page F4-4276</td>
</tr>
</tbody>
</table>

#### Table F4-23 Encoding table for the Advanced SIMD element or structure load/store group

<table>
<thead>
<tr>
<th>Decode fields</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>itype</td>
</tr>
<tr>
<td>0</td>
<td>000x</td>
</tr>
<tr>
<td>0</td>
<td>0010</td>
</tr>
<tr>
<td>0</td>
<td>0011</td>
</tr>
<tr>
<td>0</td>
<td>010x</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
</tr>
<tr>
<td>0</td>
<td>100x</td>
</tr>
<tr>
<td>0</td>
<td>1010</td>
</tr>
<tr>
<td>1</td>
<td>000x</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
</tr>
<tr>
<td>1</td>
<td>0011</td>
</tr>
<tr>
<td>1</td>
<td>010x</td>
</tr>
<tr>
<td>-</td>
<td>1011</td>
</tr>
<tr>
<td>1</td>
<td>0110</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
</tr>
</tbody>
</table>
Advanced SIMD load single structure to all lanes

This section describes the encoding of the Advanced SIMD load single structure to all lanes instruction class. The encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4274.

```
31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0
1 1 1 0 1 0 0 1 D L 0 Rn Vd 1 1 N size T a Rm
```

Advanced SIMD load/store single structure to one lane

This section describes the encoding of the Advanced SIMD load/store single structure to one lane instruction class. The encodings in this section are decoded from Advanced SIMD element or structure load/store on page F4-4274.

```
31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 4 3 0
1 1 1 0 1 0 0 1 D L 0 Rn Vd 11 N index_align Rm
```

---

**Decide fields**

<table>
<thead>
<tr>
<th>L</th>
<th>itype</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1lx</td>
<td>Unallocated.</td>
</tr>
<tr>
<td>1</td>
<td>100x</td>
<td>VLD2 (multiple 2-element structures) - A1 on page F6-5268</td>
</tr>
<tr>
<td>1</td>
<td>1010</td>
<td>VLD1 (multiple single elements) - A2 on page F6-5251</td>
</tr>
</tbody>
</table>

**Decode fields**

<table>
<thead>
<tr>
<th>L</th>
<th>N</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>

---

**Decide fields**

<table>
<thead>
<tr>
<th>L</th>
<th>size</th>
<th>N</th>
<th>Instruction page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00</td>
<td>VST1 (single element from one lane) - A1 on page F6-5614</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - A1 on page F6-5627</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - A1 on page F6-5638</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - A1 on page F6-5647</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>00</td>
<td>VST1 (single element from one lane) - A2 on page F6-5614</td>
</tr>
<tr>
<td>L</td>
<td>size</td>
<td>N</td>
<td>Instruction page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - A2 on page F6-5627</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - A2 on page F6-5638</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - A2 on page F6-5647</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>00</td>
<td>VST1 (single element from one lane) - A3 on page F6-5615</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td>VST2 (single 2-element structure from one lane) - A3 on page F6-5628</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td>VST3 (single 3-element structure from one lane) - A3 on page F6-5639</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>VST4 (single 4-element structure from one lane) - A3 on page F6-5648</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>00</td>
<td>VLD1 (single element to one lane) - A1 on page F6-5243</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>VLD2 (single 2-element structure to one lane) - A1 on page F6-5259</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>10</td>
<td>VLD3 (single 3-element structure to one lane) - A1 on page F6-5273</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td>VLD4 (single 4-element structure to one lane) - A1 on page F6-5285</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00</td>
<td>VLD1 (single element to one lane) - A2 on page F6-5243</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>01</td>
<td>VLD2 (single 2-element structure to one lane) - A2 on page F6-5259</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>10</td>
<td>VLD3 (single 3-element structure to one lane) - A2 on page F6-5273</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td>VLD4 (single 4-element structure to one lane) - A2 on page F6-5285</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>00</td>
<td>VLD1 (single element to one lane) - A3 on page F6-5244</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>01</td>
<td>VLD2 (single 2-element structure to one lane) - A3 on page F6-5260</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>VLD3 (single 3-element structure to one lane) - A3 on page F6-5274</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>VLD4 (single 4-element structure to one lane) - A3 on page F6-5286</td>
</tr>
</tbody>
</table>
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding

The Advanced SIMD and floating-point instructions are common to the T32 and A32 instruction sets. These instructions perform Advanced SIMD and floating-point operations on a common register file, the SIMD&FP register file. This means:

- In general, the instructions that load or store registers in this file, or move data between general-purpose registers and this register file, are common to the Advanced SIMD and floating-point instructions.
- There are distinct Advanced SIMD data-processing instructions and floating-point data-processing instructions.

All A32 Advanced SIMD and floating-point instructions have 32-bit encodings. Different groups of these instructions are decoded from different points in the 32-bit A32 instruction decode structure. Table F4-24 shows these instruction groups, and where each group is decoded from the overall A32 decode structure:

<table>
<thead>
<tr>
<th>Advanced SIMD and floating-point instruction group</th>
<th>A32 decode is from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced SIMD and System register load/store and 64-bit move on page F4-4252</td>
<td>System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246</td>
</tr>
<tr>
<td>Floating-point data-processing on page F4-4256</td>
<td>System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246</td>
</tr>
<tr>
<td>Advanced SIMD and System register 32-bit move on page F4-4259</td>
<td>System register access, Advanced SIMD, floating-point, and Supervisor call on page F4-4246</td>
</tr>
<tr>
<td>Advanced SIMD data-processing on page F4-4262</td>
<td>Unconditional instructions on page F4-4261</td>
</tr>
<tr>
<td>Advanced SIMD element or structure load/store on page F4-4274</td>
<td>Unconditional instructions on page F4-4261</td>
</tr>
</tbody>
</table>
Chapter F5
T32 and A32 Base Instruction Set Instruction Descriptions

This chapter describes each instruction. It contains the following sections:

• *Alphabetical list of T32 and A32 base instruction set instructions* on page F5-4280.
• *Encoding and use of banked register transfer instructions* on page F5-4989.
F5.1 Alphabetical list of T32 and A32 base instruction set instructions

This section lists every instruction in the T32 and A32 base instruction sets. For details of the format used see *Format of instruction descriptions* on page F2-4116.

This section is formatted so that each instruction description starts on a new page.
F5.1.1 ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the result.

The field descriptions for \(<Rd>\) identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

\[
\begin{array}{cccccccccccc}
\hline
!111 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & S & Rn & Rd & imm12 \\
\end{array}
\]

**ADC variant**

Applies when \(S = 0\).

\[
ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>
\]

**ADCS variant**

Applies when \(S = 1\).

\[
ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>
\]

**Decode for all variants of this encoding**

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ \text{setflags} = (S == '1'); \ \text{imm32} = \text{A32ExpandImm}(\text{imm12});
\]

T1

\[
\begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 14 & 12 & 11 & 8 & 7 & 0 \\
\hline
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & S & Rn & 0 & \text{imm3} & Rd & \text{imm8} \\
\end{array}
\]

**ADC variant**

Applies when \(S = 0\).

\[
ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>
\]

**ADCS variant**

Applies when \(S = 1\).
ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

**Decode for all variants of this encoding**

\[ d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1'); \quad \text{imm32} = \text{T32ExpandImm}(i:imm3:imm8); \]

\[ \text{if } d == 15 || n == 15 \text{ then UNPREDICTABLE}; \quad // \text{Armv8-A removes UNPREDICTABLE for R13} \]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
  - For the ADC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  - For the ADCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- `<Rn>` For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  - For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

- `<const>` For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
  - For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

**Operation for all encodings**

if ConditionPassed() then
   EncodingSpecificOperations();
   (result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
   if d == 15 then          // Can only occur for A32 encoding
      if setflags then
         ALUExceptionReturn(result);
      else
         ALUWritePC(result);
   else
      R[d] = result;
      if setflags then
         PSTATE.<N,Z,C,V> = nzcv;

**Operational information**

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
The values of the NZCV flags.

The response of this instruction to asynchronous exceptions does not vary based on:

- The values of the data supplied in any of its registers.
- The values of the NZCV flags.
F5.1.2 ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

```
<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 12 11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>not 1111</td>
<td>0 0 0 1 0 1 S</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
</tr>
<tr>
<td>imm5</td>
<td>stype 0</td>
</tr>
<tr>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>
```

cond

**ADC, rotate right with extend variant**

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADC(<c>{<q}> {<Rd>,} <Rn>, <Rm>, RRX

**ADC, shift or rotate by value variant**

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADC(<c>{<q}> {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**ADCS, rotate right with extend variant**

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADCS(<c>{<q}> {<Rd>,} <Rn>, <Rm>, RRX

**ADCS, shift or rotate by value variant**

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADCS(<c>{<q}> {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**Decode for all variants of this encoding**

```
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
```
### T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 0 1 0 1</td>
<td>Rm</td>
<td>Rdn</td>
</tr>
</tbody>
</table>

#### T1 variant

ADC<>{<q>}{<Rdn>} <Rdn>, <Rm> // Inside IT block
ADCS<>{<q>}{<Rdn>} <Rdn>, <Rm> // Outside IT block

#### Decode for this encoding

\[
d = \text{UInt}(Rdn); \quad n = \text{UInt}(Rdn); \quad m = \text{UInt}(Rm); \quad \text{setflags} = \text{!InITBlock}();
\]

\[
(shift_t, shift_n) = (\text{SRType\_LSL}, 0);
\]

### T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15 14 12</th>
<th>11 8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 1 0 1 0</td>
<td>S</td>
<td>Rn</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
</tr>
</tbody>
</table>

#### ADC, rotate right with extend variant

Applies when \( S = 0 \) \&\& \( \text{imm3} = 000 \) \&\& \( \text{imm2} = 00 \) \&\& \( \text{stype} = 11 \).

ADC<>{<q>}{<Rd>} {<Rd>}, <Rn>, <Rm>, RRX

#### ADC, shift or rotate by value variant

Applies when \( S = 0 \) \&\& \( !((\text{imm3} = 000) \&\& \text{imm2} = 00) \) \&\& \( \text{stype} = 11 \).

ADC<>.W {<Rd>}{<Rn>}{<Rm>}\ /\ \text{Inside IT block, and } <Rd>, <Rn>, <Rm> \text{ can be represented in } T1

ADC<>{<q>}{<Rd>}{<Rn>}{<Rm>}{<shift> #<amount>}

#### ADCS, rotate right with extend variant

Applies when \( S = 1 \) \&\& \( \text{imm3} = 000 \) \&\& \( \text{imm2} = 00 \) \&\& \( \text{stype} = 11 \).

ADCS<>{<q>}{<Rd>}{<Rn>}{<Rm>}{\text{RRX}}

#### ADCS, shift or rotate by value variant

Applies when \( S = 1 \) \&\& \( !((\text{imm3} = 000) \&\& \text{imm2} = 00) \) \&\& \( \text{stype} = 11 \).

ADCS<>.W {<Rd>}{<Rn>}{<Rm>}\ /\ \text{Outside IT block, and } <Rd>, <Rn>, <Rm> \text{ can be represented in } T1

ADCS<>{<q>}{<Rd>}{<Rn>}{<Rm>}{<shift> #<amount>}

#### Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{setflags} = (S = '1');
\]

\[
(shift_t, shift_n) = \text{DecodeImmShift(stype, imm3:imm2)};
\]

if \( d = 15 \) \&\& \( n = 15 \) \&\& \( m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

#### Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c>  See Standard assembler syntax fields on page F2-4120.

<q>  See Standard assembler syntax fields on page F2-4120.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

- Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though ADCS <Rd>, <Rn> had been written.

- Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
  (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
  if d == 15 then          // Can only occur for A32 encoding
    if setflags then
      ALUExceptionReturn(result);
    else
      ALUWritePC(result);
else
    R[d] = result;
    if setflags then
        PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.3 ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when $S = 1$.

$ADCS\{<c>\}{<q>\} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>$

Not flag setting variant

Applies when $S = 0$.

$ADC\{<c>\}{<q>\} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>$

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad s = \text{UInt}(Rs);
setflags = (S == '1'); \quad \text{shift}_t = \text{DecodeRegShift}(stype);
\]

if $d == 15 \lor n == 15 \lor m == 15 \lor s == 15$ then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

$<c>$ See Standard assembler syntax fields on page F2-4120.

$<q>$ See Standard assembler syntax fields on page F2-4120.

$<Rd>$ Is the general-purpose destination register, encoded in the "Rd" field.

$<Rn>$ Is the first general-purpose source register, encoded in the "Rn" field.

$<Rm>$ Is the second general-purpose source register, encoded in the "Rm" field.

$<shift>$ Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

<table>
<thead>
<tr>
<th>Shift Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL</td>
<td>00</td>
</tr>
<tr>
<td>LSR</td>
<td>01</td>
</tr>
<tr>
<td>ASR</td>
<td>10</td>
</tr>
<tr>
<td>ROR</td>
<td>11</td>
</tr>
</tbody>
</table>

$<Rs>$ Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
    R[d] = result;
    if setflags then
        PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.4  ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

### A1

```
cond

ADD variant
Applies when S == 0 && Rn != 11x1.
ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS variant
Applies when S == 1 && Rn != 1101.
ADDS{<q>} {<Rd>,} <Rn>, #<const>
```

#### Decode for all variants of this encoding

```c
if Rn == '1111' && S == '0' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
 d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);
```

#### T1

```
T1 variant
ADD{<q>} {<Rd>,} <Rn>, #<imm3> // Inside IT block
ADDS{<q>} {<Rd>,} <Rn>, #<imm3> // Outside IT block
```

#### Decode for this encoding

```c
d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);
```
T2

|15 14 13 12|11 10 8 7 |0 |
|0 0 1 1 0 |Rdn |imm8 |

**T2 variant**

ADD<c>{<q>} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> can be represented in T1
ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // Inside IT block, and <Rdn>, <imm8> cannot be represented in T1
ADDS{<q>} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> can be represented in T1
ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8> // Outside IT block, and <Rdn>, <imm8> cannot be represented in T1

**Decode for this encoding**

\[
d = \text{UInt}(\text{Rdn});\ n = \text{UInt}(\text{Rdn});\ \text{setflags} = !\text{InITBlock}();\ \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]

T3

|15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 14 12|11 8 7 |0 |
|1 1 1 1 0 |0 1 0 0 0 0 |S |1101 |0 |imm3 |Rd |imm8 |

**ADD variant**

Applies when \( S = 0 \).

ADD<c>.W {<Rd>,} <Rn>, #<const> // Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADD<c>{<q>}{<q>} {<Rd>,} <Rn>, #<const>

**ADDS variant**

Applies when \( S = 1 \) \&\& \( Rd \neq 1111 \).

ADDS.W {<Rd>,} <Rn>, #<const> // Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2
ADDS{<q>}{<q>} {<Rd>,} <Rn>, #<const>

**Decode for all variants of this encoding**

\[
\text{if } \text{Rd} = '1111' \&\& \text{S} = '1' \text{ then SEE "CMN (immediate)"};
\text{if } \text{Rn} = '1101' \text{ then SEE "ADD (SP plus immediate)"};
\text{d} = \text{UInt}(\text{Rd});\ \text{n} = \text{UInt}(\text{Rn});\ \text{setflags} = (\text{S} = '1');\ \text{imm32} = \text{T32ExpandImm}(i:imm3:imm8);
\text{if } (d = 15 \&\& \text{!setflags}) || n = 15 \text{ then UNPREDICTABLE};\ // \text{Armv8-A removes UNPREDICTABLE for R13}
\]

T4

|15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 14 12|11 8 7 |0 |
|1 1 1 1 0 |1 0 0 0 0 0 |i=11x1 |0 |imm3 |Rd |imm8 |

**T4 variant**

ADD{<q>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDSW{<q>}{<q>} {<Rd>,} <Rn>, #<imm12> // <imm12> can be represented in T1, T2, or T3
Decode for this encoding

if Rn == '1111' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)"
\[\text{d} = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ \text{setflags} = \text{FALSE}; \ \text{imm32} = \text{ZeroExtend}(i:imm3:imm8, 32);
\]
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\)  See Standard assembler syntax fields on page F2-4120.
\(<q>\)  See Standard assembler syntax fields on page F2-4120.
\(<Rdn>\) Is the general-purpose source and destination register, encoded in the "Rdn" field.
\(<\text{imm8}>\) Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
\(<\text{Rd}>\) For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. If the PC is used:
  \[\text{• For the ADD variant, the instruction is a branch to the address calculated by the operation.}
  
  \text{This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.}
  
  \text{• For the ADDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>. Arm deprecates use of this instruction.}
  \]
For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
\(<\text{Rn}>\) For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD, ADDS (SP plus immediate). If the PC is used, see ADR.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD, ADDS (SP plus immediate).
\(<\text{imm3}>\) Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
\(<\text{imm12}>\) Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
\(<\text{const}>\) For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

Operation for all encodings

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then
  EncodingSpecificOperations();
  (result, nzcv) = AddWithCarry(R[n], imm32, '0');
  if d == 15 then // Can only occur for A32 encoding
    if setflags then
      ALUExceptionReturn(result);
    else
ALUWritePC(result);
else
  R[d] = result;
  if setflags then
    PSTATE.<N,Z,C,V> = nzcv;
else
  if ConditionPassed() then
    EncodingSpecificOperations();
    (result, nzcv) = AddWithCarry(R[n], imm32, '0');
    R[d] = result;
  if setflags then
    PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.5  ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>7  6  5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0 0 0 0</td>
<td>1 0 0 S</td>
<td>Rd</td>
<td>imm5</td>
<td>stype 0</td>
<td>Rm</td>
</tr>
</tbody>
</table>

cond  Rn

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ADD{<c>}{<q>}{<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ADD{<c>}{<q>}{<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ADDS{<c>}{<q>}{<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ADDS{<c>}{<q>}{<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rn == '1101' then SEE "ADD (SP plus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1 0 0</td>
<td>Rm</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

**T1 variant**

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
ADDS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

**Decode for this encoding**

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 1 0 0</td>
<td>!=1101</td>
<td>Rdn</td>
<td></td>
</tr>
</tbody>
</table>

**T2 variant**

Applies when !(DN == 1 & Rdn == 101).

ADD<c>{<q>} <Rdn>, <Rm> // Preferred syntax, Inside IT block
ADDS{<q>} {<Rdn>,} <Rdn>, <Rm>

**Decode for this encoding**

if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 && m == 15 then UNPREDICTABLE;
if d == 15 && !InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

ADD, rotate right with extend variant

Applies when S == 0 & imm3 == 000 & imm2 == 00 & stype == 11.

ADD<c>{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 & !(imm3 == 000 & imm2 == 00 & stype == 11).

ADD<c>.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T2
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
**ADDS, rotate right with extend variant**

Applies when \( S = 1 \) \&\& \( \text{imm3} = 000 \) \&\& \( \text{Rd} \neq 1111 \) \&\& \( \text{stype} = 11 \).

```assembly
ADDS{<c>}{<q>}{<Rd>,} <Rn>, <Rm>, RRX
```

**ADDS, shift or rotate by value variant**

Applies when \( S = 1 \) \&\& \( \text{imm3} = 000 \) \&\& \( \text{imm2} = 00 \) \&\& \( \text{stype} = 11 \) \&\& \( \text{Rd} \neq 1111 \).

```assembly
ADDS.W{<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2
ADDS{<c>}{<q>}{<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
```

**Decode for all variants of this encoding**

If \( \text{Rd} = '1111' \) \&\& \( S = '1' \) then SEE "CMN (register)";
If \( \text{Rn} = '1101' \) then SEE "ADD (SP plus register)";
\( d = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ m = \text{UInt}(\text{Rm}); \) \( \) setflags = \( (S = '1') \);
\( \) (shift_t, shift_n) = \( \) DecodeImmShift(stype, imm3:imm2);
If \( (d = 15 \) \&\& \( \!)\text{setflags} \) \( || n = 15 \) \( || m = 15 \) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>`
  - See *Standard assembler syntax fields* on page F2-4120.
- `<q>`
  - See *Standard assembler syntax fields* on page F2-4120.
- `<Rdn>`
  - Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is used, the instruction is a branch to the address calculated by the operation. This is a simple branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  
  The assembler language allows `<Rdn>` to be specified once or twice in the assembler syntax. When used inside an IT block, and `<Rdn>` and `<Rm>` are in the range R0 to R7, `<Rdn>` must be specified once so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in behavior when `<Rdn>` is specified once or twice.
- `<Rd>`
  - For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. If the PC is used:
    - For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
    - For the ADDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>. Arm deprecates use of this instruction.
  
  For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.
  
  When used inside an IT block, `<Rd>` must be specified. When used outside an IT block, `<Rd>` is optional, and:
    - If omitted, this register is the same as `<Rn>`.
    - If present, encoding T1 is preferred to encoding T2.
  
  For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.
- `<Rn>`
  - For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used. If the SP is used, see ADD, ADDS (SP plus register).
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD, ADDS (SP plus register).

<rm>
For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used.

<shift>
Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount>
For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Inside an IT block, if ADD<op> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using encoding T2 as though ADD<op> <Rd>, <Rn> had been written. To prevent this happening, use the .w qualifier.

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations();
  shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
  (result, nzcv) = AddWithCarry(R[n], shifted, '0');
  if d == 15 then
    if setflags then
      ALUExceptionReturn(result);
    else
      ALUWritePC(result);
  else
    R[d] = result;
    if setflags then
      PSTATE.<N,Z,C,V> = nzcv;

**Operational information**

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.6 ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>1=1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>Rs</td>
<td>0</td>
<td>s</td>
<td></td>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
</tr>
</tbody>
</table>

Flag setting variant

Applies when $S == 1$.

```
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
```

Not flag setting variant

Applies when $S == 0$.

```
ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
```

Decode for all variants of this encoding

```
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.
- `<shift>` Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
  - LSL when stype = 00
  - LSR when stype = 01
  - ASR when stype = 10
  - ROR when stype = 11
- `<Rs>` Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(R[n], shifted, '0');
    R[d] = result;
    if setflags then
        PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.7   ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However, when the destination register is the PC:

- The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

\[
\begin{array}{cccccccc}
\text{cond} & \text{imm12} & \text{Rd} & S & \text{setflags} & d & \\%
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}
\]

ADD variant

Applies when \( S = 0 \).

\[\text{ADD}\{<c>\}{<q>} \{<Rd>,\} \text{SP,} \#<\text{const}>\]

ADDS variant

Applies when \( S = 1 \).

\[\text{ADDS}\{<c>\}{<q>} \{<Rd>,\} \text{SP,} \#<\text{const}>\]

Decode for all variants of this encoding

\[d = \text{UInt}(\text{Rd}); \text{ setflags } = (S \text{ } '=' \text{ '1'}) ; \text{ imm32 } = \text{A32ExpandImm}(\text{imm12});\]

T1

\[
\begin{array}{cccccccccc}
\text{imm8} & \text{Rd} & S & \text{setflags} & d & \\%
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}
\]

T1 variant

\[\text{ADD}\{<c>\}{<q>} \{<Rd>,\} \text{SP,} \#<\text{imm8}>\]

Decode for this encoding

\[d = \text{UInt}(\text{Rd}); \text{ setflags } = \text{FALSE} ; \text{ imm32 } = \text{ZeroExtend}(\text{imm8}:'00', \text{32});\]
T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 0 0 0 0 0</td>
<td>imm7</td>
<td></td>
</tr>
</tbody>
</table>

**T2 variant**

ADD{<c>}{<q>} {SP,} SP, #<imm7>

**Decode for this encoding**

\[ d = 13; \text{ setflags} = \text{FALSE}; \text{ imm32} = \text{ZeroExtend}(\text{imm7:'00'}, 32); \]

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15 14 12</th>
<th>11</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>1 0 1 0 0 0</td>
<td>1 1 0 1 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
</tr>
</tbody>
</table>

**ADD variant**

Applies when \( S = 0 \).

ADD{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1 or T2
ADD{<c>}{<q>} {<Rd>,} SP, #<const>

**ADDS variant**

Applies when \( S = 1 && \text{Rd} \neq 1111 \).

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

**Decode for all variants of this encoding**

if \( \text{Rd} = '1111' && S = '1' \) then SEE "CMN (immediate)";
\[ d = \text{UInt}(\text{Rd}); \text{ setflags} = (S = '1'); \text{ imm32} = \text{T32ExpandImm}(i:i3:i8); \]
if \( d = 15 && \text{setflags} \) then UNPREDICTABLE;

T4

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15 14 12</th>
<th>11</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>1 1 0 0 0 0 0 0 1 1 0 1 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>

**T4 variant**

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3

**Decode for this encoding**

\[ d = \text{UInt}(\text{Rd}); \text{ setflags} = \text{FALSE}; \text{ imm32} = \text{ZeroExtend}(i:i3:i8, 32); \]
if \( d = 15 \) then UNPREDICTABLE;

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<<c>>  See Standard assembler syntax fields on page F2-4120.

<<q>>  See Standard assembler syntax fields on page F2-4120.

SP,  Is the stack pointer.

<imm7>  Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as <imm7>/4.

<Rd>  For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:
•  For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
•  For the ADDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

<imm8>  Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm8>/4.

<imm12>  Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const>  For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    (result, nzcv) = AddWithCarry(SP, imm32, '0');
    if d == 15 then          // Can only occur for A32 encoding
        if setflags then
            ALUExceptionReturn(result);
        else
            ALUWritePC(result);
    else
        R[d] = result;
        if setflags then
            PSTATE.<N,Z,C,V> = nzcv;


F5.1.8 ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 | 28 | 27 26 25 24 | 23 22 21 20 | 19 18 17 16 | 15 | 12 | 11 | 7 | 6 | 5 | 4 | 3 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=111 | 0 0 0 0 | 1 0 0 | S 1 1 0 1 | Rd | imm5 | stype | 0 | Rm |
| cond |

ADD, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.
ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).
ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.
ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).
ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

d = UInt(Rd);  m = UInt(Rm);  setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
T1

ADD{<c>}{<q>} {<Rdm>, SP, <Rdm>

Decode for this encoding

\[
d = \text{UInt}(\text{DM}:\text{Rdm}); \ m = \text{UInt}(\text{DM}:\text{Rdm}); \ \text{setflags} = \text{FALSE};
\]
\[
(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{LSL}, 0);
\]
\[
\text{if } d == 15 \land \text{InITBlock()} \land \text{!LastInITBlock()} \text{ then UNPREDICTABLE;}
\]

T2

ADD{<c>}{<q>} {SP, SP, <Rm>

Decode for this encoding

\[
\text{if } Rm == \text{’1101’} \text{ then SEE “encoding T1”;}
\]
\[
d = 13; \ m = \text{UInt}(Rm); \ \text{setflags} = \text{FALSE};
\]
\[
(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{LSL}, 0);
\]

T3

ADD, rotate right with extend variant

Applies when \( S == 0 \land \text{imm3} == 000 \land \text{imm2} == 00 \land \text{stype} == 11 \).

ADD{<c>}{<q>} {<Rd>, SP, <Rm>, RRX

ADD, shift or rotate by value variant

Applies when \( S == 0 \land \text{!(imm3 == 000 \land imm2 == 00 \land stype == 11)} \).

ADDS, rotate right with extend variant

Applies when \( S == 1 \land \text{imm3} == 000 \land \text{Rd} != 1111 \land \text{imm2} == 00 \land \text{stype} == 11 \).

ADDS{<c>}{<q>} {<Rd>, SP, <Rm>, RRX

010001

00

1101

101

1 5 1 4 1 3 1 2 1 1 1 0 98765432 0

DM

010001

001

!=1101

101

1 5 1 4 1 3 1 2 1 1 1 0 9876 3210

Rm

1110101

1000

S

1101 ( 0 )

imm3

Rd

imm2

stype

Rm
**ADDS, shift or rotate by value variant**

Applies when \( S == 1 \) \&\& \((\text{imm}3 == 000 \&\& \text{imm}2 == 00 \&\& \text{stype} == 11) \&\& \text{Rd} != 1111\).

\[
\text{ADDS\{<c>\}{<q>} \{<Rd>,} \text{ SP, } <Rm> \{, <\text{shift}> \#<\text{amount}>\}
\]

**Decode for all variants of this encoding**

\[
\text{if Rd == '1111' \&\& } S == '1' \text{ then SEE "OMN (register);}
\]
\[
d = \text{UInt(Rd)}; \quad m = \text{UInt(Rm)}; \quad \text{setflags} = (S == '1');
\]
\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift(stype, imm3:imm2)};
\]
\[
\text{if (d == 15 \&\& } \text{!setflags} \text{) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
}\]

**Notes for all encodings**

For more information about the CONstrained UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `SP`, Is the stack pointer.
- `<Rdm>` Is the general-purpose destination and second source register, encoded in the "Rdm" field. If omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is a simple branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:
  - For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  - For the ADDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

- `<Rm>` For encoding A1 and T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

- `<\text{shift}>` Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
  - LSL when stype = 00
  - LSR when stype = 01
  - ASR when stype = 10
  - ROR when stype = 11

- `<\text{amount}>` For encoding A1: is the shift amount, in the range 1 to 31 (when `<\text{shift}>` = LSL or ROR) or 1 to 32 (when `<\text{shift}>` = LSR or ASR) encoded in the "imm5" field as `<\text{amount}>` modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when `<\text{shift}>` = LSL or ROR) or 1 to 32 (when `<\text{shift}>` = LSR or ASR), encoded in the "imm3:imm2" field as `<\text{amount}>` modulo 32.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(SP, shifted, '0');
    if d == 15 then
        if setflags then
            ALUEntireReturn(result);
        else
            ALUWritePC(result);
    else
        R[d] = result;
        if setflags then
            PSTATE.<N,Z,C,V> = nzcv;
F5.1.9 ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is a pseudo-instruction of the ADR instruction. This means that:

- The encodings in this description are named to match the encodings of ADR.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of ADR gives the operational pseudocode for this instruction.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 |10 |8 |7 |0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | !=1111 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | Rd | imm12|
```

A1 variant

ADD<{c}>{q} <Rd>, PC, #<const>

is equivalent to

ADR<{c}>{q} <Rd>, <label>

and is never the preferred disassembly.

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 0</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T1 variant

ADD<{c}>{q} <Rd>, PC, #<imm8>

is equivalent to

ADR<{c}>{q} <Rd>, <label>

and is never the preferred disassembly.

T3

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 1 0 0 0 0 0 1 1 1 1 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T3 variant

ADDW<{c}>{q} <Rd>, PC, #<imm12> // <Rd>, <imm12> can be represented in T1

is equivalent to

ADR<{c}>{q} <Rd>, <label>

and is never the preferred disassembly.
ADD{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is never the preferred disassembly.

**Assembler symbols**

- `<c>`: See *Standard assembler syntax fields on page F2-4120.*
- `<q>`: See *Standard assembler syntax fields on page F2-4120.*
- `<Rd>`: For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.*

For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

- `<label>`: For encoding A1: the label of an instruction or literal data item whose address is to be loaded into `<Rd>`. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in *Modified immediate constants in A32 instructions on page F2-4136.*

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into `<Rd>`. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to 1020.

For encoding T3: the label of an instruction or literal data item whose address is to be loaded into `<Rd>`. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

- `<imm8>`: Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as `<imm8>/4`.

- `<imm12>`: Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:mm8" field.

- `<const>`: An immediate value. See *Modified immediate constants in A32 instructions on page F2-4136* for the range of values.

**Operation for all encodings**

The description of ADR gives the operational pseudocode for this instruction.
F5.1.10   ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

This instruction is used by the pseudo-instructions ADD (immediate, to PC) and SUB (immediate, from PC). The
pseudo-instruction is never the preferred disassembly.

A1

|31| 28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|   |   |0|
|   |!=|1111|0|0|1|0|0|0|1|1|1|1| Rd|   |   |imm12|

A1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad \text{imm32} = \text{A32ExpandImm}(\text{imm12}); \quad \text{add} = \text{TRUE};
\]

A2

|31| 28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|   |   |0|
|   |!=|1111|0|0|1|0|0|0|1|1|1|1|Rd|   |   |imm12|

A2 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad \text{imm32} = \text{A32ExpandImm}(\text{imm12}); \quad \text{add} = \text{FALSE};
\]

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>7</th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rd</td>
<td></td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

ADR{<c>}{<q>} <Rd>, <label>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}:'00', 32); \quad \text{add} = \text{TRUE};
\]

T2

|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|15|14|12|11|8|7|   |   |0|
|1|1|1|1|0|i|1|0|1|0|1|1|1|0|imm3| Rd|   |imm8|
**T2 variant**

ADR{<c>}{<q>} <Rd>, <label>

*Decode for this encoding*

\[
d = \text{UInt}(Rd); \quad \text{imm32} = \text{ZeroExtend}(i:imm3:imm8, 32); \quad \text{add} = \text{FALSE};
\]

If \( d = 15 \) then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13

**T3**

| 15 14 13 12 | 11 10  9  8  7  6  5  4  3  2  1  0 | 15 14 12 | 11  8  7  | 0 |
|-------------|-------------------------------------|----------|----------|
| 1 1 1 1 0    | 1 1 0 0 0 0 0 0 1 1 1 1 0 | imm3     | Rd       |
|             |                                    | imm8     |

**T3 variant**

ADR{<c>}.W <Rd>, <label> // <Rd>, <label> can be presented in T1

ADR{<c>}{<q>} <Rd>, <label>

*Decode for this encoding*

\[
d = \text{UInt}(Rd); \quad \text{imm32} = \text{ZeroExtend}(i:imm3:imm8, 32); \quad \text{add} = \text{TRUE};
\]

If \( d = 15 \) then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias or pseudo-instruction</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD (immediate, to PC)</td>
<td>-</td>
<td>Never</td>
</tr>
<tr>
<td>SUB (immediate, from PC)</td>
<td>T2</td>
<td>( i:imm3:imm8 ) == ( '000000000000' )</td>
</tr>
<tr>
<td>SUB (immediate, from PC)</td>
<td>A2</td>
<td>( \text{imm12} ) == ( '000000000000' )</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- **<c>**
  
  See Standard assembler syntax fields on page F2-4120.

- **<p>**
  
  See Standard assembler syntax fields on page F2-4120.

- **<Rd>**
  
  For encoding A1 and A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

  For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

- **<label>**
  
  For encoding A1 and A2: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

  If the offset is zero or positive, encoding A1 is used, with \( \text{imm32} \) equal to the offset.

  If the offset is negative, encoding A2 is used, with \( \text{imm32} \) equal to the size of the offset. That is, the use of encoding A2 indicates that the required offset is minus the value of \( \text{imm32} \).
Permitted values of the size of the offset are any of the constants described in Modified immediate constants in A32 instructions on page F2-4136.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 if d == 15 then // Can only occur for A32 encodings
 ALUWritePC(result);
 else
 R[d] = result;
```
F5.1.11  AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the result.

The field descriptions for \(<Rd>\) identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

- **AND variant**
  - Applies when S == 0.
  - AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

- **ANDS variant**
  - Applies when S == 1 && Rd != 1111.
  - ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

**Decode for all variants of this encoding**

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1');\]
\[(\text{imm32}, \text{carry}) = \text{A32ExpandImm_C}(\text{imm12}, \text{PSTATE}.C);\]

T1

- **AND variant**
  - Applies when S == 0.
  - AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

- **ANDS variant**
  - Applies when S == 1 && Rd != 1111.
ANDS{<c>}{<q>} {<Rd>} <Rn>, #<const>

**Decode for all variants of this encoding**

if Rd == '1111' && S == '1' then SEE "TST (immediate)"

d = UInt(Rd);  n = UInt(Rn);  setflags = (S == '1');

(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);

if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
  - For the AND variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  - For the ANDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.
- <Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  - For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
- <const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
  - For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

**Operation for all encodings**

if ConditionPassed() then

  EncodingSpecificOperations();
  result = R[n] AND imm32;

  if d == 15 then          // Can only occur for A32 encoding
      if setflags then
          ALUExceptionReturn(result);
      else
          ALUWritePC(result);
      else
          R[d] = result;

      if setflags then
          PSTATE.N = result<31>;
          PSTATE.Z = IsZeroBit(result);
          PSTATE.C = carry;
          // PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.12 AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

- The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 |16|15 |12|11 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|-----------------|-------|----|----|----|----|----|----|----|----|----|----|----|----|
| !=111 | 0 | 0 | 0 | 0 | 0 | 0 | S | Rn | Rd | imm5 | stype | 0 | Rm |
| cond |

**AND, rotate right with extend variant**

Applies when $S == 0$ && $imm5 == 00000$ && $stype == 11$.

\[ \text{AND}\{<c>\}\{<q>\} \{<Rd>,\} <Rn>, <Rm>, RRX \]

**AND, shift or rotate by value variant**

Applies when $S == 0$ && !({$imm5 == 00000$ && $stype == 11$}).

\[ \text{AND}\{<c>\}\{<q>\} \{<Rd>,\} <Rn>, <Rm> \{, <shift> \#<amount>\} \]

**ANDS, rotate right with extend variant**

Applies when $S == 1$ && $imm5 == 00000$ && $stype == 11$.

\[ \text{ANDS}\{<c>\}\{<q>\} \{<Rd>,\} <Rn>, <Rm>, RRX \]

**ANDS, shift or rotate by value variant**

Applies when $S == 1$ && !({$imm5 == 00000$ && $stype == 11$}).

\[ \text{ANDS}\{<c>\}\{<q>\} \{<Rd>,\} <Rn>, <Rm> \{, <shift> \#<amount>\} \]

**Decode for all variants of this encoding**

\[ d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ $setflags = (S == '1'); \ (shift_t, shift_n) = \text{DecodeImmShift}(stype, imm5); \]
T1

\[
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>0 0 0 0</td>
<td>Rm</td>
<td>Rd</td>
</tr>
</tbody>
</table>
\]

**T1 variant**

\[
\text{AND\{<c>,\} \{<Rdn>,\} \{<Rm> \// Inside IT block}
\text{ANDS\{<c>,\} \{<Rdn>,\} \{<Rm> \// Outside IT block}
\]

**Decode for this encoding**

\[
d = \text{UInt}(Rdn); \ n = \text{UInt}(Rdn); \ m = \text{UInt}(Rm); \ \text{setflags} = !\text{InITBlock}();
(shift_t, shift_n) = (\text{SRType LSL}, 0);
\]

T2

\[
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0</td>
<td>0 0 0 0</td>
<td>S</td>
<td>Rd</td>
</tr>
</tbody>
</table>
\]

**AND, rotate right with extend variant**

Applies when \( S = 0 \) && \( \text{imm3} = 000 \) && \( \text{imm2} = 00 \) && \( \text{stype} = 11 \).

\[
\text{AND\{<c>,\} \{<Rd>,\} \{<Rn>, \{<Rm>, \{<shift \#<amount>\}}}
\]

**AND, shift or rotate by value variant**

Applies when \( S = 0 \) && !\( (\text{imm3} = 000 \) && \( \text{imm2} = 00 \) && \( \text{stype} = 11 \)).

\[
\text{AND\{<c>,\} \{<Rd>,\} \{<Rn>, \{<Rm>, \{<shift \#<amount>\}}}
\]

**ANDS, rotate right with extend variant**

Applies when \( S = 1 \) && \( \text{imm3} = 000 \) && \( \text{Rd} \neq 1111 \) && \( \text{imm2} = 00 \) && \( \text{stype} = 11 \).

\[
\text{ANDS\{<c>,\} \{<Rd>,\} \{<Rn>, \{<Rm>, \{<shift \#<amount>\}}}
\]

**ANDS, shift or rotate by value variant**

Applies when \( S = 1 \) && !\( (\text{imm3} = 000 \) && \( \text{imm2} = 00 \) && \( \text{stype} = 11 \)) && \( \text{Rd} \neq 1111 \).

\[
\text{ANDS\{<c>,\} \{<Rd>,\} \{<Rn>, \{<Rm>, \{<shift \#<amount>\}}}
\]

**Decode for all variants of this encoding**

\[
\text{if } \text{Rd} \neq '1111' \text{ && } S = '1' \text{ then SEE "TST (register)";}
\text{d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S = '1');}
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
\text{if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;}
\]

\[
\text{// Armv8-A removes UNPREDICTABLE for R13}
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<\c>
See Standard assembler syntax fields on page F2-4120.

<\q>
See Standard assembler syntax fields on page F2-4120.

<\Rdn>
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<\Rd>
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as \<\Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
  • For the AND variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  • For the ANDS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as \<\Rn>.

<\Rn>
For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<\Rm>
For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<\shift>
Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

| Shift Type | Binary Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL</td>
<td>00</td>
</tr>
<tr>
<td>LSR</td>
<td>01</td>
</tr>
<tr>
<td>ASR</td>
<td>10</td>
</tr>
<tr>
<td>ROR</td>
<td>11</td>
</tr>
</tbody>
</table>

<\amount>
For encoding A1: is the shift amount, in the range 1 to 31 (when <\shift> = LSL or ROR) or 1 to 32 (when <\shift> = LSR or ASR) encoded in the "imm5" field as <\amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <\shift> = LSL or ROR) or 1 to 32 (when <\shift> = LSR or ASR), encoded in the "imm3:imm2" field as <\amount> modulo 32.

In T32 assembly:

- Outside an IT block, if ANDS <\Rd>, <\Rn>, <\Rd> has <\Rd> and <\Rn> both in the range R0-R7, it is assembled using encoding T1 as though ANDS <\Rd>, <\Rn> had been written.
- Inside an IT block, if AND<< <\Rd>, <\Rn>, <\Rd> has <\Rd> and <\Rn> both in the range R0-R7, it is assembled using encoding T1 as though AND<< <\Rd>, <\Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
  result = R[n] AND shifted;
  if d == 15 then          // Can only occur for A32 encoding
    if setflags then
      ALUExceptionReturn(result);
    else
      ALUWritePC(result);
else
    \texttt{R[d] = result;}
    if \texttt{setflags} then
        \texttt{PSTATE.N = result<31>;;}
        \texttt{PSTATE.Z = IsZeroBit(result);}
        \texttt{PSTATE.C = carry;}
        // \texttt{PSTATE.V} unchanged

\textbf{Operational information}

If \texttt{CPSR.DIT} is 1 and this instruction does not use \texttt{R15} as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.13   AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>!=111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>Rs</td>
<td>0</td>
<td>stype</td>
<td>1</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flag setting variant

Applies when \( S == 1 \).

\[ \text{ANDS} \{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm>, <shift> <Rs> \]

Not flag setting variant

Applies when \( S == 0 \).

\[ \text{AND} \{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm>, <shift> <Rs> \]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \; n = \text{UInt}(Rn); \; m = \text{UInt}(Rm); \; s = \text{UInt}(Rs);
setflags = (S == '1'); \; \text{shift}_t = \text{DecodeRegShift}(stype);
if d == 15 \| n == 15 \| m == 15 \| s == 15 \text{ then UNPREDICTABLE;}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.

\(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

\(<\text{shift}>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

\(<Rs>\) Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] AND shifted;
    R[d] = result;
    if setflags then
        PSTATE.N = result<31>;
        PSTATE.Z = IsZeroBit(result);
        PSTATE.C = carry;
        // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.14 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its sign bit, and writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

**MOV, shift or rotate by value variant**

ASR{<c>{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

**T2 variant**

ASR<>{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

is equivalent to

MOV<>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

**MOV, shift or rotate by value variant**

ASR<>{<q>} .W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, #<imm> can be represented in T2

is equivalent to

MOV<>{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR<>{<q>} {<Rd>,} <Rm>, #<imm>
is equivalent to

\[ MOV\{c\}\{q\}\ <Rd>, <Rm>, ASR #<imm> \]

and is always the preferred disassembly.

**Assembler symbols**

- **<c>**  
  See *Standard assembler syntax fields* on page F2-4120.

- **<q>**  
  See *Standard assembler syntax fields* on page F2-4120.

- **<Rd>**  
  For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.
  For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

- **<Rm>**  
  For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
  For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

- **<imm>**  
  For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm> modulo 32.
  For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm> modulo 32.

**Operation for all encodings**

The description of MOV, MOVX (register) gives the operational pseudocode for this instruction.
F5.1.15   ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of
a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
instruction.

A1

Not flag setting variant

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

Arithmetic shift right variant

ASR{<c>}{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV{<c>}{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

Not flag setting variant

ASR{<c>}.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>
ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler symbols

<\text{c}> \quad \text{See Standard assembler syntax fields on page F2-4120.}
<\text{q}> \quad \text{See Standard assembler syntax fields on page F2-4120.}
<\text{Rdm}> \quad \text{Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.}
<\text{Rd}> \quad \text{Is the general-purpose destination register, encoded in the "Rd" field.}
<\text{Rm}> \quad \text{Is the first general-purpose source register, encoded in the "Rm" field.}
<\text{Rs}> \quad \text{Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.}

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
**F5.1.16 ASRS (immediate)**

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its sign bit, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for `<Rd>` identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
- The PE checks SPSR_<current_mode> for an illegal return event. See **Illegal return events from AArch32 state** on page G1-5766.
- The instruction is UNDEFINED in Hyp mode.
- The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVVS (register).
- The description of MOV, MOVVS (register) gives the operational pseudocode for this instruction.

**A1**

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 1 1</td>
<td>0 1</td>
<td>(0)(0)(0)(0)</td>
<td>Rd</td>
<td>imm5</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

**MOVS, shift or rotate by value variant**

ASRS{<c>}{<q>} {<Rd>,} {<Rm>,} #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

**T2**

| 15 14 13 12|11 10 | 6 5 | 3 2 0 |
|----------|------|-----|
| 0 0 0 1 0 | imm5 | Rm  | Rd  |

**T2 variant**

ASRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

is equivalent to

MOV{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().
T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8 7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 12</th>
<th>11 8 7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1</td>
<td>0 0 1 0 1</td>
<td>1 1 1 1</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm2</td>
<td>1 0</td>
</tr>
</tbody>
</table>

S stype

**MOVS, shift or rotate by value variant**

ASRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2 is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

**Assembler symbols**

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.
  
  For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
  
  For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.
- `<imm>` For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as `<imm>` modulo 32.
  
  For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as `<imm>` modulo 32.

**Operation for all encodings**

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.17 ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
- The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

### A1

Flag setting variant

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

### T1

Arithmetic shift right variant

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

### T2

Flag setting variant

ASRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>
and is always the preferred disassembly.

\[
\text{ASRS}\{<c>\}{<q>}{<Rd>,}{<Rm>,}{<Rs>}
\]

is equivalent to

\[
\text{MOVS}\{<c>\}{<q>}{<Rd>,}{<Rm>,}{\text{ASR}<Rs>}
\]

and is always the preferred disassembly.

**Assembler symbols**

- \(<c>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<q>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<Rdm>\) Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
- \(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
- \(<Rm>\) Is the first general-purpose source register, encoded in the "Rm" field.
- \(<Rs>\) Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

**Operation for all encodings**

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.18   B

Branch causes a branch to a target address.

**A1**

```
| 31 28 27 26 25 24 23 | | | | | | 0 |
|----------------------|---|---|---|---|---|---|---|
| !=1111 | 1 | 0 | 1 | 0 | imm24
```

**A1 variant**

\[B{<c}>{<q}> <label>\]

*Decode for this encoding*

\[imm32 = \text{SignExtend}(\text{imm24}: '00', 32);\]

**T1**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**T1 variant**

\[B{<c}>{<q}> <label> // Not permitted in IT block\]

*Decode for this encoding*

\[\text{if cond} == '1110' \text{ then SEE "UDF"};\]
\[\text{if cond} == '1111' \text{ then SEE "SVC"};\]
\[imm32 = \text{SignExtend}(\text{imm8}: '0', 32);\]
\[\text{if \text{InITBlock}() then UNPREDICTABLE};\]

**T2**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**T2 variant**

\[B{<c}>{<q}> <label> // Outside or last in IT block\]

*Decode for this encoding*

\[imm32 = \text{SignExtend}(\text{imm11}: '0', 32);\]
\[\text{if \text{InITBlock}() \&\& \!\text{LastInITBlock}() then UNPREDICTABLE};\]

**T3**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>0</th>
<th>15 14 13 12</th>
<th>11 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>S</td>
</tr>
</tbody>
</table>
```

**T3 variant**

\[B{<c>{<q}> <label> // Outside or last in IT block\]

*Decode for this encoding*

\[\text{if \text{InITBlock}() \&\& \!\text{LastInITBlock}() then UNPREDICTABLE};\]
**T3 variant**

B<\c>.W <\label> // Not permitted in IT block, and <\label> can be represented in T1
B<\c>{\langle} <\label> // Not permitted in IT block

**Decode for this encoding**

if cond<3:1> == '111' then SEE "Related encodings";
imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
if InITBlock() then UNPREDICTABLE;

**T4**

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9</th>
<th>0</th>
<th>15 14 13 12 11 10 9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>S</td>
<td>imm10</td>
<td>1 0</td>
</tr>
</tbody>
</table>

**T4 variant**

B{<\c>}.W <\label> // <\label> can be represented in T2
B{<\c>}{\langle} <\label>

**Decode for this encoding**

I1 = NOT(J1 EOR S);  I2 = NOT(J2 EOR S);  imm32 = SignExtend(S:I1:J2:imm10:imm11:'0', 32);
if InITBlock() & !LastInITBlock() then UNPREDICTABLE;

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Branches and miscellaneous control on page F3-4192.

**Assembler symbols**

<\c> For encoding A1, T2 and T4: see Standard assembler syntax fields on page F2-4120.
For encoding T1: see Standard assembler syntax fields on page F2-4120. Must not be AL or omitted.
For encoding T3: see Standard assembler syntax fields on page F2-4120. <\c> must not be AL or omitted.

<\langle> See Standard assembler syntax fields on page F2-4120.

<\label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset.
Permitted offsets are multiples of 4 in the range –33554432 to 33554428.
For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –256 to 254.
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset. Permitted offsets are even numbers in the range –2048 to 2046.
For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset.
Permitted offsets are even numbers in the range –1048576 to 1048574.
For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the \texttt{B} instruction to this label, then selects an
encoding that sets \texttt{imm32} to that offset.

Permitted offsets are even numbers in the range \(-16777216\) to \(16777214\).

\textbf{Operation for all encodings}

\begin{verbatim}
if ConditionPassed() then
  EncodingSpecificOperations();
  BranchWritePC(PC + imm32, BranchType_DIR);
\end{verbatim}
F5.1.19   BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the register.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15 12</th>
<th>11 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 0</td>
<td>msb</td>
<td>Rd</td>
<td>lsb</td>
<td>0 0 1 1 1 1 1</td>
</tr>
</tbody>
</table>
| cond

A1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad \text{msbit} = \text{UInt}(\text{msb}); \quad \text{lsbit} = \text{UInt}(\text{lsb});
\]

if \( d = 15 \) then UNPREDICTABLE;

T1

15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0	12	11 8 7 6 5 4 0										
	1 1 1 0	0	1	0	1	1	1	0	imm3	Rd	imm2	0	msb

T1 variant

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad \text{msbit} = \text{UInt}(\text{msb}); \quad \text{lsbit} = \text{UInt}(\text{imm3:imm2});
\]

if \( d = 15 \) then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\)  See Standard assembler syntax fields on page F2-4120.
- \(<q>\)  See Standard assembler syntax fields on page F2-4120.
- \(<Rd>\)  Is the general-purpose destination register, encoded in the "Rd" field.
- \(<\text{lsb}>\)  For encoding A1: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "lsb" field.
  For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2" field.
- \(<\text{width}>\)  Is the number of bits to be cleared, in the range 1 to 32-\(<\text{lsb}>\), encoded in the "msb" field as \(<\text{lsb}>+\text{<width>-1}\.}
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    if msbit >= lsbit then
        R[d]<msbit:lsbit> = Replicate('0', msbit-lsbit+1);
        // Other bits of R[d] are unchanged
    else
        UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.20   BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any position in the destination register.

A1

\[
\begin{array}{cccccccccccc}
\hline
\text{cond} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & \text{msb} & \text{Rd} & \text{lsb} & 0 & 0 & 1 & \text{lsb} & \text{Rn}
\end{array}
\]

**A1 variant**

\[
\text{BFI<}\{<c>\}{<q>} <\text{Rd}>, <\text{Rn}>, \#<\text{lsb}>, \#\text{width}
\]

*Decode for this encoding*

if \( \text{Rn} = '1111' \) then SEE "BFC";
\( d = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ \text{msbit} = \text{UInt}(\text{msb}); \ \text{lsbit} = \text{UInt}(\text{lsb}); \)
if \( d = 15 \) then UNPREDICTABLE;

T1

\[
\begin{array}{cccccccccccccccccccc}
|15&14&13&12&11&10&9&8&7&6&5&4&3&0|&15&14&12&11&8&7&6&5&4&0|
\hline
1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & \text{lsb} & 0 & \text{imm3} & \text{Rd} & \text{imm2} & 0 & \text{msb} & \text{Rn}
\end{array}
\]

**T1 variant**

\[
\text{BFI<}\{<c>\}{<q>} <\text{Rd}>, <\text{Rn}>, \#<\text{lsb}>, \#\text{width}
\]

*Decode for this encoding*

if \( \text{Rn} = '1111' \) then SEE "BFC";
\( d = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ \text{msbit} = \text{UInt}(\text{msb}); \ \text{lsbit} = \text{UInt}(\text{imm3:imm2}); \)
if \( d = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- **<c>** See Standard assembler syntax fields on page F2-4120.
- **<q>** See Standard assembler syntax fields on page F2-4120.
- **<Rd>** Is the general-purpose destination register, encoded in the "Rd" field.
- **<Rn>** Is the general-purpose source register, encoded in the "Rn" field.
- **<lsb>** For encoding A1: is the least significant destination bit, in the range 0 to 31, encoded in the "lsb" field.
- **<width>** Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as <lsb>+<width>-1.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    if msbit >= lsbit then
        $R[d]<msbit:lsbit> = R[n]<(<msbit-lsbit>):0>$;
        // Other bits of R[d] are unchanged
    else
        UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.21  **BIC, BICS (immediate)**

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The BIC variant of the instruction is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.
- The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See *Illegal return events from AArch32 state* on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

### A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>16 15</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 1 1 1 0</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>imm12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### BIC variant

Applies when S == 0.

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

#### BICS variant

Applies when S == 1.

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

### Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1');
\]

\[
(\text{imm32}, \text{carry}) = \text{A32ExpandImm_C}(\text{imm12}, \text{PSTATE.C});
\]

### T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>14</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>1 0</td>
<td>i</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S</td>
<td>Rn</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

**Decode for all variants of this encoding**

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1');
\]

\[
\text{imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
}\]

if \( d == 15 \) || \( n == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

**Assembler symbols**

- **<c>**
  - See *Standard assembler syntax fields on page F2-4120*.

- **<q>**
  - See *Standard assembler syntax fields on page F2-4120*.

- **<Rd>**
  - For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
    - For the BIC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993*.
    - For the BICS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

  For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- **<Rn>**
  - For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  - For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

- **<const>**
  - For encoding A1: an immediate value. See *Modified immediate constants in A32 instructions on page F2-4136* for the range of values.
  - For encoding T1: an immediate value. See *Modified immediate constants in T32 instructions on page F2-4135* for the range of values.

**Operation for all encodings**

\[
\text{if ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{result = R[n] AND NOT(imm32);}
\]

\[
\text{if d == 15 then} \quad \text{// Can only occur for A32 encoding}
\]

\[
\text{if setflags then}
\]

\[
\text{ALUExceptionReturn(result);}
\]

\[
\text{else}
\]

\[
\text{ALUWritePC(result);}
\]

\[
\text{else}
\]

\[
\text{R[d] = result;}
\]

\[
\text{if setflags then}
\]

\[
\text{PSTATE.N = result<31>;}\]

\[
\text{PSTATE.Z = IsZeroBit(result);}\]

\[
\text{PSTATE.C = carry;}
\]

\[
\text{// PSTATE.V unchanged}
\]
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.22 BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0 | !=1111 0 0 0 1 1 0 S Rn Rd imm5 stype 0 Rm |
|cond|

**BIC, rotate right with extend variant**

Applies when S == 0 && imm5 == 00000 && stype == 11.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

**BIC, shift or rotate by value variant**

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**BICS, rotate right with extend variant**

Applies when S == 1 && imm5 == 00000 && stype == 11.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

**BICS, shift or rotate by value variant**

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**Decode for all variants of this encoding**

\[ d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1'); (shift_t, shift_n) = DecodeImmShift(stype, imm5); \]
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 1 1</td>
<td>0</td>
<td>Rm</td>
<td>Rdn</td>
</tr>
</tbody>
</table>

**T1 variant**

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
BICS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

**Decode for this encoding**

d = UInt(Rdn);  n = UInt(Rdn);  m = UInt(Rm);  setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

| 15 14 13 12|11 10 9 8|7 6 5 |4 |3 0 |15 14 12|11 |8 7 6 5 |4 3 |0 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 0 1 0 0 0 1 |S | Rn | (0) | imm3 | Rd | imm2 | stype | Rm |

**BIC, rotate right with extend variant**

Applies when $S == 0 && imm3 == 000 && imm2 == 00 && stype == 11$.
BIC{<c>}{<q>}{<Rd>,}{<Rn>,}{<Rm>,} RRX

**BIC, shift or rotate by value variant**

Applies when $S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11)$.
BIC{<c>}{<q>} {<Rd>,} {<Rn>,} {<Rm>,} can be represented in T1
BIC{<c>}{<q>}{<Rd>,}{<Rn>,}{<Rm>,}{, <shift> #<amount>}<Rm>

**BICS, rotate right with extend variant**

Applies when $S == 1 && imm3 == 000 && imm2 == 00 && stype == 11$.
BICS{<c>}{<q>}{<Rd>,}{<Rn>,}{<Rm>,} RRX

**BICS, shift or rotate by value variant**

Applies when $S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11)$.
BICS.W {<Rd>,} {<Rn>,} {<Rm>,} can be represented in T1
BICS{<c>}{<q>}{<Rd>,}{<Rn>,}{<Rm>,}{, <shift> #<amount>}<Rm>

**Decode for all variants of this encoding**

d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);  setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c>  See Standard assembler syntax fields on page F2-4120.

<q>  See Standard assembler syntax fields on page F2-4120.

<Rdn>  Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd>  For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

•  For the BIC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

•  For the BICS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn>  For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm>  For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift>  Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

<table>
<thead>
<tr>
<th>Shift Type</th>
<th>Stype Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL</td>
<td>00</td>
</tr>
<tr>
<td>LSR</td>
<td>01</td>
</tr>
<tr>
<td>ASR</td>
<td>10</td>
</tr>
<tr>
<td>ROR</td>
<td>11</td>
</tr>
</tbody>
</table>

<amount>  For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  (shifted, carry) = Shift.Car(R[m], shift_t, shift_n, PSTATE.C);
  result = R[n] AND NOT(shifted);
  if d == 15 then  // Can only occur for A32 encoding
    if setflags then
      ALUExceptionReturn(result);
    else
      ALUWritePC(result);
  else
    R[d] = result;
  if setflags then
    PSTATE.N = result<31>;
    PSTATE.Z = IsZeroBit(result);
    PSTATE.C = carry;
    // PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
**F5.1.23   BIC, BICS (register-shifted register)**

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a register-shifted register value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

**A1**

| 31  | 28|27|26|25|24|23|22|21|20|19|16|15|12|11| 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| ![1111] | 0 | 0 | 0 | 1 | 1 | 0 | S | Rn | Rd | Rs | 0 | stype | 1 | Rm |

**Flag setting variant**

Applies when $S == 1$.

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

**Not flag setting variant**

Applies when $S == 0$.

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

**Decode for all variants of this encoding**

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad s = \text{UInt}(Rs);
\]

\[
\text{setflags} = (S == '1'); \quad \text{shift}_t = \text{DecodeRegShift}(stype);
\]

\[
\text{if } d == 15 \quad \text{|| } n == 15 \quad \text{|| } m == 15 \quad \text{|| } s == 15 \text{ then UNPREDICTABLE;}
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See *Standard assembler syntax fields on page F2-4120*.
- `<q>` See *Standard assembler syntax fields on page F2-4120*.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.
- `<shift>` Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
  - LSL when stype = 00
  - LSR when stype = 01
  - ASR when stype = 10
  - ROR when stype = 11
- `<Rs>` Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] AND NOT(shifted);
    R[d] = result;
if setflags then
    PSTATE.N = result<31>;
    PSTATE.Z = IsZeroBit(result);
    PSTATE.C = carry;
    // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.24   BKPT

Breakpoint causes a Breakpoint Instruction exception.
Breakpoint is always unconditional, even when inside an IT block.

A1

![A1 variant](image)

**Decode for this encoding**

\[
\text{imm16} = \text{imm12:imm4};
\]

if cond != '1110' then UNPREDICTABLE;  // BKPT must be encoded with AL condition

**CONSTRAINED UNPREDICTABLE behavior**

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes unconditionally.
- The instruction executes conditionally.

T1

![T1 variant](image)

**Decode for this encoding**

\[
\text{imm16} = \text{ZeroExtend}(\text{imm8}, 16);
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

\(<q>\)

See Standard assembler syntax fields on page F2-4120. An BKPT instruction must be unconditional.
<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value:

- Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction exception is taken to an exception level that is using AArch64.
- Is ignored otherwise.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. This value:

- Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction exception is taken to an exception level that is using AArch64.
- Is ignored otherwise.

**Operation for all encodings**

```
EncodingSpecificOperations();
AArch32.SoftwareBreakpoint(imm16);
```
F5.1.25 BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR to the return address, and changes the instruction set from A32 to T32, or from T32 to A32.

A1

| 31 28|27 26 25 24|23 | | | | | 0 |
|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 0 1 1 |

**cond**

**A1 variant**

BL{<c>}{<q>} <label>

**Decode for this encoding**

\[
\text{imm32} = \text{SignExtend}(\text{imm24}:'00', 32); \quad \text{targetInstrSet} = \text{InstrSet}\_\text{A32};
\]

A2

| 31 28|27 26 25 24|23 | | | | | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 1 0 1 H |

**cond**

**A2 variant**

BLX{<c>}{<q>} <label>

**Decode for this encoding**

\[
\text{imm32} = \text{SignExtend}(\text{imm24}:H:'0', 32); \quad \text{targetInstrSet} = \text{InstrSet}\_\text{T32};
\]

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th></th>
<th></th>
<th>0</th>
<th>15 14 13 12</th>
<th>11 10</th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>\text{S} \text{imm10}</td>
<td>1 1</td>
<td>\text{J1}</td>
<td>\text{J2} \text{imm11}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**T1 variant**

BL{<c>}{<q>} <label>

**Decode for this encoding**

\[
\text{I1} = \text{NOT(J1 EOR S)}; \quad \text{I2} = \text{NOT(J2 EOR S)}; \quad \text{imm32} = \text{SignExtend}(\text{S}:\text{I1}:\text{I2}:\text{imm10}:\text{imm11}:'0', 32);
\]

\[
\text{targetInstrSet} = \text{InstrSet}\_\text{T32};
\]

\[
\text{if InITBlock()} \&\& \!\text{LastInITBlock()} \quad \text{then UNPREDICTABLE};
\]

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th></th>
<th></th>
<th>0</th>
<th>15 14 13 12</th>
<th>11 10</th>
<th></th>
<th></th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>\text{S} \text{imm10H}</td>
<td>1 1</td>
<td>\text{J1}</td>
<td>\text{J2} \text{imm10L}</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
T2 variant

BLX{<c>}{<q>} <label>

Decode for this encoding

if H == '1' then UNDEFINED;
I1 = NOT(J1 EOR S);  I2 = NOT(J2 EOR S);  imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32);
targetInstrSet = InstrSet_A32;
if InITBlock() & LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
For encoding A1, T1 and T2: see Standard assembler syntax fields on page F2-4120.
For encoding A2: see Standard assembler syntax fields on page F2-4120. < must be AL or omitted.

quad
See Standard assembler syntax fields on page F2-4120.

<label>
For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the BL instruction to this label, then selects an encoding that sets imm32 to that offset.
Permitted offsets are multiples of 4 in the range –33554432 to 33554428.
For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from the PC value of the BLX instruction to this label, then selects an encoding with imm32 set to that offset.
Permitted offsets are even numbers in the range –33554432 to 33554430.
For encoding T1: the label of the instruction that is to be branched to.
The assembler calculates the required value of the offset from the PC value of the BL instruction to this label, then selects an encoding with imm32 set to that offset.
Permitted offsets are even numbers in the range –16777216 to 16777214.
For encoding T2: the label of the instruction that is to be branched to.
The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX instruction to this label, then selects an encoding with imm32 set to that offset.
Permitted offsets are multiples of 4 in the range –16777216 to 16777212.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  if CurrentInstrSet() == InstrSet_A32 then
    LR = PC - 4;
  else
    LR = PC<31:1> : '1';
  if targetInstrSet == InstrSet_A32 then
    targetAddress = Align(PC,4) + imm32;
  else
    targetAddress = PC + imm32;
  SelectInstrSet(targetInstrSet);
  BranchWritePC(targetAddress, BranchType_DIRCALL);
F5.1.26   BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary changes to the instruction set indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set after the branch will be A32. If the value in bit[0] is 1, the instruction set after the branch will be T32.

A1

| 31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
| !|=1111 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | Rm |

A1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

\[ m = \text{UInt}(Rm); \]
\[ \text{if } m == 15 \text{ then UNPREDICTABLE; } \]

T1

| 15 14 13 12 11 10 9 8 7 6 3 2 1 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | Rm | 0 | 0 | 0 | 0 |

T1 variant

BLX{<c>}{<q>} <Rm>

Decode for this encoding

\[ m = \text{UInt}(Rm); \]
\[ \text{if } m == 15 \text{ then UNPREDICTABLE; } \]
\[ \text{if InITBlock() } \&\& \!\text{LastInITBlock()} \text{ then UNPREDICTABLE; } \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rm>\) Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation for all encodings

\[ \text{if ConditionPassed() then } \]
\[ \quad \text{EncodingSpecificOperations(); } \]
\[ \quad \text{target} = R[m]; \]
\[ \quad \text{if CurrentInstrSet() } \text{== InstrSet_A32 then } \]
\[ \quad \text{next_instr_addr} = PC - 4; \]
\[ \quad LR = \text{next_instr_addr}; \]
\[ \quad \text{else } \]
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : '1';
BXWritePC(target, BranchType_INDCALL);
F5.1.27 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.

### A1

<table>
<thead>
<tr>
<th>31 27 26 25 24</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>I=1111</td>
<td>0 0 0 1</td>
<td>0 1 0 1</td>
<td>0 1 0 1</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>m = UInt(Rm);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### A1 variant

BX{<c>}{<q>} <Rm>

**Decode for this encoding**

m = UInt(Rm);

### T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 1 1 1 0</td>
<td>Rm</td>
<td>(0)(0)(0)</td>
<td></td>
</tr>
</tbody>
</table>

### T1 variant

BX{<c>}{<q>} <Rm>

**Decode for this encoding**

m = UInt(Rm);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

### Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

### Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rm>` For encoding A1: is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The PC can be used.
  
  For encoding T1: is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The PC can be used.

---

**Note**

If `<Rm>` is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the address passed to the BXWritePC() pseudocode function has bits<1:0> = '10'.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    BXWritePC(R[m], BranchType_INDIR);
F5.1.28  BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.

In Armv8, BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set specified by a register.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 0 0 1 0</td>
<td>(1) (1) (1) (1) (1) (1) (1) (1)</td>
<td>0 0 1 0</td>
<td>Rm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**A1 variant**

BXJ{<c>}{<q>} <Rm>

**Decode for this encoding**

\[ m = \text{UInt}(Rm); \]
\[ \text{if } m = 15 \text{ then UNPREDICTABLE;} \]

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1 0 0</td>
<td>Rm 1 0 0 1 1 1 1 0 0 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**T1 variant**

BXJ{<c>}{<q>} <Rm>

**Decode for this encoding**

\[ m = \text{UInt}(Rm); \]
\[ \text{if } m = 15 \text{ then UNPREDICTABLE;} \]
\[ \text{// Armv8-A removes UNPREDICTABLE for R13} \]
\[ \text{if InITBlock()} \&\& !\text{LastInITBlock()} \text{ then UNPREDICTABLE;} \]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>`  See Standard assembler syntax fields on page F2-4120.
- `<q>`  See Standard assembler syntax fields on page F2-4120.
- `<Rm>` Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

**Operation for all encodings**

\[ \text{if ConditionPassed()} \text{ then} \]
\[ \text{EncodingSpecificOperations();} \]
\[ \text{BXWritePC(R[m], BranchType_INDIR);} \]
F5.1.29  CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and conditionally branch forward a constant value. They do not affect the condition flags.

**T1**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1</td>
<td>0 1</td>
<td>1</td>
<td>imm5</td>
</tr>
</tbody>
</table>
```

**CBNZ variant**

Applies when \( \text{op} == 1 \).

```
CBNZ{<q>} <Rn>, <label>
```

**CBZ variant**

Applies when \( \text{op} == 0 \).

```
CBZ{<q>} <Rn>, <label>
```

**Decode for all variants of this encoding**

```
n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1'); if InITBlock() then UNPREDICTABLE;
```

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- \(<q>\)  See Standard assembler syntax fields on page F2-4120.
- \(<Rn>\)  Is the general-purpose register to be tested, encoded in the "Rn" field.
- \(<label>\)  Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in the range 0 to 126, is encoded as "i:imm5" times 2.

**Operation**

```
EncodingSpecificOperations();
if nonzero != IsZero(R[n]) then
 BranchWritePC(PC + imm32, BranchType_DIR);
```
F5.1.30 CLREX

Clear-Exclusive clears the local monitor of the executing PE.

**A1**

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1 0 1 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) 0 0 0 1 1 (1) (1) (1) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**A1 variant**

CLREX{<c>}{<q>}

*Decode for this encoding*

// No additional decoding required

**T1**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 1 1 (1) (1) (1) (1) 1 0 0 0 1 (1) (1) (1) (1) 0 0 0 1 1 (1) (1) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**T1 variant**

CLREX{<c>}{<q>}

*Decode for this encoding*

// No additional decoding required

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

• `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.
  For encoding T1: see Standard assembler syntax fields on page F2-4120.

• `<q>` See Standard assembler syntax fields on page F2-4120.

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations();
  ClearExclusiveLocal(ProcessorID());
F5.1.31   CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

A1

<table>
<thead>
<tr>
<th>31 28 25 24 23 21 20 19 18 16 15 12 11 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1</td>
</tr>
<tr>
<td>cond</td>
</tr>
</tbody>
</table>

A1 variant

\[ \text{CLZ}\{<c>\}\{<q>\} \langle R_d \rangle, \langle R_m \rangle \]

**Decode for this encoding**

\[
d = \text{UInt}(R_d); \quad m = \text{UInt}(R_m);
\]

\[
\text{if } d == 15 \text{ } || \text{ } m == 15 \text{ then UNPREDICTABLE;}
\]

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15 14 13 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 0 1 0 1 1</td>
<td>Rn</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

T1 variant

\[ \text{CLZ}\{<c>\}\{<q>\} \langle R_d \rangle, \langle R_m \rangle \]

**Decode for this encoding**

\[
d = \text{UInt}(R_d); \quad m = \text{UInt}(R_m); \quad n = \text{UInt}(R_n);
\]

\[
\text{if } m != n \text{ } || \text{ } d == 15 \text{ } || \text{ } m == 15 \text{ then UNPREDICTABLE; } \text{// Armv8-A removes UNPREDICTABLE for R13}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If \( m \neq n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The instruction executes with the additional decode: \( m = \text{UInt}(R_n) \).
- The value in the destination register is UNKNOWN.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.

**Assembler symbols**

- \(<c>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<q>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<R_d>\) Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    result = CountLeadingZeroBits(R[m]);
    R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.32  CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based on the result, and discards the result.

A1

\[
\begin{array}{cccccccccccc}
\text{cond} & \text{imm12} & \text{Rn} & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
\hline
\text{A1 variant} & & & & & & & & & & & \\
\text{CMN}\{<c>\}{<q>} <Rn>, #<const> & & & & & & & & & & & \\
\text{Decode for this encoding} & & & & & & & & & & & \\
n = \text{UInt}(Rn); \text{imm32} = \text{A32ExpandImm}(\text{imm12}); & & & & & & & & & & & \\
\hline
\text{T1} & & & & & & & & & & & \\
\text{T1 variant} & & & & & & & & & & & \\
\text{CMN}\{<c>\}{<q>} <Rn>, #<const> & & & & & & & & & & & \\
\text{Decode for this encoding} & & & & & & & & & & & \\
n = \text{UInt}(Rn); \text{imm32} = \text{T32ExpandImm}(i:imm3:imm8); \text{if } n == 15 \text{ then UNPREDICTABLE; } & & & & & & & & & & & \\
\hline
\end{array}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \text{<c>}
  See Standard assembler syntax fields on page F2-4120.
- \text{<q>}
  See Standard assembler syntax fields on page F2-4120.
- \text{<Rn>}
  For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
- \text{<const>}
  For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
  For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    (result, nzc) = AddWithCarry(R[n], imm32, '0');
    PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.33   CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

**A1**

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Rn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>imm5</td>
<td>stype</td>
<td>0</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Rotate right with extend variant**

Applies when imm5 == 00000 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

**Shift or rotate by value variant**

Applies when !(imm5 == 00000 && stype == 11).

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

**Decode for all variants of this encoding**

\[ n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]

\[(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype}, \text{imm5}); \]

**T1**

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 3 | 2 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Rm | Rn |

**T1 variant**

CMN{<c>}{<q>} <Rn>, <Rm>

**Decode for this encoding**

\[ n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]

\[(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, 0); \]

**T2**

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | Rn | 0 | 1 | imm3 | 1 | 1 | 1 | imm2 | stype | Rm |

**Rotate right with extend variant**

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

**Shift or rotate by value variant**

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).
CMN{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
CMN{<c>}{<q>} <Rn>, <Rm> {}, <shift> #<amount>}

**Decode for all variants of this encoding**

\[
n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]
\[
(shift_t, shift_n) = \text{DecodeImmShift}(stype, imm3:imm2);
\]
\[
\text{if } n = 15 || m = 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rn>\) For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  - For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.
- \(<Rm>\) For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
  - For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
- \(<shift>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
  - LSL when \( stype = 00 \)
  - LSR when \( stype = 01 \)
  - ASR when \( stype = 10 \)
  - ROR when \( stype = 11 \)
- \(<amount>\) For encoding A1: is the shift amount, in the range 1 to 31 (when \( <shift> = \text{LSL} \) or \( \text{ROR} \)) or 1 to 32 (when \( <shift> = \text{LSR} \) or \( \text{ASR} \)) encoded in the "imm5" field as \( <amount> \) modulo 32.
  - For encoding T2: is the shift amount, in the range 1 to 31 (when \( <shift> = \text{LSL} \) or \( \text{ROR} \)) or 1 to 32 (when \( <shift> = \text{LSR} \) or \( \text{ASR} \)), encoded in the "imm3:imm2" field as \( <amount> \) modulo 32.

**Operation for all encodings**

\[
\text{if ConditionPassed()} \text{ then }
\]
\[
\text{EncodingSpecificOperations();}
\]
\[
\text{shifted} = \text{Shift}(R[m], shift_t, shift_n, PSTATE.C);
\]
\[
\text{(result, nzcv)} = \text{AddWithCarry}(R[n], shifted, '0');
\]
\[
\text{PSTATE.<N,Z,C,V> = nzcv;}
\]

**Operational information**

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F5.1.34   CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the
condition flags based on the result, and discards the result.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11</th>
<th>8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 0 1 1</td>
</tr>
<tr>
<td>cond</td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

CMN{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

n = UInt(Rn);  m = UInt(Rm);  s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural
Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c>  See Standard assembler syntax fields on page F2-4120.
<q>  See Standard assembler syntax fields on page F2-4120.
<Rn>  Is the first general-purpose source register, encoded in the "Rn" field.
<Rm>  Is the second general-purpose source register, encoded in the "Rm" field.
<type>  Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:
        LSL  when stype = 00
        LSR  when stype = 01
        ASR  when stype = 10
        ROR  when stype = 11
<Rs>  Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(R[n], shifted, '0');
    PSTATE.<N,Z,C,V> = nzcv;
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.35 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on the result, and discards the result.

A1

\[
\begin{array}{cccccccccccccc}
\end{array}
\]

cond

\[
\begin{array}{cccccccccccccc}
1111 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & Rn & 0 & 0 & 0 & 0 & 0 & 0 & imm12
\end{array}
\]

A1 variant

\[
\text{CMP}\{<c>\}{<q>} <Rn>, \#<const>
\]

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ imm32} = \text{A32ExpandImm}(\text{imm12});
\]

T1

\[
\begin{array}{cccccccccccccc}
| 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 | 7 | & | & 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccccc}
0 & 0 & 1 & 0 & 1 & Rn & imm8
\end{array}
\]

T1 variant

\[
\text{CMP}\{<c>\}{<q>} <Rn>, \#<imm8>
\]

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]

T2

\[
\begin{array}{cccccccccccccccccccc}
| 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 | 7 & 6 & 5 & 4 & 3 | 0 & 15 & 14 & 12 & 11 & 10 & 9 & 8 & 7 | & | 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & i & 0 & 1 & 1 & 0 & 1 & 1 & Rn & 0 & imm3 & 1 & 1 & 1 & 1 & imm8
\end{array}
\]

T2 variant

\[
\text{CMP}\{<c>\}.W <Rn>, \#<const> // <Rd>, <const> can be represented in T1
\text{CMP}\{<c>\}{<q>} <Rn>, \#<const>
\]

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ imm32} = \text{T32ExpandImm}(i:imm3:imm8);
\text{ if } n == 15 \text{ then UNPREDICTABLE;}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\[
<e> \quad \text{See Standard assembler syntax fields on page F2-4120.}
\]
See *Standard assembler syntax fields* on page F2-4120.

For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is a general-purpose source register, encoded in the "Rn" field.

For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

For encoding A1: an immediate value. See *Modified immediate constants in A32 instructions* on page F2-4136 for the range of values.

For encoding T2: an immediate value. See *Modified immediate constants in T32 instructions* on page F2-4135 for the range of values.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
 PSTATE.<N,Z,C,V> = nzcv;
```

**Operational information**

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.36   CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags based on the result, and discards the result.

A1

31 28 26 25 24	23 21 20	19 16	14 13 12	11	7 6 5 4 3	0						
!=1111	0 0 0 1 0	1	0	Rn	0	0	0	0	imm5	stype	0	Rm

**Rotate right with extend variant**

Applies when imm5 == 00000 & stype == 11.

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

**Shift or rotate by value variant**

Applies when !(imm5 == 00000 & stype == 11).

CMP{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

**Decode for all variants of this encoding**

n = UInt(Rn);  m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

| 15 14 13 12|11 10 9 8 |7 6 5 | 3 2 0 |
|----------|-------|----|---|---|
| 0 0 0 0 | 0 0 0 | 1 | Rm |

**T1 variant**

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> both from R0-R7

**Decode for this encoding**

n = UInt(Rn);  m = UInt(Rm);
(shift_t, shift_n) = (SRTS1_LSL, 0);

T2

| 15 14 13 12|11 10 9 8 |7 6 | 3 2 0 |
|----------|-------|---|---|---|
| 0 0 0 0 | 1 | 0 | N |

**T2 variant**

CMP{<c>}{<q>} <Rn>, <Rm> // <Rn> and <Rm> not both from R0-R7

**Decode for this encoding**

n = UInt(N|Rn);  m = UInt(Rm);
(shift_t, shift_n) = (SRTS1_LSL, 0);
if n < 8 & m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If \( n < 8 \) \&\& \( m < 8 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The condition flags become UNKNOWN.

T3

```
| 1 1 1 0 1 0 1 1 1 1 0 1 | Rn | 0 | imm3 | 1 1 1 1 | imm2 | stype | Rm |
```

Rotate right with extend variant

Applies when \( \text{imm3} == 000 \) \&\& \( \text{imm2} == 00 \) \&\& \( \text{stype} == 11 \).

\( \text{CMP\{<c>\}{<q>} <Rn>, <Rm>, RRX} \)

Shift or rotate by value variant

Applies when \( \neg(\text{imm3} == 000 \) \&\& \( \text{imm2} == 00 \) \&\& \( \text{stype} == 11 \))\).

\( \text{CMP\{<c>\}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1 or T2} \)
\( \text{CMP\{<c>\}{<q>} <Rn>, <Rm>, <shift> #<amount>} \)

Decode for all variants of this encoding

\[
n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm}); \\
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype}, \text{imm3}:\text{imm2}); \\
\text{if } n == 15 \text{ || } m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \( <c> \) See Standard assembler syntax fields on page F2-4120.
- \( <q> \) See Standard assembler syntax fields on page F2-4120.
- \( <Rn> \) For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
  For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.
  For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.
- \( <Rm> \) For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
  For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm" field.
- \( <\text{shift}> \) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
  - LSL when stype = 00
LSR  when stype = 01
ASR  when stype = 10
ROR  when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings
if ConditionPassed() then
    EncodingSpecificOperations();
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
    PSTATE.<N,Z,C,V> = nzcv;

Operational information
If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.37  **CMP (register-shifted register)**

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the condition flags based on the result, and discards the result.

**A1**

|    | 31  | 28  | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | !=111 & 0 & 0 & 1 & 0 & 0 & 0 | Rn | 0 | 0 | 0 | 0 | Rs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| cond | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**A1 variant**

\[ \text{CMP}\{<c>\}{<q>} \ <Rn>, \ <Rm>, \ <\text{type}> \ <Rs}\]

**Decode for this encoding**

\[
n = \text{UInt}(Rn); m = \text{UInt}(Rm); s = \text{UInt}(Rs);
shift_t = \text{DecodeRegShift(stype)};
\]

\[
\text{if } n == 15 || m == 15 || s == 15 \text{ then UNPREDICTABLE;}
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

\[<c>\]  See Standard assembler syntax fields on page F2-4120.

\[<q>\]  See Standard assembler syntax fields on page F2-4120.

\[<\text{Rn}>\]  Is the first general-purpose source register, encoded in the "Rn" field.

\[<\text{Rm}>\]  Is the second general-purpose source register, encoded in the "Rm" field.

\[<\text{type}>\]  Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL  when stype = 00
- LSR  when stype = 01
- ASR  when stype = 10
- ROR  when stype = 11

\[<\text{Rs}>\]  Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

**Operation**

\[
\text{if } \text{ConditionPassed()} \text{ then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{shift}_n = \text{UInt}(R[s]<7:0>);
\]

\[
\text{shifted} = \text{Shift}(R[m], \text{shift}_t, \text{shift}_n, \text{PSTATE.C});
\]

\[
\text{(result, nczv)} = \text{AddWithCarry}(R[n], \text{NOT(shifted)}, '1');
\]

\[
\text{PSTATE.<N,Z,C,V> = nczv;}
\]
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.38  CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE.\{A, I, F\} interrupt mask bits and, optionally, the PSTATE.M mode field, without changing any other PSTATE bits.

CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere in this section.

The PE checks whether the value being written to PSTATE.M is legal. See Illegal changes to PSTATE.M on page G1-5739.

A1

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8 7 6 5 4	0												
1 1 1 1	0 0 1 0	0 0	0	0	0	M	0	[0](0)	(0)	(0)	(0)	(0)	(0)	A	I	F	0	mode

CPS variant

Applies when imod == 00 && M == 1.

CPS{<q>} #<mode> // Cannot be conditional

CPSID variant

Applies when imod == 11 && M == 0.

CPSID{<q>} <iflags> // Cannot be conditional

CPSID variant

Applies when imod == 11 && M == 1.

CPSID{<q>} <iflags>, #<mode> // Cannot be conditional

CPSIE variant

Applies when imod == 10 && M == 0.

CPSIE{<q>} <iflags> // Cannot be conditional

CPSIE variant

Applies when imod == 10 && M == 1.

CPSIE{<q>} <iflags>, #<mode> // Cannot be conditional

Decode for all variants of this encoding

if mode != '00000' && M == '0' then UNPREDICTABLE;
if (imod<<1> == '1' && A:I:F == '000') || (imod<<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1');
affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
if (imod == '00' && M == '0') || imod == '01' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
If \( \text{imod} == '00' \&\& \text{M} == '0' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

If \( \text{mode} != '00000' \&\& \text{M} == '0' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: changemode = TRUE.
- The instruction executes as described, and the value specified by mode is ignored. There are no additional side-effects.

If \( \text{imod}<1> == '1' \&\& \text{A:I:F} == '000' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction behaves as if \( \text{imod}<1> == '0' \).
- The instruction behaves as if \( \text{A:I:F} \) has an UNKNOWN nonzero value.

If \( \text{imod}<1> == '0' \&\& \text{A:I:F} != '000' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction behaves as if \( \text{imod}<1> == '1' \).
- The instruction behaves as if \( \text{A:I:F} == '000' \).

\textbf{T1}

\begin{verbatim}
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |
|1 0 1 1 0 1 0 0 1 1 |im|0|A|I|F|
\end{verbatim}

\textbf{CPSID variant}

Applies when \( \text{im} == 1 \).

\textbf{CPSID{<q}> <iflags>} // Not permitted in IT block

\textbf{CPSIE variant}

Applies when \( \text{im} == 0 \).

\textbf{CPSIE{<q}> <iflags>} // Not permitted in IT block

\textbf{Decode for all variants of this encoding}

if \( \text{A:I:F} == '000' \) then UNPREDICTABLE;

\begin{verbatim}
enable = (im == '0');
disable = (im == '1');
changemode = FALSE;
affectA = (A == '1');
affectI = (I == '1');
affectF = (F == '1');
if InITBlock() then UNPREDICTABLE;
\end{verbatim}
**CONSTRAINED UNPREDICTABLE behavior**

If `A:I:F == '000'`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

**T2**

```
| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 2 1 0 | 15 14 13 12 | 11 10 9 8 | 7 6 5 4 |
| 1 1 1 1 0 0 1 1 0 1 0 (1) (1) (1) 1 0 0 0 0 | imod M A I F | mode |
```

**CPS variant**

Applies when `imod == 00 && M == 1`.

*CPS{<q>} #<mode> // Not permitted in IT block*

**CPSID variant**

Applies when `imod == 11 && M == 0`.

*CPSID.W <iflags> // Not permitted in IT block*

**CPSID variant**

Applies when `imod == 11 && M == 1`.

*CPSID{<q>} <iflags>, #<mode> // Not permitted in IT block*

**CPSIE variant**

Applies when `imod == 10 && M == 0`.

*CPSIE.W <iflags> // Not permitted in IT block*

**CPSIE variant**

Applies when `imod == 10 && M == 1`.

*CPSIE{<q>} <iflags>, #<mode> // Not permitted in IT block*

**Decode for all variants of this encoding**

if `imod == '00' && M == '0'` then SEE "Hint instructions";
if `mode != '00000' && M == '0'` then UNPREDICTABLE;
if `(imod<= '1' && A:I:F == '000') || (imod<= '0' && A:I:F != '000')` then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1');
affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
if `imod == '01' || InITBlock()` then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If `imod == '01'`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

If `mode != '00000' && M == '0'`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
• The instruction executes as NOOP.
• The instruction executes with the additional decode: changemode = TRUE.
• The instruction executes as described, and the value specified by mode is ignored. There are no additional side-effects.

If \texttt{i\textasciimacronmod<1>} == '1' \&\& \texttt{A:I:F} == '000', then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOOP.
• The instruction behaves as if \texttt{i\textasciimacronmod<1>} == '0'.
• The instruction behaves as if \texttt{A:I:F} has an UNKNOWN nonzero value.

If \texttt{i\textasciimacronmod<1>} == '0' \&\& \texttt{A:I:F} != '000', then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOOP.
• The instruction behaves as if \texttt{i\textasciimacronmod<1>} == '1'.
• The instruction behaves as if \texttt{A:I:F} == '000'.

Notes for all encodings

Hint instructions: In encoding T2, if the \texttt{i\textasciimacronmod} field is 00 and the M bit is 0, a hint instruction is encoded. To determine which hint instruction, see \textit{Branches and miscellaneous control} on page F3-4192.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 \textit{Architectural Constraints on UNPREDICTABLE Behaviors}.

Assembler symbols

\texttt{<q>} \quad \textit{See Standard assembler syntax fields} on page F2-4120.

\texttt{<iflags>} \quad \textit{Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:}

\begin{itemize}
  \item \texttt{a} \quad \textit{Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError interrupt mask bit.}
  \item \texttt{i} \quad \textit{Sets the I bit in the instruction, causing the specified effect on PSTATE.I, the IRQ interrupt mask bit.}
  \item \texttt{f} \quad \textit{Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ interrupt mask bit.}
\end{itemize}

\texttt{<mode>} \quad \textit{Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.}

Operation for all encodings

\begin{verbatim}
if CurrentInstrSet() == InstrSet_A32 then
  EncodingSpecificOperations();
  if PSTATE.EL != EL0 then
    if enable then
      if affectA then PSTATE.A = '0';
      if affectI then PSTATE.I = '0';
      if affectF then PSTATE.F = '0';
    if disable then
      if affectA then PSTATE.A = '1';
      if affectI then PSTATE.I = '1';
      if affectF then PSTATE.F = '1';
    if changemode then
      // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
\end{verbatim}
AArch32.WriteModeByInstr(mode);
else
    EncodingSpecificOperations();
    if PSTATE_EL != EL0 then
        if enable then
            if affectA then PSTATE_A = '0';
            if affectI then PSTATE_I = '0';
            if affectF then PSTATE_F = '0';
        if disable then
            if affectA then PSTATE_A = '1';
            if affectI then PSTATE_I = '1';
            if affectF then PSTATE_F = '1';
        if changemode then
            // AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
            AArch32.WriteModeByInstr(mode);
F5.1.39   CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used for the CRC calculation.

In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.

--- Note ---
ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

--- A1 ---

| [31] | 28 27 26 25 24 | 23 22 21 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|------|---------------|-------------|---|----|----|----|----|----|---|---|---|---|---|---|---|---|---|
| cond | !=1111        | 0 0 0 1 0   | sz | 0  | Rd | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Rm |

**CRC32B variant**

Applies when `sz` == 00.

CRC32B{<op>} <Rd>, <Rn>, <Rm>

**CRC32H variant**

Applies when `sz` == 01.

CRC32H{<op>} <Rd>, <Rn>, <Rm>

**CRC32W variant**

Applies when `sz` == 10.

CRC32W{<op>} <Rd>, <Rn>, <Rm>

**Decode for all variants of this encoding**

if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;
if cond != '1110' then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If `size` == 64, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: `size = 32;`

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
The instruction executes unconditionally.

The instruction executes conditionally.

**T1**

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 1 0 1 0 0</td>
<td>Rn</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>1 0</td>
</tr>
</tbody>
</table>

**CRC32B variant**

Applies when sz == 00.

CRC32B{<q>} <Rd>, <Rn>, <Rm>

**CRC32H variant**

Applies when sz == 01.

CRC32H{<q>} <Rd>, <Rn>, <Rm>

**CRC32W variant**

Applies when sz == 10.

CRC32W{<q>} <Rd>, <Rn>, <Rm>

### Decode for all variants of this encoding

```plaintext
if InITBlock() then UNPREDICTABLE;
if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If size == 64, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: size = 32.

### Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<q>` See Standard assembler syntax fields on page F2-4120. An CRC32 instruction must be unconditional.
- `<Rd>` Is the general-purpose accumulator output register, encoded in the "Rd" field.
- `<Rn>` Is the general-purpose accumulator input register, encoded in the "Rn" field.
- `<Rm>` Is the general-purpose data source register, encoded in the "Rm" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();

    acc = R[n];             // accumulator
    val = R[m]<size-1:0>;   // input value
    poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
    tempacc = BitReverse(acc):Zeros(size);
    tempval = BitReverse(val):Zeros(32);
    R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.40  

**CRC32C**

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is used for the CRC calculation.

In Armv8-A, this is an **OPTIONAL** instruction, and in Armv8.1 it is mandatory for all implementations to implement it.

---

**Note**

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

---

**A1**

```
| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | |
|-----| |
| ! ==1111| 0 | 0 | 0 | 0 | 0 | sz | 0 | Rn | Rd | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C |

cond
```

CRC32CB variant

Applies when sz == 00.

CRC32CB{<op>} <Rd>, <Rn>, <Rm>

CRC32CH variant

Applies when sz == 01.

CRC32CH{<op>} <Rd>, <Rn>, <Rm>

CRC32CW variant

Applies when sz == 10.

CRC32CW{<op>} <Rd>, <Rn>, <Rm>

**Decode for all variants of this encoding**

If ! HaveCRCExt() then UNDEFINED;

\[
\begin{align*}
    d & = \text{UInt}(Rd); \\
    n & = \text{UInt}(Rn); \\
    m & = \text{UInt}(Rm); \\
    size & = 8 \ll \text{UInt}(sz); \\
    \text{crc32c} & = (C = '1'); \\
    \text{if} \ d == 15 | | n == 15 | | m == 15 \text{ then UNPREDICTABLE; } \\
    \text{if} \ size == 64 \text{ then UNPREDICTABLE; } \\
    \text{if} \ cond != '1110' \text{ then UNPREDICTABLE; }
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If size == 64, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

**T1**

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>Rd</td>
<td>1 0</td>
<td>sz</td>
</tr>
</tbody>
</table>
```

**CRC32CB variant**
Applies when $sz == 00$.
CRC32CB{$q}$ <Rd>, <Rn>, <Rm>

**CRC32CH variant**
Applies when $sz == 01$.
CRC32CH{$q}$ <Rd>, <Rn>, <Rm>

**CRC32CW variant**
Applies when $sz == 10$.
CRC32CW{$q}$ <Rd>, <Rn>, <Rm>

**Decode for all variants of this encoding**
```plaintext
if InITBlock() then UNPREDICTABLE;
if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**
If $size == 64$, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: $size = 32$.

**Notes for all encodings**
For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**
<q>
See Standard assembler syntax fields on page F2-4120. An CRC32C instruction must be unconditional.

<Rd>
Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn>
Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm>
Is the general-purpose data source register, encoded in the "Rm" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();

    acc = R[n];             // accumulator
    val = R[m]<size-1:0>;   // input value
    poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
    tempacc = BitReverse(acc):Zeros(size);
    tempval = BitReverse(val):Zeros(32);
    // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
    R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.41 CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value prediction.

No instruction other than branch instructions and instructions that write to the PC appearing in program order after the CSDB can be speculatively executed using the results of any:

- Data value predictions of any instructions.
- PSTATE.\{N,Z,C,V\} predictions of any instructions other than conditional branch instructions and conditional instructions that write to the PC appearing in program order before the CSDB that have not been architecturally resolved.

--- Note ---

For purposes of the definition of CSDB, PSTATE.\{N,Z,C,V\} is not considered a data value. This definition permits:

- Control flow speculation before and after the CSDB.
- Speculative execution of conditional data processing instructions after the CSDB, unless they use the results of data value or PSTATE.\{N,Z,C,V\} predictions of instructions appearing in program order before the CSDB that have not been architecturally resolved.

A1

<table>
<thead>
<tr>
<th>31 28 25 24 23 22 21 20 19 18 16 15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!='1111'</td>
<td>0 0 1 1 0 0 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>cond</td>
<td>0 0 0 1 0 1 0 1 0</td>
</tr>
</tbody>
</table>

A1 variant

CSDB\{<c>\}{<q>}

Decode for this encoding

if cond != '1110' then UNPREDICTABLE;     // CSDB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes unconditionally.
- The instruction executes conditionally.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

T1 variant

CSDB\{<c>\}.W
Decode for this encoding

if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

See Standard assembler syntax fields on page F2-4120.

<q>

See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

ConsumptionOfSpeculativeDataBarrier();
F5.1.42 DBG

In Armv8, DBG executes as a NOP. Arm deprecates any use of the DBG instruction.

A1

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

A1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

// DBG executes as a NOP. The 'option' field is ignored

T1

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | | | | |
|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
```

T1 variant

DBG{<c>}{<q>} #<option>

Decode for this encoding

// DBG executes as a NOP. The 'option' field is ignored

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<option>` Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
F5.1.43  DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from EL0 or to a specific mode at the current Exception Level.

DCPS1 is UNDEFINED if any of:

- The PE is in Non-debug state.
- EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:
  - EL2 is using AArch32 and HCR.TGE is set to 1.
  - EL2 is using AArch64 and HCR_EL2.TGE is set to 1.

When the PE executes DCPS1 at EL0, EL1 or EL3:

- If EL3 or EL1 is using AArch32, the PE enters SVC mode and LR_svc, SPSR_svc, DLR, and DSPSR become UNKNOWN. If DCPS1 is executed in Monitor mode, SCR.NS is cleared to 0.
- If EL1 is using AArch64, the PE enters EL1 using AArch64, selects SP_EL1, and ELR_EL1, ESR_EL1, SPSR_EL1, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7042.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 1 0 0 0</td>
<td>1 1 1 1 1 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

DCPS1

Decode for this encoding

// No additional decoding required.

Operation

if !Halted() then UNDEFINED;

if EL2Enabled() && PSTATE_EL == EL0 then
  tge = if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
  if tge == '1' then UNDEFINED;
  if PSTATE_EL != EL0 || ELUsingAArch32(EL1) then
    if PSTATE_M == M32_Monitor then SCR.NS = '0';
    if PSTATE_EL != EL2 then
      AArch32.WriteMode(M32_Svc);
      PSTATE.E = SCCTRL.EE;
      if HavePANExt() && SCCTRL.SPAN == '0' then PSTATE.PAN = '1';
      LR_svc = bits(32) UNKNOWN;
      SPSR_svc = bits(32) UNKNOWN;
    else
      PSTATE.E = HSCTRL.EE;
      ELR_hyp = bits(32) UNKNOWN;
      HSR = bits(32) UNKNOWN;
      SPSR_hyp = bits(32) UNKNOWN;
    DLR = bits(32) UNKNOWN;

DSPSR = bits(32) UNKNOWN;
else                                        // Targeting EL1 using AArch64
    AArch64.MaybeZeroRegisterUppers();
    MaybeZeroSVEUppers(EL1);
    PSTATE.mRW = '0';
    PSTATE.SP = '1';
    PSTATE.EL = EL1;
    if HavePANExt() && SCTLR_EL1.SPAN == '0' then PSTATE.PAN = '1';
    if HaveUAOExt() then PSTATE.UAO = '0';
    ELR_EL1 = bits(64) UNKNOWN;
    ESR_EL1 = bits(32) UNKNOWN;
    SPSR_EL1 = bits(32) UNKNOWN;
    DLR_EL0 = bits(64) UNKNOWN;
    DSPSR_EL0 = bits(32) UNKNOWN;

    // SCTLR_EL1.IESB might be ignored in Debug state.
    if HaveIESB() && SCTLR_EL1.IESB == '1' && !ConstrainUnpredictableBool() then
        SynchronizeErrors();

    UpdateEDSCRFields();                // Update EDSCR PE state flags
F5.1.44   DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level. DCPS2 is UNDEFINED if any of:

- The PE is in Non-debug state.
- EL2 is not implemented.
- The PE is in Secure state and any of:
  - Secure EL2 is not implemented.
  - Secure EL2 is implemented and Secure EL2 is disabled.

When the PE executes DCPS2:

- If EL2 is using AArch32, the PE enters Hyp mode and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR become UNKNOWN.
- If EL2 is using AArch64, the PE enters EL2 using AArch64, selects SP_EL2, and ELR_EL2, ESR_EL2, SPSR_EL2, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7042.

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0|

T1 variant

DCPS2

Decode for this encoding

if !HaveEL(EL2) then UNDEFINED;

Operation

if !Halted() || IsSecure() then UNDEFINED;

if ELUsingAArch32(EL2) then
  AArch32.WriteMode(M32_Hyp);
  PSTATE.E = HSCTLR.EE;
  ELR_hyp = bits(32) UNKNOWN;
  HSR = bits(32) UNKNOWN;
  SPSR_hyp = bits(32) UNKNOWN;
  DLR = bits(32) UNKNOWN;
  DSPSR = bits(32) UNKNOWN;
else                                        // Targeting EL2 using AArch64
  AArch64.MaybeZeroRegisterUppers();
  MaybeZeroSVEUppers(EL2);
  PSTATE.nRW = '0';
  PSTATE.SP = '1';
  if HavePANExt() && SCTLR_EL2.SPAN == '0' && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' then
    PSTATE.PAN = '1';
  if HaveUAOExt() then PSTATE.UAO = '0';
  ELR_EL2 = bits(64) UNKNOWN;
ESR_EL2 = bits(32) UNKNOWN;
SPSR_EL2 = bits(32) UNKNOWN;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;

// SCTLR_EL2.IESB might be ignored in Debug state.
if HaveIESB() && SCTLR_EL2.IESB == '1' && !ConstrainUnpredictableBool() then
    SynchronizeErrors();

UpdateEDSCRFields();  // Update EDSCR PE state flags
F5.1.45   DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception Level or to a specific mode at the current Exception Level.

DCPS3 is UNDEFINED if any of:

- The PE is in Non-debug state.
- EL3 is not implemented.
- EDSCR.SDD is set to 1.

When the PE executes DCPS3:

- If EL3 is using AArch32, the PE enters Monitor mode and LR_mon, SPSR_mon, DLR and DSPSR become UNKNOWN. If DCPS3 is executed in Monitor mode, SCR.NS is cleared to 0.
- If EL3 is using AArch64, the PE enters EL3 using AArch64, selects SP_EL3, and ELR_EL3, ESR_EL3, SPSR_EL3, DLR_EL0 and DSPSR_EL0 become UNKNOWN.

For more information on the operation of this instruction, see DCPS<n> on page H2-7042.

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0 |
|1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 |1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 |

T1 variant

DCPS3

Decode for this encoding

if !HaveEL(EL3) then UNDEFINED;

Operation

if !Halted() || EDSCR.SDD == '1' then UNDEFINED;

if ELUsingAArch32(EL3) then
  from_secure = IsSecure();
  if PSTATE.M == M32_Monitor then SCR.NS = '0';
  AArch32.WriteMode(M32_Monitor);
  if HavePANExt() then
    if !from_secure then
      PSTATE.PAN = '0';
    elsif SCTLR.SPAN == '0' then
      PSTATE.PAN = '1';
      PSTATE.E = SCTLR.EE;
      LR_mon = bits(32) UNKNOWN;
      SPSR_mon = bits(32) UNKNOWN;
      DLR = bits(32) UNKNOWN;
      DSPSR = bits(32) UNKNOWN;
    else  // Targeting EL3 using AArch64
      AArch64.MaybeZeroRegisterUppers();
      MaybeZeroSVEUppers(EL3);
      PSTATE.nRW = '0';
      PSTATE.SP = '1';
      PSTATE.EL = EL3;
      if HaveUAOExt() then PSTATE.UAO = '0';
else
ELR_EL3 = bits(64) UNKNOWN;
ESR_EL3 = bits(32) UNKNOWN;
SPSR_EL3 = bits(32) UNKNOWN;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;

sync_errors = HaveIESB() && SCTLR_EL3.IESB == '1';
if HaveDoubleFaultExt() && SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' then
  sync_errors = TRUE;
// SCTLR_EL3.IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool() then
  sync_errors = FALSE;
if sync_errors then SynchronizeErrors();

UpdateEDSCRFields();               // Update ESCR PE state flags
F5.1.46   DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data Memory Barrier (DMB) on page E2-4032.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 0 0 1 1 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 0 1 1 1 0 1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 variant

DMB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<*> For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<*> See Standard assembler syntax fields on page F2-4120.

<*> Specifies an optional limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Can be omitted. This option is referred to as the full system barrier. Encoded as option = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both before and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b1101.
ISH  Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB) on page E2-4032. All other encodings of option are reserved. All unsupported and reserved options must execute as a full system DMB operation, but software must not rely on this behavior.

---

**Note**

The instruction supports the following alternative <option> values, but Arm recommends that software does not use these alternative values:

- SH as an alias for ISH.
- SHST as an alias for ISHST.
- UN as an alias for NSH.
- UNST as an alias for NSHST.

---

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
 when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if HCR.BSU == '11' then
 domain = MBReqDomain_FullSystem;
 elif HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
```

---

ARM DDI 0487F.c  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. F5-4393
ID072120  Non-Confidential
domain = MBReqDomain_OuterShareable;
if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
domain = MBReqDomain_InnerShareable;

DataMemoryBarrier(domain, types);
F5.1.47   DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data Synchronization Barrier (DSB) on page E2-4032.

A1

\[
\begin{array}{ccccccccccccccccccccccccccc}
\end{array}
\]

1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

\[\text{option} \neq 0 \times 00\]

A1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

T1

\[
\begin{array}{ccccccccccccccccccccccccccc}
|15&14&13&12&11&10&9&8&7&6&5&4&3&2&1&0&15&14&13&12&11&10&9&8&7&6&5&4&3&0|
\end{array}
\]

1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

\[\text{option} \neq 0 \times 00\]

T1 variant

DSB{<c>}{<q>} {<option>}

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.
  For encoding T1: see Standard assembler syntax fields on page F2-4120.

- `<q>` See Standard assembler syntax fields on page F2-4120.

- `<option>` Specifies an optional limitation on the barrier operation. Values are:
  - SY Full system is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Can be omitted. This option is referred to as the full system barrier. Encoded as option = 0b1111.
  - ST Full system is the required shareability domain, writes are the required access type, both before and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.
  - LD Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b1101.
ISH  Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b101.

NSH Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Synchronization Barrier (DSB) on page E2-4032. All other encodings of option are reserved, other than the values 0b0000 and 0b0100. All unsupported and reserved options must execute as a full system DSB operation, but software must not rely on this behavior.

--- Note ---

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

The instruction supports the following alternative option values, but Arm recommends that software does not use these alternative values:

- SH as an alias for ISH.
- SHST as an alias for ISHST.
- UN as an alias for NSH.
- UNST as an alias for NSHST.

---

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations();
 case option of
 when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
 when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
 when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
 when '0100' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
 when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
 when '0111' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1000' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
 when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
 when '1010' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
 when '1011' domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 when '1100' domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 otherwise
 if option == '0000' then SEE "SSBB";
 elsif option == '0100' then SEE "PSSBB";
 else domain = MBReqDomain_FullSystem; types = MBReqTypes_All;
 end case
```

---
if PSTATE_EL IN {EL0, EL1} && EL2Enabled() then
  if HCR.BSU == '11' then
    domain = MBReqDomain_FullSystem;
  if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then
    domain = MBReqDomain_OuterShareable;
  if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
    domain = MBReqDomain_InnerShareable;
  DataSynchronizationBarrier(domain, types);
F5.1.48 EOR, EORS (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the result.

The field descriptions for \( <Rd> \) identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
  - The PE branches to the address written to the PC, and restores PSTATE from SPSR_{current_mode}.
  - The PE checks SPSR_{current_mode} for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  - The instruction is UNDEFINED in Hyp mode.
  - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

\[
\begin{array}{cccccccccccccc}
\hline
\text{cond} & & & & & & & & & & & & & & & & & & & & & \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & S & Rn & Rd & & imm12 & & & & & & & & & \\
\end{array}
\]

**EOR variant**

Applies when \( S == 0 \).

\[ \text{EOR} \{<c>\}{<q>} \{<Rd>,} <Rn>, #<const> \]

**EORS variant**

Applies when \( S == 1 \).

\[ \text{EORS} \{<c>\}{<q>} \{<Rd>,} <Rn>, #<const> \]

**Decode for all variants of this encoding**

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1'); \\
(\text{imm32}, \text{carry}) = \text{A32ExpandImm_C}(\text{imm12}, \text{PSTATE}.C);
\]

T1

\[
\begin{array}{cccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 14 & 12 & 11 & 8 & 7 & | & 0 & | \\
\hline
1 & 1 & 1 & 1 & 0 & i & 0 & 0 & 0 & 0 & S & Rn & 0 & imm3 & Rd & imm8 & & & & & & & & & \\
\end{array}
\]

**EOR variant**

Applies when \( S == 0 \).

\[ \text{EOR} \{<c>\}{<q>} \{<Rd>,} <Rn>, #<const> \]

**EORS variant**

Applies when \( S == 1 \) \&\& \( Rd != 1111 \).

\[ \text{EORS} \{<c>\}{<q>} \{<Rd>,} <Rn>, #<const> \]

Applies when \( S == 1 \) \&\& \( Rd != 1111 \).
EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

**Decode for all variants of this encoding**

if Rd == '1111' & S == '1' then SEE "TEQ (immediate)"

\[d = \text{UInt}(Rd); \text{n} = \text{UInt}(Rn); \text{setflags} = (S == '1');\]
\[(\text{imm32}, \text{carry}) = \text{T32ExpandImm}_C(i:imm3:imm8, \text{PSTATE}.C);\]

if (d == 15 & !setflags) || n == 15 then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
  - For the EOR variant, the instruction is a branch to the address calculated by the operation.
  - This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
  - For the EORS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

  For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- `<Rn>` For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

  For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

- `<const>` For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

  For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

**Operation for all encodings**

if ConditionPassed() then

\[\text{EncodingSpecificOperations();}\]
\[\text{result} = \text{R}[n] \text{ EOR imm32};\]

if d == 15 then  // Can only occur for A32 encoding

  if setflags then
    \[\text{ALUExceptionReturn(result);}\]
  else
    \[\text{ALUWritePC(result);}\]

else

\[\text{R}[d] = \text{result};\]

if setflags then

  \[\text{PSTATE}.N = \text{result}<31>;}\]
  \[\text{PSTATE}.Z = \text{IsZeroBit(result);}\]
  \[\text{PSTATE}.C = \text{carry};\]

  // PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.49  EOR, EORS (register)

Bitwise Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
  — The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
  — The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
  — The instruction is UNDEFINED in Hyp mode.
  — The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| =1111 | 0 | 0 | 0 | 0 | 0 | 1 | S | Rn | Rd | imm5 | stype | 0 | Rm |

**EOR, rotate right with extend variant**

Applies when S == 0 && imm5 == 00000 && stype == 11.

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

**EOR, shift or rotate by value variant**

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**EORS, rotate right with extend variant**

Applies when S == 1 && imm5 == 00000 && stype == 11.

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

**EORS, shift or rotate by value variant**

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

**Decode for all variants of this encoding**

\[ d = UInt(Rd); \ n = UInt(Rn); \ m = UInt(Rm); \ setflags = (S == '1'); \shift_t, \shift_n\] = DecodeImmShift(stype, imm5);
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>0 0 1</td>
<td>Rm</td>
</tr>
</tbody>
</table>

T1 variant

EOR<>{<q>} {<Rdn>,} <Rdn>, <Rm> // Inside IT block
EORS{<q>} {<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn);  n = UInt(Rdn);  m = UInt(Rm);  setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 0</th>
<th>15 14 12</th>
<th>11 8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0</td>
<td>0 0</td>
<td>S</td>
<td>Rn</td>
<td>0</td>
<td>imm3</td>
</tr>
</tbody>
</table>

EOR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11.
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111.
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rd == '1111' && S == '1' then SEE "TEQ (register)";
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);  setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rdn>
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd>
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
- For the EOR variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the EORS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn>
For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift>
Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount>
For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:
- Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though EORS <Rd>, <Rn> had been written.
- Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
  result = R[n] EOR shifted;
  if d == 15 then          // Can only occur for A32 encoding
    if setflags then
      ALUExceptionReturn(result);
    else
      ALUWritePC(result);
  else
    // Handle other encodings here...
else
  \texttt{R[d] = result;}
  \texttt{if setflags then}
    \texttt{PSTATE.N = result<31>};
    \texttt{PSTATE.Z = IsZeroBit(result);}
    \texttt{PSTATE.C = carry;}
    // PSTATE.V unchanged

\textbf{Operational information}

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F5.1.50 EOR, EORS (register-shifted register)

Bitwise Exclusive OR (register-shifted register) performs a bitwise Exclusive OR of a register value and a register-shifted register value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>Rs</td>
<td>0</td>
<td>stype</td>
<td>1</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```  

Flag setting variant

Applies when \( S = 1 \).

\( \text{EORS} \{<c>\} \{<q>\} \{<Rd>,\} <Rn>, <Rm>, <\text{shift}> <\text{Rs}> \)

Not flag setting variant

Applies when \( S = 0 \).

\( \text{EOR} \{<c>\} \{<q>\} \{<Rd>,\} <Rn>, <Rm>, <\text{shift}> <\text{Rs}> \)

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad s = \text{UInt}(Rs);
setflags = (S == \'1\'); \quad \text{shift} = \text{DecodeRegShift}(	ext{stype});
\text{if } d == 15 || n == 15 || m == 15 || s == 15 \text{ then UNPREDICTABLE;}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
\(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.
\(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.
\(<\text{shift}>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when \( \text{stype} = 00 \)
- LSR when \( \text{stype} = 01 \)
- ASR when \( \text{stype} = 10 \)
- ROR when \( \text{stype} = 11 \)
\(<\text{Rs}>\) Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] EOR shifted;
    R[d] = result;
    if setflags then
        PSTATE.N = result<31>;
        PSTATE.Z = IsZeroBit(result);
        PSTATE.C = carry;
        // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F5.1.51   ERET

Exception Return.

The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from SPSR_<current_mode>.

The register holding the preferred return address is:

- ELR_hyp, when executing in Hyp mode.
- LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.

Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.

In Debug state, the T1 encoding of ERET executes the DRPS operation.

A1

```
|31 28 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 7 6 5 4 |3 2 1 0 |
|-1111 cond 0 0 0 1 0 1 1 0 |0 0 0 0 0 0 0 0 |
```

A1 variant

ERET{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```
|15 14 13 12|11 10 9 8 7 6 5 4 |3 2 1 0 |
|1 1 1 1 0 0 1 1 1 |0 1 1 1 0 1 0 0 |
```

T1 variant

ERET{<c>}{<q>}

Decode for this encoding

if InITBlock() & !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations();
if !Halted() then
  if PSTATE.M IN {M32_User, M32_System} then
    UNPREDICTABLE;                        // UNDEFINED or NOP
  else
    new_pc_value = if PSTATE.EL == EL2 then ELR_hyp else R[14];
    AArch32.ExceptionReturn(new_pc_value, SPSR[]);
  else                                          // Perform DRPS operation in Debug state
  if PSTATE.M == M32_User then
    UNDEFINED;
  elsif PSTATE.M == M32_System then
    UNPREDICTABLE;                        // UNDEFINED or NOP
  else
    SynchronizeContext();
    SetPSTATEFromPSR(SPSR[]);
    // PSTATE.{N,Z,C,V,GE,SS,A,I,F} are not observable and ignored in Debug state, so
    // behave as if UNKNOWN.
    PSTATE.<N,Z,C,V,GE,SS,A,I,F> = bits(13) UNKNOWN;
    // In AArch32 Debug state, all instructions are T32 and unconditional.
    PSTATE.IT = '00000000';  PSTATE.T = '1';        // PSTATE.J is RES0
    DLR = bits(32) UNKNOWN;  DSPSR = bits(32) UNKNOWN;
    UpdateEDSCRFields();                  // Update EDSCR PE state flags

CONSTRANGED UNPREDICTABLE behavior

If PSTATE.M IN (M32_User, M32_System), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
F5.1.52 ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error Synchronization Barrier in the ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

A1

ARMv8.2


A1 variant

ESB{<c>}{<q>}

Decode for this encoding

if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONSTRANGED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

ARMv8.2


T1 variant

ESB{<c>}.W

Decode for this encoding

if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if InITBlock() then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes unconditionally.
- The instruction executes conditionally.

**Assembler symbols**

<\> See *Standard assembler syntax fields* on page F2-4120.

<\p> See *Standard assembler syntax fields* on page F2-4120.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations();
 SynchronizeErrors();
 AArch32.ESB0peration();
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch32.vESB0peration();
 TakeUnmaskedSErrorInterrupts();
```
F5.1.53   HLT

Halting breakpoint causes a software breakpoint to occur.
Halting breakpoint is always unconditional, even inside an IT block.

A1

\[
\begin{array}{cccccccccccc}
| & | & & & & & 8 & 7 & 6 & 5 & 4 & 3 & 0 | \\
\hline
| & | & & & & !=1111 & 0 & 0 & 1 & 0 & 0 & 0 | \\
\end{array}
\]

\text{A1 variant}

HLT\{<q>\} \{#\}<imm>

\text{Decode for this encoding}

\begin{align*}
\text{if } & \text{EDSCR.HDE == '0' || !HaltingAllowed()} \text{ then UNDEFINED; } \\
\text{if } & \text{cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition}
\end{align*}

\text{CONSTRAINED UNPREDICTABLE behavior}

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes unconditionally.
- The instruction executes conditionally.

T1

\[
\begin{array}{cccccccccccc}
| & | & | & | & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 | 7 & 6 & 5 | 0 | \\
\hline
\end{array}
\]

\text{T1 variant}

HLT\{<q>\} \{#\}<imm>

\text{Decode for this encoding}

\begin{align*}
\text{if } & \text{EDSCR.HDE == '0' || !HaltingAllowed()} \text{ then UNDEFINED; }
\end{align*}

\text{Notes for all encodings}

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

\text{Assembler symbols}

\text{<q>}

See Standard assembler syntax fields on page F2-4120. An HLT instruction must be unconditional.

\text{<imm>}

For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value is for assembly and disassembly only. It is ignored by the PE, but can be used by a debugger to store more information about the halting breakpoint.
For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field. This value is for assembly and disassembly only. It is ignored by the PE, but can be used by a debugger to store more information about the halting breakpoint.

**Operation for all encodings**

```
EncodingSpecificOperations();
Halt(DebugHalt_HaltInstruction);
```
F5.1.54   HVC

Hypervisor Call causes a Hypervisor Call exception. For more information see Hypervisor Call (HVC) exception on page G1-5784. Non-secure software executing at EL1 can use this instruction to call the hypervisor to request a service.

The HVC instruction is:

- UNDEFINED in Secure state, and in User mode in Non-secure state.
- When SCR.HCE is set to 0, UNDEFINED in Non-secure EL1 modes and CONSTRAINED UNPREDICTABLE in Hyp mode.

On executing an HVC instruction, the HSR reports the exception as a Hypervisor Call exception, using the EC value 0x12, and captures the value of the immediate argument, see Use of the HSR on page G5-6078.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!='1111'</td>
<td>0 0 0 1 0 1 0 0</td>
<td>imm12</td>
<td>0 1 1 1</td>
<td>imm4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

HVC{<q>} {#}<imm16>

Decode for this encoding

if cond != '1110' then UNPREDICTABLE;
imm16 = imm12:imm4;

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes unconditionally.
- The instruction executes conditionally.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 1 1</td>
<td>0</td>
<td>imm4</td>
<td>1 0 0 0</td>
</tr>
</tbody>
</table>

T1 variant

HVC{<q>} {#}<imm16>

Decode for this encoding

imm16 = imm4:imm12;
if InITBlock() then UNPREDICTABLE;
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120. An HVC instruction must be unconditional.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value is for assembly and disassembly only. It is reported in the HSR but otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine the required service.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:imm12" field. This value is for assembly and disassembly only. It is reported in the HSR but otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine the required service.

Operation for all encodings

EncodingSpecificOperations();
if !HaveEL(EL2) || PSTATE.EL == EL0 || (IsSecure() && !IsSecureEL2Enabled()) then
  UNDEFINED;

if HaveEL(EL3) then
  if ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
    UNPREDICTABLE;
  else
    hvc_enable = SCR_GEN[].HCE;
  else
    hvc_enable = if ELUsingAArch32(EL2) then NOT(HCR.HCD) else NOT(HCR_EL2.HCD);

if hvc_enable == '0' then
  UNDEFINED;
else
  AArch32.CallHypervisor(imm16);

CONSTRAINED UNPREDICTABLE behavior

If ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
F5.1.55   ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more information, see Instruction Synchronization Barrier (ISB) on page E2-4032.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>0 1 0 1 1 1 1</td>
<td>1 0</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

\textit{A1 variant}

ISB{c}{q} {option}

\textit{Decode for this encoding}

// No additional decoding required

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>0 1 1 0 1 1</td>
<td>1 0</td>
<td>1</td>
<td>1 1</td>
<td>1 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\textit{T1 variant}

ISB{c}{q} {option}

\textit{Decode for this encoding}

// No additional decoding required

\textbf{Notes for all encodings}

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

\textbf{Assembler symbols}

{c} For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

{q} See Standard assembler syntax fields on page F2-4120.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system barrier operations, but must not be relied upon by software.

\textbf{Operation for all encodings}

\begin{verbatim}
if ConditionPassed() then
    EncodingSpecificOperations();
    InstructionSynchronizationBarrier();
\end{verbatim}
F5.1.56   IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the IT block are the same as, or the inverse of, the condition the IT instruction specifies for the first instruction in the block.

The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can change the condition flags.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with the AL condition can change the behavior without conditional execution.

The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR restores PSTATE.IT to a state consistent with the conditions specified by the IT instruction. Any other exception return to an instruction in an IT block is UNPREDICTABLE. Any branch to a target instruction in an IT block is not permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target instruction and any subsequent instruction in the IT block.

Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD controls that can disable those uses of IT, making them UNDEFINED.

For more information see Conditional execution on page F2-4121 and Conditional instructions on page F1-4077. The first of these sections includes more information about the ITD controls.

T1

15 14 13 12	11 10 9 8	7 4 3 0	
1 0 1 1 1 1 1 1	firstcond	l=0000	mask

T1 variant

IT{<x>{<y>{<z>}}}{<q>}  <cond>

Decode for this encoding

if mask == '0000' then SEE "Related encodings";
if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The '1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE state machine is progressed in the same way as for any other cond_base value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Miscellaneous 16-bit instructions on page F3-4155.
Assembler symbols

<-> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000. If present it is encoded in the "mask[3]" field:
    T    firstcond[0]
    E    NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <-> is present, the "mask[2:0]" field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
    T    firstcond[0]
    E    NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]" field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]" field:
    T    firstcond[0]
    E    NOT firstcond[0]

<q> See Standard assembler syntax fields on page F2-4120.

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See Table F2-1 on page F2-4121 for the range of conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT block. When assembling to A32 code, assemblers check IT instruction syntax for validity but do not generate assembled instructions for them. See Conditional instructions on page F1-4077.

Operation

EncodingSpecificOperations();
AArch32.CheckITEnabled(mask);
PSTATE.IT<7:0> = firstcond:mask;
ShouldAdvanceIT = FALSE;
F5.1.57   LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

31	28	27	26	25	24	23	22	21	20	19	16	15	12	11	10	9	8	7	6	5	4	3	2	1	0	
!=1111	0	0	0	1	1	0	0	1	Rn		1	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1

cond

A1 variant

LDA{<c>}{<q>}{<Rt>}, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1  | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | Rn | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

T1 variant

LDA{<c>}{<q>}{<Rt>}, [<Rn>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    R[t] = MemO[address, 4];
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 |12 11 10 9 |8 |7 6 5 4 |3 2 1 0 |
| !=1111 |0 0 0 1 |1 1 0 |1 |Rn |Rt |1 |1 |0 0 |1 0 |0 1 0 |1 |1 |1 |1 |(1)(1)(1)(1) |

A1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
t = \text{UInt}(Rt); \ n = \text{UInt}(Rn);
if \ t == 15 \ || \ n == 15 \ then \ \text{UNPREDICTABLE};
\]

T1

| 15 | 14 | 13 | 12 |11 10 9 |8 |7 6 5 4 |3 |0 15 |12 |11 10 9 |8 |7 6 5 4 |3 2 1 0 |
|1 |1 |1 |0 |1 0 0 |1 1 |0 1 |Rn |Rt |1 |1 |1 |1 |1 |0 0 |1 |(1)(1)(1)(1) |

T1 variant

LDAB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
t = \text{UInt}(Rt); \ n = \text{UInt}(Rn);
if \ t == 15 \ || \ n == 15 \ then \ \text{UNPREDICTABLE};
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<\text{Rt}>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
\(<\text{Rn}>\) Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

\[
\text{if} \ \text{ConditionPassed()} \ \text{then}
\quad \text{EncodingSpecificOperations();}
\quad \text{address} = R[n];
\quad R[t] = \text{ZeroExtend}(\text{Mem0}[\text{address}, 1], 32);
\]
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.59   LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

\[
\begin{array}{ccccccccccccccccccccccc}
\end{array}
\]

- \( \text{cond} \) = 1111
- \( Rn \)
- \( Rt \)

\[
\begin{array}{ccccccccccccccccccccccc}
| 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 | & \text{cond} & 111010001101 & \text{Rn} & \text{Rt} & 1(1)(1)(1)(1)(1)
\end{array}
\]

A1 variant

LDAEX\{<c>\}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
\begin{align*}
\text{t} &= \text{UInt}(\text{Rt}); \\
\text{n} &= \text{UInt}(\text{Rn}); \\
\text{if} \ t &= 15 \text{ || } n &= 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

T1

\[
\begin{array}{ccccccccccccccccccccccc}
| 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 |
\end{array}
\]

- \( 1 \)
- \( 1 \)
- \( 1 \)
- \( 1 \)
- \( 0 \)
- \( 0 \)
- \( 0 \)
- \( 1 \)
- \( 1 \)
- \( 0 \)

\[
\begin{array}{ccccccccccccccccccccccc}
| 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & \text{Rn} & \text{Rt} & 1(1)(1)(1)(1)(1)
\end{array}
\]

T1 variant

LDAEX\{<c>\}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
\begin{align*}
\text{t} &= \text{UInt}(\text{Rt}); \\
\text{n} &= \text{UInt}(\text{Rn}); \\
\text{if} \ t &= 15 \text{ || } n &= 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\)  See Standard assembler syntax fields on page F2-4120.

\(<q>\)  See Standard assembler syntax fields on page F2-4120.

\(<\text{Rt}>\)  Is the general-purpose register to be transferred, encoded in the "Rt" field.

\(<\text{Rn}>\)  Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    AArch32.SetExclusiveMonitors(address, 4);
    R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.60   LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register and:

•  If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

•  Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036. For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |1 0 1 1 1 1 0 0 1 0 1 0 |Rt |Rn |
```

**A1 variant**

LDAEXB{<c>}{<q>} <Rt>, [Rn]

*Decode for this encoding*

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
\]

\[
\text{if } t == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0|15 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |1 0 0 0 1 1 1 0 1 0 1 0 |Rt |Rn |
```

**T1 variant**

LDAEXB{<c>}{<q>} <Rt>, [Rn]

*Decode for this encoding*

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
\]

\[
\text{if } t == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE;}
\]

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>`  See Standard assembler syntax fields on page F2-4120.
- `<q>`  See Standard assembler syntax fields on page F2-4120.
- `<Rt>`  Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>`  Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    AArch32.SetExclusiveMonitors(address, 1);
    R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.61 LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:

- If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
- Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

![Instruction Format](image)

**A1 variant**

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

**Decode for this encoding**

\[ t = \text{UInt}(Rt); \quad t2 = t + 1; \quad n = \text{UInt}(Rn); \]

if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If \( Rt<0> = '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \( t<0> = '0' \).
- The instruction executes with the additional decode: \( t2 = t \).
- The instruction executes as described, with no change to its behavior and no additional side effects.

If \( Rt = '1110' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction is handled as described in Using R15 on page K1-7941.

T1

![Instruction Format](image)

**T1 variant**

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]
Decode for this encoding

\[ t = \text{UInt}(Rt); \ t2 = \text{UInt}(Rt2); \ n = \text{UInt}(Rn); \]
\[ \text{if } t == 15 \ || \ t2 == 15 \ || \ t == t2 \ || \ n == 15 \ \text{then UNPREDICTABLE;} \]

CONSTRAINED UNPREDICTABLE behavior

If \( t = t2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The load instruction executes but the destination register takes an UNKNOWN value.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<
For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <
must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<
For encoding A1: is the second general-purpose register to be transferred. <
must be \( R(t+1) \).

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<
Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    AArch32.SetExclusiveMonitors(address, 8);
    value = MemO[address, 8];
    // Extract words from 64-bit loaded value such that R[t] is
    // loaded from address and R[t2] from address+4.
    R[t] = if BigEndian() then value<63:32> else value<31:0>;
    R[t2] = if BigEndian() then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.62  LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a register and:

- If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
- Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036. For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |
|-----|------|------|-----|-----|-----|-----|-----|-----|
| !=1111 | 0 0 0 1 1 1 1 | Rn | Rt | [1](1)(1)(1)(1)(1)(1) |

A1 variant

LDAEXH{<c>}{<q>} <Rt>, [Rn]

Decode for this encoding

\[ t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{if} \quad t == 15 || n == 15 \quad \text{then \textsc{UNPREDICTABLE;}} \]

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0 15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 1 1 0 1</td>
<td>Rn</td>
<td>Rt</td>
<td><a href="1">1</a>(1)(1)(1)(1)(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

LDAEXH{<c>}{<q>} <Rt>, [Rn]

Decode for this encoding

\[ t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{if} \quad t == 15 || n == 15 \quad \text{then \textsc{UNPREDICTABLE;}} \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- {<c>}  See Standard assembler syntax fields on page F2-4120.
- {<q>}  See Standard assembler syntax fields on page F2-4120.
- {<Rt>}  Is the general-purpose register to be transferred, encoded in the "Rt" field.
- {<Rn>}  Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    AArch32.SetExclusiveMonitors(address, 2);
    R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.63   LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

\[
\begin{array}{cccccccccccccccccccccccc}
\hline
!l=1111 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & Rn & Rt & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & (1)(1)(1)(1) \\
\end{array}
\]

cond

A1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[ t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \]
\[ \text{if } t == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE;} \]

T1

\[
\begin{array}{cccccccccccccccccccccccc}
\hline
1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & Rn & Rt & (1)(1)(1)(1) & 1 & 0 & 0 & 1 & (1)(1)(1)(1) \\
\end{array}
\]

T1 variant

LDAH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[ t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \]
\[ \text{if } t == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE;} \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\)     See Standard assembler syntax fields on page F2-4120.
\(<q>\)     See Standard assembler syntax fields on page F2-4120.
\(<\text{Rt}>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
\(<\text{Rn}>\) Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.64   LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset, loads a word from memory, and writes it to the DBGDTRTXint System register. It can use offset, post-indexed, pre-indexed, or unindexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode, meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see Trapping general Non-secure System register accesses to debug registers on page G1-5843.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

Offset variant
Applies when \( P = 1 && W = 0 \).

\[
\text{LDC}\{<c>\}{<q>}\ p14,\ c5,\ [<Rn>{, \#(+/-)<imm>}]
\]

Post-indexed variant
Applies when \( P = 0 && W = 1 \).

\[
\text{LDC}\{<c>\}{<q>}\ p14,\ c5,\ [<Rn>],\ \#(+/-)<imm>
\]

Pre-indexed variant
Applies when \( P = 1 && W = 1 \).

\[
\text{LDC}\{<c>\}{<q>}\ p14,\ c5,\ [<Rn>,\ \#(+/-)<imm>]
\]

Unindexed variant
Applies when \( P = 0 && U = 1 && W = 0 \).

\[
\text{LDC}\{<c>\}{<q>}\ p14,\ c5,\ [<Rn>],\ <\text{option}>
\]

Decode for all variants of this encoding

\[
\text{if } Rn = '1111' \text{ then SEE "LDC (literal)";}
\text{if } P = '0' && U = '0' && W = '0' \text{ then UNDEFINED;}
\text{n = UInt(Rn); }\text{ cp = 14;}
\text{imm32 = ZeroExtend(imm8:'00', 32); }\text{ index = (P == '1'); }\text{ add = (U == '1'); }\text{ wback = (W == '1');}
\]

T1

Offset variant
Applies when \( P = 1 && W = 0 \).
**LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]**

**Post-indexed variant**
Applies when \( P == 0 \) \&\& \( W == 1 \).
LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

**Pre-indexed variant**
Applies when \( P == 1 \) \&\& \( W == 1 \).
LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

**Unindexed variant**
Applies when \( P == 0 \) \&\& \( U == 1 \) \&\& \( W == 0 \).
LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

**Decode for all variants of this encoding**
if \( Rn == '1111' \) then SEE "LDC (literal)";
if \( P == '0' \) \&\& \( U == '0' \) \&\& \( W == '0' \) then UNDEFINED;
n = UInt(Rn); \( cp = 14; \)
imm32 = ZeroExtend(imm8:'00', 32); \( index = (P == '1'); \)
add = (U == '1'); wback = (W == '1');

**Assembler symbols**

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).
\(<option>\) Is an 8-bit immediate, in the range 0 to 255 enclosed in \{ \}, encoded in the "imm8" field. The value of this field is ignored when executing this instruction.

\(+/-\) Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \( U == 0 \)
+ when \( U == 1 \)

\(<imm>\) Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0 and encoded in the "imm8" field, as \(<imm>/4\).

**Operation for all encodings**
if ConditionPassed() then
   EncodingSpecificOperations();
   offset_addr = if add then \( R[n] + \)imm32 else \( R[n] - \)imm32;
   address = if index then offset_addr else \( R[n]; \)

   // System register write to DBGDT Rexint.
   DBGDT_EL0[] = Mem(address,4);
   if wback then \( R[n] = offset_addr; \)

**Operational information**
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.65  LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to the DBGDTRTXint System register. For information about memory accesses see Memory accesses on page F2-4125.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode, meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see Trapping general Non-secure System register accesses to debug registers on page G1-5843.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>W</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]
LDC{<c>}{<q>} p14, c5, [PC], <option>

Decode for this encoding

if P == '0' && U == '0' && W == '0' then UNDEFINED;
index = (P == '1');  add = (U == '1');  cp = 14;  imm32 = ZeroExtend(imm8:'00', 32);
if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If W == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

Applies when !(P == 0 && U == 0 && W == 0).

LDC{<c>}{<q>} p14, c5, <label>
LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]
**Decode for this encoding**

if $P == '0' \&\& U == '0' \&\& W == '0'$ then UNDEFINED;
index = ($P == '1$);  add = ($U == '1$);  cp = 14;  imm32 = ZeroExtend(imm8:'00', 32);
if $W == '1' || (P == '0' \& CurrentInstrSet() \neq InstrSet_A32)$ then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If $W == '1' || P == '0'$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described in *Using R15 on page K1-7941*.

**Assembler symbols**

- See *Standard assembler syntax fields on page F2-4120*.
- See *Standard assembler syntax fields on page F2-4120*.
- Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of this field is ignored when executing this instruction.
- Is the label of the literal data item that is to be loaded into $<Rt>$. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are multiples of 4 in the range -1020 to 1020.
  - If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).
  - If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).
- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
  - - when $U = 0$
  - + when $U = 1$
- Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0 and encoded in the "imm8" field, as $<imm>/4$.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see *Use of labels in UAL instruction syntax on page F1-4077*.

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations();
  offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
  address = if index then offset_addr else Align(PC,4);
  DBGDTR_EL0[] = MemA[address,4];

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
**F5.1.66 LDM, LDMIA, LDMFD**

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations using an address from a base register. The consecutive memory locations start at this address, and the address just above the highest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also *Encoding of lists of general-purpose registers and the PC on page F2-4126.*

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMOAC. The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.* Related system instructions are LDM (User registers) and LDM (exception return).

This instruction is used by the alias POP (multiple registers). See *Alias conditions on page F5-4438* for details of when each alias is preferred.

**A1**

| 31 | 28|27 |26 |25 |24 |23 |22 |21 |20 |19 |16|15 | | | | | 0 |
| !=1111 | 1 | 0 | 0 | 1 | 0 | 1 | W | 1 | Rn | | | | | | | | | | | \[register\_list\] |

**A1 variant**

LDM{IA}{<c>}{<q}> <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q}> <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

**Decode for this encoding**

\[n = Uint(Rn); \text{ registers } = \text{ register\_list}; \text{ wback } = (W == '1');\]
\[\text{if } n == 15 \text{ || BitCount(registers) } < 1 \text{ then UNPREDICTABLE;}\]
\[\text{if wback } \&\& \text{ registers}^{<n} == '1' \text{ then UNPREDICTABLE;}\]

**CONSTRAINED UNPREDICTABLE behavior**

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

If wback \& registers^{<n} == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0 1</td>
<td>Rn</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

n = UInt(Rn);  registers = '00000000':register_list;  wback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15 14 13</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 0 0 1 0 W 1</td>
<td>Rn</td>
<td>P</td>
<td>M</td>
<td>register_list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T2 variant

LDM{IA}{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '!' and <registers> can be represented in T1
LDMFD{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Full Descending stack, if <Rn>, '!' and <registers> can be represented in T1
LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack

Decode for this encoding

n = UInt(Rn);  registers = P:M:register_list;  wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.
If \( \text{wback} \&\& \text{registers}<n> == '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \( \text{NOP} \).
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If \( \text{BitCount(registers)} == 1 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \( \text{NOP} \).
- The instruction loads a single register using the specified addressing modes.
- The instruction executes as \( \text{LDM} \) with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

If \( \text{registers}<13> == '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \( \text{NOP} \).
- The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If \( P == '1' \&\& M == '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \( \text{NOP} \).
- The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP (multiple registers)</td>
<td>T2</td>
<td>( W == '1' &amp;&amp; Rn == '1101' &amp;&amp; \text{BitCount}(P:M:register_list) &gt; 1 )</td>
</tr>
<tr>
<td>POP (multiple registers)</td>
<td>A1</td>
<td>( W == '1' &amp;&amp; Rn == '1101' &amp;&amp; \text{BitCount}(register_list) &gt; 1 )</td>
</tr>
</tbody>
</table>

Assembler symbols

- \( \text{IA} \): Is an optional suffix for the Increment After form.
- \( <> \): See Standard assembler syntax fields on page F2-4120.
- \( <p> \): See Standard assembler syntax fields on page F2-4120.
- \( <\text{Rn}> \): Is the general-purpose base register, encoded in the "Rn" field.
- !: For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
For encoding T1: the address adjusted by the size of the data loaded is written back to the base register. It is omitted if \(<Rn>\) is included in \(<\text{registers}>\), otherwise it must be present.

\(<\text{registers}>\) For encoding A1: is a list of one or more registers to be loaded, separated by commas and surrounded by \{ and \}. The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded by \{ and \}. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded by \{ and \}. The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

**Operation for all encodings**

if ConditionPassed() then
    EncodingSpecificOperations();
    for i = 0 to 14
        if registers\(i\) == '1' then
            \(R[i] = \text{MemA}[\text{address},4]; \) address = address + 4;
        if registers\(15\) == '1' then
            \(\text{LoadWritePC(MemA[address,4])};\)
        if wback && registers\(n\) == '0' then \(R[n] = R[n] + 4\times\text{BitCount(registers)};\)
        if wback && registers\(n\) == '1' then \(R[n] = \text{bits(32)}\) UNKNOWN;

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.67 LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from a base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by the size of the data loaded can optionally be written back to the base register.

The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that address.

Load Multiple (exception return) is:

- UNDEFINED in Hyp mode.
- UNPREDICTABLE in debug state, and in User mode and System mode.

A1

A1 variant

LDM{<amode>}{<c>}{<q>} <Rn>{!}, <registers_with_pc>^  

Decode for this encoding

\[
\begin{align*}
n &= \text{UInt}(Rn); \\
\text{registers} &= \text{register_list}; \\
\text{wback} &= (W == '1'); \\
\text{increment} &= (U == '1'); \\
\text{wordhigher} &= (P == U); \\
\text{if} \ n == 15 \ \text{then} \ \text{UNPREDICTABLE}; \\
\text{if} \ \text{wback} \ \& \ \text{registers}<n> == '1' \ \text{then} \ \text{UNPREDICTABLE};
\end{align*}
\]

CONSTRAINED UNPREDICTABLE behavior

If \text{wback} \ \& \ \text{registers}<n> == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all the loads using the specified addressing mode and the content of the register being written back is UNKNOWN. In addition, if an exception occurs during the execution of this instruction, the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<\text{amode}>\) is one of:

- DA: Decrement After. The consecutive memory addresses end at the address in the base register. Encoded as \(P = 0, U = 0\).
- FA: Full Ascending. For this instruction, a synonym for DA.
- DB: Decrement Before. The consecutive memory addresses end one word below the address in the base register. Encoded as \(P = 1, U = 0\).
- EA: Empty Ascending. For this instruction, a synonym for DB.
IA     Increment After. The consecutive memory addresses start at the address in the base register. This is the default. Encoded as $P = 0, U = 1$.

FD     Full Descending. For this instruction, a synonym for IA.

IB     Increment Before. The consecutive memory addresses start one word above the address in the base register. Encoded as $P = 1, U = 1$.

ED     Empty Descending. For this instruction, a synonym for IB.

See Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers_with_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set of registers to be loaded. The registers are loaded with the lowest-numbered register from the lowest memory address, through to the highest-numbered register from the highest memory address. The PC must be specified in the register list, and the instruction causes a branch to the address (data) loaded into the PC. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User registers).

Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    if PSTATE.EL == EL2 then
        UNDEFINED;
    elsif PSTATE.M IN {M32_User,M32_System} then
        UNPREDICTABLE;                          // UNDEFINED or NOP
    else
        length = 4*BitCount(registers) + 4;
        address = if increment then R[n] else R[n]-length;
        if wordhigher then address = address+4;
        for i = 0 to 14
            if registers<i> == '1' then
                R[i] = MemA[address,4]; address = address + 4;
                new_pc_value = MemA[address,4];
            if wback && registers<n> == '0' then R[n] = if increment then R[n]+length else R[n]-length;
            if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
        AArch32.ExceptionReturn(new_pc_value, SPSR[]);

CONSTRANDED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.68   LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from consecutive memory locations using an address from a base register. The registers loaded cannot include the PC. The PE reads the base register value normally, using the current mode to determine the correct Banked version of the register. This instruction cannot writeback to the base register.

Load Multiple (User registers) is undefined in Hyp mode, and unpredictable in User and System modes.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC.

A1

```
A1 variant
LDM{<amode>}{<c>}{<q>} <Rn>, <registers_without_pc>
```

Decode for this encoding

```
n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
```

CONSTRANDED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

Notes for all encodings

For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

```
<amode> is one of:
DA Decrement After. The consecutive memory addresses end at the address in the base register. Encoded as P = 0, U = 0.
FA Full Ascending. For this instruction, a synonym for DA.
DB Decrement Before. The consecutive memory addresses end one word below the address in the base register. Encoded as P = 1, U = 0.
EA Empty Ascending. For this instruction, a synonym for DB.
IA Increment After. The consecutive memory addresses start at the address in the base register. This is the default. Encoded as P = 0, U = 1.
FD Full Descending. For this instruction, a synonym for IA.
IB Increment Before. The consecutive memory addresses start one word above the address in the base register. Encoded as P = 1, U = 1.
```
ED Empty Descending. For this instruction, a synonym for IB.

See Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_without_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set of registers to be loaded by the LDM instruction. The registers are loaded with the lowest-numbered register from the lowest memory address, through to the highest-numbered register from the highest memory address. The PC must not be in the register list. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Instructions with similar syntax but with the PC included in <registers_without_pc> are described in LDM (exception return).

Operation

if ConditionPassed() then
    EncodingSpecificOperations();
    if PSTATE.EL == EL2 then UNDEFINED;
    elsif PSTATE.M IN {M32_User,M32_System} then UNPREDICTABLE;
    else
        length = 4*BitCount(registers);
        address = if increment then R[n] else R[n]-length;
        if wordhigher then address = address+4;
        for i = 0 to 14
            if registers<i> == '1' then // Load User mode register
                Rmode[i, M32_User] = MemA[address,4]; address = address + 4;
        
CONSTRANGED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.69   LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using an address from a base register. The consecutive memory locations end at this address, and the address just below the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993. Related system instructions are LDM (User registers) and LDM (exception return).

A1

| 31  | 28|27 26 25 24 |23 22 21 20 |19 |16|15 | | | | | 0 |
|-----|---|---------------|---------------|----|----|----|----|----|----|----|----|----|
| !=1111 | 1 | 0 | 0 | 0 | 0 | W | 1 | Rn | | register_list |

cond

A1 variant

LDMDA{<c>}{<p>} <Rn>{!}, <registers> // Preferred syntax
LDMFA{<c>}{<p>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

n = UInt(Rn);  registers = register_list;  wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

See Standard assembler syntax fields on page F2-4120.
<q>See Standard assembler syntax fields on page F2-4120.</q>

<i>Rn</i> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

**Operation**

if ConditionPassed() then
   EncodingSpecificOperations();
   address = R[n] - 4*BitCount(registers) + 4;
   for i = 0 to 14
      if registers<i> == '1' then
         R[i] = MemA[address,4]; address = address + 4;
      if registers<15> == '1' then
         LoadWritePC(MemA[address,4]);
      if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
      if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.70  LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations using an address from a base register. The consecutive memory locations end just below this address, and the address of the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993. Related system instructions are LDM (User registers) and LDM (exception return).

A1

A1 variant

LDMDB{<c>{<q>}} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>{<q>}} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

n = UInt(Rn);  registers = register_list;  wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

T1
T1 variant

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
LDMEA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

n = UInt(Rn);  registers = P:M:register_list;  wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads a single register using the specified addressing modes.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<<> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:
- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  address = R[n] - 4*BitCount(registers);
  for i = 0 to 14
    if registers<i> == '1' then
      R[i] = MemA[address,4]; address = address + 4;
    if registers<15> == '1' then
      LoadWritePC(MemA[address,4]);
    if wback & registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
    if wback & registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.71  **LDMIB, LDMED**

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations using an address from a base register. The consecutive memory locations start just above this address, and the address of the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also *Encoding of lists of general-purpose registers and the PC* on page F2-4126.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see **FEAT_LSMAOC**. The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993. Related system instructions are LDM (User registers) and LDM (exception return).

**A1**

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>W</td>
<td>1</td>
<td>Rn</td>
<td></td>
<td>register_list</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**cond**

**A1 variant**

LDMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax  
LDMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

**Decode for this encoding**

\[
\begin{align*}
n &= \text{UInt}(\text{Rn}); \\
\text{registers} &= \text{register_list}; \\
\text{wback} &= (W == '1'); \\
\text{if} \ n == 15 || \text{BitCount}(\text{registers}) < 1 \text{ then UNPREDICTABLE}; \\
\text{if} \ \text{wback} \ &\& \ \text{registers}<n> == '1' \text{ then UNPREDICTABLE};
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

If wback \& registers<n> == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see **Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors**.

**Assembler symbols**

<=1111  See **Standard assembler syntax fields** on page F2-4120.
See *Standard assembler syntax fields* on page F2-4120.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

1 The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by \{ and \}.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

**Operation**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == '1' then
 LoadWritePC(MemA[address,4]);
 if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
 if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
```

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.72   LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

This instruction is used by the alias POP (single register). See Alias conditions on page F5-4453 for details of when each alias is preferred.

A1

Offset variant
Applies when \( P == 1 \) \&\& \( W == 0 \).

\[
\text{LDR\{}<c>\}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]\]

Post-indexed variant
Applies when \( P == 0 \) \&\& \( W == 0 \).

\[
\text{LDR\{}<c>\}{<q>} <Rt>, [<Rn>], #{+/-}<imm>\]

Pre-indexed variant
Applies when \( P == 1 \) \&\& \( W == 1 \).

\[
\text{LDR\{}<c>\}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!
\]

_decode for all variants of this encoding_

If \( Rn == '1111' \) then see "LDR (literal)";
if \( P == '0' \) \&\& \( W == '1' \) then see "LDRT";
\( t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \)
\( \text{index} = (P == '1'); \ \text{add} = (U == '1'); \ \text{wback} = (P == '0') || (W == '1'); \)
if wback \&\& n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback \&\& n == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE;  add = TRUE;  wback = FALSE;

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10  8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Rt
imm8

T2 variant

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm}>]

Decode for this encoding

t = UInt(Rt);  n = 13;  imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE;  add = TRUE;  wback = FALSE;

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10  8 7</th>
<th>6 5 4 3</th>
<th>0</th>
<th>15 12</th>
<th>11 10  8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 0 0 1 0 1</td>
<td>1111</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rt
imm12

Rn

T3 variant

LDR{<c>}.W <Rt>, [<Rn> {, #<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1 or T2
LDR{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";
t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm12, 32);  index = TRUE;  add = TRUE;
wback = FALSE;  if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

| 15 14 13 12|11 10  9 8 | 7 6 5 4 | 3 | 0 | 15|12|11 10  9 8 | 7 | 0 |
|-------------|-------|------|---|---|---|---|-------|---|
| 1 1 1 1 1 0 0 0 1 0 1 | 1111 | 1 | P | U | W | src

Rn

Offset variant

Applies when P == 1 && U == 0 && W == 0.
LDR{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.
LDR{<c>}{<q>} <Rt>, [<Rn>], #<imm>
Pre-indexed variant

Applies when \( P = 1 \) \&\& \( W = 1 \).

\[
\text{LDR}\{\langle c\rangle}\{\langle p\rangle\} \ <Rt>, \ [\langle Rn\rangle, \ #{+/-}\langle imm\rangle]!
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } \text{Rn} &= '1111' \text{ then SEE "LDR (literal)";} \\
\text{if } \text{P} &= '1' \&\& \text{U} &= '1' \&\& \text{W} &= '0' \text{ then SEE "LDRT";} \\
\text{if } \text{P} &= '0' \&\& \text{W} &= '0' \text{ then UNDEFINED;} \\
\text{t} &= \text{UInt(Rt)}; \ n = \text{UInt(Rn)}; \\
\text{imm32} &= \text{ZeroExtend(imm8, 32)}; \ \text{index} = (\text{P} = '1') \&\& \text{add} = (\text{U} = '1'); \ \text{wback} = (\text{W} = '1'); \\
\text{if } (\text{wback} \&\& \text{n} = \text{t} ) || (\text{t} = 15 \&\& \text{InITBlock()} \&\& \text{!LastInITBlock()}) \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONSTRUED UNPREDICTABLE behavior

If \( \text{wback} \&\& \text{n} = \text{t} \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRUED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP (single register) A1 (post-indexed)</td>
<td>( P = '0' &amp;&amp; U = '1' &amp;&amp; W = '0' &amp;&amp; Rn = '1101' &amp;&amp; \text{imm12} = '000000000100'</td>
<td></td>
</tr>
<tr>
<td>POP (single register) T4 (post-indexed)</td>
<td>( Rn = '1101' &amp;&amp; P = '0' &amp;&amp; U = '1' &amp;&amp; W = '1' &amp;&amp; \text{imm8} = '00000100'</td>
<td></td>
</tr>
</tbody>
</table>

Assembler symbols

- \( \langle c\rangle \): See Standard assembler syntax fields on page F2-4120.
- \( \langle p\rangle \): See Standard assembler syntax fields on page F2-4120.
- \( \langle Rt\rangle \): For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- \( \langle Rn\rangle \): For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDR (literal).
- For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
+-

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0
+ when U = 1

+  

Specifies the offset is added to the base register.

<imm>

For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

**Operation for all encodings**

```c
if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
 else
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == '00' then
 LoadWritePC(data);
 else
 UNPREDICTABLE;
 else
 R[t] = data;
```

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.73  LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

A1

![Instruction Format]

A1 variant

Applies when !(P == 0 && W == 1).

LDR{<c>}{<q>} <Rt>, <label> // Normal form
LDR{<c>}{<q>} <Rt>, [PC, #{+/-}imm] // Alternative form

Decode for this encoding

If wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: wback = FALSE;
- The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDR (immediate). The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on page K1-7941.

T1

![Instruction Format]

T1 variant

LDR{<c>}{<q>} <Rt>, <label> // Normal form

Decode for this encoding

T2

![Instruction Format]
T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions

T2 variant

LDR\{<c>}.W <Rt>, <label> // Preferred syntax, and <Rt>, <label> can be represented in T1
LDR\{<c>\{<q>\} <Rt>, <label> // Preferred syntax
LDR\{<c>\{<q>\} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

t = UInt(Rt);  imm32 = ZeroExtend(imm12, 32);  add = (U == '1');
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rt>\) For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.
For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP can be used. The PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

\(<label>\) For encoding A1 and T2: the label of the literal data item that is to be loaded into \(<Rt>\). The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into \(<Rt>\). The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are Multiples of four in the range 0 to 1020.

\(+/-\) Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

\(<imm>\) For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.
Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  base = Align(PC,4);
  address = if add then (base + imm32) else (base - imm32);
  data = MemU[address,4];
  if t == 15 then
    if address<1:0> == '00' then
      LoadWritePC(data);
    else
      UNPREDICTABLE;
  else
    R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word from memory, and writes it to a register. The offset register value can optionally be shifted. For information about memory accesses, see Memory accesses on page F2-4125.

The T32 form of LDR (register) does not support register writeback.

A1

```
| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 | 7 6 5 4 3 0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 | 1 | 1 | P | U | 0 | W | 1 | Rn | Rt | imm5 | stype | 0 | Rm |
```

**Offset variant**

Applies when \(P == 1 \&\& W == 0\).

\[
\text{LDR}\{<c>\}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]\]

**Post-indexed variant**

Applies when \(P == 0 \&\& W == 0\).

\[
\text{LDR}\{<c>\}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}\]

**Pre-indexed variant**

Applies when \(P == 1 \&\& W == 1\).

\[
\text{LDR}\{<c>\}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!
\]

**Decode for all variants of this encoding**

if \(P == '0' \&\& W == '1'\) then SEE "LDRT";
\[
t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
\]
\[
\text{index} = (P == '1'); \ \text{add} = (U == '1'); \ \text{wback} = (P == '0') || (W == '1');
\]
\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype}, \text{imm5});
\]
if \(m == 15\) then UNPREDICTABLE;
if \(\text{wback} \&\& (n == 15 || n == t)\) then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If \(\text{wback} \&\& n == t\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

```
| 15 14 13 12|11 10 9 8 | 6 5 |3 2 0 | | | | | |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 0 | Rm | Rn | Rt |
```
T1 variant

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

| 15 14 13 12|11 10 9 8|7 6 5 4|3 0 |15 12|11 10 9 8|7 6 5 4|3 0 |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 |0 0 0 0 |1 0 1 |1=1111 |Rt |0 0 0 0 0 0 |mm2 |Rm |

Rn

T2 variant

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm}>]

Decode for this encoding

if Rn == '1111' then SEE "LDR (literal)";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if t == 15 && !InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<>
See Standard assembler syntax fields on page F2-4120.

<
For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This branch is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

<Rn>
For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/-
 Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \( U = 0 \)
+ when \( U = 1 \)
+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then
  EncodingSpecificOperations();
  offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
  offset_addr = if add then (R[n] + offset) else (R[n] - offset);
  address = if index then offset_addr else R[n];
  data = MemU[address,4];
  if wback then R[n] = offset_addr;
  if t == 15 then
    if address<1:0> == '00' then
      LoadWritePC(data);
    else
      UNPREDICTABLE;
  else
    R[t] = data;
else
  if ConditionPassed() then
    EncodingSpecificOperations();
    offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
    offset_addr = (R[n] + offset);
    address = offset_addr;
    data = MemU[address,4];
    if t == 15 then
      if address<1:0> == '00' then
        LoadWritePC(data);
      else
        UNPREDICTABLE;
    else
      R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.75 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

Offset variant

Applies when \( P == 1 \) \&\& \( W == 0 \).

LDRB\{<c>{<q>}} <Rt>, [Rn] {, #{+/-}<imm>}

Post-indexed variant

Applies when \( P == 0 \) \&\& \( W == 0 \).

LDRB\{<c>{<q>}} <Rt>, [Rn], #{+/-}imm

Pre-indexed variant

Applies when \( P == 1 \) \&\& \( W == 1 \).

LDRB\{<c>{<q>}} <Rt>, [Rn], #{+/-}imm

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRB (literal)";
if P == '0' \&\& W == '1' then SEE "LDRBT";
\( t = \) UInt(Rt); \( n = \) UInt(Rn); \( \text{imm32} = \) ZeroExtend(imm12, 32);
index = (P == '1'); \( \text{add} = (U == '1') \); \( \text{wback} = (P == '0') \); \( (W == '1') \);
if \( t == 15 \) \&\& \( n == t \) then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If \( \text{wback} \) \&\& \( n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant

LDRB\{<c>{<q>}} <Rt>, [Rn] {, #{+/-}imm}
Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm5, 32);
index = TRUE;  add = TRUE;  wback = FALSE;

T2

|15 14 13 12|11 10 9 8|7 6 5 4|3 |0|15 12|11 |0 |
|---|---|---|---|---|---|---|---|---|---|
| 1| 1| 1| 1| 0| 0| 0| 0| 1| l=1111| l=1111| imm12

Rn  Rt

T2 variant

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // <Rt>, <Rn>, <imm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

Decode for this encoding

if Rt == '1111' then SEE "PLD";
if Rn == '1111' then SEE "LDRB (literal)"

t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm12, 32);
index = TRUE;  add = TRUE;  wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T3

|15 14 13 12|11 10 9 8|7 6 5 4|3 |0|15 12|11 10|9|8|7|0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1| 1| 1| 1| 0| 0| 0| 0| 1| l=1111| Rt | 1| P| U| W| imm8

Rn

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.
LDRB{<c>}{<q>} <Rt>, [<Rn> {, #<-imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.
LDRB{<c>}{<q>} <Rt>, [<Rn>, #<imm>]

Pre-indexed variant

Applies when P == 1 && W == 1.
LDRB{<c>}{<q>} <Rt>, [<Rn>, #<imm>]

Decode for all variants of this encoding

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD, PLDW (immediate)"
if Rn == '1111' then SEE "LDRB (literal)"
if P == '1' && U == '1' && W == '0' then SEE "LDRBT"
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm8, 32);
index = (P == '1');  add = (U == '1');  wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
**CONSTRAINED UNPREDICTABLE behavior**

If `wbback && n == t`, then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is **UNKNOWN**. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRB (literal).
- For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
- `+/-` Specifies the offset is added to or subtracted from the base register, defaulting to `+` if omitted and encoded in the "U" field. It can have the following values:
  - `-` when `U = 0`
  - `+` when `U = 1`
- `+` Specifies the offset is added to the base register.
- `<imm>` For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
- For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to 0 and encoded in the "imm5" field.
- For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
- For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

**Operation for all encodings**

```plaintext
if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wbback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wbback then R[n] = offset_addr;
```

---

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRB (literal).
- For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
- `+/-` Specifies the offset is added to or subtracted from the base register, defaulting to `+` if omitted and encoded in the "U" field. It can have the following values:
  - `-` when `U = 0`
  - `+` when `U = 1`
- `+` Specifies the offset is added to the base register.
- `<imm>` For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
- For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to 0 and encoded in the "imm5" field.
- For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
- For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

**Operation for all encodings**

```plaintext
if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wbback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wbback then R[n] = offset_addr;
```
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.76   LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 18 17 16 15</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**A1 variant**

Applies when !(P == 0 && W == 1).

LDRB{<c>}{<q>} <Rt>, <label> // Normal form
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

**Decode for this encoding**

if P == '0' && W == '1' then SEE "LDRBT";

\[
t = \text{UInt}(Rt); \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32);
\]

\[
\text{add} = (U == '1'); \quad \text{wback} = (P == '0') || (W == '1');
\]

if t == 15 || wback then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: wback = FALSE;
- The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRB (immediate). The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on page K1-7941.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>!=1111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>imm12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**T1 variant**

LDRB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

**Decode for this encoding**

if Rt == '1111' then SEE "PLD";

\[
t = \text{UInt}(Rt); \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \quad \text{add} = (U == '1');
\]

// Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<r>
Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label>
The label of the literal data item that is to be loaded into <r>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/−
Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm>
For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    base = Align(PC, 4);
    address = if add then (base + imm32) else (base - imm32);
    Rt = ZeroExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.77  LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can optionally be shifted. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 7 6 5 4 3 0 |
|---|---|---|---|---|---|---|---|
| 1111 1 1|P U 1 1|Rn Rt imm5 stype 0 Rm |
|cond |

Offset variant

Applies when $P == 1$ && $W == 0$.
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed variant

Applies when $P == 0$ && $W == 0$.
LDRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when $P == 1$ && $W == 1$.
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>]}!

Decode for all variants of this encoding

if $P == '0'$ && $W == '1'$ then SEE "LDRBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If $wback$ && $n == t$, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 Rm</td>
<td>Rn Rt</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

![](ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. F5-4467 ID072120 Non-Confidential)
Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);
index = TRUE;  add = TRUE;  wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \hline
\text{Rt} & \text{Rn} & \text{imm2} & \text{Rm} \\
\end{array}
\]

T2 variant

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}Rm{, LSL #<imm>}]

Decode for this encoding

if Rt == '1111' then SEE "PLD";
if Rn == '1111' then SEE "LDRB (literal)"
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<p>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Rn>\) For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.
  For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.
- +/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
  - when \(U = 0\)
  + when \(U = 1\)
- + Specifies the index register is added to the base register.
- \(<Rm>\) Is the general-purpose index register, encoded in the "Rm" field.
- \(<\text{shift}>\) The shift to apply to the value read from \(<Rm>\). If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.
- \(<\text{imm}>\) If present, the size of the left shift to apply to the value from \(<Rm>\), in the range 1-3. \(<\text{imm}>\) is encoded in imm2. If absent, no shift is specified and imm2 is encoded as \(0b00\).
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
    offset_addr = if add then (R[n] + offset) else (R[n] - offset);
    address = if index then offset_addr else R[n];
    R[t] = ZeroExtend(MemU[address,1],32);
    if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.78 LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or an optionally-shifted register value.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rn</td>
</tr>
</tbody>
</table>

**cond**

**A1 variant**

LDRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}imm}

**Decode for this encoding**

- \( t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ \text{postindex} = \text{TRUE}; \ \text{add} = (U == '1'); \)
- register_form = FALSE; \ imm32 = \text{ZeroExtend}(imm12, 32);
- if \( t == 15 \ || \ n == 15 \ || \ n == t \) then UNPREDICTABLE;

**CONSTRUANED UNPREDICTABLE behavior**

If \( n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction uses immediate offset addressing with the base register as PC, without writeback.

If \( n == t \ && \ n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

A2

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rn</td>
<td>Rt</td>
<td>imm5</td>
<td>stype</td>
</tr>
</tbody>
</table>
A2 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

\[
\begin{align*}
    t &= \text{UInt}(Rt); \\
    n &= \text{UInt}(Rn); \\
    m &= \text{UInt}(Rm); \\
    \text{postindex} &= \text{TRUE}; \\
    \text{add} &= (U == '1'); \\
    \text{register\_form} &= \text{TRUE}; \\
    (\text{shift\_t}, \text{shift\_n}) &= \text{DecodeImmShift}(\text{stype}, \text{imm5}); \\
    \text{if } t == 15 || n == 15 || n == t || m == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONSTRAINED UNPREDICTABLE behavior

If \( n = t && n \neq 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 0</td>
<td>0 0 1</td>
<td>1=111</td>
<td>Rt 1 1 1 0</td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rn

T1 variant

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

Decode for this encoding

\[
\begin{align*}
    \text{if } Rn == '1111' \text{ then SEE "LDRB (literal)";} \\
    t &= \text{UInt}(Rt); \\
    n &= \text{UInt}(Rn); \\
    \text{postindex} &= \text{FALSE}; \\
    \text{add} &= \text{TRUE}; \\
    \text{register\_form} &= \text{FALSE}; \\
    \text{imm32} &= \text{ZeroExtend}(\text{imm8}, 32); \\
    \text{if } t == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- See Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.
- For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated.
  For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.
- Is the general-purpose base register, encoded in the "Rn" field.
- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

  - when \( U = 0 \)
  - when \( U = 1 \)
For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \( U = 0 \)
+ when \( U = 1 \)

\(<Rm>\) Is the general-purpose index register, encoded in the "Rm" field.

\(<shift>\) The shift to apply to the value read from \(<Rm>\). If absent, no shift is applied. Otherwise, see *Shifts applied to a register* on page F2-4123.

+ Specifies the offset is added to the base register.

\(<imm>\) For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);
 if postindex then R[n] = offset_addr;
```

**CONSTRAINED UNPREDICTABLE behavior**

If \( PSTATE.EL == EL2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \textbf{NOP}.
- The instruction executes as \textbf{LDRB} (immediate).

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.79   LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
[31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 | 7 6 5 4 | 3 0 |
 !=1111 0 0 0 | P | U | W | 0 | !=1111 | Rt | imm4H | 1 | 1 | 0 | 1 | imm4L
cond Rn
```

**Offset variant**

Applies when $P = 1$ & $W = 0$.

LDRD{$<c>$}{$<q>$} $<Rt>$, $<Rt2>$, $[<Rn>]$, #{+/-}<imm>]

**Post-indexed variant**

Applies when $P = 0$ & $W = 0$.

LDRD{$<c>$}{$<q>$} $<Rt>$, $<Rt2>$, $[<Rn>]$, #{+/-}<imm>

**Pre-indexed variant**

Applies when $P = 1$ & $W = 1$.

LDRD{$<c>$}{$<q>$} $<Rt>$, $<Rt2>$, $[<Rn>]$, #{+/-}<imm>]

**Decode for all variants of this encoding**

if $Rn == '1111'$ then SEE "LDRD (literal)";
if $Rt<0> == '1'$ then UNPREDICTABLE;
$t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);$
$index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');$
if $P == '0' && W == '1'$ then UNPREDICTABLE;
if $wback && (n == t || n == t2)$ then UNPREDICTABLE;
if $t2 == 15$ then UNPREDICTABLE;

**CONstrained UNPREDICTABLE behavior**

If $wback && (n = t || n = t2)$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If $P == '0' && W == '1'$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If $Rt<0> == '1'$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt == '1111'.

T1

15 14 13 12	11 10  9  8  7  6  5  4  3  0	15 12 11  8  7  0			
1 1 1 0 0	P U 1 W 1	t = 1111	Rt	R2	imm8
Rn					

**Offset variant**

Applies when P == 1 && W == 0.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

**Post-indexed variant**

Applies when P == 0 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

**Pre-indexed variant**

Applies when P == 1 && W == 1.

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]

**Decode for all variants of this encoding**

if P == '0' && W == '0' then SEE "Related encodings";
if Rn == '1111' then SEE "LDRD (literal)";
\[ t = \text{UInt}(Rt); \quad t2 = \text{UInt}(Rt2); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}:'00', 32); \]
\[ \text{index} = (P == '1'); \quad \text{add} = (U == '1'); \quad \text{wback} = (W == '1'); \]
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

**CONSTRAINED UNPREDICTABLE behavior**

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The load instruction executes but the destination register takes an UNKNOWN value.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

Rt
For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

Rt2
For encoding A1: is the second general-purpose register to be transferred. This register must be \(<R(t+1)>\).

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

Rn
Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).

\+/-
Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \(U = 0\)
+ when \(U = 1\)

imm
For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 if omitted, and encoded in the "imm8" field as \(<imm>/4\).

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations();
  offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
  address = if index then offset_addr else R[n];
  if address == Align(address, 8) then
    data = MemA[address,8];
    if BigEndian() then
      R[t] = data<63:32>;
      R[t2] = data<31:0>;
    else
      R[t] = data<31:0>;
      R[t2] = data<63:32>;
  else
    R[t] = MemA[address,4];
    R[t2] = MemA[address+4,4];
  if wback then R[n] = offset_addr;

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.80   LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from memory, and writes them to two registers. For information about memory accesses see Memory accesses on page F2-4125.

A1

31 28	27 26 25 24	23 22 21 20	19 18 17 16	15 12	11 8 7 6 5 4 3 0										
!=1111 0 0 0	1	U	1	0	0	1	1	1	Rt	imm4H	1	1	0	1	imm4L

cond

A1 variant

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

if Rt<0> == '1' then UNPREDICTABLE;

if P == '0' || W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0';
• The instruction executes with the additional decode: t2 = t;
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt == '1111'.

T1

15 14 13	12	11 10 9 8 7 6 5 4 3 2 1 0	15 12	11 8 7							
1 1 1 0 1 0 0	P	U	1	W	1	1	1	1	Rt	Rt2	imm8

T1 variant

Applies when !(P == 0 && W == 0).

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // Normal form
LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // Alternative form
Decode for this encoding

if \( P == '0' \) && \( W == '0' \) then SEE "Related encodings";
\( t = \text{UInt}(Rt); \ t2 = \text{UInt}(Rt2); \)
\( \text{imm32} = \text{ZeroExtend}(\text{imm8(':', '00'), 32}); \ \text{add} = (U == '1'); \)
if \( t == 15 \) || \( t2 == 15 \) || \( t == t2 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if \( W == '1' \) then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If \( t == t2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The load instruction executes but the destination register takes an UNKNOWN value.

If \( W == '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses post-indexed addressing when \( P == '0' \) and uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on page K1-7941.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.


**Assembler symbols**

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rt>\) For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.
- \(<Rt>\) For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Rt2>\) For encoding A1: is the second general-purpose register to be transferred. This register must be \(<R(t+1)>\).
- \(<Rt2>\) For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.
- \(<\text{label}>\) For encoding A1: the label of the literal data item that is to be loaded into \(<Rt>\). The assembler calculates the required value of the offset from the \(\text{Align}(\text{PC}, 4)\) value of the instruction to this label. Any value in the range -255 to 255 is permitted.
  - If the offset is zero or positive, \(\text{imm32}\) is equal to the offset and \(\text{add} == \text{TRUE}\), encoded as \(U == 1\). If the offset is negative, \(\text{imm32}\) is equal to minus the offset and \(\text{add} == \text{FALSE}\), encoded as \(U == 0\).
  - For encoding T1: the label of the literal data item that is to be loaded into \(<Rt>\). The assembler calculates the required value of the offset from the \(\text{Align}(\text{PC}, 4)\) value of the instruction to this label. Permitted values of the offset are multiples of 4 in the range -1020 to 1020.
  - If the offset is zero or positive, \(\text{imm32}\) is equal to the offset and \(\text{add} == \text{TRUE}\), encoded as \(U == 1\).
  - If the offset is negative, \(\text{imm32}\) is equal to minus the offset and \(\text{add} == \text{FALSE}\), encoded as \(U == 0\).
+/− Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when $U = 0$
+ when $U = 1$

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

**Operation for all encodings**

```
if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 if address == Align(address, 8) then
 data = MemA[address,8];
 if BigEndian() then
 R[t] = data<63:32>;
 R[t2] = data<31:0>;
 else
 R[t] = data<31:0>;
 R[t2] = data<63:32>;
 else
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
```

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

31 28	27 26 25 24	23 22 21 20	19 16	15 12	11 10 9 8	7 6 5 4	3 0		
!=1111 0 0	P U 0 W 0	Rn	Rt	0	0	0	1	1 0 1	Rm

cond

Offset variant

Applies when \( P == 1 \land W == 0 \).

\[
\text{LDRD}\{<c>\}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]
\]

Post-indexed variant

Applies when \( P == 0 \land W == 0 \).

\[
\text{LDRD}\{<c>\}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>
\]

Pre-indexed variant

Applies when \( P == 1 \land W == 1 \).

\[
\text{LDRD}\{<c>\}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } & \text{ Rt}<0 \text{ } = \text{ '1' then UNPREDICTABLE; } \\
& t = \text{ UInt}(Rt); \quad t_2 = t+1; \quad n = \text{ UInt}(Rn); \quad m = \text{ UInt}(Rm); \quad \\
& \text{index} = (P == \text{ '1'}); \quad \text{add} = (U == \text{ '1'}); \quad wback = (P == \text{ '0'}) \lor (W == \text{ '1'}); \quad \\
& \text{if } P == \text{ '0'} \land W == \text{ '1'} \text{ then UNPREDICTABLE; } \\
& \text{if } t_2 == 15 \lor m == 15 \lor m == t \lor m == t_2 \text{ then UNPREDICTABLE; } \\
& \text{if } wback \land (n == 15 \lor n == t \lor n == t_2) \text{ then UNPREDICTABLE; }
\end{align*}
\]

CONSTRANGED UNPREDICTABLE behavior

If \( \text{wback } \land (n == t \lor n == t_2) \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

If \( P == \text{ '0'} \land W == \text{ '1'} \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If \( n == t \lor m == t_2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The instruction loads register Rm with an UNKNOWN value.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = 1.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt == '1111'.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.
<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.
<+-> Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1
<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
  EncodingSpecificOperations();
  offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
  address = if index then offset_addr else R[n];
  if address == Align(address, 8) then
    data = MemA[address,8];
    if BigEndian() then
      R[t] = data<63:32>;
      R[t2] = data<31:0>;
    else
      R[t] = data<31:0>;
      R[t2] = data<63:32>;
  else
    R[t] = MemA[address,4];
    R[t2] = MemA[address+4,4];
  if wback then R[n] = offset_addr;
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.82   LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from memory, writes it to a register and:

- If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
- Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

 LDREX{<c>}{<q>} <Rt>, [, {#}<imm>]

Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);  imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTABLE;

T1

 LDREX{<c>}{<q>} <Rt>, [, #<imm>]

Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm8:'00', 32);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
- <Rn> Is the general-purpose base register, encoded in the "Rn" field.
- <imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can only be 0 or omitted.
For encoding T1: the immediate offset added to the value of \( <Rn> \) to calculate the address. \( <imm> \) can be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 AArch32.SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];
```

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.83   LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register and:

- If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
- Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31|28|27|26|25|24|23|22|21|20|19|16|15|12|11|10|9|8|7|6|5|4|3|2|1|0|
| 1111| 0|0|0|1|1|0|1|Rn| Rn |
| cond |
```

**A1 variant**

LDREXB{<c>}{<q>} <Rt>, [Rn]

**Decode for this encoding**

```
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
```

T1

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|16|15|12|11|10|9|8|7|6|5|4|3|2|1|0|
| 1|1|1|0|1|0|0|1|1|0|1|Rn | Rn |
```

**T1 variant**

LDREXB{<c>}{<q>} <Rt>, [Rn]

**Decode for this encoding**

```
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

**Notes for all encodings**

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>`   See Standard assembler syntax fields on page F2-4120.
- `<q>`   See Standard assembler syntax fields on page F2-4120.
- `<Rt>`  Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>`  Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    AArch32.SetExclusiveMonitors(address,1);
    R[t] = ZeroExtend(MemA[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.84 LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from memory, writes it to two registers and:

- If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
- Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31| 28| 27| 26| 25| 24| 23| 22| 21| 20| 19| 16| 15| 12| 11| 10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0 |
```

\!l=1111 \!0 \!0 \!0 \!1 \!1 \!0 \!1 \!1 \!Rn \!Rt \!1 \!1 \!1 \!1 \!0 \!0 \!0 \!1 \!1 \!1 \!1 \!1 \!1 \!1 \!1

\textbf{cond}

\begin{itemize}
  
  \item A1 variant

  \texttt{LDREXD}\{<c>\}{<q>} <Rt>, <Rt2>, \{<Rn>\}

  \textbf{Decode for this encoding}

  \begin{itemize}
    
    \item \(t = \text{UInt}(Rt); \quad t2 = t + 1; \quad n = \text{UInt}(Rn)\);
    
    \item \textbf{if} \(Rt<0> == '1' || t2 == 15 || n == 15 \textbf{then UNPREDICTABLE;}
  
  \end{itemize}

  \textbf{CONSTRAINED UNPREDICTABLE behavior}

  If \(Rt<0> == '1'\), then one of the following behaviors must occur:

  \begin{itemize}
    
    \item The instruction is UNDEFINED.
    
    \item The instruction executes as NOP.
    
    \item The instruction executes with the additional decode: \(t<0> = '0'\).
    
    \item The instruction executes with the additional decode: \(t2 = t\).
    
    \item The instruction executes as described, with no change to its behavior and no additional side effects.
  
  \end{itemize}

  If \(Rt == '1110'\), then one of the following behaviors must occur:

  \begin{itemize}
    
    \item The instruction is UNDEFINED.
    
    \item The instruction executes as NOP.
    
    \item The instruction is handled as described in Using R15 on page K1-7941.
  
  \end{itemize}

\begin{itemize}
  
  \item T1

  \begin{itemize}
    
    \item T1 variant

    \texttt{LDREXD}\{<c>\}{<q>} <Rt>, <Rt2>, \{<Rn>\}

  
  \end{itemize}

\end{itemize}
**Decode for this encoding**

\[
t = \text{UInt}(Rt); \quad t2 = \text{UInt}(Rt2); \quad n = \text{UInt}(Rn);
\]

if \( t = 15 \) || \( t2 = 15 \) || \( t = t2 \) || \( n = 15 \) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

**CONSTRAINED UNPREDICTABLE behavior**

If \( t = t2 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The load instruction executes but the destination register takes an **UNKNOWN** value.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<c>`  
  See Standard assembler syntax fields on page F2-4120.
- `<q>`  
  See Standard assembler syntax fields on page F2-4120.
- `<Rt>`  
  For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field.  
  <Rt> must be even-numbered and not R14.  
  For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rt2>`  
  For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
  For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.
- `<Rn>`  
  Is the general-purpose base register, encoded in the "Rn" field.

**Operation for all encodings**

if ConditionPassed() then  
  EncodingSpecificOperations();  
  address = R[n];  
  AArch32.SetExclusiveMonitors(address,8);  
  value = MemA[address,8];  
  // Extract words from 64-bit loaded value such that R[t] is  
  // loaded from address and R[t2] from address+4.  
  R[t] = if BigEndian() then value<63:32> else value<31:0>;  
  R[t2] = if BigEndian() then value<31:0> else value<63:32>;

**Operational information**

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.85   LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

|31 28 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 2 1 0 |
|0 0 0 1 1 1 1 | Rn | Rt (1) 1 1 1 0 0 0 0 1 | 1 |

cond

A1 variant

LDREXH{<c>}{<q>} <Rt>, [Rn]

Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

|15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 12|11 10 9 8 7 6 5 4 3 2 1 0 |
|1 1 1 0 1 0 0 0 0 1 1 0 1 | Rn | Rt (1)(1)(1)(1) 0 1 0 1 |

T1 variant

LDREXH{<c>}{<q>} <Rt>, [Rn]

Decode for this encoding

t = UInt(Rt);  n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rt>  Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn>  Is the general-purpose base register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();
  address = R[n];
  AArch32.SetExclusiveMonitors(address,2);
  R[t] = ZeroExtend(MemA[address,2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.86   LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

31 28 27 26 25 24	23 22 21 20	19 16	15 12	11 8 7 6 5 4 3 0			
!=1111	0 0 0 0	P U 1 W T	!=1111	Rt	imm4H	1 0 1 1	imm4L
cond	Rn						

Offset variant

Applies when \( P = 1 \) \&\& \( W = 0 \).

\[ \text{LDRH} \langle \text{c} \rangle \{ \langle \text{q} \rangle \} \langle R_t \rangle, [\langle R_n \rangle \{, \#\langle +/\rangle\langle \text{imm} \rangle \} \]

Post-indexed variant

Applies when \( P = 0 \) \&\& \( W = 0 \).

\[ \text{LDRH} \langle \text{c} \rangle \{ \langle \text{q} \rangle \} \langle R_t \rangle, [\langle R_n \rangle], \#\langle +/\rangle\langle \text{imm} \rangle \]

Pre-indexed variant

Applies when \( P = 1 \) \&\& \( W = 1 \).

\[ \text{LDRH} \langle \text{c} \rangle \{ \langle \text{q} \rangle \} \langle R_t \rangle, [\langle R_n \rangle, \#\langle +/\rangle\langle \text{imm} \rangle]! \]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } & R_n = '1111' \text{ then SEE "LDRH (literal)"}; \\
\text{if } & P = '0' \&\& W = '1' \text{ then SEE "LDRHT"}; \\
& t = \text{UInt}(R_t); \ n = \text{UInt}(R_n); \ \text{imm32} = \text{ZeroExtend}(\text{imm4H:imm4L, 32}); \\
& \text{index} = (P = '1'); \ \text{add} = (U = '1'); \ \text{wback} = (P = '0') || (W = '1'); \\
& \text{if } t = 15 || \text{wback} \&\& n = t \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONstrained unPREDICTABLE behavior

If \( \text{wback} \&\& n = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

| 15 14 13 12|11 10 | 6 5 | 3 2 0 |
|---------------------|-------|-----|-----|-----|-----|-----|-----|-----|
| 1 0 0 0 1 | imm5  | Rn  | Rt  |

T1 variant

\[ \text{LDRH} \langle \text{c} \rangle \{ \langle \text{q} \rangle \} \langle R_t \rangle, [\langle R_n \rangle \{, \#\langle +\rangle\langle \text{imm} \rangle} \]

### Decode for this encoding

\[
\begin{align*}
t &= \text{UINT}(\text{Rt}); \\
n &= \text{UINT}(\text{Rn}); \\
\text{imm32} &= \text{ZeroExtend}(\text{imm5}: '0', 32); \\
\text{index} &= \text{TRUE}; \\
\text{add} &= \text{TRUE}; \\
\text{wback} &= \text{FALSE}; \\
\end{align*}
\]

#### T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0 15 12</th>
<th>11 11 11 0 0 0 0 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rn</td>
<td>Rt</td>
<td>imm32</td>
</tr>
</tbody>
</table>

**T2 variant**

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+<imm>}]
\]

**Offset variant**

Applies when \( \text{Rt} \neq '1111' \) & \( \text{P} = 1 \) & \( \text{U} = 0 \) & \( \text{W} = 0 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+<imm>}]
\]

**Post-indexed variant**

Applies when \( \text{P} = 0 \) & \( \text{W} = 1 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+/-<imm>}]
\]

**Pre-indexed variant**

Applies when \( \text{P} = 1 \) & \( \text{W} = 1 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+/-<imm>}]
\]

**Decode for this encoding**

\[
\begin{align*}
\text{if Rt} &= '1111' \text{ then SEE "PLD (immediate)"}; \\
\text{if Rn} &= '1111' \text{ then SEE "LDRH (literal)"}; \\
t &= \text{UINT}(\text{Rt}); \\
n &= \text{UINT}(\text{Rn}); \\
\text{imm32} &= \text{ZeroExtend}(\text{imm12, 32}); \\
\text{index} &= \text{TRUE}; \\
\text{add} &= \text{TRUE}; \\
\text{wback} &= \text{FALSE}; \\
\end{align*}
\]

// Armv8-A removes UNPREDICTABLE for R13

#### T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0 15 12</th>
<th>10 9 8 7 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rn</td>
<td>Rt</td>
<td>imm8</td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when \( \text{Rt} \neq '1111' \) & \( \text{P} = 1 \) & \( \text{U} = 0 \) & \( \text{W} = 0 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+/-<imm>}]
\]

**Post-indexed variant**

Applies when \( \text{P} = 0 \) & \( \text{W} = 1 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+/-<imm>}]
\]

**Pre-indexed variant**

Applies when \( \text{P} = 1 \) & \( \text{W} = 1 \).

\[
\text{LDRH}{<c>}{<q>} \quad \text{<Rt>}, \quad [\text{<Rn> \{, #}+/-<imm>}]
\]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{if Rn} &= '1111' \text{ then SEE "LDRH (literal)"}; \\
\text{if Rt} &= '1111' \text{ & P} = '1' \text{ & U} = '0' \text{ & W} = '0' \text{ then SEE "PLD (immediate)"}; \\
\text{if P} &= '1' \text{ & U} = '1' \text{ & W} = '0' \text{ then SEE "LDRHT"}; \\
\text{if P} &= '0' \text{ & W} = '0' \text{ then UNDEFINED}; \\
t &= \text{UINT}(\text{Rt}); \\
n &= \text{UINT}(\text{Rn}); \\
\text{imm32} &= \text{ZeroExtend}(\text{imm8, 32}); \\
\text{index} &= (\text{P} = '1'); \\
\text{add} &= (\text{U} = '1'); \\
\text{wback} &= (\text{W} = '1'); \\
\text{if (t} &= 15 \text{ & W} = '1') || (\text{wback} \& \& n = t) \text{ then UNPREDICTABLE}; \\
\end{align*}
\]

// Armv8-A removes UNPREDICTABLE for R13
**CONSTRAINED UNPREDICTABLE behavior**

If wback && n == t, then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is **UNKNOWN**. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

**Notes for all encodings**

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

**Assembler symbols**

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Rn>\) For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRH (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

\(<imm>\) For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4Hi:imm4Li" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as \(<imm>/2\).

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

**Operation for all encodings**

```plaintext
if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
```

```plaintext
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0

+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4Hi:imm4Li" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as \(<imm>/2\).

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.87 LDRH (literal)
Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses on page F2-4125.

A1

```
31 28	27 26 25 24	23 22 21 20	19 18 17 16	15 12	11 8	7 6 5 4 3 0				
0	0	0	P	U	1	W	1	1	1	1

cond

A1 variant

Applies when !(P == 0 && W == 1).

LDRH{<c>}{<q>} <Rt>, <label> // Normal form
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}imm] // Alternative form

Decode for this encoding

if P == '0' && W == '1' then SEE "LDRHT";

if P == '0' && W == '1' then SEE "LDRHT";

if P == '0' && W == '1' then SEE "LDRHT";

if P == '0' && W == '1' then SEE "LDRHT";

\[t = \text{UInt}(Rt); \quad \text{imm32} = \text{ZeroExtend}(\text{imm4H}:\text{imm4L}, 32);\]

add = (U == '1');  wback = (P == '0') || (W == '1');

add = (U == '1');  wback = (P == '0') || (W == '1');

add = (U == '1');  wback = (P == '0') || (W == '1');

add = (U == '1');  wback = (P == '0') || (W == '1');

if t == 15 || wback then UNPREDICTABLE;

CONSTRUED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: wback = FALSE;
- The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
  mode as described in LDRH (immediate). The instruction uses post-indexed addressing when P == '0' and
  uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on
  page K1-7941.

T1

```
|15 14 13 12|11 10 9|8|7 6 5 4 3 2 1 0|15 12|11 8|7 6 5 4 3 0 |
|1 |1 |1 |1 |1 |0 |0 |0 |0 |0 |U |0 |1 |1 |1 |1 |1 |0 |1 |1 |1 |1 |

Rt

imm12

T1 variant

LDRH{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}imm] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "PLD (literal)";

\[t = \text{UInt}(Rt); \quad \text{imm32} = \text{ZeroExtend}(\text{imm2l}, 32);\]

add = (U == '1');

// Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<->
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rt>
Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label>
For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/-
Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm>
For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.
The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.88 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on page F2-4125.

A1

\[
\begin{array}{cccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{cond} & \text{P} & \text{U} & \text{W} & \text{Rn} & \text{Rt} & \text{Rm} \\
1111 & 0 & 0 & 0 & \text{P} & \text{U} & \text{W} & \text{Rn} & \text{Rt} & \text{Rm}
\end{array}
\]

Offset variant

Applies when \(P = 1 \) && \(W = 0 \).

\[
\text{LDRH}\{<c>{}\}<q>\{\} \ <Rt>, \ [<Rn>, \ {+/-}\<Rm>]
\]

Post-indexed variant

Applies when \(P = 0 \) && \(W = 0 \).

\[
\text{LDRH}\{<c>{}\}<q>\{\} \ <Rt>, \ [<Rn>], \ {+/-}\<Rm>
\]

Pre-indexed variant

Applies when \(P = 1 \) && \(W = 1 \).

\[
\text{LDRH}\{<c>{}\}<q>\{\} \ <Rt>, \ [<Rn>], \ {+/-}\<Rm>!
\]

Decode for all variants of this encoding

if \(P = '0' \) && \(W = '1' \) then SEE "LDRHT";

\[
\text{t} = \text{UInt}(\text{Rt}); \ \text{n} = \text{UInt}(\text{Rn}); \ \text{m} = \text{UInt}(\text{Rm});
\]

\[
\text{index} = (\text{P} = '1'); \ \text{add} = (\text{U} = '1'); \ \text{wback} = (\text{P} = '0') || (\text{W} = '1');
\]

\[
(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, 0);
\]

if \(t = 15 || m = 15 \) then UNPREDICTABLE;

if \(\text{wback} && (n = 15 || n == t) \) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(\text{wback} \&\& n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

\[
\begin{array}{cccccccc}
|15 & 14 & 13 & 12|11 & 10 & 9 & 8 | 6 & 5 & 3 & 2 & 0 |
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 1 | \text{Rm} & \text{Rn} & \text{Rt}
\end{array}
\]

T1 variant

\[
\text{LDRH}\{<c>{}\}<q>\{\} \ <Rt>, \ [<Rn>], \ {+}\<Rm>
\]
Decode for this encoding

\[
\begin{align*}
t &= \text{UInt}(Rt); \quad n &= \text{UInt}(Rn); \quad m &= \text{UInt}(Rm); \\
\text{index} &= \text{TRUE}; \quad \text{add} &= \text{TRUE}; \quad \text{wback} &= \text{FALSE}; \\
(\text{shift}_t, \text{shift}_n) &= (\text{SRTy}pe_\text{LSL}, 0);
\end{align*}
\]

T2

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|---|
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | i=1111 | i=1111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Rn | Rt |

T2 variant

LDRH{<c>}{.W} <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]}

Decode for this encoding

if Rn == '1111' then SEE "LDRH (literal)"
if Rt == '1111' then SEE "PLDW (register)"
t = \text{UInt}(Rt); \quad n &= \text{UInt}(Rn); \quad m &= \text{UInt}(Rm); \\
\text{index} &= \text{TRUE}; \quad \text{add} &= \text{TRUE}; \quad \text{wback} &= \text{FALSE}; \\
(\text{shift}_t, \text{shift}_n) &= (\text{SRTy}pe_\text{LSL}, \text{UInt}(\text{imm}2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.
 For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.
- `/+` Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when \(U = 0 \)
 - when \(U = 1 \)
- `<imm>` If present, the size of the left shift to apply to the value from \(<Rm>\), in the range 1-3. `<imm>` is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.89 LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

A1

\[
\begin{array}{|c|}
| 31 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 | 16 & 15 | 12 & 11 | 8 & 7 | 6 | 5 | 4 | 3 | 0 |
| ! = 1111 & 0 & 0 & 0 & U & 1 & 1 & 1 & Rn & Rt & imm4H & 1 & 0 & 1 & 1 & imm4L |
| cond |
\end{array}
\]

A1 variant

LDRHT\text{(<c>){<q>}} \text{<Rt>,} [\text{<Rn>}] \{, \text{#(+/-)<imm>}}

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1'); \\
\text{register_form} = \text{FALSE}; \quad \text{imm}32 = \text{ZeroExtend}(\text{imm}4H:\text{imm}4L, 32); \\
\text{if} t == 15 \vert n == 15 \vert n == t \text{ then UNPREDICTABLE;}
\]

CONstrained UNPREDICTABLE behavior

If \(n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset addressing with the base register as PC, without writeback.

If \(n == t \&\& n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.
A2

LDRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

\[t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{postindex} = \text{TRUE}; \ \text{add} = (U == '1'); \text{register_form} = \text{TRUE}; \]
\[\text{if} \ t == 15 || n == 15 || n == t || m == 15 \text{ then UNPREDICTABLE;} \]

CONSTRAINED UNPREDICTABLE behavior

If \(n == t \&\& n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

LDRHT{<c>}{<q>} <Rt>, [Rn], {{+}<imm>}

Decode for this encoding

\[\text{if} \ Rn == '1111' \text{ then SEE "LDRH (literal)"; } \]
\[t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ \text{postindex} = \text{FALSE}; \ \text{add} = \text{TRUE}; \text{register_form} = \text{FALSE}; \ \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32); \]
\[\text{if} \ t == 15 \text{ then UNPREDICTABLE; } // \text{Arm v8-A removes UNPREDICTABLE for R13} \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- See Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.
- Is the general-purpose register to be transferred, encoded in the "Rt" field.
- Is the general-purpose base register, encoded in the "Rn" field.
For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when $U = 0$
+ when $U = 1$

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when $U = 0$
+ when $U = 1$

$<Rm>$

Is the general-purpose index register, encoded in the "Rm" field.

$+$

Specifies the offset is added to the base register.

$<imm>$

For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

```c
if ConditionPassed() then
  if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
  EncodingSpecificOperations();
  offset = if register_form then R[m] else imm32;
  offset_addr = if add then (R[n] + offset) else (R[n] - offset);
  address = if postindex then R[n] else offset_addr;
  data = MemU_unpriv(address,2);
  if postindex then R[n] = offset_addr;
  R[t] = ZeroExtend(data, 32);
```

CONSTRAINED UNPREDICTABLE behavior

If $PSTATE.EL == EL2$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.90 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

[31 28	27 26 25 24	23 22 21 20	19 16	15 12	11 8 7 6 5 4 3 0						
!=111	0 0 0	P	U	W	T	!=111	Rt	imm4H	1	1 0 1	imm4L
cond	Rn										

Offset variant
Applies when \(P = 1 && W = 0 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant
Applies when \(P = 0 && W = 0 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when \(P = 1 && W = 1 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]

Decode for all variants of this encoding

If \(Rn = '1111' \) then SEE "LDRSB (literal)";
if \(P = '0' && W = '1' \) then SEE "LDRSBT";
\(t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ imm32 = \text{ZeroExtend}(\text{imm}4H:\text{imm}4L, 32)\);
\(\text{index} = (P == '1'); \ \text{add} = (U == '1'); \ \text{wback} = (P == '0') || (W == '1'); \)
if \(t == 15 \) || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(\text{wback} \&\& n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

<table>
<thead>
<tr>
<th>[15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
<th>15 12</th>
<th>11 0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 0 1</td>
<td>1=111</td>
<td>1=111</td>
<td>imm12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rn</td>
<td>Rt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

LDRSB{<c>}{<q>} <Rt>, [Rn] {, #{+/-}<imm>}]
Decode for this encoding

if Rt == '1111' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";
\[t = \text{UInt}(\text{Rt}); \ n = \text{UInt}(\text{Rn}); \ \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \]
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T2

\[
\begin{array}{cccccccccccc}
|15 & 14 & 13 & 12|11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 | 0 | 15 & 12 & 11 & 10 & 9 & 8 & 7 |
\end{array}
\]
\[
\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
1 \\
=1111 \\
Rt \\
P \\
U \\
W \\
\text{imm8} \\
Rn
\end{array}
\]

Offset variant
Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.
LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant
Applies when P == 0 && W == 1.
LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant
Applies when P == 1 && W == 1.
LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-<imm}>]

Decode for all variants of this encoding

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";
if P == '1' && U == '1' && W == '0' then SEE "LDRSBT";
if P == '0' && W == '0' then UNDEFINED;
\[t = \text{UInt}(\text{Rt}); \ n = \text{UInt}(\text{Rn}); \ \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32); \]
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

See Standard assembler syntax fields on page F2-4120.
See Standard assembler syntax fields on page F2-4120.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/− Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \(U = 0 \)
+ when \(U = 1 \)

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    offset_addr = if add then \( R[n] + \text{imm32} \) else \( R[n] - \text{imm32} \);
    address = if index then offset_addr else \( R[n] \);
    R[t] = SignExtend(MemU[address,1], 32);
    if wback then \( R[n] = \text{offset_addr} \);
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.91 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| !0 | 111 | 0 | 0 | 0 | P | U | W | 1 | 1 | 1 | 1 | Rt | imm4H | 1 | 1 | 0 | 1 | imm4L |

A1 variant

Applies when !(P == 0 && W == 1).

LDRSB{<c>}{<q>} <Rt>, <label> // Normal form
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

if P == '0' && W == '1' then SEE "LDRSBT";

if P == '0' && W == '1'

t = UInt(Rt);
imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1');
wbback = (P == '0') || (W == '1');

if t == 15 || wbback then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If wbback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wbback = FALSE.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRSB (immediate). The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on page K1-7941.

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>l001</td>
<td>imm12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

LDRSB{<c>}{<q>} <Rt>, <label> // Preferred syntax
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "PLI";

t = UInt(Rt);
imm32 = ZeroExtend(imm12, 32);
add = (U == '1');

// Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.92 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on page F2-4125.

A1

Offset variant
Applies when \(P == 1 \) && \(W == 0 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed variant
Applies when \(P == 0 \) && \(W == 0 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed variant
Applies when \(P == 1 \) && \(W == 1 \).
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Decode for all variants of this encoding

if \(P == '0' \) && \(W == '1' \) then SEE "LDRSBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

T1 variant
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]
Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\]

\[
(\text{shift}_t, \text{shift}_n) = (\text{SRTtype}_\text{LSL}, 0);
\]

T2

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{Rn} \quad \text{Rt}
\]

T2 variant

\[
\text{LDRSB}\{c\}.W <Rt>, \lbrack <Rn>,{+}\{Rm\} \rbrack \quad // <Rt>, <Rn>, <Rm> can be represented in T1
\]

Decode for this encoding

\[
\text{if} \ Rt == '1111' \text{ then SEE "PLI"};
\]

\[
\text{if} \ Rn == '1111' \text{ then SEE "LDRSB (literal)"};
\]

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\]

\[
(\text{shift}_t, \text{shift}_n) = (\text{SRTtype}_\text{LSL}, \text{UInt}(\text{imm}2));
\]

\[
\text{if} \ m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) \quad \text{See Standard assembler syntax fields on page F2-4120.}

\(<q>\) \quad \text{See Standard assembler syntax fields on page F2-4120.}

\(<\text{Rt}>\) \quad \text{Is the general-purpose register to be transferred, encoded in the "Rt" field.}

\(<\text{Rn}>\) \quad \text{For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.}

\quad \text{For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.}

\(<+/>\) \quad \text{Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:}

\quad - \quad \text{when } U = 0

\quad + \quad \text{when } U = 1

\(<\text{Rm}>\) \quad \text{Is the general-purpose index register, encoded in the "Rm" field.}

\(<\text{imm}>\) \quad \text{If present, the size of the left shift to apply to the value from } <\text{Rm}>, \text{ in the range 1-3. } <\text{imm}> \text{ is encoded in } \text{imm}2. \text{ If absent, no shift is specified and } \text{imm}2 \text{ is encoded as } 0b00.

Operation for all encodings

\[
\text{if ConditionPassed()} \text{ then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{offset} = \text{Shift}(R[m], \text{shift}_{t}, \text{shift}_n, \text{PSTATE.C});
\]
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.93 LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRSBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

A1

```
[31 28|27 26 25 24|23 22 21 20]|19 16|15 12|11 8 7 6 5 4 3 0 |
| !=1111 | 0 0 0 | 0 U 1 1 | 1 | Rn | Rt | imm4H | 1 1 0 | 1 | imm4L |
```

A1 variant

LDRSBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

```
t = Uint(Rt);  n = Uint(Rn);  postindex = TRUE;  add = (U == '1');
register_form = FALSE;  imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;
```

CONSTRAINED UNPREDICTABLE behavior

If \(n = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset addressing with the base register as PC, without writeback.

If \(n = t \ & n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.
A2

LDRSBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

1. \(t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ postindex = \text{TRUE}; \ add = (U == '1'); \)
2. \(\text{register_form} = \text{TRUE}; \)
3. \(\text{if} \ t == 15 || n == 15 || n == t || m == 15 \text{ then } \text{UNPREDICTABLE}; \)

CONSTRAINED UNPREDICTABLE behavior

If \(n == t \&\& n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

LDRSBT{<c>}{<q>} <Rt>, [<Rn> \{, #{+}<imm>\}]

Decode for this encoding

1. \(\text{if} \ Rn == '1111' \text{ then } \text{SEE "LDRSB (literal)"}; \)
2. \(t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ postindex = \text{FALSE}; \ add = \text{TRUE}; \)
3. \(\text{register_form} = \text{FALSE}; \ \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32); \)
4. \(\text{if} \ t == 15 \text{ then UNPREDICTABLE}; \ // \text{Armv8-A removes UNPREDICTABLE for R13} \)

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.
+/− For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)

\(<Rm>\) Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

\(<imm>\) For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

```c
if ConditionPassed() then
    if PSTATE_EL == EL2 then UNPREDICTABLE; // Hyp mode
    EncodingSpecificOperations();
    offset = if register_form then R[m] else imm32;
    offset_addr = if add then (R[n] + offset) else (R[n] - offset);
    address = if postindex then R[n] else offset_addr;
    R[t] = SignExtend(MemU_unpriv[address,1], 32);
    if postindex then R[n] = offset_addr;
```

CONSTRAINED UNPREDICTABLE behavior

If \(PSTATE_EL == EL2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as LDRSB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.94 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory access on page F2-4125.

A1

<table>
<thead>
<tr>
<th>31 28 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=111</td>
</tr>
<tr>
<td>cond</td>
</tr>
</tbody>
</table>

Offset variant

Applies when P == 1 && W == 0.
LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when P == 0 && W == 0.
LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.
LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if P == '0' && W == '1' then SEE "LDRSHT";
 t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
 index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 0 1 1 !=111</td>
</tr>
<tr>
<td>Rn</td>
</tr>
</tbody>
</table>

T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}imm}]}
Decode for this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>2 1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 1 0 1 1</td>
<td>1=1111</td>
<td>Rt</td>
<td>P</td>
<td>U</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rt != 1111 && P == 1 && U == 0 && W == 0.
LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed variant

Applies when P == 0 && W == 1.
LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when P == 1 && W == 1.
LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]

Decode for all variants of this encoding

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related instructions";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register
 that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
 address might be corrupted so that the instruction cannot be repeated.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store single on page F3-4201.
Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rt>
Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

+/-
Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.

<imm>
For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.95 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 8 7 6 5 4 3 0 |
| !=1111 | 0 0 0 | P | U | W | 1 | 1 | 1 | 1 | Rt | imm4H | 1 | 1 | 1 | imm4L |
```

cond

A1 variant

Applies when !(P == 0 && W == 1).

\[\text{LDRSH}\{<c>}\{<q>\} <Rt>, <label> \] // Normal form
\[\text{LDRSH}\{<c>\}{<q>} <Rt>, [PC, #{+/-}imm] \] // Alternative form

Decode for this encoding

if P == '0' && W == '1' then SEE "LDRSHT";
\[t = \text{UInt}(Rt); \text{imm32} = \text{ZeroExtend}(\text{imm4H:imm4L}, 32); \]
\[\text{add} = (U == '1'); \text{wback} = (P == '0') || (W == '1'); \]
if t == 15 || wback then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: wback = FALSE;
- The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRSH (immediate). The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15 on page K1-7941.

T1

```
| 15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 8 7 6 5 4 3 0 |
| 1 1 1 1 1 0 0 1 | U | 0 | 1 | 1 | 1 | 1 | imm12 |
| !=1111 |
```

Rt

T1 variant

\[\text{LDRSH}\{<c>\}{<q>} <Rt>, <label> \] // Preferred syntax
\[\text{LDRSH}\{<c>\}{<q>} <Rt>, [PC, #{+/-}imm] \] // Alternative syntax

Decode for this encoding

if Rt == '1111' then SEE "Related instructions";
\[t = \text{UInt}(Rt); \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \text{add} = (U == '1'); \]
// Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load, signed (literal) on page F3-4209.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rt>
Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label>
For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

<imm>
For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.96 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on page F2-4125.

A1

31 28	27 26 25 24	23 22 21 20	19 16	15 10 9 8	7 6 5 4	3 0	
	0	0	0	P	U	W	T
cond	Rn	Rt					

Offset variant

Applies when \(P == 1 \land W == 0 \).

\[
\text{LDRSH}\{<c>\}{<q>} \ <Rt>, \ [<Rn>, \ {+/-}Rm]
\]

Post-indexed variant

Applies when \(P == 0 \land W == 0 \).

\[
\text{LDRSH}\{<c>\}{<q>} \ <Rt>, \ [<Rn>], \ {+/-}Rm
\]

Pre-indexed variant

Applies when \(P == 1 \land W == 1 \).

\[
\text{LDRSH}\{<c>\}{<q>} \ <Rt>, \ [<Rn>, \ {+/-}Rm]!
\]

Decode for all variants of this encoding

\[
\text{if } P == '0' \land W == '1' \text{ then } \text{SEE "LDRSHT"};
\text{t} = \text{UInt}(Rt); \text{n} = \text{UInt}(Rn); \text{m} = \text{UInt}(Rm);
\text{index} = (P == '1'); \text{add} = (U == '1'); \text{wback} = (P == '0') || (W == '1');
(shift_t, shift_n) = (\text{SRType}_\text{LSL}, 0);
\text{if } t == 15 || m == 15 \text{ then UNPREDICTABLE;}
\text{if } wback \land (n == 15 || n == t) \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(\text{wback} \land n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is <arm-defined-word>unknown</arm-defined-word>. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 1 1</td>
<td>Rm</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>
T1 variant

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]
\[
\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\]
\[
\text{(shift}_t, \text{shift}_n) = (\text{SRType}_\text{LSL}, 0);
\]

T2

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>l=111</td>
<td>l=111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mm2</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rn Rt

T2 variant

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

if \(Rn = \text{‘}1111\text{‘} \) then SEE "LDRSH (literal)"
if \(Rt = \text{‘}1111\text{‘} \) then SEE "Related instructions"
\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]
\[
\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\]
\[
\text{(shift}_t, \text{shift}_n) = (\text{SRType}_\text{LSL}, \text{UInt}(imm2));
\]
if \(m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related instructions: Load/store, signed (register offset) on page F3-4206.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
\(<Rn>\) For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

\(-\) Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \(U = 0 \)
+ when \(U = 1 \)

\(+\) Specifies the index register is added to the base register.

\(<Rm>\) Is the general-purpose index register, encoded in the "Rm" field.

\(<imm>\) If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address, 2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.97 **LDRSHT**

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see [Memory accesses on page F2-4125](#).

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRSHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 | 7 6 5 4 3 0 |
|----|----|--------|--------|----|----|----|---|---|---|---|---|---|---|---|
| !=1111 | 0 0 0 0 | U 1 1 1 | Rn | Rt | imm4H | 1 1 1 1 | imm4L |

cond

A1 variant

LDRSHT{<c>}{<q}> <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1');
\]

\[
\text{register_form} = \text{FALSE}; \quad \text{imm32} = \text{ZeroExtend}(\text{imm4H}:\text{imm4L}, 32);
\]

\[
\text{if } t == 15 || n == 15 || n == t \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in [Using R15 on page K1-7941](#).
- The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset addressing with the base register as PC, without writeback.

If \(n == t \) && \(n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.
A2

LDRSHT\{<c>\}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1');
\]
\[
\text{register_form} = \text{TRUE};
\]
\[
\text{if } t == 15 \text{ || } n == 15 \text{ || } n == t \text{ || } m == 15 \text{ then UNPREDICTABLE;}
\]

CONSTRUANED UNPREDICTABLE behavior

If \(n == t \text{ && } n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

LDRSHT\{<c>\}{<q>} <Rt>, [<Rn> \{, #{+}<imm>\}]

Decode for this encoding

if \(Rn == '1111' \) then SEE "LDRSH (literal)";
\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{postindex} = \text{FALSE}; \quad \text{add} = \text{TRUE};
\]
\[
\text{register_form} = \text{FALSE}; \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]
\[
\text{if } t == 15 \text{ then UNPREDICTABLE; \quad // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRUANED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\)
\[
\text{See Standard assembler syntax fields on page F2-4120.}
\]
\(<q>\)
\[
\text{See Standard assembler syntax fields on page F2-4120.}
\]
\(<Rt>\)
\[
\text{Is the general-purpose register to be transferred, encoded in the "Rt" field.}
\]
\(<Rn>\)
\[
\text{Is the general-purpose base register, encoded in the "Rn" field.}
\]
For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when $U = 0$
- when $U = 1$

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when $U = 0$
- when $U = 1$

r_m is the general-purpose index register, encoded in the "Rm" field.

+ specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
    EncodingSpecificOperations();
    offset = if register_form then R[m] else imm32;
    offset_addr = if add then (R[n] + offset) else (R[n] - offset);
    address = if postindex then R[n] else offset_addr;
    data = MemU_unpriv[address,2];
    if postindex then R[n] = offset_addr;
    R[t] = SignExtend(data, 32);
```

CONSTRANDED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as LDRSH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.98 LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or an optionally-shifted register value.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 0 1 0</td>
<td>0</td>
<td>U</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>
```

cond

A1 variant

LDRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

```
t = UInt(Rt);  n = UInt(Rn);  postindex = TRUE;  add = (U == '1');
register_form = FALSE;  imm32 = ZeroExtend(imm12, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;
```

CONSTRANGED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot be repeated.
A2

Decoded for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1'); \quad \text{register} _ \text{form} = \text{TRUE}; \quad \text{postindex} = \text{TRUE}; \quad (\text{shift} _ t, \text{shift} _ n) = \text{DecodeImmShift} _ \text{imm5};
\]

If \(t == 15 \) \&\& \(n == 15 \) \&\& \(m == 15 \) then UNPREDICTABLE;

CONSTRUCTED UNPREDICTABLE behavior

If \(n == t \) \&\& \(n != 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

Decoded for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{postindex} = \text{FALSE}; \quad \text{add} = \text{TRUE}; \quad \text{register} _ \text{form} = \text{FALSE}; \quad \text{imm32} = \text{ZeroExtend} _ \text{imm8}, 32;
\]

If \(t == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRUCTED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <p> See Standard assembler syntax fields on page F2-4120.
- <Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated. For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

T2 and A32 Base Instruction Set Instruction Descriptions

F5.1 Alphabetical list of T32 and A32 base instruction set instructions

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/− For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 data = MemU_unpriv[address,4];
 if postindex then R[n] = offset_addr;
 R[t] = data;

CONstrained UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as LDR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.99 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

```
<table>
<thead>
<tr>
<th>31 28 25 24 23 21 20 19 17 16 15</th>
<th>12 11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111</td>
<td>Rd</td>
<td>l=000000</td>
</tr>
<tr>
<td>cond</td>
<td>S</td>
<td>imm5  stype</td>
</tr>
</tbody>
</table>
```

MOV, shift or rotate by value variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0</td>
<td>l=00000</td>
<td>Rm</td>
<td>Rd</td>
</tr>
<tr>
<td>op</td>
<td>imm5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T2 variant

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm> // Inside IT block

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 12 11</th>
<th>8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1</td>
<td>0 0 1 0 0 1 1</td>
<td>imm3</td>
<td>Rd</td>
<td>imm2 0 0</td>
<td>Rm</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>stype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

MOV, shift or rotate by value variant

LSL{<c>}.W {<Rd>,} <Rm>, #<imm> // Inside IT block, and <Rd>, <Rm>, #<imm> can be represented in T2

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

- **<c>** See *Standard assembler syntax fields on page F2-4120*.
- **<q>** See *Standard assembler syntax fields on page F2-4120*.
- **<Rd>** For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993*. For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.
- **<Rm>** For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated. For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.
- **<imm>** For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm> modulo 32. For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount> modulo 32. For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm> modulo 32.

Operation for all encodings

The description of **MOV, MOVS (register)** gives the operational pseudocode for this instruction.
F5.1.100 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
- The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 28 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd</td>
<td>Rs</td>
<td>0 0 1 1 0 0 (0) (0) (0) (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>S</td>
<td>stype</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not flag setting variant

LSL<>{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV<>{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>0 1 0</td>
<td>Rs</td>
<td>Rdm</td>
</tr>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical shift left variant

LSL<>{<c>}{<q>} {<Rdm>,} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV<>{<c>}{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12	11 10 9 8	7 6 5 4	3 0	15 14 13 12	11 8 7 6 5 4 3 0		
1 1 1 1	0 1 0 0 0 0	0 0 0 0	Rm	1 1 1 1	Rd	0 0 0 0	Rs
stype	S						
LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>
and is always the preferred disassembly.

Assembler symbols

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rdm>` Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` Is the first general-purpose source register, encoded in the "Rm" field.
- `<Rs>` Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.101 **LSLS (immediate)**

Logical Shift Left, setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
- The PE checks SPSR_<current_mode> for an illegal return event. See *Illegal return events from AArch32 state* on page G1-5766.
- The instruction is UNDEFINED in Hyp mode.
- The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 1</td>
<td>0 1 1</td>
<td>(0) (0) (0) (0)</td>
<td>Rd</td>
<td>!=00000</td>
<td>0 0 0</td>
<td>Rm</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>S</td>
<td>imm5</td>
<td>stype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

MOV, shift or rotate by value variant

LSLS{<c>{<q>} <Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>{<q>}} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0</td>
<td>!=00000</td>
<td>Rm</td>
<td>Rd</td>
</tr>
<tr>
<td>op</td>
<td>imm5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T2 variant

LSLS{<q>} <Rd>, #<imm> // Outside IT block

is equivalent to

MOV{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().
T3

MOVS, shift or rotate by value variant

LSLS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler symbols

See Standard assembler syntax fields on page F2-4120.

For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.102 LSLS (register)

Logical Shift Left, setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
- The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 18 17 16|15 | 12|11 | 8 7 6 5 4 3 0 |
|----|----|-----------|-----------|-----------|
|说实话 | 0 0 0 0 1 1 0 |
|cond | S | Rd | Rs | stype |

Flag setting variant

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 0 0 1 0</td>
<td>Rs</td>
<td>Rdm</td>
<td></td>
</tr>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical shift left variant

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

| 15 14 13 12|11 10 9 | 8 7 6 5 4 3 | 0 | 15 14 13 12|11 | 8 7 6 5 4 3 0 |
|----|
|1 1 1 1 1 0 1 0 0 0 0 1 | Rm | 1 1 1 1 | Rd | 0 0 0 0 | Rs |
|stype | S |
and is always the preferred disassembly.

\[\text{LSLS}\{<c>\}<q>\{<Rd>,\} <Rm>, <Rs> \]

is equivalent to

\[\text{MOVS}\{<c>\}<q>\{<Rd>, <Rm>, \text{LSL} <Rs> \]

and is always the preferred disassembly.

Assembler symbols

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rdm>` Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` Is the first general-purpose source register, encoded in the "Rm" field.
- `<Rs>` Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.103 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and writes the result to the destination register.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{cccccccccccc}
|31& 28|27 26 25|24|23|22 21 20|19 18 17 16|15| 12|11| 7 6 5 4 3 0 |
\end{array}
\]

\begin{array}{cccccccccccc}
cond & S & stype \\
\end{array}

MOV, shift or rotate by value variant

\[
\text{LSR} <c> \{<q>\} \{<Rd>,\} <Rm>, \#<imm>
\]

is equivalent to

\[
\text{MOV} <c> \{<q>\} <Rd>, <Rm>, \text{LSR} \#<imm>
\]

and is always the preferred disassembly.

T2

\[
\begin{array}{cccccccccccc}
|15 14 13 12|11 10| 6 5|3 2 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccc}
0 0 0 0 1 1 & & \text{imm5} & \text{Rm} & \text{Rd} \\
\end{array}
\]

T2 variant

\[
\text{LSR} <c> \{<q>\} \{<Rd>,\} <Rm>, \#<imm> \quad \text{// Inside IT block}
\]

is equivalent to

\[
\text{MOV} <c> \{<q>\} <Rd>, <Rm>, \text{LSR} \#<imm>
\]

and is the preferred disassembly when InITBlock().

T3

\[
\begin{array}{cccccccccccc}
|15 14 13 12|11 10 9 8|7 6 5 4 3 2 1 0|15 14|12|11| 8 7 6 5 4 3 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccc}
1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 & & \text{imm3} & \text{Rd} & \text{imm2} & 0 1 & \text{Rm} \\
\end{array}
\]

MOV, shift or rotate by value variant

\[
\text{LSR} <c> .W \{<Rd>,\} <Rm>, \#<imm> \quad \text{// Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2}
\]

is equivalent to

\[
\text{MOV} <c> \{<q>\} <Rd>, <Rm>, \text{LSR} \#<imm>
\]

and is always the preferred disassembly.

\[
\text{LSR} <c> \{<q>\} \{<Rd>,\} <Rm>, \#<imm>
\]
is equivalent to

\[\text{MOV}\{c\}\{q\}\ R_d, R_m, \text{LSR} \ #\text{imm} \]

and is always the preferred disassembly.

Assembler symbols

\(<c>\)
See *Standard assembler syntax fields* on page F2-4120.

\(<q>\)
See *Standard assembler syntax fields* on page F2-4120.

\(<R_d>\)
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993. For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

\(<R_m>\)
For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated. For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

\(<\text{imm}>\)
For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as \(<\text{imm}>\) modulo 32. For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as \(<\text{imm}>\) modulo 32.

Operation for all encodings

The description of MOV, MOV\(S\) (register) gives the operational pseudocode for this instruction.
F5.1.104 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the result to the destination register. The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVs (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVs (register-shifted register).
- The description of MOV, MOVs (register-shifted register) gives the operational pseudocode for this instruction.

A1

31	28 27 26 25 24	23 22 21 20	19 18 17 16	15	12	11	8	7	6	5	4	3	0						
cond	!=1111	0	0	0	1	1	0	0	(0)	(0)	(0)		Rd	Rs	0	0	1	1	Rm
stype																			

Not flag setting variant

\[\text{LSR} \{<c>\}{<q>} \{<Rdm>,} <Rm>, <Rs> \]

is equivalent to

\[\text{MOV} \{<c>\}{<q>} <Rd>, <Rm>, \text{LSR} <Rs> \]

and is always the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>3</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical shift right variant

\[\text{LSR}<c>{<q>} <Rdm>,} <Rm>, <Rs> // Inside IT block \]

is equivalent to

\[\text{MOV}<c>{<q>} <Rd>, <Rm>, \text{LSR} <Rs> \]

and is the preferred disassembly when \text{InITBlock}().

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15 14 13 12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Rm</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rd</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Not flag setting variant

\[\text{LSR}<c>.W <Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1 \]

equivalent to

\[\text{MOV}<c>{<q>} <Rd>, <Rm>, \text{LSR} <Rs> \]

and is always the preferred disassembly.
LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>
and is always the preferred disassembly.

Assembler symbols

{<c>} See Standard assembler syntax fields on page F2-4120.
{<q>} See Standard assembler syntax fields on page F2-4120.
{Rdm} Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
{Rd} Is the general-purpose destination register, encoded in the "Rd" field.
{Rm} Is the first general-purpose source register, encoded in the "Rm" field.
<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.105 LSRS (immediate)

Logical Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and writes the result to the destination register.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
- The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
- The instruction is UNDEFINED in Hyp mode.
- The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

```

| 31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 | 7 6 5 4 3 0 | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 0 1 1 | 0 1 | (0) | (0) | (0) | Rd | imm5 | 0 1 0 | Rm |

cond S stype
```

MOVS, shift or rotate by value variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

```

| 15 14 13 12 | 11 10 | 6 5 | 3 2 0 |
|---|---|---|---|---|
| 0 0 0 0 1 | imm5 | Rm | Rd |

op
```

T2 variant

LSRS{<q>} {<Rd>,} <Rm>, #<imm> // Outside IT block

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().
MOVS, shift or rotate by value variant

LSRS.W {<Rd>,} <Rm>, #<imm> // Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm> modulo 32.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.106 LSRS (register)

Logical Shift Right, setting flags (register) shifts a register value right by an immediate number of bits, shifting in zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
- The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

A1

31 28	27 26 25 24	23 22 21 20	19 18 17 16	15 12	11 8 7 6 5 4 3 0	
1=1111	0 0 0 1 1	0 1 1 (0) (0) (0)	Rd	Rs	0 0 1 1	Rm
cond	S	stype				

Flag setting variant

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>0 0 1 1</td>
<td>Rs</td>
<td>Rdm</td>
</tr>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical shift right variant

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block

is equivalent to

MOV{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0</td>
<td>0 0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>stype</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flag setting variant

LSRS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>
and is always the preferred disassembly.

\[
\text{LSRS} \{<c>\} \{<q>\} \{<Rd>,\} \{<Rm>,\} <Rs>
\]

is equivalent to

\[
\text{MOVS} \{<c>\} \{<q>\} <Rd>, <Rm>, \text{LSR} <Rs>
\]

and is always the preferred disassembly.

Assembler symbols

\(<c>\) See *Standard assembler syntax fields* on page F2-4120.

\(<q>\) See *Standard assembler syntax fields* on page F2-4120.

\(<Rdm>\) Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rm>\) Is the first general-purpose source register, encoded in the "Rm" field.

\(<Rs>\) Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.107 MCR

Move to System register from general-purpose register or execute a System instruction. This instruction copies the value of a general-purpose register to a System register, or executes a System instruction.

The System register and System instruction descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For more information see About the AArch32 System register interface on page E1-4011 and General behavior of System registers on page G8-6134.

In an implementation that includes EL2, MCR accesses to System registers can be trapped to Hyp mode, meaning that an attempt to execute an MCR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable controls on page G1-5827.

Because of the range of possible traps to Hyp mode, the MCR pseudocode does not show these possible traps.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23</th>
<th>21 20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>opc1</td>
<td>0</td>
<td>CRn</td>
<td>Rt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>opc2</td>
<td>1</td>
<td>CRm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cond
coproc<3:1>
coproc<0>

A1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

| 15 |14 |13 |12|11 |10 |9 |8 |7 |5 |4 |3 |0 |15 |12|11 | 9 |8 |7 |5 |4 |3 |0 |
| 1 |1 |1 |0 |1 |1 |0 |opc1 |0 | CRn | Rt |1 |1 |1 | opc2 |1 | CRm |

coproc<3:1>
coproc<0>

T1 variant

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

Decode for this encoding

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

See Standard assembler syntax fields on page F2-4120.

>
<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following values:
 p14 when coproc<0> = 0
 p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 7, encoded in the "opc1" field.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to 7, encoded in the "opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and System instruction encoding space. Not all of this space is allocated, and the System register and System instruction descriptions identify the allocated encodings.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.SysRegWrite(cp, ThisInstr(), R[t]);
F5.1.108 MCRR

Move to System register from two general-purpose registers. This instruction copies the values of two general-purpose registers to a System register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For more information see About the AArch32 System register interface on page E1-4011 and General behavior of System registers on page G8-6134.

In an implementation that includes EL2, MCRR accesses to System registers can be trapped to Hyp mode, meaning that an attempt to execute an MCRR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable controls on page G1-5827.

Because of the range of possible traps to Hyp mode, the MCRR pseudocode does not show these possible traps.

A1

| 31 28 25 24 23 22 21 20 19 16 15 12 11 9 8 7 4 3 0 |
|---------------------------------|---------------------------------|
| cond !=1111 1 1 0 0 0 1 0 0 | Rt2 1 1 1 opc1 CRm |
| coproc<3:1> | coproc<0> |

A1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad t2 = \text{UInt}(Rt2); \quad cp = \text{if coproc}<0> == '0' \text{ then } 14 \text{ else } 15; \\
\text{if } t == 15 \text{ || } t2 == 15 \text{ then UNPREDICTABLE}; \\
// Armv8-A removes UNPREDICTABLE for R13
\]

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 9 8 7 4 3 0 |
|---------------------------------|---------------------------------|
| coproc<3:1> | coproc<0> |

T1 variant

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad t2 = \text{UInt}(Rt2); \quad cp = \text{if coproc}<0> == '0' \text{ then } 14 \text{ else } 15; \\
\text{if } t == 15 \text{ || } t2 == 15 \text{ then UNPREDICTABLE}; \\
// Armv8-A removes UNPREDICTABLE for R13
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\[
<
\]

See Standard assembler syntax fields on page F2-4120.
<coproc> Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following values:
 p14 when coproc<0> = 0
 p15 when coproc<0> = 1

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in the "opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRm" field.

The possible values of \{<coproc>, <opc1>, <CRm>\} encode the entire System register encoding space. Not all of this space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected System register, while <Rt> transfers bits[31:0].

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    value = R[t2]:R[t];
    AArch32.SysRegWrite64(cp, ThisInstr(), value);
```
F5.1.109 MLA, MLAS

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the source register values are considered to be signed values or unsigned values.

In an A32 instruction, the condition flags can optionally be updated based on the result. Use of this option adversely affects performance on many implementations.

A1

| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0 | !=1111 0 0 0 0 0 1 S Rd Ra Rm 1 0 0 1 Rn |
|---|
| cond |

Flag setting variant

Applies when $S == 1$.

MLAS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Not flag setting variant

Applies when $S == 0$.

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

$$d = \text{UInt}(Rd); n = \text{UInt}(Rn); m = \text{UInt}(Rm); a = \text{UInt}(Ra); \text{setflags} = (S == '1');$$

if $d == 15 || n == 15 || m == 15 || a == 15$ then UNPREDICTABLE;

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0 | 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn !=1111 Rd 0 0 0 0 Rm |
|--|
| Ra |

T1 variant

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if $Ra == '1111$' then SEE "MUL";

$$d = \text{UInt}(Rd); n = \text{UInt}(Rn); m = \text{UInt}(Rm); a = \text{UInt}(Ra); \text{setflags} = \text{FALSE};$$

if $d == 15 || n == 15 || m == 15$ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

{<c>} See Standard assembler syntax fields on page F2-4120.

{<q>} See Standard assembler syntax fields on page F2-4120.

{<Rd>} Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.110 MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value. The least significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the source register values are considered to be signed values or unsigned values.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15| 12|11| 8| 7| 6| 5| 4| 3| 0|
| !=1111| 0| 0| 0| 0| 1| 1| 0| Rd| Ra| Rm| 1| 0| 0| 1| Rn|
cond
```

A1 variant

\[\text{MLS}\{c\}\{q\}\ <Rd>, <Rn>, <Rm>, <Ra>\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra);
\]

\[
\text{if } d == 15 \text{ } || \text{ } n == 15 \text{ } || \text{ } m == 15 \text{ } || \text{ } a == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0|15|12|11| 8| 7| 6| 5| 4| 3| 0|
| 1| 1| 1| 1| 0| 1| 1| 0| 0| 0| Rn| Ra| Rd| 0| 0| 0| 1| Rm|
```

T1 variant

\[\text{MLS}\{c\}\{q\}\ <Rd>, <Rn>, <Rm>, <Ra>\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra);
\]

\[
\text{if } d == 15 \text{ } || \text{ } n == 15 \text{ } || \text{ } m == 15 \text{ } || \text{ } a == 15 \text{ then UNPREDICTABLE;}
\]

// Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
- `<Ra>` Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.111 MOV, MOVS (immediate)

Move (immediate) writes an immediate value to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The MOV variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11</th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0</td>
<td>1 1</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>(0)(0)(0)(0)</td>
<td>Rd</td>
<td>imm12</td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOV variant

Applies when \(S = 0 \).

MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when \(S = 1 \).

MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \text{setflags} = (S == '1'); (\text{imm32}, \text{carry}) = \text{A32ExpandImm}_C(\text{imm12}, \text{PSTATE}.C); \]

A2

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0</td>
<td>1 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>imm4</td>
<td>Rd</td>
<td>imm12</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> can not be represented in A1

MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in A1

Decode for this encoding

\[d = \text{UInt}(Rd); \text{setflags} = \text{FALSE}; \text{imm32} = \text{ZeroExtend}(\text{imm4:imm12}, 32); \]

if \(d == 15 \) then UNPREDICTABLE;
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 0 0</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

MOV<c>{<q>} <Rd>, #<imm8> // Inside IT block
MOV5{<q>} <Rd>, #<imm8> // Outside IT block

Decode for this encoding

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = PSTATE.C;

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
</tr>
</tbody>
</table>

MOV variant

Applies when $S = 0$.

MOV<c>.W <Rd>, #<const> // Inside IT block, and <Rd>, <const> can be represented in T1
MOV{<c>}{<q>} <Rd>, #<const>

MOVS variant

Applies when $S = 1$.

MOVS.W <Rd>, #<const> // Outside IT block, and <Rd>, <const> can be represented in T1
MOVS{<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 i 1 0 0 1 0 0 imm4 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
</tr>
</tbody>
</table>

T3 variant

MOV{<c>}{<q>} <Rd>, #<imm16> // <imm16> cannot be represented in T1 or T2
MOVW{<c>}{<q>} <Rd>, #<imm16> // <imm16> can be represented in T1 or T2

Decode for this encoding

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<
> See Standard assembler syntax fields on page F2-4120.

<Rd>

For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used:

- For the MOV variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the MOVS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding A2, T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<imm8>

Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16>

For encoding A2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:imm12" field.

For encoding T3: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8" field.

<const>

For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
result = imm32;
if d == 15 then // Can only occur for encoding A1
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.112 MOV, MOVS (register)

Move (register) copies a value from a register to the destination register.

If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The MOV variant of the instruction is a branch. In the T32 instruction set (encoding T1) this is a simple branch, and in the A32 instruction set it is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

- The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate), LSRS (immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX. See Alias conditions on page F5-4557 for details of when each alias is preferred.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 12 | 11 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| !=1111 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | S | (0) | (0) | (0) | Rd | imm5 | stype | 0 | Rm |

MOV, rotate right with extend variant

Applies when $S == 0$ && $imm5 == 00000$ && $stype == 11$.

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value variant

Applies when $S == 0$ && !(imm5 == 00000 && stype == 11).

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when $S == 1$ && $imm5 == 00000$ && $stype == 11$.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when $S == 1$ && !(imm5 == 00000 && stype == 11).

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

$$d = UInt(Rd); \quad m = UInt(Rm); \quad setflags = (S == '1');$$

$$\text{(shift}_t, \text{shift}_n) = \text{DecodeImmShift(stype, imm5)};$$
T1

\[
\begin{array}{cccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 3 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & D & Rm & Rd \\
\end{array}
\]

T1 variant

\texttt{MOV\{<c>\}{<q>} <Rd>, <Rm>}

\textit{Decode for this encoding}

\[
d = \text{UInt}(D:Rd); \quad m = \text{UInt}(Rm); \quad \text{setflags} = \text{FALSE};
\]

\[
(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, 0);
\]

\[
\text{if } d == 15 \&\& \text{InITBlock()} \&\& !\text{LastInITBlock()} \text{ then UNPREDICTABLE;}
\]

T2

\[
\begin{array}{cccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 3 & 2 & 0 \\
0 & 0 & 0 & 1 & m & = & t & 1 & \text{imm5} & Rm & Rd \\
\end{array}
\]

T2 variant

\texttt{MOV\{<cp>\} <Rd>, <Rm> \{, <shift> #<amount>\} // Inside IT block}

\texttt{MOV\{<cp>\} <Rd>, <Rm> \{, <shift> #<amount>\} // Outside IT block}

\textit{Decode for this encoding}

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad \text{setflags} = \text{InITBlock();}
\]

\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(op, \text{imm5});
\]

\[
\text{if } op == '00' \&\& \text{imm5} == '00000' \&\& \text{InITBlock()} \text{ then UNPREDICTABLE;}
\]

\textbf{CONSTRUCTED UNPREDICTABLE behavior}

If \(op == '00' \&\& \text{imm5} == '00000' \&\& \text{InITBlock()} \), then one of the following behaviors must occur:

\begin{itemize}
 \item The instruction is \textbf{UNDEFINED}.
 \item The instruction executes as if it passed its condition code check.
 \item The instruction executes as \texttt{NOP}, as if it failed its condition code check.
 \item The instruction executes as \texttt{MOV} Rd, Rm.
\end{itemize}

T3

\[
\begin{array}{cccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 4 & 3 & 2 & 1 & 0 & 15 & 14 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & S & 1 & 1 & 1 & 0 & \text{imm3} & \text{Rd} & \text{imm2} & \text{stype} & \text{Rm} \\
\end{array}
\]

\textit{MOV, rotate right with extend variant}

Applies when \(S == 0 \&\& \text{imm3} == 000 \&\& \text{imm2} == 00 \&\& \text{stype} == 11 \).

\texttt{MOV\{<cp>\} <Rd>, <Rm>, RRX}

MOV, shift or rotate by value variant

Applies when $S == 0 \&\& !(imm3 == 000 \&\& imm2 == 00 \&\& stype == 11)$.

MOV{<c>}.W <Rd>, <Rm> {, LSL #0} // <Rd>, <Rm> can be represented in T1
MOV{<c>}.W <Rd>, <Rm> {, <shift> #<amount>} // Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be represented in T2
MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend variant

Applies when $S == 1 \&\& imm3 == 000 \&\& imm2 == 00 \&\& stype == 11$.

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value variant

Applies when $S == 1 \&\& !(imm3 == 000 \&\& imm2 == 00 \&\& stype == 11)$.

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2
MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad \text{setflags} = (S == '1');
\]
\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(stype, \text{imm3:imm2});
\]
\[
\text{if } d == 15 \text{ || } m == 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRS (immediate) T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate by value)</td>
<td>$S == '1' && stype == '10'$</td>
<td></td>
</tr>
<tr>
<td>ASRS (immediate) T2</td>
<td>op == '10' && !InITBlock()</td>
<td></td>
</tr>
<tr>
<td>ASR (immediate) T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate by value)</td>
<td>$S == '0' && stype == '10'$</td>
<td></td>
</tr>
<tr>
<td>ASR (immediate) T2</td>
<td>op == '10' && !InITBlock()</td>
<td></td>
</tr>
<tr>
<td>LSLS (immediate) T3 (MOV, shift or rotate by value)</td>
<td>$S == '1' && imm3:Rd:imm2 != '000xxxx00' && stype == '00'$</td>
<td></td>
</tr>
<tr>
<td>LSLS (immediate) A1 (MOV, shift or rotate by value)</td>
<td>$S == '1' && imm5 != '00000' && stype == '00'$</td>
<td></td>
</tr>
<tr>
<td>LSLS (immediate) T2</td>
<td>op == '00' && imm5 != '00000' && !InITBlock()</td>
<td></td>
</tr>
<tr>
<td>LSL (immediate) T3 (MOV, shift or rotate by value)</td>
<td>$S == '0' && imm3:Rd:imm2 != '000xxxx00' && stype == '00'$</td>
<td></td>
</tr>
<tr>
<td>LSL (immediate) A1 (MOV, shift or rotate by value)</td>
<td>$S == '0' && imm5 != '00000' && stype == '00'$</td>
<td></td>
</tr>
<tr>
<td>LSL (immediate) T2</td>
<td>op == '00' && imm5 != '00000' && InITBlock()</td>
<td></td>
</tr>
<tr>
<td>LSRS (immediate) T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate by value)</td>
<td>$S == '1' && stype == '01'$</td>
<td></td>
</tr>
<tr>
<td>LSRS (immediate) T2</td>
<td>op == '01' && !InITBlock()</td>
<td></td>
</tr>
</tbody>
</table>
Assembler symbols

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSR (immediate)</td>
<td>T3 (MOV, shift or rotate by value), A1 (MOV, shift or rotate by value)</td>
<td>S == '0' && stype == '01'</td>
</tr>
<tr>
<td>LSR (immediate)</td>
<td>T2</td>
<td>op == '01' && InITBlock()</td>
</tr>
<tr>
<td>RORS (immediate)</td>
<td>T3 (MOV, shift or rotate by value)</td>
<td>S == '1' && imm3:Rd:imm2 != '000xxxx00' && stype == '11'</td>
</tr>
<tr>
<td>RORS (immediate)</td>
<td>A1 (MOV, shift or rotate by value)</td>
<td>S == '0' && imm5 != '00000' && stype == '11'</td>
</tr>
<tr>
<td>ROR (immediate)</td>
<td>T3 (MOV, shift or rotate by value)</td>
<td>S == '0' && imm3:Rd:imm2 != '000xxxx00' && stype == '11'</td>
</tr>
<tr>
<td>ROR (immediate)</td>
<td>A1 (MOV, shift or rotate by value)</td>
<td>S == '0' && imm5 != '00000' && stype == '11'</td>
</tr>
<tr>
<td>RRXS</td>
<td>T3 (MOV, rotate right with extend)</td>
<td>S == '1' && imm3 == '000' && imm2 == '00' && stype == '11'</td>
</tr>
<tr>
<td>RRXS</td>
<td>A1 (MOV, rotate right with extend)</td>
<td>S == '1' && imm5 == '00000' && stype == '11'</td>
</tr>
<tr>
<td>RRX</td>
<td>T3 (MOV, rotate right with extend)</td>
<td>S == '0' && imm3 == '000' && imm2 == '00' && stype == '11'</td>
</tr>
<tr>
<td>RRX</td>
<td>A1 (MOV, rotate right with extend)</td>
<td>S == '0' && imm5 == '00000' && stype == '11'</td>
</tr>
</tbody>
</table>

- **<>**: See Standard assembler syntax fields on page F2-4120.
- **<op>**: See Standard assembler syntax fields on page F2-4120.
- **<Rd>**: For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used:
 - For the MOV variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993. Arm deprecates use of the instruction if <Rn> is the PC.
 - For the MOV variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>. Arm deprecates use of the instruction if <Rn> is not the LR, or if the optional shift or RRX argument is specified.
 - For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC is used:
 - The instruction causes a branch to the address moved to the PC. This is a simple branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - The instruction must either be outside an IT block or the last instruction of an IT block.
- **<Rm>**: For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used. Arm deprecates use of the instruction if <Rd> is the PC.
- **<shift>**: For encoding A1 and T3: is the type of shift to be applied to the source register, encoded in the "stype" field. It can have the following values:
 - LSL when stype = 00
 - LSR when stype = 01
 - ASR when stype = 10
 - ROR when stype = 11
For encoding T2: is the type of shift to be applied to the source register, encoded in the "op" field. It can have the following values:

- LSL when op = 00
- LSR when op = 01
- ASR when op = 10

For encoding A1: is the shift amount, in the range 0 to 31 (when <shift> = LSL), 1 to 31 (when <shift> = ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31 (when <shift> = LSL) or 1 to 31 (when <shift> = ROR), or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = shifted;
    if d == 15 then
        if setflags then
            ALUExceptionReturn(result);
        else
            ALUWritePC(result);
    else
        R[d] = result;
        if setflags then
            PSTATE.N = result<31>;
            PSTATE.Z = IsZeroBit(result);
            PSTATE.C = carry;
            // PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.113 MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS (register), LSR (register), RORS (register), and ROR (register). See Alias conditions on page F5-4562 for details of when each alias is preferred.

A1

31 28	7 26 25 24	23 22 21 20	19 18 17 16	15 12	11 8 7 6 5 4 3 0			
!=1111 0 0 0 1 1 0 1	S	(0) (0) (0)	Rd	Rs	0	slype	1	Rm

Flag setting variant

Applies when $S == 1$.

MOVS{<c>{<q>}} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when $S == 0$.

MOV{<c>{<q>}} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>x x x</td>
<td>Rs</td>
<td>Rdm</td>
</tr>
</tbody>
</table>

Arithmetic shift right variant

Applies when $op == 0100$.

MOV{<c>{<q>}} <Rdm>, <Rdm>, ASR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs> // Outside IT block

Logical shift left variant

Applies when $op == 0010$.

MOV{<c>{<q>}} <Rdm>, <Rdm>, LSL <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // Outside IT block

Logical shift right variant

Applies when $op == 0011$.

MOV{<c>{<q>}} <Rdm>, <Rdm>, LSR <Rs> // Inside IT block
MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs> // Outside IT block
Rotate right variant

Applies when \(\text{op} == 011 \).

\[
\begin{align*}
\text{MOV} &\langle\text{op}\rangle \langle<\text{q}\rangle\rangle \text{ <Rdm>, <Rdm>, ROR <Rs>} \quad // \text{Inside IT block} \\
\text{MOVS} &\langle\text{op}\rangle \langle<\text{q}\rangle\rangle \text{ <Rdm>, <Rdm>, ROR <Rs>} \quad // \text{Outside IT block}
\end{align*}
\]

Decode for all variants of this encoding

\[
\text{if } !(\text{op IN } \{'0010', '0011', '0100', '0111'\}) \text{ then SEE "Related encodings";}
\]

\[
d = \text{UInt}(\text{Rdm}); \quad m = \text{UInt}(\text{Rdm}); \quad s = \text{UInt}(\text{Rs});
\]

\[
\text{setflags} = \text{!InITBlock()}; \quad \text{shift_t} = \text{DecodeRegShift(op<2>:op<0>)};
\]

T2

\[
\begin{array}{cccccccccccccc}
| 15 & 14 & 13 & 12 | 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
\hline
1 & 1 & 1 & 1 & 0 & 0 & 0 & | & \text{stype} & | & \text{S} & & \text{Rm} & | & 1 & 1 & 1 & 1 & \text{Rd} & 0 & 0 & 0 & 0 & \text{Rs}
\end{array}
\]

Flag setting variant

Applies when \(S == 1 \).

\[
\text{MOVS}.W <\text{Rd}, <\text{Rm}, <\text{shift}, <\text{Rs} > \quad // \text{Outside IT block, and <Rd>, <Rm>, <shift>, <Rs} > \text{ can be represented in T1}
\]

\[
\text{MOVS} &\langle\text{op}\rangle\langle<\text{q}\rangle\rangle <\text{Rd}, <\text{Rm}, <\text{shift}, <\text{Rs} >
\]

Not flag setting variant

Applies when \(S == 0 \).

\[
\text{MOVc}.W <\text{Rd}, <\text{Rm}, <\text{shift}, <\text{Rs} > \quad // \text{Inside IT block, and <Rd>, <Rm>, <shift>, <Rs} > \text{ can be represented in T1}
\]

\[
\text{MOV} &\langle\text{op}\rangle\langle<\text{q}\rangle\rangle <\text{Rd}, <\text{Rm}, <\text{shift}, <\text{Rs} >
\]

Decode for all variants of this encoding

\[
\text{d} = \text{UInt}(\text{Rd}); \quad m = \text{UInt}(\text{Rm}); \quad s = \text{UInt}(\text{Rs});
\]

\[
\text{setflags} = (S == '1'); \quad \text{shift_t} = \text{DecodeRegShift(stype)};
\]

\[
\text{if } d == 15 || m == 15 || s == 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

Related encodings: In encoding T1, for an op field value that is not described above, see Data-processing (two low registers) on page F3-4149.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRS (register)</td>
<td>A1 (flag setting)</td>
<td>(S == '1' && \text{stype} == '10')</td>
</tr>
<tr>
<td>ASRS (register)</td>
<td>T1 (arithmetic shift right)</td>
<td>(op == '0100' && \neg \text{InITBlock}())</td>
</tr>
<tr>
<td>ASRS (register)</td>
<td>T2 (flag setting)</td>
<td>(\text{stype} == '10' && S == '1')</td>
</tr>
<tr>
<td>ASR (register)</td>
<td>A1 (not flag setting)</td>
<td>(S == '0' && \text{stype} == '10')</td>
</tr>
<tr>
<td>ASR (register)</td>
<td>T1 (arithmetic shift right)</td>
<td>(op == '0100' && \text{InITBlock}())</td>
</tr>
<tr>
<td>ASR (register)</td>
<td>T2 (not flag setting)</td>
<td>(\text{stype} == '10' && S == '0')</td>
</tr>
<tr>
<td>LSLS (register)</td>
<td>A1 (flag setting)</td>
<td>(S == '1' && \text{stype} == '00')</td>
</tr>
<tr>
<td>LSLS (register)</td>
<td>T1 (logical shift left)</td>
<td>(op == '0010' && \neg \text{InITBlock}())</td>
</tr>
<tr>
<td>LSLS (register)</td>
<td>T2 (flag setting)</td>
<td>(\text{stype} == '00' && S == '1')</td>
</tr>
<tr>
<td>LSL (register)</td>
<td>A1 (not flag setting)</td>
<td>(S == '0' && \text{stype} == '00')</td>
</tr>
<tr>
<td>LSL (register)</td>
<td>T1 (logical shift left)</td>
<td>(op == '0010' && \text{InITBlock}())</td>
</tr>
<tr>
<td>LSL (register)</td>
<td>T2 (not flag setting)</td>
<td>(\text{stype} == '00' && S == '0')</td>
</tr>
<tr>
<td>LSRS (register)</td>
<td>A1 (flag setting)</td>
<td>(S == '1' && \text{stype} == '01')</td>
</tr>
<tr>
<td>LSRS (register)</td>
<td>T1 (logical shift right)</td>
<td>(op == '0011' && \neg \text{InITBlock}())</td>
</tr>
<tr>
<td>LSRS (register)</td>
<td>T2 (not flag setting)</td>
<td>(\text{stype} == '01' && S == '1')</td>
</tr>
<tr>
<td>LSR (register)</td>
<td>A1 (not flag setting)</td>
<td>(S == '0' && \text{stype} == '01')</td>
</tr>
<tr>
<td>LSR (register)</td>
<td>T1 (logical shift right)</td>
<td>(op == '0011' && \text{InITBlock}())</td>
</tr>
<tr>
<td>LSR (register)</td>
<td>T2 (not flag setting)</td>
<td>(\text{stype} == '01' && S == '0')</td>
</tr>
<tr>
<td>RORS (register)</td>
<td>A1 (flag setting)</td>
<td>(S == '1' && \text{stype} == '11')</td>
</tr>
<tr>
<td>RORS (register)</td>
<td>T1 (rotate right)</td>
<td>(op == '0111' && \neg \text{InITBlock}())</td>
</tr>
<tr>
<td>RORS (register)</td>
<td>T2 (flag setting)</td>
<td>(\text{stype} == '11' && S == '1')</td>
</tr>
<tr>
<td>ROR (register)</td>
<td>A1 (not flag setting)</td>
<td>(S == '0' && \text{stype} == '11')</td>
</tr>
<tr>
<td>ROR (register)</td>
<td>T1 (rotate right)</td>
<td>(op == '0111' && \text{InITBlock}())</td>
</tr>
<tr>
<td>ROR (register)</td>
<td>T2 (not flag setting)</td>
<td>(\text{stype} == '11' && S == '0')</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rdm>\) Is the general-purpose source register and the destination register, encoded in the "Rdm" field.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rm>\) Is the general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    shift_n = UInt(R[s]<7:0>);
    (result, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    R[d] = result;
    if setflags then
        PSTATE.N = result<31>;
        PSTATE.Z = IsZeroBit(result);
        PSTATE.C = carry;
        // PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.114 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents of the bottom halfword.

A1

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>!=1111</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>imm4</td>
<td>Rd</td>
<td>imm12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

d = UInt(Rd); imm16 = imm4:imm12;
if d == 15 then UNPREDICTABLE;

T1

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>imm4</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

MOVT{<c>}{<q>} <Rd>, #<imm16>

Decode for this encoding

d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<p>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<imm16>` For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:imm12" field.
 For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:i:imm3:imm8" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.115 MRC

Move to general-purpose register from System register. This instruction copies the value of a System register to a
general-purpose register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface on page E1-4011 and General behavior of
System registers on page G8-6134.

In an implementation that includes EL2, MRC accesses to system control registers can be trapped to Hyp mode,
meaning that an attempt to execute an MRC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable controls on page G1-5827.

Because of the range of possible traps to Hyp mode, the MRC pseudocode does not show these possible traps.

A1

\[
\begin{array}{ccccccccc}
\text{cond} & \begin{array}{c}
\text{=1111}
\end{array} & 1 & 1 & 0 & \text{opc1} & 1 & \text{CRn} & \text{Rt} & 1 & 1 & 1 & \text{opc2} & 1 & \text{CRm} \\
\text{coproc<3:1>} & \text{coproc<0>}
\end{array}
\]

A1 variant

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>\{, \{#<\text{opc2}>\}
\]

Decode for this encoding

\[
t = \text{UInt}(\text{Rt}); \quad cp = \text{if coproc}<0> == '0' \text{ then } 14 \text{ else } 15;
\]

// Armv8-A removes UNPREDICTABLE for R13

T1

\[
\begin{array}{ccccccccc}
\text{coproc<3:1>} & \text{coproc<0>}
\end{array}
\]

T1 variant

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>\{, \{#<\text{opc2}>\}
\]

Decode for this encoding

\[
t = \text{UInt}(\text{Rt}); \quad cp = \text{if coproc}<0> == '0' \text{ then } 14 \text{ else } 15;
\]

// Armv8-A removes UNPREDICTABLE for R13

Assembler symbols

\[
<\text{c}> \quad \text{See Standard assembler syntax fields on page F2-4120.}
\]

\[
<\text{q}> \quad \text{See Standard assembler syntax fields on page F2-4120.}
\]

\[
<\text{coproc}> \quad \text{Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following}
\text{values:}
\]

\[
p14 \quad \text{when coproc}<0> = 0
\]

\[
p15 \quad \text{when coproc}<0> = 1
\]
<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 7, encoded in the "opc1" field.

<Rm> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the "Rm" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the PSTATE condition flags.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to 7, encoded in the "opc2" field.

The possible values of {<coproc>, <opc1>, <CRn>, <CRm>, <opc2>} encode the entire System register and System instruction encoding space. Not all of this space is allocated, and the System register and System instruction descriptions identify the allocated encodings.

Operation for all encodings

```c
if ConditionPassed() then
  EncodingSpecificOperations();
  bits(32) value = AArch32.SysRegRead(cp, ThisInstr());
  if t != 15 then
    R[t] = value;
  elseif AArch32.SysRegReadCanWriteAPSR(cp, ThisInstr()) then
    PSTATE.<N,Z,C,V> = value<31:28>;
    // value<27:0> are not used.
  else
    UNPREDICTABLE;
```
F5.1.116 MRRC

Move to two general-purpose registers from System register. This instruction copies the value of a System register to two general-purpose registers.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For more information see About the AArch32 System register interface on page E1-4011 and General behavior of System registers on page G8-6134.

In an implementation that includes EL2, MRRC accesses to System registers can be trapped to Hyp mode, meaning that an attempt to execute an MRRC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable controls on page G1-5827.

Because of the range of possible traps to Hyp mode, the MRRC pseudocode does not show these possible traps.

A1

```plaintext
A1 variant
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>
```

Decode for this encoding

```plaintext
t = Uint(Rt);  t2 = Uint(Rt2);  cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

```plaintext
T1 variant
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>
```

Decode for this encoding

```plaintext
t = Uint(Rt);  t2 = Uint(Rt2);  cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```
CONSTRAINED UNPREDICTABLE behavior

If \(t = t_2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<coproc>` Is the System register encoding space, encoded in the "coproc<0>" field. It can have the following values:
 - p14 when coproc<0> = 0
 - p15 when coproc<0> = 1
- `<opc1>` Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in the "opc1" field.
- `<Rt>` Is the first general-purpose register that is transferred into, encoded in the "Rt" field.
- `<Rt2>` Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.
- `<CRm>` Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in the "CRm" field.

The possible values of \(\{ \text{<coproc>, <opc1>, <CRm> } \} \) encode the entire System register encoding space. Not all of this space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, `<Rt2>` transfers bits[63:32] of the selected System register, while `<Rt>` transfers bits[31:0].

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    value = AArch32.SysRegRead64(cp, ThisInstr());
    R[t] = value<31:0>;
    R[t2] = value<63:32>;
```
MRS

Move Special register to general-purpose register moves the value of the The Application Program Status Register, APSR on page E1-3995, CPSR, or SPSR_<current_mode> into a general-purpose register.

Arm recommends the APSR form when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more information, see The Application Program Status Register, APSR on page E1-3995.

An MRS that accesses the SPSR is UNPREDICTABLE if executed in User mode or System mode.

An MRS that is executed in User mode and accesses the CPSR returns an UNKNOWN value for the CPSR.{E, A, I, F, M} fields.

A1

<table>
<thead>
<tr>
<th>31 28 26 25 24 23 22 21 20 19 18 17 16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 0</td>
</tr>
</tbody>
</table>

A1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 13 12</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1 1 1 R</td>
<td>(1)(1)(1)(1)</td>
<td>1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 variant

MRS{<c>}{<q>} <Rd>, <spec_reg>

Decode for this encoding

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<spec_reg> Is the special register to be accessed, encoded in the "R" field. It can have the following values:

- CPSR|APSR when R = 0
- SPSR when R = 1
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if read_spsr then
 if PSTATE.M IN {M32_User, M32_System} then
 UNPREDICTABLE;
 else
 R[d] = SPSR[];
 else
 // CPSR has same bit assignments as SPSR, but with the IT, J, SS, IL, and T bits masked out.
 bits(32) mask = '11110000 00001111 00000011 11011111';
 if HavePANExt() then
 mask<22> = '1';
 if HaveDITExt() then
 mask<21> = '1';
 psr_val = GetPSRFromPSTATE() AND mask;
 if PSTATE.EL == EL0 then
 // If accessed from User mode return UNKNOWN values for E, A, I, F bits, bits<9:6>,
 // and for the M field, bits<4:0>
 psr_val<22> = bits(1) UNKNOWN;
 psr_val<9:6> = bits(4) UNKNOWN;
 psr_val<4:0> = bits(5) UNKNOWN;
 R[d] = psr_val;

CONSTRANIED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System} && read_spsr, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
MRS (Banked register)

Move to Register from Banked or Special register moves the value from the Banked general-purpose register or SPSR of the specified mode, or the value of ELR_hyp on page G1-5734, to a general-purpose register.

MRS (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MRS (Banked register) instruction that is executed in a Secure EL1 mode would access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MRS (Banked register) instruction with a register argument that is not valid for the current mode is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions on page F5-4990.

A1

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE;
SYSm = M:M1;

T1

MRS{<c>}{<q>} <Rd>, <banked_reg>

Decode for this encoding

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SYSm = M:M1;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

See Standard assembler syntax fields on page F2-4120.
<banked_reg> Is the name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It can have the following values:

- R8_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0000 \)
- R9_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0001 \)
- R10_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0010 \)
- R11_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0011 \)
- R12_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0100 \)
- SP_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0101 \)
- LR_usr when \(R = 0 \), \(M = 0 \), \(M1 = 0110 \)
- R8_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1000 \)
- R9_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1001 \)
- R10_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1010 \)
- R11_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1011 \)
- R12_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1100 \)
- SP_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1101 \)
- LR_fiq when \(R = 0 \), \(M = 0 \), \(M1 = 1110 \)
- LR_irq when \(R = 0 \), \(M = 1 \), \(M1 = 0000 \)
- SP_irq when \(R = 0 \), \(M = 1 \), \(M1 = 0001 \)
- LR_svc when \(R = 0 \), \(M = 1 \), \(M1 = 0010 \)
- SP_svc when \(R = 0 \), \(M = 1 \), \(M1 = 0011 \)
- LR_abt when \(R = 0 \), \(M = 1 \), \(M1 = 0100 \)
- SP_abt when \(R = 0 \), \(M = 1 \), \(M1 = 0101 \)
- LR_und when \(R = 0 \), \(M = 1 \), \(M1 = 0110 \)
- SP_und when \(R = 0 \), \(M = 1 \), \(M1 = 0111 \)
- LR_mon when \(R = 0 \), \(M = 1 \), \(M1 = 1100 \)
- SP_mon when \(R = 0 \), \(M = 1 \), \(M1 = 1101 \)
- ELR_hyp when \(R = 0 \), \(M = 1 \), \(M1 = 1110 \)
- SP_hyp when \(R = 0 \), \(M = 1 \), \(M1 = 1111 \)
- SPSR_fiq when \(R = 1 \), \(M = 0 \), \(M1 = 1110 \)
- SPSR_irq when \(R = 1 \), \(M = 0 \), \(M1 = 1111 \)
- SPSR_svc when \(R = 1 \), \(M = 0 \), \(M1 = 0000 \)
- SPSR_abt when \(R = 1 \), \(M = 0 \), \(M1 = 0001 \)
- SPSR_und when \(R = 1 \), \(M = 0 \), \(M1 = 0010 \)
- SPSR_mon when \(R = 1 \), \(M = 0 \), \(M1 = 0100 \)
- SPSR_hyp when \(R = 1 \), \(M = 0 \), \(M1 = 1111 \)

The following encodings are UNPREDICTABLE:

- \(R = 0 \), \(M = 0 \), \(M1 = 0111 \)
- \(R = 0 \), \(M = 0 \), \(M1 = 1111 \)
- \(R = 0 \), \(M = 1 \), \(M1 = 10xx \)
- \(R = 1 \), \(M = 0 \), \(M1 = 0xxx \)
- \(R = 1 \), \(M = 0 \), \(M1 = 10xx \)
- \(R = 1 \), \(M = 0 \), \(M1 = 110x \)
- \(R = 1 \), \(M = 1 \), \(M1 = 0011 \)
- \(R = 1 \), \(M = 1 \), \(M1 = 0001 \)
Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
else
    mode = PSTATE.M;
    if read_spsr then
        SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
    case SYSm of
        when '01110' R[d] = SPSR_fiq;
        when '10000' R[d] = SPSR_irq;
        when '10010' R[d] = SPSR_svc;
        when '10100' R[d] = SPSR_abt;
        when '10110' R[d] = SPSR_und;
        when '11100' if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
            R[d] = SPSR_mon;
        when '11110' R[d] = SPSR_hyp;
    else
        BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
    case SYSm of
        when '00xxx'                       // Access the User mode registers
            m = UInt(SYSm<2:0>) + 8;
            R[d] = Rmode[m,M32_User];
        when '01xxx'                       // Access the FIQ mode registers
            m = UInt(SYSm<2:0>) + 8;
            R[d] = Rmode[m,M32_FIQ];
        when '1000x'                       // Access the Supervisor mode registers
            m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
            R[d] = Rmode[m,M32_Svc];
        when '1001x'                       // Access the Abort mode registers
            m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
            R[d] = Rmode[m,M32_Abort];
        when '1010x'                       // Access the Undefined mode registers
            m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
            R[d] = Rmode[m,M32_Undef];
        when '1110x'                       // Access Monitor registers
            if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
            m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
            R[d] = Rmode[m,M32_Monitor];
        when '11110' // Access ELR_hyp register
            R[d] = ELR_hyp;
        when '11111' // Access SP_hyp register
            R[d] = Rmode[13,M32_Hyp];
```
The instruction executes as NOP.
F5.1.119 MSR (Banked register)

Move to Banked or Special register from general-purpose register moves the value of a general-purpose register to
the Banked general-purpose register or SPSR of the specified mode, or to ELR_hyp on page G1-5734.

MSR (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MSR (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.

The effect of using an MSR (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the banked register transfer instructions on
page F5-4990.

A1

\[
\begin{array}{cccccccccccccccc}
\end{array}
\]

\[\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 1 & 0 & M1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & M & 0 & 0 & 0 & 0 & 0 & Rn
\end{array}\]

A1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ write_spsr } = (R == 'I') ;
\]

if \(n == 15 \) then UNPREDICTABLE;

\[
\text{SYSm} = M:M1;
\]

T1

\[
\begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 1 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 0
\end{array}
\]

\[\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & R & 0 & 1 & 0 & 0 & 1 & M & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\]

T1 variant

MSR{<c>}{<q>} <banked_reg>, <Rn>

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ write_spsr } = (R == 'I') ;
\]

if \(n == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

\[
\text{SYSm} = M:M1;
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

See Standard assembler syntax fields on page F2-4120.

>
The name of the banked register to be transferred to or from, encoded in the "R:M:M1" field. It can have the following values:

- **R8_usr** when \(R = 0, M = 0, M1 = 0000 \)
- **R9_usr** when \(R = 0, M = 0, M1 = 0001 \)
- **R10_usr** when \(R = 0, M = 0, M1 = 0010 \)
- **R11_usr** when \(R = 0, M = 0, M1 = 0011 \)
- **R12_usr** when \(R = 0, M = 0, M1 = 0100 \)
- **SP_usr** when \(R = 0, M = 0, M1 = 0101 \)
- **LR_usr** when \(R = 0, M = 0, M1 = 0110 \)
- **R8_fiq** when \(R = 0, M = 0, M1 = 1000 \)
- **R9_fiq** when \(R = 0, M = 0, M1 = 1001 \)
- **R10_fiq** when \(R = 0, M = 0, M1 = 1010 \)
- **R11_fiq** when \(R = 0, M = 0, M1 = 1011 \)
- **R12_fiq** when \(R = 0, M = 0, M1 = 1100 \)
- **SP_fiq** when \(R = 0, M = 0, M1 = 1101 \)
- **LR_fiq** when \(R = 0, M = 0, M1 = 1110 \)
- **LR_irq** when \(R = 0, M = 1, M1 = 0000 \)
- **SP_irq** when \(R = 0, M = 1, M1 = 0001 \)
- **LR_svc** when \(R = 0, M = 1, M1 = 0010 \)
- **SP_svc** when \(R = 0, M = 1, M1 = 0011 \)
- **LR_abt** when \(R = 0, M = 1, M1 = 0100 \)
- **SP_abt** when \(R = 0, M = 1, M1 = 0101 \)
- **LR_und** when \(R = 0, M = 1, M1 = 0110 \)
- **SP_und** when \(R = 0, M = 1, M1 = 0111 \)
- **LR_mon** when \(R = 0, M = 1, M1 = 1100 \)
- **SP_mon** when \(R = 0, M = 1, M1 = 1101 \)
- **ELR_hyp** when \(R = 0, M = 1, M1 = 1110 \)
- **SP_hyp** when \(R = 0, M = 1, M1 = 1111 \)
- **SPSR_fiq** when \(R = 1, M = 0, M1 = 1110 \)
- **SPSR_irq** when \(R = 1, M = 1, M1 = 0000 \)
- **SPSR_svc** when \(R = 1, M = 1, M1 = 0001 \)
- **SPSR_abt** when \(R = 1, M = 1, M1 = 0010 \)
- **SPSR_und** when \(R = 1, M = 1, M1 = 0100 \)
- **SPSR_mon** when \(R = 1, M = 1, M1 = 1100 \)
- **SPSR_hyp** when \(R = 1, M = 1, M1 = 1110 \)

The following encodings are UNPREDICTABLE:

- \(R = 0, M = 0, M1 = 0111 \)
- \(R = 0, M = 0, M1 = 1111 \)
- \(R = 0, M = 1, M1 = 10xx \)
- \(R = 1, M = 0, M1 = 0xxx \)
- \(R = 1, M = 0, M1 = 10xx \)
- \(R = 1, M = 0, M1 = 110x \)
- \(R = 1, M = 0, M1 = 1111 \)
- \(R = 1, M = 1, M1 = 0001 \)
• $R = 1$, $M = 1$, $M1 = 0011$.
• $R = 1$, $M = 1$, $M1 = 0101$.
• $R = 1$, $M = 1$, $M1 = 0111$.
• $R = 1$, $M = 1$, $M1 = 10xx$.
• $R = 1$, $M = 1$, $M1 = 1101$.
• $R = 1$, $M = 1$, $M1 = 1111$.

<\textit{Rn}> is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
else
    mode = PSTATE.M;
if write_spsr then
    SPSRAccessValid(SYSm, mode);  // Check for UNPREDICTABLE cases
    case SYSm of
        when '01110' SPSR_fiq = R[n];
        when '10000' SPSR_irq = R[n];
        when '10010' SPSR_svc = R[n];
        when '10100' SPSR_abt = R[n];
        when '10110' SPSR_und = R[n];
        when '11100' if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
            SPSR_mon = R[n];
        when '11110' SPSR_hyp = R[n];
    else
        BankedRegisterAccessValid(SYSm, mode);  // Check for UNPREDICTABLE cases
        case SYSm of
            when '00xxx'                          // Access the User mode registers
                m = UInt(SYSm<2:0>) + 8;
                Rmode[m,M32_User] = R[n];
            when '01xxx'                          // Access the FIQ mode registers
                m = UInt(SYSm<2:0>) + 8;
                Rmode[m,M32_FIQ] = R[n];
            when '1000x'                          // Access the IRQ mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_IRQ] = R[n];
            when '1001x'                          // Access the Supervisor mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Svc] = R[n];
            when '1010x'                          // Access the Abort mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Abort] = R[n];
            when '1011x'                          // Access the Undefined mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Undef] = R[n];
            when '1100x'                          // Access Monitor registers
                if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Monitor] = R[n];
            when '11100'                           // Access ELR_hyp register
                ELR_hyp = R[n];
            when '11110'                           // Access SP_hyp register
                Rmode[13,M32_Hyp] = R[n];
    else
        BankedRegisterAccessValid(SYSm, mode);  // Check for UNPREDICTABLE cases
        case SYSm of
            when '00xxx'                          // Access the User mode registers
                m = UInt(SYSm<2:0>) + 8;
                Rmode[m,M32_User] = R[n];
            when '01xxx'                          // Access the FIQ mode registers
                m = UInt(SYSm<2:0>) + 8;
                Rmode[m,M32_FIQ] = R[n];
            when '1000x'                          // Access the IRQ mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_IRQ] = R[n];
            when '1001x'                          // Access the Supervisor mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Svc] = R[n];
            when '1010x'                          // Access the Abort mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Abort] = R[n];
            when '1011x'                          // Access the Undefined mode registers
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Undef] = R[n];
            when '1100x'                          // Access Monitor registers
                if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
                m = 14 - UInt(SYSm<0>);        // LR when SYSm<0> == 0, otherwise SP
                Rmode[m,M32_Monitor] = R[n];
            when '11100'                           // Access ELR_hyp register
                ELR_hyp = R[n];
            when '11110'                           // Access SP_hyp register
                Rmode[13,M32_Hyp] = R[n];
```

<\textit{Rn}>
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
F5.1.120 MSR (immediate)

Move immediate value to Special register moves selected bits of an immediate value to the corresponding bits in the *The Application Program Status Register, APSR on page E1-3995, CPSR, or SPSR_<current_mode>*.

Because of the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the Application level for writing to APSR_nzcvq(CPSR_f).

If an MSR (immediate) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being written to PSTATE.M is legal. See *Illegal changes to PSTATE.M on page G1-5739*.

An MSR (immediate) executed in User mode:

- Is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.
- Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (immediate) executed in System mode is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

| Address: | 31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 | 10 9 8 7 6 5 4 3 2 1 | 0 |
|----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Cond: | !=1111 | 0 0 1 1 0 | R | 1 0 | mask | (1) (1) (1) | imm12 |

A1 variant

Applies when !(R == 0 & mask == 0000).

 MSR{<c>}{<q>} <spec_reg>, #<imm>

Decode for this encoding

if mask == '0000' & R == '0' then SEE "Related encodings";
imm32 = A32ExpandImm(imm12); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000' & R == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: *Move Special Register and Hints (immediate) on page F4-4233*.

Assembler symbols

- <c> See *Standard assembler syntax fields on page F2-4120*.
- <q> See *Standard assembler syntax fields on page F2-4120*.
- <spec_reg> Is one of:
 - APSR<bits>.
For CPSR and SPSR, `<fields>` is a sequence of one or more of the following:

- `c`: mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.
- `x`: mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.
- `s`: mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.
- `f`: mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, `<bits>` is one of nzcvq_g, or nzcvqg. These map to the following CPSR_<fields> values:

- APSR_nzcvq is the same as CPSR_f (mask == '1000').
- APSR_g is the same as CPSR_s (mask == '0100').
- APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more information, see The Application Program Status Register, APSR on page E1-3995.

<imm> is an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

Operation

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    if write_spsr then
        if PSTATE.M IN {M32_User, M32_System} then
            UNPREDICTABLE;
        else
            SPSRWriByInstr(imm32, mask);
    else
        // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
        CPSRWriByInstr(imm32, mask);
```

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System} && write_spsr, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
F5.1.121 MSR (register)

Move general-purpose register to Special register moves selected bits of a general-purpose register to the *The Application Program Status Register, APSR* on page E1-3995, CPSR or SPSR_{<current_mode>}.

Because of the Do-Not-Modify nature of its reserved bits, a read-modify-write sequence is normally required when the MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).

If an MSR (register) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being written to PSTATE.M is legal. See *Illegal changes to PSTATE.M* on page G1-5739.

An MSR (register) executed in User mode:

- Is UNPREDICTABLE if it attempts to update the SPSR.
- Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (register) executed in System mode is UNPREDICTABLE if it attempts to update the SPSR.

The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 0 0 0 1 0</td>
<td>R</td>
<td>1 0</td>
<td>mask</td>
<td>(1)(1)(1)(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

cond

A1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

```java
n = UInt(Rn); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;
```

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

T1

15 14 13 12	11 10 9 8	7 6 5 4	3 0	15 14 13 12	11 8 7 6 5 4	3 2 1 0					
1 1 1 1 0 0 1 1 0 0	R	1 0	mask	(0)	0	0	0	0	0	0	0

T1 variant

MSR{<c>}{<q>} <spec_reg>, <Rn>

Decode for this encoding

```java
n = UInt(Rn); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```
CONSTRAINED UNPREDICTABLE behavior

If \(\text{mask} = '0000' \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as \texttt{NOP}.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- \(<c>\) See *Standard assembler syntax fields on page F2-4120*.
- \(<op>\) See *Standard assembler syntax fields on page F2-4120*.
- \(<\text{spec}_\text{reg}>\) Is one of:
 - \(\text{APSR}_{\text{bits}}\).
 - \(\text{CPSR}_{\text{fields}}\).
 - \(\text{SPSR}_{\text{fields}}\).

 For \(\text{CPSR} \) and \(\text{SPSR} \), \(<\text{fields}>\) is a sequence of one or more of the following:
 - \(c\) mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.
 - \(x\) mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.
 - \(s\) mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.
 - \(f\) mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

 For \(\text{APSR} \), \(<\text{bits}>\) is one of \(\text{nzcvq} \), \(\text{g} \), or \(\text{nzcvqg} \). These map to the following \(\text{CPSR}_{\text{fields}}\) values:
 - \(\text{APSR}_{\text{nzcvq}}\) is the same as \(\text{CPSR}_{\text{f}}\) (mask == '1000').
 - \(\text{APSR}_{\text{g}}\) is the same as \(\text{CPSR}_{\text{s}}\) (mask == '0100').
 - \(\text{APSR}_{\text{nzcvqg}}\) is the same as \(\text{CPSR}_{\text{fs}}\) (mask == '1100').

 Arm recommends the \(\text{APSR}_{\text{bits}}\) forms when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more information, see *The Application Program Status Register, APSR on page E1-3995*.

- \(<\text{Rn}>\) Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

if \(\text{ConditionPassed}()\) then
 \(\text{EncodingSpecificOperations();}\)
 if \(\text{write}_\text{spsr}\) then
 if \(\text{PSTATE.M IN \{M32_User,M32_System\}}\) then
 \(\text{UNPREDICTABLE;}\)
 else
 \(\text{SPSRWriteByInstr(R[n], mask);}\)
 else
 // Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
 \(\text{CPSRWriteByInstr(R[n], mask);}\)

CONSTRAINED UNPREDICTABLE behavior

If \(\text{write}_\text{spsr} \&\& \text{PSTATE.M IN \{M32_User,M32_System\}}\), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
The instruction executes as NOP.
F5.1.122 MUL, MULS

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the source register values are considered to be signed values or unsigned values.

Optionally, it can update the condition flags based on the result. In the T32 instruction set, this option is limited to only a few forms of the instruction. Use of this option adversely affects performance on many implementations.

A1

Flag setting variant

Applies when S == 1.

MULS{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Not flag setting variant

Applies when S == 0.

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{setflags} = (S == '1');
\]

\[
\text{if } d == 15 \quad \text{|| } n == 15 \quad \text{|| } m == 15 \quad \text{then UNPREDICTABLE;}
\]

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0</td>
<td>1 1 0 1</td>
<td>Rn Rdm</td>
</tr>
</tbody>
</table>

T1 variant

MUL{<c>}{<q>} <Rdm>, <Rn>{, <Rdm>} // Inside IT block
MULS{<q>} <Rdm>, <Rn>{, <Rdm>} // Outside IT block

Decode for this encoding

\[
d = \text{UInt}(Rdm); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rdm); \quad \text{setflags} = !\text{InITBlock();}
\]

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 0 0 0</td>
<td>0 0 0 0</td>
<td>Rn Rd Rm</td>
</tr>
</tbody>
</table>

T2 variant

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>} // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
ID072120
Non-Confidential
Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<
> See Standard assembler syntax fields on page F2-4120.

<Rdm>
Is the second general-purpose source register holding the multiplier and the destination register, encoded in the "Rdm" field.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose destination register holding the multiplicand, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If omitted, <Rd> is used.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result<31:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.123 MVN, MVNS (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the result.

The field descriptions for $<Rd>$ identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

```
[31 28 26 25 24 23 22 21 20 19 18 17 16 15 12 11] | | 0 |
  !=1111 0 0 1 1 1 1 1 S (0) (0) (0) Rd | imm12
```

MVN variant

Applies when $S = 0$.

MVN{$<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when $S = 1$.

MVNS{$<c>}{<q>} <Rd>, #<const>

Decode for all variants of this encoding

```
d = UInt(Rd); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 12</th>
<th>11 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 0 0 0 1 1 S 1 1 1 0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>
```

MVN variant

Applies when $S = 0$.

MVN{$<c>}{<q>} <Rd>, #<const>

MVNS variant

Applies when $S = 1$.

MVNS{$<c>}{<q>} <Rd>, #<const>
Decoding for all variants of this encoding

d = UInt(Rd); setflags = ($ == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rd>
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used:

- For the MVN variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the MVNS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

<const>
For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
F5.1.124 MVN, MVNS (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.

If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

MVN, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1
T1 variant

MVN<c>{<q>} <Rd>, <Rm> // Inside IT block
MVNS{<q>} <Rd>, <Rm> // Outside IT block

Decode for this encoding

\[d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad \text{setflags} = \lnot \text{InITBlock}();\]
\[(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, 0);\]

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14 12</th>
<th>11</th>
<th>8 7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0</td>
<td>0 0 1 1</td>
<td>S 1 1 1 1</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm2</td>
<td>stype</td>
<td>Rm</td>
</tr>
</tbody>
</table>

MVN, rotate right with extend variant

Applies when \(S = 0 \&\& \text{imm3} = 000 \&\& \text{imm2} = 00 \&\& \text{stype} = 11\).

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value variant

Applies when \(S = 0 \&\& \lnot (\text{imm3} = 000 \&\& \text{imm2} = 00 \&\& \text{stype} = 11)\).

MVN<c>.W <Rd>, <Rm> // Inside IT block, and <Rd>, <Rm> can be represented in T1
MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend variant

Applies when \(S = 1 \&\& \text{imm3} = 000 \&\& \text{imm2} = 00 \&\& \text{stype} = 11\).

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value variant

Applies when \(S = 1 \&\& \lnot (\text{imm3} = 000 \&\& \text{imm2} = 00 \&\& \text{stype} = 11)\).

MVNS.W <Rd>, <Rm> // Outside IT block, and <Rd>, <Rm> can be represented in T1
MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad \text{setflags} = (S = '1');\]
\[(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(ext{stype}, \text{imm3:imm2});\]
\[\text{if } d = 15 || m = 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.
<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used:

- For the MVN variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the MVNS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
For encoding T1 and T2: is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_CR[m], shift_t, shift_n, PSTATE.C);
 result = NOT(shifted);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
F5.1.125 MVN, MVNS (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the destination register. It can optionally update the condition flags based on the result.

A1

Flag setting variant

Applies when $S == 1$.

MVNS{c}{q} <Rd>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when $S == 0$.

MVN{c}{q} <Rd>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

\[
\begin{align*}
&d = \text{UInt}(Rd); \\
&m = \text{UInt}(Rm); \\
&s = \text{UInt}(Rs); \\
&\text{setflags} = (S == '1'); \\
&\text{shift}_t = \text{DecodeRegShift}(stype); \\
&\text{if } d == 15 \text{ || } m == 15 \text{ || } s == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- $<c>$: See [Standard assembler syntax fields](#).
- $<q>$: See [Standard assembler syntax fields](#).
- $<Rd>$: Is the general-purpose destination register, encoded in the "Rd" field.
- $<Rm>$: Is the general-purpose source register, encoded in the "Rm" field.
- $<shift>$: Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when stype = 00
 - LSR when stype = 01
 - ASR when stype = 10
 - ROR when stype = 11
- $<Rs>$: Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

\[
\begin{align*}
&\text{shift}_n = \text{UInt}(Rs[7:0]); \\
&(\text{shifted, carry}) = \text{Shift_C}(R[m], \text{shift}_t, \text{shift}_n, \text{PSTATE.C});
\end{align*}
\]
result = NOT(shifted);
R[d] = result;
if setflags then
 PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
 // PSTATE.V unchanged
F5.1.126 NOP

No Operation does nothing. This instruction can be used for instruction alignment purposes.

——— Note ————

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time, leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

A1

```
| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 |
---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
   | !=1111 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

cond

A1 variant

NOP{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```

```
| 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
   | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

T1 variant

NOP{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

```
| 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
   | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | (1) | (1) | (1) | (1) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

T2 variant

NOP{<c>}.W

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.127 ORN, ORNS (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an immediate value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>i</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>S</td>
<td>=1111</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
</tr>
</tbody>
</table>

Flag setting variant

Applies when \(S = 1 \).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Not flag setting variant

Applies when \(S = 0 \).

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if \(Rn = '1111' \) then SEE "MVN (immediate)"

\(d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ \text{setflags} = (S == '1');\)

\(\text{(imm32, carry)} = \text{T32ExpandImm_C}(i:imm3:imm8, \text{PSTATE.C}); \)

if \(d == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- **<c>**

 See Standard assembler syntax fields on page F2-4120.

- **<q>**

 See Standard assembler syntax fields on page F2-4120.

- **<Rd>**

 Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as \(<Rn>\).

- **<Rn>**

 Is the general-purpose source register, encoded in the "Rn" field.

- **<const>**

 An immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation

if \(\text{ConditionPassed()} \) then

EncodingSpecificOperations();

result = \(R[n] \) OR NOT(imm32);

\(R[d] = \text{result}; \)

if setflags then

PSTATE.N = result<31>;

PSTATE.Z = IsZeroBit(result);

PSTATE.C = carry;

// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.128 ORN, ORNS (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an optionally-shifted register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>S</td>
<td>l=1111</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
</tr>
</tbody>
</table>

ORN, rotate right with extend variant
Applies when \(S = 0 \land (\text{imm3} = 000 \land \text{imm2} = 00 \land \text{stype} = 11) \).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value variant
Applies when \(S = 0 \land (\text{imm3} = 000 \land \text{imm2} = 00 \land \text{stype} = 11) \).

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend variant
Applies when \(S = 1 \land (\text{imm3} = 000 \land \text{imm2} = 00 \land \text{stype} = 11) \).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value variant
Applies when \(S = 1 \land (\text{imm3} = 000 \land \text{imm2} = 00 \land \text{stype} = 11) \).

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if \(\text{Rn} = '1111' \) then SEE "MVN (register)";
\(d = \text{UInt}(\text{Rd}); n = \text{UInt}(\text{Rn}); m = \text{UInt}(\text{Rm}); \) setflags = (\(S = '1' \));
(\(\text{shift}_t, \text{shift}_n \)) = DecodeImmShift(stype, \text{imm3:imm2});
if \(d = 15 \lor n = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] OR NOT(shifted);
    R[d] = result;
    if setflags then
        PSTATE.N = result<31>;
        PSTATE.Z = IsZeroBit(result);
        PSTATE.C = carry;
        // PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.129 ORR, ORRS (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the result.

The field descriptions for `<Rd>` identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The ORR variant of the instruction is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.
- The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores `PSTATE` from `SPSR_<current_mode>`.
 - The PE checks `SPSR_<current_mode>` for an illegal return event. See *Illegal return events from AArch32 state* on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!1111</td>
<td>0 0 1 1 0 0</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>imm12</td>
<td></td>
</tr>
</tbody>
</table>

ORR variant

Applies when `S == 0`.

`ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>`

ORRS variant

Applies when `S == 1`.

`ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>`

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1');
\]

\[
(\text{imm32, carry}) = \text{A32ExpandImm_C}(\text{imm12}, \text{PSTATE}.C);
\]

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 12 | 11 | 8 | 7 | 0 |
|----|
| 1 1 1 1 0 | i | 0 0 0 1 0 | S | !1111 | 0 | imm3 | Rd | imm8 |

ORR variant

Applies when `S == 0`.

`ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>`

ORRS variant

Applies when `S == 1`.
ORRS{<c>}{<q>} {<Rd>},{<Rn>}, #<const>

Decode for all variants of this encoding

if Rn == '1111' then SEE "MOV (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = ($ == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the ORR variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the ORRS variant, the instruction performs an exception return, that restores PSTATE from SPSR.<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- `<Rn>` For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

- `<const>` For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.130 ORR, ORRS (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

```
[31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 | 7 6 5 4 3 0 ]
  !=111 | 0 0 0 1 1 0 0 S | Rn | Rd | imm5 | stype | Rm
```

ORR, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

\[
d = Uint(Rd); \quad n = Uint(Rn); \quad m = Uint(Rm); \quad setflags = (S == '1');
\]

\[
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
\]
T1

\[
\begin{array}{cccccccccccc}
|15&14&13&12| &|11&10&9&8&7&6&5| &|3&2&0|
\end{array}
\]

0 1 0 0 0 1 1 0 0 Rm Rdn

T1 variant

ORR<c>{<Rdn>,} <Rdn>, <Rm> // Inside IT block
ORRS{<c>}{<Rdn>,} <Rdn>, <Rm> // Outside IT block

Decode for this encoding

\[
d = \text{UInt}(Rdn); \ n = \text{UInt}(Rdn); \ m = \text{UInt}(Rm); \ \text{setflags} = \neg\text{InITBlock}();
\]

\[
(shift_t, shift_n) = (\text{SRType}_\text{LSL}, 0);
\]

T2

\[
\begin{array}{cccccccccccccccc}
|15&14&13&12| &|11&10&9&8&7&6&5&4&3&0|
\end{array}
\]

1 1 1 0 1 0 1 0 0 0 1 0 S | 1=1111 | 0 | imm3 | Rd | imm2 | stype | Rm | Rn

ORR, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.

ORR{<c>}{<c>}{<Rd>,} <Rd>, <Rm>, RRX

ORR, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORR{<c>}{<Rd>,} <Rn>, <Rm> // Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORR{<c>}{<Rd>,} <Rn>, <Rm>{, <shift> #<amount>}

ORRS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.

ORRS{<c>}{<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).

ORRS{<c>}{<Rd>,} <Rn>, <Rm> // Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1
ORRS{<c>}{<Rd>,} <Rn>, <Rm>{, <shift> #<amount>}

Decode for all variants of this encoding

if Rn == '1111' then SEE "Related encodings";

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{setflags} = (S == '1');
\]

\[
(shift_t, shift_n) = \text{DecodeImmShift}(\text{stype, imm3:imm2});
\]

if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: Data-processing (shifted register) on page F3-4160
Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rdn>
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd>
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

- For the ORR variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the ORRS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn>
For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift>
Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount>
For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:

- Outside an IT block, if ORRS <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written.
- Inside an IT block, if ORR<>> <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as though ORR<>> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] OR shifted;
    if d == 15 then // Can only occur for A32 encoding
        if setflags then
            ALUExceptionReturn(result);
        else
            ALUWritePC(result);
```
else
 R[d] = result;
 if setflags then
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.131 ORR, ORRS (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a register-shifted register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

```
| 31  | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 | 7 6 5 4 | 3 | 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 | 0 | 0 | 1 | 0 | S | Rn | Rd | Rs | 0 | stype | 1 | Rm |
```

Flag setting variant

Applies when \(S = 1 \).

\[
\text{ORRS}[^{<\text{c}>}\{<\text{q}>\}[^{<\text{Rd}>}\{<\text{Rn}>\},<\text{Rm}>\{<\text{shift}>\}<\text{Rs}>]
\]

Not flag setting variant

Applies when \(S = 0 \).

\[
\text{ORR}[^{<\text{c}>}\{<\text{q}>\}[^{<\text{Rd}>}\{<\text{Rn}>\},<\text{Rm}>\{<\text{shift}>\}<\text{Rs}>]
\]

Decode for all variants of this encoding

\[
\begin{align*}
d &= \text{UInt}(\text{Rd}); & n &= \text{UInt}(\text{Rn}); & m &= \text{UInt}(\text{Rm}); & s &= \text{UInt}(\text{Rs}); \\
\text{setflags} &= (S == '1'); & \text{shift}_t &= \text{DecodeRegShift}(\text{stype}); \\
\text{if } d == 15 | | n == 15 | | m == 15 | | s == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- **<c>** See [Standard assembler syntax fields on page F2-4120](#).
- **<q>** See [Standard assembler syntax fields on page F2-4120](#).
- **<Rd>** Is the general-purpose destination register, encoded in the "Rd" field.
- **<Rn>** Is the first general-purpose source register, encoded in the "Rn" field.
- **<Rm>** Is the second general-purpose source register, encoded in the "Rm" field.
- **<shift>** Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when \(\text{stype} = 00 \)
 - LSR when \(\text{stype} = 01 \)
 - ASR when \(\text{stype} = 10 \)
 - ROR when \(\text{stype} = 11 \)
- **<Rs>** Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if \texttt{ConditionPassed()} then
 \texttt{EncodingSpecificOperations();}
 \texttt{shift_n = \texttt{UInt}(R[s]\langle7:0\rangle);}
 \texttt{(shifted, carry) = \texttt{Shift_C}(R[m], shift_t, shift_n, PSTATE.C);}
 \texttt{result = R[n] \texttt{OR shifted;}}
 \texttt{R[d] = result;}
 if \texttt{setflags} then
 \texttt{PSTATE.N = result<31>;}
 \texttt{PSTATE.Z = \texttt{IsZeroBit}(result);}
 \texttt{PSTATE.C = carry;}
 // \texttt{PSTATE.V} unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.132 PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111</td>
<td>0 1 1 0 1 0 0 0</td>
<td>Rn</td>
<td>Rd</td>
<td>imm5</td>
<td>tb</td>
<td>0 1</td>
</tr>
</tbody>
</table>
```

PKHBT variant

Applies when \(tb = 0 \).

\[PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> \{, LSL #<imm>\} \]

PKHTB variant

Applies when \(tb = 1 \).

\[PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> \{, ASR #<imm>\} \]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ tb\text{form} = (tb == '1'); \\
(shift_t, shift_n) = \text{DecodeImmShift}(tb:'0', \text{imm5}); \\
\text{if } d = 15 || n = 15 || m = 15 \text{ then UNPREDICTABLE;}
\]

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0 1 1 0 0</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>
```

PKHBT variant

Applies when \(tb = 0 \).

\[PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> \{, LSL #<imm>\} // \text{tb\text{form} = FALSE} \]

PKHTB variant

Applies when \(tb = 1 \).

\[PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> \{, ASR #<imm>\} // \text{tb\text{form} = TRUE} \]

Decode for all variants of this encoding

\[
\text{if } S == '1' || T == '1' \text{ then UNDEFINED; } \\
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ tb\text{form} = (tb == '1'); \\
(shift_t, shift_n) = \text{DecodeImmShift}(tb:'0', \text{imm3:imm2}); \\
\text{if } d = 15 || n = 15 || m = 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

\(<c>\)
See Standard assembler syntax fields on page F2-4120.

\(<q>\)
See Standard assembler syntax fields on page F2-4120.

\(<Rd>\)
Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\)
Is the first general-purpose source register, encoded in the "Rn" field.

\(<Rm>\)
Is the second general-purpose source register, encoded in the "Rm" field.

\(<imm>\)
For encoding A1: the shift to apply to the value read from \(<Rm>\), encoded in the "imm5" field.

For PKKBT, it is one of:

- omitted: No shift, encoded as \(0b00000\).
- 1-31: Left shift by specified number of bits, encoded as a binary number.

For PKKHTB, it is one of:

- omitted: Instruction is a pseudo-instruction and is assembled as though PKKHTB\(<c>\){<q>} <Rd>, <Rm>, \(<Rn>\) had been written.
- 1-32: Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as \(0b00000\). Other shift amounts are encoded as binary numbers.

Note
An assembler can permit \(<imm> = 0\) to mean the same thing as omitting the shift, but this is not standard UAL and must not be used for disassembly.

For encoding T1: the shift to apply to the value read from \(<Rm>\), encoded in the "imm3:imm2" field.

For PKKBT, it is one of:

- omitted: No shift, encoded as \(0b00000\).
- 1-31: Left shift by specified number of bits, encoded as a binary number.

For PKKHTB, it is one of:

- omitted: Instruction is a pseudo-instruction and is assembled as though PKKHTB\(<c>\){<q>} <Rd>, <Rm>, \(<Rn>\) had been written.
- 1-32: Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as \(0b00000\). Other shift amounts are encoded as binary numbers.

Note
An assembler can permit \(<imm> = 0\) to mean the same thing as omitting the shift, but this is not standard UAL and must not be used for disassembly.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = Shift(R[m], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
 R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.133 PLD, PLDW (immediate)

Preload Data (immediate) signals the memory system that data memory accesses from a specified address are likely in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on page E2-4042.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12</th>
<th>11</th>
<th>10 9 8 7 6 5 4 3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>U</td>
<td>R 0 1</td>
<td>1=1111</td>
<td>1 1 1 1</td>
<td>imm12</td>
</tr>
</tbody>
</table>

Preload read variant
Applies when \(R = 1 \).

\[
\text{PLD}\{<c>\}{<q}> \{<Rn> \{, #{+/-}<imm>\}}
\]

Preload write variant
Applies when \(R = 0 \).

\[
\text{PLDW}\{<c>\}{<q}> \{<Rn> \{, #{+/-}<imm>\}}
\]

Decode for all variants of this encoding

if \(Rn \) = '1111' then SEE "PLD (literal)";
\(n = \text{UInt}(Rn); \) \(\text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \) add = (\(U = '1' \)); \(\text{is_pldw} = (R = '0'); \)

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15 14 13 12</th>
<th>11</th>
<th>10 9 8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0</td>
<td>1</td>
<td>0</td>
<td>1 1</td>
<td>1 1</td>
<td>imm12</td>
<td></td>
</tr>
</tbody>
</table>

Preload read variant
Applies when \(W = 0 \).

\[
\text{PLD}\{<c>\}{<q}> \{<Rn> \{, #{+/-}<imm>\}}
\]

Preload write variant
Applies when \(W = 1 \).

\[
\text{PLDW}\{<c>\}{<q}> \{<Rn> \{, #{+/-}<imm>\}}
\]

Decode for all variants of this encoding

if \(Rn \) = '1111' then SEE "PLD (literal)";
\(n = \text{UInt}(Rn); \) \(\text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \) add = TRUE; \(\text{is_pldw} = (W = '1'); \)
T2

|15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 14 13 12|11 10 9 8|7 0 |
|1 1 1 1 1 0 0 0 0 0 0 |W 1 |1111 1 1 1 1 1 0 0 |imm8 |

Preload read variant

Applies when \(W = 0 \).

\[\text{PLD} \{<c>\}{<q>} \{<Rn> \{, {-}<imm>\}} \]

Preload write variant

Applies when \(W = 1 \).

\[\text{PLDW} \{<c>\}{<q>} \{<Rn> \{, {-}<imm>\}} \]

Decode for all variants of this encoding

\[
\text{if } Rn = '1111' \text{ then SEE "PLD (literal)";}
\]
\[
n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32); \quad \text{add} = \text{FALSE}; \quad \text{is_pldw} = (W == '1');
\]

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE** behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be \(\text{AL} \) or omitted. For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

\(+/\) Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- \(-\) when \(U = 0 \)
- \(+\) when \(U = 1 \)

\(<\text{imm}>\) For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field. For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field. For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then}
\]
\[
\text{EncodingSpecificOperations();}
\]
\[
\text{if add then (R[n] + \text{imm32}) else (R[n] - \text{imm32});}
\]
\[
\text{if is_pldw then}
\]
\[
\text{Hint_PreloadDataForWrite(address);}
\]
\[
\text{else}
\]
\[
\text{Hint_PreloadData(address);}
\]
F5.1.134 PLD (literal)

Preload Data (literal) signals the memory system that data memory accesses from a specified address are likely in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The effect of a PLD instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on page E2-4042.

A1

\[
\begin{array}{cccccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccccccccc}
|1|1|1|0|0|1|U (1)|0|1|1|1|1|1|1|1|1|1| & & & & & & & & & & & & & & & & & & imm12 |
\end{array}
\]

A1 variant

PLD{<c>}{<q>} <label> // Normal form
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form

Decode for this encoding

\[
imm32 = \text{ZeroExtend}(imm12, 32); \quad add = (U == '1');
\]

T1

\[
\begin{array}{cccccccccccccccccc}
|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|15|14|13|12|11| & & & & & & & & & & & & & & & & & & 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccccccccc}
|1|1|1|1|0|0|0|U|0|0|1|1|1|1|1|1|1| & & & & & & & & & & & & & & & & & & imm12 |
\end{array}
\]

T1 variant

PLD{<c>}{<q>} <label> // Preferred syntax
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

\[
imm32 = \text{ZeroExtend}(imm12, 32); \quad add = (U == '1');
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- **<c>** For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
- **<q>** See Standard assembler syntax fields on page F2-4120.
- **<label>** The label of the literal data item that is likely to be accessed in the near future. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset must be in the range –4095 to 4095.
 If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
 If the offset is negative, imm32 is equal to minus the offset and add == FALSE.
+/-

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \(U = 0 \)
+ when \(U = 1 \)

\(<imm>\)

For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC, 4) + imm32) else (Align(PC, 4) - imm32);
 Hint_PreloadData(address);
F5.1.135 PLD, PLDW (register)

Preload Data (register) signals the memory system that data memory accesses from a specified address are likely in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.

The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see *Preloading caches* on page E2-4042.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 7 6 5 4 3 0</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 U R 0 1</td>
<td>Rn</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>imm5</td>
<td>stype 0</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

Preload read, optional shift or rotate variant

Applies when \(R == 1 && !(\text{imm5} == 00000 && \text{stype} == 11) \).

\[
\text{PLD\{<c>\}{<q>} [\langle Rn\rangle, \{+/-\}<Rm\rangle \{, \langle \text{shift} \rangle \#\langle \text{amount}\rangle\}}
\]

Preload read, rotate right with extend variant

Applies when \(R == 1 && \text{imm5} == 00000 && \text{stype} == 11 \).

\[
\text{PLD\{<c>\}{<q>} [\langle Rn\rangle, \{+/-\}<Rm\rangle , \text{RRX}]}
\]

Preload write, optional shift or rotate variant

Applies when \(R == 0 && !(\text{imm5} == 00000 && \text{stype} == 11) \).

\[
\text{PLDW\{<c>\}{<q>} [\langle Rn\rangle, \{+/-\}<Rm\rangle \{, \langle \text{shift} \rangle \#\langle \text{amount}\rangle\}}
\]

Preload write, rotate right with extend variant

Applies when \(R == 0 && \text{imm5} == 00000 && \text{stype} == 11 \).

\[
\text{PLDW\{<c>\}{<q>} [\langle Rn\rangle, \{+/-\}<Rm\rangle , \text{RRX}]}
\]

Decode for all variants of this encoding

\[
n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm}); \quad \text{add} = (U == '1'); \quad \text{is_pldw} = (R == '0'); \quad \text{(shift_t, shift_n)} = \text{DecodeImmShift}(\text{stype}, \text{imm5}); \quad \text{if} \ m == 15 || (n == 15 && \text{is_pldw}) \text{ then UNPREDICTABLE;}
\]

T1

| 15 14 13 12|11 10 9 8|7 6 5 4 |3 0 |15 14 13 12|11 10 9 8|7 6 5 4 3 0 |
|1 1 1 1 0 0 0 0 0 | W |1| 1111 | 1 1 1 1 | 0 0 0 0 0 0 | imm2 | Rm |

Preload read variant

Applies when \(W == 0 \).

\[
\text{PLD\{<c>\}{<q>} [\langle Rn\rangle, \{+\}<Rm\rangle \{, \text{LSL} \#\langle \text{amount}\rangle\}}
\]

Preload write variant

Applies when \(W == 1 \).
PLDW<\{<c>\}<q>\} \{<Rn>, {+}<Rm> {, LSL #<amount>}}

Decode for all variants of this encoding

if Rn == '1111' then SEE "PLD (literal)";
\(n = \text{UInt}(\text{Rn}); \ m = \text{UInt}(\text{Rm}); \ \text{add} = \text{TRUE}; \ \text{is.pldw} = (W == '1'); \)
\((\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, \text{UInt}(\text{imm2})); \)
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\(c\)> For encoding A1: see Standard assembler syntax fields on page F2-4120. <\(c\)> must be AL or omitted.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<\(q\)> See Standard assembler syntax fields on page F2-4120.

<\(Rn\)> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used.
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)

+ Specifies the index register is added to the base register.

<\(Rm\)> Is the general-purpose index register, encoded in the "Rm" field.

<\(\text{shift}\)> Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the following values:
LSL when \(\text{stype} = 00 \)
LSR when \(\text{stype} = 01 \)
ASR when \(\text{stype} = 10 \)
ROR when \(\text{stype} = 11 \)

<\(\text{amount}\)> For encoding A1: is the shift amount, in the range 1 to 31 (when <\(\text{shift}\)> = LSL or ROR) or 1 to 32 when <\(\text{shift}\)> = LSR or ASR) encoded in the "imm5" field as <\(\text{amount}\)> modulo 32.
For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
 else
 Hint_PreloadData(address);
F5.1.136 PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on page E2-4042.

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 | 0 |
| 1 1 1 1 | 0 1 0 0 | U | 1 | 0 | 1 | Rn | 1 | 1 | 1 | 1 | imm12 |
```

A1 variant

```plaintext
PLI{<c>}{<q>} {[<Rn> {, #{+/-}<imm>]}]
PLI{<c>}{<q>} <label> // Normal form
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative form
```

Decode for this encoding

```plaintext
n = UInt(Rn);  imm32 = ZeroExtend(imm12, 32);  add = (U == '1');
```

T1

```
|15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 14 13 12|11 | 0 |
| 1 1 1 1 | 0 0 1 | 1 0 | 0 | 1 | l=1111 | 1 1 1 | 1 | imm12 |
```

T1 variant

```plaintext
PLI{<c>}{<q>} {[<Rn> {, #(+)-<imm>]}]
```

Decode for this encoding

```plaintext
if Rn == '1111' then SEE "encoding T3";
```

```plaintext
n = UInt(Rn);  imm32 = ZeroExtend(imm12, 32);  add = TRUE;
```

T2

```
|15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 14 13 12|11 10 9 8|7 | 0 |
| 1 1 1 1 | 0 0 1 | 1 | 0 | 0 | l=1111 | 1 1 1 | 1 1 0 | imm8 |
```

T2 variant

```plaintext
PLI{<c>}{<q>} {[<Rn> {, #(-)<imm>]}]
```

Decode for this encoding

```plaintext
if Rn == '1111' then SEE "encoding T3";
```

```plaintext
n = UInt(Rn);  imm32 = ZeroExtend(imm8, 32);  add = FALSE;
```
T3

\[\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 \\
\hline
1 & 1 & 1 & 1 & 0 & 0 & 1 & U & 0 & 0 & 1 & 1 \\
\hline
\end{array} \]

\[\text{imm12} \]

T3 variant

PLI{<c>}{<q>} <label> // Preferred syntax
PLI{<c>}{<q>} [PC, #{+/-}<imm>] // Alternative syntax

Decode for this encoding

\[n = 15; \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \quad \text{add} = (U == '1'); \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\> For encoding A1: see Standard assembler syntax fields on page F2-4120. Must be AL or omitted.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

<\> See Standard assembler syntax fields on page F2-4120.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset must be in the range –4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/− Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.
For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as \(0b1111 \) in encoding A1, to indicate that the PC is the base register.

The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);
F5.1.137 PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in the near future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches on page E2-4042.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 0 1 1</td>
<td>U 1 0 1</td>
<td>Rn</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Rotate right with extend variant

Applies when imm5 == 00000 & stype == 11.

PLI{<c>}{<q>} [Rn, {+/-}<Rm> , RRX]

Shift or rotate by value variant

Applies when !(imm5 == 00000 & stype == 11).

PLI{<c>}{<q>} [Rn, {+/-}<Rm> {, <shift> #<amount>}]

Decode for all variants of this encoding

n = UInt(Rn); m = UInt(Rm); add = (U == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 1 0 0</td>
<td>0 0 0</td>
<td>I=111</td>
<td>1 1 1</td>
<td>1</td>
<td>0 0 0 0 0</td>
</tr>
</tbody>
</table>

T1 variant

PLI{<c>}{<q>} [Rn, {+}<Rm> {, LSL #<amount>}]

Decode for this encoding

if Rn == '1111' then SEE "PLI (immediate, literal)";
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRTYPE_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

For encoding A1: see Standard assembler syntax fields on page F2-4120. <c> must be AL or omitted.
For encoding T1: see *Standard assembler syntax fields on page F2-4120.*

\(<q>\)

See *Standard assembler syntax fields on page F2-4120.*

\(<Rn>\)

Is the general-purpose base register, encoded in the "Rn" field.

\(+/-\)

Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when \(U = 0 \)
- when \(U = 1 \)

\(+\)

Specifies the index register is added to the base register.

\(<Rm>\)

Is the general-purpose index register, encoded in the "Rm" field.

\(<\text{shift}>\)

Is the type of shift to be applied to the index register, encoded in the "stype" field. It can have the following values:

- \(\text{LSL} \) when \(\text{stype} = 00 \)
- \(\text{LSR} \) when \(\text{stype} = 01 \)
- \(\text{ASR} \) when \(\text{stype} = 10 \)
- \(\text{ROR} \) when \(\text{stype} = 11 \)

\(<\text{amount}>\)

For encoding A1: is the shift amount, in the range 1 to 31 (when \(<\text{shift}> = \text{LSL} \) or \(\text{ROR} \)) or 1 to 32 (when \(<\text{shift}> = \text{LSR} \) or \(\text{ASR} \)) encoded in the "imm5" field as \(<\text{amount}>\) modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{offset = Shift}(R[m], \text{shift}_t, \text{shift}_n, \text{PSTATE}.C);
\]

\[
\text{address = if add then } (R[n] + \text{offset}) \text{ else } (R[n] - \text{offset});
\]

\[
\text{Hint_PreloadInstr(address);}
\]
F5.1.138 POP

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

T1

| 15 14 13 12 | 11 10 9 8 7 | 0 |
| 1 0 1 1 1 0 | P | register_list |

T1 variant

POP{<c>}{<q>} <registers> // Preferred syntax
LDM{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONstrained UNpRedictable behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction targets an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- {<c>} See Standard assembler syntax fields on page F2-4120.
- {<q>} See Standard assembler syntax fields on page F2-4120.
- {<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
 The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field defaults to 0.
 If the PC is in the list, the instruction must be either outside any IT block, or the last instruction in an IT block.
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = SP;
 for i = 0 to 14
 if registers<i> == '1' then
 R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4];
 address = address + 4;
 if registers<15> == '1' then
 if UnalignedAllowed then
 if address<1:0> == '00' then
 LoadWritePC(MemU[address,4]);
 else
 UNPREDICTABLE;
 else
 LoadWritePC(MemA[address,4]);
 if registers<13> == '0' then SP = SP + 4*BitCount(registers);
 if registers<13> == '1' then SP = bits(32) UNKNOWN;
F5.1.139 POP (multiple registers)

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive memory locations starting at the address in SP, and updates SP to point just above the loaded data.

This instruction is an alias of the LDM, LDMIA, LDMFD instruction. This means that:

- The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.
- The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

A1

```
|31 28 26 24 22 20 19 16 15| |
|1 0 0 0 1 1 1 0 1 | register_list
```

A1 variant

POP<\{c\}><\{q\}><registers>

is equivalent to

LDM<\{c\}><\{q\}> SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 14 13 | |
|1 1 1 0 1 0 0 0 1 1 1 1 0 1 | register_list
```

T2 variant

POP<\{c\}\.W <registers> // All registers in R0-R7, PC

is equivalent to

LDM<\{c\}\.SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

POP<\{c\}><\{q\}><registers>

is equivalent to

LDM<\{c\}><\{q\}> SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

Assembler symbols

- <\{c\}>
 - See Standard assembler syntax fields on page F2-4120.
- <\{q\}>
 - See Standard assembler syntax fields on page F2-4120.
- <registers>
 - For encoding A1: is a list of two or more registers to be loaded, separated by commas and surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.
 - If the SP is in the list, the value of the SP after such an instruction is UNKNOWN.
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.

Arm deprecates the use of this instruction with both the LR and the PC in the list.

For encoding T2: is a list of two or more registers to be loaded, separated by commas and surrounded by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also *Encoding of lists of general-purpose registers and the PC* on page F2-4126.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993. If the PC is in the list:

- The LR must not be in the list.
- The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation for all encodings

The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.
F5.1.140 POP (single register)

Pop Single Register from Stack loads a single general-purpose register from the stack, loading from the address in SP, and updates SP to point just above the loaded data.

This instruction is an alias of the LDR (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of LDR (immediate).
- The description of LDR (immediate) gives the operational pseudocode for this instruction.

A1

```
| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 |   |   | 0 |
|-----------------------------------------------|--|--|
| some value                                    |   |   | 1 |
```

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

T4

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>some value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Post-indexed variant

POP{<c>}{<q>} <single_register_list>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<single_register_list>`
 Is the general-purpose register <Rt> to be loaded surrounded by { and }.
- `<Rt>` For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

Operation for all encodings

The description of LDR (immediate) gives the operational pseudocode for this instruction.
F5.1.141 PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores to the same physical address.

The semantics of the Physical Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the PSSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store appears in program order before the PSSBB.

- When a load to a location appears in program order before the PSSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store appears in program order after the PSSBB.

A1

\[\begin{array}{cccccccccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array} \]

A1 variant

PSSBB{<q>}

Decode for this encoding

// No additional decoding required

T1

\[\begin{array}{cccccccccccccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & (1) & (1) & (1) & (1) & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array} \]

T1 variant

PSSBB{<q>}

Decode for this encoding

if InITBlock() then UNPREDICTABLE;

Assembler symbols

\(<q>\) See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToPA();
F5.1.142 PUSH

Push Multiple Registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory locations ending just below the address in SP, and updates SP to point to the start of the stored data.

The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 0 1 0</td>
<td>M</td>
<td>register_list</td>
</tr>
</tbody>
</table>

T1 variant

PUSH{<c>}{<q>} <registers> // Preferred syntax
STMDB{<c>}{<q>} SP!, <registers> // Alternate syntax

Decode for this encoding

\[
\text{registers} = '0':\text{M}:'000000':\text{register_list}; \text{UnalignedAllowed} = \text{FALSE};
\]

\[
\text{if BitCount(registers) < 1 then UNPREDICTABLE;}
\]

CONSTRANGED UNPREDICTABLE behavior

If \(\text{BitCount(registers) < 1}\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction targets an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers loaded.

Notes for all encodings

For more information about the CONSTRANGED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<\text{registers}>\) Is a list of one or more registers to be stored, separated by commas and surrounded by \{ and \}. The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this field defaults to 0.

Operation

\[
\text{if ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{address} = \text{SP} - 4*\text{BitCount(registers)};
\]

\[
\text{for i = 0 to 14}
\]

\[
\text{if registers}<i> == '1' then
\]

\[
\text{if i == 13 \&\& i != LowestSetBit(registers) then // Only possible for encoding A1}
\]

\[
\text{MemA}[\text{address},4] = \text{bits(32)} \text{UNKNOWN};
\]
else
 if UnalignedAllowed then
 MemU[address,4] = R[i];
 else
 MemA[address,4] = R[i];
 address = address + 4;
if registers<15> == '1' then // Only possible for encoding A1 or A2
 if UnalignedAllowed then
 MemU[address,4] = PCStoreValue();
 else
 MemA[address,4] = PCStoreValue();
 SP = SP - 4*BitCount(registers);
F5.1.143 PUSH (multiple registers)

Push multiple registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory locations ending just below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STMDB, STMFD instruction. This means that:

- The encodings in this description are named to match the encodings of STMDB, STMFD.
- The description of STMDB, STMFD gives the operational pseudocode for this instruction.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 | | | 0 |
|---|---|---|---|---|---|---|
| !=1111 |1 0 0 1 0 0 1 0 1 1 0 1 | register_list |

A1 variant

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T1

| 15 14 13 12|11 10 9 8|7 6 5 4|3 |0 |15 14 13 | | | 0 |
|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 |0 |M | register_list |
| W | Rn | P |

T1 variant

PUSH{<c>}.W <registers> // All registers in R0-R7, LR

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

Assembler symbols

- <c>
 - See *Standard assembler syntax fields on page F2-4120*.
- <q>
 - See *Standard assembler syntax fields on page F2-4120*.
- <registers>
 - For encoding A1: is a list of two or more registers to be stored, separated by commas and surrounded by { and }. The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to the highest memory address. See also *Encoding of lists of general-purpose registers and the PC on page F2-4126*.
The SP and PC can be in the list. However:

- Arm deprecates the use of instructions that include the PC in the list.
- If the SP is in the list, and it is not the lowest-numbered register in the list, the instruction stores an UNKNOWN value for the SP.

For encoding T1, is a list of one or more registers to be stored, separated by commas and surrounded by { and }. The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

The description of STMDB, STMFD gives the operational pseudocode for this instruction.
F5.1.144 PUSH (single register)

Push Single Register to Stack stores a single general-purpose register to the stack, storing to the 32-bit word below the address in SP, and updates SP to point to the start of the stored data.

This instruction is an alias of the STR (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of STR (immediate).
- The description of STR (immediate) gives the operational pseudocode for this instruction.

Pre-indexed variant

For T4 encoding:

```
PUSH{<c>}{<q>} <single_register_list> // Standard syntax
```

is equivalent to

```
STR{<c>}{<q>} <Rt>, [SP, #-4]!
```

and is always the preferred disassembly.

Assembler symbols

- `<>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<single_register_list>` Is the general-purpose register `<Rt>` to be stored surrounded by `{` and `}`.
- `<Rt>` For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated.

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation for all encodings

The description of STR (immediate) gives the operational pseudocode for this instruction.
F5.1.145 QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range \(-2^{31}\) to \((2^{31} - 1)\), and writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=111</td>
<td>Rn</td>
</tr>
<tr>
<td>d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); if d == 15</td>
<td></td>
</tr>
</tbody>
</table>

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 1 0 0 0</td>
<td>Rn</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>Rd</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Rm</td>
</tr>
</tbody>
</table>

A1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1 variant

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` Is the first general-purpose source register, encoded in the "Rm" field.
- `<Rn>` Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
 if sat then
 PSTATE.Q = '1';
F5.1.146 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range \(-2^{15} \leq x \leq 2^{15} - 1\), and writes the results to the destination register.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| !| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | Rn | Rd |

cond

A1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Rn |
| Rd |

T1 variant

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\textcolor{red}{c}> See Standard assembler syntax fields on page F2-4120.
<\textcolor{red}{q}> See Standard assembler syntax fields on page F2-4120.
<\textcolor{red}{Rd}> Is the general-purpose destination register, encoded in the "Rd" field.
<\textcolor{red}{Rn}> Is the first general-purpose source register, encoded in the "Rn" field.
<\textcolor{red}{Rm}> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
\[
\text{sum2} = \text{SInt}(R[n]<31:16>) + \text{SInt}(R[m]<31:16>);
R[d]<15:0> = \text{SignedSat}(\text{sum1}, 16);
R[d]<31:16> = \text{SignedSat}(\text{sum2}, 16);
\]
F5.1.147 QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range \(-2^7 \leq x \leq 2^7 - 1\), and writes the results to the destination register.

A1

\[
\begin{array}{cccccccccccc}
|31|28|27|26|25|24|23|22|21|20|19|16|15|12|11|10|9|8|7|6|5|4|3|0| \\
\hline
|\text{cond}|0|1|1|0|0|0|1|0|0|1|0|1|0|1|0|1|
\end{array}
\]

A1 variant

\[
\text{QADD8}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == 15 \quad \text{||} \quad n == 15 \quad \text{||} \quad m == 15 \quad \text{then UNPREDICTABLE;}
\]

T1

\[
\begin{array}{cccccccccccc}
|15|14|13|12|11|10|9|8|7|6|5|4|3|0| \quad |15|14|13|12|11|8|7|6|5|4|3|0| \\
\hline
1|1|1|1|1|0|1|0|0|0|1|0|1|0|1|0|1|0|0|1|0|1|
\end{array}
\]

T1 variant

\[
\text{QADD8}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == 15 \quad \text{||} \quad n == 15 \quad \text{||} \quad m == 15 \quad \text{then UNPREDICTABLE;} \quad \text{// Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\[
\begin{array}{l}
<c> \quad \text{See Standard assembler syntax fields on page F2-4120.} \\
<q> \quad \text{See Standard assembler syntax fields on page F2-4120.} \\
<Rd> \quad \text{Is the general-purpose destination register, encoded in the "Rd" field.} \\
<Rn> \quad \text{Is the first general-purpose source register, encoded in the "Rn" field.} \\
<Rm> \quad \text{Is the second general-purpose source register, encoded in the "Rm" field.}
\end{array}
\]

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{sum1} = \text{SInt}(R[n]<7:0>) + \text{SInt}(R[m]<7:0>);
\]

\[
\text{sum2} = \text{SInt}(R[n]<15:8>) + \text{SInt}(R[m]<15:8>);
\]

\[
\text{sum3} = \text{SInt}(R[n]<23:16>) + \text{SInt}(R[m]<23:16>);
\]
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(sum1, 8);
R[d]<15:8> = SignedSat(sum2, 8);
R[d]<23:16> = SignedSat(sum3, 8);
R[d]<31:24> = SignedSat(sum4, 8);
F5.1.148 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range \(-2^{15} \leq x \leq 2^{15} - 1\), and writes the results to the destination register.

A1

31	28	27	26	25	24	23	22	21	20	19	16	15	12	11	10	9	8	7	6	5	4	3	0			
!="1"111	0	1	1	0	0	1	0	Rn	Rd																	

A1 variant

\[
\text{QASX}\{<c>}\{<q}\} \{<Rd>,\} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == \text{15} || n == \text{15} || m == \text{15} \text{ then UNPREDICTABLE;}
\]

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | Rn | 1 | 1 | 1 | Rd | 0 | 0 | 0 | 1 | Rm |

T1 variant

\[
\text{QASX}\{<c>}\{<q}\} \{<Rd>,\} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == \text{15} || n == \text{15} || m == \text{15} \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for } \text{R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{if ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);}
\]
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = SignedSat(diff, 16);
R[d]<31:16> = SignedSat(sum, 16);
F5.1.149 QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range
\(-2^{31} \leq x \leq 2^{31} - 1\). If saturation occurs in either operation, it sets PSTATE.Q to 1.

A1

\[
\begin{array}{cccccccccc}
|31|28|27|26|25|24|23|22|21|19|16|15|12|11|10|9|8|7|6|5|4|3|0|
\end{array}
\]

cond

A1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[
d = UInt(Rd); \quad n = UInt(Rn); \quad m = UInt(Rm);
\]

\[
\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;}
\]

T1

\[
\begin{array}{cccccccccc}
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|14|13|12|11|8|7|6|5|4|3|0|
\end{array}
\]

T1 variant

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[
d = UInt(Rd);\quad n = UInt(Rn);\quad m = UInt(Rm);
\]

\[
\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

See Standard assembler syntax fields on page F2-4120.

>

See Standard assembler syntax fields on page F2-4120.

<Rd>

Is the general-purpose destination register, encoded in the "Rd" field.

<Rm>

Is the first general-purpose source register, encoded in the "Rm" field.

<Rn>

Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

\[
\text{if ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{(doubled, sat1) = SignedSatQ(2 * SInt(Rn), 32);}
\]
(R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
if sat1 || sat2 then
 PSTATE.Q = '1';
F5.1.150 QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed integer range $-2^{31} \leq x \leq 2^{31} - 1$. If saturation occurs in either operation, it sets $PSTATE.Q$ to 1.

A1

```
| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| !=1111 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| cond | Rd | Rn | | |
```

A1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[\begin{align*}
d &= \text{UInt}(Rd); \\
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm); \\
\text{if } d == 15 \text{ } || \text{ } n == 15 \text{ } || \text{ } m == 15 \text{ then UNPREDICTABLE;}
\end{align*}\]

T1

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Rd | 1 | 1 | 1 | | | | | | | |
| Rn |
```

T1 variant

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[\begin{align*}
d &= \text{UInt}(Rd); \\
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm); \\
\text{if } d == 15 \text{ } || \text{ } n == 15 \text{ } || \text{ } m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\end{align*}\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` Is the first general-purpose source register, encoded in the "Rm" field.
- `<Rn>` Is the second general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

\[\begin{align*}
\text{if } \text{ConditionPassed()} \text{ then} \\
\text{EncodingSpecificOperations();} \\
\text{(doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);}
\end{align*}\]
\(R[d], \text{sat2} \) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
if sat1 || sat2 then
 PSTATE.Q = '1';
F5.1.151 QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range \(-2^{15} \leq x \leq 2^{15} - 1\), and writes the results to the destination register.

A1

31	28	27 26 25 24	23 22 21 20	19	16 15	12 11 10 9 8 7 6 5 4 3 0				
!=1111	0 1 1 0 0 0 1 0	Rn	Rd	1	1	1	1	0	1 0 1	Rm

A1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
\begin{align*}
d &= \text{UInt}(Rd); \\
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm);
\end{align*}
\]

if \(d == 15 \text{ or } n == 15 \text{ or } m == 15\) then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
<th>15 14 13 12</th>
<th>11</th>
<th>8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

T1 variant

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
\begin{align*}
d &= \text{UInt}(Rd); \\
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm);
\end{align*}
\]

if \(d == 15 | n == 15 | m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed() } \text{then} \\
\quad \text{EncodingSpecificOperations();} \\
\quad \text{sum} = \text{SInt}(R[n]<15:0>) + \text{SInt}(R[m]<31:16>);
\]
\[\text{diff} = \text{SInt}(\text{R}[n]_{31:16}) - \text{SInt}(\text{R}[m]_{15:0}) \]
\[\text{R}[d]_{15:0} = \text{SignedSat}(\text{sum}, 16) \]
\[\text{R}[d]_{31:16} = \text{SignedSat}(\text{diff}, 16) \]
F5.1.152 QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed integer range -2^{31} <= x <= 2^{31} - 1, and writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.

A1

\[
\begin{array}{|c|}
\hline
\text{cond} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 16 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & \text{Rn} & \text{Rd} & \text{Rm} \\
\hline
\text{!]1111} & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

A1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm}); \\
\text{if } d == 15 \text{ || } n == 15 \text{ || } m == 15 \text{ then UNPREDICTABLE;}
\]

T1

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{cond} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 16 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & \text{Rn} & \text{Rd} & \text{Rm} \\
\hline
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

T1 variant

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm}); \\
\text{if } d == 15 \text{ || } n == 15 \text{ || } m == 15 \text{ then UNPREDICTABLE; } // \text{ Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rd> Is the general-purpose destination register, encoded in the "Rd" field.
- <Rm> Is the first general-purpose source register, encoded in the "Rm" field.
- <Rn> Is the second general-purpose source register, encoded in the "Rn" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
 if sat then
 PSTATE.Q = '1';
F5.1.153 QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer range \(-2^{15} \leq x \leq 2^{15} - 1\), and writes the results to the destination register.

A1

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccccccccccc}
& !=111 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & Rn & Rd & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & Rm
\end{array}
\]

\text{cond}

A1 variant

QSUB16\{<c>\}{<q>} \{<Rd>,\, <Rn>, \, <Rm>\}

Decide for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE;

T1

\[
\begin{array}{cccccccccccccccccccc}
| & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 14 & 13 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & |
\end{array}
\]

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & Rn & 1 & 1 & 1 & 1 & Rd & 0 & 0 & 0 & 1 & Rm
\end{array}
\]

T1 variant

QSUB16\{<c>\}{<q>} \{<Rd>,\, <Rn>, \, <Rm>\}

Decide for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\quad\text{See Standard assembler syntax fields on page F2-4120.}\n\)<q>\quad\text{See Standard assembler syntax fields on page F2-4120.}\n\)<Rd>\quad Is the general-purpose destination register, encoded in the "Rd" field.\n\)<Rn>\quad Is the first general-purpose source register, encoded in the "Rn" field.\n\)<Rm>\quad Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

diff1 = SInt(R[n]15:0) - SInt(R[m]15:0);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(diff1, 16);
R[d]<31:16> = SignedSat(diff2, 16);
F5.1.154 QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range \(-2^7 \leq x \leq 2^7 - 1\), and writes the results to the destination register.

A1

\[
\begin{array}{cccccccccccc}
\end{array}
\]

\[
\text{cond} = \text{1111} \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0
\]
\[
\begin{array}{cccccccc}
\text{Rn} & \text{Rd} & 0 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

A1 variant

\[
\text{QSUB8}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm});
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE;

T1

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}
\]
\[
\begin{array}{cccccccc}
\text{Rn} & 1 & 1 & 1 & 1 & \text{Rd} & 0 & 0 & 0 & 1 & \text{Rm}
\end{array}
\]

T1 variant

\[
\text{QSUB8}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad m = \text{UInt}(\text{Rm});
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
\(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.
\(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

\[
diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
\]

\[
diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
\]

\[
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
\]
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(diff1, 8);
R[d]<15:8> = SignedSat(diff2, 8);
R[d]<23:16> = SignedSat(diff3, 8);
R[d]<31:24> = SignedSat(diff4, 8);
F5.1.155 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

A1

![Instruction Format]

A1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 || m == 15\) then UNPREDICTABLE;

T1

![Instruction Format]

T1 variant

RBIT{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad n = \text{UInt}(Rn);
\]

if \(m != n || d == 15 || m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If \(m != n\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \(m = \text{UInt}(Rn);\).
- The instruction executes with the additional decode: \(m = \text{UInt}(Rm);\).
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<\text{Rd}>\) Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31
 result<31-i> = R[m]<i>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.156 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111</td>
<td>0 1 1 0</td>
<td>1 0 1 1</td>
<td>1 (1) (1) (1)</td>
<td>Rd</td>
<td>1 (1) (1) (1)</td>
<td>0 0 1 1</td>
<td>Rm</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == 15 \quad \text{||} \quad m == 15 \text{ then UN PREDICTABLE;}
\]

T1

```
| 15 14 13 12|11 10 9 8 |7 6 5 |3 2 0 |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1 0 1 1           | 1 0 1 0           | 0 0             | Rd               |
| Rm               |
```

T1 variant

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm);
\]

T2

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 0 1 0</td>
<td>0 0</td>
<td>Rn</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>1 0 0 0</td>
<td>Rm</td>
</tr>
</tbody>
</table>
```

T2 variant

REV{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1

REV{<c>}{<q>} <Rd>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad n = \text{UInt}(Rn);
\]

\[
\text{if } m != n \quad \text{||} \quad d == 15 \quad \text{||} \quad m == 15 \text{ then UNPREDICTABLE; } \quad // \text{Armv8-A removes UNPREDICTABLE for R13}
\]

CONstrained UNPREDICTABLE behavior

If \(m != n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \(m = \text{UInt}(Rn); \).
• The instruction executes with the additional decode: \(m = \text{UInt}(Rm); \).
• The value in the destination register is \text{UNKNOWN}.

Notes for all encodings

For more information about the \text{CONSTRAINED UNPREDICTABLE} behavior of this instruction, see Appendix K1 **Architectural Constraints on UNPREDICTABLE Behaviors**.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
\(<Rm>\) For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field. For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the "Rn" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    bits(32) result;
    result<31:24> = R[m]<7:0>;
    result<23:16> = R[m]<15:8>;
    result<15:8>  = R[m]<23:16>;
    result<7:0>   = R[m]<31:24>;
    R[d] = result;
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.157 REV16

Byte-Reverse Packed Halfword reverses the byte order in each 16-bit halfword of a 32-bit register.

A1

```
<table>
<thead>
<tr>
<th>31  28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>l=1111</td>
<td>0 1 1 0 1 0</td>
<td>1 1 1</td>
<td></td>
<td>Rd</td>
<td>(1)(1)(1)(1)</td>
<td></td>
<td>1 0 1 1</td>
</tr>
</tbody>
</table>
cond
```

A1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decoding for this encoding

\[d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm);\]
\[\text{if} \ d == 15 \ || \ m == 15 \text{ then UNPREDICTABLE;}\]

T1

```
<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 0 1 0 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T1 variant

REV16{<c>}{<q>} <Rd>, <Rm>

Decoding for this encoding

\[d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm);\]

T2

```
<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13</th>
<th>12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 0 1 0 1 1 1 1</td>
<td>Rd</td>
<td>1 0 0 1</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T2 variant

REV16{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REV16{<c>}{<q>} <Rd>, <Rm>

Decoding for this encoding

\[d = \text{UInt}(Rd); \quad m = \text{UInt}(Rm); \quad n = \text{UInt}(Rn);\]
\[\text{if} \ m != n \ || \ d == 15 \ || \ m == 15 \text{ then UNPREDICTABLE;} // \text{Armv8-A removes UNPREDICTABLE for R13}\]

CONSTRAINED UNPREDICTABLE behavior

If \(m != n\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \(m = \text{UInt}(Rn);\)
• The instruction executes with the additional decode: m = UInt(Rm);
• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rm>
For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.158 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and sign-extends the result to 32 bits.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0 | |
|---|---|---|---|---|---|---|---|---|
|      | 1        | 1        | 1        | 1     | Rd   | 1      | 1      | 1    |
|      | 0        | 1        | 0        | 1     | 1    | (1)    | (1)    | (1)  |
| cond |          |          |          |       |      |        |        |      |
```

A1 variant

```
REVSH{<c}>{<q}> <Rd>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rd</td>
<td>Rm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

T1 variant

```
REVSH{<c>{<q}> <Rd>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);
```

T2

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rn</td>
<td>Rd</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rm</td>
</tr>
</tbody>
</table>
```

T2 variant

```
REVSH{<c>}.W <Rd>, <Rm> // <Rd>, <Rm> can be represented in T1
REVSH{<c>}{<q}> <Rd>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);  n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13
```

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The instruction executes with the additional decode: \(m = \text{UInt}(Rn) \);
• The instruction executes with the additional decode: \(m = \text{UInt}(Rm) \);
• The value in the destination register is unknown.

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\(c \)>
See Standard assembler syntax fields on page F2-4120.

<\(q \)>
See Standard assembler syntax fields on page F2-4120.

<\(Rd \)>
Is the general-purpose destination register, encoded in the "Rd" field.

<\(Rm \)>
For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.159 RFE, RFEDA, RFEDB, RFEIA, RFEIB

Return From Exception loads two consecutive memory locations using an address in a base register:

• The word loaded from the lower address is treated as an instruction address. The PE branches to it.
• The word loaded from the higher address is used to restore PSTATE. This word must be in the format of an SPSR.

An address adjusted by the size of the data loaded can optionally be written back to the base register.

The PE checks the value of the word loaded from the higher address for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.

RFE is UNDEFINED in Hyp mode and CONSTRAINED UNPREDICTABLE in User mode.

A1

Decrement After variant
Applies when P == 0 && U == 0.
RFEDA{<c>}{<q>} <Rn>{!}

Decrement Before variant
Applies when P == 1 && U == 0.
RFEDB{<c>}{<q>} <Rn>{!}

Increment After variant
Applies when P == 0 && U == 1.
RFEIA{<c>}{<q>} <Rn>{!}

Increment Before variant
Applies when P == 1 && U == 1.
RFEIB{<c>}{<q>} <Rn>{!}

Decode for all variants of this encoding

T1

T1 variant
RFEDB{<c>}{<q>} <Rn>{!} // Outside or last in IT block
Decode for this encoding

\[
n = \text{UInt}(Rn); \ wback = (W == '1'); \ increment = \text{FALSE}; \ \text{wordhigher} = \text{FALSE};
\]
if \(n == 15 \) then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

\[
| 15 14 13 12|11 10 9 8|7 6 5 4|3 0 |15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0 |
\]
\[
1 1 1 0 1 0 0 1 1 1 0 W 1 \ Rn |1 1 1 0|
\]

T2 variant

RFE{IA}{<c>}{<q>} <Rn>{!} // Outside or last in IT block

Decode for this encoding

\[
n = \text{UInt}(Rn); \ wback = (W == '1'); \ increment = \text{TRUE}; \ \text{wordhigher} = \text{FALSE};
\]
if \(n == 15 \) then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. \(<c>\) must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

RFEFA, RFEFA, RFED, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively, referring to their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL0 then
 UNPREDICTABLE; // UNDEFINED or NOP
 else
 address = if increment then R[n] else R[n]-8;
 if wordhigher then address = address+4;
 new_pc_value = MemA[address,4];
 spsr = MemA[address+4,4];
 if wback then R[n] = if increment then R[n]+8 else R[n]-8;
 AArch32.ExceptionReturn(new_pc_value, spsr);
CONSTRANGED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
F5.1.160 ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{cccccccccccc}
<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field. For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.161 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register.

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
- The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

A1

![Instruction Format Diagram]

Not flag setting variant

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

![Instruction Format Diagram]

Rotate right variant

ROR{c}{<op>} {<Rdm>} <Rdm>, <Rs> // Inside IT block

is equivalent to

MOV{c}{<op>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

![Instruction Format Diagram]

Not flag setting variant

ROR{c}.W {<Rd>,} <Rm>, <Rs> // Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1

is equivalent to

MOV{c}{<op>} <Rd>, <Rm>, ROR <Rs>
and is always the preferred disassembly.

\[\text{ROR}\{c\}\{q\}\{Rd\}, Rm, Rs} \]

is equivalent to

\[\text{MOV}\{c\}\{q\}\{Rd\}, Rm, ROR, Rs} \]

and is always the preferred disassembly.

Assembler symbols

\(<c>\) See *Standard assembler syntax fields* on page F2-4120.

\(<q>\) See *Standard assembler syntax fields* on page F2-4120.

\(<Rdm>\) Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rm>\) Is the first general-purpose source register, encoded in the "Rm" field.

\(<Rs>\) Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.162 RORS (immediate)

Rotate Right, setting flags (immediate) provides the value of the contents of a register rotated by a constant value. The bits that are rotated off the right end are inserted into the vacated bit positions on the left.

If the destination register is not the PC, this instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

- The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
- The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
- The instruction is UNDEFINED in Hyp mode.
- The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

| [31] | 28|27 26 25 24|23 22 21 20|19 18 17 16|15 | 12|11 | 7 | 6 | 5 | 4 | 3 | 0 |
|------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 0 0 1 1 0 1 | (0) (0) (0) (0) | Rd | !=0000 | 1 1 0 | Rm |

cond S imm5 stype

MOVS, shift or rotate by value variant

RORS<{c}>{q} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS<{c}>{q} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

| [15] | 14 13 12|11 10 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| 1 1 1 0 1 0 1 | 0 0 1 0 | 1 1 1 1 | 0 | Rd | imm3 | imm2 | 1 | 1 | Rm |

S stype

MOVS, shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00).

RORS<{c}>{q} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS<{c}>{q} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.
See *Standard assembler syntax fields* on page F2-4120.

<q>

For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction performs an exception return, that restores `PSTATE` from `SPSR_<current_mode>`.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<rd>

For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<r_m>

For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation for all encodings

The description of `MOV, MOVs (register)` gives the operational pseudocode for this instruction.
F5.1.163 RORS (register)

Rotate Right, setting flags (register) provides the value of the contents of a register rotated by a variable number of
bits, and updates the condition flags based on the result. The bits that are rotated off the right end are inserted into
the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register

This instruction is an alias of the MOV, MOVS (register-shifted register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
 register).
• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this
 instruction.

A1

```
|31 28|27 25 24|23 22 21 20|19 18 17 16|15 12|11 8|7 6 5 4 |3 0 |
|---|---|---|---|---|---|---|---|---|
| Rd | Rs | 0 1 1 | 0 1 1 |

cond | S | stype |
---|---|---|
0 1111 | 0 0 0 1 | 1 0 1 1 |
```

Flag setting variant

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

```
|15 14 13 12|11 10 9 | 6 5 | 3 2 0 |
|---|---|---|---|---|
| 0 1 0 0 0 0 | 0 1 1 1 |

op
Rd Rs Rdm
```

Rotate right variant

RORS{<q>} {<Rdm>,} <Rdm>, <Rs> // Outside IT block
is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

```
|15 14 13 12|11 10 9 | 8 7 6 5 4 |3 0 |
|---|---|---|---|---|
| 1 1 1 1 | 1 0 1 0 |

stype S
Rm Rd Rs
```

Flag setting variant

RORS.W {<Rd>,} <Rm>, <Rs> // Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1
is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>
and is always the preferred disassembly.

\[
\text{RORS}\{<c>\}{<q>} \{<Rd>,\} <Rm>, <Rs>
\]

is equivalent to

\[
\text{MOVS}\{<c>\}{<q>} <Rd>, <Rm>, \text{ROR} <Rs>
\]

and is always the preferred disassembly.

Assembler symbols

- `<c>`: See *Standard assembler syntax fields* on page F2-4120.
- `<q>`: See *Standard assembler syntax fields* on page F2-4120.
- `<Rdm>`: Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.
- `<Rd>`: Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>`: Is the first general-purpose source register, encoded in the "Rm" field.
- `<Rs>`: Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in the "Rs" field.

Operation for all encodings

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.
F5.1.164 RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the Carry flag shifted into bit[31].

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

- The encodings in this description are named to match the encodings of MOV, MOVS (register).
- The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{cccccccccccccccc}
\hline
=1111 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & (0) & (0) & (0) & (0) & Rd & 0 & 0 & 0 & 0 & 1 & 1 & 0 & Rm \\
cond & S & imm5 & stype
\end{array}
\]

MOV, rotate right with extend variant

RRX\{<c>\}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV\{<c>\}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

\[
\begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 15 & 14 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
\hline
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & (0) & 0 & 0 & 0 & 1 & 1 & 0 & Rm \\
S & imm3 & imm2 & stype
\end{array}
\]

MOV, rotate right with extend variant

RRX\{<c>\}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV\{<c>\}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993. For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

\(<Rm>\) For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated. For encoding T3: is the general-purpose source register, encoded in the "Rm" field.
Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.165 RRXS

Rotate Right with Extend, setting flags provides the value of the contents of a register shifted right by one place, with the Carry flag shifted into bit[31].

If the destination register is not the PC, this instruction updates the condition flags based on the result, and bit[0] is shifted into the Carry flag.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is an alias of the MOV, MOVS (register) instruction. This means that:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

A1

```
| 31 | 28|27 26 25 24|23 22 21 20|19 18 17 16|15 | 12|11 | 7 6 5 4 | 3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 0 0 1 1 1 | 0 | 1 | 1 | (0) | (0) | (0) | Rd | 0 0 0 0 | 0 | 1 | 1 | 0 | Rm |
| cond | S | imm5 | stype |
```

MOV, rotate right with extend variant

RRXS{<>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

```
| 15 | 14 | 13 | 12|11 | 10 | 9 | 8 | 7 6 5 4 | 3 2 1 0 | 15 | 12|11 | 8 7 6 5 4 | 3 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | (0) | 0 | 0 | 0 | Rd | 0 0 | 1 | 1 | Rm |
| S | imm3 | imm2 | stype |
```

MOV, rotate right with extend variant

RRXS{<>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.
<q> See *Standard assembler syntax fields on page F2-4120*.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the destination register, but if the PC is used, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.
F5.1.166 RSB, RSBS (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>]!=1111</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
</tr>
</tbody>
</table>

RSB variant

Applies when S == 0.

RSB{<c>}{<q>}{<Rd>,} <Rn>, #<const>

RSBS variant

Applies when S == 1.

RSBS{<c>}{<q>}{<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 1 0 0 1</td>
<td>Rn</td>
<td>Rd</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

RSB{<c>}{<q>}{<Rd>,} <Rn>, #0 // Inside IT block
RSBS{<q>}{<Rd>,} <Rn>, #0 // Outside IT block

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0
T2

| 15 14 13 12| 11 10 9 8 | 7 6 5 4 | 3 | 0 | 15 14 | 12 | 11 8 7 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 | i | 0 1 1 0 | S | Rn | 0 | imm3 | Rd | imm8 |

RSB variant

Applies when $S = 0$.

```
RSB<>{c}.W {<Rd>,} <Rn>, #0 // Inside IT block
RSB<>{c}{q} {<Rd>,} <Rn>, #<const>
```

RSBS variant

Applies when $S = 1$.

```
RSBS.W {<Rd>,} <Rn>, #0 // Outside IT block
RSBS<>{c}{q} {<Rd>,} <Rn>, #<const>
```

Decode for all variants of this encoding

```latex
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>`: See Standard assembler syntax fields on page F2-4120.
- `<q>`: See Standard assembler syntax fields on page F2-4120.
- `<Rd>`: For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the RSB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the RSBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

 For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- `<Rn>`: For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
 For encoding T1 and T2: is the general-purpose source register, encoded in the "Rn" field.

- `<const>`: For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
 For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.167 RSB, RSBS (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the result.

The field descriptions for \(<Rd>\) identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_\(<current_mode>\).
 - The PE checks SPSR_\(<current_mode>\) for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 | 0 1 1 1 S Rn Rd imm5 stype 0 Rm |
| cond |

RSB, rotate right with extend variant

Applies when \(S = 0 \&\& \text{imm5} = 00000 \&\& \text{stype} = 11\).

\[\text{RSB}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>, RRX \]

RSB, shift or rotate by value variant

Applies when \(S = 0 \&\& \neg(\text{imm5} = 00000 \&\& \text{stype} = 11)\).

\[\text{RSB}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm> \{, <shift> \#<amount>\} \]

RSBS, rotate right with extend variant

Applies when \(S = 1 \&\& \text{imm5} = 00000 \&\& \text{stype} = 11\).

\[\text{RSBS}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>, RRX \]

RSBS, shift or rotate by value variant

Applies when \(S = 1 \&\& \neg(\text{imm5} = 00000 \&\& \text{stype} = 11)\).

\[\text{RSBS}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm> \{, <shift> \#<amount>\} \]

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{setflags} = (S = '1'); \ (\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift(stype, imm5)}; \]
T1

| 15 14 13 12| 11 10 9 8 7 6 5 4 3 0 | 1 1 1 0 1 0 1 1 1 0 0 S Rn | 0 1 | imm3 | Rd | imm2 | stype | Rm |

RSB, rotate right with extend variant
Applies when \(S = 0 \) \&\& \(\text{imm3} = 000 \) \&\& \(\text{imm2} = 00 \) \&\& \(\text{stype} = 11 \).

```asm
RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX
```

RSB, shift or rotate by value variant
Applies when \(S = 0 \) \&\& !(\(\text{imm3} = 000 \) \&\& \(\text{imm2} = 00 \) \&\& \(\text{stype} = 11 \)).

```asm
RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
```

RSBS, rotate right with extend variant
Applies when \(S = 1 \) \&\& \(\text{imm3} = 000 \) \&\& \(\text{imm2} = 00 \) \&\& \(\text{stype} = 11 \).

```asm
RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX
```

RSBS, shift or rotate by value variant
Applies when \(S = 1 \) \&\& !(\(\text{imm3} = 000 \) \&\& \(\text{imm2} = 00 \) \&\& \(\text{stype} = 11 \)).

```asm
RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
```

Decode for all variants of this encoding
\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{setflags} = (S == '1');
\]
\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype}, \text{imm3:imm2});
\]
\[
\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See *Standard assembler syntax fields on page F2-4120*.

- `<p>` See *Standard assembler syntax fields on page F2-4120*.

- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the RSB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993*.
 - For the RSBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

 For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`.

- `<Rn>` For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

 For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
 For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 LSL when stype = 00
 LSR when stype = 01
 ASR when stype = 10
 ROR when stype = 11

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
 For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.168 RSB, RSBS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

31	28	27 26 25 24	23 22 21 20	19	16	15	8	7	6	5	4	3	0	
!=1111	0	0	0	0	1	1	S	Rn	Rd	Rs	0	stype	1	Rm

Flag setting variant

Applies when S == 1.

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

\[
\begin{align*}
 d &= \text{UInt}(Rd); \\
 n &= \text{UInt}(Rn); \\
 m &= \text{UInt}(Rm); \\
 s &= \text{UInt}(Rs); \\
 setflags &= (S == '1'); \\
 shift_t &= \text{DecodeRegShift}(stype); \\
 \text{if } d == 15 || n == 15 || m == 15 || s == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.

\(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

\(<\text{shift}>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

\(<Rs>\) Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if `ConditionPassed()` then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.169 RSC, RSCS (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from an immediate value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

```
[31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0]
|   !=1111 | 0 0 0 1 1 1 | S | Rn | Rd | imm12 |
  cond
```

RSC variant

Applies when S == 0.

RSC{c}{q} {<Rd>,} <Rn>, #<const>

RSCS variant

Applies when S == 1.

RSCS{c}{q} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

```
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);
```

Assembler symbols

- **c**: See Standard assembler syntax fields on page F2-4120.
- **q**: See Standard assembler syntax fields on page F2-4120.
- **Rd**: Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as "Rn". Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the RSC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the RSCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.
- **Rn**: Is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
<const> An immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, nzcv) = AddWithCarry(NOT(R[n]), imm32, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.170 RSC, RSCS (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an optionally-shifted register value, and writes the result to the destination register.

If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 | 28|27|26|25|24|23|22|21|20|19|16|15|12|11| 7 | 6 | 5 | 4 | 3 | 0 |
| !=1111 | 0 | 0 | 0 | 1 | 1 | 1 | S | Rn | Rd | imm5 | subtype | 0 | Rm |

cond

RSC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && subtype == 11.

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && subtype == 11).

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && subtype == 11.

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && subtype == 11).

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(subtype, imm5);

Assembler symbols

See Standard assembler syntax fields on page F2-4120.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

- For the RSC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the RSCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

<table>
<thead>
<tr>
<th>Shift</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSL</td>
<td>when stype = 00</td>
</tr>
<tr>
<td>LSR</td>
<td>when stype = 01</td>
</tr>
<tr>
<td>ASR</td>
<td>when stype = 10</td>
</tr>
<tr>
<td>ROR</td>
<td>when stype = 11</td>
</tr>
</tbody>
</table>

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 if d == 15 then
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.171 **RSC, RSCS (register-shifted register)**

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from a register-shifted register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

| 31 | 28|27 26 | 25|24|23|22|21|20|19 | 16|15 | 12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| !=111 | 0 | 0 | 0 | 1 | 1 | S | Rn | Rd | Rs | 0 | stype | 1 | Rm |

Flag setting variant

Applies when $S = 1$.

$RSCS[<c>]<q> {<Rd>,} <Rn>, <Rm>, <shift> <Rs>$

Not flag setting variant

Applies when $S = 0$.

$RSC[<c>]<q> {<Rd>,} <Rn>, <Rm>, <shift> <Rs>$

Decode for all variants of this encoding

$d = \text{UInt}(Rd); n = \text{UInt}(Rn); m = \text{UInt}(Rm); s = \text{UInt}(Rs);
\text{setflags} = (S == '1'); \text{shift}_t = \text{DecodeRegShift(stype)};
\text{if } d == 15 || n == 15 || m == 15 || s == 15 \text{ then UNPREDICTABLE;}$

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- $<c>$ See Standard assembler syntax fields on page F2-4120.
- $<q>$ See Standard assembler syntax fields on page F2-4120.
- $<Rd>$ Is the general-purpose destination register, encoded in the "Rd" field.
- $<Rn>$ Is the first general-purpose source register, encoded in the "Rn" field.
- $<Rm>$ Is the second general-purpose source register, encoded in the "Rm" field.
- $<shift>$ Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when $\text{stype} = 00$
 - LSR when $\text{stype} = 01$
 - ASR when $\text{stype} = 10$
 - ROR when $\text{stype} = 11$
- $<Rs>$ Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.172 SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the additions.

A1

```
| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 8|7 6 5 4 |3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| =1111 | 0 1 | 0 0 | 0 1 | Rn | Rd | (1) |(1) |(1) | 0 | 0 | 1 | Rm |
```

A1 variant

```
SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
| 15 | 14 13 12|11 10 9 8|7 6 5 4 |3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 0 1 | 0 1 | 0 1 | Rn | 1 1 1 | Rd | 0 0 | 0 0 | Rm |
```

T1 variant

```
SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations();
    sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
    sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
    R[d]<15:0> = sum1<15:0>;
```
R[d]<31:16> = sum2<15:0>;
PSTATE.GE<1:0> = if sum1 >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the additions.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 |
|cond 1111 | 0 1 1 0 0 0 1 | Rn | Rd | 1|1|1|1|1|1|1|1|1 | 0 | 0 | 1 | 0 | 1 | Rm |

A1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

```plaintext
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |
| 1 1 1 1 0 1 0 0 0 | Rn | 1 1 1 1 | Rd | 0 | 0 | 0 | 0 | Rm |

T1 variant

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

```plaintext
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
    sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
    sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
```
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = sum1<7:0>;
R[d]<15:8> = sum2<7:0>;
R[d]<23:16> = sum3<7:0>;
R[d]<31:24> = sum4<7:0>;
PSTATE.GE<0> = if sum1 >= 0 then '1' else '0';
PSTATE.GE<1> = if sum2 >= 0 then '1' else '0';
PSTATE.GE<2> = if sum3 >= 0 then '1' else '0';
PSTATE.GE<3> = if sum4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.174 SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets PSTATE.GE according to the results.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| !111| 0 1 1 0 0 0 1 | Rn | Rd | 1 1 1 1 | 0 | 0 | 1 | 1 | Rm |
```

A1 variant

SASX{<c>}{<q>}{<Rd>},{<Rn>},{<Rm>}

Decode for this encoding

```plaintext
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
| 15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 0 1 0 1 | 0 1 0 | Rn | 1 1 1 1 | Rd | 0 0 0 0 | Rm |
```

T1 variant

SASX{<c>}{<q>}{<Rd>},{<Rn>},{<Rm>}

Decode for this encoding

```plaintext
d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    diff = Sint(R[n]<15:0>) - Sint(R[m]<31:16>);
    sum  = Sint(R[n]<31:16>) + Sint(R[m]<15:0>);
```
R[d]<15:0> = diff<15:0>;
R[d]<31:16> = sum<15:0>;
PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.175 SB

Speculation Barrier is a barrier that controls speculation.

The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:

• Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
 as a result of control flow speculation or data value speculation.
• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
 not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present
in memory or in the registers.

The SB instruction:

• Cannot be speculatively executed as a result of control flow speculation or data value speculation.
• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
 not generated an exception. The potentially exception generating instruction can complete once it is known
 not to be speculative, and all data values generated by instructions appearing in program order before the SB
 instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

A1

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 14 13 12][11 10 9 8][7 6 5 4][3 2 1 0]
1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

A1 variant

SB{<q>}

Decode for this encoding

// No additional decoding required

T1

```
[15 14 13 12][11 10 9 8][7 6 5 4][3 2 1 0][15 14 13 12][11 10 9 8][7 6 5 4][3 2 1 0]
1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
```

T1 variant

SB{<q>}

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<ϕ> See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculationBarrier();
SBC, SBCS (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a register value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The SBC variant of the instruction is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993*.
- The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See *Illegal return events from AArch32 state on page G1-5766*.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

\[
\begin{array}{cccccccccccc}
\text{cond} & 31 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 16 & 15 & 12 & 11 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & S & Rn & Rd & \text{imm12} \\
\hline
\text{!=1111} & 0 & 0 & 0 & 1 & 1 & 0 & S & Rn & Rd & \text{imm12} \\
\end{array}
\]

SBC variant

Applies when \(S = 0 \).

\[
\text{SBC\{<c>\}{<q>} \{<Rd>,\} <Rn>, #<const>}
\]

SBCS variant

Applies when \(S = 1 \).

\[
\text{SBCS\{<c>\}{<q>} \{<Rd>,\} <Rn>, #<const>}
\]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ \text{setflags} = (S == '1'); \ \text{imm32} = \text{A32ExpandImm(imm12)};
\]

T1

\[
\begin{array}{cccccccccccc}
& 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 14 & 12 & 11 & 8 & 7 & 0 & 0 & 1 & 0 & 1 & 1 & S & Rn & 0 & \text{imm3} & Rd & \text{imm8} \\
\hline
\end{array}
\]

SBC variant

Applies when \(S = 0 \).

\[
\text{SBC\{<c>\}{<q>} \{<Rd>,\} <Rn>, #<const>}
\]

SBCS variant

Applies when \(S = 1 \).
SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{setflags} = (S == '1'); \quad \text{imm32} = \text{T32ExpandImm}(i:imm3:imm8); \]
\[\text{if } d == 15 || n == 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the SBC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the SBCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.
- `<Rn>` For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
 - For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
- `<const>` For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
 - For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 \((\text{result, nzcv}) = \text{AddWithCarry}(R[n], \text{NOT}(\text{imm32}), \text{PSTATE.C});\)\n if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 \(R[d] = \text{result};\)
 if setflags then
 \(\text{PSTATE.<N,Z,C,V>} = \text{nzcv};\)

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.177 SBC, SBCS (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry flag) from a register value, and writes the result to the destination register.

If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM deprecates any use of these encodings. However, when the destination register is the PC:

- The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

| 31 | 28|27|26|25|24|23|22|21|20|19 |16|15 |12|11 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 0 | 0 | 0 | 1 | 1 | 0 | S | Rn | Rd | imm5 | stype | 0 | Rm |

SBC, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.
SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).
SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.
SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).
SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 0 1 1 0</td>
<td>Rm</td>
<td>Rdn</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

SBC{<c>}{<q>}{<Rdn>,} <Rm> // Inside IT block
SBCS{<q>}{<Rdn>,} <Rm> // Outside IT block

Decode for this encoding

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>7 6 5</th>
<th>4 3 0</th>
<th>15 14 12</th>
<th>11 8 7 6 5</th>
<th>4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0 1 1 1 S</td>
<td>Rn</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm2</td>
<td>stype</td>
</tr>
</tbody>
</table>

SBC, rotate right with extend variant

Applies when S == 0 && imm3 == 000 && imm2 == 00 && stype == 11.
SBC{<c>}{<q>}{<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value variant

Applies when S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11).
SBC{<c>}{<q>}{<Rd>,} <Rn>, <Rm> // can be represented in T1
SBCS{<c>}{<q>}{<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend variant

Applies when S == 1 && imm3 == 000 && imm2 == 00 && stype == 11.
SBCS{<c>}{<q>}{<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value variant

Applies when S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11).
SBCS{<c>}{<q>}{<Rd>,} <Rn>, <Rm> // can be represented in T1
SBCS{<c>}{<q>}{<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rdn>
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd>
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
- For the SBC variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the SBCS variant, the instruction performs an exception return, that restores PSTATE from SPSR.<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn>
For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift>
Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

<amount>
For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
SBC, SBCS (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of NOT (Carry flag) from a register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

Flag setting variant

Applies when \(S == 1 \).

\[\text{SBCS\{<c>\}{<q>} \{<Rd>,} \ <Rn>, \ <Rm>, <\text{shift}> <Rs> } \]

Not flag setting variant

Applies when \(S == 0 \).

\[\text{SBC\{<c>\}{<q>} \{<Rd>,} \ <Rn>, \ <Rm>, <\text{shift}> <Rs} \]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ s = \text{UInt}(Rs); \\
\text{setflags} = (S == '1'); \ \text{shift}_t = \text{DecodeRegShift}(\text{stype}); \\
\text{if } d == 15 \ || \ n == 15 \ || \ m == 15 \ || \ s == 15 \ \text{then UNPREDICTABLE;}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<\text{Rd}>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<\text{Rn}>\) Is the first general-purpose source register, encoded in the "Rn" field.

\(<\text{Rm}>\) Is the second general-purpose source register, encoded in the "Rm" field.

\(<\text{shift}>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when \(\text{stype} = 00 \)
- LSR when \(\text{stype} = 01 \)
- ASR when \(\text{stype} = 10 \)
- ROR when \(\text{stype} = 11 \)

\(<\text{Rs}>\) Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.179 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends them to 32 bits, and writes the result to the destination register.

A1

31 28	27 26 25 24	23 22 21 20	16	15 12	11 7 6 5 4 3 0	
!111	0 1 1 1 0 1	widthm1	Rd	lsb	1 0 1	Rn

A1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn);
lsbit = \text{UInt}(lsb); \quad \text{widthminus1} = \text{UInt}(widthm1);
\]

if \(d = 15 \) || \(n = 15 \) then UNPREDICTABLE;

T1

15 14 13 12	11 10 9 8 7 6 5 4	3 0	15 14 12	11 8 7 6 5 4	0			
1 1 1 0	1 1 0 1 0 0	Rn	0	imm3	Rd	imm2	0	widthm1

T1 variant

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn);
lsbit = \text{UInt}(imm3:imm2); \quad \text{widthminus1} = \text{UInt}(widthm1);
\]

if \(d = 15 \) || \(n = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\) Is the general-purpose source register, encoded in the "Rn" field.

\(<lsb>\) For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the "imm3:imm2" field.

\(<width>\) Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.
Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    msbit = lsbit + widthminus1;
    if msbit <= 31 then
        R[d] = SignExtend(R[n]<msbit:lsbit>, 32);
    else
        UNPREDICTABLE;
```

CONSTRANGED UNPREDICTABLE behavior

If `msbit > 31`, then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The value in the destination register is **UNKNOWN**.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.180 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition flags are not affected.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 7 6 5 4 3 0 |
|---------------------------------|
| !=1111 0 1 1 1 0 0 0 1 Rd |(1)(1)(1)(1) Rm | 0 0 0 1 Rn |

cond Ra

A1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

T1

| 15 14 13|12|11 10 9 8 7 6 5 4 3 0 | | 12|11 8 7 6 5 4 3 0 0 |
|--------------------------------|--------------------------------|
| 1 1 1 1 0 1 1 1 0 0 0 1 Rn | (1)(1)(1)(1) Rd | 1 1 1 1 Rm |

Ra

T1 variant

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes as described, with no change to its behavior and no additional side effects.

• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<
> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Overflow

If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode produces the intermediate integer result +2^31, that overflows the 32-bit signed integer range. No indication of this overflow case is produced, and the 32-bit result written to <Rd> must be the bottom 32 bits of the binary representation of +2^31. So the result of the division is 0x80000000.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if SInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
 R[d] = result<31:0>;

F5.1.181 SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values of the PSTATE.GE flags.

A1

<table>
<thead>
<tr>
<th>31 28 26 24 23 22 21 20 19 16 15 12 11 10 9 8 7</th>
<th>6 5 4 3 0</th>
<th>0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1</th>
<th>Rd</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
<th>8 7 6 5 4 3 0</th>
<th>1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0</th>
<th>Rd</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<

See Standard assembler syntax fields on page F2-4120.

>

See Standard assembler syntax fields on page F2-4120.

<Rd>

Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>

Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>

Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if PSTATE.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;

R[d]<15:8> = if PSTATE.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>
R[d]<23:16> = if PSTATE.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>
R[d]<31:24> = if PSTATE.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>
F5.1.182 SETEND

Set Endianness writes a new value to PSTATE.E.

A1

```
1 1 1 1 0 0 0 1 0 0 0 0 | 0 | 1 0 0 0 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

A1 variant

SETEND{<q>} <endian_specifier> // Cannot be conditional

Decode for this encoding

```python
set_bigend = (E == '1');
```

T1

```
1 0 1 1 0 1 1 0 0 1 0 | E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

T1 variant

SETEND{<q>} <endian_specifier> // Not permitted in IT block

Decode for this encoding

```python
set_bigend = (E == '1');
if InITBlock() then UNPREDICTABLE;
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<q>` See *Standard assembler syntax fields* on page F2-4120.

- `<endian_specifier>` Is the endianness to be selected, and the value to be set in PSTATE.E, encoded in the "E" field. It can have the following values:
 - LE when E = 0
 - BE when E = 1

Operation for all encodings

EncodingSpecificOperations();
AArch32.CheckSETENDEnabled();
PSTATE.E = if set_bigend then '1' else '0';
F5.1.183 SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.

A1

ARMv8.1

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 |7 6 5 4 |3 2 1 0 ]
[1 1 1 1 0 0 0 1 0 0 0 1 |0|0|0|0|0|0|0|0|0|0|0|0]
```

A1 variant

SETPAN{<q>} #<imm> // Cannot be conditional

Decode for this encoding

if !HavePANExt() then UNDEFINED;
value = imm1;

T1

ARMv8.1

```
[15 14 13 12|11 10 9 8 |7 6 5 4 |3 2 1 0 ]
[1 0 1 1 0 1 1 0 0 0 0 |1|0|0|0]
```

T1 variant

SETPAN{<q>} #<imm> // Not permitted in IT block

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HavePANExt() then UNDEFINED;
value = imm1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.

Operation for all encodings

EncodingSpecificOperations();
if PSTATE.El != El0 then
 PSTATE.PAN = value;
F5.1.184 SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more information, see *Wait For Event and Send Event on page G1-5804*.

A1

```
| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
```

A1 variant

SEV{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

T1 variant

SEV{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
```

T2 variant

SEV{<c>}.W

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- `<c>` See *Standard assembler syntax fields on page F2-4120*.
- `<q>` See *Standard assembler syntax fields on page F2-4120*.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SendEvent();
F5.1.185 SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a **WFE** instruction.

A1

```
[31  28|27  26  25  24|23  22  21  20|19  18  17  16|15  14  13  12|11  10  9  8 | 7  6  5  4 | 3  2  1  0 |]
  !=1111 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 |0 0 0 0 0 0 0 0 0 0 1 0 1
  cond
```

A1 variant

SEVL{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```
[15  14  13  12|11  10  9  8 | 7  6  5  4 | 3  2  1  0 |]
  1 0 1 1 1 1 1 1 |0 1 0 1 0 0 0 0
```

T1 variant

SEVL{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

```
[15  14  13  12|11  10  9  8 | 7  6  5  4 | 3  2  1  0 |]
  1 1 1 1 0 0 1 1 0 1 0 1 |1 1 1 |1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
```

T2 variant

SEVL{<c>}.W

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE** behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SendEventLocal();
SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the destination register.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 |
+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------|cond|
| 0 0 1 1 0 0 0 1 1 | Rn | Rd | 0 0 1 1 | 0 0 1 | Rm |
```

A1 variant

```
SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
|15 14 13 12|11 10 9 8|7 6 5 4|3 0 |
+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------|cond|
| 1 1 1 1 1 1 0 0 1 | Rn | 1 1 1 1 | Rd | 0 0 1 0 | Rm |
```

T1 variant

```
SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for this encoding

```
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations();
    sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
```
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = sum1<16:1>;
R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.187 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the destination register.

A1

F5.1.187 SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the destination register.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12 11 10 9 8 7 6 5 4 3 0 |
|------|--------|--------|----|------|--------|--------|--------|----|
| !=1111 | 0 1 | 1 0 0 1 | 1 | Rn |
| cond |

A1 variant

SHADD8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |
|--------|------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 1 0 0 0 | Rn |
| 1 1 1 1 |
| Rd |
| 0 0 1 | 0 |
| Rm |

T1 variant

SHADD8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

sum1 = Sint(R[n]<7:0>) + Sint(R[m]<7:0>);
sum2 = Sint(R[n]<15:8>) + Sint(R[m]<15:8>);
sum3 = Sint(R[n]<23:16>) + Sint(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = sum1<8:1>;
R[d]<15:8> = sum2<8:1>;
R[d]<23:16> = sum3<8:1>;
R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.188 SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the destination register.

A1

\[
\begin{array}{cccccccccccc}
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
\text{cond} & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & & & & Rn & & & Rd & & & & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 &
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = diff<16:1>;
R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.189 SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the destination register.

A1

31 28	27 26 25 24	23 22 21 20	19 16	15 12	11 10 9 8	7 6 5 4	3 0		
!111	0 1 1 0 0 0 1 1	Rn	Rd	1	1	1	1	0 1 0 1	Rm

cond

A1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13</th>
<th>12</th>
<th>11 8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 0 1 1 1 0</td>
<td>Rn</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>0 0 1 0</td>
<td>Rm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = $int(R[n]<15:0>) + $int(R[m]<31:16>);
\[
\begin{align*}
\text{diff} &= \text{SI}(R[n]<31:16>) - \text{SI}(R[m]<15:0>); \\
R[d]<15:0> &= \text{sum}<16:1>; \\
R[d]<31:16> &= \text{diff}<16:1>;
\end{align*}
\]

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.190 SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results to the destination register.

A1

31 28 27 26 25 24 23 22 21 20	19 16 15	12	11	10	9	8	7	6	5	4	3	0		
!=1111	0 1 1 0 0	0 1	1											
cond														

A1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 14 13 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 14 13 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|--------------|----|----|---|---|---|---|---|---|---|---|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 0 1 0 1 1 0 1 | Rn | Rd | 0 | 0 | 1 | 0 | Rm |

T1 variant

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
 See Standard assembler syntax fields on page F2-4120.
<q>
 See Standard assembler syntax fields on page F2-4120.
<Rd>
 Is the general-purpose destination register, encoded in the "Rd" field.
<Rn>
 Is the first general-purpose source register, encoded in the "Rn" field.
<Rm>
 Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = diff1<16:1>;
R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.191 SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results to the destination register.

A1

A1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d = 15\) || \(n = 15\) || \(m = 15\) then UNPREDICTABLE;

T1

T1 variant

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d = 15\) || \(n = 15\) || \(m = 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if \(\text{ConditionPassed}()\) then

\[
\text{EncodingSpecificOperations();}
\]

\[
diff1 = \text{SInt}(R[n]<7:0>) - \text{SInt}(R[m]<7:0>);
\]

\[
diff2 = \text{SInt}(R[n]<15:8>) - \text{SInt}(R[m]<15:8>);
\]

\[
diff3 = \text{SInt}(R[n]<23:16>) - \text{SInt}(R[m]<23:16>);
\]
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = diff1<8:1>;
R[d]<15:8> = diff2<8:1>;
R[d]<23:16> = diff3<8:1>;
R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.192 SMC

Secure Monitor Call causes a Secure Monitor Call exception. For more information see Secure Monitor Call (SMC) exception on page G1-5783.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in User mode.

If the values of HCR.TSC and SCR.SCD are both 0, execution of an SMC instruction at EL1 or higher generates a Secure Monitor Call exception that is taken to EL3. When EL3 is using AArch32 this exception is taken to Monitor mode. When EL3 is using AArch64, it is the SCR_EL3.SMD bit, rather than the SCR.SCD bit, that can change the effect of executing an SMC instruction.

If the value of HCR.TSC is 1, execution of an SMC instruction in a Non-secure EL1 mode generates an exception that is taken to EL2, regardless of the value of SCR.SCD. When EL2 is using AArch32, this is a Hyp Trap exception that is taken to Hyp mode. For more information see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-5834.

If the value of HCR.TSC is 0 and the value of SCR.SCD is 1, the SMC instruction is:

• UNDEFINED in Non-secure state.
• CONSTRAINED UNPREDICTABLE if executed in Secure state at EL1 or higher.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!='1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A1 variant

SMC{<c>}{<q}> {#}<imm4>

Decode for this encoding

// imm4 is for assembly/disassembly only and is ignored by hardware

T1

|15|14|13|12|11|10|9|8|7|6|5|4|3 |0|15|14|13|12|11|10|9|8|7|6|5|4|3 |2 |1 |0 |
|1|1|1|1|0|1|1|1|1|1|1|1|1|imm4 |1 |0 |0 |(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)|

T1 variant

SMC{<c>}{<q}> {#}<imm4>

Decode for this encoding

// imm4 is for assembly/disassembly only and is ignored by hardware

if !InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<
> See Standard assembler syntax fields on page F2-4120.

<imm4>
Is a 4-bit unsigned immediate value, in the range 0 to 15, encoded in the "imm4" field. This is ignored by the PE. The Secure Monitor Call exception handler (Secure Monitor code) can use this value to determine what service is being requested, but Arm does not recommend this.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.CheckForSMCUndeOrTrap();
 if !ELUsingAArch32(EL3) then
 if SCR_EL3.SMD == '1' then
 // SMC disabled.
 UNDEFINED;
 else
 if SCR.SCD == '1' then
 // SMC disabled
 if IsSecure() then
 // Executes either as a NOP or UNALLOCATED.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NOP, Constraint_UNDEF};
 if c == Constraint_NOP then EndOfInstruction();
 UNDEFINED;
 else
 AArch32.TakeSMCException();
 else
 AArch64.CallSecureMonitor(Zeros(16));
 end if
 end if
 end if
else
 if SCR.SCD == '1' then
 // SMC disabled
 if IsSecure() then
 // Executes either as a NOP or UNALLOCATED.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NOP, Constraint_UNDEF};
 if c == Constraint_NOP then EndOfInstruction();
 UNDEFINED;
 end if
 else
 AArch32.TakeSMCException();
 end if
end if

CONSTRAINED UNPREDICTABLE behavior

If SCR.SCD == '1' & IsSecure(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
F5.1.193 SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. It is not possible for overflow to occur during the multiplication.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 0 0 0 1 0 0 0 0</td>
</tr>
</tbody>
</table>

SMLABB variant

Applies when M == 0 && N == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when M == 1 && N == 0.

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant

Applies when M == 0 && N == 1.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant

Applies when M == 1 && N == 1.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

\[
\begin{align*}
&d = \text{UInt}(Rd); \\
&n = \text{UInt}(Rn); \\
&m = \text{UInt}(Rm); \\
&a = \text{UInt}(Ra); \\
&n_{\text{high}} = (N == '1'); \\
&m_{\text{high}} = (M == '1'); \\
&\text{if } d == 15 || n == 15 || m == 15 || a == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 1 0 0 0 1</td>
</tr>
</tbody>
</table>

SMLABB variant

Applies when N == 0 && M == 0.

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT variant

Applies when N == 0 && M == 1.
SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB variant
Applies when $N == 1 \&\& M == 0$.

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT variant
Applies when $N == 1 \&\& M == 1$.

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

If $Ra == '1111'$ then see "SMULBB, SMULBT, SMULTB, SMULTT";

$$
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra);$$

$$n_{\text{high}} = (N == '1'); \quad m_{\text{high}} = (M == '1');$$

If $d == 15 || n == 15 || m == 15$ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings
For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.*

Assembler symbols

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected by `<x>`), encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register holding the multiplier in the bottom or top half (selected by `<y>`), encoded in the "Rm" field.
- `<Ra>` Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

If `ConditionPassed()` then

```c
EncodingSpecificOperations();
operand1 = if n_{\text{high}} then R[n]<31:16> else R[n]<15:0>;
operand2 = if m_{\text{high}} then R[m]<31:16> else R[m]<15:0>;
result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
R[d] = result<31:0>;
if result != SInt(result<31:0>) then // Signed overflow
  PSTATE.Q = '1';
```
F5.1.194 SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the multiplications.

A1

\[
\begin{array}{cccccccccc}
\end{array}
\]

\[
\begin{array}{c}
\text{cond} \\
\text{Rd}
\end{array}
\]

\[
\begin{array}{c}
\text{Ra}
\end{array}
\]

SMLAD variant

Applies when \(M = 0 \).

\[
\text{SMLAD}<c><q><Rd>,<Rn>,<Rm>,<Ra>
\]

SMLADX variant

Applies when \(M = 1 \).

\[
\text{SMLADX}<c><q><Rd>,<Rn>,<Rm>,<Ra>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } Ra &= '1111' \text{ then SEE "SMUAD";}
& \quad d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra);
& \quad m_{\text{swap}} = (M == '1');
& \quad \text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

T1

\[
\begin{array}{ccccccccccccccccccc}
|15&14&13&12&11&10&9&8&7&6&5&4&3&0|
\end{array}
\]

\[
\begin{array}{c}
\text{Rn}
\end{array}
\]

\[
\begin{array}{c}
\text{Rd}
\end{array}
\]

\[
\begin{array}{c}
\text{Ra}
\end{array}
\]

SMLAD variant

Applies when \(M = 0 \).

\[
\text{SMLAD}<c><q><Rd>,<Rn>,<Rm>,<Ra>
\]

SMLADX variant

Applies when \(M = 1 \).

\[
\text{SMLADX}<c><q><Rd>,<Rn>,<Rm>,<Ra>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } Ra &= '1111' \text{ then SEE "SMUAD";}
& \quad d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra);
& \quad m_{\text{swap}} = (M == '1');
& \quad \text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE; \}/Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.

<Ra>
Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';
SMLAL, SMLALS

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely affects performance on many implementations.

A1

Flag setting variant

Applies when $S = 1$.

$\text{SMLALS}\{<c>\}\{<q>\} \{RdLo\}, \{RdHi\}, \{Rn\}, \{Rm\}$

Not flag setting variant

Applies when $S = 0$.

$\text{SMLAL}\{<c>\}\{<q>\} \{RdLo\}, \{RdHi\}, \{Rn\}, \{Rm\}$

Decode for all variants of this encoding

$dLo = \text{UInt}(RdLo); \; dHi = \text{UInt}(RdHi); \; n = \text{UInt}(Rn); \; m = \text{UInt}(Rm); \; \text{setflags} = (S == '1');$

if $dLo == 15 || dHi == 15 || n == 15 || m == 15$ then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If $dHi == dLo$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

Decide for this encoding

$dLo = \text{UInt}(RdLo); \; dHi = \text{UInt}(RdHi); \; n = \text{UInt}(Rn); \; m = \text{UInt}(Rm); \; \text{setflags} = \text{FALSE};$

if $dLo == 15 || dHi == 15 || n == 15 || m == 15$ then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13
if $dHi == dLo$ then UNPREDICTABLE;
CONstrained UNPREDICTABLE behavior

If $dHi == dLo$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<RdLo>` Is the general-purpose source register holding the lower 32 bits of the addend, and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
- `<RdHi>` Is the general-purpose source register holding the upper 32 bits of the addend, and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
- `<Rn>` Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

if `ConditionPassed()` then
 EncodingSpecificOperations();
 `result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);`
 `R[dHi] = result<63:32>;`
 `R[dLo] = result<31:0>;`
 if setflags then
 `PSTATE.N = result<63>;`
 `PSTATE.Z = IsZeroBit(result<63:0>);`
 // PSTATE.C, PSTATE.V unchanged`

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.196 SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it occurs. Instead, the result wraps around modulo 2^64.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 | 7 6 5 4 | 3 0 |
| !111 | 0 0 0 1 0 | 1 0 0 | RdHi | RdLo | Rn  | 1 | M | N | 0 | Rm |
```

cond

SMLALBB variant

Applies when M == 0 && N == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when M == 1 && N == 0.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB variant

Applies when M == 0 && N == 1.

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT variant

Applies when M == 1 && N == 1.

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

\[
dLo = \text{UInt}(RdLo); \quad dhI = \text{UInt}(RdHi); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]
\[
n_\text{high} = (N == '1'); \quad m_\text{high} = (M == '1');
\]
\[
\text{if } dLo == 15 || dhI == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE};
\]
\[
\text{if } dhI == dLo \text{ then UNPREDICTABLE};
\]

CONSTRAINED UNPREDICTABLE behavior

If dhI == dLo, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.
T1

F5-4741

ID072120

Non-Confidential

T32 and A32 Base Instruction Set Instruction Descriptions

F5.1 Alphabetical list of T32 and A32 base instruction set instructions

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

SMLALBB variant

Applies when N == 0 && M == 0.

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT variant

Applies when N == 0 && M == 1.

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALT variant

Applies when N == 1 && M == 0.

SMLALT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALT variant

Applies when N == 1 && M == 1.

SMLALT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

dLo = Uint(RdLo); dHi = Uint(RdHi); n = Uint(Rn); m = Uint(Rm);
n_high = (N == '1'); m_high = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRANIED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRANIED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

• See Standard assembler syntax fields on page F2-4120.
• See Standard assembler syntax fields on page F2-4120.
• Is the general-purpose source register holding the lower 32 bits of the addend, and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
• Is the general-purpose source register holding the upper 32 bits of the addend, and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> For encoding A1: is the first general-purpose source register holding the multiplicand in the bottom or top half (selected by \(<x>\)), encoded in the "Rn" field.

For encoding T1: is the first general-purpose source register holding the multiplicand in the bottom or top half (selected by \(<x>\)), encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register holding the multiplier in the bottom or top half (selected by \(<y>\)), encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register holding the multiplier in the bottom or top half (selected by \(<x>\)), encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
Signed Multiply Accumulate Long Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it occurs. Instead, the result wraps around modulo 2^64.

A1

SMLALD variant
Applies when M == 0.
SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant
Applies when M == 1.
SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

SMLALD variant
Applies when M == 0.
SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX variant
Applies when M == 1.
SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>
Decode for all variants of this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.198 SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply acts on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or the top half of its source register. The other half of the second source register is ignored. The top 32 bits of the 48-bit product are added to a 32-bit accumulate value and the result is written to the destination register. The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. No overflow can occur during the multiplication.

A1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

SMLAWB variant

Applies when M == 0.

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT variant

Applies when M == 1.

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE "SMULWB, SMULWT";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
 R[d] = result<47:16>;
 if (result >> 16) != SInt(R[d]) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.199 SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the products to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the multiplications or subtraction.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Rd</td>
<td>!=1111</td>
<td>Rm</td>
<td>0</td>
<td>1</td>
<td>M</td>
<td>1</td>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td>Ra</td>
<td></td>
</tr>
</tbody>
</table>

SMLSD variant

Applies when \(M = 0 \).

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when \(M = 1 \).

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE "SMUSD";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>1111</td>
<td>Rd</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>Rm</td>
<td>Ra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMLSD variant

Applies when \(M = 0 \).

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX variant

Applies when \(M = 1 \).

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

if Ra == '1111' then SEE "SMUSD";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.

<Ra>
Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[a]);
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.200 SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it occurs. Instead, the result wraps around modulo 2^{64}.

A1

| \[31 \quad 28\quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 | 19 \quad 16 | 15 \quad 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 \quad 0 | \]
| !=1111 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | RdHi | RdLo | Rm | 0 | 1 | M | 1 | Rn |
| cond |

SMLSLD variant

Applies when $M == 0$.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when $M == 1$.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

\[dLo = \text{UInt}(RdLo); \quad dHi = \text{UInt}(RdHi); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad m_swap = (M == '1'); \]

if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;

if dHi == dLo then UNPREDICTABLE;

CONSTRUANED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

| \[15 \quad 14 \quad 13 \quad 12 | 11 \quad 10 \quad 9 \quad 8 | 7 \quad 6 \quad 5 \quad 4 | 3 \quad 0 | 15 \quad 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 \quad 0 | \]
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | Rn | RdLo | RdHi | 1 | 1 | 0 | M | Rm |

SMLSLD variant

Applies when $M == 0$.

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX variant

Applies when $M == 1$.

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>
Decode for all variants of this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRUANED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\> See Standard assembler syntax fields on page F2-4120.

<\> See Standard assembler syntax fields on page F2-4120.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2 + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
F5.1.201 SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most significant 32 bits of the result, and adds an accumulate value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant 0x80000000 is added to the product before the high word is extracted.

A1

```
| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 |12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| !=1111          |   0 1 1 0 1     |     Rd          | !=1111          |     Rm          |     0 0 R 1 |     Rn          |
```

SMMLA variant

Applies when \(R = 0 \).

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when \(R = 1 \).

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

```
if Ra == '1111' then SEE "SMMLUL";
  d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
| 15 | 14 13 12|11 |10 9 8 7 6 5 4 |3 |0 |15 |12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|   1 1 1 1 0 1 0 1 0          |     Rn          | !=1111          |     Rd          |     0 0 R 1 |     Rm          |
```

SMMLA variant

Applies when \(R = 0 \).

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR variant

Applies when \(R = 1 \).

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

```
if Ra == '1111' then SEE "SMMLUL";
  d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<\textgreater> See Standard assembler syntax fields on page F2-4120.

<\textless> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[a]) \ll 32 + SInt(R[n]) \times SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.202 SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a 32-bit accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

A1

SMMLS variant

Applies when R == 0.

\text{SMMLS}\{<c>\}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

\text{SMMLSR}\{<c>\}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra); \quad \text{round} = (R == '1'); \]
\[\text{if } d == 15 || n == 15 || m == 15 || a == 15 \text{ then UNPREDICTABLE; } \]

T1

SMMLS variant

Applies when R == 0.

\text{SMMLS}\{<c>\}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR variant

Applies when R == 1.

\text{SMMLSR}\{<c>\}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad a = \text{UInt}(Ra); \quad \text{round} = (R == '1'); \]
\[\text{if } d == 15 || n == 15 || m == 15 || a == 15 \text{ then UNPREDICTABLE; } \]
\[// \text{ Armv8-A removes UNPREDICTABLE for R13 } \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra>
Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.203 SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of the result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant 0x80000000 is added to the product before the high word is extracted.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 1 1 0 0 1 0 1</td>
<td>Rd</td>
<td>1 1 1 1</td>
<td>Rm</td>
<td>0 0</td>
<td>R</td>
<td>1</td>
</tr>
</tbody>
</table>
```

SMMUL variant

Applies when \(R = 0 \).

\[
\text{SMMUL} \{\langle c \rangle} \{\langle q \rangle} \{\langle Rd, \rangle,} \langle Rn, \rangle, \langle Rm \rangle
\]

SMMULR variant

Applies when \(R = 1 \).

\[
\text{SMMULR} \{\langle c \rangle} \{\langle q \rangle} \{\langle Rd, \rangle,} \langle Rn, \rangle, \langle Rm \rangle
\]

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{round} = (R == '1');\]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE};\]

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 0 1 0 1</td>
<td>Rn</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>0 0</td>
<td>0</td>
<td>R</td>
</tr>
</tbody>
</table>
```

SMMUL variant

Applies when \(R = 0 \).

\[
\text{SMMUL} \{\langle c \rangle} \{\langle q \rangle} \{\langle Rd, \rangle,} \langle Rn, \rangle, \langle Rm \rangle
\]

SMMULR variant

Applies when \(R = 1 \).

\[
\text{SMMULR} \{\langle c \rangle} \{\langle q \rangle} \{\langle Rd, \rangle,} \langle Rn, \rangle, \langle Rm \rangle
\]

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{ UInt}(Rn); \quad m = \text{ UInt}(Rm); \quad \text{round} = (R == '1');\]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE}; // Armv8-A removes UNPREDICTABLE for R13\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.

<> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 if round then result = result + 0x80000000;
 R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.204 **SMUAD, SMUADX**

Signed Dual Multiply Add performs two signed 16 x 16-bit multiplications. It adds the products together, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the addition overflows. The multiplications cannot overflow.

A1

31	28	27 26 25 24	23 22 21 20	19	16	15 14 13 12	11	8	7	6	5	4	3	0				
!="1111"	0	1	1	1	0	0	0	Rd	1	1	1	1	Rm	0	0	M	1	Rn

SMUAD variant

Applies when \(M = 0 \).

\(\text{SMUAD}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \)

SMUADX variant

Applies when \(M = 1 \).

\(\text{SMUADX}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \)

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad m_swap = (M = '1'); \]

if \(d = 15 || n = 15 || m = 15 \) then UNPREDICTABLE;

T1

15	14	13	12	11	10	9	8	7	6	5	4	3	0								
1	1	1	1	0	1	1	0	0	1	0	Rn	1	1	1	1	Rd	0	0	0	M	Rm

SMUAD variant

Applies when \(M = 0 \).

\(\text{SMUAD}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \)

SMUADX variant

Applies when \(M = 1 \).

\(\text{SMUADX}\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \)

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad m_swap = (M = '1'); \]

if \(d = 15 || n = 15 || m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.
Assembler symbols

<\>
See Standard assembler syntax fields on page F2-4120.

<p>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 + product2;
 R[d] = result<31:0>;
 if result != SInt(result<31:0>) then // Signed overflow
 PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.205 SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written to the destination register. No overflow is possible during this instruction.

A1

31 28	27 26 25 24	23 22 21 20	19 16	15 14 13 12	11 8	7 6 5 4 3 0				
! = 1111	0 0 0 1 0 1 0	Rd	0 0	0	Rm	1	M	N	0	Rn

SMULBB variant

Applies when M == 0 && N == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when M == 1 && N == 0.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB variant

Applies when M == 0 && N == 1.

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT variant

Applies when M == 1 && N == 1.

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for all variants of this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);\\
\text{n}._{\text{high}} = (N == '1'); \quad \text{m}._{\text{high}} = (M == '1');\\
\text{if } d == 15 \mid n == 15 \mid m == 15 \text{ then UNPREDICTABLE;}\]

T1

15 14 13 12	11 10 9 8	7 6 5 4 3 0	15 14 13 12	11 8	7 6 5 4 3 0				
1 1 1 1 1 0 1 1 0 0	0	Rn	1 1 1	Rd	0	0	N	M	Rm

SMULBB variant

Applies when N == 0 && M == 0.

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT variant

Applies when N == 0 && M == 1.

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
SMULTB variant

Applies when $N == 1 && M == 0$.

$$\text{SMULTB}\{<c>\}{<q>\} \{<Rd>,\} <Rn>, <Rm>$$

SMULTT variant

Applies when $N == 1 && M == 1$.

$$\text{SMULTT}\{<c>\}{<q>\} \{<Rd>,\} <Rn>, <Rm>$$

Decode for all variants of this encoding

$$d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \n_high = (N == '1'); \ m_high = (M == '1');$$

$$\text{if} \ d == 15 \ || \ n == 15 \ || \ m == 15 \ \text{then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}$$

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- $<>$ See *Standard assembler syntax fields on page F2-4120*.
- $<q>$ See *Standard assembler syntax fields on page F2-4120*.
- $<Rd>$ Is the general-purpose destination register, encoded in the "Rd" field.
- $<Rn>$ Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected by $<>$), encoded in the "Rn" field.
- $<Rm>$ Is the second general-purpose source register holding the multiplier in the bottom or top half (selected by $<>$), encoded in the "Rm" field.

Operation for all encodings

If ConditionPassed() then

- $\text{EncodingSpecificOperations();}$
- $\text{operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;}$
- $\text{operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;}$
- $\text{result = SInt(operand1) \ast SInt(operand2);}$
- $\text{R[d] = result<31:0>;}$
- // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.206 SMULL, SMULLS

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely affects performance on many implementations.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8|7 6 5 4|3 0 |
|---|---|---|---|---|---|---|---|---|
| !=1111| 0 0 0 0 1 1 0 |S| RdHi| RdLo| Rm | 1 0 0 1 | Rn |

Flag setting variant

Applies when S = 1.

SMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S = 0.

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dhi == dLo then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If dhi == dlo, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6</th>
<th>5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 1 0 0</td>
<td>Rn</td>
<td>RdLo</td>
<td>RdHi</td>
<td>0 0 0 0</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setFlags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dhi == dlo then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If $d_{Hi} == d_{Lo}$, then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The value in the destination register is **UNKNOWN**.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K1 **Architectural Constraints on UNPREDICTABLE Behaviors**.

Assembler symbols

<
- See Standard assembler syntax fields on page F2-4120.
<
- See Standard assembler syntax fields on page F2-4120.

<RdLo>
- Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi>
- Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn>
- Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm>
- Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    result = SInt(R[n]) * SInt(R[m]);
    R[dHi] = result<63:32>;
    R[dLo] = result<31:0>;
    if setflags then
        PSTATE.N = result<63>;
        PSTATE.Z = IsZeroBit(result<63:0>);
        // PSTATE.C, PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.207 SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or the top half of its source register. The other half of the second source register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom 16 bits of the 48-bit product are ignored. No overflow is possible during this instruction.

A1

```
<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20</th>
<th>19 16 15 14 13 12</th>
<th>11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=&quot;1111&quot;</td>
<td>0 0 0 1 0 0 1 0</td>
<td>Rd (0)(0)(0)</td>
</tr>
</tbody>
</table>
```

SMULWB variant

Applies when M == 0.

```
SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

SMULWT variant

Applies when M == 1.

```
SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad m_{\text{high}} = (M == '1');
\]

\[
\text{if } d == 15 \lor n == 15 \lor m == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1</td>
<td>0 1 1 0</td>
<td>0 1 1</td>
<td>Rd 0 0 0</td>
<td>M</td>
<td>Rm</td>
</tr>
</tbody>
</table>
```

SMULWB variant

Applies when M == 0.

```
SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

SMULWT variant

Applies when M == 1.

```
SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
```

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad m_{\text{high}} = (M == '1');
\]

\[
\text{if } d == 15 \lor n == 15 \lor m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected by <y>), encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
 product = SInt(R[n]) * SInt(operand2);
 R[d] = product<47:16>;
 // Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It subtracts one of the products from the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This produces top x bottom and bottom x top multiplication.

Overflow cannot occur.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| !=1111 | 0 | 1 | 1 | 0 | 0 | 0 | Rd | 1 | 1 | 1 | 1 | Rm | 0 | 1 | M | 1 | Rn | cond |

SMUSD variant

Applies when \(M == 0 \).

\[
\text{SMUSD}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

SMUSDX variant

Applies when \(M == 1 \).

\[
\text{SMUSDX}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ m\text{_swap} = (M \text{ _} '1');
\]

\[
\text{if } d \text{ _} 15 || n \text{ _} 15 || m \text{ _} 15 \text{ then UNPREDICTABLE;}
\]

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | Rd | 1 | 1 | 1 | 1 | Rn | 0 | 0 | 0 | M | Rm |

SMUSD variant

Applies when \(M == 0 \).

\[
\text{SMUSD}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

SMUSDX variant

Applies when \(M == 1 \).

\[
\text{SMUSDX}\{<c>\}{<q>} \{<Rd>,} <Rn>, <Rm>
\]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ m\text{_swap} = (M \text{ _} '1');
\]

\[
\text{if } d \text{ _} 15 || n \text{ _} 15 || m \text{ _} 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand2 = if m_swap then ROR(R[m],16) else R[m];
 product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
 product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
 result = product1 - product2;
 R[d] = result<31:0>;
 // Signed overflow cannot occur
F5.1.209 SRS, SRSDA, SRSDB, SRSIA, SRSIB

Store Return State stores the LR_<current_mode> and SPSR_<current_mode> to the stack of a specified mode. For information about memory accesses see Memory accesses on page F2-4125.

SRS is UNDEFINED in Hyp mode.

SRS is CONSTRAINED UNPREDICTABLE if it is executed in User or System mode, or if the specified mode is any of the following:

- Not implemented.
- A mode that Table G1-5 on page G1-5726 does not show.
- Hyp mode.
- Monitor mode, if the SRS instruction is executed in Non-secure state.

If EL3 is using AArch64 and an SRS instruction that is executed in a Secure EL1 mode specifies Monitor mode, it is trapped to EL3.

See Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 0</td>
<td>P U 1 W 0</td>
<td>(1) (1) (0) (1)</td>
<td>(0) (0) (0) (0)</td>
<td>(1) (1) (0) (0)</td>
<td>(0) (0) (0) (0)</td>
<td>mode</td>
<td></td>
</tr>
</tbody>
</table>

Decrement After variant

Applies when P == 0 && U == 0.

SRSDA{<c>}{<q>} SP{!}, #<mode>

Decrement Before variant

Applies when P == 1 && U == 0.

SRSDB{<c>}{<q>} SP{!}, #<mode>

Increment After variant

Applies when P == 0 && U == 1.

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Increment Before variant

Applies when P == 1 && U == 1.

SRSIB{<c>}{<q>} SP{!}, #<mode>

Decode for all variants of this encoding

wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 0</td>
<td>P U 0 W 0</td>
<td>(1) (1) (0) (1)</td>
<td>(0) (0) (0) (0)</td>
</tr>
</tbody>
</table>
T1 variant

SRSDB{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

wback = (W == '1'); increment = FALSE; wordhigher = FALSE;

T2

\[
\begin{array}{cccccccccccccccc}
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 1 | 0 | W | 0 | \hline
\end{array}
\]

T2 variant

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Decode for this encoding

wback = (W == '1'); increment = TRUE; wordhigher = FALSE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SRS (T32) on page K1-7953 and SRS (A32) on page K1-7953.

Assembler symbols

IA
For encoding A1: is an optional suffix to indicate the Increment After variant.
For encoding T2: is an optional suffix for the Increment After form.

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. <c> must be AL or omitted.
For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<op>
See Standard assembler syntax fields on page F2-4120.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<mode> Is the number of the mode whose Banked SP is used as the base register, encoded in the "mode" field. For details of PE modes and their numbers see AArch32 state PE mode descriptions on page G1-5726.

SRSFA, SRSEA, SRSFD, and SRSED are pseudo-instructions for SRSIB, SRSIA, SRSDB, and SRSDA respectively, referring to their use for pushing data onto Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation for all encodings

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then // UNDEFINED at EL2
UNDEFINED;

// Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
// to be security holes
if PSTATE.M IN {M32_User,M32_System} then
UNPREDICTABLE;
elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP
UNPREDICTABLE;
elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || !IsSecure() then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;
 end
 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;
else
 if ConditionPassed() then
 EncodingSpecificOperations();
 if PSTATE.EL == EL2 then // UNDEFINED at EL2
 UNDEFINED;
 // Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
 // to be security holes
 if PSTATE.M IN {M32_User,M32_System} then
 UNPREDICTABLE;
 elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP
 UNPREDICTABLE;
 elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP
 if !HaveEL(EL3) || !IsSecure() then
 UNPREDICTABLE;
 elsif !ELUsingAArch32(EL3) then
 AArch64.MonitorModeTrap();
 elsif BadMode(mode) then
 UNPREDICTABLE;
 end
 base = Rmode[13,mode];
 address = if increment then base else base-8;
 if wordhigher then address = address+4;
 MemA[address,4] = LR;
 MemA[address+4,4] = SPSR[];
 if wback then Rmode[13,mode] = if increment then base+8 else base-8;

CONSTRANDED UNPREDICTABLE behavior
If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode == M32_Hyp, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode == M32_Monitor && (!HaveEL(EL3) || !IsSecure()), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If BadMode(mode), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
- The instruction stores to the stack of the mode in which it is executed.
- The instruction stores to an **UNKNOWN** address, and if the instruction specifies writeback then any general-purpose register that can be accessed from the current Exception level without a privilege violation becomes **UNKNOWN**.
F5.1.210 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

31 28	27 26 25 24	23 22 21 20	16	15	12	11	7 6 5 4	3 0				
!1111	0 1	0	1	0	1	sat_imm	Rd	imm5	sh	0	1	Rn
cond												

Arithmetic shift right variant

Applies when \(sh = 1 \).

\[
\text{SSAT}\{<c>\}{<q>} \langle Rd \rangle, \#<imm>, \langle Rn \rangle, \text{ASR} \#<amount>
\]

Logical shift left variant

Applies when \(sh = 0 \).

\[
\text{SSAT}\{<c>\}{<q>} \langle Rd \rangle, \#<imm>, \langle Rn \rangle \{, \text{LSL} \#<amount>\}
\]

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ \text{saturate}_{\text{to}} = \text{UInt}(\text{sat_imm})+1;
\]

\[
\text{shift}_t, \text{shift}_n = \text{DecodeImmShift}(sh:'0', \text{imm5});
\]

\[
\text{if} \ d = 15 || n = 15 \text{ then UNPREDICTABLE;}
\]

T1

15 14 13 12	11 10 9 8	7 6 5 4	3 0	15 14 12	11	8 7 6 5 4	0			
1 1 1 1 0	1 1 10 0	sh	0	Rn	0	imm3	Rd	imm2	0	sat_imm

Arithmetic shift right variant

Applies when \(sh = 1 && \text{(imm3} == 000 \&\& \text{imm2} == 00) \).

\[
\text{SSAT}\{<c>\}{<q>} \langle Rd \rangle, \#<imm>, \langle Rn \rangle, \text{ASR} \#<amount>
\]

Logical shift left variant

Applies when \(sh = 0 \).

\[
\text{SSAT}\{<c>\}{<q>} \langle Rd \rangle, \#<imm>, \langle Rn \rangle \{, \text{LSL} \#<amount>\}
\]

Decode for all variants of this encoding

\[
\text{if} \ sh = '1' \&\& \text{(imm3:imm2} == '00000' \text{ then SEE "SSAT16";}
\]

\[
d = \text{UInt}(Rd); \ n = \text{ UInt}(Rn); \ \text{saturate}_{\text{to}} = \text{ UInt} (\text{sat_imm})+1;
\]

\[
\text{shift}_t, \text{shift}_n = \text{ DecodeImmShift}(sh:'0', \text{imm5});
\]

\[
\text{if} \ d = 15 || n = 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1

Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<imm>
Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as <imm>-1.

<Rn>
Is the general-purpose source register, encoded in the "Rn" field.

<amount>
For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as <amount>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
 R[d] = SignExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
F5.1.211 SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

```
<table>
<thead>
<tr>
<th>cond</th>
<th>Rd</th>
<th>sat_imm</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

A1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{saturate}_\text{to} = \text{UInt}(\text{sat_imm})+1;
\]

\[
\text{if } d == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
<table>
<thead>
<tr>
<th>cond</th>
<th>Rd</th>
<th>sat_imm</th>
<th>Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

T1 variant

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad \text{saturate}_\text{to} = \text{UInt}(\text{sat_imm})+1;
\]

\[
\text{if } d == 15 \quad \text{||} \quad n == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<imm>` Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as `<imm>-1.
- `<Rn>` Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

\[
(\text{result1}, \text{sat1}) = \text{SignedSatQ}(\text{SInt}(R[n]<15:0>), \text{saturate}_\text{to});
\]

\[
(\text{result2}, \text{sat2}) = \text{SignedSatQ}(\text{SInt}(R[n]<31:16>), \text{saturate}_\text{to});
\]
R[d]<15:0> = SignExtend(result1, 16);
R[d]<31:16> = SignExtend(result2, 16);
if sat1 || sat2 then
 PSTATE.Q = '1';
F5.1.212 SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets PSTATE.GE according to the results.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0 |
|1111| 1| 1| 0| 0| 0| 0| 1| Rn| Rd| 1| 1| 1| 0| 1| 0| 1| 0| 1| 0| 0| 0| 0| 0| 0|
cond
```

A1 variant

SSAX{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); n = \text{UInt}(\text{Rn}); m = \text{UInt}(\text{Rm});
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE;

T1

```
|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0 |15|14|13|12|11| 8| 7| 6| 5| 4| 3| 0 |
|1| 1| 1| 1| 0| 1| 0| 1| 1| 1| 0| Rn| 1| 1| 1| 1| Rd| 0| 0| 0| 0| 0| 0|
```

T1 variant

SSAX{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); n = \text{UInt}(\text{Rn}); m = \text{UInt}(\text{Rm});
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = \(\text{SInt}(R[n]<15:0>) + \text{SInt}(R[m]<31:16>)\);
 diff = \(\text{SInt}(R[n]<31:16>) - \text{SInt}(R[m]<15:0>)\);
R[d]<15:0> = sum<15:0>;
R[d]<31:16> = diff<15:0>;
PSTATE.GE<1:0> = if sum >= 0 then '11' else '00';
PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.213 SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores to the same virtual address under certain conditions.

The semantics of the Speculative Store Bypass Barrier are:

- When a load to a location appears in program order after the SSBB, then the load does not speculatively read an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order before the SSBB.

- When a load to a location appears in program order before the SSBB, then the load does not speculatively read data from any store satisfying all of the following conditions:
 - The store is to the same location as the load.
 - The store uses the same virtual address as the load.
 - The store appears in program order after the SSBB.

A1

```asm
[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 18 17 16] [15 14 13 12] [11 10 9 8] [7 6 5 4] [3 2 1 0 ]
1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
```

A1 variant

`SSBB{<q>}`

Decode for this encoding

// No additional decoding required

T1

```asm
[15 14 13 12] [11 10 9 8] [7 6 5 4] [3 2 1 0 ] [15 14 13 12] [11 10 9 8] [7 6 5 4] [3 2 1 0 ]
1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
```

T1 variant

`SSBB{<q>}`

Decode for this encoding

if InITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

`<q>` See Standard assembler syntax fields on page F2-4120.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 SpeculativeStoreBypassBarrierToVA();
F5.1.214 SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the subtractions.

A1

31 28 26 25 24	23 22 21 20	19 16	15 10 9 8	7 6 5 4	3 0		
!=1111	0	1	1	0	0	0	1
cond	Rn	Rd					

A1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |
|---|---|---|---|---|
| 1 | 1 | 1 | 1 |
| Rn | 0 | 1 | 0 |
| Rd | 1 | 1 | 1 |
| Rm | 0 | 0 | 0 |

T1 variant

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
R[d]<31:16> = diff2<15:0>;
PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.215 SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the subtractions.

A1

| [31] | 28|27|26|25|24|23|22|21|20|19 | 16|15 | 12|11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| | 0 | 1 | 1 | 0 | 0 | 0 | 1 | Rn | Rd | | | | | (1) | (1) | (1) | 1 | 1 | 1 | 1 | Rm |

cond

A1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
\]

if \(d = 15 \) || \(n = 15 \) || \(m = 15 \) then UNPREDICTABLE;

T1

| [15] | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | Rn | 1 | 1 | 1 | 1 | Rd | 0 | 0 | 0 | 0 | Rm |

T1 variant

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
\]

if \(d = 15 \) || \(n = 15 \) || \(m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);

diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = diff1<7:0>;
R[d]<15:8> = diff2<7:0>;
R[d]<23:16> = diff3<7:0>;
R[d]<31:24> = diff4<7:0>;
PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
STC

Store data to System register calculates an address from a base register value and an immediate offset, and stores a word from the DBGDTRRXint System register to memory. It can use offset, post-indexed, pre-indexed, or unindexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

In an implementation that includes EL2, the permitted STC access to DBGDTRRXint can be trapped to Hyp mode, meaning that an attempt to execute an STC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see Trapping general Non-secure System register accesses to debug registers on page G1-5843.

For simplicity, the STC pseudocode does not show this possible trap to Hyp mode.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td></td>
<td></td>
<td>P</td>
<td>U</td>
<td>W</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td>Rn</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>imm8</td>
</tr>
</tbody>
</table>

Offset variant

Applies when \(P = 1 \) && \(W = 0 \).

\[\text{STC}{<c>}{<q>} p14, c5, [<Rn>, \#(+/-)<imm>] \]

Post-indexed variant

Applies when \(P = 0 \) && \(W = 1 \).

\[\text{STC}{<c>}{<q>} p14, c5, [<Rn>], \#(+/-)<imm> \]

Pre-indexed variant

Applies when \(P = 1 \) && \(W = 1 \).

\[\text{STC}{<c>}{<q>} p14, c5, [<Rn>, \#(+/-)<imm>]! \]

Unindexed variant

Applies when \(P = 0 \) && \(U = 1 \) && \(W = 0 \).

\[\text{STC}{<c>}{<q>} p14, c5, [<Rn>], <option> \]

Decode for all variants of this encoding

if \(P = '0' \) && \(U = '0' \) && \(W = '0' \) then UNDEFINED;
\(n = \text{UInt}(Rn); \ cp = 14; \)
\(\text{imm32} = \text{ZeroExtend}(\text{imm8}:'00', 32); \ index = (P = '1'); \ add = (U = '1'); \ wback = (W = '1'); \)
if \(n = 15 \) && \(\text{wback} \) then CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(n = 15 \) && \(\text{wback} \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 on page K1-7941.
T1

|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0|15 14 13 12|11 10 9 8 |7 |0 |
|1 1 1 0|1 1 0 |P U 0 W 0 |Rn 0 1 0|1 1 1 0 |imm8 |

Offset variant

Applies when \(P == 1 \) \&\& \(W == 0 \).

\[
STC\{c\}\{q\} \ p14, \ c5, \ [\{Rn\}, \ #{+/-}\{imm\}] \]

Post-indexed variant

Applies when \(P == 0 \) \&\& \(W == 1 \).

\[
STC\{c\}\{q\} \ p14, \ c5, \ [\{Rn\}], \ #{+/-}\{imm\} \]

Pre-indexed variant

Applies when \(P == 1 \) \&\& \(W == 1 \).

\[
STC\{c\}\{q\} \ p14, \ c5, \ [\{Rn\}, \ #{+/-}\{imm\}]! \]

Unindexed variant

Applies when \(P == 0 \) \&\& \(U == 1 \) \&\& \(W == 0 \).

\[
STC\{c\}\{q\} \ p14, \ c5, \ [\{Rn\}], \ {option} \]

Decode for all variants of this encoding

if \(P == '0' \) \&\& \(U == '0' \) \&\& \(W == '0' \) then UNDEFINED;

\[
n = \text{UInt} (Rn); \quad cp = 14; \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}: '00', 32); \quad \text{index} = (P == '1'); \quad \text{add} = (U == '1'); \quad \text{wback} = (W == '1'); \quad \text{if} \ n == 15 \&\& (\text{wback} || \text{CurrentInstrSet}() \neq \text{InstrSet_A32}) \quad \text{then UNPREDICTABLE}; \]

CONSTRANDED UNPREDICTABLE behavior

If \(n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 on page K1-7941.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rn>\) For the offset or unindexed variant: is the general-purpose base register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For the offset, post-indexed or pre-indexed variant: is the general-purpose base register, encoded in the "Rn" field.

\(<option>\) Is an 8-bit immediate, in the range 0 to 255 enclosed in \{ \}, encoded in the "imm8" field. The value of this field is ignored when executing this instruction.
+/− Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0 and encoded in the "imm8" field, as <imm>/4.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
    address = if index then offset_addr else R[n];

    // System register read from DBGDTRXint.
    MemA[address,4] = DBGDTR_EL0[];
    if wback then R[n] = offset_addr;
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.217 STL

Store-Release Word stores a word from a register to memory. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31|28|27|26|25|24|23|22|21|20|19|16|15|14|13|12|11|10|9|8|7|6|5|4|3|0|
|!|=1111|0|0|0|1|0|0|0|Rn|1|1|1|1|1|1|1|1|1|1|0|0|1|0|1|0|1|Rt|

cond
```

A1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

```c
    t = UInt(Rt); n = UInt(Rn);
    if t == 15 || n == 15 then UNPREDICTABLE;
```

T1

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|12|11|10|9|8|7|6|5|4|3|2|1|0|
|1|1|1|0|1|0|0|1|1|0|0|Rn|Rt|1|1|1|1|1|1|1|1|1|0|0|1|0|1|0|1|1|1|
```

T1 variant

STL{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

```c
    t = UInt(Rt); n = UInt(Rn);
    if t == 15 || n == 15 then UNPREDICTABLE;
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

```c
    if ConditionPassed() then
        EncodingSpecificOperations();
        address = R[n];
        MemO[address, 4] = R[t];
```
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.218 STLB

Store-Release Byte stores a byte from a register to memory. The instruction also has memory ordering semantics as described in *Load-Acquire, Store-Release on page E2-4036*.

For more information about support for shared memory see *Synchronization and semaphores on page E2-4063*. For information about memory accesses see *Memory accesses on page F2-4125*.

A1

31 28	27 26 25 24	23 22 21 20	19 16	15 14 13 12	11 10 9 8 7 6 5 4 3 0	
cond	!=1111	0 0 0 1 1 0 0	Rn	1(1)(1)(1)(1)	0 0 1 0 0 1	Rt

A1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
\begin{align*}
 t &= \text{UInt} (Rt); \\
 n &= \text{UInt} (Rn); \\
 \text{if } t &= 15 \text{ || } n &= 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

T1

15 14 13 12	11 10 9 8 7 6 5 4 3 0	15 12	11 10 9 8 7 6 5 4 3 2 1 0		
	1 1 1 0 1 0 0 1 1 0 0	Rn	Rt	(1)(1)(1)(1)	1 0 0 0 (1)(1)(1)(1)

T1 variant

STLB{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
\begin{align*}
 t &= \text{UInt} (Rt); \\
 n &= \text{UInt} (Rn); \\
 \text{if } t &= 15 \text{ || } n &= 15 \text{ then UNPREDICTABLE;}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- **<c>** See *Standard assembler syntax fields on page F2-4120*.
- **<q>** See *Standard assembler syntax fields on page F2-4120*.
- **<Rt>** Is the general-purpose register to be transferred, encoded in the "Rt" field.
- **<Rn>** Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

\[
\begin{align*}
 \text{if } \text{ConditionPassed()} \text{ then} \\
 &\text{EncodingSpecificOperations();} \\
 \text{address} &= R[n]; \\
 \text{MemO}[\text{address}, 1] &= R[t]<7:0>;
\end{align*}
\]
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.219 STLEX

Store-Release Exclusive Word stores a word from a register to memory if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

The instruction also has memory ordering semantics as described in *Load-Acquire, Store-Release* on page E2-4036.

For more information about support for shared memory see *Synchronization and semaphores* on page E2-4063. For information about memory accesses see *Memory accesses* on page F2-4125.

A1

![Instruction Format](#)

A1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
\]

if \(d == 15 \text{ or } t == 15 \text{ or } n == 15\) then UNPREDICTABLE;

if \(d == n \text{ or } d == t\) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(d == t\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d == n\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

T1

![Instruction Format](#)

T1 variant

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
\]

if \(d == 15 \text{ or } t == 15 \text{ or } n == 15\) then UNPREDICTABLE;

if \(d == n \text{ or } d == t\) then UNPREDICTABLE;
CONstrained UNpredictable behavior

If \(d = t\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d = n\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:

- 0 If the operation updates memory.
- 1 If the operation fails to update memory.

\(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- \(<Rd>\) is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If \(\text{AArch32.ExclusiveMonitorsPass()}\) returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If \(\text{AArch32.ExclusiveMonitorsPass()}\) returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if AArch32.ExclusiveMonitorsPass(address, 4) then
 MemO[address, 4] = R[t];
R[d] = ZeroExtend('0');
else
R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.220 STLEXB

Store-Release Exclusive Byte stores a byte from a register to memory if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15|11|10|9|8|7|6|5|4|3|0|
| 0| 0| 0| 1| 1| 0| 0| Rn| Rd| 1|1|1|1|0|1|0|0|1|0|Rt|
```

A1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

\[d = \text{UInt}(Rd); \ t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \]
\[\text{if } d = 15 \text{ || } t = 15 \text{ || } n = 15 \text{ then UNPREDICTABLE;} \]
\[\text{if } d = n \text{ || } d = t \text{ then UNPREDICTABLE;} \]

CONSTRANGED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If \(d = n \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|11|10|9|8|7|6|5|4|3|0|
|1|1|1|0|1|0|0|1|1|0|0|Rn|Rt|1|1|1|0|0|Rd|
```

T1 variant

STLEXB{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

\[d = \text{UInt}(Rd); \ t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \]
\[\text{if } d = 15 \text{ || } t = 15 \text{ || } n = 15 \text{ then UNPREDICTABLE;} \]
\[\text{if } d = n \text{ || } d = t \text{ then UNPREDICTABLE;} \]
CONSTRAINED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The store instruction executes but the value stored is **UNKNOWN**.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The instruction performs the store to an **UNKNOWN** address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

\(<c>\) See *Standard assembler syntax fields* on page F2-4120.

\(<q>\) See *Standard assembler syntax fields* on page F2-4120.

\(<Rd>\) Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:

- 0 If the operation updates memory.
- 1 If the operation fails to update memory.

\(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- \(<Rd>\) is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    if AArch32.ExclusiveMonitorsPass(address,1) then
        MemO[address, 1] = R[t]<7:0>;
        R[d] = ZeroExtend('0');
    else
        R[d] = ZeroExtend('1');
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.221 STLEXD

Store-Release Exclusive Doubleword stores a doubleword from two registers to memory if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

A1 variant

STLEXD{<c>}{<q>}{<Rd>}, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: Rt<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction is handled as described in Using R15 on page K1-7941.
T1

```
|   | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|---|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|
|   | 1  | 1  | 0  | 0  | 0  | 1  | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
```

T1 variant

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

```
d = UInt(Rd);  t = UInt(Rt);  t2 = UInt(Rt2);  n = UInt(Rn);
if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;
```

CONSTRAINED UNPREDICTABLE behavior

If \(d == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d == n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:
 - 0 If the operation updates memory.
 - 1 If the operation fails to update memory.
- `<Rt>` For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. `<Rt>` must be even-numbered and not R14.
 For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rt2>` For encoding A1: is the second general-purpose register to be transferred. `<Rt2>` must be \(8(t+1) \).
 For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- \(<R_d>\) is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
 value = if BigEndian() then R[t]:R[t2] else R[t2]:R[t];
 if AArch32.ExclusiveMonitorsPass(address, 8) then
 MemO[address, 8] = value;
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.222 STLEXH
Store-Release Exclusive Halfword stores a halfword from a register to memory if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release on page E2-4036.
For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15|12|11|10|9 |8 |7 |6 |5 |4 |3 |0 |
|1111| 0 | 0 | 0 | 1 | 1 | 1 | 0 | Rn | Rd | (1)(1) | 1 | 0 | 1 | 0 | 1 | Rd |
```

A1 variant

STLEXH{<c>{<q>} <Rd>, <Rt>, [<Rn>]}

Decoding for this encoding

\[d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \]
\[\text{if } d == 15 \text{ } || \text{ } t == 15 \text{ } || \text{ } n == 15 \text{ then UNPREDICTABLE}; \]
\[\text{if } d == n \text{ } || \text{ } d == t \text{ then UNPREDICTABLE;} \]

CONstrained UNPREDICTABLE behavior

If \(d == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d == n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

T1

```
|15|14|13|12|11|10|9 |8 |7 |6 |5 |4 |3 |0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1 |1 |1 |0 |1 |0 |0 |1 |1 |0 |0 |Rn | Rd | (1)(1)(1)(1) | 1 | 1 | 0 | 1 |
```

T1 variant

STLEXH{<c>{<q>} <Rd>, <Rt>, [<Rn>]}

Decoding for this encoding

\[d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \]
\[\text{if } d == 15 \text{ } || \text{ } t == 15 \text{ } || \text{ } n == 15 \text{ then UNPREDICTABLE}; \]
\[\text{if } d == n \text{ } || \text{ } d == t \text{ then UNPREDICTABLE;} \]
CONSTRUED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \(\text{NOP} \).
- The store instruction executes but the value stored is UNKNOWN.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \(\text{NOP} \).
- The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRUED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c> \) See Standard assembler syntax fields on page F2-4120.
- \(<q> \) See Standard assembler syntax fields on page F2-4120.
- \(<\text{Rd}> \) Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:
 - 0 If the operation updates memory.
 - 1 If the operation fails to update memory.
- \(<\text{Rt}> \) Is the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<\text{Rn}> \) Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated
- \(<\text{Rd}> \) is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    if AArch32.ExclusiveMonitorsPass(address, 2) then
        MemO[address, 2] = R[t]<15:0>;
```
R[d] = ZeroExtend('0');
else
R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.223 STLH

Store-Release Halfword stores a halfword from a register to memory. The instruction also has memory ordering semantics as described in **Load-Acquire, Store-Release** on page E2-4036.

For more information about support for shared memory see **Synchronization and semaphores** on page E2-4063. For information about memory accesses see **Memory accesses** on page F2-4125.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 10 9 8 7 6 5 4 3 0 | | |
|---|---|---|---|---|---|---|---|
| !cond | 1111 | 0 0 0 1 1 1 0 | Rn | [1](1)[1](1)[1][1][1] | 0 0 | 1 0 0 1 | Rt |
```

A1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
\]

T1

```
| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | 15 |
|-------|-------|-------|-------|-------|
| 1 1 1 0 1 0 0 1 1 0 0 | Rn | Rt |
```

T1 variant

STLH{<c>}{<q>} <Rt>, [<Rn>]

Decode for this encoding

\[
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see **Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors**.

Assembler symbols

- `<c>` See **Standard assembler syntax fields** on page F2-4120.
- `<q>` See **Standard assembler syntax fields** on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 MemO[address, 2] = R[t]<15:0>;}
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.224 STM, STMIA, STMEA

Store Multiple (Increment After, Empty Ascending) stores multiple registers to consecutive memory locations using an address from a base register. The consecutive memory locations start at this address, and the address just above the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encodings of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

```
|31  28|27 26 25 24|23 22 21 20|19  16|15 | 0 |

!1111   1  0  0  1  0  W  0  Rn  register_list
```

A1 variant

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMIA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

\[
n = \text{UInt}(Rn) ; \text{ registers } = \text{register_list} ; \text{ wback } = (W == '1'); \\
\text{ if } n == 15 || \text{ BitCount(registers) } < 1 \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 on page K1-7941.

T1

```
|15 14 13|12|11 10 8 7 | 0 |

1 1 0 0 0 | Rn | register_list
```

T1 variant

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMEA{<c>}{<q>} <Rn>!, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

\[
\begin{align*}
n &= \text{UInt}(Rn); \\
\text{registers} &= '00000000':\text{register_list}; \\
\text{wback} &= \text{TRUE}; \\
\text{if } &\text{BitCount}(\text{registers}) < 1 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONstrained UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.

If \(n = 15 \) && wback, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 on page K1-7941.

T2

\[
\begin{array}{cccccccccccccccccc}
| & 15 & 14 & 13 & 12 | & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 | & 15 & 14 & 13 |
\end{array}
\]

\[
\begin{array}{cccccccccccccccccc}
| & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & W & 0 & Rn & [0] & M & \text{register_list} & P
\end{array}
\]

T2 variant

STM[{IA}]{<c>}.W <Rn>{!}, <registers> // Preferred syntax, if <Rn>, '! and <registers> can be represented in T1
STM[{<c>}.W <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack, if <Rn>, '!' and <registers> can be represented in T1
STM[{IA}]{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STM[{<c>}{<q>}.W <Rn>{!}, <registers> // Alternate syntax, Empty Ascending stack

Decode for this encoding

\[
\begin{align*}
n &= \text{UInt}(Rn); \\
\text{registers} &= P:M:register_list; \\
\text{wback} &= (W == '1'); \\
\text{if } &n \gg 15 || \text{BitCount}(\text{registers}) < 2 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONstrained UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.
If \(\text{BitCount(registers)} = 1 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

If \(\text{wback} \&\& \text{registers}<n> = '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored for the base register is UNKNOWN.

If \(\text{registers}<13> = '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs all of the stores using the specified addressing mode but the value of R13 is UNKNOWN.

If \(\text{registers}<15> = '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs all of the stores using the specified addressing mode but the value of R15 is UNKNOWN.

If \(n = 15 \&\& \text{wback} \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction executes with writeback to the PC. The instruction is handled as described in Using R15 on page K1-7941.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- IA: Is an optional suffix for the Increment After form.
- <>: See Standard assembler syntax fields on page F2-4120.
- <>: See Standard assembler syntax fields on page F2-4120.
- <Rn>: Is the general-purpose base register, encoded in the "Rn" field.
- !: The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field. If the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then // Only possible for encoding A1
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.225 STM (User registers)

In an EL1 mode other than System mode, Store Multiple (User registers) stores multiple User mode registers to
consecutive memory locations using an address from a base register. The PE reads the base register value normally,
using the current mode to determine the correct Banked version of the register. This instruction cannot writeback to
the base register.

Store Multiple (User registers) is UNDEFINED in Hyp mode, and CONSTRAINED UNPREDICTABLE in User or System
modes.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th></th>
<th></th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>register_list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

STM{<amode>}{<c>{<q>}}<Rn>, <registers>^

Decode for this encoding

\[n = UInt(Rn);\] \[\text{registers} = \text{register_list};\] \[\text{increment} = (U == '1');\] \[\text{wordhigher} = (P == U);\]

if \[n == 15 \] \[\|\] \[\text{BitCount(registers)} < 1 \] then UNPREDICTABLE;

CONSTRUINED UNPREDICTABLE behavior

If \[\text{BitCount(registers)} < 1 \] then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers.
 These registers might include R15.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<\text{amode}>\) is one of:

DA Decrement After. The consecutive memory addresses end at the address in the base
 register. Encoded as P = 0, U = 0.
ED Empty Descending. For this instruction, a synonym for DA.
DB Decrement Before. The consecutive memory addresses end one word below the address
 in the base register. Encoded as P = 1, U = 0.
FD Full Descending. For this instruction, a synonym for DB.
IA Increment After. The consecutive memory addresses start at the address in the base
 register. This is the default. Encoded as P = 0, U = 1.
EA Empty Ascending. For this instruction, a synonym for IA.
IB Increment Before. The consecutive memory addresses start one word above the address
 in the base register. Encoded as P = 1, U = 1.
FA Full Ascending. For this instruction, a synonym for IB.

See Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

Is the general-purpose base register, encoded in the "Rn" field.

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set of registers to be stored by the STM instruction. The registers are stored with the lowest-numbered register to the lowest memory address, through to the highest-numbered register to the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Operation

```plaintext
ef ConditionPassed() then
    EncodingSpecificOperations();
ef PSTATE.EL == EL2 then
    UNDEFINED;
ewl PSTATE.M IN {M32_User, M32_System} then
    UNPREDICTABLE;
e else
    length = 4*BitCount(registers);
    address = if increment then R[n] else R[n]-length;
    if wordhigher then address = address+4;
    for i = 0 to 14
        if registers<i> == '1' then // Store User mode register
            MemA[address,4] = Rmode[i, M32_User];
            address = address + 4;
        if registers<15> == '1' then
            MemA[address,4] = PCStoreValue();
```

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System}, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.226 STMDA, STMED

Store Multiple Decrement After (Empty Descending) stores multiple registers to consecutive memory locations using an address from a base register. The consecutive memory locations end at this address, and the address just below the lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

| 31 | 28|27 26 25 24|23 22 21 20| 19 | 16|15 | | | 0 | 1 0 0 0 0 1 0 | W 0 |

Rn register_list

cond

A1 variant

STMDA{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMED{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Empty Descending stack

Decode for this encoding

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the base register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers) + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN;
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.227 STMDB, STMFD

Store Multiple Decrement Before (Full Descending) stores multiple registers to consecutive memory locations using an address from a base register. The consecutive memory locations end just below this address, and the address of the first of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

This instruction is used by the alias PUSH (multiple registers). See Alias conditions on page F5-4813 for details of when each alias is preferred.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15|   |   |   | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1| 0| 0| 1| 0| 0| W| 0| Rn|   | register_list |
```

A1 variant

```
STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack
```

Decode for this encoding

```
n = UInt(Rn);  registers = register_list;  wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
```

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.

T1

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|14|13|   |   |   | 0 |
|1|1|1|0|1|0|0|W|0| Rn |0| M |   | register_list |
```

T1 variant

```
STMDB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFD{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Descending stack
```
Decode for this encoding

\[
n = \text{UInt}(\text{Rn}); \quad \text{registers} = \text{P:M:register_list}; \quad \text{wback} = (W == '1');
\]
if \(n == 15 \text{|| BitCount(\text{registers}) < 2}\) then UNPREDICTABLE;
if \(\text{wback} \&\& \text{registers}<n> == '1'\) then UNPREDICTABLE;
if \(\text{registers}<13> == '1'\) then UNPREDICTABLE;
if \(\text{registers}<15> == '1'\) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(\text{BitCount(\text{registers}) < 1}\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers stored.

If \(\text{wback} \&\& \text{registers}<n> == '1'\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored for the base register is UNKNOWN.

If \(\text{BitCount(\text{registers}) == 1}\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

If \(\text{registers}<13> == '1'\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The store instruction performs all of the stores using the specified addressing mode but the value of R13 is UNKNOWN.

If \(\text{registers}<15> == '1'\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs all of the stores using the specified addressing mode but the value of R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>of variant</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH (multiple registers)</td>
<td>T1</td>
<td>[W = '1' & Rn == '1101' & BitCount(M:register_list) > 1]</td>
</tr>
<tr>
<td>PUSH (multiple registers)</td>
<td>A1</td>
<td>[W = '1' & Rn == '1101' & BitCount(register_list) > 1]</td>
</tr>
</tbody>
</table>

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

\(!\) The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

\(<\text{registers}>\) For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded by \{ and \}.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the base register.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded by \{ and \}.

The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*\text{BitCount}(registers);
 for i = 0 to 14
 if registers <i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers <15> == '1' then // Only possible for encoding A1
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] - 4*\text{BitCount}(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.228 STMIB, STMFA

Store Multiple Increment Before (Full Ascending) stores multiple registers to consecutive memory locations using an address from a base register. The consecutive memory locations start just above this address, and the address of the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address. See also Encoding of lists of general-purpose registers and the PC on page F2-4126.

Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

<table>
<thead>
<tr>
<th>31 28 26 24 22 21 20 19 16 15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 1 0 0 1 1 0 W 0</td>
<td>Rn</td>
</tr>
<tr>
<td>register_list</td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

STMIB{<c>}{<q>} <Rn>{!}, <registers> // Preferred syntax
STMFA{<c>}{<q>} <Rn>{!}, <registers> // Alternate syntax, Full Ascending stack

Decode for this encoding

\[
n = \text{UInt}(Rn); \text{ registers} = \text{register_list}; \text{ wback} = (W == '1'); \\
\text{if } n == 15 \text{ || } \text{BitCount(registers)} < 1 \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICATBLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as an STM with the same addressing mode but targeting an unspecified set of registers. These registers might include R15.

If \(n == 15 \&\& \text{wback} \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rn> Is the general-purpose base register, encoded in the "Rn" field.
The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers>
Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.

The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the list.

If base register writeback is specified, and the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN value for the base register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + 4;
 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN;
 else
 MemA[address,4] = R[i];
 address = address + 4;
 if registers<15> == '1' then
 MemA[address,4] = PCStoreValue();
 if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

This instruction is used by the alias PUSH (single register). See Alias conditions on page F5-4819 for details of when each alias is preferred.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 12 11</th>
<th>0</th>
<th>0</th>
<th>P</th>
<th>U</th>
<th>0</th>
<th>W</th>
<th>0</th>
<th>Rn</th>
<th>Rt</th>
<th>imm12</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>0</td>
<td>W</td>
<td>0</td>
<td>Rn</td>
<td>Rt</td>
</tr>
</tbody>
</table>

Offset variant

Applies when \(P = 1 \) \&\& \(W = 0 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]
\]

Post-indexed variant

Applies when \(P = 0 \) \&\& \(W = 0 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn>], #{+/-}<imm>
\]

Pre-indexed variant

Applies when \(P = 1 \) \&\& \(W = 1 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]
\]

Decode for all variants of this encoding

If \(P = '0' \) \&\& \(W = '1' \) then SEE "STRT";

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32);
\]

\[
\text{index} = (P = '1') \quad \text{add} = (U = '1') \quad \text{wback} = (P = '0') \quad (W = '1')
\]

If \(\text{wback} \) \&\& \(n = t \), one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(\text{wback} \) \&\& \(n = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 0 0</td>
<td>imm5</td>
<td>Rt</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

STR{<c>}{<q>} <Rt>, [Rn] {, #{+}<imm>}

Decode for this encoding

\[t = \text{UInt}(Rt); n = \text{UInt}(Rn); \text{imm32} = \text{ZeroExtend}(\text{imm5}:00, 32); \]
\[\text{index} = \text{TRUE}; \text{add} = \text{TRUE}; \text{wback} = \text{FALSE}; \]

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 1 0</td>
<td>Rt</td>
<td>imm8</td>
<td></td>
</tr>
</tbody>
</table>

T2 variant

STR{<c>}{<q>} <Rt>, [SP, #{+}<imm>]

Decode for this encoding

\[t = \text{UInt}(Rt); n = 13; \text{imm32} = \text{ZeroExtend}(\text{imm8}:00, 32); \]
\[\text{index} = \text{TRUE}; \text{add} = \text{TRUE}; \text{wback} = \text{FALSE}; \]

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10</th>
<th>9 8 7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15 12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 0 0 1 1 0 0</td>
<td>\text{l=1111}</td>
<td>Rt</td>
<td>imm12</td>
<td>\text{Rn}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T3 variant

STR{<c>}.W <Rt>, [Rn] {, #{+}<imm>}, // <Rt>, <Rn>, <imm> can be represented in T1 or T2

STR{<c>}{<q>} <Rt>, [Rn] {, #{+}<imm>}

Decode for this encoding

if \(\text{Rn} = \text{'111'} \) then UNDEFINED;
\[t = \text{UInt}(Rt); n = \text{UInt}(Rn); \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \]
\[\text{index} = \text{TRUE}; \text{add} = \text{TRUE}; \text{wback} = \text{FALSE}; \]
if \(t = 15 \) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(t = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.
T4

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rn

Offset variant

Applies when \(P == 1 \) && \(U == 0 \) && \(W == 0 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn> {, #-<imm>}]
\]

Post-indexed variant

Applies when \(P == 0 \) && \(W == 1 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn>], #{+/-}<imm>
\]

Pre-indexed variant

Applies when \(P == 1 \) && \(W == 1 \).

\[
\text{STR}\{<c>\}{<q>} <Rt>, [<Rn>], #{+/-}<imm>!
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } P &= '1' \land U &= '1' \land W &= '0' \text{ then SEE "STRT";} \\
\text{if } Rn &= '1111' \land (P &= '0' \land W &= '0') \text{ then UNDEFINED;} \\
t &= \text{UInt}(Rt); \\
n &= \text{UInt}(Rn); \\
\text{imm32} &= \text{ZeroExtend}(\text{imm8}, 32); \\
\text{index} &= (P &= '1'); \\
\text{add} &= (U &= '1'); \\
\text{wback} &= (W &= '1'); \\
\text{if } t &= 15 \land (\text{wback} \land n &= t) \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(\text{wback} \land n = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(\text{wback} \land n = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If \(t = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 - Architectural Constraints on UNPREDICTABLE Behaviors.
Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>Variant Type</th>
<th>Preferred Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH (single register)</td>
<td>A1 (pre-indexed)</td>
<td>P == '1' & U == '0' & W == '1' & Rn == '1101' & imm12 == '000000000100'</td>
</tr>
<tr>
<td>PUSH (single register)</td>
<td>T4 (pre-indexed)</td>
<td>Rn == '1101' & P == '1' & U == '0' & W == '1' & imm8 == '00000100'</td>
</tr>
</tbody>
</table>

Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated.
For encoding T1, T2, T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field.
<rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
For encoding T1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field.
<+/-> Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1
<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = R[t];
 if wback then R[n] = offset_addr;
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.230 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores a word
from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses on page F2-4125.

A1

| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0 |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| !1111 | 0 1 | P | U0 | W0 | Rn |
| cond | Rt | imm5 | stype | 0 | Rm |

Offset variant

Applies when P == 1 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}}

Post-indexed variant

Applies when P == 0 && W == 0.

STR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed variant

Applies when P == 1 && W == 1.

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm}{, <shift>}!

Decode for all variants of this encoding

if P == '0' && W == '1' then SEE "STRT";

\(t = \text{UInt}(Rt); \) \(n = \text{UInt}(Rn); \) \(m = \text{UInt}(Rm); \)

\(\text{index} = (P == '1'); \)
\(\text{add} = (U == '1'); \)
\(\text{wback} = (P == '0') || (W == '1'); \)
\((\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype, imm5}); \)

if \(m == 15 \) then UNPREDICTABLE;

if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The instruction executes without writeback of the base address.

• The instruction uses the addressing mode described in the equivalent immediate offset instruction.
T1

`STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]`

T1 variant

`STR{<c>{<q}> <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STR{<c}>{<q}> <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]`

Decode for this encoding

\[
t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
\]

index = TRUE; add = TRUE; wback = FALSE;

\[
(shift_t, shift_n) = (\text{SRType}_\text{LSL}, 0);
\]

T2

`STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
STR{<c}>{<q> {<Rt>, [<Rn>, {<Rm}{, LSL #<imm>}]`

Decode for this encoding

\[
\text{if}\ Rn == '1111'\ \text{then UNDEFINED;}
\]

\[
t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
\]

index = TRUE; add = TRUE; wback = FALSE;

\[
(shift_t, shift_n) = (\text{SRType}_\text{LSL}, \text{UInt}(imm2));
\]

\[
\text{if}\ t == 15 \ || \ m == 15\ \text{then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The store instruction performs the store using the specified addressing mode but the value corresponding to \(R15 \) is **UNKNOWN**.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K1

Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field.
 For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0000.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 if t == 15 then // Only possible for encoding A1
 data = PCStoreValue();
 else
 data = R[t];
 MemU[address,4] = data;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.231 STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset, and stores a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>P</td>
<td>U</td>
<td>1</td>
<td>W</td>
<td>0</td>
<td>Rn</td>
<td>Rt</td>
<td>imm12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset variant

Applies when $P == 1$ && $W == 0$.

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed variant

Applies when $P == 0$ && $W == 0$.

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed variant

Applies when $P == 1$ && $W == 1$.

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}imm]!

Decode for all variants of this encoding

if $P == '0'$ && $W == '1'$ then SEE "STRBT";

$t = UInt(Rt)$; $n = UInt(Rn)$; $imm32 = ZeroExtend(imm12, 32)$;

$index = (P == '1')$; $add = (U == '1')$; $wback = (P == '0') || (W == '1')$;

if $t == 15$ then UNPREDICTABLE;

if wback && ($n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If $t == 15$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If wback && $n == t$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If wback && $n == 15$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 15 12|11| 0 
0 1 1 1 0 |imm5 |n |Rt |
```

T1 variant

STRB{<c>}{<q>} <Rt>, [Rn] {, #<imm>}]

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm5}, 32);
\]

\[
\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\]

T2

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 15 12|11| 0 
1 1 1 1 0 0 0 1 0 0 1=1111 |Rt |imm12
```

T2 variant

STRB{<c>}.W <Rt>, [Rn] {, #<imm>}]} // <Rt>, <Rn>, <imm> can be represented in T1

STRB{<c>}{<q>} <Rt>, [Rn] {, #<imm}>]

Decode for this encoding

```
if \text{Rn == '1111'} then UNDEFINED;
\quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32);
\quad \text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad \text{wback} = \text{FALSE};
\quad \text{if} \; t == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
```

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

T3

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 15 12|11| 0 
1 1 1 1 1 0 0 0 0 0 0 1=1111 |Rt |1 |P |U |W |imm8
```

Offset variant

Applies when \(P == 1 \) \&\& \(U == 0 \) \&\& \(W == 0 \).

STRB{<c>}{<q>} <Rt>, [Rn] {, #<imm>}]
Post-indexed variant

Applies when \(P = 0 \) \&\& \(W = 1 \).

\[
\text{STRB}\{<c>\}{<q>} \ <Rt>, \ [<Rn>], \ #\{+/-\}<imm>
\]

Pre-indexed variant

Applies when \(P = 1 \) \&\& \(W = 1 \).

\[
\text{STRB}\{<c>\}{<q>} \ <Rt>, \ [<Rn>, \ #\{+/-\}<imm>]
\]

Decode for all variants of this encoding

if \(P == '1' \) \&\& \(U == '1' \) \&\& \(W == '0' \) then SEE "STRBT";
if \(Rn == '1111' \) || (\(P == '0' \) \&\& \(W == '0' \)) then UNDEFINED;

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]

\[
\text{index} = (P == '1'); \quad \text{add} = (U == '1'); \quad \text{wback} = (W == '1');
\]

if \(t == 15 \) || (\(\text{wback} \) \&\& \(n == t \)) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \texttt{NOP}.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If \(\text{wback} \) \&\& \(n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \texttt{NOP}.
- The store instruction executes but the value stored is UNKNOWN.

If \(\text{wback} \) \&\& \(n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \texttt{NOP}.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Rn>\) For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
 For encoding T1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when U = 0
+ when U = 1

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to 0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.
For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

if CurrentInstrSet() == InstrSet_A32 then
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;
 else
 if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.232 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores a byte from a register to memory. The offset register value can optionally be shifted. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 7 | 6 | 5 | 4 | 3 | 0 |
| !| 111 | 0 | 1 | 1 | P | U | 1 | W | 0 | Rn | Rt | imm5 | stype | 0 | Rm |

Offset variant

Applies when \(P == 1 && W == 0 \).

\[\text{STRB}\{<c>\}{<q}> <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}] \]

Post-indexed variant

Applies when \(P == 0 && W == 0 \).

\[\text{STRB}\{<c>\}{<q}> <Rt>, [<Rn>], {+/-}<Rm>{, <shift>} \]

Pre-indexed variant

Applies when \(P == 1 && W == 1 \).

\[\text{STRB}\{<c>\}{<q}> <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]! \]

Decode for all variants of this encoding

\[\text{if } P == '0' \text{ } \&\& \text{ } W == '1' \text{ then } \text{SEE } "\text{STRBT}"; \]

\[t = \text{UInt}(Rt); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \]

\[\text{index} = (P == '1'); \ add = (U == '1'); \ wback = (P == '0') || (W == '1'); \]

\[(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift(stype, imm5)}; \]

\[\text{if } t == 15 || m == 15 \text{ then UNPREDICTABLE}; \]

\[\text{if } wback \&\& (n == 15 || n == t) \text{ then UNPREDICTABLE}; \]

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If \(wback \&\& n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(wback \&\& n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

```
|15 14 13 12|11 10 9 8 | 6 5 | 3 2 0 |
0 1 0 1 0 1 0 Rm | Rn | Rt |
```

T1 variant

`STRB{<>}{<q>} <Rt>, [<Rn>, {+}<Rm>]`

Decode for this encoding

```plaintext
t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);
index = TRUE;  add = TRUE;  wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
```

T2

```
|15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |
1 1 1 1 0 0 0 0 0 0 0 | l=1111 | Rt 0 0 0 0 0 0 |imm2 | Rm |
```

T2 variant

`STRB{<>}.W <Rt>, [<Rn>, {+}<Rm>] // <Rt>, <Rn>, <Rm> can be represented in T1
`STRB{<>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

Decode for this encoding

```plaintext
if Rn == '1111' then UNDEFINED;
t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);
index = TRUE;  add = TRUE;  wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

• `<<>` See `Standard assembler syntax fields` on page F2-4120.

• `<<>` See `Standard assembler syntax fields` on page F2-4120.

• `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/− Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0
+ when U = 1

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see "Shifts applied to a register on page F2-4123."

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.233 STRBT

Store Register Byte Unprivileged stores a byte from a register to memory. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

STRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or an optionally-shifted register value.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>16</th>
<th>15 12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A1 variant

STRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONstrained Unpredictable behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing with the base register as PC, without writeback.
A2

STRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1');
\]

\[
\text{register} = \text{TRUE}; \quad (\text{shift} _t, \text{shift} _n) = \text{DecodeImmShift}(\text{stype}, \text{imm}5);
\]

If \(t == 15 \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If \(n == t \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(n == 15 \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing with the base register as PC, without writeback.

T1

STRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+}<imm>}

T1 variant
Decode for this encoding

if Rn == '1111' then UNDEFINED;

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{postindex} = \text{FALSE}; \quad \text{add} = \text{TRUE};
\]

\[
\text{register_form} = \text{FALSE}; \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]

if \(t = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If \(t = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rt>\) For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

\(+/-\) For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

\[
- \quad \text{when } U = 0
\]
\[
+ \quad \text{when } U = 1
\]

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

\[
- \quad \text{when } U = 0
\]
\[
+ \quad \text{when } U = 1
\]

\(<Rm>\) Is the general-purpose index register, encoded in the "Rm" field.

\(<\text{shift}>\) The shift to apply to the value read from \(<Rm>\). If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.

\(+\) Specifies the offset is added to the base register.

\(<\text{imm}>\) For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then

if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode

EncodingSpecificOperations();
offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
MemU_unpriv[address,1] = R[t]<7:0>;
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as STRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.234 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

| [31| 28| 27| 26| 25| 24| 23| 22| 21| 20| 19| 16|15| 8| 7| 6| 5| 4| 3| 0 | !1 | 0 | 0 | P | U | 1 | W | 0 | Rn | Rt | imm4H | 1 | 1 | 1 | imm4L |
|-------|
| cond |

Offset variant

Applies when \(P = 1 \) \&\& \(W = 0 \).

\[\text{STRD}\{<c>}\{<q>\} \ <Rt>, \ <Rt2>, \ [<Rn> \ {, \ #{+/-}<imm>}] \]

Post-indexed variant

Applies when \(P = 0 \) \&\& \(W = 0 \).

\[\text{STRD}\{<c>\}{<q>} \ <Rt>, \ <Rt2>, \ [\langle Rn \rangle], \ #{+/-}<imm> \]

Pre-indexed variant

Applies when \(P = 1 \) \&\& \(W = 1 \).

\[\text{STRD}\{<c>\}{<q>} \ <Rt>, \ <Rt2>, \ [<Rn>, \ #{+/-}<imm>]! \]

Decode for all variants of this encoding

```c
if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt);  t2 = t+1;  n = UInt(Rn);  imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1');  add = (U == '1');  wback = (P == '0') || (W == '1');
if P == '0' && W == '1' then UNPREDICTABLE;
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;
```

CONstrained UNPREDICTABLE behavior

If \(t = 15 \) \&\& \(t2 = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If \(wback \) \&\& \(n = t \) \&\& \(n = t2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(wback \) \&\& \(n = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
The instruction uses the addressing mode described in the equivalent immediate offset instruction. If \(Rt < 0 \) == '1', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \(t < 0 \) = '0'.
- The instruction executes with the additional decode: \(t2 = 1 \).
- The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when \(Rt == '1111' \).

If \(P == '0' \) \&\& \(W == '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

T1

<table>
<thead>
<tr>
<th>(P)</th>
<th>(U)</th>
<th>(W)</th>
<th>(Rn)</th>
<th>(imm8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Offset variant

Applies when \(P == 1 \) \&\& \(W == 0 \).

STRD{<c>}{<q>} <Rt>, <Rt2>, [{<Rn}> {, #{+/-}<imm>}]

Post-indexed variant

Applies when \(P == 0 \) \&\& \(W == 1 \).

STRD{<c>}{<q>} <Rt>, <Rt2>, [{<Rn}>], #{+/-}<imm>

Pre-indexed variant

Applies when \(P == 1 \) \&\& \(W == 1 \).

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>,#{+/-}<imm>]

Decode for all variants of this encoding

if \(P == '0' \) \&\& \(W == '0' \) then SEE "Related encodings";

\(t = \text{UInt}(Rt); ~ t2 = \text{UInt}(Rt2); ~ n = \text{UInt}(Rn); ~ \text{imm32} = \text{ZeroExtend}(\text{imm8}: '00', 32); \)

\(\text{index} = (P == '1'); ~ \text{add} = (U == '1'); ~ \text{wback} = (W == '1'); \)

if \(\text{wbback} \) \&\& \((n == t || n == t2)\) then UNPREDICTABLE;

if \(n == 15 || t == 15 || t2 == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 || t2 == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.

The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.
If `wback && (n == t || n == t2)`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If `wback && n == 15`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
- The instruction uses the addressing mode described in the equivalent immediate offset instruction.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.
 For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rt2>` For encoding A1: is the second general-purpose register to be transferred. This register must be `<R(t+1)>`.
 For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.
- `<Rn>` For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
 For encoding T1: is the general-purpose base register, encoded in the "Rn" field.
- `+/-` Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when `U = 0`
 - when `U = 1`
- `<imm>` For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.
 For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 if omitted, and encoded in the "imm8" field as `<imm>/4`.

Operation for all encodings

```java
if ConditionPassed() then
    EncodingSpecificOperations();
    offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
    address = if index then offset_addr else R[n];
    if address == Align(address, 8) then
        bits(64) data;
```
if BigEndian() then
 data<63:32> = R[t];
 data<31:0> = R[t2];
else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.235 STRD (register)

Store Register Dual (register) calculates an address from a base register value and a register offset, and stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31| 28| 27| 26| 25| 24| 23| 22| 21| 20|19| 16|15|12|11| 10|  9|  8|  7|  6|  5|  4|  3|  0|
|!|1111| 0| 0| P| U| 0| W| 0| Rn| | |Rt| | | | |0|0|1|1|1|1|Rm|

cond
```

Offset variant

Applies when $P == 1 \&\& W == 0$.

$\text{STRD}\{<c>\}{<q>} \text{ <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]}$

Post-indexed variant

Applies when $P == 0 \&\& W == 0$.

$\text{STRD}\{<c>\}{<q>} \text{ <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>}$

Pre-indexed variant

Applies when $P == 1 \&\& W == 1$.

$\text{STRD}\{<c>\}{<q>} \text{ <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!}$

Decode for all variants of this encoding

```
if Rt<0> == '1' then UNPREDICTABLE;
  t = UInt(Rt);  t2 = t+1;  n = UInt(Rn);  m = UInt(Rm);
  index = (P == '1');  add = (U == '1');  wback = (P == '0') || (W == '1');
  if P == '0' && W == '1' then UNPREDICTABLE;
  if t2 == 15 || m == 15 then UNPREDICTABLE;
  if wback && (n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
```

If $t == 15 || t2 == 15$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If $\text{wback} \&\& (n == t || n == t2)$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If $\text{wback} \&\& n == 15$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If \(\text{Rt} < \text{R15} > = '1' \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as \(\text{NOP}\).
• The instruction executes with the additional decode: \(t<0> = '0'\).
• The instruction executes with the additional decode: \(t2 = t\).
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when \(\text{Rt} == '1111'\).

If \(\text{P} = '0' \) \&\& \(\text{W} = '1' \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as \(\text{NOP}\).
• The instruction executes with the additional decode: \(P = '1'\); \(W = '0'\).
• The instruction executes with the additional decode: \(P = '1'\); \(W = '1'\).
• The instruction executes with the additional decode: \(P = '0'\); \(W = '0'\).

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

<

See *Standard assembler syntax fields* on page F2-4120.

<

See *Standard assembler syntax fields* on page F2-4120.

<

Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.

<

Is the second general-purpose register to be transferred. This register must be \(R(t+1)\).

<

Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.

+/

Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- \(\text{when } U = 0 \)

+ \(\text{when } U = 1 \)

<

Is the general-purpose index register, encoded in the "Rm" field.

Operation

if \(\text{ConditionPassed}()\) then
 \(\text{EncodingSpecificOperations}()\);
 \(\text{offset_addr} = \text{if add then } (R[n] + R[m]) \text{ else } (R[n] - R[m])\);
 \(\text{address} = \text{if index then offset_addr else } R[n]\);
 \(\text{if } \text{address} == \text{Align(address, 8)} \text{ then}
 \text{bits(64) data};
 \text{if BigEndian()} \text{ then}
 \text{data<63:32> = R[t];}
 \text{data<31:0> = R[t2];}
 \)
else
 data<31:0> = R[t];
 data<63:32> = R[t2];
 MemA[address,8] = data;
else
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.236 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, stores a word from a register to the calculated address if the PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|---|
|   1|1111      |  0 0 1 1|  0 0|  0 |       |       |       | 0|
|cond|
```

A1 variant

STREX{<c>}{<q>} Rd, Rt, [Rn {, {#}imm}]

Decode for this encoding

```
d = UInt(Rd);  t = UInt(Rt);  n = UInt(Rn);  imm32 = Zeros(32); // Zero offset
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;
```

CONstrained UNPREDICtable behavior

If d == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

T1

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 15 12|11 8 7 | | |
|---|---|---|---|---|
|1 1 1 0 1 0 0 0 1 0 0 |Rn |Rt |Rd |imm8|
```

T1 variant

STREX{<c>}{<q>} Rd, Rt, [Rn {, #imm}]

Decode for this encoding

```
d = UInt(Rd);  t = UInt(Rt);  n = UInt(Rn);  imm32 = ZeroExtend(imm8:'00', 32);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;
```
CONSTRAINED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:
 - 0 If the operation updates memory.
 - 1 If the operation fails to update memory.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.
- `<imm>` For encoding A1: the immediate offset added to the value of `<Rn>` to calculate the address. `<imm>` can only be 0 or omitted.
 For encoding T1: the immediate offset added to the value of `<Rn>` to calculate the address. `<imm>` can be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- `<Rd>` is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If `AArch32.ExclusiveMonitorsPass()` returns TRUE, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If `AArch32.ExclusiveMonitorsPass()` returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 if AArch32.ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = ZeroExtend('0');
 else
 R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.237 STREXB

Store Register Exclusive Byte derives an address from a base register value, stores a byte from a register to the derived address if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see `Synchronization and semaphores` on page E2-4063. For information about memory accesses see `Memory accesses` on page F2-4125.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 |16|15 |12|11 |10 |9 |8 |7 |6 |5 |4 |3 |0 |
|-----------------|
| !=1111 | 0 |0 0 1 1 0 0 | Rn | Rd | 1 |1 |1 |0 0 |1 | Rt |

A1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;
\]

CONSTRAINED UNPREDICTABLE behavior

If \(d == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d == n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

T1

15	14	13	12	11	10	9	8	7	6	5	4	3	0						
1	1	1	0	0	0	1	1	0	0	Rn	Rd	1	1	1	0	1	0	0	1

T1 variant

STREXB{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;
\]
CONSTRAINED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The store instruction executes but the value stored is **UNKNOWN**.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The instruction performs the store to an **UNKNOWN** address.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K.1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- \(<c>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<q>\) See *Standard assembler syntax fields* on page F2-4120.
- \(<Rd>\) Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:
 - 0 If the operation updates memory.
 - 1 If the operation fails to update memory.
- \(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
- \(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- \(<Rd>\) is not updated.

If \(\text{AArch32.ExclusiveMonitorsPass()} \) returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    if AArch32.ExclusiveMonitorsPass(address,1) then
        MemA[address,1] = R[t]<?:0>;
        R[d] = ZeroExtend('0');
    else
        R[d] = ZeroExtend('1');
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.238 STREXD

Store Register Exclusive Doubleword derives an address from a base register value, stores a 64-bit doubleword from two registers to the derived address if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

A1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

\[
\begin{align*}
\text{d} &= \text{UInt}(\text{Rd}); \quad \text{t} = \text{UInt}(\text{Rt}); \quad \text{t2} = \text{t}+1; \quad \text{n} = \text{UInt}(\text{Rn}); \\
\text{if } \text{d} &= \text{15} \quad || \quad \text{Rt}<0> = '1' \quad || \quad \text{t}2 = \text{15} \quad || \quad \text{n} = \text{15} \quad \text{then UNPREDICTABLE}; \\
\text{if } \text{d} &= \text{n} \quad || \quad \text{d} = \text{t} \quad || \quad \text{d} = \text{t}2 \quad \text{then UNPREDICTABLE};
\end{align*}
\]

CONSTRANGED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

If \(\text{Rt}<0> = '1' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes with the additional decode: \(\text{Rt}<0> = '0' \).
- The instruction executes with the additional decode: \(\text{t}2 = \text{t} \).
- The instruction executes as described, with no change to its behavior and no additional side effects.

If \(\text{Rt} = '1110' \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction is handled as described in Using R15 on page K1-7941.
T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rd Rt Rt2

T1 variant

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

Decode for this encoding

d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction performs the store to an UNKNOWN address.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\c> See Standard assembler syntax fields on page F2-4120.

<\q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:

- 0 If the operation updates memory.
- 1 If the operation fails to update memory.

<Rd> must not be the same as <Rn>, <Rt>, or <Rt2>.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt> must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- \(<\text{Rd}>\) is not updated.

A non doubleword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If AArch32.ExclusiveMonitorsPass() returns \text{TRUE}, the exception is generated.
- Otherwise, it is \text{IMPLEMENTATION DEFINED} whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns \text{FALSE} and the memory address, if accessed, would generate a synchronous Data Abort exception, it is \text{IMPLEMENTATION DEFINED} whether the exception is generated.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    // Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
    value = if BigEndian() then R[t]:R[t2] else R[t2]:R[t];
    if AArch32.ExclusiveMonitorsPass(address,8) then
        MemA[address,8] = value;  R[d] = ZeroExtend('0');
    else
        R[d] = ZeroExtend('1');
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.239 STREXH

Store Register Exclusive Halfword derives an address from a base register value, stores a halfword from a register to the derived address if the executing PE has exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.

For more information about support for shared memory see Synchronization and semaphores on page E2-4063. For information about memory accesses see Memory accesses on page F2-4125.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20</th>
<th>19</th>
<th>16 15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 1 1 1 0 Rn</td>
<td>Rd 1 1 1 0 0 1 Rt</td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

d = Uint(Rd); t = Uint(Rt); n = Uint(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 0 15 12 11 10 9 8 | 7 6 5 4 | 3 0 |
|-------------|---------|--------|-------|---------|--------|-------|
| 1 1 1 0 1 0 0 0 1 1 0 0 Rn | Rd 1(1)(1) 0 1 0 1 Rd |

T1 variant

STREXH{<c>}{<q>} <Rd>, <Rt>, [Rn]

Decode for this encoding

d = Uint(Rd); t = Uint(Rt); n = Uint(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If \(d = t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The store instruction executes but the value stored is **UNKNOWN**.

If \(d = n \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The instruction performs the store to an **UNKNOWN** address.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE** behavior of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Rd>` Is the destination general-purpose register into which the status result of the store exclusive is written, encoded in the "Rd" field. The value returned is:
 - 0: If the operation updates memory.
 - 1: If the operation fails to update memory.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

- Memory is not updated.
- `<Rd>` is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

- If `AArch32.ExclusiveMonitorsPass()` returns `TRUE`, the exception is generated.
- Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If `AArch32.ExclusiveMonitorsPass()` returns `FALSE` and the memory address, if accessed, would generate a synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations();
    address = R[n];
    if AArch32.ExclusiveMonitorsPass(address,2) then
        MemA[address,2] = R[t]<15:0>;
```
R[d] = ZeroExtend('0');
else
R[d] = ZeroExtend('1');

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.240 STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate offset, and stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses on page F2-4125.

A1

31	28	27 26 25 24	23 22 21 20	19	16	15	8	7	6	5	4	3	0		
!=1111	0	0	P	U	1	W	0	Rn	Rt	imm4H	1	0	1	1	imm4L

Offset variant

Applies when P == 1 & W == 0.

STRH{<c>}{<q>} <Rt>, [Rn] {, #{+/-}imm}

Post-indexed variant

Applies when P == 0 & W == 0.

STRH{<c>}{<q>} <Rt>, [Rn], #{+/-}imm

Pre-indexed variant

Applies when P == 1 & W == 1.

STRH{<c>}{<q>} <Rt>, [Rn], #{+/-}imm!

Decode for all variants of this encoding

if P == '0' & W == '1' then see "STRHT";

if P == '0' & W == '1' then see "STRHT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1')

if t == 15 then UNPREDICTABLE;

if wback & n == 15 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If wback & n == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If wback & n == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

```
| 15 14 13 12|11 10  | 6 5 | 3 2 0 |
| 1 0 0 0 0 | imm5 | Rn | Rt |
```

T1 variant

STRH{<c>}{<q>}{<Rt>, [<Rn> {, #{+}<imm>}]}

Decode for this encoding

\[t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm5:'0'}, 32); \]
\[\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad wback = \text{FALSE}; \]

T2

```
| 15 14 13 12|11 10 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 12 |11 10 9 | 8 | 7 |
| 1 1 1 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | l=1111 | Rt | imm12 |
```

T2 variant

STRH{<c>}{<q>}{<Rt>, [<Rn> {, #{+}<imm>}]} // <Rt>, <Rn>, <imm> can be represented in T1

STRH{<c>}{<q>}{<Rt>, [<Rn> {, #{+}<imm>}]}

Decode for this encoding

\[\text{if } Rn == '1111' \text{ then UNDEFINED; } \]
\[t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad \text{imm32} = \text{ZeroExtend}(\text{imm12}, 32); \]
\[\text{index} = \text{TRUE}; \quad \text{add} = \text{TRUE}; \quad wback = \text{FALSE}; \]
\[\text{if } t == 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13} \]

CONstrained UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

T3

```
| 15 14 13 12|11 10 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 12|11 10 9 | 8 | 7 |
| 1 1 1 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | l=1111 | Rt | 1 | P | U | W | imm8 |
```

Offset variant

Applies when \(P == 1 \) \&\& \(U == 0 \) \&\& \(W == 0 \).

STRH{<c>}{<q>}{<Rt>, [<Rn> {, #{-<imm>}}]}
Post-indexed variant
Applies when \(P = 0 \) \&\& \(W = 1 \).

\[
\text{STRH}\{<c>\}{<q>} <Rt>, \{<Rn>, \#{+/-}<imm>\}
\]

Pre-indexed variant
Applies when \(P = 1 \) \&\& \(W = 1 \).

\[
\text{STRH}\{<c>\}{<q>} <Rt>, \{<Rn>, \#{+/-}<imm>\}!
\]

Decode for all variants of this encoding

if \(P = '1' \) \&\& \(U = '1' \) \&\& \(W = '0' \) then \(SEE \) "STRHT";
if \(Rn = '1111' \) \| (\(P = '0' \) \&\& \(W = '0' \)) then UNDEFINED;
\(t = \text{UInt}(Rt); n = \text{UInt}(Rn); \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32); \)
\(\text{index} = (P = '1'); \text{add} = (U = '1'); \text{wback} = (W = '1'); \)
if \(t = 15 \) \| \(\text{wback} \&\& n = t \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior
If \(t = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to \(R15 \) is UNKNOWN.

If \(\text{wback} \&\& n = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<Rt>\) Is the general-purpose register to be transferred, encoded in the "Rt" field.
\(<Rn>\) For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
For encoding A1, T1, T2, T3: is the general-purpose base register, encoded in the "Rn" field.

\(+/-\) Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)
+ Specifies the offset is added to the base register.
For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0 to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm8" field.

Operation for all encodings

```plaintext
if CurrentInstrSet() == InstrSet_A32 then
  if ConditionPassed() then
    EncodingSpecificOperations();
    offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
    address = if index then offset_addr else R[n];
    MemU[address,2] = R[t]<15:0>;
    if wback then R[n] = offset_addr;
  else
    if ConditionPassed() then
      EncodingSpecificOperations();
      offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
      address = if index then offset_addr else R[n];
      MemU[address,2] = R[t]<15:0>;
      if wback then R[n] = offset_addr;
```

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.241 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses on page F2-4125.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 | 7 6 5 4 | 3 0 |
| !=1111 | 0 0 | P | U | 0 | W | 0 | Rn | Rt | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Rm |

Offset variant
Applies when \(P = 1 \) && \(W = 0 \).
STRH{<c>}{<q>} \(<Rt>, [<Rn>, {+/-}<Rm>]\)

Post-indexed variant
Applies when \(P = 0 \) && \(W = 0 \).
STRH{<c>}{<q>} \(<Rt>, [<Rn>], {+/-}<Rm>\)

Pre-indexed variant
Applies when \(P = 1 \) && \(W = 1 \).
STRH{<c>}{<q>} \(<Rt>, [<Rn>], {+/-}<Rm>!\)

Decode for all variants of this encoding

If \(P = '0' \) && \(W = '1' \) then SEE "STRHT";
\[t = UInt(Rt); \ n = UInt(Rn); \ m = UInt(Rm); \]
\[\text{index} = (P == '1'); \ \text{add} = (U == '1'); \ wback = (P == '0') || (W == '1'); \]
\[(\text{shift_t}, \text{shift_n}) = (SRTtype_{LSL}, 0); \]
\[\text{if } t == 15 \ || \ m == 15 \text{ then UNPREDICTABLE; } \]
\[\text{if wback && (n == 15 || n == t) then UNPREDICTABLE; } \]

CONSTRAINED UNPREDICTABLE behavior

If \(t == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If wback && \(n == t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If wback && \(n == 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

```
|15 14 13 12|11 10 9 8 | 6 5 | 3 2 0 |
|0 1 0 1 0 0 1 | Rm | Rn | Rt |
```

T1 variant

STRH{<c>}{<q>} <Rt>, [Rn], {<Rm>}

Decode for this encoding

```
t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);
index = TRUE;  add = TRUE;  wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
```

T2

```
|15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 0 | 12|11 10 9 8 | 7 6 5 4 | 3 0 |
|1 1 1 1 0 0 0 0 | 0 1 0 | I=111 | Rt | 0 0 0 0 0 0 | imm2 | Rm |
```

T2 variant

STRH{<c>}.W <Rt>, [Rn], {<Rm>} // <Rt>, <Rn>, <Rm> can be represented in T1

STRH{<c>}{<q>} <Rt>, [Rn], {<Rm>, LSL #imm}

Decode for this encoding

```
if Rn == '1111' then UNDEFINED;
t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);
index = TRUE;  add = TRUE;  wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rt>` Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant, but this is deprecated.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/-. Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
- when \(U = 0 \)
+ when \(U = 1 \)

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;
 if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.242 STRHT

Store Register Halfword Unprivileged stores a halfword from a register to memory. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

STRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

A1

[31] 28 27 26 25 24 23 22 21 20	19 16	15 12	11 8 7 6 5 4 3 0									
!=1111	0 0 0 0	U	1	1	Rn	Rt	imm4H	1	0	1	1	imm4L

cond

A1 variant

STRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing with the base register as PC, without writeback.
A2

| 31 | 28|27|26|25|24|23|22|21|20|19|16|15|12|11|10|9|8|7|6|5|4|3|0 |
| !=1111 | 0 | 0 | 0 | 0 | U | 0 | 1 | 0 | Rn | Rt | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Rm |

A2 variant

`STRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>`

Decode for this encoding

\[
t = \text{UInt}(Rt); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{postindex} = \text{TRUE}; \quad \text{add} = (U == '1'); \\
\text{register}._\text{form} = \text{TRUE}; \\
\text{if } t == 15 || n == t || n == 15 || m == 15 \text{ then UNPREDICTABLE;}
\]

CONSTRANGED UNPREDICTABLE behavior

- If \(t == 15 \), then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as NOP.
 - The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

- If \(n == t \), then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as NOP.
 - The store instruction executes but the value stored is UNKNOWN.

- If \(n == 15 \), then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as NOP.
 - The instruction uses post-indexed addressing with the base register as PC. This is handled as described in *Using R15 on page K1-7941*.
 - The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing with the base register as PC, without writeback.

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 =1111 | Rt | 1 | 1 | 1 | 0 | imm8 |

T1 variant

`STRHT{<c>}{<q>} <Rt>, [<Rn>}, {#<imm}>`
Decode for this encoding

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<-> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when U = 0
 + when U = 1
For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when U = 0
 + when U = 1
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 if PSTATE_EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then R[m] else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 MemU_unpriv[address, 2] = R[t]<15:0>;
 if postindex then R[n] = offset_addr;
CONSTRANGED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as STRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.243 STRT

Store Register Unprivileged stores a word from a register to memory. For information about memory accesses see Memory accesses on page F2-4125.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

STRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or an optionally-shifted register value.

A1

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 1 0 0</td>
<td>U 0 1 0</td>
<td>Rn</td>
<td>Rt</td>
<td>imm12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A1 variant

STRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

Decode for this encoding

```
t = UInt(Rt);  n = UInt(Rn);  postindex = TRUE;  add = (U == '1');
register_form = FALSE;  imm32 = ZeroExtend(imm12, 32);
if n == 15 || n == t then UNPREDICTABLE;
```

CONstrained UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15 on page K1-7941.
- The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset addressing with the base register as PC, without writeback.

A2

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 1 1 0</td>
<td>U 0 1 0</td>
<td>Rn</td>
<td>Rt</td>
<td>imm5</td>
<td>stype 0</td>
<td>Rm</td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
A2 variant

```
STRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}
```

Decode for this encoding

```
t = UInt(Rt);  n = UInt(Rn);  m = UInt(Rm);  postindex = TRUE;  add = (U == '1');
register_form = TRUE;  (shift_t, shift_n) = DecodeImmShift(stype, imm5);
if n == 15 || n == t || m == 15 then UNPREDICTABLE;
```

CONSTRAINED UNPREDICTABLE behavior

If \(n = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction executes but the value stored is UNKNOWN.

If \(n = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction uses post-indexed addressing with the base register as PC. This is handled as described in *Using R15 on page K1-7941*.
- The instruction is treated as if \(\text{bit}[24] = 1 \) and \(\text{bit}[21] = 0 \). The instruction uses immediate offset addressing with the base register as PC, without writeback.

T1

```
15 14 13 12|11 10 9 8 |7 6 5 4| 3 | 0 | 15| 12|11 10 9 8 |7 |
1 1 1 1 1 0 0 0 1 0 0 l=1111 | Rt 1 1 1 0 | imm8
```

T1 variant

```
STRT{<c>}{<q>} <Rt>, [<Rn>], {#<imm>}
```

Decode for this encoding

```
if Rn == '1111' then UNDEFINED;
t = UInt(Rt);  n = UInt(Rn);  postindex = FALSE;  add = TRUE;
register_form = FALSE;  imm32 = ZeroExtend(imm8, 32);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

CONSTRAINED UNPREDICTABLE behavior

If \(t = 15 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The store instruction performs the store using the specified addressing mode but the value corresponding to R15 is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.
Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.

<> See Standard assembler syntax fields on page F2-4120.

<Rt> For encoding A1 and A2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is deprecated.
 For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when U = 0
 + when U = 1
 For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:
 - when U = 0
 + when U = 1

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register on page F2-4123.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the "imm12" field.
 For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the "imm8" field.

Operation for all encodings

if ConditionPassed() then
 if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
 EncodingSpecificOperations();
 offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if postindex then R[n] else offset_addr;
 if t == 15 then // Only possible for encodings A1 and A2
 data = PCStoreValue();
 else
 data = R[t];
 MemU_unpriv[address,4] = data;
 if postindex then R[n] = offset_addr;

CONSTRANED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as STR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
F5.1.244 SUB (immediate, from PC)

Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative address, and writes the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This instruction is an alias of the ADR instruction. This means that:

- The encodings in this description are named to match the encodings of ADR.
- The description of ADR gives the operational pseudocode for this instruction.

A2

![Encoding for A2 variant](image)

A2 variant

SUB{<c>}{<q>} <Rd>, PC, #<const>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when imm12 == '000000000000'.

T2

![Encoding for T2 variant](image)

T2 variant

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == '000000000000'.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

 For encoding T2: is the general-purpose destination register, encoded in the "Rd" field.

- `<label>` For encoding A2: the label of an instruction or literal data item whose address is to be loaded into `<Rd>`. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

 If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate constants in A32 instructions on page F2-4136.

For encoding T2: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

Operation for all encodings

The description of ADR gives the operational pseudocode for this instruction.
F5.1.245 SUB, SUBS (immediate)

Subtract (immediate) subtracts an immediate value from a register value, and writes the result to the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The SUBS variant of the instruction performs an exception return without the use of the stack. In this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode, except for encoding T5 with <imm8> set to zero, which is the encoding for the ERET instruction, see ERET.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 1 0 0 1 0</td>
<td>S</td>
<td>Rn</td>
<td>Rd</td>
<td>imm12</td>
<td></td>
</tr>
</tbody>
</table>

SUB variant

Applies when $S = 0 \land Rn \neq 11x1$.

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS variant

Applies when $S = 1 \land Rn \neq 1101$.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Decode for all variants of this encoding

if $Rn = '1111' \land S = '0'$ then SEE "ADR";
if $Rn = '1101'$ then SEE "SUB (SP minus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 1 1</td>
<td>1</td>
<td>imm3</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

SUB{<c>}{<q>} <Rd>, <Rn>, #<imm3> // Inside IT block
SUBS{<q>} <Rd>, <Rn>, #<imm3> // Outside IT block
Decode for this encoding

\[
\text{d} = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad \text{setflags} = \text{!InITBlock}(); \quad \text{imm32} = \text{ZeroExtend}(\text{imm3}, 32);
\]

T2

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rdn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T2 variant

\[
\text{SUB}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm8> \quad \text{// Inside IT block, and} \langle Rdn\rangle, <imm8> \text{ can be represented in T1}
\]

\[
\text{SUB}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm8> \quad \text{// Inside IT block, and} <Rdn>, <imm8> \text{ cannot be represented in T1}
\]

\[
\text{SUBS}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm8> \quad \text{// Outside IT block, and} <Rdn>, <imm8> \text{ can be represented in T1}
\]

\[
\text{SUBS}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm8> \quad \text{// Outside IT block, and} <Rdn>, <imm8> \text{ cannot be represented in T1}
\]

Decode for this encoding

\[
\text{d} = \text{UInt}(\text{Rdn}); \quad n = \text{UInt}(\text{Rdn}); \quad \text{setflags} = \text{!InITBlock}(); \quad \text{imm32} = \text{ZeroExtend}(\text{imm8}, 32);
\]

T3

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 12 | 11 | 8 | 7 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|
| 1 | 1 | 1 | 1 | 0 | i | 0 | 1 | 0 | 0 | 1 | 0 | S | l=1101 | 0 | imm3 | Rd | imm8 |

SUB variant

Applies when \(S = 0 \).

\[
\text{SUB}\langle c\rangle.\langle W\rangle\langle Rdn\rangle, \#<const> \quad \text{// Inside IT block, and} <Rdn>, <Rn>, <const> \text{ can be represented in T1 or T2}
\]

\[
\text{SUB}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<const>
\]

SUBS variant

Applies when \(S = 1 \& \& \text{Rd} \neq \text{1111} \).

\[
\text{SUBS}\langle c\rangle.\langle W\rangle\langle Rdn\rangle, \#<const> \quad \text{// Outside IT block, and} <Rdn>, <Rn>, <const> \text{ can be represented in T1 or T2}
\]

\[
\text{SUBS}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<const>
\]

Decode for all variants of this encoding

\[
\text{if} \quad \text{Rd} = \text{"1111"} \& \& \text{S} = \text{"1"} \quad \text{then see "CMP (immediate)"};
\]

\[
\text{if} \quad \text{Rn} = \text{"1101"} \quad \text{then see "SUB (SP minus immediate)"};
\]

\[
\text{d} = \text{UInt}(\text{Rd}); \quad n = \text{UInt}(\text{Rn}); \quad \text{setflags} = (S = \text{"1"}); \quad \text{imm32} = \text{T32ExpandImm}(i:imm3:imm8);
\]

\[
\text{if} \quad (d = 15 \& \& \text{!setflags}) || n = 15 \quad \text{then UNPREDICTABLE}; \quad \text{// Armv8-A removes UNPREDICTABLE for R13}
\]

T4

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 12 | 11 | 8 | 7 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|---|---|---|
| 1 | 1 | 1 | 0 | i | 1 | 0 | 1 | 0 | 1 | 0 | 0 | l=11x1 | 0 | imm3 | Rd | imm8 |

T4 variant

\[
\text{SUB}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm12> \quad \text{// <imm12> cannot be represented in T1, T2, or T3}
\]

\[
\text{SUBW}\langle c\rangle\langle q\rangle\langle Rdn\rangle, \#<imm12> \quad \text{// <imm12> can be represented in T1, T2, or T3}
\]
T5

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

T5 variant

SUBS{<c>}{<q>} PC, LR, #<imm8>

Decode for this encoding

if Rn == '1111' then SEE "ADR";
if Rn == '1101' then SEE "SUB (SP minus immediate)"

\[
\begin{align*}
\text{d} &= \text{UInt}(Rd); \\
\text{n} &= \text{UInt}(Rn); \\
\text{setflags} &= \text{FALSE}; \\
\text{imm32} &= \text{ZeroExtend}(i:imm3:imm8, 32);
\end{align*}
\]

if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly SUBS PC, LR and related instructions (A32) on page K1-7954 and SUBS PC, LR and related instructions (T32) on page K1-7954.

Assembler symbols

- **<c>** See Standard assembler syntax fields on page F2-4120.
- **<p>** See Standard assembler syntax fields on page F2-4120.
- **<Rdn>** Is the general-purpose source and destination register, encoded in the "Rdn" field.
- **<imm8>** For encoding T2: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
 For encoding T5: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
 If <Rn> is the LR, and zero is used, see ERET.
- **<Rd>** For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>. If the PC is used:
 - For the SUB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the SUBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.
 For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
- **<Rn>** For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see SUB, SUBS (SP minus immediate). If the PC is used, see ADR.
 For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
 For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see SUB, SUBS (SP minus immediate).
- **<imm3>** Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
For encoding T3: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

In the T32 instruction set, MOVs{<c>}{<q>} PC, LR is a pseudo-instruction for SUBs{<c>}{<q>} PC, LR, #0.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
    if d == 15 then
        if setflags then
            ALUExceptionReturn(result);
        else
            ALUWritePC(result);
    else
        R[d] = result;
        if setflags then
            PSTATE.<N,Z,C,V> = nzcv;
```

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.246 SUB, SUBS (register)

Subtract (register) subtracts an optionally-shifted register value from a register value, and writes the result to the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the result.

The field descriptions for \(<Rd>\) identify the encodings where the PC is permitted as the destination register. However, when the destination register is the PC:

- The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The SUBS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_\(<current_mode>\).
 - The PE checks SPSR_\(<current_mode>\) for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

31	28	27 26 25 24	23 22 21 20	19 16	15	12	11	7 6 5 4 3 0					
1111	0	0	0	0	1	0	S	1101	Rd	imm5	stype	0	Rm

cond Rd imm5 stype Rm

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB\(<c>\){<q>} \{<Rd>,\} <Rn>, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB\(<c>\){<p>} \{<Rd>,\} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS\(<c>\){<p>} \{<Rd>,\} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS\(<c>\){<p>} \{<Rd>,\} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

if Rn == '1101' then see "SUB (SP minus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
T1 variant

SUB<c>{<q>} <Rd>, <Rn>, <Rm> // Inside IT block
SUBS{<q>} {<Rd>,} <Rn>, <Rm> // Outside IT block

Decode for this encoding

\[d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{setflags} = \text{InITBlock()};\]
\[(\text{shift}_t, \text{shift}_n) = (\text{SRType}_{\text{LSL}}, \ 0);\]

T2

SUB, rotate right with extend variant

Applies when \(S == 0 \land \text{imm3} == 000 \land \text{imm2} == 00 \land \text{stype} == 11\).

\[\text{SUB}(<c>){<q}> \{<Rd>,} <Rn>, <Rm>, \text{RRX}\]

SUB, shift or rotate by value variant

Applies when \(S == 0 \land (\text{imm3} == 000 \land \text{imm2} == 00 \land \text{stype} == 11).\)

\[\text{SUB}(<c>){<q}> \{<Rd>,} <Rn>, <Rm> \{, \langle\text{shift}\ #\text{amount}\}\}\]

SUBS, rotate right with extend variant

Applies when \(S == 1 \land \text{imm3} == 000 \land \text{Rd} != 1111 \land \text{imm2} == 00 \land \text{stype} == 11\).

\[\text{SUBS}(<c>){<q}> \{<Rd>,} <Rn>, <Rm>, \text{RRX}\]

SUBS, shift or rotate by value variant

Applies when \(S == 1 \land (\text{imm3} == 000 \land \text{imm2} == 00 \land \text{stype} == 11) \land \text{Rd} != 1111\).

\[\text{SUBS}(<c>){<q}> \{<Rd>,} <Rn>, <Rm> \{, \langle\text{shift}\ #\text{amount}\}\}\]

Decode for all variants of this encoding

\[\text{if} \ Rd == '1111' \land S == '1' \text{ then SEE "CMP (register)"};\]
\[\text{if} \ Rn == '1101' \text{ then SEE "SUB (SP minus register)"};\]
\[d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ \text{setflags} = (S == '1');\]
\[(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift(stype, \text{imm3}:\text{imm2})};\]
\[\text{if} \ (d == 15 \land \text{!setflags}) \mid n == 15 \mid m == 15 \text{ then UNPREDICTABLE};\]
// Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as `<Rn>`. Arm deprecates using the PC as the destination register, but if the PC is used:
 - For the SUB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
 - For the SUBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.
- `<Rn>` For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated. If the SP is used, see SUB, SUBS (SP minus register).
- `<Rm>` For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
- `<shift>` Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when stype = 00
 - LSR when stype = 01
 - ASR when stype = 10
 - ROR when stype = 11
- `<amount>` For encoding A1: is the shift amount, in the range 1 to 31 (when `<shift> = LSL or ROR) or 1 to 32 (when `<shift> = LSR or ASR) encoded in the "imm5" field as `<amount>` modulo 32.
 - For encoding T2: is the shift amount, in the range 1 to 31 (when `<shift> = LSL or ROR) or 1 to 32 (when `<shift> = LSR or ASR), encoded in the "imm3:imm2" field as `<amount>` modulo 32.

Operation for all encodings

```cpp
if ConditionPassed() then
    EncodingSpecificOperations();
    shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
    (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
    if d == 15 then          // Can only occur for A32 encoding
        if setflags then
            ALUEXceptionReturn(result);
        else
            ALUWritePC(result);
        else
            R[d] = result;
            if setflags then
                PSTATE.<N,Z,C,V> = nzcv;
```
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.247 SUB, SUBS (register-shifted register)

Subtract (register-shifted register) subtracts a register-shifted register value from a register value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

A1

| 31 | 28|27|26|25|24|23|22|21|20|19|16|15| 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| !=1111 | 0 | 0 | 0 | 0 | 1 | 0 | S | Rn | Rd | Rs | 0 | stype | 1 | Rm |

Flag setting variant

Applies when S == 1.

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting variant

Applies when S == 0.

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad s = \text{UInt}(Rs);
setflags = (S == '1'); \quad \text{shift}_t = \text{DecodeRegShift}(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.

- \(<q>\) See Standard assembler syntax fields on page F2-4120.

- \(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

- \(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.

- \(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

- \(<\text{shift}>\) Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when stype = 00
 - LSR when stype = 01
 - ASR when stype = 10
 - ROR when stype = 11

- \(<Rs>\) Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.248 SUB, SUBS (SP minus immediate)

Subtract from SP (immediate) subtracts an immediate value from the SP value, and writes the result to the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- The SUBS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

\[
\begin{array}{cccccccccccccc}
|31| 28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|10|9|8|7|6|5|4|3|2|1|0| \\
\hline
& S & 1 & 1 & 0 & 1 & Rd & imm12 \\
\hline
\end{array}
\]

\textbf{SUB variant}

Applies when \(S = 0 \).

\texttt{SUB\{<c>\}{<q>\} \{<Rd>,\} SP, #<const>}

\textbf{SUBS variant}

Applies when \(S = 1 \).

\texttt{SUBS\{<c>\}{<q>\} \{<Rd>,\} SP, #<const>}

\textbf{Decode for all variants of this encoding}

\[d = \text{UInt}(Rd); \quad \text{setflags} = (S == '1'); \quad \text{imm32} = \text{A32ExpandImm}(\text{imm12});\]

\textbf{T1}

\[
\begin{array}{cccccccccccccccccccc}
|15|14|13|12|11|10|9|8|7|6| & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & \text{imm7} \\
\hline
\end{array}
\]

\textbf{T1 variant}

\texttt{SUB\{<c>\}{<q>\} \{SP,\} SP, #<imm7>}

\textbf{Decode for this encoding}

\[d = 13; \quad \text{setflags} = \text{FALSE}; \quad \text{imm32} = \text{ZeroExtend}(\text{imm7}:'00', 32);\]
T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 0</td>
<td>1 1 0 1</td>
<td>S 1 1 0 1</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUB variant

 Applies when $S == 0$.

```
SUB{<c>}.W {<Rd>,} SP, #<const> // <Rd>, <const> can be represented in T1
SUB{<c>}{<q>}{<Rd>,} SP, #<const>
```

SUBS variant

 Applies when $S == 1 && Rd != 1111$.

```
SUBS{<c>}{<q>}{<Rd>,} SP, #<const>
```

Decode for all variants of this encoding

```
if Rd == '1111' && S == '1' then SEE "CMP (immediate)"

D = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if D == 15 && !setflags then UNPREDICTABLE;
```

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 14</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0</td>
<td>i 1</td>
<td>0 1 0 1</td>
<td>0 1 1 0 1</td>
<td>0</td>
<td>imm3</td>
<td>Rd</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T3 variant

```
SUB{<c>}{<q>}{<Rd>,} SP, #<imm12> // <imm12> cannot be represented in T1, T2, or T3
SUBW{<c>}{<q>}{<Rd>,} SP, #<imm12> // <imm12> can be represented in T1, T2, or T3
```

Decode for this encoding

```
d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if D == 15 then UNPREDICTABLE;
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `SP` Is the stack pointer.
- `<imm7>` Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the “imm7” field as `<imm7>/4`.
For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. If the PC is used:

- For the SUB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.
- For the SUBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_.<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

<iimm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    (result, nzcv) = AddWithCarry(SP, NOT(imm32), '1');
    if d == 15 then          // Can only occur for A32 encoding
        if setflags then
            ALUExceptionReturn(result);
        else
            ALUWritePC(result);
    else
        R[d] = result;
        if setflags then
            PSTATE.<N,Z,C,V> = nzcv;
```
F5.1.249 SUB, SUBS (SP minus register)

Subtract from SP (register) subtracts an optionally-shifted register value from the SP value, and writes the result to the destination register.

If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:

- The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC on page E1-3993.

- The SUBS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction. However, in this case:
 - The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
 - The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state on page G1-5766.
 - The instruction is UNDEFINED in Hyp mode.
 - The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

```
|31|28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|7|6|5|4|3|0|
|!1111|0|0|0|0|1|0|S|1|1|0|1|Rd|mimm5|stype|0|Rm|
cond
```

SUB, rotate right with extend variant

Applies when S == 0 && imm5 == 00000 && stype == 11.

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value variant

Applies when S == 0 && !(imm5 == 00000 && stype == 11).

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend variant

Applies when S == 1 && imm5 == 00000 && stype == 11.

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value variant

Applies when S == 1 && !(imm5 == 00000 && stype == 11).

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

\[
d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ setflags = (S == '1'); \\
(shift_t, shift_n) = \text{DecodeImmShift}(stype, imm5);
\]
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 1 1 0 1</td>
<td>S</td>
<td>1 1 0 1</td>
<td>0</td>
</tr>
</tbody>
</table>

SUB, rotate right with extend variant

Applies when $S == 0 && \text{imm3} == 000 && \text{imm2} == 00 && \text{stype} == 11$.

$\text{SUB}\{<c>\}{<q>} {<Rd>,} SP, <Rm>, \text{RRX}$

SUB, shift or rotate by value variant

Applies when $S == 0 && !(\text{imm3} == 000 && \text{imm2} == 00 && \text{stype} == 11)$.

$\text{SUB}\{<c>\}{<q>} {<Rd>,} SP, <Rm> \{, <\text{shift}> #<\text{amount}>\}$

SUBS, rotate right with extend variant

Applies when $S == 1 && \text{imm3} == 000 && \text{Rd} != 1111 && \text{imm2} == 00 && \text{stype} == 11$.

$\text{SUBS}\{<c>\}{<q>} {<Rd>,} SP, <Rm>, \text{RRX}$

SUBS, shift or rotate by value variant

Applies when $S == 1 && !(\text{imm3} == 000 && \text{imm2} == 00 && \text{stype} == 11) && \text{Rd} != 1111$.

$\text{SUBS}\{<c>\}{<q>} {<Rd>,} SP, <Rm> \{, <\text{shift}> #<\text{amount}>\}$

Decode for all variants of this encoding

if $\text{Rd} == '1111' && S == '1'$ then SEE "CMP (register)";

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');

(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);

if (d == 15 && !setflags) || m == 15 then \text{UNPREDICTABLE}; // Armv8-A removes \text{UNPREDICTABLE} for R13

Notes for all encodings

For more information about the \text{CONstrained UNpredicTable} behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- $<c>$

 See *Standard assembler syntax fields* on page F2-4120.

- $<q>$

 See *Standard assembler syntax fields* on page F2-4120.

- $<\text{Rd}>$

 For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

 - For the SUB variant, the instruction is a branch to the address calculated by the operation. This is an interworking branch, see *Pseudocode description of operations on the AArch32 general-purpose registers and the PC* on page E1-3993.

 - For the SUBS variant, the instruction performs an exception return, that restores PSTATE from SPSR_\text{<current_mode>}. For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

- $<\text{Rm}>$

 For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

ARM DDI 0487F.c

ID072120

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

F5-4883

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

(amount) For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
 (result, nzcv) = AddWithCarry(SP, NOT(shifted), '1');
 if d == 15 then // Can only occur for A32 encoding
 if setflags then
 ALUExceptionReturn(result);
 else
 ALUWritePC(result);
 else
 R[d] = result;
 if setflags then
 PSTATE.<N,Z,C,V> = nzcv;
F5.1.250 SVC

Supervisor Call causes a Supervisor Call exception. For more information, see Supervisor Call (SVC) exception on page G1-5782.

——— Note ————
SVC was previously called SWI, Software Interrupt, and this name is still found in some documentation.

Software can use this instruction as a call to an operating system to provide a service.

In the following cases, the Supervisor Call exception generated by the SVC instruction is taken to Hyp mode:

- If the SVC is executed in Hyp mode.
- If HCR.TGE is set to 1, and the SVC is executed in Non-secure User mode. For more information, see Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-5759.

In these cases, the HSR identifies that the exception entry was caused by a Supervisor Call exception, EC value 0x11, see Use of the HSR on page G5-6078. The immediate field in the HSR:

- If the SVC is unconditional:
 - For the T32 instruction, is the zero-extended value of the \texttt{imm8} field.
 - For the A32 instruction, is the least-significant 16 bits the \texttt{imm24} field.
- If the SVC is conditional, is UNKNOWN.

A1

\begin{verbatim}
|31 28|27 26 25 24|23| | | | |0 |
\end{verbatim}

cond

\texttt{immm24}

\textbf{A1 variant}

\texttt{SVC{<c>}{<q>} {#}<imm>}

\textbf{Decode for this encoding}

\texttt{immm32 = ZeroExtend(immm24, 32);}

T1

\begin{verbatim}
|15 14 13 12|11 10 9 8 7|
\end{verbatim}

\texttt{immm8}

\textbf{T1 variant}

\texttt{SVC{<c>}{<q>} {#}<imm>}

\textbf{Decode for this encoding}

\texttt{immm32 = ZeroExtend(immm8, 32);}

\textbf{Assembler symbols}

\texttt{<c> \ See Standard assembler syntax fields on page F2-4120.}
The content of the page is as follows:

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 AArch32.CheckForSVCTrap(imm32<15:0>);
 AArch32.CallSupervisor(imm32<15:0>);
F5.1.251 SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result to the value in another register, and writes the final result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

A1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTB";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');

T1

T1 variant

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTB";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');

if d == 15 || m == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<cr> See Standard assembler syntax fields on page F2-4120.
<cp> See Standard assembler syntax fields on page F2-4120.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

<table>
<thead>
<tr>
<th>value</th>
<th>rotate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

16 when rotate = 10
24 when rotate = 11

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    rotated = ROR(R[m], rotation);
    R[d] = R[n] + SignExtend(rotated<7:0>, 32);
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.252 SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0| | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|!=1111| 0 | 1 | 0 | 1 | 0 | 0 | !1111| Rd| rotate|0|0|1|1|1|Rm|
cond | Rn |
```

A1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTB16";

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{rotation} = \text{UInt}(\text{rotate}: '000');\]

if \[d == 15 \quad || \quad m == 15\] then UNPREDICTABLE;

T1

```
|15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 14 13 12|11 8 7 6 5 4|3 0| | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | l=1111| 1| 1|1|| Rd| 1|0|rotate| Rm|
```  

T1 variant

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTB16";

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{rotation} = \text{UInt}(\text{rotate}: '000');\]

if \[d == 15 \quad || \quad m == 15\] then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- **<c>** See Standard assembler syntax fields on page F2-4120.
- **<q>** See Standard assembler syntax fields on page F2-4120.
- **<Rd>** Is the general-purpose destination register, encoded in the "Rd" field.
- **<Rn>** Is the first general-purpose source register, encoded in the "Rn" field.
- **<Rm>** Is the second general-purpose source register, encoded in the "Rm" field.
- **<amount>** Is the rotate amount, encoded in the "rotate" field. It can have the following values:
 - (omitted) when rotate = 00
 - 8 when rotate = 01
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.253 SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

```
|31| 28|27|26|25|24|23|22|21|20|19|16|15|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0 |
|!|=1111| 0| 1| 0| 1| 0| 1| 1| 1|=1111| Rd | rotate | 0 | 0| 1| 1| 1| Rm |
cond  Rn
```

A1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTH";
if d == UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

```
|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0|15|14|13|12|11| 8| 7| 6| 5| 4| 3| 0|
1| 1| 1| 1| 1| 1| 0| 0| 0| 0| 0| l=1111| 1| 1| 1| 1| Rd | 1|0|rotate | Rm |
Rn
```

T1 variant

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "SXTH";
if d == UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rd> Is the general-purpose destination register, encoded in the "Rd" field.
- <Rn> Is the first general-purpose source register, encoded in the "Rn" field.
- <Rm> Is the second general-purpose source register, encoded in the "Rm" field.
- <amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:
 - (omitted) when rotate = 00
 - 8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.254 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

$$\begin{array}{c|cccccccccccccc|c|}
\text{cond} & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & \text{Rd} & \text{rotate} & [0] & [0] & 0 & 1 & 1 & 1 & \text{Rm} \\
\end{array}$$

A1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

$$d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000');$$

if $d == 15 \ || \ m == 15$ then UNPREDICTABLE;

T1

$$\begin{array}{c|cccccccc|}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 3 & 2 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & \text{Rm} & \text{Rd} \\
\end{array}$$

T1 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

$$d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = 0;$$

T2

$$\begin{array}{c|cccccccccc|cccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 15 & 14 & 13 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text{Rd} & 1 & [0] & \text{rotate} & \text{Rm} \\
\end{array}$$

T2 variant

SXTB{<c>}{<q>} {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

$$d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000');$$

if $d == 15 \ || \ m == 15$ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assemble symbols

\(<c>\)
See Standard assembler syntax fields on page F2-4120.

\(<q>\)
See Standard assembler syntax fields on page F2-4120.

\(<Rd>\)
Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rm>\)
Is the general-purpose source register, encoded in the "Rm" field.

\(<amount>\)
Is the rotate amount, encoded in the "rotate" field. It can have the following values:

\[\text{(omitted)} \quad \text{when } \text{rotate} = 00\]
\[8 \quad \text{when } \text{rotate} = 01\]
\[16 \quad \text{when } \text{rotate} = 10\]
\[24 \quad \text{when } \text{rotate} = 11\]

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then}
\]
\[
\quad \text{EncodingSpecificOperations();}
\quad \text{rotated} = \text{ROR}(R[m], \text{rotation});
\quad R[d] = \text{SignExtend}(\text{rotated}<7:0>, 32);
\]

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.255 SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 1 1 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>rotate [0][0]</td>
<td>0 1 1 1</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

```plaintext
d = UInt(Rd);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;
```

T1

| 15 14 13 12|11 10 9 |8 |7 6 5 4 |3 |2 1 0 |15 14 13 12|11 |8 |7 6 5 4 |3 |0 |
| 1 | 1 1 1 1 0 1 0 0 | 1 1 1 1 | Rd | 1 | 0 | rotate | Rm |

T1 variant

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

```plaintext
d = UInt(Rd);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in the "rotate" field. It can have the following values:

- (omitted) when rotate = 00
- 8 when rotate = 01
- 16 when rotate = 10
- 24 when rotate = 11
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = SignExtend(rotated<7:0>, 16);
 R[d]<31:16> = SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.256 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

```
| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !111 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Rd | rotate | 0 | 0 | 1 | 1 | 1 | Rm |
cond
```

A1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 3 | 2 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Rm | Rd |
```

T1 variant

SXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);  rotation = 0;
```

T2

```
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rd | 1 | 0 | rotate | Rm |
```

T2 variant

SXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

```
d = UInt(Rd);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;  // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<
> See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rm>
Is the general-purpose source register, encoded in the "Rm" field.

<amount>
Is the rotate amount, encoded in the "rotate" field. It can have the following values:

<table>
<thead>
<tr>
<th>Amount</th>
<th>When Rotate</th>
</tr>
</thead>
<tbody>
<tr>
<td>omitted</td>
<td>rotation = 00</td>
</tr>
<tr>
<td>8</td>
<td>rotation = 01</td>
</tr>
<tr>
<td>16</td>
<td>rotation = 10</td>
</tr>
<tr>
<td>24</td>
<td>rotation = 11</td>
</tr>
</tbody>
</table>

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.257 TBB, TBH

Table Branch Byte or Halfword causes a PC-relative forward branch using a table of single byte or halfword offsets. A base register provides a pointer to the table, and a second register supplies an index into the table. The branch length is twice the value returned from the table.

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 0 | 1 1 1 0 1 0 0 0 1 1 0 1 | Rn | 1 1 1 1 0 0 0 0 0 0 | H | Rm |

Byte variant

Applies when H == 0.

\[
TBB\{\langle c\rangle\}\{\langle q\rangle\} \ [\langle Rn\rangle, \langle Rm\rangle] \ // \text{Outside or last in IT block}
\]

Halfword variant

Applies when H == 1.

\[
TBH\{\langle c\rangle\}\{\langle q\rangle\} \ [\langle Rn\rangle, \langle Rm\rangle, \text{LSL #}1] \ // \text{Outside or last in IT block}
\]

Decode for all variants of this encoding

\[
n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{is_tbh} = (H == '1');
\]

- if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
- if InITBlock() & !LastInITBlock() then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rn>\) Is the general-purpose base register holding the address of the table of branch lengths, encoded in the "Rn" field. The PC can be used. If it is, the table immediately follows this instruction.
- \(<Rm>\) For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This register contains an integer pointing to a single byte in the table. The offset in the table is the value of the index.
- For the halfword variant: is the general-purpose index register, encoded in the "Rm" field. This register contains an integer pointing to a halfword in the table. The offset in the table is twice the value of the index.

Operation

\[
\text{if ConditionPassed()} \text{ then}
\]

\[
\quad \text{EncodingSpecificOperations();}
\]

\[
\quad \text{if is_tbh then}
\]

\[
\quad \quad \text{halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);}
\]

\[
\quad \text{else}
\]

\[
\quad \quad \text{halfwords = UInt(MemU[R[n]+R[m], 1]);}
\]

\[
\quad \text{BranchWritePC(PC + 2*halfwords, BranchType_INDIR);}
\]
F5.1.258 TEQ (immediate)

Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an immediate value. It updates the condition flags based on the result, and discards the result.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 14 13 12|11 | | 0 |
|---|---|---|---|---|---|---|---|
| !=1111 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| Rn | (0) (0) (0) | imm12 |
| cond |

A1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

n = UInt(Rn);
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12	11 10 9 8 7 6 5 4	3	0	15 14 12	11 10 9 8 7		0			
1	1	1	1	0	i	0	0	1	0	1
Rn	0	imm3	1	1	1	1	imm8			

T1 variant

TEQ{<c>}{<q>} <Rn>, #<const>

Decode for this encoding

n = UInt(Rn);
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

><
See Standard assembler syntax fields on page F2-4120.

<?
For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const>
For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.259 TEQ (register)

Test Equivalence (register) performs a bitwise exclusive OR operation on a register value and an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 0 0 0 1 0 1 1</td>
<td>Rn</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>imm5</td>
</tr>
</tbody>
</table>
```

Rotate right with extend variant

Applies when `imm5 == 00000 && stype == 11`.

```
TEQ{<c>}{<q>} <Rn>, <Rm>, RRX
```

Shift or rotate by value variant

Applies when `!(imm5 == 00000 && stype == 11)`.

```
TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}
```

Decode for all variants of this encoding

```
n = UInt(Rn);  m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0 0</td>
<td>Rn</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Rotate right with extend variant

Applies when `imm3 == 000 && imm2 == 00 && stype == 11`.

```
TEQ{<c>}{<q>} <Rn>, <Rm>, RRX
```

Shift or rotate by value variant

Applies when `!(imm3 == 000 && imm2 == 00 && stype == 11)`.

```
TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}
```

Decode for all variants of this encoding

```
n = UInt(Rn);  m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

`<c>` See Standard assembler syntax fields on page F2-4120.
See *Standard assembler syntax fields on page F2-4120*.

For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:

- LSL when stype = 00
- LSR when stype = 01
- ASR when stype = 10
- ROR when stype = 11

For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
    result = R[n] EOR shifted;
    PSTATE.N = result<31>;
    PSTATE.Z = IsZeroBit(result);
    PSTATE.C = carry;
    // PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.260 TEQ (register-shifted register)

Test Equivalence (register-shifted register) performs a bitwise exclusive OR operation on a register value and a
register-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Rn</td>
<td>{0}</td>
<td>{0}</td>
<td>{0}</td>
<td>Rs</td>
<td>0</td>
<td>stype</td>
<td>1</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

TEQ{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can
have the following values:
LSL when stype = 00
LSR when stype = 01
ASR when stype = 10
ROR when stype = 11
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] EOR shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.261 TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions.

If FEAT_TRF is not implemented, this instruction executes as a NOP.

A1

ARMv8.4

|31| 28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0 |
| !=1111 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |

cond

A1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONstrained UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

ARMv8.4

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

T1 variant

TSB{<c>}{<q>} CSYNC

Decode for this encoding

if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
if InITBlock() then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

Assembler symbols

<
See *Standard assembler syntax fields* on page F2-4120.

\<
See *Standard assembler syntax fields* on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 TraceSynchronizationBarrier();
F5.1.262 TST (immediate)

Test (immediate) performs a bitwise AND operation on a register value and an immediate value. It updates the condition flags based on the result, and discards the result.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 14 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 16 | 15 | 14 | 12 | 11 | 10 | 9 | 8 | 7 | 0 |
|----|
| Rn | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | cond |

A1 variant

TST\{c\}\{q\} <Rn>, #<const>

Decode for this encoding

\[
\begin{align*}
n &= \text{UInt}(\text{Rn}); \\
(\text{imm32, carry}) &= \text{A32ExpandImm}_C(\text{imm12, PSTATE.C});
\end{align*}
\]

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 12 | 11 | 10 | 9 | 8 | 7 | 0 |
|----|
| 0 | 0 | 0 | 0 | 1 | Rn | 0 | imm3 | 1 | 1 | 1 | 1 | imm8 |

T1 variant

TST\{c\}\{q\} <Rn>, #<const>

Decode for this encoding

\[
\begin{align*}
n &= \text{UInt}(\text{Rn}); \\
(\text{imm32, carry}) &= \text{T32ExpandImm}_C(i:imm3:imm8, \text{PSTATE.C}); \\
\text{if } n == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\end{align*}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rn>\) For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated. For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
- \(<\text{const}>\) For encoding A1: an immediate value. See Modified immediate constants in A32 instructions on page F2-4136 for the range of values. For encoding T1: an immediate value. See Modified immediate constants in T32 instructions on page F2-4135 for the range of values.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry;
 // PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.263 TST (register)

Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 14 13 12</th>
<th>11</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 1 0 0 1</td>
<td>Rn</td>
<td>[0][0][0][0]</td>
<td>imm5</td>
<td>stype</td>
<td>0</td>
</tr>
</tbody>
</table>

Rotate right with extend variant

Applies when imm5 == 00000 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm5 == 00000 && stype == 11).

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 0 0 0 1 0 0 0</td>
<td>Rm</td>
<td>Rn</td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

TST{<c>}{<q>} <Rn>, <Rm>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRTYPE_LSL, 0);

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 0 1 0 0 0 0 1</td>
<td>Rn</td>
<td>[0]</td>
<td>imm3</td>
<td>1 1 1</td>
<td>imm2</td>
<td>stype</td>
<td>Rm</td>
</tr>
</tbody>
</table>

Rotate right with extend variant

Applies when imm3 == 000 && imm2 == 00 && stype == 11.

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value variant

Applies when !(imm3 == 000 && imm2 == 00 && stype == 11).
TST{<c>}.W <Rn>, <Rm> // <Rn>, <Rm> can be represented in T1
TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

Decode for all variants of this encoding

\[
n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]
\[
(\text{shift}_t, \text{shift}_n) = \text{DecodeImmShift}(\text{stype}, \text{imm3:imm2});
\]
\[
\text{if } n = 15 \text{ || } m = 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rn>` For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
 For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
 For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
- `<shift>` Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 - LSL when stype = 00
 - LSR when stype = 01
 - ASR when stype = 10
 - ROR when stype = 11
- `<amount>` For encoding A1: is the shift amount, in the range 1 to 31 (when `<shift>` = LSL or ROR) or 1 to 32 (when `<shift>` = LSR or ASR) encoded in the "imm5" field as `<amount>` modulo 32.
 For encoding T2: is the shift amount, in the range 1 to 31 (when `<shift>` = LSL or ROR) or 1 to 32 (when `<shift>` = LSR or ASR), encoded in the "imm3:imm2" field as `<amount>` modulo 32.

Operation for all encodings

\[
\text{if } \text{ConditionPassed}() \text{ then} \quad \text{EncodingSpecificOperations();}
\]
\[
(\text{shifted}, \text{carry}) = \text{Shift.C}(R[m], \text{shift}_t, \text{shift}_n, \text{PSTATE.C});
\]
\[
\text{result} = R[n] \text{ AND shifted;}
\]
\[
\text{PSTATE.N} = \text{result}<31> ;
\]
\[
\text{PSTATE.Z} = \text{IsZeroBit(result)};
\]
\[
\text{PSTATE.C} = \text{carry};
\]
\[
// \text{PSTATE.V} \text{ unchanged}
\]

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.264 TST (register-shifted register)

Test (register-shifted register) performs a bitwise AND operation on a register value and a register-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

A1 variant

TST{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

Decode for this encoding

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<co> See Standard assembler syntax fields on page F2-4120.
<cp> See Standard assembler syntax fields on page F2-4120.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<type> Is the type of shift to be applied to the second source register, encoded in the "stype" field. It can have the following values:
 LSL when stype = 00
 LSR when stype = 01
 ASR when stype = 10
 ROR when stype = 11
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(Rs[7:0]);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
 result = R[n] AND shifted;
 PSTATE.N = result<31>;
 PSTATE.Z = IsZeroBit(result);
 PSTATE.C = carry; // PSTATE.V unchanged
Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.265 UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the additions.

A1

```
| 31  28|27  26  25  24|23  22  21  20|19 | 16|15 | 12|11  10  9  8  7  6  5  4  3  0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111| 0  1  1  0  0  1  0  1 | Rn | Rd | 1 |1 |1 |1 |0 |0 |0 |1 | Rm |
cond
```

A1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd)\; n = \text{UInt}(Rn)\; m = \text{UInt}(Rm);
\]
if \(d == 15 \) || \(n == 15 \) || \(m == 15 \) then UNPREDICTABLE;

T1

```
| 15 14 13 12|11 10 9 8 7  6  5  4  3  0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 1 0 0 1 | Rn | 1 1 1 1 | Rd | 0 | 1 |0 |0 | Rm |
```

T1 variant

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd)\; n = \text{UInt}(Rn)\; m = \text{UInt}(Rm);
\]
if \(d == 15 \) || \(n == 15 \) || \(m == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then } \\
\quad \text{EncodingSpecificOperations();} \\
\quad \text{sum1} = \text{UInt}(R[n]<15:0>) + \text{UInt}(R[m]<15:0>); \\
\quad \text{sum2} = \text{UInt}(R[n]<31:16>) + \text{UInt}(R[m]<31:16>); \\
\quad R[d]<15:0> = \text{sum1}<15:0>;
\]
R[d]<31:16> = sum2<15:0>;
PSTATE.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
PSTATE.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.266 UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the additions.

A1

```
| [31] 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| !=1111| 0 1 1 0 0 1 0 1 | Rd | 1 | 1 | 1 | 1 | 0 |

cond
```

A1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
<table>
<thead>
<tr>
<th>[15 14 13 12]</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 1 0</td>
<td>Rd</td>
<td>1 1 1 1</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>
```

T1 variant

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

\[
\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See *Standard assembler syntax fields on page F2-4120*.
- `<q>` See *Standard assembler syntax fields on page F2-4120*.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
\text{sum1} = \text{UInt}(R[n]<7:0>) + \text{UInt}(R[m]<7:0>);
\]

\[
\text{sum2} = \text{UInt}(R[n]<15:8>) + \text{UInt}(R[m]<15:8>);
\]

\[
\text{sum3} = \text{UInt}(R[n]<23:16>) + \text{UInt}(R[m]<23:16>);
\]
sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
R[d]<7:0> = sum1<7:0>;
R[d]<15:8> = sum2<7:0>;
R[d]<23:16> = sum3<7:0>;
R[d]<31:24> = sum4<7:0>;
PSTATE.GE<0> = if sum1 >= 0x100 then '1' else '0';
PSTATE.GE<1> = if sum2 >= 0x100 then '1' else '0';
PSTATE.GE<2> = if sum3 >= 0x100 then '1' else '0';
PSTATE.GE<3> = if sum4 >= 0x100 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.267 UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the destination
register. It sets PSTATE.GE according to the results.

A1

|31| 28|27|26|25|24|23|22|21|20|19|16|15|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|1|1|1|1|0|0|0|1|0|1|Rn|Rd|0|0|0|1|1|1|1|0|0|0|0|0|0|

cond

A1 variant

UASX{<c}>{<q}> {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

|15|14|13|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |15|14|13|12|11| 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|1|1|1|1|0|1|0|1|0|0|Rn|1|1|1|1|Rd|0|1|0|0|Rm|

T1 variant

UASX{<c}>{<q}> {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
> See Standard assembler syntax fields on page F2-4120.

<q>
> See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the first general-purpose source register, encoded in the "Rn" field.

<Rm>
Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
R[d]<15:0> = diff<15:0>;
R[d]<31:16> = sum<15:0>;
PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.268 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from a register, zero-extends them to 32 bits, and writes the result to the destination register.

A1

| 31 | 28| 27 26 25 24| 23 22 21 20 | 16| 15 | 12| 11 | 7 6 5 4 | 3 | 0 |
|-----|---|---------|---------|----|----|----|----|----|----|----|----|----|----|----|----|
| | 0 | 1 1 1 1 | 1 1 | widthm1 | Rd | lsb | 1 0 1 | Rn |

A1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \]
\[\text{lsbit} = \text{UInt}(\text{lsb}); \quad \text{widthminus1} = \text{UInt}(\text{widthm1}); \]
\[\text{if } d = 15 || n = 15 \text{ then UNPREDICTABLE;} \]

T1

| 15 | 14 | 13 | 12| 11 | 10 | 9 | 8 | 7 6 5 4 | 3 | 0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Rn | 0 | imm3 | Rd | imm2| 0 | widthm1 |

T1 variant

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \]
\[\text{lsbit} = \text{UInt}(\text{imm3:imm2}); \quad \text{widthminus1} = \text{UInt}(\text{widthm1}); \]
\[\text{if } d = 15 || n = 15 \text{ then UNPREDICTABLE; } // \text{Armv8-A removes UNPREDICTABLE for R13}\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rn>
Is the general-purpose source register, encoded in the "Rn" field.

<lsb>
For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the "lsb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded in the "imm3:imm2" field.

<width>
Is the width of the field, in the range 1 to 32<lsb>, encoded in the "widthm1" field as <width>-1.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.269 UDF

Permanently Undefined generates an Undefined Instruction exception.

The encodings for UDF used in this section are defined as permanently UNDEFINED in the Armv8-A architecture. However:

- With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.
- In the A32 instruction set, UDF is not conditional.

A1

| 31 28|27 26 25 24|23 22 21 20|19 | 8 |7 6 5 4|3 0 |
|----|----|----|----|----|----|----|----|----|----|
| 1 1 1 0 | 0 1 1 1 1 1 1 | imm12 | 1 1 1 1 | imm4 |

A1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm12:imm4, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1 1 1 0</td>
<td>imm8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

T2

| 15 14 13 12|11 10 9 8|7 6 5 4|3 0 |15 14 13 12|11 | 0 |
|----|----|----|----|----|----|----|----|
| 1 1 1 1 0 1 1 1 1 1 | imm4 | 1 0 | imm12 |

T2 variant

UDF{<c>}.W {#}<imm> // <imm> can be represented in T1
UDF{<c>}{<q>} {#}<imm>

Decode for this encoding

imm32 = ZeroExtend(imm4:imm12, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.
Assembler symbols

\(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. \(<c>\) must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120. Arm deprecates using any \(<c>\) value other than AL.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<imm>\) For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. The PE ignores the value of this constant.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The PE ignores the value of this constant.

For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:imm12" field. The PE ignores the value of this constant.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 UNDEFINED;
F5.1.270 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value, and writes the result to the destination register. The condition flags are not affected.

See Divide instructions on page F1-4087 for more information about this instruction.

A1

\[
\begin{array}{cccc|cccccccc}
\hline
\text{cond} & =1111 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & & & & & & & & & & & & & & \\
\text{Rd} & \{1\}\{1\}\{1\} & \\
\text{Rm} & 0 & 0 & 0 & 1 & & & & & & & & & & & & & & & & & & \\
\end{array}
\]

A1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ a = \text{UInt}(Ra);
\]

if \(d == 15 || n == 15 || m == 15 || a != 15\) then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If \(Ra \neq '1111'\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

T1

\[
\begin{array}{cccc|cccccccc}
 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
\hline
\text{Ra} & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & & & & & & & & & & & & & & \\
\text{Rn} & \{1\}\{1\}\{1\} & \\
\text{Rd} & 1 & 1 & 1 & 1 & & & & & & & & & & & & & & & & & & \\
\text{Rm} & \\
\end{array}
\]

T1 variant

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \ a = \text{UInt}(Ra);
\]

if \(d == 15 || n == 15 || m == 15 || a != 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRANDED UNPREDICTABLE behavior

If \(Ra \neq '1111'\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction executes as described, with no change to its behavior and no additional side effects.
- The instruction performs a divide and the register specified by Ra becomes UNKNOWN.
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[m]) == 0 then
 result = 0;
 else
 result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));
 R[d] = result<31:0>;

F5.1.271 UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the results to the destination register.

A1

| 31 | 28|27|26|25|24|23|22|21|20|19 | 16|15 | 12|11|10 |9 |8 |7 |6 |5 |4 |3 |0 |
| !=1111 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Rn | Rd | (1)(1)(1)(1) | 0 | 0 | 0 | 1 | Rm |

cond

A1 variant

UHADD16{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = Uint(Rn); m = Uint(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15|14|13|12|11|10|9 |8 |7 |6 |5 |4 |3 |0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Rn | 1 | 1 | 1 | 1 | Rd | 0 | 1 | 1 | 0 | Rm |

T1 variant

UHADD16{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = Uint(Rn); m = Uint(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = Uint(R[n]<15:0>) + Uint(R[m]<15:0>);
sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
R[d]<15:0> = sum1<16:1>;
R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.272 UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 |0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 1 |1 1 1 0 |0 1 1 1 | Rn | Rd | (1)(1)(1)(1) | 1 0 0 1 | Rm |
| cond |

A1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;} \]

T1

| 15 | 14 13 12|11 10 9 8 |7 6 5 4 |3 |0 | | |
|---|---|---|---|---|---|---|---|
| 1 1 |1 1 1 0 |0 1 0 0 | Rn | 1 1 1 1 | Rd | 0 1 1 0 | Rm |

T1 variant

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13} \]

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<\text{Rd}>\) Is the general-purpose destination register, encoded in the "Rd" field.
\(<\text{Rn}>\) Is the first general-purpose source register, encoded in the "Rn" field.
\(<\text{Rm}>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
R[d]<7:0> = sum1<8:1>;
R[d]<15:8> = sum2<8:1>;
R[d]<23:16> = sum3<8:1>;
R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.273 UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and writes the results to the destination register.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| !=111 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | Rn | Rd | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | Rm |

cond

A1 variant

UHASX(<c>){<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Rn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rd</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

UHASX(<c>){<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<e> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
R[d]<15:0> = diff<16:1>;
R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.274 UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two half-words of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and writes the results to the destination register.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | |
|---|---|---|---|---|---|---|---|---|---|
| !=111 | 0 1 1 0 | O 1 1 | | Rn | Rd | 1 1 | (1) (1) (1) | 0 1 0 1 | Rm |

cond

A1 variant

UHSAX{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 14 13 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 0 1</td>
<td>1 1 0</td>
<td>Rn</td>
<td>1 1 1 1</td>
<td>Rd</td>
<td>0 1 1 0</td>
<td>Rm</td>
</tr>
</tbody>
</table>
diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
R[d]<15:0> = sum<16:1>;
R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.275 UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and writes the results to the destination register.

A1

\[
\begin{array}{ccccccccccccccccccccccc}
\end{array}
\]

cond

A1 variant

UHSUB16\{<c>{<q>} \{<Rd>,} <Rn>, <Rm}\}

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 \quad || \quad n == 15 \quad || \quad m == 15\) then UNPREDICTABLE;

T1

\[
\begin{array}{ccccccccccccccccccccccc}
|15| & 14 & 13 & 12|11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 | & 15 & 14 & 13 & 12|11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 |
\end{array}
\]

T1 variant

UHSUB16\{<c>{<q>} \{<Rd>,} <Rn>, <Rm}\}

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 \quad || \quad n == 15 \quad || \quad m == 15\) then UNPREDICTABLE; \quad // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<\text{Rd}>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<\text{Rn}>\) Is the first general-purpose source register, encoded in the "Rn" field.

\(<\text{Rm}>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = diff1<16:1>;
R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.276 UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and writes the results to the destination register.

A1

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rn</td>
<td>Rd</td>
<td>!1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rn</td>
<td>Rd</td>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
- <Rd> Is the general-purpose destination register, encoded in the "Rd" field.
- <Rn> Is the first general-purpose source register, encoded in the "Rn" field.
- <Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
\[
\begin{align*}
\text{diff4} &= \text{UInt}(R[n]<31:24>) - \text{UInt}(R[m]<31:24>); \\
R[d]<7:0> &= \text{diff1}<8:1>; \\
R[d]<15:8> &= \text{diff2}<8:1>; \\
R[d]<23:16> &= \text{diff3}<8:1>; \\
R[d]<31:24> &= \text{diff4}<8:1>;
\end{align*}
\]

Operational information

If CPSR.DIF is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.277 UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, adds two unsigned 32-bit values, and writes the 64-bit result to two registers.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24</th>
<th>23 22 21</th>
<th>20</th>
<th>19</th>
<th>16 15</th>
<th>12 11</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=1111</td>
<td>0 0 0 0</td>
<td>0 1 0 0</td>
<td>RdHi</td>
<td>RdLo</td>
<td>Rm</td>
<td>1 0 0 1</td>
<td>Rn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(dHi = dLo \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>18</th>
<th>15 14 13</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 0</td>
<td>1 1 1 1 0</td>
<td>Rn</td>
<td>RdLo</td>
<td>RdHi</td>
<td>0 1 1 0</td>
<td>Rm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(dHi = dLo \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<d> See Standard assembler syntax fields on page F2-4120.

<RdLo> Is the general-purpose source register holding the first addend and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the second addend and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.278 UMLAL, UMLALS

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and accumulates this with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely affects performance on many implementations.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 8 7 6 5 4 3 0 | |
|---|---|---|---|---|---|---|
| !=1111 0 0 0 1 0 1 | S | RdHi | RdLo | Rm | 1 0 0 1 | Rn |
| cond |

Flag setting variant

Applies when $S = 1$.

UMLAL{{<c>}{<q>}} {<RdLo>, <RdHi>, <Rn>, <Rm>}

Not flag setting variant

Applies when $S = 0$.

UMLAL{{<c>}{<q>}} {<RdLo>, <RdHi>, <Rn>, <Rm>}

Decode for all variants of this encoding

\[\text{dLo} = \text{UInt}(\text{RdLo}); \text{dHi} = \text{UInt}(\text{RdHi}); \text{n} = \text{UInt}(\text{Rn}); \text{m} = \text{UInt}(\text{Rm}); \text{setflags} = (S == '1');\]
\[\text{if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;}\]
\[\text{if dHi == dLo then UNPREDICTABLE;}\]

CONSTRAINED UNPREDICTABLE behavior

If \(dHi == dLo\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 12|11 8 7 6 5 4 3 0 | | |
|---|---|---|---|---|---|
| 1 1 1 1 0 1 1 1 1 0 | Rn | RdLo | RdHi | 0 0 0 0 | Rm |

T1 variant

UMLAL{{<c>}{<q>}} {<RdLo>, <RdHi>, <Rn>, <Rm>}

Decode for this encoding

\[\text{dLo} = \text{UInt}(\text{RdLo}); \text{dHi} = \text{UInt}(\text{RdHi}); \text{n} = \text{UInt}(\text{Rn}); \text{m} = \text{UInt}(\text{Rm}); \text{setflags} = \text{FALSE};\]
\[\text{if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;}\]
\[\text{// Armv8-A removes UNPREDICTABLE for R13}\]
\[\text{if dHi == dLo then UNPREDICTABLE;}\]
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;
 if setflags then
 PSTATE.N = result<63>;
 PSTATE.Z = IsZeroBit(result<63:0>);
 // PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.279 UMULL, UMULLS

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely affects performance on many implementations.

A1

```
<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 0 0</td>
<td>1 0 0</td>
<td>S</td>
<td>RdHi</td>
<td>RdLo</td>
<td>Rm</td>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>
```

Flag setting variant

Applies when S == 1.

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting variant

Applies when S == 0.

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for all variants of this encoding

\[dLo = \text{UInt}(RdLo); \quad dHi = \text{UInt}(RdHi); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{setflags} = (S == '1'); \]

- if \(dLo == 15 || dHi == 15 || n == 15 || m == 15 \) then UNPREDICTABLE;
- if \(dHi == dLo \) then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If \(dHi == dLo \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

```
<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 0 1 1</td>
<td>0 1 0</td>
<td>Rn</td>
<td>RdLo</td>
</tr>
</tbody>
</table>
```

T1 variant

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Decode for this encoding

\[dLo = \text{UInt}(RdLo); \quad dHi = \text{UInt}(RdHi); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \quad \text{setflags} = \text{FALSE}; \]

if \(dLo == 15 || dHi == 15 || n == 15 || m == 15 \) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13
if \(dHi == dLo \) then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If \(d_{Hi} == d_{Lo} \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The value in the destination register is **UNKNOWN**.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 _Architectural Constraints on UNPREDICTABLE Behaviors_.

Assembler symbols

- `<c>` See _Standard assembler syntax fields_ on page F2-4120.
- `<q>` See _Standard assembler syntax fields_ on page F2-4120.
- `<RdLo>` Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo" field.
- `<RdHi>` Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi" field.
- `<Rn>` Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    result = UInt(R[n]) * UInt(R[m]);
    R[dHi] = result<63:32>;
    R[dLo] = result<31:0>;
    if setflags then
        PSTATE.N = result<63>;
        PSTATE.Z = IsZeroBit(result<63:0>);
        // PSTATE.C, PSTATE.V unchanged
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.280 UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the 16-bit unsigned integer range $0 \leq x \leq 2^{16} - 1$, and writes the results to the destination register.

A1

A1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

$$d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);$$

if $d == 15 || n == 15 || m == 15$ then UNPREDICTABLE;

T1

T1 variant

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

$$d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);$$

if $d == 15 || n == 15 || m == 15$ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
R[d]<15:0> = UnsignedSat(sum1, 16);
R[d]<31:16> = UnsignedSat(sum2, 16);
F5.1.281 UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit unsigned integer range $0 \leq x \leq 2^8 - 1$, and writes the results to the destination register.

A1

```
| !=1111 0 1 1 0 0 1 1 0 | Rn | Rd | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Rm |
cond
```

A1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

```
d = Uint(Rd);  n = Uint(Rn);  m = Uint(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
[15 14 13 12]11 10 9 8 7 6 5 4 3 0 | 15 14 13 12|11 8 7 6 5 4 3 0 |
| 1 1 1 1 0 1 0 0 0 | Rn | 1 1 1 1 | Rd | 0 | 1 | 0 | 1 | Rm |
```

T1 variant

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

```
d = Uint(Rd);  n = Uint(Rn);  m = Uint(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations();
    sum1 = Uint(R[n]<7:0>) + Uint(R[m]<7:0>);
    sum2 = Uint(R[n]<15:8>) + Uint(R[m]<15:8>);
    sum3 = Uint(R[n]<23:16>) + Uint(R[m]<23:16>);
```
sum4 = Uint(R[n]<31:24>) + Uint(R[m]<31:24>);
R[d]<7:0> = UnsignedSat(sum1, 8);
R[d]<15:8> = UnsignedSat(sum2, 8);
R[d]<23:16> = UnsignedSat(sum3, 8);
R[d]<31:24> = UnsignedSat(sum4, 8);
F5.1.282 UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to the 16-bit unsigned integer range \(0 \leq x \leq 2^{16} - 1 \), and writes the results to the destination register.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | |
|---|
| | |
| !111 | 0 1 1 0 1 1 0 | Rn | | cond

A1 variant

\[UQASX\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \]

Decode for this encoding

\[
d = UInt(Rd); \quad n = UInt(Rn); \quad m = UInt(Rm);
\]

if \(d == 15 \) || \(n == 15 \) || \(m == 15 \) then UNPREDICTABLE;

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|---|
| | |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | Rd | 0 | 1 | 0 | 1 | 1 | 1 | | Rm |

T1 variant

\[UQASX\{<c>\}{<q>} \{<Rd>,\} <Rn>, <Rm> \]

Decode for this encoding

\[
d = UInt(Rd); \quad n = UInt(Rn); \quad m = UInt(Rm);
\]

if \(d == 15 \) || \(n == 15 \) || \(m == 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.

\(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

\[
\text{if ConditionPassed() then}
\]

\[
\text{EncodingSpecificOperations();}
\]

\[
diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
\]
`sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);`
`R[d]<15:0> = UnsignedSat(diff, 16);`
`R[d]<31:16> = UnsignedSat(sum, 16);`
F5.1.283 UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to the 16-bit unsigned integer range \(0 \leq x \leq 2^{16} - 1\), and writes the results to the destination register.

A1

![Binary representation of A1 variant](image)

A1 variant

\[
\text{UQSAX}\{<c>\}\{<q>\}\{<Rd>,\}\ <Rn>, \ <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE;

T1

![Binary representation of T1 variant](image)

T1 variant

\[
\text{UQSAX}\{<c>\}\{<q>\}\{<Rd>,\}\ <Rn>, \ <Rm>
\]

Decode for this encoding

\[
d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
\]

if \(d == 15 || n == 15 || m == 15\) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
- \(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.
- \(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

\[
\text{sum} = \text{UInt}(R[n]<15:0>) + \text{UInt}(R[m]<31:16>);
\]
diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
R[d]<15:0> = UnsignedSat(sum, 16);
R[d]<31:16> = UnsignedSat(diff, 16);
F5.1.284 UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to the 16-bit unsigned integer range $0 \leq x \leq 2^{16} - 1$, and writes the results to the destination register.

A1

A1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

T1 variant

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Rd>\) Is the general-purpose destination register, encoded in the "Rd" field.
- \(<Rn>\) Is the first general-purpose source register, encoded in the "Rn" field.
- \(<Rm>\) Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = UnsignedSat(diff1, 16);
R[d]<31:16> = UnsignedSat(diff2, 16);
F5.1.285 UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the 8-bit unsigned integer range 0 <= x <= 2^8 - 1, and writes the results to the destination register.

A1

```
| 31 28|27|26|25|24|23|22|21|20|19 16|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !111 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Rd | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rm |
```

A1 variant

UQSUB8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
if \ d = 15 \ || \ n = 15 \ || \ m = 15 \ then \ \text{UNPREDICTABLE};
\]

T1

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 0 | 15 14 13 12|11 8 | 7 6 5 4 | 3 0 | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | Rn | 1 | 1 | 1 | Rd | 0 | 1 | 0 | 1 | Rm |
```

T1 variant

UQSUB8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[
d = \text{UInt}(Rd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
if \ d = 15 \ || \ n = 15 \ || \ m = 15 \ then \ \text{UNPREDICTABLE}; \ // \ \text{Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
    diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
    diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
```
diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
R[d]<7:0> = UnsignedSat(diff1, 8);
R[d]<15:8> = UnsignedSat(diff2, 8);
R[d]<23:16> = UnsignedSat(diff3, 8);
R[d]<31:24> = UnsignedSat(diff4, 8);
F5.1.286 USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute values of the differences together.

A1

\[
\text{absdiff1} = \text{Abs}(\text{UInt}(R[n]<7:0>) - \text{UInt}(R[m]<7:0>));
\]

\[
\text{absdiff2} = \text{Abs}(\text{UInt}(R[n]<15:8>) - \text{UInt}(R[m]<15:8>));
\]

\[
\text{absdiff3} = \text{Abs}(\text{UInt}(R[n]<23:16>) - \text{UInt}(R[m]<23:16>));
\]

A1 variant

\[
\text{absdiff1} = \text{Abs}(\text{UInt}(R[n]<7:0>) - \text{UInt}(R[m]<7:0>));
\]

\[
\text{absdiff2} = \text{Abs}(\text{UInt}(R[n]<15:8>) - \text{UInt}(R[m]<15:8>));
\]

\[
\text{absdiff3} = \text{Abs}(\text{UInt}(R[n]<23:16>) - \text{UInt}(R[m]<23:16>));
\]

T1

Assembler symbols

<\> See Standard assembler syntax fields on page F2-4120.

<\> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));

absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));

absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
absdiff4 = \text{Abs}(\text{UInt}(R[n]<31:24>)) - \text{UInt}(R[m]<31:24>));
result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
R[d] = \text{result}<31:0>;
F5.1.287 USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and adds the absolute values of the differences to a 32-bit accumulate operand.

A1

\[\begin{array}{cccccccccccccc}
\hline
\text{cond} & 1 & 1 & 1 & 1 & 0 & 0 & 0 & \text{=1111} & \text{Rd} & \text{=1111} & \text{Rm} & 0 & 0 & 0 & 1 & \text{Rn} & \end{array} \]

A1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if Ra == '1111' then SEE "USAD8";
\(d = \text{UInt}(\text{Rd}) \); \(n = \text{UInt}(\text{Rn}) \); \(m = \text{UInt}(\text{Rm}) \); \(a = \text{UInt}(\text{Ra}) \);
if \(d = 15 \) || \(n = 15 \) || \(m = 15 \) then UNPREDICTABLE;

T1

\[\begin{array}{cccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
\hline
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & \text{Rn} & \text{=1111} & \text{Rd} & 0 & 0 & 0 & \text{Rm} & \end{array} \]

T1 variant

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Decode for this encoding

if Ra == '1111' then SEE "USAD8";
\(d = \text{UInt}(\text{Rd}) \); \(n = \text{UInt}(\text{Rn}) \); \(m = \text{UInt}(\text{Rm}) \); \(a = \text{UInt}(\text{Ra}) \);
if \(d = 15 \) || \(n = 15 \) || \(m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<\(c \)> See Standard assembler syntax fields on page F2-4120.
<\(q \)> See Standard assembler syntax fields on page F2-4120.
<\(Rd \)> Is the general-purpose destination register, encoded in the "Rd" field.
<\(Rn \)> Is the first general-purpose source register, encoded in the "Rn" field.
<\(Rm \)> Is the second general-purpose source register, encoded in the "Rm" field.
<\(Ra \)> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
 absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
 absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
 absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
 result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
 R[d] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.288 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

```
| 31 28|27 26 25 24|23 22 21 20| 16|15 12|11 |  7 6 5 4 3  0 | | | |
|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 0 1 | 0 1 | 1 1 | sat_imm | Rd | imm5 | sh | 0 1 | Rn |
| cond |
```

Arithmetic shift right variant

Applies when sh == 1.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

```
d = UInt(Rd);  n = UInt(Rn);  saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
if d == 15 || n == 15 then UNPREDICTABLE;
```

T1

```
| 15 14 13 12|11 10  9 | 8 | 7 6 5 4 3  0 | | | |
|---|---|---|---|---|---|---|
| 1 1 1 1 | 0 | 1 1 | 1 0 | sh | 0 | Rn |
| 0 | imm3 | Rd | imm2 | 0 | sat_imm |
```

Arithmetic shift right variant

Applies when sh == 1 && !(imm3 == 000 && imm2 == 00).

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left variant

Applies when sh == 0.

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

Decode for all variants of this encoding

```
if sh == '1' && (imm3:imm2) == '00000' then SEE "USAT16";
d = UInt(Rd);  n = UInt(Rn);  saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1

Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm5" field.

For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm3:imm2" field.

For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as <amount>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
 R[d] = ZeroExtend(result, 32);
 if sat then
 PSTATE.Q = '1';
F5.1.289 USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.

This instruction sets PSTATE.Q to 1 if the operation saturates.

A1

\[
\begin{array}{ccccccccccccccccccccccc}
\text{cond} & =1111 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & \text{sat_imm} & \text{Rd} & (1)(1)(1)(1) & 0 & 0 & 1 & 1 & \text{Rn} \\
\hline
\end{array}
\]

A1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ \text{saturate_to} = \text{UInt}(\text{sat_imm}); \\
\text{if } d == 15 \ || \ n == 15 \text{ then UNPREDICTABLE;}
\]

T1

\[
\begin{array}{ccccccccccccccccccccccc}
\text{cond} & =1111 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & \text{sat_imm} & \text{Rd} & (1)(1)(1)(1) & 0 & 0 & 1 & 1 & \text{Rn} \\
\hline
\end{array}
\]

T1 variant

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

Decode for this encoding

\[
d = \text{UInt}(\text{Rd}); \ n = \text{UInt}(\text{Rn}); \ \text{saturate_to} = \text{UInt}(\text{sat_imm}); \\
\text{if } d == 15 \ || \ n == 15 \text{ then UNPREDICTABLE; } \text{// Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<imm>` Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.
- `<Rn>` Is the general-purpose source register, encoded in the "Rn" field.

Operation for all encodings

if ConditionPassed() then

 EncodingSpecificOperations();
 (result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
 (result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
R[d]<15:0> = ZeroExtend(result1, 16);
R[d]<31:16> = ZeroExtend(result2, 16);
if sat1 || sat2 then
 PSTATE.Q = '1';
F5.1.290 USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the destination register. It sets PSTATE.GE according to the results.

A1

![Hexadecimal format](image)

A1 variant

USAX\(<c>\){<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]

if \(d = 15 || n = 15 || m = 15 \) then UNPREDICTABLE;

T1

![Hexadecimal format](image)

T1 variant

USAX\(<c>\){<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \]

if \(d = 15 || n = 15 || m = 15 \) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\) \hspace{1em} \text{See Standard assembler syntax fields on page F2-4120.}

\(<q>\) \hspace{1em} \text{See Standard assembler syntax fields on page F2-4120.}

\(<Rd>\) \hspace{1em} Is the general-purpose destination register, encoded in the "Rd" field.

\(<Rn>\) \hspace{1em} Is the first general-purpose source register, encoded in the "Rn" field.

\(<Rm>\) \hspace{1em} Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if \(\text{ConditionPassed}() \) then

\[\begin{align*}
\text{sum} &= \text{UInt}(R[n]<15:0>) + \text{UInt}(R[m]<31:16>); \\
\text{diff} &= \text{UInt}(R[n]<31:16>) - \text{UInt}(R[m]<15:0>);
\end{align*} \]
R[d]<15:0> = sum<15:0>;
R[d]<31:16> = diff<15:0>;
PSTATE.GE<1:0> = if sum >= 0x10000 then '11' else '00';
PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.291 USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the subtractions.

A1

| Cond | 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|------|
| | 11 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Rn | Rd | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Rm |

A1 variant

USUB16\{<c>\}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); n = \text{UInt}(Rn); m = \text{UInt}(Rm); \]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;} \]

T1

| Cond | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|------|
| | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | Rn | 1 | 1 | 1 | 1 | Rd | 0 | 1 | 0 | 0 | Rm |

T1 variant

USUB16\{<c>\}{<q>} {<Rd>,} <Rn>, <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); n = \text{UInt}(Rn); m = \text{UInt}(Rm); \]
\[\text{if } d == 15 || n == 15 || m == 15 \text{ then UNPREDICTABLE;} // Amv8-A removes UNPREDICTABLE for R13 \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations();

diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = diff1<15:0>;

R[d]<31:16> = diff2<15:0>
PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00'
PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00'

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.292 USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the destination register. It sets PSTATE.GE according to the results of the subtractions.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

cond

A1 variant

USUB8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | | | | | | | | | | | | | | 0 |

cond

T1 variant

USUB8{<c>}{<q>}{<Rd>,} <Rn>, <Rm>

Decode for this encoding

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<e> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);

diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
R[d]<7:0> = diff1<7:0>;
R[d]<15:8> = diff2<7:0>;
R[d]<23:16> = diff3<7:0>;
R[d]<31:24> = diff4<7:0>;
PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.293 UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the result to the value in another register, and writes the final result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

```
parity Rd | 0 |
```

A1 variant

```
UXTAB{c}{q} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}
```

Decode for this encoding

```
if Rn == '1111' then SEE "UXTB";

d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;
```

T1

```
parity Rd | 0 |
```

T1 variant

```
UXTAB{c}{q} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}
```

Decode for this encoding

```
if Rn == '1111' then SEE "UXTB";

d = UInt(Rd);  n = UInt(Rn);  m = UInt(Rm);  rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

```
<
See Standard assembler syntax fields on page F2-4120.
```

```
>
See Standard assembler syntax fields on page F2-4120.
```

```
Rd
Is the general-purpose destination register, encoded in the "Rd" field.
```

```
Rn
Is the first general-purpose source register, encoded in the "Rn" field.
```

```
Rm
Is the second general-purpose source register, encoded in the "Rm" field.
```

```
<amount>
Is the rotate amount, encoded in the "rotate" field. It can have the following values:

(omitted) when rotate = 00

8 when rotate = 01
```
Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();
    rotated = ROR(R[m], rotation);
    R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);
```

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
5.1.294 UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, adds the results to two 16-bit values from another register, and writes the final results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

A1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "UXTB16";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');

T1

T1 variant

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "UXTB16";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<>`: See Standard assembler syntax fields on page F2-4120.
- `<c>`: See Standard assembler syntax fields on page F2-4120.
- `<Rd>`: Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>`: Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>`: Is the second general-purpose source register, encoded in the "Rm" field.
- `<amount>`: Is the rotate amount, encoded in the "rotate" field. It can have the following values:
 - (omitted) when rotate = 00
 - 8 when rotate = 01
16 when rotate = 10
24 when rotate = 11

Operation for all encodings

if `ConditionPassed()` then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.295 UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds the result to a value from another register, and writes the final result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

| | 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !Rd | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | =Rd | rotate | 0 | 0 | 1 | 1 | 1 | Rn |

A1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "UXTH";

\[d = \text{UInt}(\text{Rd}); n = \text{UInt}(\text{Rn}); m = \text{UInt}(\text{Rm}); \text{ rotation} = \text{UInt}(\text{rotate}:'000'); \]

if d == 15 || m == 15 then UNPREDICTABLE;

T1

| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | Rd |
|---|----|----|----|----|----|----|---|---|---|---|---|---|---|----|----|----|---|---|---|---|---|---|---|---|---|---|---|
| | 0 | 15 | 14 | 13 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rm |

T1 variant

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

Decode for this encoding

if Rn == '1111' then SEE "UXTH";

\[d = \text{UInt}(\text{Rd}); n = \text{UInt}(\text{Rn}); m = \text{UInt}(\text{Rm}); \text{ rotation} = \text{UInt}(\text{rotate}:'000'); \]

if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rn>` Is the first general-purpose source register, encoded in the "Rn" field.
- `<Rm>` Is the second general-purpose source register, encoded in the "Rm" field.
- `<amount>` Is the rotate amount, encoded in the "rotate" field. It can have the following values:
 - (omitted) when rotate = 00
 - 8 when rotate = 01
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.296 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>=1111</td>
<td>0 1 1 0 1 1</td>
<td>0 1 1 1</td>
<td>Rd</td>
<td>rotate</td>
<td>0</td>
<td>0</td>
<td>1 1</td>
<td>1</td>
<td>Rm</td>
</tr>
</tbody>
</table>

A1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

| 15 14 13 12|11 10 9 8 | 7 6 5 | 3 2 0 |
|---|---|---|---|---|
| 1 0 1 1 0 0 1 0 | 1 1 | Rm | Rd |

T1 variant

UXTB{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0|15 14 13 12|11 8 | 7 6 5 4 | 3 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 1 0 0 | 1 | Rd | 1 | 0 | rotate | Rm |

T2 variant

UXTB{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then

 EncodingSpecificOperations();

 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.297 UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and writes the results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

A1

```
|31|28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|10| 9| 8| 7| 6| 5| 4| 3| 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 1111 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | Rd | rotate | 0 | 0 | 0 | 1 | 1 | 1 | Rm |
```

A1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

\[
d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000');
\]
\[
\text{if } d == 15 || m == 15 \text{ then UNPREDICTABLE;}
\]

T1

```
|15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|15|14|13|12|11| 8| 7| 6| 5| 4| 3| 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rd | 1 | | rotate | Rm |
```

T1 variant

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

\[
d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000');
\]
\[
\text{if } d == 15 || m == 15 \text{ then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13}
\]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Rd>` Is the general-purpose destination register, encoded in the "Rd" field.
- `<Rm>` For encoding A1: is the general-purpose source register, encoded in the "Rm" field. For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.
- `<amount>` Is the rotate amount, encoded in the "rotate" field. It can have the following values:
 (omitted) when rotate = 00
 8 when rotate = 01
 16 when rotate = 10
 24 when rotate = 11
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d]<15:0> = ZeroExtend(rotated<7:0>, 16);
 R[d]<31:16> = ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F5.1.298 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rd</td>
<td>rotate[0]</td>
</tr>
</tbody>
</table>

cond

A1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

\[d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000'); \]
\[\text{if} \ d == 15 \ || \ m == 15 \ \text{then UNPREDICTABLE}; \]

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>3</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Rd</td>
</tr>
</tbody>
</table>

T1 variant

UXTH{<c>}{<q>} {<Rd>,} <Rm>

Decode for this encoding

\[d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = 0; \]

T2

| 15 | 14 | 13 | 12|11 10 9 8 | 7 6 5 4 | 3 | 2 | 1 | 0 |15 |14 |13 |12|11|8 |7 6 5 4 | 3 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Rd | 1|0|rotate | Rm |

T2 variant

UXTH{<c>}.W {<Rd>,} <Rm> // <Rd>, <Rm> can be represented in T1
UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

Decode for this encoding

\[d = \text{UInt}(Rd); \ m = \text{UInt}(Rm); \ \text{rotation} = \text{UInt}(\text{rotate}:'000'); \]
\[\text{if} \ d == 15 \ || \ m == 15 \ \text{then UNPREDICTABLE}; \ // \text{Armv8-A removes UNPREDICTABLE for R13} \]

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<c>
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<Rd>
Is the general-purpose destination register, encoded in the "Rd" field.

<Rm>
Is the general-purpose source register, encoded in the "Rm" field.

<amount>
Is the rotate amount, encoded in the "rotate" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(omitted)</td>
<td>when rotate = 00</td>
</tr>
<tr>
<td>8</td>
<td>when rotate = 01</td>
</tr>
<tr>
<td>16</td>
<td>when rotate = 10</td>
</tr>
<tr>
<td>24</td>
<td>when rotate = 11</td>
</tr>
</tbody>
</table>

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F5.1.299 WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any PE in the multiprocessor system. For more information, see Wait For Event and Send Event on page G1-5804.

As described in Wait For Event and Send Event on page G1-5804, the execution of a WFE instruction that would otherwise cause entry to a low-power state can be trapped to a higher Exception level, see:

- Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-5821.
- Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837.
- Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on page G1-5848.

A1

```
31 28 27 26 25 24 | 23 22 21 20 | 19 18 17 16 | 15 14 13 12 | 11 10  9  8 |  7  6  5  4 |  3  2  1  0
```

A1 variant

WFE{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```
15 14 13 12 | 11 10  9  8 |  7  6  5  4 |  3  2  1  0
```

T1 variant

WFE{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

```
15 14 13 12 | 11 10  9  8 |  7  6  5  4 |  3  2  1  0
```

T2 variant

WFE{<c>}.W

Decode for this encoding

// No additional decoding required
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 AArch32.CheckForWfXTrap(EL1, TRUE);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWfXTrap(EL2, TRUE);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWfXTrap(EL3, TRUE);
 WaitForEvent();
F5.1.300 WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until a wake-up event occurs. For more information, see *Wait For Interrupt* on page G1-5807.

As described in *Wait For Interrupt* on page G1-5807, the execution of a WFI instruction that would otherwise cause entry to a low-power state can be trapped to a higher Exception level, see:

- *Traps to Undefined mode of EL0 execution of WFE and WFI instructions* on page G1-5821.
- *Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions* on page G1-5837.
- *Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode* on page G1-5848.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

WFI{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

WFI{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T2 variant

WFI{<c>}.W

Decode for this encoding

// No additional decoding required
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS which may be EL1 or EL2.
 AArch32.CheckForWxFxTrap(EL1, FALSE);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
 // Check for traps described by the Hypervisor.
 AArch32.CheckForWxFxTrap(EL2, FALSE);
 if HaveEL(EL3) && PSTATE.M != M32_Monitor then
 // Check for traps described by the Secure Monitor.
 AArch32.CheckForWxFxTrap(EL3, FALSE);
 WaitForInterrupt();
F5.1.301 YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the PE that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system performance. The PE can use this hint to suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction see The Yield instruction on page F1-4093.

A1

```
| 31 | 28|26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0 |
| 1 0 1 1 1 1 | 1 | 0 0 0 1 | 0 0 0 0 |
```

A1 variant

YIELD{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T1

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0 |
| 1 0 1 1 1 1 | 1 | 0 0 0 1 | 0 0 0 0 |
```

T1 variant

YIELD{<c>}{<q>}

Decode for this encoding

// No additional decoding required

T2

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0 |
| 1 1 1 1 0 0 1 1 | 0 1 0 1 | 0 0 0 0 0 0 1|
```

T2 variant

YIELD{<c>}.W

Decode for this encoding

// No additional decoding required

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.

(Operation for all encodings)

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();
F5.2 Encoding and use of banked register transfer instructions

Software executing at EL1 or higher can use the MRS (banked register) and MSR (banked register) instructions to transfer values between the general-purpose registers and Special-purpose registers. One particular use of these instructions is for a hypervisor to save or restore the register values of a Guest OS. The following sections give more information about these instructions:

- Register arguments in the banked register transfer instructions.
- Usage restrictions on the banked register transfer instructions on page F5-4990.
- Encoding the register argument in the banked register transfer instructions on page F5-4991.
- Pseudocode support for the banked register transfer instructions on page F5-4992.

For descriptions of the instructions see MRS (Banked register) on page F5-4572 and MSR (Banked register) on page F5-4576.

F5.2.1 Register arguments in the banked register transfer instructions

Figure F5-1 shows the banked general-purpose registers and Special-purpose registers:

<table>
<thead>
<tr>
<th>Associated PE mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User or System</td>
</tr>
<tr>
<td>Hyp</td>
</tr>
<tr>
<td>Supervisor</td>
</tr>
<tr>
<td>Abort</td>
</tr>
<tr>
<td>Undefined</td>
</tr>
<tr>
<td>Monitor</td>
</tr>
<tr>
<td>IRQ</td>
</tr>
<tr>
<td>FIQ</td>
</tr>
</tbody>
</table>

General-purpose registers

- R8_usr
- R9_usr
- R10_usr
- R11_usr
- R12_usr
- SP_usr
- SP_hyp
- SP_svc
- SP_abt
- SPenschaft
- SP_und
- SP_mon
- SP_irq
- SP_fiq
- LR_usr
- LR_svc
- LR_abt
- LR_und
- LR_mon
- LR_irq
- LR_fiq

Special-purpose registers

- SPSR_svc
- SPSR_abt
- SPSR_und
- SPSR_mon
- SPSR_irq
- SPSR_fiq
- ELR_svc
- ELR_abt
- ELR_und
- ELR_mon
- ELR_irq
- ELR_fiq

For the general-purpose registers, if no other register is shown, the current mode register is the _usr register. So, for example, the full set of current mode registers, including the registers that are not banked:

- For Hyp mode, is (R0_usr - R12_usr, SP_hyp, LR_usr, SPSR_hyp, ELR_svc).
- For Abort mode, is (R0_usr - R12_usr, SP_abt, LR_abt, SPSR_abt).

Figure F5-1 Banking of general-purpose and Special-purpose registers

Figure F5-1 is based on Figure G1-2 on page G1-5729, that shows the complete set of general-purpose registers and Special-purpose registers accessible in each mode.

_____ Note _____

- System mode uses the same set of registers as User mode. Neither of these modes can access an SPSR, except that System mode can use the MRS (banked register) and MSR (banked register) instructions to access some SPSRs, as described in Usage restrictions on the banked register transfer instructions on page F5-4990.

- General-purpose registers R0-R7, that are not banked, cannot be accessed using the MRS (banked register) and MSR (banked register) instructions.

- In addition to the registers shown in Figure F5-1, the DLR and DSPSR are AArch32 System registers that map onto the AArch64 Special-purpose registers DLR_EL0 and DSPSR_EL0. However, DLR and DSPSR are not accessible using the MRS (banked register) and MSR (banked register) instructions.

Software using an MRS (banked register) or MSR (banked register) instruction specifies one of these registers using a name shown in Figure F5-1, or an alternative name for SP or LR. These registers can be grouped as follows:

<table>
<thead>
<tr>
<th>Registers</th>
<th>Banked Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8 - R12</td>
<td>_usr and _fiq</td>
</tr>
</tbody>
</table>

For descriptions of the instructions see MRS (Banked register) on page F5-4572 and MSR (Banked register) on page F5-4576.
SP
There is a banked copy of SP for every mode except System mode. For example, SP_svc is the SP for Supervisor mode.

LR
There is a banked copy of LR for every mode except System mode and Hyp mode. For example, LR_svc is the LR for Supervisor mode.

SPSR
There is a banked copy of SPSR for every mode except System mode and User mode.

ELR_hyp
Except for the operations provided by MRS (banked register) and MSR (banked register), ELR_hyp is accessible only from Hyp mode. It is not banked.

F5.2.2 Usage restrictions on the banked register transfer instructions

MRS (banked register) and MSR (banked register) instructions are CONSTRAINED UNPREDICTABLE if any of the following applies:

• The instruction is executed in User mode.
• The instruction accesses a banked register that is not implemented, or that either:
 — Is not accessible from the current Privilege level and Security state.
 — Can be accessed from the current mode by using a different instruction.

MSR (banked register) and MRS (banked register) on page K1-7963 describes the permitted CONSTRAINED UNPREDICTABLE behavior.

An MRS (banked register) instruction or an MSR (banked register) instruction executed:

• At Non-secure EL1 cannot access any Hyp mode banked registers.
• At Non-secure EL1 or EL2 cannot access any Monitor mode banked registers.
• In a Secure mode other than Monitor mode cannot access any Hyp banked registers.

This means that the banked registers that MRS (banked register) and MSR (banked register) instructions cannot access are:

From Monitor mode
• The current mode registers R8_usr-R12_usr, SP_mon, LR_mon, and SPSR_mon.

From Hyp mode
• The Monitor mode registers SP_mon, LR_mon, and SPSR_mon.
• The current mode registers R8_usr-R12_usr, SP_hyp, LR_usr, and SPSR_hyp.

Note
MRS (banked register) and MSR (banked register) instructions can access the current mode register ELR_hyp.

From FIQ mode
• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.
• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.
• The current mode registers R8_fiq-R12_fiq, SP_fiq, LR_fiq, and SPSR_fiq.

From System mode
• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.
• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.
• The current mode registers R8_usr-R12_usr, SP_usr, and LR_usr.

From Supervisor mode, Abort mode, Undefined mode, and IRQ mode
• From Non-secure EL1, the Monitor mode registers SP_mon, LR_mon, and SPSR_mon.
• The Hyp mode registers SP_hyp, SPSR_hyp, and ELR_hyp.
• The current mode registers R8_usr-R12_usr, SP_<current_mode>, LR_<current_mode>, and SPSR_<current_mode>.
If EL3 is using AArch64, all MRS (banked register) and MSR (banked register) accesses to the Monitor mode registers from Secure EL1 modes are trapped to EL3. See *Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32 on page D1-2385*.

For more information, see:

- *Encoding the register argument in the banked register transfer instructions*.
- *Pseudocode support for the banked register transfer instructions on page F5-4992*.
- *MRS (Banked register) on page F5-4572*.
- *MSR (Banked register) on page F5-4576*.

Note

CONSTRAINED UNPREDICTABLE behavior must not give access to registers that are not accessible from the current Privilege level and Security state.

F5.2.3 Encoding the register argument in the banked register transfer instructions

The MRS (banked register) and MSR (banked register) instructions include a 5-bit field, SYSm, and an R bit, that together encode the register argument for the instruction.

When the R bit is set to 0, the argument is a register other than a banked copy of the SPSR, and Table F5-1 shows how the SYSm field defines the required register argument. In this table, CONST. UNPREDICTABLE indicates that behavior is CONSTRAINED UNPREDICTABLE.

<table>
<thead>
<tr>
<th>SYSm<2:0></th>
<th>SYSm<4:3></th>
<th>0b00</th>
<th>0b01</th>
<th>0b10</th>
<th>0b11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b000</td>
<td>R8_usr</td>
<td>R8_fiq</td>
<td>LR_irq</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b001</td>
<td>R9_usr</td>
<td>R9_fiq</td>
<td>SP_irq</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b010</td>
<td>R10_usr</td>
<td>R10_fiq</td>
<td>LR_svc</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b011</td>
<td>R11_usr</td>
<td>R11_fiq</td>
<td>SP_svc</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b100</td>
<td>R12_usr</td>
<td>R12_fiq</td>
<td>LR_abt</td>
<td>LR_mon</td>
<td></td>
</tr>
<tr>
<td>0b101</td>
<td>SP_usr</td>
<td>SP_fiq</td>
<td>SP_abt</td>
<td>SP_mon</td>
<td></td>
</tr>
<tr>
<td>0b110</td>
<td>LR_usr</td>
<td>LR_fiq</td>
<td>LR_und</td>
<td>ELR_hyp</td>
<td></td>
</tr>
<tr>
<td>0b111</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>SP_und</td>
<td>SP_hyp</td>
<td></td>
</tr>
</tbody>
</table>

When the R bit is set to 1, the argument is a banked copy of the SPSR, and Table F5-2 shows how the SYSm field defines the required register argument. In this table, CONST. UNPREDICTABLE indicates that behavior is CONSTRAINED UNPREDICTABLE.

<table>
<thead>
<tr>
<th>SYSm<2:0></th>
<th>SYSm<4:3></th>
<th>0b00</th>
<th>0b01</th>
<th>0b10</th>
<th>0b11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b000</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>SPSR_irq</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b001</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>SP_svc</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b010</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>SPSR_svc</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
</tbody>
</table>
The pseudocode functions `BankedRegisterAccessValid()` and `SPSRAccessValid()` check the validity of `MRS` (banked register) and `MSR` (banked register) accesses. That is, they filter the accesses that are CONSTRAINED UNPREDICTABLE either because:

- They attempt to access a register that *Usage restrictions on the banked register transfer instructions on page F5-4990* shows is not accessible.
- They use an `SYSm<4:0>` encoding that *Encoding the register argument in the banked register transfer instructions on page F5-4991* shows as CONSTRAINED UNPREDICTABLE.

`BankedRegisterAccessValid()` applies to accesses to the banked general-purpose registers, or to `ELR_hyp`, and `SPSRAccessValid()` applies to accesses to the SPSRs.

Table F5-2 Banked register encodings when R==1 (continued)

<table>
<thead>
<tr>
<th>SYSm<2:0></th>
<th>SYSm<4:3></th>
<th>0b00</th>
<th>0b01</th>
<th>0b10</th>
<th>0b11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b011</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b100</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>SPSR_abt</td>
<td>SPSR_mon</td>
<td></td>
</tr>
<tr>
<td>0b101</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
<tr>
<td>0b110</td>
<td>CONST. UNPREDICTABLE</td>
<td>SPSR_fiq</td>
<td>SPSR_und</td>
<td>SPSR_hyp</td>
<td></td>
</tr>
<tr>
<td>0b111</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td>CONST. UNPREDICTABLE</td>
<td></td>
</tr>
</tbody>
</table>
Chapter F6
T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions

This chapter describes each instruction. It contains the following sections:
• *Alphabetical list of Advanced SIMD and floating-point instructions* on page F6-4994.

--- Note ---
Some headings in this chapter use the term *floating-point register*. This is an abbreviated description, and means a register in the Advanced SIMD and floating-point register file.
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

This section lists every Advanced SIMD and floating-point instruction in the T32 and A32 instruction sets. For details of the format used see *Format of instruction descriptions* on page F2-4116.

This section is formatted so that each instruction description starts on a new page.
F6.1.1 AESD

AES single round decryption.

A1

| 31 30 29 28| 27 26 25 24| 23 22 21 20| 19 18 17 16| 15 | 12| 11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1 1 1 1 | 0 0 1 1 | 1 | D | 1 | 1 | size | 0 0 | Vd | 0 | 0 | 1 | 1 | 0 | 1 | M | 0 | Vm |

A1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 15 14 13 12| 11 10 9 8 | 7 6 5 4 | 3 | 2 | 1 | 0 | 15 |
| 1 1 1 1 | 1 1 1 | 1 | D | 1 | 1 | size | 0 0 | Vd | 0 | 0 | 1 | 1 | 0 | 1 | M | 0 | Vm |

T1 variant

AESD.<dt> <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = '0'

The following encodings are reserved:

- size = '01'.
- size = '1x'.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESInvSubBytes(AESInvShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.2 AESE

AES single round encryption.

A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>
```

A1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>
```

T1 variant

AESE.<dt> <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

- 8 when size = 00

The following encodings are reserved:
- size = 01
- size = 1x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1];
 Q[d>>1] = AESubBytes(AEShiftRows(op1 EOR op2));

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.3 AESIMC

AES inverse mix columns.

A1

| 0011 00 01 11 | 0011 | 10 10 12 | 11 14 15 | 10 11 01 01 11 0 1 1 1 1 1 0 | Vd:0 1 1 1 1 1 1 1 1 | M:0 0 0 1 1 1 | Vm:0 |

A1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 0011 00 01 11 | 0011 | 10 10 12 | 11 14 15 | 10 11 01 01 11 0 1 1 1 1 1 0 | Vd:0 1 1 1 1 1 1 1 1 | M:0 0 0 1 1 1 | Vm:0 |

T1 variant

AESIMC.<dt> <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

8 when size = 00

The following encodings are reserved:

• size = 01.

• size = 1x.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations(); CheckCryptoEnabled32();
Q[d>>1] = AESInvMixColumns(Q[m>>1]);
Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.4 AESMC

AES mix columns.

A1

```
1111001111
|1|1|1|1|0|0|1|1|D|1|1|size|0|0|Vd|0|0|1|1|1|0|M|0|Vm|
```

A1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

```
1111111111
|1|1|1|1|1|1|1|1|D|1|1|size|0|0|Vd|0|0|1|1|1|0|M|0|Vm|
```

T1 variant

AESMC.<dt> <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<dt> Is the data type, encoded in the "size" field. It can have the following values:

| 8 | when size = 00 |

The following encodings are reserved:

- size = 0L
- size = 1x

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[(d>>1)] = AESMixColumns(Q[(m>>1)]);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.5 FLDM*XR (FLDMDBXR, FLDMIAXR)

FLDMDBXR is the Decrement Before variant of this instruction, and FLDMIAXR is the Increment After variant. FLDM*XR loads multiple SIMD&FP registers from consecutive locations in the Advanced SIMD and floating-point register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBXR and FLDMIAXR, except for disassembly purposes, and reassembly of disassembled code.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Decrement Before variant

Applies when P = 1 && U = 0 && W = 1.

FLDMDBXR{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant

Applies when P = 0 && U = 1.

FLDMIAXR{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 16 then UNPREDICTABLE;
if imm8<8> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|---|
| 1 | 1 | 1 | 0 | 1 | 0 | P | U | D | W | 1 | Rn | Vd | 1 | 0 | 1 | 1 | imm8<7:1> | 1 |
| imm8<0> |

Decrement Before variant
Applies when $P = 1$ && $U = 0$ && $W = 1$.
FLDMDX{<c>}{<q>} <Rn>!, <dreglist>

Increment After variant
Applies when $P = 0$ && $U = 1$.
FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

- if $P = '0'$ && $U = '0'$ && $W = '0'$ then SEE "Related encodings";
- if $P = '1'$ && $U = '0'$ then SEE "VLDR";
- if $P = U && W = '1'$ then UNDEFINED;
- Remaining combinations are $PUW = 010$ (IA without !), 011 (IA with !), 101 (DB with !)
 - single_regs = FALSE;
 - add = ($U == '1'$);
 - wback = ($W == '1'$);
 - $d = UInt(D:Vd)$;
 - $n = UInt(Rn)$;
 - $imm32 = ZeroExtend(imm8:'00', 32)$;
 - $regs = UInt(imm8) DIV 2$; // If UInt(imm8) is odd, see "FLDM*X".
 - if $n == 15$ && ($wback || CurrentInstrSet() != InstrSet_A32$) then UNPREDICTABLE;
 - if $regs == 0 || (d+regs) > 16$ || ($d+regs) > 32$ then UNPREDICTABLE;
 - if $imm8<0> == '1'$ && ($d+regs) > 16$ then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If $regs = 0$, then one of the following behaviors must occur:
- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VLDM with the same addressing mode but loads no registers.

If $regs > 16$ || ($d+regs) > 16$, then one of the following behaviors must occur:
- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4175 for the T32 instruction set, or Advanced SIMD and floating-point 64-bit move on page F4-4253 for the A32 instruction set.

Assembler symbols

- <c> See Standard assembler syntax fields on page F2-4120.
- <q> See Standard assembler syntax fields on page F2-4120.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus one. The list must contain at least one register, all registers must be in the range D0-D15, and must not contain more than 16 registers.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
    address = if add then R[n] else R[n]-imm32;
    for r = 0 to regs-1
        if single_regs then
            S[d+r] = MemA[address,4]; address = address+4;
        else
            word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
            // Combine the word-aligned words in the correct order for current endianness.
            D[d+r] = if BigEndian() then word1:word2 else word2:word1;
        if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
    
```
F6.1.6 FSTMDBX, FSTMIAX

FSTMX stores multiple SIMD&FP registers from the Advanced SIMD and floating-point register file to consecutive locations in using an address from a general-purpose register.

Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of disassembled code.

Depending on settings in the CPACR, NSACR, HCPTCR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Decrement Before variant

Applies when \(P = 1 && U = 0 && W = 1\).

\[\text{FSTMDBX}\{<c>}\{<q>\} <Rn>!, <dreglist>\]

Increment After variant

Applies when \(P = 0 && U = 1\).

\[\text{FSTMIAX}\{<c>\} \{<q>\} <Rn>!, <dreglist>\]

Decode for all variants of this encoding

if \(P = '0' && U = '0' && W = '0'\) then SEE "Related encodings";
if \(P = '1' && W = '0'\) then SEE "VSTR";
if \(P = U && W = '1'\) then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d>regs) > 16 then UNPREDICTABLE;
if imm8<0> == '1' && (d>regs) > 16 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d>regs) > 16, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
Decrement Before variant

Applies when \(P == 1 \land U == 0 \land W == 1 \).

\[\text{FSTMDBX} \{c\} \{q\} \langle Rn \rangle!, \langle \text{dreglist} \rangle \]

Increment After variant

Applies when \(P == 0 \land U == 1 \).

\[\text{FSTMIAX} \{c\} \{q\} \langle Rn \rangle\{!\}, \langle \text{dreglist} \rangle \]

Decode for all variants of this encoding

if \(P == '0' \land U == '0' \land W == '0' \) then SEE "Related encodings";
if \(P == '1' \land U == '0' \) then SEE "VSTR";
if \(P == U \land W == '1' \) then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 \&\& (wback /// CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 \&\& ((d+regs) > 16 then UNPREDICTABLE;
if imm8<0> == '1' \&\& (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(\text{regs} == 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VSTM with the same addressing mode but stores no registers.

If \(\text{regs} > 16 \lor (d+\text{regs}) > 16 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4175 for the T32 instruction set, or Advanced SIMD and floating-point 64-bit move on page F4-4253 for the A32 instruction set.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus one. The list must contain at least one register, all registers must be in the range D0-D15, and must not contain more than 16 registers.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
    address = if add then R[n] else R[n]-imm32;
    for r = 0 to regs-1
        if single_regs then
            MemA[address,4] = S[d+r]; address = address+4;
        else
            // Store as two word-aligned words in the correct order for current endianness.
            MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
            MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
            address = address+8;
        if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
```
F6.1.7 SHA1C

SHA1 hash update (choose).

A1

[31 30 29 28] [27 26 25 24] [23 22 21 20] [19 16] [15 12] [11 10 9 8] [7 6 5 4] [3] [0]

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

A1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

[15 14 13 12] [11 10 9 8] [7 6 5 4] [3] [0] [15 12] [11 10 9 8] [7 6 5 4] [3] [0]

1 1 1 0 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

T1 variant

SHA1C.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1];
 Y = Q[n<31]; // Note: 32 bits wide
W = Q[m>>1];
for e = 0 to 3
 t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
 Q[d>>1] = X;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.8 SHA1H

SHA1 fixed rotate.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td></td>
<td>D 1 1</td>
<td>size 0 1</td>
<td>Vd 0 0 1 0 1</td>
<td>M 0</td>
<td>Vm</td>
</tr>
</tbody>
</table>

A1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td></td>
<td>D 1 1</td>
<td>size 0 1</td>
<td>Vd 0 0 1 0 1</td>
<td>M 0</td>
</tr>
</tbody>
</table>

T1 variant

SHA1H.32 <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 Q[d+1] = ZeroExtend(ROL(Q[m+1]<31:0>, 30), 128);
Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.9 SHA1M

SHA1 hash update (majority).

A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 0 0 1</td>
<td>0 0</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>Vn</td>
<td>Vd</td>
<td>1</td>
</tr>
</tbody>
</table>
```

A1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if Q !='1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |15 12|11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 | 0 1 1 | 1 0 | D | 1 | 0 | Vn | Vd | 1 | 1 | 0 | N | Q | M | 0 | Vm |
```

T1 variant

SHA1M.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q !='1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1];
 Y = Q[n>>1]<31:0>; // Note: 32 bits wide
W = Q[\(m>>1\)];
for e = 0 to 3
 t = SHA\text{majority}(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
Q[\(d>>1\)] = X;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.10 SHA1P

SHA1 hash update (parity).

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 |
|1 1 1 1 0 0 1 0 0 D 0 1 Vn | Vd | 1 1 0 0 0 | Q | M 0 | Vm |
```

A1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 |
|1 1 1 0 1 1 1 0 D 0 1 Vn | Vd | 1 1 0 0 0 | Q | M 0 | Vm |
```

T1 variant

SHA1P.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[n>>1]<31:0>; // Note: 32 bits wide
W = Q[m>>1];
for e = 0 to 3
 t = SHAparity(X<63:32>, X<95:64>, X<127:96>);
 Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
 X<63:32> = ROL(X<63:32>, 30);
 <Y, X> = ROL(Y:X, 32);
Q[d>>1] = X;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.11 SHA1SU0

SHA1 schedule update 0.

A1

```
[31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0]
1 1 1 1 0 0 0 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm
```

A1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
[15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0]
1 1 1 0 1 1 1 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm
```

T1 variant

SHA1SU0.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<Qd>` is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qn>` is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.
- `<Qm>` is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 op1 = Q[d>>1]; op2 = Q[m>>1]; op3 = Q[m>>1];
 op2 = op2<63:0> : op1<127:64>;
 Q[d>>1] = op1 EOR op2 EOR op3;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.12 SHA1SU1

SHA1 schedule update 1.

A1

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 18 17 16]</th>
<th>[15 12 10 9]</th>
<th>[8 7 6 5]</th>
<th>[4 3]</th>
<th>0</th>
</tr>
</thead>
</table>
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0
| D | 1 | 1 | size | 1 | 0 | Vd | 0 |
| Vd | 0 | 1 | 1 | 1 | 0 | M | 0 |
| Vm | 0 | 0 | 0 | 0 | 0 | 0 | |

A1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>[15 14 13 12]</th>
<th>[11 10 9 8]</th>
<th>[7 6 5 4]</th>
<th>[3 2 1 0]</th>
<th>[15 12 10 9]</th>
<th>[8 7 6 5]</th>
<th>[4 3]</th>
<th>0</th>
</tr>
</thead>
</table>
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0
| D | 1 | 1 | size | 1 | 0 | Vd | 0 |
| Vd | 0 | 1 | 1 | 1 | 0 | M | 0 |
| Vm | 0 | 0 | 0 | 0 | 0 | 0 | |

T1 variant

SHA1SU1.32 <Qd>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>>1]; Y = Q[m>>1];
 T = X EOR LSR(Y, 32);
 W0 = ROL(T<31:0>, 1);
 W1 = ROL(T<63:32>, 1);
W2 = ROL(T<95:64>, 1);
W3 = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);

Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.13 SHA256H

SHA256 hash update part 1.

A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0 0</td>
<td>D 0</td>
<td>0</td>
<td>Vn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

A1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

T1 variant

SHA256H.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[d>1]; Y = Q[n>1]; W = Q[m>1]; part1 = TRUE;
 Q[d>1] = SHA256Hash(X, Y, W, part1);
Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.14 SHA256H2

SHA256 hash update part 2.

A1

![Instruction Format](image)

A1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

![Instruction Format](image)

T1 variant

SHA256H2.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckCryptoEnabled32();
 X = Q[>>1]; Y = Q[>>1]; W = Q[>>1]; part1 = FALSE;
 Q[>>1] = SHA256Hash(X, Y, W, part1);
Operational information

If CPSR.DIT is 1:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.15 SHA256SU0

SHA256 schedule update 0.

A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 1</td>
<td>D 1</td>
<td>size 1</td>
<td>0</td>
<td>Vd 0</td>
<td>0 1 1 1</td>
<td>1 M 0</td>
</tr>
</tbody>
</table>
```

A1 variant

SHA256SU8.32 <Qd>, <Qm>

Decode for this encoding

```
if !HaveSHA256Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
    d = UInt(D:Vd); m = UInt(M:Vm);
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1</td>
<td>1 1 1</td>
<td>D 1</td>
<td>size 1</td>
<td>0</td>
<td>Vd 0</td>
<td>0 1 1 1</td>
<td>1 M 0</td>
</tr>
</tbody>
</table>
```

T1 variant

SHA256SU8.32 <Qd>, <Qm>

Decode for this encoding

```
if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
    d = UInt(D:Vd); m = UInt(M:Vm);
```

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- `<Qm>` Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

```
if ConditionPassed() then
    bits(128) result;
    EncodingSpecificOperations(); CheckCryptoEnabled32();
    X = Q[d>>1]; Y = Q[m>>1];
    T = Y<31:0> : X<127:32>;
    for e = 0 to 3
        elt = Elem[T, e, 32];
```
elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
Elem[result, e, 32] = elt + Elem[X, e, 32];
Q[d>1] = result;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.16 SHA256SU1

SHA256 schedule update 1.

A1

```
| 31 30 29 28 27 26 25 24 23 22 21 20 19 16 | 15 | 12 | 11 10 9 8 | 7 6 5 4 3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 0 | D | 1 0 | Vn   | Vd   | 1 1 0 0 | N | Q | M | 0 | Vm |
```

A1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

- if !HaveSHA256Ext() then UNDEFINED;
- if Q != '1' then UNDEFINED;
- if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 3 0 | 15 | 12 | 11 10 9 8 | 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 | D | 1 0 | Vn | Vd | 1 1 0 0 | N | Q | M | 0 | Vm |
```

T1 variant

SHA256SU1.32 <Qd>, <Qn>, <Qm>

Decode for this encoding

- if InITBlock() then UNPREDICTABLE;
- if !HaveSHA256Ext() then UNDEFINED;
- if Q != '1' then UNDEFINED;
- if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see *Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors*.

Assembler symbols

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.

Operation for all encodings

- if ConditionPassed() then
 - bits(128) result;
 - EncodingSpecificOperations(); CheckCryptoEnabled32();
 - X = Q[d>>1]; Y = Q[n>>1]; Z = Q[m>>1];
T0 = Z<31:0> : Y<127:32>;

T1 = Z<127:64>;
for e = 0 to 1
 elt = Elem[T1, e, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[X, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

T1 = result<63:0>;
for e = 2 to 3
 elt = Elem[T1, e - 2, 32];
 elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
 elt = elt + Elem[X, e, 32] + Elem[T0, e, 32];
 Elem[result, e, 32] = elt;

Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.17 VABA

Vector Absolute Difference and Accumulate subtracts the elements of one vector from the corresponding elements of another vector, and accumulates the absolute values of the results into the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 | 16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1 | 1 | 1 | 0 | 0 | U | 0 | D | size | Vn | Vd | 0 | 1 | 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 | 0 | 15 | 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1 | 1 | 1 | U | 1 | 1 | 1 | 0 | D | size | Vn | Vd | 0 | 1 | 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[m+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.18 VABAL

Vector Absolute Difference and Accumulate Long subtracts the elements of one vector from the corresponding elements of another vector, and accumulates the absolute values of the results into the elements of the destination vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands. Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | U | 1 | D | != | 11 | Vn | Vd | 0 | 1 | 0 | 1 | N | 0 | M | 0 | Vm |
```

A1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

```
<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U</td>
<td>1 1 1 1</td>
<td>D</td>
<td>!=</td>
</tr>
</tbody>
</table>
```

T1 variant

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<e> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
<p>See <i>Standard assembler syntax fields</i> on page F2-4120.</p>

<dt>Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

<dt>Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<dt>Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<dt>Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[Din[n+r],e,esize];
            op2 = Elem[Din[m+r],e,esize];
            absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
            if long_destination then
                Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
            else
                Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.19 VABD (floating-point)

Vector Absolute Difference (floating-point) subtracts the elements of one vector from the corresponding elements of another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are floating-point numbers of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td>0</td>
<td>D</td>
<td>1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 0 1</td>
<td>N</td>
<td>Q</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 0</td>
<td>D</td>
<td>1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
case sz of
when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;
d = UInt(D;Vd); n = UInt(N;Vn); m = UInt(M;Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior
If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols
<0> For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
For encoding T1: see *Standard assembler syntax fields* on page F2-4120.
<0> See *Standard assembler syntax fields* on page F2-4120.
<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
F32 when sz = 0
F16 when sz = 1
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D;Vd" field as <Qd>*2.
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N;Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M;Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D;Vd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N;Vn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M;Vm" field.

Operation for all encodings
if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
Elem[D[d+r],e,esize] = FPAbs(FPSub(op1,op2,StandardFPSCRValue()));

Operational information
If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.20 VABD (integer)

Vector Absolute Difference (integer) subtracts the elements of one vector from the corresponding elements of another vector, and places the absolute values of the results in the elements of the destination vector.

Operand and result elements are all integers of the same length.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[m+r],e,esize];
 op2 = Elem[Din[m+r],e,esize];
 absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
 else
 Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.21 VABDL (integer)

Vector Absolute Difference Long (integer) subtracts the elements of one vector from the corresponding elements of another vector, and places the absolute values of the results in the elements of the destination vector.

Operand elements are all integers of the same length, and the result elements are double the length of the operands. Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1</td>
<td>U</td>
<td>1</td>
<td>D</td>
<td>l=11</td>
<td>Vn</td>
<td>Vd</td>
<td>0 1 1 1</td>
</tr>
</tbody>
</table>

A1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then see "Related encodings";
if Vd<> '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

| 15 14 13 | 12 | 11 10 9 | 8 7 6 5 4 3 | 0 | 15 | 12 | 11 10 9 | 8 7 6 5 4 3 | 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 | U | 1 | 1 | 1 | 1 | D | l=11 | Vn | Vd | 0 1 1 1 | N | 0 | M | 0 | Vm |

T1 variant

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then see "Related encodings";
if Vd<> '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<

See Standard assembler syntax fields on page F2-4120.
Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- **S8** when $U = 0$, $size = 00$
- **S16** when $U = 0$, $size = 01$
- **S32** when $U = 0$, $size = 10$
- **U8** when $U = 1$, $size = 00$
- **U16** when $U = 1$, $size = 01$
- **U32** when $U = 1$, $size = 10$

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as $<Qd>*2$.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[Din[n+r],e,esize];
            op2 = Elem[Din[m+r],e,esize];
            absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
            if long_destination then
                Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
            else
                Elem[D[d+r],e,esize] = absdiff<esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.22 VABS

Vector Absolute takes the absolute value of each element in a vector, and places the results in a second vector. The floating-point version only clears the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
1 1 1 0 0 1 1 0 D 1 1 1 1 0 1 1 0 1 8 6 5 4 3 0
```

64-bit SIMD vector variant

Applies when Q == 0.

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

```
if size == 'll' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE; floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

A2

```
1 1 1 0 0 1 1 0 D 1 1 1 0 0 0 0 1 1 0 1 8 6 5 4 3 0
```

Half-precision scalar variant

Applies when size == 01.

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VABS{<c>}{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

```plaintext
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);
CONSTRAINED UNPREDICTABLE behavior
If size == '01' && cond != '1110', then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
```

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VABS}\{<c>\}{<q>}.<dt> <Dd>, <Dm> \]

128-bit SIMD vector variant

Applies when Q == 1.

\[\text{VABS}\{<c>\}{<q>}.<dt> <Qd>, <Qm> \]

Decode for all variants of this encoding

```plaintext
if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
D = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1 D 1 1 0 0 0</td>
<td>Vd 1 0</td>
<td>size 1 1 M 0</td>
<td>Vm</td>
</tr>
</tbody>
</table>

Half-precision scalar variant
Applies when size == 01.

`VABS{<c>}{<q>}.F16 <Sd>, <Sm>`

Single-precision scalar variant
Applies when size == 10.

`VABS{<c>}{<q>}.F32 <Sd>, <Sm>`

Double-precision scalar variant
Applies when size == 11.

`VABS{<c>}{<q>}.F64 <Dd>, <Dm>`

Decode for all variants of this encoding
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<
For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.
For encoding A2, T1 and T2: see *Standard assembler syntax fields on page F2-4120*.

\[\]
See *Standard assembler syntax fields on page F2-4120*.

<dt>
Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the following values:
S8 when F = 0, size = 00
S16 when F = 0, size = 01
S32 when F = 0, size = 10
F16 when F = 1, size = 01
F32 when F = 1, size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDDoVFenabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPAbs(Elem[D[m+r],e,esize]);
 else
 result = Abs(SInt(Elem[D[m+r],e,esize]));
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 end
 end
 else // VFP instruction
 case esize of
 when 16 S[d] = Zeros(16) : FPAbs(S[m]<15:0>);
 when 32 S[d] = FPAbs(S[m]);
 when 64 D[d] = FPAbs(D[m]);
 end
 end

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.23 VACGE

Vector Absolute Compare Greater Than or Equal takes the absolute value of each element in a vector, and compares it with the absolute value of the corresponding element of a second vector. If the first is greater than or equal to the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VACLE. The pseudo-instruction is never the preferred disassembly.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 |3 0 |
|-------------|-------------|-------------|-----|-----|-----------------| |
| 0 0 0 0 0 | 1 1 0 0 | 0 0 0 0 | 0 | 0 | D 0 sz | |

64-bit SIMD vector variant

 Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

 Applies when Q == 1.

VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;

or_equal = (op == '0');
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12|11 10 9 8|7 6 5 4 |3 0 |15 12|11 10 9 8|7 6 5 4 |3 0 |
|-------------|-------------|-------------|-----|-----|-----------------| |
| 0 0 0 0 0 | 1 1 1 1 1 | 0 0 0 0 | 0 | 0 | D 0 sz | |

64-bit SIMD vector variant

 Applies when Q == 0.

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

 Applies when Q == 1.
VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
or_equal = (op == '0');
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<\texttt{c}> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<\texttt{q}> See Standard assembler syntax fields on page F2-4120.

<\texttt{dt}> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- F32 when sz = 0
- F16 when sz = 1

<\texttt{Qd}> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<\texttt{Qn}> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<\texttt{Qm}> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<\texttt{Dd}> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<\texttt{Dn}> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<\texttt{Dm}> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D+n+r],e,esize)); op2 = FPAbs(Elem[D+m+r],e,esize));
 if or_equal then
 test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
 else
 test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
 Elem[D+d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.24 VACLE

Vector Absolute Compare Less Than or Equal takes the absolute value of each element in a vector, and compares it with the absolute value of the corresponding element of a second vector. If the first is less than or equal to the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGE instruction. This means that:

- The encodings in this description are named to match the encodings of VACGE.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VACGE gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>[31 30 29 28]</th>
<th>[27 26 25 24]</th>
<th>[23 22 21 20]</th>
<th>[19 16]</th>
<th>[15 14 13 12]</th>
<th>[11 10 9 8]</th>
<th>[7 6 5 4]</th>
<th>[3 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1</td>
<td>1 1 1 0</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 1 0</td>
<td>N</td>
<td>Q</td>
<td>M</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt>{<Dd>, }<Dn>, <Dm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt>{<Qd>, }<Qn>, <Qm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>[15 14 13 12]</th>
<th>[11 10 9 8]</th>
<th>[7 6 5 4]</th>
<th>[3 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 0</td>
<td>D</td>
<td>0</td>
<td>sz</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACLE{<c>}{<q>}.<dt>{<Dd>, }<Dn>, <Dm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.
128-bit SIMD vector variant

Applies when Q == 1.

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

Assembler symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F32</td>
<td>when sz = 0</td>
</tr>
<tr>
<td>F16</td>
<td>when sz = 1</td>
</tr>
</tbody>
</table>

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGE gives the operational pseudocode for this instruction.
F6.1.25 VACGT

Vector Absolute Compare Greater Than takes the absolute value of each element in a vector, and compares it with the absolute value of the corresponding element of a second vector. If the first is greater than the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operands and result can be quadword or doubleword vectors. They must all be the same size.

The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPRTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VACL. The pseudo-instruction is never the preferred disassembly.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 1 1 0</td>
<td>D 1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 1 0</td>
<td>N Q</td>
<td>M 1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
or_equal = (op == '0');
case sz of
 when '0' : esize = 32; elements = 2;
 when '1' : esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 D 1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 1 0</td>
<td>N Q</td>
<td>M 1</td>
<td>Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
or_equal = (op == '0');
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNpredictable behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.
- For encoding T1: see *Standard assembler syntax fields on page F2-4120*.
- See *Standard assembler syntax fields on page F2-4120*.
- Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 - F32 when sz = 0
 - F16 when sz = 1
- Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
- Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
 if or_equal then
 test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
 else
 test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.26 VACLT

Vector Absolute Compare Less Than takes the absolute value of each element in a vector, and compares it with the absolute value of the corresponding element of a second vector. If the first is less than the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VACGT instruction. This means that:

- The encodings in this description are named to match the encodings of VACGT.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VACGT gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>0 1 1 0</td>
<td>D</td>
<td>1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>0</td>
<td>D</td>
<td>1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

and is never the preferred disassembly.
128-bit SIMD vector variant

Applies when \(Q == 1 \).

\[
\text{VACLT}\{<c>\}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
\]

is equivalent to

\[
\text{VACGT}\{<c>\}{<q>}.<dt> <Qd>, <Qm>, <Qn>
\]

and is never the preferred disassembly.

Assembler symbols

\(<Dm>\)
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

\(<Dn>\)
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Qm>\)
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>*2\).

\(<Qn>\)
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>*2\).

\(<c>\)
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

\(<q>\)
See Standard assembler syntax fields on page F2-4120.

\(<dt>\)
Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

\[
\begin{align*}
\text{F32} & \quad \text{when } \text{sz} = 0 \\
\text{F16} & \quad \text{when } \text{sz} = 1
\end{align*}
\]

\(<Qd>\)
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>*2\).

\(<Dd>\)
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation for all encodings

The description of VACGT gives the operational pseudocode for this instruction.
F6.1.27 VADD (floating-point)

Vector Add (floating-point) adds corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 |0 0 |0 0 |D |0 |sz | Vn | Vd |1 1 0 1 |N |Q |M |0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 |1 1 1 1 |0 0 |D |1 1 | Vn | Vd |1 0 |size |N |0 |M |0 | Vm |

cond

Half-precision scalar variant

Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>
Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;

```c
advsimd = FALSE;
```

case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 12 11 10 9 8 7 6 5 4 3 0 |
|---------------|---------------|---------------|---------------|---------------|---------------|
| 1 1 1 0 1 1 1 0| D 0 sz | Vn | Vd | 1 1 0 1 N Q M 0| Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;

case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

| 15 14 13 12| 11 10 9 | 8 7 6 5 4 3 | 0 | 15 12| 11 10 9 | 8 7 6 5 4 3 | 0 | | | | | | | | | | | | | |
|---|
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | D | 1 | 1 | Vn | Vd | 1 | 0 | size | N | 0 | M | 0 | Vm |

Half-precision scalar variant
Applies when size == 01.

VADD{<c>}{<q>}.F16 {<Sd>}, {<Sn>}, {<Sm>}

Single-precision scalar variant
Applies when size == 10.

VADD{<c>}{<q>}.F32 {<Sd>}, {<Sn>}, {<Sm>}

Double-precision scalar variant
Applies when size == 11.

VADD{<c>}{<q>}.F64 {<Dd>}, {<Dn>}, {<Dm>}

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.

- See Standard assembler syntax fields on page F2-4120.

- Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 - F32 when sz = 0
 - F16 when sz = 1

- Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

- Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd>
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn>
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm>
Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
    if advsimd then  // Advanced SIMD instruction
        for r = 0 to regs-1
            for e = 0 to elements-1
                Elem[D[d+r],e,esize] = FPAdd(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
    else             // VFP instruction
        case esize of
            when 16
                S[d] = Zeros(16) : FPAdd(S[n]<15:0>, S[m]<15:0>, FPSCR);
            when 32
                S[d] = FPAdd(S[n], S[m], FPSCR);
            when 64
                D[d] = FPAdd(D[n], D[m], FPSCR);
```
F6.1.28 VADD (integer)

Vector Add (integer) adds corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 | |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 0 0 D | size | Vn | Vd | 1 0 0 0 | N | Q | M 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1 1 0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<>

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

I8 when size = 00
I16 when size = 01
I32 when size = 10
I64 when size = 11

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] + Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.29 VADDHN

Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the most significant half of each result in a doubleword vector. The results are truncated. For rounded results, see VRADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
[31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0]
1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
size
Vn  Vd  0 1 0 0 N 0 M 0 Vm
```

A1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' or Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
[15 14 13 12 11 10 9 8 7 6 5 4 3 0]
1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
size
Vn  Vd  0 1 0 0 N 0 M 0 Vm
```

T1 variant

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' or Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<e> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
 I16 when size = 00
 I32 when size = 01
 I64 when size = 10

<dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize];
 Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.30 VADDL

Vector Add Long adds corresponding elements in two doubleword vectors, and places the results in a quadword vector. Before adding, it sign-extends or zero-extends the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|1 1 1 1 0 0 1 | U | 1 | D | l=11| Vn | Vd | 0 0 0 | N | 0 | M | 0 | Vm |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

A1 variant

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>1 1 1</th>
<th>U</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>D</th>
<th>l=11</th>
<th>Vn</th>
<th>Vd</th>
<th>0 0 0</th>
<th>N</th>
<th>0</th>
<th>M</th>
<th>0</th>
<th>Vm</th>
</tr>
</thead>
</table>

T1 variant

VADDL{<c>}{<p>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

{<c>}

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

{<p>}

See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the second operand vector, encoded in the "U: size" field. It can have the following values:

- S8 when \(U = 0 \), size = 00
- S16 when \(U = 0 \), size = 01
- S32 when \(U = 0 \), size = 10
- U8 when \(U = 1 \), size = 00
- U16 when \(U = 1 \), size = 01
- U32 when \(U = 1 \), size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for e = 0 to elements-1
        if is_vaddw then
            op1 = Int(Elem[Din[n][n>>1],e,2*esize], unsigned);
        else
            op1 = Int(Elem[Din[n],e,esize], unsigned);
        result = op1 + Int(Elem[Din[m],e,esize],unsigned);
        Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.31 VADDW

Vector Add Wide adds corresponding elements in one quadword and one doubleword vector, and places the results in a quadword vector. Before adding, it sign-extends or zero-extends the elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPRTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
[31 30 29 28][27 26 25 24][23 22 21 20][19]   16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 0 |
    1 1 1 0 0 1 | U 1 | D | l=11 | Vn | Vd | 0 0 0 | N 0 | M 0 | Vm |
size  op
```

A1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

- if size == '11' then SEE "Related encodings";
- if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
- unsigned = (U == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
[15 14 13 12][11 10 9 8 | 7 6 5 4 | 3 0 ]  12|11 10 9 8 | 7 6 5 4 | 3 0 |
    1 1 1 | U 1 | 1 1 1 1 | D | l=11 | Vn | Vd | 0 0 0 | N 0 | M 0 | Vm |
size  op
```

T1 variant

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

- if size == '11' then SEE "Related encodings";
- if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
- unsigned = (U == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

- For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1: see Standard assembler syntax fields on page F2-4120.

- See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can have the following values:

- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1
 if is_vaddw then
 op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
 else
 op1 = Int(Elem[Din[n],e,esize], unsigned);
 result = op1 + Int(Elem[Din[m],e,esize],unsigned);
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.32 VAND (immediate)

Vector Bitwise AND (immediate) performs a bitwise AND between a register value and an immediate value, and returns the result into the destination vector.

This instruction is a pseudo-instruction of the VBIC (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of VBIC (immediate).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VBIC (immediate) gives the operational pseudocode for this instruction.

A1

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 | 16|15 | 12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | i | 1 | D | 0 | 0 | 0 | imm3 | Vd | 0 | x | x | 0 | Q | 1 | 1 | imm4 |
```

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VAND}\{<c>\}{<q>}.I16 \{<Dd>,\} <Dd>, #<imm> \]

is equivalent to

\[\text{VBIC}\{<c>\}{<q>}.I16 <Dd>, #~<imm> \]

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

\[\text{VAND}\{<c>\}{<q>}.I16 \{<Qd>,\} <Qd>, #<imm> \]

is equivalent to

\[\text{VBIC}\{<c>\}{<q>}.I16 <Qd>, #~<imm> \]

and is never the preferred disassembly.

A2

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 | 16|15 | 12|11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | i | 1 | D | 0 | 0 | 0 | imm3 | Vd | 1 | 0 | x | 1 | 0 | Q | 1 | 1 | imm4 |
```

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VAND}\{<c>\}{<q>}.I32 \{<Dd>,\} <Dd>, #<imm> \]

is equivalent to

\[\text{VBIC}\{<c>\}{<q>}.I32 <Dd>, #~<imm> \]

and is never the preferred disassembly.
128-bit SIMD vector variant

Appplies when Q == 1.

\(\text{VAND\{c\}\{q\}\{I32\ \{Qd\},\ #\{imm\}} \)

is equivalent to

\(\text{VBIC\{c\}\{q\}\{I32\ \{Qd\}, \#\{\text{imm}^{-}\}} \)

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 D 0 0 0</td>
</tr>
<tr>
<td>cmode</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Appplies when Q == 0.

\(\text{VAND\{c\}\{q\}\{I32\ \{Dd\},\ #\{imm\}} \)

is equivalent to

\(\text{VBIC\{c\}\{q\}\{I32\ \{Dd\}, \#\{\text{imm}^{-}\}} \)

and is never the preferred disassembly.

T2

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 D 0 0 0</td>
</tr>
<tr>
<td>cmode</td>
</tr>
</tbody>
</table>

128-bit SIMD vector variant

Appplies when Q == 1.

\(\text{VAND\{c\}\{q\}\{I16\ \{Qd\},\ #\{imm\}} \)

is equivalent to

\(\text{VBIC\{c\}\{q\}\{I16\ \{Qd\}, \#\{\text{imm}^{-}\}} \)

and is never the preferred disassembly.

T2

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 15 12 11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 D 0 0 0</td>
</tr>
<tr>
<td>cmode</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Appplies when Q == 0.

\(\text{VAND\{c\}\{q\}\{I16\ \{Dd\},\ #\{imm\}} \)

is equivalent to

\(\text{VBIC\{c\}\{q\}\{I16\ \{Dd\}, \#\{\text{imm}^{-}\}} \)

and is never the preferred disassembly.

128-bit SIMD vector variant

Appplies when Q == 1.

\(\text{VAND\{c\}\{q\}\{I16\ \{Qd\},\ #\{imm\}} \)

is equivalent to

\(\text{VBIC\{c\}\{q\}\{I16\ \{Qd\}, \#\{\text{imm}^{-}\}} \)

and is never the preferred disassembly.
VAND{<c>}{<q>}.I32 {<Qd>},<Qd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

- `<c>`: For encoding A1 and A2: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

 For encoding T1 and T2: see *Standard assembler syntax fields on page F2-4120*.

- `<q>`: See *Standard assembler syntax fields on page F2-4120*.

- `<Qd>`: Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.

- `<Dd>`: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- `<imm>`: Is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of `<imm>`, see *Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137*.

Operation for all encodings

The description of VBIC (immediate) gives the operational pseudocode for this instruction.
F6.1.33 VAND (register)

Vector Bitwise AND (register) performs a bitwise AND operation between two registers, and places the result in the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant

Applies when Q == 0.

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.
See *Standard assembler syntax fields* on page F2-4120.

An optional data type. It is ignored by assemblers, and does not affect the encoding.

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\)*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>\)*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\)*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        D[d+r] = D[n+r] AND D[m+r];
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.34 VBIC (immediate)

Vector Bitwise Bit Clear (immediate) performs a bitwise AND between a register value and the complement of an immediate value, and returns the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VAND (immediate). The pseudo-instruction is never the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' & Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' & Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
F6-5071

T1

|15 14 13 12|11 10 9 8 7 6 5 4 3 2 0|15 12|11 8 7 6 5 4 3 0|
|1 1 1|1 1 1 1 1|D|0 0 0|imm3|Vd|0|x|x|1|0|Q|1|1|imm4| cmode |

64-bit SIMD vector variant
Applies when Q == 0.

VBIC(<c>{<q>}.I32 <Dd>,) <Dd>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VBIC(<c>{<q>}.I32 <Qd>,) <Qd>, #<imm>

Decode for all variants of this encoding
if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

|15 14 13 12|11 10 9 8 7 6 5 4 3 2 0|15 12|11 8 7 6 5 4 3 0|
|1 1 1|1 1 1 1 1|D|0 0 0|imm3|Vd|1|x|x|1|0|Q|1|1|imm4| cmode |

64-bit SIMD vector variant
Applies when Q == 0.

VBIC(<c>{<q>}.I16 <Dd>,) <Dd>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VBIC(<c>{<q>}.I16 <Qd>,) <Qd>, #<imm>

Decode for all variants of this encoding
if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Notes for all encodings
Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols
<>
For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] AND NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.35 VBIC (register)

Vector Bitwise Bit Clear (register) performs a bitwise AND between a register value and the complement of a register value, and places the result in the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>0 0</td>
<td>D 0</td>
<td>1</td>
<td>Vn</td>
<td>Vd</td>
<td>0 0 0 1</td>
<td>N</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>0 1 1 1 0</td>
<td>D 0</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<>

For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.

For encoding T1: see *Standard assembler syntax fields* on page F2-4120.
See *Standard assembler syntax fields* on page F2-4120.

An optional data type. It is ignored by assemblers, and does not affect the encoding.

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\)*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>\)*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\)*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        D[d+r] = D[n+r] AND NOT(D[m+r]);
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.36 VBIF

Vector Bitwise Insert if False inserts each bit from the first source register into the destination register if the corresponding bit of the second source register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VBIF} \{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VBIF} \{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm>
\]

Decode for all variants of this encoding

- if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
- if op == '00' then SEE "VEOR";
- if op == '01' then operation = VBitOps_VBSL;
- if op == '10' then operation = VBitOps_VBIT;
- if op == '11' then operation = VBitOps_VBIF;

\[
d = \text{UInt}(D:Vd); \ n = \text{ UInt}(N:Vn); \ m = \text{ UInt}(M:Vm); \ \text{regs} = \text{ if Q == '0' then 1 else 2;}
\]

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VBIF} \{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VBIF} \{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm>
\]

Decode for all variants of this encoding

- if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
- if op == '00' then SEE "VEOR";
- if op == '01' then operation = VBitOps_VBSL;
- if op == '10' then operation = VBitOps_VBIT;
- if op == '11' then operation = VBitOps_VBIF;

\[
d = \text{UInt}(D:Vd); \ n = \text{ UInt}(N:Vn); \ m = \text{ UInt}(M:Vm); \ \text{regs} = \text{ if Q == '0' then 1 else 2;}
\]
Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<
An optional data type. It is ignored by assemblers, and does not affect the encoding.

<
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
enum VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        case operation of
            when VBitOps_VBIF  D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
            when VBitOps_VBIT  D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
            when VBitOps_VBSL  D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.37 VBIT

Vector Bitwise Insert if True inserts each bit from the first source register into the destination register if the corresponding bit of the second source register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VBIT}\{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm> \]

128-bit SIMD vector variant

Applies when Q == 1.

\[\text{VBIT}\{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm> \]

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

[15 14 13 12|11 10 9 8|7 6 5 4|3 0 | 1 1 1 1 |1 1 1 1 0|D 1 0 | Vn | Vd | 0 0 0 1|N |Q |M |Vm]

64-bit SIMD vector variant

Applies when Q == 0.

VBIT\{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VBIT\{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

An optional data type. It is ignored by assemblers, and does not affect the encoding.

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```
enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        case operation of
            when VBitOps_VBIF  D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
            when VBitOps_VBIT  D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
            when VBitOps_VBSL  D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.38 VBSL

Vector Bitwise Select sets each bit in the destination to the corresponding bit from the first source operand when the original destination bit was 1, otherwise from the second source operand.

Depending on settings in the CPACR, NSACR, and HCPRTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant
Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

- If Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
- If op == '00' then SEE “VEOR”;
- If op == '01' then operation = VBitOps_VBSL;
- If op == '10' then operation = VBitOps_VBIT;
- If op == '11' then operation = VBitOps_VBIF;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

64-bit SIMD vector variant
Applies when Q == 0.

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

- If Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
- If op == '00' then SEE “VEOR”;
- If op == '01' then operation = VBitOps_VBSL;
- If op == '10' then operation = VBitOps_VBIT;
- If op == '11' then operation = VBitOps_VBIF;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Od> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<On> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Om> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 case operation of
 when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
 when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
 when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.39 VCADD

Vector Complex Add.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
 rotated counterclockwise by 90 or 270 degrees.
• The rotated complex number is added to the complex number from the first source register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.3

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[
\text{VCADD}\{<q>,\}<dt> \ <Dd>, \ <Dn>, \ <Dm>, \ #<rotate>
\]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VCADD}\{<q>,\}<dt> \ <Qd>, \ <Qn>, \ <Qm>, \ #<rotate>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if } & \text{!HaveFCADDExt()} \text{ then UNDEFINED;} \\
\text{if } & Q = '2' \land (Vd<0> = '1' \lor Vn<0> = '1' \lor Vm<0> = '1') \text{ then UNDEFINED;} \\
d & = \text{UInt}(D:Vd); \quad n = \text{UInt}(N:Vn); \quad m = \text{UInt}(M:Vm); \\
esize & = 16 \times \text{UInt}(S); \\
\text{if } & \text{!HaveFP16Ext()} \land esize = 16 \text{ then UNDEFINED;} \\
elements & = 64 \div esize; \\
\text{regs} & = \text{if } Q = '0' \text{ then 1 else 2;}
\end{align*}
\]

T1

ARMv8.3

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[
\text{VCADD}\{<q>,\}<dt> \ <Dd>, \ <Dn>, \ <Dm>, \ #<rotate>
\]
128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VCAADD\{<q>\}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>}
\]

Decode for all variants of this encoding

if \(\text{InITBlock()} \) then UNPREDICTABLE;
if \(\text{!HaveFCADDExt()} \) then UNDEFINED;
if \(Q = '1' \) \&\& \((Vd<0> == '1' \lor Vn<0> == '1' \lor Vm<0> == '1') \) then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 \ll\! UInt(S);
if \(\text{!HaveFP16Ext()} \) \&\& esize == 16 then UNDEFINED;
elements = 64 DIV esize;
reg = if Q == '0' then 1 else 2;

Assembler symbols

\(<q>\) See *Standard assembler syntax fields on page F2-4120.*

\(<dt>\) Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following values:

- \(F16 \) when \(S = 0 \)
- \(F32 \) when \(S = 1 \)

\(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\)*2.

\(<Qn>\) Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>\)*2.

\(<Qm>\) Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\)*2.

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

\(<rotate>\) Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the "rot" field. It can have the following values:

- \(90 \) when \(\text{rot} = 0 \)
- \(270 \) when \(\text{rot} = 1 \)

Operation for all encodings

EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for \(r = 0 \) to \(\text{regs-1} \)
operand1 = \(D[n+r] \);
operand2 = \(D[m+r] \);
operand3 = \(D[d+r] \);
for \(e = 0 \) to \(\text{elements DIV 2}-1 \)
case rot of
 when '0',
 element1 = FPNeg(Elem[operand2,e*2+1,esize]);
 element3 = Elem[operand2,e*2,esize];
 when '1',
 element1 = Elem[operand2,e*2+1,esize];
 element3 = FPNeg(Elem[operand2,e*2,esize]);
result1 = FPAdd(Elem[operand1,e*2,esize],element1,StandardFPSCRValue());
result2 = FPAdd(Elem[operand1,e*2+1,esize],element3,StandardFPSCRValue());
Elem[0[d+r],e*2,esize] = result1;
Elem[0[d+r],e*2+1,esize] = result2;
F6.1.40 VCEQ (immediate #0)

Vector Compare Equal to Zero takes each element in a vector, and compares it with zero. If it is equal to zero, the
 corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
 elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
 the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
 more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant
Applies when Q == 0.
VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant
Applies when Q == 1.
VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding
if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' ||Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant
Applies when Q == 0.
VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant
Applies when Q == 1.
VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding
if size == '11' then UNDEFINED;
if F == '1' && (size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<=> For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
For encoding T1: see *Standard assembler syntax fields* on page F2-4120.

<op> See *Standard assembler syntax fields* on page F2-4120.

dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I8</td>
<td>when F = 0, size = 00</td>
</tr>
<tr>
<td>I16</td>
<td>when F = 0, size = 01</td>
</tr>
<tr>
<td>I32</td>
<td>when F = 0, size = 10</td>
</tr>
<tr>
<td>F16</td>
<td>when F = 1, size = 01</td>
</tr>
<tr>
<td>F32</td>
<td>when F = 1, size = 10</td>
</tr>
</tbody>
</table>

<qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <qd>*2.

<qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <qm>*2.

<dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 bits(esize) zero = FPZero('0');
 test_passed = FPCompareEQ(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
 else
 test_passed = (Elem[D[m+r],e,esize] == Zeros(esize));
 Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
F6.1.41 VCEQ (register)

Vector Compare Equal takes each element in a vector, and compares it with the corresponding element of a second vector. If they are equal, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are integers or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 0 1 | D | size | Vn | Vd | 1 0 0 0 | N | Q | M 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '11' then UNDEFINED;
int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 0 0 | D | sz | Vn | Vd | 1 1 1 0 | N | Q | M 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
int_operation = FALSE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant
Applies when Q == 0.
VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' then UNDEFINED;
int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant
Applies when Q == 0.
VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
int_operation = FALSE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- `<c>` For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 - For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` For encoding A1 and T1: is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 - I8 when size = 00
 - I16 when size = 01
 - I32 when size = 10
 - For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 - F32 when sz = 0
 - F16 when sz = 1

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[D[n+r],e,esize];  op2 = Elem[D[m+r],e,esize];
            if int_operation then
                test_passed = (op1 == op2);
            else
                test_passed = FPCompareEQ(op1, op2, StandardFPSCRValue());
            Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
```
F6.1.42 VCGE (immediate #0)

Vector Compare Greater Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is greater than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8|7 6 5 4|3 0 |
+-----------+-----------+-----------+-----------+---+-----------+-----------+---|
|           |           |           |           |   |           |           |   |
| 1 1 1 1 0 0 1 1 | D | 1 | 1 | size | 0 | 1 | Vd | 0 | F | 0 | 0 | 1 | Q | M | 0 | Vm |
```

64-bit SIMD vector variant

Applies when Q == 0.

```
VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0
```

128-bit SIMD vector variant

Applies when Q == 1.

```
VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0
```

Decode for all variants of this encoding

```
if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && HAVEFP16EXT()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

```
|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 10 9 8|7 6 5 4|3 0 |
+-----------+-----------+-----------+-----------+---+-----------+-----------+---|
|           |           |           |           |   |           |           |   |
| 1 1 1 1 1 1 1 1 | D | 1 | 1 | size | 0 | 1 | Vd | 0 | F | 0 | 0 | 1 | Q | M | 0 | Vm |
```

64-bit SIMD vector variant

Applies when Q == 0.

```
VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0
```

128-bit SIMD vector variant

Applies when Q == 1.

```
VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0
```
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' & ((size == '01' & !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' & size == '01' & InITBlock() then UNPREDICTABLE;
if Q == '1' & (Vm<0> == '1' || Vd<0> == '1') then UNDEFINED;

floating_point = (F == '1');

esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' & size == '01' & InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<
Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the following values:

S8 when F = 0, size = 00
S16 when F = 0, size = 01
S32 when F = 0, size = 10
F16 when F = 1, size = 01
F32 when F = 1, size = 10

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
for e = 0 to elements-1
if floating_point then

bits(esize) zero = FPZero('0');
test_passed = FPCompareGE(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
else

test_passed = (SInt(Elem[D[m+r],e,esize]) >= 0);
Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.43 VCGE (register)

Vector Compare Greater Than or Equal takes each element in a vector, and compares it with the corresponding element of a second vector. If the first is greater than or equal to the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VCLE (register). The pseudo-instruction is never the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGEtype_unsigned else VCGEtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

64-bit SIMD vector variant

Applies when Q == 0.

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
vtype = VCGEtype_fp;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

|1|5|14|13|12|11|10|9|8|7|6|5|4|3|0|1|5|14|13|12|11|10|9|8|7|6|5|4|3|0|
|1|1|1|1|U|1|1|1|1|0|D|size|Vn|Vd|0|0|1|1|N|Q|M|1|Vm|

64-bit SIMD vector variant

Applies when Q = 0.
VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q = 1.
VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGEtype_unsigned else VCGEtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

|1|5|14|13|12|11|10|9|8|7|6|5|4|3|0|1|5|14|13|12|11|10|9|8|7|6|5|4|3|0|
|1|1|1|1|1|1|1|1|1|0|D|0|sz|Vn|Vd|1|1|1|0|N|Q|M|0|Vm|

64-bit SIMD vector variant

Applies when Q = 0.
VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q = 1.
VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
vtype = VCGEtype_fp;
case sz of
when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' & InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> For encoding A1 and A2: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see *Standard assembler syntax fields* on page F2-4120.

<q> See *Standard assembler syntax fields* on page F2-4120.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- **S8** when U = 0, size = 00
- **S16** when U = 0, size = 01
- **S32** when U = 0, size = 10
- **U8** when U = 1, size = 00
- **U16** when U = 1, size = 01
- **U32** when U = 1, size = 10

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- **F32** when sz = 0
- **F16** when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
enumeration VCGEtype {VCGEtype_signed, VCGEtype_unsigned, VCGEtype_fp};

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
    for e = 0 to elements-1
        op1 = Elem[D[n+r],e,esize];  op2 = Elem[D[m+r],e,esize];
        case vtype of
            when VCGEtype_signed    test_passed = (SInt(op1) >= SInt(op2));
...```

**Operation for all encodings**

```c
enumeration VCGEtype {VCGEtype_signed, VCGEtype_unsigned, VCGEtype_fp};

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case vtype of
 when VCGEtype_signed test_passed = (SInt(op1) >= SInt(op2));
```
when VCGEtype_unsigned  test_passed = (UInt(op1) >= UInt(op2));
when VCGEtype_fp        test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.44  VCGT (Immediate #0)

Vector Compare Greater Than Zero takes each element in a vector, and compares it with zero. If it is greater than zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
size = 8 << UInt(size); elements = 64 DIV size;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRANGED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<cf> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<cp> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the following values:
S8 when F = 0, size = 00
S16 when F = 0, size = 01
S32 when F = 0, size = 10
F16 when F = 1, size = 01
F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            if floating_point then
                bits(esize) zero = FPZero('0');
                test_passed = FPCompareGT(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());
            else
                test_passed = (SInt(Elem[D[m+r],e,esize]) > 0);
            Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
### F6.1.45 VCGT (register)

Vector Compare Greater Than takes each element in a vector, and compares it with the corresponding element of a second vector. If the first is greater than the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and Floating-point support* on page G1-5812.

This instruction is used by the pseudo-instruction VCLT (register). The pseudo-instruction is never the preferred disassembly.

#### A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | U | 0 | D | size | Vn | Vd | 0 | 0 | 1 | 1 | N | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[ \text{VCGT}\{<c>\}{<q>}.<dt> \{<Dd>, }<Dn>, <Dm> \]

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[ \text{VCGT}\{<c>\}{<q>}.<dt> \{<Qd>, }<Qn>, <Qm> \]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{if } Q &= '1' \&\& (\text{Vd}\&_d = '1' || \text{Vn}\&_n = '1' || \text{Vm}\&_m = '1') \text{ then UNDEFINED; } \\
\text{if } \text{size} &= '11' \text{ then UNDEFINED; } \\
\text{vtype} &= \text{if } U = '1' \text{ then VCGT}\text{type}\_\text{unsigned} \text{ else VCGT}\text{type}\_\text{signed}; \\
\text{esize} &= 8 \ll \text{UInt(size)}; \quad \text{elements} = 64 \div \text{esize}; \\
\text{d} &= \text{UInt(D}\_\text{vd}); \quad \text{n} = \text{UInt(N}\_\text{vn}); \quad \text{m} = \text{UInt(M}\_\text{vm}); \quad \text{regs} = \text{if } Q = '0' \text{ then 1 else 2;}
\end{align*}
\]

#### A2

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | D | 1 | sz | Vn | Vd | 1 | 1 | 1 | 0 | N | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[ \text{VCGT}\{<c>\}{<q>}.<dt> \{<Dd>, }<Dn>, <Dm> \]

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[ \text{VCGT}\{<c>\}{<q>}.<dt> \{<Qd>, }<Qn>, <Qm> \]
**64-bit SIMD vector variant**

Applies when Q == 0.

\[
\text{VCGT}\{<c>\}{<q>}\{<dt> \{<Dd> \{<Dn> \{<Dm> \}
\]

**128-bit SIMD vector variant**

Applies when Q == 1.

\[
\text{VCGT}\{<c>\}{<q>}\{<dt> \{<Qd> \{<Qn> \{<Qm> \}
\]

**Decode for all variants of this encoding**

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '11' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
vtype = VCGTtype_fp;
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when Q == 0.

\[
\text{VCGT}\{<c>\}{<q>}\{<dt> \{<Dd> \{<Dn> \{<Dm> \}
\]

**128-bit SIMD vector variant**

Applies when Q == 1.

\[
\text{VCGT}\{<c>\}{<q>}\{<dt> \{<Qd> \{<Qn> \{<Qm> \}
\]

**Decode for all variants of this encoding**

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '11' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
vtype = VCGTtype_fp;
case sz of
when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

**CONSTRAINED UNPREDICTABLE behavior**

If sz == '1' | InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

<
  For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<
  See Standard assembler syntax fields on page F2-4120.

<dt>
  For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
  - S8 when U = 0, size = 00
  - S16 when U = 0, size = 01
  - S32 when U = 0, size = 10
  - U8 when U = 1, size = 00
  - U16 when U = 1, size = 01
  - U32 when U = 1, size = 10
  For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field.
  It can have the following values:
  - F32 when sz = 0
  - F16 when sz = 1

<Qd>
  Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
  Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
  Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
  Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
  Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```c
enumeration VCGTtype {VCGTtype_signed, VCGTtype_unsigned, VCGTtype_fp};
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 case vtype of
 when VCGTtype_signed test_passed = (SInt(op1) > SInt(op2));
```
when VCGTtype_unsigned test_passed = (UInt(op1) > UInt(op2));
when VCGTtype_fp test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
Elem[D[d+r]e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.46   VCLE (immediate #0)

Vector Compare Less Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is less than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
float_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector variant

Applies when Q == 1.

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRANDED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<=> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8</td>
<td>when F = 0, size = 00</td>
</tr>
<tr>
<td>S16</td>
<td>when F = 0, size = 01</td>
</tr>
<tr>
<td>S32</td>
<td>when F = 0, size = 10</td>
</tr>
<tr>
<td>F16</td>
<td>when F = 1, size = 01</td>
</tr>
<tr>
<td>F32</td>
<td>when F = 1, size = 10</td>
</tr>
</tbody>
</table>

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckAdvSIMDEnabled();
  for r = 0 to regs-1
    for e = 0 to elements-1
      if floating_point then
        bits(esize) zero = FPZero('0');
        test_passed = FPCompareGE(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());
      else
        test_passed = (SInt(Elem[D[m+r],e,esize]) <= 0);
      Elem[D[r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.47   VCLE (register)

Vector Compare Less Than or Equal takes each element in a vector, and compares it with the corresponding element of a second vector. If the first is less than or equal to the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGE (register) instruction. This means that:

- The encodings in this description are named to match the encodings of VCGE (register).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VCGE (register) gives the operational pseudocode for this instruction.

**A1**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0</td>
<td>U</td>
<td>0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
<td>Vd</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VCLE}\{<c>\}<q>.<dt> \{<Dd>\}, <Dm> <Dn>
\]

is equivalent to

\[
\text{VCGE}\{<c>\}<q>.<dt> <Dd>, <Dm>, <Dn>
\]

and is never the preferred disassembly.

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[
\text{VCLE}\{<c>\}<q>.<dt> \{<Qd>\}, <Qm> <Qn>
\]

is equivalent to

\[
\text{VCGE}\{<c>\}<q>.<dt> <Qd>, <Qm>, <Qn>
\]

and is never the preferred disassembly.

**A2**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VCLE}\{<c>\}<q>.<dt> \{<Dd>\}, <Dm> <Dn>
\]

is equivalent to

\[
\text{VCGE}\{<c>\}<q>.<dt> <Dd>, <Dm>, <Dn>
\]

and is never the preferred disassembly.
128-bit SIMD vector variant

Applies when \( Q = 1 \).

\[ \text{VCLE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Qd \rangle, \langle Qn \rangle, \langle Qm \rangle \} \]

is equivalent to

\[ \text{VCGE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Qd \rangle, \langle Qm \rangle, \langle Qn \rangle \} \]

and is never the preferred disassembly.

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 1  | 1  | 1  | 1  | 0 | D | size | Vn | Vd | 0 | 0 | 1 | 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[ \text{VCLE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Dd \rangle, \langle Dn \rangle, \langle Dm \rangle \} \]

is equivalent to

\[ \text{VCGE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Dd \rangle, \langle Dm \rangle, \langle Dn \rangle \} \]

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when \( Q = 1 \).

\[ \text{VCLE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Qd \rangle, \langle Qn \rangle, \langle Qm \rangle \} \]

is equivalent to

\[ \text{VCGE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Qd \rangle, \langle Qm \rangle, \langle Qn \rangle \} \]

and is never the preferred disassembly.

T2

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 1  | 1  | 1  | 1  | 0 | D | size | Vn | Vd | 1 | 1 | 0 | N | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[ \text{VCLE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Dd \rangle, \langle Dn \rangle, \langle Dm \rangle \} \]

is equivalent to

\[ \text{VCGE} \langle cc \rangle \{ \langle cp \rangle \}, \langle dt \rangle \{ \langle Dd \rangle, \langle Dm \rangle, \langle Dn \rangle \} \]

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when \( Q = 1 \).
VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
is equivalent to
VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>
and is never the preferred disassembly.

**Assembler symbols**

- `<Qm>`: Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
- `<Qn>`: Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Qm>`: Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.`
- `<Qn>`: Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.`
- `<c>`: For encoding A1 and A2: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
  For encoding T1 and T2: see *Standard assembler syntax fields* on page F2-4120.
- `<q>`: See *Standard assembler syntax fields* on page F2-4120.
- `<dt>`: For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
  - `S8` when `U = 0`, `size = 00`
  - `S16` when `U = 0`, `size = 01`
  - `S32` when `U = 0`, `size = 10`
  - `U8` when `U = 1`, `size = 00`
  - `U16` when `U = 1`, `size = 01`
  - `U32` when `U = 1`, `size = 10`
  For encoding A2 and T2: is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
  - `F32` when `sz = 0`
  - `F16` when `sz = 1`
- `<Qd>`: Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.`
- `<d>`: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

**Operation for all encodings**

The description of `VCGE (register)` gives the operational pseudocode for this instruction.
F6.1.48 VCLS

Vector Count Leading Sign Bits counts the number of consecutive bits following the topmost bit, that are the same as the topmost bit, in each element in a vector, and places the results in a second vector. The count does not include the topmost bit itself.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit signed integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td>D 1 1</td>
<td>size 0 0</td>
<td>Vd 0 1 0 0 0</td>
<td>Q M 0</td>
<td>Vm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
eseize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 2 1 0 | 15 | 12 | 11 10 9 8 | 7 6 5 4 | 3 0 |
|-------------|----------|----------|------|------|----------|----------|------|
| 1 1 1 1 1 1 1 1 | D 1 1 | size 0 0 | Vd 0 1 0 0 0 | Q M 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<<>  For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<<p>  See Standard assembler syntax fields on page F2-4120.

<dt>  Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
S8     when size = 00
S16    when size = 01
S32    when size = 10

The encoding size = 11 is reserved.

<q>  Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<qm>  Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<dt>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<dm>  Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
   EncodingSpecificOperations();  CheckAdvSIMDEnabled();
   for r = 0 to regs-1
      for e = 0 to elements-1
         Elem[D+d+r,e,esize] = CountLeadingSignBits(Elem[D+m+r],e,esize)<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.49   VCLT (immediate #0)

Vector Compare Less Than Zero takes each element in a vector, and compares it with zero. If it is less than zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

#### 64-bit SIMD vector variant

Applies when Q == 0.

\[ VCLT{<c}>{<q>}.<dt> {<Dd>,} <Dm>, #0 \]

#### 128-bit SIMD vector variant

Applies when Q == 1.

\[ VCLT{<c}>{<q>}.<dt> {<Qd>,} <Qm>, #0 \]

**Decode for all variants of this encoding**

- If size == '11' then UNDEFINED;
- If F == '1' && (size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
- If Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
- floating_point = (F == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize;
- d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

#### 64-bit SIMD vector variant

Applies when Q == 0.

\[ VCLT{<c>}.<dt> {<Dd>,} <Dm>, #0 \]

#### 128-bit SIMD vector variant

Applies when Q == 1.

\[ VCLT{<c>}.<dt> {<Qd>,} <Qm>, #0 \]

**Decode for all variants of this encoding**

- If size == '11' then UNDEFINED;
- If F == '1' && (size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
- If F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

CONSTRUANED UNPREDICTABLE behavior
If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols
<q> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "F:size" field. It can have the following values:
 S8   when F = 0, size = 00
 S16  when F = 0, size = 01
 S32  when F = 0, size = 10
 F16  when F = 1, size = 01
 F32  when F = 1, size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            if floating_point then
                bits(esize) zero = FPZero('0');
                test_passed = FPCompareGT(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());
            else
                test_passed = (SInt(Elem[D[m+r],e,esize]) < 0);
                Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);
Operational information
If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F6.1.50  **VCLT (register)**

Vector Compare Less Than takes each element in a vector, and compares it with the corresponding element of a second vector. If the first is less than the second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This instruction is a pseudo-instruction of the VCGT (register) instruction. This means that:

- The encodings in this description are named to match the encodings of VCGT (register).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VCGT (register) gives the operational pseudocode for this instruction.

### 64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VCLT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \{\text{<Dd>, }\text{<Dm>}\}
\]

is equivalent to

\[
\text{VCGT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \text{<Dd>, }\text{<Dm>}
\]

and is never the preferred disassembly.

### 128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VCLT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \text{<Qd>, }\text{<Qm>}
\]

is equivalent to

\[
\text{VCGT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \text{<Qd>, }\text{<Qm>}
\]

and is never the preferred disassembly.

### 64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VCLT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \{\text{<Dd>, }\text{<Dm>}\}
\]

is equivalent to

\[
\text{VCGT}\{\text{<c>}\}\{\text{<q>}\}.dt\ \text{<Dd>, }\text{<Dm>}
\]

and is never the preferred disassembly.
**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[
\text{VCLT}\{<c>\}{<q>}.<dt> \{<Qd>, \}<Qn>, \<Qm>
\]

is equivalent to

\[
\text{VCGT}\{<c>\}{<q>}.<dt> \<Qd>, \<Qm>, \<Qn>
\]

and is never the preferred disassembly.

**T1**

\[
\begin{array}{cccccccccccccccc}
|15 & 14 & 13 & 12| & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 |
\end{array}
\]

|1 1 1 U| 1 1 1 1 0| D | size | Vn | Vd | 0 | 0 | 1 | 1 | N | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VCLT}\{<c>\}{<q>}.<dt> \{<Dd>, \}<Dn>, \<Dm>
\]

is equivalent to

\[
\text{VCGT}\{<c>\}{<q>}.<dt> \<Dd>, \<Dm>, \<Dn>
\]

and is never the preferred disassembly.

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[
\text{VCLT}\{<c>\}{<q>}.<dt> \{<Qd>, \}<Qn>, \<Qm>
\]

is equivalent to

\[
\text{VCGT}\{<c>\}{<q>}.<dt> \<Qd>, \<Qm>, \<Qn>
\]

and is never the preferred disassembly.

**T2**

\[
\begin{array}{cccccccccccccccc}
|15 & 14 & 13 & 12| & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 |
\end{array}
\]

|1 1 1 1| 1 1 1 1 0| D | size | Vn | Vd | 1 | 1 | 0 | N | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VCLT}\{<c>\}{<q>}.<dt> \{<Dd>, \}<Dn>, \<Dm>
\]

is equivalent to

\[
\text{VCGT}\{<c>\}{<q>}.<dt> \<Dd>, \<Dm>, \<Dn>
\]

and is never the preferred disassembly.

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).
VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

and is never the preferred disassembly.

**Assembler symbols**

- `<Qm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
- `<Qn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.`
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.`
- `<c>` For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  
  For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` For encoding A1 and T1: is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
  
  - `S8` when `U = 0`, `size = 00`
  - `S16` when `U = 0`, `size = 01`
  - `S32` when `U = 0`, `size = 10`
  - `U8` when `U = 1`, `size = 00`
  - `U16` when `U = 1`, `size = 01`
  - `U32` when `U = 1`, `size = 10`

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.`
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

**Operation for all encodings**

The description of VCGT (register) gives the operational pseudocode for this instruction.
F6.1.51  VCLZ

Vector Count Leading Zeros counts the number of consecutive zeros, starting from the most significant bit, in each element in a vector, and places the results in a second vector.

The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit integers. There is no distinction between signed and unsigned integers.

The result vector elements are the same data type as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

**A1**

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8|7 6 5 4|3 0 |1 1 1 1 0 0 1 1 |D |1 |1 |size|0 0 |Vd |0 1 0 0 1 |Q |M |0 |Vm |

**64-bit SIMD vector variant**

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

**128-bit SIMD vector variant**

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

**Decode for all variants of this encoding**

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

**T1**

| 15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 10 9 8|7 6 5 4|3 0 |1 1 1 1 1 1 1 1 |D |1 |1 |size|0 0 |Vd |0 1 0 0 1 |Q |M |0 |Vm |

**64-bit SIMD vector variant**

Applies when Q == 0.

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

**128-bit SIMD vector variant**

Applies when Q == 1.

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
I8     when size = 00
I16    when size = 01
I32    when size = 10
The encoding size = 11 is reserved.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();  CheckAdvSIMDEnabled();
  for r = 0 to regs-1
    for e = 0 to elements-1
      Elem[D[d+r],e,esize] = CountLeadingZeroBits(Elem[D[m+r],e,esize]<esize-1:0>);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.52 VCMLA

Vector Complex Multiply Accumulate.

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

- Considering the complex number from the second source register on an Argand diagram, the number is
  rotated counterclockwise by 0, 90, 180, or 270 degrees.

- The two elements of the transformed complex number are multiplied by:
  - The real element of the complex number from the first source register, if the transformation was a
    rotation by 0 or 180 degrees.
  - The imaginary element of the complex number from the first source register, if the transformation was
    a rotation by 90 or 270 degrees.

- The complex number resulting from that multiplication is added to the complex number from the destination
  register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate
rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.3

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 0 | rot | D | T | S | Vn | Vd | 1 | 0 | 0 | N | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCMLA{<q>},<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant

Applies when Q == 1.

VCMLA{<q>},<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

T1

ARMv8.3
64-bit SIMD vector variant
Applies when Q == 0.

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector variant
Applies when Q == 1.

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

Assembler symbols

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "S" field. It can have the following values:
F16 when S = 0
F32 when S = 1

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate>
Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the "rot" field. It can have the following values:
0 when rot = 00
90 when rot = 01
180 when rot = 10
270 when rot = 11
Operation for all encodings

EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for r = 0 to regs-1
    operand1 = D[n+r];
    operand2 = D[m+r];
    operand3 = D[d+r];
    for e = 0 to (elements DIV 2)-1
        case rot of
            when '00'
                element1 = Elem[operand2,e*2,esize];
                element2 = Elem[operand1,e*2,esize];
                element3 = Elem[operand2,e*2+1,esize];
                element4 = Elem[operand1,e*2,esize];
            when '01'
                element1 = FPNeg(Elem[operand2,e*2+1,esize]);
                element2 = Elem[operand1,e*2+1,esize];
                element3 = Elem[operand2,e*2,esize];
                element4 = Elem[operand1,e*2+1,esize];
            when '10'
                element1 = FPNeg(Elem[operand2,e*2,esize]);
                element2 = Elem[operand1,e*2,esize];
                element3 = FPNeg(Elem[operand2,e*2+1,esize]);
                element4 = Elem[operand1,e*2+1,esize];
            when '11'
                element1 = Elem[operand2,e*2+1,esize];
                element2 = Elem[operand1,e*2+1,esize];
                element3 = FPNeg(Elem[operand2,e*2,esize]);
                element4 = Elem[operand1,e*2+1,esize];
        result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
        result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3, StandardFPSCRValue());
        Elem[D[d+r],e*2,esize] = result1;
        Elem[D[d+r],e*2+1,esize] = result2;
F6.1.53 VCMLA (by element)

Vector Complex Multiply Accumulate (by element).

This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number. Each element holds a floating-point value. It performs the following computation on complex numbers from the first source register and the destination register with the specified complex number from the second source register:

- Considering the complex number from the second source register on an Argand diagram, the number is rotated counterclockwise by 0, 90, 180, or 270 degrees.
- The two elements of the transformed complex number are multiplied by:
  - The real element of the complex number from the first source register, if the transformation was a rotation by 0 or 180 degrees.
  - The imaginary element of the complex number from the first source register, if the transformation was a rotation by 90 or 270 degrees.
- The complex number resulting from that multiplication is added to the complex number from the destination register.

The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.3

64-bit SIMD vector of half-precision floating-point variant
Applies when $S == 0 \&\& Q == 0$.

\[
\text{VOMA}(<q>.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>)
\]

64-bit SIMD vector of single-precision floating-point variant
Applies when $S == 1 \&\& Q == 0$.

\[
\text{VOMA}(<q>.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>)
\]

128-bit SIMD vector of half-precision floating-point variant
Applies when $S == 0 \&\& Q == 1$.

\[
\text{VOMA}(<q>.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>)
\]

128-bit SIMD vector of single-precision floating-point variant
Applies when $S == 1 \&\& Q == 1$.

\[
\text{VOMA}(<q>.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>)
\]
Decode for all variants of this encoding

if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn);
m = if S==`1' then UInt(M:Vm) else UInt(Vn);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;
index = if S==`1' then 0 else UInt(M);

T1

ARMv8.3

| 1 1 1 1 1 1 0 | S D | rot | Vn | Vd | 1 0 0 0 | N | Q M | 0 | Vm |

64-bit SIMD vector of half-precision floating-point variant

Applies when $S == 0$ && $Q == 0$.

VOMA(<q>), F16 <Dd>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point variant

Applies when $S == 1$ && $Q == 0$.

VOMA(<q>), F32 <Dd>, <Dm>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point variant

Applies when $S == 0$ && $Q == 1$.

VOMA(<q>), F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point variant

Applies when $S == 1$ && $Q == 1$.

VOMA(<q>), F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn);
m = if S==`1' then UInt(M:Vm) else UInt(Vn);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;
index = if S==`1' then 0 else UInt(M);

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For the half-precision scalar variant: is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

For the single-precision scalar variant: is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in the "rot" field. It can have the following values:

- 0 when `rot = 00`
- 90 when `rot = 01`
- 180 when `rot = 10`
- 270 when `rot = 11`

**Operation for all encodings**

```c
EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = Din[m];
 operand3 = D[d+r];
 for e = 0 to (elements DIV 2)-1
 case rot of
 when '00'
 element1 = Elem[operand2,index*2,esize];
 element2 = Elem[operand1,e*2,esize];
 element3 = Elem[operand2,index*2+1,esize];
 element4 = Elem[operand1,e*2,esize];
 when '01'
 element1 = FPNeg(Elem[operand2,index*2+1,esize]);
 element2 = Elem[operand1,e*2+1,esize];
 element3 = Elem[operand2,index*2,esize];
 element4 = Elem[operand1,e*2+1,esize];
 when '10'
 element1 = FPNeg(Elem[operand2,index*2,esize]);
 element2 = Elem[operand1,e*2,esize];
 element3 = FPNeg(Elem[operand2,index*2+1,esize]);
 element4 = Elem[operand1,e*2,esize];
 when '11'
 element1 = Elem[operand2,index*2+1,esize];
 element2 = FPNeg(Elem[operand1,e*2+1,esize]);
 element3 = FPNeg(Elem[operand2,index*2,esize]);
 element4 = Elem[operand1,e*2+1,esize];
 result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
 result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3, StandardFPSCRValue());
 Elem[D[d+r],e*2,esize] = result1;
 Elem[D[d+r],e*2+1,esize] = result2;
```

F6.1.54 VCMP

Vector Compare compares two floating-point registers, or one floating-point register and zero. It writes the result to the FPSCR flags. These are normally transferred to the PSTATE.\{N, Z, C, V\} Condition flags by a subsequent VMRS instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28|27|26|25|24|23|22|21|20|19|18|17|16|15 | 12|11|10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 0 | 0 | Vd | 1 | 0 | size | 0 | 1 | M | 0 | Vm |

Half-precision scalar variant

Applies when size == 01.

VCMP{c}{q}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VCMP{c}{q}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VCMP{c}{q}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
case size of
   when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
   when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
   when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as if it fails the Condition code check.

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A2

| 31 | 28|27|26|25|24|23|22|21|20|19|18|17|16|15 | 12|11|10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 0 | 0 | Vd | 1 | 0 | size | 0 | 1 | 0 | 0 | (0)(0)(0)(0) |

cond | E
Half-precision scalar variant
Applies when size == 01.

\[ \text{VCMP} <c> \{<q>\}.F16 <Sd>, #0.0 \]

Single-precision scalar variant
Applies when size == 10.

\[ \text{VCMP} <c> \{<q>\}.F32 <Sd>, #0.0 \]

Double-precision scalar variant
Applies when size == 11.

\[ \text{VCMP} <c> \{<q>\}.F64 <Dd>, #0.0 \]

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
case size of
  when '01' esize = 16; d = UInt(Vd:D);
  when '10' esize = 32; d = UInt(Vd:D);
  when '11' esize = 64; d = UInt(D:Vd);

CONSTRANIED UNPREDICTABLE behavior
If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

\[
\begin{array}{cccccccccccccccc}
| 15 & 14 & 13 & 12 | | 11 & 10 & 9 & 8 | | 7 & 6 & 5 & 4 | | 3 & 2 & 1 & 0 | | 15 & 12 | | 11 & 10 & 9 & 8 | | 7 & 6 & 5 & 4 | | 3 & 0 | & 0 |
\end{array}
\]

Half-precision scalar variant
Applies when size == 01.

\[ \text{VCMP} <c> \{<q>\}.F16 <Sd>, <Sm> \]

Single-precision scalar variant
Applies when size == 10.

\[ \text{VCMP} <c> \{<q>\}.F32 <Sd>, <Sm> \]

Double-precision scalar variant
Applies when size == 11.

\[ \text{VCMP} <c> \{<q>\}.F64 <Dd>, <Dm> \]
Decode for all variants of this encoding

if size == '00' || (size == '01' & HaveFP16Ext()) then UNDEFINED;
if size == '01' & InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' & InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1</td>
<td>D</td>
<td>1 1 0 1 0 1</td>
<td>Vd</td>
<td>1 0</td>
<td>size</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.
VOMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.
VOMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.
VOMP{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

if size == '00' || (size == '01' & HaveFP16Ext()) then UNDEFINED;
if size == '01' & InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' & InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

111011101
0x0
D
0x0
110
101
Vd
10
size
0
1
0
0
0
0
0
0
1
5
1
4
1
3
1
2
1
1
1
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
1
5
1
2
1
1
1
0
9
8
7
6
5
4
3
2
1
0

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<
Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
    bits(4) nzcv;
    case esize of
        when 16
            bits(16) op16 = if with_zero then FPZero(0) else S[m]<15:0>;
            nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR);
        when 32
            bits(32) op32 = if with_zero then FPZero(0) else S[m];
            nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR);
        when 64
            bits(64) op64 = if with_zero then FPZero(0) else D[m];
            nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR);
    FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information
The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. An unordered comparison sets the

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.55   VCMPE

Vector Compare, raising Invalid Operation on NaN compares two floating-point registers, or one floating-point register and zero. It writes the result to the FPSCR flags. These are normally transferred to the PSTATE.\{N, Z, C, V\} Condition flags by a subsequent VMRS instruction.

This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of NaN.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 0 | Vd | 1 | 0 | size | 1 | 1 | M | 0 | Vm |

cond E

Half-precision scalar variant
Applies when size == 01.
VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior
If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A2

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 0 | Vd | 1 | 0 | size | 1 | 1 | M | 0 | Vm |

cond E
Half-precision scalar variant
Applies when size == 01.
VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant
Applies when size == 10.
VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant
Applies when size == 11.
VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
case size of
  when '01' esize = 16; d = UInt(Vd:D);
  when '10' esize = 32; d = UInt(Vd:D);
  when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && cond != '1110', then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 10 9 8|7 6 5 4|3 0|
|1 1 1 0 1 1 0 1|D 1 1 0 1 0 0|Vd 1 0|size 1 1|M 0|Vm|

Half-precision scalar variant
Applies when size == 01.
VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

if size == '00' || (size == '01' & & HaveFP16Ext()) then UNDEFINED;
if size == '01' & & InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' & & InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1 D 1 0 1 0 1 1 0</td>
<td>Vd 1 0</td>
<td>size 1 1 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.
VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar variant

Applies when size == 10.
VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar variant

Applies when size == 11.
VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

Decode for all variants of this encoding

if size == '00' || (size == '01' & & HaveFP16Ext()) then UNDEFINED;
if size == '01' & & InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' & & InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- $<c>$: See Standard assembler syntax fields on page F2-4120.
- $<q>$: See Standard assembler syntax fields on page F2-4120.
- $<Sd>$: Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- $<Sm>$: Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
- $<Dd>$: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- $<Dm>$: Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
  bits(4) nzcv;
  case esize of
    when 16
      bits(16) op16 = if with_zero then FPZero('0') else S[m]<15:0>;
      nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR);
    when 32
      bits(32) op32 = if with_zero then FPZero('0') else S[m];
      nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR);
    when 64
      bits(64) op64 = if with_zero then FPZero('0') else D[m];
      nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR);
  endcase;
  FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of $<, ==, >$ or unordered. If either or both of the operands is a NaN, they are unordered, and all three of $(\text{Operand1} < \text{Operand2})$, $(\text{Operand1} == \text{Operand2})$ and $(\text{Operand1} > \text{Operand2})$ are false. An unordered comparison sets the

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.56   VCNT

Vector Count Set Bits counts the number of bits that are one in each element in a vector, and places the results in a second vector.

The operand vector elements must be 8-bit fields.

The result vector elements are 8-bit integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
64-bit SIMD vector variant
Applies when Q == 0.
VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant
Applies when Q == 1.
VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

Decode for all variants of this encoding
if size != '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8; elements = 8;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

```
64-bit SIMD vector variant
Applies when Q == 0.
VCNT{<c>}{<q>}.8 <Dd>, <Dm> // Encoded as Q = 0

128-bit SIMD vector variant
Applies when Q == 1.
VCNT{<c>}{<q>}.8 <Qd>, <Qm> // Encoded as Q = 1

Decode for all variants of this encoding
if size != '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8; elements = 8;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```
Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qm>` Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D+d+r,e,esize] = BitCount(Elem[D+m+r,e,esize]<esize-1:0>);
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.57 VCVT (from single-precision to BFloat16, Advanced SIMD)

Vector Convert from single-precision to BFloat16 converts each 32-bit element in a vector from single-precision floating-point to BFloat16 format, and writes the result into a second vector. The result vector elements are half the width of the source vector elements.

Unlike the BFloat16 multiplication instructions, this instruction uses the Round to Nearest rounding mode, and can generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.

A1

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td>D 1 1 0 1 1 0</td>
<td>Vd 0 1 1 0 0</td>
<td>1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer m = UInt(M:Vm);

T1

ARMv8.6

| 15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 |12|11 10 9 8|7 6 5 4|3 0 |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1 1 1 1 1 1 1 1 | D 1 1 0 1 1 0 | Vd 0 1 1 0 0 | 1 | M 0 | Vm |

T1 variant

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer m = UInt(M:Vm);

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>\times 2.
Operation for all encodings

bits(128) operand;
bits(64) result;

if ConditionPassed() then
    EncodingSpecificOperations();
    CheckAdvSIMDEnabled();

    operand = Q[m>>1];
    for e = 0 to 3
        bits(32) op = Elem[operand, e, 32];
        Elem[result, e, 16] = FPConvertBF(op, StandardFPSCRValue());
    D[d] = result;
F6.1.58  VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision does one of the following:

- Converts the value in a double-precision register to single-precision and writes the result to a single-precision register.
- Converts the value in a single-precision register to double-precision and writes the result to a double-precision register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1 1 1 0 1</td>
<td>D 1 1 0</td>
<td>1 1 1</td>
<td>Vd</td>
<td>1 0 1 x</td>
<td>1 1</td>
<td>M 0</td>
<td>Vm</td>
</tr>
</tbody>
</table>

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

double_to_single = (size == '11');
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1 0</td>
<td>1 1 1</td>
<td>Vd</td>
<td>1 0 1 x</td>
<td>1 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

Single-precision to double-precision variant

Applies when size == 10.

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision variant

Applies when size == 11.

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

Decode for all variants of this encoding

double_to_single = (size == '11');
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);
Assembler symbols

<>  See Standard assembler syntax fields on page F2-4120.

<q>  See Standard assembler syntax fields on page F2-4120.

<sd>  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<d>  Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<dd>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<sm>  Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckVFPEnabled(TRUE);
    if double_to_single then
        S[<d>] = FPConvert(D[<m>], FPSCR);
    else
        D[<d>] = FPConvert(S[<m>], FPSCR);
F6.1.59   VCVT (between half-precision and single-precision, Advanced SIMD)

Vector Convert between half-precision and single-precision converts each element in a vector from single-precision to half-precision floating-point, or from half-precision to single-precision, and places the results in a second vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

if size != '01' then UNDEFINED;
half_to_single = (op == '1');
if half_to_single && Vd<0> == '1' then UNDEFINED;
if !half_to_single && Vm<0> == '1' then UNDEFINED;
esize = 16; elements = 4;
m = UInt(M:Vm); d = UInt(D:Vd);

T1

Half-precision to single-precision variant

Applies when op == 1.

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // Encoded as op = 1

Single-precision to half-precision variant

Applies when op == 0.

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // Encoded as op = 0

Decode for all variants of this encoding

if size != '01' then UNDEFINED;
half_to_single = (op == '1');
if half_to_single && Vd<0> == '1' then UNDEFINED;
if !half_to_single && Vm<0> == '1' then UNDEFINED;
esize = 16; elements = 4;
m = UInt(M:Vm); d = UInt(D:Vd);
Assembler symbols

<i>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.
</i>

<q>
See Standard assembler syntax fields on page F2-4120.
</q>

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckAdvSIMDEnabled();
  for e = 0 to elements-1
      if half_to_single then
          Elem[Q[d>>1],e,32] = FPConvert(Elem[Din[m],e,16], StandardFPSCRValue());
      else
          Elem[Q[d],e,16] = FPConvert(Elem[Qin[m>>1],e,32], StandardFPSCRValue());

F6.1.60  VCVT (between floating-point and integer, Advanced SIMD)

Vector Convert between floating-point and integer converts each element in a vector from floating-point to integer, or from integer to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are distinct.

The floating-point to integer operation uses the Round towards Zero rounding mode. The integer to floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8|7 6 5 4|3 0 | 1 1 1 1 0 0 1 1 | D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
to_integer = (op<1> == '1'); unsigned = (op<0> == '1');</tt>
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 10 9 8|7 6 5 4|3 0 | 1 1 1 1 1 1 1 1 | D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>
Decoding for all variants of this encoding

```plaintext
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
to_integer = (opc> == '1'); unsigned = (op<0> == '1');
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
end case;
```

**CONSTRAINED UNPREDICTABLE behavior**

If `size == '01' && InITBlock()`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt1>` Is the data type for the elements of the destination vector, encoded in the "size:op" field. It can have the following values:
  - F16 when size = 01, op = 0x
  - S16 when size = 01, op = 10
  - U16 when size = 01, op = 11
  - F32 when size = 10, op = 0x
  - S32 when size = 10, op = 10
  - U32 when size = 10, op = 11
- `<dt2>` Is the data type for the elements of the source vector, encoded in the "size:op" field. It can have the following values:
  - S16 when size = 01, op = 00
  - U16 when size = 01, op = 01
  - F16 when size = 01, op = 1x
  - S32 when size = 10, op = 00
  - U32 when size = 10, op = 01
  - F32 when size = 10, op = 1x
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qm>` Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Mm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    bits(esize) result;
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[D[m+r],e,esize];
            if to_integer then
                result = FPtoFixed(op1, 0, unsigned, StandardFPSCRValue(), FPRounding_ZERO);
            else
                result = FixedToFP(op1, 0, unsigned, StandardFPSCRValue(), FPRounding_TIEEVEN);
            Elem[D[d+r],e,esize] = result;
F6.1.61   VCVT (floating-point to integer, floating-point)

Convert floating-point to integer with Round towards Zero converts a value in a register from floating-point to a 32-bit integer, using the Round towards Zero rounding mode, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 18 16|15 |12|11 10 9 | 8 | 7 6 5 4 | 3 | 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 1 | 0 | x | Vd | 1 | 0 | size | 1 | 1 | M | 0 | Vm |
| cond | opc2 | op |

**Half-precision scalar variant**

Applies when opc2 == 100 \&\& size == 01.

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

**Half-precision scalar variant**

Applies when opc2 == 101 \&\& size == 01.

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

**Single-precision scalar variant**

Applies when opc2 == 100 \&\& size == 10.

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

**Single-precision scalar variant**

Applies when opc2 == 101 \&\& size == 10.

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

**Double-precision scalar variant**

Applies when opc2 == 100 \&\& size == 11.

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Sm>

**Double-precision scalar variant**

Applies when opc2 == 101 \&\& size == 11.

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Sm>

**Decode for all variants of this encoding**

if opc2 != '000' \&\& opc2 != '10x' then SEE "Related encodings";
if size == '00' | | (size == '01' \&\& !HaveFP16Ext()) then UNDEFINED;
if size == '01' \&\& cond != '1110' then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
    unsigned = (opc2<0> == '0');
    rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
d = UInt(Vd:D);
case size of
when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);
else
  unsigned = (op == '0');
  rounding = FPRoundingMode(FPSCR);
  m = UInt(Vm:M);
  case size of
    when '01' esize = 16; d = UInt(Vd:D);
    when '10' esize = 32; d = UInt(Vd:D);
    when '11' esize = 64; d = UInt(D:Vd);
  end

CONSTRANDED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**T1**

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>1 1 0 1</td>
<td>D 1 1</td>
<td>x Vd 1</td>
<td>0 size 1 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

**Half-precision scalar variant**

Applies when opc2 == 100 && size == 01.

`VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>`

**Half-precision scalar variant**

Applies when opc2 == 101 && size == 01.

`VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>`

**Single-precision scalar variant**

Applies when opc2 == 100 && size == 10.

`VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>`

**Single-precision scalar variant**

Applies when opc2 == 101 && size == 10.

`VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>`

**Double-precision scalar variant**

Applies when opc2 == 100 && size == 11.

`VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>`

**Double-precision scalar variant**

Applies when opc2 == 101 && size == 11.

`VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>`
Decode for all variants of this encoding

if opc2 != '000' & opc2 != '10x' then SEE "Related encodings";
if size == '00' || (size == '01' & !HaveFP16Ext()) then UNDEFINED;
if size == '01' & InITBlock() then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
  unsigned = (opc2<0> == '0');
  rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
  d = UInt(Vd:D);
  case size of
    when '01' esize = 16; m = UInt(Vm:M);
    when '10' esize = 32; m = UInt(Vm:M);
    when '11' esize = 64; m = UInt(M:Vm);
  else
    unsigned = (op == '0');
    rounding = FPRoundingMode(FPSCR);
    m = UInt(Vm:M);
  case size of
    when '01' esize = 16; d = UInt(Vd:D);
    when '10' esize = 32; d = UInt(Vd:D);
    when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' & InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4178 for the T32 instruction set, or Floating-point data-processing on page F4-4256 for the A32 instruction set.

Assembler symbols

<-> See Standard assembler syntax fields on page F2-4120.
<op> See Standard assembler syntax fields on page F2-4120.
<sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
<dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
  if to_integer then
    case esize of
      when 16
        S[d] = FPtoFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
      when 32
        S[d] = FPtoFixed(S[m], 0, unsigned, FPSCR, rounding);
      when 64
        S[d] = FPtoFixed(D[m], 0, unsigned, FPSCR, rounding);
    else
      case esize of
        when 16
          // Further cases...

bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
S[d] = Zeros(16):fp16;
when 32
  S[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
when 64
  D[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
F6.1.62 VCVT (integer to floating-point, floating-point)

Convert integer to floating-point converts a 32-bit integer to floating-point using the rounding mode specified by the FPSCR, and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28 27 26 25 24 23 22 21 20 19 18 16 15 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1 1 1 0 1 D 1 1 0 0 0</td>
<td>Vd 1 0 size op 1 M 0 Vm</td>
</tr>
</tbody>
</table>

**Half-precision scalar variant**

Applies when size == 01.

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

**Double-precision scalar variant**

Applies when size == 11.

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

**Decode for all variants of this encoding**

if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
  unsigned = (opc2<0> == '0');
  rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
  d = UInt(Vd:D);
  case size of
    when '01' esize = 16; m = UInt(Vm:M);
    when '10' esize = 32; m = UInt(Vm:M);
    when '11' esize = 64; m = UInt(M:Vm);
  else
    unsigned = (op == '0');
    rounding = FPRoundingMode(FPSCR);
    m = UInt(Vm:M);
    case size of
      when '01' esize = 16; d = UInt(Vd:D);
      when '10' esize = 32; d = UInt(Vd:D);
      when '11' esize = 64; d = UInt(D:Vd);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && cond != '1110', then one of the following behaviors must occur:
- The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

### T1

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4|3 2 | 0 |15 |
| 1 1 1 0 1 1 1 0 | 1 | 1 | 1 0 0 0 | Vd | 1 | 0 | size | op | 1 | 0 | M | 0 | Vm |
```

**Half-precision scalar variant**

Applies when size == 01.

\[ \text{VCVT}\{<c>\}\{<q>\}.F16.<dt> <Sd>, <Sm> \]

**Single-precision scalar variant**

Applies when size == 10.

\[ \text{VCVT}\{<c>\}\{<q>\}.F32.<dt> <Sd>, <Sm> \]

**Double-precision scalar variant**

Applies when size == 11.

\[ \text{VCVT}\{<c>\}\{<q>\}.F64.<dt> <Db>, <Sm> \]

**Decode for all variants of this encoding**

```
if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
 unsigned = (opc2<0> == '0');
 rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
 d = UInt(Vd:D);
case size of
 when '01' esize = 16; m = UInt(Vm:M);
 when '10' esize = 32; m = UInt(Vm:M);
 when '11' esize = 64; m = UInt(M:Vm);
 else
 unsigned = (op == '0');
 rounding = FPRoundingMode(FPSCR);
 m = UInt(Vm:M);
case size of
 when '01' esize = 16; d = UInt(Vd:D);
 when '10' esize = 32; d = UInt(Vd:D);
 when '11' esize = 64; d = UInt(D:Vd);
```

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4178 for the T32 instruction set, or Floating-point data-processing on page F4-4256 for the A32 instruction set.

Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the operand, encoded in the "op" field. It can have the following values:

\[
\begin{align*}
\text{U32} & \quad \text{when } \text{op} = 0 \\
\text{S32} & \quad \text{when } \text{op} = 1 \\
\end{align*}
\]

<Sd>
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm>
Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();  CheckVFPEnabled(TRUE);
  if to_integer then
    case esize of
      when 16
        S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
      when 32
        S[d] = FPToFixed(S[m], 0, unsigned, FPSCR, rounding);
      when 64
        S[d] = FPToFixed(D[m], 0, unsigned, FPSCR, rounding);
    else
      case esize of
        when 16
          bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
          S[d] = Zeros(16):fp16;
        when 32
          S[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
        when 64
          D[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
      endcase
    endcase
F6.1.63  VCVT (between floating-point and fixed-point, Advanced SIMD)

Vector Convert between floating-point and fixed-point converts each element in a vector from floating-point to fixed-point, or from fixed-point to floating-point, and places the results in a second vector.

The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are distinct.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>[31 30 29 28][27 26 25 24][23 22 21]</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>D</td>
<td>imm6</td>
<td>Vd</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant
Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector variant
Applies when imm6 != 000xxx && Q == 1.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

Decode for all variants of this encoding
if imm6 == '000xxx' then SEE "Related encodings";
if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
if op<1> == '0' && imm6 == '10xxxx' then UNDEFINED;
if imm6 == '0xxxxx' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
to_fixed = (op<0> == '1');  frac_bits = 64 - UInt(imm6);
unsigned = (U == '1');
case op<1> of
  when '0' esize = 16; elements = 4;
  when '1' esize = 32; elements = 2;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>[15 14 13 12][11 10 9 8][7 6 5]</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>D</td>
<td>imm6</td>
<td>Vd</td>
<td>1</td>
<td>1</td>
<td>op</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant
Applies when imm6 != 000xxx && Q == 0.

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector variant
Applies when imm6 != 000xxx && Q == 1.
VCVT{<c>}{<q>}.<dt1>..<dt2> <Qd>, <Qm>, #<fbits>

**Decode for all variants of this encoding**

if imm6 == '0000xx' then SEE "Related encodings";
if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
if op<1> == '0' && imm6 == '10xxxx' then UNDEFINED;
if imm6 == '0xxxxx' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
to_fixed = (op<0> == '1');  frac_bits = 64 - UINT(imm6);
unsigned = (U == '1');
case op<1> of
  when '0' esize = 16; elements = 4;
  when '1' esize = 32; elements = 2;
  d = UINT(D:Vd);  m = UINT(M:Vm);  regs = if Q == '0' then 1 else 2;

**Notes for all encodings**

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

**Assembler symbols**

- For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1: see Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.

- Is the data type for the elements of the destination vector, encoded in the "op:U" field. It can have the following values:
  - F16 when op = 00, U = x
  - S16 when op = 01, U = 0
  - U16 when op = 01, U = 1
  - F32 when op = 10, U = x
  - S32 when op = 11, U = 0
  - U32 when op = 11, U = 1

- Is the data type for the elements of the source vector, encoded in the "op:U" field. It can have the following values:
  - S16 when op = 00, U = 0
  - U16 when op = 00, U = 1
  - F16 when op = 01, U = x
  - S32 when op = 10, U = 0
  - U32 when op = 10, U = 1
  - F32 when op = 11, U = x

- Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
<fbits> The number of fraction bits in the fixed point number, in the range 1 to 32 for 32-bit elements, or in the range 1 to 16 for 16-bit elements:
• (64 - <fbits>) is encoded in imm6.

An assembler can permit an <fbits> value of 0. This is encoded as floating-point to integer or integer to floating-point instruction, see VCVT (between floating-point and integer, Advanced SIMD).

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    bits(esize) result;
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[D[m+r],e,esize];
            if to_fixed then
                result = FPToFixed(op1, frac_bits, unsigned, StandardFPSCRValue(),
                                    FPRounding_ZERO);
            else
                result = FixedToFP(op1, frac_bits, unsigned, StandardFPSCRValue(),
                                    FPRounding_TIEEVEN);
            Elem[D[d+r],e,esize] = result;
F6.1.64 VCVT (between floating-point and fixed-point, floating-point)

Convert between floating-point and fixed-point converts a value in a register from floating-point to fixed-point, or from fixed-point to floating-point. Software can specify the fixed-point value as either signed or unsigned.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values sign-extend the result value to the destination register width. Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point operation uses the Round to Nearest rounding mode.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>op</td>
<td>1</td>
<td>U</td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>sf</td>
<td>sx</td>
<td>1</td>
<td>0</td>
<td>imm4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cond

**Half-precision scalar variant**

Applies when op == 0 && sf == 01.

VCVT{<c>}{<q>}.F16. dt <Sdm>, <Sdm>, #<fbits>

**Half-precision scalar variant**

Applies when op == 1 && sf == 01.

VCVT{<c>}{<q>}.F16 <Sdm>, <Sdm>, #<fbits>

**Single-precision scalar variant**

Applies when op == 0 && sf == 10.

VCVT{<c>}{<q>}.F32. dt <Sdm>, <Sdm>, #<fbits>

**Single-precision scalar variant**

Applies when op == 1 && sf == 10.

VCVT{<c>}{<q>}.F32 <Sdm>, <Sdm>, #<fbits>

**Double-precision scalar variant**

Applies when op == 0 && sf == 11.

VCVT{<c>}{<q>}.F64. dt <Ddm>, <Ddm>, #<fbits>

**Double-precision scalar variant**

Applies when op == 1 && sf == 11.

VCVT{<c>}{<q>}.F64 <Ddm>, <Ddm>, #<fbits>

**Decode for all variants of this encoding**

if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
if sf == '01' && cond != '1110' then UNPREDICTABLE;
to_fixed = (op == '1'); unsigned = (U == '1');
size = if sx == '0' then 16 else 32;
frac_bits = size - UInt(imm4:i);
case sf of
  when '01' fp_size = 16; d = UInt(Vd:D);
  when '10' fp_size = 32; d = UInt(Vd:D);
  when '11' fp_size = 64; d = UInt(D:Vd);
if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 1 0 15 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1 D 1 1 1 op U Vd 1 0 sf sx 1</td>
<td>0 imm4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant
Applies when op == 0 && sf == 01.
VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar variant
Applies when op == 1 && sf == 01.
VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant
Applies when op == 0 && sf == 10.
VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar variant
Applies when op == 1 && sf == 10.
VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar variant
Applies when op == 0 && sf == 11.
VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar variant
Applies when op == 1 && sf == 11.
VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>
Decode for all variants of this encoding

if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
if sf == '01' && InITBlock() then UNPREDICTABLE;
to_fixed = (op == '1'); unsigned = (U == '1');
size = if sx == '0' then 16 else 32;
frac_bits = size - UInt(imm4:i);
case sf of
    when '01' fp_size = 16; d = UInt(Vd:D);
    when '10' fp_size = 32; d = UInt(Vd:D);
    when '11' fp_size = 64; d = UInt(D:Vd);
if frac_bits < 0 then UNPREDICTABLE;

CONSTRUANED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRUANED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VCVT (between floating-point and fixed-point) on page K1-7956.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the fixed-point number, encoded in the "U:sx" field. It can have the following values:
S16 when U = 0, sx = 0
S32 when U = 0, sx = 1
U16 when U = 1, sx = 0
U32 when U = 1, sx = 1
<Sdm> Is the 32-bit name of the SIMD&FP destination and source register, encoded in the "Vd:D" field.
<Ddm> Is the 64-bit name of the SIMD&FP destination and source register, encoded in the "D:Vd" field.
<fbits> The number of fraction bits in the fixed-point number:
• If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in [imm4, i]
• If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in [imm4, i].

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_fixed then
    bits(size) result;
    case fp_size of
        when 16
            result = FPToFixed(S[d]<15:0>, frac_bits, unsigned, FPSCR, FPRounding_ZERO);
            S[d] = Extend(result, 32, unsigned);
        when 32
            result = FPToFixed(S[d]<31:0>, frac_bits, unsigned, FPSCR, FPRounding_ZERO);
            S[d] = Extend(result, 32, unsigned);
result = FPToFixed(S[d], frac_bits, unsigned, FPSCR, FPRounding_ZERO);
S[d] = Extend(result, 32, unsigned);
when 64
result = FPToFixed(D[d], frac_bits, unsigned, FPSCR, FPRounding_ZERO);
D[d] = Extend(result, 64, unsigned);
else
  case fp_size of
    when 16
      bits(16) fp16 = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR, FPRounding_TIEEVEN);
      S[d] = Zeros(16):fp16;
    when 32
      S[d] = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR, FPRounding_TIEEVEN);
    when 64
      D[d] = FixedToFP(D[d]<size-1:0>, frac_bits, unsigned, FPSCR, FPRounding_TIEEVEN);
F6.1.65 VCVTA (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest with Ties to Away converts each element in a vector from floating-point to integer using the Round to Nearest with Ties to Away rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>
**Decode for all variants of this encoding**

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecoderRM(RM); unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
  d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

**CONSTRAINED UNPREDICTABLE behavior**

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the following values:
  S16 when op = 0, size = 01
  S32 when op = 0, size = 10
  U16 when op = 1, size = 01
  U32 when op = 1, size = 10
<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the following values:
  F16 when size = 01
  F32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Om> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1
  for e = 0 to elements-1
    Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
                                      StandardFPSCRValue(), rounding);
F6.1.66  VCVTA (floating-point)

Convert floating-point to integer with Round to Nearest with Ties to Away converts a value in a register from floating-point to a 32-bit integer using the Round to Nearest with Ties to Away rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see \textit{Enabling Advanced SIMD and floating-point support on page G1-5812}.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 0 1 | D | 1 1 1 | 0 0 | Vd | 1 0 | l=00 | op | 1 | M | 0 | Vm |

**Half-precision scalar variant**

Applies when \texttt{size} == \texttt{01}.

\texttt{VCVTA\{<q>\}.<dt>.F16 <Sd>, <Sm>}

**Single-precision scalar variant**

Applies when \texttt{size} == \texttt{10}.

\texttt{VCVTA\{<q>\}.<dt>.F32 <Sd>, <Sm>}

**Double-precision scalar variant**

Applies when \texttt{size} == \texttt{11}.

\texttt{VCVTA\{<q>\}.<dt>.F64 <Sd>, <Sm>}

**Decode for all variants of this encoding**

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;

 rounding = FPDecoderRM(RM); unsigned = (op == '0');

d = UInt(Vd:D);

case size of

 - when '01' esize = 16; m = UInt(Vm:M);
 - when '10' esize = 32; m = UInt(Vm:M);
 - when '11' esize = 64; m = UInt(M:Vm);

T1

| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 0 1 | D | 1 1 1 | 0 0 | Vd | 1 0 | l=00 | op | 1 | M | 0 | Vm |

**Half-precision scalar variant**

Applies when \texttt{size} == \texttt{01}.

\texttt{VCVTA\{<q>\}.<dt>.F16 <Sd>, <Sm>}

**Single-precision scalar variant**

Applies when \texttt{size} == \texttt{10}.

\texttt{VCVTA\{<q>\}.<dt>.F32 <Sd>, <Sm>
**Double-precision scalar variant**

Applies when \( \text{size} = 11 \).

\[ \text{VCVT}(<q>, <dt>, F64 <Sd>, <Dm>) \]

**Decode for all variants of this encoding**

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoder_RM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
case size of
  when '01' esize = 16; m = UInt(Vm:M);
  when '10' esize = 32; m = UInt(Vm:M);
  when '11' esize = 64; m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<dt>\) Is the data type for the elements of the destination, encoded in the "op" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U32</td>
<td>( \text{op} = 0 )</td>
</tr>
<tr>
<td>S32</td>
<td>( \text{op} = 1 )</td>
</tr>
</tbody>
</table>

\(<Sd>\) Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

\(<Sm>\) Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

\(<Dm>\) Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
  when 16
    \( S[d] = \text{FPToFixed}(S[m]<15:0>, 0, \text{unsigned}, \text{FPSCR}, \text{rounding}); \)
  when 32
    \( S[d] = \text{FPToFixed}(S[m], 0, \text{unsigned}, \text{FPSCR}, \text{rounding}); \)
  when 64
    \( S[d] = \text{FPToFixed}(D[m], 0, \text{unsigned}, \text{FPSCR}, \text{rounding}); \)
F6.1.67 VCVTB

Convert to or from a half-precision value in the bottom half of a single-precision register does one of the following:

- Converts the half-precision value in the bottom half of a single-precision register to single-precision and writes the result to a single-precision register.
- Converts the half-precision value in the bottom half of a single-precision register to double-precision and writes the result to a double-precision register.
- Converts the single-precision value in a single-precision register to half-precision and writes the result into the bottom half of a single-precision register, preserving the other half of the destination register.
- Converts the double-precision value in a double-precision register to half-precision and writes the result into the bottom half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|cond| 31 28| 27 26 25 24| 23 22 21 20| 19 18 17 16| 15 12 11 10 9 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|
|    | 1111|   1  1  0  1 |   D  1  1  0  0  1 |   op |   Vd |   1  0  1 |   sz 0 |   M 0 |   Vm |

**Half-precision to single-precision variant**

Applies when \( op = 0 \) \&\& \( sz = 0 \).

\( \text{VCVTB}\{<c>\}{<q}>.F32.F16 <Sd>, <Sm> \)

**Half-precision to double-precision variant**

Applies when \( op = 0 \) \&\& \( sz = 1 \).

\( \text{VCVTB}\{<c>\}{<q}>.F64.F16 <Dd>, <Sm> \)

**Single-precision to half-precision variant**

Applies when \( op = 1 \) \&\& \( sz = 0 \).

\( \text{VCVTB}\{<c>\}{<q}>.F16.F32 <Sd>, <Sm> \)

**Double-precision to half-precision variant**

Applies when \( op = 1 \) \&\& \( sz = 1 \).

\( \text{VCVTB}\{<c>\}{<q}>.F16.F64 <Sd>, <Sm> \)

**Decode for all variants of this encoding**

\[ \begin{align*}
\text{uses_double} &= (sz = '1'); \text{convert_from_half} = (op = '0'); \\
\text{lowbit} &= (if \ T = '1' \ then \ 16 \ else \ 0); \\
if \ \text{uses_double} \ then \\
if \ \text{convert_from_half} \ then \\
\quad d = \text{UInt}(D:Vd); \ m = \text{UInt}(M:Vm); \\
\quad d = \text{UInt}(Vd:D); \ m = \text{UInt}(M:Vm); \\
else \\
\quad d = \text{UInt}(Vd:D); \ m = \text{UInt}(Vm:M); \\
else \\
\quad d = \text{UInt}(Vd:D); \ m = \text{UInt}(Vm:M); \\
\end{align*} \]
T1

```
<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>op</td>
<td>Vd</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>M</td>
<td>0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>
```

**Half-precision to single-precision variant**
Applies when `op == 0 && sz == 0`.

`VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>`

**Half-precision to double-precision variant**
Applies when `op == 0 && sz == 1`.

`VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>`

**Single-precision to half-precision variant**
Applies when `op == 1 && sz == 0`.

`VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>`

**Double-precision to half-precision variant**
Applies when `op == 1 && sz == 1`.

`VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>`

**Decode for all variants of this encoding**

```
uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
else
 d = UInt(Vd:D); m = UInt(Vm:M);
```

**Assembler symbols**

- `<c>` See [Standard assembler syntax fields](#) on page F2-4120.
- `<q>` See [Standard assembler syntax fields](#) on page F2-4120.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
- `<Sm>` Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

**Operation for all encodings**

```
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;
 if convert_from_half then
 hp = S[m]<lowbit:IS:lowbit>;
 if uses_double then
```
D[d] = FPConvert(hp, FPSCR);
else
  S[d] = FPConvert(hp, FPSCR);
else
  if uses_double then
    hp = FPConvert(D[m], FPSCR);
  else
    hp = FPConvert(S[m], FPSCR);
  S[d]<lowbit+15:lowbit> = hp;
F6.1.68   VCVTB (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result into the bottom half of a single precision register, preserving the top 16 bits of the destination register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPSCR.

A1

ARMv8.6

![Instruction Format](image)

A1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

T1

ARMv8.6

![Instruction Format](image)

T1 variant

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

Assembler symbols

< following fields are not part of the encoding, and are used in assembly language to specify which registers to use. They are not part of the instruction encoding.

See Standard assembler syntax fields on page F2-4120.

<pf> See Standard assembler syntax fields on page F2-4120.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    CheckVFPEnabled(TRUE);

    \( S[d]<15:0> = \text{FPConvertBF}(S[m], \text{FPSCR}); \)
F6.1.69  VCVTM (Advanced SIMD)

Vector Convert floating-point to integer with Round towards -Infinity converts each element in a vector from floating-point to integer using the Round towards -Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM);  unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN ('00', '11') then UNDEFINED;
rounding = FPDekodeRM(RM); unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the following values:
  S16 when op = 0, size = 01
  S32 when op = 0, size = 10
  U16 when op = 1, size = 01
  U32 when op = 1, size = 10
<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the following values:
  F16 when size = 01
  F32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Mm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bites(esize) result;
for r = 0 to regs-1
  for e = 0 to elements-1
    Elem[0][d+r],e,esize] = FPToFixed(Elem[0][m+r],e,esize], 0, unsigned,
    StandardFPScrValue(), rounding);
F6.1.70 VCVTM (floating-point)

Convert floating-point to integer with Round towards -Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards -Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8 7 6 5 4 |3 0 |
| 1 1 1 1 1 1 1 0 | D | 1 1 1 1 1 1 | Vd | 1 0 | !=00 | op | 1 | M | 0 | Vm |
```

RM size

Half-precision scalar variant

Applies when size == 01.

`VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>`

Single-precision scalar variant

Applies when size == 10.

`VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>`

Double-precision scalar variant

Applies when size == 11.

`VCVTM{<q>}.<dt>.F64 <Sd>, <Sm>`

Decode for all variants of this encoding

if size == '00' || (size == '01' & & !HaveFP16Ext()) then UNDEFINED;

    rounding = FPDecoderRM(RM);
    unsigned = (op == '0');
    d = UInt(Vd:D);
    case size of
        when '01' esize = 16; m = UInt(Vm:M);
        when '10' esize = 32; m = UInt(Vm:M);
        when '11' esize = 64; m = UInt(M:Vm);

T1

```
| 15 14 13 12|11 10 9 8 7 6 5 4 |3 2 1 0 |15 12|11 10 9 8 7 6 5 4 |3 0 |
| 1 1 1 1 1 1 0 1 | D | 1 1 1 1 1 1 | Vd | 1 0 | !=00 | op | 1 | M | 0 | Vm |
```

RM size

Half-precision scalar variant

Applies when size == 01.

`VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>`

Single-precision scalar variant

Applies when size == 10.

`VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>`
Double-precision scalar variant

Applies when size == 11.

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
case size of
  when '01' esize = 16; m = UInt(Vm:M);
  when '10' esize = 32; m = UInt(Vm:M);
  when '11' esize = 64; m = UInt(M:Vm);

CONSTRANDED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the following values:
  U32 when op = 0
  S32 when op = 1
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
  when 16
    S[d] = FPtoFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
  when 32
    S[d] = FPtoFixed(S[m], 0, unsigned, FPSCR, rounding);
  when 64
    S[d] = FPtoFixed(D[m], 0, unsigned, FPSCR, rounding);
F6.1.71 VCVTN (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest converts each element in a vector from floating-point to integer using the Round to Nearest rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPPDecodeRM(RM); unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
  d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' & !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecoderRM(RM); unsigned = (op == '1');
case size of
when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the following values:
S16 when op = 0, size = 01
S32 when op = 0, size = 10
U16 when op = 1, size = 01
U32 when op = 1, size = 10
<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the following values:
F16 when size = 01
F32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bias(esize) result;
for r = 0 to regs-1
for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,
StandardFPSCRValue(), rounding);
F6.1.72 VCVTN (floating-point)

Convert floating-point to integer with Round to Nearest converts a value in a register from floating-point to a 32-bit integer using the Round to Nearest rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Half-precision scalar variant
Applies when $size == 01$.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when $size == 10$.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar variant
Applies when $size == 11$.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if $size == '00' || (size == '01' && !HaveFP16Ext())$ then UNDEFINED;

$\text{rounding} = \text{FPDecodeRM}(\text{RM}); \ \text{unsigned} = (\text{op} == '0')$;

d = UInt(Vd:D);

case size of
    when '01' esize = 16; m = UInt(Vm:M);
    when '10' esize = 32; m = UInt(Vm:M);
    when '11' esize = 64; m = UInt(M:Vm);

T1

Half-precision scalar variant
Applies when $size == 01$.

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when $size == 10$.

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>
Double-precision scalar variant

Applies when size == 11.

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoderRM(RM); unsigned = (op == '0');
d = Uint(Vd:D);
case size of
  when '01' esize = 16; m = Uint(Vm:M);
  when '10' esize = 32; m = Uint(Vm:M);
  when '11' esize = 64; m = Uint(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the following values:
  U32 when op = 0
  S32 when op = 1
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
  when 16
    S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
  when 32
    S[d] = FPToFixed(S[m], 0, unsigned, FPSCR, rounding);
  when 64
    S[d] = FPToFixed(D[m], 0, unsigned, FPSCR, rounding);
F6.1.73   VCVTP (Advanced SIMD)

Vector Convert floating-point to integer with Round towards +Infinity converts each element in a vector from floating-point to integer using the Round towards +Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned integers are distinct.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|     | 1 | 1 | 1 | 0 | 0 | 1 | 1 | D | 1 | 1 | size | 1 | 1 | Vd | 0 | 0 | 1 | 0 | op | Q | M | 0 | Vm |
| RM  |   |   |   |   |   |   |   |   |   |   |      |   |   |    |   |   |   |   |   |   |   |   |   |

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecoderRM(RM);  unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;
T1

|     | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RM  |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

64-bit SIMD vector variant

Applies when Q == 0.

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDegodeRM(RM); unsigned = (op == '1');
case size of
  when '01' esize = 16; elements = 4;
  when '10' esize = 32; elements = 2;
  d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op:size" field. It can have the following values:
  S16 when op = 0, size = 01
  S32 when op = 0, size = 10
  U16 when op = 1, size = 01
  U32 when op = 1, size = 10
<dt2> Is the data type for the elements of the source vector, encoded in the "size" field. It can have the following values:
  F16 when size = 01
  F32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1
  for e = 0 to elements-1
    Elem[D+d+r],e,esize] = FPToFixed(Elem[D+m+r],e,esize], 0, unsigned,
    StandardFPSCRValue(), rounding);
F6.1.74   VCVTP (floating-point)

Convert floating-point to integer with Round towards +Infinity converts a value in a register from floating-point to a 32-bit integer using the Round towards +Infinity rounding mode, and places the result in a second register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12 11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|           | 1 1 1 1| 1 1 1 1| 1 1 0|D | 1 1 1 1| 1 0| Vd | 1 0| l=00| op | 1 | M | 0 | Vm |

**Half-precision scalar variant**

Applies when size == 01.

VCVT{<q>}.<dt>.F16 <Sd>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VCVT{<q>}.<dt>.F32 <Sd>, <Sm>

**Double-precision scalar variant**

Applies when size == 11.

VCVT{<q>}.<dt>.F64 <Sd>, <Dm>

**Decode for all variants of this encoding**

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;

rounding = FPDcoderM(RM);  unsigned = (op == '0');

d = UInt(Vd:D);

case size of

    when '01' esize = 16; m = UInt(Vm:M);

    when '10' esize = 32; m = UInt(Vm:M);

    when '11' esize = 64; m = UInt(M:Vm);

T1

|15 14 13 12|11 10 9 8 7 6 5 4 3 2 1 0|15 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|           | 1 1 1 1| 1 1 1 1| 1 1 0|D | 1 1 1 1| 1 0| Vd | 1 0| l=00| op | 1 | M | 0 | Vm |

**Half-precision scalar variant**

Applies when size == 01.

VCVT{<q>}.<dt>.F16 <Sd>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VCVT{<q>}.<dt>.F32 <Sd>, <Sm>
Double-precision scalar variant

Applies when size == 11.

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPPrintRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
case size of
  when '01' esize = 16; m = UInt(Vm:M);
  when '10' esize = 32; m = UInt(Vm:M);
  when '11' esize = 64; m = UInt(Vm:M);

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

  • The instruction is UNDEFINED.
  • The instruction executes as if it passes the Condition code check.
  • The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the destination, encoded in the "op" field. It can have the following values:
    U32 when op = 0
    S32 when op = 1
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
  when 16
    S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
  when 32
    S[d] = FPToFixed(S[m], 0, unsigned, FPSCR, rounding);
  when 64
    S[d] = FPToFixed(D[m], 0, unsigned, FPSCR, rounding);
F6.1.75   VCVTR

Convert floating-point to integer converts a value in a register from floating-point to a 32-bit integer, using the rounding mode specified by the FPSCR and places the result in a second register.

VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit integers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Half-precision scalar variant
Applies when opc2 == 100 && size == 01.
VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant
Applies when opc2 == 101 && size == 01.
VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when opc2 == 100 && size == 10.
VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant
Applies when opc2 == 101 && size == 10.
VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant
Applies when opc2 == 100 && size == 11.
VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant
Applies when opc2 == 101 && size == 11.
VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

Decode for all variants of this encoding
if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
if size == '00' || (size == '01' & HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
  unsigned = (opc2<0> == '0');
  rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
  d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);
else
  unsigned = (op == '0');
  rounding = FPRoundingMode(FPSCR);
  m = UInt(Vm:M);
  case size of
    when '01' esize = 16; d = UInt(Vd:D);
    when '10' esize = 32; d = UInt(Vd:D);
    when '11' esize = 64; d = UInt(D:Vd);
  endcase

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1</td>
<td>D</td>
<td>1 1 1 0</td>
<td>x</td>
<td>Vd</td>
<td>1 0</td>
<td>size</td>
<td>0 1</td>
</tr>
<tr>
<td>opc2</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when opc2 == 100 && size == 01.

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar variant

Applies when opc2 == 101 && size == 01.

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 100 && size == 10.

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar variant

Applies when opc2 == 101 && size == 10.

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when opc2 == 100 && size == 11.

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar variant

Applies when opc2 == 101 && size == 11.

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>
Decode for all variants of this encoding

if opc2 != '000' && opc2 != '10x' then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
to_integer = (opc2<2> == '1');
if to_integer then
  unsigned = (opc2<0> == '0');
  rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
  d = UInt(Vd:D);
case size of
  when '01' esize = 16; m = UInt(Vm:M);
  when '10' esize = 32; m = UInt(Vm:M);
  when '11' esize = 64; m = UInt(M:Vm);
else
  unsigned = (op == '0');
  rounding = FPRoundingMode(FPSCR);
  m = UInt(Vm:M);
case size of
  when '01' esize = 16; d = UInt(Vd:D);
  when '10' esize = 32; d = UInt(Vd:D);
  when '11' esize = 64; d = UInt(D:Vd);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Floating-point data-processing on page F3-4178 for the T32 instruction set, or Floating-point data-processing on page F4-4256 for the A32 instruction set.

Assembler symbols

<c>
See Standard assembler syntax fields on page F2-4120.
<op>
See Standard assembler syntax fields on page F2-4120.
<5d>
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<5m>
Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
<6m>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
  if to_integer then
    case esize of
      when 16
        S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR, rounding);
      when 32
        S[d] = FPToFixed(S[m], 0, unsigned, FPSCR, rounding);
      when 64
        S[d] = FPToFixed(D[m], 0, unsigned, FPSCR, rounding);
    else
      case esize of
        when 16

bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
S[d] = Zeros(16):fp16;
when 32
  S[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
when 64
  D[d] = FixedToFP(S[m], 0, unsigned, FPSCR, rounding);
F6.1.76  VCVTT

Convert to or from a half-precision value in the top half of a single-precision register does one of the following:

- Converts the half-precision value in the top half of a single-precision register to single-precision and writes the result to a single-precision register.
- Converts the half-precision value in the top half of a single-precision register to double-precision and writes the result to a double-precision register.
- Converts the single-precision value in a single-precision register to half-precision and writes the result into the top half of a single-precision register, preserving the other half of the destination register.
- Converts the double-precision value in a double-precision register to half-precision and writes the result into the top half of a single-precision register, preserving the other half of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Half-precision to single-precision variant

Applies when op == 0 && sz == 0.

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision variant

Applies when op == 0 && sz == 1.

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision variant

Applies when op == 1 && sz == 0.

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision variant

Applies when op == 1 && sz == 1.

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

Decode for all variants of this encoding

uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
if uses_double then
  if convert_from_half then
    d = UInt(D:Vd); m = UInt(Vm:M);
  else
    d = UInt(Vd:D); m = UInt(M:Vm);
else
  d = UInt(Vd:D); m = UInt(Vm:M);
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 0 1</td>
<td>1 1 0 1 0</td>
<td>D</td>
<td>1 1 0 1 0</td>
<td>op</td>
<td>Vd</td>
<td>1 0</td>
<td>1</td>
</tr>
</tbody>
</table>

**Half-precision to single-precision variant**

Applies when \( op = 0 \) \&\& \( sz = 0 \).

```
VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>
```

**Half-precision to double-precision variant**

Applies when \( op = 0 \) \&\& \( sz = 1 \).

```
VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>
```

**Single-precision to half-precision variant**

Applies when \( op = 1 \) \&\& \( sz = 0 \).

```
VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>
```

**Double-precision to half-precision variant**

Applies when \( op = 1 \) \&\& \( sz = 1 \).

```
VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>
```

**Decode for all variants of this encoding**

```
uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
if uses_double then
 if convert_from_half then
 d = UInt(D:Vd); m = UInt(Vm:M);
 else
 d = UInt(Vd:D); m = UInt(M:Vm);
else
 d = UInt(Vd:D); m = UInt(Vm:M);
```

**Assembler symbols**

- `<c>`  
  See *Standard assembler syntax fields* on page F2-4120.
- `<q>`  
  See *Standard assembler syntax fields* on page F2-4120.
- `<Sd>`  
  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Dd>`  
  Is the 64-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sm>`  
  Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
- `<Dm>`  
  Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 bits(16) hp;
 if convert_from_half then
 hp = S[m]<lowbit<15:lowbit>;
 if uses_double then
```
D[d] = FPConvert(hp, FPSCR);
else
S[d] = FPConvert(hp, FPSCR);
else
if uses_double then
hp = FPConvert(D[m], FPSCR);
else
hp = FPConvert(S[m], FPSCR);
S[d]<lowbit+15:lowbit> = hp;
F6.1.77 VCVTT (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result in the top half of a single-precision register, preserving the bottom 16 bits of the register.

Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply to single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending on the enable bits in the FPSCR.

A1

ARMv8.6

```
|31|28|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
||=1111| 1|1|1|0|1|D|1|1|0|0|1|1|Vd|1|0|0|1|1|M|0|Vm|
cond
```

A1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

T1

ARMv8.6

```
|15|14|13|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |15|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|1|1|1|0|1|1|0|1|D|1|1|0|0|1|1|Vd|1|0|0|1|1|M|0|Vm|
```

T1 variant

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

Assembler symbols

- `<c>` See `Standard assembler syntax fields` on page F2-4120.
- `<q>` See `Standard assembler syntax fields` on page F2-4120.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sm>` Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();
    CheckVFPEnabled(TRUE);

    S[d]<31:16> = FPConvertBF(S[m], FPSCR);
F6.1.78   VDIV

Divide divides one floating-point value by another floating-point value and writes the result to a third floating-point register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| [31] | 28|27 26 25 24|23 22 21 20|19|16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1111 | 0 1 0 1 | 0 1 | D | 0 0 | Vn | Vd | 1 0 | size | N | 0 | M | 0 | Vm |

cond

**Half-precision scalar variant**

Applies when size == 01.

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

**Double-precision scalar variant**

Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

**Decode for all variants of this encoding**

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

| [15] | 14 13 12|11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1 | 1 1 0 | 1 | 1 | 0 | 1 | D | 0 0 | Vn | Vd | 1 0 | size | N | 0 | M | 0 | Vm |

**Half-precision scalar variant**

Applies when size == 01.
VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

**Single-precision scalar variant**
Applies when size == 10.

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

**Double-precision scalar variant**
Applies when size == 11.

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

**Decode for all variants of this encoding**

if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONstrained UNPREDICTABLE behavior**
If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

- `<c>` See [Standard assembler syntax fields on page F2-4120](#).
- `<q>` See [Standard assembler syntax fields on page F2-4120](#).
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sn>` Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
- `<Sm>` Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
  case esize of
    when 16
      S[d] = Zeros(16) : FPDIV(S[n]<15:0>, S[m]<15:0>, FPSCR);
    when 32
      S[d] = FPDIV(S[n], S[m], FPSCR);
    when 64
      D[d] = FPDIV(D[n], D[m], FPSCR);
F6.1.79  VDOT (vector)

BFloat16 floating-point (BF16) dot product (vector). This instruction delimits the source vectors into pairs of 16-bit BF16 elements. Within each pair, the elements in the first source vector are multiplied by the corresponding elements in the second source vector. The resulting single-precision products are then summed and added destructively to the single-precision element in the destination vector which aligns with the pair of BF16 values in the first source vector. The instruction does not update the FPSCR exception status.

A1

ARMv8.6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Vn</th>
<th>Vd</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Q</th>
<th>M</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Vn</td>
<td>Vd</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \( Q = 0 \).

VDOT\{<q>\}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when \( Q = 1 \).

VDOT\{<q>\}.BF16 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
if \( Q = '1' \) && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if \( Q = '1' \) then 2 else 1;

T1

ARMv8.6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Vn</th>
<th>Vd</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Q</th>
<th>M</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Vn</td>
<td>Vd</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \( Q = 0 \).

VDOT\{<q>\}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when \( Q = 1 \).

VDOT\{<q>\}.BF16 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if \( Q = '1' \) && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

**Assembler symbols**

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd> * 2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn> * 2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm> * 2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

bits(64) operand1;
bits(64) operand2;
bits(64) result;

CheckAdvSIMDEnabled();

for r = 0 to regs-1
    operand1 = Din[n+r];
    operand2 = Din[m+r];
    result = Din[d+r];
    for e = 0 to 1
        bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
        bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
        bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
        bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
        bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
        Elem[result, e, 32] = BFAdd(Elem[result, e, 32], sum);
    D[d+r] = result;
F6.1.80 VDOT (by element)

BFloat16 floating-point indexed dot product (vector, by element). This instruction delimits the source vectors into pairs of 16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the indexed pair of elements in the second source vector. The resulting single-precision products are then summed and added destructively to the single-precision element in the destination vector which aligns with the pair of BFloat16 values in the first source vector. The instruction does not update the FPSCR exception status.

**A1**

ARMv8.6

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

**128-bit SIMD vector variant**

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

**Decode for all variants of this encoding**

if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

**T1**

ARMv8.6

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when Q == 0.

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

**128-bit SIMD vector variant**

Applies when Q == 1.

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

bits(64) operand1;
bits(64) operand2;
bits(64) result;

CheckAdvSIMDEnabled();

operand2 = Din[m];
for r = 0 to regs-1
    operand1 = Din[n+r];
    result = Din[d+r];
    for e = 0 to 1
        bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
        bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
        bits(16) elt2_a = Elem[operand2, 2 * i + 0, 16];
        bits(16) elt2_b = Elem[operand2, 2 * i + 1, 16];
        bits(32) sum = BFAdd(BFMul(elt1_a, elt2_a), BFMul(elt1_b, elt2_b));
        Elem[result, e, 32] = BFAdd(Elem[result, e, 32], sum);
        D[d+r] = result;
F6.1.81 VDUP (general-purpose register)

Duplicate general-purpose register to vector duplicates an element from a general-purpose register into every element of the destination vector.

The destination vector elements can be 8-bit, 16-bit, or 32-bit fields. The source element is the least significant 8, 16, or 32 bits of the general-purpose register. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24</th>
<th>23 22 21 20 19 18 17 16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1 1 0 1 B Q 0 Vd</td>
<td>Rt 1 0 1 1 D 0 0 E 1 0 0 0 0 0</td>
</tr>
<tr>
<td>cond</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A1 variant

VDUP{<c>}{<q>}{<size}> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}{<size}> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

if Q == '1' \&\& Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
case B:E of
  when '00' esize = 32; elements = 2;
  when '01' esize = 16; elements = 4;
  when '10' esize = 8 ; elements = 8;
  when '11' UNDEFINED;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0 1 B Q 0 Vd</td>
<td>Rt 1 0 1 1 D 0 0 E 1 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1 variant

VDUP{<c>}{<q>}{<size}> <Qd>, <Rt> // Encoded as Q = 1
VDUP{<c>}{<q>}{<size}> <Dd>, <Rt> // Encoded as Q = 0

Decode for this encoding

if Q == '1' \&\& Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
case B:E of
  when '00' esize = 32; elements = 2;
  when '01' esize = 16; elements = 4;
  when '10' esize = 8 ; elements = 8;
  when '11' UNDEFINED;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

\(<c>\)  
See *Standard assembler syntax fields on page* F2-4120. Arm strongly recommends that any VDUP instruction is unconditional, see *Conditional execution on page* F2-4121.

\(<q>\)  
See *Standard assembler syntax fields on page* F2-4120.

\(<\text{size}>\)  
The data size for the elements of the destination vector. It must be one of:  
- 8   Encoded as \([b, e] = 0b10\).
- 16  Encoded as \([b, e] = 0b01\).
- 32  Encoded as \([b, e] = 0b00\).

\(<q_d>\)  
The destination vector for a quadword operation.

\(<d_d>\)  
The destination vector for a doubleword operation.

\(<\text{rt}>\)  
The Arm source register.

Operation for all encodings

if ConditionPassed() then  
   EncodingSpecificOperations();  CheckAdvSIMDEnabled();  
   scalar = R[t]<\text{size}-1:0>;
   for \(r = 0\) to \(\text{regs-1}\)  
      for \(e = 0\) to \(\text{elements-1}\)  
         \(\text{Elem}[\text{d}+r,e,\text{size}] = \text{scalar};\)

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.82 VDUP (scalar)

Duplicate vector element to vector duplicates a single element of a vector into every element of the destination vector.

The scalar, and the destination vector elements, can be any one of 8-bit, 16-bit, or 32-bit fields. There is no distinction between data types.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

Decode for all variants of this encoding

if imm4 == 'x000' then UNDEFINED;
if Q == '1' & Vd<0> == '1' then UNDEFINED;
case imm4 of
  when 'xxx1'  esize = 8;  elements = 8;  index = UInt(imm4<3:1>);
  when 'xx10'  esize = 16;  elements = 4;  index = UInt(imm4<3:2>);
  when 'x100'  esize = 32;  elements = 2;  index = UInt(imm4<3>);
  d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

Encoding

Applies when Q == 0.

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

Encoding

Applies when Q == 1.

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>
Decode for all variants of this encoding

if imm4 == 'x000' then UNDEFINED;
if Q == '1' & Vd<0> == '1' then UNDEFINED;
case imm4 of
  when 'xxx1'  esize = 8;  elements = 8;  index = UInt(imm4<3:1>);
  when 'xx10'  esize = 16; elements = 4;  index = UInt(imm4<3:2>);
  when 'x100'  esize = 32; elements = 2;  index = UInt(imm4<3>);
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<q>   For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
     For encoding T1: see Standard assembler syntax fields on page F2-4120.

<size> The data size. It must be one of:
  8   Encoded as imm4<0> = '1'. imm4<3:1> encodes the index[x] of the scalar.
 16   Encoded as imm4<1:0> = '10'. imm4<3:2> encodes the index[x] of the scalar.
 32   Encoded as imm4<2:0> = '100'. imm4<3> encodes the index[x] of the scalar.

<Qd>  Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm[x]> The scalar. For details of how [x] is encoded, see the description of <size>.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations();  CheckAdvSIMDEnabled();
  scalar = Elem[D[m],index,esize];
  for r = 0 to regs-1
    for e = 0 to elements-1
      Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.83 VEOR

Vector Bitwise Exclusive OR performs a bitwise Exclusive OR operation between two registers, and places the result in the destination register. The operand and result registers can be quadword or doubleword. They must all be the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[
\text{VEOR}\{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when \( Q = 1 \).

\[
\text{VEOR}\{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm>
\]

Decode for all variants of this encoding

\[
\text{if } Q = '1' \&\& (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') \text{ then UNDEFINED;}
\]
\[
d = \text{UInt}(D:Vd); \quad n = \text{UInt}(N:Vn); \quad m = \text{UInt}(M:Vm); \quad \text{regs} = \text{if } Q == '0' \text{ then 1 else 2;}
\]

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Vn</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[
\text{VEOR}\{<c>\}{<q>}{.<dt>} \{<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when \( Q = 1 \).

\[
\text{VEOR}\{<c>\}{<q>}{.<dt>} \{<Qd>,} <Qn>, <Qm>
\]

Decode for all variants of this encoding

\[
\text{if } Q = '1' \&\& (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') \text{ then UNDEFINED;}
\]
\[
d = \text{UInt}(D:Vd); \quad n = \text{UInt}(N:Vn); \quad m = \text{UInt}(M:Vm); \quad \text{regs} = \text{if } Q == '0' \text{ then 1 else 2;}
\]

Assembler symbols

\(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] EOR D[m+r];
```

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.84  VEXT (byte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first, concatenates them and places the result in the destination vector.

The elements of the vectors are treated as being 8-bit fields. There is no distinction between data types.

The following figure shows the operation of VEXT doubleword operation for imm = 3.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VEXT (multibyte elements). The pseudo-instruction is never the preferred disassembly.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15|12|11|8|7|6|5|4|3|0 |
1 1 1 1 0 0 1 0 1 D 1 1 Vn  Vd  imm4  N Q M 0  Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if Q == '0' && imm4<3> == '1' then UNDEFINED;
quadword_operation = (Q == '1'); position = 8 * UInt(imm4);
d = UInt(Vd:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

|15 14 13 12|11 10 9|8|7|6|5|4|3|0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 1 1 0 1 1 1 1 1 D 1 1 Vn  Vd  imm4  N Q M 0  Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>
128-bit SIMD vector variant

Applies when Q == 1.

\[ VEXT\{<c>\}{<q>}.8\{<Qd>,\}<Qn>,<Qm>,<\#imm>\]

**Decode for all variants of this encoding**

if \( Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') \) then UNDEFINED;
if \( Q == '0' && imm4<3> == '1' \) then UNDEFINED;
quadword_operation = \( Q == '1' \);
position = 8 * UInt(imm4);
d = UInt(D:Vd);
\( n = UInt(N:Vn); \)
m = UInt(M:Vm);

**Assembler symbols**

- \(<c>\)  
  For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
  For encoding T1: see *Standard assembler syntax fields* on page F2-4120.
- \(<q>\)  
  See *Standard assembler syntax fields* on page F2-4120.
- \(<Qd>\)  
  Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\)*2.
- \(<Qn>\)  
  Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>\)*2.
- \(<Qm>\)  
  Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\)*2.
- \(<Dd>\)  
  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- \(<Dn>\)  
  Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- \(<Dm>\)  
  Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
- \(<\#imm>\)  
  For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the operands, as a number of bytes from the least significant end, in the range 0 to 7, encoded in the "imm4" field.
  For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of the operands, as a number of bytes from the least significant end, in the range 0 to 15, encoded in the "imm4" field.

**Operation for all encodings**

if \( \text{ConditionPassed()} \) then
  EncodingSpecificOperations(); \ CheckAdvSIMDEnabled();
  if quadword_operation then
    \( Q[d>>1] = (Q[m>>1]:Q[n>>1])<\text{position}+127:\text{position}>; \)
  else
    \( D[d] = (D[m]:D[n])<\text{position}+63: \text{position}>; \)

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.85 **VEXT (multibyte elements)**

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first, concatenates them and places the result in the destination vector.

This instruction is a pseudo-instruction of the **VEXT (byte elements)** instruction. This means that:

- The encodings in this description are named to match the encodings of **VEXT (byte elements)**.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of **VEXT (byte elements)** gives the operational pseudocode for this instruction.

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VEXT}\{<c>\}<\{<q>\}.<\text{size}\} \{<Dd>,\} <Dn>, <Dm>, #<\text{imm}>
\]

is equivalent to

\[
\text{VEXT}\{<c>\}<\{<q>\}.8 \{<Dd>,\} <Dn>, <Dm>, #<\text{imm}>(\text{size}/8)
\]

and is never the preferred disassembly.

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[
\text{VEXT}\{<c>\}<\{<q>\}.<\text{size}\} \{<Qd>,\} <Qn>, <Qm>, #<\text{imm}>
\]

is equivalent to

\[
\text{VEXT}\{<c>\}<\{<q>\}.8 \{<Qd>,\} <Qn>, <Qm>, #<\text{imm}>(\text{size}/8)
\]

and is never the preferred disassembly.

**T1**

\[
\begin{array}{ccccccccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
11 & 11 & 11 & 11 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & D & 1 & 1 & Vn & Vd & imm4 & N & Q & M & 0 & Vm
\end{array}
\]

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[
\text{VEXT}\{<c>\}<\{<q>\}.<\text{size}\} \{<Dd>,\} <Dn>, <Dm>, #<\text{imm}>
\]

is equivalent to

\[
\text{VEXT}\{<c>\}<\{<q>\}.8 \{<Dd>,\} <Dn>, <Dm>, #<\text{imm}>(\text{size}/8)
\]

and is never the preferred disassembly.
128-bit SIMD vector variant

Applies when Q == 1.

VEXT{<c>}{<q>}{<size>} {<Qd>,} <Qn>, <Qm>, #<imm>
is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #imm*(size/8)

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> For the 64-bit SIMD vector variant: is the size of the operation, and can be one of 16 or 32.

For the 128-bit SIMD vector variant: is the size of the operation, and can be one of 16, 32 or 64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the operands, as a number of bytes from the least significant end, in the range 0 to (128/<size>-1).

For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of the operands, as a number of bytes from the least significant end, in the range 0 to (64/<size>-1).

Operation for all encodings

The description of VEXT (byte elements) gives the operational pseudocode for this instruction.
F6.1.86 VFMA

Vector Fused Multiply Accumulate multiplies corresponding elements of two vectors, and accumulates the results into the elements of the destination vector. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 |
|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 0 0 D 0 sz | Vn | Vd | 1 1 0 0 N Q M 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE; op1_neg = (op == '1');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

A2

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 |
|---|---|---|---|---|---|---|---|
| !=1111 | 1 1 1 0 1 D 1 0 | Vn | Vd | 1 0 size N 0 M 0 | Vm |

Half-precision scalar variant

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>
Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' & !HaveFP16Ext()) then UNDEFINED;
if size == '01' & cond != '1110' then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRUANED UNPREDICTABLE behavior

If size == '01' & cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 |
| 1 1 1 0 | 1 1 1 1 | 0 | D | 0 | sz | Vn | Vd | 1 1 0 0 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.
VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' & !HaveFP16Ext() then UNDEFINED;
if sz == '1' & InITBlock() then UNPREDICTABLE;
advsimd = TRUE; op1_neg = (op == '1');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
  regs = if Q == '0' then 1 else 2;

CONSTRUANED UNPREDICTABLE behavior

If sz == '1' & InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

| 1 1 1 1 1 0 1 1 0 1 D 1 0 | Vn | Vd | 1 0 | size | N 0 | M 0 | Vm |

**Half-precision scalar variant**

Applies when size == 01.

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

**Double-precision scalar variant**

Applies when size == 11.

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

**Decode for all variants of this encoding**

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.

- `<q>` See Standard assembler syntax fields on page F2-4120.

- `<dt>` Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
  F32 when sz = 0
  F16 when sz = 1

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.

- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.
<qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <qm>^2.

<dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 bits(esize) op1 = Elem[D[n+r],e,esize];
 if op1_neg then op1 = FPNeg(op1);
 Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
 op1, Elem[D[m+r],e,esize], StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR);
 when 32
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
 S[d] = FPMulAdd(S[d], op32, S[m], FPSCR);
 when 64
 op64 = if op1_neg then FPNeg(D[n]) else D[n];
 D[d] = FPMulAdd(D[d], op64, D[m], FPSCR);
```

```c```
F6.1.87 VFMAB, VFMAT (BFloat16, vector)

The BFloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or odd-numbered (top) 16-bit elements in the first and second source vectors from BFloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.

A1

ARMv8.6

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D</td>
</tr>
</tbody>
</table>
```

A1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

```
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer elements = 128 DIV 32;
integer sel = UInt(Q);
```

T1

ARMv8.6

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

T1 variant

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

```
if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer elements = 128 DIV 32;
integer sel = UInt(Q);
```

Assembler symbols

```
<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:
B when Q = 0
```
T when Q = 1

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the \"D:Vd\" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the \"N:Vn\" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the \"M:Vm\" field as <Qm>*2.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) operand3 = Q[d>>1];
bits(128) result;
for e = 0 to elements-1
 bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
 bits(32) element2 = Elem[operand2, 2 * e + sel, 16] : Zeros(16);
 bits(32) addend = Elem[operand3, e, 32];
 Elem[result, e, 32] = FPMulAdd(addend, element1, element2,
 StandardFPSCRValue());
Q[d>>1] = result;
F6.1.88 VFMAB, VFMAT (BFloat16, by scalar)

The BFloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or odd-numbered (top) 16-bit elements in the first source vector, and an indexed element in the second source vector from BFloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping single-precision elements of the destination vector.

Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate rounding that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.

A1

ARMv8.6

```
| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 | 16 | 15 | 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | D | 1 | 1 | Vn | Vd | 1 | 0 | 0 | 0 | N | Q | M | 1 | Vm |
```

A1 variant

VFMA{bt}{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd=='1' || Vn==0 then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<2:0>);
integer i = UInt(M:Vm<3>);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

T1

ARMv8.6

```
| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | 15 | 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | D | 1 | 1 | Vn | Vd | 1 | 0 | 0 | 0 | N | Q | M | 1 | Vm |
```

T1 variant

VFMA{bt}{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

Decode for this encoding

if INITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd==0 || Vn==0 then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<2:0>);
integer i = UInt(M:Vm<3>);
integer elements = 128 DIV 32;
integer sel = UInt(Q);
Assembler symbols

<bt> Is the bottom or top element specifier, encoded in the "Q" field. It can have the following values:
B when Q = 0
T when Q = 1

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field.

Operation for all encodings

```c
CheckAdvSIMDEnabled();
b = (bits(128) operand1 = Q[n>>1];
b = (bits(64) operand2 = D[m];
b = (bits(128) operand3 = Q[d>>1];
b = (bits(128) result;
b = (bits(32) element2 = Elem[operand2, i, 16] : Zeros(16);
for e = 0 to elements-1
    b = (bits(32) element1 = Elem[operand1, 2 + e + sel, 16] : Zeros(16);
    b = (bits(32) addend = Elem[operand3, e, 32];
    Elem[result, e, 32] = FPMulAdd(addend, element1, element2, StandardFPSCRValue());
Q[d>>1] = result;
```
F6.1.89 VFMAL (vector)

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding values in the vectors in the two source SIMD&FP registers, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

ARMv8.2

| 1 1 1 1 1 1 1 0 | 0 0 | D | 1 | 0 | Vn | | Vd | 1 | 0 | 0 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q==1' then 64 else 32;
boolean sub_op = S=='1';

T1

ARMv8.2

| 1 1 1 1 1 1 1 0 | 0 0 | D | 1 | 0 | Vn | | Vd | 1 | 0 | 0 | N | Q | M | 1 | Vm |
64-bit SIMD vector variant

Applies when Q == 0.

VFMAL(<q>).F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL(<q>).F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(datasize) operand1;
bits(datasize) operand2;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;
if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 = Elem[operand1, 2*r+e, esize DIV 2];
 element2 = Elem[operand2, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FMulAddH(Elem[operand3, e, esize], element1, element2, StandardFPSCRValue());
D[d+r] = result;
F6.1.90 VFMAL (by scalar)

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

In Armv8.2 and Armv8.3, this is an optional instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16 15 12|11 10 9 8 7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 0 0 1 0 0 0 |0 |Vn | 1 0 0 0 |N |Q |M 1 |Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1

ARMv8.2

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | | | | | |
|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 0 0 0 0 0 0 |Vn | 1 0 0 0 |N |Q |M 1 |Vm |
64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[
\text{VFMAL\{<q>\}.F16 <Dd>, <Sn>, <Sm>[<index>]}
\]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VFMAL\{<q>\}.F16 <Qd>, <Dn>, <Dm>[<index>]}
\]

Decode for all variants of this encoding

if \(\text{InITBlock}() \) then UNPREDICTABLE;
if \(\neg \text{HaveFP16RoundingToFP32Ext()} \) then UNDEFINED;
if \(Q = '1' \&\& Vd\<0\> == '1' \) then UNDEFINED;

\[
\begin{align*}
\text{integer } d & = \text{UInt}(D:Vd); \\
\text{integer } n & = \text{if } Q == '1' \text{ then } \text{UInt}(N:Vn) \text{ else } \text{UInt}(Vn:N); \\
\text{integer } m & = \text{if } Q == '1' \text{ then } \text{UInt}(Vm<2:0>) \text{ else } \text{UInt}(Vm<2:0>:M); \\
\text{integer } \text{index} & = \text{if } Q == '1' \text{ then } \text{UInt}(M:Vm<3>) \text{ else } \text{UInt}(Vm<3>); \\
\text{integer } \text{esize} & = 32; \\
\text{integer } \text{regs} & = \text{if } Q='1' \text{ then } 2 \text{ else } 1; \\
\text{integer } \text{datasize} & = \text{if } Q='1' \text{ then } 64 \text{ else } 32; \\
\text{boolean } \text{sub_op} & = S=='1';
\end{align*}
\]

Assemble symbols

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>*2\).

\(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Sn>\) Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

\(<Sm>\) Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

\(<\text{index}>\) For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>" field.

For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field.

Operation for all encodings

\[
\begin{align*}
\text{CheckAdvSIMDEnabled();} \\
\text{bits(datasize) operand1;} \\
\text{bits(datasize) operand2;} \\
\text{bits(64) operand3;} \\
\text{bits(64) result;} \\
\text{bits(esize DIV 2) element1;} \\
\text{bits(esize DIV 2) element2;}
\end{align*}
\]

if \(Q='0' \) then
\[
\begin{align*}
\text{operand1} & = S[n]<\text{datasize}-1:0>; \\
\text{operand2} & = S[m]<\text{datasize}-1:0>;
\end{align*}
\]
else
\[
\begin{align*}
\text{operand1} & = D[n]<\text{datasize}-1:0>; \\
\text{operand2} & = D[m]<\text{datasize}-1:0>;
\end{align*}
\]
\[
\text{element2} = \text{Elem}[\text{operand2}, \text{index}, \text{esize DIV 2}];
\]
for r = 0 to regs-1
 operand3 = D[d+r];
 for e = 0 to 1
 element1 =Elem[operand1, 2*r+e, esize DIV 2];
 if sub_op then element1 = FPNeg(element1);
 Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, StandardFPSCRValue());
 D[d+r] = result;
F6.1.91 VFMS

Vector Fused Multiply Subtract negates the elements of one vector and multiplies them with the corresponding elements of another vector, adds the products to the corresponding elements of the destination vector, and places the results in the destination vector. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16 15</th>
<th>12 11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0 0</td>
<td>D</td>
<td>1</td>
<td>sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 0 0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<> == '1' || Vn<> == '1' || Vm<> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
adsvind = TRUE; op1_neg = (op == '1');

A2

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16 15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1 1 1 0 1</td>
<td>D</td>
<td>1 0</td>
<td>Vn</td>
<td>Vd</td>
<td>1 0</td>
<td>size</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>
Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

<table>
<thead>
<tr>
<th>1 1 1 0</th>
<th>1 1 1 1</th>
<th>0</th>
<th>1 1 1</th>
<th>D</th>
<th>sz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vn</td>
<td>Vd</td>
<td>1 1 0</td>
<td>N</td>
<td>Q</td>
<td>M</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.
VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; op1_neg = (op == '1');
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
 regs = if Q == '0' then 1 else 2;

CONSTRANGED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

```
|15|14|13|12|11|10|  9|  8|  7|  6|  5|  4|  3| 0| | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1| 1| 1| 0| 1| 1| 0| 0| 1|D| 1| 0| Vn| Vd| 1| 0| size| N| 1| M| 0| Vm|
```

Half-precision scalar variant

Applies when size == 01.

`VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>`

Single-precision scalar variant

Applies when size == 10.

`VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>`

Double-precision scalar variant

Applies when size == 11.

`VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>`

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 - F32 when sz = 0
 - F16 when sz = 1
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.`
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.`
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
    if advsimd then // Advanced SIMD instruction
        for r = 0 to regs-1
            for e = 0 to elements-1
                bits(esize) op1 = Elem[D[n+r],e,esize];
                if op1_neg then op1 = FPNeg(op1);
                Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],
                    op1, Elem[D[m+r],e,esize], StandardFPSCRValue());
    else // VFP instruction
        case esize of
            when 16
                op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
                S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR);
            when 32
                op32 = if op1_neg then FPNeg(S[n]) else S[n];
                S[d] = FPMulAdd(S[d], op32, S[m], FPSCR);
            when 64
                op64 = if op1_neg then FPNeg(D[n]) else D[n];
                D[d] = FPMulAdd(D[d], op64, D[m], FPSCR);
```

```c```
F6.1.92 VFMSL (vector)

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

A1

ARMv8.2

```
VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>
```

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL(<q>).F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL(<q>).F16 <Qd>, <Dn>, <Dm>

Decode for all variants of this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1

ARMv8.2

```
VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>
```
64-bit SIMD vector variant

Applies when \( Q = 0 \).

\[
\text{VFMSL\{<q>\}.F16 <Dd>, <Sn>, <Sm>}
\]

128-bit SIMD vector variant

Applies when \( Q = 1 \).

\[
\text{VFMSL\{<q>\}.F16 <Qd>, <Dn>, <Dm>}
\]

Decode for all variants of this encoding

if \( \text{InITBlock()} \) then UNPREDICTABLE;
if \( \neg \text{HaveFP16MulNoRoundingToFP32Ext()} \) then UNDEFINED;
if \( Q = '1' \& Vd<0> = '1' \) then UNDEFINED;

integer \( d = \text{UInt}(D:Vd) \);
integer \( n = \text{if } Q = '1' \text{ then } \text{UInt}(N:Vn) \text{ else } \text{UInt}(Vn:N) \);
integer \( m = \text{if } Q = '1' \text{ then } \text{UInt}(M:Vm) \text{ else } \text{UInt}(Vm:M) \);
integer \( \text{esize} = 32 \);
integer \( \text{regs} = \text{if } Q=='1' \text{ then } 2 \text{ else } 1 \);
integer \( \text{datasize} = \text{if } Q=='1' \text{ then } 64 \text{ else } 32 \);
boolean \( \text{sub_op} = S=='1'; \)

Assembler symbols

<\( q \)>

See \textit{Standard assembler syntax fields on page F2-4120}.

<\( Qd \)>

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <\( Qd \)>*2.

<\( Dn \)>

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<\( Dm \)>

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<\( Dd \)>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<\( Sn \)>

Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<\( Sm \)>

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

\[
\text{CheckAdvSIMDEnabled();}
\]

bits(datasize) operand1;
bits(datasize) operand2;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

if \( Q=='0' \) then
    operand1 = S[n]<datasize-1:0>;
    operand2 = S[m]<datasize-1:0>;
else
    operand1 = D[n]<datasize-1:0>;
    operand2 = D[m]<datasize-1:0>;
for \( r = 0 \) to \text{regs-1}
    operand3 = D[d+r];
    for \( e = 0 \) to \text{1}
        element1 = \text{Elem}(operand1, 2*r+e, esize DIV 2)];
        element2 = \text{Elem}(operand2, 2*r+e, esize DIV 2)];
        if \text{sub_op} then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, StandardFPSCRValue());
D[d+r] = result;
F6.1.93  VFMSL (by scalar)

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies the negated vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of the multiply before the accumulation.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

In Armv8.2 and Armv8.3, this is an optional instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---
ID_ISAR6.FHM indicates whether this instruction is supported.

A1

ARMv8.2

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' & Vd<0> == '1' then UNDEFINED;

integer d = UInt(0:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);
integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1

ARMv8.2

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

64-bit SIMD vector variant

Applies when Q == 0.

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' & Vd<0> == '1' then UNDEFINED;

integer d = UInt(0:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);
integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';
**64-bit SIMD vector variant**

Applies when $Q = 0$.

\[VFMSL\{<q>\}.F16 <Dd>, <Sn>, <Sm>[<index>]\]

**128-bit SIMD vector variant**

Applies when $Q = 1$.

\[VFMSL\{<q>\}.F16 <Qd>, <Dn>, <Dm>[<index>]\]

**Decode for all variants of this encoding**

if $\text{InITBlock}()$ then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if $Q = '1$ & $Vd<0> == '1'$ then UNDEFINED;

```
integer d = UInt(D:Vd);
integer n = if $Q == '1'$ then UInt(N:Vn) else UInt(Vn:N);
integer m = if $Q == '1'$ then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);
```

```
integer index = if $Q == '1'$ then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';
```

**Assembler symbols**

- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as $<Qd>*2$.
- \(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- \(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.
- \(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- \(<Sn>\) Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
- \(<Sm>\) Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.
- \(<\text{index}>\) For the 64-bit SIMD vector variant: is the element index in the range $0$ to $1$, encoded in the "Vm<3>" field.
  For the 128-bit SIMD vector variant: is the element index in the range $0$ to $3$, encoded in the "M:Vm<3>" field.

**Operation for all encodings**

```
CheckAdvSIMDEnabled();
bits(datasize) operand1;
bits(datasize) operand2;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;
```

```
if Q=='0' then
 operand1 = S[n]<datasize-1:0>;
 operand2 = S[m]<datasize-1:0>;
else
 operand1 = D[n]<datasize-1:0>;
 operand2 = D[m]<datasize-1:0>;
 element2 = Elem[operand2, index, esize DIV 2];
```
for r = 0 to regs-1
    operand3 = D[r+d];
    for e = 0 to 1
        element1 = Elem[operand1, 2*r+e, esize DIV 2];
        if sub_op then element1 = FPNeg(element1);
        Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, StandardFPSCRValue());
    D[r+d] = result;
F6.1.94 VFNMA

Vector Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by another floating-point register value, adds the negation of the floating-point value in the destination register to the product, and writes the result back to the destination register. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Half-precision scalar variant

Applies when size == 01.

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
        op1_neg = (op == '1');
case size of
    when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
    when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
    when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1
**Half-precision scalar variant**
Applies when size == 01.
\[ \text{VFNMA}(c\{<q>\}.F16 \ <Sd>, \ <Sn>, \ <Sm> \]  

**Single-precision scalar variant**
Applies when size == 10.
\[ \text{VFNMA}(c\{<q>\}.F32 \ <Sd>, \ <Sn>, \ <Sm> \]  

**Double-precision scalar variant**
Applies when size == 11.
\[ \text{VFNMA}(c\{<q>\}.F64 \ <Dd>, \ <Dn>, \ <Dm> \]  

**Decode for all variants of this encoding**

```
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
op1_neg = (op == '1');
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

**CONstrained UNPREDICTABLE behavior**
If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

- `<c>` See *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sn>` Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
- `<Sm>` Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
 S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR);
 when 32
 op32 = if op1_neg then FPNeg(S[n]) else S[n];
```
\[ S[d] = \text{FPMulAdd}(\text{FPNeg}(S[d]), \text{op32}, S[m], \text{FPSCR}); \]

when 64
\[ \text{op64} = \text{if op1_neg then FPNeg(D[n]) else D[n]}; \]
\[ D[d] = \text{FPMulAdd}(\text{FPNeg}(D[d]), \text{op64}, D[m], \text{FPSCR}); \]
F6.1.95  VFNMS

Vector Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the floating-point value in the destination register to the product, and writes the result back to the destination register. The instruction does not round the result of the multiply before the addition.

Depending on settings in the CPACR, NSACR, HCPR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0 |
|------------------|-----------------|---------|---------|
| !=1111            | 1 1 1 0 1 0 1   | Vn      | Vd      |
| cond              | op              | size    | N 0 M 0 | Vm   |

**Half-precision scalar variant**

Applies when size == 01.

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

**Single-precision scalar variant**

Applies when size == 10.

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

**Double-precision scalar variant**

Applies when size == 11.

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

**Decode for all variants of this encoding**

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
op_neg = (op == '1');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

| 15 14 13 12 | 11 10 9 8 7 6 5 4 3 0 | | |
|---|---|---|---|
| 1 1 1 0 1 1 0 1 | D 0 1   | Vn      | Vd      |
| op           | size    | N 0 M 0 | Vm   |
Half-precision scalar variant
Applies when size == 01.

\[ \text{VFNMS}\{<c>\}\{<q>\}.F16 <Sd>, <Sn>, <Sm> \]

Single-precision scalar variant
Applies when size == 10.

\[ \text{VFNMS}\{<c>\}\{<q>\}.F32 <Sd>, <Sn>, <Sm> \]

Double-precision scalar variant
Applies when size == 11.

\[ \text{VFNMS}\{<c>\}\{<q>\}.F64 <Dd>, <Dn>, <Dm> \]

Decode for all variants of this encoding
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
op1_neg = (op == '1');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRANGED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:
  • The instruction is UNDEFINED.
  • The instruction executes as if it passes the Condition code check.
  • The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols
\(<c>\)
See Standard assembler syntax fields on page F2-4120.
\(<q>\)
See Standard assembler syntax fields on page F2-4120.
\(<Sd>\)
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
\(<Sn>\)
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
\(<Sm>\)
Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
\(<Dd>\)
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
\(<Dn>\)
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
\(<Dm>\)
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings
if ConditionPassed() then
  EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
  when 16
    op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
    S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR);
  when 32
    op32 = if op1_neg then FPNeg(S[n]) else S[n];


S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], FPSCR);
when 64
    op64 = if op1_neg then FPNeg(D[n]) else D[n];
D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], FPSCR);
### F6.1.96 VHADD

Vector Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit, and places the final results in the destination vector. The results of the halving operations are truncated. For rounded results, see VRHADD.

The operand and result elements are all the same type, and can be any one of:

- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

#### 64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VHADD}\{<c>\} \{<q>\}.<dt> \{<Dd>, \}<Dn>, <Dm>
\]

#### 128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VHADD}\{<c>\} \{<q>\}.<dt> \{<Qd>, \}<Qn>, <Qm>
\]

**Decode for all variants of this encoding**

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

#### T1

<table>
<thead>
<tr>
<th>1 1 1 1 0 0 1 0</th>
<th>Vn</th>
<th>Vd</th>
<th>0 0 0 0</th>
<th>N</th>
<th>Q</th>
<th>M</th>
<th>0</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**ARM DDI 0487F.c  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. F6-5233**

**ID072120 Non-Confidential**
Decode for all variants of this encoding

if Q == '1' & & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0');  unsigned = (U == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<e> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<op> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
S8 when U = 0, size = 00
S16 when U = 0, size = 01
S32 when U = 0, size = 10
U8 when U = 1, size = 00
U16 when U = 1, size = 01
U32 when U = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Db> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Cn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Cm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Int(Elem[D+n+r],e,esize], unsigned);
            op2 = Int(Elem[D+m+r],e,esize], unsigned);
            result = if add then op1-op2 else op1-op2;
            Elem[D+d+r],e,esize] = result<esize:1>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F6.1.97 VHSUB

Vector Halving Subtract subtracts the elements of the second operand from the corresponding elements of the first operand, shifts each result right one bit, and places the final results in the destination vector. The results of the halving operations are truncated. There is no rounding version.

The operand and result elements are all the same type, and can be any one of:

- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0');  unsigned = (U == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
**Decode for all variants of this encoding**

if \( Q = '1' \) \&\& \( (Vd<0> == '1' \mid | Vn<0> == '1' \mid | Vm<0> == '1') \) then UNDEFINED;
if size == '11' then UNDEFINED;
asize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

**Assembler symbols**

<\texttt{c}> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<\texttt{q}> See Standard assembler syntax fields on page F2-4120.

\texttt{<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:}
S8 when \( U = 0, size = 00 \)
S16 when \( U = 0, size = 01 \)
S32 when \( U = 0, size = 10 \)
U8 when \( U = 1, size = 00 \)
U16 when \( U = 1, size = 01 \)
U32 when \( U = 1, size = 10 \)

<\texttt{Qd}> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<\texttt{Qd}>*2\).
<br>

<\texttt{Qn}> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<\texttt{Qn}>*2\).
<br>

<\texttt{Qm}> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<\texttt{Qm}>*2\).
<br>

<\texttt{Dd}> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<br>

<\texttt{Dn}> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<br>

<\texttt{Dm}> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
<br>

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations();  CheckAdvSIMDEnabled();
for r = 0 to regs-1
  for e = 0 to elements-1
    op1 = Int(Elem[D[n+r],e,esize], unsigned);
    op2 = Int(Elem[D[m+r],e,esize], unsigned);
    result = if add then op1+op2 else op1-op2;
    Elem[D[d+r],e,esize] = result<esize:1>;

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F6.1.98 VINS

Vector move Insertion. This instruction copies the lower 16 bits of the 32-bit source SIMD&FP register into the upper 16 bits of the 32-bit destination SIMD&FP register, while preserving the values in the remaining bits.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.2

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

T1

ARMv8.2

VINS{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<m> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 S[d] = S[m]<15:0> : S[d]<15:0>;
```
F6.1.99   VJCVT

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-precision floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination register. If the result is too large to be accommodated as a signed 32-bit integer, then the result is the integer modulo $2^{32}$, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPSCR, the exception results in either a flag being set or a synchronous exception being generated. For more information, see Floating-point exceptions and exception traps on page E1-4003.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.3

|31| 28|27| 26|25|24|23|22|21|20|19|18|17|16|15| 12|11| 10| 9| 8| 7| 6| 5| 4| 3|0 |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   | !=1111 | 1 | 1 | 1 | 0 | 1 |   | D | 1 | 1 | 1 | 0 | 0 | 1 | Vd | 1 | 0 | 1 | 1 | 1 | 1 | M | 0 | Vm |
|cond|

A1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

if !HaveFJCVTZSExt() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE;
d = UInt(Vd:D);  m = UInt(M:Vm);

T1

ARMv8.3

|15|14|13|12|11| 10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|15| 12|11| 10| 9| 8| 7| 6| 5| 4| 3|0 |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 1 | 0 | 0 | 1 | Vd | 1 | 0 | 1 | 1 | 1 | 1 | M | 0 | Vm |

T1 variant

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

Decode for this encoding

if !HaveFJCVTZSExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
d = UInt(Vd:D);  m = UInt(M:Vm);

Assembler symbols

<q>  See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Om> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
bits(64) fltval = D[m];
bits(32) intval;
bit Z;
(intval, Z) = FPToFixedJS(fltval, FPSCR, FALSE);
FPSCR<31:28> = '0':Z:'00';
S[d] = intval;
### F6.1.100 VLD1 (single element to one lane)

Load single 1-element structure to one lane of one register loads one element from memory into one element of a register. Elements of the register that are not loaded are unchanged. For details of the addressing mode see [The Advanced SIMD addressing mode](#). Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see [Enabling Advanced SIMD and floating-point support](#).

#### A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
```

**Offset variant**

Applies when \( Rm = 1111 \).

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

**Decode for all variants of this encoding**

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

#### A2

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1 0 0</td>
</tr>
</tbody>
</table>
```

**Offset variant**

Applies when \( Rm = 1111 \).

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!
Post-indexed variant
Applies when \( Rm \neq 11x1 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \ <\text{list}>, \ [<Rn}\{:<\text{align}>\}], \ <Rm>
\]

Decode for all variants of this encoding
if \( \text{size} == '11' \) then SEE "VLDI (single element to all lanes)";
if \( \text{index}_\text{align}<2> != '0' \) then UNDEFINED;
ebytes = 2; \ index = \text{UInt}((\text{index}_\text{align}<1:2>));
alignment = if \( \text{index}_\text{align}<0> != '0' \) then 1 else 2;
d = \text{UInt}(D:Vd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
wback = (m != 15); \ register\_index = (m != 15 \&\& m != 13);
if \( n == 15 \) then UNPREDICTABLE;

A3

\[
\begin{array}{cccccccccccccccc}
|1|1|1|0|1|0|1|0|D|1|0|Rn|Vd|1|0|0|0|\text{index}\_\text{align}|Rm|
\end{array}
\]

Offset variant
Applies when \( Rm == 1111 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \ <\text{list}>, \ [<Rn}\{:<\text{align}>\}]
\]

Post-indexed variant
Applies when \( Rm == 1101 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \ <\text{list}>, \ [<Rn}\{:<\text{align}>\}]!
\]

Post-indexed variant
Applies when \( Rm != 11x1 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \ <\text{list}>, \ [<Rn}\{:<\text{align}>\}], \ <Rm>
\]

Decode for all variants of this encoding
if \( \text{size} == '11' \) then SEE "VLDI (single element to all lanes)";
if \( \text{index}_\text{align}<2> != '0' \) then UNDEFINED;
if \( \text{index}_\text{align}<1:0> != '00' \&\& \text{index}_\text{align}<1:0> != '11' \) then UNDEFINED;
ebytes = 4; \ index = \text{UInt}((\text{index}_\text{align}<3>));
alignment = if \( \text{index}_\text{align}<1:0> != '00' \) then 1 else 4;
d = \text{UInt}(D:Vd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm);
wback = (m != 15); \ register\_index = (m != 15 \&\& m != 13);
if \( n == 15 \) then UNPREDICTABLE;

T1

\[
\begin{array}{cccccccccccccccc}
|1|1|1|1|0|0|1|1|D|1|0|Rn|Vd|0|0|0|0|\text{index}\_\text{align}|Rm|
\end{array}
\]

Offset variant
Applies when \( Rm == 1111 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \ <\text{list}>, \ [<Rn}\{:<\text{align}>\}]
\]
**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, \ [<Rn>{:<\text{align}>}], <Rm>!
\]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, \ [<Rn>{:<\text{align}>}], <Rm>
\]

**Decode for all variants of this encoding**

if \( \text{size} = '11' \) then SEE "VLDI (single element to all lanes)";
if \( \text{index align}<0> \neq '0' \) then UNDEFINED;
\( \text{ebytes} = 1; \ \text{index} = \text{UInt}(\text{index align}<3:1>) \);
\( \text{alignment} = 1; \)
\( d = \text{UInt}(D:Vd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \)
\( \text{wback} = (m \neq 15); \ \text{register index} = (m \neq 15 \&\& m \neq 13); \)
if \( n = 15 \) then UNPREDICTABLE;

**T2**

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | Rn | Vd | 0 | 1 | 0 | 0 | index_align | Rm |

**Offset variant**

Applies when \( Rm = 1111 \).

\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, \ [<Rn>{:<\text{align}>}]!
\]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, \ [<Rn>{:<\text{align}>}], <Rm>!
\]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, \ [<Rn>{:<\text{align}>}], <Rm>
\]

**Decode for all variants of this encoding**

if \( \text{size} = '11' \) then SEE "VLDI (single element to all lanes)";
if \( \text{index align}<0> \neq '0' \) then UNDEFINED;
\( \text{ebytes} = 2; \ \text{index} = \text{UInt}(\text{index align}<3:2>) \);
\( \text{alignment} = \text{if index align}<0> = '0' \) then 1 else 2;
\( d = \text{UInt}(D:Vd); \ n = \text{UInt}(Rn); \ m = \text{UInt}(Rm); \)
\( \text{wback} = (m \neq 15); \ \text{register index} = (m \neq 15 \&\& m \neq 13); \)
if \( n = 15 \) then UNPREDICTABLE;

**T3**

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | Rn | Vd | 1 | 0 | 0 | 0 | index_align | Rm |
Offset variant
Applies when Rm == 1111.
VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm == 1101.
VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm != 11x1.
VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding
if size == '11' then SEE "VLDI (single element to all lanes)"
if index_align<2> != '0' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols
<>
For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:
8 when size = 00
16 when size = 01
32 when size = 10

<list>
Is a list containing the single 64-bit name of the SIMD&FP register holding the element. The list must be { <Dd><index> }.
The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.
Whenever \(<align>\) is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on \(<size>\):

\(<size> == 8\)  
Encoded in the "index_align<0>" field as 0.

\(<size> == 16\)  
Encoded in the "index_align<1:0>" field as 0b00.

\(<size> == 32\)  
Encoded in the "index_align<2:0>" field as 0b000.

Whenever \(<align>\) is present, the permitted values and encoding depend on \(<size>\):

\(<size> == 16\)  
\(<align>\) is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

\(<size> == 32\)  
\(<align>\) is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as 0b011.

\(<align>\) is the preferred separator before the \(<align>\) value, but the alignment can be specified as \(@<align>\), see The Advanced SIMD addressing mode on page F2-4141.

\(<Rm>\)  
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

**Operation for all encodings**

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    address = R[n];  iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    Elem[D[d],index] = MemU[address,ebytes];
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + ebytes;
    else
        R[n] = R[n] + ebytes;
F6.1.101   VLD1 (single element to all lanes)

Load single 1-element structure and replicate to all lanes of one register loads one element from memory into every
element of one or two vectors. For details of the addressing mode see The Advanced SIMD addressing mode on
page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

[31 30 29 28] [27 26 25 24] [23 22 21 20] [19] [16 15 12 11 10 9 8 7 6 5 4 3 0]

1 1 1 1 0 0 1 0 1 0 1 0 0 1 | D 1 0 | Rn | Vd | 1 1 0 0 | size | T a | Rm |

Offset variant

Applies when Rm == 1111.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!

Post-indexed variant

Applies when Rm != 11x1.

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>],<Rm>

Decode for all variants of this encoding

if size == '11' || (size == '00' && a == '1') then UNDEFINED;
  ebytes = 1 << UInt(size);  regs = if T == '0' then 1 else 2;
  alignment = if a == '0' then 1 else ebytes;
  d = UInt(0:Vd);  n = UInt(Rn);  m = UInt(Rm);
  wback = (m != 15);  register_index = (m != 15 && m != 13);
  if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback,
  the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

[15 14 13 12] [11 10 9 8 7 6 5 4 3 0]

1 1 1 1 1 0 0 1 1 D 1 0 | Rn | Vd | 1 1 0 0 | size | T a | Rm |
**Offset variant**

Applies when \( Rm == 1111 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [<Rn>:{<align>}] \]

**Post-indexed variant**

Applies when \( Rm == 1101 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [<Rn>:{<align}>]! \]

**Post-indexed variant**

Applies when \( Rm != 11x1 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [<Rn>:{<align}>], <Rm> \]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{if } size == '11' && (size == '00' && a == '1') \text{ then UNDEFINED;} \\
ebytes = 1 << \text{UInt(size)}; \quad \text{regs} = \text{if } T == '0' \text{ then } 1 \text{ else } 2; \\
\text{alignment} = \text{if } a == '0' \text{ then } 1 \text{ else } \text{ebytes}; \\
d = \text{UInt}(0:Vd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \\
wback = (m != 15); \quad \text{register_index} = (m != 15 && m != 13); \\
\text{if } n == 15 || d+\text{regs} > 32 \text{ then UNPREDICTABLE;}
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If \( d+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD1 (single element to all lanes) on page K1-7956.

**Assembler symbols**

- \(<c>\)
  
  For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  
  For encoding T1: see Standard assembler syntax fields on page F2-4120.

- \(<\text{op}>\)
  
  See Standard assembler syntax fields on page F2-4120.

- \(<\text{size}>\)
  
  Is the data size, encoded in the "size" field. It can have the following values:
  
  - 8 when size = 00
  - 16 when size = 01
  - 32 when size = 10

  The encoding size = 11 is reserved.

- \(<\text{list}>\)
  
  Is a list containing the 64-bit names of the SIMD&FP registers.
  
  The list must be one of:
  
  \{ <Dd>[] \}  Encoded in the "T" field as 0.
The register <Dd> is encoded in the "D:Vd" field.

\(<Rn>\) is the general-purpose base register, encoded in the "Rn" field.

\(<align>\) When \(<size> == 8\), \(<align>\) must be omitted, otherwise it is the optional alignment. Whenever \(<align>\) is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "a" field as 0.

Whenever \(<align>\) is present, the permitted values and encoding depend on \(<size>\):

- \(<size> == 16\langlealign\rangle\) is 16, meaning 16-bit alignment, encoded in the "a" field as 1.
- \(<size> == 32\langlealign\rangle\) is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the \(<align>\) value, but the alignment can be specified as @\(<align>\), see The Advanced SIMD addressing mode on page F2-4141.

\(<Rm>\) is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 bits(64) replicated_element = Replicate(MemU[address,ebytes]);
 for r = 0 to regs-1
 D[d+r] = replicated_element;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;
```
F6.1.102   VLD1 (multiple single elements)

Load multiple single 1-element structures to one, two, three, or four registers loads elements from memory into one, two, three, or four registers, without de-interleaving. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Offset variant
Applies when \( Rm = 1111 \).
\[ VLD1\{<c>\}{<q>}.<size> \ <list>, \ [<Rn>{:<align>}] \]

Post-indexed variant
Applies when \( Rm = 1101 \).
\[ VLD1\{<c>\}{<q>}.<size> \ <list>, \ [<Rn>{:<align>}]! \]

Post-indexed variant
Applies when \( Rm \neq 11x1 \).
\[ VLD1\{<c>\}{<q>}.<size> \ <list>, \ [<Rn}>{:<align}>], \ <Rm> \]

Decode for all variants of this encoding

\[
\text{regs} = 1; \quad \text{if align} \{c\} \text{ == '1' then UNDEFINED;}
\]
\[
\text{alignment} = \text{if align} \text{ == '00' then 1 else 4 } \ll \text{ UInt(align);} \\
\text{ebytes} = 1 \ll \text{ UInt(size);} \quad \text{elements} = 8 \ \text{DIV ebytes} \\
\text{d} = \text{ UInt(D:Vd); } \quad \text{n} = \text{ UInt(Rn);} \quad \text{m} = \text{ UInt(Rm);} \\
\text{wback} = (m \neq 15); \quad \text{register_index} = (m \neq 15 \&\& m \neq 13); \\
\text{if n} = 15 \quad \text{|| d+regs > 32 then UNPREDICTABLE;}
\]

CONSTRANGED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2
**Offset variant**
Applies when \( Rm = 1111 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>] \]

**Post-indexed variant**
Applies when \( Rm = 1101 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>]! \]

**Post-indexed variant**
Applies when \( Rm \neq 11x1 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>], <Rm> \]

**Decode for all variants of this encoding**
\[
\begin{align*}
\text{regs} &= 2; \text{if align} = '11' \text{ then UNDEFINED}; \\
\text{alignment} &= \text{if align} = '00' \text{ then 1 else 4} << \text{UInt}(\text{align}); \\
\text{ebytes} &= 1 << \text{UInt}(\text{size}); \text{ elements} = 8 \text{ DIV ebytes}; \\
\text{d} &= \text{UInt}(0:Vd); \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \\
\text{wback} &= (m != 15); \quad \text{register_index} = (m != 15 \&\& m != 13); \\
\text{if n} &= 15 || \text{d}+\text{regs} > 32 \text{ then UNPREDICTABLE;}
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**
If \( \text{d}+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19</th>
<th>16 15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 0 0 D 1 0</td>
<td>Rn</td>
</tr>
</tbody>
</table>

**Offset variant**
Applies when \( Rm = 1111 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>] \]

**Post-indexed variant**
Applies when \( Rm = 1101 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>]! \]

**Post-indexed variant**
Applies when \( Rm \neq 11x1 \).
\[
\text{VLDI}\{<c>\}{<q>}.<\text{size}> \langle\text{list}\rangle, \ [<Rn>{:<align}>], <Rm> \]
Decode for all variants of this encoding

\[\text{regs} = 3; \quad \text{if align} \ll 1 = '1' \text{ then UNDEFINED; }\]
\[\text{alignment} = \text{if align} = '00' \text{ then 1 else 4 } \ll \text{ UInt(align); }\]
\[\text{ebytes} = 1 \ll \text{ UInt(size); elements} = 8 \text{ DIV ebytes; }\]
\[d = \text{ UInt(D:Vd); n = UInt(Rn); m = UInt(Rm); }\]
\[\text{wback} = (m != 15); \text{ register_index} = (m != 15 && m != 13); \]
\[\text{if n == 15 || d+regs > 32 then UNPREDICTABLE; }\]

**CONSTRAINED UNPREDICTABLE behavior**

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A4

\[
\begin{array}{cccccccccccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccccccccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & D & 1 & 0 & Rn & Vd & 0 & 0 & 1 & 0 & \text{size} & \text{align} & Rm
\end{array}
\]

**Offset variant**

Applies when Rm == 1111.

VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

**Post-indexed variant**

Applies when Rm == 1101.

VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

**Post-indexed variant**

Applies when Rm != 11x1.

VLDI{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

\[\text{regs} = 4; \quad \text{alignment} = \text{if align} = '00' \text{ then 1 else 4 } \ll \text{ UInt(align); }\]
\[\text{ebytes} = 1 \ll \text{ UInt(size); elements} = 8 \text{ DIV ebytes; }\]
\[d = \text{ UInt(D:Vd); n = UInt(Rn); m = UInt(Rm); }\]
\[\text{wback} = (m != 15); \text{ register_index} = (m != 15 && m != 13); \]
\[\text{if n == 15 || d+regs > 32 then UNPREDICTABLE; }\]

**CONSTRAINED UNPREDICTABLE behavior**

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0</td>
<td>D 1 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1 1 1</td>
<td>size</td>
<td>align</td>
<td>Rm</td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}] \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}]! \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}], <Rm> \]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{regs} &= 1; \quad \text{if align} \neq '1' \text{ then UNDEFINED}; \\
\text{alignment} &= \text{if align} = '00' \text{ then 1 else } 4 \ll \text{UInt}(align); \\
\text{ebytes} &= 1 \ll \text{UInt(size)}; \quad \text{elements} = 8 \text{ DIV ebytes}; \\
\text{d} &= \text{UInt}(D:Vd); \quad \text{n} = \text{UInt}(Rn); \quad \text{m} = \text{UInt}(Rm); \\
\text{wback} &= (m != 15); \quad \text{register_index} = (m != 15 \&\& m != 13); \\
\text{if n} &= 15 \mid d+\text{regs} > 32 \text{ then UNPREDICTABLE};
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If \( d+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0</td>
<td>D 1 0</td>
<td>Rn</td>
<td>Vd</td>
<td>1 0 1 0</td>
<td>size</td>
<td>align</td>
<td>Rm</td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}] \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLDI}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}]! \]
Post-indexed variant
Applies when \( \text{Rm} \neq 11\times1 \).

\[
\text{VLDI}\{<c>\}<\{<q>\}.<\text{size}> <\text{list}>, [<\text{Rn}>::<\text{align}>], <\text{Rm}>
\]

Decode for all variants of this encoding

\[
\text{regs} = 2; \text{ if align} = '11' \text{ then UNDEFINED; }
\text{alignment} = \text{ if align} = '00' \text{ then 1 else } 4 \ll \text{ UInt(align)};
\text{ebytes} = 1 \ll \text{ UInt(size)}; \text{ elements} = 8 \div \text{ ebytes};
\text{d} = \text{ UInt(D:Vd)}; \text{ n} = \text{ UInt(Rn)}; \text{ m} = \text{ UInt(Rm)};
\text{wback} = (m != 15); \text{ register_index} = (m != 15 \&\& m != 13);
\text{if} \ n = 15 \mid | \text{d+regs} > 32 \text{ then UNPREDICTABLE;}
\]

CONstrained UNPREDICTABLE behavior
If \( d+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 0 0 1 0 D 1 0</td>
<td>Rn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

Offset variant
Applies when \( \text{Rm} = 1111 \).

\[
\text{VLDI}\{<c>\}<\{<q>\}.<\text{list}>, [<\text{Rn}>::<\text{align}>]
\]

Post-indexed variant
Applies when \( \text{Rm} = 1101 \).

\[
\text{VLDI}\{<c>\}<\{<q>\}.<\text{list}>, [<\text{Rn}>::<\text{align}>]!
\]

Post-indexed variant
Applies when \( \text{Rm} \neq 11\times1 \).

\[
\text{VLDI}\{<c>\}<\{<q>\}.<\text{list}>, [<\text{Rn}>::<\text{align}>], <\text{Rm}>
\]

Decode for all variants of this encoding

\[
\text{regs} = 3; \text{ if align} = '1' \text{ then UNDEFINED; }
\text{alignment} = \text{ if align} = '00' \text{ then 1 else } 4 \ll \text{ UInt(align)};
\text{ebytes} = 1 \ll \text{ UInt(size)}; \text{ elements} = 8 \div \text{ ebytes};
\text{d} = \text{ UInt(D:Vd)}; \text{ n} = \text{ UInt(Rn)}; \text{ m} = \text{ UInt(Rm)};
\text{wback} = (m != 15); \text{ register_index} = (m != 15 \&\& m != 13);
\text{if} \ n = 15 \mid | \text{d+regs} > 32 \text{ then UNPREDICTABLE;}
\]

CONstrained UNPREDICTABLE behavior
If \( d+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as `NOP`.

- One or more of the SIMD and floating-point registers are `UNKNOWN`. If the instruction specifies writeback, the base register becomes `UNKNOWN`. This behavior does not affect any general-purpose registers.

### T4

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when `Rm == 1111`.

`VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]`

**Post-indexed variant**

Applies when `Rm == 1101`.

`VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!`

**Post-indexed variant**

Applies when `Rm != 11x1`.

`VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>`

**Decode for all variants of this encoding**

```
regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If `d+regs > 32`, then one of the following behaviors must occur:

- The instruction is `UNDEFINED`.
- The instruction executes as `NOP`.
- One or more of the SIMD and floating-point registers are `UNKNOWN`. If the instruction specifies writeback, the base register becomes `UNKNOWN`. This behavior does not affect any general-purpose registers.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLDI (multiple single elements) on page K1-7956.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.

**Assembler symbols**

`<c>` For encoding A1, A2, A3 and A4: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2, T3 and T4: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00
16 when size = 01
32 when size = 10
64 when size = 11

<list>
Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:

{ <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.
{ <Dd>, <Dd+1> } Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.
{ <Dd>, <Dd+1>, <Dd+2> } Three single-spaced registers. Selects the A3 and T3 encodings of the instruction.
{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> } Four single-spaced registers. Selects the A4 and T4 encodings of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64 64-bit alignment, encoded in the "align" field as 0b01.
128 128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains two or four registers.
256 256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = FALSE;
    = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    for r = 0 to regs-1
        for e = 0 to elements-1
            bits(ebytes*8) data;
            if ebytes != 8 then
                data = MemU[address,ebytes];
            else
                = AArch32.CheckAlignment(address, ebytes, AccType_NORMAL, iswrite);
                data<31:0> = if BigEndian() then MemU[address+4,4] else MemU[address,4];
                data<63:32> = if BigEndian() then MemU[address,4] else MemU[address+4,4];
                Elem[D[r],e] = data;
                address = address + ebytes;
            else
                data<63:0> = if BigEndian() then MemU[address,4] else MemU[address+4,4];
                Elem[D[r],e] = data;
                address = address + ebytes;
if wback then
  if register_index then
    $R[n] = R[n] + R[m]$;
  else
    $R[n] = R[n] + 8\times\text{regs;}$;
F6.1.103   VLD2 (single 2-element structure to one lane)

Load single 2-element structure to one lane of two registers loads one 2-element structure from memory into corresponding elements of two registers. Elements of the registers that are not loaded are unchanged. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>D 1 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0 0 1</td>
<td>index_align</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when \( Rm = 1111 \).

\[
\text{VLD2}\{<c>\}{<q>}.<size> <list>, \[<Rn>{:<align}>\]
\]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[
\text{VLD2}\{<c>\}{<q>}.<size> <list>, \[<Rn>{:<align}>\]!
\]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[
\text{VLD2}\{<c>\}{<q>}.<size> <list>, \[<Rn>{:<align}>\], <Rm>
\]

**Decode for all variants of this encoding**

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)"

ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wbacnk = (m != 15); register_index = (m ! = 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If \( d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>D 1 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1 0 1</td>
<td>index_align</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>
**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}] \} \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}]! \} \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}], <Rm> \} \]

**Decode for all variants of this encoding**

```plaintext
if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wbback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If \( d2 > 31 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- One or more of the SIMD and floating-point registers are **UNKNOWN**. If the instruction specifies writeback, the base register becomes **UNKNOWN**. This behavior does not affect any general-purpose registers.

**A3**

| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | D | 1 | 0 | Rn | Vd | 1 | 0 | 0 | 1 | index_align | Rm |
| size |

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}] \} \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}]! \} \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLD2} \{<c>\} \{<q>\} \{<size> \} \{<list>, [<Rn> \{:<align>\}], <Rm> \} \]
Decode for all variants of this encoding

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
if index_align<1> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd);  d2 = d + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

```
111110011
```

Offset variant

Applies when Rm == 1111.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], Rm

Decode for all variants of this encoding

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 1;  index = UInt(index_align<3:1>);  inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd);  d2 = d + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T2

<table>
<thead>
<tr>
<th>1 1 1 1 1 0 0 1 1</th>
<th>D</th>
<th>1 0</th>
<th>Rn</th>
<th>Vd</th>
<th>0 1 0 1</th>
<th>index_align</th>
<th>Rm</th>
</tr>
</thead>
</table>

**Offset variant**

Applies when \( Rm = 1111 \).

\[
\text{VLD2\{<c>\}{<q>}.<size> <list>, [<Rn\{:<align>\}]}
\]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[
\text{VLD2\{<c>\}{<q>}.<size> <list>, [<Rn\{:<align>\}]!}
\]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[
\text{VLD2\{<c>\}{<q>}.<size> <list>, [<Rn\{:<align>\}], <Rm>}
\]

**Decode for all variants of this encoding**

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";

\[
ebytes = 2; \quad \text{index} = \text{UInt}(\text{index}\_\text{align}\{<3:2>\});\]

\[
\text{inc} = \text{if index}\_\text{align}\{<1>\} == '0' \text{ then } 1 \text{ else } 2;
\]

\[
\text{alignment} = \text{if index}\_\text{align}\{<0>\} == '0' \text{ then } 1 \text{ else } 4;
\]

\[
\text{d} = \text{UInt}(D:Vd); \quad \text{d2} = \text{d} + \text{inc}; \quad \text{n} = \text{UInt}(\text{Rn}); \quad \text{m} = \text{UInt}(\text{Rm});
\]

\[
\text{wback} = (m != 15) \text{ and } m != 13; \quad \text{register_index} = (m != 15 \&\& m != 13);
\]

\[
\text{if n == 15 || d2 > 31 then UNPREDICTABLE;}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If \( d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

<table>
<thead>
<tr>
<th>1 1 1 1 1 0 0 1 1</th>
<th>D</th>
<th>1 0</th>
<th>Rn</th>
<th>Vd</th>
<th>1 0 1</th>
<th>index_align</th>
<th>Rm</th>
</tr>
</thead>
</table>

**Offset variant**

Applies when \( Rm = 1111 \).

\[
\text{VLD2\{<c>\}{<q>}.<size> <list>, [<Rn\{:<align>\}]}
\]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[
\text{VLD2\{<c>\}{<q>}.<size> <list>, [<Rn\{:<align>\}]!}
\]
**Post-indexed variant**

Applies when Rm != 11x1.

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>}, <Rm>

**Decode for all variants of this encoding**

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)"
if index_align<1> != '0' then UNDEFINED;
bytes = 4; \( index = UInt(index\_align<1>) \);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

**CONRAINED UNPREDICTABLE behavior**

If d2 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

**Notes for all encodings**

For more information about the CONRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to one lane) on page K1-7956.

**Assembler symbols**

- `<c>` For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  
  For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

- `<q>` See Standard assembler syntax fields on page F2-4120.

- `<size>` Is the data size, encoded in the "size" field. It can have the following values:
  
  8 when size = 00
  
  16 when size = 01
  
  32 when size = 10

- `<list>` Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.
  
  The list must be one of:

  - `{ Dd}[<index>], {Dd+1}[<index>] `Single-spaced registers, encoded as "spacing" = 0.
  
  - `{ Dd}[<index>], {Dd+2}[<index>] `Double-spaced registers, encoded as "spacing" = 1. Not permitted when size == 8.

  The encoding of "spacing" depends on `<size>`:

  - `<size>` == 16"spacing" is encoded in the "index\_align<1>" field.
  
  - `<size>` == 32"spacing" is encoded in the "index\_align<2>" field.

  The register `Dd` is encoded in the "D:Vd" field.

  The permitted values and encoding of `<index>` depend on `<size>`:

  - `<size>` == 8 `<index>` is in the range 0 to 7, encoded in the "index\_align<3:1>" field.
<size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
<size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on <size>:
<size> == 8Encoded in the "index_align<0>" field as 0.
<size> == 16Encoded in the "index_align<0>" field as 0.
<size> == 32Encoded in the "index_align<1:0>" field as 0b00.
Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.
<size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.
<size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as 0b01.
: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    Elem[D[d], index] = MemU[address,ebytes];
    Elem[D[d2], index] = MemU[address+ebytes,ebytes];
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 2*ebytes;
    else
        R[n] = R[n] + 2*ebytes;
F6.1.104   VLD2 (single 2-element structure to all lanes)

Load single 2-element structure and replicate to all lanes of two registers loads one 2-element structure from memory into all lanes of two registers. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12 11 10 9 8 7 6 5 4 3 0 |
| 1 1 1 1 0 1 0 0 1 | D | 1 0 | Rn | Vd | 1 1 0 1 | size | T | a | Rm |
```

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLD2}\{<c>}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align>}] \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLD2}\{<c>}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align>}]! \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLD2}\{<c>}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align>}],<Rm> \]

**Decode for all variants of this encoding**

if size == '11' then UNDEFINED;

ebytes = 1 << UInt(size);

alignment = if a == '0' then 1 else 2*ebytes;

inc = if T == '0' then 1 else 2;

d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);

wback = (m != 15); register_index = (m != 15 && m != 13);

if n == 15 || d2 > 31 then UNPREDICTABLE;

**CONstrained UNPredictable behavior**

If \( d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
Offset variant
Applies when \( Rm = 1111 \).
\[
\text{VLD2} \{<c>\} \{<q>\} \{<\text{size}\} \{<\text{list}\}, \{<Rn>\}\{<\text{align}\}\}
\]

Post-indexed variant
Applies when \( Rm = 1101 \).
\[
\text{VLD2} \{<c>\} \{<q>\} \{<\text{size}\} \{<\text{list}\}, \{<Rn>\}\{<\text{align}\}\}!
\]

Post-indexed variant
Applies when \( Rm \neq 11x1 \).
\[
\text{VLD2} \{<c>\} \{<q>\} \{<\text{size}\} \{<\text{list}\}, \{<Rn>\}\{<\text{align}\}\}, \{<Rm>\}
\]

Decode for all variants of this encoding
\[
\begin{align*}
\text{if size} &= '11' \text{ then UNDEFINED} ; \\
ebytes &= 1 \ll \text{UInt(size)} ; \\
\text{alignment} &= \text{if a} = '0' \text{ then } 1 \text{ else } 2 \text{ebytes} ; \\
\text{inc} &= \text{if T} = '0' \text{ then } 1 \text{ else } 2 ; \\
d &= \text{UInt}(0:Vd) ; \\
d2 &= d + \text{inc} ; \\
n &= \text{UInt}(Rn) ; \\
m &= \text{UInt}(Rm) ; \\
\text{wback} &= (m != 15) ; \\
\text{register_index} &= (m != 15 \&\& m != 13) ; \\
\text{if n} &= 15 || d2 > 31 \text{ then UNPREDICTABLE} ;
\end{align*}
\]

CONSTRAINED UNPREDICTABLE behavior
If \( d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (single 2-element structure to all lanes) on page K1-7957.

Assembler symbols

- \(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  For encoding T1: see Standard assembler syntax fields on page F2-4120.

- \(<q>\) See Standard assembler syntax fields on page F2-4120.

- \(<\text{size}>\) Is the data size, encoded in the "size" field. It can have the following values:
  \begin{align*}
  8 & \text{ when size} = 00 \\
  16 & \text{ when size} = 01 \\
  32 & \text{ when size} = 10 \\
  \end{align*}
  The encoding size = 11 is reserved.

- \(<\text{list}>\) Is a list containing the 64-bit names of two SIMD&FP registers.
  The list must be one of:
  \{ \<Dd>[], \<Dd+1>[] \} Single-spaced registers, encoded in the "T" field as \( 0 \).
{ <Dd>[], <Dd+2>[]} Double-spaced registers, encoded in the "T" field as 1.
The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "a" field as 0.
Whenever <align> is present, the permitted values and encoding depend on <size>:
- <size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.
- <size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.
- <size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.
: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.
For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    D[d] = Replicate(MemU[address,ebytes]);
    D[d2] = Replicate(MemU[address+ebytes,ebytes]);
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 2*ebytes;
    }
F6.1.105 VLD2 (multiple 2-element structures)

Load multiple 2-element structures to two or four registers loads multiple 2-element structures from memory into two or four registers, with de-interleaving. For more information, see Element and structure load/store instructions on page F1-4098. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

\[
\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & D & 1 & 0 & Rn & Vd & 1 & 0 & 0 & x & size & align & Rm
\end{array}
\]

\text{itype}

\text{Offset variant}

Applies when \( Rm = 1111 \).

VLD2{<c>}{<q>}.<size> <list>, [{<Rn>:{<align}>}]

\text{Post-indexed variant}

Applies when \( Rm = 1101 \).

VLD2{<c>}{<q>}.<size> <list>, [{<Rn>:{<align}>}]!

\text{Post-indexed variant}

Applies when \( Rm \neq 11x1 \).

VLD2{<c>}{<q>}.<size> <list>, [{<Rn>:{<align}>}}, {<Rm>}

\text{Decode for all variants of this encoding}

\[
\begin{align*}
\text{regs} & = 1; \quad \text{if align} \text{ == '11' then UNDEFINED;}
\text{if size} \text{ == '11' then UNDEFINED;}
\text{inc} & = \text{if itype} \text{ == '1001' then 2 else 1;}
\text{alignment} & = \text{if align} \text{ == '00' then 1 else 4} \times \text{UInt}(alignment);
\text{ebytes} & = 1 \times \text{ UInt}(size); \quad \text{elements} = 8 \div \text{ebytes;}
\text{d} & = \text{UInt}(D:Vd); \quad \text{d2} = d + \text{inc;}
\text{n} & = \text{UInt}(Rn); \quad \text{m} = \text{UInt}(Rm);
\text{wbback} & = (m \neq 15); \quad \text{register_index} = (m \neq 15 \&\& m \neq 13);
\text{if n} & = 15 || \text{d2+regs > 32 then UNPREDICTABLE;}
\end{align*}
\]

\text{CONSTRAINED UNPREDICTABLE behavior}

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
Offset variant
Applies when \( Rm = 1111 \).

\[
VLD2\{<c>\}{<q>}.<size> <list>, [<Rn>>:<align>]
\]

Post-indexed variant
Applies when \( Rm = 1101 \).

\[
VLD2\{<c>\}{<q>}.<size> <list>, [<Rn>>:<align>]!
\]

Post-indexed variant
Applies when \( Rm \neq 11x1 \).

\[
VLD2\{<c>\}{<q>}.<size> <list>, [<Rn>>:<align>], <Rm>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{regs} &= 2; \quad \text{inc} = 2; \\
\text{if size} &= '11' \text{ then UNDEFINED;}
\text{alignment} &= \text{if align} = '00' \text{ then } 1 \text{ else } 4 \ll \text{UInt(align)}; \\
\text{ebytes} &= 1 \ll \text{UInt(size)}; \quad \text{elements} = 8 \div \text{ebytes}; \\
\text{d} &= \text{UInt(D:Vd)}; \quad \text{d2} = \text{d} + \text{inc}; \quad \text{n} = \text{UInt(Rn)}; \quad \text{m} = \text{UInt(Rm)}; \\
\text{wback} &= (m \neq 15); \quad \text{register_index} = (m \neq 15 \&\& m \neq 13); \\
\text{if } n &= 15 \text{ || } d + \text{regs} > 32 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONSTRANIED UNPREDICTABLE behavior

If \( d2 + \text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

\[
\begin{align*}
|15 14 13 12|11 10 9 8 7 6 5 4 3 0 |15 12|11 8 7 6 5 4 3 0 |
\end{align*}
\]

\[
|1 1 1 1 0 0 0 1 0 0| D 1 0 Rn \quad |0 1 0 0 x| size \quad align \quad Rm
\]

Offset variant
Applies when \( Rm = 1111 \).

\[
VLD2\{<c>\}{<q>}.<size> <list>, [<Rn>>:<align>]
\]

Post-indexed variant
Applies when \( Rm = 1101 \).

\[
VLD2\{<c>\}{<q>}.<size> <list>, [<Rn>>:<align>]!
\]
Post-indexed variant

Applies when \( Rm \neq 11x1 \).

\[
\text{VLD2}\{<c>\}<q>.<size> \ <list>, \ [<Rn\{:<align>\}], \ <Rm>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{regs} &= 1; \quad \text{if align} = '11' \text{ then UNDEFINED}; \\
&\quad \text{if size} = '11' \text{ then UNDEFINED}; \\
\text{inc} &= \text{if itype} = '1001' \text{ then 2 else 1}; \\
\text{alignment} &= \text{if align} = '00' \text{ then 1 else 4 } \ll \text{ UInt(align)}; \\
\text{ebytes} &= 1 \ll \text{ UInt(size)}; \quad \text{elements} = 8 \ \text{DIV} \ ebytes; \\
\text{d} &= \text{ UInt(D:Vd)}; \quad \text{d2} = \text{ d + inc}; \quad \text{n} = \text{ UInt(Rn)}; \quad \text{m} = \text{ UInt(Rm)}; \\
\text{wback} &= (\text{m} = 15); \quad \text{register_index} = (\text{m} = 15 \text{ & m} = 11); \\
\text{if n} &= 15 \ | \ | \text{d2+regs} > 32 \text{ then UNPREDICTABLE};
\end{align*}
\]

CONSTRANDED UNPREDICTABLE behavior

If \( d2+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \text{NOP}.
- One or more of the SIMD and floating-point registers are \text{UNKNOWN}. If the instruction specifies \text{writeback}, the base register becomes \text{UNKNOWN}. This behavior does not affect any general-purpose registers.

T2

\[
\begin{array}{cccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & D & 1 & 0 & Rn & Vd & 0 & 0 & 1 & 1 & size & align & Rm
\end{array}
\]

Offset variant

Applies when \( Rm = 1111 \).

\[
\text{VLD2}\{<c>\}<q>.<size> \ <list>, \ [<Rn\{:<align>\}]
\]

Post-indexed variant

Applies when \( Rm = 1101 \).

\[
\text{VLD2}\{<c>\}<q>.<size> \ <list>, \ [<Rn\{:<align>\}]!
\]

Post-indexed variant

Applies when \( Rm \neq 11x1 \).

\[
\text{VLD2}\{<c>\}<q>.<size> \ <list>, \ [<Rn\{:<align>\}], \ <Rm>
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{regs} &= 2; \quad \text{inc} = 2; \\
&\quad \text{if size} = '11' \text{ then UNDEFINED}; \\
\text{alignment} &= \text{if align} = '00' \text{ then 1 else 4 } \ll \text{ UInt(align)}; \\
\text{ebytes} &= 1 \ll \text{ UInt(size)}; \quad \text{elements} = 8 \ \text{DIV} \ ebytes; \\
\text{d} &= \text{ UInt(D:Vd)}; \quad \text{d2} = \text{ d + inc}; \quad \text{n} = \text{ UInt(Rn)}; \quad \text{m} = \text{ UInt(Rm)}; \\
\text{wback} &= (\text{m} = 15); \quad \text{register_index} = (\text{m} = 15 \text{ & m} = 11); \\
\text{if n} &= 15 \ | \ | \text{d2+\text{regs}} > 32 \text{ then UNPREDICTABLE};
\end{align*}
\]
CONSTRANGED UNPREDICTABLE behavior

If \( d2+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRANGED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD2 (multiple 2-element structures) on page K1-7956.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.

Assembler symbols

\(<c>\) For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<\text{size}>\) Is the data size, encoded in the "size" field. It can have the following values:

- 8 when \( \text{size} = 00 \)
- 16 when \( \text{size} = 01 \)
- 32 when \( \text{size} = 10 \)

The encoding \( \text{size} = 11 \) is reserved.

\(<\text{list}>\) Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

\{ \text{<Dd>}, \text{<Dd+1>} \} Two single-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in the "itype" field as \( \text{0b1000} \).

\{ \text{<Dd>}, \text{<Dd+2>} \} Two double-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in the "itype" field as \( \text{0b1001} \).

\{ \text{<Dd>}, \text{<Dd+1>}, \text{<Dd+2>}, \text{<Dd+3>} \} Three single-spaced registers. Selects the A2 and T2 encodings of the instruction.

The register \text{<Dd>} is encoded in the "D:Vd" field.

\(<\text{Rn}>\) Is the general-purpose base register, encoded in the "Rn" field.

\(<\text{align}>\) Is the optional alignment.

Whenever \( \text{align} \) is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as \( \text{0b00} \).

Whenever \( \text{align} \) is present, the permitted values are:

- 64 64-bit alignment, encoded in the "align" field as \( \text{0b01} \).
- 128 128-bit alignment, encoded in the "align" field as \( \text{0b10} \).
- 256 256-bit alignment, encoded in the "align" field as \( \text{0b11} \). Available only if \( \text{list} \) contains four registers.

\( : \) is the preferred separator before the \( \text{align} \) value, but the alignment can be specified as \( @\text{align} \), see The Advanced SIMD addressing mode on page F2-4141.
<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see *The Advanced SIMD addressing mode on page F2-4141.*

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = FALSE;
 -= AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r], e] = MemU[address, ebytes];
 Elem[D[d2+r],e] = MemU[address+ebytes, ebytes];
 address = address + 2*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 16*regs;
```
F6.1.106 VLD3 (single 3-element structure to one lane)

Load single 3-element structure to one lane of three registers loads one 3-element structure from memory into corresponding elements of three registers. Elements of the registers that are not loaded are unchanged. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

**Offset variant**

Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

**Post-indexed variant**

Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>],]

**Post-indexed variant**

Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

**Decode for all variants of this encoding**

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>
Offset variant
Applies when Rm == 1111.
VLD3{<c>}{<q>}.<size> <list>, [Rn]

Post-indexed variant
Applies when Rm == 1101.
VLD3{<c>}{<q>}.<size> <list>, [Rn]!

Post-indexed variant
Applies when Rm != 11x1.
VLD3{<c>}{<q>}.<size> <list>, [Rn], Rm

Decode for all variants of this encoding
if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)"
if index_align<0> != '0' then UNDEFINED;
ebytes = 2;  index = UInt(index_align<3:2>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  n = UInt(Rn);
m = UInt(Rm);
wback = (m != 15);
register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d3 > 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

Offset variant
Applies when Rm == 1111.
VLD3{<c>}{<q>}.<size> <list>, [Rn]

Post-indexed variant
Applies when Rm == 1101.
VLD3{<c>}{<q>}.<size> <list>, [Rn]!

Post-indexed variant
Applies when Rm != 11x1.
VLD3{<c>}{<q>}.<size> <list>, [Rn], Rm
Decode for all variants of this encoding

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4;  index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

111110011 0x0  D1 0x0  Rn  Vd  0x0  index_align  Rm

|15 14 13 12|11 10 9 8 7 6 5 4|3 0|15 12|11 10 9 8 7 4 3 0|
|---|---|---|---|---|---|---|---|---|---|
|1 1 1 1 0 0 1 1 1 0| D 1 0| Rn  Vd 0 0 1 0| index_align  Rm

 Offset variant

Applies when Rm == 1111.
VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.
VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

 Post-indexed variant

Applies when Rm != 11x1.
VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4;  index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T2

Offset variant
Applies when \( Rm == 1111 \).

\[
\text{VLD3}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>]\]

Post-indexed variant
Applies when \( Rm == 1101 \).

\[
\text{VLD3}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>]!
\]

Post-indexed variant
Applies when \( Rm != 11x1 \).

\[
\text{VLD3}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>], <Rm>
\]

Decode for all variants of this encoding

if \( \text{size} == '11' \) then SEE "VLD3 (single 3-element structure to all lanes)";
if \( \text{index}_\text{align}<0> != '0' \) then UNDEFINED;
ebytes = 2;  \text{index} = \text{UInt}(\text{index}_\text{align}<3:2>);
inc = if \( \text{index}_\text{align}<1> == '0' \) then 1 else 2;
d = \text{UInt}(D:Vd);  d2 = d + inc;  d3 = d2 + inc;
\text{m} = \text{UInt}(\text{Rm});  \text{n} = \text{UInt}(\text{Rn});
\text{wback} = (\text{m} != 15) & (\text{n} != 15);
\text{register}\_\text{index} = (\text{m} != 15);  \text{index}_\text{align} = (\text{m} != 15);  \text{index}_\text{align} = (\text{m} != 15);
if \( n == 15 || d3 > 31 \) then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior
If \( d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant
Applies when \( Rm == 1111 \).

\[
\text{VLD3}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>]\]

Post-indexed variant
Applies when \( Rm == 1101 \).

\[
\text{VLD3}\{<c>\}{<q>}.<\text{size}> <\text{list}>, [<Rn>]!
\]
Post-indexed variant
Applies when Rm ≠ 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn]>, <Rm>

Decode for all variants of this encoding

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4;  
   index = UInt(index_align<1>);
   inc = if index_align<2> == '0' then 1 else 2;
   d = UInt(D:Vd);
   d2 = d + inc;
   d3 = d2 + inc;
   n = UInt(Rn);
   m = UInt(Rm);
   wback = (m != 15);
   register_index = (m != 15 && m != 11);
   if n == 15 || d3 ≥ 31 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to one lane) on page K1-7957.

Assembler symbols

<c>
For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:
   8     when size = 00
   16    when size = 01
   32    when size = 10

<list>
Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.
The list must be one of:
   { <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] } Single-spaced registers, encoded as "spacing" = 0.
   { <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] } Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
   <size> = 8"spacing" is encoded in the "index_align<0:5" field.
   <size> = 16"spacing" is encoded in the "index_align<1:9" field, and "index_align<0:5" is set to 0.
   <size> = 32"spacing" is encoded in the "index_align<2:13" field, and "index_align<1:10" is set to 0b00.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of `<index>` depend on `<size>`:

- `<size>` == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.
- `<size>` == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
- `<size>` == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.
- `<Rm>` Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Alignment

Standard alignment rules apply, see Alignment support on page B2-148.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n];
    Elem[0][d], index] = MemU[address,ebytes];
    Elem[0][d2], index] = MemU[address+ebytes,ebytes];
    Elem[0][d3], index] = MemU[address+2*ebytes,ebytes];
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 3*ebytes;
F6.1.107  VLD3 (single 3-element structure to all lanes)

Load single 3-element structure and replicate to all lanes of three registers loads one 3-element structure from memory into all lanes of three registers. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 1 0 1 | D | 1 0 | Rn | Vd | 1 1 1 0 | size | T | 0 | Rm |

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn>] } \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn>!]} \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn>], <Rm}> \]

**Decode for all variants of this encoding**

\[
\begin{align*}
\text{if size == '11' || a == '1' then UNDEFINED; pen = 1 << UInt(size);} \\
\text{inc = if T == '0' then 1 else 2;} \\
\text{d = UInt(3d+Vd); d3 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm); wback = (m != 15); register_index = (m != 15 && m != 13);} \\
\text{if n == 15 || d3 > 31 then UNPREDICTABLE;} \\
\end{align*}
\]

**CONSTRAINED UNPREDICTABLE behavior**

If \( d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

| 15 14 13 12|11 10 9 8|7 6 5 4|3 0 |15 12|11 10 9 8|7 6 5 4|3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 | D | 1 0 | Rn | Vd | 1 1 1 0 | size | T | 0 | Rm |
Offset variant
Applies when \( Rm == 1111 \).
\[ \text{VLD3}\{<c>\}<\alpha>,<\text{size}> <\text{list}>, [<Rn>] \]

Post-indexed variant
Applies when \( Rm == 1101 \).
\[ \text{VLD3}\{<c>\}<\alpha>,<\text{size}> <\text{list}>, [<Rn>]! \]

Post-indexed variant
Applies when \( Rm != 11x1 \).
\[ \text{VLD3}\{<c>\}<\alpha>,<\text{size}> <\text{list}>, [<Rn>], <Rm> \]

Decode for all variants of this encoding
\[
\begin{align*}
\text{if size} & = '11' || a = '1' \text{ then UNDEFINED;} \\
ebytes & = 1 << \text{UInt(size);} \\
inc & = \text{if T} = '0' \text{ then } 1 \text{ else } 2; \\
d & = \text{UInt}(D:Vd); \quad d2 = d + inc; \quad d3 = d2 + inc; \quad n = \text{UInt}(Rn); \quad m = \text{UInt}(Rm); \\
wback & = (m != 15); \quad \text{register_index} = (m != 15 \&\& m != 11); \\
\text{if n} & = 15 || d3 > 31 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONSTRANDED UNPREDICTABLE behavior
If \( d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings
For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (single 3-element structure to all lanes) on page K1-7957.

Assembler symbols
- \(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  
- \(<\alpha>\) For encoding T1: see Standard assembler syntax fields on page F2-4120.

- \(<\text{size}>\) Is the data size, encoded in the "size" field. It can have the following values:
  
  \begin{align*}
  8 & \quad \text{when size} = 00 \\
  16 & \quad \text{when size} = 01 \\
  32 & \quad \text{when size} = 10
  \end{align*}
  
  The encoding size = 11 is reserved.

- \(<\text{list}>\) Is a list containing the 64-bit names of three SIMD&FP registers.
  
  The list must be one of:
  
  \{
  \text{<Dd>[], <Dd+1>[], <Dd+2>[] } \}
  
  Single-spaced registers, encoded in the "T" field as 0.
Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Alignment

Standard alignment rules apply, see Alignment support on page B2-148.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 D[d] = Replicate(MemU[address, ebytes]);
 D[d2] = Replicate(MemU[address+ebytes, ebytes]);
 D[d3] = Replicate(MemU[address+2*ebytes, ebytes]);
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;
```
F6.1.108   VLD3 (multiple 3-element structures)

Load multiple 3-element structures to three registers loads multiple 3-element structures from memory into three registers, with de-interleaving. For more information, see Element and structure load/store instructions on page F1-4098. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

\[
\begin{array}{cccccccccccc}
| 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 | \hline
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & D & 1 & 0 & Rn \\
Vd & 0 & 1 & 0 & x & size & align & Rm \hline
\end{array}
\]

\[\text{itype}\]

Offset variant

Applies when \( Rm == 1111 \).

\[\text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn]{:<align>}]}\]

Post-indexed variant

Applies when \( Rm == 1101 \).

\[\text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align}>]}!\]

Post-indexed variant

Applies when \( Rm != 11x1 \).

\[\text{VLD3\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align>}]}, <Rm}\]

Decode for all variants of this encoding

case itype of
  when '0100'
    inc = 1;
  when '0101'
    inc = 2;
  otherwise
    \[\text{SEE "Related encodings";}\]
  if size == '11' || align<1> == '1' then UNDEFINED;
  alignment = if align<0> == '0' then 1 else 8;
  ebytes = 1 << UInt(size);  elements = 8 DIV ebytes;
  d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  n = UInt(Rn);  m = UInt(Rm);
  wback = (m != 15);  register_index = (m != 15 && m != 13);
  if n == 15 || d3 > 31 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If \( d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 2 1 0</th>
<th>12 11 8 7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0</td>
<td>D 1 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1 0</td>
</tr>
</tbody>
</table>

Offset variant
Applies when Rm == 1111.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant
Applies when Rm == 1101.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm != 11x1.

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>

Decode for all variants of this encoding

```c
case itype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 see "Related encodings";
if size == '11' || align<1> == '1' then UNDEFINED;
 alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD3 (multiple 3-element structures) on page K1-7957.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.
Assembler symbols

\(<c>\)  For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

\(<q>\)

See Standard assembler syntax fields on page F2-4120.

\(<\text{size}>\)

Is the data size, encoded in the "size" field. It can have the following values:

8  when size = 00
16 when size = 01
32 when size = 10

The encoding size = 11 is reserved.

\(<\text{list}>\)

Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

\{ <Dd>, <Dd+1>, <Dd+2> \} Single-spaced registers, encoded in the "itype" field as 0b0100.

\{ <Dd>, <Dd+2>, <Dd+4> \} Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

\(<\text{Rn}>\)

Is the general-purpose base register, encoded in the "Rn" field.

\(<\text{align}>\)

Is the optional alignment.

Whenever \(<align>\) is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.

Whenever \(<align>\) is present, the only permitted values is 64, meaning 64-bit alignment, encoded in the "align" field as 0b01.

: is the preferred separator before the \(<align>\) value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

\(<\text{Rm}>\)

Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about \(<\text{Rn}>\), !, and \(<\text{Rm}>\), see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then

EncodingSpecificOperations(); CheckAdvSIMDEnabled();

address = R[n]; iswrite = FALSE;

- = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);

for e = 0 to elements-1

Elem[0] = MemU[address,ebytes];
Elem[0] = MemU[address+ebytes,ebytes];
Elem[0] = MemU[address+2*ebytes,ebytes];

address = address + 3*ebytes;

if wback then

if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 24;
F6.1.109  VLD4 (single 4-element structure to one lane)

Load single 4-element structure to one lane of four registers loads one 4-element structure from memory into corresponding elements of four registers. Elements of the registers that are not loaded are unchanged. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Offset variant

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)"

ebytes = 1;  index = UInt(index_align<3:1>);  inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(0:Vd);  d2 = d + inc;  d3 = d2 + inc;  d4 = d3 + inc;  n = UInt(Rn);  m = UInt(Rm);
wbback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2
Offset variant
Applies when \( Rm == 1111 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>] } \]

Post-indexed variant
Applies when \( Rm == 1101 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>]! } \]

Post-indexed variant
Applies when \( Rm != 11x1 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>], <Rm} \]

Decode for all variants of this encoding
if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 2;  index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  d4 = d3 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If \( d4 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12 11 10 9 8 7 4 3 0 | | |
|---|---|---|---|---|---|---|
| 1 1 1 1 0 1 0 1 0 1 | D 1 0 | Rn | Vd | 1 0 1 1 | index_align | Rm |

Offset variant
Applies when \( Rm == 1111 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>] } \]

Post-indexed variant
Applies when \( Rm == 1101 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>]! } \]

Post-indexed variant
Applies when \( Rm != 11x1 \).
\[ \text{VLD4}\{<c>\}{<q>}.<size> \text{ <list>}, \ [<Rn>{:<align}>], <Rm} \]
Decode for all variants of this encoding

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4;  index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  d4 = d3 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRUINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1|1|1|1|1|0|0|1|1|D|1|0|Rn|Vd|0|0|1|1

|size|
---|
D|index_align|Rm|

Offset variant

Applies when Rm == 1111.
VLD4<[c]>{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.
VLD4<[c]>{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.
VLD4<[c]>{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 1;  index = UInt(index_align<3:1>);  inc = 1;
alignment = if index_align<2> == '0' then 1 else 4;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  d4 = d3 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRUINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T2

Offset variant
Applies when Rm == 1111.
VLD4{<c>}{<q>}.<size> <list>, [Rn{:<align>}]!

Post-indexed variant
Applies when Rm == 1101.
VLD4{<c>}{<q>}.<size> <list>, [Rn{:<align>}]!

Post-indexed variant
Applies when Rm != 11x1.
VLD4{<c>}{<q>}.<size> <list>, [Rn{:<align>}], Rm

Decode for all variants of this encoding
if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 2;  index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd);  d2 = d + inc;  d3 = d2 + inc;  d4 = d3 + inc;  n = UInt(Rn);  m = UInt(Rm);
wback = (m != 15);  register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior
If d4 > 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

Offset variant
Applies when Rm == 1111.
VLD4{<c>}{<q>}.<size> <list>, [Rn{:<align>}]!

Post-indexed variant
Applies when Rm == 1101.
VLD4{<c>}{<q>}.<size> <list>, [Rn{:<align>}]!
Post-indexed variant
Applies when \( Rm \neq 11x1 \).

\[ \text{VLD4}\{<c>\}\{<q>\}\{<\text{size}>\}\{<\text{list}>\}, [<Rn>\{:<\text{align}>\}], <Rm> \]

Decode for all variants of this encoding

\[ \begin{align*}
\text{if size} & \text{ == } '11' \text{ then SEE "VLD4 (single 4-element structure to all lanes)";} \\
\text{if index_align<1:0> == } '11' \text{ then UNDEFINED;} \\
\text{ebytes} & = 4; \text{ index = UInt(index_align<2>);} \\
\text{inc} & = \text{if index_align<2> } == '0' \text{ then 1 else 2;} \\
\text{alignment} & = \text{if index_align<1:0> == } '00' \text{ then 1 else 4} << \text{UInt(index_align<1:0>);} \\
\text{d} & = \text{UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);} \\
\text{wback} & = (m != 15); \text{ register_index} = (m != 15 \&\& m != 11); \\
\text{if n == 15 || d4 > 31 then UNPREDICTABLE;} \\
\end{align*} \]

CONSTRANDED UNPREDICTABLE behavior
If \( d4 > 31 \), then one of the following behaviors must occur:

- The instruction is \text{UNDEFINED}.
- The instruction executes as \text{NOP}.
- One or more of the SIMD and floating-point registers are \text{UNKNOWN}. If the instruction specifies writeback, the base register becomes \text{UNKNOWN}. This behavior does not affect any general-purpose registers.

Notes for all encodings
For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to one lane) on page K1-7957.

Assembler symbols

\(<c>\) For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<\text{size}>\) Is the data size, encoded in the "size" field. It can have the following values:

- 8 when \( \text{size} = 00 \)
- 16 when \( \text{size} = 01 \)
- 32 when \( \text{size} = 10 \)

\(<\text{list}>\) Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.
The list must be one of:

- \{ \text{<Dd}[<\text{index}>], <Dd+1>[<\text{index}>], <Dd+2>[<\text{index}>], <Dd+3>[<\text{index}>] } \text{Single-spaced registers, encoded as "spacing" = 0.} \\
- \{ \text{<Dd}[<\text{index}>], <Dd+2>[<\text{index}>], <Dd+4>[<\text{index}>], <Dd+6>[<\text{index}>] } \text{Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.} \\

The encoding of "spacing" depends on \<\text{size}>:

- \<\text{size}> = 16"spacing" is encoded in the "index_align<1>" field.
- \<\text{size}> = 32"spacing" is encoded in the "index_align<2>" field.

The register \text{<Dd>} is encoded in the "D:Vd" field.
The permitted values and encoding of \(<index>\) depend on \(<size>\):
\(<size> == 8<index>\) is in the range 0 to 7, encoded in the "index_align<3:1>" field.
\(<size> == 16<index>\) is in the range 0 to 3, encoded in the "index_align<3:2>" field.
\(<size> == 32<index>\) is 0 or 1, encoded in the "index_align<3>" field.

\(<Rn>\)

Is the general-purpose base register, encoded in the "Rn" field.

\(<align>\)

Is the optional alignment.
Whenever \(<align>\) is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on \(<size>\):
\(<size> == 8\) encoded in the "index_align<0>" field as 0.
\(<size> == 16\) encoded in the "index_align<0>" field as 0.
\(<size> == 32\) encoded in the "index_align<1:0>" field as 0b00.
Whenever \(<align>\) is present, the permitted values and encoding depend on \(<size>\):
\(<size> == 8<align>\) is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.
\(<size> == 16<align>\) is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.
\(<size> == 32<align>\) can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the \(<align>\) value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

\(<Rm>\)

Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

**Operation for all encodings**

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    address = R[n];  iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    Elem[0][d2], index = MemU[address,ebytes];
    Elem[0][d3], index = MemU[address+2*ebytes,ebytes];
    Elem[0][d4], index = MemU[address+3*ebytes,ebytes];
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 4*ebytes;
F6.1.110  **VLD4 (single 4-element structure to all lanes)**

Load single 4-element structure and replicate to all lanes of four registers loads one 4-element structure from memory into all lanes of four registers. For details of the addressing mode see *The Advanced SIMD addressing mode on page F2-4141*.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support on page G1-5812*.

A1

| 31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0 |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 1 1 1 1 0 1 0 0 1 | D | 1 | 0 | Rn | Vd | 1 | 1 | 1 | 1 | size | T | a | Rm |

**Offset variant**

Applies when Rm == 1111.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

**Post-indexed variant**

Applies when Rm == 1101.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]]!

**Post-indexed variant**

Applies when Rm != 11x1.

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]],<Rm>

**Decode for all variants of this encoding**

```plaintext
if size == '11' && a == '0' then UNDEFINED;
if size == '11' then
 ebytes = 4; alignment = 16;
else
 ebytes = 1 << UInt(size);
 if size == '10' then
 alignment = if a == '0' then 1 else 8;
 else
 alignment = if a == '0' then 1 else 4*ebytes;
 inc = if T == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d4 > 31 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If d4 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
T1

Offset variant
Applies when \( \text{Rm} == 1111 \).
\[
\text{VLD4}{<c>}{<q>}.<\text{size}> \text{ <list>}, \left[<\text{Rn}>({:<\text{align}})\right]
\]

Post-indexed variant
Applies when \( \text{Rm} == 1101 \).
\[
\text{VLD4}{<c>}{<q>}.<\text{size}> \text{ <list>}, \left[<\text{Rn}>({:<\text{align}})\right]!
\]

Post-indexed variant
Applies when \( \text{Rm} != 11x1 \).
\[
\text{VLD4}{<c>}{<q>}.<\text{size}> \text{ <list>}, \left[<\text{Rn}>({:<\text{align}})\right], \text{<Rm>}
\]

Decode for all variants of this encoding

\[
\text{if size} == '11' \&\& a == '0' \text{ then UNDEFINED};
\text{if size} == '11' \text{ then}
\begin{align*}
\text{ebytes} & = 4; \quad \text{alignment} = 16; \\
\text{else}
\begin{align*}
\text{ebytes} & = 1 \times \text{UInt(size)}; \\
\text{if size} & == '10' \text{ then}
\begin{align*}
\text{alignment} & = \text{if a == '0' then 1 else 8}; \\
\text{else}
\begin{align*}
\text{alignment} & = \text{if a == '0' then 1 else 4\times\text{ebytes}};
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\end{align*}
\text{inc} = \text{if T == '0' then 1 else 2};
\begin{align*}
\text{d} & = \text{UInt(D:Vd)}; \\
\text{d2} & = \text{d} + \text{inc}; \\
\text{d3} & = \text{d2} + \text{inc}; \\
\text{d4} & = \text{d3} + \text{inc}; \\
\text{n} & = \text{UInt(Rn)}; \\
\text{m} & = \text{UInt(Rm)};
\end{align*}
\text{wback} = \text{(m != 15); register_index} = \text{(m != 15 &\& m != 13)};
\text{if n == 15 || d4 > 31 then UNPREDICTABLE;}
\]

\text{CONSTRANDED UNPREDICTABLE behavior}

If \( d4 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (single 4-element structure to all lanes) on page K1-7958.

Assembler symbols

\(<c>\)

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.
<p>See Standard assembler syntax fields on page F2-4120.</p>

<size>
Is the data size, encoded in the "size" field. It can have the following values:

8  when size = 00
16 when size = 01
32 when size = 1x
</size>

<list>
Is a list containing the 64-bit names of four SIMD&FP registers.
The list must be one of:

{ <Dd>[], <Dd+1>[], <Dd+2>[], <Dd+3>[] } Single-spaced registers, encoded in the "T" field as 0.
{ <Dd>[], <Dd+2>[], <Dd+4>[], <Dd+6>[] } Double-spaced registers, encoded in the "T" field as 1.
The register <Dd> is encoded in the "D:Vd" field.
</list>

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.
</Rn>

<align>
Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "a" field as 0.
Whenever <align> is present, the permitted values and encoding depend on <size>:

<align> == 8<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.
<align> == 16<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.
<align> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "a:size<0>" field as 0b10, and 128-bit alignment is encoded in the "a:size<0>" field as 0b11.
: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.
</align>

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.
For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    D[d] = Replicate(MemU[address,ebytes]);
    D[d2] = Replicate(MemU[address+ebytes,ebytes]);
    D[d3] = Replicate(MemU[address+2*ebytes,ebytes]);
    D[d4] = Replicate(MemU[address+3*ebytes,ebytes]);
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 4*ebytes;
F6.1.111  VLD4 (multiple 4-element structures)

Load multiple 4-element structures to four registers loads multiple 4-element structures from memory into four registers, with de-interleaving. For more information, see Element and structure load/store instructions on page F1-4098. Every element of each register is loaded. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 27 26 25 24 23 22 21 20 19 | 16 15 12 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | D | 1 | 0 | Rn | Vd | 0 | 0 | x | size | align | Rm |

itype

**Offset variant**

Applies when \( Rm = 1111 \).

\[ \text{VLD4}\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align>}] \]

**Post-indexed variant**

Applies when \( Rm = 1101 \).

\[ \text{VLD4}\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align>}]! \]

**Post-indexed variant**

Applies when \( Rm \neq 11x1 \).

\[ \text{VLD4}\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm> \]

**Decode for all variants of this encoding**

```
case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";
 if size == '11' then UNDEFINED;
 alignment = if align == '00' then 1 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 & m != 11);
 if n == 15 || d4 > 31 then UNPREDICTABLE;
```

**CONSTRAINED UNPREDICTABLE behavior**

If \( d4 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
Offset variant
Applies when $Rm == 1111$.

\[ \text{VLD4}\{<c>\}{<q>}.<\text{size}> \text{ <list>, } [<Rn>\{<:align>\}] \]

Post-indexed variant
Applies when $Rm == 1101$.

\[ \text{VLD4}\{<c>\}{<q>}.<\text{size}> \text{ <list>, } [<Rn>\{<:align>\}]! \]

Post-indexed variant
Applies when $Rm != 11x1$.

\[ \text{VLD4}\{<c>\}{<q>}.<\text{size}> \text{ <list>, } [<Rn>\{<:align>\}], Rm \]

Decode for all variants of this encoding

```plaintext
case itype of
 when '0000' inc = 1;
 when '0001' inc = 2;
 otherwise
 SEE "Related encodings";
if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;
```

CONSTRUATED UNPREDICTABLE behavior

If $d4 > 31$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONSTRUATED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLD4 (multiple 4-element structures) on page K1-7957.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.
Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

&q
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Size</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>when size = 00</td>
</tr>
<tr>
<td>16</td>
<td>when size = 01</td>
</tr>
<tr>
<td>32</td>
<td>when size = 10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<list>
Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:

- \{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> \} Single-spaced registers, encoded in the "itype" field as 0b0000.
- \{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> \} Double-spaced registers, encoded in the "itype" field as 0b0001.
The register <Dd> is encoded in the "D:Vd" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:

<table>
<thead>
<tr>
<th>Alignment</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>0b01</td>
</tr>
<tr>
<td>128</td>
<td>0b10</td>
</tr>
<tr>
<td>256</td>
<td>0b11</td>
</tr>
</tbody>
</table>

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = FALSE;
    - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    for e = 0 to elements-1
        Elem[0][d], e = MemU[address,ebytes];
        Elem[0][d2], e = MemU[address+ebytes,ebytes];
        Elem[0][d3], e = MemU[address+2*ebytes,ebytes];
        Elem[0][d4], e = MemU[address+3*ebytes,ebytes];
        address = address + 4*ebytes;
    if wback then
        if register_index then
            R[n] = R[n] + R[m];
        else
            R[n] = R[n] + 32;
F6.1.112   VLDM, VLDMDB, VLDMIA

Load Multiple SIMD&FP registers loads multiple registers from consecutive locations in the Advanced SIMD and floating-point register file using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the alias VPOP. See Alias conditions on page F6-5300 for details of when each alias is preferred.

A1

Decrement Before variant

Applies when \( P == 1 \) && \( U == 0 \) && \( W == 1 \).

\[
\text{VLDMDB}\{<c>\}{<q>}{.<size>} \ <Rn>!, \ <dreglist>
\]

Increment After variant

Applies when \( P == 0 \) && \( U == 1 \).

\[
\text{VLDM}\{<c>\}{<q>}{.<size>} \ <Rn>!, \ <dreglist>
\]

\[
\text{VLDMIA}\{<c>\}{<q>}{.<size>} \ <Rn>!, \ <dreglist>
\]

Decode for all variants of this encoding

\[
\text{if } P == '0' \ & \ & U == '0' \ & \ & W == '0' \text{ then SEE "Related encodings";}
\]

\[
\text{if } P == '1' \ & \ & W == '0' \text{ then SEE "VLDR";}
\]

\[
\text{if } P == U \ & \ & W == '1' \text{ then UNDEFINED;}
\]

// Remaining combinations are PW = 010 (IA without !), 011 (IA with !), 101 (DB with !)

\[
\text{single_regs = FALSE; add = (U == '1'); wback = (W == '1');}
\]

\[
d = \text{UInt}(D:Vd); \ n = \text{UInt}(Rn); \ \text{imm32 = ZeroExtend(imm8:"00", 32)};
\]

\[
\text{regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FDMX".}
\]

\[
\text{if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;}
\]

\[
\text{if regs == 0 || (regs > 16 || (d+regs) > 32 then UNPREDICTABLE;}
\]

\[
\text{if imm8<0> == '1' \ & \ & (d+regs) > 16 then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If \( \text{regs} == 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VLDM with the same addressing mode but loads no registers.

If \( \text{regs} > 16 \ || \ (d+\text{regs}) > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
A2

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Decrement Before variant
Applies when \( P = 1 \) && \( U = 0 \) && \( W = 1 \).

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant
Applies when \( P = 0 \) && \( U = 1 \).

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding
if \( P = '0' \) && \( U = '0' \) && \( W = '0' \) then SEE "Related encodings";
if \( P = '1' \) && \( U = '0' \) then SEE "VLDR";
if \( P = 'U' \) && \( W = '1' \) then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If \( \text{regs} = 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VLDM with the same addressing mode but loads no registers.

If \( \text{(d+regs)} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Decrement Before variant
Applies when \( P = 1 \) && \( U = 0 \) && \( W = 1 \).

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>
**Increment After variant**

Applies when $P = 0 \&\& U = 1$.

\[ \text{VLDM}{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist> \]
\[ \text{VLDMIA}{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist> \]

**Decode for all variants of this encoding**

if $P = '0' \&\& U = '0' \&\& W = '0$ then SEE "Related encodings";
if $P = '1' \&\& W = '0' then SEE "VLDR";
if $P = U \&\& W = '1$ then UNDEFINED;
// Remaining combinations are PWU = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE;  add = (U == '1');  wback = (W == '1');  
d = UInt(D:Vd);  n = UInt(Rn);  imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2;  // If UInt(imm8) is odd, see "FLDM*X".
if $n == 15 \&\&$ // CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;
if $\text{regs} == 0 || \text{regs} > 16 \text{ || (d+regs)} > 32 then UNPREDICTABLE;
if imm8<0> == '1' \&\& (d+regs) > 16 then UNPREDICTABLE;

**CONSTRAINED UNPREDICTABLE behavior**

If $\text{regs} == 0$, then one of the following behaviors must occur:
- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VLDM with the same addressing mode but loads no registers.

If $\text{regs} > 16 \text{ || (d+regs)} > 32$, then one of the following behaviors must occur:
- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

**Decrement Before variant**

Applies when $P = 1 \&\& U = 0 \&\& W = 1$.

\[ \text{VLDMDB}{<c>}{<q>}{.<size>} <Rn>!, <sreglist> \]

**Increment After variant**

Applies when $P = 0 \&\& U = 1$.

\[ \text{VLDM}{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist> \]
\[ \text{VLDMIA}{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist> \]

**Decode for all variants of this encoding**

if $P = '0' \&\& U = '0' \&\& W = '0$ then SEE "Related encodings";
if $P = '1' \&\& W = '0' then SEE "VLDR";
if $P = U \&\& W = '1$ then UNDEFINED;
// Remaining combinations are PWU = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE;  add = (U == '1');  wback = (W == '1');  
d = UInt(Vd:D);  n = UInt(Rn); 
imm32 = ZeroExtend(imm8:'00', 32);  regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

**CONSTRUED UNPREDICTABLE behavior**

If regs == 0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

**Notes for all encodings**

For more information about the CONSTRUED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VLDM on page K1-7958.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4175 for the T32 instruction set, or Advanced SIMD and floating-point 64-bit move on page F4-4253 for the A32 instruction set.

**Alias conditions**

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPOP</td>
<td>P == '0' &amp;&amp; U == '1' &amp;&amp; W == '1' &amp;&amp; Rn == '1101'</td>
</tr>
</tbody>
</table>

**Assembler symbols**

- `<c>` See Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<size>` An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers being transferred.
- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can be used.
- `!` Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.
- `<sreglist>` Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must contain at least one register.
- `<dreglist>` Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must contain at least one register, and must not contain more than 16 registers.
Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckVFPEnabled(TRUE);
    address = if add then R[n] else R[n]-imm32;
    for r = 0 to regs-1
        if single_regs then
            S[d+r] = MemA[address,4];  address = address+4;
        else
            word1 = MemA[address,4];  word2 = MemA[address+4,4];  address = address+8;
            // Combine the word-aligned words in the correct order for current endianness.
            D[d+r] = if BigEndian() then word1:word2 else word2:word1;
        if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

F6.1.113   VLDR (immediate)

Load SIMD&FP register (immediate) loads a single register from the Advanced SIMD and floating-point register file, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPExC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 | 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   !=1111 | 1 | 1 | 0 | 1 | U | D | 0 | 1 |   !=1111 | Vd | 1 | 0 | size |

**Half-precision scalar variant**
Applies when size == 01.

VLDR{<c>}{<q>}{.16} <Sd>, [<Rn> {, #{+/-}<imm>}]

**Single-precision scalar variant**
Applies when size == 10.

VLDR{<c>}{<q>{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]}

**Double-precision scalar variant**
Applies when size == 11.

VLDR{<c>}{<q>{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]}

**Decode for all variants of this encoding**

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
  when '01' d = UInt(Vd:D);
  when '10' d = UInt(Vd:D);
  when '11' d = UInt(D:Vd);
  n = UInt(Rn);

**CONSTRAINED UNPREDICTABLE behavior**
If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Half-precision scalar variant

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #<imm>}]

Double-precision scalar variant

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #<imm>}]

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock()  then UNPREDICTABLE;
esize = 8 << UInt(size);  add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
  when '01' d = UInt(Vd:D);
  when '10' d = UInt(Vd:D);
  when '11' d = UInt(D:Vd);
n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<
  See Standard assembler syntax fields on page F2-4120.
<
  See Standard assembler syntax fields on page F2-4120.
.
  Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.
.<
  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
.
  Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.
<
  Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<
  Is the general-purpose base register, encoded in the "Rn" field.

+/-

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0
+ when U = 1
A32 Advanced SIMD and Floating-point Instruction Descriptions

F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

<iimm>

For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as <iimm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <iimm>/2.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4];
 word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for current endianness.
 D[d] = if BigEndian() then word1:word2 else word2:word1;
```
F6.1.114   VLDR (literal)

Load SIMD&FP register (literal) loads a single register from the Advanced SIMD and floating-point register file, using an address from the PC value and an immediate offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28|27 26 25 24 |23 22 21 20 |19 16|15 12|11 10 9 8 |7 |0 | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 | 1 | 0 | 1 | U | D | 0 | 1 | 1 | 1 | 1 | Vd | 1 | 0 | size | imm8 |
| cond | Rn |

**Half-precision scalar variant**

Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

**Single-precision scalar variant**

Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

**Double-precision scalar variant**

Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

**Decode for all variants of this encoding**

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
nde size = 8 << UInt(size); [add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
  when '01' d = UInt(Vd:D);
  when '10' d = UInt(Vd:D);
  when '11' d = UInt(D:Vd);
n = UInt(Rn);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 0</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant
Applies when size == 01.

VLDR{<c>}{<q>}.16 <Sd>, <label>
VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar variant
Applies when size == 10.

VLDR{<c>}{<q>}{.32} <Sd>, <label>
VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar variant
Applies when size == 11.

VLDR{<c>}{<q>}{.64} <Dd>, <label>
VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);
n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<>
See Standard assembler syntax fields on page F2-4120.

<op>
See Standard assembler syntax fields on page F2-4120.

.64
Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32
Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.

<Sd>
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
The label of the literal data item to be loaded.

For the single-precision scalar or double-precision scalar variants: the assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values are multiples of 4 in the range -1020 to 1020.

For the half-precision scalar variant: the assembler calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values are multiples of 2 in the range -510 to 510.

If the offset is zero or positive, \( \text{imm32} \) is equal to the offset and \( \text{add} = \text{TRUE} \).

If the offset is negative, \( \text{imm32} \) is equal to minus the offset and \( \text{add} = \text{FALSE} \).

\(+/-\) Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- \( \text{add} = \text{TRUE} \) when \( U = 0 \)
- \( \text{add} = \text{FALSE} \) when \( U = 1 \)

\(<\text{imm}>\) For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as \(<\text{imm}>/4\).

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as \(<\text{imm}>/2\).

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax on page F1-4077.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 case esize of
 when 16
 S[d] = Zeros(16) : MemA[address,2];
 when 32
 S[d] = MemA[address,4];
 when 64
 word1 = MemA[address,4]; word2 = MemA[address+4,4];
 // Combine the word-aligned words in the correct order for currentendianness.
 D[d] = if BigEndian() then word1:word2 else word2:word1;
```
F6.1.115  VMAX (floating-point)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see "Enabling Advanced SIMD and floating-point support" on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1   | 1   | 1   | 0   | 0   | 0   | D   | 0   | sz  | Vn  | Vd  | 1   | 1   | 1   | N   | Q   | M   | 0   | Vm  |

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;
T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 |12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1   | 1   | 1   | 1   | 1   | 0   | D   | 0   | sz  | Vn  | Vd  | 1   | 1   | 1   | N   | Q   | M   | 0   | Vm  |

64-bit SIMD vector variant

Applies when Q == 0.

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
case sz of
    when '0' esize = 32; elements = 2;
    when '1' esize = 16; elements = 4;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

**CONSTRANGED UNPREDICTABLE behavior**

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

<op> For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

For encoding T1: see *Standard assembler syntax fields on page F2-4120*.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- F32 when sz = 0
- F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point maximum and minimum

- max(+0.0, -0.0) = +0.0
- If any input is a NaN, the corresponding result element is the default NaN.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
 if maximum then
 Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
 else
 Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());

```

---

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
ID072120 Non-Confidential F6-5309
F6.1.116   VMAX (integer)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the corresponding element in the destination vector.

The operand vector elements can be any one of:

- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

### 64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VMAX}\{<c>\}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>
\]

### 128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VMAX}\{<c>\}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
\]

#### Decode for all variants of this encoding

- if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
- if size == '11' then UNDEFINED;
- maximum = (op == '0') ; unsigned = (U == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); 
- regs = if Q == '0' then 1 else 2;

### 64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VMAX}\{<c>\}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>
\]

### 128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VMAX}\{<c>\}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
\]
Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<op>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
S8 when U = 0, size = 00
S16 when U = 0, size = 01
S32 when U = 0, size = 10
U8 when U = 1, size = 00
U16 when U = 1, size = 01
U32 when U = 1, size = 10

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Db>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
  EncodingSpecificOperations(); CheckAdvSIMDEnabled();
  for r = 0 to regs-1
    for e = 0 to elements-1
      op1 = Int(Elem[D+n+r],e,esize], unsigned);
      op2 = Int(Elem[D+m+r],e,esize], unsigned);
      result = if maximum then Max(op1,op2) else Min(op1,op2);
      Elem[D+d+r],e,esize] = result>e-1:0;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
The values of the NZCV flags.
F6.1.117  VMAXNM

This instruction determines the floating-point maximum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMAX.

This instruction is not conditional.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 0 0 1 1 | 0 | D 0 | sz | Vn | Vd | 1 1 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' & !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 1 1 1 | 0 | 1 | D 0 | 0 | Vn | Vd | 1 0 | t=00 | N 0 | M 0 | Vm |

Half-precision scalar variant

Applies when size == 01.

VMAXNM{<op>}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

Single-precision scalar variant

Applies when size == 10.

VMAXNM{<op>}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Double-precision scalar variant

Applies when size == 11.

VMAXNM{<op>}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional
Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0|15 12|11 10 9 8 |7 6 5 4 |3 0|
|0|1|1|1|1|1|0|D||0|sz|Vn|Vd|1|1|1|N|Q|M|1|Vm|

64-bit SIMD vector variant

Applies when Q == 0.
VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); reg = if Q == '0' then 1 else 2;

CONSTRANED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0|15 12|11 10 9 8 |7 6 5 4 |3 0|
|0|1|1|1|1|1|0|1|D|0|0|Vn|Vd|1|0|i=00|N|0|M|0|Vm|

Half-precision scalar variant

Applies when size == 01.
VMAXNM{<op>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block
**Single-precision scalar variant**
Applies when size == 10.

\texttt{VMAX\{\texttt{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block}

**Double-precision scalar variant**
Applies when size == 11.

\texttt{VMAX\{\texttt{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block}

**Decode for all variants of this encoding**

if \texttt{InITBlock()} then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If \texttt{InITBlock()}, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

\texttt{<q>}: See Standard assembler syntax fields on page F2-4120.

\texttt{<dt>}: Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- F32 when \texttt{sz = 0}
- F16 when \texttt{sz = 1}

\texttt{<Qd>}: Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \texttt{<Qd>*2}.

\texttt{<Qn>}: Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \texttt{<Qn>*2}.

\texttt{<Qm>}: Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \texttt{<Qm>*2}.

\texttt{<Dd>}: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\texttt{<Dn>}: Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\texttt{<Dm>}: Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

\texttt{<Sd>}: Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

\texttt{<Sn>}: Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

\texttt{<Sm>}: Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then  // Advanced SIMD instruction
  for r = 0 to regs-1
    for e = 0 to elements-1
      op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
      if maximum then
        Elem[D[r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
      else
        Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
    else  // VFP instruction
      case esize of
        when 16
          if maximum then
            S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR);
          else
            S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR);
        when 32
          if maximum then
            S[d] = FPMaxNum(S[n], S[m], FPSCR);
          else
            S[d] = FPMinNum(S[n], S[m], FPSCR);
        when 64
          if maximum then
            D[d] = FPMaxNum(D[n], D[m], FPSCR);
          else
            D[d] = FPMinNum(D[n], D[m], FPSCR);
F6.1.118 VMIN (floating-point)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the corresponding element in the destination vector.

The operand vector elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPtr registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

**CONSTRAINED UNPREDICTABLE behavior**

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

<c> For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

For encoding T1: see *Standard assembler syntax fields on page F2-4120*.

<q> See *Standard assembler syntax fields on page F2-4120*.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- F32 when sz = 0
- F16 when sz = 1

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Floating-point minimum

- min(+0.0, -0.0) = -0.0
- If any input is a NaN, the corresponding result element is the default NaN.

**Operation for all encodings**

if ConditionPassed() then
  EncodingSpecificOperations(); CheckAdvSIMDEnabled();
  for r = 0 to regs-1
    for e = 0 to elements-1
      op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
      if maximum then
        Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
      else
        Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());
### F6.1.119  VMIN (integer)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the corresponding element in the destination vector.

The operand vector elements can be any one of:
- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see [Enabling Advanced SIMD and floating-point support on page G1-5812](#).

#### A1

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>U</th>
<th>0</th>
<th>D</th>
<th>size</th>
<th>Vn</th>
<th>Vd</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>N</th>
<th>Q</th>
<th>M</th>
<th>1</th>
<th>Vm</th>
</tr>
</thead>
</table>

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[ \text{VMIN}\{<c>\}{<q>}.<dt> \{<Dd>\}, \{<Dn>\}, \{<Dm>\} \]

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[ \text{VMIN}\{<c>\}{<q>}.<dt> \{<Qd>\}, \{<Qn>\}, \{<Qm>\} \]

#### Decode for all variants of this encoding

- if \( Q == '1' \) \& \& (\( Vd<0> == '1' \) \| \( Vn<0> == '1' \) \| \( Vm<0> == '1' \)) then UNDEFINED;
- if size == '11' then UNDEFINED;
- maximum = (op == '0');  unsigned = (U == '1');
- esize = 8 << UInt(size);  elements = 64 DIV esize;
- d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

#### T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
| 1 | 1 | 1 | U | 1 | 1 | 1 | 0 | D | size | Vn | Vd | 0 | 1 | 1 | 0 | N | Q | M | 1 | Vm |

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[ \text{VMIN}\{<c>\}{<q>}.<dt> \{<Dd>\}, \{<Dn>\}, \{<Dm>\} \]

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[ \text{VMIN}\{<c>\}{<q>}.<dt> \{<Qd>\}, \{<Qn>\}, \{<Qm>\} \]
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0');  unsigned = (U == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<>  For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<>  See Standard assembler syntax fields on page F2-4120.

<dt>  Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- S8  when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U8  when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

<Qd>  Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>  Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>  Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>  Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>  Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>  Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
for r = 0 to regs-1
    for e = 0 to elements-1
        op1 = Int(Elem[D:n+r],e,esize], unsigned);
        op2 = Int(Elem[D:m+r],e,esize], unsigned);
        result = if maximum then Max(op1,op2) else Min(op1,op2);
        Elem[D:d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
The values of the NZCV flags.
F6.1.120  VMINNM

This instruction determines the floating point minimum number.

It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMIN.

This instruction is not conditional.

A1

\[
\begin{array}{cccccccccccccc}
\hline
\text{op} & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & D & 1 & 1 & N & Q & M & 1 & Vm \\
\end{array}
\]

64-bit SIMD vector variant

Applies when \( Q = 0 \).

\( \text{VMINNM}\{<q>\} .<dt> <Dd>, <Dn>, <Dm> \)

128-bit SIMD vector variant

Applies when \( Q = 1 \).

\( \text{VMINNM}\{<q>\} .<dt> <Qd>, <Qn>, <Qm> \)

Decode for all variants of this encoding

if \( Q = '1' \) && \( (Vd<> == '1' || Vn<> == '1' || Vm<> == '1') \) then UNDEFINED;
if \( sz = '1' \) && \( !\text{HaveFP16Ext}() \) then UNDEFINED;
maximum = \( (op == '0') \);
advsimd = TRUE;
case sz of
    when '0' esize = 32; elements = 2;
    when '1' esize = 16; elements = 4;
    d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

\[
\begin{array}{cccccccccccccc}
\hline
\text{size op} & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & D & 0 & 0 & Vn & Vd & 1 & 0 & !=00 & N & M & 1 & Vm \\
\end{array}
\]

Half-precision scalar variant

Applies when size == 01.

\( \text{VMINNM}\{<op>\}.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional \)

Single-precision scalar variant

Applies when size == 10.

\( \text{VMINNM}\{<op>\}.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional \)

Double-precision scalar variant

Applies when size == 11.

\( \text{VMINNM}\{<op>\}.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional \)
Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

64-bit SIMD vector variant

Applies when Q == 0.
VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
case sz of
  when '0' esize = 32; elements = 2;
    d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regsz = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Half-precision scalar variant

Applies when size == 01.
VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block
**Single-precision scalar variant**
Applies when size == 10.

```
VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block
```

**Double-precision scalar variant**
Applies when size == 11.

```
VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block
```

**Decode for all variants of this encoding**

if `InITBlock()` then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If `InITBlock()` then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Notes for all encodings**

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

**Assembler symbols**

- `<q>` See *Standard assembler syntax fields* on page F2-4120.

- `<dt>` Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
  - F32 when `sz = 0`
  - F16 when `sz = 1`

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.`

- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.`

- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.`

- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

- `<Sn>` Is the 32-bit name of the first SIMD&FP source register, encoded in the "VN:N" field.

- `<Sm>` Is the 32-bit name of the second SIMD&FP source register, encoded in the "VM:M" field.
Operation for all encodings

EncodingSpecificOperations();  CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then             // Advanced SIMD instruction
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
            if maximum then
                Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
            else
                Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
        else                        // VFP instruction
            case esize of
                when 16
                    if maximum then
                        S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR);
                    else
                        S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR);
                when 32
                    if maximum then
                        S[d] = FPMaxNum(S[n], S[m], FPSCR);
                    else
                        S[d] = FPMinNum(S[n], S[m], FPSCR);
                when 64
                    if maximum then
                        D[d] = FPMaxNum(D[n], D[m], FPSCR);
                    else
                        D[d] = FPMinNum(D[n], D[m], FPSCR);
### F6.1.121 VMLA (floating-point)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and accumulates the results into the elements of the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPSCR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

**A1**

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 0 0 1 0 0 D 0 sz</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 0 1 N Q M 1</td>
</tr>
</tbody>
</table>

**64-bit SIMD vector variant**

Applies when \( Q = 0 \).

\[
\text{VMLA}\{<c>\}{<q>}.<dt> \text{<Dd>, <Dn>, <Dm>}
\]

**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[
\text{VMLA}\{<c>\}{<q>}.<dt> \text{<Qd>, <Qn>, <Qm>}
\]

**Decode for all variants of this encoding**

If \( Q = '1' \) \&\& \( \text{Vd}<0> = '1' \mid \text{Vn}<0> = '1' \mid \text{Vm}<0> = '1' \) then UNDEFINED;

if \( \text{sz} = '1' \) \&\& \( \text{HaveFP16Ext}() \) then UNDEFINED;

\( \text{advsimd} = \text{TRUE}; \ add = (\text{op} = '0'); \)

**A2**

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111</td>
<td>1 1 1 0 0 D 0 0</td>
<td>Vn</td>
<td>Vd</td>
<td>1 0 size N 0 M 0</td>
</tr>
</tbody>
</table>

**Half-precision scalar variant**

Applies when \( \text{size} = 01 \).

\[
\text{VMLA}\{<c>\}{<q>}.F16 \text{<Sd>, <Sn>, <Sm>}
\]

**Single-precision scalar variant**

Applies when \( \text{size} = 10 \).

\[
\text{VMLA}\{<c>\}{<q>}.F32 \text{<Sd>, <Sn>, <Sm>}
\]

**Double-precision scalar variant**

Applies when \( \text{size} = 11 \).

\[
\text{VMLA}\{<c>\}{<q>}.F64 \text{<Dd>, <Dn>, <Dm>}
\]
### Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
case size of
    when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
    when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
    when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

### CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

### 64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

### 128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

### Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; add = (op == '0');
case sz of
    when '0' esize = 32; elements = 2;
        when '1' esize = 16; elements = 4;
            d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); 
                regs = if Q == '0' then 1 else 2;

### CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

Half-precision scalar variant
Applies when size == 01.
VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

\[\text{if size } = '00' \mid (\text{size } = '01' \&\& \text{!HaveFP16Ext()}) \text{ then UNDEFINED;}
\]
\[\text{if size } = '01' \&\& \text{InITBlock()} \text{ then UNPREDICTABLE;}
\]
\[\text{if FPSCR.Len } = '000' \mid \text{FPSCR.Stride } = '00' \text{ then UNDEFINED;}
\]
\[\text{advsimd } = \text{FALSE}; \text{ add } = (op = '0');
\]
\[\text{case size of}
\]
\[\text{when } '01' \text{ esize } = 16; \text{ d } = \text{UInt(Vd:D); n } = \text{UInt(Vn:N); m } = \text{UInt(Vm:M)};
\]
\[\text{when } '10' \text{ esize } = 32; \text{ d } = \text{UInt(Vd:D); n } = \text{UInt(Vn:N); m } = \text{UInt(Vm:M)};
\]
\[\text{when } '11' \text{ esize } = 64; \text{ d } = \text{UInt(D:Vd); n } = \text{UInt(N:Vn); m } = \text{UInt(M:Vm)};
\]

CONstrained UNPREDICTABLE behavior
If size == '01' \&\& InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<\text{c}>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.

<\text{q}>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
F32 when sz = 0
F16 when sz = 1

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

---

F6-5328
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
ARM DDI 0487F.c
ID072120
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
 addend = if add then product else FPNeg(product);
 Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 addend16 = if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR) else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR));
 S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR);
 when 32
 addend32 = if add then FPMul(S[n], S[m], FPSCR) else FPNeg(FPMul(S[n], S[m], FPSCR));
 S[d] = FPAdd(S[d], addend32, FPSCR);
 when 64
 addend64 = if add then FPMul(D[n], D[m], FPSCR) else FPNeg(FPMul(D[n], D[m], FPSCR));
 D[d] = FPAdd(D[d], addend64, FPSCR);
```

```
F6.1.122 VMLA (integer)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and adds the products to the corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

The data type for the elements of the operands. It must be one of:

- S: Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.
- U: Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.
- I: Available only in encoding T1/A1.

The data size for the elements of the operands. It must be one of:

- 8: Encoded as size = 0b00.
- 16: Encoded as size = 0b01.
- 32: Encoded as size = 0b10.

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.123 VMLA (by scalar)

Vector Multiply Accumulate multiplies elements of a vector by a scalar, and adds the products to corresponding elements of the destination vector.

For more information about scalars see *Advanced SIMD scalars* on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

![Encoding Diagram](image-url)

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

![Encoding Diagram](image-url)

64-bit SIMD vector variant

Applies when Q == 0.

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>
Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
 unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
 add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
 d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<cf> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<cp> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field. It can have the following values:

I16 when F = 0, size = 01
I32 when F = 0, size = 10
F16 when F = 1, size = 01
F32 when F = 1, size = 10

<qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as <qd>*2.

<qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <qn>*2.

<dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<dm> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>"; and x is encoded in "M:Vm<3>". If <dt> is I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
 FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.124 VMLAL (integer)

Vector Multiply Accumulate Long multiplies corresponding elements in two vectors, and add the products to the corresponding element of the destination vector. The destination vector element is twice as long as the elements that are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support on page G1-5812.*

A1

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 ]
[1 1 1 0 0 1 |U|1|D|l=11|Vn|Vd|1 0 0 0|N|0|M|0|Vm]
```

A1 variant

VMLAL{<c>}{<q>}{<type}{<size}> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<> '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

```
[15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 12|11 10 9 8|7 6 5 4|3 0 ]
[1 1 1|U|1 1 1|1 D|l=11|Vn|Vd|1 0 0 0|N|0|M|0|Vm]
```

T1 variant

VMLAL{<c>}{<q>}{<type}{<size}> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<> '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See *Advanced SIMD data-processing on page F3-4165* for the T32 instruction set, or *Advanced SIMD data-processing on page F4-4262* for the A32 instruction set.

Assembler symbols

<>

For encoding A1: see *Standard assembler syntax fields on page F2-4120.* This encoding must be unconditional.

For encoding T1: see *Standard assembler syntax fields on page F2-4120.*

<q>

See *Standard assembler syntax fields on page F2-4120.*
Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
            addend = if add then product else -product;
            if long_destination then
                Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
            else
                Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.125 VMLAL (by scalar)

Vector Multiply Accumulate Long multiplies elements of a vector by a scalar, and adds the products to corresponding elements of the destination vector. The destination vector elements are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see *Standard assembler syntax fields* on page F2-4120.

See *Standard assembler syntax fields* on page F2-4120.

Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field. It can have the following values:

- S16 when $U = 0$, size = 01
- S32 when $U = 0$, size = 10
- U16 when $U = 1$, size = 01
- U32 when $U = 1$, size = 10

Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as <Qd>*2.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    op2 = Elem[Din[m],index,esize];  op2val = Int(op2, unsigned);
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[Din[n+r],e,esize];  op1val = Int(op1, unsigned);
            if floating_point then
                fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
                FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
                Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
            else
                addend = if add then op1val*op2val else -op1val*op2val;
                if long_destination then
                    Elem[D[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
                else
                    Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;
```  

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.126 VMLS (floating-point)

Vector Multiply Subtract multiplies corresponding elements in two vectors, subtracts the products from corresponding elements of the destination vector, and places the results in the destination vector.

Note

Arm recommends that software does not use the VMLS instruction in the Round towards Plus Infinity and Round towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPESC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VMLS}\{<c>}\{<q>\}.<dt> <Dd>, <Dn>, <Dm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMLS}\{<c>\{<q>\}.<dt> <Qd>, <Qn>, <Qm> \]

Decode for all variants of this encoding

if \(Q = '1' \) && \(\text{Vd}<0> \) \(= '1' \) \&\& \(\text{Vn}<0> \) \(= '1' \) \&\& \(\text{Vm}<0> \) \(= '1' \) then UNDEFINED;
if \(\text{sz} = '1' \) && \(\text{HaveFP16Ext}() \) then UNDEFINED;
advsimd = TRUE; add = (op == '0');
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant

Applies when \(\text{size} = 01 \).

\[\text{VMLS}\{<c>\{<q>\}.F16 <Sd>, <Sn>, <Sm> \]

Single-precision scalar variant

Applies when \(\text{size} = 10 \).

\[\text{VMLS}\{<c>\{<q>\}.F32 <Sd>, <Sn>, <Sm> \]
Double-precision scalar variant

Applies when size == 11.

\[
\text{VMLS\{c\}\{q\}\}.F64 <Dd>, <Dn>, <Dm>
\]

Decode for all variants of this encoding

- if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
- if size == '01' && cond != '1110' then UNPREDICTABLE;
- if FPSCR.Len != '00' || FPSCR.Stride != '00' then UNDEFINED;
- case size of
 - when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 - when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 - when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VMLS\{c\}\{q\}\}.<dt> <Dd>, <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VMLS\{c\}\{q\}\}.<dt> <Qd>, <Qn>, <Qm>
\]

Decode for all variants of this encoding

- if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
- if sz == '1' && !HaveFP16Ext() then UNDEFINED;
- if sz == '1' && InITBlock() then UNPREDICTABLE;
- case sz of
 - when '0' esize = 32; elements = 2;
 - when '1' esize = 16; elements = 4;
 - d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions

F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

T2

\[
\begin{array}{cccccccccccccccc}
| 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 | \\
\hline
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & D & 0 & 0 & Vn & Vd & 1 & 0 & size & N & 1 & M & 0 &Vm & op
\end{array}
\]

Half-precision scalar variant
Applies when size == 01.

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols
<
 For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.
<op>
 See Standard assembler syntax fields on page F2-4120.
<dt>
 Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 F32 when sz = 0
 F16 when sz = 1
<Qd>
 Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qn>
 Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
    if advsimd then // Advanced SIMD instruction
        for r = 0 to regs-1
            for e = 0 to elements-1
                product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
                addend = if add then product else FPNeg(product);
                Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());
    else // VFP instruction
        case esize of
            when 16
                addend16 = if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR) else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR));
                S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR);
            when 32
                addend32 = if add then FPMul(S[n], S[m], FPSCR) else FPNeg(FPMul(S[n], S[m], FPSCR));
                S[d] = FPAdd(S[d], addend32, FPSCR);
            when 64
                addend64 = if add then FPMul(D[n], D[m], FPSCR) else FPNeg(FPMul(D[n], D[m], FPSCR));
                D[d] = FPAdd(D[d], addend64, FPSCR);
```
F6.1.127 VMLS (integer)

Vector Multiply Subtract multiplies corresponding elements in two vectors, and subtracts the products from the
corresponding elements of the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20</th>
<th>19 16 15</th>
<th>12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | | | | | | | |
|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | D | size | Vn | Vd | 1 | 0 | 0 | 1 | N | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<type><size> <Dd>, <Dn>, <Dm> // Encoding T1/A1, encoded as Q = 0

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<type><size> <Qd>, <Qn>, <Qm> // Encoding T1/A1, encoded as Q = 1

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

The data type for the elements of the operands. It must be one of:

- **S**: Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.
- **U**: Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.
- **I**: Available only in encoding T1/A1.

The data size for the elements of the operands. It must be one of:

- **8**: Encoded as size = 0b00.
- **16**: Encoded as size = 0b01.
- **32**: Encoded as size = 0b10.

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
            addend = if add then product else -product;
            if long_destination then
                Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
            else
                Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.128 VMLS (by scalar)

Vector Multiply Subtract multiplies elements of a vector by a scalar, and either subtracts the products from corresponding elements of the destination vector.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19</th>
<th>16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size op</td>
<td>Vn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
<th>15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size op</td>
<td>Vn</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>
Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' & & size == '01' & & !HaveFP16Ext()) then UNDEFINED;
if F == '1' & & size == '01' & & InITBlock() then UNPREDICTABLE;
if Q == '1' & & (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' & & size == '01' & & InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<op> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field. It can have the following values:

- I16 when F = 0, size = 01
- I32 when F = 0, size = 10
- F16 when F = 1, size = 01
- F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is I32 or F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
for e = 0 to elements-1
 op1 = Elem[Din[n+r], e, esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else
 FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r], e, esize] = FPAdd(Elem[Din[d+r], e, esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1], e, 2*esize] = Elem[Qin[d>>1], e, 2*esize] + addend;
 else
 Elem[D[d+r], e, esize] = Elem[Din[d+r], e, esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.129 VMLSL (integer)

Vector Multiply Subtract Long multiplies corresponding elements in two vectors, and subtract the products from the corresponding elements of the destination vector. The destination vector element is twice as long as the elements that are multiplied.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

[31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0]

| 1 1 1 1 0 0 1 | U | 1 | D | l=11 | Vn | Vd | 1 0 1 0 N 0 M 0 | Vm |

size op

A1 variant

VMLSL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

[15 14 13 12|11 10 9 8|7 6 5 4 3 0|12|11 10 9 8|7 6 5 4 3 0]

| 1 1 1 | U | 1 1 1 1 | D | l=11 | Vn | Vd | 1 0 1 0 N 0 M 0 | Vm |

size op

T1 variant

VMLSL{<c>}{<q>}.<type><size> <Qd>, <Dn>, <Dm> // Encoding T2/A2

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.
<type> The data type for the elements of the operands. It must be one of:
S Optional in encoding T1/A1. Encoded as U = 0 in encoding T2/A2.
U Optional in encoding T1/A1. Encoded as U = 1 in encoding T2/A2.
I Available only in encoding T1/A1.
<size> The data size for the elements of the operands. It must be one of:
8 Encoded as size = 0b00.
16 Encoded as size = 0b01.
32 Encoded as size = 0b10.
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
 addend = if add then product else -product;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.130 VMLSL (by scalar)
Vector Multiply Subtract Long multiplies elements of a vector by a scalar, and subtracts the products from corresponding elements of the destination vector. The destination vector elements are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding
if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding
if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings
Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

Is the data type for the scalar and the elements of the operand vector, encoded in the "U:size" field. It can have the following values:

- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as <Qd>*2.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 fp_addend = if add then FPMul(op1,op2,StandardFPSCRValue()) else FPNeg(FPMul(op1,op2,StandardFPSCRValue()));
 Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend, StandardFPSCRValue());
 else
 addend = if add then op1val*op2val else -op1val*op2val;
 if long_destination then
 Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
 else
 Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.131 VMMLA

BFLOAT16 floating-point matrix multiply-accumulate. This instruction multiplies the 2x4 matrix of BF16 values in the first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The resulting 2x2 single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit destination vector. This is equivalent to performing a 4-way dot product per destination element. The instruction does not update the FPSCR exception status.

Note

Arm expects that the VMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as can be achieved using two VDOT instructions, with a goal that it should have significantly higher throughput.

A1

ARMv8.6

A1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' | | Vn<0> == '1' | | Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = 2;

T1

ARMv8.6

T1 variant

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' | | Vn<0> == '1' | | Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = 2;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

CheckAdvSIMDEnabled();

bits(128) op1 = Q[n>>1];
bits(128) op2 = Q[m>>1];
bits(128) acc = Q[d>>1];

Q[d>>1] = BFMatMulAdd(acc, op1, op2);
F6.1.132 VMOV (between two general-purpose registers and a doubleword floating-point register)

Copy two general-purpose registers to or from a SIMD&FP register copies two words from two general-purpose registers into a doubleword register in the Advanced SIMD and floating-point register file, or from a doubleword register in the Advanced SIMD and floating-point register file to two general-purpose registers.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 1 0 0 0 | 1 0 | op | Rt2 | Rt | 1 0 | 1 | 1 | 0 | 0 | M | Vm |

cond

From general-purpose registers variant

 Applies when op == 0.

 VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

 Applies when op == 1.

 VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

Decode for all variants of this encoding

 to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
 if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
 if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The value in the destination register is UNKNOWN.

T1

| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 0 | 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | | | | | | | | | |
|---|
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | op | Rt2 | Rt | 1 0 | 1 | 1 | 0 | 0 | M | Vm |

From general-purpose registers variant

 Applies when op == 0.

 VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers variant

 Applies when op == 1.

 VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>
Decode for all variants of this encoding

to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose registers and a doubleword floating-point register) on page K1-7958.

Assembler symbols

<dm> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "M:Vm" field.

<rt2> Is the second general-purpose register that <dm>[63:32] will be transferred to or from, encoded in the "Rt2" field.

<rt> Is the first general-purpose register that <dm>[31:0] will be transferred to or from, encoded in the "Rt" field.

<o> See Standard assembler syntax fields on page F2-4120.

<op> See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_registers then
 R[t] = D[m]<31:0>;
 R[t2] = D[m]<63:32>;
 else
 D[m]<31:0> = R[t];
 D[m]<63:32> = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.133 VMOV (between general-purpose register and half-precision)

Copy 16 bits of a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value held in the bottom 16 bits of a 32-bit SIMD&FP register to the bottom 16 bits of a general-purpose register, or the value held in the bottom 16 bits of a general-purpose register to the bottom 16 bits of a 32-bit SIMD&FP register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.2

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

if !HaveFP16Ext() then UNDEFINED;
if cond != '111' then UNPREDICTABLE;
to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

ARMv8.2

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>
To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

Decode for all variants of this encoding

if !HaveFP16Ext() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRANGED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRANGED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.
<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.
<c> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnable(TRUE);
 if to_arm_register then
 R[t] = Zeros(16) : S[n]<15:0>;
 else
 S[n] = Zeros(16) : R[t]<15:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.134 VMOV (immediate)

Copy immediate value to a SIMD&FP register places an immediate constant into every element of the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant
Applies when Q == 0.

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

Half-precision scalar variant
Applies when size == 01.

VMOV{<c>}{<op>}.F16 <Sd>, #<imm>

Single-precision scalar variant
Applies when size == 10.

VMOV{<c>}{<op>}.F32 <Sd>, #<imm>

Double-precision scalar variant
Applies when size == 11.

VMOV{<c>}{<op>}.F64 <Dd>, #<imm>
Decode for all variants of this encoding

if FPSCR.Len $\neq '000$ || FPSCR.Stride $\neq '00$ then UNDEFINED;
if size $\neq '00$ || (size $= '01$ && !HaveFP16Ext()) then UNDEFINED;
if size $= '01$ && cond $\neq '1110$ then UNPREDICTABLE;
single_register = (size $= '11$); advsimd = FALSE;
bits(16) imm16;
bits(32) imm32;
bits(64) imm64;
case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size $= '01$ && cond $\neq '1110$ then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

64-bit SIMD vector variant

Applies when $Q = 0$.

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when $Q = 1$.

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

Decode for all variants of this encoding

if op $= '0'$ && cmode<0> $= '1'$ && cmode<3:2> $\neq '11$ then SEE "VORR (immediate)";
if op $= '1'$ && cmode $= '1110$ then SEE "Related encodings";
if Q $= '1'$ && Vd<0> $= '1'$ then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q $= '0$ then 1 else 2;

64-bit SIMD vector variant

Applies when $Q = 0$.

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>
128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMOV} \{<c>\}\{<q>\}.dt <Qd>, \#<imm> \]

Decode for all variants of this encoding

if \(op = '0' \) \&\& \(\text{cmode}<0> = '1' \) \&\& \(\text{cmode}<3:2> != '11' \) then SEE "VORR (immediate)";
if \(op = '1' \) \&\& \(\text{cmode} = '1110' \) then SEE "Related encodings";
if \(Q = '1' \) \&\& \(\text{Vd}<0> = '1' \) then UNDEFINED;

single_register = FALSE; advsimd = TRUE; \(\text{imm64} = \text{AdvSIMDExpandImm}(op, \text{cmode}, i:i:imm3:imm4); \)
\(d = \text{UInt}(D:Vd) \); \(\text{regs} = \text{if} \ Q = '0' \ \text{then} \ 1 \ \text{else} \ 2; \)

A5

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 16 15</th>
<th>12 11 8 7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1</td>
<td>i 1 D 0 0 0</td>
<td>imm3</td>
<td>Vd</td>
<td>1 1 1 0 0</td>
<td>Q 1 1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VMOV} \{<c>\}\{<q>\}.I64 <Dd>, \#<imm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMOV} \{<c>\}\{<q>\}.I64 <Qd>, \#<imm> \]

Decode for all variants of this encoding

if \(op = '0' \) \&\& \(\text{cmode}<0> = '1' \) \&\& \(\text{cmode}<3:2> != '11' \) then SEE "VORR (immediate)";
if \(op = '1' \) \&\& \(\text{cmode} = '1110' \) then SEE "Related encodings";
if \(Q = '1' \) \&\& \(\text{Vd}<0> = '1' \) then UNDEFINED;

single_register = FALSE; advsimd = TRUE; \(\text{imm64} = \text{AdvSIMDExpandImm}(op, \text{cmode}, i:i:imm3:imm4); \)
\(d = \text{UInt}(D:Vd) \); \(\text{regs} = \text{if} \ Q = '0' \ \text{then} \ 1 \ \text{else} \ 2; \)

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 i 1 1 1 1</td>
<td>D 0 0 0</td>
<td>imm3</td>
<td>Vd</td>
<td>0</td>
<td>x</td>
<td>0</td>
<td>Q</td>
<td>0 1</td>
<td>imm4</td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VMOV} \{<c>\}\{<q>\}.I32 <Db>, \#<imm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMOV} \{<c>\}\{<q>\}.I32 <Qd>, \#<imm> \]
Decode for all variants of this encoding

if op == '0' && cmode<0> == '1' && cmode<3:2> != '1' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

|1 5 14 13 12|11 10 9 8|7 6 5 4|3|0|15|12|11 10 9 8|7 6 5 4|3|0|
|1 1 1 0 1 1 0 1|D|1 1|imm4H|Vd|1 0|size|0|0|0|0|imm4L|

Half-precision scalar variant
Applies when size == 01.
VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar variant
Applies when size == 10.
VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar variant
Applies when size == 11.
VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
single_register = (size != '11'); advsimd = FALSE;
bites(16) imm16;
bites(32) imm32;
bites(64) imm64;
case size of
 when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L); imm32 = Zeros(16) : imm16;
 when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L);
 when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L); regs = 1;

CONSTRANDED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T3

|1 5 14 13 12|11 10 9 8|7 6 5 4|3|2|0|15|12|11 8 7 6 5 4|3|0|
|1 1 1 1 1 1 1 1|D|0 0 0|imm3|Vd|1 0|x|0|0|Q|0|1|imm4|
64-bit SIMD vector variant
Applies when \(Q = 0 \).
\[\text{VMOV\{<c>\}{<q>}.I16 <Dd>, #<imm>} \]

128-bit SIMD vector variant
Applies when \(Q = 1 \).
\[\text{VMOV\{<c>\}{<q>}.I16 <Qd>, #<imm>} \]

Decode for all variants of this encoding

- If \(op = '0' \) \&\& \(cmode<0> = '1' \) \&\& \(cmode<3:2> != '11' \) then SEE "VORR (immediate)";
- If \(op = '1' \) \&\& \(cmode = '1110' \) then SEE "Related encodings";
- If \(Q == '1' \) \&\& \(Vd<0> == '1' \) then UNDEFINED;
- single_register = FALSE; advsimd = TRUE; \(\text{imm64} = \text{AdvSIMDEncode}(op, cmode, i:imm3:imm4) \);
- \(d = \text{UInt}(D:Vd) \); \(\text{regs} = \text{if } Q == '0' \text{ then 1 else 2} \);

T4

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 2 0</th>
<th>15 12</th>
<th>11 8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>i</td>
<td>1 1 1 1 1</td>
<td>D</td>
<td>0 0 0</td>
<td>imm3</td>
</tr>
<tr>
<td>cmode</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant
Applies when \(Q = 0 \).
\[\text{VMOV\{<c>\}{<q>}.<dt> <Dd>, #<imm>} \]

128-bit SIMD vector variant
Applies when \(Q = 1 \).
\[\text{VMOV\{<c>\}{<q>}.<dt> <Qd>, #<imm>} \]

Decode for all variants of this encoding

- If \(op = '0' \) \&\& \(cmode<0> = '1' \) \&\& \(cmode<3:2> != '11' \) then SEE "VORR (immediate)";
- If \(op = '1' \) \&\& \(cmode = '1110' \) then SEE "Related encodings";
- If \(Q == '1' \) \&\& \(Vd<0> == '1' \) then UNDEFINED;
- single_register = FALSE; advsimd = TRUE; \(\text{imm64} = \text{AdvSIMDEncode}(op, cmode, i:imm3:imm4) \);
- \(d = \text{UInt}(D:Vd) \); \(\text{regs} = \text{if } Q == '0' \text{ then 1 else 2} \);

T5

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4</th>
<th>3 2 0</th>
<th>15 12</th>
<th>11 8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>i</td>
<td>1 1 1 1 1</td>
<td>D</td>
<td>0 0 0</td>
<td>imm3</td>
</tr>
<tr>
<td>cmode</td>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant
Applies when \(Q = 0 \).
\[\text{VMOV\{<c>\}{<q>}.I64 <Dd>, #<imm>} \]

128-bit SIMD vector variant
Applies when \(Q = 1 \).
VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

Decode for all variants of this encoding

if op == '0' & cmode<0> == '1' & cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' & cmode != '1110' then SEE "Related encodings";
if Q == '1' & Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See *Advanced SIMD one register and modified immediate* on page F3-4173 for the T32 instruction set, or *Advanced SIMD one register and modified immediate* on page F4-4271 for the A32 instruction set.

Assembler symbols

<c>
For encoding A1, A3, A4 and A5: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
For encoding A2, T1, T2, T3, T4 and T5: see *Standard assembler syntax fields* on page F2-4120.

<q>
See *Standard assembler syntax fields* on page F2-4120.

<dt>
The data type, encoded in the "cmode" field. It can have the following values:
I32 when cmode = 110x
I8 when cmode = 1110
F32 when cmode = 1111

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sd>
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<imm>
For encoding A1, A3, A4, A5, T1, T3, T4 and T5: is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of <imm>, see *Modified immediate constants in T32 and A32 Advanced SIMD instructions* on page F2-4137.
For encoding A2 and T2: is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in "imm4H:imm4L". For details of the range of constants available and the encoding of <imm>, see *Modified immediate constants in T32 and A32 floating-point instructions* on page F2-4138.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = imm32;
 else
 for r = 0 to regs-1
 D[d+r] = imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.135 VMOV (register)

Copy between FP registers copies the contents of one FP register to another.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A2

| cond | size |
|---------|---------| | |
| [31|28]|27|26|25|24|23|22|21|20|19|18|17|16|15|12|11|10|9|8|7|6|5|4|3|0 |
|!!|1|1|1|0|1|D|1|1|0|0|0|Vd|1|0|x|0|1|M|0|Vm |

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;

single_register = (size == '10'); advsimd = FALSE;

if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

T2

| | |
|---|---| |
| [15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0|15|12|11|10|9|8|7|6|5|4|3|0 |
| |
| 1|1|1|0|1|1|1|0|1|D|1|1|0|0|0|Vd|1|0|x|0|1|M|0|Vm |

Single-precision scalar variant

Applies when size == 10.

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;

single_register = (size == '10'); advsimd = FALSE;

if single_register then
 d = UInt(Vd:D); m = UInt(Vm:M);
else
 d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;
Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<d> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<s> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<D> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<M> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if single_register then
 S[d] = S[m];
 else
 for r = 0 to regs-1
 D[d+r] = D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.136 VMOV (register, SIMD)

Copy between SIMD registers copies the contents of one SIMD register to another

This instruction is an alias of the VORR (register) instruction. This means that:

- The encodings in this description are named to match the encodings of VORR (register).
- The description of VORR (register) gives the operational pseudocode for this instruction.

A1

| [31 30 29 28][27 26 25 24][23 22 21 20][19 16|15 12|11 10|9 8|7 6 5|4|3|0|
| 1 1 1 1 0 0 1 |0 0 D 1 0 Vn | Vd | 0 0 0 1 N Q M 1 | Vm |

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\(\text{VMOV\{<c>\}{<q>}{.<dt>} <Dd>, <Dm> \} \)

is equivalent to

\(\text{VORR\{<c>\}{<q>}{.<dt>} <Dd>, <Dm>, <Dm> \)

and is the preferred disassembly when \(N:Vn = M:Vm \).

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\(\text{VMOV\{<c>\}{<q>}{.<dt>} <Qd>, <Qm> \} \)

is equivalent to

\(\text{VORR\{<c>\}{<q>}{.<dt>} <Qd>, <Qm>, <Qm> \)

and is the preferred disassembly when \(N:Vn = M:Vm \).

T1

| [15 14 13 12][11 10|9 8|7 6 5|4|3|0|15 12|11 10|9 8|7 6 5|4|3|0|
| 1 1 1 0 1 1 1 0 |D 1 0 Vn | Vd | 0 0 0 1 N Q M 1 | Vm |

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\(\text{VMOV\{<c>\}{<q>}{.<dt>} <Dd>, <Dm> \} \)

is equivalent to

\(\text{VORR\{<c>\}{<q>}{.<dt>} <Dd>, <Dm>, <Dm> \)

and is the preferred disassembly when \(N:Vn = M:Vm \).

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\(\text{VMOV\{<c>\}{<q>}{.<dt>} <Qd>, <Qm> \)
is equivalent to

\[
\text{VORR}\{<c>\}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>
\]

and is the preferred disassembly when \(N:Vn = M:Vm\).

Assemble symbols

- \(<c>\) For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.

 For encoding T1: see *Standard assembler syntax fields* on page F2-4120.

- \(<q>\) See *Standard assembler syntax fields* on page F2-4120.

- \(<dt>\) An optional data type. \(<dt>\) must not be F64, but it is otherwise ignored.

- \(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>^*2\).

- \(<Qm>\) Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as \(<Qm>^*2\).

- \(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- \(<Dm>\) Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of **VORR (register)** gives the operational pseudocode for this instruction.
F6.1.137 VMOV (general-purpose register to scalar)

Copy a general-purpose register to a vector element copies a byte, halfword, or word from a general-purpose register into an Advanced SIMD scalar.

On a Floating-point-only system, this instruction transfers one word to the upper or lower half of a double-precision floating-point register from a general-purpose register. This is an identical operation to the Advanced SIMD single word transfer.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

A1 variant

VMOV{<c>}{<q>}{<size>} <Dd[x]>, <Rt>

Decode for this encoding

case opc1:opc2 of
 when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{<size>} <Dd[x]>, <Rt>

Decode for this encoding

case opc1:opc2 of
 when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '0x10' UNDEFINED;
 d = UInt(D:Vd); t = UInt(Rt);
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<
See Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<size>
The data size. It must be one of:
8 Encoded as opc1<1> = 1. [x] is encoded in opc1<0>, opc2.
16 Encoded as opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.
32 Encoded as opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.
omitted Equivalent to 32.

<Dd[x]>
The scalar. The register <Dd> is encoded in D:Vd. For details of how [x] is encoded, see the description of <size>.

<Rt>
The source general-purpose register.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPM_enabled(TRUE, advsimd);
 Elem[D[d],index,esize] = R[t]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.138 VMOV (between general-purpose register and single-precision)

Copy a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value held in a 32-bit SIMD&FP register to a general-purpose register, or the value held in a general-purpose register to a 32-bit SIMD&FP register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

From general-purpose register variant

Applies when op == 0.

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register variant

Applies when op == 1.

VMOV{<c>}{<q>} <Rt>, <Sn>

Decode for all variants of this encoding

to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
Assembler symbols

<rt> Is the general-purpose register that <sn> will be transferred to or from, encoded in the "Rt" field.

<sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<\> See Standard assembler syntax fields on page F2-4120.

<\> See Standard assembler syntax fields on page F2-4120.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 if to_arm_register then
 R[rt] = S[sn];
 else
 S[sn] = R[rt];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.139 VMOV (scalar to general-purpose register)

Copy a vector element to a general-purpose register with sign or zero extension copies a byte, halfword, or word from an Advanced SIMD scalar to a general-purpose register. Bytes and halfwords can be either zero-extended or sign-extended.

On a Floating-point-only system, this instruction transfers one word from the upper or lower half of a double-precision floating-point register to a general-purpose register. This is an identical operation to the Advanced SIMD single word transfer.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

A1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

T1 variant

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

Decode for this encoding

case U:opc1:opc2 of
 when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
 when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
 when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
 when '10x00' UNDEFINED;
 when 'x0x10' UNDEFINED;
 t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<e> See Standard assembler syntax fields on page F2-4120.

<op> See Standard assembler syntax fields on page F2-4120.

<dt> The data type. It must be one of:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8</td>
<td>Encoded as U = 0, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>Encoded as U = 0, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.</td>
<td></td>
</tr>
<tr>
<td>U8</td>
<td>Encoded as U = 1, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.</td>
<td></td>
</tr>
<tr>
<td>U16</td>
<td>Encoded as U = 1, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Encoded as U = 0, opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.</td>
<td></td>
</tr>
<tr>
<td>omitted</td>
<td>Equivalent to 32.</td>
<td></td>
</tr>
</tbody>
</table>

<Rt> The destination general-purpose register.

<Dn[x]> The scalar. For details of how [x] is encoded see the description of <dt>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if unsigned then
 R[t] = ZeroExtend(Elem[D[n],index,esize], 32);
 else
 R[t] = SignExtend(Elem[D[n],index,esize], 32);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.140 VMOV (between two general-purpose registers and two single-precision registers)

Copy two general-purpose registers to a pair of 32-bit SIMD&FP registers transfers the contents of two consecutively numbered single-precision Floating-point registers to two general-purpose registers, or the contents of two general-purpose registers to a pair of single-precision Floating-point registers. The general-purpose registers do not have to be contiguous.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

From general-purpose registers variant

Applies when `op == 0`.

`VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>`

To general-purpose registers variant

Applies when `op == 1`.

`VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>`

Decode for all variants of this encoding

```plaintext
to_arm_registers = (op == '1');  t = UInt(Rt);  t2 = UInt(Rt2);  m = UInt(Vm:M);
if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;
```

CONSTRANED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the single-precision registers become UNKNOWN for a move to the single-precision register. The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision registers. This behavior does not affect any other general-purpose registers.
From general-purpose registers variant
Applies when \(\text{op} == 0 \).
\[\text{VMOV\{<c>\}{<q>\} \ <Sm>, \ <Sm1>, \ <Rt>, \ <Rt2> \} \]

To general-purpose registers variant
Applies when \(\text{op} == 1 \).
\[\text{VMOV\{<c>\}{<q>\} \ <Rt>, \ <Rt2>, \ <Sm>, \ <Sm1> \} \]

Decode for all variants of this encoding
\[
\text{to_arm_registers} = (\text{op} == '1'); \quad t = \text{UInt}(Rt); \quad t2 = \text{UInt}(Rt2); \quad m = \text{UInt}(Vm:\text{M}); \\
\text{if } t == 15 \text{ || } t2 == 15 \text{ || } m == 31 \text{ then UNPREDICTABLE}; \\
\text{if } \text{to_arm_registers} \&\& t == t2 \text{ then UNPREDICTABLE};
\]

CONSTRAINED UNPREDICTABLE behavior
If \(\text{to_arm_registers} \&\& t == t2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The value in the destination register is UNKNOWN.

If \(m == 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the single-precision registers become UNKNOWN for a move to the single-precision register. The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision registers. This behavior does not affect any other general-purpose registers.

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VMOV (between two general-purpose registers and two single-precision registers) on page K1-7958.

Assembler symbols
- \(<Rt2>\) Is the second general-purpose register that \(<Sm1>\) will be transferred to or from, encoded in the "Rt2" field.
- \(<Rt>\) Is the first general-purpose register that \(<Sm>\) will be transferred to or from, encoded in the "Rt" field.
- \(<Sm1>\) Is the 32-bit name of the second SIMD&FP register to be transferred. This is the next SIMD&FP register after \(<Sm>\).
- \(<Sm>\) Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Vm:M" field.
- \(<c>\) See Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.

Operation for all encodings
\[
\text{if } \text{ConditionPassed()} \text{ then} \\
\quad \text{EncodingSpecificOperations(); CheckVFPEnabled(TRUE);} \\
\quad \text{if } \text{to_arm_registers} \text{ then}
\]
R[t] = S[m];
R[t2] = S[m+1];
else
 S[m] = R[t];
 S[m+1] = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.141 VMOVL

Vector Move Long takes each element in a doubleword vector, sign or zero-extends them to twice their original length, and places the results in a quadword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see "Enabling Advanced SIMD and floating-point support" on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>19 18 17 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9</th>
<th>8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>D</td>
<td>!=000</td>
<td>0</td>
</tr>
</tbody>
</table>

A1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

- if imm3H == '000' then SEE "Related encodings";
- if imm3H != '001' && imm3H != '100' then SEE "VSHLL";
- if Vd<0> == '1' then UNDEFINED;
- esize = 8 * UInt(imm3H);
- unsigned = (U == '1'); elements = 64 DIV esize;
- d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 15 14 13 12|11 10 9 |8 |7 6 5 |3 |2 1 0|15 |12|11 10 9 |8 |7 6 5 4 |3 |0 |
| 1 | 1 | 1 | U | 1 | 1 | 1 | 1 | D | !=000 | 0 | 0 | 0 | Vd | 1 | 0 | 1 | 0 | 0 | 0 | M | 1 | Vm |

T1 variant

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

Decode for this encoding

- if imm3H == '000' then SEE "Related encodings";
- if imm3H != '001' && imm3H != '100' then SEE "VSHLL";
- if Vd<0> == '1' then UNDEFINED;
- esize = 8 * UInt(imm3H);
- unsigned = (U == '1'); elements = 64 DIV esize;
- d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See "Advanced SIMD one register and modified immediate" on page F3-4173 for the T32 instruction set, or "Advanced SIMD one register and modified immediate" on page F4-4271 for the A32 instruction set.

Assembler symbols

<

For encoding A1: see "Standard assembler syntax fields" on page F2-4120. This encoding must be unconditional.

For encoding T1: see "Standard assembler syntax fields" on page F2-4120.
<dt>Is the data type for the elements of the operand, encoded in the "U:imm3H" field. It can have the following values:

- **S8** when U = 0, imm3H = 001
- **S16** when U = 0, imm3H = 010
- **S32** when U = 0, imm3H = 100
- **U8** when U = 1, imm3H = 001
- **U16** when U = 1, imm3H = 010
- **U32** when U = 1, imm3H = 100

qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as qd*2.

<dm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for e = 0 to elements-1
        result = Int(Elem[Din[m],e,esize], unsigned);
        Elem[qd>>1],e,2*esize] = result<2*esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.142 VMOVN

Vector Move and Narrow copies the least significant half of each element of a quadword vector into the corresponding elements of a doubleword vector.

The operand vector elements can be any one of 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instructions VRSHRN (zero) and VSHRN (zero). The pseudo-instruction is never the preferred disassembly.

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8|7 6 5 4 3 0  |
1 1 1 1 0 0 1 1 1 D 1 1 | size 1 0 | Vd 0 0 1 0 0 0 M 0 | Vm |
```

A1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

if size == '11' then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

```
|15 14 13 12|11 10 9 8|7 6 5 4 3 2 1 0|15 12|11 10 9 8|7 6 5 4 3 0  |
1 1 1 1 1 1 1 1 1 1 1 D 1 1 | size 1 0 | Vd 0 0 1 0 0 0 M 0 | Vm |
```

T1 variant

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Decode for this encoding

if size == '11' then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<>

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>

See Standard assembler syntax fields on page F2-4120.
Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:

- **I16** when size = 00
- **I32** when size = 01
- **I64** when size = 10

The encoding size = 11 is reserved.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for e = 0 to elements-1
        Elem[<D>d],e,esize] = Elem[<Qin>m>>1],e,2*esize]<esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.143 VMOVX

Vector Move extraction. This instruction copies the upper 16 bits of the 32-bit source SIMD&FP register into the lower 16 bits of the 32-bit destination SIMD&FP register, while clearing the remaining bits to zero.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.2

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

T1

ARMv8.2

VMOVX{<q>}.F16 <Sd>, <Sm>

Decode for this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRANDED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
    S[d] = Zeros(16) : S[m]<31:16>;
```
F6.1.144 VMRS

Move SIMD&FP Special register to general-purpose register moves the value of an Advanced SIMD and floating-point System register to a general-purpose register. When the specified System register is the FPSCR, a form of the instruction transfers the FPSCR. \{N, Z, C, V\} condition flags to the APSR. \{N, Z, C, V\} condition flags.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

When these settings permit the execution of floating-point and Advanced SIMD instructions, if the specified floating-point System register is not the FPSCR, the instruction is UNDEFINED if executed in User mode.

In an implementation that includes EL2, when HCR.TID0 is set to 1, any VMRS access to FPSID from a Non-secure EL1 mode that would be permitted if HCR.TID0 was set to 0 generates a Hyp Trap exception. For more information, see ID group 0, Primary device identification registers on page G1-5835.

For simplicity, the VMRS pseudocode does not show the possible trap to Hyp mode.

A1

```
|31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |
|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 1 1 0 | 1 1 1 | reg | Rt | 1 0 1 0 | 0 0 0 | 1 0 0 0 |
```

A1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>

Decode for this encoding

```
t = UInt(Rt);
if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
```

CONstrained Unpredictable behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value 0b1111, the specified target register is the APSR. \{N, Z, C, V\} bits, and these bits become UNKNOWN. Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

T1

```
|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15 12|11 10 9 8 |7 6 5 4 |3 2 1 0 |
|---|---|---|---|---|---|---|---|---|---|
|1 1 1 0 | 1 1 1 0 1 1 1 | reg | Rt | 1 0 1 0 | 0 0 0 | 1 0 0 0 |
```

T1 variant

VMRS{<c>}{<q>} <Rt>, <spec_reg>
Decode for this encoding

\[t = \text{UINT}(R_t); \]
if !(reg IN \{'000x', '0101', '011x', '1000'}\) then UNPREDICTABLE;
if \(t = 15 \) \&\& reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRANED UNPREDICTABLE behavior

If !(reg IN \{'000x', '0101', '011x', '1000'}\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value 0b1111, the specified target register is the APSR.\{N, Z, C, V\} bits, and these bits become UNKNOWN. Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

\(<c>\>\) See Standard assembler syntax fields on page F2-4120.
\(<q>\>\) See Standard assembler syntax fields on page F2-4120.

\(<R_t>\) Is the general-purpose destination register, encoded in the "Rt" field. Is one of:
R0-R14 General-purpose register.
APSR_nzcv Permitted only when \(<\text{spec_reg}>\) is FPSCR. Encoded as 0b1111. The instruction transfers the FPSCR.\{N, Z, C, V\} condition flags to the APSR.\{N, Z, C, V\} condition flags.

\(<\text{spec_reg}>\) Is the source Advanced SIMD and floating-point System register, encoded in the "reg" field. It can have the following values:
FPSID when reg = 0000
FPSCR when reg = 0001
MVFR2 when reg = 0101
MVFR1 when reg = 0110
MVFR0 when reg = 0111
FPEXC when reg = 1000

The following encodings are UNPREDICTABLE:
\[
\begin{align*}
&\text{reg} = \text{001x} \\
&\text{reg} = \text{0100} \\
&\text{reg} = \text{1001} \\
&\text{reg} = \text{101x} \\
&\text{reg} = \text{11xx}
\end{align*}
\]

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 if \(t = 15 \) then
 PSTATE.\{N, Z, C, V\} = FPSCR.\{N, Z, C, V\};
else
 \(R[t] = \text{FPSCR} \);
elsif \(\text{PSTATE.EL} == \text{EL0} \) then
 \text{UNDEFINED}; // Non-FPSCR registers accessible only at PL1 or above
else
 \text{CheckVFPEnabled} (\text{FALSE}); // Non-FPSCR registers are not affected by FPEXC.EN
 \text{AArch32.CheckAdvSIMDorFPRegisterTraps} (\text{reg});
 case \text{reg} of
 when '0000' \(R[t] = \text{FPSID} \);
 when '0101' \(R[t] = \text{MVFR2} \);
 when '0110' \(R[t] = \text{MVFR1} \);
 when '0111' \(R[t] = \text{MVFR0} \);
 when '1000' \(R[t] = \text{FPEXC} \);
 otherwise \text{Unreachable}(); // Dealt with above or in encoding-specific pseudocode
F6.1.145 VMSR

Move general-purpose register to SIMD&FP Special register moves the value of a general-purpose register to a floating-point System register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

When these settings permit the execution of floating-point and Advanced SIMD instructions:

• If the specified floating-point System register is FPSID or FPEXC, the instruction is UNDEFINED if executed in User mode.
• If the specified floating-point System register is the FPSID and the instruction is executed in a mode other than User mode, the instruction is ignored.

A1

|31 28|27 25 24|23 22 21|19 16|15 12|11 10 9|8 7 6 5 4|3 2 1 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|!=1111| 1 1 1 0 1 1 1 0 | reg | Rt | 1 0 1 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

cond

A1 variant

VMSR{<c>}{<q>}{spec_reg}, <Rt>

Decode for this encoding

t = UInt(Rt);
if reg != '000x' && reg != '1000' then
Constraint c = ConstranUnpredictable(Unpredictable,VMSR);
assert c IN {Constraint_UNDEF, Constraint_NOP};
case c of
when Constraint_UNDEF
UNDEFINED;
when Constraint_NOP
EndOfInstruction();
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible using VMSR at the same Exception level.

T1

|15 14 13|12|11 10 9|8 7 6 5 4|3 |0|15 |12|11 10 9|8 7 6 5 4|3 2 1 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 1 1 0 | reg | Rt | 1 0 1 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

T1 variant

VMSR{<c>}{<q>} {spec_reg}, <Rt>
Decode for this encoding

t = UInt(Rt);
if reg != '000x' & reg != '1000' then
 Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRANDED UNPREDICTABLE behavior

If reg != '000x' & reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible using VMSR at the same Exception level.

Notes for all encodings

For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<> See Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<spec_reg> Is the destination Advanced SIMD and floating-point System register, encoded in the "reg" field. It can have the following values:
 FPSID when reg = 0000
 FPSCR when reg = 0001
 FPEXC when reg = 1000
The following encodings are UNPREDICTABLE:
 • reg = 001x.
 • reg = 01xx.
 • reg = 1001.
 • reg = 101x.
 • reg = 11xx.
<rt> Is the general-purpose source register, encoded in the "Rt" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations();
 if reg == '0001' then // FPSCR
 CheckVFPEnabled(TRUE);
 FPSCR = R[t];
 elsif PSTATE.EL == EL0 then
 UNDEFINED;
 else // Non-FPSCR registers accessible only at PL1 or above
 CheckVFPEnabled(FALSE);
else // Non-FPSCR registers are not affected by FPEXC.EN
case reg of
 when '0000' // VMSR access to FPSID is ignored
 when '1000'
 FPEXC = R[t];
 otherwise
 Unreachable(); // Dealt with above or in encoding-specific pseudocode
F6.1.146 VMUL (floating-point)

Vector Multiply multiplies corresponding elements in two vectors, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19|16|15|12|11 10 9 8|7 6 5 4|3|0|
|1|1|1|0|0|1|0|D|0|sz|Vn|Vd|1|1|0|1|N|Q|M|1|Vm|

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

|31 28|27 26 25 24|23 22 21 20|19|16|15|12|11 10 9 8|7 6 5 4|3|0|
|!=1111|1|1|1|0|0|D|1|0|Vn|Vd|1|0|size|N|0|M|0|Vm|

cond

Half-precision scalar variant

Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} {<Sn>, <Sm>}

Single-precision scalar variant

Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} {<Sn>, <Sm>}

Double-precision scalar variant

Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Sd>,} {<Sn>, <Sm>
Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;

case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

|15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 12|11 10 9 8 7 6 5 4 3 0|
|1 1 1|1 1 1|1 1 1|0 D 0 sz |Vn |Vd |N Q M |Vm |

64-bit SIMD vector variant

Applies when Q == 0.
VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if sz == '1' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

Half-precision scalar variant
Applies when size == 01.

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Encode for all variants of this encoding

if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;

case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

F32 when sz = 0
F16 when sz = 1

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 S[d] = Zeros(16) : FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR);
 when 32
 S[d] = FPMul(S[n], S[m], FPSCR);
 when 64
 D[d] = FPMul(D[n], D[m], FPSCR);
F6.1.147 VMUL (integer and polynomial)

Vector Multiply multiplies corresponding elements in two vectors.

For information about multiplying polynomials see *Polynomial arithmetic over \{0, 1\}* on page A1-50.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

\[
\begin{array}{ccccccccccccccccccc}
| 1 & 1 & 1 & 0 & 0 & 0 & 1 & \text{op} & 0 & D & \text{size} & Vn & Vd & 1 & 0 & 0 & 1 & N & Q & M & 1 & Vm |
\end{array}
\]

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[
\text{VMUL}\{<c>\}<q>.<dt> \{<Dd>, }<Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VMUL}\{<c>\}<q>.<dt> \{<Qd>, }<Qn>, <Qm>
\]

Decode for all variants of this encoding

if size == '11' || (op == '1' && size != '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
polynomial = (op == '1');
\text{long_destination} = FALSE;
\text{esize} = 8 << \text{UInt}(size); \text{elements} = 64 DIV \text{esize};
d = \text{UInt}(D:Vd); n = \text{UInt}(N:Vn); m = \text{UInt}(M:Vm); \text{regs} = \text{if Q == '0'} \text{then 1 else 2};

T1

\[
\begin{array}{ccccccccccccccccccc}
| 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 | \\
| 1 & 1 & 1 & \text{op} & 1 & 1 & 1 & 0 & D & \text{size} & Vn & Vd & 1 & 0 & 0 & 1 & N & Q & M & 1 & Vm |
\end{array}
\]

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[
\text{VMUL}\{<c>\}<q>.<dt> \{<Dd>, }<Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VMUL}\{<c>\}<q>.<dt> \{<Qd>, }<Qn>, <Qm>
\]

Decode for all variants of this encoding

if size == '11' || (op == '1' && size != '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
polynomial = (op == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

For more information about the CONSTRANGED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be
 unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "op:size" field. It can have the
 following values:
 - I8 when op = 0, size = 00
 - I16 when op = 0, size = 01
 - I32 when op = 0, size = 10
 - P8 when op = 1, size = 00
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as
 <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Dir[r],[n, e], esize]; op1val = Int(op1, unsigned);
 op2 = Elem[Dir[r],[m, e], esize]; op2val = Int(op2, unsigned);
 if polynomial then
 product = PolynomialMult(op1,op2);
 else
 product = (op1val*op2val)<2*esize-1:0>
 if long_destination then
 Elem[Q[r,0],e,2*esize] = product;
 else
 Elem[D[r,e],e,esize] = product<esize-1:0>;
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.148 VMUL (by scalar)

Vector Multiply multiplies each element in a vector by a scalar, and places the results in a second vector.

For more information about scalars see *Advanced SIMD scalars* on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 1</td>
<td>Q</td>
<td>1</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
<td>Vd</td>
<td>1 0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' | (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '00' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>Q</td>
<td>1 1 1 1</td>
<td>D</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if F == '1' && size == '01' && INITBlock() then UNPREDICTABLE;
if size == '00' | (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then size = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then size = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<-> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
<op> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the scalar and the elements of the operand vector, encoded in the "F:size" field. It can have the following values:
I16 when F = 0, size = 01
I32 when F = 0, size = 10
F16 when F = 1, size = 01
F32 when F = 1, size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register. When <dt> is I16 or F16, this is encoded in the "Vm<2:0>" field. Otherwise it is encoded in the "Vm" field.
<index> Is the element index. When <dt> is I16 or F16, this is in the range 0 to 3 and is encoded in the "M:Vm<3>" field. Otherwise it is in the range 0 to 1 and is encoded in the "M" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
 if floating_point then
 Elem[D[d+r],e,esize] = FPMul(op1, op2, StandardFPSCRValue());
 else
if long_destination then
 Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;
else
 Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;

F6.1.149 VMULL (integer and polynomial)

Vector Multiply Long multiplies corresponding elements in two vectors. The destination vector elements are twice as long as the elements that are multiplied.

For information about multiplying polynomials see *Polynomial arithmetic over \{0, 1\} on page A1-50.*

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support on page G1-5812.*

A1

| 31 30 29 28| 27 26 25 24| 23 22 21 20| 19 16| 15 12| 11 10 9 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | U 1 | D !=11 | Vn | Vd | 1 1 | op 0 | N 0 | M 0 | Vm |

size

A1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
if polynomial then
 if U == '1' || size == '01' then UNDEFINED;
 if size == '10' then // .p64
 if !HaveBit128PMULLExt() then UNDEFINED;
esize = 64; elements = 1;
if Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

| 15 14 13 12| 11 10 9 8| 7 6 5 4 3 0 | 15 12| 11 10 9 8 7 6 5 4 3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 | U 1 1 1 1 1 | D !=11 | Vn | Vd | 1 1 | op 0 | N 0 | M 0 | Vm |

size

T1 variant

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
if polynomial then
 if U == '1' || size == '01' then UNDEFINED;
 if size == '10' then // .p64
 if InITBlock() then UNPREDICTABLE;
 if !HaveBit128PMULLExt() then UNDEFINED;
esize = 64; elements = 1;
if Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;
CONSTRAINED UNPREDICTABLE behavior

If `op == '1' && size == '10' && InITBlock()`, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

 For encoding T1: see Standard assembler syntax fields on page F2-4120.

- `<q>` See Standard assembler syntax fields on page F2-4120.

- `<dt>` Is the data type for the elements of the operands, encoded in the "op:U:size" field. It can have the following values:

 - S8 when `op = 0, U = 0, size = 00`
 - S16 when `op = 0, U = 0, size = 01`
 - S32 when `op = 0, U = 0, size = 10`
 - U8 when `op = 0, U = 1, size = 00`
 - U16 when `op = 0, U = 1, size = 01`
 - U32 when `op = 0, U = 1, size = 10`
 - P8 when `op = 1, U = 0, size = 00`
 - P64 when `op = 1, U = 0, size = 10`

- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2`

- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
            op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
            if polynomial then
                product = PolynomialMult(op1,op2);
            else
                product = (op1val*op2val)<2*esize-1:0>;
            if long_destination then
                Elem[Q[d>>1],e,2*esize] = product;
            else
                Elem[D[d+r],e,esize] = product<esize-1:0>;
```
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.150 VMULL (by scalar)

Vector Multiply Long multiplies each element in a vector by a scalar, and places the results in a second vector. The destination vector elements are twice as long as the elements that are multiplied.

For more information about scalars see Advanced SIMD scalars on page F2-4146.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding
if size == '11' then "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

VMULL{<c>}{<p>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding
if size == '11' then "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings
Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assemble symbols
<<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
See Standard assembler syntax fields on page F2-4120.

Is the data type for the scalar and the elements of the operand vector, encoded in the "U: size" field. It can have the following values:

- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D: Vd" field as <Qd>*2.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N: Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when <dt> is S16 or U16, otherwise the "Vm" field.

Is the element index in the range 0 to 3, encoded in the "M: Vm<3>" field when <dt> is S16 or U16, otherwise in range 0 to 1, encoded in the "M" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    op2 = Elem[Din[m], index, esize]; op2val = Int(op2, unsigned);
    for r = 0 to regs-1
        for e = 0 to elements-1
            op1 = Elem[Din[n+r], e, esize]; op1val = Int(op1, unsigned);
            if floating_point then
                Elem[D[d+r], e, esize] = FPMul(op1, op2, StandardFPSCRValue());
            else
                if long_destination then
                    Elem[D[d+r], e, esize] = (op1val*op2val)<2*esize-1:0>;
                else
                    Elem[D[d+r], e, esize] = (op1val*op2val)<esize-1:0>;
```
F6.1.151 VMVN (immediate)

Vector Bitwise NOT (immediate) places the bitwise inverse of an immediate integer constant into every element of the destination register.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VMVN}\{<c>\}{<q>}\text{.I32} \ <D_d>, \ #<imm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMVN}\{<c>\}{<q>}\text{.I32} \ <Q_d>, \ #<imm> \]

Decode for all variants of this encoding

if (\(\text{cmode}<0> = '1' \) \&\& \(\text{cmode}<3:2> != '11' \)) || \(\text{cmode}<3:1> = '111' \) then SEE "Related encodings";
if \(Q = '1' \) \&\& \(\text{Vd}<0> = '1' \) then UNDEFINED;
\(\text{imm64} = \text{AdvSIMDExpandImm}('1', \text{cmode}, i:\text{imm3}:\text{imm4}); \)
d = UInt(\(D:Vd \)); \(\text{regs} = \text{if } Q = '0' \text{ then 1 else 2}; \)

A2

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VMVN}\{<c>\}{<q>}\text{.I16} \ <D_d>, \ #<imm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VMVN}\{<c>\}{<q>}\text{.I16} \ <Q_d>, \ #<imm> \]

Decode for all variants of this encoding

if (\(\text{cmode}<0> = '1' \) \&\& \(\text{cmode}<3:2> != '11' \)) || \(\text{cmode}<3:1> = '111' \) then SEE "Related encodings";
if \(Q = '1' \) \&\& \(\text{Vd}<0> = '1' \) then UNDEFINED;
\(\text{imm64} = \text{AdvSIMDExpandImm}('1', \text{cmode}, i:\text{imm3}:\text{imm4}); \)
d = UInt(\(D:Vd \)); \(\text{regs} = \text{if } Q = '0' \text{ then 1 else 2}; \)
A3

64-bit SIMD vector variant
Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Db>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding
if (cmode<0> == '1' && cmode<3:2> !== '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant
Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Db>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding
if (cmode<0> == '1' && cmode<3:2> !== '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant
Applies when Q == 0.

VMVN{<c>}{<q>}.I32 <Db>, #<imm>

128-bit SIMD vector variant
Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

Decode for all variants of this encoding
if (cmode<0> == '1' && cmode<3:2> !== '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

64-bit SIMD vector variant

Applies when Q == 0.

Decode for all variants of this encoding

if (cmode<0> == '1' & cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' & Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('I', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T3

1 1 1 1 1 1 1 0 0 0

<imm> imm3 Vd

<table>
<thead>
<tr>
<th>11 12 13 14 15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>i 1 1 1 1 1 1</td>
<td>D</td>
</tr>
</tbody>
</table>

Notes for all encodings

Related encodings: See *Advanced SIMD one register and modified immediate* on page F3-4173 for the T32 instruction set, or *Advanced SIMD one register and modified immediate* on page F4-4271 for the A32 instruction set.

Assembler symbols

- `<c>` For encoding A1, A2 and A3: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
 For encoding T1, T2 and T3: see *Standard assembler syntax fields* on page F2-4120.
- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<imm>` Is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of `<imm>`, see *Modified immediate constants in T32 and A32 Advanced SIMD instructions* on page F2-4137.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.152 **VMVN (register)**

Vector Bitwise NOT (register) takes a value from a register, inverts the value of each bit, and places the result in the destination register. The registers can be either doubleword or quadword.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

64-bit SIMD vector variant

Applies when $Q = 0$.

```
VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>
```

128-bit SIMD vector variant

Applies when $Q = 1$.

```
VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>
```

Decode for all variants of this encoding

```markdown
if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td>D</td>
<td>1 1</td>
<td>size</td>
<td>0 0</td>
<td>Vd</td>
<td>0</td>
<td>1 0 1 1</td>
<td>Q</td>
</tr>
</tbody>
</table>
```

#### Assembler symbols

- `<c>` For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.
<dt>
An optional data type. It is ignored by assemblers, and does not affect the encoding.
<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Qd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Qm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        D[d+r] = NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.153 VNEG

Vector Negate negates each element in a vector, and places the results in a second vector. The floating-point version only inverts the sign bit.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12 11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1|1|1|0|0|1|1|D|1|1|size|0|1|Vd|1|F|1|1|Q|M|0|Vm|

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE;  floating_point = (F == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

A2

|31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12 11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|!=1111|1|1|1|0|1|D|1|1|0|0|1|Vd|1|0|size|0|1|M|0|Vm|

Half-precision scalar variant

Applies when size == 01.

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE;
case size of
  when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); m = UInt(Vm:M);

CONSTRUdED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

64-bit SIMD vector variant

Applies when Q == 0.

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if F == '1' && (size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;  floating_point = (F == '1');
esize = 8 * UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

CONSTRUdED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T2

\[
\begin{array}{c|cccccccccccc}
| & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
---&---&---&---&---&---&---&---&---&---&---&---&---&---&---
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & Vd & 1 & 0 & size & 0 & 1 & M & 0 & Vm
\end{array}
\]

**Half-precision scalar variant**

Applies when size == 01.

\[\text{VNEG\{<c>\}{<q>}.F16 <Sd>, <Sm>}\]

**Single-precision scalar variant**

Applies when size == 10.

\[\text{VNEG\{<c>\}{<q>}.F32 <Sd>, <Sm>}\]

**Double-precision scalar variant**

Applies when size == 11.

\[\text{VNEG\{<c>\}{<q>}.F64 <Dd>, <Dm>}\]

**Decode for all variants of this encoding**

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE;
case size of
when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

\(<c>\)

For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

For encoding A2, T1 and T2: see *Standard assembler syntax fields on page F2-4120*.

\(<q>\)

See *Standard assembler syntax fields on page F2-4120*.

\(<dt>\)

Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the following values:

- S8 when F = 0, size = 00
- S16 when F = 0, size = 01
- S32 when F = 0, size = 10
- F16 when F = 1, size = 01
- F32 when F = 1, size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPNeg(Elem[D[m+r],e,esize]);
 else
 result = -SInt(Elem[D[m+r],e,esize]);
 Elem[D[d+r],e,esize] = result<esize-1:0>;
 else // VFP instruction
 case esize of
 when 16 S[d] = Zeros(16) : FPNeg(S[m]<15:0>);
 when 32 S[d] = FPNeg(S[m]);
 when 64 D[d] = FPNeg(D[m]);
```

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.154  VNMLA

Vector Negate Multiply Accumulate multiplies together two floating-point register values, adds the negation of the floating-point value in the destination register to the negation of the product, and writes the result back to the destination register.

———  Note  ————

Arm recommends that software does not use the VNMLA instruction in the Round towards Plus Infinity and Round towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 28 27 26 25 24 | 23 22 21 20 | 19 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|-------------------|-------------|-------|----|----|----|----|---|---|---|---|---|---|---|---|---|
| !='1111'           | 1 1 0 0 0 D 0 1 | Vn     | Vd | 1 0 | size N 1 M 0 Vm |

**Half-precision scalar variant**

Applies when size == '01'.

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

**Single-precision scalar variant**

Applies when size == '10'.

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

**Double-precision scalar variant**

Applies when size == '11'.

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

**Decode for all variants of this encoding**

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

T1

| 1 1 1 0 1 1 0 0 | 0 1 | 1 1 0 | 0 | 0 1 | D | 0 1 | Vn | Vd | 1 0 | size | N | M | 0 | Vm |

Half-precision scalar variant
Applies when size == 01.
VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

Decode for all variants of this encoding
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols
<
See Standard assembler syntax fields on page F2-4120.
>
See Standard assembler syntax fields on page F2-4120.
<
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
>
<
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
>
<
Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
>
<
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
>
<
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
>
<
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

if ConditionPassed() then
  EncodingSpecificOperations();  CheckVFPEnabled(TRUE);
  case esize of
    when 16
      product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR);
      case vtype of
        when VFPNegMul_VNMLA  S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), FPNeg(product16), FPSCR);
        when VFPNegMul_VNMLS  S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), product16, FPSCR);
        when VFPNegMul_VNMUL  S[d] = Zeros(16) : FPNeg(product16);
    when 32
      product32 = FPMul(S[n], S[m], FPSCR);
      case vtype of
        when VFPNegMul_VNMLA  S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR);
        when VFPNegMul_VNMLS  S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR);
        when VFPNegMul_VNMUL  S[d] = FPNeg(product32);
    when 64
      product64 = FPMul(D[n], D[m], FPSCR);
      case vtype of
        when VFPNegMul_VNMLA  D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR);
        when VFPNegMul_VNMLS  D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR);
        when VFPNegMul_VNMUL  D[d] = FPNeg(product64);
F6.1.155 VNMLS

Vector Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the floating-point value in the destination register to the product, and writes the result back to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>!=1111 1 1 1 0 0 D 0 1</td>
<td>Vn</td>
</tr>
<tr>
<td>Vd 1 0 size N 0 M 0 Vm</td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VNMLS{<c>}{<q>}.F64 <Sd>, <Sn>, <Sm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRANDED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1 0 0 D 0 1</td>
<td>Vn</td>
</tr>
<tr>
<td>Vd 1 0 size N 0 M 0 Vm</td>
<td></td>
</tr>
</tbody>
</table>
**Half-precision scalar variant**

Applies when size == 01.

\[
\text{VNMLS}\{<c>\}{<q>}.F16 \ <Sd>, \ <Sn>, \ <Sm>
\]

**Single-precision scalar variant**

Applies when size == 10.

\[
\text{VNMLS}\{<c>\}{<q>}.F32 \ <Sd>, \ <Sn>, \ <Sm>
\]

**Double-precision scalar variant**

Applies when size == 11.

\[
\text{VNMLS}\{<c>\}{<q>}.F64 \ <Dd>, \ <Dn>, \ <Dm>
\]

**Decode for all variants of this encoding**

\[
\text{if} \ \text{FPSCR.Len} != '000' || \text{FPSCR.Stride} != '00' \text{ then UNDEFINED};
\]

\[
\text{if} \ \text{size} == '00' || (\text{size} == '01' && !\text{HaveFP16Ext()}) \text{ then UNDEFINED};
\]

\[
\text{if} \ \text{size} == '01' && \text{InITBlock()} \text{ then UNPREDICTABLE};
\]

\[
\text{vtype} = \text{if} \ \text{op} == '1' \text{ then VFNPnegMul\_VNMLA else VFNPnegMul\_VNMLS};
\]

\[
\text{case size of}
\]

\[
\text{when} \ '01' \ \text{esize} = 16; \ d = \text{UInt(Vd:D)}; \ n = \text{UInt(Vn:N)}; \ m = \text{UInt(Vm:M)};
\]

\[
\text{when} \ '10' \ \text{esize} = 32; \ d = \text{UInt(Vd:D)}; \ n = \text{UInt(Vn:N)}; \ m = \text{UInt(Vm:M)};
\]

\[
\text{when} \ '11' \ \text{esize} = 64; \ d = \text{UInt(D:Vd)}; \ n = \text{UInt(N:Vn)}; \ m = \text{UInt(M:Vm)};
\]

**CONSTRAINED UNPREDICTABLE behavior**

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

\[
<0> \quad \text{See Standard assembler syntax fields on page F2-4120.}
\]

\[
<0p> \quad \text{See Standard assembler syntax fields on page F2-4120.}
\]

\[
<5d> \quad \text{Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.}
\]

\[
<5n> \quad \text{Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.}
\]

\[
<5m> \quad \text{Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.}
\]

\[
<6d> \quad \text{Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.}
\]

\[
<6n> \quad \text{Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.}
\]

\[
<6m> \quad \text{Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.}
\]

**Operation for all encodings**

\[
\text{enumeration VFNPnegMul \{VFNPnegMul\_VNMLA, VFNPnegMul\_VNMLS, VFNPnegMul\_VNMUL\};}
\]

\[
\text{if} \ \text{ConditionPassed()} \text{ then}
\]

\[
\text{EncodingSpecificOperations(); \ CheckVFPEnabled(TRUE);}
\]

\[
\text{case esize of}
\]

\[
\text{when 16}
\]

\[
\text{product16} = \text{FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR)};
\]

\[
\text{case vtype of}
\]


when VFPNegMul_VNMLA  S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), FPNeg(product16), FPSCR); 
when VFPNegMul_VNMLS  S[d] = Zeros(16) : FPAdd(FPNeg(S[d]<15:0>), product16, FPSCR); 
when VFPNegMul_VNMUL  S[d] = Zeros(16) : FPNeg(product16); 
when 32 
  product32 = FPMul(S[n], S[m], FPSCR); 
  case vtype of 
    when VFPNegMul_VNMLA  S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR); 
    when VFPNegMul_VNMLS  S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR); 
    when VFPNegMul_VNMUL  S[d] = FPNeg(product32); 
when 64 
  product64 = FPMul(D[n], D[m], FPSCR); 
  case vtype of 
    when VFPNegMul_VNMLA  D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR); 
    when VFPNegMul_VNMLS  D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR); 
    when VFPNegMul_VNMUL  D[d] = FPNeg(product64);
F6.1.156 VNMUL

Vector Negate Multiply multiplies together two floating-point register values, and writes the negation of the result to the destination register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

[31 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0]

| !=1111 | 1 1 1 0 0 | D | 1 0 | Vn | Vd | 1 0 | size | N | 1 | M | 0 | Vm |

cond

Half-precision scalar variant
Applies when size == 01.
VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '01' && !HaveFP16Ext() then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = VFPNegMul_VNMUL;
case size of
  when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If size == '01' && cond !='1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

[15 14 13 12|11 10 9 8|7 6 5 4|3 0]

| 1 1 1 0 | Vn | 1 1 0 | size | N | 1 | M | 0 | Vm |
**Half-precision scalar variant**

Applies when size == 01.

\[ VNMUL\{<c>\}\{<q>\}.F16 \{<Sd>,} <Sn>, <Sm> \]

**Single-precision scalar variant**

Applies when size == 10.

\[ VNMUL\{<c>\}\{<q>\}.F32 \{<Sd>,} <Sn>, <Sm> \]

**Double-precision scalar variant**

Applies when size == 11.

\[ VNMUL\{<c>\}\{<q>\}.F64 \{<Dd>,} <Dn>, <Dm> \]

**Decode for all variants of this encoding**

- if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
- if size == '01' && !HaveFP16Ext() then UNDEFINED;
- if size == '01' && InITBlock() then UNPREDICTABLE;
- vtype = VFPNegMul_VNMUL;
- case size of
  - when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  - when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
  - when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**CONstrained UNPredictable behavior**

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

**Assembler symbols**

- `<c>` See _Standard assembler syntax fields_ on page F2-4120.
- `<q>` See _Standard assembler syntax fields_ on page F2-4120.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sn>` Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.
- `<Sm>` Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

- enumeration VFPNegMul {VFPNegMul_VNMAL, VFPNegMul_VNMLS, VFPNegMul_VNMUL};
- if ConditionPassed() then
  - EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
  - case esize of
    - when 16
      - product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR);
      - case vtype of
when \texttt{VFPNegMul\_VNMLA} S[d] = \texttt{Zeros(16)} : \texttt{FPAdd\(\texttt{FPNeg(S[d]<15:0>)}\)}, \texttt{FPNeg(product16)};
when \texttt{VFPNegMul\_VNMLS} S[d] = \texttt{Zeros(16)} : \texttt{FPAdd\(\texttt{FPNeg(S[d]<15:0>)}\)}, \texttt{product16}, \texttt{FPSCR};
when \texttt{VFPNegMul\_VMUL} S[d] = \texttt{Zeros(16)} : \texttt{FPNeg(product16)};

when 32
\texttt{product32 = FPMul(S[n], S[m], FPSCR)};
case \texttt{vtype} of
 when \texttt{VFPNegMul\_VNMLA} S[d] = \texttt{FPAdd(\texttt{FPNeg(S[d])}, \texttt{FPNeg(product32)}), FPSCR};
 when \texttt{VFPNegMul\_VNMLS} S[d] = \texttt{FPAdd(\texttt{FPNeg(S[d])}, product32, FPSCR)};
 when \texttt{VFPNegMul\_VMUL} S[d] = \texttt{FPNeg(product32)};

when 64
\texttt{product64 = FPMul(D[n], D[m], FPSCR)};
case \texttt{vtype} of
 when \texttt{VFPNegMul\_VNMLA} D[d] = \texttt{FPAdd(\texttt{FPNeg(D[d])}, \texttt{FPNeg(product64)}), FPSCR};
 when \texttt{VFPNegMul\_VNMLS} D[d] = \texttt{FPAdd(\texttt{FPNeg(D[d])}, product64, FPSCR)};
 when \texttt{VFPNegMul\_VMUL} D[d] = \texttt{FPNeg(product64)};
F6.1.157  VORN (immediate)

Vector Bitwise OR NOT (immediate) performs a bitwise OR between a register value and the complement of an immediate value, and returns the result into the destination vector.

This instruction is a pseudo-instruction of the VORR (immediate) instruction. This means that:

- The encodings in this description are named to match the encodings of VORR (immediate).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VORR (immediate) gives the operational pseudocode for this instruction.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 16|15 12|11 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | i | 1 | D | 0 0 0 | imm3 | Vd | 0 x x 1 | 0 Q 0 1 | imm4 |

**64-bit SIMD vector variant**

Applies when Q == 0.

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

and is never the preferred disassembly.

**128-bit SIMD vector variant**

Applies when Q == 1.

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

and is never the preferred disassembly.

A2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 16|15 12|11 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | i | 1 | D | 0 0 0 | imm3 | Vd | 1 0 x 1 | 0 Q 0 1 | imm4 |

**64-bit SIMD vector variant**

Applies when Q == 0.

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

and is never the preferred disassembly.
128-bit SIMD vector variant
Applies when \( Q = 1 \).
\[
\text{VORN}\{<c>\}{<q>}.I32 \{<Qd>,\} <Qd>, \#<imm>
\]
is equivalent to
\[
\text{VORR}\{<c>\}{<q>}.I32 <Qd>, \#\sim<imm>
\]
and is never the preferred disassembly.

T1

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 | 15 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1  | 1 | 1 | i | 1 | 1 | 1 | 1 | 1 | D | 0 | 0 | 0 | imm3 | Vd | 0 | x | x | 1 | 0 | Q | 0 | 1 | imm4 |
cmode

64-bit SIMD vector variant
Applies when \( Q = 0 \).
\[
\text{VORN}\{<c>\}{<q>}.I16 \{<Dd>,\} <Dd>, \#<imm>
\]
is equivalent to
\[
\text{VORR}\{<c>\}{<q>}.I16 <Dd>, \#\sim<imm>
\]
and is never the preferred disassembly.

128-bit SIMD vector variant
Applies when \( Q = 1 \).
\[
\text{VORN}\{<c>\}{<q>}.I16 \{<Qd>,\} <Qd>, \#<imm>
\]
is equivalent to
\[
\text{VORR}\{<c>\}{<q>}.I16 <Qd>, \#\sim<imm>
\]
and is never the preferred disassembly.

T2

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 | 15 | 12 | 11 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1  | 1 | 1 | i | 1 | 1 | 1 | 1 | 1 | D | 0 | 0 | 0 | imm3 | Vd | 1 | 0 | x | 1 | 0 | Q | 0 | 1 | imm4 |
cmode

64-bit SIMD vector variant
Applies when \( Q = 0 \).
\[
\text{VORN}\{<c>\}{<q>}.I32 \{<Dd>,\} <Dd>, \#<imm>
\]
is equivalent to
\[
\text{VORR}\{<c>\}{<q>}.I32 <Dd>, \#\sim<imm>
\]
and is never the preferred disassembly.

128-bit SIMD vector variant
Applies when \( Q = 1 \).
VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

and is never the preferred disassembly.

Assembler symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137.

Operation for all encodings

The description of VORR (immediate) gives the operational pseudocode for this instruction.
F6.1.158   VORN (register)

Vector bitwise OR NOT (register) performs a bitwise OR NOT operation between two registers, and places the result in the destination register. The operand and result registers can be quadword or doubleword. They must all be the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>D</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

\[ d = \text{UInt}(D:Vd); \quad n = \text{UInt}(N:Vn); \quad m = \text{UInt}(M:Vm); \quad \text{regs} = \text{if Q == '0' then 1 else 2}; \]

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

\[ d = \text{UInt}(D:Vd); \quad n = \text{UInt}(N:Vn); \quad m = \text{UInt}(M:Vm); \quad \text{regs} = \text{if Q == '0' then 1 else 2}; \]

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>  
See Standard assembler syntax fields on page F2-4120.

<dt>  
An optional data type. It is ignored by assemblers, and does not affect the encoding.

<qd>  
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<qn>  
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<qm>  
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<dd>  
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<dn>  
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<dm>  
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

if ConditionPassed() then  
   EncodingSpecificOperations(); CheckAdvSIMDEnabled();  
   for r = 0 to regs-1  
      D[d+r] = D[n+r] OR NOT(D[m+r]);

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.159  VORR (immediate)

Vector Bitwise OR (immediate) performs a bitwise OR between a register value and an immediate value, and returns the result into the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instruction VORN (immediate). The pseudo-instruction is never the preferred disassembly.

A1

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 16|15 12|11 8 7 6 5 4 3 0]
 1 1 1 1 0 0 1 1 1 D 0 0 0 i mm3 Vd 0 x x 1 0 Q 0 1 i imm4
cmode
```

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' & & Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd);  regs = if Q == '0' then 1 else 2;

A2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 18 16|15 12|11 8 7 6 5 4 3 0]
 1 1 1 1 0 0 1 1 1 D 0 0 0 i mm3 Vd 1 0 x x 1 0 Q 0 1 i imm4
cmode
```

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

Decode for all variants of this encoding

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' & & Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd);  regs = if Q == '0' then 1 else 2;
T1

64-bit SIMD vector variant
Applies when Q == 0.

\[
VORR\{<c>}{<q>}.I32 \{<Dd>,} <Dd>, #<imm>
\]

128-bit SIMD vector variant
Applies when Q == 1.

\[
VORR\{<c>}{<q>}.I32 \{<Qd>,} <Qd>, #<imm>
\]

Decode for all variants of this encoding
if cmode<0> == '0' || cmode<3:2> == '1' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd);  regs = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant
Applies when Q == 0.

\[
VORR\{<c>}{<q>}.I16 \{<Dd>,} <Dd>, #<imm>
\]

128-bit SIMD vector variant
Applies when Q == 1.

\[
VORR\{<c>}{<q>}.I16 \{<Qd>,} <Qd>, #<imm>
\]

Decode for all variants of this encoding
if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd);  regs = if Q == '0' then 1 else 2;

Assembler symbols

\[<c>\] For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

\[<q>\] See Standard assembler syntax fields on page F2-4120.

\[<Qd>\] Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

\[<Dd>\] Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[d+r] OR imm64;
```

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.160 VORR (register)

Vector bitwise OR (register) performs a bitwise OR operation between two registers, and places the result in the destination register. The operand and result registers can be quadword or doubleword. They must all be the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instructions VMOV (register, SIMD), VRSHR (zero), and VSHR (zero). The pseudo-instruction is never the preferred disassembly.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 | 1 1 1 0 1 0 0 |D|1 0 |Vn|Vd|0 0 0 1 |N|Q|M|1 |Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 0 |15 12|11 10 9 8|7 6 5 4|3 0 |1 1 1 1 0 1 0 |D|1 0 |Vn|Vd|0 0 0 1 |N|Q|M|1 |Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;
### Alias conditions

<table>
<thead>
<tr>
<th>Alias or pseudo-instruction</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMOV (register, SIMD)</td>
<td>N:Vn == M:Vm</td>
</tr>
<tr>
<td>VRSHR (zero)</td>
<td>Never</td>
</tr>
<tr>
<td>VSHR (zero)</td>
<td>Never</td>
</tr>
</tbody>
</table>

### Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  
  For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` An optional data type. It is ignored by assemblers, and does not affect the encoding.
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- `<Qn>` Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
- `<Qm>` Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

### Operation for all encodings

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 D[d+r] = D[n+r] OR D[m+r];
```

### Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
**F6.1.161 VPADAL**

Vector Pairwise Add and Accumulate Long adds adjacent pairs of elements of a vector, and accumulates the results into the elements of the destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The result elements are twice the length of the operand elements.

The following figure shows the operation of VPADAL doubleword operation for data type S16.

![Diagram of VPADAL operation]

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

**A1**

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8|7 6 5 4|3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 1 | D | 1 1 | size | 0 0 | Vd | 0 1 1 0 | op | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when Q == 0.

VPADAL{<c>{<q>}.<dt> <Dd>, <Dm>}

**128-bit SIMD vector variant**

Applies when Q == 1.

VPADAL{<c>{<q>}.<dt> <Qd>, <Qm>}

**Decode for all variants of this encoding**

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size);
elements = 64 DIV esize;
d = UInt(D:Vd);
m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

**T1**

| 15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0|15 12|11 10 9 8|7 6 5 4|3 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 1 1 | D | 1 1 | size | 0 0 | Vd | 0 1 1 0 | op | Q | M | 0 | Vm |

**64-bit SIMD vector variant**

Applies when Q == 0.

VPADAL{<c>{<q>}.<dt> <Dd>, <Dm>
**128-bit SIMD vector variant**

Applies when \( Q = 1 \).

\[ \text{VPADAL\{<c>\}\{<q>\}.<dt> <Qd>, <Qm>} \]

**Decode for all variants of this encoding**

- if \( \text{size} = '11' \) then UNDEFINED;
- if \( Q = '1' \) \&\& \( Vd<0> = '1' \) \| \( Vm<0> = '1' \) then UNDEFINED;
- \( \text{unsigned} = \text{UInt}(\text{op} == '1'); \)
- \( \text{esize} = 8 \ll \text{UInt}(\text{size}); \)
- \( \text{elements} = 64 \div \text{esize}; \)
- \( d = \text{UInt}(D:Vd); \)
- \( m = \text{UInt}(M:Vm); \)
- \( \text{regs} = \text{if} \ Q == '0' \ \text{then} \ 1 \ \text{else} \ 2; \)

**Assembler symbols**

- \(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
  - For encoding T1: see Standard assembler syntax fields on page F2-4120.
- \(<q>\) See Standard assembler syntax fields on page F2-4120.
- \(<dt>\) Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the following values:
  - \( S8 \) when \( \text{op} = 0, \text{size} = 00 \)
  - \( S16 \) when \( \text{op} = 0, \text{size} = 01 \)
  - \( S32 \) when \( \text{op} = 0, \text{size} = 10 \)
  - \( U8 \) when \( \text{op} = 1, \text{size} = 00 \)
  - \( U16 \) when \( \text{op} = 1, \text{size} = 01 \)
  - \( U32 \) when \( \text{op} = 1, \text{size} = 10 \)
- The following encodings are reserved:
  - \( \text{op} = 0, \text{size} = 11 \)
  - \( \text{op} = 1, \text{size} = 11 \)
- \(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\)*2.
- \(<Qm>\) Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\)*2.
- \(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- \(<Dm>\) Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

- if \( \text{ConditionPassed}() \) then
  - \( \text{EncodingSpecificOperations}(); \)
  - \( \text{CheckAdvSIMDEnabled}(); \)
  - \( h = \text{elements} \div 2; \)
  - for \( r = 0 \) to \( \text{regs}-1 \)
    - for \( e = 0 \) to \( h-1 \)
      - \( \text{op1} = \text{Elem}[D[m+r],2*e,esize]; \)
      - \( \text{op2} = \text{Elem}[D[m+r],2*e+1,esize]; \)
      - \( \text{result} = \text{Int}(\text{op1}, \text{unsigned}) + \text{Int}(\text{op2}, \text{unsigned}); \)
      - \( \text{Elem}[D[d+r],e,2*esize] = \text{Elem}[D[d+r],e,2*esize] + \text{result}; \)
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.162   VPADD (floating-point)

Vector Pairwise Add (floating-point) adds adjacent pairs of elements of two vectors, and places the results in the destination vector.

The operands and result are doubleword vectors.

The operand and result elements are floating-point numbers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | D | 0 | sz | Vn | Vd | 1 | 1 | 0 | 1 | N | Q | M | 0 | Vm |

A1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

if Q == '1' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>15 14 13</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

T1 variant

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

if Q == '1' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
  d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Assembler symbols

\(<c>\) For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

For encoding T1: see *Standard assembler syntax fields on page F2-4120*.

\(<q>\) See *Standard assembler syntax fields on page F2-4120*.

\(<dt>\) Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

- F32 when \(sz = 0\)
- F16 when \(sz = 1\)

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;
 for e = 0 to h-1
 Elem[dest,e,esize] = FPAdd(Elem[D[n],2*e,esize], Elem[D[n],2*e+1,esize], StandardFPSCRValue());
 Elem[dest,e+h,esize] = FPAdd(Elem[D[m],2*e,esize], Elem[D[m],2*e+1,esize], StandardFPSCRValue());
 D[d] = dest;
```
F6.1.163   VPADD (integer)

Vector Pairwise Add (integer) adds adjacent pairs of elements of two vectors, and places the results in the destination vector.

The operands and result are doubleword vectors.

The operand and result elements must all be the same type, and can be 8-bit, 16-bit, or 32-bit integers. There is no distinction between signed and unsigned integers.

The following figure shows the operation of VPADD doubleword operation for data type I16.

![Operation of VPADD doubleword operation for data type I16.](image)

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

![A1 variant instructions](image)

**A1 variant**

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

**Decode for this encoding**

if size == '11' || Q == '1' then UNDEFINED;
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);

T1

![T1 variant instructions](image)

**T1 variant**

VPADD{<c>}{<q>}.<dt> {<Db>, }<Dn>, <Dm>

**Decode for this encoding**

if size == '11' || Q == '1' then UNDEFINED;
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);
Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
\[
\begin{align*}
I8 & \text{ when size } = 00 \\
I16 & \text{ when size } = 01 \\
I32 & \text{ when size } = 10 \\
\end{align*}
\]

>D
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

>N
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

>M
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    bits(64) dest;
    h = elements DIV 2;
    for e = 0 to h-1
        Elem[dest,e,esize] = Elem[D[n],2*e,esize] + Elem[D[n],2*e+1,esize];
        Elem[dest,e+h,esize] = Elem[D[m],2*e,esize] + Elem[D[m],2*e+1,esize];
    D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.164  VPADDL

Vector Pairwise Add Long adds adjacent pairs of elements of two vectors, and places the results in the destination vector.

The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The result elements are twice the length of the operand elements.

The following figure shows the operation of VPADDL doubleword operation for data type S16.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

\[
\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & D & 1 & 1 & size & 0 & 0 & Vd & 0 & 0 & 1 & 0 & op & Q & M & 0 & Vm
\end{array}
\]

**64-bit SIMD vector variant**

Applies when Q == 0.

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

**128-bit SIMD vector variant**

Applies when Q == 1.

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

**Decode for all variants of this encoding**

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size);
 elements = 64 DIV esize;
d = UInt(D:Vd);
m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

T1

\[
\begin{array}{cccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & D & 1 & 1 & size & 0 & 0 & Vd & 0 & 0 & 1 & 0 & op & Q & M & 0 & Vm
\end{array}
\]

**64-bit SIMD vector variant**

Applies when Q == 0.

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>
128-bit SIMD vector variant
Applies when Q == 1.

VPADDL{<c>}{<q>}.{<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size);  elements = 64 DIV esize;
d = UInt(D:Vd);  m = UInt(M:Vm);  regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "op:size" field. It can have the following values:
  S8 when op = 0, size = 00
  S16 when op = 0, size = 01
  S32 when op = 0, size = 10
  U8 when op = 1, size = 00
  U16 when op = 1, size = 01
  U32 when op = 1, size = 10

The following encodings are reserved:
  * op = 0, size = 11.
  * op = 1, size = 11.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
h = elements DIV 2;
for r = 0 to regs-1
    for e = 0 to h-1
        op1 = Elem[D[m+r],2*e,esize];  op2 = Elem[D[m+r],2*e+1,esize];
        result = Int(op1, unsigned) + Int(op2, unsigned);
        Elem[D[d+r],e,2*esize] = result<2*esize-1:0>;
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
F6.1.165 VPMAX (floating-point)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 0 1 1 0 | D | 0 | sz | Vn | Vd | 1 1 1 1 | N | 0 | M | 0 | Vm |
| op |

A1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 1 1 0 | D | 0 | sz | Vn | Vd | 1 1 1 1 | N | 0 | M | 0 | Vm |
| op |

T1 variant

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

Decode for this encoding

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
case sz of
  when '0' esize = 32; elements = 2;
  when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Assembler symbols

- For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1: see Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.

- Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
  - F32 when sz = 0
  - F16 when sz = 1

- Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;
 for e = 0 to h-1
 op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
 Elem[dest,e,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
 FPMin(op1,op2,StandardFPSCRValue());
 op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
 Elem[dest,e+h,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
 FPMin(op1,op2,StandardFPSCRValue());
 D[d] = dest;
```
F6.1.166 VPMAX (integer)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger of each pair into the corresponding element in the destination doubleword vector.

The following figure shows the operation of VPMAX doubleword operation for data type S16 or U16.

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 | 12|11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | | | | | | | |
|---|
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | U | 0 | D | size | Vn | Vd | 1 | 0 | 1 | 0 | N | 0 | M | 0 | Vm |
```

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

**A1 variant**

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

**Decode for this encoding**

```
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

**T1 variant**

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

**Decode for this encoding**

```
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

**Assembler symbols**

\(<c>\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see *Standard assembler syntax fields* on page F2-4120.

See *Standard assembler syntax fields* on page F2-4120.

Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:

- S8 when $U = 0$, size = 00
- S16 when $U = 0$, size = 01
- S32 when $U = 0$, size = 10
- U8 when $U = 1$, size = 00
- U16 when $U = 1$, size = 01
- U32 when $U = 1$, size = 10

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```c
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;
 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;
 D[d] = dest;
```

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.167  VPMIN (floating-point)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

**A1**

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8| 7 6 5 4 | 3 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | D | 1 | sz | Vn | Vd | 1 | 1 | 1 | 1 | N | 0 | M | 0 | Vm |
|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| op           |

**A1 variant**

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

*Decode for this encoding*

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
case sz of
    when '0' esize = 32; elements = 2;
    when '1' esize = 16; elements = 4;
    d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);

**T1**

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>D</th>
<th>1</th>
<th>sz</th>
<th>Vn</th>
<th>Vd</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>N</th>
<th>0</th>
<th>M</th>
<th>0</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td></td>
</tr>
</tbody>
</table>

**T1 variant**

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

*Decode for this encoding*

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
case sz of
    when '0' esize = 32; elements = 2;
    when '1' esize = 16; elements = 4;
    d = UInt(D:Vd);  n = UInt(N:Vn);  m = UInt(M:Vm);

*CONSTRAINED UNPREDICTABLE behavior*

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as if it passes the Condition code check.
* The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
Assembler symbols

&<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
&<q>
See Standard assembler syntax fields on page F2-4120.
&<dt>
Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
F32 when sz = 0
F16 when sz = 1
&<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
&Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
&Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    bits(64) dest;
    h = elements DIV 2;
    for e = 0 to h-1
        op1 = Elem[D[n],2*e,esize];  op2 = Elem[D[n],2*e+1,esize];
        Elem[dest,e,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
            FPMin(op1,op2,StandardFPSCRValue());
        op1 = Elem[D[m],2*e,esize];  op2 = Elem[D[m],2*e+1,esize];
        Elem[dest,e+h,esize] = if maximum then FPMax(op1,op2,StandardFPSCRValue()) else
            FPMin(op1,op2,StandardFPSCRValue());
    D[d] = dest;
F6.1.168   VPMIN (integer)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller of each pair into the corresponding element in the destination doubleword vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see _Enabling Advanced SIMD and floating-point support_ on page G1-5812.

A1

```plaintext
1111001 0x0
U0 D size Vn Vd 1010 N0 M1 Vm
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 |
```

**A1 variant**

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

**Decode for this encoding**

- if size == '11' then UNDEFINED;
- maximum = (op == '0'); unsigned = (U == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```plaintext
1111011 0x0
U0 D size Vn Vd 1010 N0 M1 Vm
| 15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 12|11 10 9 8|7 6 5 4|3 0 |
```

**T1 variant**

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

**Decode for this encoding**

- if size == '11' then UNDEFINED;
- maximum = (op == '0'); unsigned = (U == '1');
- esize = 8 << UInt(size); elements = 64 DIV esize;
- d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

**Assembler symbols**

- `<c>`: For encoding A1: see _Standard assembler syntax fields_ on page F2-4120. This encoding must be unconditional.
  - For encoding T1: see _Standard assembler syntax fields_ on page F2-4120.
- `<q>`: See _Standard assembler syntax fields_ on page F2-4120.
- `<dt>`: Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
  - S8 when U = 0, size = 00
  - S16 when U = 0, size = 01
  - S32 when U = 0, size = 10
  - U8 when U = 1, size = 00
U16 when U = 1, size = 01
U32 when U = 1, size = 10

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

**Operation for all encodings**

```plaintext
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) dest;
 h = elements DIV 2;
 for e = 0 to h-1
 op1 = Int(Elem[D[n],2*e,esize], unsigned);
 op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e,esize] = result<esize-1:0>;
 op1 = Int(Elem[D[m],2*e,esize], unsigned);
 op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
 result = if maximum then Max(op1,op2) else Min(op1,op2);
 Elem[dest,e+h,esize] = result<esize-1:0>;
 D[d] = dest;
```

**Operational information**

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
  - The values of the data supplied in any of its registers.
  - The values of the NZCV flags.
F6.1.169  VPOP

Pop SIMD&FP registers from Stack loads multiple consecutive Advanced SIMD and floating-point register file registers from the stack

This instruction is an alias of the VLDM, VLMDB, VLDMIA instruction. This means that:

- The encodings in this description are named to match the encodings of VLDM, VLMDB, VLDMIA.
- The description of VLDM, VLMDB, VLDMIA gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{ccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccc}
& 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & Vd & 1 & 0 & 1 & 1 & \text{imm8}<7:1> & 0 & \text{imm8}<0>
\end{array}
\]

Increment After variant

\[
\text{VPOP}\{<c>\}{<q>}{.<size>} <dreglist>
\]

is equivalent to

\[
\text{VLDM}\{<c>\}{<q>}{.<size>} \text{ SP!}, <dreglist>
\]

and is always the preferred disassembly.

A2

\[
\begin{array}{ccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccc}
& 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & Vd & 1 & 0 & 1 & 0 & \text{imm8} & 0
\end{array}
\]

Increment After variant

\[
\text{VPOP}\{<c>\}{<q>}{.<size>} <sreglist>
\]

is equivalent to

\[
\text{VLDM}\{<c>\}{<q>}{.<size>} \text{ SP!}, <sreglist>
\]

and is always the preferred disassembly.

T1

\[
\begin{array}{ccccccccccccc}
| & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & | & 1 & 0 & |
\end{array}
\]

\[
\begin{array}{cccccccccccc}
& 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & Vd & 1 & 0 & 1 & 1 & \text{imm8}<7:1> & 0 & \text{imm8}<0>
\end{array}
\]

Increment After variant

\[
\text{VPOP}\{<c>\}{<q>}{.<size>} <dreglist>
\]

is equivalent to

\[
\text{VLDM}\{<c>\}{<q>}{.<size>} \text{ SP!}, <dreglist>
\]

and is always the preferred disassembly.
T2

```
| 15 14 13 12| 11 10 9 8 | 7 6 5 4 | 3 | 0 | 15 | 12| 11 10 9 8 | 7 | 0 |
|-------------|--------|--------|---|---|----|---|---|---|---|---|---|---|
| 1 1 1 0 1 0 | 0 1 | D | 1 1 1 0 | 1 | 0 | 0 |
| P | U | W | Rn |

Increment After variant

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode for this instruction.
F6.1.170 VPUSH

Push SIMD&FP registers to Stack stores multiple consecutive registers from the Advanced SIMD and floating-point register file to the stack.

This instruction is an alias of the VSTM, VSTMDB, VSTMIA instruction. This means that:

- The encodings in this description are named to match the encodings of VSTM, VSTMDB, VSTMIA.
- The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.

A1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.
Decrement Before variant

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must contain at least one register, and must not contain more than 16 registers.

Operation for all encodings

The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.
F6.1.171 VQABS

Vector Saturating Absolute takes the absolute value of each element in a vector, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
eseize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
eseize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

dt
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8</td>
<td>when size = 00</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>when size = 01</td>
<td></td>
</tr>
<tr>
<td>S32</td>
<td>when size = 10</td>
<td></td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

Qd
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

Qm
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Dd
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Dm
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Abs(SInt(Elem[D[r]+e,esize]));
 (Elem[D[r]+e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
F6.1.172 VQADD

Vector Saturating Add adds the values of corresponding elements of two vectors, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 1</td>
<td>U</td>
<td>0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
<td>Vd</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when \(Q = 1 \).

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if \(Q == '1' \) && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0 15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when \(Q = 1 \).

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if \(Q == '1' \) && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:

- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- S64 when U = 0, size = 11
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10
- U64 when U = 1, size = 11

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 sum = Int(Elem[D[n+r],e,esize], unsigned) + Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[d+r],e,esize], sat) = SatQ(sum, esize, unsigned);
 if sat then FPSCR.QC = '1';

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ID072120 Non-Confidential F6-5459
F6.1.173 VQDMLAL

Vector Saturating Doubling Multiply Accumulate Long multiplies corresponding elements in two doubleword vectors, doubles the products, and accumulates the results into the elements of a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD scalars on page F2-4146.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
<table>
<thead>
<tr>
<th>size</th>
<th>op</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A1 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

A2

```
<table>
<thead>
<tr>
<th>size</th>
<th>op</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A2 variant

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

```
<table>
<thead>
<tr>
<th>size</th>
<th>op</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
T1 variant

\[
\text{VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>}
\]

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

T2

\[
\begin{array}{ccccccc|ccccc|ccccc|cccccc}
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|12|11|10|9|8|7|6|5|4|3|0|
\hline
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & D & 1 & 1 & Vn & Vd & 0 & 0 & 1 & 1 & N & 1 & M & 0 & Vm \\
\end{array}
\]

T2 variant

\[
\text{VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]}
\]

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

- `<c>` For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- `<c>` For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
 - S16 when size = 01
 - S32 when size = 10
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.`
- `<Dn>` Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
- `<Dm>` For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

 For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when `<dt>` is S16, otherwise the "Vm" field.
- `<index>` Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when `<dt>` is S16, otherwise in range 0 to 1, encoded in the "M" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then
 op2 = SInt(Elem[Din[m],index,esize]);
 end if
 for e = 0 to elements-1
 if !scalar_form then
 op2 = SInt(Elem[Din[m],e,esize]);
 end if
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^esize-1)
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 end if
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then
 FPSCR.QC = '1';
 end if
 end for
F6.1.174 VQDMLSL

Vector Saturating Doubling Multiply Subtract Long multiplies corresponding elements in two doubleword vectors, subtracts double the products from corresponding elements of a quadword vector, and places the results in the same quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD scalars on page F2-4146.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 1 1 1 1 0 0 1 0 1 | D = 11 | Vn | Vd | 1 0 | 1 | N | 0 | M | 0 | Vm |

A1 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

A2

| 1 1 1 1 0 0 1 0 1 | D = 11 | Vn | Vd | 0 1 | 1 | 1 | N | 1 | M | 0 | Vm |

A2 variant

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);
T1 variant

VQDMLSL{{c}{q}}{<dt>} <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

T2

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1 1 D</td>
</tr>
</tbody>
</table>

T2 variant

VQDMLSL{{c}{q}}{<dt>} <Qd>, <Dn>, <Dm>{<index>}

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See *Advanced SIMD data-processing on page F3-4165* for the T32 instruction set, or *Advanced SIMD data-processing on page F4-4262* for the A32 instruction set.

Assembler symbols

<c> For encoding A1 and A2: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

For encoding T1 and T2: see *Standard assembler syntax fields on page F2-4120*.

<α> See *Standard assembler syntax fields on page F2-4120*.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

S16 when size = 01
S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16, otherwise in range 0 to 1, encoded in the "M" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^(esize-1))
 (product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
 if add then
 result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
 else
 result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
 (Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
 if sat1 || sat2 then FPSCR.QC = '1';
F6.1.175 VQDMULH

Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in two vectors, doubles the results, and places the most significant half of the final results in the destination vector. The results are truncated, for rounded results see VQRDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD scalars on page F2-4146.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>
```

```
128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Dm[x]>
```

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

```
64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm[x]>
```

```
128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Dm[x]>
```
Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:M<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

|15|14|13|12|11|10|9|8|7|6|5|4|3|0|14|13|12|11|10|9|8|7|6|5|4|3|0|1|1|1|0|1|1|1|0|D|size|Vn|Vd|N|Q|M|0|Vm

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applys when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

|15|14|13|12|11|10|9|8|7|6|5|4|3|0|15|14|13|12|11|10|9|8|7|6|5|4|3|0|1|1|1|1|1|1|1|D|size|Vn|Vd|N|Q|M|0|Vm

64-bit SIMD vector variant

Applies when Q == 0.

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dm>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm[x]>

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:M<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);
Notes for all encodings

Related encodings: See *Advanced SIMD data-processing* on page F3-4165 for the T32 instruction set, or *Advanced SIMD data-processing* on page F4-4262 for the A32 instruction set.

Assembler symbols

\(<c>\) For encoding A1 and A2: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see *Standard assembler syntax fields* on page F2-4120.

\(<q>\) See *Standard assembler syntax fields* on page F2-4120.

\(<dt>\) Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

\[\begin{align*}
 \text{S16} & \quad \text{when size = 01} \\
 \text{S32} & \quad \text{when size = 10}
\end{align*}\]

\(<Qd>\) Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>\times 2\).

\(<Qn>\) Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>\times 2\).

\(<Qm>\) Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\times 2\).

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm[x]>\) Is the 64-bit name of the second SIMD&FP source register holding the scalar. If \(<dt>\) is S16, \(Dm\) is restricted to D0-D7. \(Dm\) is encoded in "Vm<2:0>\", and \(x\) is encoded in "M:Vm<3>\". If \(<dt>\) is S32, \(Dm\) is restricted to D0-D15. \(Dm\) is encoded in "Vm", and \(x\) is encoded in "M".

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

\[\text{if ConditionPassed() then}
\begin{align*}
\text{EncodingSpecificOperations();} & \quad \text{CheckAdvSIMDEnabled();} \\
\text{if scalar_form then} & \quad \text{op2 = SInt(Elem[D[m],index,esize]);} \\
\text{for r = 0 to regs-1} & \quad \text{for e = 0 to elements-1} \\
\text{if !scalar_form then} & \quad \text{op2 = SInt(Elem[D[m+r],e,esize]);} \\
\text{op1 = SInt(Elem[D[n+r],e,esize]);} & \quad \text{// The following only saturates if both op1 and op2 equal -2^\text{frac{esize-1})}} \\
\text{(result, sat) = SignedSatQ((2*op1*op2) >> esize, esize);} & \quad \text{Elem[D[d+r],e,esize] = result;} \\
\text{if sat then} & \quad \text{FPSCR.QC = '1';}
\end{align*}\]
F6.1.176 VQDMULL

Vector Saturating Doubling Multiply Long multiplies corresponding elements in two doubleword vectors, doubles the products, and places the results in a quadword vector.

The second operand can be a scalar instead of a vector. For more information about scalars see *Advanced SIMD scalars* on page F2-4146.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see *Pseudocode description of saturation* on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 |
 1 1 1 1 0 0 1 0 1 1 0 1 1 | Vn  Vd  1 1 0 1 | N 0 | M 0 | Vm |
```

A1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

A2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4 3 0 |
 1 1 1 1 0 0 1 0 1 1 0 1 1 | Vn  Vd  1 0 1 1 | N 1 | M 0 | Vm |
```

A2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(M:Vm<2:0>);
if size == '10' then esize = 32; elements = 2; m = UInt(M:Vm); index = UInt(M);

T1

```
[15 14 13 12|11 10 9 8|7 6 5 4 3 0 |
 1 1 1 0 1 1 1 1 1 1 1 1 | Vn  Vd  1 1 0 1 | N 0 | M 0 | Vm |
```
T1 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;

T2

|15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 12|11 10 9 8 7 6 5 4 3 0| | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
|1 1 1 1|D|11|Vn|Vd|1 0 1 1|N|1|M|0|Vm|

T2 variant

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<e> For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
S16 when size = 01
S32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<Dm[<x>] Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
 for e = 0 to elements-1
 if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
 op1 = SInt(Elem[Din[n],e,esize]);
 // The following only saturates if both op1 and op2 equal -(2^esize-1)
 (product, sat) = SignedSatQ(2*op1*op2, 2*esize);
 Elem[Q[d>>1],e,2*esize] = product;
 if sat then FPSCR.QC = '1';
F6.1.177 VQMOVN, VQMOVUN

Vector Saturating Move and Narrow copies each element of the operand vector to the corresponding element of the destination vector.

The operand is a quadword vector. The elements can be any one of:

- 16-bit, 32-bit, or 64-bit signed integers.
- 16-bit, 32-bit, or 64-bit unsigned integers.

The result is a doubleword vector. The elements are half the length of the operand vector elements. If the operand is unsigned, the results are unsigned. If the operand is signed, the results can be signed or unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see *Pseudocode description of saturation* on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

This instruction is used by the pseudo-instructions VQRSHRN (zero), VQRSHRUN (zero), VQSHRN (zero), and VQSHRUN (zero). The pseudo-instruction is never the preferred disassembly.

A1

| [31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 12][11 10 9 8][7 6 5 4][3 0] |
| :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: |
| 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | \text{D} | 1 | 1 | \text{size} | 1 | 0 | \text{Vd} | 0 | 0 | 1 | 0 | \text{op} | \text{M} | 0 | \text{Vm} |

Signed result variant

Applies when \text{op} == 1x.

\[
\text{VQMOVN}\{<c>\}{<q>}.<dt> \text{<Dd>}, \text{<Qm>}
\]

Unsigned result variant

Applies when \text{op} == 01.

\[
\text{VQMOVUN}\{<c>\}{<q>}.<dt> \text{<Dd>}, \text{<Qm>}
\]

Decode for all variants of this encoding

if \text{op} == '00' then SEE "VMOVN";
if size == '11' || \text{Vm}<0> == '1' then UNDEFINED;
src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
esize = 8 << \text{UInt}(size); elements = 64 DIV esize;
d = \text{UInt}(D:Vd); m = \text{UInt}(M:Vm);

T1

| [15 14 13 12][11 10 9 8][7 6 5 4][3 2 1 0][15 12][11 10 9 8][7 6 5 4][3 0] |
| :--: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | \text{D} | 1 | 1 | \text{size} | 1 | 0 | \text{Vd} | 0 | 0 | 1 | 0 | \text{op} | \text{M} | 0 | \text{Vm} |

Signed result variant

Applies when \text{op} == 1x.

\[
\text{VQMOVN}\{<c>\}{<q>}.<dt> \text{<Dd>}, \text{<Qm>}
\]
Unsigned result variant

Applies when op == 01.

\[\text{VQMOVUN}(\langle c \rangle\{\langle q \rangle\}.\langle dt \rangle \langle Dd \rangle, \langle Qm \rangle) \]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if op} & = '00' \text{ then SEE "VMOVN";} \\
\text{if size} & = '11' \text{ || Vm<0> = '1' then UNDEFINED;} \\
\text{src}_\text{unsigned} & = (\text{op} = '11'); \quad \text{dest}_\text{unsigned} = (\text{op<0>} = '1'); \\
\text{esize} & = 8 \times \text{UInt}(\text{size}); \quad \text{elements} = 64 \text{ DIV esize}; \\
\text{d} & = \text{UInt}(D:Vd); \quad \text{m} = \text{UInt}(M:Vm);
\end{align*}
\]

Assembler symbols

- \(\langle c \rangle\) For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 - For encoding T1: see Standard assembler syntax fields on page F2-4120.
- \(\langle q \rangle\) See Standard assembler syntax fields on page F2-4120.
- \(\langle dt \rangle\) For the signed result variant: is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the following values:
 - S16 when op<0> = 0, size = 00
 - S32 when op<0> = 0, size = 01
 - S64 when op<0> = 0, size = 10
 - U16 when op<0> = 1, size = 00
 - U32 when op<0> = 1, size = 01
 - U64 when op<0> = 1, size = 10
- The following encodings are reserved:
 - op<0> = 0, size = 11.
 - op<0> = 1, size = 11.

For the unsigned result variant: is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:

- S16 when size = 00
- S32 when size = 01
- S64 when size = 10
- The encoding size = 11 is reserved.

- \(\langle Dd \rangle\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- \(\langle Qm \rangle\) Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as \(\langle Qm \rangle\)*2.

Operation for all encodings

\[
\begin{align*}
\text{if } \text{ConditionPassed}() \text{ then } & \\
\text{EncodingSpecificOperations(); CheckAdvSIMDEnabled();} \\
\text{for } e = 0 \text{ to elements-1} & \\
\text{operand} & = \text{Int}(\text{Elem}[Qin[m>>1],e,2*\text{esize}], \text{src}_\text{unsigned}); \\
(\text{Elem}[D[d],e,\text{esize}], \text{sat}) & = \text{SatQ}(\text{operand}, \text{esize}, \text{dest}_\text{unsigned}); \\
\text{if sat then FPSCR.QC} & = '1';
\end{align*}
\]
F6.1.178 VQNEG

Vector Saturating Negate negates each element in a vector, and places the results in the destination vector.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

- S8 when size = 00
- S16 when size = 01
- S32 when size = 10

The encoding size = 11 is reserved.

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = -SInt(Elem[D[m+r],e,esize]);
 (Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
 if sat then FPSCR.QC = '1';
F6.1.179 VQRDMLAH

Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half. This instruction multiplies the vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the multiply results, doubles the results, and accumulates the most significant half of the final results with the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 12 11 10 9 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 0 D | size | Vn | Vd | 1 0 1 1 N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !HaveQRDMLAHExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regsz = if Q == '0' then 1 else 2;

A2

ARMv8.1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 12 11 10 9 8 7 6 5 4 3 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | Q | 1 | D | l=11 | size | Vn | Vd | 1 1 1 0 | N | 1 | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>
Decode for all variants of this encoding

if !HaveQRDMLAHExt() then UNDEFINED;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Mm<3>);
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm);
if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Mm);
if size == '00' || size == '11' then UNDEFINED;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;

ARMv8.1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 D size</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 1 0</td>
<td>N Q M 1 Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.
VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Mm);
if size == '00' || size == '11' then UNDEFINED;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Mm);
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Mm);
if size == '00' || size == '11' then UNDEFINED;

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

ARMv8.1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 D</td>
<td>Vn</td>
<td>Vd</td>
<td>1 1 1 0</td>
<td>N 1 M 0 Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.
VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>
128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VQRDMALH} \{<q>\}, <dt> <Qd>, <Qn>, <Dm[x]> \]

Decoding for all variants of this encoding

if \(\neg \text{HaveVQRDMALHExt()} \) then UNDEFINED;
if \(\text{InITBlock()} \) then UNPREDICTABLE;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if \(Q = '1' \) \& (Vd<0> == '1' \| Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If \(\text{InITBlock()} \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<dt>\) Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

\begin{align*}
S16 \quad & \text{when size = 01} \\
S32 \quad & \text{when size = 10}
\end{align*}

\(<Qd>\) Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as \(<Qd>*2\).

\(<Qn>\) Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>*2\).

\(<Qm>\) Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>*2\).

\(<Dd>\) Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

\(<Dn>\) Is the 64-bit name of the first SIMD&FP register, encoded in the "N:Vn" field.

\(<Dm[x]>\) Is the 64-bit name of the second SIMD&FP source register holding the scalar. If \(<dt>\) is S16, \(Dm\) is restricted to D0-D7. \(Dm\) is encoded in "Vm<2:0>", and \(x\) is encoded in "M:Vm<3>". If \(<dt>\) is S32, \(Dm\) is restricted to D0-D15. \(Dm\) is encoded in "Vm", and \(x\) is encoded in "M".

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
round_const = 1 << (esize-1);
if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 op3 = SInt(Elem[D[d+r],e,esize]) << esize;
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((op3 + 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6.1.180 VQRDMLSH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector elements of the first source SIMD&FP register with either the corresponding vector elements of the second source SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the multiply results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

ARMv8.1

| 31 30 29 28|27 26 25 24|23 22 21 20|19|16|15|12|11 10 9 8|7 6 5 4|3|0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 0 | D | size | Vn | Vd | 1 1 0 0 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q = 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q = 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

Decode for all variants of this encoding

if !HaveQRDMLAHExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

ARMv8.1

| 31 30 29 28|27 26 25 24|23 22 21 20|19|16|15|12|11 10 9 8|7 6 5 4|3|0 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | Q | 1 | D | 1=11 | Vn | Vd | 1 1 1 | N | 1 | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q = 0.

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector variant

Applies when Q = 1.

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>
Decode for all variants of this encoding

if !HaveQRDMLAHExt() then UNDEFINED;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<> == '1' || Vn<> == '1') then UNDEFINED;
add = FALSE; scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

128-bit SIMD vector variant

Applies when Q == 1.

VQRDMLSH<q>.<dt> <Qd>, <Qn>, <Qm>

64-bit SIMD vector variant

Applies when Q == 0.

VQRDMLSH<q>.<dt> <Dd>, <Dn>, <Dm>

Constrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
128-bit SIMD vector variant

Applies when Q == 1.

\[\text{VQRDMLSH\{<q>,<dt>,<Qd>,<Qn>,<Dm[x]\}} \]

Decode for all variants of this encoding

\[
\text{if } \neg \text{HaveQRDMLAHExt()} \text{ then UNDEFINED;}
\text{if } \text{InITBlock()} \text{ then UNPREDICTABLE;}
\text{if } \text{size} == '11' \text{ then SEE "Related encodings";}
\text{if } \text{size} == '00' \text{ then UNDEFINED;}
\text{if } Q == '1' \& (Vd<0> == '1' | Vn<0> == '1') \text{ then UNDEFINED;}
\text{add} = \text{FALSE}; \text{ scalar_form} = \text{TRUE}; d = \text{UInt}(D:Vd); n = \text{UInt}(N:Vn); \text{ regs} = \text{if } Q == '0' \text{ then 1 else 2;}
\text{if } \text{size} == '01' \text{ then } \text{esize} = 16; \text{ elements} = 4; m = \text{UInt}(Vm<2:0>); \text{ index} = \text{UInt}(M:Vm<3>);
\text{if } \text{size} == '10' \text{ then } \text{esize} = 32; \text{ elements} = 2; m = \text{UInt}(Vn); \text{ index} = \text{UInt}(M);
\]

CONSTRAINED UNPREDICTABLE behavior

If \text{InITBlock()}, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<dt>\) Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

\[\begin{align*}
S16 & \quad \text{when } \text{size} = 01 \\
S32 & \quad \text{when } \text{size} = 10
\end{align*} \]

\(<Qd>\) Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field as \(<Qd>*2\).

\(<Qn>\) Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>*2\).

\(<Qm>\) Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>*2\).

\(<Dd>\) Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

\(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm[x]>\) Is the 64-bit name of the second SIMD&FP source register holding the scalar. If \(<dt>\) is S16, \(Dm\) is restricted to D0-D7. \(Dm\) is encoded in "Vm<2:0>\", and \(x\) is encoded in "M:Vm<3>\". If \(<dt>\) is S32, \(Dm\) is restricted to D0-D15. \(Dm\) is encoded in "Vn\", and \(x\) is encoded in "M".

\(<Dm>\) Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
round_const = 1 << (esize-1);
if scalar_form then op2 = SInt(Elem[D|m],index,esize));
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D|m+r],e,esize));
 op3 = SInt(Elem[D|d+r],e,esize)); << esize;
 if !scalar_form then op2 = SInt(Elem[D|m+r],e,esize));
 (result, sat) = SignedSatQ((op3 - 2*(op1*op2) + round_const) >> esize, esize);
 Elem[D|d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6.1.181 VQRDMULH

Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding elements in two vectors, doubles the results, and places the most significant half of the final results in the destination vector. The results are rounded. For truncated results see VQDMULH.

The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD scalars on page F2-4146.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>size</td>
</tr>
<tr>
<td></td>
<td>Vn</td>
<td></td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>Q</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.
VQRDMULH{<c>}{<q>}.<dt> {<Dd>,}<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VQRDMULH{<c>}{<q>}.<dt> {<Qd>,}<Qn>, <Dm[x]>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D</td>
<td>|size</td>
</tr>
<tr>
<td></td>
<td>Vn</td>
<td></td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.
VQRDMULH{<c>}{<q>}.<dt> {<Dd>,}<Dm[x]>

128-bit SIMD vector variant

Applies when Q == 1.
VQRDMULH{<c>}{<q>}.<dt> {<Qd>,}<Qm[x]>

11110011 0 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

1111001 Q1 D !=11 Vn Vd 1101 N1 M0 Vm

31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 |12|11 10 9 8 |7 6 5 4 |3 |0 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Q</td>
<td>D</td>
<td>l=11 size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vn</td>
<td></td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>
Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VQRDMULH} \langle c \rangle \{ <p> \}, \langle d \rangle \{ <dd>, <nm>, <dm> \}
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VQRDMULH} \langle c \rangle \{ <p> \}, \langle d \rangle \{ <q>, <nm>, <qm> \}
\]

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); index = if Q == '0' then 1 else 2;

T2

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VQRDMULH} \langle c \rangle \{ <p> \}, \langle d \rangle \{ <dd>, <nm>, <dm>[x] \}
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VQRDMULH} \langle c \rangle \{ <p> \}, \langle d \rangle \{ <q>, <nm>[x] \}
\]

Decode for all variants of this encoding

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);
Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<> For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.

<> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

S16 when size = 01
S32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (esize-1);
 if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
 for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = SInt(Elem[D[n+r],e,esize]);
 if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
 (result, sat) = SignedSatQ((2*op1*op2 + round_const) >> esize, esize);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6.1.182 VQRSHL

Vector Saturating Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

For truncated results see VQSHL (register).

The first operand and result elements are the same data type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 | 16 | 15 | 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 | 0 U | 0 | D | size | Vn | Vd | 0 1 0 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decide for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 | 0 | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 | U | 1 1 1 0 | D | size | Vn | Vd | 0 1 0 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>
128-bit SIMD vector variant

Applies when Q == 1.

VQRSHL{<c>}{<q>}.<dt>{<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:
- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- S64 when U = 0, size = 11
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10
- U64 when U = 1, size = 11

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D+n+r],e,esize)<7:0>;
 round_const = 1 << (-1-shift); // 0 for left shift, 2^(n-1) for right shift
 operand = Int(Elem[D+m+r],e,esize], unsigned);
 (result, sat) = SatQ((operand + round_const) << shift, esize, unsigned);
 Elem[D+d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6.1.183 VQRSHRN (zero)

Vector Saturation Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an immediate value, and places the signed rounded results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

- The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 18 17 16 | 15 | 12 | 11 10 9 | 8 | 7 | 6 5 4 | 3 | 0 |
|-------------|-------------|-------------|-------------|---|---|-------|---|---|-------|---|---|-------|
| 1 1 1 1 0 0 1 1 1 | 1 | size | 1 0 | Vd | 0 | 0 1 0 | 1 | x | M | 0 | Vm |
| op |

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Db>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Db>, <Qm>

and is never the preferred disassembly.

T1

| 15 14 13 12 | 11 10 9 | 8 | 7 | 6 5 4 | 3 | 2 | 1 | 0 | 15 | 12 | 11 10 9 | 8 | 7 | 6 5 4 | 3 | 0 |
|-------------|--------|---|---|-------|---|---|---|---|---|12|11 10 9 | 8 | 7 | 6 5 4 | 3 | 0 |
| 1 1 1 1 1 1 | 1 1 1 | size | 1 0 | Vd | 0 | 0 1 0 | 1 | x | M | 0 | Vm |
| op |

Signed result variant

VQRSHRN{<c>}{<q>}.<dt> <Db>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Db>, <Qm>

and is never the preferred disassembly.

Assembler symbols

{<c>} For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

{<q>} See Standard assembler syntax fields on page F2-4120.

{<dt>} Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the following values:

- S16 when op<0> = 0, size = 00
- S32 when op<0> = 0, size = 01
- S64 when op<0> = 0, size = 10
- U16 when op<0> = 1, size = 00
U32 when op<0> = 1, size = 01
U64 when op<0> = 1, size = 10

The following encodings are reserved:
• op<0> = 0, size = 11.
• op<0> = 1, size = 11.

<Od> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of **VQMOVN, VQMOVUN** gives the operational pseudocode for this instruction.
F6.1.184 VQRSHRN, VQRSHRUN

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an immediate value, and places the rounded results in a doubleword vector.

For truncated results, see VQSHL (register).

The operand elements must all be the same size, and can be any one of:

- 16-bit, 32-bit, or 64-bit signed integers.
- 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 0 1 0 1 | 1 1 1 0 | 0 0 1 1 | 1 1 1 1 | imm6 | Vd | 1 0 | 0 | op | 0 | 1 | M | 1 | Vm |

Signed result variant

Applies when !(imm6 == 000xxx) & op == 1.

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if U == '0' & op == '0' then SEE "VRSHRN";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
src_unsigned = (U == '1' & op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 0 1 0 1 | 1 1 1 0 | 0 1 1 1 | 1 1 1 0 | imm6 | Vd | 1 0 | 0 | op | 0 | 1 | M | 1 | Vm |

Signed result variant

Applies when !(imm6 == 000xxx) & op == 1.
VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U = 1 && !(imm6 == 000xxx) && op == 0.

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VRSHRN";
if Vm01 == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
srcc Unsigned = (U == '1' && op == '1')'; dest Unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<> See Standard assembler syntax fields on page F2-4120.

<type>
For the signed result variant: is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
S when U = 0
U when U = 1
For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
S when U = 1

<size>
Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the following values:
16 when imm6<5:3> = 001
32 when imm6<5:3> = 01x
64 when imm6<5:3> = 1xx

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm>
Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for e = 0 to elements-1
operand = Int(Elem[Qin[m>>1],e,2+esize], src_unsigned);
(result, sat) = SatQ((operand + round_const) >> shift_amount, esize, dest_unsigned);
Elem[0[d],e,esize] = result;
if sat then FPSCR.QC = '1';
F6.1.185 VQRSHRUN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an immediate value, and places the unsigned rounded results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

- The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 1 1 1 D 1 1</td>
<td>size 1 0</td>
<td>Vd 0</td>
<td>1 0</td>
<td>0 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 D 1 1</td>
<td>size 1 0</td>
<td>Vd 0</td>
<td>0 1</td>
<td>0 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

Unsigned result variant

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

- `<c>`: For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 - For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>`: See Standard assembler syntax fields on page F2-4120.
- `<dt>`: Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:
 - `S16` when `size = 00`
 - `S32` when `size = 01`
 - `S64` when `size = 10`
 - The encoding `size = 11` is reserved.
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
F6.1.186 VQSHL, VQSHLU (immediate)

Vector Saturating Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate value, and places the results in a second vector.

The operand elements must all be the same size, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are the same size as the operand elements. If the operand elements are signed, the results can be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 | 16|15 12|11 10 9 8|7 6 5 4|3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | U | 1 | D | imm6 |
| Vd | 0 | 1 | 1 | op | L | Q | 1 | M | Vm |

VQSHL, double, signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 0.

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHL, quad, signed-result variant

Applies when !(imm6 == 000xxx && L == 0) && op == 1 && Q == 1.

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

VQSHLU, double, unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0.

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

VQSHLU, quad, unsigned-result variant

Applies when U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1.

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if U == '0' && op == '0' then UNDEFINED;
if Q == '1' && (Vd==0 || Vm==0) == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
VQSHL, double, signed-result variant

Applies when \(!(\text{imm6} = 000xxx \&\& L = 0) \&\& \text{op} = 1 \&\& Q = 0 \).

\[
\text{VQSHL\{<c>\}{<q>\}.<type><size> \{<Dd>,\} <Dm>, \#<imm>}
\]

VQSHL, quad, signed-result variant

Applies when \(!(\text{imm6} = 000xxx \&\& L = 0) \&\& \text{op} = 1 \&\& Q = 1 \).

\[
\text{VQSHL\{<c>\}{<q>\}.<type><size> \{<Qd>,\} <Qm>, \#<imm>}
\]

VQSHLU, double, unsigned-result variant

Applies when \(U = 1 \&\& !(\text{imm6} = 000xxx \&\& L = 0) \&\& \text{op} = 0 \&\& Q = 0 \).

\[
\text{VQSHLU\{<c>\}{<q>\}.<type><size> \{<Dd>,\} <Dm>, \#<imm>}
\]

VQSHLU, quad, unsigned-result variant

Applies when \(U = 1 \&\& !(\text{imm6} = 000xxx \&\& L = 0) \&\& \text{op} = 0 \&\& Q = 1 \).

\[
\text{VQSHLU\{<c>\}{<q>\}.<type><size> \{<Qd>,\} <Qm>, \#<imm>}
\]

Decode for all variants of this encoding

if \((L:\text{imm6}) = '0000xx'\) then SEE "Related encodings";
if \(U = '0' \&\& \text{op} = '0'\) then UNDEFINED;
if \(Q = '1' \&\& (Vd<0> = '1' || Vm<0> = '1')\) then UNDEFINED;
case \(L:\text{imm6}\) of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(\text{imm6}) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(\text{imm6}) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(\text{imm6}) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(\text{imm6});
src_unsigned = (U = '1' \&\& \text{op} = '1'); dest_unsigned = (U = '1');
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q = '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32
instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction
set.

Assembler symbols

\(<c>\)

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be
unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

\(<q>\)

See Standard assembler syntax fields on page F2-4120.

\(<\text{type}>\)

Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following
values:
- \(S\) when \(U = 0\)
- \(U\) when \(U = 1\)
<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:

- 8 when L = 0, imm6<5:3> = 001
- 16 when L = 0, imm6<5:3> = 01x
- 32 when L = 0, imm6<5:3> = 1xx
- 64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for r = 0 to regs-1
        for e = 0 to elements-1
            operand = Int(Elem[D[m+r],e,esize], src_unsigned);
            (result, sat) = SatQ(operand << shift_amount, esize, dest_unsigned);
            Elem[D[d+r],e,esize] = result;
            if sat then FPSCR.QC = '1';
```
F6.1.187 VQSHL (register)

Vector Saturating Shift Left (register) takes each element in a vector, shifts them by a value from the least significant byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift.

The results are truncated. For rounded results, see VQRSHL.

The first operand and result elements are the same data type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

128-bit SIMD vector variant

 Applies when Q == 1.

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

Decode for all variants of this encoding

if Q == '1' && (Vd<> == '1' ||Vm<> == '1' || Vn<> == '1') then UNDEFINED;
unsigned = (U == '1');
size = 8 << UInt(size); elements = 64 DIV size;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

 Applies when Q == 0.

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>
128-bit SIMD vector variant

Applies when Q == 1.

\[VQSHL\langle c\rangle\langle q\rangle.\langle dt\rangle \{\langle Qd\rangle,\} \langle Qm\rangle, \langle Qn\rangle \]

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

\(<c>\)
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

\(<q>\)
See Standard assembler syntax fields on page F2-4120.

\(<dt>\)
Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:

- S8 when U = 0, size = 00
- S16 when U = 0, size = 01
- S32 when U = 0, size = 10
- S64 when U = 0, size = 11
- U8 when U = 1, size = 00
- U16 when U = 1, size = 01
- U32 when U = 1, size = 10
- U64 when U = 1, size = 11

\(<Qd>\)
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

\(<Qm>\)
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

\(<Qn>\)
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

\(<Dd>\)
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dm>\)
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

\(<Dn>\)
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 operand = Int(Elem[D[m+r],e,esize], unsigned);
 (result, sat) = SatQ(operand << shift, esize, unsigned);
 Elem[D[d+r],e,esize] = result;
 if sat then FPSCR.QC = '1';
F6.1.188 VQSHRN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an immediate value, and places the signed truncated results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

- The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

```
[31 30 29 28][27 26 25 24][23 22 21 20][19 18 17 16][15 12][11 10 9 8][7 6 5 4][3 0]
1 1 1 1 0 0 1 1 | D | 1 1 | size | 1 0 | Vd | 0 | 0 | 1 0 | 1 | x | M | 0 | Vm
```

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

```
[15 14 13 12][11 10 9 8][7 6 5 4][3 2 1 0][15 12][11 10 9 8][7 6 5 4][3 0]
1 1 1 1 1 1 1 1 | D | 1 1 | size | 1 0 | Vd | 0 | 0 | 1 0 | 1 | x | M | 0 | Vm
```

Signed result variant

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.

- `<q>` See Standard assembler syntax fields on page F2-4120.

- `<dt>` Is the data type for the elements of the operand, encoded in the "op<0>:size" field. It can have the following values:
 - S16 when op<0> = 0, size = 00
 - S32 when op<0> = 0, size = 01
 - S64 when op<0> = 0, size = 10
 - U16 when op<0> = 1, size = 00
U32 when op<0> = 1, size = 01
U64 when op<0> = 1, size = 10

The following encodings are reserved:
• op<0> = 0, size = 11.
• op<0> = 1, size = 11.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an immediate value, and places the truncated results in a doubleword vector.

For rounded results, see VQSRH, VQSRHNR.

The operand elements must all be the same size, and can be any one of:

- 16-bit, 32-bit, or 64-bit signed integers.
- 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can be either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when U == 1 && !(imm6 == 000xxx) && op == 0.

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VSHRN";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

Signed result variant

Applies when !(imm6 == 000xxx) && op == 1.
VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result variant

Applies when \(U = 1 \) \&\& \((imm6 == 000xxx) \&\& op == 0).

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Decode for all variants of this encoding

if \(imm6 == '000xxx' \) then SEE "Related encodings";
if \(U == '0' \&\& op == '0' \) then SEE "VSHRN";
if \(Vm<0> == '1' \) then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
src_unsigned = (U == '1' \&\& op == '1'); dest_unsigned = (U == '1');
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

- `<c>`: For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>`: See Standard assembler syntax fields on page F2-4120.
- `<type>`: For the signed result variant: is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
 \(S \) when \(U = 0 \)
 \(U \) when \(U = 1 \)

 For the unsigned result variant: is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
 \(S \) when \(U = 1 \)
 \(<size> \): Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the following values:
 16 when \(imm6<5:3> == 001 \)
 32 when \(imm6<5:3> == 01x \)
 64 when \(imm6<5:3> == 1xx \)
 \(<Dd> \): Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
 \(<Qm> \): Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>\times2 \).
 \(<imm> \): Is an immediate value, in the range 1 to \(<size>/2 \), encoded in the "imm6" field as \(<size>/2 - <imm> \).

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
(result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
Elem[0][d,e,esize] = result;
if sat then FPSCR.QC = '1';
F6.1.190 VQSHRUN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the unsigned truncated results in a doubleword vector.

This instruction is a pseudo-instruction of the VQMOVN, VQMOVUN instruction. This means that:

- The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{cccccccccccccccc}
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & D & 1 & 1 & \text{size} & 1 & 0 & Vd & 0 & 0 & 1 & 0 & 0 & 1 & M & 0 & Vm
\end{array}
\]

\text{op}

Unsigned result variant

VQSHRUN{\text{<c>}}{\text{<q>}}{\text{<dt>}}<\text{Db}>, <\text{Qm}>, #0

is equivalent to

VQMOVUN{\text{<c>}}{\text{<q>}}{\text{<dt>}}<\text{Db}>, <\text{Qm}>

and is never the preferred disassembly.

T1

\[
\begin{array}{cccccccccccccccc}
| 15 & 14 & 13 & 12 | 11 & 10 & 9 & 8 | 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 | 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 |
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & D & 1 & 1 & \text{size} & 1 & 0 & Vd & 0 & 0 & 1 & 0 & 0 & 1 & M & 0 & Vm
\end{array}
\]

\text{op}

Unsigned result variant

VQSHRUN{\text{<c>}}{\text{<q>}}{\text{<dt>}}<\text{Db}>, <\text{Qm}>, #0

is equivalent to

VQMOVUN{\text{<c>}}{\text{<q>}}{\text{<dt>}}<\text{Db}>, <\text{Qm}>

and is never the preferred disassembly.

Assembler symbols

- \text{<c>}
 - For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.
 - For encoding T1: see *Standard assembler syntax fields on page F2-4120*.

- \text{<q>}
 - See *Standard assembler syntax fields on page F2-4120*.

- \text{<dt>}
 - Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:
 - S16 \quad \text{when size} = 00
 - S32 \quad \text{when size} = 01
 - S64 \quad \text{when size} = 10

 The encoding size = 11 is reserved.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.
F6.1.191 VQSUB

Vector Saturating Subtract subtracts the elements of the second operand vector from the corresponding elements of the first operand vector, and places the results in the destination vector. Signed and unsigned operations are distinct.

The operand and result elements must all be the same type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs. For details see Pseudocode description of saturation on page E1-3991.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

![64-bit SIMD vector variant](image)

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

![64-bit SIMD vector variant](image)

64-bit SIMD vector variant

Applies when Q == 0.

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:
 S8 when U = 0, size = 00
 S16 when U = 0, size = 01
 S32 when U = 0, size = 10
 S64 when U = 0, size = 11
 U8 when U = 1, size = 00
 U16 when U = 1, size = 01
 U32 when U = 1, size = 10
 U64 when U = 1, size = 11
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 diff = Int(Elem[D[n+r],e,esize], unsigned) - Int(Elem[D[m+r],e,esize], unsigned);
 (Elem[D[r]+e,esize], sat) = SatQ(diff, esize, unsigned);
 if sat then FPSCR.QC = '1';
F6.1.192 VRADDHN

Vector Rounding Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the most significant half of each result in a doubleword vector. The results are rounded. For truncated results, see VADDHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 |12|11 10 9 8 |7 6 5 4 3 |0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 0 1 1 1 | D | !=11 | Vn | Vd | 0 | 1 0 | 0 | N | 0 | M | 0 | Vm |
size
```

A1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

```
if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1</td>
<td>D</td>
<td>!=11</td>
<td>Vn</td>
</tr>
</tbody>
</table>
size
```

T1 variant

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

```
if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
```

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

```
<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
```

<q>
See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
I16 when size = 00
I32 when size = 01
I64 when size = 10

<dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <qn>*2.

<qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <qm>*2.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    round_const = 1 << (esize-1);
    for e = 0 to elements-1
        result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize] + round_const;
        Elem[D[d],e,esize] = result<2*esize-1:esize>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.193 VRECPE

Vector Reciprocal Estimate finds an approximate reciprocal of each element in the operand vector, and places the results in the destination vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see *Floating-point reciprocal square root estimate and step* on page E1-4009.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1</td>
<td>D 1 1</td>
<td>size</td>
<td>1 1</td>
<td>Vd</td>
<td>0 1 0</td>
<td>F 0</td>
<td>Q</td>
<td>M 0</td>
<td>Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VRECPE}\{<c>\}{<q>}.<dt> <Dd>, <Dm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VRECPE}\{<c>\}{<q>}.<dt> <Qd>, <Qm> \]

Decode for all variants of this encoding

if \(Q == '1' \) \&\& (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' \&\& !HaveFP16Ext()) \|| size IN ('00', '11') then UNDEFINED;
floating_point = (F == '1');
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1</td>
<td>D 1 1</td>
<td>size</td>
<td>1 1</td>
<td>Vd</td>
<td>0 1 0</td>
<td>F 0</td>
<td>Q</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[\text{VRECPE}\{<c>\}{<q>}.<dt> <Dd>, <Dm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[\text{VRECPE}\{<c>\}{<q>}.<dt> <Qd>, <Qm> \]
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
floating_point = (F == '1');
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<>> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the following values:
 U32 when F = 0, size = 10
 F16 when F = 1, size = 01
 F32 when F = 1, size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the reciprocal of a number, see Floating-point reciprocal estimate and step on page E1-4009.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRecipEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 Elem[D[d+r],e,esize] = UnsignedRecipEstimate(Elem[D[m+r],e,esize]);
F6.1.194 VRECPS

Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another vector, subtracts each of the products from 2.0, and places the results into the elements of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on page E1-4009.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNpredictable behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<
See Standard assembler syntax fields on page F2-4120.

<
Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
 F32
 F16
 F16

<
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the reciprocal of a number, see Floating-point reciprocal estimate and step on page E1-4009.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRecipStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
F6.1.195 VREV16

Vector Reverse in halfwords reverses the order of 8-bit elements in each halfword of the vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV16 doubleword operation.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
 case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
 integer containers = 64 DIV container_size;
 integer elements_per_container = container_size DIV esize;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1</td>
<td>1 1</td>
<td>size 0 0</td>
<td>Vd 0 0 0 1</td>
<td>0 Q M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant
Applies when Q == 0.

VREV16{<>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.

VREV16{<>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:
8 when size = 00
The following encodings are reserved:
* size = 01.
* size = 1x.

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

<Qm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[Elem[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
Vector Reverse in words reverses the order of 8-bit or 16-bit elements in each word of the vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV32 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant
Applies when Q == 0.
VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding
if Uint(op)+Uint(size) >= 3 then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << Uint(size);
integer container_size;
case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;
d = Uint(D:Vd); m = Uint(M:Vm); regs = if Q == '0' then 1 else 2;
T1

64-bit SIMD vector variant
Applies when Q == 0.
VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size);
integer container_size;
case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<ct> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
<ct> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:
 8 when size = 00
 16 when size = 01
The encoding size = 1x is reserved.
<dt> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<dt> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<dt> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<dt> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 bits(64) result;
integer element;
integer rev_element;
for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.197 VREV64

Vector Reverse in doublewords reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of the vector, and places the result in the corresponding destination vector.

There is no distinction between data types, other than size.

The following figure shows the operation of VREV64 doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant
Applies when Q == 0.
VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9</th>
<th>8 7 6 5 4</th>
<th>3 2 1 0</th>
<th>15</th>
<th>12</th>
<th>11 10 9</th>
<th>8 7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>D</td>
<td>1 1</td>
<td>size</td>
<td>0 0</td>
<td>Vd</td>
<td>0 0 0 0 0</td>
<td>Q</td>
<td>M</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VREV64{<>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VREV64{<>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of
 when '10' container_size = 16;
 when '01' container_size = 32;
 when '00' container_size = 64;
integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<>

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<>

See Standard assembler syntax fields on page F2-4120.

<dt>

Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:

8 when size = 00
16 when size = 01
32 when size = 10

The encoding size = 11 is reserved.

<Qd>

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>

Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>

Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

<Qm>

Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();

 bits(64) result;
 integer element;
 integer rev_element;
 for r = 0 to regs-1
 element = 0;
 for c = 0 to containers-1
 rev_element = element + elements_per_container - 1;
 for e = 0 to elements_per_container-1
 Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
 element = element + 1;
 rev_element = rev_element - 1;
 D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.198 VRHADD

Vector Rounding Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit, and places the final results in the destination vector.

The operand and result elements are all the same type, and can be any one of:

- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.

The results of the halving operations are rounded. For truncated results, see VHADD.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 16 15|12|11 10 9 8|7 6 5 4|3|0 |
|1 1 1 1|0 0 1|U|D|size|Vn|Vd|0 0 0 1|N|Q|M|0|Vn|

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' & & (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3|0 |12|11 10 9 8|7 6 5 4|3|0 |
|1 1 1|U|1 1 1 1 0|D|size|Vn|Vd|0 0 0 1|N|Q|M|0|Vn|

64-bit SIMD vector variant

Applies when Q == 0.

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
Decode for all variants of this encoding

if Q == '1' && (Vd<> == '1' || Vn<> == '1' || Vm<> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<ct> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.
<dp> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "U:size" field. It can have the following values:
 S8 when U = 0, size = 00
 S16 when U = 0, size = 01
 S32 when U = 0, size = 10
 U8 when U = 1, size = 00
 U16 when U = 1, size = 01
 U32 when U = 1, size = 10

<qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <qd>*2.
<qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <qn>*2.
<qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <qm>*2.
<dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
<dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Int(Elem[D[n+r],e,esize], unsigned);
 op2 = Int(Elem[D[m+r],e,esize], unsigned);
 result = op1 + op2 + 1;
 Elem[D[d+r],e,esize] = result<esize:1>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
The values of the NZCV flags.
F6.1.199 VRINTA (Advanced SIMD)

Vector Round floating-point to integer towards Nearest with Ties to Away rounds a vector of floating-point values to integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 18 17 16 | 15 | 12 | 11 10 | 9 | 7 | 6 | 5 | 4 | 3 | 0 | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 | D | 1 | I | size | 1 | 0 | Vd | 0 | 1 | 0 | 1 | 0 | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<op>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<op>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D;Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10</th>
<th>9</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>D</td>
<td>1</td>
<td>I</td>
<td>size</td>
<td>1</td>
<td>0</td>
<td>Vd</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Q</td>
<td>M</td>
<td>0</td>
<td>Vm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRINTA{<op>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTA{<op>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if INITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
r = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRUDED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See *Advanced SIMD two registers misc* on page F3-4168 for the T32 instruction set, or *Advanced SIMD two registers misc* on page F4-4266 for the A32 instruction set.

Assembler symbols

<q> See *Standard assembler syntax fields* on page F2-4120.
<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 F16 when size = 01
 F32 when size = 10
<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
F6.1.200 VRINTA (floating-point)

Round floating-point to integer to Nearest with Ties to Away rounds a floating-point value to an integral
floating-point value of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input
gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is
propagated as for normal arithmetic.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 0 1 | D 1 1 1 0 0 0 | Vd 1 0 | !=00 | 0 | 1 | M | 0 | Vm |

Half-precision scalar variant

Applies when size == 01.
VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.
VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoderRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 15 14 13 12|11 10 9 8 7 6 5 4 3 2 1 0 |15 12|11 10 9 8 7 6 5 4 3 0 |
| 1 1 1 1 1 1 0 1 | D 1 1 1 0 0 0 | Vd 1 0 | !=00 | 0 | 1 | M | 0 | Vm |

Half-precision scalar variant

Applies when size == 01.
VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.
VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTA{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Sd>` Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- `<Sm>` Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.201 VRINTM (Advanced SIMD)

Vector Round floating-point to integer towards -Infinity rounds a vector of floating-point values to integral floating-point values of the same size, using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<op>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<op>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;

// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTM{<op>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTM{<op>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPPDecoderRM(op<2> NOT(op<1>)); exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRANGED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4168 for the T32 instruction set, or Advanced SIMD two registers misc on page F4-4266 for the A32 instruction set.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

- F16 when size = 01
- F32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
F6.1.202 VRINTM (floating-point)

Round floating-point to integer towards -Infinity rounds a floating-point value to an integral floating-point value of
the same size using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same sign,
an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 1</td>
<td>D</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTM{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;

rounding = FPDecodeRM(RM); exact = FALSE;

case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15</th>
<th>12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 1</td>
<td>D</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTM{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoderRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Do> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.203 VRINTN (Advanced SIMD)

Vector Round floating-point to integer to Nearest rounds a vector of floating-point values to integral floating-point values of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 | 7 6 5 4 | 3 0 | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 1 1 1 0 0 1 1 | 1 | D | 1 | 1 | size | 1 | 0 | Vd | 0 | 1 | 0 | 0 | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecoderRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

|15 14 13 12|11 10 9 | 8 | 7 6 5 4 | 3 2 1 0 |15 12|11 10 9 | 7 6 5 4 | 3 0 | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 1 1 1 1 1 1 1 | 1 | D | 1 | 1 | size | 1 | 0 | Vd | 0 | 1 | 0 | 0 | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTN{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecoderRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See Advanced SIMD two registers misc on page F3-4168 for the T32 instruction set, or Advanced SIMD two registers misc on page F4-4266 for the A32 instruction set.

Assembler symbols

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 F16 when size = 01
 F32 when size = 10

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
F6.1.204 VRINTN (floating-point)

Round floating-point to integer to Nearest rounds a floating-point value to an integral floating-point value of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

```
<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>0 1</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTN{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;

rounding = FPDecodeRM(RM); exact = FALSE;

case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>0 1</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Half-precision scalar variant

Applies when size == 01.

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTN{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDcoderRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.205 VRINTP (Advanced SIMD)

Vector Round floating-point to integer towards +Infinity rounds a vector of floating-point values to integral floating-point values of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>size</th>
<th>0</th>
<th>Vd</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>Q</th>
<th>M</th>
<th>0</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when $Q == 0$.

$\text{VRINTP<}op<\text{>}.<dt> <\text{Dd}>, <\text{Dm}>$

128-bit SIMD vector variant

Applies when $Q == 1$.

$\text{VRINTP<}op<\text{>}.<dt> <\text{Qd}>, <\text{Qm}>$

Decode for all variants of this encoding

if $op<2> != op<0>$ then SEE "Related encodings";
if $Q == '1' \&\& (Vd<0> == '1' \| \| Vm<0> == '1')$ then UNDEFINED;
if (size == '01' \&\& \!HaveFP16Ext()) \| size IN ('00', '11') then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

|15 14 13 12|11 10 9 | 8 |7 6 5 4 |3 2 1 0|15 12|11 10 9 | 7 6 5 4 |3 0 | |
|---|---|---|---|---|---|---|---|---|---|
|1 |1 |1 |1 |1 |1 |1 |D |1 |1 |
|size |1 |0 |

<table>
<thead>
<tr>
<th>Vd</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>Q</th>
<th>M</th>
<th>0</th>
<th>Vm</th>
</tr>
</thead>
<tbody>
<tr>
<td>op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when $Q == 0$.

$\text{VRINTP<}op<\text{>}.<dt> <\text{Dd}>, <\text{Dm}>$

128-bit SIMD vector variant

Applies when $Q == 1$.

$\text{VRINTP<}op<\text{>}.<dt> <\text{Qd}>, <\text{Qm}>$

Decode for all variants of this encoding

if $op<2> != op<0>$ then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if $Q == '1' \&\& (Vd<0> == '1' \| \| Vm<0> == '1')$ then UNDEFINED;
if (size == '01' \&\& \!HaveFP16Ext()) \| size IN ('00', '11') then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecoderRM(op<2>:NOT(op<1>)); exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRUANED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

Related encodings: See *Advanced SIMD two registers misc* on page F3-4168 for the T32 instruction set, or *Advanced SIMD two registers misc* on page F4-4266 for the A32 instruction set.

Assembler symbols

- `<q>` See *Standard assembler syntax fields* on page F2-4120.
- `<dt>` Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 - F16 when size = 01
 - F32 when size = 10
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- `<Qm>` Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
F6.1.206 VRINTP (floating-point)

Round floating-point to integer towards +Infinity rounds a floating-point value to an integral floating-point value of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

<table>
<thead>
<tr>
<th>1 31 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 0 1</td>
<td>D 1 1 0 1 0</td>
<td>Vd 1 0</td>
<td>!=00</td>
<td>0 1</td>
<td>M 0</td>
<td>Vm</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.
VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.
VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTP{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' & !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoderRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1</td>
<td>0 1</td>
<td>D 1 1 1 0 1</td>
<td>Vd 1 0</td>
<td>!=00</td>
<td>0 1</td>
<td>M 0</td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.
VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.
VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTP{<q>}.F64 <Dd>, <Dm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecoderRM(RM); exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dr> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Mr> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.207 VRINTR

Round floating-point to integer rounds a floating-point value to an integral floating-point value of the same size using the rounding mode specified in the FPSCR. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

| 31 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| !='111' | 1 | 1 | 0 | 1 |
| cond | Vd | 1 | 0 | size |
| op | | | M | |
| | | | Vm | |

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1 | 1 | 1 | 0 | 1 |
| Vd | 1 | 0 | size | |
| M | 0 | Vm | | |

Half-precision scalar variant

Applies when size == 01.

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' & & !HaveFP16Ext()) then UNDEFINED;
if size == '01' & & InITBlock() then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- See [Standard assembler syntax fields](#) on page F2-4120.
- See [Standard assembler syntax fields](#) on page F2-4120.
- Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
- Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.208 VRINTX (Advanced SIMD)

Vector round floating-point to integer inexact rounds a vector of floating-point values to integral floating-point values of the same size, using the Round to Nearest rounding mode, and raises the Inexact exception when the result value is not numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

64-bit SIMD vector variant

Applies when Q == 0.
VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_TIEEVEN; exact = TRUE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.
VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.
VRINTX{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_TIEEVEN; exact = TRUE;
case size of
 when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

- F16 when size = 01
- F32 when size = 10

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;
F6.1.209 VRINTX (floating-point)

Round floating-point to integer inexact rounds a floating-point value to an integral floating-point value of the same size, using the rounding mode specified in the FPSCR, and raises an Inexact exception when the result value is not numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

```
| 31 28|27 26 25 24|23 22 21 20|19 18 17 16|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| !=1111 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 1 | 1 | Vd | 1 | 0 | size | 0 | 1 | M | 0 | Vm |
```

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
exact = TRUE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

```
| 15 14 13 12|11 10 9 8 | 7 6 5 4 | 3 2 1 0|15 12|11 10 9 8 | 7 6 5 4 | 3 0 | | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | D | 1 | 1 | 0 | 1 | 1 | 1 | Vd | 1 | 0 | size | 0 | 1 | M | 0 | Vm |
```

Half-precision scalar variant

Applies when size == 01.

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>
Double-precision scalar variant

Applies when \(\text{size} == 11 \).

\[
\text{VRINTX}\{<c>\}{<q>}.F64 <Dd>, <Dm>
\]

Decode for all variants of this encoding

if \(\text{size} == '00' \) || (\(\text{size} == '01' \) & & \(\text{HaveFP16Ext}() \)) then UNDEFINED;

if \(\text{size} == '01' \) & & \(\text{InITBlock}() \) then UNPREDICTABLE;

exact = TRUE;

case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If \(\text{InITBlock}() \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

\(<c>\) See Standard assembler syntax fields on page F2-4120.

\(<q>\) See Standard assembler syntax fields on page F2-4120.

\(<Sd>\) Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

\(<Sm>\) Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

\(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dm>\) Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if \(\text{ConditionPassed()} \) then

EncodingSpecificOperations(); \CheckVFPEndabled\((\text{TRUE}) \);

\text{rounding} = \text{FPRoundingMode}(\text{FPSCR});

\text{case esize of}

when 16

\[
S[d] = \text{Zeros}(16) : \text{FPRoundInt}(S[m]<15:0>, \text{FPSCR}, \text{rounding}, \text{exact});
\]

when 32

\[
S[d] = \text{FPRoundInt}(S[m], \text{FPSCR}, \text{rounding}, \text{exact});
\]

when 64

\[
D[d] = \text{FPRoundInt}(D[m], \text{FPSCR}, \text{rounding}, \text{exact});
\]
F6.1.210 VRINTZ (Advanced SIMD)

Vector round floating-point to integer towards Zero rounds a vector of floating-point values to integral floating-point values of the same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A1

VRINTZ{<q>}.<dt> <Dd>, <Dm>

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_ZERO; exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRINTZ{<q>}.<dt> <Dd>, <Dm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_ZERO; exact = FALSE;
case size of
 when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<dt>` Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 - F16 when size = 01
 - F32 when size = 10
- `<Qd>` Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
- `<Qm>` Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1
 for e = 0 to elements-1
 op1 = Elem[D[m+r],e,esize];
 result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
 Elem[D[d+r],e,esize] = result;}
F6.1.211 VRINTZ (floating-point)

Round floating-point to integer towards Zero rounds a floating-point value to an integral floating-point value of the same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

Half-precision scalar variant

Applies when size == 01.

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.
VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' & & !HaveFP16Ext()) then UNDEFINED;
if size == '01' & & InITBlock() then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR);
exact = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- See [Standard assembler syntax fields](#) on page F2-4120.
- See [Standard assembler syntax fields](#) on page F2-4120.
- <Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.
- <Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.
- <Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- <Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR, rounding, exact);
 when 32
 S[d] = FPRoundInt(S[m], FPSCR, rounding, exact);
 when 64
 D[d] = FPRoundInt(D[m], FPSCR, rounding, exact);
F6.1.212 VRSHL

Vector Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift, see VSHL.

The first operand and result elements are the same data type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1</td>
<td>U 0</td>
<td>D</td>
<td>size</td>
<td>Vn</td>
<td>Vd</td>
<td>0 1 0 1</td>
<td>N</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}{<dt>}{<Dd>},{<Dm>},{<Dn>}

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}{<dt>}{<Qd>},{<Qm>},{<Qn>}

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U 1 1 1 0</td>
<td>D</td>
<td>size</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSHL{<c>}{<q>}{<dt>}{<Dd>},{<Dm>},{<Dn>}

128-bit SIMD vector variant

Applies when Q == 1.

VRSHL{<c>}{<q>}{<dt>}{<Qd>},{<Qm>},{<Qn>}

1111001
0x0
D
size
Vn
Vd
0101
N
Q
M
0
Vm

1110
0
D
size
Vn
Vd
0101
N
Q
M
0
Vm

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 0

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:
S8 when U = 0, size = 00
S16 when U = 0, size = 01
S32 when U = 0, size = 10
S64 when U = 0, size = 11
U8 when U = 1, size = 00
U16 when U = 1, size = 01
U32 when U = 1, size = 10
U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 round_const = 1 << (-shift-1); // 0 for left shift, 2^(n-1) for right shift
 result = (Int(Elem[D[m+r],e,esize], unsigned) + round_const) << shift;
 Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — the values of the data supplied in any of its registers.
 — the values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.213 VRSHR

Vector Rounding Shift Right takes each element in a vector, right shifts them by an immediate value, and places the rounded results in the destination vector. For truncated results, see VSHR.

The operand and result elements must be the same size, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21</th>
<th>16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1</td>
<td>U</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regis = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
 end;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
S when U = 0
U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:
8 when L = 0, imm6<5:3> = 001
16 when L = 0, imm6<5:3> = 01x
32 when L = 0, imm6<5:3> = 1xx
64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(ElemD[m+r],e,esize], unsigned) + round_const) >> shift_amount;
 ElemD[d+r],e,esize] = result-esize-1:0;
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.214 VRSHR (zero)

Vector Rounding Shift Right copies the contents of one SIMD register to another.

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

- The encodings in this description are named to match the encodings of VORR (register).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VORR (register) gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 0 0 D 1 0</td>
<td>Vn Vd 0 0 0 1 N Q M 1 Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1 0 D 1 0</td>
<td>Vn Vd 0 0 0 1 N Q M 1 Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.
VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

- `<c>`: For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional. For encoding T1: see *Standard assembler syntax fields on page F2-4120*.
- `<q>`: See *Standard assembler syntax fields on page F2-4120*.
- `<dt>`: Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16, U32 or U64.
- `<Qd>`: Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.
- `<Qm>`: Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as `<Qm>*2.
- `<Dd>`: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>`: Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of **VORR (register)** gives the operational pseudocode for this instruction.
F6.1.215 VRSHRN

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value, and places the rounded results in the destination vector. For truncated results, see VSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

A1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

T1 variant

Applies when imm6 != 000xxx.

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.
Assembler symbols

<\>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<\>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the following values:
- 16 when imm6<5:3> = 001
- 32 when imm6<5:3> = 01x
- 64 when imm6<5:3> = 1xx

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm>
Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount-1);
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize] + round_const, shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.216 VRSHRN (zero)

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value, and places the rounded results in the destination vector.

This instruction is a pseudo-instruction of the VMOVN instruction. This means that:

- The encodings in this description are named to match the encodings of VMOVN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VMOVN gives the operational pseudocode for this instruction.

A1

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

T1

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

and is never the preferred disassembly.

Assembler symbols

- For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1: see Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of VMOVN gives the operational pseudocode for this instruction.
F6.1.217 VRSQRTE

Vector Reciprocal Square Root Estimate finds an approximate reciprocal square root of each element in a vector, and places the results in a second vector.

The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.

For details of the operation performed by this instruction see *Floating-point reciprocal estimate and step* on page E1-4009.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1</td>
<td>D 1 1</td>
<td>size 1 1</td>
<td>Vd 0 1 0</td>
<td>F 1 0 Q M 0</td>
<td>Vm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.{dt} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.{dt} <Qd>, <Qm>

Decode for all variants of this encoding

if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
floating_point = (F == '1');
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>D 1 1</td>
<td>size 1 1</td>
<td>Vd 0 1 0</td>
<td>F 1 0 Q M 0</td>
<td>Vm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTE{<c>}{<q>}.{dt} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTE{<c>}{<q>}.{dt} <Qd>, <Qm>
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
floating_point = (F == '1');
case size of
 when '01' esize = 16; elements = 4;
 when '10' esize = 32; elements = 2;
end

CONSTRANDED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the vectors, encoded in the "F:size" field. It can have the following values:
 U32 when F = 0, size = 10
 F16 when F = 1, size = 01
 F32 when F = 1, size = 10
<qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <qd>*2.
<qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <qm>*2.
<d> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<m> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Newton-Raphson iteration

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the reciprocal of the square root of a number, see Floating-point reciprocal estimate and step on page E1-4009.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if floating_point then
 Elem[D[d+r],e,esize] = FPRSqrtEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
 else
 Elem[D[d+r],e,esize] = UnsignedRSqrtEstimate(Elem[D[m+r],e,esize]);
F6.1.218 VRSQRTS

Vector Reciprocal Square Root Step multiplies the elements of one vector by the corresponding elements of another vector, subtracts each of the products from 3.0, divides these results by 2.0, and places the results into the elements of the destination vector.

The operand and result elements are floating-point numbers.

For details of the operation performed by this instruction see Floating-point reciprocal estimate and step on page E1-4009.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 12 | 11 10 9 | 8 7 6 5 4 3 | 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 0 0 | D | 1 | sz | Vn | Vd | 1 1 1 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12 | 11 10 9 | 8 7 6 5 4 3 | 0 | 15 12 | 11 10 9 | 8 7 6 5 4 3 | 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 1 1 0 | D | 1 | sz | Vn | Vd | 1 1 1 1 | N | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>
Decode for all variants of this encoding

if Q == '1' & (Vd<> == '1' || Vn<> == '1' || Vm<> == '1') then UNDEFINED;
if sz == '1' & !HaveFP16Ext() then UNDEFINED;
if sz == '1' & InITBlock() then UNPREDICTABLE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
 d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If size == '01' & InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<cf> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<ap> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>sz</th>
</tr>
</thead>
<tbody>
<tr>
<td>F32</td>
<td>0</td>
</tr>
<tr>
<td>F16</td>
<td>1</td>
</tr>
</tbody>
</table>

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<On> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Om> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

[Newton-Raphson iteration]

For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the reciprocal of the square root of a number, see Floating-point reciprocal estimate and step on page E1-4009.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPRSQrtStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);
F6.1.219 VRSRA

Vector Rounding Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value, and accumulates the rounded results into the destination vector. For truncated results, see VSRA.

The operand and result elements must all be the same type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTCR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 |
|-------------|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 1 1 1 0 0 | 1 | U | 1 | D | imm6 | Vd | 0 | 0 | 1 | 1 | L | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>}, {<Dm>}, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>}, {<Qm>}, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VRSRA{<c>}{<q>}.<type><size> {<Dd>}, {<Dm>}, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VRSRA{<c>}{<q>}.<type><size> {<Qd>}, {<Qm>}, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<q> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:

S when U = 0
U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:

8 when L = 0, imm6<5:3> = 001
16 when L = 0, imm6<5:3> = 01x
32 when L = 0, imm6<5:3> = 1xx
64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 round_const = 1 << (shift_amount - 1);
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = (Int(Elem[D[r+],e,esize], unsigned) + round_const) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.220 VRSUBHN

Vector Rounding Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the corresponding elements of another quadword vector, takes the most significant half of each result, and places the final results in a doubleword vector. The results are rounded. For truncated results, see VSUBHN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>1 1 1 1 0 0 1 1 1</th>
<th>11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1</td>
<td>D=D</td>
</tr>
</tbody>
</table>

A1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

|1 1 1 1 1 1 1 1|1|12|11 10 9 8 7 6 5 4 3 0| | | | | | |
|---|---|---|---|---|---|---|---|---|---|
|1 1 1 0 1 1 1|D=D|Vn|Vd|0 1 1 0|N|0|M|0|Vm|

T1 variant

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.
The data type for the elements of the operands, encoded in the "size" field. It can have the following values:

- **I16** when size = 00
- **I32** when size = 01
- **I64** when size = 10

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as `<Qn>*2.`

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as `<Qm>*2.`

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    round_const = 1 << (esize-1);
    for e = 0 to elements-1
        result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize] + round_const;
        Elem[D[d],e,esize] = result<2*esize-1:esize>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.221 VSDOT (by element)

Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

A1

ARMv8.2

```
[31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12 11 10 9 8 7 6 5 4 3 0]
 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
```

64-bit SIMD vector variant

Applies when Q == 0.

```
VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]
```

128-bit SIMD vector variant

Applies when Q == 1.

```
VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]
```

Decode for all variants of this encoding

```
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
boolean signed = (U=='0');
integer d = U1nt(D:Vd);
integer n = U1nt(N:Vn);
integer m = U1nt(Vm<3:0>);
integer index = U1nt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;
```

T1

ARMv8.2

```
[15 14 13 12|11 10 9 8 7 6 5 4 3 0]
 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
```

64-bit SIMD vector variant

Applies when Q == 0.

```
VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]
```
128-bit SIMD vector variant

Applies when Q = 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

bits(64) operand1;
bits(64) operand2 = D[m];
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1
 operand1 = D[n+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
 end
 res = res + element1 + element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 end
 D[d+r] = result;
 end
end
F6.1.222 VSDOT (vector)

Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---
ID_ISAR6.DP indicates whether this instruction is supported.

A1

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | 1 1 1 1 1 1 0 |0|0|D|1|0|Vn|Vd|1|1|0|1|N|Q|M|0|Vm|

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT(<q>).S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSDOT(<q>).S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D>Vd);
integer n = UInt(N>Vn);
integer m = UInt(M>Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1

ARMv8.2

|15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 |15 12|11 10 9 8 |7 6 5 4 |3 0 | 1 1 1 1 1 1 0 |0|0|D|1|0|Vn|Vd|1|1|0|1|N|Q|M|0|Vm|

64-bit SIMD vector variant

Applies when Q == 0.

VSDOT(<q>).S8 <Dd>, <Dn>, <Dm>
128-bit SIMD vector variant

Applies when Q == 1.

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

bits(64) operand1;
bits(64) operand2;
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
F6.1.223 VSELEQ, VSELGE, VSELGT, VSELVS

Floating-point conditional select allows the destination register to take the value in either one or the other source register according to the condition codes in the The Application Program Status Register, APSR on page E1-3995.

A1

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 0 |
|1 1 1 1 1 1 1 1|0 0 |D|cc|Vn|Vd|1 0 |1=00|N|0|M|0|Vm|

VSELEQ, doubleprec variant

Applies when cc == 00 && size == 11.

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELEQ, halfprec variant

Applies when cc == 00 && size == 01.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELEQ, singleprec variant

Applies when cc == 00 && size == 10.

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGE, doubleprec variant

Applies when cc == 10 && size == 11.

VSELGE.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELGE, halfprec variant

Applies when cc == 10 && size == 01.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGE, singleprec variant

Applies when cc == 10 && size == 10.

VSELGE.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGT, doubleprec variant

Applies when cc == 11 && size == 11.

VSELGT.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELGT, halfprec variant

Applies when cc == 11 && size == 01.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELGT, singleprec variant

Applies when cc == 11 && size == 10.

VSELGT.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional
VSELVS,doubleprec variant

Applies when \(cc == 01 \) \&\& \(size == 11 \).

VSELVS.F64 <Dd>, <Dn>, <Dm> // Cannot be conditional

VSELVS,halfprec variant

Applies when \(cc == 01 \) \&\& \(size == 01 \).

VSELVS.F16 <Sd>, <Sn>, <Sm> // Cannot be conditional

VSELVS,singleprec variant

Applies when \(cc == 01 \) \&\& \(size == 10 \).

VSELVS.F32 <Sd>, <Sn>, <Sm> // Cannot be conditional

Decode for all variants of this encoding

If \(size == '00' \) \|\| (size == '01' \&\& !HaveFP16Ext()) then UNDEFINED;

Case size of

- When '01' esize = 16: \(d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); \)
- When '10' esize = 32: \(d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M); \)
- When '11' esize = 64: \(d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); \)

\(cond = cc:(cc<1> \text{ EOR } cc<0>):'0'; \)

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0 15 12 11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 0 0</td>
<td>D cc</td>
<td>Vn</td>
<td>Vd</td>
<td>1 0</td>
<td>l=00</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>

VSELEQ,doubleprec variant

Applies when \(cc == 00 \) \&\& \(size == 11 \).

VSELEQ.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELEQ,halfprec variant

Applies when \(cc == 00 \) \&\& \(size == 01 \).

VSELEQ.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELEQ,singleprec variant

Applies when \(cc == 00 \) \&\& \(size == 10 \).

VSELEQ.F32 <Sd>, <Sn>, <Sm> // Not permitted in IT block

VSELGE,doubleprec variant

Applies when \(cc == 10 \) \&\& \(size == 11 \).

VSELGE.F64 <Dd>, <Dn>, <Dm> // Not permitted in IT block

VSELGE,halfprec variant

Applies when \(cc == 10 \) \&\& \(size == 01 \).

VSELGE.F16 <Sd>, <Sn>, <Sm> // Not permitted in IT block
VSELGE, singleprec variant
Applies when \(cc = 10 \) \&\& \(size = 10 \).

\[\text{VSELGE.F32} \ <Sd>, <Sn>, <Sm> \] // Not permitted in IT block

VSELGT, doubleprec variant
Applies when \(cc = 11 \) \&\& \(size = 11 \).

\[\text{VSELGT.F64} \ <Dd>, <Dn>, <Dm> \] // Not permitted in IT block

VSELGT, halfprec variant
Applies when \(cc = 11 \) \&\& \(size = 01 \).

\[\text{VSELGT.F16} \ <Sd>, <Sn>, <Sm> \] // Not permitted in IT block

VSELVS, doubleprec variant
Applies when \(cc = 01 \) \&\& \(size = 11 \).

\[\text{VSELVS.F64} \ <Dd>, <Dn>, <Dm> \] // Not permitted in IT block

VSELVS, halfprec variant
Applies when \(cc = 01 \) \&\& \(size = 01 \).

\[\text{VSELVS.F16} \ <Sd>, <Sn>, <Sm> \] // Not permitted in IT block

VSELVS, singleprec variant
Applies when \(cc = 01 \) \&\& \(size = 10 \).

\[\text{VSELVS.F32} \ <Sd>, <Sn>, <Sm> \] // Not permitted in IT block

Decode for all variants of this encoding

if \(\text{InITBlock}() \) then UNPREDICTABLE;
if size == '00' \(||\) (size == '01' \&\& !\text{HaveFP16Ext}()) then UNDEFINED;

case size of
- when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
- when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
- when '11' esize = 64; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
cond = cc:{cc<0>:EOR cc<1>}':0';

CONSTRAINED UNPREDICTABLE behavior
If \(\text{InITBlock}() \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

- \(<Dd>\) Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- \(<Dn>\) Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.
Operation for all encodings

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16
 S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])<15:0>;
 when 32
 S[d] = if ConditionHolds(cond) then S[n] else S[m];
 when 64
 D[d] = if ConditionHolds(cond) then D[n] else D[m];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.224 VSHL (immediate)

Vector Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate value, and places the results in the destination vector.

Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 | 16|15 12|11 10 9 8| 7 6 5 4| 3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 0 1 1 | D | imm6 | Vd | 0 1 0 1 | L | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I*size {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHL{<c>}{<q>}.I*size {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if L:imm6 == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if L:imm6 of
 case L:imm6 of
 when '0000xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12|11 10 9 8| 7 6 5 | 0 | 15 12|11 10 9 8| 7 6 5 4| 3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 0 1 1 1 1 | D | imm6 | Vd | 0 1 0 1 | L | Q | M | 1 | Vm |

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSHL{<c>}{<q>}.I*size {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSHL{<c>}{<q>}.I*size {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if L:imm6 == '0000xxx' then SEE "Related encodings";
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
 case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<q> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:
 8 when L = 0, imm6<5:3> = 001
 16 when L = 0, imm6<5:3> = 01x
 32 when L = 0, imm6<5:3> = 1xx
 64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = LSL(Elem[D[m+r],e,esize], shift_amount);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F6.1.225 VSHL (register)

Vector Shift Left (register) takes each element in a vector, shifts them by a value from the least significant byte of
the corresponding element of a second vector, and places the results in the destination vector. If the shift value is
positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift.

For a rounding shift, see VRSHL.

The first operand and result elements are the same data type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when \(Q \) == 0.

\[
VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>
\]

128-bit SIMD vector variant

Applies when \(Q \) == 1.

\[
VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>
\]

Decode for all variants of this encoding

if \(Q \) == '1' && \(Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1' \) then UNDEFINED;
unsigned = (\(U == '1' \));
esize = 8 << UInt(size); elements = 64 DIV size;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if \(Q \) == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when \(Q \) == 0.

\[
VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>
\]

128-bit SIMD vector variant

Applies when \(Q \) == 1.

\[
VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>
\]
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler symbols

<> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the vectors, encoded in the "U:size" field. It can have the following values:
S8 when U = 0, size = 00
S16 when U = 0, size = 01
S32 when U = 0, size = 10
S64 when U = 0, size = 11
U8 when U = 1, size = 00
U16 when U = 1, size = 01
U32 when U = 1, size = 10
U64 when U = 1, size = 11

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 shift = SInt(Elem[D[n+r],e,esize]<7:0>);
 result = Int(Elem[D[m+r],e,esize], unsigned) << shift;
 Elem[D[d+r],e,esize] = result+esize-1:0;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
— The values of the NZCV flags.
F6.1.226 VSHLL

Vector Shift Left Long takes each element in a doubleword vector, left shifts them by an immediate value, and places the results in a quadword vector.

The operand elements can be:
- 8-bit, 16-bit, or 32-bit signed integers.
- 8-bit, 16-bit, or 32-bit unsigned integers.
- 8-bit, 16-bit, or 32-bit untyped integers, maximum shift only.

The result elements are twice the length of the operand elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

A1 variant

Applies when imm6 != 000xxx.

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
if shift_amount == 0 then SEE "VMOVL";
unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

A2

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

A2 variant

Decode for this encoding

if size == '11' || Vd<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
unsigned = FALSE; // Or TRUE without change of functionality
d = UInt(D:Vd); m = UInt(M:Vm);
T1

```
| 15 14 13 12|11 10 9 8| 7 6 5 | 0 | 15 12|11 10 9 8| 7 6 5 4 3 0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 | U | 1 1 1 | 1 | D | imm6 | Vd | 1 0 | 1 0 | 0 | 0 | M | 1 | Vm |
```

T1 variant

Applies when imm6 != 000xxx.

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vd<6> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
if shift_amount == 0 then SEE "VMOVL";
unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

T2

```
<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

T2 variant

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

Decode for this encoding

if size == '11' || Vd<6> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
unsigned = FALSE; // Or TRUE without change of functionality
 d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

- `<c>`
 - For encoding A1 and A2: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 - For encoding T1 and T2: see Standard assembler syntax fields on page F2-4120.
- `<q>`
 - See Standard assembler syntax fields on page F2-4120.
- `<type>`
 - The data type for the elements of the operand. It must be one of:
 - S Signed. In encoding T1/A1, encoded as U = 0.
 - U Unsigned. In encoding T1/A1, encoded as U = 1.
 - I Untyped integer, Available only in encoding T2/A2.
The data size for the elements of the operand. The following table shows the permitted values and their encodings:

<table>
<thead>
<tr>
<th>Size</th>
<th>Encoding T1/A1</th>
<th>Encoding T2/A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Encoded as imm6<5:3> = 0b001</td>
<td>Encoded as size = 0b00</td>
</tr>
<tr>
<td>16</td>
<td>Encoded as imm6<5:4> = 0b01</td>
<td>Encoded as size = 0b01</td>
</tr>
<tr>
<td>32</td>
<td>Encoded as imm6<5> = 1</td>
<td>Encoded as size = 0b10</td>
</tr>
</tbody>
</table>

<Qd> is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> The immediate value. <imm> must lie in the range 1 to <size>, and:

- If <size> == <imm>, the encoding is T2/A2.
- Otherwise, the encoding is T1/A1, and:
 - If <size> == 8, <imm> is encoded in imm6<2:0>.
 - If <size> == 16, <imm> is encoded in imm6<3:0>.
 - If <size> == 32, <imm> is encoded in imm6<4:0>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = Int(Elem[Din[m],e,esize], unsigned) << shift_amount;
 Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
Vector Shift Right takes each element in a vector, right shifts them by an immediate value, and places the truncated results in the destination vector. For rounded results, see VRSHR.

The operand and result elements must be the same size, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx & L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx & L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx & L == 0) && Q == 0.

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx & L == 0) && Q == 1.

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
 S when U = 0
 U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:
 8 when L = 0, imm6<5:3> = 001
 16 when L = 0, imm6<5:3> = 01x
 32 when L = 0, imm6<5:3> = 1xx
 64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = result-esize-1:0;
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.228 VSHR (zero)

Vector Shift Right copies the contents of one SIMD register to another

This instruction is a pseudo-instruction of the VORR (register) instruction. This means that:

- The encodings in this description are named to match the encodings of VORR (register).
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VORR (register) gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 0 1 0 0 D 1 0</td>
<td>Vn</td>
<td>Vd</td>
<td>0 0 0 1 N Q M 1 Vm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 1 1 1 1 0 D 1 0</td>
<td>Vn</td>
<td>Vd</td>
<td>0 0 0 1 N Q M 1 Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is never the preferred disassembly.

128-bit SIMD vector variant

Applies when Q == 1.
VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is never the preferred disassembly.

Assembler symbols

- `<c>`: For encoding A1: see *Standard assembler syntax fields on page F2-4120*. This encoding must be unconditional.

 For encoding T1: see *Standard assembler syntax fields on page F2-4120*.

- `<q>`: See *Standard assembler syntax fields on page F2-4120*.

- `<dt>`: Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16, U32 or U64.

- `<Qd>`: Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as `<Qd>*2.

- `<Qm>`: Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as `<Qm>*2.

- `<Dd>`: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- `<Dm>`: Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation for all encodings

The description of VORR (register) gives the operational pseudocode for this instruction.
F6.1.229 VSHRN

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the truncated results in the destination vector. For rounded results, see VRSHRN.

The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned integers. The destination elements are half the size of the source elements.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

![Instruction set encoding](image)

A1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

![Instruction set encoding](image)

T1 variant

Applies when imm6 != 000xxx.

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

Decode for this encoding

if imm6 == '000xxx' then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
case imm6 of
 when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.
Assembler symbols

<\textless >
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<\textgreater >
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size for the elements of the vectors, encoded in the "imm6<5:3>" field. It can have the following values:

16 when imm6<5:3> = 001
32 when imm6<5:3> = 01x
64 when imm6<5:3> = 1xx

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm>
Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for e = 0 to elements-1
 result = LSR(Elem[Qin[m>>1],e,2*esize], shift_amount);
 Elem[D[d],e,esize] = result<esize-1:0>;

F6.1.230 VSHRN (zero)

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector

This instruction is a pseudo-instruction of the **VMOVN** instruction. This means that:

- The encodings in this description are named to match the encodings of **VMOVN**.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of **VMOVN** gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{ccccccccccccccccccc}
\end{array}
\]

\[
\begin{array}{ccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & D & 1 & 1 & \text{size} & 1 & 0 & Vd & 0 & 0 & 1 & 0 & 0 & 0 & M & 0 & Vm
\end{array}
\]

A1 variant

VSHRN\(\{c\}\{q\}\{dt\} <Dd>, <Qm>, #0\)

is equivalent to

VMOVN\(\{c\}\{q\}\{dt\} <Dd>, <Qm>\)

and is never the preferred disassembly.

T1

\[
\begin{array}{ccccccccccccccccccc}
| & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 15 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 0 |
\end{array}
\]

\[
\begin{array}{ccccccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & D & 1 & 1 & \text{size} & 1 & 0 & Vd & 0 & 0 & 1 & 0 & 0 & 0 & M & 0 & Vm
\end{array}
\]

T1 variant

VSHRN\(\{c\}\{q\}\{dt\} <Dd>, <Qm>, #0\)

is equivalent to

VMOVN\(\{c\}\{q\}\{dt\} <Dd>, <Qm>\)

and is never the preferred disassembly.

Assembler symbols

\(<c>\)
For encoding A1: see **Standard assembler syntax fields on page F2-4120**. This encoding must be unconditional.

For encoding T1: see **Standard assembler syntax fields on page F2-4120**.

\(<q>\)
See **Standard assembler syntax fields on page F2-4120**.

\(<dt>\)
Is the data type for the elements of the operand, encoded in the "size" field. It can have the following values:

- I16
 when size = 00
- I32
 when size = 01
- I64
 when size = 10

The encoding size = 11 is reserved.
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

The description of \texttt{VMOVN} gives the operational pseudocode for this instruction.
F6.1.231 VSLI

Vector Shift Left and Insert takes each element in the operand vector, left shifts them by an immediate value, and inserts the results in the destination vector. Bits shifted out of the left of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant
Applies when !(imm6 == 000xxx & L == 0) & Q == 0.
VSLI[<c>]<{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant
Applies when !(imm6 == 000xxx & L == 0) & Q == 1.
VSLI[<c>]<{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding
if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant
Applies when !(imm6 == 000xxx & L == 0) & Q == 0.
VSLI[<c>]<{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant
Applies when !(imm6 == 000xxx & L == 0) & Q == 1.
VSLI[<c>]<{<q>}.<size> {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
 when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
 when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:

<table>
<thead>
<tr>
<th>esize</th>
<th>When conditions were satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>L = 0, imm6<5:3> = 001</td>
</tr>
<tr>
<td>16</td>
<td>L = 0, imm6<5:3> = 01x</td>
</tr>
<tr>
<td>32</td>
<td>L = 0, imm6<5:3> = 1xx</td>
</tr>
<tr>
<td>64</td>
<td>L = 1, imm6<5:3> = xxx</td>
</tr>
</tbody>
</table>

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSL(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSL(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.232 VSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of signed 8-bit integer values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARMv8.6

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 |3 0 | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 |0 0 0 D 1 0 | Vn | Vd | 1 1 0 0 | N | 1 | M | 0 | Vm |
```

A1 variant

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

```c
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
```

T1

ARMv8.6

```
| 15 14 13 12|11 10 9 8 |7 6 5 4 |3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 1 1 |0 0 0 D 1 0 | Vn | Vd | 1 1 0 0 | N | 1 | M | 0 | Vm |
```

T1 variant

VSMMLA{<q>}.S8 <Qd>, <Qm>, <Qm>

Decode for this encoding

```c
if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
```
Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
F6.1.233 VSQRT

Square Root calculates the square root of the value in a floating-point register and writes the result to another floating-point register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 18 17 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>1 1 1 0 1</td>
<td>D 1 1 0 0 1</td>
<td>Vd 1 0</td>
<td>size 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONstrained UNPREDICTable behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 2 1 0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>1 1 1 0 1</td>
<td>1 1 0 0 1</td>
<td>Vd 1 0</td>
<td>size 1</td>
<td>M 0</td>
<td>Vm</td>
<td></td>
</tr>
</tbody>
</table>

Half-precision scalar variant

Applies when size == 01.
VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar variant
Applies when size == 10.
VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar variant
Applies when size == 11.
VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

Decode for all variants of this encoding
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
case size of
 when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:
- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<ap> See Standard assembler syntax fields on page F2-4120.

<5d> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<0d> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<0m> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings
if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of
 when 16 S[d] = Zeros(16) : FPSqrt(S[m]<15:0>, FPSCR);
 when 32 S[d] = FPSqrt(S[m], FPSCR);
 when 64 D[d] = FPSqrt(D[m], FPSCR);
F6.1.234 VSRA

Vector Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value, and accumulates the truncated results into the destination vector. For rounded results, see VRSRA.

The operand and result elements must all be the same type, and can be any one of:

- 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
- 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>D</td>
<td>imm6</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}{<type}{<size}> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}{<type}{<size}> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

```c
if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
  when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
  when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
  when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
  when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
  unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>D</td>
<td>imm6</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 0.

VSRA{<c>}{<q>}{<type}{<size}> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx && L == 0) && Q == 1.

VSRA{<c>}{<q>}{<type}{<size}> {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<e> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<type> Is the data type for the elements of the vectors, encoded in the "U" field. It can have the following values:
 S when U = 0
 U when U = 1

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:
 8 when L = 0, imm6<5:3> = 001
 16 when L = 0, imm6<5:3> = 01x
 32 when L = 0, imm6<5:3> = 1xx
 64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
 Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 --- The values of the data supplied in any of its registers.
 --- The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 --- The values of the data supplied in any of its registers.
 --- The values of the NZCV flags.
F6.1.235 VSRI

Vector Shift Right and Insert takes each element in the operand vector, right shifts them by an immediate value, and inserts the results in the destination vector. Bits shifted out of the right of each element are lost.

The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21</th>
<th>16 15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 1 1 1 D</td>
<td>imm6</td>
</tr>
<tr>
<td>Vd 0 1 0 0 L Q M 1</td>
<td>Vm</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx & & L == 0) & & Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx & & L == 0) & & Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' & & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
 d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5</th>
<th>0</th>
<th>15 12 11 10 9 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 D</td>
<td>imm6</td>
<td>Vd 0 1 0 0 L Q M 1</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when !(imm6 == 000xxx & & L == 0) & & Q == 0.

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector variant

Applies when !(imm6 == 000xxx & & L == 0) & & Q == 1.

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>
Decode for all variants of this encoding

if (L:imm6) == '0000xxx' then SEE "Related encodings";
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
case L:imm6 of
 when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
 when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
 when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
 when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Notes for all encodings

Related encodings: See Advanced SIMD one register and modified immediate on page F3-4173 for the T32 instruction set, or Advanced SIMD one register and modified immediate on page F4-4271 for the A32 instruction set.

Assembler symbols

<e> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

<size> Is the data size for the elements of the vectors, encoded in the "L:imm6<5:3>" field. It can have the following values:
 8 when L = 0, imm6<5:3> = 001
 16 when L = 0, imm6<5:3> = 01x
 32 when L = 0, imm6<5:3> = 1xx
 64 when L = 1, imm6<5:3> = xxx

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 mask = LSR(Ones(esize), shift_amount);
 for r = 0 to regs-1
 for e = 0 to elements-1
 shifted_op = LSR(Elem[D[m+r],e,esize], shift_amount);
 Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
VST1 (single element from one lane)

Store single element from one lane of one register stores one element to memory from one element of a register. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 0 0</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<6> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

A2

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 1 0 0</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!
Post-indexed variant

Applies when $Rm \neq 11x1$.

$VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<1> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<1:2>);
alignment = if index_align<0:0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
if n == 15 then UNPREDICTABLE;
if m == 15 then UNPREDICTABLE;

Offset variant

Applies when $Rm == 1111$.

$VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]

Post-indexed variant

Applies when $Rm == 1101$.

$VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]$

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
if n == 15 then UNPREDICTABLE;
if m == 15 then UNPREDICTABLE;

Offset variant

Applies when $Rm == 1111$.

$VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]}$
Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST1\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align>}]!}
\]

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST1\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>}
\]

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<1:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T2

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| 1 1 1 1 1 0 0 1 | D | 0 | 0 | Rn | Vd | 0 | 1 | 0 | 0 | index_align | Rm |

Offset variant

Applies when \(Rm = 1111 \).

\[
\text{VST1\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align}>]}
\]

Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST1\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>}
\]

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST1\{<c>\}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>}
\]

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<1:2>);
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T3

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 0 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| 1 1 1 1 1 0 0 1 | D | 0 | 0 | Rn | Vd | 1 | 0 | 0 | 0 | index_align | Rm |
Offset variant
Applies when \(Rm == 1111 \).
\[
\text{VST1\{<c>{<q>\}.<size> <list>, [<Rn>{:<align>}]}}
\]

Post-indexed variant
Applies when \(Rm == 1101 \).
\[
\text{VST1\{<c>{<q>\}.<size> <list>, [<Rn>{:<align}>]}!}
\]

Post-indexed variant
Applies when \(Rm != 11x1 \).
\[
\text{VST1\{<c>{<q>\}.<size> <list>, [<Rn>{:<align}>], <Rm>}
\]

Decode for all variants of this encoding
\[
\begin{align*}
\text{if size == '11' then UNDEFINED; } \\
\text{if index_align<2> != '0' then UNDEFINED; } \\
\text{if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED; } \\
\text{ebytes = 4; index = UInt(index_align<3>); } \\
\text{alignment = if index_align<1:0> == '00' then 1 else 4; } \\
\text{d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm); } \\
\text{wback = (m != 15); register_index = (m != 15 && m != 13); } \\
\text{if n == 15 then UNPREDICTABLE; }
\end{align*}
\]

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols
\(<c>\) For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.
\(<q>\) See Standard assembler syntax fields on page F2-4120.
\(<\text{size}>\) Is the data size, encoded in the "size" field. It can have the following values:
\begin{align*}
8 & \text{ when size = 00} \\
16 & \text{ when size = 01} \\
32 & \text{ when size = 10}
\end{align*}
\(<\text{list}>\) Is a list containing the single 64-bit name of the SIMD&FP register holding the element.
The list must be \{ \(<Dd>[:<index>]\) \}.
The register \(<Dd>\) is encoded in the "D:Vd" field.
The permitted values and encoding of \(<\text{index}>\) depend on \(<\text{size}>\):
\begin{align*}
\text{<size> == 8} & \text{<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.} \\
\text{<size> == 16} & \text{<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.} \\
\text{<size> == 32} & \text{<index> is 0 or 1, encoded in the "index_align<3>" field.}
\end{align*}
\(<\text{Rn}>\) Is the general-purpose base register, encoded in the "Rn" field.
\(<\text{align}>\) When \(<\text{size}> == 8\), \(<\text{align}>\) must be omitted, otherwise it is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on <size>:

- <size> == 8: Encoded in the "index_align<0>" field as 0.
- <size> == 16: Encoded in the "index_align<1:0>" field as 0b00.
- <size> == 32: Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:

- <size> == 16<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as 0b01.
- <size> == 32<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as 0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address,ebytes] = Elem[D[d],index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + ebytes;

F6.1.237 VST1 (multiple single elements)

Store multiple single elements from one, two, three, or four registers stores elements to memory from one, two, three, or four registers, without interleaving. Every element of each register is stored. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Offset variant

Applies when \(Rm = \text{1111} \).

\[
\text{VST1}\{<c>\}{<q>}.<\text{size}> \text{ <list>}, \ [<Rn>:{<\text{align}>}]\]

Post-indexed variant

Applies when \(Rm = \text{1101} \).

\[
\text{VST1}\{<c>\}{<q>}.<\text{size}> \text{ <list>}, \ [<Rn>:{<\text{align}>}]!\]

Post-indexed variant

Applies when \(Rm \neq \text{11x1} \).

\[
\text{VST1}\{<c>\}{<q>}.<\text{size}> \text{ <list>}, \ [<Rn>:{<\text{align}>}], \text{ <Rm}>\]

Decode for all variants of this encoding

\[
\text{regs} = 1; \text{ if align}<1> == '1' \text{ then UNDEFINED}; \\
\text{alignment} = \text{ if align} == '00' \text{ then 1 else } 4 \ll \text{ UInt(align)}; \\
\text{ebyes} = 1 \ll \text{ UInt(size)}; \text{ elements} = 8 \ll \text{ DIV ebyes}; \\
d = \text{ UInt(D:Vd)}; \text{ n = UInt(Rn)}; \text{ m = UInt(Rm)}; \\
wback = (m != 15); \text{ register_index} = (m != 15 \&\& m != 13); \\
\text{if n} == 15 || \text{ d+regs} > 32 \text{ then UNPREDICTABLE};
\]

CONSTRAINED UNPREDICTABLE behavior

If \(d+\text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A2

\[
\text{[31 30 29 28][27 26 25 24][23 22 21 20][19 16][15 12 11 10 9 8][7 6 5 4][3 0]} \\
\text{[1 1 1 0 1 0 0 0][D 0 0][Rn Vd 0 1 1 1 size align Rm]}
\]
Offset variant
Applies when Rm == 1111.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm == 1101.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm != 11xx.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding
 regs = 2 if align == '11' then UNDEFINED;
 alignment = if align == '00' then 0 else 4 << UInt(align);
 ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
 d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 11);
 if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior
If d+regs > 32, then one of the following behaviors must occur:
 • The instruction is UNDEFINED.
 • The instruction executes as NOP.
 • The memory locations specified by the instruction and the number of registers specified by the instruction
 become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This
 behavior does not affect any other memory locations.

A3

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6 5 4|3 0 |
|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 0 1 0 0 0|D 0 0|Rn|Vd|0 1 1 0|size|align|Rm|

Offset variant
Applies when Rm == 1111.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm == 1101.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant
Applies when Rm != 11x1.
VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>
Decode for all variants of this encoding

regs = 3; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRUAGED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A4

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12 11 10 9 8 7 6 5 4 3 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| 1 1 1 1 | 0 1 0 0 | D | 0 0 | Rn | Vd | 0 0 1 0 | size | align | Rm |

Offset variant

Applies when Rm == 1111.
VSTI{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]

Post-indexed variant

Applies when Rm == 1101.
VSTI{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!

Post-indexed variant

Applies when Rm != 11x1.
VSTI{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>

Decode for all variants of this encoding

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRUAGED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 0 0 1 0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 1 1 1</td>
<td>size</td>
<td>align</td>
<td>Rm</td>
</tr>
</tbody>
</table>

Offset variant
Applies when \(Rm = 1111 \).

VST1\{<c>\}{<q>}{<size> <list>, \[<Rn>{:<align>}]}

Post-indexed variant
Applies when \(Rm = 1101 \).

VST1\{<c>\}{<q>}{<size> <list>, \[<Rn>{:<align>}]!}

Post-indexed variant
Applies when \(Rm \neq 11x1 \).

VST1\{<c>\}{<q>}{<size> <list>, \[<Rn>{:<align>}], <Rm>}

Decode for all variants of this encoding

\[
\begin{align*}
\text{regs} &= 1; \text{if align}<1> = '1' \text{ then UNDEFINED}; \\
\text{alignment} &= \text{if align} = '00' \text{ then 1 else } 4 \ll \text{UInt}(align); \\
\text{ebytes} &= 1 \ll \text{UInt}(size); \text{ elements} = 8 \text{ DIV ebytes}; \\
\text{d} &= \text{UInt}(D:Vd); \text{ n} = \text{UInt}(Rn); \text{ m} = \text{UInt}(Rm); \\
\text{wback} &= (m != 15); \text{ register_index} = (m != 15 \&\& m != 13); \\
\text{if n} &= 15 || \text{d+regs} > 32 \text{ then UNPREDICTABLE；}
\end{align*}
\]

CONSTRAINED UNPREDICTABLE behavior
If \(d+\text{regs} > 32 \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T2

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 1 1 0 0 1 0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>1 0 1 0</td>
<td>size</td>
<td>align</td>
<td>Rm</td>
</tr>
</tbody>
</table>

Offset variant
Applies when \(Rm = 1111 \).

VST1\{<c>\}{<q>}{<size> <list>, \[<Rn>{:<align>}]}
Post-indexed variant

Applies when \(Rm == 1101. \)

\[
\text{VST1}_c{<c>}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}]!
\]

Post-indexed variant

Applies when \(Rm != 11x1. \)

\[
\text{VST1}_c{<c>}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}], <Rm>
\]

Decode for all variants of this encoding

\[
\text{regs} = 2; \text{ if align} == '11' \text{ then UNDEFINED};
\]

\[
\text{alignment} = \text{if align} == '00' \text{ then 1 else 4 << UInt(align)};
\]

\[
\text{ebytes} = 1 << \text{UInt(size)}; \text{ elements} = 8 \text{ DIV ebytes};
\]

\[
\text{d} = \text{UInt(D:Vd)}; \text{ n} = \text{UInt(Rn)}; \text{ m} = \text{UInt(Rm)};
\]

\[
\text{wback} = (m != 15); \text{ register_index} = (m != 15 \&\& m != 13);
\]

\[
\text{if n == 15 || d+regs} > 32 \text{ then UNPREDICTABLE};
\]

CONSTRUED UNPREDICTABLE behavior

If \(d+regs > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T3

```
| 15 14 13 12|11 10 9 8 |7 6 5 4|3|0|15 12|11 10 9 8 |7 6 5 4|3|0 |
|1 1 1 1 0 0 1 0 |D|0|0|Rn |Vd|0 1 1 0|size|align|Rm |
```

Offset variant

Applies when \(Rm == 1111. \)

\[
\text{VST1}_c{<c>}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}]!
\]

Post-indexed variant

Applies when \(Rm == 1101. \)

\[
\text{VST1}_c{<c>}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}]!
\]

Post-indexed variant

Applies when \(Rm != 11x1. \)

\[
\text{VST1}_c{<c>}{<q>}.<\text{size}> <\text{list}>, [<Rn>{:<\text{align}>}], <Rm>
\]

Decode for all variants of this encoding

\[
\text{regs} = 3; \text{ if align} == '1' \text{ then UNDEFINED};
\]

\[
\text{alignment} == \text{if align} == '00' \text{ then 1 else 4 << UInt(align)};
\]

\[
\text{ebytes} = 1 << \text{UInt(size)}; \text{ elements} = 8 \text{ DIV ebytes};
\]

\[
\text{d} = \text{UInt(D:Vd)}; \text{ n} = \text{UInt(Rn)}; \text{ m} = \text{UInt(Rm)};
\]

\[
\text{wback} = (m != 15); \text{ register_index} = (m != 15 \&\& m != 13);
\]

\[
\text{if n == 15 || d+regs} > 32 \text{ then UNPREDICTABLE};
\]
CONSTRANGED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T4

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0 15</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
<td>0 0 1</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0 1</td>
<td>0</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRANGED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST1 (multiple single elements) on page K1-7958.
Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.

Assembler symbols

<
 For encoding A1, A2, A3 and A4: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1, T2, T3 and T4: see Standard assembler syntax fields on page F2-4120.

<
 See Standard assembler syntax fields on page F2-4120.

<size>
 Is the data size, encoded in the "size" field. It can have the following values:

 8 when size = 00
 16 when size = 01
 32 when size = 10
 64 when size = 11

$list$
 Is a list containing the 64-bit names of the SIMD&FP registers.
 The list must be one of:

 { <Dd> } Single register. Selects the A1 and T1 encodings of the instruction.
 { <Dd>, <Dd+1> } Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.
 { <Dd>, <Dd+1>, <Dd+2> } Three single-spaced registers. Selects the A3 and T3 encodings of the instruction.
 { <Dd>, <Dd+1>, <Dd+2>, <Dd+3> } Four single-spaced registers. Selects the A4 and T4 encodings of the instruction.

 The register <Dd> is encoded in the "D:Vd" field.

<Rn>
 Is the general-purpose base register, encoded in the "Rn" field.

<align>
 Is the optional alignment.
 Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.
 Whenever <align> is present, the permitted values are:
 64 64-bit alignment, encoded in the "align" field as 0b01.
 128 128-bit alignment, encoded in the "align" field as 0b10. Available only if $list$ contains two or four registers.
 256 256-bit alignment, encoded in the "align" field as 0b11. Available only if $list$ contains four registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
 Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.
 For more information about <Rn>, !, and <Rm>, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for r = 0 to regs-1
 for e = 0 to elements-1
 if ebytes != 8 then
 MemU[address,ebytes] = Elem[0][d+r],e;
else
 - = AArch32.CheckAlignment(address, ebytes, AccType_NORMAL, iswrite);
 bits(64) data = Elem[D[d+r],e];
 MemU[address,4] = if BigEndian() then data<63:32> else data<31:0>;
 MemU[address+4,4] = if BigEndian() then data<31:0> else data<63:32>;
 address = address + ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 8*regs;
F6.1.238 VST2 (single 2-element structure from one lane)

Store single 2-element structure from one lane of two registers stores one 2-element structure to memory from corresponding elements of two registers. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | D | 0 | 0 | Rn | Vd | 0 | 0 | 1 | index_align | Rm |

Offset variant

Applies when $Rm == 1111$.

$VST2{<c>}{<q>}.<size> \langle list \rangle, \langle Rn\rangle{:<align>}$

Post-indexed variant

Applies when $Rm == 1101$.

$VST2{<c>}{<q>}.<size> \langle list \rangle, \langle Rn\rangle{:<align>}!$

Post-indexed variant

Applies when $Rm != 11x1$.

$VST2{<c>}{<q>}.<size> \langle list \rangle, \langle Rn\rangle{:<align>}, Rm$

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 & m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSIDERED UNPREDICTABLE behavior

If $d2 > 31$, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A2

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 4 | 3 | 0 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | D | 0 | 0 | Rn | Vd | 0 | 1 | 0 | 1 | index_align | Rm |

Offset variant

Applies when \(Rm = 1111 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}]
\]

Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}]!
\]

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}], <Rm>
\]

Decode for all variants of this encoding

- if size == '11' then UNDEFINED;
- ebytes = 2; index = UInt(index_align<3:2>);
- inc = if index_align<1> == '0' then 1 else 2;
- alignment = if index_align<0> == '0' then 1 else 4;
- d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
- wback = (m != 15); register_index = (m != 15 && m != 13);
- if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A3

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16 15 12 11 10 9 8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 1</td>
<td>D 0 0</td>
<td>Rn</td>
<td>Vd</td>
<td>1 0 0 1</td>
<td>index_align</td>
<td>Rm</td>
<td></td>
</tr>
</tbody>
</table>

Offset variant

Applies when \(Rm = 1111 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}]
\]

Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}]!
\]

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST2}\{<c><q>\} <\text{size}> <\text{list}>, [<Rn\{<\text{align}>\}], <Rm>
\]
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8 7 6 5 4 3</th>
<th>0</th>
<th>12</th>
<th>11 10 9 8 7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]

Post-indexed variant

Applies when Rm == 1101.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!

Post-indexed variant

Applies when Rm != 11x1.

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRANGED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T2

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 3 | 0 15 12 11 10 9 8 | 7 4 3 0 |
|-------------|----------|----------|----------------|----------|----------|----------------|----------|
| 1 1 1 1 1 1 0 1 0 | 0 D 0 0 | Rn Vd 0 1 0 0 1 | index_align | Rm size |

Offset variant
Applies when \(Rm == 1111 \).

\[\text{VST2}\{<c>\}\{<q>\}\{<size>\} <\text{list}>, [<Rn\{:<align>\}] \]

Post-indexed variant
Applies when \(Rm == 1101 \).

\[\text{VST2}\{<c>\}\{<q>\}\{<size>\} <\text{list}>, [<Rn\{:<align>\}]! \]

Post-indexed variant
Applies when \(Rm != 11x1 \).

\[\text{VST2}\{<c>\}\{<q>\}\{<size>\} <\text{list}>, [<Rn\{:<align>\}], <Rm> \]

Decode for all variants of this encoding

\[
\text{if size} == '11' \text{ then UNDEFINED;}
\text{ebytes} = 2; \text{ index} = \text{UInt}(\text{index}_\text{align} < 3:2>);
\text{inc} = \text{if index}_\text{align} < 1 > == '0' \text{ then 1 else 2;}
\text{alignment} = \text{if index}_\text{align} < 0 > == '0' \text{ then 1 else 4;}
\text{d} = \text{UInt}(D:Vd); \text{ d2} = \text{d} + \text{inc}; \text{ n} = \text{UInt}(\text{Rn}); \text{ m} = \text{UInt}(\text{Rm});
\text{wback} = (m != 15); \text{ register_index} = (m != 15 && m != 13);
\text{if n} == 15 || d2 > 31 \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(d2 > 31 \), then one of the following behaviors must occur:

- The instruction is \text{UNDEFINED}.
- The instruction executes as \text{NOP}.
- The memory locations specified by the instruction and the number of registers specified by the instruction become \text{UNKNOWN}. If the instruction specifies writeback, then that register becomes \text{UNKNOWN}. This behavior does not affect any other memory locations.

T3

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 3 | 0 15 12 11 10 9 8 | 7 4 3 0 |
|-------------|----------|----------|----------------|----------|----------|----------------|----------|
| 1 1 1 1 1 1 0 1 0 | 1 D 0 0 | Rn Vd 1 0 0 0 1 | index_align | Rm size |

Offset variant
Applies when \(Rm == 1111 \).

\[\text{VST2}\{<c>\}\{<q>\}\{<size>\} <\text{list}>, [<Rn\{:<align>\}] \]
Post-indexed variant
Applies when \(Rm = 1101 \).

\[
\text{VST2}[^{<c>}]^{<q>}.[^{<size>}]<\text{list}>,[^{<Rn>}{:<\text{align}>}]!
\]

Post-indexed variant
Applies when \(Rm \neq 11\times1 \).

\[
\text{VST2}[^{<c>}]^{<q>}.[^{<size>}]<\text{list}>,[^{<Rn>}{:<\text{align}>}],<Rm>
\]

Decode for all variants of this encoding

\[
\text{if size} = '11' \text{ then UNDEFINED;}
\]
\[
\text{if index_align} <1> \neq '0' \text{ then UNDEFINED;}
\]
\[
e\text{bytes} = 4; \text{ index} = \text{UInt(index_align} <1>); \]
\[
\text{inc} = \text{if index_align} <2> \neq '0' \text{ then 1 else 2};
\]
\[
\text{alignment} = \text{if index_align} <0> \neq '0' \text{ then 1 else 8};
\]
\[
d = \text{UInt(D:Vd)}; \quad d2 = d + \text{inc}; \quad n = \text{UInt(Rn)}; \quad m = \text{UInt(Rm)};
\]
\[
wback = (m \neq 15); \quad \text{register_index} = (m \neq 15 \&\& m \neq 13);
\]
\[
\text{if } n = 15 \text{ || } d2 > 31 \text{ then UNPREDICTABLE;}
\]

CONstrained UNPREDICTABLE behavior

If \(d2 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST2 (single 2-element structure from one lane) on page K1-7959.

Assembler symbols

\(<c>\)
For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

\(<q>\)
See Standard assembler syntax fields on page F2-4120.

\(<size>\)
Is the data size, encoded in the "size" field. It can have the following values:

- 8 when size = 00
- 16 when size = 01
- 32 when size = 10

\(<list>\)
Is a list containing the 64-bit names of the two SIMD&FP registers holding the element. The list must be one of:

\[
\{ <Dd>[<index>], <Dd+1>[<index>] \} \text{Single-spaced registers, encoded as "spacing" = 0.}
\]
\[
\{ <Dd>[<index>], <Dd+2>[<index>] \} \text{Double-spaced registers, encoded as "spacing" = 1. Not permitted when } <size> = 8.
\]
The encoding of "spacing" depends on <size>:
- <size> == 16"spacing" is encoded in the "index_align<1>" field.
- <size> == 32"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:
- <size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.
- <size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
- <size> == 32<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> is the general-purpose base register, encoded in the "Rn" field.

<align> is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on <size>:
- <size> == 8Encoded in the "index_align<0>" field as 0.
- <size> == 16Encoded in the "index_align<0>" field as 0.
- <size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
- <size> == 8<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.
- <size> == 16<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.
- <size> == 32<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm> is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes, ebytes] = Elem[D[d2], index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 2*ebytes;
F6.1.239 VST2 (multiple 2-element structures)

Store multiple 2-element structures from two or four registers stores multiple 2-element structures from two or four registers to memory, with interleaving. For more information, see Element and structure load/store instructions on page F1-4098. Every element of each register is saved. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 8</th>
<th>7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

111101000

Offset variant

Applies when Rm == 1111.
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}

Post-indexed variant

Applies when Rm == 1101.
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!

Post-indexed variant

Applies when Rm != 11x1.
VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

regs = 1; if align == '11' then UNDEFINED;
if size == '11' then UNDEFINED;
inc = if itype == '1001' then 2 else 1;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wbac = (m != 15); register_index = (m != 15 & m != 13);
if n == 15 || d2+regs > 32 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d2+regs > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
Offset variant
Applies when \(Rm = \text{1111} \).

\[
\text{VST2}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [Rn\{:<\text{align}>\}]
\]

Post-indexed variant
Applies when \(Rm = \text{1101} \).

\[
\text{VST2}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [Rn\{:<\text{align}>\}]!
\]

Post-indexed variant
Applies when \(Rm \neq \text{11x}1 \).

\[
\text{VST2}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [Rn\{:<\text{align}>\}], Rm
\]

Decode for all variants of this encoding

\[
\text{regs} = 2; \quad \text{inc} = 2;
\]

\[
\text{if size} = \text{``11'' then} \ \text{UNDEFINED;}
\]

\[
\text{alignment} = \text{if align} = \text{``00'' then} \ 1 \ \text{else} \ 1 << \text{UInt(align)};
\]

\[
\text{ebytes} = 1 << \text{UInt(size)}; \quad \text{elements} = 8 \ \text{DIV ebytes};
\]

\[
\text{d} = \text{UInt}(D:Vd); \quad \text{d2} = \text{d} + \text{inc}; \quad \text{n} = \text{UInt}(Rn); \quad \text{m} = \text{UInt}(Rm);
\]

\[
\text{wback} = (m != 15); \quad \text{register_index} = (m != 15 \land m != 13);
\]

\[
\text{if n = 15} \ \text{|| d2+regs > 32 then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior
If \(d2+regs > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T1

\[
|15|14|13|12|11|10|9|8|7|6|5|4|3|0|12|11|8|7|6|5|4|3|0|\]

| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Rn | Vd | 0 | 0 | x | size | align | Rm |

Offset variant
Applies when \(Rm = \text{1111} \).

\[
\text{VST2}\{<c>\}{<q>}.<\text{size}> \text{<list>}, [Rn\{:<\text{align}>\}]
\]

Post-indexed variant
Applies when \(Rm = \text{1101} \).
VST2{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST2}{<q>}.<size> <list>, [<Rn>{:<align>}]!, <Rm>
\]

Decode for all variants of this encoding

\[
\text{regs} = 1; \text{ if align} = '11' \text{ then UNDEFINED;}
\text{if size} = '11' \text{ then UNDEFINED;}
\text{inc} = \text{ if itype} = '1001' \text{ then 2 else 1;}
\text{alignment} = \text{ if align} = '00' \text{ then 1 else 4} \ll \text{ UInt(align);}
\text{ebytes} = 1 \ll \text{ UInt(size); elements} = 8 \div \text{ ebytes;}
\text{d} = \text{ UInt(D:Vd); }\text{ d2} = \text{ d} + \text{ inc; }\text{ n} = \text{ UInt(Rn); }\text{ m} = \text{ UInt(Rm);}
\text{wback} = (m \neq 15); \text{ register_index} = (m \neq 15 \&\& m \neq 1);\]

\[
\text{if n} = 15 || \text{d2+regs} > 32 \text{ then UNPREDICTABLE;}
\]

CONSTRANDED UNPREDICTABLE behavior

If \(\text{d2+regs} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

\[T2\]

|\[15 14 13 12|11 10 9 8 7 6 5 4 3 0|15 12|11 10 9 8 7 6 5 4 3 0|
|1 1 1 1 0 0 1 0 D 0 0 | Rn | Vd | 0 0 1 1 size | align | Rm |

Offset variant

Applies when \(Rm = 1111 \).

\[
\text{VST2}{<q>}.<size> <list>, [<Rn>{:<align>}]!
\]

Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST2}{<q>}.<size> <list>, [<Rn>{:<align>}]!
\]

Post-indexed variant

Applies when \(Rm = 11x1 \).

\[
\text{VST2}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>
\]

Decode for all variants of this encoding

\[
\text{regs} = 2; \text{ inc} = 2;
\text{if size} = '11' \text{ then UNDEFINED;}
\text{alignment} = \text{ if align} = '00' \text{ then 1 else 4} \ll \text{ UInt(align);}
\text{ebytes} = 1 \ll \text{ UInt(size); elements} = 8 \div \text{ ebytes;}
\text{d} = \text{ UInt(D:Vd); }\text{ d2} = \text{ d} + \text{ inc; }\text{ n} = \text{ UInt(Rn); }\text{ m} = \text{ UInt(Rm);}
\text{wback} = (m \neq 15); \text{ register_index} = (m \neq 15 \&\& m \neq 1);\]

\[
\text{if n} = 15 || \text{d2+regs} > 32 \text{ then UNPREDICTABLE;}
\]
CONSTRAINED UNPREDICTABLE behavior

If \(d2 + \text{regs} > 32 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as **NOP**.
- The memory locations specified by the instruction and the number of registers specified by the instruction become **UNKNOWN**. If the instruction specifies writeback, then that register becomes **UNKNOWN**. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the **CONSTRAINED UNPREDICTABLE behavior** of this instruction, see Appendix K1 *Architectural Constraints on UNPREDICTABLE Behaviors*, and particularly *VST2 (multiple 2-element structures)* on page K1-7958.

Related encodings: See *Advanced SIMD element or structure load/store* on page F3-4198 for the T32 instruction set, or *Advanced SIMD element or structure load/store* on page F4-4274 for the A32 instruction set.

Assembler symbols

- `<c>` For encoding A1 and A2: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.

 For encoding T1 and T2: see *Standard assembler syntax fields* on page F2-4120.

- `<q>` See *Standard assembler syntax fields* on page F2-4120.

- `<size>` Is the data size, encoded in the "size" field. It can have the following values:

 - 8 when `size = 00`
 - 16 when `size = 01`
 - 32 when `size = 10`

 The encoding `size = 11` is reserved.

- `<list>` Is a list containing the 64-bit names of the SIMD&FP registers.

 The list must be one of:

 - `{ <Dd>, <Dd+1> }` Two single-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in the "itype" field as `0b1000`.

 - `{ <Dd>, <Dd+2> }` Two double-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in the "itype" field as `0b1001`.

 - `{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }` Three single-spaced registers. Selects the A2 and T2 encodings of the instruction.

 The register `<Dd>` is encoded in the "D:Vd" field.

- `<Rn>` Is the general-purpose base register, encoded in the "Rn" field.

- `<align>` Is the optional alignment.

 Whenever `<align>` is omitted, the standard alignment is used, see *Unaligned data access* on page E2-4044, and is encoded in the "align" field as `0b00`.

 Whenever `<align>` is present, the permitted values are:

 - 64: 64-bit alignment, encoded in the "align" field as `0b01`.

 - 128: 128-bit alignment, encoded in the "align" field as `0b10`.

 - 256: 256-bit alignment, encoded in the "align" field as `0b11`. Available only if `<list>` contains four registers.
: is the preferred separator before the \(<align>\) value, but the alignment can be specified as \(@<align>\), see The Advanced SIMD addressing mode on page F2-4141.

<\texttt{rm}>

Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

```
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    address = R[n]; iswrite = TRUE;
    = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
    for r = 0 to regs-1
        for e = 0 to elements-1
            MemU[address, ebytes] = Elem[D[d+r], e];
            MemU[address+ebytes, ebytes] = Elem[D[d2+r], e];
            address = address + 2*ebytes;
        if wback then
            if register_index then
                R[n] = R[n] + R[m];
            else
                R[n] = R[n] + 16*regs;
            ```
F6.1.240 VST3 (single 3-element structure from one lane)

Store single 3-element structure from one lane of three registers stores one 3-element structure to memory from corresponding elements of three registers. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

Offset variant

Applies when Rm == 1111.

VST3{<c>{<q>}.<size> <list>, [Rn]}

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>{<q>}.<size> <list>, [Rn]}!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>{<q>}.<size> <list>, [Rn], Rm}

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
Offset variant
Applies when \(Rm == 1111 \).
\[
\text{VST3}\{\langle c\rangle}\{\langle q\rangle}\{\langle size\rangle}\{\langle list\rangle\}, \langle Rn\rangle
\]

Post-indexed variant
Applies when \(Rm == 1101 \).
\[
\text{VST3}\{\langle c\rangle}\{\langle q\rangle}\{\langle size\rangle}\{\langle list\rangle\}, \langle Rn\rangle\!
\]

Post-indexed variant
Applies when \(Rm != 11x1 \).
\[
\text{VST3}\{\langle c\rangle}\{\langle q\rangle}\{\langle size\rangle}\{\langle list\rangle\}, \langle Rn\rangle, \langle Rm\rangle
\]

Decode for all variants of this encoding
\[
\text{if size == '11' then UNDEFINED;}
\text{if index_align<0> != '0' then UNDEFINED;}
\text{ebytes = 2; index = UInt(index_align<3:2>);}
\text{inc = if index_align<1> == '0' then 1 else 2;}
\text{d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);}
\text{wback = (m != 15); register_index = (m != 15 \&\& m != 11);}
\text{if n == 15 \| d3 > 31 then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior
If \(d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A3

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 4 3 0</th>
<th>1 1 1 1 0 1 0 1 0 1 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>Rn</td>
</tr>
</tbody>
</table>

Offset variant
Applies when \(Rm == 1111 \).
\[
\text{VST3}\{\langle c\rangle\{\langle q\rangle\{\langle size\rangle\{\langle list\rangle\}, \langle Rn\rangle
\]

Post-indexed variant
Applies when \(Rm == 1101 \).
\[
\text{VST3}\{\langle c\rangle\{\langle q\rangle\{\langle size\rangle\{\langle list\rangle\}, \langle Rn\rangle\!
\]

Post-indexed variant
Applies when \(Rm != 11x1 \).
\[
\text{VST3}\{\langle c\rangle\{\langle q\rangle\{\langle size\rangle\{\langle list\rangle\}, \langle Rn\rangle, \langle Rm\rangle
\]
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 4; index = UInt(index_align<3>);
 inc = if index_align<2> == '0' then 1 else 2;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc;
 n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15);
 register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
<th>12</th>
<th>11 10 9 8</th>
<th>7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1</td>
<td>0 0 1 1</td>
<td>D 0 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0 1 0</td>
<td>index_align</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if index_align<1:0> != '00' then UNDEFINED;
 ebytes = 1; index = UInt(index_align<3:1>);
 inc = 1;
 d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc;
 n = UInt(Rn); m = UInt(Rm);
 wback = (m != 15);
 register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T2

Offset variant
Applies when \(Rm == 1111 \).

\[
\text{VST3\{<c>{<q>\}}<\text{size}> <\text{list}>, [<Rn>]}
\]

Post-indexed variant
Applies when \(Rm == 1101 \).

\[
\text{VST3\{<c>{<q>\}}<\text{size}> <\text{list}>, [<Rn>]!}
\]

Post-indexed variant
Applies when \(Rm \neq 111x \).

\[
\text{VST3\{<c>{<q>\}}<\text{size}> <\text{list}>, [<Rn>], <Rm>}
\]

Decode for all variants of this encoding

\[
\begin{align*}
\text{if size} &= '11' \text{ then UNDEFINED}; \\
\text{if index_align<3:2> != '0' then UNDEFINED};
\end{align*}
\]

\[
\begin{align*}
e\text{bytes} &= 2; \quad \text{index} = \text{UInt(index_align<3:2>);}
\end{align*}
\]

\[
\begin{align*}
\text{inc} &= \text{if index_align<1> == '0' then 1 else 2};
\end{align*}
\]

\[
\begin{align*}
d &= \text{UInt}(D;Vd); \\
d2 &= d + \text{inc}; \\
d3 &= d2 + \text{inc};
\end{align*}
\]

\[
\begin{align*}
n &= \text{UInt}(Rn); \\
m &= \text{UInt}(Rm);
\end{align*}
\]

\[
\begin{align*}
w\text{back} &= (m != 15); \\
\text{register_index} &= (m != 15 && m != 13); \\
\text{if n == 15 || d3 > 31 then UNPREDICTABLE;}
\end{align*}
\]

CONSTRANGED UNPREDICTABLE behavior

If \(d3 > 31 \), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T3

Offset variant
Applies when \(Rm == 1111 \).

\[
\text{VST3\{<c>{<q>\}}<\text{size}> <\text{list}>, [<Rn>]}
\]
Post-indexed variant
Applies when Rm == 1101.
VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed variant
Applies when Rm != 11x1.
VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

Decode for all variants of this encoding
if size == '11' then UNDEFINED;
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(0:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior
If d3 > 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings
For more information about the CONSTRANDED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (single 3-element structure from one lane) on page K1-7959.

Assembler symbols
<c>
For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:
8 when size = 00
16 when size = 01
32 when size = 10

<list>
Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.
The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }Single-spaced registers, encoded as "spacing" = 0.
{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.
The encoding of "spacing" depends on \(<size>\):
\(<size> = 8\>" spacing" is encoded in the "index_align<0>" field.
\(<size> = 16\>" spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.
\(<size> = 32\>" spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to 0b00.

The register \(<Dd>\) is encoded in the "D:Vd" field.

The permitted values and encoding of \(<index>\) depend on \(<size>\):
\(<size> = 8\>" <index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.
\(<size> = 16\>" <index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
\(<size> = 32\>" <index> is 0 or 1, encoded in the "index_align<3>" field.

\(<Rn>\) Is the general-purpose base register, encoded in the "Rn" field.

\(<Rm>\) Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Alignment

Standard alignment rules apply, see Alignment support on page B2-148.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n];
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes, ebytes] = Elem[D[d2], index];
 MemU[address+2*ebytes, ebytes] = Elem[D[d3], index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 3*ebytes;
F6.1.241 VST3 (multiple 3-element structures)

Store multiple 3-element structures from three registers stores multiple 3-element structures to memory from three registers, with interleaving. For more information, see Element and structure load/store instructions on page F1-4098. Every element of each register is saved. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 |12|11 |8 |7 |6 |5 |4 |3 |0 | | | | | | |
|---|
| 1 |1 |1 |1 |0 |1 |0 |0 |0 |D |0 |0 |Rn |Vd |0 |1 |x |size |align |Rm |

iotype

Offset variant

Applies when Rm == 1111.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

if size == '11' || align<1> == '1' then UNDEFINED;
case iotype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
otherwise
 SEE "Related encodings";
 alignment = if align<0> == '0' then 1 else 8;
 ebytes = 1 << Uint(size); elements = 8 DIV ebytes;
 d = Uint(D:Vd); d2 = d + inc; d3 = d2 + inc; n = Uint(Rn); m = Uint(Rm);
 wback = (m != 15); register_index = (m != 15 && m != 13);
 if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
T1

```
|15|14|13|12|11|10|9|8|7|6|5|4|3|0| | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1|1|1|1|0|0|1|0|D|0|0|Rn|Vd|0|0|x|size|align|Rm|
```

Offset variant
Applies when \(Rm = 1111 \).

\[\text{VST3}\{<c>\}<q>.<size> <list>, [<Rn>:{<align>}] \]

Post-indexed variant
Applies when \(Rm = 1101 \).

\[\text{VST3}\{<c>\}<q>.<size> <list>, [<Rn>:{<align}>]! \]

Post-indexed variant
Applies when \(Rm \neq 11\times1 \).

\[\text{VST3}\{<c>\}<q>.<size> <list>, [<Rn>:{<align}>], <Rm> \]

Decode for all variants of this encoding

if size == '11' || align<1> == '1' then UNDEFINED;

case iotype of
 when '0100'
 inc = 1;
 when '0101'
 inc = 2;
 otherwise
 SEE "Related encodings";
end case;

alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(d3 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST3 (multiple 3-element structures) on page K1-7959.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.
Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Size</th>
<th>Encoded Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>00</td>
<td>when size = 00</td>
</tr>
<tr>
<td>16</td>
<td>01</td>
<td>when size = 01</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>when size = 10</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

<list>
Is a list containing the 64-bit names of the SIMD&FP registers.

The list must be one of:

- { <Dd>, <Dd+1>, <Dd+2> } Single-spaced registers, encoded in the "itype" field as 0b0100.
- { <Dd>, <Dd+2>, <Dd+4> } Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.

Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in the "align" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e];
 MemU[address+ebytes, ebytes] = Elem[D[d2], e];
 MemU[address+2*ebytes, ebytes] = Elem[D[d3], e];
 address = address + 3*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 24;
F6.1.242 VST4 (single 4-element structure from one lane)

Store single 4-element structure from one lane of four registers stores one 4-element structure to memory from corresponding elements of four registers. For details of the addressing mode see The Advanced SIMD addressing mode on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & D & 0 & 0 & Rn & Vd & 0 & 0 & 1 & 1 & index_align & Rm
\end{array}
\]

Offset variant

Applies when \(Rm = 1111 \).

\[
\text{VST4}({<c>} {<q>} . <size> <list>, [<Rn>{:<align>}]})
\]

Post-indexed variant

Applies when \(Rm = 1101 \).

\[
\text{VST4}({<c>} {<q>} . <size> <list>, [<Rn>{:<align>}]})!
\]

Post-indexed variant

Applies when \(Rm \neq 11x1 \).

\[
\text{VST4}({<c>} {<q>} . <size> <list>, [<Rn>{:<align>}]}, <Rm>
\]

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if size != '00' then SEE "Related encodings";
bytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 & m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior

If \(d4 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A2

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & D & 0 & 0 & Rn & Vd & 0 & 1 & 1 & 1 & index_align & Rm
\end{array}
\]
Offset variant
Applies when \(Rm == 1111 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}] \]

Post-indexed variant
Applies when \(Rm == 1101 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}]! \]

Post-indexed variant
Applies when \(Rm != 11x1 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}], <Rm> \]

Decode for all variants of this encoding
if size == '11' then UNDEFINED;
if size != '01' then SEE "Related encodings";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 & m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONstrained UNPREDICTABLE behavior
If d4 > 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

A3

\[
\begin{array}{cccccccccccc}
\hline
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & Rn & Vd & 1 & 0 & 1 & 1 & index_align & Rm \\
\end{array}
\]

code size

Offset variant
Applies when \(Rm == 1111 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}] \]

Post-indexed variant
Applies when \(Rm == 1101 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}]! \]

Post-indexed variant
Applies when \(Rm != 11x1 \).
\[\text{VST4}{\langle c\rangle}{\langle q\rangle}.{\langle \text{size} \rangle} \text{<list>}, [\langle Rn\rangle{:<\text{align}>}], <Rm> \]
Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if size != '10' then SEE "Related encodings";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
da = UInt(D:Vd);
d2 = d + inc;
d3 = d2 + inc;
d4 = d3 + inc;
n = UInt(Rn);
m = UInt(Rm);
wback = (m != 15);
register_index = (m != 15 & & m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 0</th>
<th>12 11 10 9 8 7 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>index_align</td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.
VST4{<c>}{<q>}{<size>} <list>, [<Rn>{:<align>}]

Post-indexed variant

Applies when Rm == 1101.
VST4{<c>}{<q>}{<size>} <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.
VST4{<c>}{<q>}{<size>} <list>, [<Rn>{:<align>}], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if size != '00' then SEE "Related encodings";
ebytes = 1; index = UInt(index_align<3:1>);
inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
da = UInt(D:Vd);
d2 = d + inc;
d3 = d2 + inc;
d4 = d3 + inc;
n = UInt(Rn);
m = UInt(Rm);
wback = (m != 15);
register_index = (m != 15 & & m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRANDED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T2

|15 14 13 12|11 10 9 8 |7 6 5 4 3| 0 |15 12|11 10 9 8 |7 4 3 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1 1 1 1 1 0 0 1 1 |D 0 0 |Rn |Vd |0 1 1 1 |index_align |Rm |

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>], <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if size != '01' then SEE "Related encodings";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> then 1 else 2;
alignment = if index_align<0> then 0 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 & m != 11);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONstrained unpredictable behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

• The instruction executes as NOP.

• The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

T3

|15 14 13 12|11 10 9 8 |7 6 5 4 3| 0 |15 12|11 10 9 8 |7 4 3 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|1 1 1 1 1 0 0 1 1 |D 0 0 |Rn |Vd |1 0 1 1 |index_align |Rm |

Offset variant

Applies when Rm == 1111.
VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed variant
Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Post-indexed variant
Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if size != '10' then SEE "Related encodings";
if index_align<1:0> == '11' then UNDEFINED;
if index_align<3> == '00' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
inc = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (single 4-element structure from one lane) on page K1-7959.

Assembler symbols

- For encoding A1, A2 and A3: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- For encoding T1, T2 and T3: see Standard assembler syntax fields on page F2-4120.
- See Standard assembler syntax fields on page F2-4120.

- Is the data size, encoded in the "size" field. It can have the following values:
 - 8 when size = 00
 - 16 when size = 01
 - 32 when size = 10

- Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.
 The list must be one of:

 { <D0>[<index>], <D1>[<index>], <D2>[<index>], <D3>[<index>] }Single-spaced registers, encoded as "spacing" = 0.
{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] } Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
- <size> == 16"spacing" is encoded in the "index_align<1:1>" field.
- <size> == 32"spacing" is encoded in the "index_align<2:1>" field.

The register <Dd> is encoded in the "D:Vd" field.

The permitted values and encoding of <index> depend on <size>:
- <size> == 8<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.
- <size> == 16<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.
- <size> == 32<index> is 0 or 1, encoded in the "index_align<3:1>" field.

<rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and the encoding depends on <size>:
- <size> == 8Encoded in the "index_align<0:0>" field as 0.
- <size> == 16Encoded in the "index_align<0:0>" field as 0.
- <size> == 32Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
- <size> == 8<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0:0>" field as 1.
- <size> == 16<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0:0>" field as 1.
- <size> == 32<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field as 0b01, and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 MemU[address, ebytes] = Elem[D[d], index];
 MemU[address+ebytes, ebytes] = Elem[D[d2], index];
 MemU[address+2*ebytes, ebytes] = Elem[D[d3], index];
 MemU[address+3*ebytes, ebytes] = Elem[D[d4], index];
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 4*ebytes;
F6.1.243 **VST4 (multiple 4-element structures)**

Store multiple 4-element structures from four registers stores multiple 4-element structures to memory from four registers, with interleaving. For more information, see *Element and structure load/store instructions* on page F1-4098. Every element of each register is saved. For details of the addressing mode see *The Advanced SIMD addressing mode* on page F2-4141.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16 15 12</th>
<th>11 8 7 6 5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 1 0 0</td>
<td>D 0 0</td>
<td>Rn</td>
<td>Vd</td>
<td>0 0 0</td>
</tr>
<tr>
<td>itype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offset variant

Applies when Rm == 1111.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]}

Post-indexed variant

Applies when Rm == 1101.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]!

Post-indexed variant

Applies when Rm != 11x1.

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align}>]}, <Rm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;

case itype of
 when '0000'
 inc = 1;
 when '0001'
 inc = 2;
 otherwise
 SEE "Related encodings";

alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 & & m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
Offset variant
Applies when \(Rm = 1111 \).

\[\text{VST4}\{<c>\}{<q>}.<size> <\text{list}>, \left[<Rn>\{:<\text{align}>\} \right] \]

Post-indexed variant
Applies when \(Rm = 1101 \).

\[\text{VST4}\{<c>\}{<q>}.<size> <\text{list}>, \left[<Rn>\{:<\text{align}>\} \right]! \]

Post-indexed variant
Applies when \(Rm \neq 11x1 \).

\[\text{VST4}\{<c>\}{<q>}.<size> <\text{list}>, \left[<Rn>\{:<\text{align}>\} \right], <Rm> \]

Decode for all variants of this encoding

\[
\text{if size} = '11' \text{ then UNDEFINED; case itype of}
\]

\[
\text{when '0000' inc = 1;}
\]

\[
\text{when '0001' inc = 2;}
\]

\[
\text{otherwise}
\]

\[
\text{SEE "Related encodings"; alignment = if align == '00' then 1 else 4 << UInt(align); ebytes = 1 << UInt(size); elements = 8 DIV ebytes; d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm); wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15 || d4 > 31 then UNPREDICTABLE; }
\]

CONSTRAINED UNPREDICTABLE behavior
If \(d4 > 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly VST4 (multiple 4-element structures) on page K1-7959.

Related encodings: See Advanced SIMD element or structure load/store on page F3-4198 for the T32 instruction set, or Advanced SIMD element or structure load/store on page F4-4274 for the A32 instruction set.
Assembler symbols

<
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

>
See Standard assembler syntax fields on page F2-4120.

<size>
Is the data size, encoded in the "size" field. It can have the following values:

8 when size = 00
16 when size = 01
32 when size = 10

The encoding size = 11 is reserved.

<list>
Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> } Single-spaced registers, encoded in the "itype" field as 0b0000.
{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> } Double-spaced registers, encoded in the "itype" field as 0b0001.
The register <Dd> is encoded in the "D:Vd" field.

<Rn>
Is the general-purpose base register, encoded in the "Rn" field.

<align>
Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access on page E2-4044, and is encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:

64 64-bit alignment, encoded in the "align" field as 0b01.
128 128-bit alignment, encoded in the "align" field as 0b10.
256 256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>, see The Advanced SIMD addressing mode on page F2-4141.

<Rm>
Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm" field.

For more information about the variants of this instruction, see The Advanced SIMD addressing mode on page F2-4141.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 address = R[n]; iswrite = TRUE;
 - = AArch32.CheckAlignment(address, alignment, AccType_VEC, iswrite);
 for e = 0 to elements-1
 MemU[address, ebytes] = Elem[D[d], e];
 MemU[address+ebytes, ebytes] = Elem[D[d+2], e];
 MemU[address+2*ebytes, ebytes] = Elem[D[d+4], e];
 MemU[address+3*ebytes, ebytes] = Elem[D[d+6], e];
 address = address + 4*ebytes;
 if wback then
 if register_index then
 R[n] = R[n] + R[m];
 else
 R[n] = R[n] + 32;
 end if
end if
F6.1.244 VSTM, VSTMDB, VSTMIA

Store multiple SIMD&FP registers stores multiple registers from the Advanced SIMD and floating-point register file to consecutive memory locations using an address from a general-purpose register.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the alias VPUSH. See Alias conditions on page F6-5659 for details of when each alias is preferred.

A1

Decrement Before variant

Applies when \(P == 1 \) \&\& \(U == 0 \) \&\& \(W == 1 \).

\[
\text{VSTMDB\{<c>\}{<q>}{.<size>} <Rn>!, <dreglist>}
\]

Increment After variant

Applies when \(P == 0 \) \&\& \(U == 1 \).

\[
\text{VSTM\{<c>\}{<q>}{.<size>} <Rn>!, <dreglist>}
\]

\[
\text{VSTMIA\{<c>\}{<q>}{.<size>} <Rn>!, <dreglist>}
\]

Decode for all variants of this encoding

\[
\text{if } P == '0' \&\& U == '0' \&\& W == '0' \text{ then SEE "Related encodings";}
\]
\[
\text{if } P == '1' \&\& W == '0' \text{ then SEE "VSTR";}
\]
\[
\text{if } P == U \&\& W == '1' \text{ then UNDEFINED;}
\]

If \(\text{REG}(\text{d}+\text{REG}(\text{n})) \) \&\& \(\text{REG}(\text{d}+\text{REG}(\text{n})) = '1' \) then \(\text{FSTMIA} \), if \(\text{REG}(\text{d}+\text{REG}(\text{n})) \&\& \text{REG}(\text{n}) \) \&\& \(\text{REG}(\text{d}+\text{REG}(\text{n})) = '1' \) then \(\text{FSTMIA} \).

CONSTRANDED UNPREDICTABLE behavior

If \(\text{REG} = 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VSTM with the same addressing mode but stores no registers.

If \(\text{REG} > 16 \) \&\& \(\text{REG}(\text{d}+\text{REG}(\text{n})) > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.
Decrement Before variant

Applies when \(P = 1 \land U = 0 \land W = 1 \).

\[
\text{VSTMDB}\{<c>\}{<q>}{.<size>} <Rn>!, <\text{sreglist}>
\]

Increment After variant

Applies when \(P = 0 \land U = 1 \).

\[
\text{VSTM}\{<c>\}{<q>}{.<size>} <Rn>\{!\}, <\text{sreglist}>
\]

\[
\text{VSTMIA}\{<c>\}{<q>}{.<size>} <Rn>\{!\}, <\text{sreglist}>
\]

Decode for all variants of this encoding

if \(P = '0' \land U = '0' \land W = '0' \) then SEE "Related encodings";
if \(P = '1' \land W = '0' \) then SEE "VSTR";
if \(P = U \land W = '1' \) then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If \(\text{regs} = 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VSTM with the same addressing mode but stores no registers.

If \((d+\text{regs}) > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Decrement Before variant

Applies when \(P = 1 \land U = 0 \land W = 1 \).

\[
\text{VSTMDB}\{<c>\}{<q>}{.<size>} <Rn>!, <\text{dreglist}>
\]
Increment After variant

Applies when $P = 0 \land U = 1$.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

Decode for all variants of this encoding

if $P == 0'$ & U == '0' & W == '0' then SEE "Related encodings";
if $P == '1' & U == '0' then SEE "VSTR";
if $P == U & W == '1' then UNDEFINED;

// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)

single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 & (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' & (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Decrement Before variant

Applies when $P = 1 \land U = 0 \land W = 1$.

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After variant

Applies when $P = 0 \land U = 1$.

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>
VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

Decode for all variants of this encoding

if $P == 0'$ & U == '0' & W == '0' then SEE "Related encodings";
if $P == '1' & W == '0' then SEE "VSTR";
if $P == U & W == '1' then UNDEFINED;

// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
CONSTRAINED UNPREDICTABLE behavior

If \(\text{regs} = 0 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \text{NOP}.
- The instruction operates as a \text{VSTM} with the same addressing mode but stores no registers.

If \((\text{d+regs}) > 32\), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as \text{NOP}.
- The memory locations specified by the instruction and the number of registers specified by the instruction become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior does not affect any other memory locations.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors, and particularly \text{VSTM} on page K1-7959.

Related encodings: See Advanced SIMD and floating-point 64-bit move on page F3-4175 for the T32 instruction set, or Advanced SIMD and floating-point 64-bit move on page F4-4253 for the A32 instruction set.

Alias conditions

<table>
<thead>
<tr>
<th>Alias</th>
<th>is preferred when</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{VPUSH}</td>
<td>(P = '1' && U = '0' && W = '1' && Rn = '1101')</td>
</tr>
</tbody>
</table>

Assembler symbols

- \text{<c>} See Standard assembler syntax fields on page F2-4120.
- \text{<q>} See Standard assembler syntax fields on page F2-4120.
- \text{<size>} An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers being transferred.
- \text{<rn>} Is the general-purpose base register, encoded in the "\text{Rn}" field. If writeback is not specified, the PC can be used. However, Arm deprecates use of the PC.
- \text{!} Specifies base register writeback. Encoded in the "\text{W}" field as 1 if present, otherwise 0.
- \text{<sreglist>} Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "\text{Vd:D}\), and "\text{imm8}\) is set to the number of registers in the list. The list must contain at least one register.
- \text{<dreglist>} Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in the list is encoded in "\text{D:Vd}\), and "\text{imm8}\) is set to twice the number of registers in the list. The list must contain at least one register, and must not contain more than 16 registers.
Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then R[n] else R[n]-imm32;
 for r = 0 to regs-1
 if single_regs then
 MemA[address,4] = S[d+r]; address = address+4;
 else
 // Store as two word-aligned words in the correct order for current endianness.
 MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
 MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
 address = address+8;
 if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
F6.1.245 VSTR

Store SIMD&FP register stores a single register from the Advanced SIMD and floating-point register file to memory, using an address from a general-purpose register, with an optional offset.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| !1111 | 1 | 1 | 0 | 1 | U | D | 0 | 0 | Rn | Vd | 1 | 0 | size | imm8 |

Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]}

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}.32 <Sd>, [<Rn>{, #{+/-}<imm>}]}

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}.64 <Sd>, [<Rn>{, #{+/-}<imm>}]}

Decode for all variants of this encoding

if size == '00' || (size == '01' & & !HaveFP16Ext()) then UNDEFINED;
if size == '01' & & cond != '1110' then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
 n = UInt(Rn);
if n == 15 & & CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' & & cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>U</td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Rn</td>
<td>Vd</td>
<td>1</td>
<td>0</td>
<td>size</td>
<td>imm8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Half-precision scalar variant

Applies when size == 01.

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar variant

Applies when size == 10.

VSTR{<c>}{<q>}.32 <Sd>, [<Rn>{, #{+/-}<imm}>]

Double-precision scalar variant

Applies when size == 11.

VSTR{<c>}{<q>}.64 <Dd>, [<Rn>{, #{+/-}<imm}>]

Decode for all variants of this encoding

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
case size of
 when '01' d = UInt(Vd:D);
 when '10' d = UInt(Vd:D);
 when '11' d = UInt(D:Vd);
n = UInt(Rn);
if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Notes for all encodings

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

<c> See Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source code, but is otherwise ignored.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in the "U" field. It can have the following values:

- when U = 0
+ when U = 1

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as <imm>/4.

For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 case esize of
 when 16
 MemA[address,2] = S[d]<15:0>;
 when 32
 MemA[address,4] = S[d];
 when 64
 // Store as two word-aligned words in the correct order for current endianness.

F6.1.246 VSUB (floating-point)

Vector Subtract (floating-point) subtracts the elements of one vector from the corresponding elements of another vector, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

\[
\begin{array}{cccccccccccccccccc}
D & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & D & 1 & sz & Vn & Vd & 1 & 1 & 0 & 1 & N & Q & M & 0 & Vm & \\
\end{array}
\]

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1'  (Vd<0> == '1'  Vn<0> == '1'  Vm<0> == '1') then UNDEFINED;
if sz == '1'  !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
case sz of
 when '0' esize = 32; elements = 2;
 when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

\[
\begin{array}{cccccccccccccccccc}
D & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & Vn & Vd & 1 & 1 & size & N & 1 & M & 0 & Vm & \\
\end{array}
\]

cond

Half-precision scalar variant

Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant

Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant

Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dm>, <Dm>
Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
case size of
when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONstrained UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

|15 14 13 12|11 10 9 8|7 6 5 4|3 0|15 12|11 10 9 8|7 6 5 4|3 0| |
|---|---|---|---|---|---|---|---|---|
|1 1 1 1|0 1 1 1 0|D 1|sz|Vn|Vd|1 1 0 1|N Q M 0|Vm|

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;
case sz of
when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONstrained UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions

T2

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D</td>
<td>1</td>
<td>1</td>
<td>Vn</td>
<td>Vd</td>
<td>1</td>
</tr>
</tbody>
</table>

Half-precision scalar variant
Applies when size == 01.

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar variant
Applies when size == 10.

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar variant
Applies when size == 11.

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

Decode for all variants of this encoding

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
case size of
 when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
 when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior
If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler symbols

<
> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields on page F2-4120.
<
> See Standard assembler syntax fields on page F2-4120.
<
> Is the data type for the elements of the vectors, encoded in the "sz" field. It can have the following values:
F32 when sz = 0
F16 when sz = 1
<
> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.
<
> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.
<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
 if advsimd then // Advanced SIMD instruction
 for r = 0 to regs-1
 for e = 0 to elements-1
 Elem[D[d+r],e,esize] = FPSub(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
 else // VFP instruction
 case esize of
 when 16
 S[d] = Zeros(16) : FPSub(S[n]<15:0>, S[m]<15:0>, FPSCR);
 when 32
 S[d] = FPSub(S[n], S[m], FPSCR);
 when 64
 D[d] = FPSub(D[n], D[m], FPSCR);
F6.1.247 VSUB (integer)

Vector Subtract (integer) subtracts the elements of one vector from the corresponding elements of another vector, and places the results in the destination vector.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>0 1</td>
<td>1 0</td>
<td>D size</td>
<td>Vn</td>
<td>Vd</td>
<td>1 0 0 0</td>
<td>N Q M 0</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4</th>
<th>3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>1 1 1 1</td>
<td>0</td>
<td>D size</td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

See Standard assembler syntax fields on page F2-4120.

Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

- \texttt{I8} when \texttt{size = 00}
- \texttt{I16} when \texttt{size = 01}
- \texttt{I32} when \texttt{size = 10}
- \texttt{I64} when \texttt{size = 11}

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \texttt{<Qd>\texttt{*2}}.

Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \texttt{<Qn>\texttt{*2}}.

Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as \texttt{<Qm>\texttt{*2}}.

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if \texttt{ConditionPassed()} then
 EncodingSpecificOperations(); \ CheckAdvSIMDEnabled();
 for \texttt{r = 0} to \texttt{regs-1}
 for \texttt{e = 0} to \texttt{elements-1}
 \texttt{Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] - Elem[D[m+r],e,esize];}

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.248 VSUBHN

Vector Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the corresponding elements of another quadword vector, takes the most significant half of each result, and places the final results in a doubleword vector. The results are truncated. For rounded results, see VRSUBHN.

There is no distinction between signed and unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | D | l=11 | Vn | Vd | 0 | 1 | 1 | 0 | N | 0 | M | 0 | Vm |

size
```

A1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | D | l=11 | Vn | Vd | 0 | 1 | 1 | 0 | N | 0 | M | 0 | Vm |

size
```

T1 variant

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<>

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>

See Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:

- I16 when size = 00
- I32 when size = 01
- I64 when size = 10

<Do> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

```c
if ConditionPassed() then
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for e = 0 to elements-1
        result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize];
        Elem[D[d],e,esize] = result<2*esize-1:esize>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.249 VSUBL

Vector Subtract Long subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in a quadword vector. Before subtracting, it sign-extends or zero-extends
the elements of both operands.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which
the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For
more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

A1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

```
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

T1 variant

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced
SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

<c> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditionnal.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q> See Standard assembler syntax fields on page F2-4120.
Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can have the following values:

- **S8** when \(U = 0, size = 00 \)
- **S16** when \(U = 0, size = 01 \)
- **S32** when \(U = 0, size = 10 \)
- **U8** when \(U = 1, size = 00 \)
- **U16** when \(U = 1, size = 01 \)
- **U32** when \(U = 1, size = 10 \)

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>*2 \).

Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then 
    EncodingSpecificOperations(); CheckAdvSIMDEnabled();
    for e = 0 to elements-1 
        if is_vsubw then 
            op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
        else 
            op1 = Int(Elem[Din[n],e,esize], unsigned);
        result = op1 - Int(Elem[Din[m],e,esize], unsigned);
        Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.250 VSUBW

Vector Subtract Wide subtracts the elements of a doubleword vector from the corresponding elements of a quadword vector, and places the results in another quadword vector. Before subtracting, it sign-extends or zero-extends the elements of the doubleword operand.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

<table>
<thead>
<tr>
<th>31 30 29 28</th>
<th>27 26 25 24</th>
<th>23 22 21 20</th>
<th>19 16</th>
<th>15 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>D</td>
<td>1=11</td>
<td>Vn</td>
<td>Vd</td>
</tr>
</tbody>
</table>

size op

A1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UINT(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UINT(D:Vd); n = UINT(N:Vn); m = UINT(M:Vm);

T1

<table>
<thead>
<tr>
<th>15 14 13 12</th>
<th>11 10 9 8</th>
<th>7 6 5 4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>U</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

size op

T1 variant

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

Decode for this encoding

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UINT(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UINT(D:Vd); n = UINT(N:Vn); m = UINT(M:Vm);

Notes for all encodings

Related encodings: See Advanced SIMD data-processing on page F3-4165 for the T32 instruction set, or Advanced SIMD data-processing on page F4-4262 for the A32 instruction set.

Assembler symbols

For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.

For encoding T1: see Standard assembler syntax fields on page F2-4120.

For encoding T1: see Standard assembler syntax fields on page F2-4120.
<dt> Is the data type for the elements of the second operand vector, encoded in the "U:size" field. It can have the following values:

- S8 when \(U = 0 \), \(size = 00 \)
- S16 when \(U = 0 \), \(size = 01 \)
- S32 when \(U = 0 \), \(size = 10 \)
- U8 when \(U = 1 \), \(size = 00 \)
- U16 when \(U = 1 \), \(size = 01 \)
- U32 when \(U = 1 \), \(size = 10 \)

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>*2\).

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as \(<Qn>*2\).

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

```plaintext
if ConditionPassed() then
    EncodingSpecificOperations();  CheckAdvSIMDEnabled();
    for e = 0 to elements-1
        if is_vsubw then
            op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
        else
            op1 = Int(Elem[Din[n],e,esize], unsigned);
        result = op1 - Int(Elem[Din[m],e,esize], unsigned);
        Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;
```

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.251 VSUDOT (by element)

Dot Product index form with signed and unsigned integers. This instruction performs the dot product of the four signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

From Armv8.2, this is an optional instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARMv8.6

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 16 | 15 12 11 10 9 8 7 6 5 4 3 0 | | | |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 0 | D | 0 |
| Vn | Vd | 1 | 1 | 0 | 1 | N | Q |
| M | Vm | U | | | | | |

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveAArch12int8MatMulExt() then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

T1

ARMv8.6

| 15 14 13 12 | 11 10 9 8 7 6 5 4 3 0 | 15 12 | 11 10 9 8 7 6 5 4 3 0 | | | | |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 0 | D | 0 |
| Vn | Vd | 1 | 1 | 0 | 1 | N | Q |
| M | Vm | U | | | | | |

64-bit SIMD vector variant

Applies when Q == 0.

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;
operand2 = Din[m];
for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
F6.1.252 VSWP

Vector Swap exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is no distinction between data types.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support* on page G1-5812.

A1

| 31 30 29 28 | 27 26 25 24 | 23 22 21 20 | 19 18 17 16 | 15 12 11 10 9 8 | 7 6 5 4 | 3 0 | 1 1 1 1 0 0 1 1 | D | 1 1 0 0 | Vd | 0 0 0 0 | Q | M | 0 | Vm |
|-------------|-------------|-------------|-------------|-------------|-------|-----|----------------|---|------|-----|------|---|----|---|

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

if size != '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

| 15 14 13 12 | 11 10 9 8 | 7 6 5 4 | 3 2 1 0 | 15 12 | 11 10 9 8 | 7 6 5 4 | 3 0 | 1 1 1 1 1 1 1 1 | D | 1 1 0 0 | Vd | 0 0 0 0 | Q | M | 0 | Vm |
|-------------|-------------|-------|-----|-------|-------|-------|-----|----------------|---|------|-----|------|---|----|---|

64-bit SIMD vector variant

Applies when Q == 0.

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

Decode for all variants of this encoding

if size != '00' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

For encoding A1: see *Standard assembler syntax fields* on page F2-4120. This encoding must be unconditional.
For encoding T1: see *Standard assembler syntax fields on page F2-4120.*

<\p>
See *Standard assembler syntax fields on page F2-4120.*

<dt>
An optional data type. It is ignored by assemblers, and does not affect the encoding.

<qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<qd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm>
Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then

 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 D[d+r] = Din[m+r];
 D[m+r] = Din[d+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.253 VTBL, VTBX

Vector Table Lookup uses byte indexes in a control vector to look up byte values in a table and generate a new vector. Indexes out of range return 0.

Vector Table Extension works in the same way, except that indexes out of range leave the destination element unchanged.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8|7 6|5 4|3 0 |
|1 1 1 1|0 1|1|D|1|1|Vn|Vd|1|0|len|N|op|M|0|Vm|
```

VTBL variant

Applies when \(op == 0 \).

\[
\text{VTBL}\{<c>\}{<q>}.8 \text{<Dd>}, \text{<list>}, \text{<Dm>}
\]

VTBX variant

Applies when \(op == 1 \).

\[
\text{VTBX}\{<c>\}{<q>}.8 \text{<Dd>}, \text{<list>}, \text{<Dm>}
\]

Decode for all variants of this encoding

\[
is_vtbl = (op == '0'); \text{ length } = \text{UInt}(\text{len})+1; \\
d = \text{UInt}(D:Vd); \text{ n } = \text{UInt}(N:Vn); \text{ m } = \text{UInt}(M:Vm); \\
\text{if } n+\text{length } > 32 \text{ then UNPREDICTABLE;}
\]

CONSTRAINED UNPREDICTABLE behavior

If \(n + \text{length } > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any general-purpose registers.

T1

```
|15 14 13 12|11 10 9 8|7 6|5 4|3 0 |
|1 1 1 1|1 1|1|D|1|1|Vn|Vd|1|0|len|N|op|M|0|Vm|
```

VTBL variant

Applies when \(op == 0 \).

\[
\text{VTBL}\{<c>\}{<q>}.8 \text{<Dd>}, \text{<list>}, \text{<Dm>}
\]

VTBX variant
Applies when \(\text{op} = 1 \).
\[\text{VTBX}\{<c>\}\{<q>\}.8 \text{ <Dd>, <list>, <Dm> } \]

Decode for all variants of this encoding

\[
\begin{align*}
\text{is_vtbl} &= (\text{op} = '0'); \quad \text{length} = \text{UInt}(\text{len})+1; \\
\text{d} &= \text{UInt}(D:Vd); \quad \text{n} = \text{UInt}(N:Vn); \quad \text{m} = \text{UInt}(M:Vm); \\
\text{if } \text{n+length} > 32 \text{ then UNPREDICTABLE;}
\end{align*}
\]

CONstrained UNPREDICTABLE behavior

If \(n + \text{length} > 32 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as NOP.
- One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any general-purpose registers.

Notes for all encodings

For more information about the CONstrained UNPREDICTABLE behavior of this instruction, see Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Assembler symbols

- \(<c>\): For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 - For encoding T1: see Standard assembler syntax fields on page F2-4120.

- \(<q>\): See Standard assembler syntax fields on page F2-4120.

- \(<Dd>\): Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- \(<\text{list}>\): The vectors containing the table. It must be one of:
 - \(<\text{Dm}>\): Encoded as \(\text{len} = 0b00 \).
 - \(<\text{Dn}>\), \(<\text{Dn}+1>\): Encoded as \(\text{len} = 0b01 \).
 - \(<\text{Dn}>\), \(<\text{Dn}+1>\), \(<\text{Dn}+2>\): Encoded as \(\text{len} = 0b10 \).
 - \(<\text{Dn}>\), \(<\text{Dn}+1>\), \(<\text{Dn}+2>\), \(<\text{Dn}+3>\): Encoded as \(\text{len} = 0b11 \).

- \(<\text{Dm}>\): Is the 64-bit name of the SIMD&FP source register holding the indices, encoded in the "M:Vm" field.

Operation for all encodings

\[
\text{if } \text{ConditionPassed()} \text{ then} \\
\quad \text{EncodingSpecificOperations(); CheckAdvSIMDEnabled();} \\
\quad \text{// Create 256-bit = 32-byte table variable, with zeros in entries that will not be used.} \\
\quad \text{table3 = if length == 4 then D[n+3] else Zeros(64);} \\
\quad \text{table2 = if length >= 3 then D[n+2] else Zeros(64);} \\
\quad \text{table1 = if length >= 2 then D[n+1] else Zeros(64);} \\
\quad \text{table = table3 : table2 : table1 : D[n];} \\
\quad \text{for } i = 0 \text{ to 7} \\
\quad \quad index = \text{UInt}(Elem[D[m],i,8]); \\
\quad \quad \text{if index < 8*length then} \\
\quad \quad \quad \text{Elem[D[d],i,8] = Elem[table, index, 8];}
\]

//
else
 if is_vtbl then
 Elem[D[d],i,8] = Zeros(8);
 // else Elem[D[d],i,8] unchanged

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.254 VTRN

Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the matrices.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VTRN doubleword operations.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

This instruction is used by the pseudo-instructions VUZP (alias) and VZIP (alias). The pseudo-instruction is never the preferred disassembly.

A1

64-bit SIMD vector variant

Applies when Q == 0.

VTRN{<c>}{<q>}.{<dt}> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VTRN{<c>}{<q>}.{<dt}> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' then UNDEFINED;
if Q == '1' & (Vd<0> == '1' ||Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1
64-bit SIMD vector variant
Applies when Q == 0.
VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant
Applies when Q == 1.
VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding
if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << Uint(size); elements = 64 DIV esize;
d = Uint(D:Vd); m = Uint(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols
<犇> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
 For encoding T1: see Standard assembler syntax fields on page F2-4120.
<犇犇> See Standard assembler syntax fields on page F2-4120.
<犇.dt> Is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
 8 when size = 00
 16 when size = 01
 32 when size = 10
 The encoding size = 11 is reserved.
<犇.Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <犇.Qd>*2.
<犇.Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <犇.Qm>*2.
<犇.Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
<犇.Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings
if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 h = elements DIV 2;
 for r = 0 to regs-1
 if d == m then
 D[d+r] = bits(64) UNKNOWN;
 else
 for e = 0 to h-1
 Elem[D[d+r],2*e+1,esize] = Elem[Din[m+r],2*e,esize];
 Elem[D[m+r],2*e,esize] = Elem[Din[d+r],2*e+1,esize];

Operational information
If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:
 — The values of the data supplied in any of its registers.
— The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
 — The values of the data supplied in any of its registers.
 — The values of the NZCV flags.
F6.1.255 VTST

Vector Test Bits takes each element in a vector, and bitwise ANDs it with the corresponding element of a second vector. If the result is not zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

The operand vector elements can be any one of:

- 8-bit, 16-bit, or 32-bit fields.

The result vector elements are fields the same size as the operand vector elements.

Depending on settings in the CPACR, NSACR, and HCPR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VTST}<c>{<q>}.<dt> {<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VTST}<c>{<q>}.<dt> {<Qd>,} <Qn>, <Qm>
\]

Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;

esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

64-bit SIMD vector variant

Applies when Q == 0.

\[
\text{VTST}<c>{<q>}.<dt> {<Dd>,} <Dn>, <Dm>
\]

128-bit SIMD vector variant

Applies when Q == 1.

\[
\text{VTST}<c>{<q>}.<dt> {<Qd>,} <Qn>, <Qm>
\]
Decode for all variants of this encoding

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler symbols

<\> For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<ap> See Standard assembler syntax fields on page F2-4120.

<dt> Is the data type for the elements of the operands, encoded in the "size" field. It can have the following values:
 8 when size = 00
 16 when size = 01
 32 when size = 10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 for r = 0 to regs-1
 for e = 0 to elements-1
 if !IsZero(Elem[D[n+r],e,esize] AND Elem[D[m+r],e,esize]) then
 Elem[D[d+r],e,esize] = Ones(esize);
 else
 Elem[D[d+r],e,esize] = Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.256 **VUDOT (by element)**

Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---

ID _ISAR6_.DP indicates whether this instruction is supported.

A1

ARMv8.2

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' || (Vd<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1

ARMv8.2

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

64-bit SIMD vector variant

Applies when Q == 0.

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[
\text{VUDOT}<q>.U8 <Qd>, <Qn>, <Dm>[<index>]
\]

Decode for all variants of this encoding

if \(\text{InITBlock()} \) then UNPREDICTABLE;
if \(\neg \text{HaveDOTPExt()} \) then UNDEFINED;
if \(Q == '1' \) \&\& (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

bits(64) operand1;
bits(64) operand2 = D[m];
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1
operand1 = D[n+r];
result = D[d+r];
integer element1, element2;
for e = 0 to 1
integer res = 0;
for i = 0 to 3
if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);
else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);
res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;
D[d+r] = result;
F6.1.257 VUDOT (vector)

Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to support it.

--- Note ---

ID_ISAR6.DP indicates whether this instruction is supported.

A1

ARMv8.2

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | 1 1 1 1 1 1 0 0 0 | D 1 0 | Vn | Vd | 1 1 1 1 | N | Q | M 1 | Vm |
|-----------|-----------|-----------|-----|-----|------------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[VUDOT\{<q>\}.U8 <Dd>, <Dn>, <Dm> \]

128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[VUDOT\{<q>\}.U8 <Qd>, <Qn>, <Qm> \]

Decode for all variants of this encoding

if !HaveDOTPExt() then UNDEFINED;
if \(Q = '1' \) && \((Vd<0> == '1' \) || \(Vn<0> == '1' \) || \(Vm<0> == '1' \) \) then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if \(Q = '1' \) then 2 else 1;

T1

ARMv8.2

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | 1 1 1 1 1 1 0 0 0 | D 1 0 | Vn | Vd | 1 1 1 1 | N | Q | M 1 | Vm |
|-------------|------------------------|------------------|-----|-----|------------------------|-----|-----|-----|

64-bit SIMD vector variant

Applies when \(Q = 0 \).

\[VUDOT\{<q>\}.U8 <Dd>, <Dn>, <Dm> \]
128-bit SIMD vector variant

Applies when Q == 1.

\[VUDOT\{<q>\}.U8 <Qd>, <Qn>, <Qm> \]

Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;

boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

\(<q>\>
See Standard assembler syntax fields on page F2-4120.

\(<Qd>\>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

\(<Qn>\>
Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

\(<Qm>\>
Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

\(<Dd>\>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dn>\>
Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

\(<Dm>\>
Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

bits(64) operand1;
better(64) operand2;
better(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1
 operand1 = D[n+r];
 operand2 = D[m+r];
 result = D[d+r];
 integer element1, element2;
 for e = 0 to 1
 integer res = 0;
 for i = 0 to 3
 if signed then
 element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 else
 element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
 element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
 res = res + element1 * element2;
 Elem[result, e, esize] = Elem[result, e, esize] + res;
 D[d+r] = result;
F6.1.258 VUMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer values held in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARMv8.6

```
|31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 |7 6 5 4 3 0 |
|1 1 1 1 1 0|0 0 D|1 0 Vn|Vd|1 1 0 0 N|1 M|1 Vm|
```

A1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

```
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE;  op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE;  op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
```

T1

ARMv8.6

```
|15 14 13 12|11 10 9 8 |7 6 5 4 3 0 |
|1 1 1 1 1 0|0 0 D|1 0 Vn|Vd|1 1 0 0 N|1 M|1 Vm|
```

T1 variant

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

Decode for this encoding

```
if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE;  op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE;  op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
```
Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
F6.1.259 VUSDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

From Armv8.2, this is an optional instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARMv8.6

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>.S8 <Dd>, <Dm>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>.S8 <Qd>, <Qn>, <Dm>[<index>]

Decode for all variants of this encoding

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
teger d = UInt(D:Vd);
teger n = UInt(N:Vn);
teger m = UInt(Vm);
teger i = UInt(M);
teger regs = if Q == '1' then 2 else 1;

T1

ARMv8.6

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT{<q>.S8 <Dd>, <Dm>, <Dm>[<index>]

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT{<q>.S8 <Qd>, <Qn>, <Dm>[<index>]

F6-5694 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c
Non-Confidential ID072120
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;
operand2 = Din[m];
for r = 0 to regs-1
 operand1 = Din[n+r];
 result = Din[d+r];
 for e = 0 to 1
 bits(32) res = Elem[result, e, 32];
 for b = 0 to 3
 element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
 element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
 res = res + element1 * element2;
 Elem[result, e, 32] = res;
 D[d+r] = result;
F6.1.260 VUSDOT (vector)

Dot Product vector form with mixed-sign integers. This instruction performs the dot product of the four unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in the corresponding 32-bit element of the second source register, accumulating the result into the corresponding 32-bit element of the destination register.

From Armv8.2, this is an optional instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARmv8.6

| 31 30 29 28|27 26 25 24|23 22 21 20|19 16|15 12|11 10 9 8 7 6 5 4 3 0 | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 1 1 1 1 1 0 0 0 | D | 1 0 | Vn | Vd | 1 1 0 1 | N | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT(<q>),S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT(<q>),S8 <Qd>, <Qn>, <Qm>

Decode for all variants of this encoding

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

T1

ARmv8.6

| 15 14 13 12|11 10 9 8 7 6 5 4 3 0 | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 1 1 1 1 1 | 0 0 1 | D | 1 0 | Vn | Vd | 1 1 0 1 | N | Q | M | 0 | Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VUSDOT(<q>),S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUSDOT(<q>),S8 <Qd>, <Qn>, <Qm>
Decode for all variants of this encoding

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<> == '1' || Vn<> == '1' || Vm<> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;
for r = 0 to regs-1
operand1 = Din[n+r];
operand2 = Din[m+r];
result = Din[d+r];
for e = 0 to 1
bits(32) res = Elem[result, e, 32];
for b = 0 to 3
 element1 = UInt(Elem[operand1, 4 * e + b, 8]);
 element2 = SInt(Elem[operand2, 4 * e + b, 8]);
 res = res + element1 * element2;
Elem[result, e, 32] = res;
D[d+r] = result;
F6.1.261 VUSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer values held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the destination vector. This is equivalent to performing an 8-way dot product per destination element.

From Armv8.2, this is an optional instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the T32 and A32 instruction sets.

A1

ARMv8.6

```
01111100

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>
```

A1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

```c
if !HaveAArch32Int8MatMulExt() then UNDEFINED;

case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
  integer d = UInt(D:Vd);
  integer n = UInt(N:Vn);
  integer m = UInt(M:Vm);
```

T1

ARMv8.6

```
11111100

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>
```

T1 variant

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

Decode for this encoding

```c
if !HaveAArch32Int8MatMulExt() then UNDEFINED;

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;

case B:U of
  when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
  when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
  when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
  when '11' UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
  integer d = UInt(D:Vd);
  integer n = UInt(N:Vn);
  integer m = UInt(M:Vm);
```
Assembler symbols

<q> See Standard assembler syntax fields on page F2-4120.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation for all encodings

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);
F6.1.262 VUZP

Vector Unzip de-interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VUZP doubleword operation for data type 8.

<table>
<thead>
<tr>
<th>Register state before operation</th>
<th>Register state after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dd A7 A6 A5 A4 A3 A2 A1 A0</td>
<td>B6 B4 B2 B0 A6 A4 A2 A0</td>
</tr>
<tr>
<td>Dm B7 B6 B5 B4 B3 B2 B1 B0</td>
<td>B7 B5 B3 B1 A7 A5 A3 A1</td>
</tr>
</tbody>
</table>

The following figure shows the operation of VUZP quadword operation for data type 32.

<table>
<thead>
<tr>
<th>Register state before operation</th>
<th>Register state after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd A3 A2 A1 A0</td>
<td>B2 B0 A2 A0</td>
</tr>
<tr>
<td>Qm B3 B2 B1 B0</td>
<td>B3 B1 A3 A1</td>
</tr>
</tbody>
</table>

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

A1

| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 5 4 3 0 |
|---------------------------------|-------------------------------|
| 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 Vd 0 0 0 1 0 Q M 0 Vm |

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector variant

Applies when Q == 1.

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '1' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 12 11 10 9 8 7 6 5 4 3 0 |
|---------------------------------|-------------------------------|
| 1 |

64-bit SIMD vector variant

Applies when Q == 0.

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>
128-bit SIMD vector variant

Applies when \(Q = 1 \).

\[VUZP\langle c\rangle\langle q\rangle\langle dt\rangle \langle Qd\rangle, \langle Qm\rangle \]

Decode for all variants of this encoding

if \(\text{size} = '11' \) || (\(Q = '0' \) && \(\text{size} = '10' \)) then UNDEFINED;
if \(Q = '1' \) && (\(Vd<0> = '1' \) || \(Vm<0> = '1' \)) then UNDEFINED;
quadword_operation = (\(Q = '1' \));
\(\text{esize} = 8 << \text{UInt}(\text{size}) \);
\(d = \text{UInt}(D:Vd); \quad m = \text{UInt}(M:Vm); \)

Assembler symbols

\(<c> \)

For encoding A1: see [Standard assembler syntax fields on page F2-4120](#). This encoding must be unconditional.

For encoding T1: see [Standard assembler syntax fields on page F2-4120](#).

\(<q> \)

See [Standard assembler syntax fields on page F2-4120](#).

\(<dt> \)

For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Size</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>8</td>
</tr>
<tr>
<td>01</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:

<table>
<thead>
<tr>
<th>Size</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>8</td>
</tr>
<tr>
<td>01</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
</tr>
</tbody>
</table>

The encoding size = 11 is reserved.

\(<Qd> \)

Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as \(<Qd>*2 \).

\(<Qm> \)

Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as \(<Qm>*2 \).

\(<Dd> \)

Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

\(<Dm> \)

Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

if \(\text{ConditionPassed}() \) then

EncodingSpecificOperations(); CheckAdvSIMDEnabled();

if quadword_operation then

if \(d == m \) then

\(Q[d>>1] = \text{bits}(128) \) UNKNOWN; \(Q[m>>1] = \text{bits}(128) \) UNKNOWN;
else

\(\text{zipped}_q = Q[m>>1]:Q[d>>1]; \)
for \(e = 0 \) to (128 DIV esize) - 1

\(\text{Elem}[Q[d>>1],e,\text{esize}] = \text{Elem}[\text{zipped}_q,2*e,\text{esize}]; \)
\(\text{Elem}[Q[m>>1],e,\text{esize}] = \text{Elem}[\text{zipped}_q,2*e+1,\text{esize}]; \)
else

if \(d == m \) then

\(D[d] = \text{bits}(64) \) UNKNOWN; \(D[m] = \text{bits}(64) \) UNKNOWN;
else

\(\text{zipped}_d = D[m]:D[d]; \)
for \(e = 0 \) to (64 DIV esize) - 1

\(\text{Elem}[D[d],e,\text{esize}] = \text{Elem}[\text{zipped}_d,2*e,\text{esize}]; \)
\(\text{Elem}[D[m],e,\text{esize}] = \text{Elem}[\text{zipped}_d,2*e+1,\text{esize}]; \)
Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.263 VUZP (alias)

Vector Unzip de-interleaves the elements of two vectors

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

- The encodings in this description are named to match the encodings of VTRN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VTRN gives the operational pseudocode for this instruction.

A1

<table>
<thead>
<tr>
<th>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15</th>
<th>12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 M 0 Vm</td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

<table>
<thead>
<tr>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15</th>
<th>12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 M 0 Vm</td>
<td></td>
</tr>
</tbody>
</table>

64-bit SIMD vector variant

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

- `<c>` For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
- `<c>` For encoding T1: see Standard assembler syntax fields on page F2-4120.
- `<q>` See Standard assembler syntax fields on page F2-4120.
- `<Dd>` Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.
- `<Dm>` Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.
Vector Zip interleaves the elements of two vectors.

The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.

The following figure shows the operation of VZIP doubleword operation for data type 8.

<table>
<thead>
<tr>
<th>Register state before operation</th>
<th>Register state after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dd A7 A6 A5 A4 A3 A2 A1 A0</td>
<td></td>
</tr>
<tr>
<td>Dm B7 B6 B5 B4 B3 B2 B1 B0</td>
<td></td>
</tr>
</tbody>
</table>

The following figure shows the operation of VZIP quadword operation for data type 32.

<table>
<thead>
<tr>
<th>Register state before operation</th>
<th>Register state after operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd A3 A2 A1 A0</td>
<td></td>
</tr>
<tr>
<td>Qm B3 B2 B1 B0</td>
<td></td>
</tr>
</tbody>
</table>

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see Enabling Advanced SIMD and floating-point support on page G1-5812.

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VZIP}\{<c>\}{<q>}.<dt> <Dd>, <Dm> \]

128-bit SIMD vector variant

Applies when Q == 1.

\[\text{VZIP}\{<c>\}{<q>}.<dt> <Qd>, <Qm> \]

Decode for all variants of this encoding

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

<table>
<thead>
<tr>
<th>Dd A7 A6 A5 A4 A3 A2 A1 A0</th>
<th>D B7 B6 B5 B4 B3 B2 B1 B0</th>
<th>Vd 0 0 0 1 1 0 1 0 0</th>
<th>Q M 0 Vm</th>
</tr>
</thead>
</table>

64-bit SIMD vector variant

Applies when Q == 0.

\[\text{VZIP}\{<c>\}{<q>}.<dt> <Dd>, <Dm> \]
128-bit SIMD vector variant

Applies when Q == 1.

VZIP{<c>{<q>},<dt> <Qd>, <Qm>

Decode for all variants of this encoding

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler symbols

<c>
For encoding A1: see Standard assembler syntax fields on page F2-4120. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields on page F2-4120.

<q>
See Standard assembler syntax fields on page F2-4120.

<dt>
For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
8 when size = 00
16 when size = 01
The encoding size = 1x is reserved.
For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in the "size" field. It can have the following values:
8 when size = 00
16 when size = 01
32 when size = 10
The encoding size = 11 is reserved.

<Qd>
Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm>
Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm>
Is the 64-bit name of the SIMD&FP destination register, encoded in the "M:Vm" field.

Operation for all encodings

if ConditionPassed() then
 EncodingSpecificOperations(); CheckAdvSIMDEnabled();
 if quadword_operation then
 if d == m then
 Q[d>>1] = bits(128) UNKNOWN; Q[m>>1] = bits(128) UNKNOWN;
 else
 bits(256) zipped_q;
 for e = 0 to (128 DIV esize) - 1
 Elem[zipped_q,2*e,esize] = Elem[Q[d>>1],e,esize];
 Elem[zipped_q,2*e+1,esize] = Elem[Q[m>>1],e,esize];
 Q[d>>1] = zipped_q<127:0>; Q[m>>1] = zipped_q<255:128>;
 else
 if d == m then
 D[d] = bits(64) UNKNOWN; D[m] = bits(64) UNKNOWN;
 else
 bits(128) zipped_d;
 for e = 0 to (64 DIV esize) - 1
\begin{verbatim}
Elem[zipped_d,2*e,esize] = Elem[D[d],e,esize];
Elem[zipped_d,2*e+1,esize] = Elem[D[m],e,esize];
D[d] = zipped_d<63:0>; D[m] = zipped_d<127:64>;
\end{verbatim}

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

- The execution time of this instruction is independent of:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.

- The response of this instruction to asynchronous exceptions does not vary based on:
 - The values of the data supplied in any of its registers.
 - The values of the NZCV flags.
F6.1.265 VZIP (alias)

Vector Zip interleaves the elements of two vectors

This instruction is a pseudo-instruction of the VTRN instruction. This means that:

- The encodings in this description are named to match the encodings of VTRN.
- The assembler syntax is used only for assembly, and is not used on disassembly.
- The description of VTRN gives the operational pseudocode for this instruction.

A1

\[
\begin{array}{cccccccccccccccccccccccccc}
\text{111100111} & \text{|0|} & \text{D} & \text{11} & \text{size} & \text{10} & \text{Vd} & \text{00010} & \text{M0} & \text{Vm} \\
\end{array}
\]

64-bit SIMD vector variant

VZIP\{<c>\}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN\{<c>\}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

T1

\[
\begin{array}{cccccccccccccccccccccccccc}
\text{111111111} & \text{|0|} & \text{D} & \text{11} & \text{size} & \text{10} & \text{Vd} & \text{00010} & \text{M0} & \text{Vm} \\
\end{array}
\]

64-bit SIMD vector variant

VZIP\{<c>\}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN\{<c>\}{<q>}.32 <Dd>, <Dm>

and is never the preferred disassembly.

Assembler symbols

- `<c>`: For encoding A1: see "Standard assembler syntax fields on page F2-4120." This encoding must be unconditional.
 - For encoding T1: see "Standard assembler syntax fields on page F2-4120."

- `<q>`: See "Standard assembler syntax fields on page F2-4120."

- `<Dd>`: Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

- `<Dm>`: Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation for all encodings

The description of VTRN gives the operational pseudocode for this instruction.
Part G
The AArch32 System Level Architecture
Chapter G1
The AArch32 System Level Programmers’ Model

This chapter gives a system level description of the programmers’ model for execution in AArch32 state. It contains the following sections:

- About the AArch32 System level programmers’ model on page G1-5712.
- Exception levels on page G1-5713.
- Exception terminology on page G1-5714.
- Execution state on page G1-5716.
- Instruction Set state on page G1-5718.
- Security state on page G1-5719.
- Security state, Exception levels, and AArch32 execution privilege on page G1-5722.
- Virtualization on page G1-5724.
- AArch32 state PE modes, and general-purpose and Special-purpose registers on page G1-5726.
- Process state, PSTATE on page G1-5735.
- Instruction set states on page G1-5741.
- Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743.
- Routing of aborts taken to AArch32 state on page G1-5762.
- Exception return to an Exception level using AArch32 on page G1-5765.
- Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770.
- AArch32 state exception descriptions on page G1-5778.
- Reset into AArch32 state on page G1-5800.
- Mechanisms for entering a low-power state on page G1-5804.
- The AArch32 System register interface on page G1-5809.
- Advanced SIMD and floating-point support on page G1-5812.
- Configurable instruction enables and disables, and trap controls on page G1-5818.
G1.1 About the AArch32 System level programmers' model

An application programmer has only a restricted view of the system. The System level programmers’ model supports this application level view of the system, and includes features that are required for one or both of an operating system (OS) and a hypervisor to provide the programming environment seen by an application. This chapter describes the System level programmers’ model when executing at EL1 or higher in an Exception level that is using AArch32.

The system level programmers’ model includes all of the system features required to support operating systems and to handle hardware events.

The following sections give a system level introduction to the basic concepts of the Arm architecture AArch32 state, and the terminology that is used for describing the architecture when executing in this state:

- Exception levels on page G1-5713.
- Exception terminology on page G1-5714.
- Execution state on page G1-5716.
- Instruction Set state on page G1-5718.
- Security state on page G1-5719.
- Virtualization on page G1-5724.

The rest of this chapter describes the system level programmers’ model when executing in AArch32 state.

The other chapters in this part describe:

- The memory system architecture, as seen when executing in an Exception level that is using AArch32:
 - Chapter G4 The AArch32 System Level Memory Model describes the general features of the Armv8 memory model, when executing in AArch32 state, that are not visible at the application level.

 Note

 Chapter E2 The AArch32 Application Level Memory Model describes the application level view of the memory model.

 — Chapter G5 The AArch32 Virtual Memory System Architecture describes the Virtual Memory System Architecture (VMSA) used in AArch32 state.

- The AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

 Note

 The T32 and A32 instruction sets include instructions that provide system level functionality, such as returning from an exception. See for example, ERET on page F5-4407.
G1.2 Exception levels

The Armv8-A architecture defines a set of Exception levels, EL0 to EL3, where:

- If ELn is the Exception level, increased values of n indicate increased software execution privilege.
- Execution at EL0 is called unprivileged execution.
- EL2 provides support for virtualization.
- EL3 provides support for switching between two Security states, Secure state and Non-secure state.

An implementation might not include all of the Exception levels. All implementations must include EL0 and EL1. EL2 and EL3 are optional.

--- Note ---

A PE is not required to implement a contiguous set of Exception levels. For example, it is permissible for an implementation to include only EL0, EL1, and EL3.

The effect of implementation choices on the programmers’ model on page D1-2413 provides information on implementations.

When executing in AArch32 state, execution can move between Exception levels only on taking an exception or on returning from an exception:

- On taking an exception, the Exception level can only increase or remain the same.
- On returning from an exception, the Exception level can only decrease or remain the same.

The Exception level that execution changes to or remains in on taking an exception is called the target Exception level of the exception.

Each exception type has a target Exception level that is either:

- Implicit in the nature of the exception.
- Defined by configuration bits in the System registers.

An exception cannot target EL0.

Exception levels exist within Security states. The Armv8-A security model on page G1-5719 describes this. When executing at an Exception level, the PE can access both of the following:

- The resources that are available for the combination of the current Exception level and the current Security state.
- The resources that are available at all lower Exception levels, provided that those resources are available to the current Security state.

This means that if the implementation includes EL3, then because EL3 is only implemented in Secure state, execution at EL3 can access all resources available at all Exception levels, for both Security states.

Each Exception level other than EL0 has its own translation regime and associated control registers. For information on the translation regimes, see Chapter G5 The AArch32 Virtual Memory System Architecture.

G1.2.1 Typical Exception level usage model

The architecture does not specify what software uses which Exception level. Such choices are outside the scope of the architecture. However, the following is a common usage model for the Exception levels:

- **EL0** Applications.
- **EL1** OS kernel and associated functions that are typically described as privileged.
- **EL2** Hypervisor.
- **EL3** Secure monitor.
G1.3 Exception terminology

The following subsections define the terms that are used when describing exceptions:

- Terminology for taking an exception.
- Terminology for returning from an exception.
- Exception levels.
- Definition of a precise exception.
- Definitions of synchronous and asynchronous exceptions on page G1-5715.

G1.3.1 Terminology for taking an exception

An exception is generated when the PE first responds to an exceptional condition. The PE state at this time is the state that the exception is taken from. The PE state immediately after taking the exception is the state that the exception is taken to.

G1.3.2 Terminology for returning from an exception

To return from an exception, the PE must execute an exception return instruction. The PE state when an exception return instruction is committed for execution is the state the exception returns from. The PE state immediately after the execution of that instruction is the state that the exception returns to.

G1.3.3 Exception levels

An Exception level, EL\(n\), with a larger value of \(n\) than another Exception level, is described as being a higher Exception level than the other Exception level. For example, EL3 is a higher Exception level than EL1.

An Exception level with a smaller value of \(n\) than another Exception level is described as being a lower Exception level than the other Exception level. For example, EL0 is a lower Exception level than EL1.

An Exception level is described as:

- Using AArch64 when execution in that Exception level is in the AArch64 Execution state.
- Using AArch32 when execution in that Exception level is in the AArch32 Execution state.

G1.3.4 Definition of a precise exception

An exception is described as precise when the exception handler receives the PE state and memory system state that is consistent with the PE having executed all of the instructions up to but not including the point in the instruction stream where the exception was taken, and none afterwards.

Other than the SError interrupt all exceptions that are taken to AArch32 state are required to be precise. For each occurrence of an SError interrupt, whether the interrupt is precise or imprecise is IMPLEMENTATION DEFINED.

Where a synchronous exception that is taken to AArch32 state is generated as part of an instruction that performs more than one single-copy atomic memory access, the definition of precise permits that the values in registers or memory affected by those instructions can be UNKNOWN, provided that:

- The accesses affecting those registers or memory locations do not, themselves, generate exceptions.
- The registers are not involved in the calculation of the memory address that is used by the instruction.

In AArch32 state, examples of instructions that perform more than one single-copy atomic memory access are the LDM and STM instructions.

Note

- For the definition of a single-copy atomic access, see Properties of single-copy atomic accesses on page E2-4017.
- The SError interrupt replaces the Armv7 asynchronous abort.
G1.3.5 Definitions of synchronous and asynchronous exceptions

An exception is described as synchronous if all of the following apply:

• The exception is generated as a result of direct execution or attempted execution of an instruction.
• The return address presented to the exception handler is guaranteed to indicate the instruction that caused the exception.
• The exception is precise.

An exception is described as asynchronous if any of the following apply:

• The exception is not generated as a result of direct execution or attempted execution of the instruction stream.
• The return address presented to the exception handler is not guaranteed to indicate the instruction that caused the exception.
• The exception is imprecise.

For more information about exceptions, see Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743.
G1.4 Execution state

The Execution states are:

AArch64
The 64-bit Execution state.

AArch32
The 32-bit Execution state. Operation in this state is compatible with Armv7-A operation.

Execution state on page A1-37 gives more information about them.

Exception levels *use* Execution states. For example, EL0, EL1 and EL2 might all be using AArch32, under EL3 using AArch64.

This means that:

- Different software layers, such as an application, an operating system kernel, and a hypervisor, executing at different Exception levels, can execute in different Execution states.
- The PE can change Execution states only either:
 - At reset.
 - On a change of Exception level.

Note

- *Typical Exception level usage model on page G1-5713* shows which Exception levels different software layers might typically use.
- *The effect of implementation choices on the programmers’ model on page D1-2413* gives information on supported configurations of Exception levels and Execution states.

The interaction between the AArch64 and AArch32 Execution states is called *interprocessing*. *Interprocessing on page D1-2400* describes this.

G1.4.1 About the AArch32 PE modes

AArch32 state provides a set of *PE modes* that support normal software execution and handle exceptions. The current mode determines the set of registers that are available, as described in *AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-5731*.

The AArch32 modes are:

- Monitor mode. This mode always executes at Secure EL3.
- Hyp mode. This mode always executes at Non-secure EL2.
- System, Supervisor, Abort, Undefined, IRQ, and FIQ modes. The Exception level these modes execute at depends on the Security state, as described in *Security state on page G1-5719*.
- User mode. This mode always executes at EL0.

Note

AArch64 state does not support modes. Modes are a concept that is specific to AArch32 state. Modes that execute at a particular Exception level are only implemented if that Exception level supports using AArch32 state.

For more information on modes, see *AArch32 state PE mode descriptions on page G1-5726*.

The mode in use immediately before an exception is taken is described as the mode the exception *is taken from*. The mode that is used on taking the exception is described as the mode the exception *is taken to*.

All of the following define the mode that an exception is taken to:

- The type of exception.
- The mode the exception is taken from.
- Configuration settings defined at EL2 and EL3.
Monitor mode and Hyp mode can create system traps that cause exceptions to EL3 or EL2 respectively. There is an architected hierarchy where EL2 and EL3 configuration settings affect a common condition, for example interrupt routing. When no traps are enabled for a particular condition, the AArch32 mode an exception is taken to is called the default mode for that exception.

In AArch32 state, a number of different modes can exist at the same Exception level. All modes at a particular Exception level have the same execution privilege, meaning they have the same access rights for accesses to memory and to System registers. However, the mapping of PE modes to Exception levels depends on the Security state, as described in Security state on page G1-5719. Security state, Exception levels, and AArch32 execution privilege on page G1-5722 gives more information about the PE modes, their associated execution privilege, and how this maps onto the Exception levels.
G1.5 Instruction Set state

In AArch32 state, the *Instruction Set state* determines the instruction set that the PE is executing. In an implementation that follows the Arm recommendations, the available Instruction Set states are:

- **T32 state** The PE is executing T32 instructions.
- **A32 state** The PE is executing A32 instructions.

--- Note

In previous versions of the Arm architecture:
- The T32 instruction set was called the Thumb instruction set.
- The A32 instruction set was called the ARM instruction set.

For more information, see *Process state, PSTATE on page E1-3993*.
G1.6 Security state

The Armv8-A architecture provides two Security states, each with an associated physical memory address space, as follows:

Secure state
When in this state, the PE can access both the Secure physical address space and the Non-secure physical address space.

Non-secure state
When in this state, the PE:
- Can access only the Non-secure physical address space.
- Cannot access the Secure system control resources.

For information on how virtual addresses translate onto Secure physical and Non-secure addresses, see *About VMSAv8-32* on page G5-5962.

G1.6.1 The Armv8-A security model

The principles of the Armv8-A security model are defined in *The Armv8-A security model* on page D1-2316.

The AArch32 security model, and execution privilege

The Exception level hierarchy of four Exception levels, EL0, EL1, EL2, and EL3, applies to execution in both Execution states. This section describes the mapping between Exception levels, AArch32 modes, and execution privilege.

The AArch32 modes Monitor, System, Supervisor, Abort, Undefined, IRQ, and FIQ all have the same execution privilege.

In Secure state:
- Monitor mode executes only at EL3, and is accessible only when EL3 is using AArch32.
- System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode all:
 - Execute at EL1 when EL3 is using AArch64.
 - Execute at EL3 when EL3 is using AArch32.

This means that there is a difference in the Secure state hierarchy that the PE is using, depending on which Execution state EL3 is using:

- If EL3 is using AArch64:
 - There is no support for Monitor mode.
 - If EL1 is using AArch32, System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode execute at Secure EL1.

- If EL3 is using AArch32:
 - Monitor mode is supported, and executes at Secure EL3.
 - System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode execute at Secure EL3.
 - There is no support for a Secure EL1 Exception level.

See *Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64* on page G1-5755 for more information about operation in a Secure EL1 mode when EL3 is using AArch64.

In Non-secure state, the PL1 modes System, Supervisor, Abort, Undefined, IRQ, and FIQ always execute at EL1.

User mode always executes at EL0 and has the lowest possible execution privilege.

Hyp mode always executes in Non-secure state at EL2 and has higher execution privilege than all of:
- User mode.
- System mode, Supervisor mode, Abort mode, Undefined mode, IRQ mode, and FIQ mode.
Limited use of Privilege level in Armv8 AArch32 state on page G1-5723 describes how, in some contexts, the concept of Privilege levels can be used to represent the execution privilege hierarchy.

For more information about the modes, see About the AArch32 PE modes on page G1-5716.

Figure G1-1 shows the security model when EL3 is using AArch32, and shows the expected use of the different Exception levels, and which modes execute at which Exception levels.

Figure G1-1 Armv8-A Security model when EL3 is using AArch32

--- Note ---

For an overview of the Security models when EL3 is using AArch64:

- See Figure G1-2 on page G1-5729 for the case where EL2, EL1, and EL0 are all using AArch32. This figure shows the implementation of the PE modes.

- See Figure D1-1 on page D1-2317 for an overview of the set of possible implementations.

Figure G1-1 shows that when EL3 is using AArch32, the Exception levels and modes available in each Security state are as follows:

Secure state

- **EL0** User mode.
- **EL3** Any mode that is available in Secure state, other than User mode.

Non-secure state

- **EL0** User mode.
- **EL1** Any mode that is available in Non-secure state, other than Hyp mode and User mode.
- **EL2** Hyp mode.

Execution at EL0 is described as *unprivileged execution*.
A mode associated with a particular Exception level, EL\textsubscript{n}, is described as an EL\textsubscript{n} mode.

--- Note ---

The Exception level defines the ability to access resources in the current Security state, and does not imply anything about the ability to access resources in the other Security state.

When EL3 is using AArch32, many AArch32 System registers accessible at PL1 are banked between the Secure and Non-secure states.

When EL3 is using AArch64 and Secure EL1 is using AArch32, System registers accessible at PL1 are not banked between the Non-secure and Secure states. Software running at EL3 is expected to switch the content of the PL1-accessible System registers between the Secure and Non-secure context, in a similar manner to switching the contents of general purpose registers. For information on the relationship between AArch64 and AArch32 System registers in an interprocessing environment, see *Mapping of the System registers between the Execution states* on page D1-2403.

For more information on the System registers, see *The AArch32 System register interface* on page G1-5809.

The Secure Monitor Call (SMC) instruction provides software with a system call to EL3. When executing at a privileged Exception level, SMC instructions generates exceptions. For more information, see *Secure Monitor Call (SMC) exception* on page G1-5783 and *SMC* on page F5-4732.

--- Note ---

For more information about the Privilege level terminology, see *Security state, Exception levels, and AArch32 execution privilege* on page G1-5722.

Changing from Secure state to Non-secure state

Monitor mode is provided to support switching between Secure and Non-secure states. When executing in an Exception level that is using AArch32, except in Monitor mode and Hyp mode, the Security state is controlled:

- By the SCR.NS bit, when EL3 is using AArch32.
- By the SCR_EL3.NS bit, when EL3 is using AArch64.

The mapping of AArch32 privileged modes to the exception hierarchy means that it is possible when EL3 is using AArch32 to change from EL3 to Non-secure EL1 without an exception return. This can occur in one of the following ways:

- Using an MSR or CPS instruction to switch from Monitor mode to another privileged mode while SCR.NS is 1.
- Using an MCR instruction that writes SCR.NS to change from Secure to Non-secure state when in a privileged mode other than Monitor mode.

Arm strongly recommends that software executing at EL3 using AArch32 does not use either of these mechanisms to change from EL3 to Non-secure EL1 without an exception return. The use of both of these mechanisms is deprecated.
G1.7 Security state, Exception levels, and AArch32 execution privilege

In Armv8, the hierarchy of software execution privilege, within a particular Security state, is defined by the Exception levels, with higher Exception level numbers indicating higher privilege. Table G1-1 shows this hierarchy for each Security state.

Table G1-1 Execution privilege and Exception levels, by Security state

<table>
<thead>
<tr>
<th>Execution privilege</th>
<th>Secure state</th>
<th>Non-secure state</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest</td>
<td>EL3</td>
<td>- a</td>
<td>Secure monitor</td>
</tr>
<tr>
<td>-</td>
<td>EL2 b</td>
<td>EL2</td>
<td>Hypervisor</td>
</tr>
<tr>
<td>-</td>
<td>EL1</td>
<td>EL1</td>
<td>Secure or Non-secure OS</td>
</tr>
<tr>
<td>Lowest, Unprivileged</td>
<td>EL0</td>
<td>EL0</td>
<td>Secure or Non-secure application</td>
</tr>
</tbody>
</table>

a. EL3 is never implemented in Non-secure state.

b. If FEAT_SEL2 is implemented in AArch64 state, EL2 can be enabled in Secure state.

When executing in AArch32 state, within a given Security state, the current PE state, including the execution privilege, is primarily indicated by the current PE mode. In Secure state, how the PE modes map onto the Exception levels depends on whether EL3 is using AArch32 or is using AArch64, and:

- Figure G1-1 on page G1-5720 shows this mapping when EL3 is using AArch32.
- Figure G1-2 on page G1-5729 shows this mapping when EL3 is using AArch64.

Table G1-2 shows this mapping. In interpreting this table:

- Monitor mode is implemented only in Secure state, and only if EL3 is using AArch32.
- Hyp mode is implemented only in Non-secure state, and only if EL2 is using AArch32.
- System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented:
 - In Secure state If either:
 - EL3 is using AArch32.
 - EL3 is using AArch64 and EL1 is using AArch32.
 - In Non-secure state If EL1 is using AArch32.
 - User mode is implemented if EL0 is using AArch32.

Table G1-2 Mapping of AArch32 PE modes to Exception levels

<table>
<thead>
<tr>
<th>Exception level</th>
<th>PE modes in the given Security state, and EL3 Execution state</th>
<th>Secure state, EL3 using AArch32</th>
<th>Secure state, EL3 using AArch64 a</th>
<th>Non-secure state</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL3</td>
<td>Monitor, System, FIQ, IRQ, Supervisor, Abort, Undefined</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EL2</td>
<td>-</td>
<td>-</td>
<td>Hyp</td>
<td></td>
</tr>
<tr>
<td>EL1</td>
<td>-</td>
<td>System, FIQ, IRQ, Supervisor, Abort, Undefined</td>
<td>-</td>
<td>System, FIQ, IRQ, Supervisor, Abort, Undefined</td>
</tr>
<tr>
<td>EL0</td>
<td>User</td>
<td>User</td>
<td>User</td>
<td></td>
</tr>
</tbody>
</table>

a. If FEAT_SEL2 is implemented and enabled in AArch64 State, this column can be applied to EL2.

Because AArch32 behavior is described in terms of the PE modes, and transitions between PE modes, the Exception levels are implicit in most of the description of operation in AArch32 state.
G1.7.1 Limited use of Privilege level in Armv8 AArch32 state

As described in The VMSAv8-32 translation regimes on page G5-5964, a translation regime maps a virtual address (VA) to the corresponding physical address (PA). The VMSAv8-64 translation regimes are defined by the Exception levels that use them. However, because the mapping between PE modes and Exception levels in Secure state depends on whether EL3 is using AArch32 or is using AArch64, as shown in Table G1-2 on page G1-5722, the VMSAv8-32 translation regimes cannot be described simply in terms of either the Exception levels or the PE modes that use them.

To provide a consistent description of address translation as seen from AArch32 state, the VMSAv8-32 translation regimes are described in terms of the Privilege levels originally defined in the Armv7 descriptions of AArch32 state. Table G1-3 shows how the PE modes map to these Privilege levels:

Table G1-3 Mapping of PE modes to AArch32 Privilege levels

<table>
<thead>
<tr>
<th>Privilege level</th>
<th>Secure state</th>
<th>Non-secure state</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL2</td>
<td>-</td>
<td>Hyp(^a)</td>
</tr>
<tr>
<td>PL1</td>
<td>Monitor(^b), System, FIQ, IRQ, Supervisor, Abort, Undefined</td>
<td>System, FIQ, IRQ, Supervisor, Abort, Undefined</td>
</tr>
<tr>
<td>PL0</td>
<td>User</td>
<td>User</td>
</tr>
</tbody>
</table>

\(^a\) Implemented only in Non-secure state, and only if EL2 is using AArch32 state.
\(^b\) Implemented only in Secure state, and only if EL3 is using AArch32 state.

Comparing Table G1-3 with Table G1-2 on page G1-5722 shows that:

In Non-secure state

Each privilege level maps to the corresponding Exception level. For example PL1 maps to EL1.

In Secure state

PL0 maps to EL0.

The mapping of PL1 depends on the Execution state being used by EL3, as follows:

- **EL3 using AArch64** Secure PL1 maps to Secure EL1. Monitor mode is not implemented.
- **EL3 using AArch32** Secure PL1 maps to Secure EL3. Monitor mode is implemented as one of the Secure PL1 modes.
G1.8 Virtualization

The support for virtualization described in this section applies only to an implementation that includes EL2. A PE is in *Hyp mode* when it is executing at EL2 in the AArch32 state. An exception return from Hyp mode to software running at EL1 or EL0 is performed using the `ERET` instruction.

EL2 provides a set of features that support virtualizing the Non-secure state of an Armv8-A implementation. The basic model of a virtualized system involves:

- A hypervisor, running in EL2, that is responsible for switching between *virtual machines*. A virtual machine is comprised of Non-secure EL1 and Non-secure EL0.
- A number of Guest operating systems, that each run in Non-secure EL1, on a virtual machine.
- For each Guest operating system, applications, that usually run in Non-secure EL0, on a virtual machine.

Note

In some systems, a Guest OS is unaware that it is running on a virtual machine, and is unaware of any other Guest OS. In other systems, a hypervisor makes the Guest OS aware of these facts. The Armv8-A architecture supports both of these models.

The hypervisor assigns a VMID to each virtual machine.

In AArch32 state, EL2 is implemented only in Non-secure state, to support Guest OS management. EL2 provides controls to:

- Provide virtual values for the contents of a small number of identification registers. A read of one of these registers by a Guest OS or the applications for a Guest OS returns the virtual value.
- Trap various operations, including memory management operations and accesses to many other registers. A trapped operation generates an exception that is taken to EL2.
- Route interrupts to the appropriate one of:
 - The current Guest OS.
 - A Guest OS that is not currently running.
 - The hypervisor.

In Non-secure state:

- The implementation provides an independent *translation regime* for memory accesses from EL2.
- For the PL1&0 translation regime, address translation occurs in two stages:
 - Stage 1 maps the *virtual address* (VA) to an *intermediate physical address* (IPA). This is managed at EL1, usually by a Guest OS. The Guest OS believes that the IPA is the *physical address* (PA).
 - Stage 2 maps the IPA to the PA. This is managed at EL2. The Guest OS might be completely unaware of this stage.

For more information on the translation regimes, see *Chapter G5 The AArch32 Virtual Memory System Architecture*.

G1.8.1 The effect of implementing EL2 on the Exception model

An implementation that includes EL2 implements the following exceptions:

- Hypervisor Call (HVC) exception.
- Traps to EL2. *EL2 configurable controls on page G1-5827*, describes these.
- All of the virtual interrupts:
 - Virtual SError.
 - Virtual IRQ.
 - Virtual FIQ.

HVC exceptions are always taken to EL2. All virtual interrupts are always taken to EL1, and can only be taken from Non-secure EL1 or EL0.
Each of the virtual interrupts can be independently enabled using controls at EL2. Each of the virtual interrupts has a corresponding physical interrupt. See Virtual interrupts.

When a virtual interrupt is enabled, its corresponding physical exception is taken to EL2, unless EL3 has configured that physical exception to be taken to EL3. For more information, see Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770.

An implementation that includes EL2 also:

- Provides controls that can be used to route some synchronous exceptions, taken from Non-secure state, to EL2. For more information, see:
 - Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
 - Routing debug exceptions to EL2 using AArch32 on page G1-5760.
 - Routing of aborts taken to AArch32 state on page G1-5762
- Provides mechanisms to trap PE operations to EL2. See EL2 configurable controls on page G1-5827.

When an operation is trapped to EL2, the hypervisor typically either:

 - Emulates the required operation. The application running in the Guest OS is unaware of the trap.
 - Returns an error to the Guest OS.

Virtual interrupts

The virtual interrupts have names that correspond to the physical interrupts, as shown in Table G1-4.

<table>
<thead>
<tr>
<th>Physical interrupt</th>
<th>Corresponding virtual interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>External SError</td>
<td>Virtual SError</td>
</tr>
<tr>
<td>IRQ</td>
<td>Virtual IRQ</td>
</tr>
<tr>
<td>FIQ</td>
<td>Virtual FIQ</td>
</tr>
</tbody>
</table>

Software executing at EL2 can use virtual interrupts to signal physical interrupts to Non-secure EL1 and Non-secure EL0. Example G1-1 shows a usage model for virtual interrupts.

Example G1-1 Virtual interrupt usage model

A usage model is as follows:

1. Software executing at EL2 routes a physical interrupt to EL2.

2. When a physical interrupt of that type occurs, the exception handler executing in EL2 determines whether the interrupt can be handled in EL2 or requires routing to a Guest OS in EL1. If the interrupt requires routing to a Guest OS:
 - If the Guest OS is currently running, the hypervisor uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.
 - If the Guest OS is not currently running, the physical interrupt is marked as pending for the guest OS. When the hypervisor next switches to the virtual machine that is running that Guest OS, the hypervisor uses the appropriate virtual interrupt type to signal the physical interrupt to the Guest OS.

Non-secure EL1 and Non-secure EL0 modes cannot distinguish a virtual interrupt from the corresponding physical interrupt.

For more information, see Virtual exceptions when an implementation includes EL2 on page G1-5770.
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers

The following sections describe the AArch32 PE modes and the general-purpose registers and the PC:
• AArch32 state PE mode descriptions.
• AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-5731.
• Saved Program Status Registers (SPSRs) on page G1-5733.
• ELR_hyp on page G1-5734.

--- Note ---
The PC is included in the scope of this section because, in AArch32 state, it is defined as being part of the same register file as the general-purpose registers. That is, the AArch32 register file R0-R15 comprises:
• The general-purpose registers R0-R14.
• The PC, that can be described as R15.

G1.9.1 AArch32 state PE mode descriptions

Table G1-5 shows the PE modes defined by the Arm architecture, for execution in AArch32 state. In this table:
• The PE mode column gives the name of each mode and the abbreviation used, for example, in the general-purpose register name suffixes used in AArch32 general-purpose registers, the PC, and the Special-purpose registers on page G1-5731.
• The Encoding column gives the corresponding PSTATE.M field.
• The Exception level column gives the Exception level at which the mode is implemented, including dependencies on the current Security state and on whether EL3 is using AArch32, see Exception levels on page G1-5713.

<table>
<thead>
<tr>
<th>PE mode</th>
<th>Encoding</th>
<th>Security state</th>
<th>Exception level</th>
<th>Implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>usr</td>
<td>10000</td>
<td>Both</td>
<td>EL0</td>
</tr>
<tr>
<td>FIQ</td>
<td>fiq</td>
<td>10001</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
<tr>
<td>IRQ</td>
<td>irq</td>
<td>10010</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
<tr>
<td>Supervisor</td>
<td>svc</td>
<td>10011</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
<tr>
<td>Monitor</td>
<td>mon</td>
<td>10110</td>
<td>Secure</td>
<td>EL3</td>
</tr>
<tr>
<td>Abort</td>
<td>abt</td>
<td>10111</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
<tr>
<td>Hyp</td>
<td>hyp</td>
<td>11010</td>
<td>Non-secure Secure</td>
<td>EL2</td>
</tr>
<tr>
<td>Undefined</td>
<td>und</td>
<td>11011</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
<tr>
<td>System</td>
<td>sys</td>
<td>11111</td>
<td>Non-secure Secure</td>
<td>EL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EL1 or EL3a</td>
</tr>
</tbody>
</table>

a. EL3 if EL3 is using AArch32. EL1 if EL3 is using AArch64 and EL1 is using AArch32.
__Note__

FEAT_SEL2 is not supported if EL2 is using AArch32.

Mode changes can be made under software control, or can be caused by an external or internal exception.

Notes on the AArch32 PE modes

PE modes are defined only in AArch32 state. Because each mode is implemented as part of a particular Exception level that is using AArch32, the set of available modes depends on which Exception levels are implemented and using AArch32, as described in *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.

This section gives more information about each of the modes, when it is implemented.

User mode
Software executing in User mode executes at EL0. Execution in User mode is sometimes described as unprivileged execution. Application programs normally execute in User mode, and any program executed in User mode:

- Makes only unprivileged accesses to system resources, meaning it cannot access protected system resources.
- Makes only unprivileged access to memory.
- Cannot change mode except by causing an exception, see *Handling exceptions that are taken to an Exception level using AArch32* on page G1-5743.

System mode
System mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
System mode has the same registers available as User mode, and is not entered by any exception.

Supervisor mode
Supervisor mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
Supervisor mode is the default mode to which a Supervisor Call exception is taken. Executing an SVC (Supervisor Call) instruction generates a Supervisor Call exception.
In an implementation where the highest implemented Exception level is using AArch32, if that Exception level is EL3 or EL1, a PE enters Supervisor mode on Reset.

Abort mode
Abort mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
Abort mode is the default mode to which a Data Abort exception or Prefetch Abort exception is taken.

Undefined mode
Undefined mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
Undefined mode is the default mode to which an instruction-related exception, including any attempt to execute an UNDEFINED instruction, is taken.

FIQ mode
FIQ mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
FIQ mode is the default mode to which an FIQ interrupt is taken.

IRQ mode
IRQ mode is implemented at EL1 or EL3, see *Effect of the EL3 Execution state on the PE modes and Exception levels* on page G1-5728.
IRQ mode is the default mode to which an IRQ interrupt is taken.

Hyp mode
Hyp mode is the Non-secure EL2 mode.
Hyp mode is entered on taking an exception from Non-secure state that must be taken to EL2.
In an implementation where the highest implemented Exception level is EL2 and EL2 uses AArch32 on reset, a PE enters Hyp mode on reset.

The Hypervisor Call exception and Hyp Trap exception are implemented as part of EL2 and are always taken to Hyp mode.

--- Note ---

This means that Hypervisor Call and Hyp Trap exceptions cannot be taken from Secure state.

When the value of the Hypervisor Call enable bit, SCR.HCE, is 1, executing an HVC (Hypervisor Call) instruction in a Non-secure EL1 mode generates a Hypervisor Call exception.

For more information, see Hyp mode on page G1-5729.

Monitor mode

Monitor mode is the Secure EL3 mode. This means it is always in the Secure state, regardless of the value of the SCR.NS bit.

Monitor mode is the mode to which a Secure Monitor Call exception is taken. In a Non-secure EL1 mode, or a Secure EL3 mode, executing an SMC (Secure Monitor Call) instruction generates a Secure Monitor Call exception.

When EL3 is using AArch32, some exceptions that are taken to a different mode by default can be configured to be taken to EL3, see PE mode for taking exceptions on page G1-5753.

When EL3 is using AArch32, software executing in Monitor mode:

- Has access to both the Secure and Non-secure copies of System registers.
- Can perform an exception return to Secure state, or to Non-secure state.

This means that, when EL3 is using AArch32, Monitor mode provides the only recommended method of changing between the Secure and Non-secure Security states.

Secure and Non-secure modes

In an implementation that includes EL3, the names of most implemented modes can be qualified as Secure or Non-secure, to indicate whether the PE is also in Secure state or Non-secure state. For example:

- If a PE is in Supervisor mode and Secure state, it is in Secure Supervisor mode.
- If a PE is in User mode and Non-secure state, it is in Non-secure User mode.

--- Note ---

As indicated in the appropriate Mode descriptions:

- Monitor mode is a Secure mode, meaning it is always in the Secure state.
- Hyp mode is a Non-secure mode, meaning it is accessible only in Non-secure state.

Effect of the EL3 Execution state on the PE modes and Exception levels

Figure G1-1 on page G1-5720 shows the PE modes, Exception levels, and Security states, for an implementation that includes all of the Exception levels, when EL3 is using AArch32. Figure G1-2 on page G1-5729 shows how the implemented modes change when EL3 is using AArch64.
Comparing Figure G1-1 on page G1-5720 and Figure G1-2 shows how, in Secure state only, the implementation of System, FIQ, IRQ, Supervisor, Abort, and Undefined mode depends on the Execution state that EL3 is using. That is, these modes are implemented as follows:

Non-secure state
If Non-secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented as part of EL1. Otherwise, these modes are not implemented in Non-secure state.

Secure state
The implementation of these modes depends on the Execution state that EL3 is using, as follows:

EL3 using AArch64
If Secure EL1 is using AArch32, then System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented as part of EL1. Otherwise, these modes are not implemented in Secure state.

EL3 using AArch32
In Secure state, System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are implemented as part of EL3, see Figure G1-1 on page G1-5720.

Hyp mode
Hyp mode is the Non-secure EL2 mode. When EL2 is using AArch32, it provides the usual method of controlling the virtualization of Non-secure execution at EL1 and EL0.

--- Note ---

The alternative method of controlling this functionality is by accessing the EL2 controls from EL3 with the SCR_EL3.NS or SCR.NS bit set to 1.
This section summarizes how Hyp mode differs from the other modes, and references where this part of the manual describes the features of Hyp mode in more detail:

- Software executing in Hyp mode executes at EL2, see Figure G1-1 on page G1-5720.
- Hyp mode is accessible only in Non-secure state. In Secure state, an attempt by a CPS or an MSR instruction to change PSTATE.M to Hyp mode is an illegal change to PSTATE.M, as described in Illegal changes to PSTATE.M on page G1-5739.
- In Non-debug state, the only mechanisms for changing to Hyp mode are:
 - An exception taken from a Non-secure EL1 or EL0 mode.
 - When EL3 is using AArch32, an exception return from Secure Monitor mode.
 - When EL3 is using AArch64, an exception return from EL3.
- In Hyp mode, the only exception return is execution of an ERET instruction, see ERET on page F5-4407.
- In Hyp mode, the CPACR has no effect on the execution of;
 - System register access instructions.
 - Advanced SIMD and floating-point instructions.
 The HCPTR controls execution of these instructions in Hyp mode.
- If software running in Hyp mode executes an SVC instruction, the Supervisor Call exception generated by the instruction is taken to Hyp mode, see SVC on page F5-4885.
- An exception return with restored PSTATE specifying Hyp mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766, if any of the following applies:
 - EL3 is using AArch64 and the value of SCR_EL3.NS is 0.
 - EL3 is using AArch32 and the value of SCR.NS is 0.
 - The return is from a Non-secure EL1 mode.
- The instructions described in the following sections are UNDEFINED if executed in Hyp mode:
 - SRS. See SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-4767.
 - RFE. See RFE, RFEDA, RFEDB, RFEIA, RFEIB on page F5-4662.
 - LDM (exception return) on page F5-4440.
 - LDM (User registers) on page F5-4442.
 - STM (User registers) on page F5-4807.
 - The SUBS PC, LR forms of the instructions described in SUB, SUBS (immediate) on page F5-4869.

Note
In T32 state, ERET is encoded as SUBS PC, LR, #0, and therefore this is a valid instruction.

In addition, deprecated forms of the A32 ADCS, ADDS, ANDS, BICS, EORS, MOVs, MINS, ORRS, RSS, RSCS, SBCS, and SUBS instructions with the PC as the destination register are UNDEFINED if executed in Hyp mode. The instruction descriptions identify these UNDEFINED cases.

- The Load unprivileged and Store unprivileged instructions LDRT, LDRSHFT, LDRHT, LDRBT, STRT, STRHT, and STRBT, are CONSTRAINED UNPREDICTABLE if executed in Hyp mode, see Execution of Load/Store unprivileged instructions in Hyp mode on page K1-7961.

In an implementation that includes EL3, from reset, the HVC instruction is UNDEFINED in Non-secure EL1 modes, meaning entry to Hyp mode is disabled by default. To permit entry to Hyp mode using the Hypervisor Call exception, Secure software must enable use of the HVC instruction:
- By setting the SCR_EL3.HCE bit to 1, if EL3 is using AArch64.
- By setting the SCR.HCE bit to 1, if EL3 is using AArch32.

If EL3 is implemented and using AArch32, and SCR.HCE bit is set to 0, the HVC instruction is UNPREDICTABLE in Hyp mode. The instruction is either UNDEFINED or executes as a NOP.
If EL3 is implemented and using AArch64, and SCR_EL3.HCE bit is set to 0, the HVC instruction is UNDEFINED in Hyp mode.

If EL3 is not implemented and HCR_EL2 or HCR.HCD is set to 1, the HVC instruction is UNDEFINED in Hyp mode.

Pseudocode description of mode operations

The `BadMode()` function tests whether a 5-bit mode number corresponds to one of the permitted modes.

The `BadMode()` function is defined in Chapter J1 Armv8 Pseudocode.

G1.9.2 AArch32 general-purpose registers, the PC, and the Special-purpose registers

The general-purpose registers, and the PC, in AArch32 state on page E1-3991 describes the application level view of the general-purpose registers, and the PC. This view provides:

- The general-purpose registers R0-R14, of which:
 - The preferred name for R13 is SP (stack pointer).
 - The preferred name for R14 is LR (link register).
- The PC, that can be described as R15.

These registers are selected from a larger set of registers, that includes *banked* copies of some registers, with the current register selected by the execution mode. The implementation and banking of the general-purpose registers depends on whether or not the implementation includes EL2 and EL3, and whether those Exception levels are using AArch32. *Figure G1-3 on page G1-5732* shows the full set of banked general-purpose registers, and the Special-purpose registers:

- The Program Status Registers CPSR and SPSR.
- ELR_hyp.

——— **Note** ————

The architecture uses system level register names, such as R0_usr, R8_usr, and R8_fiq, when it must identify a specific register. The application level names refer to the registers for the current mode, and usually are sufficient to identify a register.
As described in \textit{PE mode for taking exceptions} on page G1-5753, on taking an exception the PE changes mode, unless it is already in the mode to which it must take the exception. Each mode that the PE might enter in this way has:

- A banked copy of the stack pointer, for example \texttt{SP_irq} and \texttt{SP_hyp}.
- A register that holds a preferred return address for the exception. This is:
 - For the EL2 mode, Hyp mode, the Special-purpose register \texttt{ELR_hyp}.
 - For the other privileged modes to which exceptions can be taken, a banked copy of the link register, for example \texttt{LR_und} and \texttt{LR_mon}.
- A saved copy of \texttt{PSTATE}, made on exception entry, for example \texttt{SPSR_irq} and \texttt{SPSR_hyp}.

In addition, FIQ mode has banked copies of the general-purpose registers \texttt{R8} to \texttt{R12}.

User mode and System mode share the same general-purpose registers.

User mode, System mode, and Hyp mode share the same LR.

For more information about the application level view of the SP, LR, and PC, and the alternative descriptions of them as \texttt{R13}, \texttt{R14} and \texttt{R15}, see \textit{The general-purpose registers, and the PC, in AArch32 state} on page E1-3991.

\textbf{AArch32 Special-purpose registers}

In AArch32 state, the Special-purpose registers are:

- The \texttt{CPSR} and its view as the \texttt{APSR}.
- The \texttt{SPSR}, including the banked copies \texttt{SPSR_abt}, \texttt{SPSR_fiq}, \texttt{SPSR_hyp}, \texttt{SPSR_irq}, \texttt{SPSR_mon}, \texttt{SPSR_svc}, and \texttt{SPSR_und}.
- The \texttt{ELR_hyp}.
Pseudocode description of general-purpose register and PC operations

The following pseudocode gives access to the general-purpose registers and the PC. These registers are an array, _R, indexed by parameter n. This array is common to AArch32 and AArch64 operation and therefore contains 31 64-bit registers. _PC is the Program Counter, and its definition is common to AArch32 and AArch64 operation and therefore its size is 64-bit.

LookUpRIndex() looks up the index value, n, for the specified register number and PE mode, using RBankSelect() to evaluates the result.

_R accesses the specified general-purpose register in the current PE mode, using Rmode[] to access the register, accessing _R if necessary. SP accesses the stack pointer, LR accesses the link register, and PC accesses the Program Counter. Each function has a non-assignment form for register reads and an assignment form for register writes, other than PC, which has only a non-assignment form.

BranchTo() performs a branch to the specified address.

The _R, _PC, LR, SP, LookUpRIndex(), RBankSelect(), Rmode[], and BranchTo() functions are defined in Chapter J1 Armv8 Pseudocode.

G1.9.3 Saved Program Status Registers (SPSRs)

The Saved Program Status Registers (SPSRs) are used to save PE state on taking exceptions. In AArch32 state, there is an SPSR for every mode that an exception can be taken to, as shown in Figure G1-3 on page G1-5732. For example, the SPSR for Monitor mode is called SPSR_mon.

—— Note ———
Exceptions cannot be taken to EL0.

————

When the PE takes an exception, PE state is saved from PSTATE in the SPSR for the mode the exception is taken to. For example, if the PE takes an exception to Monitor mode, PE state is saved in SPSR_mon. For more information on PSTATE, see Process state, PSTATE on page G1-5735.

—— Note ———
All PSTATE fields are saved, including those which have no direct read and write access.

————

Saving the PSTATE fields means the exception handler can:

• On return from the exception, restore the PE state to the values it had immediately before the exception was taken. When the PE returns from an exception, PE state is restored to the state stored in the SPSR of the mode the exception is returning from, if the exception return is made using one of:
 — ERET.
 — LDM.
 — The Exception return form of the instruction described in MOV, MOVs (register) on page F5-4555.
 — The Exception return form of the instruction described in SUB, SUBS (immediate) on page F5-4869.

For example, on returning from Monitor mode, PE state is restored to the state stored in SPSR_mon. If the exception return is made using the RFE instruction, the PE restores the PE state from an SPSR valued read from memory.

• Examine the value that PSTATE had when the exception was taken, for example to determine the instruction set state and privilege level in which the instruction that caused an Undefined Instruction exception was executed.

The SPSRs are UNKNOWN on reset. Any operation in a Non-secure EL1 or EL0 mode makes SPSR_hyp unknown.

SPSR bits that are defined as RES0 on an exception taken from AArch32 state are ignored on any exception return to AArch32 state.

For more information on SPSR, see SPSR, Saved Program Status Register on page G8-6506.
Pseudocode description of SPSR operations

The following pseudocode gives access to the SPSRs.

The `SPSR[]` function accesses the current SPSR and is common to AArch32 and AArch64 operation.

The `SPSRWriteByInstr()` function is used by the MSR (register) and MSR (immediate) instructions to update the current SPSR.

The `SPSR[]` and `SPSRWriteByInstr()` functions are defined in Chapter J1 Armv8 Pseudocode.

G1.9.4 ELR_hyp

Hyp mode does not provide its own banked copy of LR. Instead, on taking an exception to Hyp mode, the preferred return address is stored in ELR_hyp, a 32-bit Special-purpose register implemented for this purpose.

ELR_hyp can be accessed explicitly only by executing:

- An MRS or MSR instruction that targets ELR_hyp, see:
 - MRS (Banked register) on page F5-4572.
 - MSR (Banked register) on page F5-4576.

The ERET instruction uses the value in ELR_hyp as the return address for the exception. For more information, see ERET on page F5-4407.

Software execution in any Non-secure EL1 or EL0 mode makes ELR_hyp UNKNOWN.
G1.10 Process state, PSTATE

In the Armv8-A architecture, Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide instructions that operate on elements of PSTATE.

PSTATE includes all of the following:

- Fields that are meaningful only in AArch32 state.
- Fields that are meaningful only in AArch64 state.
- Fields that are meaningful in both Execution states.

PSTATE is defined in pseudocode as the PSTATE structure, of type ProcState. ProcState is defined in Chapter J1 Armv8 Pseudocode.

The PSTATE fields that are meaningful in AArch32 state are:

The Condition flags

- N Negative Condition flag.
- Z Zero Condition flag.
- C Carry Condition flag.
- V Overflow Condition flag.

Process state, PSTATE on page E1-3993 gives more information about these.

The overflow or saturation flag

- Q See Process state, PSTATE on page E1-3993.

The greater than or equal flags

The PE state controls

- J, T Instruction set state. See Process state, PSTATE on page E1-3993. J is RES0. On a reset to AArch32 state, T is set to an IMPLEMENTATION DEFINED value. On taking an exception to:
 - A PL1 mode using AArch32, T is set to SCTLR.TE.
 - EL2 using AArch32, T is set to HSCTLR.TE.

- IT[7:0] IT block state bits. See Process state, PSTATE on page E1-3993. On a reset or taking an exception to AArch32 state, these bits are set to 0.

- E Endianness of data accesses. See Process state, PSTATE on page E1-3993. If an implementation provides both Big-endian and Little-endian support, then:
 - On a reset to AArch32 state this bit is set to the IMPLEMENTATION DEFINED reset value of:
 - SCTLR.EE if the highest implemented Exception level is not EL2.
 - HSCTLR.EE if the highest implemented Exception level is EL2.
 - On taking an exception to:
 - A PL1 mode using AArch32, this bit is set to SCTLR.EE.
 - EL2 using AArch32, this bit is set to HSCTLR.EE.

- IL Illegal Execution state bit. See The Illegal Execution state exception on page G1-5768. On a reset or taking an exception to AArch32 state, this bit is set to 0.

For information on how the J, T, IT[7:0], E, and IL fields can be accessed, see Accessing the PE state controls and the Execution state bit on page G1-5738.

The asynchronous exception mask bits

- A SError interrupt mask bit.
- I IRQ interrupt mask bit.
- F FIQ interrupt mask bit.
For each bit, the values are:

- **0** Exception not masked.
- **1** Exception masked.

On a reset to AArch32 state, these bits are set to 1.

On taking an exception to AArch32 state, one or more of these bits are set to 1.

For more information, see both:

- Asynchronous exception masking controls on page G1-5773.
- PE state on exception entry on page G1-5756.

The mode bits

M[4:0] Current mode of the PE. Table G1-5 on page G1-5726 lists the permitted values of this field. All other values are reserved. Illegal changes to PSTATE.M on page G1-5739 describes the effect of setting M[4:0] to a reserved value.

M[4] is:

M[4], Execution state

The current Execution state:

- **0** AArch64 state.
- **1** AArch32 state.

Note

This is consistent with the use of M[4:0] in previous versions of the architecture.

On a reset to AArch32 state, M[4:0] is set to:

- **0b10011**, meaning Supervisor mode, if the highest implemented Exception level is not EL2.
- **0b11010**, meaning Hyp mode, if the highest implemented Exception level is EL2.

On taking an exception to AArch32 state, M[4:0] is set to the target mode for the exception type.

For more information about the PE modes, see:

- AArch32 state PE mode descriptions on page G1-5726.
- PE state on exception entry on page G1-5756.

Access control bits, from Armv8.1

PAN Privileged Access Never (PAN) state bit, see About the PAN bit on page G5-6011.

Timing control bits

DIT Data Independent Timing (DIT) bit. For more information, see About the DIT bit on page E1-3999.

This bit is implemented only when FEAT_DIT is implemented.

On a reset to AArch32 state, this bit is set to 0.

Speculation control bits

SSBS Speculative Store Bypass Safe (SSBS) bit. For more information, see Speculative Store Bypass Safe (SSBS) on page E2-4030.

This bit is implemented only when FEAT_SSBS is implemented.

On reset to AArch32 state, this bit is set to an IMPLEMENTATION DEFINED value.

G1.10.1 Accessing PSTATE fields

The PSTATE fields can be accessed as described in the following subsections:

- The Current Program Status Register, CPSR on page G1-5737.
- Accessing the PE state controls and the Execution state bit on page G1-5738.
The CPSR instruction on page G1-5738.
The SETEND instruction on page G1-5739.
The SETPAN instruction on page G1-5739.

The Current Program Status Register, CPSR

Some PSTATE fields can be accessed using the Special-purpose Current Program Status Register (CPSR). The CPSR can be directly read using the MRS instruction, and directly written using the MSR (register) and MSR (immediate) instructions.

The CPSR bit assignments are:

N, Z, C, V, bits [31:28]
The PSTATE Condition flags.

Q, bit [27] The PSTATE overflow or saturation flag.

SSBS, bit [23] Speculative Store Bypass Safe (SSBS) bit, see Access permissions for instruction execution on page G5-6012.

Bit[22] In Armv8.0, Reserved, RES0.
In Armv8.1, Privileged Access Never (PAN) state bit, see About the PAN bit on page G5-6011.

DIT, bit [21] Shows the value of CPSR.DIT immediately before the exception was taken.

GE[3:0], bits [19:16] The PSTATE greater than or equal flags.

M[4:0], bits [4:0] The PSTATE mode bits.

The other PSTATE fields cannot be accessed by using the CPSR. For information on how to access them, see Accessing the PE state controls and the Execution state bit on page G1-5738.

The application level alias for the CPSR is the APSR. The APSR is a subset of the CPSR. See The Application Program Status Register, APSR on page E1-3995.

 Writes to the CPSR have side-effects on various aspects of PE operation. All of these side-effects, except side-effects on memory accesses associated with fetching instructions, are synchronous to the CPSR write. This means that they are guaranteed:

• Not to be visible to earlier instructions in the execution stream.
• To be visible to later instructions in the execution stream.
The privilege level and address space of memory accesses associated with fetching instructions depend on the current Exception level and Security state. Writes to PSTATE.M can change one or both of the Exception level and Security state. The effect, on memory accesses associated with fetching instructions, of a change of Exception level or Security state is:

- Synchronous to the change of Exception level or Security state, if that change is caused by an exception entry or exception return.
- Guaranteed not to be visible to any memory access caused by fetching an earlier instruction in the execution stream.
- Guaranteed to be visible to any memory access caused by fetching any instruction after the next Context synchronization event in the execution stream.
- Might or might not affect memory accesses caused by fetching instructions between the mode change instruction and the point where the mode change is guaranteed to be visible.

See Exception return to an Exception level using AArch32 on page G1-5765 for the definition of exception return instructions.

Accessing the PE state controls and the Execution state bit

The PE state controls are the PSTATE.{IL, IT[7:0], J, E, T} fields. Software can read or write these in an SPSR. In the CPSR:

- The PE state controls, other than PSTATE.E, are RAZ when read by an MRS instruction.
- Writes to the PE state controls, other than PSTATE.E, by MSR (register) or MSR (immediate), are ignored in all modes.

Instructions other than MRS, MSR (register), or MSR (immediate) that access the PE state controls can read and write them in any mode.

Unlike the other PSTATE PE state controls, PSTATE.E can be read by an MRS instruction and might be written by MSR (register) or MSR (immediate). However, Arm deprecates PSTATE.E having a different value from the equivalent System register EE bit, see Mixed-endian support on page G4-5928.

Note

To determine the current endianness, software can use an LDR instruction to load a word from memory with a known value that differs if the endianness is reversed. For example, using an LDR instruction to load a word whose four bytes are 0x01, 0x00, 0x00, and 0x00 in ascending order of memory address loads the destination register with:

- 0x00000001 if the current endianness is little-endian.
- 0x01000000 if the current endianness is big-endian.

The PSTATE.M[4] bit is the Execution state bit. When read by an MRS instruction in AArch32 state, this bit always reads as 1. When written by an MSR (register) instruction or MSR (immediate) instruction, writing a value other than 1 is an illegal change to the PSTATE.M field. See Illegal changes to PSTATE.M on page G1-5739.

The CPS instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.{A, I, F} and PSTATE.M:

CPSIE <iflags> {, #<mode>}
Sets the specified PSTATE. {A, I, F} exception masks to 0, enabling the exception, and optionally changes to the specified mode.

CPSID <iflags> {, #<mode>}
Sets the specified PSTATE. {A, I, F} exception masks to 1, disabling the exception, and optionally changes to the specified mode.

CPS #<mode>
Changes to the specified mode without affecting the PSTATE. {A, I, F} exception masks.
The CPS instruction is unconditional. For more information, see *CPS, CPSID, CPSIE* on page F5-4372.

The SETEND instruction

The A32 and T32 instruction sets both include an instruction to manipulate PSTATE.E:

- **SETEND BE** Sets PSTATE.E to 1, for big-endian operation.
- **SETEND LE** Sets PSTATE.E to 0, for little-endian operation.

The SETEND instruction is unconditional. For more information, see *SETEND* on page F5-4714. Arm deprecates use of the SETEND instruction.

The SETPAN instruction

FEAT_PAN adds the SETPAN instruction to the A32 and T32 instruction sets, to manipulate PSTATE.PAN:

- **SETPAN #0** Sets PSTATE.PAN to 0, disabling Privileged access-never operation.
- **SETPAN #1** Sets PSTATE.PAN to 1, enabling Privileged access-never operation.

The SETPAN instruction is unconditional.

- **SETPAN** on page F5-4715.
- **About the PAN bit** on page G5-6011.

G1.10.2 The Saved Program Status Registers (SPSRs)

On taking an exception, PSTATE is preserved in the SPSR of the mode to which the exception is taken. The SPSRs are described in *Saved Program Status Registers (SPSRs)* on page G1-5733.

G1.10.3 Illegal changes to PSTATE.M

In AArch32 PE modes other than User mode, MSR and CPS instructions can explicitly change PSTATE.M. The following changes to PSTATE.M by MSR or CPS instructions are illegal:

- A change to an encoding that Table G1-5 on page G1-5726 does not show.
- A change to a mode that is not implemented.
- A change to a mode that is not accessible from the context the MSR or CPS instruction is executed in, as follows:
 - A change to a mode that would cause entry to a higher Exception level.
 - When executing in Non-secure state, a change to Monitor mode.
 - When executing in Secure EL1, a change to Monitor mode when EL3 is using AArch64.
 - A change to Hyp mode from any other mode.
 - A change from Hyp mode to any other mode.
 - When the value of HCR.TGE is 1, attempting to change from Monitor mode to a Non-secure PL1 mode, see *Trapping of general exceptions to Hyp mode* on page K1-7962.

On executing an instruction that attempts an illegal change to PSTATE.M:

- PSTATE.M is unchanged, and the current mode remains unchanged.
- PSTATE.IL is set to 1.
- All other PSTATE fields are written to as normal.

Note

For the PSTATE fields that MSR and CPS instructions update, see the instruction descriptions:

- **MSR (register)** on page F5-4582.
- **MSR (immediate)** on page F5-4580.
- **CPS, CPSID, CPSIE** on page F5-4372.
When the value of PSTATE.IL is 1, any attempt to execute any instruction results in an Illegal Execution state exception. See *The Illegal Execution state exception* on page G1-5768.

——— Note ————
- The PE ignores writes to PSTATE.M when executing at PL0.
- In Armv7, an instruction that attempts to make an illegal change to PSTATE.M is UNPREDICTABLE.

G1.10.4 Pseudocode description of PSTATE operations

The `CPSRWriteByInstr()` function is used by the MSR (register) and MSR (immediate) instructions to update PSTATE.

The `SetPSTATEFromPSR()` function updates PSTATE from a CPSR or SPSR.

Chapter J1 *Armv8 Pseudocode* defines these functions.
G1.11 Instruction set states

The instruction set states are described in Chapter E2 The AArch32 Application Level Memory Model and application level operations on them are described there. This section supplies more information about how they interact with system level functionality, in the sections:

- Exceptions and instruction set state.
- Unimplemented instruction sets.

G1.11.1 Exceptions and instruction set state

If an exception is taken to an EL1 mode, the SCTLR.TE bit for the Security state the exception is taken to determines the instruction set state that handles the exception, and if necessary, the PE changes to this instruction set state on exception entry.

If the exception is taken to Hyp mode, the HSCTLR.TE bit determines the instruction set state that handles the exception, and if necessary, the PE changes to this instruction set state on exception entry.

On coming out of reset, if the highest implemented Exception level is using AArch32:

- If the highest implemented Exception level is EL2, the PE starts execution in Hyp mode, in the instruction set state determined by the reset value of HSCTLR.TE.
- Otherwise, the PE starts execution in Supervisor mode, in the instruction set state determined by the reset value of SCTLR.TE. If the implementation includes EL3, this execution is in Secure Supervisor mode.

For more information about exception entry, see Overview of exception entry on page G1-5750.

G1.11.2 Unimplemented instruction sets

The PSTATE.T bit defines the current instruction set state, see Process state, PSTATE on page E1-3993.

In the Armv8 architecture, there is no support for the hardware acceleration of Java bytecodes, and the Jazelle Instruction set state is obsolete. Every AArch32 implementation must support the Trivial Jazelle implementation described in Trivial implementation of the Jazelle extension.

Note

In previous versions of the Arm architecture, the PSTATE.\{J, T\} bits determined the Instruction set state. In Armv8, PSTATE.J is RES0.

Trivial implementation of the Jazelle extension

Armv8 requires that the implementation of AArch32 state includes the trivial Jazelle implementation.

In a trivial implementation of the Jazelle extension:

- At EL1, EL2, or EL3, if the Exception level is using AArch32:
 - The JMCR and JOSCR are RAZ/WI.
 - The JIDR is a RAZ read-only register.
- At EL0 when EL0 is using AArch32:
 - It is IMPLEMENTATION DEFINED whether the JMCR and JOSCR are RAZ/ WI or UNDEFINED.
 - It is IMPLEMENTATION DEFINED whether JIDR is RAZ or UNDEFINED.
- The BXJ instruction behaves identically to the BX instruction in all circumstances.

Note

This is consistent with the JMCR.JE bit being RAZ, and means that the A32 and T32 instruction sets do not provide any mechanism for attempting to enter Jazelle state.
• Jazelle state, as defined in previous versions of the Arm architecture, is an unimplemented instruction set state.

These requirements ensure that operating systems that support an EJVM execute correctly.

A trivial implementation is not required to extend the PC to 32 bits, that is, it can implement PC[0] as RAZ/WI.

——— Note ————

This is because the only way that PC[0] is visible in A32 or T32 state is as a result of an exception occurring during Jazelle state execution, and Jazelle state execution cannot occur on a trivial implementation.
G1.12 Handling exceptions that are taken to an Exception level using AArch32

An exception causes the PE to suspend program execution to handle an event, such as an externally generated interrupt or an attempt to execute an undefined instruction. Exceptions can be generated by internal and external sources.

Normally, when an exception is taken the PE state is preserved immediately, before handling the exception. This means that, when the event has been handled, the original state can be restored and program execution resumed from the point where the exception was taken.

More than one exception might be generated at the same time, and a new exception can be generated while the PE is handling an exception.

The following sections describe exception handling:

- Exception vectors and the exception base address.
- Exception prioritization for exceptions taken to AArch32 state on page G1-5746.
- Overview of exception entry on page G1-5750.
- PE mode for taking exceptions on page G1-5753.
- PE state on exception entry on page G1-5756.
- Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
- Routing debug exceptions to EL2 using AArch32 on page G1-5760.

See also:

- Routing of aborts taken to AArch32 state on page G1-5762.
- Exception return to an Exception level using AArch32 on page G1-5765.
- Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770.
- AArch32 state exception descriptions on page G1-5778.

G1.12.1 Exception vectors and the exception base address

When an exception is taken, PE execution is forced to an address that corresponds to the type of exception. This address is called the exception vector for that exception. The vectors for the different types of exception form a vector table.

Note

There are significant differences in the sets of exception vectors for exceptions taken to an Exception level that is using AArch32 and for exceptions taken to an Exception level that is using AArch64. This part of this manual describes only how exceptions are taken to an Exception level that is using AArch32.

When an exception is taken to an Exception level that is using AArch64, then the exception is taken as described in Chapter D1 The AArch64 System Level Programmers’ Model using the exception vectors described in Exception vectors on page D1-2335.

AArch32 state defines exception vector tables for exceptions taken to EL2 and EL3 when those Exception levels are using AArch32. Those vector tables are not used when the corresponding Exception levels are using AArch64.

Note

A set of exception vectors for an Exception level that is using AArch32 comprises eight consecutive word-aligned memory addresses, starting at an exception base address. These eight vectors form an AArch32 vector table.
The number of possible exception base addresses, and therefore the number of vector tables, depends on the implemented Exception levels, as follows:

Implementation that does not include EL3

Any implementation that does not include EL3 must include the following AArch32 vector table if EL1 can use AArch32:

- An exception table for exceptions taken to EL1 modes other than System mode. This is the EL1 vector table, and is in the address space of the PL1&0 translation regime.

Note Exceptions cannot be taken to System mode.

For this vector table:

- When SCTLR.V == 0, the VBAR holds the exception base address.
- When SCTLR.V == 1, the exception base address is 0xFFFF0000.

Implementation that includes EL2

Any implementation that includes EL2 must include the following additional AArch32 vector table if EL2 can use AArch32:

- An exception table for exceptions taken to Hyp mode. This is the Hyp vector table, and is in the address space of the Non-secure PL2 translation regime.

For this vector table, HVBAR holds the exception base address.

Implementation that includes EL3

Any implementation that includes EL3 must include the following AArch32 vector tables:

- If EL3 can use AArch32, a vector table for exceptions taken to Secure Monitor mode. This is the Monitor vector table, and is in the address space of the Secure PL1&0 translation regime.

 For this vector table, MVBAR holds the exception base address.

- If Secure EL1 can use AArch32, a vector table for exceptions taken to Secure privileged modes other than Monitor mode and System mode. This is the Secure vector table, and is in the address space of the Secure PL1&0 translation regime.

 - When the Secure instance of SCTLR.V == 0, the Secure instance of VBAR holds the exception base address.
 - When the Secure instance of SCTLR.V == 1, the exception base address is 0xFFFF0000.

- If Non-secure EL1 can use AArch32, a vector table for exceptions taken to Non-secure PL1 modes. This is the Non-secure vector table, and is in the address space of the Non-secure PL1&0 translation regime.

 - When the Non-secure instance of SCTLR.V == 0, the Non-secure instance of VBAR holds the exception base address.
 - When the Non-secure instance of SCTLR.V == 1, the exception base address is 0xFFFF0000.

The following subsections give more information:

- The vector tables and exception offsets.
- Pseudocode determination of the exception base address on page G1-5746.

The vector tables and exception offsets

Table G1-6 on page G1-5745 defines the AArch32 vector table entries. In this table:

- The Hyp column defines the vector table entries for exceptions taken to Hyp mode.
- The Monitor column defines the vector table entries for exceptions taken to Monitor mode.
The Secure and Non-secure columns define the Secure and Non-secure vector table entries, that are used for exceptions taken to modes other than Monitor mode, Hyp mode, System mode, and User mode. Table G1-7 shows the mode to which each of these exceptions is taken. Each of these modes is described as the default mode for taking the corresponding exception.

--- Note ---
Exceptions cannot be taken to System mode or User mode.

For more information about determining the mode to which an exception is taken, see PE mode for taking exceptions on page G1-5753.

When EL2 is using AArch32, it provides a number of additional exceptions, some of which are not shown explicitly in the vector tables. For more information, see Offsets of AArch32 exceptions provided by EL2 on page G1-5746.

Table G1-6 The AArch32 vector tables

<table>
<thead>
<tr>
<th>Offset</th>
<th>Hyp¹</th>
<th>Monitor²</th>
<th>Secure³</th>
<th>Non-secure³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>0x04</td>
<td>Undefined Instruction, from Hyp mode</td>
<td>Monitor Trap</td>
<td>Undefined Instruction</td>
<td>Undefined Instruction</td>
</tr>
<tr>
<td>0x08</td>
<td>Hypervisor Call, from Hyp mode</td>
<td>Secure Monitor Call</td>
<td>Supervisor Call</td>
<td>Supervisor Call</td>
</tr>
<tr>
<td>0x0C</td>
<td>Prefetch Abort, from Hyp mode</td>
<td>Prefetch Abort</td>
<td>Prefetch Abort</td>
<td>Prefetch Abort</td>
</tr>
<tr>
<td>0x10</td>
<td>Data Abort, from Hyp mode</td>
<td>Data Abort</td>
<td>Data Abort</td>
<td>Data Abort</td>
</tr>
<tr>
<td>0x14</td>
<td>Hyp Trap, or Hyp mode entry⁵</td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>0x18</td>
<td>IRQ interrupt</td>
<td>IRQ interrupt</td>
<td>IRQ interrupt</td>
<td>IRQ interrupt</td>
</tr>
<tr>
<td>0x1C</td>
<td>FIQ interrupt</td>
<td>FIQ interrupt</td>
<td>FIQ interrupt</td>
<td>FIQ interrupt</td>
</tr>
</tbody>
</table>

¹. Non-secure state only. Implemented only if the implementation includes EL2 and EL2 can use AArch32.
². Secure state only. Implemented only if the implementation includes EL3 and EL3 can use AArch32.
³. If the implementation does not include EL3 then there is a single vector table for exceptions taken to EL1 when EL1 is using AArch32. That table holds the vectors shown in the Secure column of this table
⁴. In previous versions of the architecture, this entry has been used for the Reset vector, meaning the address at which execution starts on coming out of reset. In Armv8, the AArch32 Reset vector is IMPLEMENTATION DEFINED. An implementation might use this vector table entry to hold the Reset vector.
⁵. See Use of offset 0x14 in the Hyp vector table on page G1-5746.

Table G1-7 Modes for taking the exceptions shown in the Secure or Non-secure vector table

<table>
<thead>
<tr>
<th>Exception</th>
<th>Mode taken to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined Instruction</td>
<td>Undefined</td>
</tr>
<tr>
<td>Supervisor Call</td>
<td>Supervisor</td>
</tr>
<tr>
<td>Prefetch Abort</td>
<td>Abort</td>
</tr>
<tr>
<td>Data Abort</td>
<td>Abort</td>
</tr>
<tr>
<td>IRQ interrupt</td>
<td>IRQ</td>
</tr>
<tr>
<td>FIQ interrupt</td>
<td>FIQ</td>
</tr>
</tbody>
</table>
For more information about use of the vector tables, see Overview of exception entry on page G1-5750.

Offsets of AArch32 exceptions provided by EL2

EL2 provides the following exceptions. When EL2 is using AArch32, these exceptions are taken to Hyp mode, and the PE enters the handlers for these exceptions using the following vector table entries shown in Table G1-6 on page G1-5745:

Hypervisor Call
- If taken from Hyp mode, shown explicitly in the Hyp mode vector table. Otherwise, see Use of offset 0x14 in the Hyp vector table.

Hyp Trap
- Shown explicitly in the Hyp mode vector table.

Virtual Abort
- Entered through the Data Abort vector in the Non-secure vector table.

Virtual IRQ
- Entered through the IRQ vector in the Non-secure vector table.

Virtual FIQ
- Entered through the FIQ vector in the Non-secure vector table.

--- Note ---
Virtual exceptions when an implementation includes EL2 on page G1-5770 gives more information about the virtual exceptions.

Use of offset 0x14 in the Hyp vector table

The vector at offset 0x14 in the Hyp vector table is used for all exceptions that cause entry to Hyp mode from Non-secure EL0 and EL1, except for IRQ and FIQ exceptions.

--- Note ---
Virtual exceptions are never taken to Hyp mode.

Pseudocode determination of the exception base address

For an exception taken to a PL1 mode, the `ExcVectorBase()` function determines the exception base address.

The `ExcVectorBase()` function is defined in Chapter J1 Armv8 Pseudocode.

--- Note ---
The PL1 modes to which exceptions can be taken are Supervisor mode, Undefined mode, Abort mode, IRQ mode, and FIQ mode. In Non-secure state, and in Secure state when EL3 is using AArch64, these are EL1 modes. However, in Secure state when EL3 is using AArch32, these are EL3 modes. For more information see Security state, Exception levels, and AArch32 execution privilege on page G1-5722.

G1.12.2 Exception prioritization for exceptions taken to AArch32 state

The following sections describe the Armv8 requirements for the prioritization of synchronous exceptions, and the limits on when asynchronous exceptions can be taken:

- Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747.
- Architectural requirements for taking asynchronous exceptions on page G1-5749.

See also:

- AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061, for information about:
 - The prioritization of aborts on a single memory access in a VMSA implementation.
 - The prioritization of exceptions generated during address translation.
Synchronous exception prioritization for exceptions taken to AArch32 state

In principle, any single instruction can generate a number of different synchronous exceptions, between the fetching of the instruction, its decode, and eventual execution. This section describes the prioritization of such exceptions when they are taken to an Exception level that is using AArch32.

Note
• An exception that is taken to an Exception level that is using AArch32 must have been taken from an Exception level that is using AArch32.
• The priority numbering in this list correlates with the equivalent AArch64 list in Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

For an exception that is taken to an Exception level that is using AArch32, exceptions are prioritized as follows, where 1 is the highest priority.

1-5 These priority numbers are used by AArch64 exceptions or debug events.

6 PC alignment fault exceptions. A PC alignment fault exception can only be taken to an Exception level that is using AArch32 as a result of:
 • The CONSTRAINED UNPREDICTABLE handling of a branch to an unaligned address, see Branching to an unaligned PC on page K1-7942.
 • Exiting from Debug state to AArch32 specifying an unaligned PC value, see Exiting Debug state on page H2-7051.

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported as a Prefetch Abort exception, see Prefetch Abort exception reporting a PC alignment fault exception on page G1-5786.

7 Prefetch Abort exceptions. See Prefetch Abort exception on page G1-5785 and AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.

8 Breakpoint exceptions or Address Matching Vector Catch exceptions. See:
 • Breakpoint exceptions on page G2-5870.
 • Vector Catch exceptions on page G2-5909.

Note An Exception Trapping Vector Catch exception is generated on exception entry for an exception that has been prioritized as described in this section. This means that it does not have its own entry in this list.

9 Illegal Execution state exceptions. See The Illegal Execution state exception on page G1-5768.

10 Software Breakpoint Exceptions caused by the execution of a BKPT Exception generating instruction.

11 This priority number is used by AArch64 exceptions.

12 Exceptions taken from EL1 to EL2 because of one of the following configuration settings:
 • HSTR.Tn.
 • HCR.TIDCP.

13 Undefined Instruction exceptions that occur as a result of one or more of the following:
 • An attempt to execute an unallocated instruction encoding, including an encoding for an instruction that is not implemented in the PE implementation.
 • An attempt to execute an instruction that is defined never to be accessible at the current Exception level regardless of any enables or traps.
The AArch32 System Level Programmers' Model
G1.12 Handling exceptions that are taken to an Exception level using AArch32

• Debug state execution of an instruction encoding that is not accessible in Debug state.
• Non-debug state execution of an instruction encoding that is not accessible in Non-debug state.
• Execution of an HVC instruction, when HVC instructions are disabled by SCR.HCE or HCR.HCD.
• Execution of an HLT instruction when HLT instructions are disabled by EDSCR.HDE or when halting is prohibited.
• In Debug state:
 — Execution of a DCPS1 instruction in Non-secure EL0 when HCR.TGE is 1.
 — Execution of a DCPS2 instruction in EL1 or EL0 when SCR.NS is 0 or when EL2 is disabled or not implemented in the current Security state.
 — Execution of a DCPS3 instruction when EDSCR.SDD is 1 or when EL3 is not implemented.
 — When the value of EDSCR.SDD is 1, execution in EL2, EL1, or EL0 of an instruction that is trapped to EL3.
• Execution of an instruction that is UNDEFINED as a result of any of:
 — Being in an IT block when SCTLR.ITD is 1, or when HSCTLR.ITD is 1.
 — Executing a SETEND instruction when SCTLR.SED is 1, or when HSCTLR.SED is 1.
 — Executing a CP15DMB, CP15DSB, or CP15ISB barrier instruction when SCTLR.CP15BEN is 0, or when HSCTLR.CP15BEN is 0.
See Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality on page G1-5821 and Disabling or enabling EL2 use of AArch32 deprecated functionality on page G1-5830.
• Execution of an instruction that is UNDEFINED because at least one of FPSCR.{Stride, Len} is nonzero, when programming these bits to nonzero values is supported. See Floating-point exceptions and exception traps on page G1-5816.

14 Exceptions taken to EL1, or taken to EL2 because the value of HCR.TGE is 1, that are generated because of configurable access to instructions, and that are not covered by any of priorities 6-13.

15 Exceptions taken from EL0 to EL2 because of one of the following configuration settings:
 • HSTR.Tn.
 • HCR.TIDCP.

16 Exceptions taken to EL2 because of configuration settings in the HCPTR.

17 Exceptions taken to EL2 because of one of the following configuration settings:
 • Any setting in HCR, other than the TIDCP bit.
 • Any setting in CNTHTCTL.
 • Any setting in HDCR.
 • If EL1 is using AArch64 state, any of the fine-grained traps in HAFGRTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2, HFGTR_EL2, HFGWTR_EL2.

18 Exceptions taken to EL2 because of configurable access to instructions, and that are not covered by any of priorities 6-17.

19 Exceptions caused by the SMC instruction being UNDEFINED because the value of SCR.SCD is 1.

20 Exceptions caused by the execution of an Exception generating instruction, SVC, HVC, or SMC.

21-22 These priority numbers are used by AArch64 exceptions.

23 Exceptions taken to EL3 from EL0, EL1 or EL2 because of configuration settings in the SDCR.

24 Exceptions taken to EL3 because of configurable access to instructions, and that are not covered by any of priorities 6-23.
This priority number is used by AArch64 exceptions.

Trapped floating-point exceptions, if supported. See *Floating-point exceptions and exception traps on page G1-5816.*

These priority numbers are used by AArch64 exceptions and debug events.

Data Abort exceptions other than a Data Abort exception generated by a synchronous External abort that was not generated by a translation table walk. That is, any Data Abort exception that is not covered by item 31. See *Data Abort exception on page G1-5789* and *AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.* It is IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 31.

Watchpoint exceptions. See *Watchpoint exceptions on page G2-5895.*

Data Abort exception generated by a synchronous External abort that was not generated by a translation table walk, see *External aborts on page G4-5954.* It is IMPLEMENTATION DEFINED whether synchronous External aborts are prioritized here or as item 29.

For items 29-31, if an instruction results in more than one single-copy atomic memory access, the prioritization between synchronous exceptions generated on each of those different memory accesses is not defined by the architecture.

Note

Exceptions generated by a translation table walk are reported and prioritized as either a Prefetch Abort exception, priority 7 in this list, or a Data Abort exception, priority 29 in this list. See also *AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.*

Architectural requirements for taking asynchronous exceptions

The Arm architecture does not define when asynchronous exceptions are taken. The prioritization of asynchronous exceptions, including virtual asynchronous exceptions, is IMPLEMENTATION DEFINED.

An asynchronous exception that is pending before a *Context synchronization event* in the following list, is taken before the first instruction after the context synchronizing event, provided that the pending asynchronous event is not masked:

- Execution of an *ISB* instruction that does not fail its Condition code check.
- Exception entry.
- Exception return.
- Exit from Debug state.

Note

- If the first instruction after the context synchronizing event generates a synchronous exception, then the architecture does not define the order in which that synchronous exception and the asynchronous exception are taken.
- The *ISR* identifies any pending asynchronous exceptions.
- Interrupts are masked when the PE is in Debug state, and therefore this list of context synchronizing events does not include the *DCPS* and *DRPS* instructions.

In the absence of a specific requirement to take an asynchronous exception, the only requirement of the architecture is that an unmasked asynchronous exception is taken in finite time.

Note

The taking of an unmasked asynchronous exception in finite time must occur with all code sequences, including with a sequence that consists of unconditional loops.
If an unmasked interrupt was pending but is changed to not pending before it is taken, then the architecture permits the interrupt to be taken, but does not require this to happen. If the interrupt is taken, then it must be taken before the first Context synchronization event after the interrupt was changed to not pending.

PSTATE includes a mask bit for each type of asynchronous exception. Setting one of these bits to 1 can prevent the corresponding asynchronous exception from being taken, although when the PE is in Non-secure state other controls can modify the effect of these bits. For more information, see Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770.

Taking an exception sets an exception-dependent subset of these mask bits.

Note

In some contexts, the PSTATE.{A, I, F} bits mask the taking of asynchronous exceptions. The way these are set on exception entry, described in PSTATE.{A, I, F, M} values on exception entry on page G1-5757, can prevent an exception handler being interrupted by an asynchronous exception.

G1.12.3 Overview of exception entry

There are some significant differences between the handling of exceptions taken to Hyp mode and exceptions taken to other modes. Because Hyp mode is the EL2 mode, this means that the following descriptions sometimes distinguish between the EL2 mode and the non-EL2 modes.

On taking an exception to an Exception level that is using AArch32:

1. The hardware determines the mode to which the exception must be taken, see PE mode for taking exceptions on page G1-5753.

2. A link value, indicating the preferred return address for the exception, is saved. This is a possible return address for the exception handler, and depends on:
 • The exception type.
 • Whether the exception is taken to the EL2 mode or to a non-EL2 mode.
 • For some exceptions taken to non-EL2 modes, the instruction set state when the exception was taken.

 Where the link value is saved depends on whether the exception is taken to the EL2 mode.

 For more information, see Link values saved on exception entry on page G1-5751.

3. The value of PSTATE is saved in the SPSR for the mode to which the exception must be taken. The value saved in SPSR.IT[7:0] is always correct for the preferred return address.

4. In an implementation that includes EL3, when EL3 is using AArch32:
 • If the exception is taken from Monitor mode, SCR.NS is cleared to 0.
 • Otherwise, taking the exception leaves SCR.NS unchanged.

 When EL3 is using AArch64, Monitor mode is not available.

5. PSTATE is updated with new context information for the exception handler. This includes:
 • Setting PSTATE.M to the PE mode to which the exception is taken.
 • Setting the appropriate PSTATE mask bits. This can disable the corresponding exceptions, preventing uncontrolled nesting of exception handlers.
 • Setting the instruction set state to the state required for exception entry.
 • Setting the endianness to the required value for exception entry.
 • Clearing the PSTATE.IT[7:0] bits to 0.

 For more information, see PE state on exception entry on page G1-5756.

6. The appropriate exception vector is loaded into the PC, see Exception vectors and the exception base address on page G1-5743.

7. Execution continues from the address held in the PC.
For an exception taken to a non-EL2 mode, on exception entry, the exception handler can use the SRS instruction to store the return state onto the stack of any mode at the same Exception level and in the same Security state, and can use the CPS instruction to change mode. For more information about the instructions, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-4767 and CPS, CPSID, CPSIE on page F5-4372.

Later sections of this chapter describe each of the possible exceptions, and each of these descriptions includes a pseudocode description of the PE state changes on taking that exception. Table G1-8 gives an index to these descriptions:

<table>
<thead>
<tr>
<th>Exception</th>
<th>Description of exception entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>Pseudocode descriptions of reset on page G1-5803</td>
</tr>
<tr>
<td>Undefined Instruction</td>
<td>Pseudocode description of taking the Undefined Instruction exception on page G1-5780</td>
</tr>
<tr>
<td>Hyp Trap</td>
<td>Pseudocode description of taking the Hyp Trap exception on page G1-5782</td>
</tr>
<tr>
<td>Monitor Trap</td>
<td>Pseudocode description of taking the Monitor Trap exception on page G1-5781</td>
</tr>
<tr>
<td>Supervisor Call</td>
<td>Pseudocode description of taking the Supervisor Call exception on page G1-5783</td>
</tr>
<tr>
<td>Secure Monitor Call</td>
<td>Pseudocode description of taking the Secure Monitor Call exception on page G1-5784</td>
</tr>
<tr>
<td>Hypervisor Call</td>
<td>Pseudocode description of taking the Hypervisor Call exception on page G1-5785</td>
</tr>
<tr>
<td>Prefetch Abort</td>
<td>Pseudocode description of taking the Prefetch Abort exception on page G1-5789</td>
</tr>
<tr>
<td>Data Abort</td>
<td>Pseudocode description of taking the Data Abort exception on page G1-5792</td>
</tr>
<tr>
<td>Virtual Abort</td>
<td>Pseudocode description of taking the Virtual SError interrupt exception on page G1-5794</td>
</tr>
<tr>
<td>IRQ</td>
<td>Pseudocode description of taking the physical IRQ exception on page G1-5795</td>
</tr>
<tr>
<td>Virtual IRQ</td>
<td>Pseudocode description of taking the Virtual IRQ exception on page G1-5796</td>
</tr>
<tr>
<td>FIQ</td>
<td>Pseudocode description of taking the FIQ exception on page G1-5798</td>
</tr>
<tr>
<td>Virtual FIQ</td>
<td>Pseudocode description of taking the Virtual FIQ exception on page G1-5798</td>
</tr>
</tbody>
</table>

The following sections give more information about the PE state changes, for different architecture implementations. However, you must refer to the pseudocode for a full description of the state changes:

- **PE mode for taking exceptions on page G1-5753.**
- **PE state on exception entry on page G1-5756.**

Link values saved on exception entry

On exception entry, a link value for use on return from the exception, is saved. This link value is based on the preferred return address for the exception, as shown in Table G1-9:

<table>
<thead>
<tr>
<th>Exception</th>
<th>Preferred return address</th>
<th>Taken to a mode at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined Instruction</td>
<td>Address of the UNDEFINED instruction</td>
<td>Non-EL2(^a), or EL2(^c)</td>
</tr>
<tr>
<td>Hyp Trap</td>
<td>Address of the trapped instruction</td>
<td>EL2 only(^c)</td>
</tr>
<tr>
<td>Monitor Trap</td>
<td>Address of the trapped instruction</td>
<td>EL3 only</td>
</tr>
<tr>
<td>Supervisor Call</td>
<td>Address of the instruction after the SVC instruction</td>
<td>Non-EL2(^a) or EL2(^c)</td>
</tr>
</tbody>
</table>
Note

- Although Reset is described as an exception, it differs significantly from other exceptions. The architecture has no concept of a return from a Reset and therefore it is not listed in this section.
- For each exception, the preferred return address is not affected by the Exception level from which the exception was taken.

The link value saved, and where it is saved, depend on whether the exception is taken to a non-EL2 mode, or to an EL2 mode, as follows:

Exception taken to a non-EL2 mode

The link value is saved in the LR for the mode to which the exception is taken. The saved link value is the preferred return address for the exception, plus an offset that depends on the instruction set state when the exception was taken, as Table G1-10 shows:

Table G1-10 Offsets applied to Link value for exceptions taken to non-EL2 modes

<table>
<thead>
<tr>
<th>Exception</th>
<th>Offset, for PE state of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A32</td>
</tr>
<tr>
<td>Undefined Instruction</td>
<td>+4</td>
</tr>
<tr>
<td>Monitor Trap</td>
<td>+4</td>
</tr>
<tr>
<td>Supervisor Call</td>
<td>None</td>
</tr>
<tr>
<td>Secure Monitor Call</td>
<td>None</td>
</tr>
<tr>
<td>Prefetch Abort</td>
<td>+4</td>
</tr>
<tr>
<td>Data Abort</td>
<td>+8</td>
</tr>
</tbody>
</table>
Exception taken to an EL2 mode

The link value is saved in the \texttt{ELR_hyp} Special-purpose register.

The saved link value is the preferred return address for the exception, as shown in Table G1-9 on page G1-5751, with no offset.

G1.12.4 PE mode for taking exceptions

The following principles determine the Exception level to which an exception is taken, and if that Exception level is using AArch32, the PE mode to which the exception is taken:

- An exception cannot be taken to the EL0 mode.

- An exception is taken either:
 - To the Exception level at which the PE was executing when it took the exception.
 - To a higher Exception level.

This means that, in Secure state:

- When EL3 is using AArch32, an exception is always taken to an EL3 mode.
- When EL3 is using AArch64, an exception that is taken to AArch32 state is taken to an EL1 mode.

- Configuration options and other features provided by EL2 and EL3 can determine the mode to which some exceptions are taken, as follows:

In an implementation that does not include EL2 or EL3

An exception is always taken to the default mode for that exception.

In an implementation that includes EL3

A Secure Monitor Call exception is always taken to EL3. This means:

- If EL3 is using AArch32 the exception is taken to Secure Monitor mode.
- If EL3 is using AArch64, then executing the instruction generates an exception that is taken to EL3, see \textit{Execution of an SMC instruction from a privileged Exception level that is using AArch32 on page G1-5755}.

IRQ, FIQ, and External abort exceptions can be configured to be taken to EL3. Therefore, if EL3 is using AArch32 the exceptions are taken to Secure Monitor mode.

When EL3 is using AArch32, a Monitor Trap exception is taken to Secure Monitor mode.

Any exception taken from Secure state that is not taken to Secure Monitor mode is taken to Secure state in the default mode for that exception. As described in \textit{Security state, Exception levels, and AArch32 execution privilege on page G1-5722}, this means it is taken to:

- An EL3 mode other than Monitor mode if EL3 is using AArch32.
- An EL1 mode if EL3 is using AArch64.

If the implementation does not include EL2, any exception taken from Non-secure state that is not taken to Secure Monitor mode is taken to Non-secure state to the default mode for that exception. The default mode will be an EL1 mode.
In an implementation that includes EL2

An exception taken from Non-secure state that is not taken to Secure Monitor mode is taken to Non-secure state and:

• If the exception is taken from Hyp mode, then it is taken to Hyp mode.

• Otherwise, the exception is either taken to Hyp mode, as described in Exceptions taken to Hyp mode, or taken to the default mode for the exception.

——— Note ————

• Hyp mode is the EL2 mode. The other modes to which an exception can be taken in Non-secure state are EL1 modes.

• Hyp mode has no effect on the handling of exceptions taken from Secure state.

Table G1-7 on page G1-5745 shows the default mode to which each exception is taken.

Asynchronous exception routing controls on page G1-5772 describes the exception routing controls provided by EL2 and EL3.

Routing of aborts taken to AArch32 state on page G1-5762 gives more information about the modes to which memory aborts are taken.

The possible modes for taking each exception on page G1-5756 shows all modes to which each exception might be taken, in any implementation. That is, it applies to implementations:

• That include neither EL2 nor EL3.

• That include EL2 but not EL3.

• That do not include EL2 but include EL3.

• That include both EL2 and EL3.

Exceptions taken to Hyp mode

In an implementation that includes EL2 and EL3, when EL2 is using AArch32:

• Any exception taken from Hyp mode, that is not routed to EL3 by the controls described in Asynchronous exception routing controls on page G1-5772, is taken to Hyp mode.

• The following exceptions, if taken from Non-secure state, are taken to Hyp mode:

 — An abort that Routing of aborts taken to AArch32 state on page G1-5762 identifies as taken to Hyp mode.

 — A Hyp Trap exception, see EL2 configurable controls on page G1-5827.

 — A Hypervisor Call exception. This is generated by executing an HVC instruction in a Non-secure mode.

 — An SError interrupt exception, IRQ exception or FIQ exception that is not routed to EL3 but is explicitly routed to Hyp mode, as described in Asynchronous exception routing controls on page G1-5772.

 — A synchronous External abort, Alignment fault, Undefined Instruction exception, or Supervisor Call exception taken from the Non-secure EL0 mode and explicitly routed to Hyp mode, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

——— Note ————

A synchronous External abort can be routed to Hyp mode only if it is not routed to EL3.

——— Note ————

A debug exception that is explicitly routed to Hyp mode as described in Routing debug exceptions to EL2 using AArch32 on page G1-5760.

——— Note ————

The virtual exceptions cannot be taken to Hyp mode. They are always taken to a Non-secure EL1 mode.
Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64

As described in *The Armv8-A security model* on page G1-5719, when EL3 is using AArch64, lower Exception levels, in either Security state, can be using AArch32. This means software executing in those Exception levels might try to access AArch32 security features that are not available. The following subsections describe the associated behaviors:

- Execution of an SMC instruction from a privileged Exception level that is using AArch32
- Non-secure reads of the NSACR
- Secure EL1 operations when Secure EL1 is using AArch32 state

Execution of an SMC instruction from a privileged Exception level that is using AArch32

When EL3 is using AArch64, an SMC instruction executed from Secure or Non-secure EL1 using AArch32, or from Non-secure EL2 using AArch32 when the value of HCR.TSC is 0, generates an exception that is taken to EL3. The exception syndrome is reported with an EC value of 0x13, SMC instruction executed in AArch32 state, see *ISS encoding for an exception from SMC instruction execution in AArch32 state* on page D13-2980.

Non-secure reads of the NSACR

The NSACR is defined as being RO from Non-secure PE modes other than User mode. When EL3 is using AArch64, a read of the NSACR returns a fixed value of 0x00000C00 in the following cases:

- If the read is from a Non-secure EL1 mode when EL1 is using AArch32.
- If the read is from Hyp mode when EL2 is using AArch32.

Secure EL1 operations when Secure EL1 is using AArch32 state

When Secure EL1 is using AArch32 and if FEAT_SEL2 is implemented and enabled or EL3 is using AArch64:

- Any of the following operations performed in a Secure EL1 mode is trapped to Secure EL3:
 - A read or write of any of the SCR, NSACR, MVBAR, and SDCR.
 - Executing any of the ATS12NSO** instructions.
 - Executing an SRS instruction that would use SP_mon, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-4767.
 - Executing an MSR (banked register) instruction that would access SPSR_mon, SP_mon, or LR_mon, see MRS (Banked register) on page F5-4572 and MSR (Banked register) on page F5-4576.

For more information about these traps, including the associated exception syndromes, see *Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32* on page D1-2385.

- Any attempt to move into Hypervisor mode, either by an exception return or by executing a CPS or MSR instruction, is treated as an illegal operation and is handled as described in *Illegal return events from AArch32 state* on page G1-5766.

- Any attempt to move into Monitor mode, either by an exception return or by executing a CPS or MSR instruction, is treated as an illegal operation and is handled as described in *Illegal return events from AArch32 state* on page G1-5766.

Note

This functionality supports a usage model where:

- EL3 uses AArch64.
- Secure software executed in Secure EL1 using AArch32 and Secure EL0 using AArch32.
- The Non-secure state uses AArch64.
The possible modes for taking each exception

Each of the exception descriptions in AArch32 state exception descriptions on page G1-5778 includes a subsection that describes the modes to which each exception can be taken. Those subsections are:

• The PE mode to which the Undefined Instruction exception is taken on page G1-5779.
• The PE mode to which the Hyp Trap exception is taken on page G1-5782.
• The PE mode to which the Monitor Trap exception is taken on page G1-5781.
• The PE mode to which the Supervisor Call exception is taken on page G1-5782.
• The PE mode to which the Secure Monitor Call exception is taken on page G1-5784.
• The PE mode to which the Hypervisor Call exception is taken on page G1-5785.
• The PE mode to which the Prefetch Abort exception is taken on page G1-5787.
• The PE mode to which the Data Abort exception is taken on page G1-5790.
• The PE mode to which the Virtual SError interrupt exception is taken on page G1-5794.
• The PE mode to which the physical IRQ exception is taken on page G1-5795.
• The PE mode to which the Virtual IRQ exception is taken on page G1-5796.
• The PE mode to which the physical FIQ exception is taken on page G1-5797.
• The PE mode to which the Virtual FIQ exception is taken on page G1-5798.

These descriptions also show the vector offset for the exception entry for each mode. These descriptions assume that all Exception levels are using AArch32, meaning:

• HCR, rather than HCR_EL2, controls the routing of exceptions to EL2.
• SCR, rather than SCR_EL3, controls the routing of exceptions to EL3.

For more information about:

• Vector offsets, see Exception vectors and the exception base address on page G1-5743.
• The routing of synchronous External aborts or SError, IRQ, and FIQ interrupt exceptions, and the virtual exceptions, see Asynchronous exception routing controls on page G1-5772.

UNPREDICTABLE cases when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, exceptions that would otherwise be taken to EL1 are, instead, routed to EL2, see Routing exceptions from Non-secure EL0 to EL2 on page G1-5758. Related to this, when the value of HCR.TGE is 1, execution in a Non-secure EL1 mode is UNPREDICTABLE. Armv8 does not constrain this UNPREDICTABLE behavior, but in Armv8 software that follows the Arm recommendations cannot get to this state. When following the Arm recommendations, any attempt to move to a Non-secure EL1 mode when the value of HCR.TGE is 1 is either:

• An illegal exception return, see Illegal return events from AArch32 state on page G1-5766.
• An illegal PE mode change, see Illegal changes to PSTATE.M on page G1-5739.

G1.12.5 PE state on exception entry

The description of each exception includes a pseudocode description of entry to that exception, as Table G1-8 on page G1-5751 shows. The following sections describe the PE state changes on entering an exception, for different implementations and operating states. However, you must always see the exception entry pseudocode for a full description of the state changes on exception entry:

• Instruction set state on exception entry on page G1-5757.
• PSTATE.E value on exception entry on page G1-5757.
• PSTATE.{A, I, F, M} values on exception entry on page G1-5757.

Note

The descriptions in these sections assume that EL2 and EL3, that control some aspects of the routing of exceptions taken from EL1 or EL0, are both using AArch32. If this is not the case:

• If EL2 is using AArch64:
 — Controls shown as provided by the HSCTLR are provided by the SCTLR_EL2.
 — Controls shown as provided by the HCR are provided by the HCR_EL2.
• If EL3 is using AArch64, controls shown as provided by the SCR are provided by the SCR_EL3.

Instruction set state on exception entry

Exception handlers can execute in either T32 state or A32 state. On exception entry, PSTATE.T is set to the required value, as determined by SCTLR.TE or HSCTL.R.TE, depending on the mode the exception is taken to. Table G1-11 shows this:

Table G1-11 PSTATE.T bit value on exception entry

<table>
<thead>
<tr>
<th>Mode to which exception is taken</th>
<th>HSCTL.R.TE</th>
<th>SCTLR.TE</th>
<th>PSTATE.T</th>
<th>Exception handler state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Hyp mode</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>A32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>T32</td>
</tr>
<tr>
<td>Hyp mode</td>
<td>0</td>
<td>x</td>
<td>0</td>
<td>A32</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>T32</td>
</tr>
</tbody>
</table>

When an implementation includes EL3 and EL3 is using AArch32, SCTLR is banked for Secure and Non-secure states, and therefore the TE bit value might be different for Secure and Non-secure states. For an exception taken to a PE mode other than Hyp mode, the SCTLR.TE bit for the Security state to which the exception is taken determines the instruction set state for the exception handler. This means the instruction set state in which an exception handler might execute depends on the Security state to which the exception is taken.

PSTATE.E value on exception entry

PSTATE.E controls the load and store endianness for data handling. Table G1-12 show the value to which this bit is set on exception entry:

Table G1-12 PSTATE.E value on exception entry

<table>
<thead>
<tr>
<th>Exception mode</th>
<th>HSCTL.R.EE</th>
<th>SCTLR.EE</th>
<th>Endianness for data loads and stores</th>
<th>PSTATE.E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure or Non-secure EL1</td>
<td>x</td>
<td>0</td>
<td>Little-endian</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Big-endian</td>
<td>1</td>
</tr>
<tr>
<td>Hyp</td>
<td>0</td>
<td>x</td>
<td>Little-endian</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>Big-endian</td>
<td>1</td>
</tr>
</tbody>
</table>

For more information, see the bit description in Saved Program Status Registers (SPSRs) on page G1-5733.

PSTATE.{A, I, F, M} values on exception entry

On exception entry, PSTATE.M is set to the value for the mode to which the exception is taken, as described in PE mode for taking exceptions on page G1-5753.

Table G1-13 on page G1-5758 shows the cases where PSTATE.{A, I, F} bits are set to 1 on an exception entry, and how this depends on the mode and Security state to which an exception is taken. If the table entry for a particular mode and Security state does not define a value for a PSTATE.{A, I, F} bit then that bit is unchanged by the exception entry. In this table:

• The PE mode exception is taken to column is the mode to which the exception is taken.
• The Non-secure column applies to exceptions taken to Non-secure state in an implementation that includes EL3 but does not include EL2.
• The Secure column applies to:
 — Exceptions taken to Secure state.
 — Implementations that do not include the EL3.
 — Exceptions taken to Non-secure state in an implementation that includes EL2.

Table G1-13 PSTATE.{A, I, F} values on exception entry

<table>
<thead>
<tr>
<th>PE mode exception is taken to</th>
<th>Security state</th>
<th>Non-secure</th>
<th>Secure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyp</td>
<td>If SCR.EA==0 then PSTATE.A is set to 1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If SCR.IIRQ==0 then PSTATE.I is set to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If SCR.FIQ==0 then PSTATE.F is set to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td>-</td>
<td>PSTATE.A is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.I is set to 1</td>
<td>PSTATE.I is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.F is set to 1</td>
<td>PSTATE.F is set to 1</td>
<td></td>
</tr>
<tr>
<td>FIQ</td>
<td>PSTATE.A is set to 1</td>
<td>PSTATE.A is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.I is set to 1</td>
<td>PSTATE.I is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.F is set to 1</td>
<td>PSTATE.F is set to 1</td>
<td></td>
</tr>
<tr>
<td>IRQ, Abort</td>
<td>PSTATE.A is set to 1</td>
<td>PSTATE.A is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.I is set to 1</td>
<td>PSTATE.I is set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSTATE.F is set to 1</td>
<td>PSTATE.F is set to 1</td>
<td></td>
</tr>
<tr>
<td>Undefined, Supervisor</td>
<td>PSTATE.I is set to 1</td>
<td>PSTATE.I is set to 1</td>
<td></td>
</tr>
</tbody>
</table>

Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770 describes how, in some situations, the PSTATE.{A, I, F} bits mask the taking of SError interrupts, IRQ interrupts, and FIQ interrupts.

G1.12.6 Routing exceptions from Non-secure EL0 to EL2

Note

The routing control described in this section permits a Non-secure state usage model where applications execute in User mode under a hypervisor, that executes in Hyp mode, without a Guest OS running at Non-secure EL1. This control applies when the PE is executing in Non-secure EL0 using AArch32 and EL2 is using AArch32 and the value of HCR.TGE is 1.

If the PE is in Non-secure User mode, any exception that would otherwise be taken to Non-secure EL1 is taken to EL2 if either:

• EL2 is using AArch32 and the value of HCR.TGE is 1.
 In this case the exception is taken to Hyp mode, instead of to the default Non-secure mode for handling the exception. For more information see Exception reporting when HCR.TGE routes an exception to EL2 using AArch32 on page G1-5759.

• EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.
 In this case the exception is taken to EL2 using AArch64, see Exception entry on page D1-2333.

Any exception that is routed to Secure Monitor mode or to EL3 using AArch64 is unaffected by the value of HCR.TGE or HCR_EL2.TGE.

When the value of HCR.TGE is 1, meaning TGE routing from Non-secure EL0 using AArch32 to EL2 using AArch32 applies:

• The SCTLR.M bit is treated as 0 for all purposes other than a direct read of the SCTLR register.
• Each of the HCR.\{FMO, IMO, AMO\} bits is treated as 1 for all purposes other than a direct read of the HCR register.

• Each of the HDCR.\{TDE, TDA, TDRA, TDOSA\} bits is treated as 1 for all purposes other than a direct read of the HDCR register.

• An exception return to Non-secure EL1 is treated as an illegal exception return, see Illegal return events from AArch32 state on page G1-5766.

• All virtual interrupts, including any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts, are disabled.

Exception reporting when HCR.TGE routes an exception to EL2 using AArch32

The following sections give more information about the behavior of synchronous exceptions that are routed to Hyp mode because the value of HCR.TGE is 1:

• Undefined Instruction exception, when the value of HCR.TGE is 1.

• Supervisor Call exception, when the value of HCR.TGE is 1.

• Abort exceptions, when the value of HCR.TGE is 1.

• Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE is 1 on page G1-5760.

Undefined Instruction exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE is executing in Non-secure User mode and attempts to execute an UNDEFINED instruction, it takes the Hyp Trap exception, instead of an Undefined Instruction exception. On taking the Hyp Trap exception, the HSR reports an unknown reason for the exception, using the EC value 0x00. For more information see Use of the HSR on page G5-6078.

Supervisor Call exception, when the value of HCR.TGE is 1

When HCR.TGE is set to 1, if the PE executes an SVC instruction in Non-secure User mode, the Supervisor Call exception generated by the instruction is taken to Hyp mode. The HSR reports that entry to Hyp mode was because of a Supervisor Call exception, and:

• If the SVC is unconditional, takes for the imm16 value in the HSR:
 — A zero-extended 8-bit immediate value for the T32 SVC instruction.

 — The bottom16 bits of the immediate value for the A32 SVC instruction.

• If the SVC is conditional, the imm16 value in the HSR is UNKNOWN.

If the SVC is conditional, the PE takes the exception only if the instruction passes its Condition code check.

The HSR reports the exception as a Supervisor Call exception taken to Hyp mode, using the EC value 0x11. For more information, see Use of the HSR on page G5-6078.

Abort exceptions, when the value of HCR.TGE is 1

When the value of HCR.TGE is 1, if the PE is executing in Non-secure User mode then any abort exception that is not routed to Secure Monitor mode or to EL3 using AArch64 generates an exception that is taken as a Hyp Trap exception. Where an attempt to execute an instruction causes an abort, on taking the Hyp Trap exception, the HSR indicates whether a Data Abort exception or a Prefetch Abort exception caused the Hyp Trap exception entry, and presents a valid syndrome in the HSR.
When `SCR.EA` is set to 1, External aborts and SError interrupts are routed to EL3, and this routing takes priority over the `HCR.TGE` routing. For more information, see Routing of aborts taken to AArch32 state on page G1-5762.

An SError interrupt that is routed to Hyp mode because the value of `HCR.TGE` is 1 is reported as a Data Abort exception routed to Hyp mode.

The `HSR` reports the exception either:
- As a Prefetch Abort exception routed to Hyp mode, using the EC value $0x20$.
- As a Data Abort exception routed to Hyp mode, using the EC value $0x24$.

For more information about the exception reporting, see Use of the HSR on page G5-6078.

Reporting of exceptions routed to EL2 using AArch32 because the value of HCR.TGE is 1

`PL1 configurable controls` on page G1-5819 describes controls that, when the value of `HCR.TGE` is 0, can generate exceptions that are taken from Non-secure EL0 to EL1. When EL2 is using AArch32 and the value of `HCR.TGE` is 1, the exceptions generated by these controls are routed to Hyp mode. Table G1-14 shows how these exceptions are then reported in the HSR.

Table G1-14 Syndrome reporting in HSR from HCR.TGE routing of traps, disables, and enables

<table>
<thead>
<tr>
<th>Control provided by PL1</th>
<th>Control typea</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTLR.{nTWE, nTWI}</td>
<td>T</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>SCTLR.{SED, ITD}</td>
<td>D</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>SCTLR.CP15BEN</td>
<td>E</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>CPACR.TRCDIS</td>
<td>T</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>CPACR.{cp11, cp10}</td>
<td>E</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>FPEXC.EN</td>
<td>E</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>CPACR.ASEDIS</td>
<td>D</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>DBGDSCRext.UDCCdis</td>
<td>T</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>CNTKCTL.{PL0PTEN, PL0VTEN, PL0PCTEN, PL0VCTEN}</td>
<td>T</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
<tr>
<td>PMUSERENR.{ER, CR, SW, EN}</td>
<td>T</td>
<td>Uses EC value $0x00$, Exception for an unknown reason</td>
</tr>
</tbody>
</table>

a. T indicates a trap control, E indicates an instruction enable, and D indicates an instruction disable. For the definition of these terms, see the list that begins with Instruction enables and instruction disables on page G1-5818.

G1.12.7 Routing debug exceptions to EL2 using AArch32

When the value of `HDCR.TDE` is 1, if the PE is executing in a Non-secure mode other than Hyp mode, any Debug exception is routed to Hyp mode. This means it generates a Hyp Trap exception. This applies to:

- Debug exceptions associated with an instruction fetch, that would otherwise generate a Prefetch Abort exception. These are the Breakpoint, Breakpoint Instruction, and Vector Catch exception, see Chapter G2 AArch32 Self-hosted Debug.
- Watchpoint exceptions associated with data accesses, that would otherwise generate a Data Abort exception. See Watchpoint exceptions on page G2-5895.

When the value of `HDCR.TDE` is 1, each of the `HDCR.{TDRA, TDOSA, TDA}` bits is treated as 1 for all purposes other than reading the `HDCR` register.
Note

• A Breakpoint or Watchpoint debug event that generates entry to Debug state cannot be trapped to Hyp mode. See Breakpoint and Watchpoint debug events on page H2-7016.

• When HDCR.TDE is set to 1, the Hyp Trap exception is generated instead of the Prefetch Abort exception or Data Abort exception that is otherwise generated by the Debug exception.

• Debug exceptions, other than Breakpoint Instruction exceptions, are never generated in Hyp mode.

When a Hyp Trap exception is generated because the value of HDCR.TDE is 1, The HSR reports the exception either:

• As a Prefetch Abort exception routed to Hyp mode, using the EC value 0x20.
• As a Data Abort exception routed to Hyp mode, using the EC value 0x24.

For more information see Use of the HSR on page G5-6078.
G1.13 Routing of aborts taken to AArch32 state

A memory abort is either a Data Abort exception or a Prefetch Abort exception. When executing in AArch32 state, depending on the cause of the abort, and possibly on configuration settings, an abort is taken either:

- To the Exception level of the PE mode from which the abort is taken. In this case the abort is taken to AArch32 state.
- To a higher Exception level. In this case the Exception level to which the abort is taken is either:
 - Using AArch32. In this case, this chapter describes how the abort is handled.
 - Using AArch64. In this case, Chapter D5 The AArch64 Virtual Memory System Architecture describes how the abort is handled.

For an abort taken to an Exception level that is using AArch32, the mode to which a memory abort is taken depends on the reason for the exception, the mode the PE is in when it takes the exception, and configuration settings, as follows:

Memory aborts taken to Monitor mode

If an implementation includes EL3, when the value of SCR.EA is 1, all External aborts are taken to EL3, and if EL3 is using AArch32 they are taken to Monitor mode. This applies to aborts taken from Secure modes and from Non-secure modes.

Memory aborts taken to Secure Abort mode

If an implementation includes EL3, when the PE is executing in Secure state, all memory aborts that are not routed to EL3 are taken to Secure Abort mode.

--- Note ---

The only memory aborts that can be routed to Monitor mode are External aborts.

Memory aborts taken to Hyp mode

If an implementation includes EL2, when the PE is executing in Non-secure state, the following aborts are taken to EL2. If EL2 is using AArch32 this means they are taken to Hyp mode:

- Alignment faults taken:
 - When the PE is in Hyp mode.
 - When the PE is in a Non-secure PL1 or EL0 mode and the exception is generated because the Non-secure PL1&0 stage 2 translation identifies the target of an unaligned access as any type of Device memory.
 - When the PE is in Non-secure User mode and HCR.TGE is set to 1. For more information see Abort exceptions, when the value of HCR.TGE is 1 on page G1-5759.
- When the PE is using the Non-secure PL1&0 translation regime:
 - MMU faults from stage 2 translations, for which the stage 1 translation did not cause an MMU fault.
 - Any abort taken during the stage 2 translation of an address accessed in a stage 1 translation table walk that is not routed to Secure Monitor mode, see Stage 2 fault on a stage 1 translation table walk on page G5-6059.
- When the PE is using the Non-secure EL2 translation regime, MMU faults from stage 1 translations.

--- Note ---

The Non-secure EL2 translation regime has only one stage of translation.

- External aborts, if SCR.EA is set to 0 and any of the following applies:
 - The PE was executing in Hyp mode when it took the exception.
— The PE was executing in a Non-secure PL1 or EL0 mode when it took the exception, the abort is asynchronous, and HCR.AMO is set to 1. For more information see *Asyncronous exception routing controls* on page G1-5772.

— The PE was executing in the Non-secure User mode when it took the exception, the abort is synchronous, and HCR.TGE is set to 1. For more information see *Abort exceptions, when the value of HCR.TGE is 1* on page G1-5759.

— The The Reliability, Availability, and Serviceability Extension is implemented, the PE was executing in a Non-secure PL1 or EL0 mode when it took the exception, the abort is synchronous, and the value of HCR2.TEA is 1.

— The abort occurred on a stage 2 translation table walk.

• Debug exceptions, if HDCR.TDE is set to 1. For more information, see *Routing debug exceptions to EL2 using AArch32* on page G1-5760.

Memory aborts taken to Non-secure Abort mode

In an implementation that does not include EL3, all memory aborts that are taken to an Exception level that is using AArch32 are taken to Abort mode.

Otherwise, when the PE is executing in Non-secure state, the following aborts are taken to Non-secure Abort mode:

• When the PE is in a Non-secure PL1 or EL0 mode, Alignment faults taken for any of the following reasons:
 — SCTLR.A is set to 1.
 — An instruction that does not support unaligned accesses is committed for execution, and the instruction accesses an unaligned address.
 — The PL1&0 stage 1 translation identifies the target of an unaligned access as any type of Device memory.

 Note
 In an implementation that does not include EL2, this case results in a CONstrained UNPredICTABLE memory access, see *Cases where unaligned accesses are CONstrained UNPredICTABLE* on page E2-4045 and *Loads and Stores to unaligned locations* on page K1-7942.

If an implementation includes EL2 and the PE is in Non-secure User mode, these exceptions are taken to Abort mode only if the value of HCR.TGE is 0.

• When the PE is using the Non-secure PL1&0 translation regime, an MMU fault from a stage 1 translation.

• External aborts, if the PE was executing in a Non-secure PL1 or EL0 mode when it took the exception and both:
 — The value of SCR.EA is 0, meaning the abort is not taken to EL3.
 — The abort is not taken to EL2 for one of the reasons defined in *Memory aborts taken to Hyp mode*.

• Virtual Aborts, see *Virtual exceptions when an implementation includes EL2* on page G1-5770.

• When the value of HDCR.TDE is 0, Debug exceptions. For more information, see *Routing debug exceptions to EL2 using AArch32* on page G1-5760.

 Note
 If EL0 is using AArch32 and EL1 is using AArch64 then any of these memory aborts taken from User mode are taken to EL1 as described in *Chapter D5 The AArch64 Virtual Memory System Architecture*.
Memory aborts with IMPLEMENTATION DEFINED behavior

In addition, a PE can generate an abort for an IMPLEMENTATION DEFINED reason associated with lockdown. In an implementation that includes EL2, whether such an abort is taken to Non-secure Abort mode or is taken to EL2 is IMPLEMENTATION DEFINED, and an implementation might include a mechanism to select whether the abort is routed to Non-secure Abort mode or to EL2.

When the PE is in a Non-secure mode other than Hyp mode, if multiple factors cause an Alignment fault, the abort is taken to Non-secure Abort mode if any of the factors require the abort to be taken to Abort mode. For example, if the SCTLR.A bit is set to 1, and the access is an unaligned access to an address that the stage 2 translation tables mark as Device-nGnRnE, then the abort is taken to Non-secure Abort mode.

For more information see Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743.
G1.14 Exception return to an Exception level using AArch32

In the Arm architecture, *exception return* to an Exception level that is using AArch32 requires the simultaneous restoration of the PC and PSTATE to values that are consistent with the desired state of execution on returning from the exception. Typically, exception return involves returning to one of:

- The instruction after the instruction boundary at which an asynchronous exception was taken.
- The instruction following an SVC, SMC, or HMC instruction, for an exception generated by one of those instructions.
- The instruction that caused the exception, after the reason for the exception has been removed.
- The subsequent instruction, if the instruction that caused the exception has been emulated in the exception handler.

The Arm architecture defines a *preferred return address* for each exception other than Reset, see *Link values saved on exception entry* on page G1-5751. The values of the SPSR.IT[7:0] bits generated on exception entry are always correct for this preferred return address, but might require adjustment by the exception handler if returning elsewhere.

In some cases, to calculate the appropriate preferred return address for a return to an Exception level that is using AArch32, a subtraction must be performed on the link value saved on taking the exception. The description of each exception includes any value that must be subtracted from the link value, and other information about the required exception return.

On an exception return, the PSTATE takes either:

- The value loaded by the RFE instruction.
- If the exception return is not performed by executing an RFE instruction, the value of the current SPSR at the time of the exception return.

If FEAT_MTE is implemented, PSTATE.TCO is not updated on Exception return to AArch32 state.

Illegal return events from AArch32 state on page G1-5766 describes the behavior if the restored PE state would not be valid for the Exception level, PE mode, and Security state targeted by the exception return.

G1.14.1 Exception return instructions

The instructions that an exception handler can use to return from an exception depend on whether the exception was taken to an EL1 mode, or in an EL2 mode, see:

- *Return from an exception taken to a PE mode other than Hyp mode.*
- *Return from an exception taken to Hyp mode* on page G1-5766.

Return from an exception taken to a PE mode other than Hyp mode

For an exception taken to a PE mode other than Hyp mode, the Arm AArch32 architecture provides the following *exception return instructions*:

- From privileged modes other than System mode, the ERET instruction. After the exception return, execution resumes from the address held in the LR (R14) for the mode in which ERET is executed. See *ERET* on page F5-4407.
- Data-processing instructions with the S bit set and the PC as a destination, see *MOV, MOVs (register)* on page F5-4555 and *SUB, SUBS (immediate)* on page F5-4869.

Note

The A32 instruction set includes other instructions that can be used for an exception return, but Arm deprecates any use of those instructions.
Typically:
— A return where no subtraction is required uses SUBS with an operand of 0, or the equivalent MOVs instruction.
— A return requiring subtraction uses SUBS with a nonzero operand.

• The RFE instruction, see RFE, RFEDA, RFEDB, RFEIA, RFEIB on page F5-4662. If a subtraction is required, typically it is performed before saving the LR value to memory. After the exception return, execution resumes from the address held in the memory location indicated by the base register specified by the RFE instruction.

• In A32 state, a form of the LDM instruction in which the PC is one of the registers loaded, see LDM (exception return) on page F5-4440. If a subtraction is required, typically it is performed before saving the LR value to memory.

Return from an exception taken to Hyp mode

For an exception taken to Hyp mode, the Arm architecture provides the ERET instruction, see ERET on page F5-4407. An exception handler executing in Hyp mode must return using the ERET instruction.

Hyp mode is implemented only as part of EL2.

G1.14.2 Alignment of exception returns

The T bit of the value transferred to the PSTATE by an exception return controls the target instruction set of that return. The behavior of the hardware for exception returns for different values of the T bit is as follows:

T == 0
The target instruction set state is A32 state. Bits[1:0] of the address transferred to the PC are ignored by the hardware.

T == 1
The target instruction set state is T32 state:
• Bit[0] of the address transferred to the PC is ignored by the hardware.
• Bit[1] of the address transferred to the PC is part of the instruction address.

——— Note ————
In previous versions of the Arm architecture, the PSTATE. {J, T} bits determined the Instruction set state. In Armv8, PSTATE.J is RES0.

Arm deprecates any dependence on the requirements that the hardware ignores bits of the address. Arm recommends that the address transferred to the PC for an exception return is correctly aligned for the target instruction set.

After an exception entry other than Reset, the LR value has the correct alignment for the instruction set indicated by the SPSR.T bit. This means that if exception return instructions are used with the LR and SPSR values produced by such an exception entry, the only precaution software needs to take to ensure correct alignment is that any subtraction is of a multiple of four if returning to A32 state, or a multiple of two if returning to T32 state.

G1.14.3 Illegal return events from AArch32 state

Throughout this section:

Return In AArch32 state, refers to any of:
• Execution of any exception return instruction.
• Execution of a DRPS instruction in Debug state.
• Exit from Debug state.

If an exception or debug return from an Exception level using AArch32 triggers an illegal exception return, then bit[1] of the PC is either:
• Zero.
• The value of bit[1] of the return address for the exception or debug return.
The choice between these two alternatives is made by the implementation, and might differ from instance to instance of an illegal exception return.

Note

This means software must support both alternatives.

Saved process state value

In AArch32 state, refers to any of:

• The value held in the SPSR for any exception return other than an exception return made by executing an RFE instruction.
• The value read from memory that is to be restored to PSTATE by the execution of an RFE instruction.
• The value held in the SPSR for the execution of a DRPS instruction in Debug state.
• The value held in the DSPSR for a Debug state exit.

Link address

In AArch32 state, refers to any of:

• The address held in the link register for any exception return other than an exception return made by executing an ERET, LDM, or RFE instruction.
• The address held in ELR_hyp for any exception return made by executing an ERET instruction.
• The address read from memory that is to be restored to the PC by the execution of an LDM or RFE instruction.
• The address held in the DLR for Debug state exit.

Configured from reset

Indicates the state determined on powerup or reset by a configuration input signal, or by another IMPLEMENTATION DEFINED mechanism.

The Armv8 architecture has a generic mechanism for handling exception or debug returns to a mode or state that is illegal. In AArch32 state, this can occur as a result of any of the following situations:

• A return where the Exception level being returned to is higher than the current Exception level.
• A return where the mode being returned to is not implemented. For example:
 — A return to Hyp mode when EL2 is not implemented.
 — A return to Monitor mode, when EL3 is either not implemented or using AArch64 state.
• A return to EL2 when:
 — EL3 is implemented and using AArch64, and the values of SCR_EL3.{NS, EEL2} 0.
 — EL3 is implemented and using AArch32, and the value of the SCR_NS bit is 0.
• A return to Non-secure EL1 when:
 — EL2 is implemented and using AArch64, and the value of the HCR_EL2.TGE bit is 1.
 — EL2 is implemented and using AArch32, and the value of the HCR.TGE bit is 1.
• A return where the value of the saved process state M[4:0] field is not a valid AArch32 PE mode for the implementation. Table G1-5 on page G1-5726 shows the valid M[4:0] values for AArch32 PE modes.

In these cases:

• PSTATE.IL is set to 1, to indicate an illegal return.
• PSTATE.M is unchanged. This means the PE mode does not change.
• The SS bit is handled in the same way as any other exception or debug return, see Software Step exceptions on page D2-2466.
• The following PSTATE bits are restored from the saved process state value:
 — The Q Overflow or saturation flag.
 — The GE Greater than or Equal flags.
 — The E Endianness mapping bit.
 — The A, I, F exception mask bits.
 — The DIT Data Independent Timing bit.

• The PSTATE.{IT, T} bits are each either:
 — Set to 0.
 — Copied from the saved process state in the SPSR for the PE mode in which the exception is handled.

The choice between these two options is determined by an implementation, and might vary dynamically within an implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two values.

• The PC is restored from the link address, unless the illegal return is the execution of a DRPS instruction in Debug state.

When the value of the PSTATE.IL bit is 1, any attempt to execute any instruction results in an Illegal Execution state exception. See The Illegal Execution state exception.

All aspects of the illegal return, other than the effects described in this section, are the same as for a legal return.

G1.14.4 Legal returns that set PSTATE.IL to 1

In this section, return, saved process state value, and link address have the meaning that is defined in Illegal return events from AArch32 state on page G1-5766.

If the IL bit in the saved process state value is 1, then it is copied to PSTATE meaning that PSTATE.IL is set to 1. In this case, the PSTATE.{IT, T} bits are each either:

• Set to 0.
• Copied from the SPSR, or loaded from memory if the exception return was performed by executing an RFE instruction.

The choice between these two options is determined by an implementation, and might vary dynamically within the implementation. This means software must regard each value as being an UNKNOWN choice between the two permitted values.

Because the return sets the PSTATE.IL bit to 1, any attempt to execute any instruction results in an Illegal Execution state exception. See The Illegal Execution state exception.

G1.14.5 The Illegal Execution state exception

When the value of the PSTATE.IL bit is 1, any attempt to execute an instruction generates an Illegal Execution state exception. In AArch32 state, the PSTATE.IL bit can be set to 1 by one of the following:

• An illegal return, as described in Illegal return events from AArch32 state on page G1-5766.
• An illegal change to PSTATE.M, as described in Illegal changes to PSTATE.M on page G1-5739.
• A legal return that sets PSTATE.IL to 1, as described in Legal returns that set PSTATE.IL to 1.

An Illegal Execution state exception is taken in the same way as an Undefined Instruction exception in the current Exception level. If the current Exception level is EL2 using AArch32 state, the HSR provides additional syndrome information for the exception, see Use of the HSR on page G5-6078.

An Illegal Execution state exception has priority over any other Undefined Instruction exception that might arise from instruction execution.
This section only describes the handling of an Illegal Execution state exception that is taken to an Exception level that is using AArch32 state. The Illegal Execution state exception on page D1-2347 describes the cases where an Illegal Execution state exception is taken to an Exception level that is using AArch64 state.

On taking any exception to an Exception level that is using AArch32 state:

1. The value of the PSTATE.IL bit is 1 and this is copied to the SPSR.IL bit for the PE mode to which the exception is taken.
2. The PSTATE.IL bit is cleared to 0.

This means that it is not possible for software to observe the value of PSTATE.IL.

Pseudocode description of exception return

The AArch32.ExceptionReturn() function transfers the return address to the PC and restores PSTATE to its saved value.

This function uses the function SetPSTATEFromPSR().

The IllegalExceptionReturn() function checks for an Illegal Execution state exception.

Chapter J1 Armv8 Pseudocode includes the definitions of these functions.
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state

In an implementation that does not include EL2 or EL3, the asynchronous exceptions behave as follows when EL1 and EL0 are both using AArch32:

- An SError interrupt is taken to Abort mode.
- An IRQ exception is taken to IRQ mode.
- An FIQ exception is taken to FIQ mode.

These are the default PE modes for taking these exceptions.

Note

The SError interrupt replaces the Armv7 asynchronous abort. The new name better describes the nature of the exception. However, the PSTATE.\{A, I, F\} bits mask the asynchronous exceptions, meaning that when the value of one of these PSTATE bits is 1, the corresponding exception is not taken.

If a masked asynchronous exception remains signaled, then the exception remains pending unless the value of the PSTATE bit is changed to 0.

EL2 and EL3 provide controls that affect:

- The routing of these exceptions, see Asynchronous exception routing controls on page G1-5772.
- Masking of these exceptions in Non-secure state, see Asynchronous exception masking controls on page G1-5773.

Similar register control bits are provided regardless of whether EL2 and EL3 are using AArch32 or AArch64:

- The EL2 controls are provided by the HCR when EL2 is using AArch32, and by the HCR_EL2 when EL2 is using AArch64.
- The EL3 controls are provided by the SCR when EL3 is using AArch32, and by the SCR_EL3 when EL3 is using AArch64.

Therefore, most references to the HCR or SCR in this section are to entries in Table K15-1 on page K15-8160, that disambiguates between AArch32 registers and AArch64 registers. However, the Execution states used by EL2 and EL3 do affect some aspects of the routing and masking of the asynchronous exceptions, see Asynchronous exception routing and masking with higher Exception levels using AArch64 on page G1-5775.

G1.15.1 Virtual exceptions when an implementation includes EL2

When implemented, EL2 provides the following virtual exceptions, that correspond to the physical asynchronous exceptions:

- Virtual SError, that corresponds to a physical external SError interrupt.
- Virtual IRQ, that corresponds to a physical IRQ.
- Virtual FIQ, that corresponds to a physical FIQ.

When the value of HCR.TGE is 0 and the value of an HCR.\{AMO, IMO, FMO\} routing control bit is 1, the corresponding virtual interrupt is enabled and a virtual exception is generated either:

- By setting the corresponding virtual interrupt pending bit, HCR.\{VA, VI, VF\}, to 1.
- For a Virtual IRQ or Virtual FIQ, by an IMPLEMENTATION DEFINED mechanism. This might be a signal from an interrupt controller. See, for example, the ARM Generic Interrupt Controller Architecture Specification.

When the value of HCR_EL2.TGE is 1 all virtual interrupts are disabled.

When a virtual interrupt is disabled:

- It cannot be taken.
- It cannot be seen in the ISR.
In AArch32 state, a virtual exception is taken only from a Non-secure EL1 or EL0 mode. In any other mode, if the exception is generated it is not taken.

A virtual exception is taken in Non-secure state to the default mode for the corresponding physical exception. This means:

• A Virtual SError is taken to Non-secure Abort mode.
• A Virtual IRQ is taken to Non-secure IRQ mode.
• A Virtual FIQ is taken to Non-secure FIQ mode.

Table G1-15 summarizes the HCR bits that route asynchronous exceptions to EL2, and the bits that generate the virtual exceptions.

<table>
<thead>
<tr>
<th>Exception</th>
<th>Routing the physical exception to EL2</th>
<th>Generating the virtual exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>SError</td>
<td>HCR.AMO</td>
<td>HCR.VA</td>
</tr>
<tr>
<td>IRQ</td>
<td>HCR.IMO</td>
<td>HCR.VI</td>
</tr>
<tr>
<td>FIQ</td>
<td>HCR.FMO</td>
<td>HCR.VF</td>
</tr>
</tbody>
</table>

The HCR.{VA, VI, VF} bits generate a virtual exception only if set to 1 when the value of the corresponding HCR.{AMO, IMO, FMO} is 1.

Similarly, if the implementation also includes EL3, the HCR.{AMO, IMO, FMO} bits route the corresponding physical exception to Hyp mode only if the physical exception is not routed to Monitor mode by the SCR.{EA, IRQ, FIQ} bit. For more information, see Asynchronous exception routing controls on page G1-5772.

When the value of an HCR.{AMO, IMO, FMO} control bit is 1, the corresponding mask bit in PSTATE:

• Does not mask the physical exception.
• Masks the virtual exception when the PE is executing in a Non-secure EL1 or EL0 mode.

Taking a Virtual Abort exception clears HCR.VA to zero. Taking a Virtual IRQ exception or a Virtual FIQ exception does not affect the value of HCR.VI or HCR.VF.

—— Note ——

This means that the exception handler for a Virtual IRQ exception or a Virtual FIQ exception must cause software that is executing at EL2 or EL3 to update the HCR to clear the appropriate virtual exception bit to 0.

See WFE wake-up events on page G1-5806 and Wait For Interrupt on page G1-5807 for information about how virtual exceptions affect wake up from power-saving states.

—— Note ——

A hypervisor can use virtual exceptions to signal exceptions to the current Guest OS. The Guest OS takes a virtual exception exactly as it would take the corresponding physical exception, and is unaware of any distinction between virtual exception and the corresponding physical exception.

Effects of the HCR.{AMO, IMO, FMO} bits

As described in this section, the HCR.{AMO, IMO, FMO} bits are part of the mechanism for enabling the virtual exceptions. In addition, for exceptions generated in Non-secure state:

• As mentioned in this section, affect the routing of the exceptions. See Asynchronous exception routing controls on page G1-5772.
• Affect the masking of the exceptions. See Asynchronous exception masking controls on page G1-5773.
G1.15.2 Asynchronous exception routing controls

Note
This section describes the behavior when all Exception levels are using AArch32. For the differences when this is not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64 on page G1-5775.

In an implementation that includes EL3 the following bits in the SCR control the routing of asynchronous exceptions:

SCR.EA When the value of this bit is 1, any SError interrupt is taken to EL3.

Note
Although this section describes the asynchronous exception routing controls, SCR.EA also controls the routing of synchronous External aborts, see Routing of aborts taken to AArch32 state on page G1-5762.

SCR.FIQ When the value of this bit is 1, any FIQ exception is taken to EL3.

SCR.IRQ When the value of this bit is 1, any IRQ exception is taken to EL3.

When EL3 is using AArch32 and the value of one of the SCR. {EA, FIQ, IRQ} bits is 1, the exception is taken to Monitor mode.

Only Secure software can change the values of these bits.

In an implementation that includes EL2, the following bits in the HCR route asynchronous exceptions to EL2, for exceptions that are both:

• Taken from a Non-secure EL1 or EL0 mode.
• If the implementation also includes EL3, not configured, by the SCR. {EA, FIQ, IRQ} controls, to be taken to EL3.

HCR.AMO When the value of this bit is 1, an SError interrupt exception taken from a Non-secure EL1 or EL0 mode is taken to EL2, instead of to Non-secure Abort mode. If the implementation also includes EL3, this control applies only if the value of SCR.EA is 0. When the value of SCR.EA is 1, the value of the AMO bit is ignored.

HCR.FMO When the value of this bit is 1, an FIQ exception taken from a Non-secure EL1 or EL0 mode is taken to EL2, instead of to Non-secure FIQ mode. If the implementation also includes EL3, this control applies only if the value of SCR.FIQ is 0. When the value of SCR.FIQ is 1, the value of the FMO bit is ignored.

HCR.IMO When the value of this bit is 1, an IRQ exception taken from a Non-secure EL1 or EL0 mode is taken to EL2, instead of to Non-secure IRQ mode. If the implementation also includes EL3, this control applies only if the value of SCR.IRQ is 0. When the value of SCR.IRQ is 1, the value of the IMO bit is ignored.

When EL2 is using AArch32 and the value of one of the HCR. {AMO, FMO, IMO} bits is 1, the exception is taken to Hyp mode.

Only software executing in Hyp mode, or Secure software executing at EL3 with SCR.NS set to 1, can change the values of these bits. If EL3 is using AArch32, this requires the Secure software to be executing in Monitor mode.

The HCR. {AMO, FMO, IMO} bits also affect the masking of asynchronous exceptions in Non-secure state, as described in Asynchronous exception masking controls on page G1-5773.

The SCR. {EA, FIQ, IRQ} and HCR. {AMO, FMO, IMO} bits have no effect on the routing of Virtual Abort, Virtual FIQ, and Virtual IRQ exceptions.
--- Note ---

When the PE is in Hyp mode:

- Physical asynchronous exceptions that are not routed to Monitor mode are taken to Hyp mode.
- Virtual exceptions are not signaled to the PE.

See also Asynchronous exception behavior for exceptions taken from AArch32 state on page G1-5770.

G1.15.3 Asynchronous exception masking controls

--- Note ---

This section describes the behavior when all Exception levels are using AArch32. For the differences when this is not the case see Asynchronous exception routing and masking with higher Exception levels using AArch64 on page G1-5775.

The PSTATE.{A, I, F} bits can mask the taking of the corresponding exceptions from AArch32 state, as follows:

- PSTATE.A can mask SError interrupt exceptions.
- PSTATE.I can mask IRQ exceptions.
- PSTATE.F can mask FIQ exceptions.

In an implementation that does not include either of EL2 and EL3, setting one of these bits to 1 masks the corresponding exception, meaning the exception cannot be taken.

In an implementation that includes EL2, the HCR.{AMO, IMO, FMO} bits modify the masking of exceptions taken from Non-secure state.

Similarly, in an implementation that includes EL3, the SCR.{AW, FW} bits modify the masking of exceptions taken from Non-secure state by the PSTATE.{A, F} bits.

An implementation that includes only EL1 and EL0 does not provide any masking of the PSTATE.{A, I, F} bits. The following subsections describe the masking of these bits in other implementations:

- Asynchronous exception masking in an implementation that includes EL2 but not EL3.
- Asynchronous exception masking in an implementation that includes EL3 but not EL2.
- Asynchronous exception masking in an implementation that includes both EL2 and EL3 on page G1-5774.
- Summary of the asynchronous exception masking controls on page G1-5774.

Asynchronous exception masking in an implementation that includes EL2 but not EL3

The HCR.{AMO, IMO, FMO} bits modify the effect of the PSTATE.{A, I, F} bits. When the value of an HCR.{AMO, IMO, FMO} mask override bit is 1, the value of the corresponding PSTATE.{A, I, F} bit is ignored when the exception is taken from a Non-secure mode other than Hyp mode.

Asynchronous exception masking in an implementation that includes EL3 but not EL2

The SCR.{AW, FW} bits modify the effect of the PSTATE.{A, F} bits. When the value of one of the SCR.{AW, FW} bits is 0, the corresponding PSTATE bit is ignored when both of the follow apply:

- The corresponding exception is taken from Non-secure state.
- The value of the corresponding SCR.{EA, FIQ} bit is 1, routing the exception to EL3. This means the exception is routed to Monitor mode if EL3 is using AArch32.

--- Note ---

Whenever the value of PSTATE.I is 1, IRQ exceptions are masked and cannot be taken.
Asynchronous exception masking in an implementation that includes both EL2 and EL3

When the value of an HCR.\{AMO, IMO, FMO\} mask override bit is 1, the value of the corresponding PSTATE.\{A, I, F\} bit is ignored when both of the following apply:

• The exception is taken from Non-secure state.
• Either:
 — The corresponding SCR.\{EA, IRQ, FIQ\} bit routes the exception to Monitor mode.
 — The exception is taken from a Non-secure mode other than Hyp mode.

In addition, when the value of an SCR.\{AW, FW\} bit is 0, the value of the corresponding PSTATE.\{A, F\} bit is ignored when all of the following apply:

• The exception is taken from Non-secure state.
• The corresponding SCR.\{EA, FIQ\} bit routes the exception to Monitor mode.
• The corresponding HCR.\{AMO, FMO\} mask override bit is set to 0.

Summary of the asynchronous exception masking controls

The tables in this section show the masking controls for each of the PSTATE.\{A, I, F\} bits. For an implementation that does not include all of the Exception levels:

If the implementation includes only EL1 and EL0

The PSTATE bits cannot be masked. The behavior is as shown in the Secure row of the tables.

If the implementation includes EL2 but not EL3

The behavior is as shown in the Non-secure table rows when the control bits in the SCR are both 0.

If the implementation includes EL3 but not EL2

The behavior is as shown in the table rows where the control bit in the HCR is 0.

Table G1-16 shows the controls of the masking of SError interrupt exceptions by PSTATE.A.

Table G1-16 Control of masking by PSTATE.A

<table>
<thead>
<tr>
<th>Security state</th>
<th>HCR.AMO</th>
<th>SCR.EA</th>
<th>SCR.AW</th>
<th>Mode</th>
<th>PSTATE.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>Masks SError interrupt, when set to 1</td>
</tr>
<tr>
<td>Non-secure</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Masks SError interrupt, when set to 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>x</td>
<td></td>
<td>Ignored</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>Masks SError interrupt, when set to 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>Not Hyp</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>x</td>
<td></td>
<td></td>
<td>Hyp</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
<td>Ignored</td>
</tr>
</tbody>
</table>
Table G1-17 shows the controls of the masking of IRQ exceptions by PSTATE.I:

<table>
<thead>
<tr>
<th>Security state</th>
<th>HCR.IMO</th>
<th>SCR.IRP</th>
<th>Mode</th>
<th>PSTATE.I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Masks IRQs, when set to 1</td>
</tr>
<tr>
<td>Non-secure</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Masks IRQs, when set to 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>Not Hyp</td>
<td>Ignored</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Hyp</td>
<td>Masks IRQs, when set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>Ignored</td>
<td></td>
</tr>
</tbody>
</table>

Table G1-18 shows the controls of the masking of FIQ exceptions by PSTATE.F:

<table>
<thead>
<tr>
<th>Security state</th>
<th>HCR.FMO</th>
<th>SCR.FIQ</th>
<th>SCR.FW</th>
<th>Mode</th>
<th>PSTATE.F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Masks FIQs, when set to 1</td>
</tr>
<tr>
<td>Non-secure</td>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>Masks FIQs, when set to 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>x</td>
<td>Ignored</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>Masks FIQs, when set to 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>x</td>
<td>Hyp</td>
<td>Masks FIQs, when set to 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>x</td>
<td>Ignored</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1.15.4 Asynchronous exception routing and masking with higher Exception levels using AArch64

Asynchronous exception routing controls on page G1-5772 and Asynchronous exception masking controls on page G1-5773 give full descriptions of the routing and masking of the asynchronous exceptions when all Exception levels are using AArch32. However, when EL0 and EL1 are using AArch64:

- As already described, the SCR and HCR controls might be from Exception levels that are using AArch64.
- If EL3 is using AArch64, or EL2 is using AArch64, there are some changes to the asynchronous exception behaviors.

Therefore, the following sections summarize the asynchronous exception behaviors, taking account of the Execution state being used at EL2 and EL3:

- Summary of physical interrupt routing.
- Summary of physical interrupt masking on page G1-5776.

Summary of physical interrupt routing

The Table G1-19 on page G1-5776 shows the routing of physical FIQ, IRQ and SError interrupts when the highest Exception level is using AArch32. If the highest Exception level is using AArch64, see Table D1-8 on page D1-2358.

In this table:

- **SCR** This is the *Effective value* of a field in SCR.
- **HCR** This is the *Effective value* of a field in HCR.
The Effective value of the field that handles the asynchronous exception type in SCR.

The Effective value of the mask override field for the asynchronous exception type in HCR, if EL2 is using AArch32 or HCR_EL2 if EL2 is using AArch64.

The exception is taken to the FIQ mode, the IRQ mode or the Abort mode according to the type of asynchronous exception.

The exception is taken to AArch32 Hyp mode.

The exception is taken to AArch32 Monitor mode.

This field does not exist, or the Exception level is not accessible in this configuration.

<table>
<thead>
<tr>
<th>Control bits</th>
<th>SCR</th>
<th>HCR</th>
<th>Target when taken from EL0</th>
<th>Target when taken from EL1</th>
<th>Target when taken from EL2</th>
<th>Target when taken from EL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS FIQ IRQ EA TGE FMO IMO AMO</td>
<td>FIQ IRQ Abt</td>
<td>n/a</td>
<td>n/a</td>
<td>FIQ IRQ Abt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 x x x</td>
<td>FIQ IRQ Abt</td>
<td>n/a</td>
<td>n/a</td>
<td>FIQ IRQ Abt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>FIQ IRQ Abt</td>
<td>FIQ IRQ Abt</td>
<td>Hyp</td>
<td>FIQ IRQ Abt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Hyp</td>
<td>Hyp</td>
<td>Hyp</td>
<td>FIQ IRQ Abt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Hyp</td>
<td>n/a</td>
<td>Hyp</td>
<td>FIQ IRQ Abt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Mon</td>
<td>Mon</td>
<td>Mon</td>
<td>Mon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>Mon</td>
<td>n/a</td>
<td>Mon</td>
<td>Mon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary of physical interrupt masking

Table G1-20 on page G1-5777 shows the masking of physical FIQ, IRQ and SError interrupts when the highest Exception level is using AArch32. When the highest Exception level is using AArch64, see Table D1-11 on page D1-2362.

In this table:

SCR This is the Effective value of a field in SCR.

HCR This is the Effective value of a field in HCR.

FIQ IRQ EA The Effective value of the field that handles the asynchronous exception type in SCR.

FMO IMO AMO The Effective value of the mask override field for the asynchronous exception type in HCR.

FW AW For FIQ interrupts, the SCR.FW field, and for SError interrupts, the SCR.AW field. For IRQ interrupts, there is no equivalent field, so the Effective value is 0 and rows where this cell is 1 should be ignored.

A When the interrupt is asserted, it is taken regardless of the value of the PSTATE mask bit.

B When the interrupt is asserted, it is subject to the corresponding PSTATE mask bit. If the value of the mask is 1, the interrupt is not taken. If the value of the mask is 0, the interrupt is taken.
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state

n/a This field does not exist, or the Exception level is not accessible in this configuration.

Table G1-20 Masking of physical asynchronous exceptions

<table>
<thead>
<tr>
<th>Control bits</th>
<th>SCR</th>
<th>HCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>FW</td>
</tr>
<tr>
<td>0 x x x x x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1 x 0 0 0 B</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1 x A n/a B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 x A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x A n/a A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 l 0 0 B</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1 x A n/a A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G1.15.5 Taking an interrupt or other exception during a multiple-register load or store

In AArch32 state, an interrupt cannot be taken during a sequence of memory accesses caused by a single load or store instruction, except that when FEAT_LSMAOC is implemented and the value of the applicable LSMAOE field is 0, an interrupt can be taken between two memory accesses made by a single AArch32 Load Multiple (LDM) or Store Multiple (STM) instruction.

The applicable LSMAOE field is the field in the SCTLR_EL1, SCTLR_EL2, HSCTLR, or SCTLR register that applies to the Exception level and Security state at which the LDM or STM instruction is executed.

When the value of the LSMAOE bit is 0 and an interrupt is taken between two memory accesses made by a single AArch32 LDM or STM instruction, then:

- For a load, any register being loaded by the instruction other than a register used in the generation of the address by the instruction or the PC, can contain an UNKNOWN value. Any register used in the generation of the address is restored to its initial value and the LR is set on the interrupt to a value consistent with returning to the instruction.
- For a store, any data location being stored to by the instruction can contain an UNKNOWN value.
- For either a load or store, if the instruction specifies writeback of the base address, then that register is restored to its initial value.

Armv8.2 deprecates software relying on interrupts not being taken during the sequence of memory accesses caused by a single load or store instruction.
G1.16 AArch32 state exception descriptions

Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743 gives general information about exception handling. This section describes each of the exceptions, in the following subsections:

- Undefined Instruction exception.
- Monitor Trap exception on page G1-5780.
- Hyp Trap exception on page G1-5781.
- Supervisor Call (SVC) exception on page G1-5782.
- Secure Monitor Call (SMC) exception on page G1-5783.
- Hypervisor Call (HVC) exception on page G1-5784.
- Prefetch Abort exception on page G1-5785.
- Data Abort exception on page G1-5789.
- Virtual SError interrupt exception on page G1-5793.
- IRQ exception on page G1-5794.
- Virtual IRQ exception on page G1-5796.
- FIQ exception on page G1-5796.
- Virtual FIQ exception on page G1-5798.

Additional pseudocode functions for exception handling on page G1-5798 gives additional pseudocode that is used in the pseudocode descriptions of a number of the exceptions.

G1.16.1 Undefined Instruction exception

An Undefined Instruction exception might be caused by:

- A System register access, floating-point, or Advanced SIMD instruction that is not accessible because of the settings in one or more of the CPACR, NSACR, HCPTR, and DBGDSCRext.
- A System register access, floating-point, or Advanced SIMD instruction that is not implemented.
- A System register access, floating-point, or Advanced SIMD instruction that causes an exception during execution. This includes:
 - Trapped floating-point exceptions that are taken to AArch32, if an implementation supports these traps. See Floating-point exceptions and exception traps on page E1-4003.
 - Execution of certain floating-point instructions when one or both of the FPSCR.{Stride, Len} fields in nonzero, in an implementation in which those fields are RW. The description of FPEXC specifies the instructions to which this applies.
- An instruction that is UNDEFINED.

Note

The Undefined Instruction exception is taken using offset 0x04 in the Hyp, Secure, or Non-secure vector table. In the Monitor vector table this offset is used for the Monitor Trap exception. See Monitor Trap exception on page G1-5780 and The vector tables and exception offsets on page G1-5744.

By default, an Undefined Instruction exception is taken to Undefined mode, but an Undefined Instruction exception can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to which the Undefined Instruction exception is taken on page G1-5779.

The Undefined Instruction exception can provide:

- Signaling of an illegal instruction execution.
- Lazy context switching of System registers.
The preferred return address for an Undefined Instruction exception is the address of the instruction that generated the exception. For an exception taken to AArch32 state, this return is performed as follows:

- If returning from Secure or Non-secure Undefined mode, the exception return uses the SPSR and LR_und values generated by the exception entry, as follows:
 - If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return instruction with a subtraction of 4.
 - If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return instruction with a subtraction of 2.
- If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.

--- Note ---

If handling the Undefined Instruction exception requires instruction emulation, followed by return to the next instruction after the instruction that caused the exception, the instruction emulator must use the instruction length to calculate the correct return address, and to calculate the updated values of the IT bits if necessary.

The PE mode to which the Undefined Instruction exception is taken

Figure G1-4 shows how the implementation, state, and configuration options determine the PE mode to which an Undefined Instruction exception is taken, when the exception is taken to an Exception level that is using AArch32.

--- Figure G1-4 The PE mode an Undefined Instruction exception is taken to in AArch32 state ---

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-5756.
Pseudocode description of taking the Undefined Instruction exception

The `AArch32.UndefiniedFault()` pseudocode procedure determines whether the Undefined Instruction exception is taken to AArch32 state. If it is taken to AArch32 state, the `AArch32.TakeUndefInstrException()` pseudocode procedure describes how the PE takes the exception.

An Undefined Instruction exception is taken to an Exception level using AArch64 if either:

- It is generated in User mode when EL1 is using AArch64.
- It is generated in User mode when EL2 is enabled in the current Security state and is using AArch64 and the value of `HCR_EL2.TGE` is 1.

Conditional execution of undefined instructions

The conditional execution rules described in Conditional execution on page F2-4121 apply to all instructions. This includes undefined instructions and other instructions that would cause entry to the Undefined Instruction exception.

If such an instruction fails its condition check, the behavior depends on the potential cause of entry to the Undefined Instruction exception, as follows:

- If the potential cause is the execution of the instruction itself and depends on data values used by the instruction, the instruction executes as a `NOP` and does not cause an Undefined Instruction exception.

- In the following cases, it is IMPLEMENTATION DEFINED whether the instruction executes as a `NOP` or causes an Undefined Instruction exception:
 - The potential cause is the execution of an earlier System register access instruction, floating-point instruction, or Advanced SIMD instruction.
 - The potential cause is the execution of the instruction itself without dependence on the data values used by the instruction.

An implementation must handle all such cases in the same way.

Note

Before Armv7, all implementations executed any instruction that failed its condition check as a `NOP`, even if it would otherwise have caused an Undefined Instruction exception. An Undefined Instruction handler written for these implementations might assume without checking that the undefined instruction passed its condition check. Such an Undefined Instruction handler is likely to need rewriting, to check the condition is passed, before it functions correctly on all AArch32 implementations.

Interaction of UNDEFINED instruction behavior with UNPREDICTABLE or CONSTRAINED UNPREDICTABLE instruction behavior

If this manual describes an instruction as both:

- UNPREDICTABLE and UNDEFINED then the instruction is UNPREDICTABLE.
- CONSTRAINED UNPREDICTABLE and UNDEFINED then the instruction is CONSTRAINED UNPREDICTABLE.

Note

An example of this is where both:

- An instruction, or instruction class, is made UNDEFINED by some general principle, or by a configuration field.
- A particular encoding of that instruction or instruction class is specified as CONSTRAINED UNPREDICTABLE.

G1.16.2 Monitor Trap exception

The Monitor Trap exception is implemented only as part of EL3, and can be generated only if EL3 is using AArch32.
--- Note ---

The Monitor Trap exception is taken using offset 0x04 in the Monitor vector table. In the other vector tables, this offset is used for the Undefined Instruction exception. See Undefined Instruction exception on page G1-5778 and The vector tables and exception offsets on page G1-5744.

A Monitor Trap exception is generated if the PE is running in a mode other than Monitor mode, and commits for execution a WFI or WFE instruction that would otherwise cause suspension of execution when:

- In the case of the WFI instruction, the value of the SCR.TWI bit is 1.
- In the case of the WFE instruction, the value of the SCR.TWE bit is 1.

--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE or WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The preferred return address for a Monitor Trap exception is the address of the instruction that generated the exception. The exception return uses the SPSR and LR_mon values generated by the exception entry, as follows:

- If SPSR.T is 0, indicating that the exception occurred in A32 state, the return uses an exception return instruction with a subtraction of 4.
- If SPSR.T is 1, indicating that the exception occurred in T32 state, the return uses an exception return instruction with a subtraction of 2.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.

The PE mode to which the Monitor Trap exception is taken

When EL3 is using AArch32, a Monitor Trap exception is taken to Monitor mode, using a vector offset of 0x04 from the Monitor exception base address.

Pseudocode description of taking the Monitor Trap exception

The AArch32.TakeMonitorTrapException() pseudocode procedure describes how the PE takes the exception.

G1.16.3 Hyp Trap exception

The Hyp Trap exception provides the standard mechanism for trapping Guest OS functions to the hypervisor. The Hyp Trap exception is implemented only as part of EL2 and can be generated only if EL2 is using AArch32.

A Hyp Trap exception is generated if the PE is running in a Non-secure mode other than Hyp mode, and commits for execution an instruction that is trapped to Hyp mode. Instruction traps are enabled by setting bits to 1 in the HCR, HCPTR, HDCR, or HSTR. For more information see EL2 configurable controls on page G1-5827.

Traps to Hyp mode never apply in Secure state, regardless of the value of the SCR.NS bit.

The preferred return address for a Hyp Trap exception is the address of the trapped instruction. The exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

--- Note ---

The SPSR and ELR_hyp values generated on exception entry can be used, without modification, for an exception return to re-execute the trapped instruction. If the exception handler emulates the trapped instruction, and must return to the following instruction, the emulation of the instruction must include modifying ELR_hyp, and possibly updating SPSR_hyp.

When the PE enters the handler for a Hyp Trap exception, the HSR holds syndrome information for the exception. For more information see Use of the HSR on page G5-6078.
The PE mode to which the Hyp Trap exception is taken

A Hyp Trap exception is taken to Hyp mode, using a vector offset of 0x14 from the Hyp exception base address.

Pseudocode description of taking the Hyp Trap exception

The AArch32.TakeHypTrapException() pseudocode procedure describes how the PE takes the exception.

G1.16.4 Supervisor Call (SVC) exception

The Supervisor Call instruction, SVC, requests a supervisor function, typically to request an operating system function. When EL1 is using AArch32, executing an SVC instruction causes the PE to enter Supervisor mode. For more information, see SVC on page F5-4885.

Note

In an implementation that includes EL2, when EL2 is using AArch32:

• When an SVC instruction is executed in Hyp mode, the Supervisor Call exception is taken to Hyp mode. For more information see SVC on page F5-4885.

• When the HCR.TGE bit is set to 1, the Supervisor Call exception generated by execution of an SVC instruction in Non-secure User mode is routed to Hyp mode. For more information, see Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-5759.

By default, a Supervisor Call exception that is taken to AArch32 state is taken to Supervisor mode, but a Supervisor Call exception can be taken to EL2, meaning it is taken to Hyp mode if EL2 is using AArch32, see The PE mode to which the Supervisor Call exception is taken.

The preferred return address for a Supervisor Call exception is the address of the next instruction after the SVC instruction. For an exception taken to AArch32 state, this return is performed as follows:

• If returning from Secure or Non-secure Supervisor mode, the exception return uses the SPSR and LR_svc values generated by the exception entry, in an exception return instruction without subtraction.

• If returning from Hyp mode, the exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.

The PE mode to which the Supervisor Call exception is taken

Figure G1-5 on page G1-5783 shows how the implementation, state, and configuration options determine the PE mode to which a Supervisor Call exception is taken, when the exception is taken to an Exception level that is using AArch32.
Pseudocode description of taking the Supervisor Call exception

The AArch32_CallSupervisor() pseudocode procedure determines whether the Supervisor Call exception is taken to AArch32 state. If it is taken to AArch32 state, the AArch32.TakeSVCException() pseudocode procedure describes how the PE takes the exception.

An Supervisor Call exception is taken to an Exception level using AArch64 if either:

- It is generated by executing an SVC instruction in User mode when EL1 is using AArch64.
- It is generated by executing an SVC instruction in Non-secure User mode when EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

Secure Monitor Call (SMC) exception

The Secure Monitor Call exception is implemented only as part of EL3. When EL3 is using AArch32, the exception is taken to Monitor mode.

The Secure Monitor Call instruction, SMC, requests a Secure Monitor function. When EL3 is using AArch32, executing an SMC instruction causes the PE to enter Monitor mode. For more information, see SMC on page F5-4732.

Note

- In an implementation that includes EL2, execution of an SMC instruction in a Non-secure EL1 mode can be trapped to EL2. When EL2 is using AArch32, this means that when HCR.TSC 1, execution of an SMC instruction in a Non-secure EL1 mode generates a Hyp Trap Exception that is taken to Hyp mode. For more information see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-5834.
The AArch32 System Level Programmers’ Model
G1.16 AArch32 state exception descriptions

- The Operation pseudocode in the description of the AArch32 SMC instruction, in SMC on page F5-4732, identifies cases where execution of the instruction generates an exception that is taken to EL3 using AArch64.

The preferred return address for a Secure Monitor Call exception is the address of the next instruction after the SMC instruction. For an exception taken to AArch32 state, this return is performed using the SPSR and LR_mon values generated by the exception entry, using an exception return instruction without a subtraction.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.

Note
For an exception taken to AArch32 state, the exception handler can return to the SMC instruction itself by returning using a subtraction of 4, without any adjustment to the SPSR.IT[7:0] bits. If it does this, the return occurs, then asynchronous exceptions might occur and be handled, then the SMC instruction is re-executed and another Secure Monitor Call exception occurs.

This relies on:
- The SMC instruction being used correctly, either outside an IT block or as the last instruction in an IT block, so that the SPSR.IT[7:0] bits indicate unconditional execution.
- The Secure Monitor Call handler not changing the result of the original conditional execution test for the SMC instruction.

The PE mode to which the Secure Monitor Call exception is taken
The Secure Monitor Call exception is supported only as part of EL3. When EL3 is using AArch32, a Secure Monitor Call exception is taken to Monitor mode, using vector offset 0x08 from the Monitor exception base address.

Note
- An SMC instruction that is trapped to Hyp mode because HCR.TSC is set to 1 generates a Hyp Trap exception, see The PE mode to which the Hyp Trap exception is taken on page G1-5782.
- If EL3 is using AArch64 then Security behavior in Exception levels using AArch32 when EL2 or EL3 are using AArch64 on page G1-5755 describes the effect of executing an SMC instruction at an Exception level that is using EL1.

Pseudocode description of taking the Secure Monitor Call exception
The AArch32.TakeSMCException() pseudocode procedure describes how the PE takes the exception when the exception is taken to an Exception level that is using AArch32.

G1.16.6 Hypervisor Call (HVC) exception
The Hypervisor Call exception is implemented only as part of EL2.

The Hypervisor Call instruction, HVC, requests a hypervisor function. When EL2 is using AArch32, executing an HVC instruction generates a Hypervisor Call exception that is taken to Hyp mode. For more information, see HVC on page F5-4413.

Note
- Execution of HVC instructions is disabled when the value of SCR.HCE is 0. Descriptions of HVC instruction execution elsewhere in this section assume the Effective value of SCR.HCE is 1.
- When EL2 is using AArch64 an HVC instruction executed in a Non-secure EL1 mode generates an exception that is taken to EL2 using AArch64. Exception classes and the ESR_ELx syndrome registers on page D1-2336 describes how this exception is reported in ESR_EL2.
The preferred return address for a Hypervisor Call exception is the address of the next instruction after the HVC instruction. The exception return is performed by an ERET instruction, using the SPSR and ELR_hyp values generated by the exception entry.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.

When EL2 is using AArch32, executing an HVC instruction transfers the immediate argument of the instruction to the HSR. The exception handler retrieves the argument from the HSR, and therefore does not have to access the original HVC instruction. For more information see Use of the HSR on page G5-6078.

The PE mode to which the Hypervisor Call exception is taken

The Hypervisor Call exception is supported only as part of EL2. When EL2 is using AArch32, a Hypervisor Call exception is taken to Hyp mode, using a vector offset that depends on the mode from which the exception is taken, as Figure G1-6 shows. This offset is from the Hyp exception base address.

![Figure G1-6 The PE mode the Hypervisor Call exception is taken to in AArch32 state](image)

Pseudocode description of taking the Hypervisor Call exception

The AArch32.CallHypervisor() pseudocode procedure determines whether the valid execution of an HVC instruction in AArch32 state generates an exception that is taken to EL2 using AArch64, or generates a Hypervisor Call exception taken to Hyp mode. The AArch32.TakeHVCException() pseudocode procedure describes how the PE takes a Hypervisor Call exception.

G1.16.7 Prefetch Abort exception

A Prefetch Abort exception can be generated by:

- A synchronous memory abort on an instruction fetch.

 Note

 Asynchronous External aborts on instruction fetches are reported as SError interrupts using the Data Abort exception, see Data Abort exception on page G1-5789.

- A Prefetch Abort exception entry is synchronous to the instruction whose fetch aborted.

 For more information about memory aborts see VMSAv8-32 memory aborts on page G5-6052.

- A Breakpoint, Vector Catch or Breakpoint Instruction exception, see Chapter G2 AArch32 Self-hosted Debug.

 Note

 If an implementation fetches instructions speculatively, it must handle a synchronous abort on such an instruction fetch by:

 - Generating a Prefetch Abort exception only if the instruction would be executed in a simple sequential execution of the program.

 - Ignoring the abort if the instruction would not be executed in a simple sequential execution of the program.
By default, when EL1 is using AArch32, a Prefetch Abort exception is taken to Abort mode, but a Prefetch Abort exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.
• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the Prefetch Abort exception is taken to an Exception level that is using AArch32, see *The PE mode to which the Prefetch Abort exception is taken* on page G1-5787.
• About cases where the Prefetch Abort generates an exception that is taken to an Exception level that is using AArch64, see *Pseudocode description of taking the Prefetch Abort exception* on page G1-5789.

The preferred return address for a Prefetch Abort exception is the address of the aborted instruction. For an exception taken to AArch32 state this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception entry, using an exception return instruction with a subtraction of 4. This means using:
 — SPSR_abt and LR_abt if returning from Abort mode.
 — SPSR_mon and LR_mon if returning from Monitor mode.
• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry, using an ERET instruction.

For more information about the handling of Prefetch Abort exceptions in AArch32 state see *Exception return to an Exception level using AArch32* on page G1-5765.

Prefetch Abort exception reporting a PC alignment fault exception

A PC alignment fault exception that is taken to an Exception level that is using AArch32 is reported as a Prefetch Abort exception, and:

If the exception is taken to EL1 using AArch32 or EL3 using AArch32

• The IFSR indicates the cause of the exception:
 — If the value of TTBCR.EAE is 0, IFSR.FS takes the value 0b00001.
 — If the value of TTBCR.EAE is 1, IFSR.STATUS takes the value 0b100001.
• IFAR holds the value of the address that faulted, including the misaligned low order bit or bits.
• R14_abt holds the address that faulted, including the misaligned low order bit or bits, with the standard offset for a Prefetch Abort exception.

If the exception is taken to EL2 using AArch32

• HSR_EC takes the value 0b100010.
• HSR_IL is UNKNOWN.
• HSR_ISS is RES0.
• HIFAR and ELR_hyp each hold the value of the address that faulted, including the misaligned low order bit or bits.

For a PC alignment fault exception taken to an Exception level that is using AArch32:

• If the exception occurred because of the CONSTRAINED UNPREDICTABLE behavior of a branch to an unaligned PC value, as described in *Branching to an unaligned PC* on page K1-7942, then bit[0] of the faulting address is forced to zero, and therefore the misalignment is because the value of bit[1] of this address is 1.
• If the exception occurred on an exit from Debug state, as described in *Exiting Debug state* on page H2-7051, then it is CONSTRAINED UNPREDICTABLE whether bit[0] of the faulting address is forced to zero.
The PE mode to which the Prefetch Abort exception is taken

Figure G1-7 on page G1-5788 shows how the implementation, state, and configuration options determine the PE mode to which a Prefetch Abort exception is taken, when the exception is taken to an Exception level that is using AArch32.

________ Note _________

In this figure, the Effective value of HCR2.TEA is 0 if the Reliability, Availability, and Serviceability Extension is not implemented.
Figure G1-7 The PE mode the Prefetch Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-5756.
Pseudocode description of taking the Prefetch Abort exception

The `AArch32.Abort()` pseudocode function determines whether the Prefetch Abort condition generates an exception that is taken to an Exception level that is using AArch64, or generates a Prefetch Abort exception that is taken in AArch32 state. When the exception is taken in AArch32 state, the `AArch32.TakePrefetchAbortException()` pseudocode procedure describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

- The exception is generated in User mode when EL1 is using AArch64.
- The implementation includes EL2, EL2 is using AArch64, and one of the following applies:
 - The value of HCR_EL2.TGE is 1 and the exception is generated in Non-secure User mode.
 - The value of MDCR_EL2.TDE is 1 and the exception is generated by a Debug exception in a Non-secure EL1 or Non-secure EL0 mode.
 - The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32 Non-secure EL1&0 translation regime.
- The implementation includes EL3, EL3 is using AArch64, the value of SCR_EL3.EA is 1, and the exception is generated by an External abort in AArch32 state.

G1.16.8 Data Abort exception

In AArch32 state, a Data Abort exception can be generated by:

- A synchronous abort on a data read or write memory access. Exception entry is synchronous to the instruction that generated the memory access.
- An SError interrupt. The SError interrupt might be caused by an External abort on a memory access, which can be any of:
 - A data read or write access.
 - An instruction fetch.
 - In a VMSA memory system, a translation table access.

Exception entry occurs asynchronously.

As described in `Asynchronous exception masking controls on page G1-5773`, SError interrupts can be masked. When this happens, a generated SError interrupt is not taken until it is not masked.

- A watchpoint, see `Watchpoint exceptions on page G2-5895`.

By default, when EL1 is using AArch32 a Data Abort exception is taken to Abort mode, but a Data Abort exception can be taken to:

- EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.
- EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

- About cases where the Data Abort exception is taken to an Exception level that is using AArch32 see `The PE mode to which the Data Abort exception is taken on page G1-5790`.
- About memory aborts in AArch32 state see `VMSA v8-32 memory aborts on page G5-6052`.
- About cases where the Data Abort generates an exception that is taken to an Exception level that is using AArch64 see `Pseudocode description of taking the Data Abort exception on page G1-5792`.

The preferred return address for a Data Abort exception is the address of the instruction that generated the aborting memory access, or the address of the instruction following the instruction boundary at which an SError interrupt exception was taken. For an exception taken to AArch32 state, this return is performed as follows:

- If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception entry, using an exception return instruction with a subtraction of 8. This means using:
 - `SPSR_abt` and `LR_abt` if returning from Abort mode.
— SPSR_mon and LR_mon if returning from Monitor mode.

- If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry, using an ERET instruction.

For more information about the handling of Data Abort exceptions in AArch32 state see Exception return to an Exception level using AArch32 on page G1-5765.

The PE mode to which the Data Abort exception is taken

Figure G1-8 on page G1-5791 shows the determination of the mode to which a Data Abort exception is taken when the exception is taken to an Exception level that is using AArch32.

Note

In this figure, the Effective value of HCR2.TEA is 0 if the The Reliability, Availability, and Serviceability Extension is not implemented.
Figure G1-8 The PE mode the Data Abort exception is taken to in AArch32 state

See also UNPREDICTABLE cases when the value of HCR.TGE is 1 on page G1-5756.
Pseudocode description of taking the Data Abort exception

The `AArch32.Abort()` pseudocode function determines whether the Data Abort condition generates an exception that is taken to an Exception level that is using AArch64, or generates a Data Abort exception that is taken in AArch32 state. When the exception is taken in AArch32 state, the `AArch32.TakeDataAbortException()` pseudocode procedure describes how the PE takes the exception.

The exception is taken to an Exception level using AArch64 if one of the following applies:

- The exception is generated in User mode when EL1 is using AArch64.
- The implementation includes EL2, EL2 is using AArch64, and one of the following applies:
 - The value of `HCR_EL2.TGE` is 1 and the exception is generated in Non-secure User mode.
 - The value of `MDCR_EL2.TDE` is 1 and the exception is generated by a Debug exception in a Non-secure EL1 or Non-secure EL0 mode.
 - The exception is generated by a stage 2 fault during a stage 1 translation table walk using the AArch32 Non-secure EL1&0 translation regime.
- The implementation includes EL3, EL3 is using AArch64, the value of `SCR_EL3.EA` is 1. and the exception is generated by an External abort in AArch32 state.

Effects of data-aborted instructions

An instruction that accesses data memory can modify memory by storing one or more values. If the execution of such an instruction generates a Data Abort exception, or causes Debug state entry because of a watchpoint set on the location, the value of each memory location that the instruction stores to is:

- Unchanged for any location for which one of the following applies:
 - An Alignment fault is generated.
 - An MMU fault is generated.
 - A Watchpoint is generated.
 - An External abort is generated, if that External abort is taken synchronously.
- Unknown for any location for which no exception and no debug event is generated.

If the access to a memory location generates an External abort that is taken asynchronously, it is outside the scope of the architecture to define the effect of the store on that memory location, because this depends on the system-specific nature of the External abort. However, in general, Arm recommends that such locations are unchanged.

For External aborts and Watchpoints, where in principle faulting could be identified at byte or halfword granularity, the size of a location in this definition is the size for which a memory access is single-copy atomic.

In AArch32 state, instructions that access data memory can modify registers in the following ways:

- By loading values into one or more of the general-purpose registers. The registers loaded can include the PC.
- By loading values into one or more of the registers in the Advanced SIMD and floating-point register file.
- By specifying base register writeback, in which the base register used in the address calculation has a modified value written to it. All instructions that support base register writeback have constrained unpredictable results if base register writeback is specified with the PC as the base register. Only general-purpose registers can be modified reliably in this way.
- By a direct transfer to or from the Debug Communication Channel (DCC) register, using the LDC and STC instructions. For more information see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

 If the instruction that accesses the DCC registers is an LDC or STC instruction, Unknown values are left in the Data Transfer Register and DCC flow-control flags.
- By modifying PSTATE.
If the execution of such an instruction generates a synchronous Data Abort exception, the following rules determine the values left in these registers:

- On entry to the Data Abort exception handler:
 - The PC value is the Data Abort vector address, see Exception vectors and the exception base address on page G1-5743.
 - The LR_abt value is determined from the address of the aborted instruction. Neither value is affected by the results of any load specified by the instruction.

- The base register is restored to its original value if either:
 - The aborted instruction is a load and the list of registers to be loaded includes the base register.
 - The base register is being written back.

- If the instruction only loads one general-purpose register the value in that register is unchanged.

- If the instruction loads more than one general-purpose register, UNKNOWN values are left in destination registers other than the PC and the base register of the instruction.

- If the instruction affects any registers in the Advanced SIMD and floating-point register file, UNKNOWN values are left in the registers that are affected.

- PSTATE bits that are not defined as updated on exception entry retain their current value.

- If the instruction is a STREX, STREXB, STREXH, or STREXD, <Rd> is not updated.

After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN. Therefore, Arm strongly recommends that the abort handler performs a CLREX instruction, or a dummy STREX instruction, to clear the Exclusives monitor state.

An External abort might signal a data corruption to the PE. For example a memory location might have been corrupted. The error that caused the External abort might have been propagated. The RAS Extension provides mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more information, see the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

The Arm abort model

The abort model used by an Arm PE is described as a Base Restored Abort Model. This means that if a synchronous Data Abort exception is generated by executing an instruction that specifies base register writeback, the value in the base register is unchanged.

The abort model applies uniformly across all instructions.

G1.16.9 Virtual SError interrupt exception

The Virtual SError interrupt exception is implemented only as part of EL2 is enabled in the current Security state.

A Virtual SError interrupt exception is generated in AArch32 state if all of the following apply:

- The PE is in a mode other than Hyp mode.
- The value of PSTATE.A is 0.
- Either:
 - EL2 is using AArch32 and the values of the HCR.\{TGE, AMO, VA\} bits are \{0, 1, 1\}.
 - EL2 is using AArch64 and the values of the HCR_EL2.\{TGE, AMO, VA\} bits are \{0, 1, 1\}.

The preferred return address for a Virtual SError interrupt exception is the address of the instruction immediately after the instruction boundary where the exception was taken. For an exception taken to AArch32 state, this return is performed using the SPSR and LR_abt values generated by the exception entry, using an exception return instruction without subtraction.
The PE mode to which the Virtual SError interrupt exception is taken

The Virtual SError interrupt exception is taken using a vector offset of 0x10 from the Non-secure exception base address.

The conditions for generating a Virtual SError interrupt exception in AArch32 state mean the exception is:

• Taken from a EL1 or EL0 mode.
• Taken to Abort mode if EL1 is using AArch32.
• Taken to EL1, when EL0 is using AArch32 and EL1 is using AArch64.

For more information see Virtual exceptions when an implementation includes EL2 on page G1-5770.

Note

Because a Virtual SError interrupt exception taken to AArch32 state is always taken to Abort mode, on exception entry the preferred return address is always saved to LR_abt.

Pseudocode description of taking the Virtual SError interrupt exception

The AArch32.TakeVirtualSErrorException() pseudocode procedure describes how the PE takes the exception.

G1.16.10 IRQ exception

The IRQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an IRQ interrupt request input to the PE.

When an IRQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls on page G1-5773, IRQ exceptions can be masked. When this happens, a generated IRQ exception is not taken until it is not masked.

By default, when EL1 is using AArch32, an IRQ exception is taken to IRQ mode, but an IRQ exception can be taken to:

• EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.
• EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:

• About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which the physical IRQ exception is taken on page G1-5795.
• About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description of taking the physical IRQ exception on page G1-5795.

The preferred return address for an IRQ exception is the address of the instruction following the instruction boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as follows:

• If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception entry, using an exception return instruction with a subtraction of 4. This means using:
 — SPSR_irq and LR_irq if returning from IRQ mode.
 — SPSR_mon and LR_mon if returning from Monitor mode.
• If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry, using an ERET instruction.

For more information, see Exception return to an Exception level using AArch32 on page G1-5765.
The PE mode to which the physical IRQ exception is taken

Figure G1-9 shows how the implementation, state, and configuration options determine the mode to which an IRQ exception is taken when the exception is taken to an Exception level that is using AArch32.

![Diagram showing the logic for determining the PE mode to which the physical IRQ exception is taken.]

Pseudocode description of taking the physical IRQ exception

The `AArch32.TakePhysicalIRQException()` pseudocode procedure describes how the PE takes the exception. This procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens if one of the following applies:

- The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using AArch64.
- The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64, and the value of `HCR_EL2.TGE` is 1. The Exception is taken to EL2 using AArch64.
- The exception is taken from EL0 or EL1 mode, EL2 is implemented in the current Security state and using AArch64, and the value of `HCR_EL2.IMO` is 1. The Exception is taken to EL2 using AArch64.
- The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64, and the value of `SCR_EL3.IRQ` is 1. The Exception is taken to EL3 using AArch64.
G1.16.11 Virtual IRQ exception

The Virtual IRQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

A Virtual IRQ exception is generated in AArch32 state if all of the following apply:
- The PE is in a mode other than Hyp mode.
- The value of PSTATE.I is 0.
- Either:
 - EL2 is using AArch32 and the value of HCR.{TGE, IMO} is {0, 1}.
 - EL2 is using AArch64 and the value of HCR_EL2.{TGE, IMO} is {0, 1}.
- One of the following applies:
 - EL2 is using AArch32 and the value of HCR.VI is 1.
 - EL2 is using AArch64 and the value of HCR_EL2.VI is 1.
 - A Virtual IRQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual IRQ exception is the address of the instruction immediately after the instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction with a subtraction of 4.

The PE mode to which the Virtual IRQ exception is taken

The Virtual IRQ exception uses a vector offset of 0x18.

The conditions for generating a Virtual IRQ exception in AArch32 state mean the exception is:
- Taken from an EL1 or EL0 mode.
- Taken to IRQ mode if EL1 is using AArch32.
- Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information see Virtual exceptions when an implementation includes EL2 on page G1-5770.

Pseudocode description of taking the Virtual IRQ exception

The `AArch32.TakeVirtualIRQException()` pseudocode procedure describes how the PE takes the exception.

G1.16.12 FIQ exception

The FIQ exception is generated by IMPLEMENTATION DEFINED means. Typically this is by asserting an FIQ interrupt request input to the PE.

When an FIQ exception is taken, exception entry is precise to an instruction boundary.

As described in Asynchronous exception masking controls on page G1-5773, FIQ exceptions can be masked. When this happens, a generated FIQ exception is not taken until it is not masked.

By default, an FIQ exception is taken to FIQ mode, but an FIQ exception can be taken to:
- EL2, meaning it is taken to Hyp mode if EL2 is using AArch32.
- EL3, meaning it is taken to Monitor mode if EL3 is using AArch32.

For more information:
- About cases where the exception is taken to an Exception level using AArch32 see The PE mode to which the physical FIQ exception is taken on page G1-5797.
- About cases where the exception is taken to an Exception level using AArch64 see Pseudocode description of taking the FIQ exception on page G1-5798.
The preferred return address for an FIQ exception is the address of the instruction following the instruction boundary at which the exception was taken. For an exception taken to AArch32 state this return is performed as follows:

- If returning from a mode other than Hyp mode, using the SPSR and LR values generated by the exception entry, using an exception return instruction with a subtraction of 4. This means using:
 - SPSR_fiq and LR_fiq if returning from FIQ mode.
 - SPSR_mon and LR_mon if returning from Monitor mode.
- If returning from Hyp mode, using the SPSR_hyp and ELR_hyp values generated by the exception entry, using an ERET instruction.

For more information see Exception return to an Exception level using AArch32 on page G1-5765.

The PE mode to which the physical FIQ exception is taken

Figure G1-9 on page G1-5795 shows how the implementation, state, and configuration options determine the PE mode to which an FIQ exception is taken when the exception is taken to an Exception level that is using AArch32.
Pseudocode description of taking the FIQ exception

The AArch32.TakePhysicalFIQException() pseudocode procedure describes how the PE takes the exception. This procedure includes the case where the exception is taken to an Exception level that is using AArch64. This happens if one of the following applies:

- The exception is taken from User mode and EL1 is using AArch64. The Exception is taken to EL1 using AArch64.
- The exception is taken from User mode, EL2 is implemented in the current Security state and using AArch64, and the value of HCR_EL2.TGE is 1. The Exception is taken to EL2 using AArch64.
- The exception is taken from an EL0 or EL1 mode, EL2 is implemented in the current Security state and using AArch64, and the value of HCR_EL2.FMO is 1. The Exception is taken to EL2 using AArch64.
- The exception is taken from a PE mode other than Monitor mode, EL3 is implemented and using AArch64, and the value of SCR_EL3.FIQ is 1. The Exception is taken to EL3 using AArch64.

G1.16.13 Virtual FIQ exception

The Virtual FIQ exception is implemented only as part of EL2, if EL2 is enabled in the current Security state.

A Virtual FIQ exception is generated in AArch32 state if all of the following apply:

- The PE is in a mode other than Hyp mode.
- The value of PSTATE.F is 0.
- Either:
 - EL2 is using AArch32 and the value of HCR.{TGE, FMO} is {0, 1}.
 - EL2 is using AArch64 and the value of HCR_EL2.{TGE, FMO} is {0, 1}.
- One of the following applies:
 - EL2 is using AArch32 and the value of HCR.VF is 1.
 - EL2 is using AArch64 and the value of HCR_EL2.VF is 1.
 - A Virtual FIQ exception is generated by an IMPLEMENTATION DEFINED mechanism.

The preferred return address for a Virtual FIQ exception is the address of the instruction immediately after the instruction boundary where the exception was taken. For an exception taken to AArch32 state this return is performed using the SPSR and LR_irq values generated by the exception entry, using an exception return instruction with a subtraction of 4.

The PE mode to which the Virtual FIQ exception is taken

The Virtual FIQ exception is taken using a vector offset of 0x1C.

The conditions for generating a Virtual FIQ exception in AArch32 state mean the exception is:

- Taken from EL1 or EL0.
- Taken to FIQ mode if EL1 is using AArch32.
- Taken to EL1 if EL0 is using AArch32 and EL1 is using AArch64.

For more information see Virtual exceptions when an implementation includes EL2 on page G1-5770.

Pseudocode description of taking the Virtual FIQ exception

The AArch32.TakeVirtualFIQException() pseudocode procedure describes how the PE takes the exception.

G1.16.14 Additional pseudocode functions for exception handling

The AArch32.EnterMonitorMode() pseudocode function changes the PE mode to Monitor mode, with the required state changes.
The `AArch32.EnterHypMode()` pseudocode function changes the PE mode to Hyp mode, with the required state changes.

The `AArch32.EnterMode()` pseudocode function changes the PE mode to a PL1 mode, with the required state changes. It is used for all exceptions that are not routed to Hyp mode or Monitor mode.

The `AArch32.EnterMonitorMode()`, `AArch32.EnterHypMode()`, and `AArch32.EnterMode()` functions are described in Chapter J1 *Armv8 Pseudocode*.
G1.17 Reset into AArch32 state

Reset on page D1-2329 describes the Armv8 reset model, including the defined levels of reset. When reset is deasserted, the PE starts executing instructions in the highest implemented Exception level. If that Exception level is using AArch32, then it starts execution:

- In Secure state, if the implementation includes EL3.
- With interrupts disabled:
 - In Hyp mode, if the highest implemented Exception level is EL2.
 - In Supervisor mode, otherwise.

Note

- This section describes the architectural requirements for a reset into AArch32 state. It takes no account of whether Arm licenses any particular combination of Exception levels and Execution state. For more information about the licensed combinations, see Support for Exception levels and Execution states on page D1-2414.
- The Execution state in which the highest implemented Execution level starts executing instructions on coming out of reset might be determined by a configuration input signal.

Reset returns some PE state to architecturally-defined or IMPLEMENTATION DEFINED values, and makes other state UNKNOWN, as described in PE state on reset into AArch32 state on page G1-5801. For more information about behavior when resetting into an Exception level using AArch32, see:

- Behavior of caches at reset on page G4-5935.
- Enabling stages of address translation on page G5-5972.
- TLB behavior at reset on page G5-6032.
- Reset and debug on page H6-7129.

When reset is deasserted, if the PE resets into an Exception level that is using AArch32, it is IMPLEMENTATION DEFINED whether execution starts:

- From an IMPLEMENTATION DEFINED address.
- If reset is into EL3 or EL1, from the low or high reset vector address, as determined by the reset value of the SCTLR.V bit. This reset value can be determined by an IMPLEMENTATION DEFINED configuration input signal.

Note

This option might be implemented for compatibility with earlier versions of the architecture.

Software might be able to identify the reset address:

- If reset is into EL3, by reading the reset value of MVBAR. That is, after coming out of reset, by reading MVBAR before the boot software has updated it. It is IMPLEMENTATION DEFINED whether this discovery mechanism is supported.
- If reset is into EL2 or EL1, by reading RVBAR. RVBAR can only be implemented at the highest implemented Exception level, and only if that Exception level is not EL3.

If RVBAR is not implemented, and at all Exception levels other than the highest implemented Exception level, the encoding for RVBAR is UNDEFINED.

The Arm architecture does not define any way of returning to a previous Execution state from a reset.
G1.17.1 PE state on reset into AArch32 state

----- Note -----
See the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0, and version 4.0 for the reset requirements for GIC System registers.

Immediately after a reset, much of the PE state is **UNKNOWN**. However, some of the PE state is defined. If the PE resets to AArch32 state using either a Cold or a Warm reset, the PE state that is defined is as follows:

- The global exclusive monitor and local exclusive monitor for the PE are **UNKNOWN**.
- If reset is into EL3 using AArch32, then all fields of the SCR reset to zero.

----- Note -----
This means SCR.NS correctly indicates that the PE is in Secure state.

- If reset is into EL2 using AArch32, then reset is into Hyp mode and CPSR.M resets to `0b1010`, otherwise reset is into Supervisor mode and CPSR.M resets to `0b0011`.
- CPSR.IL resets to 0.
- The CPACR.{cp11, cp10} fields reset to zero, and if CPACR.ASEDIS is implemented as an RW field it resets to zero.

----- Note -----
When CPACR.TRCDIS is an RW field, its reset value is architecturally **UNKNOWN**.

- PSTATE is reset to the values defined by the AArch32.TakeReset() pseudocode function, see Pseudocode descriptions of reset on page G1-5803.
- The FPEXC.EN field resets to 0.
- In the SCTLR:
 - The {AFE, TRE, UWXN, WXN, I, SED, ITD, C, A, M} fields reset to 0.
 - The {nTWE, nTWI, CP15BEN} fields reset to 1.
 - The {TE, EE, V} fields reset to IMPLEMENTATION DEFINED values, see the register description for more information.

When the reset is to EL3 using AArch32 then these reset values apply only to the Secure instance of the SCTLR, and the reset value of the Non-secure SCTLR is architecturally **UNKNOWN**.

- All field of the TTBCR reset to 0.
 When the reset is to EL3 using AArch32 then:
 - All fields of the Secure TTBCR reset to 0.
 - In the Non-secure TTBCR, the EAE field resets to 0, and the reset values of all other fields are architecturally **UNKNOWN**.

- The VBAR resets to an IMPLEMENTATION DEFINED value.
 When the reset is to EL3 using AArch32 then this reset value applies only to the Secure instance of the register, and the reset value of the Non-secure VBAR is architecturally **UNKNOWN**.

- All fields of the DBGDCCINT reset to 0.
- The DBGDSCRext.{MDBGen, UDCCdis} fields reset to 0.
- The DBGOSDLR.DLK field fields reset to 0.
In addition:

If the reset is into EL1 using AArch32

- In the RMR register, the RR field resets to 0 on any warm or cold reset, and the AA64 field resets to 0 on a Cold reset.

If the reset is into EL2 using AArch32

- In the HRMR, the RR field resets to 0 on any warm or Cold reset, and the AA64 field resets to 0 on a Cold reset.
- The HSCTLR.\{I, C, M\} fields all reset to 0, and the HSCTLR.EE field resets to an IMPLEMENTATION DEFINED value.

If the reset is into EL2 using AArch32 or into EL3 using AArch32

For a reset into EL3 using AArch32 these reset values apply only if the implementation includes EL2, see the register descriptions for more information.

- All fields of the HCPTR reset to zero.
- All fields of the HCR reset to zero.
- The HCR2.\{ID, CD\} fields reset to zero.
- All fields of the HSTR reset to zero.
- The VMPIDR resets to the value of the MPIDR, see the register description for more information.
- The VPIDR resets to the value of the MIDR, see the register description for more information.
- The VTTBR.VMID field resets to zero.
- In the HDCR:
 - The HPMN field resets to the IMPLEMENTATION DEFINED value of PMCR.N.
 - The reset value of the HPME field is architecturally UNKNOWN.
 - All other fields reset to 0.

If the reset is into EL3 using AArch32

- The MVBAR resets to an IMPLEMENTATION DEFINED value, see the register description for more information.
- If the NSACR.\{NSTRCDIS, NSASEDIS\} fields are RW fields then they reset to 0.
- In the RMR register, the RR field resets to 0 on any warm or Cold reset, and the AA64 field resets to 0 on a Cold reset.
- All fields of the SCR reset to zero.
- All fields of the SDER reset to 0.
- All fields of the SDCR reset to zero.

For either a warm or a Cold reset

- The EDPRSR.SR field resets to 1.
- The EDESR.\{SS, RC, OSUC\} fields reset to 0.

For a Cold reset only

- The EDSCR.\{RXO, TXU, INTdis, TDA, MA, HDE, ERR, RXfull, TXfull\} fields reset to 0.
- The EDECCR.\{NSE, SE\} fields reset to 0.
- The EDPRSR.\{SPMAD, SDAD\} fields reset to 0, and the EDPRSR.SPD field resets to 1.
- The DBGOSLSR.OSLK field resets to 1.
- If FEAT_DoPD is not implemented, the DBGPRCR.CORENPDRQ field resets to the value of EDPRCR.COREPURQ.
Note

An External Debug reset sets EDPRCR.COREPURQ to 0, see External debug register resets on page H8-7158. If an External Debug reset and a Cold reset coincide, both DBGPRCR.CORENPDRQ and EDPRCR.COREPURQ are reset to 0.

Note

If FEAT_DoPD is implemented, DBGPRCR.CORENPDRQ is set to an IMPLEMENTATION DEFINED choice of 0 or 1 if the powerup request is implemented and asserted, otherwise the field is set to 0.

The debug CLAIM bits are reset to 0.

Note

These are the bits that are set to 1 by writing to DBGCLAIMSET.CLAIM, and reset to 0 by writing to DBGCLAIMCLR.CLAIM.

- Each bit of AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, and AMCNTENSET1 is set to 0.
- Each of the implemented architected activity monitor counters AMEVCNTR0<n> and each of the implemented auxiliary activity monitor counters AMEVCNTR1<n> are set to 0.

For more information about resets in AArch32 System registers, see Chapter G8 AArch32 System Register Descriptions.

G1.17.2 Pseudocode descriptions of reset

The AArch32.TakeReset() pseudocode procedure describes how the PE behaves when reset is deasserted.

The AArch32.ResetGeneralRegisters() pseudocode function resets the general-purpose registers.

The AArch32.ResetSIMDPFRегистers() pseudocode function resets the SIMD and floating-point registers.

The AArch32.ResetSpecialRegisters() pseudocode function resets the Special-purpose registers, and the debug System registers DLR and DSPSR, that are used for handling Debug exceptions.

The AArch32.ResetSystemRegisters() pseudocode function resets all System registers in the (coproc==0b111x) encoding space to their reset state as defined in the register descriptions in Chapter G8 AArch32 System Register Descriptions.

Note

The ResetSystemRegisters() function only resets the System registers. It has no effect on memory-mapped registers.

The ResetExternalDebugRegisters() pseudocode function resets all external debug registers to their reset state as defined in the register descriptions in Chapter H9 External Debug Register Descriptions.
G1.18 Mechanisms for entering a low-power state

The following sections describe the architectural mechanisms that a PE can use to request entry to a low-power state:

- Wait For Event and Send Event.
- Wait For Interrupt on page G1-5807.

G1.18.1 Wait For Event and Send Event

The Wait For Event (WFE) mechanism permits a PE to request entry to a low-power state, and, if the request succeeds, to remain in that state until an event is generated by a Send Event operation, or another WFE wake-up event occurs. Example G1-2 describes how a spinlock implementation might use this mechanism to save energy.

Example G1-2 Spinlock as an example of using Wait For Event and Send Event

A multiprocessor operating system requires locking mechanisms to protect data structures from being accessed simultaneously by multiple PEs. These mechanisms prevent the data structures becoming inconsistent or corrupted if different PEs try to make conflicting changes. If a lock is busy, because a data structure is being used by one PE, it might not be practical for another PE to do anything except wait for the lock to be released. For example, if a PE is handling an interrupt from a device it might need to add data received from the device to a queue. If another PE is removing data from the queue, it will have locked the memory area that holds the queue. The first PE cannot add the new data until the queue is in a consistent state and the lock has been released. It cannot return from the interrupt handler until the data has been added to the queue, so it must wait.

Typically, a spin-lock mechanism is used in these circumstances:

- A PE requiring access to the protected data attempts to obtain the lock using single-copy atomic synchronization primitives such as the Load-Exclusive and Store-Exclusive operations described in Synchronization and semaphores on page E2-4063.
- If the PE obtains the lock, it performs its memory operation and releases the lock.
- If the PE cannot obtain the lock, it reads the lock value repeatedly in a tight loop until the lock becomes available. At this point, it again attempts to obtain the lock.

A spin-lock mechanism is not ideal for all situations:

- In a low-power system, the tight read loop is undesirable because it uses energy to no effect.
- In a multithreaded implementation, the execution of spin-locks by waiting threads can significantly degrade overall performance.

Using the Wait For Event and Send Event mechanism can improve the energy efficiency of a spinlock. In this situation, a PE that fails to obtain a lock can execute a Wait For Event instruction, WFE, to request entry to a low-power state. When a PE releases a lock, it must execute a Send Event instruction, SEV, causing any waiting PEs to wake up. Then, these PEs can attempt to gain the lock again.

The execution of a WFE instruction can cause suspension of execution only if all of the following are true:

- The instruction does not cause any other exception.
- When the instruction is executed:
 - The Event Register is not set.
 - There is not a pending WFE wakeup event.

For more information about the trap to EL2, see Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837.

The architecture does not define the exact nature of the low power state entered as a result of executing a WFE instruction, but the execution of a WFE instruction must not cause a loss of memory coherency.
The AArch32 System Level Programmers’ Model
G1.18 Mechanisms for entering a low-power state

Note

Although a complex operating system can contain thousands of distinct locks, the event sent by this mechanism does not indicate which lock has been released. If the event relates to a different lock, or if another PE acquires the lock more quickly, the PE fails to acquire the lock and can reenter the low-power state waiting for the next event.

The Wait For Event system relies on hardware and software working together to achieve energy saving:

• The hardware provides the mechanism to enter the Wait For Event low-power state.
• The operating system software is responsible for issuing:
 — A Wait For Event instruction, to request entry to the low-power state, used in the example when waiting for a spin-lock.
 — A Send Event instruction, required in the example when releasing a spin-lock.

The mechanism depends on the interaction of:

• WFE wake-up events, see WFE wake-up events on page G1-5806.
• The Event Register, see The Event Register.
• The Send Event instructions, see The Send Event instructions on page G1-5806.
• The Wait For Event instruction, see The Wait For Event instruction.

The Event Register

The Event Register is a single bit register for each PE. When set, an event register indicates that an event has occurred, since the register was last cleared, that might require some action by the PE. Therefore, the PE must not suspend operation on issuing a WFE instruction.

The reset value of the Event Register is UNKNOWN.

The Event Register for a PE is set by:

• The execution of an SEV instruction on any PE in the multiprocessor system.
• The execution of an SEVL instruction by the PE.
• An exception return.
• An event from a Generic Timer event stream, see Event streams on page G6-6107.
• An event sent by some IMPLEMENTATION DEFINED mechanism.

As shown in this list, the Event Register might be set by IMPLEMENTATION DEFINED mechanisms.

The Event Register is cleared only by a Wait For Event instruction.

Software cannot read or write the value of the Event Register directly.

The Wait For Event instruction

The action of the Wait For Event instruction depends on the state of the Event Register:

• If the Event Register is set, the instruction clears the register and completes immediately. Normally, if this happens the software makes another attempt to claim the lock.
• If the Event Register is clear the PE can suspend execution, and hardware might enter a low-power state. The PE can remain suspended until a WFE wake-up event or a reset occurs. When a WFE wake-up event occurs, or earlier if the implementation chooses, the #FE instruction completes.

The execution in AArch32 state of a #FE instruction that would otherwise cause suspension of execution might be trapped, see:

• Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-5821.
• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837.
• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on page G1-5848.
The Wait For Event instruction, `WFE`, is available at all privilege levels, see `WFE` on page F5-4983. Software using the Wait For Event mechanism must tolerate spurious wake-up events, including multiple wakeups.

WFE wake-up events

The following events are `WFE` wake-up events:

- The execution of an `SEV` instruction on any PE in the system.
- The execution of an `SEVL` instruction on the PE.
- A physical IRQ interrupt, unless masked by the `PSTATE.I` bit.
- A physical FIQ interrupt, unless masked by the `PSTATE.F` bit.
- A physical SError interrupt, unless masked by the `PSTATE.A` bit.
- In Non-secure state in any mode other than Hyp mode:
 - When `HCR.IMO` is set to 1, a virtual IRQ interrupt, unless masked by the `PSTATE.I` bit.
 - When `HCR.FMO` is set to 1, a virtual FIQ interrupt, unless masked by the `PSTATE.F` bit.
 - When `HCR.AMO` is set to 1, a virtual SError interrupt, unless masked by the `PSTATE.A` bit.
- An asynchronous External Debug Request debug event, if halting is allowed. For the definition of `halting is allowed`, see `Halting allowed and halting prohibited` on page H2-7015.

 See also `External Debug Request debug event` on page H3-7071.

- An event sent by the timer event stream, see `Event streams` on page D11-2839.
- An event sent by some IMPLEMENTATION DEFINED mechanism.
- An event caused by the clearing of the global monitor associated with the PE.

In addition to the possible masking of WFE wake-up events shown in this list, when invasive debug is enabled and `EDSCR.HDE` is set to 1, `EDSCR.INTdis` can mask interrupts, including masking them acting as WFE wake-up events. See the register description for more information.

As shown in the list of wake-up events, an implementation can include IMPLEMENTATION DEFINED hardware mechanisms to generate wake-up events.

Note

For more information about `PSTATE` masking, see `Asynchronous exception masking controls` on page G1-5773. If the configuration of the masking controls provided by EL2 and EL3 mean that a `PSTATE` mask bit cannot mask the corresponding exception, then the physical exception is a WFE wake-up event, regardless of the value of the `PSTATE` mask bit.

The Send Event instructions

The Send Event instructions are:

- **SEV, Send Event**

 This causes an event to be signaled to all PEs in the multiprocessor system.

- **SEVL, Send Event Local**

 This must set the local Event Register. It might signal an event to other PEs, but is not required to do so.

The mechanism that signals an event to other PEs is IMPLEMENTATION DEFINED. The PE is not required to guarantee the ordering of this event with respect to the completion of memory accesses by instructions before the `SEV` instruction. Therefore, Arm recommends that software includes a `DSB` instruction before any `SEV` instruction.

Note

A `DSB` instruction ensures that no instruction, including any `SEV` instruction, that appears in program order after the `DSB` instruction, can execute until the `DSB` instruction has completed. For more information, see `Data Synchronization Barrier (DSB)` on page E2-4032.
The SEVL instruction appears to execute in program order relative to any subsequent WFE instruction executed on the same PE, without the need for any explicit insertion of barrier instructions.

Execution of the Send Event instruction sets the Event Register.

The Send Event instructions are available at all privilege levels.

Pseudocode description of the Wait For Event mechanism

This section defines pseudocode functions that describe the operation of the Wait For Event mechanism.

The `ClearEventRegister()` pseudocode procedure clears the Event Register of the current PE.

The `IsEventRegisterSet()` pseudocode function returns TRUE if the Event Register of the current PE is set and FALSE if it is clear.

The `WaitForEvent()` pseudocode procedure optionally suspends execution until a WFE wake-up event or reset occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED whether restarting execution after the period of suspension causes a `ClearEventRegister()` to occur.

The `SendEvent()` pseudocode procedure sets the Event Register of every PE in the system.

G1.18.2 Wait For Interrupt

AArch32 state supports Wait For Interrupt through an instruction, `WFI`, that is provided in the A32 and T32 instruction sets. For more information, see `WFI` on page F5-4985.

When a PE issues a `WFI` instruction, its execution can be suspended, and a low-power state can be entered.

The execution in AArch32 state of a `WFI` instruction that would otherwise cause suspension of execution might be trapped, see:

- Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-5821.
- Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837.
- Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on page G1-5848.

The execution of a `WFI` instruction can cause suspension of execution only if both:

- The instruction does not cause any other exception.
- When the instruction is executed, there is not a pending WFI wakeup event.

WFI wake-up events

The PE can remain suspended in its WFI state until it is reset, or one of the following `WFI` wake-up events occurs:

- A physical IRQ interrupt, regardless of the value of the `PSTATE.I` bit.
- A physical FIQ interrupt, regardless of the value of the `PSTATE.F` bit.
- A physical SError interrupt, regardless of the value of the `PSTATE.A` bit.
- In Non-secure state in any mode other than Hyp mode:
 - When HCR.IMO is set to 1, a virtual IRQ interrupt, regardless of the value of the `PSTATE.I` bit.
 - When HCR.FMO is set to 1, a virtual FIQ interrupt, regardless of the value of the `PSTATE.F` bit.
 - When HCR.AMO is set to 1, a virtual SError interrupt, regardless of the value of the `PSTATE.A` bit.
- An asynchronous External Debug Request debug event, if halting is allowed. For the definition of halting is allowed, see *Halting allowed and halting prohibited* on page H2-7015. See also *External Debug Request debug event* on page H3-7071.

An implementation can include other IMPLEMENTATION DEFINED hardware mechanisms to generate WFI wake-up events.

When a WFI wake-up event is detected, or earlier if the implementation chooses, the `WFI` instruction completes.

WFI wake-up events cannot be masked by the mask bits in the `PSTATE`.
The architecture does not define the exact nature of the low power state, but the execution of a WFI instruction must not cause a loss of memory coherency.

Note

- Because debug events are WFI wake-up events, Arm strongly recommends that Wait For Interrupt is used as part of an idle loop rather than waiting for a single specific interrupt event to occur and then moving forward. This ensures the intervention of debug while waiting does not significantly change the function of the program being debugged.
- In some previous implementations of Wait For Interrupt, the idle loop is followed by exit functions that must be executed before taking the interrupt. The operation of Wait For Interrupt remains consistent with this model, and therefore differs from the operation of Wait For Event.
- Some implementations of Wait For Interrupt drain down any pending memory activity before suspending execution. The Arm architecture does not require this operation, and software must not rely on Wait For Interrupt operating in this way.

Using WFI to indicate an idle state on bus interfaces

A common implementation practice is to complete any entry into powerdown routines with a WFI instruction. Typically, the WFI instruction:

1. Forces the completion of execution of any instructions that are in progress, and of all associated bus activity.
2. Suspends the execution of instructions by the PE.

The control logic required to do this tracks the activity of the bus interfaces used by the PE. This means it can signal to an external power controller when there is no ongoing bus activity.

However, memory-mapped and external debug interface accesses to debug registers must continue to be processed while the PE is in the WFI state. The indication of idle state to the system normally only applies to the non-debug functional interfaces used by the PE, not the debug interfaces.

If FEAT_DoubleLock is implemented and the value of DBGOSDLR.DLK, the OS Double Lock status bit, is set to 1, this idle state must not be signaled to the PE unless the system can guarantee, also, that the debug interface is idle.

Note

When separate Core and Debug power domains are implemented, the debug interface referred to in this section is the interface between the Core and Debug power domains, since the signal to the power controller indicates that the Core power domain is idle. For more information about the power domains, see *Power domains and debug on page H6-7117.*

The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only architecturally-defined mechanism that completely suspends execution makes it very suitable as the preferred powerdown entry mechanism.

Pseudocode description of Wait For Interrupt

The WaitForInterrupt() pseudocode function optionally suspends execution until a WFI wake-up event or reset occurs, or until some earlier time if the implementation chooses.
G1.19 The AArch32 System register interface

In Armv8, most System registers are accessed using the instructions described in System register access instructions on page F1-4097. The System register interface provides access to those instructions, and:

- These registers are encoded using the parameters \{coproc, opc1, CRn, CRm, opc2\}, with permitted coproc values of 0b1110 and 0b1111.
- Some of these encodings provide the AArch32 System instructions.
- To maintain compatibility with previous versions of the Arm architecture, the access controls for the AArch32 System registers include the access controls for AArch32 Advanced SIMD and floating-point functionality.

--- Note ---
See Background to the System register interface on page G1-5810 for more information.

The following sections give more information about the AArch32 System register interface:

- System registers in the coproc == 0b111x encoding space.
- Access to System registers.
- Access controls for Advanced SIMD and floating-point functionality.
- Background to the System register interface on page G1-5810.

G1.19.1 System registers in the coproc == 0b111x encoding space

In AArch32 state:

- The coproc == 0b1110 encoding space is reserved for the configuration and control of:
 - Debug features, see Debug registers on page G8-6628.
 - Trace features, see the Embedded Trace Macrocell Architecture Specification.
 - Identification registers for the Trivial Jazelle implementation, see Trivial implementation of the Jazelle extension on page G1-5741.

- The coproc == 0b1111 encoding space is reserved for the control and configuration of the PE, including architecture and feature identification. This means these encodings provide access to the System registers that control and return status information for PE operation.

For more information, see Chapter G8 AArch32 System Register Descriptions.

G1.19.2 Access to System registers

Most System registers are accessible only from EL1 or higher. For possible accesses from EL0 the register descriptions in Chapter G8 AArch32 System Register Descriptions indicate whether a register is accessible from EL0.

G1.19.3 Access controls for Advanced SIMD and floating-point functionality

In Armv8, the CPACR controls access to Advanced SIMD and floating-point functionality from software executing at PL1 or EL0 in AArch32 state:

- The \{cp10, cp11\} fields control access to all Advanced SIMD and floating-point functionality, and can:
 - Disable EL0 and PL1 access to this functionality.
 - Enable access to this functionality at PL1 only.
 - Enable access to this functionality at EL0 and PL1.

- The ASEDIS field controls access to Advanced SIMD instructions that are not also floating-point instructions.
Initially on powerup or reset into AArch32 state, all access to all Advanced SIMD and floating-point functionality from PL1 and EL0 is disabled.

--- Note
The CPACR has no effect on accesses from Hyp mode.

If an implementation includes EL3, the NSACR determines whether Advanced SIMD and floating-point functionality can be accessed from Non-secure state:

- The \{cp10, cp11\} fields control Non-secure access to all Advanced SIMD and floating-point functionality.
- The NSASEDIS field controls Non-secure access to Advanced SIMD instructions that are not also floating-point instructions.

If an implementation includes EL2, the HCPTR provides additional controls on Non-secure accesses to Advanced SIMD and floating-point functionality. For accesses that are otherwise permitted by the CPACR and NSACR settings, setting HCPTR bits to 1:

- Traps otherwise-permitted accesses from EL1 or EL0 to EL2. When EL2 is using AArch32, these accesses are trapped to Hyp mode.
- Makes accesses from EL2 mode UNDEFINED. When EL2 is using AArch32, this makes accesses from Hyp mode UNDEFINED.

In the HCPTR:
- The \{TCP10, TCP11\} fields control access to all Advanced SIMD and floating-point functionality.
- The TASE field controls access to Advanced SIMD instructions that are not also floating-point instructions.
- The TCPAC field traps Non-secure EL1 accesses to the CPACR to Hyp mode.

For more information, see General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on page G1-5838.

--- Note
Whenever a pair of fields control the access to the Advanced SIMD and floating-point functionality, the values of each field of the pair must be identical. In Armv8, if these settings are not identical the behavior of the Advanced SIMD and floating-point functionality is CONSTRAINED UNPREDICTABLE, see Handling of System register control fields for Advanced SIMD and floating-point operation on page K1-7946.

For more information about Advanced SIMD and floating-point support, see Advanced SIMD and floating-point support on page G1-5812.

G1.19.4 Background to the System register interface

--- Note
This section is not part of the Armv8 Architecture specification. It is included only to present the rationale of some aspects of the System register interface.

The interface to the System registers was originally defined as part of a generic coprocessor interface, that gave access to 15 coprocessors, CP0 - CP15. Of these, CP8 - CP15 were reserved for use by Arm, while CP0 - CP7 were available for IMPLEMENTATION DEFINED coprocessors.

The coprocessors were accessed using coprocessor instructions. These instructions remain part of the T32 and A32 instruction sets, see System register access instructions on page F1-4097.

In the Arm coprocessor model, a coprocessor included both:
- Primary and secondary coprocessor registers, that form part of the coprocessor interface.
- A number of internal registers.
When accessing a 32-bit internal coprocessor register, using an MCR or MRC instruction, the instruction specified:

- The target coprocessor, specified by the coproc parameter and taking a value between p0 for CP0 and p15 for CP15.
- The primary coprocessor register, specified by the Crn parameter and taking a value between c0 and c15.
- The secondary coprocessor register, specified by the Crm parameter and taking a value between c0 and c15.
- Up to two additional parameters, opc1 and opc2, taking values between 0 and 7.

Other instructions in the group described in System register access instructions on page F1-4097 take a subset of these parameters:

- In the Armv7 definitions, LDC and STC instructions take parameters \{coproc, Crd\}, where Crd is the primary coprocessor register.
- MCRR and MRRC instructions take parameters \{coproc, opc1, Crm\}, where Crm is the primary coprocessor register.

To maintain backwards compatibility, the arguments to an MCR or MRC instruction remain \{coproc, opc1, opc2\}. Correspondingly, the encoding of the AArch64 System registers is described using the parameters \{op0, op1, Crn, Crm, op2\}. However:

- The naming of these parameters no longer has any particular significance.
- While the coproc field is a 4-bit field, op0 is a 2-bit field.

Of the coprocessors reserved for use by Arm, in Armv7 and earlier versions of the architecture:

- CP15 provided access to the System registers relating to non-debug operation, and was originally called the System control coprocessor. In Armv8, these registers are described as being in the coproc == 0b1111 encoding space.
- CP14 provided access to additional System registers, including those relating to debug and trace. In Armv8, these registers are described as being in the coproc == 0b1110 encoding space.
- CP10 and CP11 were used for Advanced SIMD and floating-point control, and many coprocessor instruction encodings targeting CP10 and CP11 were used as floating-point instruction encodings:
 - Generally Armv8 does not relate these instructions to the coprocessor encoding space, but the naming of registers and register fields for Advanced SIMD and floating-point control reflects the historic coprocessor model.
 - Because the Advanced SIMD and floating-point functionality used both CP10 and CP11, some System register controls of this functionality have a pair of fields, for example NSACR.\{cp10, cp11\}. In these cases, both fields must be set to the same value. For more information, see Access controls for Advanced SIMD and floating-point functionality on page G1-5809.

In Armv8:

- The AArch32 System registers include registers that were described as Special registers in Armv7 and earlier versions of the architecture. This means that the Armv8 System registers include registers that are outside the earlier coprocessor model.
- The Armv7 AArch32 instruction encodings for LDC, STC, MCR, MRRC, and MRCC instructions with coproc field values other than \{1010, 1011, 1110, 1111\} are available for reuse. Armv8.2 re-uses some encodings in this way.
Advanced SIMD and floating-point support

Advanced SIMD and floating-point instructions on page E1-4000 introduces:
• The scalar floating-point instructions in the A32 and T32 instruction sets.
• The Advanced SIMD integer and floating-point vector instructions in the A32 and T32 instruction sets.
• The SIMD and floating-point register file, that can be viewed as:
 — Singleword registers S0 - S31.
 — Doubleword registers D0 - D31.
 — Quadword registers Q0 - Q15.
• The Floating-Point Status and Control Register (FPSCR).

For more information about the System registers for the Advanced SIMD and floating-point operation, see Advanced SIMD and floating-point System registers on page G1-5814. Software can interrogate these registers to discover the implemented Advanced SIMD and floating-point support.

AArch32 implications of not including support for Advanced SIMD and floating-point summarizes the effects of not supporting these instructions, and the following subsections give more information about the Advanced SIMD and Floating-point support:
• Enabling Advanced SIMD and floating-point support.
• Advanced SIMD and floating-point System registers on page G1-5814.
• Context switching when using Advanced SIMD and floating-point functionality on page G1-5815.
• Floating-point exceptions and exception traps on page G1-5816.

AArch32 implications of not including support for Advanced SIMD and floating-point

As stated in Implementations not including Advanced SIMD and floating-point instructions on page D1-2414, although Armv8-A generally requires the inclusion of the Advanced SIMD and floating-point instructions in all instruction sets, for implementations targeting specialized markets, Arm might produce or license Armv8-A implementations that do not provide any support for Advanced SIMD and floating-point instructions. In such an implementation, in AArch32 state:
• The CPACR.{ASEDIS, cp11, cp10} fields are RES0.
• The NSACR.{NSASEDIS, cp11, cp10} fields are RES0.
• The HCPTR.{TASE, TCP11, TCP10} fields are RES1.
• The FPEXC, FPSCR, FPSID, MVFR0, MVFR1, and MVFR2 registers are not implemented and their encodings are UNDEFINED.
• Attempted accesses to Advanced SIMD and floating-point functionality are UNDEFINED. This means:
 — All Advanced SIMD and floating-point instructions are UNDEFINED.
 — Attempts to access the Advanced SIMD and floating-point System registers are UNDEFINED.

Enabling Advanced SIMD and floating-point support

Software must ensure that the required access to the Advanced SIMD and floating-point features is enabled. Most of those controls are described in Configurable instruction enables and disables, and trap controls on page G1-5818, and this section:
• Summarizes those controls.
• Provides additional information in the following subsections:
 — FPEXC control of access to Advanced SIMD and floating-point functionality on page G1-5814.
 — EL0 access to Advanced SIMD and floating-point functionality on page G1-5814.
Note
This section shows the controls when the controlling Exception levels are using AArch32. Similar controls are provided when the Exception levels are using AArch64, and then apply to lower Exception levels that are using AArch32.

The controls of access to Advanced SIMD and floating-point functionality are:

General \{cp10, cp11\} or \{TCP10, TCP11\} controls
This relates to the CPACR.\{cp10, cp11\}, NSACR.\{cp10, cp11\}, and HCPTR.\{TCP10, TCP11\} controls.

Note
Background to the System register interface on page G1-5810 explains the naming of these controls.

The \{cp10, cp11\} controls provide general control of the use of Advanced SIMD and floating-point functionality, as follows:

- CPACR.\{cp10, cp11\} control access from PE modes other than Hyp mode. These fields have no effect on accesses to Advanced SIMD and floating-point functionality from Hyp mode.
- In an implementation that includes EL3, NSACR.\{cp10, cp11\} control access from Non-secure state.
- In an implementation that includes EL2, if NSACR.\{cp10, cp11\} permit Non-secure accesses, or if EL3 is not implemented, HCPTR.\{TCP10, TCP11\} provide an additional control on those accesses.

In each case, the \{cp10, cp11\} controls must be programmed to the same value, otherwise operation is CONSTRAINED UNPREDICTABLE. The Armv8 CONSTRAINED UNPREDICTABLE behavior is that, for all purposes other than reading the value of the register field, behavior is as if the cp11 field has the same value as the cp10 field. For more information, see Handling of System register control fields for Advanced SIMD and floating-point operation on page K1-7946.

For more information about these controls, see:
- Enabling PL0 and PL1 accesses to the SIMD and floating-point registers on page G1-5823.
- General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on page G1-5838.
- Enabling Non-secure access to SIMD and floating-point functionality on page G1-5850.

Control of accesses to the CPACR from Non-secure PL1 modes
As stated in General \{cp10, cp11\} or \{TCP10, TCP11\} controls, the CPACR controls access to Advanced SIMD and floating-point functionality from PE modes other than Hyp mode. Accesses to the CPACR from Non-secure PL1 modes can be trapped to EL2, see Traps to Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-5839.

Additional controls of Advanced SIMD functionality

- If implemented as an RW field, CPACR.ASEDIS can make all Advanced SIMD instructions UNDEFINED in all modes other than Hyp mode.
- In an implementation that includes EL3, when CPACR.ASEDIS permits use of the Advanced SIMD instructions or if the CPACR.ASEDIS control is not implemented, NSACR.NSASEDIS can make all Advanced SIMD instructions UNDEFINED in Non-secure state.
- In an implementation that includes EL2, when the CPACR and NSACR settings permit Non-secure use of the Advanced SIMD instructions, if HCPTR.TASE is implemented as an RW field it can make these instructions UNDEFINED in Hyp mode, and trap to Hyp mode any use of these instructions in a Non-secure PL0 or PL1 mode.
For more information about these controls, see:

- Disabling PL0 and PL1 execution of Advanced SIMD instructions on page G1-5824.
- Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on page G1-5839.
- Disabling Non-secure access to Advanced SIMD functionality on page G1-5851.

Pseudocode description of enabling SIMD and floating-point functionality on page G1-5851 provides links to the pseudocode descriptions of all of these controls.

FPEXC control of access to Advanced SIMD and floating-point functionality

In addition, FPEXC.EN is an enable bit for most Advanced SIMD and floating-point operations. When FPEXC.EN is 0, all Advanced SIMD and floating-point instructions are treated as UNDEFINED except for:

- A VMSR to the FPEXC or FPSID register.
- A VMRS from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2 register.

These instructions can be executed only at EL1 or higher.

Note

- When the FPSID is accessible, any write access to the FPSID is ignored.
- When FPEXC.EN is 0, these operations are treated as UNDEFINED:
 - A VMSR to the FPSCR.
 - A VMRS from the FPSCR.

See Enabling access to the SIMD and floating-point registers on page G1-5824 for more information about the scope of the FPEXC.EN control.

When executing at EL0, the PE behaves as if the value of FPEXC.EN is 1 if either:

- EL1 is using AArch64.
- EL2 is enabled in the current Security state and is using AArch64, and the value of HCR_EL2.TGE is 1.

Note

In Non-secure state, if the value of HCR_EL2.RW is 0 then it is permitted for the value of FPEXC32_EL2.EN to control whether Advanced SIMD and floating-point functionality is enabled. However, Arm deprecates using the value of FPEXC32_EL2.EN to determine behavior.

EL0 access to Advanced SIMD and floating-point functionality

When the access controls summarized in this section permit EL0 access to the Advanced SIMD and floating-point functionality, this applies only to the subset of functionality that is available at EL0. In particular:

- Only Advanced SIMD and Floating-point System register that is accessible is the FPSCR.
- The Advanced SIMD and floating-point instructions are available.

Execution at EL0 corresponds to the application level view of the Advanced SIMD and floating-point functionality, as described in Advanced SIMD and floating-point System registers on page E1-4002.

G1.20.3 Advanced SIMD and floating-point System registers

AArch32 state provides a common set of System registers for the Advanced SIMD and floating-point functionality. This section gives general information about this set of registers, and indicates where each register is described in detail. It contains the following subsections:

- Register map of the Advanced SIMD and floating-point System registers on page G1-5815.
- Accessing the Advanced SIMD and floating-point System registers on page G1-5815.
Register map of the Advanced SIMD and floating-point System registers

Table G1-21 shows the register map of the Advanced SIMD and Floating-point registers. Each register is 32 bits wide.

<table>
<thead>
<tr>
<th>Name</th>
<th>Permitted access</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPEXC</td>
<td>RW</td>
</tr>
<tr>
<td>FPSCR</td>
<td>RW</td>
</tr>
<tr>
<td>FPSID</td>
<td>RW^a</td>
</tr>
<tr>
<td>MVFR0</td>
<td>RO</td>
</tr>
<tr>
<td>MVFR1</td>
<td>RO</td>
</tr>
<tr>
<td>MVFR2</td>
<td>RO</td>
</tr>
</tbody>
</table>

^a. When FPSID is accessible, VMSR accesses to FPSID are ignored.

In an implementation that includes EL3, the Advanced SIMD and Floating-point registers are common registers, see Common System registers on page G5-6095.

Accessing the Advanced SIMD and floating-point System registers

Software accesses the Advanced SIMD and floating-point System registers using the VMRS and VMSR instructions, see:

• VMRS on page F6-5384.
• VMSR on page F6-5387.

For example:

```
VMRS <Rt>, FPSID ; Read Floating-Point System ID Register
VMRS <Rt>, MVFR1 ; Read Media and VFP Feature Register 1
VMSR FPSCR, <Rt> ; Write Floating-Point System Control Register
```

Software can access the Advanced SIMD and floating-point System registers only if the access controls permit the access, see Enabling Advanced SIMD and floating-point support on page G1-5812.

--- Note ---

All hardware ID information can be accessed only from EL1 or higher. This means:

The FPSID is accessible only from EL1 or higher.

This is a change introduced from VFPv3. Previously, the FPSID register can be accessed in all modes.

The MVFR registers are accessible only from EL1 or higher.

Unprivileged software must issue a system call to determine what features are supported.

G1.20.4 Context switching when using Advanced SIMD and floating-point functionality

When the Advanced SIMD and floating-point functionality is used by only a subset of processes, the operating system might implement lazy context switching of the Advanced SIMD and floating-point register file and System registers.

In the simplest lazy context switch implementation, the primary context switch software uses the CPACR.{cp10, cp11} controls to disable access to the Advanced SIMD and floating-point functionality, see Enabling Advanced SIMD and floating-point support on page G1-5812. Subsequently, when a process or thread attempts to use an Advanced SIMD or floating-point instruction, it triggers an Undefined Instruction exception.
operating system responds by saving and restoring the Advanced SIMD and floating-point register file and System registers. Typically, it then re-executes the Advanced SIMD or floating-point instruction that generated the Undefined Instruction exception.

G1.20.5 Floating-point exceptions and exception traps

Execution of a floating-point instruction can generate an exceptional condition, called a floating-point exception.

The Armv8-A architecture supports synchronous exception generation in the event of any or all of the following floating-point exceptions:

• Input Denormal.
• Inexact.
• Underflow.
• Overflow.
• Divide by Zero.
• Invalid Operation.

— Note —
Do not confuse floating-point exceptions with the AArch32 architectural exceptions summarized in AArch32 state exception descriptions on page G1-5778.

Whether an implementation includes synchronous exception generation for these floating-point exceptions is IMPLEMENTATION DEFINED:

• For an implementation that does provide this capability, FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} are the control bits that enable synchronous exception generation for each of the floating-point exceptions.
• For an implementation that does provide this capability, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} are RAZ/WI.

— Note —
• An Input Denormal floating-point exception is generated when a single-precision or double-precision floating-point value is flushed-to-zero because the value of FPSCR.FZ is 1. However, no Input Denormal exception is generated when a half-precision floating-point value is flushed-to-zero because the value of FPSCR.FZ16 is 1.
• The Armv8-A architecture does not support asynchronous reporting of floating-point exceptions.

— Note —
Trapped exception handling never causes the corresponding cumulative exception bit of the FPSCR to be set to 1. If this behavior is desired, the trap handler routine must use a read, modify, write sequence on the FPSCR to set the cumulative exception bit.

When generating synchronous exceptions for one or more floating-point exceptions is enabled, the synchronous exceptions generated by the floating-point exception traps are taken to the lowest Exception level that can handle such an exception, while adhering to the rule that an exception can never be taken to a lower Exception level. This means that trapped floating-point exceptions taken:

• From EL0 are taken to EL1, except for the following cases when they are taken from EL0 to EL2:
 — EL2 is using AArch32 and the value of HCR.TGE is 1.
 — EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.
• From EL1 are taken to EL1.
• From EL2 are taken to EL2.
• From EL3 are taken to EL3.

If the exception is taken to an Exception level that is using AArch64, then it is reported in the ELR_ELx for the Exception level to which it is taken, as described in Exception entry on page D1-2333.
If the exception is taken to an Exception level that is using AArch32, then it is taken as an Undefined Instruction exception, see *Undefined Instruction exception* on page G1-5778. The FPEXC identifies the floating-point exceptions that occurred since the corresponding status bits in that register were last set to 0.

See also *Floating-point exceptions and exception traps* on page E1-4003.

In an implementation that provides synchronous exception generation for floating-point exceptions:

- Synchronous exception generation applies to floating-point exceptions generated by scalar SIMD and floating-point instructions executed in AArch32 state.
- The registers that are presented to the exception handler are consistent with the state of the PE immediately before the instruction that caused the exception. An implementation is permitted not to restore the cumulative exception flags in the event of such an exception.

Armv8 does not support the trapping of floating-point exceptions from Advanced SIMD instructions executed in AArch32 state.

The `AArch32.FPTrappedException()` and `FPProcessException()` pseudocode functions describe the handling of trapped floating-point exceptions generated in AArch32 state.

The `AArch32.FPTrappedException()` and `FPProcessException()` functions are described in Chapter J1 *Armv8 Pseudocode*.
G1.21 Configurable instruction enables and disables, and trap controls

This section describes the controls provided by AArch32 state for enabling, disabling, and trapping particular instructions. Each control is categorized as an instruction enable, an instruction disable, or a trap control.

Instruction enables and instruction disables

Enable or disable the use of one or more particular instructions at a particular Privilege level and Security state.

When an instruction is disabled as a result of an instruction enable or disable, it is UNDEFINED.

The exception generated by attempting to execute an UNDEFINED instruction is:

- Taken to EL1 if the UNDEFINED instruction was executed at EL0, unless the instruction was executed at Non-secure EL0 and is routed to EL2 by the control described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
 - When the exception is taken to EL1, it is taken to Undefined mode.
- Otherwise, taken to the Exception level at which the UNDEFINED instruction was executed:
 - If the instruction was executed in Hyp mode the exception is taken to Hyp mode.
 - Otherwise, the exception is taken to Undefined mode.

Trap controls

Control whether one or more instructions, when executed at a particular Privilege level, are trapped.

Note

AArch32 trap controls are described in terms of Privilege levels, rather than Exception levels, because the PL1 traps apply at and are controlled from:

- **EL1**: In Non-secure state, and in Secure state when EL3 is using AArch64.
- **EL3**: In Secure state when EL3 is using AArch32.

For more information see Security state, Exception levels, and AArch32 execution privilege on page G1-5722.

Trap controls are grouped as:

PL1, excluding Monitor mode

Trapped instructions generate Undefined Instruction exceptions that are taken to Undefined mode, unless the instruction was executed at Non-secure EL0 and is routed to EL2 by the control described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

For more information about these traps, see PL1 configurable controls on page G1-5819.

Hyp mode (PL2)

These traps apply only to execution in Non-secure state. This section only describes the traps that apply when EL2 is using AArch32.

Trapped instructions generate:

- Hyp Trap exceptions, taken to Hyp mode, if trapped from a mode other than Hyp mode.
- Undefined Instruction exceptions taken to Hyp mode, if trapped from Hyp mode.

For more information about these traps, see EL2 configurable controls on page G1-5827.

See also Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Monitor mode (Secure PL1)

This section only describes the traps that apply when EL3 is using AArch32.

Trapped instructions generate Monitor Trap exceptions, that are taken to Monitor mode.

For more information about these traps, see EL3 configurable controls on page G1-5846.
An exception generated as a result of an instruction enable or disable, or a trap control, is only taken if the instruction does not also generate a higher priority exception. Exception prioritization for exceptions taken to AArch32 state on page G1-5746 defines the prioritization of different exceptions on the same instruction.

Exceptions generated as a result of these controls are synchronous exceptions.

For exceptions taken to an Exception level that is using AArch32, only exceptions that are taken to Hyp mode are reported in a syndrome register, the HSR.

___ Note ___

- A particular control might have a mnemonic that suggests it is a different type of control to the control type it is categorized as. For example, CPACR.TRCDIS is a trap control even though TRCDIS is a mnemonic for Trace Disable.
- An implementation might provide additional controls, in IMPLEMENTATION DEFINED registers, to provide control of trapping of IMPLEMENTATION DEFINED features.
- Configurable instruction enables and disables, and trap controls on page D1-2367 describes controls provided by AArch64 state for enabling, disabling, and trapping instructions. Generally, where an AArch64 control applies to execution at lower Exception levels, it traps the equivalent functionality when that lower Exception level is using AArch32. See the AArch64 trap controls for more information.

This section is organized as follows:
- Register access instructions.
- PL1 configurable controls.
- EL2 configurable controls on page G1-5827.
- EL3 configurable controls on page G1-5846.
- Pseudocode description of configurable instruction enables, disables, and traps on page G1-5851.

G1.21.1 Register access instructions

When an instruction is disabled or trapped, the exception is taken before execution of the instruction. This means that if the instruction is a register access instruction:
- No access is made before the exception is taken.
- Side-effects that are normally associated with the access do not occur before the exception is taken.

G1.21.2 PL1 configurable controls

In AArch32 state, each control is associated with a particular System register field that is accessible:
- When EL3 is using AArch64, or when an implementation does not include EL3, from EL1.
- When EL3 is using AArch32:
 — In Non-secure state, from EL1.
 — In Secure state, from EL3.

This means that the controls are described as PL1 controls, because PL1 is defined as being the Privilege level of software that is executing:
- At EL3, if the PE is executing in EL3 and EL3 is using AArch32.
- At EL1 under all other conditions.

Where there is an AArch64 control that is equivalent to an AArch32 PL1 control, the AArch64 control is an EL1 control.

Any exception that is generated because of an AArch32 PL1 control is taken to a PL1 mode.

___ Note ___

Any exception generated because of an AArch32 PL1 control is taken to AArch32 state.
Table G1-22 shows the AArch32 System registers that contain these controls.

Table G1-22 System registers that contain instruction enables and disables, and trap controls

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTLR</td>
<td>System Control Register</td>
</tr>
<tr>
<td>FPEXC</td>
<td>Floating-point Exception Control Register</td>
</tr>
<tr>
<td>CPACR</td>
<td>Architectural Feature Access Control Register</td>
</tr>
<tr>
<td>DBGDSCRext</td>
<td>Monitor System Debug Control Register</td>
</tr>
<tr>
<td>PMUSERENR</td>
<td>Performance Monitors User Enable Register</td>
</tr>
<tr>
<td>AMUSERENR</td>
<td>Activity Monitors User Enable Register</td>
</tr>
</tbody>
</table>

Table G1-23 summarizes these controls.

Table G1-23 Instruction enables and disables, and trap controls, for exceptions taken to Undefined mode

<table>
<thead>
<tr>
<th>Control</th>
<th>Control typea</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTLR.{nTWE, nTWI}</td>
<td>T</td>
<td>Traps to Undefined mode of EL0 execution of WFE and WFI instructions on page G1-5821</td>
</tr>
<tr>
<td>SCTLR.{SED, ITD}</td>
<td>D</td>
<td>Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality on page G1-5821</td>
</tr>
<tr>
<td>SCTLR.CP15BEN</td>
<td>E</td>
<td>Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality on page G1-5821</td>
</tr>
<tr>
<td>CPACR.TRCDIS</td>
<td>T</td>
<td>Traps to Undefined mode of PL0 and PL1 System register accesses to trace registers on page G1-5822</td>
</tr>
<tr>
<td>CPACR.{cp11, cp10}</td>
<td>E</td>
<td>Enabling use of Advanced SIMD and floating-point functionality on page G1-5823</td>
</tr>
<tr>
<td>FPEXC.EN</td>
<td>E</td>
<td>Enabling use of Advanced SIMD and floating-point functionality on page G1-5823</td>
</tr>
<tr>
<td>CPACR.ASEDIS</td>
<td>D</td>
<td>Enabling use of Advanced SIMD and floating-point functionality on page G1-5823</td>
</tr>
<tr>
<td>DBGDSCRext.UDCCdis</td>
<td>T</td>
<td>Traps to Undefined mode of EL0 accesses to the Debug Communications Channel (DCC) registers on page G1-5824</td>
</tr>
<tr>
<td>CNTKCTL.{PL0PTEN, PL0VTEN, PL0PCTEN, PL0VCTEN}</td>
<td>T</td>
<td>Traps to Undefined mode of EL0 accesses to the Generic Timer registers on page G1-5825</td>
</tr>
<tr>
<td>PMUSERENR.{ER, CR, SW, EN}</td>
<td>T</td>
<td>Traps to Undefined mode of EL0 accesses to Performance Monitors registers on page G1-5825</td>
</tr>
<tr>
<td>AMUSERENR.EN</td>
<td>T</td>
<td>Traps to Undefined mode of EL0 accesses to Activity Monitors registers on page G1-5826</td>
</tr>
</tbody>
</table>

a. See Table G1-24.

Table G1-24 Control types, for exceptions taken to Undefined mode

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page G1-5818</td>
</tr>
</tbody>
</table>
When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Instructions that fail their Condition code check
See Conditional execution of undefined instructions on page G1-5780.

Trapping to PL1 of instructions that are UNPREDICTABLE
For an instruction that is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE, when the instruction is disabled or trapped then it is CONSTRAINED UNPREDICTABLE whether execution of the instruction generates an Undefined Instruction exception.

Traps to Undefined mode of EL0 execution of WFE and WFI instructions
SCTLR.{nTWE, nTWI} trap EL0 execution of WFE and WFI instructions to Undefined mode:

SCTLR.nTWE
1 This control has no effect on the EL0 execution of WFE instructions.
0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the instruction would otherwise have caused the PE to enter a low-power state.

SCTLR.nTWI
1 This control has no effect on the EL0 execution of WFI instructions.
0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the instruction would otherwise have caused the PE to enter a low-power state.

The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition code check.

Note
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE or WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:
• Wait For Event and Send Event on page G1-5804.
• Wait For Interrupt on page G1-5807.

Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality
Table G1-25 on page G1-5822 shows the deprecated AArch32 functionality that might have disable controls in the SCTLR:

• The SED control is always implemented.
• Whether each of the ITD or CP15BEN controls is implemented is IMPLEMENTATION DEFINED. If a control is not implemented, then the associated functionality cannot be disabled.

When an instruction is disabled by one of these controls, it is UNDEFINED at PL0 and PL1. This means an attempt to execute the instruction at PL0 or PL1 generates an Undefined Instruction exception that is taken to Undefined mode, unless both of the following apply, in which case the attempted execution generates an exception that is taken to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758:
• The instruction is executed at Non-secure EL0 using AArch32.
• Either:
 — EL2 is using AArch32 and the value of HCR.TGE is 1.
 — EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

Table G1-25 PL1 controls for disabling and enabling PL0 and PL1 use of AArch32 deprecated functionality

<table>
<thead>
<tr>
<th>Deprecated AArch32 functionality</th>
<th>Instruction enable or disable in the SCTLR</th>
<th>Disabled instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETEND instructions</td>
<td>SED<sup>b</sup></td>
<td>SETEND instructions</td>
</tr>
<tr>
<td>Some uses of IT instructions</td>
<td>ITD<sup>c</sup></td>
<td>See the SCTLR.ITD description</td>
</tr>
<tr>
<td>Accesses to the CP15DMB, CP15DSB, and CP15ISB barrier instructions</td>
<td>CP15BEN<sup>d</sup></td>
<td>CR accesses to the CP15DMB, CP15DSB, and CP15ISB instructions</td>
</tr>
</tbody>
</table>

- The controls that are implemented in SCTLR are also implemented in SCTLR_EL1, and apply when PL1 is using AArch64 and PL0 is using AArch32.
- SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.
- IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.
- System register (coproc==0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when the value of CP15BEN is 0.

Note

The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are deprecated for performance reasons.

Traps to Undefined mode of PL0 and PL1 System register accesses to trace registers

If implemented, the CPACR.TRCDIS control traps PL0 and PL1 System register accesses to the trace registers to Undefined mode, as follows:

1. PL0 and PL1 accesses to the System register interface to the PE Trace Unit are trapped to Undefined mode.
2. This control has no effect on PL0 and PL1 accesses to the System register interface to the PE Trace Unit.

If the CPACR.TRCDIS control is not implemented, then the CPACR.TRCDIS field is RAZ/WI. This means the CPACR does not provide a trap to Undefined mode of PL1 and PL0 System register accesses to trace registers. See the register description for more information.

Note

- System register accesses to the PE Trace Unit use the (coproc==0b1110) encoding space.
- The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace System registers are UNDEFINED.
- The Armv8-A architecture does not provide traps on trace register accesses through the optional memory-mapped external debug interface.

System register accesses to the trace System registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see Register access instructions on page G1-5819.

If EL3 is implemented and is using AArch32, and NSACR.NSTRCDIS is 1, CPACR.TRCDIS behaves as RAO/WI in Non-secure state. This behavior also applies if the CPACR.TRCDIS control is not implemented.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
Enabling use of Advanced SIMD and floating-point functionality

Table G1-26 summarizes the controls of Advanced SIMD and floating-point functionality.

<table>
<thead>
<tr>
<th>Control</th>
<th>Type</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPACR.{cp11, cp10}</td>
<td>E</td>
<td>Enabling PL0 and PL1 accesses to the SIMD and floating-point registers</td>
</tr>
<tr>
<td>FPEXC.EN</td>
<td>E</td>
<td>Enabling access to the SIMD and floating-point registers on page G1-5824</td>
</tr>
<tr>
<td>CPACR.ASEDIS</td>
<td>D</td>
<td>Disabling PL0 and PL1 execution of Advanced SIMD instructions on page G1-5824</td>
</tr>
</tbody>
</table>

If any of CPACR.{cp11, cp10}, FPEXC.EN, or for Advanced SIMD instructions, CPACR.ASEDIS, disable a floating-point or an Advanced SIMD instruction, the instruction is UNDEFINED. Support for the CPACR.ASEDIS control is optional, and if the control is not implemented behavior is as if the control permits the execution of Advanced SIMD instructions at PL1 and PL0.

When generated in Non-secure User mode, exceptions generated by these controls can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Enabling PL0 and PL1 accesses to the SIMD and floating-point registers

CPACR.{cp11, cp10} enable PL0 and PL1 accesses to the SIMD and floating-point registers.

When CPACR.cp10 is:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>PL0 and PL1 accesses to Advanced SIMD and floating-point registers or instructions are UNDEFINED.</td>
</tr>
<tr>
<td>01</td>
<td>PL0 accesses to Advanced SIMD and floating-point registers or instructions are UNDEFINED.</td>
</tr>
<tr>
<td>10</td>
<td>Reserved. The effect of programming this field to this value is CONSTRAINED UNPREDICTABLE.</td>
</tr>
<tr>
<td>11</td>
<td>This control permits full access to the Advanced SIMD and floating-point functionality from PL0 and PL1.</td>
</tr>
</tbody>
</table>

The value of CPACR.cp11 is ignored. If CPACR.cp11 is programmed with a different value to CPACR.cp10 then CPACR.cp11 is UNKNOWN on a direct read of the CPACR.

Note

- Software must set CPACR.cp11 and CPACR.cp10 to the same value.

Table G1-27 shows the registers for which accesses are enabled.

<table>
<thead>
<tr>
<th>Enabled at</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL0 and PL1, or PL0 onlya</td>
<td>FPSCR, FPEXC, FPSID, MVFR0, MVFR1, MVFR2, and any of the SIMD and floating-point registers Q0-Q15, including their views as DO-D31 registers or S0-S31 registersb</td>
</tr>
</tbody>
</table>

a. Depending on the value of CPACR.{cp11, cp10}. See the register description for details.
b. Permitted \texttt{VMSR} accesses to the FPSID are ignored, but for the purposes of the \{cp10, cp11\} controls the architecture defines a \texttt{VMSR} accesses to the FPSID from EL1 or higher is an access to a SIMD and floating-point register.

If EL3 is implemented and is using AArch32, and NSACR.{cp11, cp10} are both set to 0, the functionality described in this section is disabled in Non-secure state, and CPACR.{cp11, cp10} are RAZ/WI in Non-secure state. See Enabling Non-secure access to SIMD and floating-point functionality on page G1-5850.
For more information about SIMD and floating-point support, see *Advanced SIMD and floating-point support* on page G1-5812.

Enabling access to the SIMD and floating-point registers

FPEXC.EN enables accesses to the SIMD and floating-point registers at all Exception levels, but does not control the following:

- VMSR accesses to the FPEXC or FPSID.
- VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

When FPEXC.EN is:

- **1**: Accesses to the registers shown in Table G1-28 are enabled at all Exception levels.
- **0**: All accesses to the registers shown in Table G1-28 are UNDEFINED.

Table G1-28 shows the registers for which accesses are enabled, and for an exception taken to Hyp mode, how the exception is reported in HSR.

Table G1-28 Register accesses enabled when FPEXC.EN is 1

<table>
<thead>
<tr>
<th>Enabled at</th>
<th>Registers</th>
<th>Syndrome reporting in HSRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Exception levels</td>
<td>FPSCR, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers.</td>
<td>Exception for an unknown reason, using EC value 0x00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a. Only for exceptions that are taken to Hyp mode.</td>
</tr>
</tbody>
</table>

For more information, see *Advanced SIMD and floating-point support* on page G1-5812.

Disabling PL0 and PL1 execution of Advanced SIMD instructions

If implemented as an RW field, CPACR.ASEDIS can disable PL0 and PL1 execution of Advanced SIMD instructions, as follows:

- **1**: Advanced SIMD instructions are UNDEFINED at PL0 and PL1.
- **0**: Advanced SIMD instruction execution is enabled at PL0 and PL1.

The instructions that CPACR.ASEDIS disables are those described in *Controls of Advanced SIMD operation that do not apply to floating-point operation* on page E1-4006.

When the control is not implemented, meaning the CPACR.ASEDIS field is RAZ/WI, behavior is as if the control permits execution of Advanced SIMD instructions at PL0 and PL1.

If EL3 is implemented and is using AArch32, and NSACR.NSASEDIS is 1, CPACR.ASEDIS is RAO/WI in Non-secure state. This also applies when the CPACR.ASEDIS control is not implemented.

Traps to Undefined mode of EL0 accesses to the Debug Communications Channel (DCC) registers

DBGDSCRext.UDCCdis traps EL0 accesses to the DCC registers to Undefined mode:

- **1**: EL0 accesses to the DCC registers are trapped to Undefined mode
- **0**: This control has no effect on EL0 accesses to the DCC registers.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Table G1-29 shows the registers for which accesses are trapped.

Table G1-29 Register accesses trapped to Undefined mode when DBGDSCRext.UDCCdis is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIDR, DBGDSAR, DBGDRAR</td>
</tr>
</tbody>
</table>
Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRXint and DBGDTRRXint, and MRRC accesses to DBGDSAR and DBGDRAR.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Traps to Undefined mode of EL0 accesses to the Generic Timer registers

CNTKCTL.{PL0PTEN, PL0VTEN, PL0PCTEN, PL0VCTEN} trap EL0 accesses to the Generic Timer registers to Undefined mode, as follows:

- CNTKCTL.PL0PTEN traps EL0 accesses to the physical timer registers.
- CNTKCTL.PL0VTEN traps EL0 accesses to the virtual timer registers.
- CNTKCTL.PL0PCTEN traps EL0 accesses to the frequency register and physical counter register.
- CNTKCTL.PL0VCTEN traps EL0 accesses to the frequency register and virtual counter register.

For all of these controls:

1. This control has no effect on EL0 accesses to the corresponding registers.
2. EL0 accesses to the corresponding registers are trapped to Undefined mode.

Accesses to the frequency register, CNTFRQ, are only trapped if CNTKCTL.PL0PCTEN and CNTKCTL.PL0VCTEN are both 0.

Table G1-30 shows the registers for which accesses are trapped.

Table G1-30 Register accesses trapped to Undefined mode by CNTKCTL trap controls

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>PL0PTEN</td>
<td>CNTP_CTL, CNTP_CVAL, CNTP_TVAL</td>
</tr>
<tr>
<td></td>
<td>PL0VTEN</td>
<td>CNTV_CTL, CNTV_CVAL, CNTV_TVAL</td>
</tr>
<tr>
<td></td>
<td>PL0PCTEN</td>
<td>CNTFRQ, CNTPCT</td>
</tr>
<tr>
<td></td>
<td>PL0VCTEN</td>
<td>CNTFRQ, CNTVCT</td>
</tr>
</tbody>
</table>

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Traps to Undefined mode of EL0 accesses to Performance Monitors registers

PMUSERENR.{ER, CR, SW, EN} trap EL0 accesses to the Performance Monitors registers to Undefined mode. For each of these controls:

1. This control has no effect on EL0 accesses to the corresponding registers.
2. EL0 accesses to the corresponding registers are trapped to Undefined mode.

For those Performance Monitors registers that more than one PMUSERENR.{ER, CR, SW, EN} control applies to, accesses are only trapped if all controls that apply are set to 0.

The accesses that these trap controls trap might be reads, writes, or both.

Note

- The architecture does not provide traps on Performance Monitors register accesses through the memory-mapped external debug interface.
- If the Performance Monitors Extension is not implemented, the Performance Monitors registers, including PMUSERENR, are reserved.
Table G1-31 shows the registers for which EL0 accesses are trapped. For each register, the table shows the type of access trapped.

Table G1-31 Register accesses trapped to Undefined mode when disabled from EL0

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
<th>Access type</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>ER</td>
<td>PMXEVCNTR, PMEVCNTR<\text{n}></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMSEL R</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>PMCCNTR, accessed using an MRC</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>PMCCNTR, accessed using an MRRC</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>PMSWINC</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>PMCNTENSET, PMCNTENCLR, PMCR, PMOVSSET, PMSWINC, PMSEL R, PMCEID0, PMCEID1, PMCEID2, PMCEID3, PMCCNTR, PMXEVTYPE R, PMXEVCNTR, PMOVSSET, PMEVCNTR<\text{n}>, PMEVTYPER<\text{n}></td>
<td>RW a</td>
<td></td>
</tr>
</tbody>
</table>

a. The EL0 access is trapped only if the corresponding EL1 accesses is permitted. For example, the PMSWINC register is WO at EL1, and therefore, when the value of EN is 0:
 • Write accesses to the register from EL0 are trapped.
 • Read accesses to the register from EL0 are UNDEFINED, because read accesses to the register from EL1 are UNDEFINED.

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Traps to Undefined mode of EL0 accesses to Activity Monitors registers

AMUSERENR.EN traps EL0 accesses to the Activity Monitors System registers other than AMUSERENR to Undefined mode:

1 This control has no effect on EL0 accesses to the corresponding registers.

0 EL0 accesses to the corresponding registers are trapped to Undefined mode.

Note

• The architecture does not provide traps on Activity Monitors register accesses through the memory-mapped external interface.

• If the Activity Monitors Extension is not implemented, the Activity Monitors registers, including AMUSERENR, are reserved.

Table G1-32 shows the registers for which EL0 accesses are trapped.

Table G1-32 Register accesses trapped to Undefined mode when disabled from EL0

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>AMCFGFR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTYPER0<\text{n}>, AMEVTYPER1<\text{n}>, AMEVCNTR0<\text{n}> or AMEVCNTR1<\text{n}>.</td>
</tr>
</tbody>
</table>

When generated in Non-secure User mode, an exception generated by this control can be routed to EL2, as described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
G1.21.3 EL2 configurable controls

These controls are ignored in Secure state when using AArch32.

Table G1-33 shows the System registers that contain these controls.

Table G1-33 System registers that contain instruction enables and disables, and trap controls

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPEXC</td>
<td>Floating-point Exception Control Register</td>
</tr>
<tr>
<td>HCR</td>
<td>Hypervisor Configuration Register</td>
</tr>
<tr>
<td>HSTR</td>
<td>Hypervisor System Trap Register</td>
</tr>
<tr>
<td>HCPTR</td>
<td>Hyp Architectural Feature Trap Register</td>
</tr>
<tr>
<td>HDCR</td>
<td>Hyp Debug Control Register</td>
</tr>
</tbody>
</table>

Note

- FPEXC.EN is a control that is in a System register provided by PL1. However, some exceptions generated because the value of FPEXC.EN is 1 are taken to Hyp mode.
- For completeness, Table G1-34 includes the HCR.TGE routing control, that is described in Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.

Table G1-34 summarizes the controls.

Table G1-34 Instruction enables and disables, and trap controls, for exceptions taken to Hyp mode

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCTRL.{SED, ITD}</td>
<td>D</td>
<td>Disabling or enabling EL2 use of AArch32 deprecated functionality on page G1-5830</td>
</tr>
<tr>
<td>HSCTRL.CP15BEN</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>HCR.{TRVM, TVM}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers on page G1-5830</td>
</tr>
<tr>
<td>HCR.HCD</td>
<td>D</td>
<td>Disabling Non-secure state execution of HVC instructions on page G1-5831</td>
</tr>
<tr>
<td>HCR.TGE</td>
<td>R</td>
<td>Routing exceptions from Non-secure EL0 to EL2 on page G1-5758</td>
</tr>
<tr>
<td>HCR.TTLB</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions on page G1-5831</td>
</tr>
<tr>
<td>HCR.{TSW, TPC, TPU}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions on page G1-5832</td>
</tr>
<tr>
<td>HCR.TAC</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register on page G1-5832</td>
</tr>
<tr>
<td>HCR.TIDCP</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page G1-5833</td>
</tr>
<tr>
<td>HCR.TSC</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-5834</td>
</tr>
<tr>
<td>HCR.{TID0, TID1, TID2, TID3}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers on page G1-5834</td>
</tr>
</tbody>
</table>
Table G1-34 Instruction enables and disables, and trap controls, for exceptions taken to Hyp mode (continued)

<table>
<thead>
<tr>
<th>Control</th>
<th>Control type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR.{TWI, TWE}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837</td>
</tr>
<tr>
<td>HCPTR.TAM</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers on page G1-5837</td>
</tr>
<tr>
<td>HCPTR.{TCP11, TCP10}</td>
<td>T</td>
<td>General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on page G1-5838</td>
</tr>
<tr>
<td>FPEXC.EN</td>
<td>T</td>
<td>Enabling access to the SIMD and floating-point registers on page G1-5838</td>
</tr>
<tr>
<td>HCPTR.TASE</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on page G1-5839</td>
</tr>
<tr>
<td>HCPTR.TCPAC</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-5839</td>
</tr>
<tr>
<td>HCPTR.TTA</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure System register accesses to trace registers on page G1-5840</td>
</tr>
<tr>
<td>HDCR.TTRF</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure System register accesses to trace filter control registers on page G1-5840</td>
</tr>
<tr>
<td>HSTR.{T0-T3, T5-T13, T15}</td>
<td>T</td>
<td>General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc == 0b1111) encoding space on page G1-5841</td>
</tr>
<tr>
<td>HDCR.{TDRA, TDOSA, TDA}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure System register accesses to debug registers on page G1-5842</td>
</tr>
<tr>
<td>CNTHCTL.{PL1PCEN, PL1PCTEN}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers on page G1-5844</td>
</tr>
<tr>
<td>HDCR.{TPM, TPMCR}</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers on page G1-5845</td>
</tr>
<tr>
<td>HCR2.TERR</td>
<td>T</td>
<td>Traps to Hyp mode of Non-secure EL1 accesses to the RAS error record registers on page G1-5846</td>
</tr>
</tbody>
</table>

a. See Table G1-35.

Table G1-35 Control types, for exceptions taken to Hyp mode

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>R</td>
<td>Routing control</td>
<td>Routing exceptions from Non-secure EL0 to EL2 on page G1-5758</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page G1-5818</td>
</tr>
</tbody>
</table>

Also see the following:

- Register access instructions on page G1-5819.
- Instructions that fail their Condition code check on page G1-5829.
- Trapping to EL2 of instructions that are UNPREDICTABLE on page G1-5829.
Instructions that fail their Condition code check

For UNDEFINED instructions that fail their Condition code check, see Conditional execution of undefined instructions on page G1-5780.

For an instruction that has a Hyp trap set, that fails its Condition code check:

• Unless the trap description states otherwise, it is IMPLEMENTATION DEFINED whether the instruction:
 — Generates a Hyp Trap exception.
 — Executes as a NOP.

Any implementation must be consistent in its handling of instructions that fail their Condition code check. This means that:

• Whenever a Hyp trap is set on an instruction it must either:
 — Always generate a Hyp Trap exception.
 — Always treat the instruction as a NOP.

• The IMPLEMENTATION DEFINED part of the requirements of Conditional execution of undefined instructions on page G1-5780 must be consistent with the handling of Hyp traps on instructions that fail their Condition code check. Table G1-36 shows this:

<table>
<thead>
<tr>
<th>Behavior of conditional UNDEFINED instructiona</th>
<th>Hyp trap on instruction that fails its Condition code checkb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executes as a NOP</td>
<td>Executes as a NOP</td>
</tr>
<tr>
<td>Generates an Undefined Instruction exception</td>
<td>Generates a Hyp Trap exception</td>
</tr>
</tbody>
</table>

a. As defined in Conditional execution of undefined instructions on page G1-5780. In Non-secure EL0 and EL1 modes, this applies only if no Hyp trap is set for the instruction, otherwise see the behavior in the other column of the table.
b. For a trapped instruction executed in a Non-secure EL1 or EL0 mode.

Note

Hyp traps on WFE and WFI instructions generate Hyp Trap exceptions only if the instruction passes its Condition code check. See Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837.

Trapping to EL2 of instructions that are UNPREDICTABLE

For an instruction that is UNPREDICTABLE or CONSTRAINED UNPREDICTABLE, when the instruction is disabled or trapped then it is CONSTRAINED UNPREDICTABLE whether execution of the instruction generates a Hyp Trap exception.

Note

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE behavior must not perform any function that cannot be performed at the current or lower Exception level using instructions that are not UNPREDICTABLE and are not CONSTRAINED UNPREDICTABLE. This means that disabling or trapping an instruction changes the set of instructions that might be executed in Non-secure state at EL1 or EL0. This indirectly affects the permitted behavior of UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions.

If no instructions are trapped, the attempted execution of an UNPREDICTABLE instruction in a Non-secure EL1 or EL0 mode must not generate a Hyp Trap exception.
Disabling or enabling EL2 use of AArch32 deprecated functionality

Table G1-37 shows the deprecated AArch32 functionality that might have disable controls in the HSCTLR:

- The SED control is always implemented.
- Whether each of the ITD, CP15BEN controls is implemented is IMPLEMENTATION DEFINED. If a control is not implemented, then the associated functionality cannot be disabled.

These HSCTLR controls apply only to execution at EL2 using AArch32. When an instruction is disabled by one of these controls, it is UNDEFINED at EL2, meaning it is undefined in Hyp mode.

Table G1-37 EL2 controls for disabling and enabling EL2 use of AArch32 deprecated functionality

<table>
<thead>
<tr>
<th>Deprecated AArch32 functionality</th>
<th>Instruction enable or disable in the HSCTLR</th>
<th>Disabled instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETEND instructions</td>
<td>SEDa</td>
<td>SETEND instructions</td>
</tr>
<tr>
<td>Some uses of IT instructions</td>
<td>ITDb</td>
<td>See the HSCTLR.IT description</td>
</tr>
<tr>
<td>Accesses to the System register (coproc==0b1111)</td>
<td>CP15BENC</td>
<td>MCR accesses to the CP15DMB, CP15DSB, and CP15ISB</td>
</tr>
</tbody>
</table>

a. SETEND instruction disable. SETEND instructions are disabled when the value of this field is 1.
b. IT instruction disable. If this control is implemented, some uses of IT instructions are disabled when the value of this field is 1.
c. System register (coproc==0b1111) memory barrier enable. If this control is implemented, the specified register accesses are disabled when the value of CP15BEN is 0.

--- Note ---

- These controls have no effect on instructions executed in any mode other than Hyp mode. The SCTLR provides similar controls that apply to execution in other modes.
- The uses of the IT instruction, and use of the CP15DMB, CP15DSB, and CP15ISB barrier instructions, are deprecated for performance reasons.

Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers

HCR.[TRVM, TVM] trap Non-secure EL1 accesses to the virtual memory control registers to Hyp mode:

HCR.TRVM, for read accesses:

1 Non-secure EL1 reads of the virtual memory control registers are trapped to Hyp mode.
0 This control has no effect on Non-secure EL1 reads of the virtual memory control registers.

HCR.TVM, for write access:

1 Non-secure EL1 writes to the virtual memory control registers are trapped to Hyp mode.
0 This control has no effect on Non-secure EL1 writes to the virtual memory control registers.

Table G1-38 on page G1-5831 shows the registers for which:

- Reads are trapped to Hyp mode when HCR.TRVM is 1.
- Writes are trapped to Hyp mode when HCR.TVM is 1.
The table also shows how the exceptions are reported in HSR.

Table G1-38 Register read and write accesses trapped when \texttt{HCR.(TRVM, TVM)} are 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>\texttt{SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, IFAR, ADFSR, AIFSR, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR}</td>
<td>Trapped \texttt{MCR or MRC} access (\texttt{coproc==0b1111}), using EC value 0x03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trapped \texttt{MCRR or MRRC} access (\texttt{coproc==0b1111}), using EC value 0x04</td>
</tr>
</tbody>
</table>

Note

These registers are not accessible at EL0.

Disabling Non-secure state execution of \texttt{HVC} instructions

\texttt{HCR.HCD} disables Non-secure state execution of \texttt{HVC} instructions:

1. \texttt{HVC} instructions are UNDEFINED at EL2 and Non-secure EL1. The Undefined Instruction exception is taken from the current Exception level to the current Exception level.
2. \texttt{HVC} instruction execution is enabled at EL2 and Non-secure EL1.

Note

\texttt{HVC} instructions are always UNDEFINED at EL0.

\texttt{HCR.HCD} is only implemented if EL3 is not implemented. Otherwise, it is RES0. See the \texttt{HCR} register description.

Table G1-39 shows how the exceptions are reported in HSR.

Table G1-39 Instruction that causes exceptions when \texttt{HCR.HCD} is 1

<table>
<thead>
<tr>
<th>Attempted execution in</th>
<th>Disabled instruction</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyp mode</td>
<td>\texttt{HVC}</td>
<td>Exception for an unknown reason, using EC value 0x00</td>
</tr>
<tr>
<td>Mode other than Hyp mode</td>
<td>\texttt{HVC}</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions

In the Armv8-A architecture, the System instruction encoding space includes TLB maintenance instructions.

\texttt{HCR.TTLB} traps Non-secure EL1 execution of TLB maintenance instructions to Hyp mode:

1. Any attempt to execute a TLB\texttt{I} instruction at Non-secure EL1 is trapped to Hyp mode.
2. This control has no effect on the Non-secure EL1 execution of TLB\texttt{I} instructions.

Table G1-40 shows the instructions that are trapped, and how the exceptions are reported in HSR.

Table G1-40 Instructions trapped to Hyp mode when \texttt{HCR.TTLB} is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trapped instructions</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>\texttt{TLBIALLIS, TLBIMVAIS, TLBISADIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS, TLBIMVAALIS, ITLBIALL, ITLBMVA, ITLBISADIS, DTLBIALL, DTLBMVA, DTLBISAD, DTLBIAL, TBLIMVA, TBLISAD, TBLIMVAA, TBLIMVAL, TBLIMVAAL}</td>
<td>Trapped \texttt{MCR or MRC} access (\texttt{coproc==0b1111}), using EC value 0x03</td>
</tr>
</tbody>
</table>
Note

These instructions are always UNDEFINED at EL0.

For more information about these instructions, see *The scope of TLB maintenance instructions* on page G5-6044.

Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions

HCR.\{TSW, TPC, TPU\} trap cache maintenance instructions to Hyp mode:

0 The control has no effect on the execution of cache maintenance instructions.

1 Any attempt to execute one of the cache maintenance instructions shown in Table G1-42 at Non-secure EL1 is trapped to Hyp mode.

<table>
<thead>
<tr>
<th>Trap control</th>
<th>Trapped instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR.TSW</td>
<td>Data or unified cache maintenance by set/way</td>
</tr>
<tr>
<td>HCR.TPC</td>
<td>Data or unified cache maintenance to point of coherency</td>
</tr>
<tr>
<td>HCR.TPU</td>
<td>Cache maintenance to point of unification</td>
</tr>
</tbody>
</table>

Table G1-42 shows the instructions that are trapped to Hyp mode, and how the exceptions are reported in HSR.

Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register

HCR.TAC traps Non-secure EL1 accesses to the Auxiliary Control Registers to Hyp mode:

1 Non-secure EL1 accesses to the Auxiliary Control Registers are trapped to Hyp mode.

0 This control has no effect on Non-secure EL1 accesses to the Auxiliary Control Registers.

Table G1-43 shows the registers for which accesses are trapped, and how the exceptions are reported in HSR.

Note

These instructions are always UNDEFINED at EL0.

For more information about these instructions, see *Cache maintenance system instructions* on page K15-8210.
Note

The ACTLR and ACTLR2 are not accessible at EL0.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations

The lockdown, DMA, and TCM features of the Armv8-A architecture are IMPLEMENTATION DEFINED. The architecture reserves the encodings of a number of System registers for control of these features.

HCR.TIDCP traps the execution of System register access instructions that access these registers, as follows:

1

At Non-secure EL1, any attempt to execute an MCR or MRC instruction with a reserved register encoding shown in Table G1-44 is trapped to Hyp mode.

At Non-secure EL0, it is IMPLEMENTATION DEFINED whether attempts to execute MCR or MRC instructions with reserved register encodings are:

• Trapped to Hyp mode.
• UNDEFINED, and the PE takes the Undefined Instruction exception to Non-secure Undefined mode.

Any lockdown fault in the memory system caused by the use of these operations in Non-secure state generates a Data Abort exception that is taken to Hyp mode.

0

This control has no effect on Non-secure EL0 and EL1 System register access instructions with reserved register encodings shown in Table G1-44.

Note

This means that a Hyp Trap exception taken from Non-secure EL1 to Hyp mode, generated because of a configuration setting in HCR.TIDCP is a higher priority exception than an Undefined Instruction exception generated because either the System register encoding is unallocated or because the register is never accessible at EL1. As Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747 shows, this is an exception to the general exception prioritization rules, that prioritize most Undefined Instruction exceptions taken to Undefined mode above traps to EL2.

Table G1-44 shows the register encodings for which accesses are trapped to Hyp mode, and how the exceptions are reported in HSR.

Table G1-44 Encodings trapped to Hyp mode when HCR.TIDCP is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Register encodings</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>An access to any of the following encodings:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CRn==c9, opc1=={0-7}, CRm=={c0-c2, c5-c8}, opc2=={0-7}.</td>
<td>Trapped MCR or MRC access</td>
</tr>
<tr>
<td></td>
<td>• CRn==c10, opc1=={0-7}, CRm=={c0, c1, c4, c8}, opc2=={0-7}.</td>
<td>(coproc==0b1111), using EC value 0x03</td>
</tr>
<tr>
<td></td>
<td>• CRn==c11, opc1=={0-7}, CRm=={c0-c8, c15}, opc2=={0-7}.</td>
<td></td>
</tr>
</tbody>
</table>

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of Non-secure User mode accesses to these functions to Hyp mode to be unusual, and used only when the hypervisor is virtualizing User mode operation. Arm strongly recommends that unless the hypervisor must virtualize User mode operation, a Non-secure User mode access to any of these functions generates an Undefined Instruction exception, as it would if the implementation did not include EL2. The PE then takes this exception to Non-secure Undefined mode.
Traps to Hyp mode of Non-secure EL1 execution of SMC instructions

HCR.TSC traps Non-secure EL1 execution of SMC instructions to Hyp mode:

1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp mode, regardless of the value of SCR.SCD.

0 This control has no effect on Non-secure EL1 execution of SMC instructions.

Table G1-45 shows how the exceptions are reported in HSR:

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trapped instruction</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>SMC on page F5-4732</td>
<td>Trapped SMC instruction execution in AArch32 state, using EC value 0x13</td>
</tr>
</tbody>
</table>

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their Condition code check, in the same way as with traps on other conditional instructions.

Note

- This trap is implemented only if the implementation includes EL3.
- SMC instructions are always UNDEFINED at EL0.
- HCR.TSC traps execution of the SMC instruction. It is not a routing control for the SMC exception. Hyp Trap and SMC exceptions have different preferred return addresses.

For more information about SMC instructions, see SMC on page F5-4732.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers

Other than the MIDR, MPIDR, and PMCR.N, the ID registers are divided into groups, with a trap control in the HCR for each group.

Table G1-46 ID register groups

<table>
<thead>
<tr>
<th>Trap control</th>
<th>Register group</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR.TID0</td>
<td>ID group 0, Primary device identification registers on page G1-5835</td>
</tr>
<tr>
<td>HCR.TID1</td>
<td>ID group 1, Implementation identification registers on page G1-5836</td>
</tr>
<tr>
<td>HCR.TID2</td>
<td>ID group 2, Cache identification registers on page G1-5836</td>
</tr>
<tr>
<td>HCR.TID3</td>
<td>ID group 3, Detailed feature identification registers on page G1-5836</td>
</tr>
</tbody>
</table>

These controls trap register accesses from Non-secure EL0 or EL1 to Hyp mode, as follows:

HCR.TID0 0 This control has no effect on Non-secure EL1 reads of the ID group 0 registers.
1 Any attempt at Non-secure EL0 or EL1 to read any register in ID group 0 is trapped to Hyp mode.

HCR.TID1 0 This control has no effect on Non-secure EL1 reads of the ID group 1 registers.
1 Any attempt at Non-secure EL1 to read any register in ID group 1 is trapped to Hyp mode.

HCR.TID2 0 This control has no effect on Non-secure EL1 and EL0 accesses to the ID group 2 registers.
1 Any attempt at Non-secure EL0 or EL1 to read any register in ID group 2, and any attempt at Non-secure EL0 or EL1 to write to the CSSELR, is trapped to Hyp mode.
HCR.TID3 0 This control has no effect on Non-secure EL1 reads of the ID group 3 registers.
1 Any attempt at Non-secure EL1 to read any register in ID group 3 is trapped to Hyp mode.

For the MIDR and MPIDR, and for PMCR.N, the architecture provides read/write aliases. The original register becomes accessible only from Hyp mode and Secure state, and a Non-secure EL0 or EL1 read of the original register returns the value of the read/write alias. This substitution is invisible to the EL0 or EL1 software reading the register.

Table G1-47 ID register substitution

<table>
<thead>
<tr>
<th>Register</th>
<th>Original</th>
<th>Alias, EL2 using AArch32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main ID</td>
<td>MIDR</td>
<td>VPIDR</td>
</tr>
<tr>
<td>Multiprocessor Affinity</td>
<td>MPIDR</td>
<td>VMPIDR</td>
</tr>
<tr>
<td>Performance Monitors Control Register</td>
<td>PMCR.N</td>
<td>HDCR.HPMN</td>
</tr>
</tbody>
</table>

Reads of the MIDR, MPIDR, or PMCR.N from Hyp mode or Secure state are unchanged by the implementation of EL2, and access the physical registers.

--- **Note** ---

- If the optional Performance Monitors Extension is not implemented, HDCR.HPMN is RES0 and PMCR is reserved.
- HDCR.HPMN also affects whether a Performance Monitors counter can be accessed from Non-secure EL1 or EL0. See the register description of HDCR for more information.
- PMCR contains other fields that identify the implementation. For more information about trapping accesses to the PMCR, see *Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers* on page G1-5845.

A reset into AArch32 state sets VPIDR to the MIDR value, VMPIDR to the MPIDR value, and HDCR.HPMN to the PMCR.N value.

ID group 0, Primary device identification registers

These registers identify some top-level implementation choices.

Table G1-48 shows the registers that are in ID group 0 for traps to Hyp mode, and how the exceptions are reported in HSR.

Table G1-48 ID group 0 registers

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Group 0 registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>FPSID</td>
<td>Trapped VMRS access, for ID group traps, using EC value 0x08</td>
</tr>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>JIDR</td>
<td>Trapped MCR or MRC access (coproc==0b1110), using EC value 0x05</td>
</tr>
</tbody>
</table>

--- **Note** ---

The FPSID is not accessible at EL0.

If HCPTR.{TCP11, TCP10} traps accesses to SIMD and floating-point functionality, then for a read of FPSID, that trap has priority over this trap.

When the FPSID is accessible, a VMSR FPSID, <Rt> instruction is permitted but is ignored. The execution of this VMSR instruction is not trapped by the ID group 0 trap.
ID group 1, Implementation identification registers

These registers often provide coarse-grained identification mechanisms for implementation-specific features.

Table G1-49 shows the registers that are in ID group 1 for traps to Hyp mode, and how the exceptions are reported in HSR.

Table G1-49 ID group 1 registers

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Group 1 registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>TCMTR, TLBTR, REVIDR, AIDR</td>
<td>Trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
</tbody>
</table>

ID group 2, Cache identification registers

These registers describe and control the cache implementation.

Table G1-50 shows the registers that are in ID group 2 for traps to Hyp mode, and how the exceptions are reported in HSR.

Table G1-50 ID group 2 registers

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Group 2 registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>CTR, CCSIDR, CLIDR, CSSELr, and, if implemented, CCSIDR2.</td>
<td>Trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
</tbody>
</table>

ID group 3, Detailed feature identification registers

These registers provide detailed information about the features of the implementation.

Note

These registers are called the CPUID registers. There is no requirement for this trap to apply to those registers that the CPUID Identification Scheme defines as reserved. See The CPUID identification scheme on page G4-4993.

Table G1-51 shows the registers that are in ID group 3 for traps to Hyp mode, and how the exceptions are reported in HSR.

Table G1-51 ID group 3 registers

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Group 3 registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>MVFR0, MVFR1, MVFR2.</td>
<td>Trapped VMRS access for ID group traps, using EC value 0x08</td>
</tr>
<tr>
<td></td>
<td>ID_PFR0, ID_PFR1, ID_DFR0, ID_AFR0. ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3. ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5. ID_MMFR4, ID_ISAR6, ID_DFR1 are trapped, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether HCR.TID3 traps accesses. It is IMPLEMENTATION DEFINED whether HCR.TID3 traps MRC accesses to registers with coproc==0b1111 to encodings in the following range that are not already mentioned in this table Crn == c0, opc1 == 0, Cm == {c2-c7}, opc2 == {0-7}.</td>
<td>Trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
</tbody>
</table>

If HCPTR traps accesses to SIMD and floating-point functionality, then for reads of MVFR0, MVFR1, and MVFR2, that trap has priority over this trap.
Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions

HCR.{TWE, TWI} trap Non-secure EL0 and EL1 execution of WFE and WFI instructions to Hyp mode:

HCR.TWE:

1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to Hyp mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0 This control has no effect on Non-secure EL0 or EL1 execution of WFE instructions.

HCR.TWI:

1 Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to Hyp mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0 This control has no effect on Non-secure EL0 or EL1 execution of WFI instructions.

Table G1-52 shows how the exceptions are reported in HSR.

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trapped instructions</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>WFE</td>
<td>Trapped WFI or WFE instruction, using EC value 0x01</td>
</tr>
<tr>
<td></td>
<td>WFI</td>
<td></td>
</tr>
</tbody>
</table>

The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

- *Wait For Event and Send Event* on page G1-5804.
- *Wait For Interrupt* on page G1-5807.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers

If the Activity Monitors Extension is implemented, HCPTR.TAM traps Non-secure EL0 and EL1 accesses to the Activity Monitors registers to Hyp mode:

1 Non-secure EL0 and EL1 accesses to all Activity Monitors registers are trapped to Hyp mode.

0 This control has no effect on Non-secure EL0 and EL1 accesses to the Activity Monitors registers.

Note

- EL2 does not provide traps on Activity Monitor register accesses through the optional memory-mapped external interface.
- If the Activity Monitors Extension is not implemented, HCPTR.TAM is RES0.
Table G1-53 shows the registers for which accesses are trapped, and how the exceptions are reported in HSR.

Table G1-53 Register accesses trapped to Hyp mode when HDCR.{TPM, TPMCR} are 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>TPM</td>
<td>AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0, AMCNTENSET1, AMCR, AMEVTPR0<n>, or AMEVTPR1<n>.</td>
<td>Trapped MCR or MRC access (cproc==0b1111), using EC value 0x03.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMEVCTR0<n> or AMEVCTR1<n>.</td>
<td>Trapped MCR or MRR access (cproc==0b1111), using EC value 0x04.</td>
</tr>
</tbody>
</table>

General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers

HCPTR.{TCP11, TCP10} trap Non-secure accesses to the SIMD and floating-point registers to Hyp mode:

0b11
All Non-secure accesses to the SIMD and floating-point registers are trapped to Hyp mode. Trapped instructions generate:
- Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.
- Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0b00
This control has no effect on Non-secure accesses to the SIMD and floating-point registers.

Note

Software must set HCPTR.TCP11 and HCPTR.TCP10 to the same value.

Table G1-54 shows the registers for which accesses are trapped, and how the exceptions are reported in HSR.

Table G1-54 Register accesses trapped to Hyp mode when HCPTR.{TCP11, TCP10} are both 0b11

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure state</td>
<td>FPSID, MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers. See Advanced SIMD and floating-point System registers on page G1-5814.</td>
<td>Trapped access to SIMD and floating-point register, resulting from HCPTR, using EC value 0x07⁹</td>
</tr>
</tbody>
</table>

a. VMSR accesses to the FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

If EL3 is implemented and is using AArch32, and NSACR.{cp11, cp10} are both set to 0, then HCPTR.{TCP11, TCP10} behave as RAO/WI, regardless of their actual value.

For more information about SIMD and floating-point support, see Advanced SIMD and floating-point support on page G1-5812.

Enabling access to the SIMD and floating-point registers

FPEXC.EN is an instruction enable that enables access to the SIMD and floating-point registers from all Exception levels, but does not control the following:
- VMSR accesses to the FPEXC or FPSID.
- VMS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

FPEXC.EN is a PL1 control that also applies at EL2. See Enabling access to the SIMD and floating-point registers on page G1-5824.
Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality

If implemented as an RW field, HCPTR.TASE can trap Non-secure execution of Advanced SIMD instructions to Hyp mode, as follows. This trap applies only when HCPTR.{TCP11, TCP10} are both 0:

1

Any attempt to execute an Advanced SIMD instruction in Non-secure state is trapped to Hyp mode. Trapped instructions generate:

- Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.
- Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0

This control has no effect on Non-secure execution of Advanced SIMD instructions.

When the control is not implemented, meaning the HCPTR.TASE field is RAZ/WI, the HCPTR does not provide a trap to Hyp mode of the Non-secure execution of Advanced SIMD instructions, other than the HCPTR.{TCP11, TCP10} trap that applies to Non-secure execution of both Advanced SIMD and floating-point instructions.

Table G1-27 on page G1-5823 shows the instructions that are trapped, and how the exceptions are reported in HSR.

Table G1-55 Instructions trapped to Hyp mode when HCPTR.TASE is set to 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Instructions</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure state</td>
<td>All Advanced SIMD instructions that are not also floating-point instructions. For more information, see Controls of Advanced SIMD operation that do not apply to floating-point operation on page E1-4006.</td>
<td>Trapped access to SIMD and floating-point register, resulting from HCPTR, using EC value 0x07</td>
</tr>
</tbody>
</table>

If EL3 is implemented and is using AArch32, and NSACR.NSASEDIS is 1, then HCPTR.TASE behaves as RAO/WI, regardless of its actual value. This behavior also applies when the HCPTR.TASE control is not implemented.

Traps to Hyp mode of Non-secure EL1 accesses to the CPACR

HCPTR.TCPAC traps Non-secure EL1 accesses to the CPACR to Hyp mode:

1

Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

0

This control has no effect on Non-secure EL1 accesses to the CPACR.

Table G1-56 shows how the exceptions are reported in HSR:

Table G1-56 Register accesses trapped to Hyp mode when HCPTR.TCPAC is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Register</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>CPACR</td>
<td>Trapped MCR or MRC access to System register with coproc==0b11111, using EC value 0x03</td>
</tr>
</tbody>
</table>

--- Note ---

- The CPACR is not accessible at EL0.
- In Armv7 and earlier versions of the Arm architecture, one use of the CPACR is to identify what coprocessor, or conceptual coprocessor, functionality is implemented. Legacy software might use this identification mechanism. A hypervisor can use this trap to emulate this mechanism. See Background to the System register interface on page G1-5810 for more information about this functionality.
Traps to Hyp mode of Non-secure System register accesses to trace registers

If implemented, the HCPTR.TTA control traps System register accesses to the trace registers from Non-secure state to Hyp mode, as follows:

1 Non-secure System register accesses to the trace registers are trapped to Hyp mode. Trapped instructions generate:
 • Hyp Trap exceptions, if the exception is taken from Non-secure EL0 or EL1.
 • Undefined Instruction exceptions taken to Hyp mode, if the exception is taken from EL2.

0 This control has no effect on Non-secure System register accesses to the trace registers.

If the HCPTR.TTA control is not implemented, then HCPTR.TTA is RAO/WI. See the register description for more information.

Note
• System register accesses to the trace registers use the System register (coproc==0b1110) encoding space.
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED. A resulting Undefined Instruction exception is higher priority than an HCPTR.TTA Hyp Trap exception.
• EL2 does not provide traps on trace register accesses through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no side-effects occur before the exception is taken, see Register access instructions on page G1-5819.

Table G1-57 shows the registers for which accesses are trapped to Hyp mode when HCPTR.TTA is 1, and how the exceptions are reported in HSR.

Table G1-57 Register accesses trapped to Hyp mode when HCPTR.TTA is 1

<table>
<thead>
<tr>
<th>Traps from Non-secure state</th>
<th>Registers System register accesses to all implemented trace registers</th>
<th>Syndrome reporting in HSR For accesses using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1110), using EC value 0x05.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCRR or MRRC instructions, trapped MCRR or MRRC access (coproc==0b1110), using EC value 0x0C.</td>
</tr>
</tbody>
</table>

If EL3 is implemented and is using AArch32, and NSACR.NSTRCDIS is 1, then HCPTR.TTA behaves as RAO/WI, regardless of its actual value. This behavior applies, also, when the HCPTR.TTA control is not implemented.

Traps to Hyp mode of Non-secure System register accesses to trace filter control registers

If implemented, the HDCR.TTRF control traps System register accesses to the trace filter control registers from Non-secure state to Hyp mode, as follows:

1 Non-secure System register accesses at EL1 to the trace filter control registers are trapped to Hyp mode. Trapped instructions generate Hyp Trap exceptions.

0 This control has no effect on Non-secure System register accesses to the trace registers.
Table G1-58 shows the registers for which accesses are trapped to Hyp mode when HDCR.TTRF is 1, and how the exceptions are reported in HSR.

Table G1-58 Register accesses trapped to Hyp mode when HDCR.TTRF is 1

<table>
<thead>
<tr>
<th>Traps from Non-secure state</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure state</td>
<td>TRFCR</td>
<td>For accesses using MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC value 0x03.</td>
</tr>
</tbody>
</table>

General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc==0b1111) encoding space

HSTR.{T0-T3, T5-T13, T15} trap Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, or MRRC instructions, to the System registers in the (coproc==0b1111) encoding space, by:

- The value of the CRn argument to the instruction, for MCR and MRC instructions.
- The value of the CRm argument to the instruction, for MCRR and MRRC instructions.

This applies for the set of CRn, or CRm, values {c0-c3, c5-c13, c15}.

When an HSTR.Tn trap control is:

1. Non-secure EL1 accesses to the corresponding System registers in the (coproc==0b1111) encoding space are trapped to Hyp mode.

 EL0 accesses to the corresponding System registers are trapped to Hyp mode if they would not be UNDEFINED if the bit was zero.

0. This control has no effect on Non-secure EL0 or EL1 accesses to System registers.

Note

This means that a Hyp Trap exception taken from EL1 to EL2, generated because of a configuration setting in HSTR.Tn, is a higher priority exception than an Undefined Instruction exception generated because either the System register encoding is unallocated or because a register is never accessible at Non-secure EL1. As Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747 shows, this is an exception to the general exception prioritization rules, that prioritize most Undefined Instruction exceptions taken to Undefined mode above traps to EL2. This prioritization includes any access from Non-secure EL1 to a register that is only accessible in Secure state. So, for example, an access to the SCR from Non-secure EL1:

- When the value of HSTR.T1 is 0, generates an Undefined Instruction exception.
- When the value of HSTR.T1 is 1, generates a Hyp Trap exception.

Table G1-59 shows the accesses that are trapped, and how the exceptions are reported in HSR.

Table G1-59 Accesses trapped to Hyp mode when an HSTR.Tn trap is enabled

<table>
<thead>
<tr>
<th>Traps from Non-secure EL0 and EL1 a</th>
<th>Trap control</th>
<th>Trapped accesses</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1 a</td>
<td>Tn</td>
<td>MCR and MRC instructions, with coproc set to 0b1111 and CRn set to n</td>
<td>Trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCR and MRC instructions, with coproc set to 0b1111 and CRm set to n</td>
<td>Trapped MCR or MRC access (coproc==0b1111), using EC value 0x04</td>
</tr>
</tbody>
</table>

a. As described in this section, traps from EL1 apply whenever the value of HSTR.Tn is 1. Traps from EL0 apply only if the value of HSTR.Tn is 1 and the access would not be UNDEFINED if the value of HSTR.Tn was 0.

For example, when HSTR.T7 is 1, considering only accesses from Non-secure EL1:

- Any 32-bit access from a Non-secure PL1 mode using an MRC or MCR instruction with coproc set to 0b1111 and CRn set to c7, is trapped to Hyp mode.
Any 64-bit access from a Non-secure PL1 mode using an
\texttt{MRRC} or \texttt{MCRR} instructions with \texttt{coproc} set to \texttt{0b1111} and CRm set to \texttt{c7}, is trapped to Hyp mode.

Note

- Bits[4,14] of the \texttt{HSTR} are reserved, \texttt{RE0}. Although the Generic Timer control registers are implemented in the \texttt{coproc==0b1111} encoding space with \texttt{CRn==c14} for an \texttt{MRC} or \texttt{MCR} access, EL2 does not provide a trap on accesses to the Generic Timer System registers.

- An implementation might provide additional controls, in \texttt{IMPLEMENTATION DEFINED} registers, to provide finer-grained control of trapping of \texttt{IMPLEMENTATION DEFINED} features.

System registers in the (coproc==0b1111) encoding space with \texttt{IMPLEMENTATION DEFINED} access permission from EL0

For a System register in the (\texttt{coproc==0b1111}) encoding space, that is accessed using a CRn or CRm value that can be trapped by a \texttt{HSTR.Tn} control, if an access to the register from User mode is UNDEFINED when the value of the corresponding \texttt{HSTR.Tn} trap control is 0, then when that \texttt{HSTR.Tn} trap control is 1, it is \texttt{IMPLEMENTATION DEFINED} whether an access from Non-secure User mode generates:

- A Hyp Trap exception.
- An Undefined Instruction exception taken to Non-secure Undefined mode.

Note

Arm expects that trapping to Hyp mode of Non-secure User mode accesses to System register in the (\texttt{coproc==0b1111}) encoding space will be unusual, and used only when the hypervisor must virtualize User mode operation. Arm recommends that, whenever possible, Non-secure User mode accesses to System register in the (\texttt{coproc==0b1111}) encoding space behave as they would if the processor did not implement EL2, generating an Undefined Instruction exception taken to Non-secure Undefined mode if the architecture does not support the User mode access.

Traps to Hyp mode of Non-secure System register accesses to debug registers

\texttt{HDCR.(TDRA, TDOSA, TDA)} trap Non-secure System register accesses to debug registers to Hyp mode, as follows:

- \texttt{HDCR.(TDRA, TDA)} trap Non-secure EL0 and EL1 accesses.
- \texttt{HDCR.TDOSA} traps Non-secure EL1 accesses.

Note

EL2 does not provide traps of debug register accesses through the optional memory-mapped external debug interface.

System register accesses to the debug registers can have side-effects. When a System register access is trapped to Hyp mode, no side-effects occur before the exception is taken to Hyp mode. See \textit{Register access instructions on page G1-5819}.

Table G1-60 shows the subsections that list the accesses trapped. The subsections describe how the traps are reported in HSR.

Table G1-60 Traps of Non-secure EL0 and EL1 accesses to debug registers

<table>
<thead>
<tr>
<th>Trap control</th>
<th>Subsection</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{HDCR.TDRA}</td>
<td>\textit{Trapping Non-secure System register accesses to Debug ROM registers on page G1-5843}</td>
</tr>
<tr>
<td>\texttt{HDCR.TDOSA}</td>
<td>\textit{Trapping Non-secure System register accesses to powerdown debug registers on page G1-5843}</td>
</tr>
<tr>
<td>\texttt{HDCR.TDA}</td>
<td>\textit{Trapping general Non-secure System register accesses to debug registers on page G1-5843}</td>
</tr>
</tbody>
</table>
Note

System register accesses to debug registers use the \((\text{coproc}=0b1110)\) encoding space.

Trapping Non-secure System register accesses to Debug ROM registers

\(\text{HDCR.TDRA}\) traps Non-secure EL0 and EL1 System register accesses to the Debug ROM registers to Hyp mode:

1. Non-secure EL0 or EL1 System register accesses to the Debug ROM registers are trapped to Hyp mode.

0. This control has no effect on Non-secure EL0 and EL1 System register accesses to the Debug ROM registers.

Table G1-61 shows the register accesses that are trapped, and how the exceptions are reported in HSR:

Table G1-61 Register accesses trapped to Hyp mode when \(\text{HDCR.TDRA}\) is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>DBGDRAR, DBGDSAR</td>
<td>For accesses using:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MCR or MRC instructions, trapped MCR or MRC access ((\text{coproc}=0b1110)), using EC value 0x05.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MRRC instructions, trapped MRRC access ((\text{coproc}=0b1110)), using EC value 0x0C.</td>
</tr>
</tbody>
</table>

If \(\text{HDCR.TDE}\) or \(\text{HCR.TGE}\) is 1, behavior is as if \(\text{HDCR.TDRA}\) is 1 other than for the purpose of a direct read.

Trapping Non-secure System register accesses to powerdown debug registers

\(\text{HDCR.TDOSA}\) traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode:

1. Non-secure EL1 System register accesses to the powerdown debug registers are trapped to Hyp mode.

0. This control has no effect on Non-secure EL1 System register accesses to the powerdown debug registers.

Table G1-62 shows the register accesses that are trapped, and how the exceptions are reported in HSR.

Table G1-62 Register accesses trapped to Hyp mode when \(\text{HDCR.TDOSA}\) is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL1</td>
<td>DBGOSLSR, DBGOSLAR, DBGOSDLR, DBGPRCR</td>
<td>Trapped MCR or MRC access ((\text{coproc}=0b1110)), using EC value 0x05</td>
</tr>
</tbody>
</table>

Note

These registers are not accessible at EL0.

If \(\text{HDCR.TDE}\) or \(\text{HCR.TGE}\) is 1, behavior is as if \(\text{HDCR.TDOSA}\) is 1 other than for the purpose of a direct read.

Trapping general Non-secure System register accesses to debug registers

\(\text{HDCR.TDA}\) traps Non-secure EL0 and EL1 System register accesses to the debug registers that are not mentioned in either of the following:

• Traps to Hyp mode of Non-secure System register accesses to debug registers on page G1-5842.

• Trapping Non-secure System register accesses to powerdown debug registers.
This means that \texttt{HDCR.TDA} traps to Hyp mode Non-secure EL0 and EL1 System register accesses to all debug registers except the following:

- Non-secure System register accesses to \texttt{DBGDRAR} or \texttt{DBGDSAR}. The \texttt{HDCR.TDRA} trap traps these accesses.
- Non-secure System register access to \texttt{DBGOSLSR}, \texttt{DBGOSLAR}, \texttt{DBGOSDLR}, or \texttt{DBGPRCR}. The \texttt{HDCR.TDOSA} trap traps these accesses.

\texttt{HDCR.TDA} does not trap accesses to \texttt{DBGDTRTXint} or \texttt{DBGDTRRXint} when the PE is in Debug state.

When \texttt{HDCR.TDA} is:

1 Non-secure EL0 or EL1 System register accesses to any of the registers shown in Table G1-63 are trapped to Hyp mode.
0 This control has no effect on Non-secure EL0 or EL1 System register accesses.

Table G1-63 shows how the exceptions are reported in HSR.

<table>
<thead>
<tr>
<th>Traps from Non-secure EL0 and EL1</th>
<th>Trapped accesses</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accesses to the DBGDIDR, DBGDSCRint, DBGDCCINT, DBGDTRRXint, DBGDTRTXint, DBGWFAR, DBGVCR, DBGDCSext, DBGDTRXext, DBGDTRRXext, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWV<n>, DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2, and DBGOSECCR</td>
<td>For accesses using \texttt{MCR} or \texttt{MRC} instructions, trapped \texttt{MCR} or \texttt{MRC} access (\texttt{coproc}==0b1110), using EC value 0x05</td>
<td></td>
</tr>
<tr>
<td>5TC accesses to DBGDTRRXint.</td>
<td>Trapped 5TC access, using EC value 0x06</td>
<td></td>
</tr>
<tr>
<td>LDC accesses to DBGDTRTXint.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \texttt{HDCR.TDE} or \texttt{HCR.TGE} is 1, behavior is as if \texttt{HDCR.TDA} is 1 other than for the purpose of a direct read.

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers

\texttt{CNTHCTL.{PL1PCEN, PL1PCTEN}} trap Non-secure EL0 and EL1 accesses to the Generic Timer registers to Hyp mode, as follows:

- \texttt{CNTHCTL.PL1PCEN} traps Non-secure EL0 and EL1 accesses to the physical timer registers.
- \texttt{CNTHCTL.PL1PCTEN} traps Non-secure EL0 and EL1 accesses to the physical counter register.

For each of these controls:

1 This control has no effect on Non-secure EL0 and EL1 accesses to the registers shown in Table G1-64 on page G1-5845.
0 Non-secure EL0 and EL1 accesses are trapped to Hyp mode.
Table G1-64 shows the registers for which accesses are trapped, and how the exceptions are reported in HSR.

Table G1-64 Register accesses trapped to Hyp mode by CNTHCTL trap controls

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure EL0 and EL1</td>
<td>PLIPCE</td>
<td>CNTP_CTL, CNTP_CVAL, CNTP_TVAL</td>
<td>For accesses using:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MCRR or MRRC instructions, trapped MCRR or MRRC access (coproc==0b1111), using EC value 0x04</td>
</tr>
</tbody>
</table>

| | PLIPCTEN | CNTPCT | Trapped MCRR or MRRC access (coproc==0b1110), using EC value 0x04 |

Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers

If the Performance Monitors Extension is implemented, HDCR.{TPM, TPMCR} trap Non-secure EL0 and EL1 accesses to the Performance Monitors registers to Hyp mode:

HDCR.TPM:

| | 1 | Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to Hyp mode. |
| | 0 | This control has no effect on Non-secure EL0 and EL1 accesses to the Performance Monitors registers. |

HDCR.TPMCR:

| | 1 | Non-secure EL0 and EL1 accesses to the Performance Monitors Control Register are trapped to Hyp mode. |

Note

The conditions for this trap are identical to those for the trap controlled by HDCR.TPM.

| | 0 | This control has no effect on Non-secure EL0 and EL1 accesses to the Performance Monitors Control Registers. |

Note

- EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.
- If the Performance Monitors Extension is not implemented, HDCR.{TPM, TPMCR} are RES0.
Table G1-65 shows the registers for which accesses are trapped, and how the exceptions are reported in HSR.

Table G1-65 Register accesses trapped to Hyp mode when **HDCR.TPM, TPMCR** are 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
</table>
| Non-secure EL0 and EL1 | TPM | PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSLTR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTPRYER, PMXEVCTNR, PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSET, PMEVCNTR, PMEVTYPER<n>, PMEVTYPER<n> | For accesses using:
 - MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC value 0x03.
 - MCRR or MRRC instructions, trapped MCRR or MRRC access (coproc==0b1111), using EC value 0x04. |

Note

HDCR.HPMN affects whether a counter can be accessed from Non-secure EL1 or EL0. See the register description of **HDCR** for more information.

Traps to Hyp mode of Non-secure EL1 accesses to the RAS error record registers

HCR2.TERR traps Non-secure EL1 accesses to the RAS ER* registers to Hyp mode. For more information on the RAS ER* registers, see the **ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile**.

Table G1-66 Register accesses trapped to Hyp mode when **HCR2.TERR** is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Trap control</th>
<th>Registers</th>
<th>Syndrome reporting in HSR</th>
</tr>
</thead>
</table>
| Non-secure EL0 and EL1 | TERR | ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLr, ERXCTL2, ERXFR, ERXFR2, ERXMSC0, ERXMSC1, ERXMSC2, ERXMSC3, ERXMSC4, ERXMSC5, ERXMSC6, ERXMSC7, ERXSTATUS. | For accesses using:
 - MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC value 0x03.
 - MCRR or MRRC instructions, trapped MCRR or MRRC access (coproc==0b1111), using EC value 0x04. |

G1.21.4 EL3 configurable controls

Table G1-67 shows the System registers that contain these controls.

Table G1-67 System registers that contain instruction enables and disables, and trap controls

<table>
<thead>
<tr>
<th>Register name</th>
<th>Register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR</td>
<td>Secure Configuration Register</td>
</tr>
<tr>
<td>NSACR</td>
<td>Non-secure Access Control Register</td>
</tr>
</tbody>
</table>
Table G1-68 summarizes the controls.

Table G1-68 EL3 Instruction enables and disables, and trap controls

<table>
<thead>
<tr>
<th>Control</th>
<th>Type of control</th>
<th>Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR.{TWE, TWI}</td>
<td>T</td>
<td>Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode on page G1-5848</td>
</tr>
<tr>
<td>SCR.HCE</td>
<td>E</td>
<td>Enabling EL2 and Non-secure EL1 execution of HVC instructions on page G1-5849</td>
</tr>
<tr>
<td>SCR.SCD</td>
<td>D</td>
<td>Disabling SMC instructions on page G1-5849</td>
</tr>
<tr>
<td>NSACR.NSTRCDIS</td>
<td>D</td>
<td>Disabling Non-secure System register access to the trace registers on page G1-5850</td>
</tr>
<tr>
<td>SDCR.TTRF</td>
<td>T</td>
<td>Traps to Monitor mode of System register accesses to the trace filter control registers on page G1-5850</td>
</tr>
<tr>
<td>NSACR.{cp11, cp10}</td>
<td>E</td>
<td>Enabling Non-secure access to SIMD and floating-point functionality on page G1-5850</td>
</tr>
<tr>
<td>NSACR.NSASEDIS</td>
<td>D</td>
<td>Disabling Non-secure access to Advanced SIMD functionality on page G1-5851</td>
</tr>
<tr>
<td>SCR.TERR</td>
<td>T</td>
<td>Traps to Monitor mode of accesses to RAS error record registers on page G1-5849</td>
</tr>
</tbody>
</table>

a. See Table G1-69.

Table G1-69 Control types, for AArch32 EL3 controls

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Type</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Disable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Instruction enables and instruction disables on page G1-5818</td>
</tr>
<tr>
<td>T</td>
<td>Trap</td>
<td>Trap controls on page G1-5818</td>
</tr>
</tbody>
</table>

Also see the following:
- Register access instructions on page G1-5819.
- Instructions that fail their Condition code check.
- Trapping to EL3 of instructions that are UNPREDICTABLE on page G1-5848.

Instructions that fail their Condition code check

For UNDEFINED instructions that fail their Condition code check, see Conditional execution of undefined instructions on page G1-5780.

For an instruction that has a Monitor trap set, that fails its Condition code check:

- Unless the trap description states otherwise, it is IMPLEMENTATION DEFINED whether the instruction:
 - Generates a Monitor Trap exception.
 - Executes as a \texttt{NOP}.

Any implementation must be consistent in its handling of instructions that fail their Condition code check. This means that:

- Whenever a Monitor trap is set on such an instruction it must either:
 - Always generate a Monitor trap exception.
 - Always treat the instruction as a \texttt{NOP}.
The IMPLEMENTATION DEFINED part of the requirements of Conditional execution of undefined instructions on page G1-5780 must be consistent with the handling of Monitor traps on instructions that fail their Condition code check. Table G1-70 shows this:

Table G1-70 Consistent handling of instructions that fail their Condition code check

<table>
<thead>
<tr>
<th>Behavior of conditional UNDEFINED instruction</th>
<th>Monitor trap on instruction that fails its Condition code check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executes as a NOP</td>
<td>Generates a Monitor trap exception</td>
</tr>
<tr>
<td>Generates an Undefined Instruction exception</td>
<td>Generates a Monitor trap exception</td>
</tr>
</tbody>
</table>

a. As defined in Conditional execution of undefined instructions on page G1-5780. In Non-secure EL0 and EL1 modes, this applies only if no Monitor trap is set for the instruction, otherwise see the behavior in the other column of the table.
b. For a trapped instruction executed in a Non-secure EL1 or EL0 mode.

Note

When SCR{TWE, TWI} is set so that conditional wFE and wFI instructions are trapped to Monitor mode, the attempted execution of a conditional wFE or wFI instruction is only trapped if the instruction passes its Condition code check. See Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode.

Trapping to EL3 of instructions that are UNPREDICTABLE

For an instruction that is UNPREDICTABLE, when the instruction is disabled or trapped then it is CONSTRAINED UNPREDICTABLE whether execution of the instruction generates a Monitor Trap exception.

Note

UNPREDICTABLE and CONSTRAINED UNPREDICTABLE behavior must not perform any function that cannot be performed at the current or lower Exception level using instructions that are not UNPREDICTABLE and are not CONSTRAINED UNPREDICTABLE. This means that disabling or trapping an instruction changes the set of instructions that might be executed in modes other than Monitor mode. This affects, indirectly, the permitted behavior of UNPREDICTABLE and CONSTRAINED UNPREDICTABLE instructions.

If no instructions are trapped, the attempted execution of an UNPREDICTABLE instruction in a mode other than Monitor mode must not generate a Monitor Trap exception.

Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode

SCR{TWE, TWI} trap wFE and wFI instructions to Monitor mode:

SCR.TWE 1
Any attempt to execute a WFE instruction in any mode other than Monitor mode is trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter a low-power state.
0 This control has no effect on the execution of WFE instructions.

SCR.TWI 1
Any attempt to execute a WFI instruction in any mode other than Monitor mode is trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter a low-power state.
0 This control has no effect on the execution of WFI instructions.

For PL0 and PL1, these traps apply to WFE and WFI instruction execution in both Security states.

The attempted execution of a conditional WFE or WFI instruction is only trapped if the instruction passes its Condition code check.
--- Note ---

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE or WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about these instructions, and when they can cause the PE to enter a low-power state, see:

- *Wait For Event and Send Event* on page G1-5804.
- *Wait For Interrupt* on page G1-5807.

Traps to Monitor mode of accesses to RAS error record registers

SCR.TERR traps accesses to the RAS ER* registers from modes other than Monitor mode to Monitor mode.

Table G1-71 Register accesses trapped to EL3 when SCR.TERR is 1

<table>
<thead>
<tr>
<th>Traps from</th>
<th>Registers</th>
<th>Syndrome reporting in ESR_EL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AArch32</td>
<td>ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTRLR, ERXCTRLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, ERXMISC4, ERXMISC5, ERXMISC6, ERXMISC7, ERXSTATUS</td>
<td>For accesses using:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MCR or MRC instructions, trapped MCR or MRC access (coproc==0b1111), using EC value 0x03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MCRR or MRRC instructions, trapped MCRR or MRRC access, (coproc==0b1111) using EC value 0x04</td>
</tr>
</tbody>
</table>

This trap control applies to accesses from both Security states.

Enabling EL2 and Non-secure EL1 execution of HVC instructions

SCR.HCE enables EL2 and Non-secure EL1 execution of HVC instructions:

1 HVC instruction execution is enabled at EL2 and Non-secure EL1.

0 HVC instructions are:

• UNDEFINED at Non-secure EL1. The Undefined Instruction exception is taken to Undefined mode.

• CONSTRAINED UNPREDICTABLE at EL2. The behavior must be one of the following:
 — The instruction is UNDEFINED.
 — The instruction executes as a NOP.

--- Note ---

• If EL2 is not implemented, SCR.HCE is RES0 and HVC is UNDEFINED.

• HVC instructions are always UNDEFINED at EL0 and in Secure state.

Disabling SMC instructions

SCR.SCD disables SMC instructions:

1 In Non-secure state

SMC instructions are UNDEFINED. The Undefined Instruction exception is taken from the current Exception level to the current Exception level.

<table>
<thead>
<tr>
<th>In Secure state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior is one of the following:</td>
</tr>
<tr>
<td>• The instruction is UNDEFINED.</td>
</tr>
</tbody>
</table>
• The instruction executes as a NOP.

0 SMC instructions are enabled.

—— Note ———
• SMC instructions are always UNDEFINED at EL0.

• When the value of HCR.TSC is 1, any attempted execution of an SMC instruction at Non-secure EL1 is trapped to EL2, regardless of the value of SCR.SCD, see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-5834. As Synchronous exception prioritization for exceptions taken to AArch32 state on page G1-5747 shows, this is an exception to the general exception prioritization rules, that prioritize most Undefined Instruction exceptions taken to Undefined mode above traps to a higher Exception level.

Disabling Non-secure System register access to the trace registers

NSACR.NSTRCDIS enables Non-secure System register accesses to the trace registers, from all Privilege levels:

1 Non-secure state accesses are disabled. Secure state accesses are enabled. If the PE is in Non-secure state:
 • CPACR.TRCDIS behaves as RAO/WI, regardless of its actual value. See Traps to Undefined mode of PL0 and PL1 System register accesses to trace registers on page G1-5822.
 This behavior applies even if the CPACR.TRCDIS control is not implemented. See the referenced section for more information.
 • HCPTR.TTA behaves as RAO/WI, regardless of its actual value. See Traps to Hyp mode of Non-secure System register accesses to trace registers on page G1-5840.

0 There is no effect on accesses to CPACR.TRCDIS and HCPTR.TTA.

—— Note ———
• System register accesses to the trace registers use the (coproc==0b1111) encoding space.
• NSACR.NSTRCDIS might be implemented as RAZ/WI. See the NSACR register description for more information.
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED.
• EL3 does not provide Non-secure access controls on trace register accesses through the optional memory-mapped external debug interface.

Traps to Monitor mode of System register accesses to the trace filter control registers

SDCR.TTRF traps any System register accesses to trace filter control registers to Monitor mode:

1 Any attempt to access a trace filter control register in any mode other than Monitor mode is trapped to Monitor mode.

0 This control has no effect.

Enabling Non-secure access to SIMD and floating-point functionality

NSACR.{cp11, cp10} enable Non-secure access to the SIMD and floating-point registers, from all Privilege levels:

0b11 All accesses, from both Security states, are enabled.
0b00 Non-secure state accesses are disabled. Secure state accesses are enabled. If the PE is in Non-secure state:

- CPACR.{cp11, cp10} behave as RAZ/WI. See Enabling PL0 and PL1 accesses to the SIMD and floating-point registers on page G1-5823.
- HCPTR.{TCP11, TCP10} behave as RAO/WI. See General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on page G1-5838.

--- Note ---
Software must set NSACR.cp11 and NSACR.cp10 to the same value.

For more information about SIMD and floating-point support, see Advanced SIMD and floating-point support on page G1-5812.

Disabling Non-secure access to Advanced SIMD functionality
NSACR.NSASEDIS disables Non-secure accesses to the Advanced SIMD functionality, from all Privilege levels:

1 Non-secure state accesses are disabled. Secure accesses are enabled. If the PE is in Non-secure state:

- CPACR.ASEDIS behaves as RAO/WI. See Disabling PL0 and PL1 execution of Advanced SIMD instructions on page G1-5824.
- HCPTR.TASE behaves as RAO/WI. See Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on page G1-5839.

These behaviors apply even if one or both of the CPACR.ASEDIS and HCPTR.TASE controls is not implemented. See the referenced sections for more information.

0 There is no effect on CPACR.ASEDIS and HCPTR.TASE.

G1.21.5 Pseudocode description of configurable instruction enables, disables, and traps
The pseudocode function AArch32.CheckITEnabled() checks whether the T32 IT instruction is enabled.
The pseudocode function AArch32.CheckSETENDEnabled() checks whether the SETEND instruction is disabled.
The pseudocode function for AArch32.CheckForSMCUndefOrTrap() checks for traps on an SMC instruction.
The AArch32.CheckForWFXTrap() pseudocode function checks for traps on WFE and WFI instructions:

Pseudocode description of enabling SIMD and floating-point functionality
The AArch32.CheckAdvSIMDorFPEnabled() and AArch32.CheckFPAdvSIMDTrap() pseudocode functions take appropriate action if an SIMD or floating-point instruction is used when the SIMD and floating-point functionality is not enabled or is trapped.
The CheckAdvSIMDorFPEnabled(), CheckAdvSIMDEnabled(), and CheckFPEnabled() wrapper functions support the AArch32.CheckAdvSIMDorFPEnabled() and AArch32.CheckFPAdvSIMDTrap() functions.
The AArch32.CheckAdvSIMDorFPEnabled(), AArch32.CheckFPAdvSIMDTrap(), CheckAdvSIMDorFPEnabled(), CheckAdvSIMDEnabled(), and CheckFPEnabled() functions are described in Chapter J1 Armv8 Pseudocode.
G1.21 Configurable instruction enables and disables, and trap controls
Chapter G2
AArch32 Self-hosted Debug

When the PE is using self-hosted debug, it generates *debug exceptions*. This chapter describes the AArch32 self-hosted debug exception model. It is organized as follows:

Introductory information

- *About self-hosted debug* on page G2-5854.
- *The debug exception enable controls* on page G2-5858.

The debug Exception model

- *Routing debug exceptions* on page G2-5859.
- *Enabling debug exceptions from the current Privilege level and Security state* on page G2-5861.
- *Summary of permitted routing and enabling of debug exceptions* on page G2-5864.
- *Pseudocode description of debug exceptions* on page G2-5866.

The debug exceptions

- *Breakpoint Instruction exceptions* on page G2-5867.
- *Breakpoint exceptions* on page G2-5870.
- *Watchpoint exceptions* on page G2-5895.
- *Vector Catch exceptions* on page G2-5909.

Synchronization requirements

The behavior of self-hosted debug after changes to System registers, or after changes to the authentication interface, but before a *Context synchronization event* guarantees the effects of the changes:

- *Synchronization and debug exceptions* on page G2-5916.
G2.1 About self-hosted debug

Self-hosted debug supports debugging through the generation and handling of debug exceptions, that are taken using the exception model described in:

- Chapter D1 The AArch64 System Level Programmers’ Model, if the exception is taken to AArch64 state.
- Chapter G1 The AArch32 System Level Programmers’ Model, if the exception is taken to AArch32 state.

This section introduces some terms used in describing self-hosted debug, and then introduces the debug exceptions. See:

- Definition of a debugger in the context of self-hosted debug.
- Context ID and Process ID.

G2.1.1 Definition of a debugger in the context of self-hosted debug

Within this chapter, debugger means that part of an operating system, or higher level of system software, that handles debug exceptions and programs the debug System registers. An operating system with rich application environments might provide debug services that support a debugger user interface executing at EL0. From the architectural perspective, the debug services are the debugger.

G2.1.2 Context ID and Process ID

In AArch32 state, the CONTEXTIDR identifies the current Context ID, that is used by:

- The debug logic, for breakpoint and watchpoint matching.
- Implemented trace logic, to identify the current process.

When using the Long-descriptor translation table format, the CONTEXTIDR has a single field, PROCID, that is defined as the Process Identifier (Process ID). Therefore, in AArch64 state, the Context ID and Process ID are identical when using this translation table format.

When using the Short-descriptor translation table format:

- CONTEXTIDR[31:0] defines the Context ID, that is used for breakpoint and watchpoint matching.
- CONTEXTIDR[31:8] defines the Process ID.
- CONTEXTIDR[7:0] define the ASID. See Global and process-specific translation table entries on page G5-6031. This means that, when using the Short-descriptor translation table format, the ASID is always bits[7:0] of the Context ID.

G2.1.3 About debug exceptions

Debug exceptions occur during normal program flow if a debugger has programmed the PE to generate them. For example, a software developer might use a debugger contained in an operating system to debug an application. To do this, the debugger might enable one or more debug exceptions. The debug exceptions that can be generated in an AArch32 stage 1 translation regime are:

- Breakpoint Instruction exceptions on page G2-5855.
- Breakpoint exceptions on page G2-5855, generated by hardware breakpoints.
- Watchpoint exceptions on page G2-5856, generated by hardware watchpoints.
- Vector Catch exceptions on page G2-5856.

Note

In addition, Software Step exceptions can be generated in stage 1 of an AArch32 translation regime. However, these are always taken to AArch64 state. Software Step exceptions on page D2-2420 describes this.

The PE can only generate a particular debug exception when both:

1. Debug exceptions are enabled from the current Exception level and Security state.
See *Enabling debug exceptions from the current Privilege level and Security state* on page G2-5861.
Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.

2. A debugger has enabled that particular debug exception.
 All of the debug exceptions except for Breakpoint Instruction exceptions have an enable control contained in
 the DBGDSCRext. See *The debug exception enable controls* on page G2-5858.

--- Note ---
If *halting is allowed* and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause entry to Debug state
instead of causing debug exceptions. In Debug state, the PE is halted.

For the definition of halting is allowed, see *Halting allowed and halting prohibited* on page H2-7015.

When a debug exception is taken to an Exception level that is using AArch32:
• If the debug exception is a Watchpoint exception, it is taken as a Data Abort exception.
• Otherwise, it is taken as a Prefetch Abort exception.

The following list summarizes each of the debug exceptions:

Breakpoint Instruction exceptions

Breakpoint instructions generate these. Breakpoint instructions are instructions that software
developers can use to cause exceptions at particular points in the program flow.

The breakpoint instruction in the A32 and T32 instruction sets is `BKPT #<immediate>`. Whenever one
of these is committed for execution, the PE takes a Breakpoint Instruction exception.

PE behavior

Breakpoint Instruction exceptions cannot be masked. The PE takes Breakpoint
Instruction exceptions regardless of both of the following:
• The current Privilege level and AArch32 mode.
• The current Security state.

For more information, see *Breakpoint Instruction exceptions* on page G2-5867.

Breakpoint exceptions

The Armv8-A architecture provides 2-16 hardware breakpoints. These can be programmed to
generate Breakpoint exceptions based on particular instruction addresses, or based on particular PE contexts, or both.

For example, a software developer might program a hardware breakpoint to generate a Breakpoint
exception whenever the instruction with address 0x1000 is committed for execution.

The Armv8-A architecture supports the following types of hardware breakpoint for use in stage 1
of an AArch32 translation regime:

• Address:
 — Address Match.
 — Address Mismatch.
 Comparisons are made with the virtual address of each instruction in the program flow.

• Context:
 — Context ID Match. Matches with the Context ID value held in the CONTEXTIDR.
 — VMIID Match. Matches with the VMID value held in the VTTBR.
 — Context ID and VMID Match. Matches with both the Context ID and the VMID value.

An Address breakpoint can link to a Context breakpoint, so that the Address breakpoint only
generates a Breakpoint exception if the PE is in a particular context when the address match or
mismatch occurs.
A breakpoint generates a Breakpoint exception whenever an instruction that causes a match is committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware breakpoints cause entry to Debug state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

- If debug exceptions are enabled, hardware breakpoints cause Breakpoint exceptions.
- If debug exceptions are disabled, hardware breakpoints are ignored.

For more information, see *Breakpoint exceptions* on page G2-5870.

Watchpoint exceptions

The Armv8-A architecture provides 2-16 hardware watchpoints. These can be programmed to generate Watchpoint exceptions based on accesses to particular data addresses, or based on accesses to any address in a data address range.

For example, a software developer might program a hardware watchpoint to generate a Watchpoint exception on an access to any address in the data address range 0x1000 - 0x101F.

A hardware watchpoint can link to a hardware breakpoint if the hardware breakpoint is a Linked Context type. In this case, the watchpoint only generates a Watchpoint exception if the PE is in a particular context when the data address match occurs.

The smallest data address size that a watchpoint can be programmed to match on is a byte. A single watchpoint can be programmed to match on one or more bytes.

A watchpoint generates a Watchpoint exception whenever an instruction that initiates an access that causes a match is committed for execution.

PE behavior

If halting is allowed and EDSCR.HDE is 1, hardware watchpoints cause entry to Debug state. That is, they halt the PE. See Chapter H2 Debug State.

Otherwise:

- If debug exceptions are enabled, hardware watchpoints cause Watchpoint exceptions.
- If debug exceptions are disabled, hardware watchpoints are ignored.

For more information, see *Watchpoint exceptions* on page G2-5895.

Vector Catch exceptions

These are used to trap exceptions. The Armv8-A architecture provides two forms of vector catch, address-matching and exception-trapping. Only one form can be implemented.

Whichever form is implemented, a debugger must enable Vector Catch exceptions for one or more exception vectors by programming the DBGVCR. Generation of Vector Catch exceptions is then as follows:

- For the address-matching form, a Vector Catch exception is generated whenever the virtual address of an instruction matches a vector that Vector Catch exceptions are enabled for.
- For the Exception-trapping form, a Vector Catch exception is generated as part of exception entry for exception types that correspond to vectors that Vector Catch exceptions are enabled for.

PE behavior

If debug exceptions are:

- Enabled, Vector Catch exceptions can be generated.
- Disabled, vector catch is ignored.

For more information, see *Vector Catch exceptions* on page G2-5909.

Table G2-1 on page G2-5857 summarizes PE behavior and shows the location of the pseudocode for each of the debug exceptions.
Table G2-1 PE behavior and pseudocode for each of the debug exceptions

<table>
<thead>
<tr>
<th>Debug exception</th>
<th>PE behavior if debug exceptions are:</th>
<th>Pseudocode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Breakpoint Instruction</td>
<td>Takes Prefetch Abort exception</td>
<td>Takes Prefetch Abort exception</td>
</tr>
<tr>
<td>exception</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakpoint exception</td>
<td>Takes Prefetch Abort exception</td>
<td>Ignored</td>
</tr>
<tr>
<td>Vector Catch exception</td>
<td>Takes Prefetch Abort exception</td>
<td>Ignored</td>
</tr>
<tr>
<td>Watchpoint exception</td>
<td>Takes Data Abort exception</td>
<td>Ignored</td>
</tr>
</tbody>
</table>

a. If halting is allowed and EDSCR.HDE is 1, hardware breakpoints and watchpoints cause the PE to enter Debug state instead of causing debug exceptions. See Chapter H2 Debug State.
G2.2 The debug exception enable controls

The enable controls for each debug exception are as follows:

Breakpoint Instruction exceptions

None. Breakpoint Instruction exceptions are always enabled.

Breakpoint exceptions

DBGDSCRext.MDBG, plus an enable control for each breakpoint, DBGBCR<n>.E.

Watchpoint exceptions

DBGDSCRext.MDBG, plus an enable control for each watchpoint, DBGWCR<n>.E.

Vector Catch exceptions

DBGDSCRext.MDBG.

In addition, for all debug exceptions other than Breakpoint Instruction exceptions, software must configure the controls that enable debug exceptions from the current Exception level and Security state. See *Enabling debug exceptions from the current Privilege level and Security state* on page G2-5861.

The PE cannot take a debug exception if debug exceptions are disabled from either the current Exception level or the current Security state.

Breakpoint Instruction exceptions are always enabled from the current Exception level and Security state.
G2.3 Routing debug exceptions

Debug exceptions are usually routed to Abort mode. However, if EL2 is implemented, the routing of debug exceptions depends on the Effective values of HDCR.TDE and HCR.TGE:

If the Effective value of \{HDCR.TDE, HCR.TGE\} is not \{0, 0\}

- Debug exceptions taken from Non-secure state are routed to Hyp mode.
- If EL2 is using AArch64 and FEAT_SEL2 is implemented, debug exceptions taken from Secure EL0 and Secure EL1 may be routed to Secure EL2. For more information, see Routing debug exceptions on page D2-2423.

Otherwise

In Non-secure state debug exceptions behave as follows:
- Debug exceptions taken from Non-secure EL1 and Non-secure EL0 are routed to Non-secure Abort mode.
- Breakpoint Instruction exceptions taken from Hyp mode are routed to Hyp mode.
- All other debug exceptions are disabled from Hyp mode.

--- Note ---

If EL2 is not implemented, the Effective value of HCR.TGE is 0 and the Effective value of HDCR.TDE is 0.

Table G2-2, Table G2-3, and Table G2-4 on page G2-5860 show the routing of debug exceptions taken from an Exception level that is using AArch32 to an Exception level that is using AArch32. In these tables:

- TDE Means the logical OR of HDCR.TDE and HCR.TGE.
- (Hyp mode) Means:
 - All debug exceptions other than Breakpoint Instruction exceptions are disabled from this Privilege level.
 - Breakpoint Instruction exceptions taken from this Privilege level are taken to Hyp mode.

<table>
<thead>
<tr>
<th>TDE</th>
<th>Target AArch32 mode when executing in:</th>
<th>Secure state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-secure:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL0</td>
<td>PL1</td>
</tr>
<tr>
<td>0</td>
<td>Non-secure Abort mode</td>
<td>Non-secure Abort mode</td>
</tr>
<tr>
<td>1</td>
<td>Hyp mode</td>
<td>Hyp mode</td>
</tr>
</tbody>
</table>

Table G2-3 Routing when EL3 is implemented and EL2 is not implemented

Target AArch32 mode when executing in:

<table>
<thead>
<tr>
<th>Non-secure state</th>
<th>Secure state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure Abort mode</td>
<td>Secure Abort mode</td>
</tr>
</tbody>
</table>
Table G2-4 Routing when EL3 is not implemented and EL2 is implemented

<table>
<thead>
<tr>
<th>TDE</th>
<th>Target AArch32 mode when executing in Non-secure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PL0</td>
</tr>
<tr>
<td>0</td>
<td>Non-secure Abort mode</td>
</tr>
<tr>
<td>1</td>
<td>Hyp mode</td>
</tr>
</tbody>
</table>

G2.3.1 Pseudocode description of routing debug exceptions

`DebugTarget()` returns the current debug target Exception level. `DebugTargetFrom()` returns the debug target Exception level for the specified Security state.
G2.4 Enabling debug exceptions from the current Privilege level and Security state

A debug exception can only be taken if all of the following are true:

- The OS Lock is unlocked.
- `DoubleLockStatus() == FALSE`.
- The debug exception is enabled from the current Privilege level.
- The debug exception is enabled from the current Security state.

Table G2-5 shows when debug exceptions are enabled from the current Privilege level.

<table>
<thead>
<tr>
<th>Current Privilege level</th>
<th>Breakpoint Instruction exceptions</th>
<th>All other debug exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL2</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>PL1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>PL0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table G2-6 shows when debug exceptions are enabled from the current Security state.

<table>
<thead>
<tr>
<th>Current Security state</th>
<th>Breakpoint Instruction exceptions</th>
<th>All other debug exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-secure</td>
<td>Enabled</td>
<td>Enabled from PL1 and PL0 only.</td>
</tr>
<tr>
<td>Secure</td>
<td>Enabled</td>
<td>Depends on SDCR.SPD and SDER.SUIDEN. See Disabling debug exceptions from Secure state.</td>
</tr>
</tbody>
</table>

G2.4.1 Disabling debug exceptions from Secure state

If EL3 is implemented, software executing at EL3 can enable or disable all debug exceptions taken from Secure PL1 other than Breakpoint Instruction exceptions, by using one of:

- The Secure Privileged Debug field, SDCR.SPD, if EL3 is using AArch32.
- The AArch32 Secure Privileged Debug field, MDCR_EL3.SPD32, if EL3 is using AArch64.

If debug exceptions are disabled from Secure PL1, software executing at Secure PL1 can set the Secure User Invasive Debug Enable bit, SDER.SUIDEN, to 1 to enable all debug exceptions taken from Secure PL0 other than Breakpoint Instruction exceptions.

Note

Breakpoint Instruction exceptions are always enabled.

The Armv8-A architecture does not support disabling debug in Non-secure state.

Note

If the boot software that is executed when reset is deasserted programs SUIDEN and SPD so that all debug exceptions are disabled from Secure state, software operating at EL3 never has to switch any of the debug registers between the Security states.

G2.4.2 Pseudocode description of enabling debug exceptions

`AArch64.GenerateDebugExceptions()` determines whether debug exceptions are enabled from the current Exception level and Security state. `AArch64.GenerateDebugExceptionsFrom()` determines whether debug exceptions are enabled from the specified Exception level and Security state.
G2.4 Enabling debug exceptions from the current Privilege level and Security state
G2.5 The effect of powerdown on debug exceptions

Debug OS Save and Restore sequences on page H6-7123 describes the powerdown save routine and the restore routine.

When executing either routine, software must use the OS Lock to disable generation of all of the following:
- Breakpoint exceptions.
- Watchpoint exceptions.
- Vector Catch exceptions.

This is because the generation of these exceptions depends on the state of the debug registers, and the state of the debug registers might be lost over these routines.

Debug exceptions other than Breakpoint Instruction exceptions are enabled only if both the OS Lock is unlocked and DoubleLockStatus() == FALSE.

Breakpoint Instruction exceptions are enabled regardless of the state of the OS Lock and the OS Double Lock.
G2.6 Summary of permitted routing and enabling of debug exceptions

Behavior is as follows:

Breakpoint Instruction exceptions

These are always enabled, regardless of the current Privilege level and Security state. Table G2-7 shows the routing of these. In the table, n/a means not applicable.

Table G2-7 Routing of Breakpoint Instruction exceptions

<table>
<thead>
<tr>
<th>Current Security state</th>
<th>HDCR.TDEa</th>
<th>Target when enabled from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PL0</td>
</tr>
<tr>
<td>Secure</td>
<td>X</td>
<td>Secure Abort modea</td>
</tr>
<tr>
<td>Non-secure</td>
<td>0</td>
<td>Non-secure Abort mode</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hyp mode</td>
</tr>
</tbody>
</table>

a. If EL2 is not implemented, behavior is as if the value of this bit is 0. Otherwise, if the value of HCR.TGE is 1, HDCR.TDE is treated as being 1 other than for a direct read of HDCR.

All other debug exceptions

The enabling and permitted routing is controlled by all of the following:

- SDCR.SPD.
- SDER.SUIDEN.
- HDCR.TDE.
- The IMPLEMENTATION DEFINED authentication interface.

Table G2-8 shows the valid combinations of the values of SDCR.SPD, SDER.SUIDEN, HDCR.TDE, and, in the Auth column, the input from the IMPLEMENTATION DEFINED authentication interface described by the pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled(). For each combination, the table shows where debug exceptions are enabled from and where they are taken to.

In the table, n/a means not applicable and a dash, -, means that debug exceptions are disabled from that Exception level.

Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions

<table>
<thead>
<tr>
<th>Debug state</th>
<th>Locka</th>
<th>Current Security state</th>
<th>SPDb</th>
<th>Authc</th>
<th>SUIDEN</th>
<th>TDEd</th>
<th>Target AArch32 mode when enabled from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PL0</td>
</tr>
<tr>
<td>Yes</td>
<td>X</td>
<td>X</td>
<td>0bXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>TRUE</td>
<td>X</td>
<td>0bXX</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>FALSE</td>
<td>Secure</td>
<td>0b00</td>
<td>FALSE</td>
<td>0</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>FALSE</td>
<td>Secure</td>
<td>0b00</td>
<td>FALSE</td>
<td>1</td>
<td>X</td>
<td>Secure Abort modee</td>
</tr>
<tr>
<td>No</td>
<td>FALSE</td>
<td>Secure</td>
<td>0b10</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td>Secure Abort modee</td>
</tr>
<tr>
<td>No</td>
<td>FALSE</td>
<td>Secure</td>
<td>0b10</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

G2-5864 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
Table G2-8 Breakpoint, Watchpoint, and Vector Catch exceptions (continued)

<table>
<thead>
<tr>
<th>Debug state</th>
<th>Lock<sup>a</sup></th>
<th>Current Security state</th>
<th>SPD<sup>b</sup></th>
<th>Auth<sup>c</sup></th>
<th>SUIDEN</th>
<th>TDE<sup>d</sup></th>
<th>Target AArch32 mode when enabled from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALSE</td>
<td>Secure</td>
<td>0b10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>Secure Abort mode<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>Secure</td>
<td>0b11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Secure Abort mode<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>Non-secure</td>
<td>0bXX</td>
<td>X</td>
<td></td>
<td></td>
<td>Non-secure Abort mode</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>Non-secure</td>
<td>0bXX</td>
<td>X</td>
<td></td>
<td>0</td>
<td>Non-secure Abort mode</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>Secure</td>
<td>0b10</td>
<td>X</td>
<td></td>
<td>X</td>
<td>Hyp mode</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>Secure</td>
<td>0b11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Hyp mode</td>
</tr>
</tbody>
</table>

a. The value of \((\text{OSLR_EL1.OSLK} == '1') \lor \text{DoubleLockStatus}()\).
b. If EL3 is not implemented, behavior is as if this is 0b11.
c. See the text that introduces this table for an explanation of the Auth on page G2-5864 column. An entry of TRUE indicates that the authentication mechanism permits the debug exceptions to be taken to their default target PE mode.
d. If HCR.TGE is 1, this bit is treated as being 1 other than for a direct read of HDCR. If EL2 is not implemented, behavior is as if TDE is 0.
e. If EL3 is implemented and is using AArch32, Secure Abort mode is at EL3. Otherwise, Secure Abort mode is at EL1.
G2.7 Pseudocode description of debug exceptions

`AArch32.DebugFault()` returns a `FaultRecord()` that indicates that a memory access has generated a debug exception.

The `AArch32.Abort()` function processes `FaultRecord()`, as described in *Abort exceptions* on page G4-5959, and generates:

- Data Abort exceptions for watchpoints.
- Prefetch Abort exceptions for all other debug exceptions.
G2.8 Breakpoint Instruction exceptions

This section describes Breakpoint Instruction exceptions in an AArch32 translation regime.

—— Note ————

When the PE is executing in EL0 using AArch32 and EL1 is using AArch64, it is using the AArch64 EL1&0 translation regime. A T32 or A32 BKPT instruction executed at EL0 can generate a Breakpoint Instruction exception that is taken to an Exception level that is using AArch64. For more information about the handling of these exceptions, see Breakpoint Instruction exceptions on page D2-2431.

It contains the following subsections:

• About Breakpoint Instruction exceptions.
• Breakpoint instruction in the A32 and T32 instruction sets.
• BKPT instructions as the first instruction in an IT block on page G2-5868.
• Exception syndrome information and preferred return address for a BKPT instruction on page G2-5868.
• Pseudocode description of Breakpoint Instruction exceptions on page G2-5869.

G2.8.1 About Breakpoint Instruction exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:

• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.
• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint Instruction exceptions, that this section describes, are software breakpoints. Breakpoint exceptions on page G2-5870 describes hardware breakpoints.

There is no enable control for Breakpoint Instruction exceptions. They are always enabled, and cannot be masked. A Breakpoint Instruction exception is generated whenever a breakpoint instruction is committed for execution, regardless of all of the following:

• The current Exception level.
• The current Security state.
• Whether the debug target Exception level, EL_D, is using AArch64 or AArch32.

—— Note ————

• EL_D is the Exception level that debug exceptions are targeting. See Enabling debug exceptions from the current Privilege level and Security state on page G2-5861.
• Debuggers using breakpoint instructions must be aware of the Armv8 rules for concurrent modification and execution of instructions. See Concurrent modification and execution of instructions on page B2-120.

G2.8.2 Breakpoint instruction in the A32 and T32 instruction sets

The breakpoint instruction, in both instruction sets, is:

• BKPT #<immediate>

For details of the instruction encoding, see BKPT on page F5-4345.

About whether the BKPT instruction is conditional

In the T32 instruction set, BKPT instructions are always unconditional.

In the A32 instruction set:

• If the Condition code field is AL, the BKPT instruction is unconditional.
• If the Condition code field is anything other than AL, behavior is CONSTRAINED UNPREDICTABLE, and is one of the following:
 — The instruction is UNDEFINED.
 — The instruction is treated as a NOP instruction.
 — The instruction is executed unconditionally.
 — The instruction is executed conditionally.

G2.8.3 BKPT instructions as the first instruction in an IT block

If the first instruction in an IT block is a T32 BKPT instruction, then in an implementation that supports the ITD control, if ITD field that applies to the current Exception level is:

0 The BKPT instruction generates a Breakpoint Instruction exception.

1 The combination of IT instruction and BKPT instruction is UNDEFINED. Either the IT instruction or the BKPT instruction generates an Undefined Instruction exception.

In such an implementation, to ensure consistent behavior when making the first instruction in one or more IT blocks a BKPT instruction, the debugger must replace the IT instruction.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:
- HSCTRL.ITD Applies to execution at EL2 when EL2 is using AArch32.
- SCTLR.ITD Applies to execution at EL0 or EL1 when EL1 is using AArch32.
- SCTLR_EL1.ITD Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

--- Note ---

T32 BKPT instructions are always unconditional, even when they are inside an IT block. See:
- Disabling or enabling PL0 and PL1 use of AArch32 deprecated functionality on page G1-5821.
- Disabling or enabling EL2 use of AArch32 deprecated functionality on page G1-5830.

G2.8.4 Exception syndrome information and preferred return address for a BKPT instruction

See the following:
- Exception syndrome information for a Breakpoint Instruction exception.
- Preferred return address for a Breakpoint Instruction exception on page G2-5869.

--- Note ---

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Breakpoint Instruction exception

The PE takes a Breakpoint Instruction exception as either:

• A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.

• A Hyp Trap exception, if it is taken to PL2 because either HCR.TGE or HDCR.TDE is 1. In this case, it is taken to Hyp mode.

If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:
- DBGDSCRext.MOE to 0b0011, to indicate a Breakpoint Instruction exception.
• IFSR.FS to the code for a debug, 0b00010.
• The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:
• Records information about the exception in the Hypervisor Syndrome Register, HSR. See Table G2-9.
• Sets DBGDSRCText.MOE to 0b0011, to indicate a Breakpoint Instruction exception.
• Sets the HIFAR to an unknown value.

Table G2-9 Information recorded in the HSR

<table>
<thead>
<tr>
<th>HSR field</th>
<th>Information recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception Class, EC</td>
<td>The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.</td>
</tr>
<tr>
<td>Instruction Length, IL</td>
<td>The PE sets this to:</td>
</tr>
<tr>
<td></td>
<td>• 0 for a T32 BKPT instruction.</td>
</tr>
<tr>
<td></td>
<td>• 1 for an A32 BKPT instruction.</td>
</tr>
<tr>
<td>Instruction Specific Syndrome, ISS</td>
<td></td>
</tr>
<tr>
<td>ISS[24:10]</td>
<td>RES0.</td>
</tr>
<tr>
<td>ISS[9]</td>
<td>External Abort type (EA). The PE sets this to 0.</td>
</tr>
<tr>
<td>ISS[8:6]</td>
<td>RES0.</td>
</tr>
<tr>
<td>ISS[5:0]</td>
<td>Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug exception, 0b100010.</td>
</tr>
</tbody>
</table>

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions on page G2-5859.

Preferred return address for a Breakpoint Instruction exception

The preferred return address is the address of the breakpoint instruction, not the next instruction. This is different to the behavior of other exception-generating instructions, like SVC.

G2.8.5 Pseudocode description of Breakpoint Instruction exceptions

`AArch32.SoftwareBreakpoint()` generates a Prefetch Abort exception that is taken from AArch32 state.
G2.9 Breakpoint exceptions

This section describes Breakpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:
• At EL1 or higher in an Exception level that is using AArch32.
• At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:
• About Breakpoint exceptions.
• Breakpoint types and linking of breakpoints on page G2-5871.
• Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.
• Breakpoint instruction address comparisons on page G2-5882.
• Breakpoint context comparisons on page G2-5887.
• Using breakpoints on page G2-5888.
• Exception syndrome information and preferred return address for a Breakpoint exception on page G2-5893.
• Pseudocode description of Breakpoint exceptions taken from AArch32 state on page G2-5894.

G2.9.1 About Breakpoint exceptions

A breakpoint is an event that results from the execution of an instruction, based on either:
• The instruction address, the PE context, or both. This type of breakpoint is called a hardware breakpoint.
• The instruction itself. That is, the instruction is a breakpoint instruction. These can be included in the program that the PE executes. This type of breakpoint is called a software breakpoint.

Breakpoint exceptions are generated by Breakpoint debug events. Breakpoint debug events are generated by hardware breakpoints. Software breakpoints are described in Breakpoint Instruction exceptions on page G2-5867.

An implementation can include between 2-16 hardware breakpoints. DBGIDR.BRPs shows how many are implemented.

To use an implemented hardware breakpoint, a debugger programs the following registers for the breakpoint:
• The Breakpoint Control Register, DBGBCR<n>. This contains controls for the breakpoint, for example an enable control.
• The Breakpoint Value Register, DBGBVR<n>. This holds a value used for breakpoint matching, that is one of:
 — An instruction virtual address.
 — A Context ID.
• If EL2 is implemented, the Breakpoint Extended Value Register, DBGBXVR<n>, that holds a VMID value used for breakpoint matching.

These registers are numbered, so that:
• DBGBCR1, DBGBVR1, and DBGBXVR1 are for breakpoint number one.
• DBGBCR2, DBGBVR2, and DBGBXVR2 are for breakpoint number two.
• ...
• ...
• DBGBCR<n>, DBGBVR<n>, and DBGBXVR<n> are for breakpoint number <n>.

A debugger can link a breakpoint that is programmed with an address and a breakpoint that is programmed with anything other than an address together, so that a Breakpoint debug event is only generated if both breakpoints match.

For each instruction in the program flow, all of the breakpoints are tested. When a breakpoint is tested, it generates a Breakpoint debug event if all of the following are true:
• The breakpoint is enabled. That is, the breakpoint enable control for it, DBGBCR<n>.E, is 1.
• The conditions specified in the DBGBCR<\text{n}> are met.
• The comparisons with the values held in one or both of the DBGBV\text{R}<\text{n}> and DBGBXVR<\text{n}>, as applicable, are successful.
• If the breakpoint is linked to another breakpoint, the comparisons made by that other breakpoint are also successful.
• The instruction is committed for execution.

If all of these conditions are met, the breakpoint generates the Breakpoint debug event regardless of the following:
• Whether the instruction passes its Condition code check.
• The instruction type.

If halting is allowed and EDSCR.HDE is 1, Breakpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are
• Enabled, Breakpoint debug events generate Breakpoint exceptions
• Disabled, Breakpoint debug events are ignored.

--- Note

The remainder of this Breakpoint exceptions section, including all subsections, describes breakpoints as generating Breakpoint exceptions. However, the behavior described also applies if breakpoints are causing entry to Debug state.

The debug exception enable controls on page G2-5858 describes the enable controls for Breakpoint debug events.

G2.9.2 Breakpoint types and linking of breakpoints

Each implemented breakpoint is one of the following:

• A context-aware breakpoint. This is a breakpoint that can be programmed to generate a Breakpoint exception on any one of the following:
 — An instruction address match.
 — An instruction address mismatch.
 — A Context ID match, with the value held in the CONTEXTIDR.
 — A VMID match, with the value held in the VTTBR.
 — Both a Context ID match and a VMID match.

• A breakpoint that is not context-aware. These can only be programmed to generate a Breakpoint exception on an instruction address match or an instruction address mismatch.

DBGIDR.CTX_CMPs shows how many of the implemented breakpoints are context-aware breakpoints. At least one implemented breakpoint must be context-aware. The context-aware breakpoints are the highest numbered breakpoints.

Any breakpoint that is programmed to generate a Breakpoint exception on an instruction address match or mismatch is categorized as an Address breakpoint. Breakpoints that are programmed to match on anything else are categorized as Context breakpoints.

When a debugger programs a breakpoint to be an Address or a Context breakpoint, it must also program that breakpoint so that it is either:
• Used in isolation. In this case, the breakpoint is called an Unlinked breakpoint.
• Enabled for linking to another breakpoint. In this case, the breakpoint is called a Linked breakpoint.

By linking an Address breakpoint and a Context breakpoint together, the debugger can create a breakpoint pair that only generates a Breakpoint exception if the PE is in a particular context when an instruction address match or mismatch occurs. For example, a debugger might:

1. Program breakpoint number one to be a Linked Address Match breakpoint.
2. Program breakpoint number five to be a **Linked Context ID Match breakpoint**.

3. Link these two breakpoints together. A Breakpoint exception is only generated if both the instruction address matches and the Context ID matches.

The **Breakpoint Type** field for a breakpoint, `DBGBCR<n>.BT`, controls the breakpoint type and whether the breakpoint is enabled for linking. If BT[0] is 1, the breakpoint is enabled for linking.

Address breakpoints can be programmed to generate Breakpoint exceptions on addresses that are halfword-aligned but not word-aligned. This makes it possible to breakpoint on T32 instructions. See *Specifying the halfword-aligned address that an Address breakpoint matches on* on page G2-5882.

Rules for linking breakpoints

The rules for breakpoint linking are as follows:

- Only Linked breakpoint types can be linked.

- Any type of Linked Address breakpoint can link to any type of Linked Context breakpoint. The **Linked Breakpoint Number** field, `DBGBCR<n>.LBN`, for the Linked Address breakpoint specifies the particular Linked Context breakpoint that the Linked Address breakpoint links to, and:
 - `DBGBCR<n>.{SSC, HMC, PMC}` for the Linked Address breakpoint define the execution conditions that the breakpoint pair generates Breakpoint exceptions for. See *Execution conditions for which a breakpoint generates Breakpoint exceptions on* page G2-5880.
 - `DBGBCR<n>.{SSC, HMC, PMC}` for the Linked Context breakpoint are ignored.

- Linked Context breakpoint types can only be linked to. The LBN field for Context breakpoints is therefore ignored.

- Linked Address breakpoints cannot link to watchpoints. The LBN field can therefore only specify another breakpoint.

- If a Linked Address breakpoint links to a breakpoint that is not context-aware, the behavior of the Linked Address breakpoint is **CONSTRAINED UNPREDICTABLE**. See *Other usage constraints for Address breakpoints on* page G2-5892.

- If a Linked Address breakpoint links to an Unlinked Context breakpoint, the Linked Address breakpoint never generates any Breakpoint exceptions.

- Multiple Linked Address breakpoints can link to a single Linked Context breakpoint.

 Note

 Multiple Linked watchpoints can also link to a single Linked Context breakpoint. *Watchpoint exceptions on* page G2-5895 describes watchpoints.

These rules mean that a single Linked Context breakpoint might be linked to by all, or any combination of, the following:

- Multiple Linked Address Match breakpoints.
- Multiple Linked Address Mismatch breakpoints.
- Multiple Linked watchpoints.

It is also possible that a Linked Context breakpoint might have no breakpoints or watchpoints linked to it. *Figure G2-1 on* page G2-5873 shows an example of permitted breakpoint and watchpoint linking.
Figure G2-1 The role of linking in Breakpoint and Watchpoint exception generation

In Figure G2-1, each Linked Address breakpoint can only generate a Breakpoint exception if the comparisons made by both it, and the Linked Context breakpoint that it links to, are successful. Similarly, each Linked watchpoint can only generate a Watchpoint exception if the comparisons made by both it, and the Linked Context breakpoint that it links to, are successful.

Breakpoint types defined by DBGBCRn.BT

The following list provides more detail about each breakpoint type:

0b0000, **Unlinked Address Match breakpoint**

Generation of a Breakpoint exception depends on both:

- **DBGBCR<n>.{SSC, HMC, PMC}**. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See *Execution conditions for which a breakpoint generates Breakpoint exceptions* on page G2-5880.

- A successful address match, as described in *Breakpoint instruction address comparisons* on page G2-5882.

DBGBCR<n>.LBN for this breakpoint is ignored.
0b0001, Linked Address Match breakpoint

Generation of a Breakpoint exception depends on all of the following:

- `DBGBCR<n>.{SSC, HMC, PMC}` for this breakpoint. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.
- A successful address match defined by this breakpoint, as described in Breakpoint instruction address comparisons on page G2-5882.
- A successful context match defined by the Linked Context breakpoint that this breakpoint links to.

`DBGBCR<n>.LBN` for this breakpoint selects the Linked Context breakpoint that this breakpoint links to.

0b0010, Unlinked Context ID Match breakpoint

`BT == 0b0010` is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

- `DBGBCR<n>.{SSC, HMC, PMC}`. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.
- A successful Context ID match, as described in Breakpoint context comparisons on page G2-5887.

The value of `DBGBVR<n>.ContextID` is compared with the current Context ID.

`CONTEXTIDR_EL2` holds the current Context ID when all of:

- The implementation includes FEAT_VHE.
- EL2 is implemented and enabled in the current Security state.
- EL2 using AArch64 and the value of `HCR_EL2.E2H` is 1.
- The PE is executing at EL0 and `HCR_EL2.TGE` is 1, or the PE is executing at EL2.

Otherwise, `CONTEXTIDR` holds the current Context ID.

`DBGBCR<n>.{LBN, BAS}` for this breakpoint are ignored.

0b0011, Linked Context ID Match breakpoint

`BT == 0b0011` is a reserved value if the breakpoint is not a context-aware breakpoint.

For context-aware breakpoints, either:

- This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or Linked watchpoints link to it.
- Generation of a Breakpoint exception depends on both:
 - A successful instruction address match, defined by a Linked Address breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page G2-5882.
 - A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

- Generation of a Watchpoint exception depends on both:
 - A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page G2-5899.
 - A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

The value of `DBGBVR<n>.ContextID` is compared with the current Context ID.

`CONTEXTIDR_EL2` holds the current Context ID when all of:

- The implementation includes FEAT_VHE.
- EL2 is implemented and enabled in the current Security state.
- EL2 using AArch64 and the value of `HCR_EL2.E2H` is 1.
• The PE is executing at EL0 and HCR_EL2.TGE is 1, or the PE is executing at EL2. Otherwise, CONTEXTIDR holds the current Context ID.

DBGBCR< n >. { LBN, SSC, HMC, BAS PMC } for this breakpoint are ignored.

0b0100, Unlinked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on both:

• DBGBCR< n >. { SSC, HMC, PMC }. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.

• A successful address mismatch, as described in Breakpoint instruction address comparisons on page G2-5882.

DBGBCR< n >.LBN for this breakpoint is ignored.

0b0101, Linked Address Mismatch breakpoint

Generation of a Breakpoint exception depends on all of the following:

• DBGBCR< n >. { SSC, HMC, PMC }. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.

• A successful address mismatch defined by this breakpoint, as described in Breakpoint instruction address comparisons on page G2-5882.

• A successful context match defined by the Linked Context breakpoint that this breakpoint links to.

DBGBCR< n >.LBN for this breakpoint selects the Linked Context breakpoint that this breakpoint links to.

0b0110, Unlinked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0110 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR< n >. { SSC, HMC, PMC }. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.

• A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The value of DBGBVR< n >.ContextID is compared with the Context ID value held in CONTEXTIDR or CONTEXTIDR_EL1.

DBGBCR< n >. { LBN, BAS } for this breakpoint are ignored.

0b0111, Linked CONTEXTIDR_EL1 Match breakpoint

BT == 0b0111 is a reserved value if either:

• The breakpoint is not a context-aware breakpoint.

• The implementation does not include FEAT_VHE.

For context-aware breakpoints, one of the following applies:

• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.

• Generation of a Breakpoint exception depends on both:

 — A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page G2-5882.
— A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

• Generation of a Watchpoint exception depends on both:
 — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page G2-5899.
 — A successful Context ID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

The Context ID check is made against the value in CONTEXTIDR, or CONTEXTIDR_EL1. The value of DBGBVR<n>.ContextID is compared with the Context ID value held in CONTEXTIDR or CONTEXTIDR_EL1.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1000, Unlinked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:
• The breakpoint is not a context-aware breakpoint.
• EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

• DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.
• A successful VMID match, as described in Breakpoint context comparisons on page G2-5887.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1001, Linked VMID Match breakpoint

BT == 0b1000 is a reserved value if either:
• The breakpoint is not a context-matching breakpoint.
• EL2 is not implemented.

For context-aware breakpoints, either:

• This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or Linked watchpoints link to it.
• Generation of a Breakpoint exception depends on both:
 — A successful instruction address match, defined by a Linked Address Match breakpoint that links to this breakpoint. See Breakpoint instruction address comparisons on page G2-5882.
 — A successful VMID match defined by this breakpoint.
• Generation of a Watchpoint exception depends on both:
 — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page G2-5899.
 — A successful VMID match defined by this breakpoint, as described in Breakpoint context comparisons on page G2-5887.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1010, Unlinked Context ID and VMID Match breakpoint

BT == 0b1010 is a reserved value if either:
• The breakpoint is not a context-matching breakpoint.
• EL2 is not implemented.
For context-matching breakpoints, generation of a Breakpoint exception depends on all of the following:

- \textbf{DBGBCR}_n\{SSC, HMC, PMC\}. These define the execution conditions that the breakpoint generates Breakpoint exceptions for. See \textit{Execution conditions for which a breakpoint generates Breakpoint exceptions} on page G2-5880.
- A successful Context ID match, as described in \textit{Breakpoint context comparisons} on page G2-5887.
- A successful VMID match.

The value of \texttt{DBGBVR}_n/.ContextID is compared with CONTEXTIDR. \textit{Breakpoint context comparisons} on page G2-5887 describes the requirements for a successful Context ID match and a successful VMID match.

\textbf{DBGBCR}_n\{LBN, BAS\} for this breakpoint are ignored.

\textbf{0b1011, Linked Context ID and VMID Match breakpoint}

\texttt{BT == 0b1011} is a reserved value if either:

- The breakpoint is not a context-matching breakpoint.
- EL2 is not implemented.

For context-matching breakpoints, either:

- This breakpoint does not generate any Breakpoint exceptions, if no Linked breakpoints or Linked watchpoints link to it.
- Generation of a Breakpoint exception depends on all of the following:
 - A successful instruction address match, defined by a Linked Address breakpoint that links to this breakpoint, see \textit{Breakpoint instruction address comparisons} on page G2-5882.
 - A successful Context ID match defined by this breakpoint, as described in \textit{Breakpoint context comparisons} on page G2-5887.
 - A successful VMID match defined by this breakpoint.

- Generation of a Watchpoint exception depends on all of the following:
 - A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see \textit{Watchpoint data address comparisons} on page G2-5899.
 - A successful Context ID match defined by this breakpoint, as described in \textit{Breakpoint context comparisons} on page G2-5887.
 - A successful VMID match defined by this breakpoint.

The value of \texttt{DBGBVR}_n/.ContextID is compared with CONTEXTIDR. \textit{Breakpoint context comparisons} on page G2-5887 describes the requirements for a successful Context ID match and a successful VMID match by this breakpoint.

\textbf{DBGBCR}_n\{LBN, SSC, HMC, BAS, PMC\} for this breakpoint are ignored.

\textbf{0b1100, Unlinked CONTEXTIDR_EL2 Match breakpoint}

\texttt{BT == 0b1100} is a reserved value if:

- The breakpoint is not a context-aware breakpoint.
- \texttt{FEAT_VHE} is not implemented and \texttt{FEAT_Debugv8p2} is not implemented, which means the implementation does not include CONTEXTIDR_EL2.
- EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

- \textbf{DBGBCR}_n\{SSC, HMC, PMC\}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.
- A successful CONTEXTIDR_EL2 match. The value of \texttt{DBGBVR}_n/.ContextID2 is compared with the Context ID value held in CONTEXTIDR_EL2, as described in \textit{Breakpoint context comparisons} on page G2-5887.
The check against CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

--- Note ---

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

--- ---

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1101, Linked CONTEXTIDR_EL2 Match

BT == 0b1101 is a reserved value if:

- The breakpoint is not a context-aware breakpoint.
- FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.
- EL2 is not implemented.

For context-aware breakpoints, either:

- If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.
- Generation of a Breakpoint exception depends on both:
 - A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page G2-5882.
 - A successful CONTEXTIDR_EL2 match, as described in Breakpoint context comparisons on page G2-5887.

- Generation of a Watchpoint exception depends on both:
 - A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page G2-5899.
 - A successful CONTEXTIDR_EL2 match. The value of DBGBVR<n>.ContextID2 is compared with the Context ID value held in CONTEXTIDR_EL2, as described in Breakpoint context comparisons on page G2-5887.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

--- Note ---

The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

--- ---

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

0b1110, Unlinked Full Context ID Match breakpoint

BT == 0b1110 is a reserved value if:

- The breakpoint is not a context-aware breakpoint.
- FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.
- EL2 is not implemented.

For context-aware breakpoints, generation of a Breakpoint exception depends on both:

- DBGBCR<n>.{SSC, HMC, PMC}. These define the execution conditions for which the breakpoint generates Breakpoint exceptions.
- A successful Context ID match, as described in Breakpoint context comparisons on page G2-5887.

The Context ID check is made by checking both:

- The value of DBGBVR<n>.ContextID against the value in CONTEXTIDR, or CONTEXTIDR_EL1.
• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means this breakpoint can be generated only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, BAS} for this breakpoint are ignored.

0b1111, Linked Full Context ID Match breakpoint

BT == 0b1111 is a reserved value if:
• The breakpoint is not a context-aware breakpoint.
• FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, which means the implementation does not include CONTEXTIDR_EL2.
• EL2 is not implemented.

For context-aware breakpoints, one of the following applies:
• If no Linked breakpoints or Linked watchpoints link to this breakpoint, then the breakpoint does not generate any Breakpoint exceptions.
• Generation of a Breakpoint exception depends on both:
 — A successful instruction address match, defined by a Linked Address match breakpoint that links to this breakpoint, see Breakpoint instruction address comparisons on page G2-5882.
 — A successful Context ID match, as described in Breakpoint context comparisons on page G2-5887.
• Generation of a Watchpoint exception depends on both:
 — A successful data address match, defined by a Linked watchpoint that links to this breakpoint, see Watchpoint data address comparisons on page G2-5899.
 — A successful Context ID match, as described in Breakpoint context comparisons on page G2-5887.

The Context ID check is made by checking both:
• The value of DBGVR<n>.ContextID against the value in CONTEXTIDR, or CONTEXTIDR_EL1.
• The value of DBGBXVR<n>.ContextID2 against the value in CONTEXTIDR_EL2.

Both comparisons must match for the check to succeed.

The check against the CONTEXTIDR_EL2 means the breakpoint or watchpoint can be generated only if EL2 is implemented and enabled in the current Security state and EL2 is using AArch64.

Note
The operation of this breakpoint does not depend on the value of HCR_EL2.E2H.

DBGBCR<n>.{LBN, SSC, HMC, BAS, PMC} for this breakpoint are ignored.

Note
See Reserved DBGBCR<n>.BT values on page G2-5890 for the behavior of breakpoints programmed with reserved BT values.
G2.9.3 Execution conditions for which a breakpoint generates Breakpoint exceptions

Each breakpoint can be programmed so that it only generates Breakpoint exceptions for certain execution conditions. For example, a breakpoint might be programmed to generate Breakpoint exceptions only when the PE is executing at PL0 in Secure state.

\(\text{DBGBCR}<n>\).{SSC, HMC, PMC} define the execution conditions the breakpoint generates Breakpoint exceptions for, as follows:

Security State Control, SSC

Controls whether the breakpoint generates Breakpoint exceptions only in Secure state, only in Non-secure state, or in both Security states.

--- **Note** ---

This is determined by the Security state of the PE, not from the NS attribute returned by the translation of the virtual address on which the breakpoint is set.

Higher Mode Control, HMC, and Privileged Mode Control, PMC

HMC and PMC together control which AArch32 modes the breakpoint generates Breakpoint exceptions in.

Table G2-10 shows the valid combinations of the values of HMC, SSC, and PMC, and for each combination shows which Privilege levels breakpoints generate Breakpoint exceptions in.

In the table:

- **Y** Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row can generate Breakpoint exceptions in AArch32 modes at that Privilege level.
- **-** Means that a breakpoint programmed with the values of HMC, SSC and PMC shown in that row cannot generate Breakpoint exceptions in AArch32 modes at that Privilege level.
- **Res** Means that the combination of HMC, SSC, and PMC is reserved. See *Reserved DBGBCR<n>.{SSC, HMC, PMC} values* on page G2-5891.

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PMC</th>
<th>Security state the breakpoint is programmed to match in</th>
<th>PL2(^a)</th>
<th>PL1</th>
<th>PL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Both</td>
<td>-</td>
<td>Y(^b)</td>
<td>Y</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>01</td>
<td>00</td>
<td>00</td>
<td>Non-Secure</td>
<td>-</td>
<td>Y(^b)</td>
<td>Y</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>00</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table G2-10 Summary of breakpoint HMC, SSC, and PMC encodings (continued)

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PMC</th>
<th>Security state the breakpoint is programmed to match in</th>
<th>PL2<sup>a</sup></th>
<th>PL1</th>
<th>PL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>00</td>
<td>Secure</td>
<td>-</td>
<td>Y<sup>b</sup></td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td></td>
<td>-</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td></td>
<td>-</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01</td>
<td>Secure</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00</td>
<td>Non-secure</td>
<td>Y</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>01</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>01</td>
<td>Secure</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>00</td>
<td>Both</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>01</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

^a Debug exceptions are not generated at PL2 using AArch32. This means that these combinations of HMC, SSC, and PMC are only relevant if breakpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC, and PMC that generate Breakpoint exceptions at PL2 using AArch32.

^b Only in User, System and Supervisor modes.

All combinations of HMC, SSC, and PMC that this table does not show are reserved. See *Reserved HMC, SSC, and PMC combinations* on page G2-5891.
G2.9.4 Breakpoint instruction address comparisons

Address comparisons are made for each instruction in the program flow. The following subsections describe the criteria for a successful address comparison, for:

- **Address Match breakpoints**.
- **Address Mismatch breakpoints**.

Address Match breakpoints

An address match comparison is successful if both:

- Bits [31:2] of the current instruction virtual address are equal to DBGBVR<n>[31:2].
- The word or halfword selected by DBGBCR<n>.BAS matches. That is, either:
 - DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is at a word-aligned address.
 - DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is not at a word-aligned address.

See [Specifying the halfword-aligned address that an Address breakpoint matches on](#).

Note

DBGBVR<n>[1:0] are RES0 and are ignored.

Address Mismatch breakpoints

An address mismatch comparison is successful if either:

- Bits [31:2] of the current instruction virtual address are not equal to DBGBVR<n>[31:2].
- The word or halfword selected by DBGBCR<n>.BAS does not match. That is, either:
 - DBGBCR<n>.BAS is programmed with 0b0011 or 0b1111, and the instruction is not at a word-aligned address.
 - DBGBCR<n>.BAS is programmed with 0b1100, and the instruction is at a word-aligned address.

See [Specifying the halfword-aligned address that an Address breakpoint matches on](#).

Note

- DBGBVR<n>[1:0] are RES0 and are ignored.
- Address Mismatch breakpoints can be used to single-step through code. See [Using an Address Mismatch breakpoint to single-step an instruction](#) on page G2-5888.

Specifying the halfword-aligned address that an Address breakpoint matches on

For an Address breakpoint, a debugger can use the Byte Address Selection field, DBGBCR<n>.BAS, so that the address comparison is successful on one of:

- The whole word starting at address DBGBVR<n>[31:2]:00.
- The halfword starting at address DBGBVR<n>[31:2]:00.
- The halfword starting at address ((DBGBVR<n>[31:2]:00) + 2).

Note

The address programmed into the DBGBVR<n> must be word-aligned.
DBGBCR<\textless;n\textgreater;.BAS can be used in both Address Match breakpoints and Address Mismatch breakpoints, as follows:

- For an Address Match breakpoint, DBGBCR<\textless;n\textgreater;.BAS selects which halfword-aligned address the breakpoint must generate a Breakpoint exception for. This means that an address comparison is successful only if both of the following match:
 - The instruction address held in bits [31:2] of the DBGBVR<\textless;n\textgreater>.
 - The halfword defined by the BAS field.

That is, a successful address comparison = DBGBVR<\textless;n\textgreater>[31:2] match AND BAS match.

- For an Address Mismatch breakpoint, DBGBCR<\textless;n\textgreater;.BAS selects which halfword-aligned address the breakpoint must not generate a Breakpoint exception for. This means that an address comparison is successful if either or both of the following do not match:
 - The instruction address held in bits [31:2] of the DBGBVR<\textless;n\textgreater>.
 - The halfword defined by the BAS field.

That is, a successful address comparison = NOT (DBGBVR<\textless;n\textgreater>[31:2] match AND BAS match).

The following subsections show the supported BAS values:

- **Using the BAS field in Address Match breakpoints.**
- **Using the BAS field in Address Mismatch breakpoints** on page G2-5885.

For Context breakpoints, DBGBCR<\textless;n\textgreater;.BAS is RES1 and is ignored.

Using the BAS field in Address Match breakpoints

The supported BAS values are:

\begin{itemize}
 \item **0b0000**
 This value is reserved. Behavior is a CONSTRAINED UNPREDICTABLE choice of:
 - The breakpoint is disabled.
 - The breakpoint behaves as if BAS is 0b0011, 0b1100, or 0b1111.

 \item **0b0011**
 The breakpoint generates a Breakpoint exception if an instruction with an address described as follows is committed for execution:
 - Bits [31:2] of the address equals DBGBVR<\textless;n\textgreater>[31:2].
 - Bits [1:0] of the address are 0b00.

 This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for all of the following:
 - 32-bit T32 instructions at word-aligned addresses.
 - 16-bit T32 instructions at word-aligned addresses.
 - A32 instructions. These are always at word-aligned addresses.

 However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

 It is CONSTRANDED UNPREDICTABLE whether a breakpoint programmed with this BAS value generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the halfword-aligned address (DBGBVR<\textless;n\textgreater>[31:2].00) - 2).

 \item **0b1100**
 The breakpoint generates a Breakpoint exception if an instruction with an address described as follows is committed for execution:
 - Bits [31:2] of the address equals DBGBVR<\textless;n\textgreater>[31:2].
 - Bits [1:0] of the address are 0b10.

 This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for both of the following:
 - 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.
 - 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.

 It is CONSTRANDED UNPREDICTABLE whether a breakpoint programmed with this BAS value generates a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction starting at a word-aligned address.
\end{itemize}
The breakpoint generates a Breakpoint exception if an instruction with an address described as follows is committed for execution:

- Bits [31:2] of the address equals DBGBVR<\text{n}>[31:2].
- Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value generate Breakpoint exceptions for all of the following:

- 32-bit T32 instructions at word-aligned addresses.
- 16-bit T32 instructions at word-aligned addresses.
- A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

It is \text{CONSTRAINED UNPREDICTABLE} whether a breakpoint programmed with this BAS value generates a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the halfword-aligned address ((DBGBVR<\text{n}>[31:2]:00) - 2).

It is \text{CONSTRAINED UNPREDICTABLE} whether a breakpoint programmed with this BAS value generates a Breakpoint exception on a 32-bit T32 instruction or a 16-bit T32 instruction at the halfword-aligned address ((DBGBVR<\text{n}>[31:2]:00) + 2).

All other BAS values are reserved. For these reserved other values, DBGBCR<\text{n}>.BAS[3,1] ignore writes and read the same values as DBGBCR<\text{n}>[2,0] respectively. This means that the smallest instruction size a debugger can program breakpoints to match on is a halfword.

Figure G2-2 on page G2-5885 shows a summary of when breakpoints programmed with particular BAS values generate Breakpoint exceptions.

The figure contains four parts:

- A column showing the row number, on the left.
- An instruction set and instruction size table.
- A location of instruction figure.
- A BAS field values table, on the right.

To use the figure, read across the rows. For example:

- Row 2 shows that a breakpoint with a BAS value of 0b1100 generates Breakpoint exceptions for 16-bit T32 instructions starting at the halfword-aligned address ((DBGBVR<\text{n}>[31:2]:00) + 2).
- Row 6 shows that a breakpoint with a BAS value of either 0b0011 or 0b1111 generates Breakpoint exceptions for A32 instructions. A32 instructions are always at word-aligned addresses.

In the figure:

\begin{itemize}
 \item \textbf{Yes} \quad Means that the breakpoint generates a Breakpoint exception.
 \item \textbf{No} \quad Means that the breakpoint does not generate a Breakpoint exception.
 \item \textbf{UNP} \quad Means that it is \text{CONSTRAINED UNPREDICTABLE} whether the breakpoint generates a Breakpoint exception. See \emph{Other usage constraints for Address breakpoints} on page G2-5892.
\end{itemize}
Using the BAS field in Address Mismatch breakpoints

An Address Mismatch breakpoint generates Breakpoint exceptions for all instructions committed for execution, except the instruction whose address the breakpoint is programmed to match.

The supported BAS values are:

0b0000
The breakpoint ignores the address held in the DBGBVR<n> and generates Breakpoint exceptions for all instruction addresses.

0b0011
The breakpoint does not generate a Breakpoint exception if an instruction with an address described as follows is committed for execution:

- Bits [31:2] of the address equals DBGBVR<n>[31:2].
- Bits [1:0] of the address are 0b00.

This means that breakpoints programmed with this BAS value do not generate Breakpoint exceptions for any of the following:

- 32-bit T32 instructions at word-aligned addresses.
- 16-bit T32 instructions at word-aligned addresses.
- A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for T32 instructions.

It is **CONSTRAINED UNPREDICTABLE** whether a breakpoint programmed with this BAS value does not generate a Breakpoint exception on the second halfword of a 32-bit T32 instruction starting at the halfword-aligned address ((DBGBVR<n>[31:2]:00) - 2).

0b1100
The breakpoint does not generate a Breakpoint exception if an instruction with an address described as follows is committed for execution:

- Bits [31:2] equals DBGBVR<n>[31:2].
- Bits [1:0] of the address are 0b10.

This means that breakpoints programmed with this BAS value do not generate Breakpoint exceptions for either of the following:

- 32-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.
- 16-bit T32 instructions at addresses that are halfword-aligned but not word-aligned.
It is CONSTRAINED UNPREDICTABLE whether a breakpoint programmed with this BAS value does not generate a Breakpoint exception on the second halfword of a 32-bit T32 or A32 instruction at a word-aligned address.

\(\text{0b1111} \)

The breakpoint does not generate a Breakpoint exception if an instruction with an address described as follows is committed for execution:
- Bits \([31:2]\) of the address equals \(\text{DBGBVR}<n>[31:2]\).
- Bits \([1:0]\) of the address are \(\text{0b00}\).

This means that breakpoints programmed with this BAS value do not generate Breakpoint exceptions for any of the following:
- 32-bit T32 instructions at word-aligned addresses.
- 16-bit T32 instructions at word-aligned addresses.
- A32 instructions. These are always at word-aligned addresses.

However, Arm recommends that a debugger uses this BAS value only for A32 instructions.

All other BAS values are reserved. For these reserved other values, \(\text{DBGBCR}<n>\).BAS[3,1] ignore writes and read the same values as \(\text{DBGBCR}<n>[2,0]\) respectively. This means that the smallest instruction size that a breakpoint can never generate a Breakpoint exception for is a halfword.

Figure G2-3 on page G2-5887 shows a summary of when breakpoints programmed with particular BAS values generate Breakpoint exceptions.

The figure contains four parts:
- A column showing the row number, on the left.
- An instruction set and instruction size table.
- A location of instruction figure.
- A BAS field values table, on the right.

To use the figure, read across the rows. For example:
- Row 1 shows that a breakpoint with a BAS value of \(\text{0b1100}\) generates Breakpoint exceptions for 16-bit T32 instructions starting at the word-aligned address held in the \(\text{DBGBVR}<n>\).
- Row 5 shows that a breakpoint with a BAS value of \(\text{0b0011}\) generates Breakpoint exceptions for 32-bit T32 instructions starting at the word-aligned address held in the \(\text{DBGBVR}<n>\).

In the figure:
- **Yes** Means that the breakpoint does generate a Breakpoint exception.
- **No** Means that the breakpoint does not generate a Breakpoint exception.
- **UNP** Means that it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint exception. See Other usage constraints for Address breakpoints on page G2-5892.
Figure G2-3 Summary of BAS field meanings for Address Mismatch breakpoints

G2.9.5 Breakpoint context comparisons

The breakpoint type defined by DBGBCR<n>.BT determines what context comparison is required, if any.

Table G2-11 shows the BT values that require a comparison, and the match required for the comparison to be successful.

Table G2-11 Breakpoint Context ID and VMID comparison tests

<table>
<thead>
<tr>
<th>DBGBCR<n>.BT</th>
<th>Test required for successful context comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b001x</td>
<td>• When FEAT_VHE is implemented, EL2 is using AArch64, the Effective value of HCR_EL2.E2H is 1, and either the PE is executing at EL0 with HCR_EL2.TGE set to 1, or the PE is executing at EL2, CONTEXTIDR_EL2 must match the DBGVR<n>. ContextID value.
• Otherwise, CONTEXTIDR must match the DBGVR<n>. ContextID value.</td>
</tr>
<tr>
<td>0b011x</td>
<td>CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGVR<n>. ContextID value.</td>
</tr>
<tr>
<td>0b100x</td>
<td>VTTBR.VMID must match the DBGXVR<n>. VMID value.</td>
</tr>
<tr>
<td>0b101x</td>
<td>CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGVR<n>. ContextID value, and VTTBR.VMID must match the DBGXVR<n>. VMID value.</td>
</tr>
<tr>
<td>0b110x</td>
<td>CONTEXTIDR_EL2 must match the DBGXVR<n>. ContextID2 value.</td>
</tr>
<tr>
<td>0b111x</td>
<td>Both:
• CONTEXTIDR, or CONTEXTIDR_EL1, must match the DBGVR<n>. ContextID value.
• CONTEXTIDR_EL2 must match the DBGXVR<n>. ContextID2 value.</td>
</tr>
</tbody>
</table>

No context comparison is required for other valid DBGBCR<n>.BT values.

Context breakpoints do not generate Breakpoint exceptions when any of:

• The comparison uses the value of CONTEXTIDR, or CONTEXTIDR_EL1, and any of:
 — The PE is executing at EL3 using AArch64.
 — The PE is executing at EL2.
 — FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current Security state, and HCR_EL2.E2H, TGE = {1, 1}.

• The comparison uses the value of CONTEXTIDR_EL2 and any of:
 — Neither FEAT_VHE is implemented, nor FEAT_Debugv8p2 is implemented.
EL2 is either not implemented or not enabled in the current Security state.
EL2 is using AArch32.

- The comparison uses the current VMID value and any of:
 - EL2 is not implemented.
 - EL2 is either not implemented or not enabled in the current Security state.
 - The PE is executing at EL2.
 - FEAT_VHE is implemented, EL2 is using AArch64, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H, TGE} == \{1, 1\}.

--- Note ---

- For all Context breakpoints, DBGBCR<n>.BAS is RES1 and is ignored.
- For Linked Context breakpoints, DBGBCR<n>.{LBN, SSC, HMC, PMC} are RES0 and are ignored.

G2.9.6 Using breakpoints

This section contains the following:

- Using an Address Mismatch breakpoint to single-step an instruction.
- ITD control effects on address breakpoints on the first instruction in an IT block on page G2-5889.
- Breakpoint usage constraints on page G2-5890.

Using an Address Mismatch breakpoint to single-step an instruction

In execution conditions that an Address Mismatch breakpoint matches, defined by DBGBCR<n>.{LBN, SSC, PMC}, the breakpoint generates Breakpoint exceptions for all instructions committed for execution, except the instruction whose address the breakpoint is programmed with. Figure G2-4 shows an example of Address Mismatch breakpoint operation, for an Address Mismatch breakpoint programmed with address 0x1014.

![Figure G2-4 Operation of an Address Mismatch breakpoint](image)

This means that an Address Mismatch breakpoint can be used to single-step an instruction.

In the example shown in Figure G2-4:

- If the target of a branch is an instruction other than the instruction at address 0x1014, the breakpoint generates a Breakpoint exception when the instruction is committed for execution.
- If the target of a branch is the instruction at address 0x1014, the PE executes the instruction at 0x1014 and the breakpoint does not generate a Breakpoint exception until the instruction at address 0x1018 is committed for execution. The instruction at address 0x1014 is therefore single-stepped.
However, if the instruction at 0x1014 generates a synchronous exception, or if the PE takes an asynchronous exception while the instruction is being stepped, the breakpoint is evaluated again after taking the exception. This means that behavior is as follows:

— If the exception handler executes in execution conditions that the breakpoint matches, the breakpoint generates a Breakpoint exception for the exception vector, because the exception vector is not address 0x1014. This means that software execution steps into the exception.

— If the exception handler executes in execution conditions that the breakpoint does not match, the breakpoint does not generate any Breakpoint exceptions after the PE has taken the exception, until the exception handler completes and executes an exception return instruction. The effect is to step over the exception. Whether the instruction is stepped again depends on whether the target of the exception return instruction is the instruction at 0x1014 or the instruction at 0x1018.

If the instruction at 0x1014 is single-stepped and branches to itself, it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint exception after the PE has executed the branch.

This means that an instruction is only single-stepped if it is the target of a branch instruction and its address matches the address the breakpoint is programmed for. In the example shown in Figure G2-4 on page G2-5888, this is 0x1014.

Usually this branch instruction is an exception return instruction that changes PE mode, branching from a PE mode in which the breakpoint does not generate a Breakpoint exception. A branch instruction that does not change PE mode would itself generate a Breakpoint exception. However, it might be a branch-to-self instruction as described above.

Because Address Mismatch breakpoints can single-step instructions, the behavior of an address mismatch Breakpoint exception is similar to the behavior of an AArch64 Software Step exception.

--- Note ---

• The example shown in Figure G2-4 on page G2-5888 assumes an A32 instruction. The same behavior applies for both 32-bit and 16-bit T32 instructions.

• Software Step exceptions are the highest priority synchronous exception. Breakpoint exceptions are lower priority. See Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

ITD control effects on address breakpoints on the first instruction in an IT block

In an implementation that supports the ITD control, if the value of the ITD field that applies to the current Exception level is 1, all of the following are true:

• An IT instruction can only be used to apply to one 16-bit T32 instruction.

• Only certain combinations of an IT instruction and second single 16-bit T32 instruction are permitted.

• For a permitted combination, it is IMPLEMENTATION DEFINED whether the implementation treats the combination as:
 — A pair of 16-bit instructions.
 — One 32-bit instruction.

If the implementation treats the combination as one 32-bit instruction, then as described in Other usage constraints for Address breakpoints on page G2-5892, an Address breakpoint might not generate a Breakpoint exception for an address match only on the second halfword of the instruction.

For this reason, if the ITD bit associated with the current Exception level is 1, Arm recommends that a debugger that wants to program a breakpoint to match on the second T32 instruction programs it to match on the IT instruction instead.

However, if returning from an exception whose preferred return address is the address of the second T32 instruction, then because the debugger is aware that the implementation has treated the combination as a pair of 16-bit instructions, the debugger is permitted to program the breakpoint to match on the second T32 instruction.

The ITD control fields are:

HSCTLR.ITD Applies to execution at EL2 when EL2 is using AArch32.
Breakpoint usage constraints

See the following sections:
- *Reserved DBGBCR<n>.BT values*.
- *Reserved DBGBCR<n>.{SSC, HMC, PMC} values* on page G2-5891.
- *Reserved DBGBCR<n>.BAS values* on page G2-5891.
- *Reserved DBGBCR<n>.LBN values* on page G2-5892.
- *Other usage constraints for Address breakpoints* on page G2-5892.
- *Other usage constraints for Context breakpoints* on page G2-5892.

Reserved DBGBCR<n>.BT values

Table G2-12 shows when particular DBGBCR<n>.BT values are reserved.

<table>
<thead>
<tr>
<th>BT value</th>
<th>Breakpoint type</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b001x</td>
<td>Context ID Match</td>
<td>If the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b010x</td>
<td>Address Mismatch</td>
<td>If EDSCR.HDE is 1 and halting is allowed</td>
</tr>
<tr>
<td>0b011x</td>
<td>CONTEXTIDR_EL1 Match</td>
<td>If FEAT_VHE is not implemented, or the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b100x</td>
<td>VMID Match</td>
<td>If EL2 is not implemented, or the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b101x</td>
<td>Context ID and VMID Match</td>
<td></td>
</tr>
<tr>
<td>0b110x</td>
<td>CONTEXTIDR_EL2 Match</td>
<td>If FEAT_VHE is not implemented and FEAT_Debugv8p2 is not implemented, or if the breakpoint is not context-aware</td>
</tr>
<tr>
<td>0b111x</td>
<td>Full Context ID Match</td>
<td></td>
</tr>
</tbody>
</table>

Note

For these BT values, breakpoints are not generated if EL2 is using AArch32.

If a breakpoint is programmed with one of these reserved BT values:

- The breakpoint must behave as if it is either:
 - Disabled.
 - Programmed with a BT value that is not reserved, other than for a direct or external read of DBGBCR<n>.

- For a direct or external read of DBGBCR<n>, if the reserved BT value:
 - Has no function for any execution conditions, the value read back is **UNKNOWN**.
 - Has a function for execution conditions other than the current execution conditions, the value read back is the value written. This permits software to save and restore the BT value so that the breakpoint functions for the other execution conditions.
The behavior of breakpoints with reserved BT values might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGBCR<\textit{n}.\{SSC, HMC, PMC\} values

Table G2-13 shows when particular combinations of DBGBCR<\textit{n}.\{SSC, HMC, PMC\} are reserved in stage 1 of an AArch32 translation regime.

<table>
<thead>
<tr>
<th>HMC, SSC, and PMC combination</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combinations with SSC set to $0b01$ or $0b10$, except for the combination with HMC set to 1, SSC set to $0b01$ and PMC set to $0b00$</td>
<td>When EL3 is not implemented and EL2 is implemented.</td>
</tr>
<tr>
<td>Any combination where HMC or SSC is nonzero</td>
<td>When both of EL2 and EL3 are not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to $0b11$, and PMC set to $0b00$</td>
<td>When EL2 is not implemented</td>
</tr>
<tr>
<td>The combinations with SSC set to $0b11$ and PMC set to $0b01$ or $0b11$</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to $0b01$ and PMC set to $0b00$</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>Combinations not included in Table G2-10 on page G2-5880</td>
<td>Always</td>
</tr>
</tbody>
</table>

For all breakpoints except Linked Context breakpoints, if a breakpoint is programmed with one of these reserved combinations:

- If the reserved combination has a function for other execution conditions:
 - The breakpoint must behave as if it is disabled.
 - A direct or external read of DBGBCR<\textit{n}.\{SSC, HMC, PMC\} returns the values written. This means that software can save and restore the combination so that the breakpoint can function for the other execution conditions.

- If the reserved combination does not have a function for other execution conditions:
 - It must behave either as if it is programmed with a combination that is not reserved or as if it is disabled.
 - A direct or external read of DBGBCR<\textit{n}.\{SSC, HMC, PMC\} returns UNKNOWN values.

If the breakpoint is a Linked Context breakpoint, then:

- The values of HMC, SSC, and PMC are ignored.
- A direct or external read of DBGBCR<\textit{n}.\{SSC, HMC, PMC\} returns UNKNOWN values

The behavior of breakpoints with reserved combinations of HMC, SSC, and PMC might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGBCR<\textit{n}.BAS values

For all Context breakpoints

DBGBCR<\textit{n}.BAS is RES1 and is ignored.

For all Address breakpoints

The supported values of the BAS field for the Address Match and Address Mismatch breakpoints are shown in *Specifying the halfword-aligned address that an Address breakpoint matches on* on page G2-5882.

If a breakpoint is programmed with a reserved BAS value:

- The breakpoint must behave as if it is either:
 - Disabled.
— Programmed with a BAS value that is not reserved, other than for a direct or external read of DBGBCR<n>.

- A direct or external read of DBGBCR<n>.BAS returns an UNKNOWN value.

Software must not rely on these properties as the behavior of reserved values might change in a future revision of the architecture.

Reserved DBGBCR<n>.LBN values

For all Context breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

For Linked Address breakpoints

A Linked Address breakpoint must link to a context-aware breakpoint. For a Linked Address breakpoint, any DBGBCR<n>.LBN value that is not for a context-aware breakpoint is reserved. If a Linked Address breakpoint links to a breakpoint that is not implemented, or that is not context-aware, then reads of DBGBCR<n>.LBN return an unknown value and the behavior is CONSTRAINED UNPREDICTABLE. The Linked Address breakpoint behaves as if it is either:

- Disabled.
- Linked to an UNKNOWN context-aware breakpoint.

If a Linked Address breakpoint that links to a breakpoint that is implemented and that is context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked Address breakpoints

DBGBCR<n>.LBN reads UNKNOWN and its value is ignored.

Other usage constraints for Address breakpoints

For all Address breakpoints

- DBGBVR<n>[1:0] are RES0 and are ignored.
- The DBGBXVR<n> is ignored.

For Address Match breakpoints

- For 32-bit instructions, if a breakpoint matches on the address of the second halfword but not the address of the first halfword, it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint exception.
- If DBGBCR<n>.BAS is 0b1111, it is CONSTRAINED UNPREDICTABLE whether the breakpoint generates a Breakpoint exception for a T32 instruction starting at address ((DBGBVR<n>[31:2];00) + 2). For T32 instructions, Arm recommends that the debugger programs the BAS field with either 0b0011 or 0b1100.

For Address Mismatch breakpoints

The constraints are the same as those described in **For Address Match breakpoints**, except that if two Address Mismatch breakpoints are programmed to match in the same Exception level and Security state, it is CONSTRAINED UNPREDICTABLE whether or not the instruction is stepped or a Breakpoint debug even is generated.

Other usage constraints for Context breakpoints

For all Context breakpoints

Any bits of DBGBVR<n> and DBGBXVR<n> that are not used to specify Context ID or VMID are RES0 and are ignored.
Note

This means that for Context ID Match breakpoints, the DBGBXVR<i> is RES0 and is ignored, and for VMID Match breakpoints, the DBGBVR<i> is RES0 and is ignored.

For Linked Context breakpoints

If no Linked Address breakpoints or Linked Watchpoints link to a Linked Context breakpoint, the Linked Context breakpoint does not generate any Breakpoint exceptions.

G2.9.7 Exception syndrome information and preferred return address for a Breakpoint exception

See the following:

- Exception syndrome information for a Breakpoint exception.
- Preferred return address for a Breakpoint exception on page G2-5894.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Breakpoint exception

The PE takes a Breakpoint exception as either:

- A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.
- A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

- DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.
- IFSR.FS to the code for a debug exception, 0b00010.
- The IFAR with an UNKNOWN value.

Hyp mode

The PE does all of the following:

- Records information about the exception in the Hypervisor Syndrome Register, HSR. See Table G2-14.
- Sets DBGDSCRext.MOE to 0b0001, to indicate a Breakpoint exception.
- Sets the HIFAR to an unknown value.

Table G2-14 Information recorded in the HSR

<table>
<thead>
<tr>
<th>HSR field</th>
<th>Information recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception Class, EC</td>
<td>The PE sets this to the code for a Prefetch Abort exception routed to Hyp mode, 0x20.</td>
</tr>
<tr>
<td>Instruction Length, IL</td>
<td>The PE sets this to 1.</td>
</tr>
<tr>
<td>Instruction Specific Syndrome, ISS</td>
<td>RES0.</td>
</tr>
<tr>
<td>ISS[24:10]</td>
<td>External Abort type (EA). The PE sets this to 0.</td>
</tr>
<tr>
<td>ISS[9]</td>
<td>RES0.</td>
</tr>
<tr>
<td>ISS[8:6]</td>
<td>RES0.</td>
</tr>
<tr>
<td>ISS[5:0]</td>
<td>Instruction Fault Status Code (IFSC). The PE sets this to the code for a debug exception, 0b100010.</td>
</tr>
</tbody>
</table>
Note
For information about how debug exceptions can be routed to PL2, see Routing debug exceptions on page G2-5859.

Preferred return address for a Breakpoint exception

The preferred return address of a Breakpoint exception is the address of the instruction that was not executed because the PE took the Breakpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

G2.9.8 Pseudocode description of Breakpoint exceptions taken from AArch32 state

AArch32.BreakpointValueMatch() returns a pair of results:
- A result for Address Match and Context breakpoints.
- A result for Address Mismatch breakpoints.

AArch32.StateMatch() tests the values in DBGBCR<\n>.{SSC, HMC, PMC} and, if the breakpoint links to a Linked Context breakpoint, also tests the Linked Context breakpoint.

AArch32.BreakpointMatch() tests a committed instruction against all breakpoints.

AArch32.CheckBreakpoint() generates a FaultRecord. A Breakpoint exception is taken if all of the following are true:
- DBGDSCRext.MDBGen is 1.
- Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug exceptions from the current Privilege level and Security state on page G2-5861.
- All of the conditions required for Breakpoint exception generation are met. See About Breakpoint exceptions on page G2-5870.

Note
AArch32.CheckBreakpoint() might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckBreakpoint(), as described in Abort exceptions on page G4-5959. When a Breakpoint exception is taken to AArch32 state, the AArch32.Abort() function generates a Prefetch Abort exception.
G2.10 Watchpoint exceptions

This section describes Watchpoint exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:
- At EL1 or higher in an Exception level that is using AArch32.
- At EL0 using AArch32 when EL1 is using AArch32.

This section contains the following subsections:
- About Watchpoint exceptions.
- Watchpoint types and linking of watchpoints on page G2-5896.
- Execution conditions for which a watchpoint generates Watchpoint exceptions on page G2-5897.
- Watchpoint data address comparisons on page G2-5899.
- Determining the memory location that caused a Watchpoint exception on page G2-5902.
- Watchpoint behavior on other instructions on page G2-5903.
- Usage constraints on page G2-5904.
- Exception syndrome information and preferred return address on page G2-5906.
- Pseudocode description of Watchpoint exceptions taken from AArch32 state on page G2-5907.

G2.10.1 About Watchpoint exceptions

A watchpoint is an event that results from the execution of an instruction, based on a data address. Watchpoints are also known as data breakpoints.

A watchpoint operates as follows:

1. A debugger programs the watchpoint with a data address, or a data address range.
2. The watchpoint generates a Watchpoint debug event on an access to the address, or any address in the address range.

A watchpoint never generates a Watchpoint debug event on an instruction fetch.

An implementation can include between 2-16 watchpoints. In an implementation, DBGIDDR.WRP shows how many are implemented.

To use an implemented watchpoint, a debugger programs the following registers for the watchpoint:
- The Watchpoint Control Register, DBGWCR<n>. This holds control information for the watchpoint, for example an enable control.
- The Watchpoint Value Register, DBGWVR<n>. This holds the data virtual address used for watchpoint matching.

The registers are numbered, so that:
- DBGWCR1 and DBGWVR1 are for watchpoint number one.
- DBGWCR2 and DBGWVR2 are for watchpoint number two.
- …
- …
- DBGWCRn and DBGWVRn are for watchpoint number n.

A watchpoint can:
- Be programmed to generate Watchpoint debug events on read accesses only, on write accesses only, or on both types of access.
- Link to a Linked Context breakpoint, so that a Watchpoint debug event is only generated if the PE is in a particular context when the address match occurs.
A single watchpoint can be programmed to match on one or more address bytes. A watchpoint generates a Watchpoint debug event on an access to any byte that it is watching. The number of bytes a watchpoint is watching is either:

- One to eight bytes, provided that these bytes are contiguous and that they are all in the same naturally-aligned doubleword. A debugger uses the Byte Address Select field, DBGWCR<n>.BAS, to select the bytes. See Programming a watchpoint with eight bytes or fewer on page G2-5900.

- Eight bytes to 2GB, provided that both of the following are true:
 — The number of bytes is a power-of-two.
 — The range starts at an address that is aligned to the range size.

A debugger uses the MASK field, DBGWCR<n>.MASK, to program a watchpoint with eight bytes to 2GB. See Programming a watchpoint with eight or more bytes on page G2-5901.

A debugger must use either the BAS field or the MASK field. If it uses both, whether the watchpoint generates Watchpoint exceptions is CONSTRAINED UNPREDICTABLE. See Programming dependencies of the BAS and MASK fields on page G2-5905.

For each memory access, all of the watchpoints are tested. When a watchpoint is tested, it generates a Watchpoint debug event if all of the following are true:

- The watchpoint is enabled. That is, the watchpoint enable control for it, DBGWCR<n>.E, is 1.
- The conditions specified in the DBGWCR<n> are met.
- The comparison with the address held in the DBGWVR<n> is successful.
- If the watchpoint links to a Linked Context breakpoint, the comparison or comparisons made by the Linked Context breakpoint are successful. See on page G2-5873 shows this. See also Breakpoint context comparisons on page G2-5887.
- The instruction that initiates the memory access is committed for execution.
- The instruction that initiates the memory access passes its Condition code check.

If halting is allowed and EDSCR.HDE is 1, Watchpoint debug events cause entry to Debug state.

Otherwise, if debug exceptions are:
- Enabled, Watchpoint debug events generate Watchpoint exceptions.
- Disabled, Watchpoint debug events are ignored.

Note

The remainder of this Watchpoint Exceptions section, including all subsections, describes watchpoints as generating Watchpoint exceptions. However, the behavior described also applies if watchpoints are causing entry to Debug state.

The debug exception enable controls on page G2-5858 describes the enable controls for Watchpoint debug events.

G2.10.2 Watchpoint types and linking of watchpoints

When a debugger programs a watchpoint, it must program that watchpoint so that it is either:

- Used in isolation. In this case, the watchpoint is called an *Unlinked watchpoint*.
- Enabled for linking to a Linked Context breakpoint. In this case, the watchpoint is called a *Linked watchpoint*.

When a Linked watchpoint links to a Linked Context breakpoint, the Linked watchpoint only generates a Watchpoint exception if the PE is in a particular context when the data address match occurs. For example, a debugger might:

1. Program watchpoint number one with a data address.
2. Program breakpoint number five to be a *Linked VMID Match breakpoint*.
3. Link the watchpoint and the breakpoint together. A Watchpoint exception is only generated if both the data address matches and the VMID matches.

The Watchpoint Type field for a watchpoint, DBGWCR<n>.WT, controls whether the watchpoint is enabled for linking. If DBGWCR<n>.WT is 1, the watchpoint is enabled for linking.

Rules for linking watchpoints

The rules for watchpoint linking are as follows:

- Only Linked watchpoints can be linked.
- A Linked watchpoint can link to any type of Linked Context breakpoint. The Linked Breakpoint Number field, DBGWCR<n>.LBN, for the Linked watchpoint specifies the particular Linked Context breakpoint that the Linked watchpoint links to, and:
 - DBGWCR<n>.WT.{SSC, HMC, PAC} for the Linked watchpoint define the execution conditions that the watchpoint generates Watchpoint exceptions for. See *Execution conditions for which a watchpoint generates Watchpoint exceptions*.
 - DBGBCR<n>.{SSC, HMC, PMC} for the Linked Context breakpoint are ignored.
- A Linked watchpoint cannot link to another watchpoint. The LBN field can therefore only specify a breakpoint.
- If a Linked watchpoint links to a breakpoint that is not context-aware, the behavior of the Linked watchpoint is CONSTRAINED UNPREDICTABLE. See *Usage constraints on page G2-5904*.
- If a Linked watchpoint links to an Unlinked Context breakpoint, the Linked watchpoint never generates any Watchpoint exceptions.
- Multiple Linked watchpoints can link to a single Linked Context breakpoint.

Note

Multiple Address breakpoints can also link to a single Linked Context breakpoint. *Breakpoint exceptions on page G2-5870* describes breakpoints.

Figure G2-1 on page G2-5873 shows an example of permitted watchpoint linking.

G2.10.3 Execution conditions for which a watchpoint generates Watchpoint exceptions

Each watchpoint can be programmed so that it only generates Watchpoint exceptions for certain execution conditions. For example, a watchpoint might be programmed to generate Watchpoint exceptions only when the PE is executing at EL2.

DBGWCR<n>.{SSC, HMC, PAC} define the execution conditions a watchpoint generates Watchpoint exceptions for, as follows:

Security State Control, SSC

Controls whether the watchpoint generates Watchpoint exceptions only in Secure state, only in Non-secure state, or in both Security states.

Note

This is determined by the Security state of the PE, not from the NS attribute returned by the translation of the virtual address on which the watchpoint is set.

Higher Mode Control, HMC, and Privileged Access Control, PAC

HMC and PAC together control which Privilege level the watchpoint generates Watchpoint exceptions in.

The PAC control relates to the privilege of the memory access, not to the Exception level or Privilege level at which the access was made.
Note

This means that, if the PE executes a Load unprivileged or Store unprivileged instruction at PL1, the resulting data access triggers a watchpoint only if both:
- PAC is programmed to a value that generates watchpoints on PL0 accesses.
- All other conditions for generating the watchpoint are met.

Example A32/T32 Load unprivileged and Store unprivileged instructions are \texttt{LDRT} and \texttt{STRT}.

Table G2-15 shows the valid combinations of HMC, SSC, and PAC, and for each combination shows which Privilege levels watchpoints generate Watchpoint exceptions in.

In the table:

- \textbf{Y or -} Means that a watchpoint programmed with the values of HMC, SSC, and PAC shown in that row:
 - \textbf{Y} Can generate Watchpoint exceptions at that Privilege level.
 - - Cannot generate Watchpoint exceptions at that Privilege level.

- \textbf{Res} Means that the combination of HMC, SSC, and PAC is reserved. See \textit{Reserved DBGWCR<\text{n>},[SSC, HMC, PAC] values} on page G2-5904.

Table G2-15 Summary of watchpoint HMC, SSC, and PAC encodings

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PAC</th>
<th>Security state the watchpoint is programmed to match in</th>
<th>PL2a</th>
<th>PL1</th>
<th>PL0</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Both</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>No EL3</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No EL2 and no EL3</td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>01</td>
<td>Non-secure</td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>01</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>01</td>
<td>Secure</td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>01</td>
<td>Secure</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>Res</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>Both</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00</td>
<td>Non-secure</td>
<td>Y</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>01</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>01</td>
<td>Secure</td>
<td>-</td>
<td>Y</td>
<td>-</td>
<td>Res</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td></td>
<td>-</td>
<td>Y</td>
<td>Y</td>
<td>Res</td>
</tr>
</tbody>
</table>
Table G2-15 Summary of watchpoint HMC, SSC, and PAC encodings (continued)

<table>
<thead>
<tr>
<th>HMC</th>
<th>SSC</th>
<th>PAC</th>
<th>Security state the watchpoint is programmed to match in</th>
<th>PL2a</th>
<th>PL1</th>
<th>PL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>00</td>
<td>Both</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>01</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>11</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

a. Debug exceptions are not generated at PL2 using AArch32. This means that these combinations of HMC, SSC, and PAC are only relevant if watchpoints cause entry to Debug state. Self-hosted debuggers must avoid combinations of HMC, SSC, and PAC that generate Watchpoint exceptions at PL2 using AArch32.

b. This encoding is only reserved when EL2 is not implemented, regardless of whether EL3 is implemented.

All combinations of HMC, SSC, and PAC that this table does not show are reserved. See Reserved DBGWCR<n>.{SSC, HMC, PAC} values on page G2-5904.

G2.10.4 Watchpoint data address comparisons

An address comparison is successful if bits [31:2] of the current data virtual address are equal to DBGWVR<n>[31:2], taking into account all of the following:

- The size of the access. See Size of the data access.
- The bytes selected by DBGWVR<n>.BAS. See Programming a watchpoint with eight bytes or fewer on page G2-5900.
- Any address ranges indicated by DBGWVR<n>.MASK. See Programming a watchpoint with eight or more bytes on page G2-5901.

--- Note ---

DBGWVR<n>[1:0] are RES0 and are ignored.

Size of the data access

Because watchpoints can be programmed to generate Watchpoint exceptions on individual bytes, the size of each access must be taken into account. See Example G2-1.

Example G2-1

1. A debugger programs a watchpoint to generate Watchpoint exceptions only when the byte at address 0x1009 is accessed.
2. The PE accesses the unaligned doubleword starting at address 0x1003.

In this scenario, the watchpoint must generate a Watchpoint exception.

The size of data accesses initiated by DCIMVAC instructions is an IMPLEMENTATION DEFINED size that is both:

- From the inclusive range between:
 - The size that CTR.DminLine defines.
 - 2KB.
- A power-of-two.
The lowest address accessed by a DCIMVAC instruction is the address supplied to the instruction, rounded down to the nearest multiple of the access size initiated by that instruction.

The highest address accessed is (size - 1) bytes above the lowest address accessed.

See also, Watchpoint behavior on accesses by DCIMVAC instructions on page G2-5904.

Programming a watchpoint with eight bytes or fewer

The Byte Address Select field, DBGWCR<\texttt{n}>,BAS, selects which bytes in the doubleword starting at the address contained in the DBGWVR<\texttt{n}> the watchpoint generates Watchpoint exceptions for.

If the address programmed into the DBGWVR<\texttt{n}> is:

- Doubleword-aligned:
 - All eight bits of DBGWCR<\texttt{n}>,BAS are used, and the descriptions given in Table G2-16 apply.
- Word-aligned but not doubleword-aligned:
 - Only DBGWCR<\texttt{n}>,BAS[3:0] are used, and the descriptions given in Table G2-17 apply. In this case, DBGWCR<\texttt{n}>,BAS[7:4] are RES0.

Table G2-16 Supported BAS values when the DBGWVR<\texttt{n}> address alignment is doubleword

<table>
<thead>
<tr>
<th>BAS value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000000</td>
<td>Watchpoint never generates a Watchpoint exception</td>
</tr>
<tr>
<td>BAS[0] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:000 is accessed</td>
</tr>
<tr>
<td>BAS[1] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:001 is accessed</td>
</tr>
<tr>
<td>BAS[2] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:010 is accessed</td>
</tr>
<tr>
<td>BAS[3] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:011 is accessed</td>
</tr>
<tr>
<td>BAS[4] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:100 is accessed</td>
</tr>
<tr>
<td>BAS[5] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:101 is accessed</td>
</tr>
<tr>
<td>BAS[6] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:110 is accessed</td>
</tr>
<tr>
<td>BAS[7] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:3]:111 is accessed</td>
</tr>
</tbody>
</table>

Table G2-17 Supported BAS values when the DBGWVR<\texttt{n}> address alignment is word

<table>
<thead>
<tr>
<th>BAS value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000000</td>
<td>Watchpoint never generates a Watchpoint exception</td>
</tr>
<tr>
<td>BAS[0] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:2]:00 is accessed</td>
</tr>
<tr>
<td>BAS[1] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:2]:01 is accessed</td>
</tr>
<tr>
<td>BAS[2] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:2]:10 is accessed</td>
</tr>
<tr>
<td>BAS[3] = 1</td>
<td>Generates a Watchpoint exception if byte at address DBGWVR<\texttt{n}>[31:2]:11 is accessed</td>
</tr>
</tbody>
</table>

a. DBGWCR<\texttt{n}>,BAS[7:4] are RES0.
If the BAS field is programmed with more than one byte, the bytes that it is programmed with must be contiguous. For watchpoint behavior when its BAS field is programmed with non-contiguous bytes, see Other usage constraints on page G2-5906.

When programming the BAS field with anything other than 0b11111111, a debugger must also program DBGWCR<n>.MASK to be 0b000000. See Programming dependencies of the BAS and MASK fields on page G2-5905.

A watchpoint generates a Watchpoint exception whenever a watched byte is accessed, even if:

- The access size is smaller or larger than the address region being watched.
- The access is misaligned, and the base address of the access is not in the doubleword or word of memory addressed by the DBGWVR<n>[31:3]. See Example G2-1 on page G2-5899.

The following are some example configurations of the BAS field:

- To program a watchpoint to generate a Watchpoint exception on the byte at address 0x1003, program:
 - DBGWVR<n> with 0x1000.
 - DBGWC<n>_EL1.BAS to be 0b00001000.
- To program a watchpoint to generate a Watchpoint exception on the bytes at addresses 0x2003, 0x2004 and 0x2005, program:
 - DBGWVR<n> with 0x2000.
 - DBGWC<n>_EL1.BAS to be 0b00111000.
- If the address programmed into the DBGWVR<n> is doubleword-aligned:
 - To generate a Watchpoint exception when any byte in the word starting at the doubleword-aligned address is accessed, program DBGWCR<n>.BAS to be 0b00001111.
 - To generate a Watchpoint exception when any byte in the word starting at address DBGWVR<n>[31:3]:100 is accessed, program DBGWCR<n>.BAS to be 0b11110000.

--- Note ---

Arm deprecates programming a DBGWVR<n> with an address that is not doubleword-aligned.

Programming a watchpoint with eight or more bytes

A debugger can use the MASK field, DBGWCR<n>.MASK, to program a single watchpoint with a data address range. The data address range must meet all of the following criteria:

- It is a size that is both:
 - A power-of-two.
 - A minimum of eight bytes.
 - A maximum of 2GB.

- It starts at an address that is aligned to the size.

The MASK field specifies the number of least significant data address bits that must be masked. Up to 31 least significant bits can be masked:

<table>
<thead>
<tr>
<th>MASK</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000</td>
<td>No bits are masked.</td>
</tr>
<tr>
<td>0b00001</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0b00010</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0b00011</td>
<td>Three least significant bits are masked.</td>
</tr>
<tr>
<td>0b00100</td>
<td>Four least significant bits are masked.</td>
</tr>
<tr>
<td>0b00101</td>
<td>Five least significant bits are masked.</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>0b11111</td>
<td>31 least significant bits are masked.</td>
</tr>
</tbody>
</table>
If \(n \) least significant address bits are masked, the watchpoint generates a Watchpoint exception on all of the following:

- Address \(\text{DBGWVR}<n>[31:n]:000… \)
- Address \(\text{DBGWVR}<n>[31:n]:111… \)
- Any address between these two addresses.

For example, if the four least significant address bits are masked, Watchpoint exceptions are generated for all addresses between \(\text{DBGWVR}<n>[31:4]:0000 \) and \(\text{DBGWVR}<n>[31:4]:1111 \), including these addresses.

Note

- The most significant bit cannot be masked. This means that the full address cannot be masked.
- For watchpoint behavior when its MASK field is programmed with a reserved value, see Reserved \(\text{DBGWCR}<n>\.MASK \) values on page G2-5906.

When masking address bits, a debugger must both:

- Program \(\text{DBGWCR}<n>\.BAS \) to be \(0b11111111 \). See Programming dependencies of the BAS and MASK fields on page G2-5905.
- In the \(\text{DBGWVR}<n> \), set the masked address bits to 0. For watchpoint behavior when any of the masked address bits are not 0, see Other usage constraints on page G2-5906.

G2.10.5 Determining the memory location that caused a Watchpoint exception

On a Watchpoint exception, the PE records an address in a *Fault Address Register* that the debugger can use to determine the memory location that triggered the watchpoint.

The Fault Address Register (FAR) used is either:

- DFAR, if the exception is taken to PL1.
- HDFAR, if the exception is taken to PL2.

In cases where one instruction triggers multiple watchpoints, only one address is recorded.

On entering Debug state on a Watchpoint debug event, the PE records the address in the EDWAR.

Note

If Debug state was entered from AArch32 state, then \(\text{EDWAR}[63:32] \) is \text{UNKNOWN} and must be ignored by the debugger.

For more information, see the subsections that follow. These are:

- Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions.
- Address recorded for Watchpoint exceptions generated by data cache maintenance instructions on page G2-5903.

Address recorded for Watchpoint exceptions generated by instructions other than data cache maintenance instructions

The address recorded must be both:

- From the inclusive range between:
 - The lowest address accessed by the memory access that triggered the watchpoint.
 - The highest *watchpointed address* accessed by the memory access. A watchpointed address is an address that the watchpoint is watching.
- Within a naturally-aligned block of memory that is all of the following:
 - A power-of-two size.
— No larger than 2KB.
— No larger than the block size used by the A64 DC ZVA instruction.

Note
There are no architectural means to discover the A64 DC ZVA instruction block size from AArch32 state.

— Contains a watchpointed address accessed by the memory access.

The size of the block is IMPLEMENTATION DEFINED. There is no architectural means of discovering the size.

Example G2-2 Address recorded for a watchpoint programmed on 0x8019

A debugger programs a watchpoint to generate a Watchpoint exception on any access to the byte 0x8019.

An A32 load multiple instruction then loads nine registers starting from address 0x8004 upwards. This triggers the watchpoint.

If the DC ZVA block size is:
- 32 bytes, the address that the PE records must be between 0x8004 and 0x8019 inclusive.
- 16 bytes, the address that the PE records must be between 0x8010 and 0x8019 inclusive.

Address recorded for Watchpoint exceptions generated by data cache maintenance instructions

The address recorded is the address passed to the instruction. This means that the address recorded might be higher than the address of the location that triggered the watchpoint.

G2.10.6 Watchpoint behavior on other instructions

Under normal operating conditions, the following do not generate Watchpoint exceptions:
- Instruction cache maintenance instructions.
- Address translation instructions.
- TLB maintenance instructions.
- Preload instructions.
- All data cache maintenance instructions except DCIMVAC.

However, the debug architecture allows for IMPLEMENTATION DEFINED controls, such as those in ACTLR registers, to enable watchpoints on an implementation defined subset of these instructions. Whether a watchpoint treats the instruction as a load or a store, and the access size of instruction cache maintenance, address translation, and TLB maintenance instructions are implementation defined.

The access size of the IMPLEMENTATION DEFINED instruction cache maintenance, address translation, and TLB maintenance instructions that generate Watchpoint exceptions are IMPLEMENTATION DEFINED.

See also:
- Watchpoint behavior on accesses by Store-Exclusive instructions.
- Watchpoint behavior on accesses by DCIMVAC instructions on page G2-5904.

Watchpoint behavior on accesses by Store-Exclusive instructions

If a watchpoint matches on a data access caused by a Store-Exclusive instruction, then:
- If the store fails because an Exclusives monitor does not permit it, it is IMPLEMENTATION DEFINED whether the watchpoint generates a Watchpoint exception.
- Otherwise, the watchpoint generates a Watchpoint exception.
Watchpoint behavior on accesses by DCIMVAC instructions

It is IMPLEMENTATION DEFINED whether DCIMVAC operations can generate Watchpoint exceptions. If they can, they are treated as data stores. This means that for a watchpoint to match on an access caused by a DCIMVAC instruction, the debugger must program DBGWCR<n>.LSC to be one of the following:

- **10**: Match on data stores only.
- **11**: Match on data stores and data loads.

--- Note ---
For the size of data accesses performed by DCIMVAC instructions, see Watchpoint data address comparisons on page G2-5899. The size of all data accesses must be considered because watchpoints can be programmed to match on individual bytes.

G2.10.7 Usage constraints

See the following:

- Reserved DBGWCR<n>{SSC, HMC, PAC} values.
- Reserved DBGWCR<n>.LBN values on page G2-5905.
- Programming dependencies of the BAS and MASK fields on page G2-5905.
- Reserved DBGWCR<n>.BAS values on page G2-5905.
- Reserved DBGWCR<n>.MASK values on page G2-5906.
- Other usage constraints on page G2-5906.

Reserved DBGWCR<n>{SSC, HMC, PAC} values

Table G2-18 shows when particular combinations of DBGWCR<n>{SSC, HMC, PAC} are reserved.

<table>
<thead>
<tr>
<th>HMC, SSC, and PAC combination</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combinations with SSC set to $0b01$ or $0b10$, except for the combination with HMC set to 1, SSC set to $0b01$ and PAC set to $0b00$</td>
<td>When EL3 is not implemented and EL2 is implemented.</td>
</tr>
<tr>
<td>Any combination where HMC or SSC is nonzero</td>
<td>When both of EL2 and EL3 are not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to $0b11$, and PAC set to $0b00$</td>
<td>When EL2 is not implemented</td>
</tr>
<tr>
<td>The combinations with SSC set to $0b11$ and PAC set to $0b01$ or $0b11$</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>The combination with HMC set to 1, SSC set to $0b01$ and PAC set to $0b00$</td>
<td>When Secure EL2 is not implemented</td>
</tr>
<tr>
<td>Combinations not included in Table G2-15 on page G2-5898.</td>
<td>Always</td>
</tr>
</tbody>
</table>

If a watchpoint is programmed with one of these reserved combinations:

- The watchpoint must behave as if it is either:
 - Disabled.
 - Programmed with a combination that is not reserved, other than for a direct or external read of DBGWCR<n>.LBN.

- For a direct or external read of DBGWCR<n>, if the reserved combination:
 - Has no function for any execution conditions, the value read back for each of SSC, HMC, and PMC is UNKNOWN.
 - Has a function for execution conditions other than the current execution conditions, the value read back is the value written. This permits software to save and restore the combination so that the watchpoint functions for the other execution conditions.
The behavior of watchpoints with reserved combinations of SSC, HMC, and PAC might change in future revisions of the architecture. For this reason, software must not rely on the behavior described here.

Reserved DBGWCR<n>.LBN values

For Linked watchpoints

A Linked watchpoint must link to a context-aware breakpoint. For a Linked watchpoint, any DBGWCR<n>.LBN value that is not for a context-aware breakpoint is reserved.

If a Linked watchpoint links to a breakpoint that is not implemented, or that is not context-aware, then reads of DBGWCR<n>.LBN return an UNKNOWN value and the behavior is CONSTRAINED UNPREDICTABLE. The Linked watchpoint behaves as if it is either:

- Disabled.
- Linked to an UNKNOWN context-aware breakpoint.

If a Linked watchpoint links to a breakpoint that is implemented and is context-aware, but that is either not enabled or not programmed as a Linked Context breakpoint, it behaves as if it is disabled.

For Unlinked watchpoints

For Unlinked watchpoints, DBGWCR<n>.LBN reads UNKNOWN and its value is ignored.

Programming dependencies of the BAS and MASK fields

When programming a watchpoint, a debugger must use either:

- The MASK field, to program the watchpoint with an address range that can be eight bytes to 2GB.
- The BAS field, to select which bytes in the doubleword or word starting at the address contained in the DBGWVR<n> the watchpoint must generate Watchpoint exceptions for.

If the debugger uses the:

- MASK field, it must program BAS to be \texttt{0b11111111}, so that all bytes in the doubleword or word are selected.
- BAS field, it must program MASK to be \texttt{0b00000}, so that the MASK field does not indicate any address ranges.

If an enabled watchpoint has a MASK field that is non-zero and a BAS field that is not set to \texttt{0b11111111}, then for each byte in the address range, it is CONSTRAINED UNPREDICTABLE whether or not a Watchpoint exception is generated.

Reserved DBGWCR<n>.BAS values

The BAS field must be programmed with a value \texttt{Zeros(8-n-m):Ones(n):Zeros(m)}, where:

- \texttt{n} is a non-zero positive integer less-than-or-equal-to 8.
- \texttt{m} is a positive integer less-than 8.
- \texttt{n+m} is less-than-or-equal-to 8.

All other values are reserved.

Note

If \texttt{x} is zero, then \texttt{Zeros(x)} is an empty bitstring.

If DBGWVR<n>[2] is 1, DBGWCR<n>.BAS[7:4] are RES0 and are ignored.

If a watchpoint is programmed with a reserved BAS value:

- It is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception for each byte in the doubleword or word of memory addressed by the DBGWVR<n>.
- A direct or external read of DBGWCR<n>.BAS returns an UNKNOWN value.
Software must not rely on these properties as the behavior of reserved values might change in a future revision of the architecture.

Reserved DBGWCR<n>.MASK values

If a watchpoint is programmed with a reserved MASK value:

- The watchpoint must behave as if it is either:
 - Disabled.
 - Programmed with an UNKNOWN value that is not reserved, that might be 0b00000, other than for a direct or external read of DBGWCR<n>.

- A direct or external read of DBGWCR<n>.MASK returns an UNKNOWN value.

Other usage constraints

For all watchpoints:

- DBGWVR<n>[1:0] are RES0 and are ignored.
- If DBGWCR<n>.MASK is nonzero, and any masked bits of DBGWVR<n> are not 0, it is CONSTRAINED UNPREDICTABLE whether the watchpoint generates a Watchpoint exception when the unmasked bits match.
- A watchpoint never generates any Watchpoint exceptions if DBGWCR<n>.LSC is 0b00.

G2.10.8 Exception syndrome information and preferred return address

See the following:

- *Exception syndrome information.*
- *Preferred return address on page G2-5907.*

Exception syndrome information

The PE takes a Watchpoint exception as either:

- A Data Abort exception, if it is taken to PL1. In this case, it is taken to Abort mode.
- A Hyp trap exception, if it is taken to PL2 because ICR.TGE or HCR.TDE is 1. In this case, it is taken to Hyp mode.

If the exception is taken to:

Abort mode

The PE sets all of the following:

- DBGDSCRxt.MOE to 0b1010, to indicate a Watchpoint exception.
- DFSR.CM to indicate whether a cache maintenance instruction caused the exception.
- DFSR.WnR to indicate whether the exception was generated on a read instruction or a write instruction.
- DFAR to an address that the debugger can use to determine the memory location that triggered the watchpoint. See *Determining the memory location that caused a Watchpoint exception on page G2-5902.*

In addition, if using the:

- Short-descriptor format, the PE sets DFSR.FS to the code for a debug exception, 0b00010, and DFSR.Domain to an UNKNOWN value.
- Long-descriptor format, the PE sets DFSR.STATUS to the code for a debug exception, 0b100010.
Hyp mode

The PE does all of the following:

- Records information about the exception in the Hypervisor Syndrome Register, HSR. See Table G2-19.
- Sets `DBGDSCRext.MOE` to `0b1001`, to indicate a Watchpoint exception.
- Sets the HDFAR to an address that the debugger can use to determine the memory location that triggered the watchpoint. See Determining the memory location that caused a Watchpoint exception on page G2-5902.

Table G2-19 Information recorded in the HSR

<table>
<thead>
<tr>
<th>HSR field</th>
<th>Information recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exception Class, EC</td>
<td>The PE sets this to the code for a Data Abort exception routed to Hyp mode, 0x24.</td>
</tr>
<tr>
<td>Instruction Length, IL</td>
<td>The PE sets this to 1.</td>
</tr>
<tr>
<td>Instruction Specific Syndrome, ISS</td>
<td></td>
</tr>
<tr>
<td>ISV[24] Instruction Syndrome Valid (ISV)</td>
<td>The PE sets this to 0.</td>
</tr>
<tr>
<td>ISS[23:10] RES0.</td>
<td></td>
</tr>
<tr>
<td>ISS[9] External Abort type (EA)</td>
<td>The PE sets this to 0.</td>
</tr>
<tr>
<td>ISS[8] Cache Maintenance (CM)</td>
<td>The PE sets this to indicate whether a cache maintenance instruction caused the exception.</td>
</tr>
<tr>
<td>ISS[7] RES0.</td>
<td></td>
</tr>
<tr>
<td>ISS[6] Write not Read (WnR)</td>
<td>The PE sets this to indicate whether the exception was generated on a read instruction or a write instruction.</td>
</tr>
<tr>
<td>ISS[5:0] Data Fault Status Code (DFSC)</td>
<td>The PE sets this to the code for a debug exception, 0b100010.</td>
</tr>
</tbody>
</table>

Note

For information about how debug exceptions can be routed to PL2, see Routing debug exceptions on page G2-5859.

Preferred return address

The preferred return address of a Watchpoint exception is the address of the instruction that was not executed because the PE took the Watchpoint exception instead.

This means that the preferred return address is the address of the instruction that caused the exception.

G2.10.9 Pseudocode description of Watchpoint exceptions taken from AArch32 state

`AArch32.WatchpointByteMatch()` tests an individual byte accessed by an operation.

`AArch32.StateMatch()` tests the values in `DBGWCR<n>.{HMC, SSC, PAC}`, and if the watchpoint is Linked, also tests the Linked Context breakpoint that the watchpoint links to.

`AArch32.WatchpointMatch()` tests the value in `DBGWVR<n>`.

`AArch32.CheckWatchpoint()` generates a `FaultRecord`. A Watchpoint exception is taken if all of the following are true:

- `DBGDSCRext.MDBGen` is 1.
- Debug exceptions are enabled from the current Exception level and Security state. See Enabling debug exceptions from the current Privilege level and Security state on page G2-5861.
• All of the conditions required for Watchpoint exception generation are met. See About Watchpoint exceptions on page G2-5895.

Note

AArch32.CheckWatchpoint might halt the PE and cause it to enter Debug state. External debug uses Debug state.

The AArch32.Abort() function processes the FaultRecord object returned by AArch32.CheckWatchpoint(), as described in Abort exceptions on page G4-5959. If a Watchpoint exception is taken to AArch32 state, the AArch32.Abort() function generates a Data Abort exception.
G2.11 Vector Catch exceptions

Arm deprecates the use of vector catch.

This section describes Vector Catch exceptions in stage 1 of an AArch32 translation regime.

The PE is using an AArch32 translation regime when it is executing either:
• At EL1 or higher in an Exception level that is using AArch32.
• At EL0 using AArch32 when EL1 is using AArch32.

Note
Vector Catch exceptions cannot be generated when the PE is using an AArch64 translation regime.

This section contains the following subsections:
• About Vector Catch exceptions.
• Exception vectors that Vector Catch exceptions can be enabled for on page G2-5911.
• Generation of Vector Catch exceptions on page G2-5912.
• Usage constraints on page G2-5914.
• Exception syndrome information and preferred return address for a Vector Catch exception on page G2-5914.
• Pseudocode description of Vector Catch exceptions on page G2-5915.

G2.11.1 About Vector Catch exceptions

Whenever the PE takes an exception, execution is forced to an address that is the exception vector for that exception. Vector catch permits a debugger to trap exceptions based on the exception vector, or based on the exception type associated with the exception vector, as follows:

• If the address-matching form of vector catch is implemented, the debugger can trap exceptions based on the exception vector.
• If the exception-trapping form of vector catch is implemented, the debugger can trap exceptions based on the exception type associated with the exception vector.

The Armv8-A architecture supports only these two forms of vector catch. Only one form can be implemented, and which is implemented is IMPLEMENTATION DEFINED. The DBGDEVID indicates which form is implemented.

Regardless of the form of vector catch implemented, a debugger enables Vector Catch exceptions for exception vectors or types by programming the DBGVCR. This register contains vector catch enable bits. Each of these bits corresponds to a different vector. When a debugger sets a vector catch enable bit to 1, Vector Catch exceptions are enabled for the corresponding exception vector or type.

Note
EL2 using AArch64 or EL3 using AArch64 can enable Vector Catch exceptions for vectors by programming the DBGVCR32_EL2. The DBGVCR32_EL2 is architecturally mapped to the DBGVCR.

When Vector Catch exceptions are enabled for an exception vector, this is called an enabled vector catch. The set of exception vectors that Vector Catch exceptions are enabled for is called the enabled vector catch set.

If the form of vector catch implemented is the:

Address-matching form:

The PE compares the virtual address of each instruction in the program flow with a subset of the enabled vector catch set.

If an address match occurs, a Vector Catch exception is generated when the instruction that caused the match is committed for execution.
Exception-trapping form

Whenever the PE takes an exception, if the vector the exception is taken to is included in a subset of the enabled vector catch set, a Vector Catch exception is generated.

The Vector Catch exception is generated as part of entry to the exception, and must be taken before the PE either executes any instructions or takes any further exceptions.

The addresses that comprise the subset depend on whether EL3 is implemented and, for the:
- Address-matching form, the current Security state.
- Exception-trapping form, the Security state that the exception is handled in.

See *Generation of Vector Catch exceptions* on page G2-5912.

Table G2-20 summarizes the differences between the address-matching and exception-trapping forms.

Table G2-20 Differences in behavior of the address-matching and exception-trapping forms of vector catch

<table>
<thead>
<tr>
<th>Address-matching</th>
<th>Exception-trapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>An enabled vector catch generates a Vector Catch exception when an instruction that is fetched from the vector is committed for execution. This means that spurious Vector Catch exceptions might occur, where the Vector Catch exception does not result from an exception entry, but is instead caused by a branch to the vector. A branch to the vector might occur, for example, on a return from a nested exception or when simulating an exception entry.</td>
<td>An enabled vector catch generates a Vector Catch exception immediately after the PE takes the exception that is associated with the vector. This means that Vector Catch exceptions always result from exception entry, and not from branches to exception vectors.</td>
</tr>
<tr>
<td>A Vector Catch exception is generated as a result of an instruction fetch. This means that the Vector Catch exception has a priority relative to the other synchronous exceptions that result from an instruction fetch. Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 describes this prioritization.</td>
<td>A Vector Catch exception is generated as a result of an instruction entry. This means that the Vector Catch exception is part of the exception that caused the Vector Catch exception. Therefore, the Vector Catch exception has no priority associated with it. For this reason, Vector Catch exceptions are outside the scope of the prioritization that Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349 describes.</td>
</tr>
<tr>
<td>A Vector Catch exception can be preempted by another exception. If this happens, the Vector Catch exception is generated again when the exception handler branches back to the vector.</td>
<td>Vector Catch exceptions must be taken before other exceptions.</td>
</tr>
<tr>
<td>A Vector Catch exception can be generated as a result of an instruction fetch executed in any AArch32 mode except Hyp mode, including User mode.</td>
<td>Because a Vector Catch exception is generated as the result of an exception entry, the Vector Catch exception is only generated when the PE is in the AArch32 exception handling mode.</td>
</tr>
</tbody>
</table>
| If HCR.TGE is 1, Vector Catch exceptions can be generated for User mode instruction fetches from Non-secure PL1 vectors. | If HCR.TGE is 1, Vector Catch exceptions are never generated in Non-secure state, because:
 - Exceptions are routed away from Non-secure PL1 vectors, to PL2.
 - The architecture does not provide vector catch enable bits for the Hyp exception vectors. |

Depending on the implementation, some vector catch enable bits in the DBGVCR might be RES0. For example, if EL3 is not implemented or is implemented but is using AArch64, Monitor mode is not implemented, and so the enable bits for exception vectors for exceptions taken to Monitor mode are RES0. See *Exception vectors that Vector Catch exceptions can be enabled for* on page G2-5911 for the vector catch enable bits that exist for different implementations.

The debug exception enable controls on page G2-5858 describes the enable controls for Vector Catch exceptions.
G2.11.2 Exception vectors that Vector Catch exceptions can be enabled for

When the PE takes an exception, the exception vector is contained in a *vector table* at the Privilege level the exception is taken to.

Depending on the Security state and AArch32 mode the exception is taken to, when the exception is taken, the vector table used is the table that contains one of:

- *Local exception vectors.*
- *Non-secure Local exception vectors.*
- *Secure Local exception vectors.*
- *Hyp exception vectors.*
- *Monitor exception vectors.*

Table G2-21 shows which vector tables are implemented for different implementations. In the table:

- A dash, -, means that the Exception level is not implemented.
- 64 means that the Exception level is using AArch64.
- 32 means that the Exception level is using AArch32.

Table G2-21 Vector tables implemented for different implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Vector table or tables implemented</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0 EL1 EL2 EL3</td>
<td></td>
</tr>
<tr>
<td>32 32 - -</td>
<td>Local exception vectors.</td>
</tr>
<tr>
<td>64 -</td>
<td>Non-secure Local exception vectors.</td>
</tr>
<tr>
<td>32 -</td>
<td>Non-secure Local exception vectors. Hyp exception vectors.</td>
</tr>
<tr>
<td>- 64</td>
<td>Secure Local exception vectors. Non-secure Local exception vectors.</td>
</tr>
<tr>
<td>- 32</td>
<td>Secure Local exception vectors. Non-secure Local exception vectors. Monitor exception vectors.</td>
</tr>
<tr>
<td>64 64</td>
<td>Secure Local exception vectors. Non-secure Local exception vectors.</td>
</tr>
<tr>
<td>32 64</td>
<td>Secure Local exception vectors. Non-secure Local exception vectors. Hyp exception vectors.</td>
</tr>
</tbody>
</table>

For example, in an AArch32-only implementation that includes EL0, EL1, and EL3, when the PE takes an exception to Monitor mode, it uses the vector table containing Monitor exception vectors.

The tables that follow show the vectors that Vector Catch exceptions can be enabled for, and their corresponding vector catch enable bits in the DBGVCR:

- *[Table G2-22 on page G2-5912](#)* shows the Local exception vectors, Secure Local exception vectors, and Non-secure Local exception vectors that Vector Catch exceptions can be enabled for.
- *[Table G2-23](#)* shows the Monitor exception vectors that Vector Catch exceptions can be enabled for.
The Armv8-A architecture does not provide vector catch enable bits for the Hyp exception vectors.

Table G2-22 Local exception vectors, Secure Local exception vectors, and Non-secure Local exception vectors that Vector Catch exceptions can be enabled for

<table>
<thead>
<tr>
<th>Vector catch enable bit</th>
<th>Exception type</th>
<th>Local exception vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local or Secure Local exception vectors</td>
<td>Non-secure Local exception vectors</td>
<td>Local exception vectors</td>
</tr>
<tr>
<td>SF NSF</td>
<td>FIQ interrupt</td>
<td>VBAR + 0x0000001C 0xFFFF001C</td>
</tr>
<tr>
<td>SI NSI</td>
<td>IRQ interrupt</td>
<td>VBAR + 0x00000018 0xFFFF0018</td>
</tr>
<tr>
<td>SD NSD</td>
<td>Data Abort</td>
<td>VBAR + 0x00000010 0xFFFF0010</td>
</tr>
<tr>
<td>SP NSP</td>
<td>Prefetch Abort</td>
<td>VBAR + 0x0000000C 0xFFFF000C</td>
</tr>
<tr>
<td>SS NSS</td>
<td>Supervisor Call</td>
<td>VBAR + 0x00000008 0xFFFF0008</td>
</tr>
<tr>
<td>SU NSU</td>
<td>Undefined Instruction</td>
<td>VBAR + 0x00000004 0xFFFF0004</td>
</tr>
</tbody>
</table>

a. If EL3 is implemented and is using AArch32, VBAR is banked. The Secure Local exception vectors use VBARS and the Non-secure Local Exception vectors use VBARs.

Table G2-23 Monitor exception vectors that Vector Catch exceptions can be enabled for

<table>
<thead>
<tr>
<th>Vector catch enable bit</th>
<th>Exception type</th>
<th>Monitor exception vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF FIQ interrupt</td>
<td>MFVBAR + 0x0000001C</td>
<td></td>
</tr>
<tr>
<td>MI IRQ interrupt</td>
<td>MIVBAR + 0x00000018</td>
<td></td>
</tr>
<tr>
<td>MD Data Abort</td>
<td>MVDVBAR + 0x00000010</td>
<td></td>
</tr>
<tr>
<td>MP Prefetch Abort</td>
<td>MPVBAR + 0x0000000C</td>
<td></td>
</tr>
<tr>
<td>MS Secure Monitor Call</td>
<td>MSVBAR + 0x00000008</td>
<td></td>
</tr>
</tbody>
</table>

Note
There is no vector catch enable bit for Monitor trap exceptions.

G2.11.3 Generation of Vector Catch exceptions

How Vector Catch exceptions are generated depends on which form is implemented:

- Address-matching form.
- Exception-trapping form on page G2-5913.

Address-matching form

The PE compares the virtual address of each instruction in the program flow is with some or all of the addresses in the enabled vector catch set, as follows:

- If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE compares the virtual address of each instruction in the program flow, including those executed at EL0, with all addresses in the enabled vector catch set.
• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:
 — Monitor exception vectors, if EL3 is using AArch32.
 — Secure Local exception vectors.
 — Non-secure Local exception vectors.

In this case, Table G2-24 shows which addresses, in the enabled vector catch set, the virtual address of each instruction in the program flow is compared with.

Table G2-24 Comparisons made if the implementation includes EL3

<table>
<thead>
<tr>
<th>EL3 is using</th>
<th>For exceptions taken to:</th>
<th>Non-secure PL1 modes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secure PL1 modes</td>
<td></td>
</tr>
<tr>
<td>AArch64</td>
<td>Secure Local exception vectors</td>
<td>Non-secure Local exception vectors</td>
</tr>
<tr>
<td>AArch32</td>
<td>Secure Local exception vectors</td>
<td>and Monitor exception vectors</td>
</tr>
</tbody>
</table>

For example, for exceptions taken to a Secure PL1 mode when EL3 is using AArch64, the virtual address of each instruction in the program flow is compared with each Secure Local exception vector in the enabled vector catch set.

For each instruction in the program flow, the PE tests for any possible Vector Catch exceptions before executing the instruction. If a match occurs, a Vector Catch exception is generated when the instruction is committed for execution, regardless of all of the following:
• Whether the instruction passes its Condition code check.
• Whether the instruction is executed as part of exception entry.
• If EL2 is implemented, what HCR.{IMO, FMO, AMO} are set to.
• If EL3 is implemented, what SCR.{IRQ, FIQ, EA} are set to.

Exception-trapping form

When the PE takes an exception, it tests whether the exception is by branching to an exception vector in a subset of the enabled vector catch set, as follows:

• If EL3 is not implemented, the enabled vector catch set contains only Local exception vectors. The PE tests whether the exception is by branching to any address in the enabled vector catch set.

• If EL3 is implemented, the enabled vector catch set might contain one or more of the following:
 — Monitor exception vectors, if EL3 is using AArch32.
 — Secure Local exception vectors.
 — Non-secure Local exception vectors.

In this case, the PE tests whether the exception is by branching to a vector in one of the subsets that Table G2-25 shows. In the table, n/a means not applicable.

Table G2-25 Subsets that the PE tests within if EL3 is implemented

<table>
<thead>
<tr>
<th>EL3 is using</th>
<th>For exceptions taken to:</th>
<th>Non-secure PL1 modes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monitor mode</td>
<td>Other Secure PL1 modes</td>
</tr>
<tr>
<td>AArch64</td>
<td>n/a</td>
<td>Secure Local exception vectors</td>
</tr>
<tr>
<td>AArch32</td>
<td>Monitor exception vectors</td>
<td></td>
</tr>
</tbody>
</table>

For example, for an exception taken to a Secure PL1 mode when EL3 is using AArch64, the PE tests whether the exception is by branching to any of the Secure Local exception vectors in the enabled vector address set.
If the exception is by branching to a vector in the subset, a Vector Catch exception is generated as part of exception entry. That is, a Vector Catch exception is generated instead of the exception handler executing its first instruction.

G2.11.4 Usage constraints

See the following subsections:

- Usage constraints that apply to both forms of vector catch.
- Usage constraints that apply only to the address-matching form.

Usage constraints that apply to both forms of vector catch

For Vector Catch exceptions enabled for either the Prefetch Abort exception vector or the Data Abort exception vector, if one of these exception types is taken to the Exception level that debug exceptions are targeting, behavior is CONSTRAINED UNPREDICTABLE. Either:

- Vector catch is ignored, therefore a Vector Catch exception is not generated.
- Vector catch generates a Prefetch Abort debug exception. For Vector Catch exceptions enabled for the Prefetch Abort exception vector, the PE might enter a recursive loop of Prefetch Abort exceptions causing Vector Catch exceptions and Vector Catch exceptions causing Prefetch Abort exceptions.

--- Note ---

The Exception level that debug exceptions are targeting is called the debug target Exception level, EL_D. Routing debug exceptions on page G2-5859 describes how EL_D is derived.

Usage constraints that apply only to the address-matching form

Exception vectors are at word-aligned addresses, and:

- It is CONSTRAINED UNPREDICTABLE whether an enabled vector catch generates a Vector Catch exception for a 32-bit T32 instruction starting at the halfword-aligned address immediately prior to the vector address.
- T32 instructions that start at the halfword-aligned address immediately after the exception vector do not generate Vector Catch exceptions.

For the address-matching form, Vector Catch exceptions have the same priority as Breakpoint exceptions. If a single instruction causes both a Vector Catch exception and a Breakpoint exception, it is CONSTRAINED UNPREDICTABLE which of these debug exceptions the PE takes.

G2.11.5 Exception syndrome information and preferred return address for a Vector Catch exception

See the following:

- Exception syndrome information for a Vector Catch exception.
- Preferred return address for a Vector Catch exception on page G2-5915.

--- Note ---

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The referenced section uses the term more generally, to include exception information reported in the IFSR.

Exception syndrome information for a Vector Catch exception

The PE takes a Vector Catch exception as either:

- A Prefetch Abort exception if it is taken to PL1. In this case, it is taken to Abort mode.
- A Hyp trap exception, if it is taken to PL2 because HCR.TGE or HDCR.TDE is 1. In this case, it is taken to Hyp mode.
If the exception is taken to:

PL1 Abort mode

The PE sets all of the following:
- **IFSR.FS** to the code for a debug exception, \(0b00010\).
- **DBGDSCRext.MOE** to \(0b0101\), to indicate a Vector Catch exception.
- The IFAR with an UNKNOWN value.

PL2 Hyp mode

The PE does all of the following:
- Records information about the exception in the *Hypervisor Syndrome Register, HSR*. See Table G2-26.
- Sets **DBGDSCRext.MOE** to \(0b0101\), to indicate a Vector Catch exception.
- Sets the HIFAR to an unknown value.

Note

For information about how debug exceptions can be routed to PL2, see *Routing debug exceptions* on page G2-5859.

Preferred return address for a Vector Catch exception

The preferred return address of a Vector Catch exceptions is the address of the instruction that was not executed because the PE took the Vector Catch exception instead.

This means that the preferred return address is the exception vector. This is true regardless of whether the address-matching form or the exception trapping form is implemented.

G2.11.6 Pseudocode description of Vector Catch exceptions

The `AArch32.VCRMatch()` pseudocode function checks whether the instruction at address generates a Vector Catch exception. It therefore shows the address-matching form of vector catch.

The `AArch32.CheckVectorCatch()` pseudocode function uses `AArch32.VCRMatch()` to test whether the instruction generates a Vector Catch exception, and if `AArch32.VCRMatch()` returns TRUE it generates that event.

The `AArch32.Abort()` function processes the FaultRecord object returned by `AArch32.CheckVectorCatch()`, as described in *Abort exceptions on page G4-5959*. If there is a Vector Catch exception, the `AArch32.Abort()` function generates a Prefetch Abort exception.
G2.12 Synchronization and debug exceptions

The behavior of debug depends on all of the following:
• The state of the external debug authentication interface.
• Indirect reads of:
 — External debug registers.
 — System registers, including system debug registers.
 — Special-purpose registers.

If a change is made to any of these, the effect of that change on debug exception generation cannot be relied on until after a Context synchronization event has occurred.

For any instructions executed between the time when the change is made and the time when the next Context synchronization event occurs, it is CONSTRAINED UNPREDICTABLE whether debug uses the state of the PE before the change, or the state of the PE after the change.

Example G2-3

1. Software changes DBGDSCRext.MDBGen from 0 to 1.
2. An instruction is executed, that would cause a Breakpoint exception if self-hosted debug uses the state of the PE after the change.
3. A Context synchronization event occurs.

In this case, it is CONSTRAINED UNPREDICTABLE whether the instruction generates a Breakpoint exception.

Example G2-4

1. Software unlocks the OS Lock.
2. The PE executes some instructions.
3. A Context synchronization event occurs.

During the time when the PE is executing some instructions, step 2, it is CONSTRAINED UNPREDICTABLE whether debug exceptions other than Breakpoint Instruction exceptions can be generated.

Note
Some register updates are self-synchronizing. Others require an explicit Context synchronization event. For more information, see:
• Synchronization of changes to AArch32 System registers on page G8-6138.
• Accessing PSTATE fields on page G1-5736.
• Synchronization of changes to the external debug registers on page H8-7138.

G2.12.1 State and mode changes without explicit context synchronization events

Most changes to the Exception level, and most changes to the Security state if EL3 is implemented, happen as a result of operations that are an explicit Context synchronization event. This is because taking an exception and returning from an exception are both explicit Context synchronization events, and the Privilege level and Security state can only change as a result of taking or returning from an exception.
However, some Security state and AArch32 mode changes can happen because of operations that are not an explicit Context synchronization event. These are:

- AArch32 mode changes caused by MSR and CPS instructions. A mode change might be to a mode at a lower Privilege level.
- If EL3 is using AArch32, a Security state change caused by a direct write to the SCR in a privileged mode other than Monitor mode, to set SCR.NS to 1.
Chapter G3
AArch32 Self-hosted Trace

This chapter describes the AArch32 self-hosted trace:

Introductory information:
- About self-hosted trace on page G3-5920.
- Trace Sinks on page G3-5920.
- Register controls to enable self-hosted trace on page G3-5920.

Prohibited regions in trace:
- Controls to prohibit trace at Exception levels on page G3-5921.
- Self-hosted trace and address translation on page G3-5921.

Timestamps and Synchronization:
- Self-hosted trace timestamps on page G3-5922.
- Synchronization in self-hosted trace on page G3-5923.
G3.1 About self-hosted trace

A PE Trace Unit generates trace data to describe the program flow of the PE.

The PE Trace Unit may be an implementation of a standard Arm Embedded Trace Macrocell (ETM), or another type of Arm Trace Architecture, or an IMPLEMENTATION DEFINED trace function.

If an Armv8.4-compliant PE implements an ETM Architecture PE Trace Unit, FEAT_TRF extension must be implemented.

If an Armv8.4-compliant PE implements a Trace Unit that is not an ETM Architecture PE Trace Unit, Arm recommends that FEAT_TRF extension is implemented, but this is not mandatory.

Self-hosted trace happens when the agent controlling the trace collection is part of the same software stack as the software being traced. The agent controls prohibited regions. The information collected by the agent is sent to a trace sink.

If the self-hosted trace extensions are implemented, the PE Trace Unit must implement the System register interface. The PE Trace Unit and the PE must have the same view of the debug authentication interface. If FEAT_TRF is implemented, ExternalNoninvasiveDebugEnabled() is always TRUE.

G3.1.1 Trace Sinks

The PE Trace Unit sends the trace data to a trace sink. A system might include multiple trace sinks, and allow software to configure which trace sink or sinks are used.

An example of an internal trace sink is an Embedded Trace Router (ETR), which allows software to define a buffer in memory. Trace data is written to this buffer.

Arm recommends that a system that includes FEAT_TRF incorporates an ETR, and follows the system architecture described by the CoreSight Base System Architecture (CS-BSA).

The self-hosted trace extensions do not describe the programmers’ model trace sinks.

G3.1.2 Register controls to enable self-hosted trace

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace.

If FEAT_TRF is implemented, and external self-hosted trace is not implemented, self-hosted trace is always enabled.

If FEAT_TRF is implemented, and external self-hosted trace is implemented, self-hosted trace is also enabled if one of the following is true:

- EDSCR.TFO == 0.
- EDSCR.TFO == 1, EL3 is implemented, SDCR.STE == 1 and ExternalSecureNoninvasiveDebugEnabled() == FALSE.
- EDSCR.TFO == 1, EL3 is not implemented, the PE executes in Secure state and ExternalSecureNoninvasiveDebugEnabled() == FALSE.

The pseudocode function SelfHostedTraceEnabled() shows these rules.

If FEAT_TRF is not implemented, SelfHostedTraceEnabled() returns FALSE.

While SelfHostedTraceEnabled() == FALSE, ExternalSecureNoninvasiveDebugEnabled() and ExternalNoninvasiveDebugEnabled() control whether external tracing is prohibited or allowed in each Security state.

The self-hosted trace extensions do not provide any mechanism to control software access to the PE Trace Unit external debug interface.
G3.2 Prohibited regions in self-hosted trace

Trace is not generated in prohibited regions. The pseudocode function `TraceAllowed()` indicates whether tracing is allowed in the current Security state and Exception level.

The IMPLEMENTATION DEFINED debug authentication interface can allow an external agent to disable the self-hosted trace extension.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited in Secure state when `SDCR.STE == 0`. If `FEAT_TRF` is implemented but not enabled, tracing is prohibited in Secure state when `ExternalSecureNoninvasiveDebugEnabled()` == FALSE.

G3.2.1 Controls to prohibit trace at Exception levels

If `SelfHostedTraceEnabled()` == TRUE, `TRFCR, TRFCR_EL1, TRFCR_EL2` and `HTRFCR` control whether trace is prohibited at an Exception level. While `SelfHostedTraceEnabled()` == FALSE, these registers are ignored.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL0 if one of the following is true:

- The Effective value of `HCR_EL2.TGE == 0` and `TRFCR_EL1.E0TRE == 0`.
- The Effective value of `HCR.TGE == 0` and `TRFCR.E0TRE == 0`.
- The Effective value of `HCR_EL2.TGE == 1` and `TRFCR_EL2.E0HTRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL1 if `TRFCR.E1TRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL2 if `HTRFCR.E2TRE == 0`.

If `SelfHostedTraceEnabled()` == TRUE, tracing is prohibited at EL3 if one of the following is true:

- EL3 is in AArch64 state.
- EL3 is in AArch32 state and `TRFCR.E1TRE == 0`.

The pseudocode `TraceAllowed()` shows the preceding rules.

If `SelfHostedTraceEnabled()` == TRUE, Table G3-1 shows when export of PMU events Attributable to an Exception level is prohibited.

<table>
<thead>
<tr>
<th>HCR_EL2.TGE</th>
<th>Tracing prohibited in</th>
<th>Export of PMU events Attributable to this Exception level prohibited</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>EL0, EL2, EL3</td>
<td>EL0</td>
</tr>
<tr>
<td>x</td>
<td>EL0, EL1, EL2, EL3</td>
<td>EL0</td>
</tr>
<tr>
<td>x</td>
<td>EL1, EL2, EL3</td>
<td>EL1</td>
</tr>
<tr>
<td>x</td>
<td>EL2, EL3</td>
<td>EL2</td>
</tr>
<tr>
<td>x</td>
<td>EL3</td>
<td>EL3</td>
</tr>
</tbody>
</table>

G3.2.2 Self-hosted trace and address translation

A hypervisor can use `HTRFCR.CX` to control visibility of `VTTBR.VMID`.

If `SelfHostedTraceEnabled()` == TRUE, and `HTRFCR.CX == 0`, or if EL2 is not implemented:

- The value of `VTTBR.VMID` is not traced.
- Comparisons with `VTTBR.VMID` do not match and results of comparison are not exposed through the comparators.

The PE Trace Unit may either prohibit trace for these values, or may record a `VTTBR.VMID` value of zero in the trace.
G3.3 Self-hosted trace timestamps

For EL1 using AArch64, see Chapter D3 AArch64 Self-hosted Trace. The trace timestamp is a value that represents the passage of time in real-time. It is calculated from a counter which increments all the time, when the PE is generating trace and when the PE is in a prohibited region.

While `SelfHostedTraceEnabled()` == FALSE, the external trace provides the trace timestamp. If the external trace is a standard CoreSight system, the relationship between CoreSight time and the Generic Timer counter is IMPLEMENTATION DEFINED.

When `SelfHostedTraceEnabled()` == TRUE, the trace time stamp is one of the following:

- The physical counter value CNTPCT_EL0 or CNTPCT.
- A virtual counter, which is calculated from the physical counter CNTPCT_EL0 minus an offset CNTVOFF_EL2, if EL2 is implemented and using AArch64.
- A virtual counter, which is calculated from the physical counter CNTPCT minus an offset CNTVOFF, if EL2 is implemented and using AArch32.
- If EL2 is not implemented, the value of the offset is zero.

The fields `TRFCR_EL2.TS`, `TRFCR.TS` and `HTRFCR.TS` control which counter is used for self-hosted trace. The timestamp used for trace is shown in Table G3-2.

Table G3-2 Timestamp used for trace.

<table>
<thead>
<tr>
<th><code>SelfHostedTraceEnabled()</code></th>
<th><code>TRFCR_EL2.TS</code> or <code>HTRFCR.TS</code></th>
<th><code>TRFCR_EL1.TS</code></th>
<th>Timestamp traced</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>xx</td>
<td>xx</td>
<td>CoreSight time</td>
</tr>
<tr>
<td>TRUE</td>
<td>0b00</td>
<td>0b01</td>
<td>CNTPCT - CNTVOFF</td>
</tr>
<tr>
<td></td>
<td>0b10</td>
<td>0b11</td>
<td>CNTPCT</td>
</tr>
<tr>
<td></td>
<td>0b01</td>
<td>xx</td>
<td>CNTPCT - CNTVOFF or CNTPCT_EL0 - CNTVOFF_EL2</td>
</tr>
<tr>
<td></td>
<td>0b11</td>
<td>xx</td>
<td>CNTPCT or CNTPCT_EL0</td>
</tr>
</tbody>
</table>

Note

The value of `HCR_EL2.E2H` does not affect the counter used for the trace timestamp.
G3.4 Synchronization in self-hosted trace

The PE Trace Unit is an indirect observer of the trace control registers.

While `SelfHostedTraceEnabled()` == TRUE, indirect reads of the trace filter control fields, TRFCR.{E1TRE, E0TRE} and HTRFCR.{E2TRE, E0HTRE} are treated as indirect reads made by the instruction being traced, and are subject to the standard requirements for synchronization of System register accesses.

The `T5B CSYNC` operation is used to ensure that a trace operation, due to a PE Trace Unit generating trace for an instruction has completed. The `T5B CSYNC` operation may be reordered with respect to other instructions, so must be combined with at least one Context synchronization event to ensure the operations are executed in the required order. This means that a direct write to TRFCR or HTRFCR is guaranteed to be observed by the PE Trace Unit only after a subsequent Context synchronization event. For more information, see `Trace Synchronization Barrier (T5B CSYNC)` on page E2-4034.

While `SelfHostedTraceEnabled()` == FALSE, the PE Trace Unit might impose stronger synchronization requirements.
Chapter G4
The AArch32 System Level Memory Model

This chapter provides a system level view of the general features of the memory system. It contains the following sections:

- *About the memory system architecture* on page G4-5926.
- *Address space* on page G4-5927.
- *Mixed-endian support* on page G4-5928.
- *AArch32 cache and branch predictor support* on page G4-5929.
- *System register support for IMPLEMENTATION DEFINED memory features* on page G4-5953.
- *External aborts* on page G4-5954.
- *Memory barrier instructions* on page G4-5956.
- *Pseudocode description of general memory System instructions* on page G4-5957.
G4.1 About the memory system architecture

The Arm architecture supports different implementation choices for the memory system microarchitecture and memory hierarchy, depending on the requirements of the system being implemented. In this respect, the memory system architecture describes a design space in which an implementation is made. The architecture does not prescribe a particular form for the memory systems. Key concepts are abstracted in a way that permits implementation choices to be made while enabling the development of common software routines that do not have to be specific to a particular microarchitectural form of the memory system. For more information about the concept of a hierarchical memory system see Memory hierarchy on page E2-4039.

G4.1.1 Form of the memory system architecture

The Armv8 A-profile architecture includes a Virtual Memory System Architecture (VMSA). Chapter G5 The AArch32 Virtual Memory System Architecture describes the AArch32 view of the VMSA.

G4.1.2 Memory attributes

Memory types and attributes on page E2-4050 describes the memory attributes, including how different memory types have different attributes. Each location in memory has a set of memory attributes, and the translation tables define the virtual memory locations, and the attributes for each location.

Table G4-1 shows the memory attributes that are visible at the system level.

<table>
<thead>
<tr>
<th>Memory type</th>
<th>Shareability</th>
<th>Cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(^a)</td>
<td>Outer Shareable</td>
<td>Non-cacheable.</td>
</tr>
<tr>
<td>Normal</td>
<td>One of:</td>
<td>One of(^b):</td>
</tr>
<tr>
<td></td>
<td>• Non-shareable.</td>
<td>• Non-cacheable.</td>
</tr>
<tr>
<td></td>
<td>• Inner Shareable.</td>
<td>• Write-Through Cacheable.</td>
</tr>
<tr>
<td></td>
<td>• Outer Shareable.</td>
<td>• Write-Back Cacheable.</td>
</tr>
</tbody>
</table>

\(^a\) Takes additional attributes, see Device memory on page E2-4054.

\(^b\) See also Cacheability, cache allocation hints, and cache transient hints on page G4-5932.

For more information on Cacheability and Shareability see The Cacheability and Shareability memory attributes on page E2-4040, Non-shareable Normal memory on page E2-4052, and Caches and memory hierarchy on page E2-4039.
G4.2 Address space

The Armv8 architecture is designed to support a wide range of applications with different memory requirements. It supports a range of physical address (PA) sizes, and provides associated control and identification mechanisms. For more information, see About VMSAv8-32 on page G5-5962.

G4.2.1 Address space overflow or underflow

This subsection describes address space overflow or underflow:

Instruction address space overflow

When a PE performs a normal, sequential execution of instructions, it calculates:

(address_of_current_instruction) + (size_of_executed_instruction)

This calculation is performed after each instruction to determine which instruction to execute next.

If the address calculation performed after executing an A32 or T32 instruction overflows 0xFFFF FFFF, the program counter becomes UNKNOWN.

If the PE executes an instruction for which the instruction address, size, and alignment mean that it contains the bytes 0xFFFFFFFF and 0x00000000, the bytes that apparently come from 0x00000000 onwards come from an UNKNOWN address.

Data address space overflow and underflow

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean that it accesses bytes 0xFFFFFFFF and 0x00000000, then the bytes that apparently come from 0x00000000 onwards come from UNKNOWN addresses.
G4.3 Mixed-endian support

Table G4-2 shows the endianness of explicit data accesses and translation table walks.

<table>
<thead>
<tr>
<th>Exception level</th>
<th>Explicit data accesses</th>
<th>Stage 1 translation table walks</th>
<th>Stage 2 translation table walks</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL0</td>
<td>PSTATE.E</td>
<td>SCTLR(NS).EE</td>
<td>HSCTLR.EE</td>
</tr>
<tr>
<td>EL1</td>
<td>PSTATE.E</td>
<td>SCTLR(NS).EE</td>
<td>HSCTLR.EE</td>
</tr>
<tr>
<td>EL2</td>
<td>PSTATE.E</td>
<td>HSCTLR.EE</td>
<td>N/A</td>
</tr>
<tr>
<td>EL3</td>
<td>PSTATE.E</td>
<td>SCTLR(S).EE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

AArch32 state provides the following options for endianness support:

- All Exception levels support mixed-endianness:
 - SCTLR(NS).EE, HSCTLR.EE, and PSTATE.E are RW.

- Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only little-endianness:
 - SCTLR(NS).EE and HSCTLR.EE are RES0. PSTATE.E is RW when in EL0 and RES0 when in EL1, EL2, or EL3. SPSR.E is also RES0 when not returning to EL0.

- Only EL0 supports mixed-endianness and EL1, EL2, and EL3 support only big-endianness:
 - SCTLR(NS).EE and HSCTLR.EE are RES1. PSTATE.E is RW when in EL0 and RES1 when in EL1, EL2, or EL3. SPSR.E is also RES1 when not returning to EL0.

- All Exception levels support only little-endianness:
 - Each of SCTLR(NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES0.

- All Exception levels support only big-endianness:
 - Each of SCTLR(NS).EE, HSCTLR.EE, PSTATE.E, and SPSR.E is RES1.

If mixed endian support is implemented for an Exception level using AArch32, endianness is controlled by PSTATE.E. For exception returns to AArch32 state, PSTATE.E is copied from SPSR_ELx.E. If the target Exception level supports only little-endian accesses, SPSR_ELx.E is RES0. If the target Exception level supports only big-endian accesses, SPSR_ELx.E is RES1.

Note

- When using AArch32, Arm deprecates PSTATE.E having a different value from the equivalent System register EE bit when in EL1, EL2 or EL3. The use of the SETE0 instruction is also deprecated.

- If the higher Exception levels are using AArch64, the corresponding registers are:
 - SCTLR_EL1 for SCTLR(NS).
 - SCTLR_EL2 for HSCTLR.
 - SCTLR_EL3 for SCTLR(S).

The BigEndian() function determines whether the current Exception level and Execution state is using big-endian data.

For more information about endianness in the Arm architecture see Endian support on page E2-4046.
G4.4 AArch32 cache and branch predictor support

The following sections describe the support for caches and branch predictors in AArch32 state:

• General behavior of the caches.
• Cache identification on page G4-5930.
• Cacheability, cache allocation hints, and cache transient hints on page G4-5932.
• Enabling and disabling the caching of memory accesses in AArch32 state on page G4-5933.
• Behavior of caches at reset on page G4-5935.
• About cache maintenance in AArch32 state on page G4-5935.
• AArch32 cache and branch predictor maintenance instructions on page G4-5939.
• Execution and data prediction restriction System instructions on page G4-5950.
• Cache lockdown on page G4-5951.
• System level caches on page G4-5952.

See also Chapter G5 The AArch32 Virtual Memory System Architecture, and in particular Caches in VMSAv8-32 on page G5-6049.

Note

• Branch predictors typically use a form of cache to hold branch target data. Therefore, they are included in this section.
• In the instruction mnemonics, MVA is a synonym for VA.

G4.4.1 General behavior of the caches

When a memory location is marked with a Normal Cacheable memory attribute, determining whether a copy of the memory location is held in a cache still depends on many aspects of the implementation. The following non-exhaustive list of factors might be involved:

• The size, line length, and associativity of the cache.
• The cache allocation algorithm.
• Activity by other elements of the system that can access the memory.
• Speculative instruction fetching algorithms.
• Speculative data fetching algorithms.
• Interrupt behaviors.

Given this range of factors, and the large variety of cache systems that might be implemented, the architecture cannot guarantee whether:

• A memory location present in the cache remains in the cache.
• A memory location not present in the cache is brought into the cache.

Instead, the following principles apply to the behavior of caches:

• The architecture has a concept of an entry locked down in the cache. How lockdown is achieved is IMPLEMENTATION DEFINED, and lockdown might not be supported by:
 — A particular implementation.
 — Some memory attributes.

• An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an unlocked item that remains in the cache remains dirty.

• A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.
Note

For more information, see *The interaction of cache lockdown with cache maintenance instructions on page G4-5951.*

- Any memory location that has a Normal Cacheable attribute at either the current Exception level or at a higher Exception level can be allocated to a cache at any time.

- It is guaranteed that no memory location that does not have a Normal Cacheable attribute is allocated into the cache.

- It is guaranteed that no memory location is allocated to the cache if it has a Normal Non-cacheable attribute or any type of Device memory attribute in both:
 - The translation regime at the current Exception level.
 - The translation regime at any higher Exception level.

- For data accesses, any memory location with a Normal Inner Shareable or Normal Outer Shareable attribute is guaranteed to be coherent with all Requesters in its Shareability domain.

- Any memory location is not guaranteed to remain incoherent with the rest of memory.

- The eviction of a cache entry from a cache level can overwrite memory that has been written by another observer only if the entry contains a memory location that has been written to by an observer in the Shareability domain of that memory location. The maximum size of the memory that can be overwritten is called the *Cache Write-back Granule.* In some implementations the CTR identifies the Cache Write-back Granule.

- The allocation of a memory location into a cache cannot cause the most recent value of that memory location to become invisible to an observer, if it was previously visible to that observer.

Note

The Cacheability attribute of an address is determined by the applicable translation table entry for that address, as modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.

For the purpose of these principles, a cache entry covers at least 16 bytes and no more than 2KB of contiguous address space, aligned to the size of the cache entry.

G4.4.2 Cache identification

The Armv8 cache identification consists of a set of registers that describe the implemented caches that are affected by cache maintenance instructions executed on the PE. This includes cache maintenance instructions that:

- Affect the entire cache, for example ICIALLUIS.
- Operate by VA, for example ICIMVAU.
- Operate by set/way, for example DCISW.

The cache identification registers are:

- A single Cache Type Register, CTR, that defines:
 - The minimum line length of any of the instruction caches affected by the instruction cache maintenance instructions.
 - The minimum line length of any of the data or unified caches, affected by the data cache maintenance instructions.
 - The cache indexing and tagging policy of the Level 1 instruction cache.

Note

It is IMPLEMENTATION DEFINED whether caches beyond the PoC will be reported by this mechanism, and because of the possible existence of system caches some caches before the PoC might not be reported. For more information about system caches see *System level caches on page G4-5952.*
A single Cache Level ID Register, CLIDR, that defines:
- The type of cache that is implemented and can be maintained using the architected cache maintenance instructions that operate by set/way or operate on the entire cache at each cache level, up to the maximum of seven levels.
- The Level of Unification Inner Shareable (LoUIS), Level of Coherence (LoC) and the Level of Unification (LoU) for the caches. See Terms used in describing the cache maintenance instructions on page G4-5936 for a definition of these terms.
- An optional ICB field to indicate the boundary between the caches use for caching Inner Cacheable memory regions and those used only for caching Outer Cacheable regions.

A single Cache Size Selection Register, CSSELR, that selects the cache level and cache type of the current Cache Size Identification Register.

For each implemented cache that is identifiable by this mechanism, across all the levels of caching, a Cache Size Identification Register, that defines:
- Whether the cache supports Write-Through, Write-Back, Read-Allocate and Write-Allocate.
- The number of sets, associativity, and line length of the cache. See Terms used in describing the cache maintenance instructions on page G4-5936 for a definition of these terms.

Note
From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2.

To determine the cache topology associated with a PE:

1. Read the Cache Type Register to find the indexing and tagging policy used for the Level 1 instruction cache. This register also provides the size of the smallest cache lines used for the instruction caches, and for the data and unified caches. These values are used in cache maintenance instructions.
2. Read the Cache Level ID Register to find what caches are implemented. The register includes seven Cache type fields, for cache levels 1 to 7. Scanning these fields, starting from Level 1, identifies the instruction, data or unified caches implemented at each level. This scan ends when it reaches a level at which no caches are defined. The Cache Level ID Register also specifies the Level of Unification (LoU) and the Level of Coherence (LoC) for the cache implementation.
3. For each cache identified at stage 2:
 - Write to the Cache Size Selection Register to select the required cache. A cache is identified by its level, and whether it is:
 - An instruction cache.
 - A data or unified cache.
 - Read the Cache Size Identification Register to find details of the cache.

Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2

From Armv8.3, two different formats are available for defining the number of sets and associativity of the currently selected cache. For a definition of these terms, see Terms used in describing the cache maintenance instructions on page G4-5936.

When FEAT_CCIDX is implemented:
- There are two Cache Size Identification Registers, CCSIDR and CCSIDR2.
- The length of the CCSIDR.Assoc field is 21 bits. This limits the associativity of the currently selected cache to 2^{21}.
- The length of the CCSIDR2.NumSets field is 24 bits. This limits the number of sets in the currently selected cache to 2^{24}.

This is the 64-bit format of the Cache Size Identification Register.
When FEAT_CCIDX is not implemented:

- There is a single Cache Size Identification Register, CCSIDR.
- The length of the CCSIDR.Assoc field is 10 bits. This limits the associativity of the currently selected cache to 2^{10}.
- The length of the CCSIDR.NumSets field is 15 bits. This limits the number of sets in the currently selected cache to 2^{15}.

This is the 32-bit format of the Cache Size Identification Register.

When one of these formats is implemented, it is implemented across all the levels of caching.

G4.4.3 Cacheability, cache allocation hints, and cache transient hints

Cacheability only applies to Normal memory, and is defined independently for Inner and Outer cache locations. All types of Device memory are always treated as Non-cacheable.

As described in Memory types and attributes on page E2-4050, the memory attributes include a cacheability attribute that is one of:
- Non-cacheable.
- Write-Through cacheable.
- Write-Back cacheable.

In Armv8, Cacheability attributes other than Non-cacheable can be complemented by a cache allocation hint. This is an indication to the memory system of whether allocating a value to a cache is likely to improve performance. In addition, it is IMPLEMENTATION DEFINED whether a cache transient hint is supported, see Transient cacheability hint.

The cache allocation hints are assigned independently for read and write accesses, and therefore when the Transient hint is supported the following cache allocation hints can be used:

For read accesses: Read-Allocate, Transient Read-Allocate, or No Read-Allocate.

For write accesses: Write-Allocate, Transient Write-Allocate, or No Write-Allocate.

Note

- A Cacheable location with both No Read-Allocate and No Write-Allocate hints is not the same as a Non-cacheable location. A Non-cacheable location has coherency guarantees for all observers within the system that do not apply for a location that is Cacheable, No Read-Allocate, No Write-Allocate.
- Implementations can use the cache allocation hints to limit cache pollution to a part of a cache, such as to a subset of ways.
- For VMSAv8-32 translation table walks using the Long-descriptor translation table format, the appropriate TCR.\{IRGNn, ORGNn\} fields define the memory attributes of the translation tables, including the cacheability. However, this assignment supports only a subset of the cacheability attributes described in this section.

The architecture does not require an implementation to make any use of cache allocation hints. This means an implementation might not make any distinction between memory locations with attributes that differ only in their cache allocation hint.

Transient cacheability hint

In Armv8, it is IMPLEMENTATION DEFINED whether a Transient hint is supported for the VMSAv8-32 translation scheme when using the Long-descriptor translation table format. In an implementation that supports the Transient hint, the Transient hint is a qualifier of the cache allocation hints, and indicates that the benefit of caching is for a relatively short period. It indicates that it might be better to restrict allocation of transient entries, to avoid possibly casting-out other, less transient, entries.
--- Note ---
The architecture does not specify what is meant by a relatively short period.

When using the Short-descriptor translation table format, VMSAv8-32 cannot support the Transient hint.

The description of the MAIR0, MAIR1, HMAIR0, and HMAIR1 registers includes the assignment of the Transient attribute in an implementation that supports this option. In this assignment:

- The Transient hint is defined independently for Inner Cacheable and Outer Cacheable memory regions.
- A single Transient hint applies to both read and write accesses to a memory region.

G4.4.4 Enabling and disabling the caching of memory accesses in AArch32 state

In Armv8, Cacheability control fields can force all memory locations with the Normal memory type to be treated as Non-cacheable, regardless of their assigned Cacheability attribute. Independent controls are provided for each stage of address translation, with separate controls for:

- Data accesses. These controls also apply to accesses to the translation tables.
- Instruction accesses.

--- Note ---
These Cacheability controls replace the cache enable controls provided in previous versions of the Arm architecture.

In AArch32 state, the Cacheability control fields and their effects are as follows:

For the Non-secure PL1&0 translation regime

The Non-secure instance of SCTLR holds the EL1 controls that affect cacheability:

- When the value of SCTLR.C is 0:
 - All stage 1 translations for data accesses to Normal memory are Non-cacheable.
 - All accesses to the PL1&0 stage 1 translation tables are Non-cacheable.
- When the value of SCTLR.I is 0:
 - All stage 1 translations for instruction accesses to Normal memory are Non-cacheable.
- When the value of HCR2.CD is 1:
 - All stage 2 translations for data accesses to Normal memory are Non-cacheable.
 - All accesses to the PL1&0 stage 2 translation tables are Non-cacheable.
- When the value of HCR2.ID is 1:
 - All stage 2 translations for instruction accesses to Normal memory are Non-cacheable.
- When the value of HCR.DC is 1, all Non-secure stage 1 translations and all accesses to the Non-secure EL1&0 stage 1 translation tables, are treated as accesses to Normal Non-shareable Inner Write-Back Cacheable Read-Allocate Write-Allocate, Outer Write-Back Cacheable Read-Allocate Write-Allocate memory, regardless of the value of SCTLR.C. This applies to translations for both data and instruction accesses.

In addition, when the value of SCTLR.M is 0, indicating that the stage 1 translations are disabled for the translation regime, then if EL2 is using AArch32 and the value of HCR.DC is 0 or if EL2 is using AArch64 and the value of HCR_EL2.DC is 0, then:

- If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.
- If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.

--- Note ---
- In Non-secure state, the stage 1 and stage 2 cacheability attributes are combined as described in Combining the Cacheability attribute on page G5-6029.
For the Secure PL1&0 translation regime

The Secure instance of SCTLR holds the controls that determine cacheability:

- When the value of SCTLR.C is 0:
 - All data accesses to Normal memory using the Secure PL1&0 translation regime are Non-cacheable.
 - All accesses to the Secure PL1&0 translation tables are Non-cacheable.
- When the value of SCTLR.I is 0:
 - All instruction accesses to Normal memory using the Secure PL1&0 translation regime are Non-cacheable.

In addition, when the value of SCTLR.M is 0, indicating that stage 1 translations are disabled, then:

- If the value of SCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.
- If the value of SCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.

Note

The Secure SCTLR.{I, C, M} fields have no effect on the Non-secure PL1&0 and EL2 translation regimes.

For the EL2 translation regime

- When the value of HSCTLR.C is 0:
 - All data accesses to Normal memory using the EL2 translation regime are Non-cacheable.
 - All accesses to the EL2 translation tables are Non-cacheable.
- When the value of HSCTLR.I is 0:
 - All instruction accesses to Normal memory using the EL2 translation regime are Non-cacheable.

In addition, when the value of HSCTLR.M is 0, indicating that stage 1 translations are disabled, then:

- If the value of HSCTLR.I is 0, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Non-cacheable, Outer Non-cacheable.
- If the value of HSCTLR.I is 1, instruction accesses to Normal memory from stage 1 of the translation regime are Outer Shareable, Inner Write-Through cacheable, Outer Write-Through cacheable.

Note

The HSCTLR.{I, C, M} fields have no effect on the PL1&0 and EL3 translation regimes.

The effect of the SCTLR.C or HSCTLR.C and HCR2.CD bits is reflected in the result of the address translation instructions in the PAR.

Note

The requirements in this section mean the architecturally required effects of SCTLR.I and HSCTLR.I are limited to their effects on caching instruction accesses in unified caches.
This specification can give rise to different cacheability attributes between instruction and data accesses to the same location. Where this occurs, the measures for mismatch memory attributes described in Mismatched memory attributes on page E2-4060 must be followed to manage the corresponding loss of coherency.

G4.4.5 Behavior of caches at reset

In Armv8:

- All caches reset to IMPLEMENTATION DEFINED states that might be UNKNOWN.
- The Cacheability control fields described in Enabling and disabling the caching of memory accesses in AArch32 state on page G4-5933 reset to values that force all memory locations to be treated as Non-cacheable.

Note
This applies only to the controls that apply to the Translation regime that is used by the Exception level, PE mode, and Security state entered on reset.

- An implementation can require the use of a specific cache initialization routine to invalidate its storage array before caching is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED, and the routine must be documented clearly as part of the documentation of the device.
- If an implementation permits cache hits when the Cacheability control fields force all memory locations to be treated as Non-cacheable then the cache initialization routine must:
 - Provide a mechanism to ensure the correct initialization of the caches.
 - Be documented clearly as part of the documentation of the device.

In particular, if an implementation permits cache hits when the Cacheability controls force all memory locations to be treated as Non-cacheable, and the cache contents are not invalidated at reset, the initialization routine must avoid any possibility of running from an uninitialized cache. It is acceptable for an initialization routine to require a fixed instruction sequence to be placed in a restricted range of memory.

- Arm recommends that whenever an invalidation routine is required, it is based on the Armv8 cache maintenance instructions.

Similar rules apply to:
- Branch predictor behavior, see Behavior of the branch predictors at reset on page G4-5943.
- TLB behavior, see TLB behavior at reset on page G5-6032.

G4.4.6 About cache maintenance in AArch32 state

The following sections give general information about cache maintenance in Armv8:

- Terms used in describing the cache maintenance instructions on page G4-5936.
- The Armv8 abstraction of the cache hierarchy on page G4-5938.

The following sections describe the AArch32 state cache maintenance instructions:

- AArch32 instruction cache maintenance instructions (IC*) on page G4-5940.
- AArch32 data cache maintenance instructions (DC*) on page G4-5941.

Note
Some descriptions of the cache maintenance instructions refer to the Cacheability of the address on which the instruction operates. The Cacheability of an address is determined by the applicable translation table entry for that address, as modified by any applicable System register Cacheability controls, such as the SCTLR.{I, C} controls.
Terms used in describing the cache maintenance instructions

Cache maintenance instructions are defined to act on particular memory locations. Instructions can be defined:

- By the virtual address of the memory location to be maintained, referred to as operating by VA.
- By a mechanism that describes the location in the hardware of the cache, referred to as operating by set/way.

In addition, for instruction caches and branch predictors, there are instructions that invalidate all entries.

The following subsections define the terms used in the descriptions of the cache maintenance instructions:

- Terminology for cache maintenance instructions operating by set/way.
- Terminology for Clean, Invalidate, and Clean and Invalidate instructions.

Note

There is no terminology specific to cache maintenance instructions that operate by VA. When all applicable stages of translation are disabled, the VA used is identical to the PA. For more information about memory system behavior when address translation is disabled, see The effects of disabling address translation stages on VMSAv8-32 behavior on page G5-5970.

Terminology for cache maintenance instructions operating by set/way

Cache maintenance instruction that operate by set/way refer to the particular structures in a cache. Three parameters describe the location in a cache hierarchy that an instruction works on. These parameters are:

Level

The cache level of the hierarchy. The number of levels of cache is IMPLEMENTATION DEFINED. The cache levels that can be managed using the architected cache maintenance instructions that operate by set/way can be determined from the CLIDR.

In the Arm architecture, the lower numbered cache levels are those closest to the PE. See Memory hierarchy on page E2-4039.

Set

Each level of a cache is split up into a number of sets. Each set is a set of locations in a cache level to which an address can be assigned. Usually, the set number is an IMPLEMENTATION DEFINED function of an address.

In the Arm architecture, sets are numbered from 0.

Way

The associativity of a cache is the number of locations in a set to which a specific address can be assigned. The way number specifies one of these locations.

In the Arm architecture, ways are numbered from 0.

Note

Because the allocation of a memory address to a cache location is entirely IMPLEMENTATION DEFINED, Arm expects that most portable software will use only the cache maintenance instructions by set/way as single steps in a routine to perform maintenance on the entire cache.

Terminology for Clean, Invalidate, and Clean and Invalidate instructions

Caches introduce coherency problems in two possible directions:

1. An update to a memory location by a PE that accesses a cache might not be visible to other observers that can access memory. This can occur because new updates are still in the cache and are not visible yet to the other observers that do not access that cache.

2. Updates to memory locations by other observers that can access memory might not be visible to a PE that accesses a cache. This can occur when the cache contains an old, or stale, copy of the memory location that has been updated.
The *Clean* and *Invalidate* instructions address these two issues. The definitions of these instructions are:

Clean
A cache clean instruction ensures that updates made by an observer that controls the cache are made visible to other observers that can access memory at the point to which the instruction is performed. Once the Clean has completed, the new memory values are guaranteed to be visible to the point to which the instruction is performed, for example to the Point of Unification.

The cleaning of a cache entry from a cache can overwrite memory that has been written by another observer only if the entry contains a location that has been written to by an observer in the Shareability domain of that memory location.

Invalidate
A cache invalidate instruction ensures that updates made visible by observers that access memory at the point to which the invalidate is defined, are made visible to an observer that controls the cache. This might result in the loss of updates to the locations affected by the invalidate instruction that have been written by observers that access the cache, if those updates have not been cleaned from the cache since they were made.

If the address of an entry on which the invalidate instruction operates is Normal, Non-cacheable or any type of Device memory then an invalidate instruction also ensures that this address is not present in the cache.

--- **Note** ---
Entries for addresses that are Normal Cacheable can be allocated to the cache at any time, and so the cache invalidate instruction cannot ensure that the address is not present in a cache.

Clean and Invalidate

A cache *clean and invalidate* instruction behaves as the execution of a clean instruction followed immediately by an invalidate instruction. Both instructions are performed to the same location.

The points to which a cache maintenance instruction can be defined differ depending on whether the instruction operates by VA or by set/way:

- For instructions operating by set/way, the point is defined to be to the next level of caching. For the All operations, the point is defined as the Point of Unification for each location held in the cache.
- For instruction operating by VA, two conceptual points are defined:
 - **Point of Coherency (PoC)**

 The point at which all agents that can access memory are guaranteed to see the same copy of a memory location for accesses of any memory type or cacheability attribute. In many cases this is effectively the main system memory, although the architecture does not prohibit the implementation of caches beyond the PoC that have no effect on the coherency between memory system agents.

 --- **Note** ---
 The presence of system caches can affect the determination of the point of coherency as described in *System level caches* on page G4-5952.

 - **Point of Unification (PoU)**

 The PoU for a PE is the point by which the instruction and data caches and the translation table walks of that PE are guaranteed to see the same copy of a memory location. In many cases, the Point of Unification is the point in a uniprocessor memory system by which the instruction and data caches and the translation table walks have merged.

 The PoU for an Inner Shareable Shareability domain is the point by which the instruction and data caches and the translation table walks of all the PEs in that Inner Shareable Shareability domain are guaranteed to see the same copy of a memory location. Defining this point permits self-modifying software to ensure future instruction fetches are associated with the modified version of the software by using the standard correctness policy of:
 1. Clean data cache entry by address.
 2. Invalidate instruction cache entry by address.
The following fields in the CLIDR relate to these conceptual points:

LoC, Level of Coherence
This field defines the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Coherency. The LoC value is a cache level, so, for example, if LoC contains the value 3:

- A clean to the Point of Coherency operation requires the level 1, level 2 and level 3 caches to be cleaned.
- Level 4 cache is the first level that does not have to be maintained.

If the LoC field value is 0x0, this means that no levels of cache need to cleaned or invalidated when cleaning or invalidating to the Point of Coherency.

If the LoC field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Coherency.

LoUU, Level of Unification, uniprocessor
This field defines the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Unification for the PE. As with LoC, the LoUU value is a cache level.

If the LoUU field value is 0x0, this means that no levels of cache need to cleaned or invalidated when cleaning or invalidating to the Point of Unification.

If the LoUU field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Unification.

LoUIS, Level of Unification, Inner Shareable
In any implementation:

- This field defines the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the Point of Unification for the Inner Shareable Shareability domain. As with LoC, the LoUIS value is a cache level.
- If the LoUIS field value is 0x0, this means that no levels of cache need to cleaned or invalidated when cleaning or invalidating to the Point of Unification for the Inner Shareable Shareability domain.
- If the LoUIS field value is a nonzero value that corresponds to a level that is not implemented, this indicates that all implemented caches are before the Point of Unification.

For more information, see the CLIDR description.

The Armv8 abstraction of the cache hierarchy

The following subsections describe the Armv8 abstraction of the cache hierarchy:

- Cache maintenance instructions that operate by VA.
- Cache maintenance instructions that operate by set/way on page G4-5939.

Cache maintenance instructions that operate by VA
The VA-based cache maintenance instructions are described as operating by VA. Each of these instructions is always qualified as being either:

- Performed to the Point of Coherency.
- Performed to the Point of Unification.

See Terms used in describing the cache maintenance instructions on page G4-5936 for definitions of Point of Coherency and Point of Unification, and more information about possible meanings of VA.

AArch32 cache and branch predictor maintenance instructions on page G4-5939 lists the VA-based maintenance instructions.

The CTR holds minimum line length values for:

- The instruction caches.
- The data and unified caches.
These values support efficient invalidation of a range of addresses, because this value is the most efficient address stride to use to apply a sequence of VA-based maintenance instructions to a range of VAs.

For the Invalidate data or unified cache line by VA instruction, the Cache Write-back Granule field of the CTR defines the maximum granule that a single invalidate instruction can invalidate. This meaning of the Cache Write-back Granule is in addition to its defining the maximum size that can be written back.

Cache maintenance instructions that operate by set/way

AArch32 cache and branch predictor maintenance instructions lists the set/way-based maintenance instructions. Some encodings of these instructions include a required field that specifies the cache level for the instruction:

- A clean instruction cleans from the level of cache specified through to at least the next level of cache, moving further from the PE.
- An invalidate instruction invalidates only at the level specified.

G4.4.7 AArch32 cache and branch predictor maintenance instructions

The instruction and data cache maintenance instructions have the same functionality in AArch32 state and in AArch64 state. Table G4-3 shows the AArch32 System instructions. Instructions that take an argument include Rt in the instruction description.

AArch32 state also provides branch predictor maintenance instructions.

Note

- In Table G4-3 the Point of Unification is the Point of Unification of the PE executing the cache maintenance instruction.
- In AArch32 state, all of the maintenance instructions are available from EL1 or higher.
- In AArch64 state, branch predictors are always invisible to software, and therefore AArch64 state does not provide any branch predictor maintenance instructions.

Table G4-3 AArch32 System instructions for cache maintenance

<table>
<thead>
<tr>
<th>Register</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instruction cache maintenance instructions</td>
</tr>
<tr>
<td></td>
<td>ICIALLUIS, Rt</td>
</tr>
<tr>
<td></td>
<td>ICIALLU, Rt</td>
</tr>
<tr>
<td></td>
<td>ICIMVAU, Rt</td>
</tr>
<tr>
<td></td>
<td>DCIMVAC, Rt</td>
</tr>
<tr>
<td></td>
<td>DCISW, Rt</td>
</tr>
<tr>
<td></td>
<td>DCCMVAC, Rt</td>
</tr>
<tr>
<td></td>
<td>DCCSW, Rt</td>
</tr>
<tr>
<td></td>
<td>DCCMVAU, Rt</td>
</tr>
<tr>
<td></td>
<td>DCCIMVAC, Rt</td>
</tr>
<tr>
<td></td>
<td>DCISW, Rt</td>
</tr>
</tbody>
</table>
The AArch32 System Level Memory Model
G4.4 AArch32 cache and branch predictor support

Table G4-3 AArch32 System instructions for cache maintenance (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Branch prediction maintenance instructions</td>
</tr>
<tr>
<td>BPIMVA, Rt</td>
<td>Invalidate the virtual address from the branch predictors</td>
</tr>
<tr>
<td>BPIALLIS, Rt</td>
<td>Invalidate all entries from branch predictors, Inner Shareable</td>
</tr>
<tr>
<td>BPALL, Rt</td>
<td>Invalidate all entries from branch predictors</td>
</tr>
</tbody>
</table>

A DSB or DMB instruction intended to ensure the completion of cache or branch predictor maintenance instructions must have an access type of both loads and stores.

In an implementation where the branch predictors are architecturally invisible, the BPIMVA, BPIALLIS, and BPALL instructions can execute as NOPs.

The following subsections give more information about these instructions:

- AArch32 instruction cache maintenance instructions (IC*).
- AArch32 data cache maintenance instructions (DC*) on page G4-5941.
- Branch predictors on page G4-5941.
- General requirements for the scope of cache and branch predictor maintenance instructions on page G4-5943.
- Effects of instructions that operate by VA to the Point of Coherency on page G4-5943.
- Effects of instructions that operate by VA but not to the Point of Coherency on page G4-5944.
- Effects of All and set/way maintenance instructions on page G4-5944.
- Effects of virtualization and security on the AArch32 cache maintenance instructions on page G4-5945.
- Boundary conditions for cache maintenance instructions on page G4-5947.
- Ordering of cache and branch predictor maintenance instructions on page G4-5947.
- Performing cache maintenance instructions on page G4-5948.

AArch32 instruction cache maintenance instructions (IC*)

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the virtual address argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

- For an instruction executed at EL1, the current system ASID.
- The current Security state.
- Whether the instruction was performed from Hyp mode, or at EL1.
- For an instruction executed at EL1, the VMID.

That VA to PA translation might fault. However for an instruction cache maintenance instruction that operates by VA:

- It is IMPLEMENTATION DEFINED whether the operation can generate a Data Abort exception for a Translation fault or an Access flag fault.
- The operation cannot generate a Data Abort exception for a Domain fault or a Permission fault, except for the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see Types of MMU faults on page G5-6053.

An instruction cache maintenance instruction can complete at any time after it is executed, but is only guaranteed to be complete, and its effects visible to other observers, following a DSB instruction executed by the PE that executed the cache maintenance instruction. See also the completion requirements for cache and branch predictor maintenance instructions in Completion and endpoint ordering on page E2-4027.
See also *Ordering of cache and branch predictor maintenance instructions on page G4-5947.*

AArch32 data cache maintenance instructions (DC*)

Data cache maintenance instructions that take a set/way/level argument take a 32-bit register.

If a data cache maintenance by set/way instruction specifies a set, way, or level argument that is larger than the value supported by the implementation then the instruction is **CONSTRAINED UNPREDICTABLE**, see *Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-7953* or the instruction description.

DCISW instructions executed at EL1 perform a clean and invalidate, meaning it performs the same maintenance as a DCCISW instruction, if all of the following apply:

- EL2 is implemented and enabled in the current Security state.
- Either:
 - EL2 is using AArch32 and the value of HCR.SWIO is 1.
 - EL2 is using AArch64 and the value of HCR_EL2.SWIO is 1.

Where an address argument for these instructions is required, it takes the form of a 32-bit register that holds the virtual address argument. No alignment restrictions apply for this address.

Any cache maintenance instruction operating by VA includes as part of any required VA to PA translation:

- For an instruction executed at EL1, the current system ASID.
- The current Security state.
- Whether the instruction was performed from Hyp mode, or from EL1.
- For an instruction executed from EL1, the VMID.

That VA to PA translation might fault. However a data or unified cache maintenance instruction that operates by VA cannot generate a Data Abort exception for a Domain fault, and cannot generate a Data Abort exception for a Permission fault, except for the Permission fault case on a Stage 2 fault on a stage 1 translation table walk.

For more information about the possible faults on an instruction that operates by VA, see *Types of MMU faults on page G5-6053.*

DCIMVAC and DCISW instructions executed at EL1 perform a clean and invalidate, meaning they perform the same maintenance as a DCCIMVAC or DCCISW instruction respectively, if all of the following apply:

- EL2 is implemented and enabled in the current Security state.
- PL1&0 stage two address translation is enabled, meaning either:
 - EL2 is using AArch32 and the value of HCR.VM is 1.
 - EL2 is using AArch64 and the value of HCR_EL2.VM is 1.

If a memory fault that sets FAR for the translation regime applicable for the cache maintenance instruction is generated from a data cache maintenance instruction, the FAR holds the address specified in the register argument of the instruction.

See also *Ordering of cache and branch predictor maintenance instructions on page G4-5947.*

Branch predictors

In AArch32 state it is IMPLEMENTATION DEFINED whether branch prediction is architecturally visible. This means that under some circumstances software must perform branch predictor maintenance to avoid incorrect execution caused by out-of-date entries in the branch predictor. For example, to ensure correct operation it might be necessary to invalidate branch predictor entries on a change to instruction memory, or a change of instruction address mapping. For more information, see *Specific requirements for branch predictor maintenance instructions on page G4-5942.*

In an implementation where the branch predictors are architecturally invisible, the branch predictor maintenance instructions can execute as NOPs.

An invalidate all operation on the branch predictor ensures that any location held in the branch predictor has no functional effect on execution. An invalidate branch predictor by VA instruction operates on the address of the branch instruction, but can affect other branch predictor entries.
The architecture does not make visible the range of addresses in a branch predictor to which the invalidate operation applies. This means the address used in the invalidate by VA operation must be the address of the branch to be invalidated.

If branch prediction is architecturally visible, an instruction cache invalidate all operation also invalidates all branch predictors.

See also Ordering of cache and branch predictor maintenance instructions on page G4-5947.

Specific requirements for branch predictor maintenance instructions

If, for a given translation regime and a given ASID and VMID as appropriate, the instructions at any virtual address change, then branch predictor maintenance instructions must be performed to invalidate entries in the branch predictor, to ensure that the change is visible to subsequent execution. This maintenance is required when writing new values to instruction locations. It can also be required as a result of any of the following situations that change the translation of a virtual address to a physical address, if, as a result of the change to the translation, the instructions at the virtual addresses change:

- For any translation regime other than the Non-secure PL1&0 translation regime, enabling or disabling stage 1 translations.
- For the Non-secure PL1&0 translation regime:
 - When stage 2 translations are enabled, enabling or disabling stage 1 translations unless accompanied by a change of VMID.
 - When stage 2 translations are disabled, enabling or disabling stage 1 translations.
 - Enabling or disabling stage 2 translations.
- Writing new mappings to the translation tables.
- Any change to the TTBR0, TTBR1, or TTBCR registers, unless:
 - For a change to the Secure PL1&0 translation regime, the change is accompanied by a change to the ASID.
 - For a change to the stage 1 translations of the Non-secure PL1&0 translation regime, the change is accompanied by a change to the ASID or a change to the VMID.
- Any change to the VTTBR or VTCR registers, unless accompanied by a change to the VMID.

Invalidate is not required if the changes to the translations are such that the instructions associated with the non-faulting translations of a virtual address, for a given translation regime and a given ASID and VMID, as appropriate, remain unchanged throughout the sequence of changes to the translations. Examples of translation changes to which this applies are:

- Changing a valid translation to a translation that generates an MMU fault.
- Changing a translation that generates an MMU fault to a valid translation.

Failure to invalidate entries might give constrained unpredictable results, caused by the execution of old branches. For more information, see Ordering of cache and branch predictor maintenance instructions on page G4-5947.

In Armv8, there is no requirement to use the branch predictor maintenance operations to invalidate the branch predictor after:

- Changing the ContextID or VMID.
Cache maintenance system instructions on page K15-8210 shows the branch predictor maintenance operations in a VMSA implementation.

Behavior of the branch predictors at reset

In AArch32 state:

- If branch predictors are not architecturally invisible:
 - The branch predictors reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.
 - The branch predictors are disabled at reset.

- An implementation can require the use of a specific branch predictor initialization routine to invalidate the branch predictor storage array before it is enabled. The exact form of any required initialization routine is IMPLEMENTATION DEFINED, but the routine must be documented clearly as part of the documentation of the device.

- Arm recommends that whenever an invalidation routine is required, it is based on the AArch32 branch predictor maintenance operations.

Similar rules apply:

- To cache behavior, see Behavior of caches at reset on page G4-5935.
- To TLB behavior, see TLB behavior at reset on page G5-6032.

General requirements for the scope of cache and branch predictor maintenance instructions

The Armv8 specification of the cache maintenance and branch predictor instructions describes what each instruction is guaranteed to do in a system. It does not limit other behaviors that might occur, provided they are consistent with the requirements described in General behavior of the caches on page G4-5929, Behavior of caches at reset on page G4-5935, and Preloading caches on page E2-4042.

This means that as a side-effect of a cache maintenance instruction:

- Any location in the cache might be cleaned.
- Any unlocked location in the cache might be cleaned and invalidated.

As a side-effect of a branch predictor maintenance instruction, any entry in the branch predictor might be invalidated.

--- Note ---

Arm recommends that, for best performance, such side-effects are kept to a minimum. Arm strongly recommends that the side-effects of operations performed in Non-secure state do not have a significant performance impact on execution in Secure state.

Effects of instructions that operate by VA to the Point of Coherency

For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches of other PEs in the Shareability domain described by the Shareability attributes of the VA supplied with the instruction.

For Device memory and Normal memory that is Inner Non-cacheable, Outer Non-cacheable, these instructions must affect the caches of all PEs in the Outer Shareable Shareability domain of the PE on which the instruction is operating.
In all cases, for any affected PE, these instructions affect all data and unified caches to the Point of Coherency.

Table G4-4 PEs affected by cache maintenance instructions to the Point of Coherency

<table>
<thead>
<tr>
<th>Shareability</th>
<th>PEs affected</th>
<th>Effective to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shareable</td>
<td>The PE performing the operation</td>
<td>The Point of Coherency of the entire system</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>All PEs in the same Inner Shareable Shareability domain as the PE performing the operation</td>
<td>The Point of Coherency of the entire system</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>All PEs in the same Outer Shareable Shareability domain as the PE performing the operation</td>
<td>The Point of Coherency of the entire system</td>
</tr>
</tbody>
</table>

Effects of instructions that operate by VA but not to the Point of Coherency

The following instruction operate by VA but not to the Point of Coherency:
- Clean data or unified cache line by MVA to the Point of Unification, `DCCMV AU`
- Invalidate instruction cache line by MVA to Point of Unification, `ICIMV AU`
- Invalidate by MVA from branch predictors, `BPIMVA`.

For these instructions, Table G4-5 shows how, for a VA in a Normal or Device memory location, the Shareability attribute of the VA determines the minimum set of PEs affected, and the point to which the instruction must be effective.

Table G4-5 PEs affected by cache maintenance instructions to the Point of Unification

<table>
<thead>
<tr>
<th>Shareability</th>
<th>PEs affected</th>
<th>Effective to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-shareable</td>
<td>The PE executing the instruction</td>
<td>The Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, on the PE executing the instruction</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>All PEs in the same Inner Shareable Shareability domain as the PE executing the instruction</td>
<td>The Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all PEs in the same Inner Shareable Shareability domain as the PE executing the instruction</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>All PEs in the same Outer Shareable Shareability domain as the PE executing the instruction</td>
<td>The Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all PEs in the same Outer Shareable Shareability domain as the PE executing the instruction</td>
</tr>
</tbody>
</table>

Note

The set of PEs guaranteed to be affected is never greater than the PEs in the Inner Shareable Shareability domain containing the PE executing the instruction.

Effects of All and set/way maintenance instructions

The `ICIALLU`, `BPIALL` and `DC*` set/way instructions apply only to the caches and branch predictors of the PE that performs the instruction. If the branch predictors are architecturally-visible, `ICIALLU` also performs a `BPIALL` operation.

The `ICIALLUIS` and `BPIALLIS` instructions can affect the caches and branch predictors of all PEs in the same Inner Shareable Shareability domain as the PE that performs the instruction. If the branch predictors are architecturally-visible, `ICIALLUIS` also performs a `BPIALLIS` operation. These instructions have an effect to the Point of Unification of instruction cache fills, data cache fills, and write-backs, and translation table walks, of all PEs in the same Inner Shareable Shareability domain.

Note

The possible presence of system caches, as described in *System level caches on page G4-5952*, means architecture does not guarantee that all levels of cache can be maintained using set/way instructions.
Effects of virtualization and security on the AArch32 cache maintenance instructions

Each Security state has its own physical address space, and therefore cache entries are associated with physical address space. In addition, cache maintenance and branch predictor instructions performed in Non-secure state have to take account of:

- Whether the instruction was performed at EL1 or at EL2.
- For instructions that operate by VA, the current VMID.

Table G4-6 shows the effects of virtualization and security on these maintenance instructions.

<table>
<thead>
<tr>
<th>Cache maintenance instructions</th>
<th>Security state</th>
<th>Specified entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data or unified cache maintenance instructions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Invalidate, Clean, or Clean and Invalidate by VA: DCIMVAC, DCCMVAC, DCCMVAC | Either | All lines that hold the PA that, in the current translation regime, are mapped to by the combination of all of:
 - The specified VA.
 - For an instruction executed at EL1, the current ASID if the location is mapped to by a non-global page.
 - For an instruction executed at EL1, the current VMID.
| Invalidate, Clean, or Clean and Invalidate by set/way: DCISW, DCCSW, DCCISW | Non-secure | Line specified by set/way provided that the entry comes from the Non-secure PA space. |
| | Secure | Line specified by set/way regardless of the PA space that the entry has come from. |
| Instruction cache maintenance instructions | | |
| Invalidate by VA: ICIMVAC | Either | All lines corresponding to the specified VA in the current translation regime and:
 - For an instruction executed at EL1 or EL0, the current ASID.
 - For an instruction executed at EL1 or EL0, the current VMID. |
| Invalidate All: ICIALLU, ICIALLUIS | | Can invalidate any unlocked entry in the instruction cache.
 - Are required to invalidate any entries relevant to the software component that executed it. The Non-secure and Secure descriptions give more information:
 - **Non-secure**
 An instruction executed at EL1 must operate on all instruction cache lines that contain entries associated with the current virtual machine, meaning any entry with the current VMID.
 An instruction executed at EL2 must operate on all instruction cache lines that contain entries that can be accessed from Non-secure state.
 - **Secure**
 The instruction must invalidate all instruction cache lines.
| Branch predictor instructions | | |
| Invalidate by VA: BPIMVAC | Either | All lines that, in the current translation regime, are mapped to by the combination of:
 - The specified VA.
 - For an instruction executed at EL1 or EL0, the current ASID if the location is mapped to by a non-global page.
 - For an instruction executed at EL1 or EL0, the current VMID.
| Invalidate all: BPIALL, BPIALLIS | | Can invalidate any unlocked entry in the branch predictor.
 - Are required to invalidate any entries relevant to the software component that executed it.
 The Non-secure and Secure descriptions give more information.
a. Dependencies on the VMID apply even when either EL2 is using AArch32 and the value of HCR.VM is 0 or EL2 is using AArch64 when enabled for the current Security state, and the value of HCR_EL2.VM is 0. If the PE resets into an Exception level that is using AArch32, VTTBR.VMID resets to zero, meaning there is a valid VMID from reset. However, if the PE resets into an Exception level that is using AArch64, VTTBR_EL2.VMID resets to a value that is architecturally UNKNOWN, and the VTTBR_EL2.VMID field must be set to a known value, that might be zero, as part of the PE initialization sequence.

b. The type of instruction cache used affects the interpretation of the specified entries in this table such that:
 - For a PIPT instruction cache, the cache maintenance applies to all entries whose physical address corresponds to the specified address.
 - For a VIPT instruction cache, the cache maintenance applies to entries whose virtual index and physical tag correspond to the specified address.

For information of types of instruction cache, see Instruction caches on page G5-6049.

c. In an implementation where the branch predictors are architecturally invisible, these instructions can execute as NOPs.

For locked entries and entries that might be locked, the behavior of cache maintenance instructions described in The interaction of cache lockdown with cache maintenance instructions on page G4-5951 applies.

With an implementation that generates aborts if entries are locked or might be locked in the cache, when the use of lockdown aborts is enabled, these aborts can occur on any cache maintenance instructions.

In an implementation that includes EL2:

- The architecture does not require cache cleaning when switching between virtual machines. Cache invalidation by set/way must not present an opportunity for one virtual machine to corrupt state associated with a second virtual machine. To ensure this requirement is met, EL1 invalidate by set/way instructions executed in at EL1 when HCR_EL2.VM or HCR.VM is 1 and EL2 is enabled can, instead, perform a clean and invalidate by set/way.

- The AArch32 Data cache invalidate instructions DCIMVAC and DCISW perform a cache clean as well as a cache invalidate, meaning DCIMVAC performs the same invalidation as a DCCIMVAC instruction, and DCISW performs the same invalidation as a DCCISW instruction, if both of the following apply:
 - EL2 is using AArch32, the value of HCR.VM is 1, and the instruction is executed at Non-secure EL1.
 - EL2 is using AArch64, the value of HCR_EL2.VM is 1, EL2 is enabled, and the instruction is executed at EL1.

- The AArch32 Data cache invalidate by set/way instruction DCISW performs a cache clean as well as a cache invalidate, meaning it performs the same invalidation as a DCCISW instruction, if either of the following apply:
 - EL2 is using AArch32, the value of HCR.SWIO is 1, and the instruction is executed at Non-secure EL1.
 - EL2 is using AArch64, the value of HCR_EL2.SWIO is 1, EL2 is enabled, and the instruction is executed at EL1.

- TLB and instruction cache invalidate instructions are broadcast across the Inner Shareable domain when either:
 - EL2 is using AArch32, the value of HCR.FB is 1, and execution is at Non-secure EL1.
 - EL2 is using AArch64, the value of HCR_EL2.FWB is 1, EL2 is enabled, and the instruction is executed at EL1.

When EL1 is using AArch32, this applies to the TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL, and ICIALLU instructions. This means the instruction performs the invalidation that would be performed by the corresponding Inner Shareable instruction, for example ICIALLU performs the invalidation that would be performed by ICIALLUIS, and BPIALL performs the invalidation that would be performed by BPIALLIS.

For more information about the cache maintenance instructions, see About cache maintenance in AArch32 state on page G4-5935, AArch32 cache and branch predictor maintenance instructions on page G4-5939, and Chapter G5 The AArch32 Virtual Memory System Architecture.
Boundary conditions for cache maintenance instructions

Cache maintenance instructions operate on the caches regardless of whether the System register Cacheability controls force all memory accesses to be Non-cacheable.

For VA-based cache maintenance instructions, the instructions operate on the caches regardless of the memory type and cacheability attributes marked for the memory address in the VMSA translation table entries. This means that the effects of the cache maintenance instructions can apply regardless of:

• Whether the address accessed:
 — Is Normal memory or Device memory.
 — Has the Cacheable attribute or the Non-cacheable attribute.
• Any applicable domain control of the address accessed.
• The access permissions for the address accessed, other than the effect of the stage two write permission on data or unified cache invalidation instructions.

Ordering of cache and branch predictor maintenance instructions

The following rules describe the effect of the memory order model on the cache and branch predictor maintenance instructions:

• All cache and branch predictor maintenance instructions that do not specify an address execute, relative to each other, in program order.

 All cache and branch predictor instructions that specify an address:
 — Execute in program order relative to all cache and branch predictor operations that do not specify an address.
 — Execute in program order relative to all cache and branch predictor operations that specify the same address.
 — Can execute in any order relative to cache and branch predictor operations that specify a different address.

• Where a cache maintenance or branch predictor instruction appears in program order before a change to the translation tables, the architecture guarantees that the cache or branch predictor maintenance instruction uses the translations that were visible before the change to the translation tables.

• Where a change of the translation tables appears in program order before a cache maintenance or branch predictor instruction, software must execute the sequence outlined in Ordering and completion of TLB maintenance instructions on page G5-6038 before performing the cache or branch predictor maintenance instruction, to ensure that the maintenance operation uses the new translations.

• A DMB instruction causes the effect of all data or unified cache maintenance instructions appearing in program order before the DMB to be visible to all explicit load and store operations appearing in program order after the DMB.

 Also, a DMB instruction ensures that the effects of any data or unified cache maintenance instruction appearing in program order before the DMB are observable by any observer in the same required Shareability domain before any data or unified cache maintenance or explicit memory operations appearing in program order after the DMB are observed by the same observer. Completion of the DMB does not guarantee the visibility of all data to other observers. For example, all data might not be visible to a translation table walk, or to instruction fetches.

• A DSB is required to guarantee the completion of all cache maintenance instruction that appear in program order before the DSB instruction.

• A Context synchronization event is required to guarantee the effects of any branch predictor maintenance operation. This means a Context synchronization event causes the effect of all completed branch predictor maintenance operations appearing in program order before the Context synchronization event to be visible to all instructions after the Context synchronization event.
This means that, if a branch instruction appears after an invalidate branch predictor operation and before any context synchronization event, it is constrained unpredictable whether the branch instruction is affected by the invalidate. Software must avoid this ordering of instructions, because it might cause constrained unpredictable behavior.

- Any data or unified cache maintenance instruction by VA must be executed in program order relative to any explicit load or store on the same PE to an address covered by the VA of the cache instruction if that load or store is to Normal Cacheable memory. The order of memory accesses that result from the cache maintenance instruction, relative to any other memory accesses to Normal Cacheable memory, are subject to the memory ordering rules. For more information, see Definition of the Armv8 memory model on page E2-4020.

Any data or unified cache maintenance instruction by VA can be executed in any order relative to any explicit load or store on the same PE to an address covered by the VA of the cache maintenance instruction if that load or store is not to Normal Cacheable memory.

- There is no restriction on the ordering of data or unified cache maintenance instruction by VA relative to any explicit load or store on the same PE where the address of the explicit load or store is not covered by the VA of the cache instruction. Where the ordering must be restricted, a DMB instruction must be inserted to enforce ordering.

- There is no restriction on the ordering of a data or unified cache maintenance instruction by set/way relative to any explicit load or store on the same PE. Where the ordering must be restricted, a DMB instruction must be inserted to enforce ordering.

- Software must execute a context synchronization event after the completion of an instruction cache maintenance instruction, to guarantee that the effect of the maintenance instruction is visible to any instruction fetch.

A DSB or DMB instruction intended to ensure the completion of cache maintenance instructions or branch predictor instructions must have an access type of both loads and stores.

See also the completion requirements for cache and branch predictor maintenance instructions in completion and endpoint ordering on page E2-4027.

The scope of instruction cache maintenance depends on the type of the instruction cache. For more information see Instruction caches on page G5-6049.

Example G4-1 Cache cleaning operations for self-modifying code

The sequence of cache cleaning operations for a line of self-modifying code on a uniprocessor system is:

```assembly
; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <rt> containing a new 32-bit instruction,
; to be held in Cacheable space at a location pointed to by Rn. Use STRH in the first line
; instead of STR for a 16-bit instruction.
STR Rt, [Rn]          ; Clean data cache by MVA to point of unification (PoU)
DCCMVAU Rn            ; Ensure visibility of the data cleaned from cache
DSB                   ; Ensure completion of the invalidations
ICIMVAU Rn            ; Invalidate instruction cache by MVA to PoU
BPIMVA Rn             ; Invalidate branch predictor by MVA to PoU
DSB                   ; Synchronize the fetched instruction stream
ISB                   ; Synchronize the fetched instruction stream
```

Performing cache maintenance instructions

To ensure all cache lines in a block of address space are maintained through all levels of cache Arm strongly recommends that software:

- For data or unified cache maintenance, uses the CTR.DMinLine value to determine the loop increment size for a loop of data cache maintenance by VA instructions.
For instruction cache maintenance, uses the `CTR.IMinLine` value to determine the loop increment size for a loop of instruction cache maintenance by VA instructions.

Example code for cache maintenance instructions

The cache maintenance instructions by set/way can be used to clean or invalidate, or both, the entirety of one or more levels of cache attached to a PE. However, unless all PEs attached to the caches regard all memory locations as Non-cacheable, it is not possible to prevent locations being allocated into the cache during such a sequence of the cache maintenance instructions.

--- Note ---

Because the set/way instructions operate only locally, there is no guarantee of the atomicity of cache maintenance between different PEs, even if those different PEs are each executing the same cache maintenance instructions at the same time. Because any cachable line can be allocated into the cache at any time, it is possible for a cache line to migrate from an entry in the cache of one PE to the cache of a different PE in a way that means the cache line is not affected by set/way based cache maintenance. Therefore, Arm strongly discourages the use of set/way instructions to manage coherency in coherent systems. The expected use of the cache maintenance instructions that operate by set/way is limited to the cache maintenance associated with the powerdown and powerup of caches, if this is required by the implementation.

The limitations of cache maintenance by set/way mean maintenance by set/way does not happen on multiple PEs, and cannot be made to happen atomically for each address on each PE. Therefore in multiprocessor or multithreaded systems, the use of cache maintenance by set/way to clean, or clean and invalidate, the entire cache for coherency management with very large buffers or with buffers with unknown address can fail to provide the expected coherency results because of speculation by other PEs, or possibly by other threads. The only way that these instructions can be used in this way is to first ensure that all PEs that might cause speculative accesses to caches that need to be maintained are not capable of generating speculative accesses. This can be achieved by ensuring that those PEs have no memory locations with a Normal Cacheable attribute. Such an approach can have very large system performance effects, and Arm advises implementers to use hardware coherency mechanisms in systems where this will be an issue.

System level caches on page G4-5952 refers to other limitations of cache maintenance by set/way.

The following example code for cleaning a data or unified cache to the Point of Coherency illustrates a generic mechanism for cleaning the entire data or unified cache to the Point of Coherency. It assumes the current Cache Size Identification Register is in 32-bit format. For more information, see *Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on page G4-5931.*

```
MRC p15, 1, R0, c0, c0, 1   ; Read CLIDR into R0
ANDS R3, R0, #0x07000000
MOV R3, R3, LSR #23         ; Cache level value (naturally aligned)
BEQ Finished
MOV R10, #0
Loop1
ADD R2, R10, R10, LSR #1    ; Work out 3 x cache level
MOV R1, R0, LSR R2          ; bottom 3 bits are the Cache type for this level
AND R1, R1, #7              ; get those 3 bits alone
CMP R1, #2
BLT Skip
MCR p15, 2, R10, c0, c0, 0  ; write CSSELR from R10
ISB
MRC p15, 1, R1, c0, c0, 0   ; read current CCSIDR to R1
AND R2, R1, #7              ; extract the line length field
ADD R2, R2, #4              ; add 4 for the line length offset (log2 16 bytes)
MOV R4, #0x3FF
ANDS R4, R4, R1, LSR #3     ; R4 is the max number on the way size (right aligned)
CLZ R5, R4                  ; R5 is the bit position of the way size increment
MOV R9, R4                  ; R9 working copy of the max way size (right aligned)
Loop2
MOV R7, #0x00000000FFFF
ANDS R7, R7, R1, LSR #13    ; R7 is the max number of the index size (right aligned)
Loop3
ORR R11, R10, R9, LSL R5    ; factor in the way number and cache number into R11
```

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
The AArch32 System Level Memory Model

G4.4 AArch32 cache and branch predictor support

```
ORR R11, R11, R7, LSL R2    ; factor in the index number
MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
SUBS R7, R7, #1             ; decrement the index
BGE Loop3
SUBS R9, R9, #1             ; decrement the way number
BGE Loop2
Skip
ADD R10, R10, #2            ; increment the cache number
CMP R3, R10
DSB                         ; ensure completion of previous cache maintenance instruction
BGT Loop1
Finished
```

Similar approaches can be used for all cache maintenance instructions.

G4.4.8 Execution and data prediction restriction System instructions

When FEAT_SPECRES is implemented, the System instructions in Table G4-7 prevent predictions based on information gathered from earlier execution within a particular execution context from affecting the later Speculative execution within that context, to the extent that the speculation execution is observable through side-channels.

The prediction restriction System instructions being used by a particular execution context apply to:

- All control flow prediction resources that predict execution addresses.
- Data value prediction.
- Cache allocation prediction.

Table G4-7 Prediction restriction System instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFPRCTX</td>
<td>Control Flow Prediction Restriction by Context</td>
</tr>
<tr>
<td>CPPRCTX</td>
<td>Cache Prefetch Prediction Restriction by Context</td>
</tr>
<tr>
<td>DVPRCTX</td>
<td>Data Value Prediction Restriction by Context</td>
</tr>
</tbody>
</table>

For these System instructions, the execution context is defined by:

- The Security state.
- The Exception level.
- When executing at EL1, the VMID.
- When executing at EL0 when using the PL1&0 translation regime, the ASID and VMID.

Note

- The data value prediction applies to all prediction resources that use some form of training to speculate data values as part of an execution.
- The cache allocation applies to all instruction and data caches, and TLB prefetching hardware used by the executing PE that applies to the supplied context.

The context information is passed as a register argument, and is restricted so that:

- Execution of the System instruction at EL0 only applies to the current hardware defined context.
- Execution of the System instruction at EL1 only applies to the current VMID and Security state, and does not apply to EL2 or EL3.
• Execution of the System instruction at EL2 can only apply to the current Security state, and does not apply to EL3.

If the System instruction is specified to apply to Exception levels that are not implemented, or which are higher than the Exception level that the System instruction is executed at, then the System instruction is treated as a NOP.

When the System instruction is complete and synchronized, no predictions of the restricted type for the affected context are influenced by the execution of the program before the System instruction in a manner that can be observed by the use of any side channels.

--- Note ---
• Prediction restriction System instructions do not require the invalidation of prediction structures so long as the behavior described for completion is met by an implementation.
• Prediction restriction System instructions are permitted to invalidate more prediction information than is defined by the supplied execution context.

These System instructions are guaranteed to be complete following a DSB that covers both read and write behavior on the same PE that executed the original instruction. A subsequent Context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

In AArch32 state, EL0 access to the System instructions is controlled by SCTLR.EnRCTX.

G4.4.9 Cache lockdown

The concept of an entry locked in a cache is allowed, but not architecturally defined. How lockdown is achieved is IMPLEMENTATION DEFINED and might not be supported by:

• An implementation.
• Some memory attributes.

An unlocked entry in a cache might not remain in that cache. The architecture does not guarantee that an unlocked cache entry remains in the cache or remains incoherent with the rest of memory. Software must not assume that an unlocked item that remains in the cache remains dirty.

A locked entry in a cache is guaranteed to remain in that cache. The architecture does not guarantee that a locked cache entry remains incoherent with the rest of memory, that is, it might not remain dirty.

The interaction of cache lockdown with cache maintenance instructions

The interaction of cache lockdown and cache maintenance instructions is IMPLEMENTATION DEFINED. However, an architecturally-defined cache maintenance instruction on a locked cache line must comply with the following general rules:

• The effect of the following instructions on locked cache entries is IMPLEMENTATION DEFINED:
 — Cache clean by set/way, DCCSW.
 — Cache invalidate by set/way, DCISW.
 — Cache clean and invalidate by set/way, DCISW.
 — Instruction cache invalidate all, ICIALLU and ICIALLUI.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is not invalidated from the cache.
2. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.
3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is generated, using the Fault status code defined for this purpose. See Data Abort exception on page G1-5789.

This permits a usage model for cache invalidate routines to operate on a large range of addresses by performing the required operation on the entire cache, without having to consider whether any cache entries are locked.
The effect of the following instructions is IMPLEMENTATION DEFINED:

- Cache clean by virtual address, DCCMVAC and DCCMVAU.
- Cache invalidate by virtual address, DCIMVAC.
- Cache clean and invalidate by virtual address, DCCIMVAC.

However, one of the following approaches must be adopted in all these cases:

1. If the instruction specified an invalidation, a locked entry is invalidated from the cache. For the clean and invalidate instructions, the entry must be cleaned before it is invalidated.
2. If the instruction specified an invalidation, a locked entry is not invalidated from the cache. If the instruction specified a clean it is IMPLEMENTATION DEFINED whether locked entries are cleaned.
3. If an entry is locked down, or could be locked down, an IMPLEMENTATION DEFINED Data Abort exception is generated, using the Fault status code defined for this purpose. See DFSR or HSR.

In an implementation that includes EL2, if HCR.TIDCP is set to 1, any exception relating to lockdown of an entry associated with Non-secure memory is routed to EL2.

Note

An implementation that uses an abort mechanism for entries that can be locked down but are not actually locked down must:

- Document the IMPLEMENTATION DEFINED instruction sequences that perform the required operations on entries that are not locked down.
- Implement one of the other permitted alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use architecturally-defined instructions. This minimizes the number of customized instructions required.

In addition, an implementation that uses an abort to handle cache maintenance instructions for entries that might be locked must provide a mechanism that ensures that no entries are locked in the cache.

The reset setting of the cache must be that no cache entries are locked.

Additional cache functions for the implementation of lockdown

An implementation can add additional cache maintenance functions for the handling of lockdown in the IMPLEMENTATION DEFINED space.

G4.4.10 System level caches

The Arm Architecture defines a system cache as a cache that is not described in the PE Cache Identification registers, CCSIDR, CCSIDR2, and CLIDR, and for which the set/way cache maintenance instructions do not apply.

Conceptually, three classes of system cache can be envisaged:

1. System caches which lie before the point of coherency and cannot be managed by cache maintenance instructions. Such systems fundamentally undermine the concept of cache maintenance instructions operating to the point of coherency, as they imply the use of non-architecture mechanisms to manage coherency. The use of such systems in the Arm architecture is explicitly prohibited.
2. System caches which lie before the point of coherency and can be managed by cache maintenance by address instructions that apply to the point of coherency, but cannot be managed by cache maintenance by set/way instructions. Where maintenance of the entire system cache must be performed, as is the case for power management, it must be performed using non-architectural mechanisms.
3. System caches which lie beyond the point of coherency and so are invisible to software. The management of such caches is outside the scope of architecture.
System register support for IMPLEMENTATION DEFINED memory features

The VMSAv8-32 defines the following registers for describing IMPLEMENTATION DEFINED features of the memory system:

- **TCM Type Register**, `TCMTR`, must be implemented on any implementation where EL1 or above supports AArch32. The format of this register is IMPLEMENTATION DEFINED.

- The System register encoding space with `{coproc==0b1111, CRn==c9, CRm=={c0-c2, c5-c7}}` is IMPLEMENTATION DEFINED for all values of `opc2` and `opc1`. This space is reserved for branch predictor, cache and TCM functionality, for example maintenance, override behaviors and lockdown.

- In a VMSAv8-32 implementation, part of the System register encoding space with `{coproc==0b1111, CRn==c10}` is IMPLEMENTATION DEFINED and reserved for TLB functionality, see TLB lockdown on page G5-6033.

- The System register encoding space with `{coproc==0b1111, CRn==c11, CRm=={c0-c8, c15}}` is IMPLEMENTATION DEFINED for all values of `opc2` and `opc1`. This space is reserved for DMA operations to and from the TCMs.

In addition, the System register encoding space with `{coproc==0b1111, CRn==c15}` is reserved for IMPLEMENTATION DEFINED registers, and can provide additional registers for the memory system. For more information, see VMSAv8-32 organization of registers in the `(coproc==0b1111)` encoding space on page G7-6116.
G4.6 External aborts

The Arm architecture defines External aborts as errors that occur in the memory system, other than those that are detected by the MMU or Debug hardware. An External abort might signal a data corruption to the PE. For example, a memory location might have been corrupted, and this corruption is detected by hardware using a parity or error correction code (ECC). The error might have been propagated. The RAS Extension provides mechanisms for software to determine the extent of the corruption and contain propagation of the error. For more information, see the ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.

An External abort is one of:

- Synchronous.
- Precise asynchronous.
- Imprecise asynchronous.

For more information, see Exception terminology on page G1-5714.

The RAS Extension provides an expanded taxonomy for describing aborts. When the RAS Extension is not implemented, the Arm architecture does not provide any method to distinguish between precise asynchronous and imprecise asynchronous External aborts.

VMSAv8-32 permits External aborts on data accesses, translation table walks, and instruction fetches to be either synchronous or asynchronous. The reported fault code identifies whether the External abort is synchronous or asynchronous.

It is IMPLEMENTATION DEFINED which External aborts, if any, are supported. Asynchronous External aborts generate SError interrupt exceptions.

In AArch32 state:

- SError interrupts are taken as asynchronous Data Abort exceptions.
- Synchronous External aborts:
 - On data accesses are taken as synchronous Data Abort exceptions.
 - On instruction fetches, or prefetches, are taken as synchronous Prefetch Abort exceptions.

See also:

- External abort on a translation table walk on page G5-6060.
- Handling exceptions that are taken to an Exception level using AArch32 on page G1-5743.

Normally, External aborts are rare. An imprecise asynchronous External abort is likely to be fatal to the process that is running. Arm recommends that implementations make External aborts precise wherever possible.

The following subsections give more information about possible External aborts:

- Provision for classification of External aborts.
- Parity or ECC error reporting, RAS Extension not implemented on page G4-5955.

The section Exception reporting in a VMSAv8-32 implementation on page G5-6064 describes the reporting of External aborts.

G4.6.1 Provision for classification of External aborts

For an External abort taken to a privileged mode other than Hyp mode, an implementation can use the DFSR.ExT or IFSR.ExT bits to provide more information about the External abort:

- DFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on data accesses.
- IFSR.ExT provides an IMPLEMENTATION DEFINED classification of External aborts on instruction accesses.

For an External abort taken to Hyp mode, the HSR.EA bit, provides an IMPLEMENTATION DEFINED classification of External aborts.

For all aborts other than External aborts these bits return a value of 0.
If the RAS Extension is implemented:

- The HSR.AET field provides information about the state of the PE following an SErrror interrupt exception taken to Hyp mode.
- The DFSR.AET field provides information about the state of the PE following an asynchronous Data Abort exception.
- The implementation might define error record registers.

For more information on the RAS Extension, see *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile.*

G4.6.2 Parity or ECC error reporting, RAS Extension not implemented

The Arm architecture supports the reporting of both synchronous and asynchronous parity or ECC errors from the cache systems. It is IMPLEMENTATION DEFINED what parity or ECC errors in the cache systems, if any, result in synchronous or asynchronous parity or ECC errors.

A fault code is defined for reporting parity or ECC errors, see *Exception reporting in a VMSAv8-32 implementation* on page G5-6064. However when parity or ECC error reporting is implemented it is IMPLEMENTATION DEFINED whether a parity or ECC error is reported using the assigned fault code, or using another appropriate encoding.

For all purposes other than the Fault status encoding, parity or ECC errors are treated as External aborts.
G4.7 Memory barrier instructions

Memory barriers on page E2-4031 describes the memory barrier instructions. This section describes the system
level controls of those instructions.

G4.7.1 EL2 control of the Shareability of data barrier instructions executed at EL0 or EL1

In an implementation that includes EL2 and supports Shareability limitations on the data barrier instructions, the
HCR.BSU field can modify the required Shareability of an instruction that is executed at EL0 or EL1 in Non-secure
state. Table G4-8 shows the encoding of this field:

<table>
<thead>
<tr>
<th>HCR.BSU</th>
<th>Minimum Shareability of barrier instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No effect, Shareability is as specified by the instruction</td>
</tr>
<tr>
<td>01</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>11</td>
<td>Full system</td>
</tr>
</tbody>
</table>

For an instruction executed at EL0 or EL1 in Non-secure state, Table G4-9 shows how the HCR.BSU is combined
with the Shareability specified by the argument of the DMB or DSB instruction to give the scope of the instruction:

<table>
<thead>
<tr>
<th>Shareability specified by the DMB or DSB argument</th>
<th>HCR.BSU</th>
<th>Resultant Shareability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full system</td>
<td>Any</td>
<td>Full system</td>
</tr>
<tr>
<td>Outer Shareable</td>
<td>00, 01, or 10 Outer Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11, Full system Full system</td>
<td></td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>00 or 01 Inner Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10, Outer Shareable Outer Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11, Full system Full system</td>
<td></td>
</tr>
<tr>
<td>Non-shareable</td>
<td>00, No effect Non-shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01, Inner Shareable Inner Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10, Outer Shareable Outer Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11, Full system Full system</td>
<td></td>
</tr>
</tbody>
</table>
G4.8 Pseudocode description of general memory System instructions

This section lists the pseudocode describing general memory operations:

- Memory data type definitions.
- Basic memory access.
- Aligned memory access.
- Unaligned memory access on page G4-5958.
- Exclusives monitors operations on page G4-5958.
- Access permission checking on page G4-5959.
- Abort exceptions on page G4-5959.
- Memory barriers on page G4-5959.

G4.8.1 Memory data type definitions

This section lists the memory data types.

The memory data types are:

- Address descriptor, defined by the AddressDescriptor type.
- Full address, defined by the FullAddress type.
- Memory attributes, defined by the MemoryAttributes type.
- Memory type, defined by the MemType enumeration.
- Device memory type, defined by the DeviceType enumeration.
- Normal memory attributes, defined by the MemAttrHints type.
- Cacheability attributes, defined by the MemAttr_NC, MemAttr_WT, and MemAttr_WB constants.
- Allocation hints, defined by the MemHint_No, MemHint_WA, MemHint_RA, and MemHint_RWA constants.
- Access permissions, defined by the Permissions type.

G4.8.2 Basic memory access

The two forms of the _Mem[] accessor, non-assignment (memory read) and assignment (memory write), are the operations that perform single-copy atomic, aligned, little-endian memory accesses of size bytes to or from the underlying physical memory array of bytes.

The functions address the array using desc.paddress, that supplies:

- The physical address.
- An NS bit that selects between the Secure and Non-secure parts of the array.

The attributes in desc.memattrs are used by the memory system to determine caching and ordering behaviors as described in Memory types and attributes on page E2-4050, Definition of the Armv8 memory model on page E2-4020, and Atomicity in the Arm architecture on page E2-4016.

An additional parameter to the _Mem[] accessor defines the access type, for example normal, exclusive, or ordered, and whether the access is made as part of a translation table walk.

The actual implemented array of memory might be smaller than the maximum address size that can be accessed from AArch32 state. In this case the scheme for aliasing is IMPLEMENTATION DEFINED, or some parts of the address space might give rise to External aborts or SErrors (System Errors).

PAMax() returns the IMPLEMENTATION DEFINED size of the physical address.

Note
A stage of address translation using VMSAv8-32 cannot generate an output address of more than 40 bits.

G4.8.3 Aligned memory access

The AArch32.MemSingle[] functions make atomic, little-endian accesses of size bytes.
G4.8.4 Unaligned memory access

See *Unaligned data access on page E2-4044* for details of the SCTLR.A and HSCTLR.A controls on the generation of alignment faults. The HSCTLR control applies to Normal memory accesses from Hyp mode, and the SCTLR control applies to Normal memory accesses from all other modes.

The `Mem_with_type[]` functions make an access of the required type. If that access is naturally aligned, each form of the function performs an atomic access by making a single call to `AArch32.MemSingle[]`. If that access is not aligned but passes the `AArch32.CheckAlignment()` checks, each form of the function synthesizes the required access from multiple calls to `AArch32.MemSingle[]`. It also reverses the byte order if the access is big-endian.

G4.8.5 Exclusives monitors operations

The `AArch32.SetExclusiveMonitors()` function sets the Exclusives monitors for a Load-Exclusive instruction, for a block of bytes. The size of the blocks is determined by `size`, at the VA address. The `ExclusiveMonitorsPass()` function checks whether a Store-Exclusive instruction still has possession of the Exclusives monitors and therefore completes successfully.

The `AArch32.ExclusiveMonitorsPass()` function checks whether a Store-Exclusive instruction still has possession of the Exclusives monitors, by checking whether the Exclusives monitors are set to include the location of the memory block specified by `size`, at the virtual address defined by `address`. The atomic write that follows after the Exclusives monitors have been set must be to the same physical address. It is permitted, but not required, for this function to return FALSE if the virtual address is not the same as that used in the previous call to `AArch32.SetExclusiveMonitors()`.

The `ExclusiveMonitorsStatus()` function returns 0 if the previous atomic write was to the same physical memory locations selected by `ExclusiveMonitorsPass()` and therefore succeeded. Otherwise the function returns 1, indicating that the address translation delivered a different physical address.

The `MarkExclusiveGlobal()` procedure takes as arguments a `FullAddress.paddress`, the PE identifier `processorid` and the size of the transfer. The procedure records that the PE `processorid` has requested exclusive access covering at least `size` bytes from address `paddress`. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, up to a limit of 2KB and no smaller than two words, and aligned in the address space to the size of the location. It is CONSTRAINED UNPREDICTABLE whether this causes any previous request for exclusive access to any other address by the same PE to be cleared.

The `MarkExclusiveLocal()` procedure takes as arguments a `FullAddress.paddress`, the PE identifier `processorid` and the size of the transfer. The procedure records in a local record that PE `processorid` has requested exclusive access to an address covering at least `size` bytes from address `paddress`. The size of the location marked as exclusive is IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory but is no smaller than two words, and is aligned in the address space to the size of the location. It is IMPLEMENTATION DEFINED whether this procedure also performs a `MarkExclusiveGlobal()` using the same parameters.

The `IsExclusiveGlobal()` function takes as arguments a `FullAddress.paddress`, the PE identifier `processorid` and the size of the transfer. The function returns TRUE if the PE `processorid` has marked in a global record an address range as exclusive access requested that covers at least `size` bytes from address `paddress`. It is IMPLEMENTATION DEFINED whether it returns TRUE or FALSE if a global record has marked a different address as exclusive access requested. If no address is marked in a global record as exclusive access, `IsExclusiveGlobal()` returns FALSE.

The `IsExclusiveLocal()` function takes as arguments a `FullAddress.paddress`, the PE identifier `processorid` and the size of the transfer. The function returns TRUE if the PE `processorid` has marked an address range as exclusive access requested that covers at least `size` bytes from address `paddress`. It is IMPLEMENTATION DEFINED whether this function returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of `size` bytes from address `paddress`. If no address is marked as exclusive access requested, then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the result of `IsExclusiveGlobal()` with the same parameters.

The `ClearExclusiveByAddress()` procedure takes as arguments a `FullAddress.paddress`, the PE identifier `processorid` and the size of the transfer. The procedure clears the global records of all PEs, other than `processorid`, for which an address region including any of `size` bytes starting from `paddress` has had a request for an exclusive access. It is
IMPLEMENTATION DEFINED whether the equivalent global record of the PE processorid is also cleared if any of size bytes starting from paddress has had a request for an exclusive access, or if any other address has had a request for an exclusive access.

The ClearExclusiveLocal() procedure takes as arguments the PE identifier processorid. The procedure clears the local record of PE processorid for which an address has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether this operation also clears the global record of PE processorid that an address has had a request for an exclusive access.

G4.8.6 Access permission checking

The function AArch32.CheckPermission() is used by the architecture to perform access permission checking based on attributes derived from the translation tables or location descriptors.

The interpretation of access permission is shown in Memory access control on page G5-6008.

G4.8.7 Abort exceptions

The function AArch32.Abort() generates a Data Abort exception or a Prefetch Abort exception by calling the AArch32.TakeDataAbortException() or AArch32.TakePrefetchAbortException() function.

The FaultRecord type describes a fault. Functions that check for faults return a record of this type appropriate to the type of fault. Pseudocode description of VMSAv8-32 memory system operations on page G5-6090 provides a number of wrappers to generate a FaultRecord.

The function AArch32.NoFault() returns a null record that indicates no fault. The IsFault() function tests whether a FaultRecord contains a fault.

G4.8.8 Memory barriers

The definition for the memory barrier functions is given by the enumerations MBReqDomain and MBReqTypes.

These enumerations define the required Shareability domains and required access types used as arguments for DMB and DSB instructions.

The procedures DataMemoryBarrier(), DataSynchronizationBarrier(), and InstructionSynchronizationBarrier() perform the memory barriers.
The AArch32 System Level Memory Model
G4.8 Pseudocode description of general memory System instructions
Chapter G5
The AArch32 Virtual Memory System Architecture

This chapter describes the Armv8-A AArch32 Virtual Memory System Architecture (VMSA), that is backwards-compatible with VMSAv7. It includes the following sections:

- *About VMSAv8-32* on page G5-5962.
- *The effects of disabling address translation stages on VMSAv8-32 behavior* on page G5-5970.
- *Translation tables* on page G5-5974.
- *The VMSAv8-32 Short-descriptor translation table format* on page G5-5979.
- *The VMSAv8-32 Long-descriptor translation table format* on page G5-5988.
- *Memory access control* on page G5-6008.
- *Memory region attributes* on page G5-6019.
- *Translation Lookaside Buffers (TLBs)* on page G5-6031.
- *TLB maintenance requirements* on page G5-6035.
- *Caches in VMSAv8-32* on page G5-6049.
- *VMSAv8-32 memory aborts* on page G5-6052.
- *Exception reporting in a VMSAv8-32 implementation* on page G5-6064.
- *Address translation instructions* on page G5-6083.
- *Pseudocode description of VMSAv8-32 memory system operations* on page G5-6090.
- *About the System registers for VMSAv8-32* on page G5-6092.
- *Functional grouping of VMSAv8-32 System registers* on page G5-6098.

--- **Note**

This chapter must be read with Chapter G4 *The AArch32 System Level Memory Model*.
G5.1 About VMSAv8-32

This chapter describes the Armv8 VMSA for AArch32 state, VMSAv8-32. This is generally equivalent to VMSAv7 for an implementation that includes all of the Security Extensions, the Multiprocessing Extensions, the Large Physical Address Extension, and the Virtualization Extensions.

This chapter describes the control of the VMSA by Exception levels that are using AArch32. Security state, Exception levels, and AArch32 execution privilege on page G1-5722 summarizes how the AArch32 PE modes map onto the Exception levels.

FEAT_SEL2, if implemented, is not available in AArch32 state and EL2 only executes in Non-secure state.

FEAT_S2FWB, if implemented, is not available in AArch32 state. If EL2 is executing in AArch64 state 2 stage translations might be affected. For more informations see Chapter D5 The AArch64 Virtual Memory System Architecture.

Chapter D5 The AArch64 Virtual Memory System Architecture describes the control of the VMSA by Exception levels that are using AArch64.

The main function of the VMSA is to perform address translation, and access permissions and memory attribute determination and checking, for memory accesses made by the PE. Address translation, and permissions and attribute determination and checking, is performed by a stage of address translation.

In VMSAv8-32, the Memory Management Unit (MMU) provides a number of stages of address translation. This chapter describes only the stages that are visible from Exception levels that are using AArch32, which are as follows:

For operation in Secure state

A single stage of address translation, for use when executing at PL1 or EL0. This is the Secure PL1&0 stage 1 address translation stage.

For operation in Non-secure state

- A single stage of address translation for use when executing at EL2. This is the Non-secure EL2 stage 1 address translation stage.
- Two stages of address translation for use when executing at PL1 or EL0. These are:
 - The Non-secure PL1&0 stage 1 address translation stage.
 - The Non-secure PL1&0 stage 2 address translation stage.

The System registers provide independent control of each supported stage of address translation, including a control to disable that stage of translation.

However, if the PE is executing at EL0 using AArch32 when EL1 is using AArch64 then it is using the VMSAv8-64 EL1&0 translation regime, described in Chapter D5 The AArch64 Virtual Memory System Architecture.

These features mean the VMSAv8-32 can support a hierarchy of software supervision, for example an Operating System and a hypervisor.

Each stage of address translation uses address translations and associated memory properties held in memory mapped tables called translation tables.

For information about how the MMU features differ if an implementation does not include all of the Exception levels, see About address translation for VMSAv8-32 on page G5-5965.

The translation tables define the following properties:

Access to the Secure or Non-secure address map

The translation table entries determine whether an access from Secure state accesses the Secure or the Non-secure address map. Any access from Non-secure state accesses the Non-secure address map.

Memory access permission control

This controls whether a program is permitted to access a memory region. For instruction and data access, the possible settings are:

- No access.
• Read-only.
• Write-only. This is possible only in a translation regime with two stages of translation.
• Read/write.

For instruction accesses, additional controls determine whether instructions can be fetched and executed from the memory region.

If a PE attempts an access that is not permitted, a memory fault is signaled to the PE.

Memory region attributes

These describe the properties of a memory region. The top-level attribute, the Memory type, is one of Normal, or a type of Device memory, as follows:

• Both translation table formats support the following Device memory types:
 — Device-nGnRnE
 — Device-nGnRE
• The Long-descriptor translation table format supports, in addition, the following Device memory types:
 — Device-nGRE
 — Device-GRE

Note

Armv8 added the Device-nGRE and Device-GRE memory types. Also, in versions of the Arm architecture before Armv8:

• Device-nGnRnE memory is described as Strongly-ordered memory.
• Device-nGnRE memory is described as Device memory.

Normal memory regions can have additional attributes.

For more information, see Memory types and attributes on page E2-4050.

Address translation mappings

An address translation maps an input address to an output address.

A stage 1 translation takes the address of an explicit data access or instruction fetch, a virtual address (VA), as the input address, and translates it to a different output address:

• If only one stage of translation is provided, this output address is the physical address (PA).
• If two stages of address translation are provided, the output address of the stage 1 translation is an intermediate physical address (IPA).

Note

In the Armv8-32 architecture, a software agent, such as an Operating System, that uses or defines stage 1 memory translations, might be unaware of the distinction between IPA and PA.

A stage 2 translation translates the IPA to a PA.

The possible Security states and privilege levels of memory accesses define a set of translation regimes, where a translation regime maps an input VA to the corresponding PA, using one or two stages of translation. See The VMSAv8-32 translation regimes on page G5-5964.

System registers control VMSAv8-32, including defining the location of the translation tables, and enabling and configuring the MMU, including enabling and disabling the different address translation stages. Also, they report any faults that occur on a memory access. For more information, see Functional grouping of VMSAv8-32 System registers on page G5-6098.

The following sections give an overview of VMSAv8-32, and of the implementation options for VMSAv8-32:

• The VMSAv8-32 translation regimes on page G5-5964.
• Address types used in a VMSAv8-32 description on page G5-5964.
• Address spaces in VMSAv8-32 on page G5-5965.
• About address translation for VMSAv8-32 on page G5-5965.
The remainder of the chapter fully describes the VMSA, including the different implementation options, as summarized in Organization of the remainder of this chapter on page G5-5969.

G5.1.1 The VMSAv8-32 translation regimes

As introduced in Address translation mappings on page G5-5963, a translation regime maps an input VA to the corresponding PA, using one or two stages of translation. Figure G5-1 shows the VMSAv8-32 translation regimes, and their associated translation stages and the Exception levels from which they are controlled.

Translation regimes, for Exception levels that are using AArch32

Secure PL1&0 VA ——— Secure PL1&0 stage 1 ——— PA, Secure or Non-secure
Controlled from Secure PL1 modes†

Non-secure EL2 VA ——— Non-secure EL2 stage 1 ——— PA, Non-secure only
Controlled from Hyp mode†

Non-secure PL1&0 VA ——— Non-secure PL1&0 stage 1 ——— IPA ——— Non-secure PL1&0 stage 2 ——— PA, Non-secure only
Controlled from Non-secure PL1 modes† Controlled from Hyp mode†

† Typical control when controlled from an Exception level using AArch32.

Figure G5-1 VMSAv8-32 translation regimes, and associated control

——— Note ———
Conceptually, a translation regime that has only a stage 1 address translation is equivalent to a regime with a fixed, flat stage 2 mapping from IPA to PA.

——— Limited use of Privilege level in Armv8 AArch32 state on page G1-5723 describes the mapping between the PE modes and the Privilege levels (PLs). ———

Alternative descriptions of the PL1&0 translation regime

The PL1&0 is described in terms of Privilege level because of the way the AArch32 PE modes map onto the Exception levels, as described in Limited use of Privilege level in Armv8 AArch32 state on page G1-5723. The description of this translation regime in terms of the Exception levels using depends on the current state of the PE, as follows:

• In Non-secure state, PL1 always maps to EL1, and therefore the Non-secure PL1&0 translation regime could be described as the Non-secure EL1&0 translation regime.

• In Secure state:
 — When EL3 is using AArch32, PL1 maps to EL3, and therefore under these conditions the Secure PL1&0 translation regime could be described as the Secure EL3&0 translation regime,
 — When EL3 is using AArch64, Secure PL1 maps to Secure EL1, and therefore under these conditions the Secure PL1&0 translation regime could be described as the Secure EL1&0 translation regime,

However, these descriptions all refer to the same translation regime, with the same System registers associated with its stage 1 translations. Therefore, the regime is generally referred to as the PL1&0 translation regime.

——— Note ———
As Figure G5-1 shows, stage 2 translation is supported only in Non-secure state.

G5.1.2 Address types used in a VMSAv8-32 description

A description of VMSAv8-32 refers to the following address types.
Note

These descriptions relate to a VMSA8-32 description and therefore sometimes differ from the generic definitions given in the Glossary.

Virtual address (VA)

An address used in an instruction, as a data or instruction address, is a Virtual Address (VA).

An address held in the PC, LR, or SP, is a VA.

The VA map runs from zero to the size of the VA space. For AArch32 state, the maximum VA space is 4GB, giving a maximum VA range of 0x00000000-0xFFFFFFFF.

Intermediate physical address (IPA)

In a translation regime that provides two stages of address translation, the IPA is the address after the stage 1 translation, and is the input address for the stage 2 translation.

In a translation regime that provides only one stage of address translation, the IPA is identical to the PA.

A VMSA8-32 implementation provides only one stage of address translation:

- If the implementation does not include EL2.
- When executing in Secure state.
- When executing in Hyp mode.

Physical address (PA)

The address of a location in the Secure or Non-secure memory map. That is, an output address from the PE to the memory system.

G5.1.3 Address spaces in VMSA8-32

For execution in AArch32 state, the Armv8 architecture supports:

- A VA space of up to 32 bits. The actual width is IMPLEMENTATION DEFINED.
- An IPA space of up to 40 bits. The translation tables and associated System registers define the width of the implemented address space.

Note

AArch32 defines two translation table formats. The Long-descriptor format gives access to the full 40-bit IPA or PA space at a granularity of 4KB. The Short-descriptor format:

- Gives access to a 32-bit PA space at 4KB granularity.
- Gives access to a 40-bit PA space, but only at 16MB granularity, by the use of Supersections.

If an implementation includes EL3, the address maps are defined independently for Secure and Non-secure operation, providing two independent 40-bit address spaces, where:

- A VA accessed from Non-secure state can only be translated to the Non-secure address map.
- A VA accessed from Secure state can be translated to either the Secure or the Non-secure address map.

G5.1.4 About address translation for VMSA8-32

Address translation is the process of mapping one address type to another, for example, mapping VAs to IPAs, or mapping VAs to PAs. A translation table defines the mapping from one address type to another, and a Translation table base register (TTBR) indicates the start of a translation table. Each implemented stage of address translation shown in Figure G5-1 on page G5-5964 requires its own translation tables.

For PL1&0 stage 1 translations, the mapping can be split between two tables, one controlling the lower part of the VA space, and the other controlling the upper part of the VA space. This can be used, for example, so that:

- One table defines the mapping for operating system and I/O addresses, that do not change on a context switch.
A second table defines the mapping for application-specific addresses, and therefore might require updating on a context switch.

The VMSAv8-32 implementation options determine the supported address translation stages. The following descriptions apply when all implemented Exception levels are using AArch32:

VMSAv8-32 without EL2 or EL3

Supports only a single PL1&0 stage 1 address translation. Translation of this stage of address translation can be split between two sets of translation tables, with base addresses defined by TTBR0 and TTBR1, and controlled by TTBCR.

VMSAv8-32 with EL3 but without EL2

Supports only the Secure PL1&0 stage 1 address translation and the Non-secure PL1&0 stage 1 address translation. In each Security state, this stage of translation can be split between two sets of translation tables, with base addresses defined by the Secure and Non-secure copies of TTBR0 and TTBR1, and controlled by the Secure and Non-secure copies of TTBCR.

VMSAv8-32 with EL2 but without EL3

The implementation supports the following stages of address translation:

- **Non-secure EL2 stage 1 address translation**
 The HTTBR defines the base address of the translation table for this stage of address translation, controlled by HTCR.

- **Non-secure PL1&0 stage 1 address translation**
 Translation of this stage of address translation can be split between two sets of translation tables, with base addresses defined by the Non-secure copies of TTBR0 and TTBR1, and controlled by the Non-secure instance of TTBCR.

- **Non-secure PL1&0 stage 2 address translation**
 The VTTBR defines the base address of the translation table for this stage of address translation, controlled by VTCR.

VMSAv8-32 with EL2 and EL3

The implementation supports all of the stages of address translation, as follows:

- **Secure PL1&0 stage 1 address translation**
 Translation of this stage of address translation can be split between two sets of translation tables, with base addresses defined by the Secure copies of TTBR0 and TTBR1, and controlled by the Secure instance of TTBCR.

- **Non-secure EL2 stage 1 address translation**
 The HTTBR defines the base address of the translation table for this stage of address translation, controlled by HTCR.

- **Non-secure PL1&0 stage 1 address translation**
 Translation of this stage of address translation can be split between two sets of translation tables, with base addresses defined by the Non-secure copies of TTBR0 and TTBR1, and controlled by the Non-secure instance of TTBCR.

- **Non-secure PL1&0 stage 2 address translation**
 The VTTBR defines the base address of the translation table for this stage of address translation, controlled by VTCR.

Figure G5-2 on page G5-5967 shows the translation regimes and stages in a VMSAv8-32 implementation that includes all of the Exception levels, and indicates the PE mode that, typically, defines each set of translation tables, if that stage of address translation is controlled by a Privilege level that is using AArch32:
The term *Typically configured* is used in Figure G5-2 to indicate the expected software usage. However, stages of address translation used in AArch32 state can also be configured:

- From an Exception level higher than the Exception level of the configuring PE mode shown in Figure G5-2, regardless of whether that Exception level is using AArch32 or is using AArch64, except that a Non-secure Exception level can never configure a stage of address translation that is used in Secure state.

- From an Exception level that is using AArch64 and is higher than the level at which the translation stage is being used. For example, if Non-secure EL0 is the only Non-secure Exception level that is using AArch32, then the Non-secure PL1&0 stage of address translation is configured from Non-secure EL1, that is using AArch64.

In general:

- The translation from VA to PA can require multiple stages of address translation, as Figure G5-2 shows.

- A single stage of address translation takes an *input address* and translates it to an *output address*.

A full translation table lookup is called a *translation table walk*. It is performed automatically by hardware, and can have a significant cost in execution time. To support fine granularity of the VA to PA mapping, a single input address to output address translation can require multiple accesses to the translation tables, with each access giving finer granularity. Each access is described as a *level* of address lookup. The final level of the lookup defines:

- The required output address.
- The attributes and access permissions of the addressed memory.

Translation Lookaside Buffers (TLBs) reduce the average cost of a memory access by caching the results of translation table walks. TLBs behave as caches of the translation table information, and VMSAv8-32 provides TLB maintenance instructions for the management of TLB contents.

Note

The Arm architecture permits TLBs to hold any translation table entry that does not directly cause a Translation fault, an Address size fault, or an Access flag fault.

To reduce the software overhead of TLB maintenance, for the PL1&0 translation regimes VMSAv8-32 distinguishes between *Global pages* and *Process-specific pages*. The ASID identifies pages associated with a specific process and provides a mechanism for changing process-specific tables without having to maintain the TLB structures.

If an implementation includes EL2, the VMID identifies the current virtual machine, with its own independent ASID space. The TLB entries include this VMID information, meaning TLBs do not require explicit invalidation when changing from one virtual machine to another, if the virtual machines have different VMIDs. For stage 2 translations, all translations are associated with the current VMID. There is no mechanism to associate a particular stage 2 translation with multiple virtual machines.
Atomicity of register changes on changing virtual machine

From the viewpoint of software executing at Non-secure PL1 or EL0, when there is a switch from one virtual machine to another, the registers that control or affect address translation must be changed atomically. This applies to the registers for the Non-secure PL1&0 translation regime. This means that all of the following registers must change atomically:

- The registers associated with the stage 1 translations:
 - MAIR0, MAIR1, AMAIR0, and AMAIR1.
 - TTBR0, TTBR1, TTBCR, TTBCR2, and CONTEXTIDR.
 - SCTLR.

- The registers associated with the stage 2 translations:
 - VTTBR and VTCR.
 - HSCTLR.

--- Note ---

Only some fields of SCTLR affect the stage 1 translation, and only some fields of HSCTLR affect the stage 2 translation. However, in each case, changing these fields requires a write to the register, and that write must be atomic with the other register updates.

These registers apply to execution using the Non-secure PL1&0 translation regime. However, when updated as part of a switch of virtual machines they are updated by software executing at EL2. This means the registers are out of context when they are updated, and no synchronization precautions are required.

Use of out-of-context translation regimes

The architecture requires that:

- When executing at EL3 or EL2, the PE must not use the registers associated with the Non-secure PL1&0 translation regime for speculative memory accesses.
- When executing at EL3 the PE must not use the registers associated with the EL2 translation regime for speculative memory accesses.
- When executing at EL3, EL2, or Non-secure EL1, the PE must not use the registers associated with the Secure PL1&0 translation regime for speculative memory accesses.

If SPE is not in use for a lower Exception level when entering an Exception level on completion of a DSB instruction, then no new memory accesses using any translation table entries from a translation regime of an Exception level lower than the Exception level that has been entered will be observed by any observers to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of those translation table entries.

If SPE is in use for a lower Exception level when entering an Exception level on completion of a PSB CSYNC and a subsequent DSB instruction, then no new memory accesses using any translation table entries from a translation regime of an Exception level lower than the Exception level that has been entered will be observed by any observers, to the extent that those accesses are required to be observed, as determined by the Shareability and Cacheability of those translation table entries.

--- Note ---

- This does not require that speculative memory accesses cannot be performed using those entries if it is impossible to tell that those memory accesses have been observed by the observers.
This requirement does not imply that, on taking an exception to a higher Exception level, any translation table walks started before the exception was taken will be completed by the time the higher Exception level is entered, and therefore memory accesses required for such a translation table walk might, in effect, be performed speculatively. However, the execution of a DSB on entry to the higher Exception level ensures that these accesses are complete.

G5.1.5 Organization of the remainder of this chapter

The remainder of this chapter is organized as follows.

The next part of the chapter describes address translation and the associated memory properties held in the translation table entries, in the following sections:

- The effects of disabling address translation stages on VMSAv8-32 behavior on page G5-5970.
- Translation tables on page G5-5974.
- Secure and Non-secure address spaces on page G5-5977.
- The VMSAv8-32 Short-descriptor translation table format on page G5-5979.
- The VMSAv8-32 Long-descriptor translation table format on page G5-5988.
- Memory access control on page G5-6008.
- Memory region attributes on page G5-6019.
- Translation Lookaside Buffers (TLBs) on page G5-6031.
- TLB maintenance requirements on page G5-6035.

Caches in VMSAv8-32 on page G5-6049 describes VMSAv8-32-specific cache requirements.

The following sections then describe aborts on VMSAv8-32 memory accesses, and how these and other faults are reported:

- VMSAv8-32 memory aborts on page G5-6052.
- Exception reporting in a VMSAv8-32 implementation on page G5-6064.

Address translation instructions on page G5-6083 then describes these operations, and how they relate to address translation.

A number of sections then describe the System registers for VMSAv8-32. The following sections give general information about the System registers, and the organization of the registers in the primary encoding spaces, (coproc==0b1110) and (coproc==0b1111) for these registers:

- About the System registers for VMSAv8-32 on page G5-6092.
- Functional grouping of VMSAv8-32 System registers on page G5-6098.

Note

The System registers in the (coproc==0b1110) encoding space provide the following functionality:

- Self-hosted debug. These registers are described in Debug registers on page G8-6628.
- The System register interface to a PE Trace Unit These registers are not described in this manual.
- Jazelle registers. These registers are summarized in Legacy feature registers and system instructions on page K15-8212.

Therefore, there is no summary of these registers by functional groups.

Pseudocode description of VMSAv8-32 memory system operations on page G5-6090 then summarizes the pseudocode functions that describe many features of VMSAv8-32 operation.
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior

About VMSAv8-32 on page G5-5962 defines the translation regimes and the associated stages of address translation, each of which has its own System registers for control and configuration. VMSAv8-32 includes an enable bit for each stage of address translation, as follows:

- SCTLR.M, in the Secure instance of the register, controls Secure PL1&0 stage 1 address translation.
- SCTLR.M, in the Non-secure instance of the register, controls Non-secure PL1&0 stage 1 address translation.
- HCR.VM controls Non-secure PL1&0 stage 2 address translation.
- HSCTLR.M controls Non-secure EL2 stage 1 address translation.

Note

- The descriptions throughout this chapter describe address translation as seen by Exception levels that are using AArch32. However, for the Non-secure PL1&0 translation regime, the stage 2 translation:
 - Is controlled by the HCR if EL2 is using AArch32.
 - Is controlled by the HCR_EL2 if EL2 is using AArch64.

For this reason, links to the HCR link to a table that disambiguates between the AArch32 HCR and the AArch64 HCR_EL2.

- If EL2 is using AArch64, then the equivalent of the Non-secure EL2 translation regime is described in Chapter D5 The AArch64 Virtual Memory System Architecture, not in this chapter.

The following sections describe the effect on VMSAv8-32 behavior of disabling each stage of translation:

- VMSAv8-32 behavior when stage 1 address translation is disabled.
- VMSAv8-32 behavior when stage 2 address translation is disabled on page G5-5972.
- Behavior of instruction fetches when all associated address translations are disabled on page G5-5972.

Enabling stages of address translation on page G5-5972 gives more information about each stage of address translation, in particular after a reset on an implementation that includes EL3.

G5.2.1 VMSAv8-32 behavior when stage 1 address translation is disabled

When stage 1 address translation is disabled, memory accesses that would otherwise be translated by that stage of address translation are treated as follows:

Non-secure PL1 and EL0 accesses when EL2 is implemented and HCR.DC is set to 1

In an implementation that includes EL2, for an access from a Non-secure PL1 or EL0 mode when HCR.DC is set to 1, the stage 1 translation assigns the Normal Non-shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate memory attributes.

See also Effect of the HCR.DC field on page G5-5971.

All other accesses

For all other accesses, when a stage 1 address translation is disabled, the assigned attributes depend on whether the access is a data access or an instruction access, as follows:

Data access
- The stage 1 translation assigns the Device-nGnRnE memory type.

Instruction access
- The stage 1 translation assigns Normal memory attribute, with the Cacheability and Shareability attributes determined by the value of:
 - The Secure instance of SCTLR.I for the Secure PL1&0 translation regime.
 - The Non-secure instance of SCTLR.I for the Non-secure PL1&0 translation regime.
 - HSCTLR.I for the Non-secure EL2 translation regime.
In these cases, the meaning of the I field is as follows:

When I is set to 0

The stage 1 translation assigns the attributes Outer Shareable, Non-cacheable.

When I is set to 1

The stage 1 translation assigns the attributes Inner Write-Through Read-Allocate No Write-Allocate, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

--- **Note** ---

On some implementations, if the SCTLR.TRE field is set to 0 then this behavior can be changed by the remap settings in the memory remap registers. The details of TEX remap when SCTLR.TRE is set to 0 are IMPLEMENTATION DEFINED, see **SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers on page G5-6024**.

--- **Note** ---

Alignment checking is performed, and therefore Alignment faults can occur.

For every access, when stage 1 translation is disabled, the output address of the stage 1 translation is equal to the input address. This is called a flat address mapping. If the implementation supports output addresses of more than 32 bits then the output address bits above bit[31] are zero. For example, for a VA to PA translation on an implementation that supports 40-bit PAs, PA[39:32] is 0x00.

For a Non-secure PL1 or EL0 access, if the PL1&0 stage 2 address translation is enabled, the stage 1 memory attribute assignments and output address can be modified by the stage 2 translation.

See also *Behavior of instruction fetches when all associated address translations are disabled on page G5-5972*.

Effect of the HCR.DC field

The HCR.DC field determines the default memory attributes assigned for the first stage of the Non-secure PL1&0 translation regime when that stage of translation is disabled.

When executing in a Non-secure PL1 or EL0 mode with HCR.DC set to 1:

- For all purposes other than reading the value of the SCTLR, the PE behaves as if the value of the SCTLR.M field is 0. This means Non-secure PL1&0 stage 1 address translation is disabled.
- For all purposes other than reading the value of the HCR, the PE behaves as if the value of the HCR.VM field is 1. This means Non-secure PL1&0 stage 2 address translation is enabled.

The effect of HCR.DC might be held in TLB entries associated with a particular VMID. Therefore, if software executing at EL2 changes the HCR.DC value without also changing the current VMID, it must also invalidate all TLB entries associated with the current VMID. Otherwise, the behavior of Non-secure software executing at EL1 or EL0 is CONSTRAINED UNPREDICTABLE, see *CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945*.

Effect of disabling translation on maintenance and address translation instructions

Cache maintenance instructions act on the target cache whether address translation is enabled or not, and regardless of the values of the memory attributes. However, if a stage of translation is disabled, they use the flat address mapping for that stage, and all mappings are considered global.

TLB invalidate operations act on the target TLB whether address translation is enabled or not.

When the Non-secure PL1&0 stage 1 address translation is disabled, any ATS1C** or ATS12NSO** address translation instruction that accesses the Non-secure state translation reflects the effect of the HCR.DC field.
G5.2.2 VMSAv8-32 behavior when stage 2 address translation is disabled

When stage 2 address translation is disabled:

- The IPA output from the stage 1 translation maps flat to the PA
- The memory attributes and permissions from the stage 1 translation apply to the PA.

If the stage 1 address translation and the stage 2 address translation are both disabled, see *Behavior of instruction fetches when all associated address translations are disabled*.

G5.2.3 Behavior of instruction fetches when all associated address translations are disabled

The information in this section applies to memory accesses:

- From Secure PL1 and EL0 modes, when the Secure PL1&0 stage 1 address translation is disabled
- From Hyp mode, when the Non-secure EL2 stage 1 address translation is disabled
- From Non-secure PL1 and EL0 modes, when all of the following apply:
 - The Non-secure PL1&0 stage 1 address translation is disabled.
 - The Non-secure PL1&0 stage 2 address translation is disabled.
 - HCR.DC is set to 0.

In these cases, when execution is in AArch32 state a memory location might be accessed as a result of an instruction fetch if either:

- The memory location is in the same 4KB block of memory, aligned to 4KB, as an instruction which a simple sequential execution of the program either requires to be fetched now or has required to be fetched since the last reset, or is in the 4KB block immediately following such a block.
- The memory location is the target of a direct branch that a simple sequential execution of the program would have taken since the most recent of:
 - The last reset.
 - If the branch predictor is architecturally invisible, the last synchronization of instruction cache maintenance targeting the address of the branch instruction.
 - If the branch predictor is not architecturally invisible, the last synchronization of branch predictor maintenance targeting the address of the branch instruction.

These accesses can be caused by speculative instruction fetches, regardless of whether the prefetched instruction is committed for execution.

--- Note ---

To ensure architectural compliance, software must ensure that both of the following apply:

- Instructions that will be executed when address translation is disabled are located in 4KB blocks of the address space that contain only memory that is tolerant to speculative accesses.
- Each 4KB block of the address space that immediately follows a 4KB block that holds instructions that will be executed when address translation is disabled also contains only memory that is tolerant to speculative accesses.

G5.2.4 Enabling stages of address translation

On powerup or reset, only the SCTLR.M field for the Exception level and Security state entered on reset is reset to 0, disabling address translation for the initial state of the PE. All other SCTLR.M and HSCTLR.M fields that are implemented are UNKNOWN after the reset.
This means, on powerup or reset:

- On an implementation that includes EL3, where EL3 is using AArch32:
 - The PL1&0 stage 1 address translation enable bit, SCTLR.M, is banked, meaning there are separate enables for operation in Secure and Non-secure state.
 - If EL3 is using AArch32, only the Secure instance of the SCTLR.M field resets to 0, disabling the Secure state PL1&0 stage 1 address translation. The reset value of the Non-secure instance of SCTLR.M is UNKNOWN.

- On an implementation that includes EL2, where EL2 is using AArch32, the HSCTLR.M field, that controls the Non-secure EL2 stage 1 address translation:
 - If the implementation does not include EL3, resets to 0.
 - Otherwise, is UNKNOWN.

- On an implementation that does not include either EL2 or EL3, there is a single stage of translation. This is controlled by SCTLR.M, that resets to 0.

Note

If, for the software that enables or disables a stage of address translation, the input address of a stage 1 translation differs from the output address of that stage 1 translation, and the software is running in translation regime that is affected by that stage of translation, then the requirement to synchronize changes to the System registers means it is uncertain where in the instruction stream the change of the translation takes place. For this reason, Arm strongly recommends that the input address and the output address are identical in this situation.
G5.3 Translation tables

VMSAv8-32 defines two alternative translation table formats:

Short-descriptor format

It uses 32-bit descriptor entries in the translation tables, and provides:

- Up to two levels of address lookup.
- 32-bit input addresses.
- Output addresses of up to 40 bits.
- Support for PAs of more than 32 bits by use of supersections, with 16MB granularity.
- Support for No access, Client, and Manager domains.

Long-descriptor format

It uses 64-bit descriptor entries in the translation tables, and provides:

- Up to three levels of address lookup.
- Input addresses of up to 40 bits, when used for stage 2 translations.
- Output addresses of up to 40 bits.
- 4KB assignment granularity across the entire PA range.
- No support for domains, all memory regions are treated as in a Client domain.
- Fixed 4KB table size, unless truncated by the size of the input address space.

--- Note ---
- Translation with a 40-bit input address range requires two concatenated 4KB top-level tables, aligned to 8KB.
- The VMSAv8-64 Long-descriptor translation table format is generally similar to this format, but supports input and output addresses of up to 48 bits, and has an assignment granularity and table size defined by its translation granule. This can be 4KB, 16KB, or 64KB. See *The VMSAv8-64 translation table format* on page G5-5969.

In all implementations, of the possible address translations shown in Figure G5-2 on page G5-5967, for stages of address translation that are using AArch32:

- In a particular Security state, the translation tables for the PL1&0 stage 1 translations can use either translation table format, and the TTBCR.EAE field indicates the current translation table format.
- The translation tables for the Non-secure EL2 stage 1 translations, and for the Non-secure PL1&0 stage 2 translations, must use the Long-descriptor translation table format.

Many aspects of performing a translation table walk depend on the current translation table format. Therefore, the following sections describe the two formats, including how the MMU performs a translation table walk for each format:

- *The VMSAv8-32 Short-descriptor translation table format* on page G5-5979.
- *The VMSAv8-32 Long-descriptor translation table format* on page G5-5988.

The following subsections describe aspects of the translation tables and translation table walks, for memory accesses from AArch32 state, that are independent of the translation table format:

- *Translation table walks for memory accesses using VMSAv8-32 translation regimes* on page G5-5975.
- *Information returned by a translation table lookup* on page G5-5975.
- *Determining the translation table base address in the VMSAv8-32 translation regimes* on page G5-5976.
- *Control of translation table walks on a TLB miss* on page G5-5977.
- *Access to the Secure or Non-secure PA map* on page G5-5977.

See also *TLB maintenance requirements* on page G5-6035.
G5.3.1 Translation table walks for memory accesses using VMSAv8-32 translation regimes

A translation table walk occurs as the result of a TLB miss, and starts with a read of the appropriate starting-level translation table. The result of that read determines whether additional translation table reads are required, for this stage of translation, as described in either:

- Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format on page G5-5985.
- Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on page G5-6003.

Note

When using the Short-descriptor translation table format, the starting level for a translation table walk is always a level 1 lookup. However, with the Long-descriptor translation table format, the starting-level can be either a level 1 or a level 2 lookup.

For the PL1&0 stage 1 translations, SCTLR.EE determines the endianness of the translation table lookups. SCTLR is banked, and therefore the endianness is determined independently for each Security state.

HSCTLR.EE defines the endianness for the Non-secure EL2 stage 1 and Non-secure PL1&0 stage 2 translations.

Note

Dynamically changing translation table endianness

Because any change to SCTLR.EE or HSCTLR.EE requires synchronization before it is visible to subsequent operations, Arm strongly recommends that:

- SCTLR.EE is changed only when either:
 - Executing in a mode that does not use the translation tables affected by SCTLR.EE.
 - Executing with SCTLR.M set to 0.
- HSCTLR.EE is changed only when either:
 - Executing in a mode that does not use the translation tables affected by HSCTLR.EE.
 - Executing with HSCTLR.M set to 0.

The PA of the base of the starting-level translation table is determined from the appropriate TTBR, see Determining the translation table base address in the VMSAv8-32 translation regimes on page G5-5976.

For more information, see Ordering and completion of TLB maintenance instructions on page G5-6038.

Translation table walks must access data or unified caches, or data and unified caches, of other agents participating in the coherency protocol, according to the Shareability attributes described in the TTBR. These Shareability attributes must be consistent with the Shareability attributes for the translation tables themselves.

G5.3.2 Information returned by a translation table lookup

When an associated stage of address translation is enabled, a memory access requires one or more translation table lookups. If the required translation table descriptor is not held in a TLB, a translation table walk is performed to obtain the descriptor. A lookup, whether from the TLB or as the result of a translation table walk, returns both:

- An output address that corresponds to the input address for the lookup.
- A set of properties that correspond to that output address.

The returned properties are classified as providing address map control, access controls, or region attributes. This classification determines how the descriptions of the properties are grouped. The classification is based on the following model:

Address map control

Memory accesses from Secure state can access either the Secure or the Non-secure address map, as summarized in Access to the Secure or Non-secure PA map on page G5-5977.

Memory accesses from Non-secure state can only access the Non-secure address map.
Access controls

Determine whether the PE, in its current state, can access the output address that corresponds to the given input address. If not, an MMU fault is generated and there is no memory access.

Memory access control on page G5-6008 describes the properties in this group.

Attributes

Are valid only for an output address that the PE, in its current state, can access. The attributes define aspects of the required behavior of accesses to the target memory region.

Memory region attributes on page G5-6019 describes the properties in this group.

G5.3.3 Determining the translation table base address in the VMSAv8-32 translation regimes

On a TLB miss, the VMSA must perform a translation table walk, and therefore must find the base address of the translation table to use for its lookup. A TTBR holds this address. As Figure G5-2 on page G5-5967 shows:

- For a Non-secure EL2 stage 1 translation, the HTTBR holds the required base address. The HTCR is the control register for these translations.
- For a Non-secure PL1&0 stage 2 translation, the VTTBR holds the required base address. The VTCR is the control register for these translations.
- For a PL1&0 stage 1 translation, either TTBR0 or TTBR1 holds the required base address. The TTBCR is the control register for these translations.

The Non-secure copies of TTBR0, TTBR1, and TTBCR, relate to the Non-secure PL1&0 stage 1 translation. The Secure copies of TTBR0, TTBR1, and TTBCR, relate to the Secure PL1&0 stage 1 translation.

For the PL1&0 translation table walks:

- TTBR0 can be configured to describe the translation of VAs in the entire address map, or to describe only the translation of VAs in the lower part of the address map.
- If TTBR0 is configured to describe the translation of VAs in the lower part of the address map, TTBR1 is configured to describe the translation of VAs in the upper part of the address map.

The contents of the appropriate instance of the TTBCR determine whether the address map is separated into two parts, and where the separation occurs. The details of the separation depend on the current translation table format, see:

- Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format on page G5-5984.
- Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-5997.

Example G5-1 shows a typical use of the two sets of translation tables:

Example G5-1 Example use of TTBR0 and TTBR1

An example of using the two TTBRs for PL1&0 stage 1 address translations is:

TTBR0 Used for process-specific addresses.

Each process maintains a separate level 1 translation table. On a context switch:

- TTBR0 is updated to point to the level 1 translation table for the new context.
- TTBCR is updated if this change changes the size of the translation table.
- The CONTEXTIDR is updated.

TTBCR can be programmed so that all translations use TTBR0 in a manner compatible with architecture versions before Armv6.

TTBR1 Used for operating system and I/O addresses, that do not change on a context switch.
G5.3.4 Control of translation table walks on a TLB miss

Two fields in the TCR for the translation stage required by a memory access control whether a translation table walk is performed on a TLB miss. These two fields are the:

- PD0 and PD1 fields, on a PE using the Short-descriptor translation table format.
- EPD0 and EPD1 fields, on a PE using the Long-descriptor translation table format.

Note

For the VMSAv8-32 translation regimes, the different field names are because the fields are in different positions in TTBCR, depending on the translation table format.

The effect of these fields is:

- \(\{E\}PDx == 0 \)
 - If a TLB miss occurs based on TTBRx, a translation table walk is performed. The current Security state determines whether the memory access is Secure or Non-secure.

- \(\{E\}PDx == 1 \)
 - If a TLB miss occurs based on TTBRx, a level 1 Translation fault is returned, and no translation table walk is performed.

G5.3.5 Access to the Secure or Non-secure PA map

As stated in *Address spaces in VMSAv8-32* on page G5-5965, a PE can access independent Secure and Non-secure address maps. When the PL1 Exception level is using AArch32, these are defined by the translation tables identified by the Secure TTBR0 and TTBR1. In both translation table formats in the Secure translation tables, the NS field in a descriptor indicates whether the descriptor refers to the Secure or the Non-secure address map:

- NS == 0
 - Access the Secure PA space.
- NS == 1
 - Access the Non-secure PA space.

Note

In the Non-secure translation tables, the corresponding field is SBZ. Non-secure accesses always access the Non-secure PA space, regardless of the value of this field.

The Long-descriptor translation table format extends this control, adding an NSTable field to the Secure translation tables, as described in *Hierarchical control of Secure or Non-secure memory access*, *Long-descriptor format* on page G5-5996. In the Non-secure translation tables, the corresponding field is SBZ, and Non-secure accesses ignore the value of this field.

The following sections describe the address map controls in the two implementations:

- *Control of Secure or Non-secure memory access*, *VMSAv8-32 Short-descriptor format* on page G5-5984.
- *Control of Secure or Non-secure memory access*, *VMSAv8-32 Long-descriptor format* on page G5-5996.

The following subsection gives more information.

Secure and Non-secure address spaces

EL3 provides two PA spaces, a Secure PA space and a Non-secure PA space.

As described in *Address to the Secure or Non-secure PA map*, for the PL1&0 stage 1 translations when controlled from an Exception level using AArch32, the registers that control the stage of translation, TTBR0, TTBR1, TTBCR, and TTBCR2 are banked to provide independent Secure and Non-secure instances of the registers, and the Security state of the PE when it performs a memory access whether the Secure or Non-secure instances are used. This means that for stage 1 of the PL1&0 translation regime there are independent Secure and Non-secure translation tables, and translation table walks are made to the PA space corresponding to the Security state of the translation tables used.

For a translation table walk caused by a memory access from Non-secure state, all memory accesses are to the Non-secure address space.
For a translation table walk caused by a memory access from Secure state:

- When address translation is using the Long-descriptor translation table format:
 - The initial lookup performed must access the Secure address space.
 - If a table descriptor read from the Secure address space has the NSTable field set to 0, then the next level of lookup is from the Secure address space.
 - If a table descriptor read from the Secure address space has the NSTable field set to 1, then the next level of lookup, and any subsequent level of lookup, is from the Non-secure address space.

For more information, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-5996.

- Otherwise, all memory accesses are to the Secure address space.

--- Note ---

- When executing in Non-secure state, additional translations are supported. For memory accesses from AArch32 state, these are:
 - Non-secure EL2 stage 1 translation.
 - Non-secure PL1&0 stage 2 translation.

 These translations can access only the Non-secure address space.

- A system implementation can alias parts of the Secure PA space to the Non-secure PA space in an implementation-specific way. As with any other aliasing of physical memory, the use of aliases in this way can require the use of cache maintenance instructions to ensure that changes to memory made using one alias of the physical memory are visible to accesses to the other alias of the physical memory.

G5.4 The VMSA v8-32 Short-descriptor translation table format

The Short-descriptor translation table format supports a memory map based on memory sections or pages:

Supersections Consist of 16MB blocks of memory. Support for Supersections is optional, except that an implementation that supports more than 32 bits of PA must also support Supersections to provide access to the entire PA space.

Sections Consist of 1MB blocks of memory.

Large pages Consist of 64KB blocks of memory.

Small pages Consist of 4KB blocks of memory.

Supersections, Sections, and Large pages map large regions of memory using only a single TLB entry.

--- Note ---

- Whether a VMSA v8-32 implementation of the Short-descriptor format translation tables supports supersections is **IMPLEMENTATION DEFINED**.
- The EL2 translation regime cannot use the Short-descriptor translation table format.

When using the Short-descriptor translation table format, two levels of translation tables are held in memory:

Level 1 table

Hold *level 1 descriptors* that contain the base address and
- Translation properties for a Section and Supersection.
- Translation properties and pointers to a level 2 table for a Large page or a Small page.

Level 2 tables

Hold *level 2 descriptors* that contain the base address and translation properties for a Small page or a Large page. With the Short-descriptor format, level 2 tables can be referred to as *translation tables*. A level 2 table requires 1KB of memory.

In the translation tables, in general, a descriptor is one of:

- An invalid or fault entry.
- A translation table entry, that points to a next-level translation table.
- A page or section entry, that defines the memory properties for the access.
- A reserved format.

Bits[1:0] of the descriptor give the primary indication of the descriptor type.

Figure G5-3 on page G5-5980 gives a general view of address translation when using the Short-descriptor translation table format.
The AArch32 Virtual Memory System Architecture

G5.4 The VMSAv8-32 Short-descriptor translation table format

Figure G5-3 General view of address translation using VMSAv8-32 Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page G5-5983 describes why, when using the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in Figure G5-3.

VMSAv8-32 Short-descriptor translation table format descriptors, Memory attributes in the VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5983, and Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format on page G5-5984 describe the format of the descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:

- Selecting between TTBR0 and TTBR1, VMSAv8-32 Short-descriptor translation table format on page G5-5984.
- Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format on page G5-5985.

G5.4.1 VMSAv8-32 Short-descriptor translation table format descriptors

The following sections describe the formats of the entries in the Short-descriptor translation tables:

- Short-descriptor translation table level 1 descriptor formats.
- Short-descriptor translation table level 2 descriptor formats on page G5-5982.

For more information about level 2 translation tables, see Additional requirements for Short-descriptor format translation tables on page G5-5983.

Note

Information returned by a translation table lookup on page G5-5975 describes the classification of the non-address fields in the descriptors as address map control, access control, or attribute fields.

Short-descriptor translation table level 1 descriptor formats

Each entry in the level 1 table describes the mapping of the associated 1MB VA range.

Figure G5-4 on page G5-5981 shows the possible level 1 descriptor formats.
Descriptor bits[1:0] identify the descriptor type. The encoding of these bits is:

0b00, Invalid entry
The associated VA is unmapped, and any attempt to access it generates a Translation fault.
Bits[3:2] of the descriptor are ignored, see IGNORED on page Glossary-8235. This means
software can use these bits for its own purposes.

0b01, Translation table
The descriptor gives the address of a level 2 translation table, that specifies the mapping of the
associated 1MByte VA range.

0b10, Section or Supersection
The descriptor gives the base address of the Section or Supersection. Bit[18] determines whether
the entry describes a Section or a Supersection.
This encoding also defines the PXN field as 0.

0b11, Section or Supersection, if the implementation supports the PXN attribute
This encoding is identical to 0b10, except that it defines the PXN field as 1.

Note
A VMSAv8-32 implementation can use the Short-descriptor translation table format for the PL1&0 stage 1
translations, by setting TTBCR.EAE to 0.

The address information in the level 1 descriptors is:
Translation table Bits[31:10] of the descriptor are bits[31:10] of the address of a translation table.
Section Bits[31:20] of the descriptor are bits[31:20] of the address of the Section.

For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section, or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5983.

Short-descriptor translation table level 2 descriptor formats

Figure G5-5 shows the possible formats of a level 2 descriptor.

<table>
<thead>
<tr>
<th>Descriptor type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10, Invalid entry</td>
<td>The associated VA is unmapped, and attempting to access it generates a Translation fault. Bits[31:2] of the descriptor are IGNORED, see IGNORED on page Glossary-8235. This means software can use these bits for its own purposes.</td>
</tr>
<tr>
<td>0b11, Large page</td>
<td>The descriptor gives the base address and properties of the Large page.</td>
</tr>
<tr>
<td>0b1x, Small page</td>
<td>The descriptor gives the base address and properties of the Small page. In this descriptor format, bit[0] of the descriptor is the XN field.</td>
</tr>
</tbody>
</table>

The address information in the level 2 descriptors is:

- **Large page** Bits[31:16] of the descriptor are bits[31:16] of the address of the Large page.
- **Small page** Bits[31:12] of the descriptor are bits[31:12] of the address of the Small page.

For the Non-secure PL1&0 translation tables, the address in the descriptor is the IPA of the translation table, Section, or Supersection. Otherwise, the address is the PA of the translation table, Section, or Supersection.

For descriptions of the other fields in the descriptors, see Memory attributes in the VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5983.
Additional requirements for Short-descriptor format translation tables

When using Supersection or Large page descriptors in the Short-descriptor translation table format, the input address field that defines the Supersection or Large page descriptor address overlaps the table address field. In each case, the size of the overlap is 4 bits. The following diagrams show these overlaps:

• Figure K7-14 on page K7-8049 for the level 1 translation table entry for a Supersection.
• Figure K7-16 on page K7-8051 for the level 2 translation table entry for a Large page.

Considering the case of using Large page descriptors in a level 2 translation table, this overlap means that for any specific Large page, the bottom four bits of the level 2 translation table entry might take any value from 0b0000 to 0b1111. Therefore, each of these 16 index values must point to a separate copy of the same descriptor.

This means that each Large page or Supersection descriptor must:
• Occur first on a sixteen-word boundary.
• Be repeated in 16 consecutive memory locations.

G5.4.2 Memory attributes in the VMSAv8-32 Short-descriptor translation table format descriptors

This section describes the descriptor fields other than the descriptor type field and the address field:

TEX[2:0], C, B
Memory region attribute fields, see Memory region attributes on page G5-6019.
These fields are not present in a descriptor for a translation table.

XN bit
The Execute-never field, see Access permissions for instruction execution on page G5-6012.
This bit is not present in a descriptor for a translation table.

PXN bit
The Privileged execute-never field, see Access permissions for instruction execution on page G5-6012.
When this field is set to 1 in the descriptor for a translation table, it indicates that all memory pages described in the corresponding translation table are Privileged execute-never.

NS bit
Non-secure bit. Specifies whether the translated PA is in the Secure or Non-secure address map, see Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format on page G5-5984.
This bit is not present in level 2 descriptors. The value of the NS bit in a level 1 descriptor for a translation table applies to all entries in the corresponding level 2 translation table.

Domain
Domain field, see Domains, Short-descriptor format only on page G5-6016.
This field is not present in a Supersection entry. Memory described by Supersections is in domain 0.
This bit is not present in level 2 descriptors. The value of the Domain field in the level 1 descriptor for a translation table applies to all entries in the corresponding level 2 translation table.

An IMPLEMENTATION DEFINED bit
This bit is not present in level 2 descriptors.

AP[2], AP[1:0]
Access Permissions bits, see Memory access control on page G5-6008.
AP[0] can be configured as the Access flag, see The Access flag on page G5-6016.
These bits are not present in a descriptor for a translation table.

S bit
Shareable bit. Used in determining the Shareability of the addressed region, see Memory region attributes on page G5-6019.

Note
The naming of this bit as the Shareable bit is carried forward from early versions of the Arm architecture. This name is no longer an adequate description of the interpretation of the bit.
This bit is not present in a descriptor for a translation table.

nG bit

The not global bit. If a lookup using this descriptor is cached in a TLB, determines whether the TLB entry applies to all ASID values, or only to the current ASID value. See Global and process-specific translation table entries on page G5-6031.

This bit is not present in a descriptor for a translation table.

Bit[18], when bits[1:0] indicate a Section or Supersection descriptor

0 Descriptor is for a Section.
1 Descriptor is for a Supersection.

G5.4.3 Control of Secure or Non-secure memory access, VMSAv8-32 Short-descriptor format

Access to the Secure or Non-secure PA map on page G5-5977 describes how the NS bit in the translation table entries:

• For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.
• Is ignored by accesses from Non-secure state.

In the Short-descriptor translation table format, the NS bit is defined only in the level 1 translation tables. This means that, in a level 1 descriptor for a translation table, the NS bit defines the PA map, Secure or Non-secure, for all of the Large pages and Small pages of memory described by that table.

The NS bit of a level 1 descriptor for a translation table has no effect on the PA map in which that translation table is held. As stated in Secure and Non-secure address spaces on page G5-5977, the PA of that translation table is in:

• The Secure address map if the translation table walk is in Secure state.
• The Non-secure address map if the translation table walk is in Non-secure state.

This means the granularity of the Secure and Non-secure memory maps is 1MB. However, in these memory maps, table entries can define physical memory regions with a granularity of 4KB.

G5.4.4 Selecting between TTBR0 and TTBR1, VMSA v8-32 Short-descriptor translation table format

As described in Determining the translation table base address in the VMSA v8-32 translation regimes on page G5-5976, two sets of translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base addresses for the two sets of tables. When using the Short-descriptor translation table format, the value of TTBCR.N indicates the number of most significant bits of the input VA that determine whether TTBR0 or TTBR1 holds the required translation table base address, as follows:

• If N == 0 then use TTBR0. Setting TTBCR.N to zero disables use of a second set of translation tables.
• If N > 0 then:
 — If bits[31:32-N] of the input VA are all zero, then use TTBR0.
 — Otherwise use TTBR1.

Table G5-1 shows how the value of N determines the lowest address translated using TTBR1, and the size of the level 1 translation table addressed by TTBR0.

<table>
<thead>
<tr>
<th>TTBCR.N</th>
<th>First address translated with TTBR1</th>
<th>TTBR0 table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Size</td>
</tr>
<tr>
<td>0b000</td>
<td>TTBR1 not used</td>
<td>16KB</td>
</tr>
<tr>
<td>0b001</td>
<td>0x80000000</td>
<td>8KB</td>
</tr>
<tr>
<td>0b010</td>
<td>0x40000000</td>
<td>4KB</td>
</tr>
<tr>
<td>0b011</td>
<td>0x20000000</td>
<td>2KB</td>
</tr>
<tr>
<td>0b100</td>
<td>0x10000000</td>
<td>1KB</td>
</tr>
</tbody>
</table>
Whenever TTBCR.N is nonzero, the size of the translation table addressed by TTBR1 is 16KB.

Figure G5-6 shows how the value of TTBCR.N controls the boundary between VAs that are translated using TTBR0, and VAs that are translated using TTBR1.

![Figure G5-6 How TTBCR.N controls the boundary between the TTBRs, Short-descriptor format](image)

In the selected TTBR, bits RGN, S, and IRGN[1:0] define the memory region attributes for the translation table walk.

Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format describes the translation.

G5.4.5 Translation table walks, when using the VMSAv8-32 Short-descriptor translation table format

When using the Short-descriptor translation table format, and a memory access requires a translation table walk:

- A section-mapped access only requires a read of the level 1 translation table.
- A page-mapped access also requires a read of the level 2 translation table.

Reading a level 1 translation table on page G5-5986 describes how either TTBR1 or TTBR0 is used, with the accessed VA, to determine the address of the level 1 descriptor.

Reading a level 1 translation table on page G5-5986 shows the output address as A[39:0]:

- For a Non-secure PL1&0 stage 1 translation, this is the IPA of the required descriptor. A Non-secure PL1&0 stage 2 translation of this address is performed to obtain the PA of the descriptor.
- Otherwise, this address is the PA of the required descriptor.

The full translation flow for Sections, Supersections, Small pages and Large pages on page G5-5986 then shows the complete translation flow for each valid memory access.
Reading a level 1 translation table

When performing a fetch based on TTBR0:

- The address bits taken from TTBR0 vary between bits[31:14] and bits[31:7].
- The address bits taken from the VA, that is the input address for the translation, vary between bits[31:20] and bits[24:20].

The width of the TTBR0 and VA fields depend on the value of TTBCR.N, as Figure G5-7 shows.

When performing a fetch based on TTBR1, Bits TTBR1[31:14] are concatenated with bits[31:20] of the VA. This makes the fetch equivalent to that shown in Figure G5-7, with N==0.

Note

See *The address and Properties fields shown in the translation flows on page K7-8052* for more information about the *Properties* label used in this and other figures.

Figure G5-7 Accessing level 1 translation table based on TTBR0, Short-descriptor format

Regardless of which register is used as the base for the fetch, the resulting output address selects a four-byte translation table entry that is one of:

- A level 1 descriptor for a Section or Supersection.
- A descriptor for a translation table, that points to a level 2 translation table. In this case:
 - A second fetch is performed to retrieve a level 2 descriptor.
 - The descriptor also contains some attributes for the access, see Figure G5-4 on page G5-5981.
- A faulting entry.

The full translation flow for Sections, Supersections, Small pages and Large pages

In a translation table walk, only the initial lookup uses the translation table base address from the appropriate TTBR. Subsequent lookups use a combination of address information from:

- The table descriptor read in the previous lookup.
- The input address.

Address translation examples using the VMSAv8-32 Short descriptor translation table format on page K7-8048 shows the full translation flow for each of the memory section and page options. As described in *VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5980*, these options are:

- **Supersection** A 16MB memory region, see *Translation flow for a Supersection on page K7-8048*.
- **Section** A 1 MB memory region, see *Translation flow for a Section on page K7-8049*.

Large page A 64KB memory region, described by the combination of:
 • A level 1 translation table entry that indicates the address of a level 2 translation table.
 • A level 2 descriptor that indicates a Large page.
See *Translation flow for a Large page* on page K7-8050.

Small page A 4KB memory region, described by the combination of:
 • A level 1 translation table entry that indicates the address of a level 2 translation table.
 • A level 2 descriptor that indicates a Small page.
See *Translation flow for a Small page* on page K7-8051.
G5.5 The VMSAv8-32 Long-descriptor translation table format

The VMSAv8-32 Long-descriptor translation table format supports the assignment of memory attributes to memory Pages, at a granularity of 4KB, across the complete input address range. It also supports the assignment of memory attributes to blocks of memory, where a block can be 2MB or 1GB.

--- Note ---

• Although the VMSAv8-32 Long-descriptor format is limited to three levels of address lookup, its design and naming conventions support extension to additional levels, to support a larger input address range.

• Similarly, while the VMSAv8-32 implementation limits the output address range to 40 bits, its design supports extension to a larger output address range.

Figure G5-2 on page G5-5967 shows the different address translation stages. The Long-descriptor translation table format:

• Is used for:
 — The Non-secure EL2 stage 1 translation.
 — The Non-secure PL1&0 stage 2 translation.

• Can be used for the Secure and Non-secure PL1&0 translations.

When used for a stage 1 translation, the translation tables support an input address of up to 32 bits, corresponding to the VA address range of the PE.

When used for a stage 2 translation, the translation tables support an input address range of up to 40 bits, to support the translation from IPA to PA. If the input address for the stage 2 translation is a 32-bit address, then this address is zero-extended to 40 bits.

--- Note ---

When the Short-descriptor translation table format is used for the Non-secure stage 1 translations, this generates 32-bit IPAs. These are zero-extended to 40 bits to provide the input address for the stage 2 translation.

Overview of VMSAv8-32 address translation using Long-descriptor translation tables summarizes address translation from AArch32 state when using the Long-descriptor format translation tables.

The following sections then describe the format of the descriptors in the Long-descriptor format translation tables:

• VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5989.

• Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992.

• Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-5996.

The following sections then describe this translation table format:

• Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-5997.

• VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6000.

• Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on page G5-6003.

• The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format on page G5-6006.

G5.5.1 Overview of VMSAv8-32 address translation using Long-descriptor translation tables

Figure G5-8 on page G5-5989 gives a general view of VMSAv8-32 stage 1 address translation when using the Long-descriptor translation table format.
The AArch32 Virtual Memory System Architecture

G5.5 The VMSAv8-32 Long-descriptor translation table format

Figure G5-8 General view of VMSAv8-32 stage 1 address translation using Long-descriptor format

Figure G5-9 gives a general view of VMSAv8-32 stage 2 address translation. Stage 2 translation always uses the Long-descriptor translation table format.

G5.5.2 VMSAv8-32 Long-descriptor translation table format descriptors

As described in VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6000, the Long-descriptor translation table format provides up to three levels of address lookup. A translation table walk starts either at level 1 or level 2 of the address lookup.

In general, a descriptor is one of:
- An invalid or fault entry.
- A table entry, that points to the next-level translation table.
- A block entry, that defines the memory properties for the access.
- A reserved format.

Bit[1] of the descriptor indicates the descriptor type, and bit[0] indicates whether the descriptor is valid.

The following sections describe the Long-descriptor translation table descriptor formats:
- VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats on page G5-5990.
- VMSAv8-32 Long-descriptor translation table level 3 descriptor formats on page G5-5991.
Information returned by a translation table lookup on page G5-5975 describes the classification of the non-address fields in the descriptors between address map control, access controls, and region attributes.

VMSAv8-32 Long-descriptor level 1 and level 2 descriptor formats

In the Long-descriptor translation tables, the formats of the level 1 and level 2 descriptors differ only in the size of the block of memory addressed by the block descriptor. A block entry:

- In a level 1 table describes the mapping of the associated 1GB input address range.
- In a level 2 table describes the mapping of the associated 2MB input address range.

Figure G5-10 shows the Long-descriptor level 1 and level 2 descriptor formats:

Descriptor encodings, Long-descriptor level 1 and level 2 formats

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

- 0, Block
 The descriptor gives the base address of a block of memory, and the attributes for that memory region.

- 1, Table
 The descriptor gives the address of the next level of translation table, and for a stage 1 translation, some attributes for that translation.

The other fields in the valid descriptors are:

Block descriptor

Gives the base address and attributes of a block of memory:

- For a level 1 Block descriptor, bits[39:30] are bits[39:30] of the output address that specifies a 1GB block of memory.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor will generate an Address size fault, see Address size fault on page G5-6054.
Bits[63:52, 11:2] provide attributes for the target memory block, see *Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992*. The position and contents of these bits is identical in the level 2 block descriptor and in the level 3 page descriptor.

Table descriptor

Bits[39:m] are bits[39:m] of the address of the required next-level table. Bits[m-1:0] of the table address are zero:

- For a level 1 Table descriptor, this is the address of a level 2 table.
- For a level 2 Table descriptor, this is the address of a level 3 table.

In both cases, if bits[47:40] of the descriptor are not zero then a translation that uses the descriptor will generate an Address size fault, see *Address size fault on page G5-6054*.

For a stage 1 translation only, bits[63:59] provide attributes for the next-level lookup, see *Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992*.

If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor is the IPA of the target block or table. Otherwise, it is the PA of the target block or table.

VMSAv8-32 Long-descriptor translation table level 3 descriptor formats

Each entry in a level 3 table describes the mapping of the associated 4KB input address range.

Figure G5-11 shows the Long-descriptor level 3 descriptor formats.

![Figure G5-11 VMSAv8-32 Long-descriptor level 3 descriptor formats](image)

Descriptor bit[0] identifies whether the descriptor is valid, and is 1 for a valid descriptor. If a lookup returns an invalid descriptor, the associated input address is unmapped, and any attempt to access it generates a Translation fault.

Descriptor bit[1] identifies the descriptor type, and is encoded as:

- **0, Reserved, invalid**
 Behaves identically to encodings with bit[0] set to 0.
 This encoding must not be used in level 3 translation tables.

- **1, Page**
 Gives the address and attributes of a 4KB page of memory.

At this level, the only valid format is the Page descriptor. The other fields in the Page descriptor are:

Page descriptor

If bits[47:40] of the descriptor are not zero, then a translation that uses the descriptor will generate an Address size fault, see *Address size fault on page G5-6054*.

Bits[63:52, 11:2] provide attributes for the target memory page, see *Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992*. The position and contents of these bits are identical in the level 1 block descriptor and in the level 2 block descriptor.
If the translation table defines the Non-secure PL1&0 stage 1 translations, then the output address in the descriptor is the IPA of the target page. Otherwise, it is the PA of the target page.

G5.5.3 Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors

The memory attributes in the VMSAv8-32 Long-descriptor translation tables are based on those in the Short-descriptor translation table format, with some extensions. Memory region attributes on page G5-6019 describes these attributes. In the Long-descriptor translation table format:

- Table entries for stage 1 translations define attributes for the next level of lookup, see Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors.

The hierarchical attributes in the translation tables, APTable, XNTable, and PXNTable, permit subtrees of the translation tables to be used by different agents. Not all operating systems use this functionality, and so FEAT_AA32HPD adds a facility to disable these bits.

This ability to disable hierarchical attribute bits has no effect on the NSTable bit.

- Block and Page entries define memory attributes for the target block or page of memory. Stage 1 and stage 2 translations have some differences in these attributes, see:
 - Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors on page G5-5993.
 - Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors on page G5-5995.

Next-level attributes in VMSAv8-32 Long-descriptor stage 1 Table descriptors

In a Table descriptor for a stage 1 translation, bits[63:59] of the descriptor define the following attributes for the next-level translation table access:

- **NSTable, bit[63]** For memory accesses from Secure state, specifies the Security state for subsequent levels of lookup, see Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format on page G5-5996.

 For memory accesses from Non-secure state, this bit is ignored.

- **APTable, bits[62:61]** Access permissions limit for subsequent levels of lookup, see Hierarchical control of access permissions, Long-descriptor format on page G5-6010.

 APTable[0] is reserved, SBZ, in the Non-secure EL2 stage 1 translation tables.

 From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

 When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E is also 1:
 - The value of the corresponding APTable field is ignored by hardware, allowing the field to be used by software.
 - The behavior of the system is as if the value of the corresponding APTable field is 0, that is to say, the APTable field has an Effective value of 0.

- **XNTable, bit[60]** XN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching, Long-descriptor format on page G5-6014.

 From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled.

 When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1, and the value of TTBCR.T2E is also 1:
 - The value of the corresponding XNTable field is ignored by hardware, allowing the field to be used by software.
 - The behavior of the system is as if the value of the corresponding XNTable field is 0, that is to say, the XNTable field has an Effective value of 0.

- **PXNTable, bit[59]** PXN limit for subsequent levels of lookup, see Hierarchical control of instruction fetching, Long-descriptor format on page G5-6014.

 This bit is RES0 in the Non-secure EL2 stage 1 translation tables.
From Armv8.2, when FEAT_AA32HPD is implemented, this field can be disabled. When the value of TTBCR2.HPD0 or TTBCR2.HPD1 is 1 and the value of TTBCR.T2E is also 1:

- The value of the corresponding PXNTable field is ignored by hardware, allowing the field to be used by software.
- The behavior of the system is as if the value of the corresponding PXNTable field is 0, that is to say, the PXNTable field has an Effective value of 0.

Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for a stage 1 translation:

For a stage 1 descriptor, the attributes are:

PBHA, bits[62:59]

Page-based hardware attributes bits.

These bits are IGNORED when FEAT_HPDS2 is not implemented.

When FEAT_HPDS2 is implemented, the HTCR and the TTBCR2 registers both contain a control bit for each PBHA bit in the translation tables that they control. When the value of that control bit is 1, and the value of the corresponding Hierarchical permission disables bit is 1, hardware can use that PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.

The control bits for this feature are:

For a Non-secure EL2 translation regime:

HTCR.HWUnn

Controls whether Block or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of HTCR.HPD is 1.

For a PL1&0 translation regime:

TTBCR2.HWU1nn

For the translation tables indicated by TTBR1, controls whether Block or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD1 is 1 and the value of TTBCR.T2E is 1.

TTBCR2.HWU0nn

For the translation tables indicated by TTBR0, controls whether Block or Page descriptor bit[nn] can be used by hardware.

These controls apply only when the value of TTBCR2.HPD0 is 1 and the value of TTBCR.T2E is 1.
Implementation of FEAT_HPDS2 requires the implementation of FEAT_AA32HPD, which provides the Hierarchical permission disables bits. If FEAT_AA32HPD is implemented but FEAT_HPDS2 is not implemented, then the control bits are RAZ/WI but other aspects of FEAT_AA32HPD functionality are implemented. If neither feature is implemented, then:

- The control bits are RAZ/WI.
- The FEAT_AA32HPD identification registers indicate that the functionality is not supported, see FEAT_AA32HPD on page A2-75.
- The TTBCR2 register encoding is treated as unallocated.

XN, bit[54] The Execute-never field, see Access permissions for instruction execution on page G5-6012.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

Contiguous, bit[52] Indicates that 16 adjacent translation table entries point to contiguous memory regions, see Contiguous bit on page G5-6026.

This bit is RES0 in the Non-secure EL2 stage 1 translation tables.

SH, bits[9:8] Shareability field, see Memory region attributes on page G5-6019.

Note For consistency with the Short-descriptor translation table formats, the Long-descriptor format defines AP[2:1] as the Access Permissions bits, and does not define an AP[0] bit.

NS, bit[5] Non-secure bit. For memory accesses from Secure state, specifies whether the output address is in Secure or Non-secure memory, see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-5996.

For memory accesses from Non-secure state, this bit is RES0 and is ignored by the PE.

AttrIndx[2:0], bits[4:2] Stage 1 memory attributes index field, for the indicated Memory Attribute Indirection Register, see VMSAv8-32 Long-descriptor format memory region attributes on page G5-6025.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED on page Glossary-8235. For more information about these fields, see Other fields in the Long-descriptor translation table format descriptors on page G5-6026.
Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors

In Block and Page descriptors, the memory attributes are split into an upper block and a lower block as shown for a stage 2 translation:

For a stage 2 descriptor, the attributes are:

PBHA[3:1], bits[62:60]

Page-based hardware attributes bits.
These bits are IGNORED and reserved for System MMU use when FEAT_HPDS2 is not implemented.
When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for each PBHA bit in the EL1&0 stage 2 translation tables:

• When the value of that control bit is 1, hardware can use the corresponding PBHA bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.
• When the value of that control bit is 0, the corresponding PBHA bit is IGNORED.

PBHA[0], bit[59]

Page-based hardware attributes bit.
This bit is IGNORED when FEAT_HPDS2 is not implemented.
When FEAT_HPDS2 is implemented, VTCR_EL2 has a control bit for this bit in the EL1&0 stage 2 translation tables:

• When the value of that control bit is 1, hardware can use this bit for IMPLEMENTATION DEFINED purposes. When the PBHA bit is used for IMPLEMENTATION DEFINED purposes, the value of 0 in the PBHA bit is a safe default setting that gives the same behavior as when the PBHA bit is not used for IMPLEMENTATION DEFINED purposes.
• When the value of that control bit is 0, this bit is IGNORED.

XN[1:0], bits[54:53]
The stage 2 Execute-never field, see Access permissions for instruction execution on page G5-6012.
If FEAT_XNX is not implemented, bit[53] is RES0.

Contiguous, bit[52]

Indicates that 16 adjacent translation table entries point to contiguous memory regions, see Contiguous bit on page G5-6026.

AF, bit[10]
The Access flag, see The Access flag on page G5-6016.

SH, bits[9:8]
Shareability field, see EL2 control of Non-secure memory region attributes on page G5-6027.
S2AP, bits[7:6]

Stage 2 Access Permissions bits, see Hyp mode control of Non-secure access permissions on page G5-6017.

--- Note ---

In the original VMSAv7-32 Long-descriptor attribute definition, this field was called HAP[2:1], for consistency with the AP[2:1] field in the stage 1 descriptors and despite there being no HAP[0] bit. Armv8 renames the field for greater clarity.

MemAttr, bits[5:2]

Stage 2 memory attributes, see EL2 control of Non-secure memory region attributes on page G5-6027.

The definition of IGNORED means the architecture guarantees that the PE makes no use of the field, see IGNORED on page Glossary-8235. For more information about these fields, see Other fields in the Long-descriptor translation table format descriptors on page G5-6026.

G5.5.4 Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format

Access to the Secure or Non-secure PA map on page G5-5977 describes how the NS bit in the translation table entries:

- For accesses from Secure state, determines whether the access is to Secure or Non-secure memory.
- Is ignored by accesses from Non-secure state.

In the Long-descriptor format:

- The NS bit relates only to the memory block or page at the output address defined by the descriptor.
- The descriptors also include an NSTable bit, see Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format.

The NS and NSTable bits are valid only for memory accesses from Secure state. Memory accesses from Non-secure state ignore the values of these bits.

Hierarchical control of Secure or Non-secure memory accesses, Long-descriptor format

For Long-descriptor format table descriptors for stage 1 translations, the descriptor includes an NSTable bit, that indicates whether the table identified in the descriptor is in Secure or Non-secure memory. For accesses from Secure state, the meaning of the NSTable bit is:

NSTable == 0 The defined table address is in the Secure PA map. In the descriptors in that translation table, NS bits and NSTable bits have their defined meanings.

NSTable == 1 The defined table address is in the Non-secure PA map. Because this table is fetched from the Non-secure address map, the NS and NSTable bits in the descriptors in this table must be ignored. This means that, for this table:

- The value of the NS bit in any block or page descriptor is ignored. The block or page address refers to Non-secure memory.
- The value of the NSTable bit in any table descriptor is ignored, and the table address refers to Non-secure memory. When this table is accessed, the NS bit in any block or page descriptor is ignored, and all descriptors in the table refer to Non-secure memory.

In addition, an entry fetched in Secure state is treated as non-global if it is read from Non-secure memory. That is, these entries must be treated as if nG==1, regardless of the value of the nG bit. For more information about the nG bit, see Global and process-specific translation table entries on page G5-6031.
The effect of NSTable applies to later entries in the translation table walk, and so its effects can be held in one or more TLB entries. Therefore, a change to NSTable requires coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

--- Note ---

• When using the Long-descriptor format, table descriptors are defined only for the level 1 and level 2 of lookup.

• Stage 2 translations are performed only for operations in Non-secure state, that can access only the Non-secure address map. Therefore, the stage 2 descriptors do not include NS or NSTable bits.

G5.5.5 Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format

As described in Determining the translation table base address in the VMSAv8-32 translation regimes on page G5-5976, two sets of translation tables can be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base addresses for the two sets of tables. The Long-descriptor translation table format provides more flexibility in defining the boundary between using TTBR0 and using TTBR1. When a PL1&0 stage 1 address translation is enabled, TTBR0 is always used. If TTBR1 is also used then:

• TTBR1 is used for the top part of the input address range.

• TTBR0 is used for the bottom part of the input address range.

The TTBCR.T0SZ and TTBCR.T1SZ size fields control the use of TTBR0 and TTBR1, as Table G5-2 shows.

<table>
<thead>
<tr>
<th>TTBCR</th>
<th>Input address range using:</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0SZ</td>
<td>T1SZ</td>
</tr>
<tr>
<td>0b000</td>
<td>0b000</td>
</tr>
<tr>
<td>M*</td>
<td>0b000</td>
</tr>
<tr>
<td>0b000</td>
<td>N*</td>
</tr>
<tr>
<td>M*</td>
<td>N*</td>
</tr>
</tbody>
</table>

a. \(M, N\) must be greater than 0. The maximum possible value for each of T0SZ and T1SZ is 7.

For stage 1 translations, the input address is always a VA, and the maximum possible VA is \(2^{32-1}\).

When address translation is using the Long-descriptor translation table format:

• Figure G5-12 on page G5-5998 shows how, when TTBCR.T1SZ is zero, the value of TTBCR.T0SZ controls the boundary between VAs that are translated using TTBR0, and VAs that are translated using TTBR1.
The AArch32 Virtual Memory System Architecture

G5.5 The VMSAv8-32 Long-descriptor translation table format

Figure G5-12 Control of TTBR boundary, when TTBCR.T1SZ is zero

- Figure G5-13 shows how, when TTBCR.T1SZ is nonzero, the values of TTBCR.T0SZ and TTBCR.T1SZ control the boundaries between VAs that are translated using TTBR0, and VAs that are translated using TTBR1.

Figure G5-13 Control of TTBR boundaries, when TTBCR.T1SZ is nonzero

When T0SZ and T1SZ are both nonzero:
- If both fields are set to 0b001, the boundary between the two regions is 0x80000000. This is identical to having T0SZ set to 0b000 and T1SZ set to 0b01.
- Otherwise, the TTBR0 and TTBR1 regions are non-contiguous. In this case, any attempt to access an address that is in that gap between the TTBR0 and TTBR1 regions generates a Translation fault.

The handling of the Contiguous bit can mean that the boundary between the translation regions defined by the TCR_EL1.TnSZ values and the region for which an access generates a Translation fault is wider than shown in Figure G5-13. That is, if the descriptor for an access to the region shown as generating a fault has the Contiguous bit set to 1, the access might not generate a fault. Possible errors in programming the translation table registers on page G5-5999 describes this possibility.

When using the Long-descriptor translation table format:
- The TTBCR contains fields that define memory region attributes for the translation table walk, for each TTBR. These are the SH0, ORGN0, IRGN0, SH1, ORGN1, and IRGN1 bits.
- TTBR0 and TTBR1 each contain an ASID field, and the TTBCR.A1 field selects which ASID to use.
For this translation table format, VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6000 summarizes the lookup levels, and Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on page G5-6003 describes the possible translations.

Possible errors in programming the translation table registers

In all the descriptions in this subsection, the *size of the input address* supported for a PL1&0 stage 1 translation refers to the size specified by a TTBCR.TxSZ field.

--- **Note** ---

For a PL1&0 stage 1 translation, the input address range can be split so that the lower addresses are translated by TTBR0 and the higher addresses are translated by TTBR1. In this case, each of input address sizes specified by TTBCR.{T0SZ, T1SZ} is smaller than the total address size supported by the stage of translation.

The following are possible errors in the programming of TTBR0, TTBR1, and TTBCR. For the translation of a particular address at a particular stage of translation, either:

- The block size being used to translate the address is larger than the size of the input address supported at a stage of translation used in performing the required translation. This can occur only for the PL1&0 stage 1 translations, and only when either TTBCR.T0SZ or TTBCR.T1SZ is zero, meaning there is no gap between the address range translated by TTBR0 and the range translated by TTBR1. In this case, if a block translated from the region that has TxSZ set to zero straddles the boundary between the two address ranges. Example G5-2 shows an example of this mis-programming.

- The address range translated by a set of blocks marked as contiguous, by use of the contiguous bit, is larger than the size of the input address supported at a stage of translation used in performing the required translation.

Example G5-2 Error in programming the translation table registers

If TTBCR.T0SZ is programmed to 0 and TTBCR.T1SZ is programmed to 7, this means:

- TTBR0 translates addresses in the range 0x00000000-0xFDFFFFFF.
- TTBR1 translates addresses in the range 0xFE000000-0xFFFFFFFF.

The translation table indicated by TTBR0 might be programmed with a block entry for a 1GB region starting at 0xC0000000. This covers the address range 0xC0000000-0xFFFFFFFF, that overlaps the TTBR1 address range. This means this block size is larger than the input address size supported for translations using TTBR0, and therefore this is a programming error.

To understand why this must be a programming error, consider a memory access to address 0xFFFF0000. According to the TTBCR.{T0SZ, T1SZ} values, this must be translated using TTBR1. However, the access matches a TLB entry for the translation, using TTBR0, of the block at 0xC0000000. Hardware is not required to detect that the access to 0xFFFF0000 is being translated incorrectly.

In these cases, an implementation might use one of the following approaches:

- Treat such a block as causing a Translation fault, even though the block is valid, and the address accessed within that block is within the size of the input address supported at a stage of translation. The block might be a block within a contiguous set of blocks.

- Treat such a block as not causing a Translation fault, even though the address accessed within that block is outside the size of the input address supported at a stage of translation, provided that both of the following apply:
 - The block is valid.
 - At least one address within the block, or contiguous set of blocks, is within the size of the input address supported at a stage of translation.
The block might be a block within a contiguous set of blocks.

Additional constraints apply to programming the VTCR, see Determining the required initial lookup level for stage 2 translations on page G5-6005.

G5.5.6 VMSAv8-32 Long-descriptor translation table format address lookup levels

As stated at the start of this section, because the Long-descriptor translation table format is used for the Non-secure PL1&0 stage 2 translations, the format must support input addresses of up to 40 bits.

Table G5-3 summarizes the properties of the different levels of address lookup when using this format.

Table G5-3 Properties of the three levels of address lookup with VMSAv8-32 Long-descriptor translation tables

<table>
<thead>
<tr>
<th>Level</th>
<th>Input address</th>
<th>Output address a</th>
<th>Number of entries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
<td>Address range b</td>
<td>Size</td>
</tr>
<tr>
<td>First</td>
<td>Up to 512GB</td>
<td>Up to Address[38:0]</td>
<td>1GB</td>
</tr>
<tr>
<td>Second</td>
<td>Up to 1GB</td>
<td>Up to Address[29:0]</td>
<td>2MB</td>
</tr>
<tr>
<td>Third</td>
<td>2MB</td>
<td>Address[20:0]</td>
<td>4KB</td>
</tr>
</tbody>
</table>

a. Output address when an entry addresses a block of memory or a memory page. If an entry addresses the next level of address lookup it specifies Address[39:12] for the next-level translation table.

b. Input address range for the translation table. See Use of concatenated level 1 translation tables on page G5-6001 for details of support for additional bits of address at a given level, including possible support of a 40-bit input address range for stage 2 translations at level 1. For stage 1 translations at level 1 the input address range is limited to the VA size of [31:0].

For level 1 and level 2 tables, reducing the input address range reduces the number of addresses in the table and therefore reduces the table size. The appropriate Translation Table Control Register specifies the input address range.

Stage 1 translations require an input address range of up to 32 bits, corresponding to VA[31:0]. For these translations:

- For a memory access from a mode other than Hyp mode, the Secure or Non-secure TTBR0 or TTBR1 holds the translation table base address, and the Secure or Non-secure TTBCR is the control register.
- For a memory access from Hyp mode, HTTBR holds the translation table base address, and HTCR is the control register.

Note

For translations controlled by TTBR0 and TTBR1, if neither TTBR has an input address range larger than 1GB, then translation starts at level 2. Together, TTBR0 and TTBR1 can still cover the 32-bit VA input address range.

Stage 2 translations require an input address range of up to 40 bits, corresponding to IPA[39:0], and the supported input address size is configurable in the range 25-40 bits. Table G5-3 indicates a requirement for the translation mechanism to support a 39-bit input address range, Address[38:0]. Use of concatenated translation tables for the initial stage 2 lookup on page G5-6001 describes how a 40-bit IPA address range is supported. For stage 2 translations:

- VTTBR holds the translation table base address, and VTCR is the control register.
- If a supplied input address is larger than the configured input address size, a Translation fault is generated.
Use of concatenated translation tables for the initial stage 2 lookup

If a stage 2 translation would require 16 entries or fewer in its top-level translation table, that stage of translation can, instead, be configured so that:

• It requires the corresponding number of concatenated translation tables at the next translation level, aligned to the size of the block of concatenated translation tables.

• The stage 2 translation starts at that next translation level.

Note
Stage 2 translations always use the Long-descriptor translation table format.

This use of concatenated translation tables is:

• Required when the stage 2 translation supports a 40-bit input address range, see Use of concatenated level 1 translation tables.

• Supported for a stage 2 translation with an input address range of 31-34 bits, see Use of concatenated level 2 translation tables.

The use of concatenated translation tables requires the software that is defining the translation to:

• Define the concatenated translation tables with the required overall alignment.

• Program VTTBR to hold the address of the first of the concatenated translation tables.

• Program VTCR to indicate the required input address range and initial lookup level.

Note
The use of concatenated translation tables avoids the overhead of an additional level of translation.

Use of concatenated level 1 translation tables

The Long-descriptor format translation tables provide 9 bits of address resolution at each level of lookup. However, a 40-bit input address range with a translation granularity of 4KB requires a total of 28 bits of address resolution. Therefore, a stage 2 translation that supports a 40-bit input address range requires two concatenated level 1 translation tables, together aligned to 8KB, where:

• The table at the address with PA[12:0]==0b0_0000_0000_0000 defines the translations for input addresses with bit[39]==0.

• The table at the address with PA[12:0]==0b1_0000_0000_0000 defines the translations for input addresses with bit[39]==1.

• The 8KB alignment requirement means that both tables have the same value for PA[39:13].

Use of concatenated level 2 translation tables

A stage 2 translation with an input address range of 31-34 bits can start the translation either:

• With a level 1 lookup, accessing a level 1 translation table with 2-16 entries.

• With a level 2 lookup, accessing a set of concatenated level 2 translation tables.

Table G5-4 on page G5-6002 shows these options, for each of the input address ranges that can use this scheme.

Note
Because these are stage 2 translations, the input address range is an IPA range.
Table G5-4 Possible uses of concatenated translation tables for level 2 lookup

<table>
<thead>
<tr>
<th>IPA range</th>
<th>Size</th>
<th>Required level 1 entries</th>
<th>Number of concatenated tables</th>
<th>Required alignment<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA[30:0]</td>
<td>2^{31} bytes</td>
<td>2</td>
<td>2</td>
<td>8KB</td>
</tr>
<tr>
<td>IPA[31:0]</td>
<td>2^{32} bytes</td>
<td>4</td>
<td>4</td>
<td>16KB</td>
</tr>
<tr>
<td>IPA[32:0]</td>
<td>2^{33} bytes</td>
<td>8</td>
<td>8</td>
<td>32KB</td>
</tr>
<tr>
<td>IPA[33:0]</td>
<td>2^{34} bytes</td>
<td>16</td>
<td>16</td>
<td>64KB</td>
</tr>
</tbody>
</table>

^a Required alignment of the set of concatenated level 2 tables.

See also *Determining the required initial lookup level for stage 2 translations on page G5-6005.*
G5.5.7 Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format

Figure G5-2 on page G5-5967 shows the possible address translations. If a stage of translation is controlled from an Exception level that is using AArch32, the input and output address constraints and the registers that control the translation are as follows:

Stage 1 translations

For all stage 1 translations:
- The input address range is up to 32 bits, as determined by either:
 - TTBCR.T0SZ or TTBCR.T1SZ, for a PL1&0 stage 1 translation.
 - HTCR.T0SZ, for an EL2 stage 1 translation.
- The output address range is 40 bits.

The stage 1 translations are:

Non-secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Non-secure modes other than Hyp mode. This translates a VA to an IPA. For this translation, when Non-secure EL1 is using AArch32:
- Non-secure TTBR0 or TTBR1 holds the translation table base address.
- Non-secure TTBCR determines which TTBR is used.

Non-secure EL2 stage 1 translation

The stage 1 translation for memory accesses from Hyp mode, translates a VA to a PA. For this translation, when EL2 is using AArch32, HTTBR holds the translation table base address.

Secure PL1&0 stage 1 translation

The stage 1 translation for memory accesses from Secure modes, translates a VA to a PA. For this translation, when the Secure PL1 modes are using AArch32:
- Secure TTBR0 or TTBR1 holds the translation table base address.
- Secure TTBCR determines which TTBR is used.

Stage 2 translation

Non-secure PL1&0 stage 2 translation

The stage 2 translation for memory accesses from Non-secure modes other than Hyp mode, and translates an IPA to a PA. For this translation, when EL2 is using AArch32:
- The input address range is 40 bits, and VTCR.T0SZ determines the input address size.
- The output address range depends on the implemented memory system, and is up to 40 bits.
- VTTBR holds the translation table base address.
- VTCR specifies the required input address range, and whether the initial lookup is at level 1 or at level 2.

The descriptions of the VMSAv8-32 translation stages state that the maximum output address size is 40 bits. However, the register and Long-descriptor format descriptor fields that hold these addresses are 48 bits wide. If bits[47:40] of an output address are not all zero, then the address generates an Address size fault.

The Long-descriptor translation table format provides up to three levels of address lookup, as described in VMSAv8-32 Long-descriptor translation table format address lookup levels on page G5-6000, and the initial lookup, in which the MMU reads the translation table base address, is at either level 1 or level 2. The following determines the level of the initial lookup:

- For a stage 1 translation, the required input address range. For more information, see Determining the required initial lookup level for stage 1 translations on page G5-6005.
- For a stage 2 translation, the level specified by the VTCR.SL0 field. For more information, see Determining the required initial lookup level for stage 2 translations on page G5-6005.
Note

For a stage 2 translation, the size of the required input address range constrains the VTCR.SL0 value.

Figure G5-14 shows how the descriptor address for the initial lookup for a translation using the Long-descriptor translation table format is determined from the input address and the TTBR value. This figure shows the lookup for a translation that starts with a level 1 lookup, that translates bits[39:30] of the input address, zero extended if necessary.

If bits[47:40] of the TTBR are not zero then the initial lookup will generate an Address size fault, see Address size fault on page G5-6054.

For a translation that starts with a level 1 lookup, as shown in Figure G5-14:

For a stage 1 translation

\(n \) is in the range 4-5 and:

- For a memory access from Hyp mode:
 - HTTBR is the TTBR.
 - \(n=5-(HTCR.T0SZ) \).
- For other accesses:
 - The Secure or Non-secure instance of TTBR0 or TTBR1 is the TTBR.
 - \(n=(5-TTBCR.TxSZ) \), where \(x \) is 0 when using TTBR0, and 1 when using TTBR1.

For a stage 2 translation

\(n \) is in the range 4-13 and:

- VTTBR is the TTBR.
- \(n=5-(VTCR.T0SZ) \).
For a translation that starts with a level 2 lookup, the descriptor address is obtained in the same way, except that bits\((n+17):21\) of the input address provide bits\((n-1):3\) of the descriptor address, where:

For a stage 1 translation

\(n \) is in the range 7-12. As Determining the required initial lookup level for stage 1 translations shows, for a stage 1 translation to start with a level 2 lookup, the corresponding T0SZ or T1SZ field must be 2 or more. This means:

- For a memory access from Hyp mode, \(n=14-HTCR.T0SZ \).
- For other memory accesses, \(n=14-(TTBCR.TxSZ) \), where \(x \) is 0 when using TTBR0, and 1 when using TTBR1.

For a stage 2 translation

\(n \) is in the range 7-16. For a stage 2 translation to start with a level 2 lookup, VTCR.SL0 is \(\emptyset\emptyset\emptyset \), and \(n=14-(VTCR.T0SZ) \).

The following sections describe how the level of the initial lookup is determined:

- Determining the required initial lookup level for stage 1 translations.
- Determining the required initial lookup level for stage 2 translations.

Address translation examples using the VMSAv8-32 Long descriptor translation table format on page K7-8053 shows examples of full translation flows, to an entry for a 4KB memory page, for lookups starting at level 1 and lookups starting at level 2.

Determining the required initial lookup level for stage 1 translations

For a stage 1 translation, the required input address range, indicated by a T0SZ or T1SZ field in a translation table control register, determines the initial lookup level. The size of this input address region is \(2^{(32-TxSZ)} \) bytes, and if this size is:

- Less than or equal to \(2^{30} \) bytes, the required start is at level 2, and translation requires two levels of table to map to 4KB pages. This corresponds to a TxSZ value of 2 or more.
- More than \(2^{30} \) bytes, the required start is at level 1, and translation requires three levels of table to map to 4KB pages. This corresponds to a TxSZ value that is less than 2.

For the PL1&0 stage 1 translations, the TTBCR:

- Splits the 32-bit VA input address range between TTBR0 and TTBR1, see Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-5997.
- Holds the input address range sizes for TTBR0 and TTBR1, in the TTBCR.T0SZ and TTBCR.T1SZ fields.

For the EL2 stage 1 translations, HTCRT0SZ indicates the size of the required input address range. For example, if this field is \(\emptyset\emptyset\emptyset \), it indicates a 32-bit VA input address range, and translation lookup must start at level 1.

Determining the required initial lookup level for stage 2 translations

For a PL1&0 stage 2 translation, the output address range from the PL1&0 stage 1 translations determines the required input address range for the stage 2 translation.

VTCR.SL0 indicates the starting level for the lookup. The permitted SL0 values are:

- \(\emptyset\emptyset\emptyset \) Stage 2 translation lookup must start at level 2.
- \(\emptyset\emptyset\emptyset \) Stage 2 translation lookup must start at level 1.

In addition, VTCR.T0SZ must indicate the required input address range. The size of the input address region is \(2^{(32-T0SZ)} \) bytes.
Note

VTCR.T0SZ holds a four-bit signed integer value, meaning it supports values from -8 to 7. This is different from the other translation control registers, where TnSZ holds a three-bit unsigned integer, supporting values from 0 to 7.

The programming of VTCR must follow the constraints shown in Table G5-5, otherwise any attempt to perform a translation table walk that uses the stage 2 address translation generates a stage 2 level 1 Translation Fault. The table also shows how the VTCR.SLO and VTCR.T0SZ values determine the VTTBR.BADDD field width.

Note

If VTCR.SLO is programmed to a reserved value then the constraints shown in Table G5-5 are not met, and a translation table walk that uses stage 2 translation generates a stage 2 level 1 Translation fault.

Table G5-5 Input address range constraints on programming VTCR

<table>
<thead>
<tr>
<th>VTCR.SLO</th>
<th>VTCR.T0SZ</th>
<th>Input address range, R</th>
<th>Initial lookup level</th>
<th>BADDR[39:x] widtha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>2 to 7</td>
<td>R ≤ 2^{20} bytes</td>
<td>Level 2</td>
<td>[39:12] to [39:7]</td>
</tr>
<tr>
<td>0b00</td>
<td>-2 to 1</td>
<td>2^{30} < R ≤ 2^{34} bytes</td>
<td>Level 2</td>
<td>[39:16] to [39:13]</td>
</tr>
<tr>
<td>0b01</td>
<td>-2 to 1</td>
<td>2^{34} < R</td>
<td>Level 1</td>
<td>[39:7] to [39:4]</td>
</tr>
<tr>
<td>0b01</td>
<td>-8 to -3</td>
<td>2^{34} < R</td>
<td>Level 1</td>
<td>[39:13] to [39:8]</td>
</tr>
</tbody>
</table>

a. The first range corresponds to the first T0SZ value, the second range to the second T0SZ value.

In addition, VTCR.S must be programmed to the value of T0SZ[3], otherwise behavior is CONSTRAINED UNPREDICTABLE with the resulting behavior being that VTCR.T0SZ is treated as an UNKNOWN value.

Note

VTCR.T0SZ being treated as an UNKNOWN value results in a stage 2 level 1 Translation Fault if that UNKNOWN value is not consistent with the programmed value of VTCR.SLO.

CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR on page K1-7960 describes these CONSTRAINED UNPREDICTABLE behaviors.

Where necessary, the initial lookup level provides multiple concatenated translation tables, as described in Use of concatenated level 2 translation tables on page G5-6001. This section also gives more information about the alternatives, shown in Table G5-5, when R is in the range 2^{31} - 2^{34}.

G5.5.8 The algorithm for finding the translation table entries, VMSAv8-32 Long-descriptor format

This section gives the algorithm for finding the translation table entry that corresponds to a given IA, for each required level of lookup. The algorithm encodes the descriptions of address translation given earlier in this section. The VMSAv8-32 Long-descriptor format uses a 4KB translation granule.

The description uses the following terms:

BaseAddr The base address for the level of lookup, as defined by:
- For the initial lookup level, the TTBR.BADDD base address field in the appropriate TTBR, see the description of TnSZ on page G5-6007.
- Otherwise, the translation table address returned by the previous level of lookup.

IA The supplied IA for this stage of translation.
The AArch32 Virtual Memory System Architecture
G5.5 The VMSA v8-32 Long-descriptor translation table format

The translation table size for this stage of translation:

For PL1&0 stage 1
Either:
- TTBCR.T0SZ if the translation is using TTBR0.
- TTBCR.T1SZ if the translation is using TTBR1.

For PL1&0 stage 2
VTCR.T0SZ. The translation uses VTTBR.

For EL2 stage 1
HTCR.T0SZ. The translation uses HTTBR.

SL0
VTCR.SL0. Applies to the Non-secure PL1&0 stage 2 translation only.

Table G5-6 shows the translation table descriptor address, for each level of lookup. The table shows only architecturally-valid programming of the TCR. See also Possible errors in programming the translation table registers on page G5-5999.

Table G5-6 Translation table entry addresses, VMSA v8-32 using Long-descriptor format

<table>
<thead>
<tr>
<th>Lookup level</th>
<th>Entry address and conditions</th>
<th>Stage 1 translation</th>
<th>Stage 2 translation</th>
<th>General conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>BaseAddr[39:x]:IA[30:0]b000</td>
<td>BaseAddr[39:x]:IA[30:0]b000</td>
<td>y = (x + 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if *0 ≤ TnSZ ≤ 1 then x = (5 - TnSZ)</td>
<td>if SL0b == 1 then</td>
<td>if * -8 ≤ T0SZ ≤ 1 then x = (5 - T0SZ)</td>
<td></td>
</tr>
<tr>
<td>Two</td>
<td>BaseAddr[39:x]:IA[21:0]b000</td>
<td>BaseAddr[39:x]:IA[21:0]b000</td>
<td>y = (x + 17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>if *2 ≤ TnSZ ≤ 7 then x = (14 - TnSZ)</td>
<td>if SL0 == 0 then</td>
<td>if * -2 ≤ T0SZ ≤ 7 then x = (14 - T0SZ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>else if x = 12</td>
<td>elsif SL0b == 1 then</td>
<td>x = 12</td>
<td></td>
</tr>
<tr>
<td>Three</td>
<td>BaseAddr[39:12]:IA[20:12]:0b000</td>
<td>BaseAddr[39:12]:IA[20:12]:0b000</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

a. This line indicates the range of permitted values for TnSZ, for a lookup that starts at this level, see Use of concatenated translation tables for the initial stage 2 lookup on page G5-6001.
b. SL0 == 0 if the initial lookup is level 2, SL0 == 1 if the initial lookup is level 1.
c. This is the case where this level of lookup is not the initial level of lookup.
G5.6 Memory access control

In addition to an output address, a translation table entry that refers to page or region of memory includes fields that define properties of the target memory region. *Information returned by a translation table lookup* describes the classification of those fields as address map control, access control, and memory attribute fields. The access control fields, described in this section, determine whether the PE, in its current state, is permitted to perform the required access to the output address given in the translation table descriptor. If a translation stage does not permit the access, then an MMU fault is generated for that translation stage, and no memory access is performed.

The following sections describe the memory access controls:

- **About access permissions**
- **About the PAN bit** on page G5-6011.
- **Access permissions for instruction execution** on page G5-6012.
- **Domains, Short-descriptor format only** on page G5-6016.
- **The Access flag** on page G5-6016.
- **Hyp mode control of Non-secure access permissions** on page G5-6017.

G5.6.1 About access permissions

The translation table descriptors include fields that define access permissions for data accesses and for instruction fetches. This section introduces those fields. In addition:

- System register controls can prevent execution from writable locations, see *Preventing execution from writable locations* on page G5-6015.
- In Armv8.1, the PSTATE.PAN can affect the access permissions for privileged data accesses, see *About the PAN bit* on page G5-6011.

Note

This section gives a general description of memory access permissions. Software executing at PL1 in Non-secure state can see only the access permissions defined by the Non-secure PL1&0 stage 1 translations. However, software executing at EL2 can modify these permissions, as described in *Hyp mode control of Non-secure access permissions* on page G5-6017. This modification is invisible to Non-secure software executing at EL1 or EL0.

Access permission bits in a translation table descriptor control access to the corresponding memory region. The details of this control depend on the translation table format, as follows:

Short-descriptor format

This format supports two options for defining the access permissions:

- Three bits, AP[2:0], define the access permissions.
- Two bits, AP[2:1], define the access permissions, and AP[0] can be used as an Access flag.

SCTLR.AFE selects the access permissions option. Setting this bit to 1, to enable the Access flag, also selects use of AP[2:1] to define access permissions.

Arm deprecates any use of the AP[2:0] scheme for defining access permissions.

Long-descriptor format

AP[2:1] to control the access permissions, and the descriptors provide an AF bit for use as an Access flag. This means VMSAv8-32 behaves as if the value of SCTLR.AFE is 1, regardless of the value that software has written to this bit.

Note

When use of the Long-descriptor format is enabled, SCTLR.AFE is UNK/SBOP.

The Access flag on page G5-6016 describes the Access flag, for both translation table formats.

The XN and PXN bits provide additional access controls for instruction fetches, see *Access permissions for instruction execution* on page G5-6012.
An attempt to perform a memory access that the translation table access permission bits do not permit generates a Permission fault, for the corresponding stage of translation. However, when using the Short-descriptor translation table format, it generates the fault only if the access is to memory in the Client domain, see Domains, Short-descriptor format only on page G5-6016.

--- Note ---

For the Non-secure PL1&0 translation regime, memory accesses are subject to two stages of translation. Each stage of translation has its own, independent, fault checking. Fault handling is different for the two stages, see Exception reporting in a VMSAv8-32 implementation on page G5-6064.

The following sections describe the two access permissions models:

- **AP[2:1] access permissions model**
- **AP[2:0] access permissions control, Short-descriptor format only on page G5-6010.** This section includes some information on access permission control in earlier versions of the Arm VMSA.

AP[2:1] access permissions model

--- Note ---

Arm recommends that this model is always used, even where the AP[2:0] model is permitted. Some documentation describes the AP[2:1] model as the simplified access permissions model.

This access permissions model is used if the translation is either:

- Using the Long-descriptor translation table format.
- Using Short-descriptor translation table format, and the SCTLR.AFE bit is set to 1.

In this model:

- One bit, AP[2], selects between read-only and read/write access.
- A second bit, AP[1], selects between Application level (EL0) and System level (PL1) control.

For the Non-secure EL2 stage 1 translations, AP[1] is SBO.

This provides four access combinations:

- Read-only at all privilege levels.
- Read/write at all privilege levels.
- Read-only at PL1, no access by software executing at EL0.
- Read/write at PL1, no access by software executing at EL0.

Table G5-7 shows this access control model.

<table>
<thead>
<tr>
<th>AP[2], disable write access</th>
<th>AP[1], enable unprivileged access</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Read/write, only at PL1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Read/write, at any privilege level</td>
</tr>
<tr>
<td>1</td>
<td>0(^a)</td>
<td>Read-only, only at PL1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read-only, at any privilege level</td>
</tr>
</tbody>
</table>

\(^a\) Not valid for Non-secure EL2 stage 1 translation tables. AP[1] is SBO in these tables.
Hierarchical control of access permissions, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that entries at one level of translation table lookup can use to set limits on the permitted entries at subsequent levels of lookup. This applies to the access permissions, and also to the restrictions on instruction fetching described in Hierarchical control of instruction fetching, Long-descriptor format on page G5-6014.

The restrictions apply only to subsequent levels of lookup at the same stage of translation. The APTable[1:0] field restricts the access permissions, as Table G5-8 shows.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of data access permissions is disabled for a translation regime, the information in this subsection does not apply. See Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992.

As stated in the table footnote, for the Non-secure EL2 stage 1 translation tables, APTable[0] is reserved, SBZ.

<table>
<thead>
<tr>
<th>APTable[1:0]</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No effect on permissions in subsequent levels of lookup.</td>
</tr>
<tr>
<td>01</td>
<td>Access at EL0 not permitted, regardless of permissions in subsequent levels of lookup.</td>
</tr>
<tr>
<td>11</td>
<td>Write access not permitted, at any Exception level, regardless of permissions in subsequent levels of lookup.</td>
</tr>
</tbody>
</table>

- Note

 The APTable[1:0] settings are combined with the translation table access permissions in the translation tables descriptors accessed in subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.

Table G5-8 Effect of APTable[1:0] on subsequent levels of lookup

- AP[2:0] access permissions control, Short-descriptor format only

This access permissions model applies when using the Short-descriptor translation tables format, and the SCTLR.AFE bit is set to 0. Arm deprecates any use of this access permissions model.

When SCTLR.AFE is set to 0, ensuring that the AP[0] bit is always set to 1 effectively changes the access model to the simpler model described in AP[2:1] access permissions model on page G5-6009.
Table G5-9 shows the full AP[2:0] access permissions model:

<table>
<thead>
<tr>
<th>AP[2]</th>
<th>AP[1:0]</th>
<th>PL1 access</th>
<th>Unprivileged access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>No access</td>
<td>No access</td>
<td>All accesses generate Permission faults</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Read/write</td>
<td>No access</td>
<td>Access only at PL1</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>-</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>Read-only</td>
<td>No access</td>
<td>Read-only, only at PL1</td>
</tr>
<tr>
<td>10</td>
<td>Read-only</td>
<td>Read-only</td>
<td>Read-only at any Exception level, deprecated<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Read-only</td>
<td>Read-only</td>
<td>Read-only at any Exception level<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a From VMSAv7, Arm strongly recommends use of the 0b11 encoding for Read-only at any Exception level.

^b This mapping was introduced in VMSAv7, and is reserved in earlier versions of the VMSA.

Note

- VMSAv8-32 supports the full set of access permissions shown in Table G5-9 only when SCTLR.AFE is set to 0. When SCTLR.AFE is set to 1, the only supported access permissions are those described in Table G5-6009.

G5.6.2 About the PAN bit

When the value of PSTATE.PAN is 1, any privileged data access from PL1 or EL2 to a virtual memory address that is accessible at EL0 generates a Permission fault.

When the value of PSTATE.PAN is 0, the translation system is the same as in Armv8.0.

A corresponding PAN bit is added to CPSR and SPSR for exception returns, and DSPSR for entry to and exit from Debug state.

A new SPAN bit is added to SCTLR that controls whether the PAN state bit is set on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is using AArch32.

CPSR.PAN bit can be written using an MSR instruction at PL1 or higher. Data writes to CPSR.PAN using an MSR instruction at EL0 are ignored. The value that is returned for an MSR instruction of CPSR from EL0 is UNKNOWN. In keeping with all other writes to the CPSR, other than for instruction fetches, the effect of the PAN state bit does not need to be explicitly synchronized.

The PAN state bit has no effect on:
- Data Cache instructions.
- Address translation instructions, other than ATSICPRP and ATSICPwP when FEAT_PAN2 is implemented.
- Unprivileged instructions, LDRBT, LDRHT, LDRT, LDRSBT, LDRSHT, STRBT, STRHT, STRT, STRSBT, and STRSHT, unless HCR_EL2.{E2H, TGE} == {1, 0}.
- Instruction accesses.
- Manager domains.

The PAN bit has no effect when the first stage of translation is disabled for the current translation regime or when the first stage of translation for the current translation regime does not describe the permissions for access at EL0.
If access is disabled, then the access will give rise to a stage 1 Permission fault.

On an exception taken from AArch32:
• CPSR.PAN is copied to SPSR_ELx.PAN, when the target Exception level is AArch64.
• CPSR.PAN is copied to SPSR.PAN, when the target Exception level is AArch32.

On an exception return from AArch32 to AArch32, SPSR.PAN is copied to CPSR.PAN.

On entry to Debug state, CPSR.PAN is copied to DSPSR.PAN.

On exit from Debug state, DSPSR.PAN is copied to CPSR.PAN.

The CPSR.PAN bit is not an Execution state bit.

--- Note ---
• In Non-debug state, in AArch32 state, software can use the SETPAN #imm instruction to modify PSTATE.PAN.
• In Debug state, in AArch32 state, a debugger can use the ERET instruction to perform a DRPS operation to modify PSTATE.PAN.

G5.6.3 Access permissions for instruction execution

Execute-never controls provide an additional level of control on memory accesses permitted by the access permissions settings. These controls are:

XN, Execute-never

Descriptor bit[54], defined as XN for:
• Stage 1 of any translation regime.
• Stage 2 translations when FEAT_XNX is not implemented.

--- Note ---
XN[1:0], Execute-never, stage 2 only describes the stage 2 control when FEAT_XNX is implemented.

This field applies to execution at any Exception level to which the stage of translation applies. A value of 0 indicates that this control permits execution.

PXN, Privileged execute-never, stage 1 only

Descriptor bit[53], used only for stage 1 of any translation regime for which the stage 1 translation can support two VA ranges:
• For stage 1 of a translation regime for which the stage 1 translation supports only a single VA range the stage 1 descriptors define a PXN field that is RES0, meaning it is ignored by hardware.

This field applies only to execution at an Exception level higher than EL0. A value of 0 indicates that this control permits execution.

XN[1:0], Execute-never, stage 2 only

Descriptor bits[54:53], defined as XN[1:0] for:
• Stage 2 translations when FEAT_XNX is implemented.
Table G5-10 shows the operation of this control.

<table>
<thead>
<tr>
<th>XN[1]</th>
<th>XN[0]</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>The stage 2 control permits execution at EL1 and EL0 if read access is permitted</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>The stage 2 control does not permit execution at EL1, but permits execution at EL0 if read access is permitted</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>The stage 2 control does not permit execution at EL1 or EL0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>The stage 2 control permits execution at EL1 if read access is permitted, but does not permit execution at EL0</td>
</tr>
</tbody>
</table>

--- Note ---
For stage 2 translations when FEAT_XNX is not implemented, descriptor bit[53] is RES0, meaning it is ignored by hardware, and bit[54] is the XN control, see XN, Execute-never on page G5-6012.

Executing an instruction at ELx in a particular Security state generates a Permission fault unless all of the following are true for the instruction address:

- Any stage 1 execute-never control that applies to execution at ELx in the current Security state permits execution.
- If the translation regime that applies to ELx in the current Security state has two stages of translations, the stage 2 execute-never control that applies to execution at ELx permits execution.
- Read access is permitted.

However, if a stage 1 translation is using the Short-descriptor translation table format and the address is in a Managers domain the stage 1 access permissions are not checked, and therefore the access cannot cause a stage 1 Permission fault, see Domains, Short-descriptor format only on page G5-6016.

See also Hyp mode control of Non-secure access permissions on page G5-6017.

In addition, System register controls can enforce execute-never restrictions, regardless of the settings in the translation table XN and PXN fields, see:

- Restriction on Secure instruction fetch on page G5-6015.
- Preventing execution from writable locations on page G5-6015.

The execute-never controls apply also to speculative instruction fetching. This means a speculative instruction fetch from a memory region that is execute-never at the current level of privilege is prohibited.

The execute-never controls means that, when the stage of address translation is enabled, the PE can fetch, or speculatively fetch, an instruction from a memory location only if all of the following apply:

- If using the Short-descriptor translation table format, the translation table descriptor for the location does not indicate that it is in a No access domain.
- If using the Long-descriptor translation table format, or using the Short descriptor format and the descriptor indicates that the location is in a Client domain, in the descriptor for the location the following apply:
 - The stage 1 execute-never control for the Exception level at which the instruction is executed permits execution.
 - For a translation regime with two stages of address translation, the stage 2 execute-never control that applies to the Exception level at which the instruction is executed permits execution.
 - The access permissions permit a read access from the current PE mode.
- No other Prefetch Abort condition exists.
The PXN control applies to the PE privilege when it attempts to execute the instruction. In an implementation that fetches instructions speculatively, this might not be the privilege when the instruction was prefetched. Therefore, the architecture does not require the PXN control to prevent instruction fetching.

Although the XN control applies to speculative fetching, on a speculative instruction fetch from an XN location, no Permission fault is generated unless the PE attempts to execute the instruction that would have been fetched from that location. This means that, if a speculative fetch from an XN location is attempted, but there is no attempt to execute the corresponding instruction, a Permission fault is not generated.

The software that defines a translation table must mark any region of memory that is read-sensitive as XN, to avoid the possibility of a speculative fetch accessing the memory region. This means it must mark any memory region that corresponds to a read-sensitive peripheral as XN. Hardware does not prevent speculative accesses to a region of any Device memory type unless that region is also marked as execute-never for all Exception levels from which it can be accessed.

When using the Short-descriptor translation table format, the XN attribute is not checked for domains marked as Manager. Therefore, the system must not include read-sensitive memory in domains marked as Manager, because the XN field does not prevent speculative fetches from a Manager domain.

When no stage of address translation for the translation regime is enabled, memory regions cannot have XN or PXN attributes assigned. Behavior of instruction fetches when all associated address translations are disabled on page G5-5972 describes how disabling all MMUs affects instruction fetching.

Hierarchical control of instruction fetching, Long-descriptor format

The Long-descriptor translation table format introduces a mechanism that means entries at one level of translation tables lookup can set limits on the permitted entries at subsequent levels of lookup. This applies to the restrictions on instruction fetching, and also to the access permissions described in Hierarchical control of access permissions, Long-descriptor format on page G5-6010.

Similar hierarchical controls apply to data accesses, see Hierarchical control of access permissions, Long-descriptor format on page G5-6010.

However, in an implementation that includes FEAT_AA32HPD, when hierarchical control of instruction fetching is disabled for a translation regime, the information in this subsection does not apply. See Attribute fields in VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5992.

The restrictions apply only to subsequent levels of lookup at the same stage of translation, and:

- **XNTable** restricts the XN control:
 - When XNTable is set to 1, the XN field is treated as 1 in all subsequent levels of lookup, regardless of the actual value of the field.
 - When XNTable is set to 0 it has no effect.

- **PXNTable** restricts the PXN control:
 - When PXNTable is set to 1, the PXN field is treated as 1 in all subsequent levels of lookup, regardless of the actual value of the field.
 - When PXNTable is set to 0 it has no effect.

The XNTable and PXNTable settings are combined with the XN and PXN fields in the translation table descriptors accessed at subsequent levels of lookup. They do not restrict or change the values entered in those descriptors.

The XNTable and PXNTable controls are provided only in the Long-descriptor translation table format, and only for stage 1 translations. The corresponding bits are SBZ in the stage 2 translation table descriptors.
The effect of XNTable or PXNTable applies to later entries in the translation table walk, and so its effects can be held in one or more TLB entries. Therefore, a change to XNTable or PXNTable requires coarse-grained invalidation of the TLB to ensure that the effect of the change is visible to subsequent memory transactions.

Preventing execution from writable locations

Armv8 provides control bits that, when the corresponding stage 1 address translation is enabled, force writable memory to be treated as XN or PXN, regardless of the value of the XN or PXN field. When the translation stages are controlled by an Exception level that is using AArch32:

- For PL1&0 stage 1 translations, when SCTLR.WXN is set to 1, all regions that are writable at stage 1 of the address translation are treated as XN.
- For PL1&0 stage 1 translations, when SCTLR.UWXN is set to 1, an instruction fetch is treated as accessing a PXN region if it accesses a region that software executing at EL0 can write to.
- For Non-secure EL2 stage 1 translations, when HSCTLR.WXN is set to 1, all regions that are writable at stage 1 of the address translation are treated as XN.

--- Note ---

- The SCTLR.WXN controls are intended to be used in systems with very high security requirements.
- Setting a WXN or UWXN bit to 1 changes the interpretation of the translation table entry, overriding a zero value of an XN or PXN field. It does not cause any change to the translation table entry.

For any given virtual machine, Arm expects WXN and UWXN to remain static in normal operation. In particular, it is IMPLEMENTATION DEFINED whether TLB entries associated with a particular VMID reflect the effect of the values of these fields. A generic sequence to ensure synchronization of a change to these fields, when that change is made without a corresponding change of VMID, is:

```
Change the WXN or UWXN bit
ISB ; This ensures synchronization of the change
Invalidate entire TLB of associated entries
DSB ; This completes the TLB Invalidation
ISB ; This ensures instruction synchronization
```

As with all Permission fault checking, if the stage 1 translation is using the Short-descriptor translation table format, the permission checks are performed only for Client domains. For more information, see About access permissions on page G5-6008.

For more information about address translation, see About address translation for VMSAv8-32 on page G5-5965.

Restriction on Secure instruction fetch

EL3 provides a Secure instruction fetch bit, SCR.SIF. When this bit is 1, any attempt in Secure state to execute an instruction fetched from Non-secure physical memory causes a Permission fault. As with all Permission fault checking, when using the Short-descriptor format translation tables the check applies only to Client domains, see About access permissions on page G5-6008.

Arm expects SCR.SIF to be static during normal operation. In particular, whether the TLB holds the effect of the SIF bit is IMPLEMENTATION DEFINED. The generic sequence to ensure visibility of a change to the SIF bit is:

```
Change the SCR.SIF bit
ISB ; This ensures synchronization of the change
Invalidate entire TLB
DSB ; This completes the TLB Invalidation
ISB ; This ensures instruction synchronization
```
G5.6.4 Domains, Short-descriptor format only

A domain is a collection of memory regions. The Short-descriptor translation table format supports 16 domains, and requires the software that defines a translation table to assign each VMSAv8-32 memory region to a domain. When using the Short-descriptor format:

- Level 1 translation table entries for translation tables and Sections include a domain field.
- Translation table entries for Supersections do not include a domain field. The Short-descriptor format defines Supersections as being in domain 0.
- Level 2 translation table entries inherit a domain setting from the parent level 1 translation table descriptor.
- Each TLB entry includes a domain field.

The domain field specifies which of the 16 domains the entry is in, and a two-bit field in the DACR defines the permitted access for each domain. The possible settings for each domain are:

No access Any access using the translation table descriptor generates a Domain fault.

Clients On an access using the translation table descriptor, the access permission attributes are checked. Therefore, the access might generate a Permission fault.

Managers On an access using the translation table descriptor, the access permission attributes are not checked. Therefore, the access cannot generate a Permission fault.

See [The MMU fault-checking sequence on page G5-6056](#) for more information about how, when using the Short-descriptor translation table format, the Domain attribute affects the checking of the other attributes in the translation table descriptor.

Note

A single program might:

- Be a Client of some domains.
- Be a Manager of some other domains.
- Have no access to the remaining domains.

The Long-descriptor translation table format does not support domains. When a stage of translation is using this format, all memory is treated as being in a Client domain, and the settings in the DACR are ignored.

G5.6.5 The Access flag

The Access flag indicates when a page or section of memory is accessed for the first time since the Access flag in the corresponding translation table descriptor was set to 0:

- If address translation is using the Short-descriptor translation table format, it must set SCTLR.AFE to 1 to enable use of the Access flag. Setting this bit to 1 redefines the AP[0] bit in the translation table descriptors as an Access flag, and limits the access permissions information in the translation table descriptors to AP[2:1], as described in [AP[2:1] access permissions model on page G5-6009](#).

- The Long-descriptor format always supports an Access flag bit in the translation table descriptors, and address translation using this format behaves as if SCTLR.AFE is set to 1, regardless of the value of that bit.

In Armv8.0, the Access flag is managed by software as described in [Software management of the Access flag on page G5-6017](#).

Note

Previous versions of the Arm architecture optionally supported hardware management of the Access flag. Armv8.0 obsoletes this option. However, FEAT_HAFDBS provides a new mechanism for hardware management of the Access flag, that is supported only for the VMSAv8-64 translation regimes.
Software management of the Access flag

Armv8.0 requires that software manages the Access flag. This means an Access flag fault is generated whenever an attempt is made to read into the TLB a translation table descriptor entry for which the value of the Access flag is 0.

--- Note ---

When using the Short-descriptor translation table format, Access flag faults are generated only if SCTLR.AFE is set to 1, to enable use of a translation table descriptor bit as an Access flag.

The Access flag mechanism expects that, when an Access flag fault occurs, software resets the Access flag to 1 in the translation table entry that caused the fault. This prevents the fault occurring the next time that memory location is accessed. Entries with the Access flag set to 0 are never held in the TLB, meaning software does not have to flush the entry from the TLB after setting the flag.

--- Note ---

If a system incorporates components that can autonomously update translation table entries that are shared with the Arm PE, then the software must be aware of the possibility that such components can update the access flag autonomously.

In such a system, system software should perform any changes of translation table entries with an Access flag of 0, other than changes to the Access flag value, by using an Load-Exclusive/Store-Exclusive loop, to allow for the possibility of simultaneous updates.

G5.6.6 Hyp mode control of Non-secure access permissions

When EL2 is using AArch32, Non-secure software executing in Hyp mode controls two sets of translation tables, both of which use the Long-descriptor translation table format:

- The translation tables that control the Non-secure EL2 stage 1 translations. These map VAs to PAs, for memory accesses made when executing in Non-secure state in Hyp mode, and are indicated and controlled by the HTTBR and HTCR.

 These translations have similar access controls to other Non-secure stage 1 translations using the Long-descriptor translation table format, as described in:

 — *AP*[2:1] access permissions model on page G5-6009.

 — Access permissions for instruction execution on page G5-6012.

 The differences from the Non-secure stage 1 translations are that:

 — The APTable[0], PXNTable, and PXN bits are reserved, SBZ.

 — AP[1] is reserved, SBO.

- The translation tables that control the Non-secure PL1&0 stage 2 translations. These map the IPAs from the stage 1 translation onto PAs, for memory accesses made when executing in Non-secure state at PL1 or EL0, and are indicated and controlled by the VTTBR and VTCR.

 The descriptors in the virtualization translation tables define stage 2 access permissions, that are combined with the permissions defined in the stage 1 translation. This section describes this combining of access permissions.

--- Note ---

The level 2 access permissions mean a hypervisor can define additional access restrictions to those defined by a Guest OS in the stage 1 translation tables. For a particular access, the actual access permission is the more restrictive of the permissions defined by:

- The Guest OS, in the stage 1 translation tables.
- The hypervisor, in the stage 2 translation tables.

The stage 2 access controls defined from Hyp mode:

- Affect only the Non-secure stage 1 access permissions settings.
• Take no account of whether the accesses are from a Non-secure PL1 mode or a Non-secure EL0 mode.
• Permit software executing in Hyp mode to assign a write-only attribute to a memory region.

The S2AP field in the stage 2 descriptors define the stage 2 access permissions, as Table G5-11 shows:

<table>
<thead>
<tr>
<th>S2AP</th>
<th>Access permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>No access permitted</td>
</tr>
<tr>
<td>01</td>
<td>Read-only. Writes to the region are not permitted, regardless of the stage 1 permissions.</td>
</tr>
<tr>
<td>10</td>
<td>Write-only. Reads from the region are not permitted, regardless of the stage 1 permissions.</td>
</tr>
<tr>
<td>11</td>
<td>Read/write. The stage 1 permissions determine the access permissions for the region.</td>
</tr>
</tbody>
</table>

For more information about the S2AP field, see Attribute fields in VMSAv8-32 Long-descriptor stage 2 Block and Page descriptors on page G5-5995.

If the stage 2 permissions cause a Permission fault, this is a stage 2 MMU fault. Stage 2 MMU faults are taken to Hyp mode, and reported in the HSR using an EC code of 0x20 or 0x24. For more information, see Use of the HSR on page G5-6078.

Note
In the HSR, the combination of the EC code and the DFSC or IFSC value in the ISS indicate that the fault is a stage 2 MMU fault.

The stage 2 permissions include an XN attribute. If this identifies the region as execute-never, execution from the region is not permitted, regardless of the value of the XN or UXN attribute in the stage 1 translation. If a Permission fault is generated because the stage 2 XN field identifies the region as execute-never, this is reported as a stage 2 MMU fault.

Note
The stage 2 XN attribute:
• Is a single bit if FEAT_XNX is not implemented, see XN, Execute-never on page G5-6012.
• Is a 2-bit field if FEAT_XNX is implemented, see XN[1:0], Execute-never, stage 2 only on page G5-6012.

AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061 describes the abort prioritization if both stages of a translation generate a fault.
G5.7 Memory region attributes

In addition to an output address, a translation table entry that refers to a page or region of memory includes fields that define properties of that target memory region. Information returned by a translation table lookup on page G5-5975 describes the classification of those fields as address map control, access control, and memory attribute fields. The memory region attribute fields control the memory type, Cacheability, and Shareability of the region.

The following sections describe the assignment of memory region attributes for stage 1 translations:

- Overview of memory region attributes for stage 1 translations.
- Short-descriptor format memory region attributes, without TEX remap on page G5-6020.
- Short-descriptor format memory region attributes, with TEX remap on page G5-6022.
- VMSAv8-32 Long-descriptor format memory region attributes on page G5-6025.

For an implementation that is operating in Secure state, or in Hyp mode, these assignments define the memory attributes of the accessed region.

For an implementation that is operating in a Non-secure PL1 or EL0 mode, the Non-secure PL1&0 stage 2 translation can modify the memory attributes assigned by the stage 1 translation. EL2 control of Non-secure memory region attributes on page G5-6027 describes these stage 2 assignments.

G5.7.1 Overview of memory region attributes for stage 1 translations

The description of the memory region attributes in a translation descriptor divides into:

Memory type and attributes

These are described either:

- Directly, by bits in the translation table descriptor.
- Indirectly, by registers referenced by bits in the table descriptor. This is described as remapping the memory type and attribute description.

The Short-descriptor translation table format can use either of these approaches, selected by the SCTLR.TRE bit:

TRE == 0 Remap disabled. The TEX[2:0], C, and B bits in the translation table descriptor define the memory region attributes. Short-descriptor format memory region attributes, without TEX remap on page G5-6020 describes this encoding.

--- Note ---

With the Short-descriptor format, remapping is called TEX remap, and the SCTLR.TRE bit is the TEX remap enabled bit.

The description of the TRE == 0 encoding includes information about the encoding in previous versions of the architecture.

TRE == 1 Remap enabled. The TEX[0], C, and B bits in the translation table descriptor are index bits to the remap registers, that define the memory region attributes:

- The Primary Region Remap Register, PRRR.
- The Normal Memory Remap Register, NMRR.

Short-descriptor format memory region attributes, with TEX remap on page G5-6022 describes this encoding scheme.

This scheme reassigns translation table descriptor bits TEX[2:1] for use as bits managed by the operating system.

The Long-descriptor translation table format always uses remapping. This means that when the value of TTBCR.EAE is 1, enabling use of the Long-descriptor translation table format, SCTLR.TRE is RES1.

VMSAv8-32 Long-descriptor format memory region attributes on page G5-6025 describes this encoding.
Shareability
In the Short-descriptor translation table format, the S bit in the translation table descriptor is used in determining the Shareability of the region. How the S bit is interpreted depends on whether TEX remap is enabled, see:

- Shareability and the S bit, without TEX remap on page G5-6021.
- Determining the Shareability, with TEX remap on page G5-6023.

In the Long-descriptor translation table format, the SH[1:0] field in the translation table descriptor encodes the Shareability of the region, see Shareability, Long-descriptor format on page G5-6025.

--- Note ---
Shareability is one of Non-shareable, Inner Shareable, and Outer Shareable. However, when using the Short-descriptor translation table format without TEX remap, VMSAv8-32 does not support any distinction between Inner Shareable and Outer Shareable memory, and a memory region is either Non-shareable or Outer Shareable.

G5.7.2 Short-descriptor format memory region attributes, without TEX remap

When using the Short-descriptor translation table formats, TEX remap is disabled when the value of SCTLR.TRE is 0.

--- Note ---
- The Short-descriptor format scheme without TEX remap is the scheme used in VMSAv6.
- The B (Bufferable), C (Cacheable), and TEX (Type extension) bit names are inherited from earlier versions of the architecture. These names no longer adequately describe the function of the B, C, and TEX bits.

Table G5-12 shows the C, B, and TEX[2:0] encodings when TEX remap is disabled. In the Page Shareability column, an entry of S bit indicates that the S bit in the translation table descriptor determines the Shareability, see Shareability and the S bit, without TEX remap on page G5-6021.

<table>
<thead>
<tr>
<th>TEX[2:0]</th>
<th>C</th>
<th>B</th>
<th>Description</th>
<th>Memory type</th>
<th>Page Shareability</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>Device-nGnRnE</td>
<td>Device-nGnRnE</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Device-nGnREa</td>
<td>Device-nGnRE</td>
<td>Outer Shareable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 Outer and Inner Write-Through, Read-Allocate</td>
<td>Normal</td>
<td>S bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Outer and Inner Write-Back, Read-Allocate</td>
<td>Normal</td>
<td>S bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>Outer and Inner Non-cacheable</td>
<td>Normal</td>
<td>Outer Shareableb</td>
</tr>
<tr>
<td></td>
<td>1 Reserved</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Outer and Inner Write-Back, Read-Allocate Write-Allocate</td>
<td>Normal</td>
<td>S bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>Device-nGnREa</td>
<td>Device-nGnRE</td>
<td>Outer Shareablea</td>
</tr>
<tr>
<td></td>
<td>1 Reserved</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Reserved</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cacheability attributes, without TEX remap

When the value of TEX[2] is 0, the same Cacheability attribute applies to Inner Cacheable and Outer Cacheable memory regions, and the {TEX[1:0], C, B} values identify this attribute, as Table G5-12 on page G5-6020 shows.

When the value of TEX[2] is 1, the memory described by the translation table entry is cacheable, and the rest of the encoding defines the Inner Cacheability and Outer Cacheability attributes:

TEX[1:0] Define the Outer Cacheability attribute.
C, B Define the Inner Cacheability attribute.

The translation table entries use the same encoding for the Outer and Inner Cacheability attributes, as Table G5-13 shows.

Shareability and the S bit, without TEX remap

The Short-descriptor format translation table entries include an S bit. This bit:

- Is ignored if the entry refers to any type of Device memory, or to Normal memory that is Inner Non-cacheable, Outer Non-cacheable.
- For Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, determines whether the memory region is Outer Shareable or Non-shareable:

 \[
 \begin{align*}
 S = 0 & \quad \text{Normal memory region is Non-shareable.} \\
 S = 1 & \quad \text{Normal memory region is Outer Shareable.}
 \end{align*}
 \]

Without TEX remapping there is no distinction between Inner Shareable and Outer Shareable memory, meaning the S bit determines whether the region is Non-shareable or Outer Shareable.
G5.7.3 Short-descriptor format memory region attributes, with TEX remap

When using the Short-descriptor translation table formats, TEX remap is enabled when the value of SCTLR.TRE is 1. In this configuration:

- The software that defines the translation tables must program the PRRR and NMRR to define seven possible memory region attributes.
- The TEX[0], C, and B bits of the translation table descriptors define the memory region attributes, by indexing PRRR and NMRR.
- Hardware makes no use of TEX[2:1], see The OS managed translation table bits on page G5-6024.

When TEX remap is enabled:

- For seven of the eight possible combinations of the TEX[0], C and B bits, fields in the PRRR and NMRR define the region attributes, as described in this section.
- The meaning of the eighth combination for the TEX[0], C and B bits is IMPLEMENTATION DEFINED.
- If the TEX[0], C and B bits determine that the region is a Device memory type, or is Normal Inner Non-cacheable, Outer Non-cacheable, then the region is Outer Shareable. Otherwise, the Shareability is determined by the combination of:
 - The S bit from the translation table descriptor.
 - The value of the PRRR.NS0 or PRRR.NS1 bit.
 - The value of the appropriate PRRR.NOSn bit, as shown in Table G5-14.

For more information, see Determining the Shareability, with TEX remap on page G5-6023.

For each of the possible encodings of the TEX[0], C, and B bits in a translation table entry, Table G5-14 shows which fields of the PRRR and NMRR registers describe the memory region attributes.

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Memory type</th>
<th>Cache attributes</th>
<th>Outer Shareable attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEX[0]</td>
<td>C</td>
<td>B</td>
<td>Inner cacheability</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>PRRR.TR0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>PRRR.TR1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>PRRR.TR2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>PRRR.TR3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>PRRR.TR4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>PRRR.TR5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>PRRR.TR7</td>
</tr>
</tbody>
</table>

a. For details of the Memory type and Outer Shareable encodings see the description of the PRRR. For details of the Cache attributes encodings the description of the NMRR.
b. Applies only if the memory type for the region is mapped as Normal memory.
c. Applies only if both of the following apply:
 - The memory type for the region is mapped as Normal memory that is not Inner Non-cacheable and Outer Non-cacheable.
 - The region is not Non-shareable.

See Determining the Shareability, with TEX remap on page G5-6023.
As Table G5-14 on page G5-6022 shows, when TEX remap is enabled, for a given set of \{TEX[0], C, B\} bits from a translation table descriptor:

1. The primary mapping, to memory type, is given by the PRRR.TRn field as shown in the Memory type column.
2. For any region that the PRRR.TRn maps as Normal memory, NMRR.IRn determines the Inner cacheability attribute, and NMRR.ORn determines the Outer cacheability attribute.
3. For a region that PRRR.TRn maps as Normal memory, if NMRR.IRn, ORn do not map the region as Inner Non-cacheable, Outer Non-cacheable, PRRR.NS0, NS1 and PRRR.NOS are used to determine the Shareability of the region, see Determining the Shareability, with TEX remap.

The TEX remap registers and the SCTLR.TRE bit are banked between the Secure and Non-secure Security states. For more information, see The effect of EL3 on TEX remap on page G5-6025.

The TEX remap registers must be static during normal operation. In particular, when the remap registers are changed:

- It is IMPLEMENTATION DEFINED when the changes take effect.
- It is CONSTRAINED UNPREDICTABLE whether the TLB caches the effect of the TEX remap on translation tables, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

The software sequence to ensure the synchronization of changes to the TEX remap registers is:

1. Execute a DSB instruction. This ensures any memory accesses using the old mapping have completed.
2. Write the TEX remap registers or SCTLR.TRE bit.
3. Execute an ISB instruction. This ensures synchronization of the register updates.
4. Invalidate the entire TLB.
5. Execute a DSB instruction. This ensures completion of the entire TLB operation.
6. Clean and invalidate all caches. This removes any cached information associated with the old mapping.
7. Execute a DSB instruction. This ensures completion of the cache maintenance.
8. Execute an ISB instruction. This ensures instruction synchronization.

This extends the standard rules for the synchronization of changes to System registers described in Synchronization of changes to AArch32 System registers on page G8-6138, and provides implementation freedom as to whether or not the effect of the TEX remap is cached.

Determining the Shareability, with TEX remap

The memory type of a region, as indicated in the Memory type column of Table G5-14 on page G5-6022, provides the first level of control of the Shareability of the region:

- If the memory is any type of Device memory, then the region is Outer Shareable, and any Shareability attributes in the translation table descriptor and PRRR for that region are ignored.

 This applies also to a Normal memory region that the NMRR attributes identify as Inner Non-cacheable and Outer Non-cacheable,

- If using the Short descriptor translation table format then the Shareability of the region is determined using the value of the S bit in the translation table descriptor to index one of the PRRR.[NS1, NS0] bits, as described in this section.

Table G5-15 shows how the translation table S bit indexes into the PRRR:

<table>
<thead>
<tr>
<th>Memory type</th>
<th>Remapping when S == 0</th>
<th>Remapping when S == 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device or Normal Inner Non-cacheable, Outer Non-cacheable</td>
<td>Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Normal, not Inner Non-cacheable, Outer Non-cacheable</td>
<td>PRRR.NS0</td>
<td>PRRR.NS1</td>
</tr>
</tbody>
</table>
For a Normal memory region that is not Inner Non-cacheable, Outer Non-cacheable, the appropriate bit of the PRRR indicates whether the region is Non-shareable, as follows:

\[
\text{PRRR.NS} = 0 \quad \text{Non-shareable.}
\]

\[
\text{PRRR.\{NOS7:NOS0\} are ignored.}
\]

\[
\text{PRRR.NS} = 1 \quad \text{The appropriate PRRR.NOSm field, as shown in Table G5-14 on page G5-6022, indicates whether the region is Inner Shareable or Outer Shareable:}
\]

\[
\text{PRRR.NOS} = 0 \quad \text{Region is Outer Shareable.}
\]

\[
\text{PRRR.NOS} = 1 \quad \text{Region is Inner Shareable.}
\]

Note

This means that TEX remapping can map a translation table entry with \(S = 0 \) as shareable memory.

SCTLR.TRE, SCTLR.M, and the effect of the TEX remap registers

When TEX remap is disabled, because the value of the SCTLR.TRE bit is 0:

- The effect of the PRRR and NMRR registers can be IMPLEMENTATION DEFINED.
- The interpretation of the fields of the PRRR and NMRR registers can differ from the description given earlier in this section. One implication of this is that the implementation can provide an IMPLEMENTATION DEFINED mechanism to interpret the PRRR.\{NOS7:NOS0\} fields.

VMSAv8-32 requires that the effect of these registers is limited to remapping the attributes of memory locations. These registers must not change whether any cache hardware or stages of address translation are enabled. The mechanism by which the TEX remap registers have an effect when the value of the SCTLR.TRE bit is 0 is IMPLEMENTATION DEFINED. The AArch32 architecture requires that from reset, if the IMPLEMENTATION DEFINED mechanism has not been invoked:

- If the PL1&0 stage 1 address translation is enabled and is using the Short-descriptor format translation tables, the architecturally-defined behavior of the TEX[2:0], C, and B bits must apply, without reference to the TEX remap functionality. In other words, memory attribute assignment must comply with the scheme described in *Short-descriptor format memory region attributes, without TEX remap* on page G5-6020.
- If the PL1&0 stage 1 address translation is disabled, then the architecturally-defined behavior of VMSAv8-32 with address translation disabled must apply, without reference to the TEX remap functionality. See *The effects of disabling address translation stages on VMSAv8-32 behavior* on page G5-5970.

Possible mechanisms for enabling the IMPLEMENTATION DEFINED effect of the TEX remap registers when the value of SCTLR.TRE is 0 include:

- A control bit in the ACTLR, or in an IMPLEMENTATION DEFINED System register.
- Changing the behavior when the PRRR and NMRR registers are changed from their IMPLEMENTATION DEFINED reset values.

In addition, if the stage of address translation is disabled and the value of the SCTLR.TRE bit is 1, the architecturally-defined behavior of the VMSAv8-32 with the stage of address translation disabled must apply without reference to the TEX remap functionality.

In an implementation that includes EL3, the IMPLEMENTATION DEFINED effect of these registers must only take effect in the Security state of the registers. See also *The effect of EL3 on TEX remap* on page G5-6025.

The OS managed translation table bits

When TEX remap is enabled, the TEX[2:1] bits in the translation table descriptors are available as two bits that can be managed by the operating system. In VMSAv8-32, as long as the SCTLR.TRE bit is set to 1, the values of the TEX[2:1] bits are IGNORED by the PE. Software can write any value to these bits in the translation tables.
The effect of EL3 on TEX remap

In an implementation that includes EL3, when EL3 is using AArch32, the TEX remap registers are banked between the Secure and Non-secure Security states. When EL3 is using AArch32, write accesses to the Secure register for the current security state apply to all PL1&0 stage 1 translation table lookups in that state. The SCTLR.TRE bit is banked in the Secure and Non-secure copies of the register, and the appropriate version of this bit determines whether TEX remap is applied to translation table lookups in the current security state.

Write accesses to the Secure copies of the TEX remap registers are disabled when the CP15SDISABLE input is asserted HIGH, meaning the MCR operations to access these registers are UNDEFINED. For more information, see The CP15SDISABLE and CP15SDISABLE2 input signals on page G5-6096.

VMSAv8-32 Long-descriptor format memory region attributes

When a PE is using the VMSAv8-32 Long-descriptor translation table format, the AttrIndx[2:0] field in a block or page translation table descriptor for a stage 1 translation indicates the 8-bit field, in the appropriate MAIR register, that specifies the attributes for the corresponding memory region, as follows:

- AttrIndx[2] indicates the MAIR register to be used:
 - AttrIndx[2] == 0: Use MAIR0.
- AttrIndx[2:0] indicates the required Attr field, Attrn, where n = AttrIndx[2:0].

Each AttrIndx field defines, for the corresponding memory region:

- The memory type, Normal or a type of Device memory.
- For Normal memory:
 - The Inner cacheability and Outer cacheability attributes, each of which is one of Non-cacheable, Write-Through Cacheable, or Write-Back Cacheable.
 - For Write-Through Cacheable and Write-Back Cacheable regions, the Read-Allocate and Write-Allocate policy hints, each of which is Allocate or No allocate.

For more information about the AttrIndx[2:0] descriptor field, see Attribute fields in VMSAv8-32 Long-descriptor stage 1 Block and Page descriptors on page G5-5993.

Shareability, Long-descriptor format

When a PE is using the Long-descriptor translation table format, the SH[1:0] field in a block or page translation table descriptor specifies the Shareability attributes of the corresponding memory region, if the MAIR entry for that region identifies it as Normal memory that is not both Inner Non-cacheable and Outer Non-cacheable. Table G5-16 shows the encoding of this field.

<table>
<thead>
<tr>
<th>SH[1:0]</th>
<th>Normal memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non-shareable</td>
</tr>
<tr>
<td>01</td>
<td>Reserved, CONSTRAINED UNPREDICTABLE, see Reserved values in System and memory-mapped registers and translation table entries on page K1-7963 for the permitted behavior.</td>
</tr>
<tr>
<td>10</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>11</td>
<td>Inner Shareable</td>
</tr>
</tbody>
</table>

See Combining the Shareability attribute on page G5-6030 for constraints on the Shareability attributes of a Normal memory region that is Inner Non-cacheable, Outer Non-cacheable.
For any type of Device memory, and for Normal Inner Non-cacheable, Outer Non-cacheable memory, the value of the SH[1:0] field of the translation table descriptor is ignored.

Other fields in the Long-descriptor translation table format descriptors

The following subsections describe the other fields in the translation table block and page descriptors when a PE is using the Long-descriptor translation table format:

- **Contiguous bit**
- **IGNORED fields**
- **Field reserved for software use on page G5-6027**

Contiguous bit

The Long-descriptor translation table format descriptors contain a Contiguous bit. Setting this bit to 1 indicates that 16 adjacent translation table entries point to a contiguous output address range. These 16 entries must be aligned in the translation table so that the top five bits of their input addresses, that index their position in the translation table, are the same. For example, to use this bit for a block of 16 entries in the level 3 translation table, bits[20:16] of the input addresses for the 16 entries must be the same.

The contiguous output address range must be aligned to size of 16 translation table entries at the same translation table level.

Use of this bit means that the TLB can cache a single entry to cover the 16 translation table entries.

This bit acts as a hint. The architecture does not require a PE to cache TLB entries in this way. To avoid TLB coherency issues, any TLB maintenance by address must not assume any optimization of the TLB tables that might result from use of this bit.

Note

The use of the contiguous bit is similar to the approach used, in the Short-descriptor translation table format, for optimized caching of Large Pages and Supersections in the TLB. However, an important difference in the contiguous bit capability is that TLB maintenance must be performed based on the size of the underlying translation table entries, to avoid TLB coherency issues. That is, any use of the contiguous bit has no effect on the minimum size of entry that must be invalidated from the TLB.

IGNORED fields

In the VMSA/32 translation table long-descriptor format, the following fields are defined as IGNORED, meaning the architecture guarantees that a PE makes no use of these fields:

- In the stage 1 and stage 2 Table descriptors, bits[58:52] and bits[11:2].
- In the stage 1 and stage 2 Block and Page descriptors, bit[63] and bits[58:55].
- In the stage 1 and stage 2 Block and Page descriptors in an implementation that does not include FEAT_HPDS2, bits[62:59].

Of these fields:

- In the stage 1 and stage 2 block and page descriptors, bits[58:55] are reserved for software use, see Field reserved for software use on page G5-6027.

- In the stage 2 block and page descriptors:
 - Bit[63] is reserved for use by a System MMU.
 - In an implementation that does not include FEAT_HPDS2, bits[62:59] are reserved for use by a System MMU.
Field reserved for software use

The architecture reserves a 4-bit IGNORED field in the Block and translation table descriptors, bits[58:55], for software use. In considering migration from using the Short-descriptor format to the Long-descriptor format, this field is an extension of the Short-descriptor field described in The OS managed translation table bits on page G5-6024.

Note
The definition of IGNORED means there is no need to invalidate the TLB if these bits are changed.

G5.7.5 EL2 control of Non-secure memory region attributes

Software executing at EL2 controls two sets of translation tables, both of which use the Long-descriptor translation table format. These are:

- The translation tables that control Non-secure EL2 stage 1 translations. These map VAs to PAs, and when EL2 is using AArch32 they are indicated and controlled by the HTTBR and HTCR. These translations have exactly the same memory region attribute controls as any other stage 1 translations, as described in VMSAv8-32 Long-descriptor format memory region attributes on page G5-6025.

- The translation tables that control Non-secure PL1&0 stage 2 translations. These map the IPAs from the stage 1 translation onto PAs, and are indicated and when EL2 is using AArch32 they are controlled by the VTTBR and VTCR.

The descriptors in the virtualization translation tables define level 2 memory region attributes, that are combined with the attributes defined in the stage 1 translation. This section describes this combining of attributes.

VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5989 describes the format of the entries in these tables.

Note
In a virtualization implementation, a hypervisor might usefully:

- Reduce the permitted Cacheability of a region.
- Increase the required Shareability of a region.

The combining of attributes from stage 1 and stage 2 translations supports both of these options.

In the stage 2 translation table descriptors for memory regions and pages, the MemAttr[3:0] and SH[1:0] fields describe the stage 2 memory region attributes:

- The definition of the stage 2 SH[1:0] field is identical to the same field for a stage 1 translation, see Shareability, Long-descriptor format on page G5-6025.

- MemAttr[3:2] give a top-level definition of the memory type, and of the cacheability of a Normal memory region, as Table G5-17 shows:

<table>
<thead>
<tr>
<th>MemAttr[3:2]</th>
<th>Memory type</th>
<th>Cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Device, of type determined by MemAttr[1:0]</td>
<td>Not applicable</td>
</tr>
<tr>
<td>01</td>
<td>Normal, Inner cacheability determined by MemAttr[1:0]</td>
<td>Outer Non-cacheable</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Outer Write-Through Cacheable</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Outer Write-Back Cacheable</td>
</tr>
</tbody>
</table>
The encoding of MemAttr[1:0] depends on the Memory type indicated by MemAttr[3:2]:

— When MemAttr[3:2] == 0b00, indicating a type of Device memory, Table G5-18 shows the encoding of MemAttr[1:0]:

<table>
<thead>
<tr>
<th>MemAttr[1:0]</th>
<th>Meaning when MemAttr[3:2] == 0b00</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Region is Device-nGnRnE memory</td>
</tr>
<tr>
<td>01</td>
<td>Region is Device-nGnRE memory</td>
</tr>
<tr>
<td>10</td>
<td>Region is Device-nGRE memory</td>
</tr>
<tr>
<td>11</td>
<td>Region is Device-GRE memory</td>
</tr>
</tbody>
</table>

— When MemAttr[3:2] != 0b00, indicating Normal memory, Table G5-19 shows the encoding of MemAttr[1:0]:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Reserved, CONSTRANGED UNPREDICTABLE, See Reserved values in System and memory-mapped registers and translation table entries on page K1-7963 for the permitted behavior.</td>
</tr>
<tr>
<td>01</td>
<td>Inner Non-cacheable</td>
</tr>
<tr>
<td>10</td>
<td>Inner Write-Through Cacheable</td>
</tr>
<tr>
<td>11</td>
<td>Inner Write-Back Cacheable</td>
</tr>
</tbody>
</table>

Note

The stage 2 translation does not assign any allocation hints.

The following sections describe how the memory type attributes assigned at stage 2 of the translation are combined with those assigned at stage 1:

• Combining the memory type attribute on page G5-6029.
• Combining the Cacheability attribute on page G5-6029.
• Combining the Shareability attribute on page G5-6030.

Note

• The following stage 2 translation table attribute settings leave the stage 1 settings unchanged:
 — MemAttr[1:0] == 0b11, Inner Write-Back Cacheable.

• In addition to the attribute combinations described in this section, Access permissions for instruction execution on page G5-6012 describes how the stage 1 and stage 2 execute-never permission fields are combined, so that a region is execute-never if it is defined as execute-never in at least one stage of translation.
Combining the memory type attribute

Table G5-20 shows how the stage 1 and stage 2 memory type assignments are combined:

<table>
<thead>
<tr>
<th>Assignment in stage 1</th>
<th>Assignment in stage 2</th>
<th>Resultant type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-nGnRnE</td>
<td>Any</td>
<td>Device-nGnRnE</td>
</tr>
<tr>
<td>Device-nGnRE</td>
<td>Device-nGnRnE</td>
<td>Device-nGnRnE</td>
</tr>
<tr>
<td></td>
<td>Not Device-nGnRnE</td>
<td>Device-nGnRE</td>
</tr>
<tr>
<td>Device-nGRE</td>
<td>Device-nGnRnE</td>
<td>Device-nGnRnE</td>
</tr>
<tr>
<td></td>
<td>Device-nGnRE</td>
<td>Device-nGnRE</td>
</tr>
<tr>
<td></td>
<td>Not (Device-nGnRnE or Device-nGnRE)</td>
<td>Device-nGRE</td>
</tr>
<tr>
<td>Device-GRE</td>
<td>Device-nGnRnE</td>
<td>Device-nGnRnE</td>
</tr>
<tr>
<td></td>
<td>Device-nGnRE</td>
<td>Device-nGnRE</td>
</tr>
<tr>
<td></td>
<td>Device-nGRE</td>
<td>Device-nGRE</td>
</tr>
<tr>
<td></td>
<td>Device-GRE or Normal</td>
<td>Device-GRE</td>
</tr>
<tr>
<td>Normal</td>
<td>Any type of Device</td>
<td>Device type assigned at stage 2</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

See Combining the Shareability attribute on page G5-6030 for information about the Shareability of:

- A region for which the resultant type is any Device type.
- A region with a resultant type of Normal for which the resultant cacheability, described in Combining the Cacheability attribute, is Inner Non-cacheable, Outer Non-cacheable.

The combining of the memory type attribute means a translation table walk for a stage 1 translation can be made to a type of Device memory. If this occurs, then:

- If the value of HCR.PTW is 0, then the translation table walk occurs as if it is to Normal Non-cacheable memory. This means it can be done speculatively.
- If the value of HCR.PTW is 1, then the memory access generates a stage 2 Permission fault.

Combining the Cacheability attribute

For a Normal memory region, Table G5-21 shows how the stage 1 and stage 2 Cacheability assignments are combined. This combination applies, independently, for the Inner Cacheability and Outer Cacheability attributes:

<table>
<thead>
<tr>
<th>Assignment in stage 1</th>
<th>Assignment in stage 2</th>
<th>Resultant cacheability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cacheable</td>
<td>Any</td>
<td>Non-cacheable</td>
</tr>
<tr>
<td>Any</td>
<td>Non-cacheable</td>
<td>Non-cacheable</td>
</tr>
</tbody>
</table>
Note

Only Normal memory has a Cacheability attribute.

Combining the Shareability attribute

In the following cases, a memory region is treated as Outer Shareable, regardless of any shareability assignments at either stage of translation:

- The resultant memory type attribute, described in Combining the memory type attribute on page G5-6029, is any type of Device memory.

- The resultant memory type attribute is Normal memory, and the resultant Cacheability, described in Combining the Cacheability attribute on page G5-6029, is Inner Non-cacheable Outer Non-cacheable.

For a memory region with a resultant memory type attribute of Normal that is not Inner Non-cacheable Outer Non-cacheable, Table G5-22 shows how the stage 1 and stage 2 shareability assignments are combined:

Table G5-22 Combining the stage 1 and stage 2 Shareability assignments

<table>
<thead>
<tr>
<th>Assignment in stage 1</th>
<th>Assignment in stage 2</th>
<th>Resultant Shareability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer Shareable</td>
<td>Any</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Inner Shareable</td>
<td>Non-shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Outer Shareable</td>
<td>Outer Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Inner Shareable</td>
<td>Inner Shareable</td>
</tr>
<tr>
<td>Non-shareable</td>
<td>Non-shareable</td>
<td>Non-shareable</td>
</tr>
</tbody>
</table>
G5.8 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) are an implementation technique that caches translations or translation table entries. TLBs avoid the requirement to perform a translation table walk in memory for every memory access. The Arm architecture does not specify the exact form of the TLB structures for any design. In a similar way to the requirements for caches, the architecture only defines certain principles for TLBs:

- The architecture has a concept of an entry locked down in the TLB. The method by which lockdown is achieved is IMPLEMENTATION DEFINED, and an implementation might not support lockdown.
- The architecture does not guarantee that an unlocked TLB entry remains in the TLB.
- The architecture guarantees that a locked TLB entry remains in the TLB. However, a locked TLB entry might be updated by subsequent updates to the translation tables. Therefore, when a change is made to the translation tables, the architecture does not guarantee that a locked TLB entry remains incoherent with an entry in the translation table.
- The architecture guarantees that a translation table entry that generates a Translation fault, an Address size fault, or an Access flag fault is not held in the TLB. However a translation table entry that generates a Domain fault or a Permission fault might be held in the TLB.
- When address translation is enabled, any translation table entry that does not generate a Translation fault, an Address size fault, or an Access flag fault and is not from a translation regime for an Exception level that is lower than the current Exception level can be allocated to a TLB at any time. The only translation table entries guaranteed not to be held in the TLB are those that generate a Translation fault, an Address size fault, or an Access flag fault.

Note

A TLB can hold translation table entries that do not generate a Translation fault but point to subsequent tables in the translation table walk. This can be referred to as intermediate caching of TLB entries.

Note

Software can rely on the fact that between disabling and re-enabling a stage of address translation, entries in the TLB relating to that stage of translation have not been corrupted to give incorrect translations.

The following sections give more information about TLB implementation:
- Global and process-specific translation table entries.
- TLB matching on page G5-6032.
- TLB behavior at reset on page G5-6032.
- TLB lockdown on page G5-6033.
- TLB conflict aborts on page G5-6033.

See also TLB maintenance requirements on page G5-6035.

Note

In addition to the functions described in this section, the TLB might cache information from control registers that are described as being "permitted to be cached in a TLB", even when any or all of the stages of translation are disabled. This caching of information gives rise to the maintenance requirements described in General TLB maintenance requirements on page G5-6035.

G5.8.1 Global and process-specific translation table entries

For VMSAv8-32, system software can divide a virtual memory map used by memory accesses at PL1 and EL0 into global and non-global regions, indicated by the nG bit in the translation table descriptors:

\[nG = 0 \] The translation is global, meaning the region is available for all processes.
nG == 1 The translation is non-global, or process-specific, meaning it relates to the current ASID, as defined by:

- TTBR0.ASID or TTBR1.ASID, if using the Long-descriptor translation table format. In this case, TTBCR.A1 selects which ASID is current.
- CONTEXTIDR.ASID, if using the Short-descriptor translation table format.

Each non-global region has an associated ASID. These identifiers mean different translation table mappings can co-exist in a caching structure such as a TLB. This means that software can create a new mapping of a non-global memory region without removing previous mappings.

For a symmetric multiprocessor cluster where a single operating system is running on the set of PEs, the architecture requires all ASID values to be assigned uniquely within any single Inner Shareable domain. In other words, each ASID value must have the same meaning to all PEs in the system.

In AArch32 state, the translation regime used for accesses made at EL2 never supports ASIDs, and all pages are treated as global.

When a PE is using the Long-descriptor translation table format, and is in Secure state, a translation must be treated as non-global, regardless of the value of the nG bit, if NSTable is set to 1 at any level of the translation table walk.

For more information see Control of Secure or Non-secure memory access, VMSAv8-32 Long-descriptor format on page G5-5996.

G5.8.2 TLB matching

A TLB is a hardware caching structure for translation table information. Like other hardware caching structures, it is mostly invisible to software. However, there are some situations where it can become visible. These are associated with coherency problems caused by an update to the translation table that has not been reflected in the TLB. Use of the TLB maintenance instructions described in TLB maintenance requirements on page G5-6035 can prevent any TLB incoherency becoming a problem.

A particular case where the presence of the TLB can become visible is if the translation table entries that are in use under a particular ASID and VMID are changed without suitable invalidation of the TLB. This can occur only if the architecturally-required break-before-make sequence described in Using break-before-make when updating translation table entries on page G5-6036 is not used. If the break-before make sequence is not used, the TLB can hold two mappings for the same address, and this:

- Might generate an exception that is reported using the TLB Conflict fault code, see TLB conflict aborts on page G5-6033.
- Might lead to CONSTRAINED UNPREDICTABLE behavior. In this case, behavior will be consistent with one of the mappings held in the TLB, or with some amalgamation of the values held in the TLB, but cannot give access to regions of memory with permissions or attributes that could not be assigned by valid translation table entries in the translation regime being used for the access. See CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

G5.8.3 TLB behavior at reset

The Arm architecture does not require a reset to invalidate the TLBs, and recognizes that an implementation might require caches, including TLBs, to maintain context over a system reset. Possible reasons for doing so include power management and debug requirements.

Therefore, for Armv8:

- All TLBs reset to an IMPLEMENTATION DEFINED state that might be UNKNOWN.
- All TLBs are disabled from reset. All stages of address translation that are used from the PE state entered on coming out of reset are disabled from reset, and the contents of the TLBs have no effect on address translation. For more information see Enabling stages of address translation on page G5-5972.
• An implementation can require the use of a specific TLB invalidation routine, to invalidate the TLB arrays before they are enabled after a reset. The exact form of this routine is IMPLEMENTATIONDEFINED, but if an invalidation routine is required it must be documented clearly as part of the documentation of the device.

Arm recommends that if an invalidation routine is required for this purpose, and the PE resets into AArch32 state, the routine is based on the AArch32 TLB maintenance instructions described in The scope of TLB maintenance instructions on page G5-6044.

Similar rules apply:
• To cache behavior, see Behavior of caches at reset on page G4-5935.
• To branch predictor behavior, see Behavior of the branch predictors at reset on page G4-5943.

G5.8.4 TLB lockdown

The Arm architecture recognizes that any TLB lockdown scheme is heavily dependent on the microarchitecture, making it inappropriate to define a common mechanism across all implementations. This means that:

• The architecture does not require TLB lockdown support.
• If TLB lockdown support is implemented, the lockdown mechanism is IMPLEMENTATION DEFINED. However, key properties of the interaction of lockdown with the architecture must be documented as part of the implementation documentation.

This means that:
• The TLB Type Register, TLBTR, does not define the lockdown scheme in use.
• In AArch32 state, a region of the \{coproc==0b1111, CRn==c10\} encodings is reserved for IMPLEMENTATION DEFINED TLB functions, such as TLB lockdown functions. The reserved encodings are those with:
 — <CRm> == {c0, c1, c4, c8}.
 — All values of <opc2> and <opc1>.

An implementation might use some of the \{coproc==0b1111, CRn==c10\} encodings that are reserved for IMPLEMENTATION DEFINED TLB functions to implement additional TLB control functions. These functions might include:
• Unlock all locked TLB entries.
• Preload into a specific level of TLB. This is beyond the scope of the PL1 and PLD hint instructions.

The inclusion of EL2 in an implementation does not affect the TLB lockdown requirements. However, in an implementation that includes EL2, exceptions generated as a result of TLB lockdown when executing in a Non-secure PL1 mode or in Non-secure User mode can be routed to either:
• Non-secure Abort mode, using the Non-secure Data Abort exception vector.
• Hyp mode, using the Hyp Trap exception vector.

For more information, see Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page G1-5833.

G5.8.5 TLB conflict aborts

If an address matches multiple entries in the TLB, it is IMPLEMENTATION DEFINED whether a TLB conflict abort is generated.

An implementation can generate TLB conflict aborts on either or both instruction fetches and data accesses. A TLB conflict abort is classified as an MMU fault, see Types of MMU faults on page G5-6053. This means:
• A TLB conflict abort on an instruction fetch is reported as a Prefetch Abort exception,
• A TLB conflict abort on a data access is reported as a Data Abort exception,

Fault status codes for TLB conflict aborts are defined for both the Short-descriptor and Long-descriptor translation table formats, see:
• PL1 fault reporting with the Short-descriptor translation table format on page G5-6069
• PL1 fault reporting with the Long-descriptor translation table format on page G5-6071.
On a TLB conflict abort, the fault address register returns the address that generated the fault. That is, it returns the address that was being looked up in the TLB.

It is IMPLEMENTATION DEFINED whether a TLB conflict abort is a stage 1 abort or a stage 2 abort.

--- Note ---

- An address can hit multiple entries in the TLB if the TLB has been invalidated inappropriately, for example if TLB invalidation required by this manual has not been performed.

- A stage 2 abort cannot be generated if the Non-secure PL1&0 stage 2 address translation is disabled.

The priority of the TLB conflict abort is IMPLEMENTATION DEFINED, because it depends on the form of any TLB that can generate the abort. However, the TLB conflict abort must have higher priority than any abort that depends on a value held in the TLB.

If an address matches multiple entries in the TLB and no TLB conflict abort not generated, the resulting behavior is CONSTRAINED UNPREDICTABLE, see CONSTRUANED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945. The CONSTRAINED UNPREDICTABLE behavior must not permit access to regions of memory with permissions or attributes that mean they cannot be accessed in the current Security state at the current Privilege level.
G5.9 TLB maintenance requirements

Translation Lookaside Buffers (TLBs) on page G5-6031 describes the Arm architectural provision for TLBs. Although the Arm architecture does not specify the form of any TLB structures, it does define the mechanisms by which TLBs can be maintained. The following sections describe the VMSA v8-32 TLB maintenance instructions:

• General TLB maintenance requirements.
• Maintenance requirements on changing System register values on page G5-6040.
• Atomicity of register changes on changing virtual machine on page G5-6041.
• Synchronization of changes of ASID and TTBR on page G5-6042.
• The scope of TLB maintenance instructions on page G5-6044.

G5.9.1 General TLB maintenance requirements

TLB maintenance instructions provide a mechanism to invalidate entries from a TLB. As Translation Lookaside Buffers (TLBs) on page G5-6031 describes, when address translation is enabled translation table entries can be allocated to a TLB at any time. This means that software must perform TLB maintenance between updating translation table entries that apply in a particular context and accessing memory locations whose translation is determined by those entries in that context.

Note

This requirement applies to any translation table entry at any level of the translation tables, including an entry that points to further levels of the tables, provided that the entry in that level of the tables does not cause a Translation fault, an Address size fault, or an Access flag fault.

In addition to any TLB maintenance requirement, when changing the cacheability attributes of an area of memory, software must ensure that any cached copies of affected locations are removed from the caches. For more information see Cache maintenance requirement created by changing translation table attributes on page G5-6051.

Because a TLB never holds any translation table entry that generates a Translation fault, an Address size fault, or an Access flag fault, a change from a translation table entry that causes a Translation, Address size, or Access flag fault to one that does not fault, does not require any TLB or branch predictor invalidation. However, a Context synchronization event is required to ensure that instruction fetches are affected by a completed change to translation table entries that, before the change, generated a Translation, Address size, or Access flag fault.

Special considerations apply to translation table updates that change the memory type, cacheability, or output address of an entry, see Using break-before-make when updating translation table entries on page G5-6036.

In addition, software must perform TLB maintenance after updating the System registers if the update means that the TLB might hold information that applies to a current translation context, but is no longer valid for that context. Maintenance requirements on changing System register values on page G5-6040 gives more information about this maintenance requirement.

Each of the translation regimes defined in Figure G5-1 on page G5-5964 is a different context, and:

• For the Non-secure PL1&0 regime, a change in the VMID or ASID value changes the context.
• For the Secure PL1&0 regime, a change in the ASID value changes the context.

For operation in Non-secure PL1 or EL0 modes, a change of HCR.VM, unless made at the same time as a change of VMID, requires the invalidation of all TLB entries for the Non-secure PL1&0 translation regime that apply to the current VMID. Otherwise, there is no guarantee that the effect of the change of HCR.VM is visible to software executing in the Non-secure PL1 and EL0 modes.

Any TLB maintenance instruction can affect any other TLB entries that are not locked down.

AArch32 state defines \{coproc==0b1111, Crn==c8\} System instructions for TLB maintenance instructions, and supports the following operations:

• Invalidate all unlocked entries in the TLB.
• Invalidate a single TLB entry, by VA, or VA and ASID for a non-global entry.
• Invalidate all TLB entries that match a specified ASID.
• Invalidate all TLB entries that match a specified VA, regardless of the ASID.
• Operations that apply across multiprocessors in the same Inner Shareable domain.

——— Note ————

An address-based TLB maintenance instruction that applies to the Inner Shareable domain does so regardless of the Shareability attributes of the address supplied as an argument to the instruction.

A TLB maintenance instruction that specifies a VA that would generate any MMU fault, including a VA that is not in the range of VAs that can be translated, does not generate an abort.

EL2 provides additional TLB maintenance instructions for use in AArch32 state at EL2, and has some implications for the effect of the other TLB maintenance instructions, see The scope of TLB maintenance instructions on page G5-6044.

In an implementation that includes EL3, the TLB maintenance instructions take account of the current Security state, as part of the address translation required for the TLB maintenance instruction.

Some TLB maintenance instructions are defined as operating only on instruction TLBs, or only on data TLBs. Armv8 AArch32 state includes these instructions for backwards compatibility. However, more recent TLB maintenance instructions do not support this distinction. From the introduction of Armv7, Arm deprecates any use of Instruction TLB maintenance instructions, or of Data TLB maintenance instructions, and developers must not rely on this distinction being maintained in future revisions of the Arm architecture.

The Arm architecture does not dictate the form in which the TLB stores translation table entries. However, for TLB invalidate instructions, the minimum size of the table entry that is invalidated from the TLB must be at least the size that appears in the translation table entry.

The scope of TLB maintenance instructions on page G5-6044 describes the TLB maintenance instructions. The following subsections give more information about the general requirements for TLB maintenance:

• Using break-before-make when updating translation table entries.
• The interaction of TLB lockdown with TLB maintenance instructions on page G5-6037.
• Ordering and completion of TLB maintenance instructions on page G5-6038.
• Use of ASIDs and VMIDs to reduce TLB maintenance requirements on page G5-6039.

Using break-before-make when updating translation table entries

To avoid possibly creating multiple TLB entries for the same address, and to avoid the effects of TLB caching possibly breaking coherency, single-copy atomicity properties, ordering guarantees or uniprocessor semantics, or possibly failing to clear the Exclusives monitors, the architecture requires the use of a break-before-make sequence when changing translation table entries whenever multiple threads of execution can use the same translation tables and the change to the translation table entries involves any of:

• A change of the memory type.

• A change of the cacheability attributes.

• A change of the output address (OA), if the OA of at least one of the old translation table entries and the new translation table entry is writable.

• A change to the size of block used by the translation system. This applies both:
 — When changing from a smaller size to a larger size, for example by replacing a table mapping with a block mapping in a stage 2 translation table.
 — When changing from a larger size to a smaller size, for example by replacing a block mapping with a table mapping in a stage 2 translation table.

• A change of the output address (OA), if the contents of memory at the new OA do not match the contents of memory at the previous OA.

• Creating a global entry when there might be non-global entries in a TLB that overlap with that global entry.
A break-before-make sequence on changing from an old translation table entry to a new translation table entry requires the following steps:

1. Replace the old translation table entry with an invalid entry, and execute a DSB instruction.
2. Invalidate the translation table entry with a broadcast TLB invalidation instruction, and execute a DSB instruction to ensure the completion of that invalidation.
3. Write the new translation table entry, and execute a DSB instruction to ensure that the new entry is visible.

This sequence ensures that at no time are both the old and new entries simultaneously visible to different threads of execution, and therefore the problems described at the start of this subsection cannot arise.

The interaction of TLB lockdown with TLB maintenance instructions

The precise interaction of TLB lockdown with the TLB maintenance instructions is IMPLEMENTATION DEFINED. However, the architecturally-defined TLB maintenance instructions must comply with these rules:

- The effect on locked entry of a TLB invalidate all unlocked entries instruction or a TLB invalidate by VA all ASID instruction that would invalidate that entry if the entry was not locked must be one of the following, and it is IMPLEMENTATION DEFINED which behavior applies:
 - The instructions have no effect on entries that are locked down.
 - The instructions generate an IMPLEMENTATION DEFINED Data Abort exception if an entry is locked down, or might be locked down. For an invalidate instruction performed in AArch32 state, the \{coproc\=0b1111, CRn\=c5\} fault status register definitions include a Fault status code for cache and TLB lockdown faults, see Table G5-26 on page G5-6069 for the codes used with the Short-descriptor translation table formats, or Table G5-27 on page G5-6071 for the codes used with the Long-descriptor translation table formats.

In an implementation that includes EL2, if EL2 is using AArch32 and the value of HCR.TIDCP is 1, any such exceptions taken from a Non-secure PL1 mode are routed to Hyp mode, see Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page G1-5833.

This permits a usage model for TLB invalidate routines, where the routine invalidates a large range of addresses, without considering whether any entries are locked in the TLB.

- The effect on a locked TLB entry of a TLB invalidate by VA instruction or a TLB invalidate by ASID match instruction that would invalidate that entry if the entry was not locked must be one of the following, and it is IMPLEMENTATION DEFINED which behavior applies:
 - A locked entry is invalidated in the TLB.
 - The instruction has no effect on a locked entry in the TLB. In the case of the Invalidate single entry by VA, this means the PE treats the instruction as a NOP.
 - The instruction generates an IMPLEMENTATION DEFINED Data Abort exception if it operates on an entry that is locked down, or might be locked down. For an invalidate instruction performed in AArch32 state, the \{coproc\=0b1111, CRn\=c5\} fault status register definitions include a Fault status code for cache and TLB lockdown faults, see Table G5-26 on page G5-6069 and Table G5-27 on page G5-6071.

Note

Any implementation that uses an abort mechanism for entries that can be locked down but are not actually locked down must:

- Document the IMPLEMENTATION DEFINED instruction sequences that perform the required invalidation on entries that are not locked down.
- Implement one of the other specified alternatives for the locked entries.

Arm recommends that, when possible, such IMPLEMENTATION DEFINED instruction sequences use the architecturally-defined maintenance instructions. This minimizes the number of customized maintenance operations required.
In addition, an implementation that uses an abort mechanism for handling TLB maintenance instructions on entries that can be locked down but are not actually locked down must also provide a mechanism that ensures that no TLB entries are locked.

Similar rules apply to cache lockdown, see The interaction of cache lockdown with cache maintenance instructions on page G4-5951.

The architecture does not guarantee that any unlocked entry in the TLB remains in the TLB. This means that, as a side-effect of a TLB maintenance instruction, any unlocked entry in the TLB might be invalidated.

Ordering and completion of TLB maintenance instructions

The following rules describe the relations between the memory order model and the TLB maintenance instructions:

- A TLB maintenance instruction is finished for a PE when all memory accesses generated by that PE using in-scope old translation information are complete.

 In-scope old translation information is any translation information that is not consistent with either:

 — The architectural translation information held in the translation tables at the time that the TLB maintenance instruction is executed.

 — Any architecture translation information that is Coherence-after the information held in the translation tables at the time that the TLB maintenance instruction is executed for addresses that are in the scope of the TLB maintenance instruction.

 Note

 Old translation information of this type might be held in TLBs or other non-coherent caching structures.

 A TLB maintenance instruction is complete when it is finished for all PEs.

 After the TLB maintenance instruction is complete, no new memory accesses using the in-scope old translation information will be architecturally performed by any observer that is affected by the TLB maintenance instruction.

 Note

 This requirement does not mean that speculative memory accesses cannot be performed using those entries if it is impossible for software running on any observer to tell that those memory accesses have been performed.

- A TLB maintenance instruction is only guaranteed to be complete after the execution of a DSB instruction.

- An ISB instruction, or a return from an exception, causes the effect of all completed TLB maintenance instructions that appear in program order before the ISB or return from exception to be visible to all subsequent instructions, including the instruction fetches for those instructions.

- An exception causes all completed TLB maintenance instructions, that appear in the instruction stream before the point where the exception is taken, to be visible to all subsequent instructions, including the instruction fetches for those instructions.

- All TLB maintenance instructions are executed in program order relative to each other.

- The execution of a Data or Unified TLB maintenance instruction is only guaranteed to be visible to a subsequent explicit load or store instruction after both:

 — The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

 — Execution of a subsequent Context synchronization event.

- The execution of an Instruction or Unified TLB maintenance instruction is only guaranteed to be visible to a subsequent instruction fetch after both:

 — The execution of a DSB instruction to ensure the completion of the TLB maintenance instruction.

 — Execution of a subsequent Context synchronization event.
In all cases in this section where a DMB or DSB is referred to, it refers to a DMB or DSB whose required access type is both loads and stores. A DSB NSH is sufficient to ensure completion of TLB maintenance instructions that apply to a single PE. A DSB ISH is sufficient to ensure completion of TLB maintenance instructions that apply to PEs in the same Inner Shareable domain.

The following rules apply when writing translation table entries. They ensure that the updated entries are visible to subsequent accesses and cache maintenance instructions.

For TLB maintenance, the translation table walk is treated as a separate observer. This means:

• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by an explicit load or store after the execution of both a DSB and an ISB.

However, the architecture guarantees that any writes to the translation tables are not seen by any explicit memory access that occurs in program order before the write to the translation tables.

• A write to the translation tables is only guaranteed to be seen by a translation table walk caused by the instruction fetch of an instruction that follows the write to the translation tables after both a DSB and an ISB.

Therefore, in a uniprocessor system, an example instruction sequence for writing a translation table entry, covering changes to the instruction or data mappings is:

```
STR rx, [Translation table entry]          ; write new entry to the translation table
DSB            ; ensures visibility of the new entry
Invalidate TLB entry by VA (and ASID if non-global) [page address]
Invalidate BTC
DSB            ; ensure completion of the Invalidate TLB instruction
ISB            ; ensure table changes visible to instruction fetch
```

Use of ASIDs and VMIDs to reduce TLB maintenance requirements

To reduce the need for TLB maintenance on context switches, the lookups from some translation regimes can be associated with an ASID, or with an ASID and a VMID.

Note

The use of ASIDs and VMIDs in VMSAv8-32 is generally similar to their use in VMSAv8-64, see Use of ASIDs and VMIDs to reduce TLB maintenance requirements on page D5-2655.

For more information about the use of ASIDs in VMSAv8-32 see Global and process-specific translation table entries on page G5-6031.

Common not private translations in VMSAv8-32

In an implementation that includes FEAT_TTCNP, multiple PEs in the same Inner Shareable domain can use the same translation table entries for a given stage of address translation in a particular translation regime. This sharing is enabled by the TTBR.CnP field for the stage of address translation.

When the value of a TTBR.CnP field is 1, translation table entries pointed to by that TTBR are shared with all other PEs in the Inner Shareable domain for which the following conditions are met:

• The corresponding TTBR.CnP field has the value 1.

• That TTBR is using the Long-descriptor translation table format.

• If an ASID applies to the stage of translation corresponding to that TTBR then the current ASID value must be the same for all of the PEs that are sharing entries.

• If a VMID applies to the stage of translation corresponding to that TTBR then the current VMID value must be the same for all of the PEs that are sharing entries.
Note

In an implementation that includes EL3, the Secure instances of TTBR0 and TTBR1 relate to the Secure PL1&0 translation regime, and the Non-secure instances of TTBR0 and TTBR1 relate to the Non-secure PL1&0 translation regime.

For a translation regime with both stage 1 and stage 2 translations, where a TLB combines information from stage 1 and stage 2 translation table entries into a single entry, this entry can be shared between different PEs only if the value of the TTBR.CnP bit is 1 for both stage 1 and stage 2 of the translation table walk.

The TTBR.CnP bit can be cached in a TLB.

For a given TTBR, if the value of TTBR.CnP is 1 on multiple PEs in the same Inner Shareable domain, and those PEs meet the other conditions for sharing translation table entries as defined in this section, but those TTBRs do not point to the same translation table entries, then the system is misconfigured, and performing an address translation using that TTBR:

- Might generate multiple hits in the TLB, and as a result generate an exception that is reported using the TLB conflict fault code, see TLB conflict aborts on page G5-6033.
- Otherwise, has a CONSTRAINED UNPREDICTABLE result, as described in CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

G5.9.2 Maintenance requirements on changing System register values

The TLB contents can be influenced by control bits in a number of System registers. This means the TLB entries associated with a translation regime affected by these control bits must be invalidated after any changes to these bits, unless the changes are accompanied by a change to the VMID or ASID, if appropriate depending on the translation regime, that defines the context to which the bits apply. The general form of the required invalidation sequence is as follows:

```plaintext
; Change control bits in System registers
ISB ; Synchronize changes to the control bits
; Perform TLB invalidation of all entries that might be affected by the changed control bits
```

The System register changes that this applies to are:

- Any change to the NMRR, PRRR, MAIR0, MAIR1, HMAIR0 or HMAIR1 registers.
- Any change to the SCTLR.AFE bit, see Changing the Access flag enable on page G5-6041.
- Any change to any of the SCTLR.{TRE, WXN, UWXN} bits.
- Any change to the Translation table base 0 address in TTBR0.
- Any change to the Translation table base 1 address in TTBR1.
- Any change to HTTBR.BADDR.
- Any change to VTTBR.BADDR.
- Changing TTBCR.EAE, see Changing the current Translation table format on page G5-6041.
- In an implementation that includes EL3, any change to the SCR.SIF bit.
- In an implementation that includes EL2:
 - Any change to the HCR.VM bit.
 - Any change to HCR.PTW bit, see Changing HCR.PTW on page G5-6041.
- When using the Short-descriptor translation table format:
 - Any change to the RGN, IRGN, S, or NOS fields in TTBR0 or TTBR1.
 - Any change to the N, EAE, PD0 or PD1 fields in TTBCR
- When using the Long-descriptor translation table format:
 - Any change to the EAE, TrSZ, ORGNn, IRGNn, SHn, or EPDn fields in the TTBCR, where n is 0 or 1.
 - Any change to the TTBCR2.
 - Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the HTCR.
 - Any change to the T0SZ, ORGN0, IRGN0, or SH0 fields in the VTCR.
Changing the Access flag enable

In a PE that is using the Short-descriptor translation table format, it is CONSTRAINED UNPREDICTABLE whether the TLB caches the effect of the SCTLR.AFE bit on translation tables. This means that, after changing the SCTLR.AFE bit software must invalidate the TLB before it relies on the effect of the new value of the SCTLR.AFE bit, otherwise behavior is CONSTRAINED UNPREDICTABLE, see *CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values* on page K1-7945.

--- Note ---

There is no enable bit for use of the Access flag when using the Long-descriptor translation table format.

Changing HCR.PTW

When EL2 is using AArch32 and the value of the Protected table walk bit, HCR.PTW, is 1, a stage 1 translation table access in the Non-secure PL1&0 translation regime, to an address that is mapped to any type of Device memory by its stage 2 translation, generates a stage 2 Permission fault. A TLB associated with a particular VMID might hold entries that depend on the effect of HCR.PTW. Therefore, if the value of HCR.PTW is changed without a change to the VMID value, all TLB entries associated with the current VMID must be invalidated before executing software in a Non-secure PL1 or EL0 mode. If this is not done, behavior is CONSTRAINED UNPREDICTABLE, see *CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values* on page K1-7945.

Changing the current Translation table format

The effect of changing TTBCR.EAE when executing in the translation regime affected by TTBCR.EAE with any stage of address translation for that translation regime enabled is CONSTRAINED UNPREDICTABLE. This means that, when TTBCR.EAE is changed for a given context, the TLB must be invalidated before resuming execution in that context, otherwise the effect is CONSTRAINED UNPREDICTABLE, see *CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values* on page K1-7945.

G5.9.3 Atomicity of register changes on changing virtual machine

From the viewpoint of software executing in a Non-secure PL1 or EL0 mode, when there is a switch from one virtual machine to another, the registers that control or affect address translation must be changed atomically. This applies to the registers for:

- Non-secure PL1&0 stage 1 address translations. This means that all of the following registers must change atomically:
 - PRRR and NMRR, if using the Short-descriptor translation table format.
 - MAIR0 and MAIR1, if using the Long-descriptor translation table format.
 - TTBR0, TTBR1, TTBCR, TTBCR2, DACR, and CONTEXTIDR.
 - The SCTLR.

- Non-secure PL1&0 stage 2 address translations. When EL2 is using AArch32, this means that all of the following registers and register fields must change atomically:
 - VTTBR and VTCR.
 - HMAIR0 and HMAIR1.
 - The HSCTLR.

--- Note ---

Only some bits of SCTLR affect the stage 1 translation, and only some bits of HSCTLR affect the stage 2 translation. However, in each case, changing these bits requires a write to the register, and that write must be atomic with the other register updates.

These registers apply to execution in Non-secure PL1&0 modes. However, when updated as part of a switch of virtual machines they are updated by software executing in Hyp mode. This means the registers are *out of context* when they are updated, and no synchronization precautions are required.
Note
By contrast, a translation table change associated with a change of ASID, made by software executing at PL1, can require changes to registers that are in context. Synchronization of changes of ASID and TTBR describes appropriate precautions for such a change.

Software executing in Hyp mode, or in Secure state, must not use the registers associated with the Non-secure PL1&0 translation regime for speculative memory accesses.

G5.9.4 Synchronization of changes of ASID and TTBR

A common virtual memory management requirement is to change the ASID and TTBR together to associate the new ASID with different translation tables, without any change to the current translation regime. When using the Short-descriptor translation table format, different registers hold the ASID and the translation table base address, meaning these two values cannot be updated atomically. Since a PE can perform a speculative memory access at any time, this lack of atomicity is a problem that software must address. Such a change is complicated by:

- The depth of speculative fetch being IMPLEMENTATION DEFINED.
- The use of branch prediction.

When using the Short-descriptor translation table format, the virtual memory management operations must ensure the synchronization of changes of the ContextID and the translation table registers. For example, some or all of the TLBs, branch predictors, and other caching of ASID and translation information might become corrupt with invalid translations. Synchronization is required to avoid either:

- The old ASID being associated with translation table walks from the new translation tables.
- The new ASID being associated with translation table walks from the old translation tables.

There are a number of possible solutions to this problem, and the most appropriate approach depends on the system. Example G5-3, Example G5-4 on page G5-6043, and Example G5-5 on page G5-6043 describe three possible approaches.

Note
Another instance of the synchronization problem occurs if a branch is encountered between changing the ASID and performing the synchronization. In this case the value in the branch predictor might be associated with the incorrect ASID. Software can address this possibility using any of these approaches, but instead software might be written in a way that avoids such branches.

Example G5-3 Using a reserved ASID to synchronize ASID and TTBR changes

In this approach, a particular ASID value is reserved for use by the operating system, and is used only for the synchronization of the ASID and TTBR. This example uses the value of 0 for this purpose, but any value could be used.

This approach can be used only when the size of the mapping for any given VA is the same in the old and new translation tables.

The maintenance software uses the following sequence, that must be executed from memory marked as global:

Change ASID to 0
ISB
Change TTBR
ISB
Change ASID to new value

This approach ensures that any non-global pages fetched at a time when it is uncertain whether the old or new translation tables are being accessed are associated with the unused ASID value of 0. Since the ASID value of 0 is not used for any normal operations these entries cannot cause corruption of execution.
Example G5-4 Using translation tables containing only global mappings when changing the ASID

A second approach involves switching the translation tables to a set of translation tables that only contain global mappings while switching the ASID.

The maintenance software uses the following sequence, that must be executed from memory marked as global:

Change TTBR to the global-only mappings
ISB
Change ASID to new value
ISB
Change TTBR to new value

This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new ASID value will be used.

This approach works without the need for TLB invalidations in systems that have caching of intermediate levels of translation tables, as described in General TLB maintenance requirements on page G5-6035, provided that the translation tables containing only global mappings have only level 1 translation table entries of the following kinds:

• Entries that are global.
• Pointers to level 2 tables that hold only global entries, and that are the same level 2 tables that are used for accessing global entries by both:
 — The set of translation tables that were used under the old ASID value.
 — The set of translation tables that will be used with the new ASID value.
• Invalid level 1 entries.

In addition, all sets of translation tables in this example should have the same Shareability and Cacheability attributes, as held in the TTBR0.{ORGN, IRGN} or TTBR1.{ORGN, IRGN} fields.

If these rules are not followed, then the implementation might cache level 1 translation table entries that require explicit invalidation.

Example G5-5 Disabling non-global mappings when changing the ASID

In systems where only the translation tables indexed by TTBR0 hold non-global mappings, maintenance software can use the TTBCR.PD0 field to disable use of TTBR0 during the change of ASID. This means the system does not require a set of global-only mappings.

The maintenance software uses the following sequence, that must be executed from a memory region with a translation that is accessed using the base address in the TTBR1 register, and is marked as global:

Set TTBCR.PD0 = 1
ISB
Change ASID to new value
Change TTBR to new value
ISB
Set TTBCR.PD0 = 0

This approach ensures that no non-global pages can be fetched at a time when it is uncertain whether the old or new ASID value will be used.

When using the Long-descriptor translation table format, TTBCR.A1 holds the number, 0 or 1, of the TTBR that holds the current ASID. This means the current TTBR can also hold the current ASID, and the current translation table base address and ASID can be updated atomically when:

• TTBR0 is the only TTBR being used. TTBCR.A1 must be set to 0.
• TTBR0 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 0.
• TTBR1 points to the only translation tables that hold non-global entries, and TTBCR.A1 is set to 1.

In these cases, software can update the current translation table base address and ASID atomically, by updating the appropriate TTBR, and does not require a specific routine to ensure synchronization of the change of ASID and base address.

However, in all other cases using the Long-descriptor format, the synchronization requirements are identical to those when using the Short-descriptor formats, and the examples in this section indicate how synchronization might be achieved.

--- Note ---
When using the Long-descriptor translation table format, CONTEXTIDR.ASID has no significance for address translation, and is only an extension of the Context ID value.

G5.9.5 The scope of TLB maintenance instructions

TLB maintenance instructions provide a mechanism for invalidating entries from TLB caching structures, to ensure that changes to the translation tables are reflected correctly in the TLB caching structures. To support TLB maintenance in multiprocessor systems, there are maintenance operations that apply to the TLBs of all PEs in the same Inner Shareable domain.

The architecture permits the caching of any translation table entry that has been returned from memory without a fault and that does not, itself, cause a Translation Fault, an Address size fault, or an Access Flag fault. This means the TLB:

• Cannot hold an entry that, when used for a translation table lookup, causes a Translation fault, an Address size fault, or an Access Flag fault.
• Can hold an entry for a translation table lookup for a translation that causes a Translation Fault, an Address size fault, or an Access Flag fault at a subsequent level of translation table lookup. For example, it can hold an entry for the level 1 lookup of a translation that causes a Translation fault, an Address size fault, or an Access Flag fault at level 2 or level 3 of lookup.

This means that entries cached in the TLB can include:

• Translation table entries that point to a subsequent table to be used in the current stage of translation.
• In an implementation that includes EL2:
 — Stage 2 translation table entries that are used as part of a stage 1 translation table walk.
 — Stage 2 translation table entries for translating the output address of a stage 1 translation.

Such entries might be held in intermediate TLB caching structures that are distinct from the data caches, in that they are not required to be invalidated as the result of writes of the data. The architecture makes no restriction on the form of these intermediate TLB caching structures.

The architecture does not intend to restrict the form of TLB caching structures used for holding translation table entries. In particular for translation regimes that involve two stages of translation, it recognizes that such caching structures might contain:

• At any level of the translation table walk, entries containing information from stage 1 translation table entries.
• In an implementation that includes EL2:
 — At any level of the translation table walk, entries containing information from stage 2 translation table entries.
 — At any level of the translation table walk, entries combining information from both stage 1 and stage 2 translation table entries.

--- Note ---
For the purpose of TLB maintenance, the term **TLB entry** denotes any structure, including temporary working registers in translation table walk hardware, that holds a translation table entry.
For the TLB maintenance instructions:

- If a TLB maintenance instruction is required to apply to stage 1 entries then it must apply to any cached entry in the caching structures that includes any stage 1 information that would be used to translate the address being invalidated, including any entry that combines information from both stage 1 and stage 2 translation table entries.

______ Note ________

- Where stage 1 information has been cached in multiple TLB entries, as could occur from splintering a page when caching in the TLB, then the invalidation must apply to each cached entry containing stage 1 information from the page that is used to translate the address being invalidated, regardless of whether or not that cached entry would be used to translate the address being invalidated.

- As stated in *Global and process-specific translation table entries on page G5-6031*, translation table entries from levels of translation other than the final level are treated as being non-global. Arm expects that, in at least some implementations, cached copies of levels of the translation table walk other than the last level are tagged with their ASID, regardless of whether the final level is global. This means that TLB invalidations that involve the ASID require the ASID to match such entries to perform the required invalidation.

- If a TLB maintenance instruction is required to apply to stage 2 entries only, then:
 - It is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.
 - It must apply to caching structures that contain information only from stage 2 translation table entries.

- If a TLB maintenance instruction is required to apply to both stage 1 and stage 2 entries, then it must apply to any entry in the caching structures that includes information from either a stage 1 translation table entry or a stage 2 translation table entry, including any entry that combines information from both stage 1 and stage 2 translation table entries.

Table G5-23 on page G5-6046 summarizes the required effect of the AArch32 TLB maintenance instructions, that operate only on TLBs on the PE that executes the instruction. Additional TLB maintenance instructions that:

- Apply across all PEs in the same Inner Shareable domain. Each instruction shown in the table has an Inner Shareable equivalent, identified by an IS suffix. For example, the Inner Shareable equivalent of TLBIALL is TLBIALLIS. See also *EL2 forced broadcasting of TLB maintenance instructions on page G5-6048*.

- Can apply to separate Instruction or Data TLBs. These instructions are indicated by a footnote to the table. Arm deprecates any use of these instructions.

______ Note ________

- The architecture permits a TLB invalidation instruction to affect any unlocked entry in the TLB. Table G5-23 on page G5-6046 defines only the entries that each instruction must invalidate.

- All TLB instructions, including those that operate on a VA match, operate as described regardless of the value of SCTLR.M.

When interpreting the table:

Related operations

- Each instruction description applies also to any equivalent instruction that either:
 - Applies to all PEs in the same Inner Shareable domain.
 - Applies only to a data TLB, or only to an instruction TLB.

So, for example, the TLBIALL instruction description applies also to TLBIALLIS, ITLBIALL, and DTLBIALL.

TLB maintenance system instructions on page K15-8211 lists all of the TLB maintenance instructions.

Matches the VA

- Means the VA argument for the instruction must match the VA value in the TLB entry.
Matches the ASID

Means the ASID argument for the instruction must match the ASID in use when the TLB entry was assigned.

Matches the current VMID

Means the current VMID must match the VMID in use when the TLB entry was assigned. The dependency on the VMID applies even when the value of HCR.VM is 0, including situations where there is no use of virtualization. However, VTTBR.VMID resets to zero, meaning there is a valid VMID from reset.

Execution at EL2

Descriptions of operations at EL2 apply only to implementations that include EL2.

For the definitions of the translation regimes referred to in the table see *About VMSAv8-32* on page G5-5962.

Table G5-23 Effect of the TLB maintenance instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Executed from State</th>
<th>Mode</th>
<th>Effect, must invalidate any entry that matches all stated conditionsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBIALL</td>
<td>Secure</td>
<td>PL1</td>
<td>All entries for the Secure PL1&0 translation regime. That is, all entries that were allocated in Secure state.</td>
</tr>
<tr>
<td></td>
<td>Non-secure</td>
<td>PL1</td>
<td>All entries for stage 1 of the Non-secure PL1&0 translation regime that match the current VMID.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyp</td>
<td>All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime that match the current VMID.</td>
</tr>
<tr>
<td>TLBIMVA</td>
<td>Secure</td>
<td>PL1</td>
<td>Any entry for the Secure PL1&0 translation regime that both:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the VA argument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the ASID argument, or is global.</td>
</tr>
<tr>
<td></td>
<td>Non-secure</td>
<td>PL1 or</td>
<td>Any entry for stage 1 of the Non-secure PL1&0 translation regime to which all of the following apply. The entry:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyp</td>
<td>• Matches the VA argument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the ASID argument, or is global.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the current VMID.</td>
</tr>
<tr>
<td>TLBIASID</td>
<td>Secure</td>
<td>PL1</td>
<td>Any entry for the Secure PL1&0 translation regime that matches the specified ASID and either:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Is from a level of lookup above the final level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Is a non-global entry from the final level of lookup.</td>
</tr>
<tr>
<td></td>
<td>Non-secure</td>
<td>PL1 or</td>
<td>Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyp</td>
<td>• Matches the specified ASID and either:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>— Is from a level of lookup above the final level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>— Is a non-global entry from the final level of lookup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the current VMID.</td>
</tr>
<tr>
<td>TLBIMVA</td>
<td>Secure</td>
<td>PL1</td>
<td>Any entry for the Secure PL1&0 translation regime that matches the VA argument.</td>
</tr>
<tr>
<td></td>
<td>Non-secure</td>
<td>PL1 or</td>
<td>Any entry for stage 1 of the Non-secure PL1&0 translation regime that both:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyp</td>
<td>• Matches the VA argument.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Matches the current VMID.</td>
</tr>
<tr>
<td>TLBIALLNSH</td>
<td>Secure</td>
<td>Monitor</td>
<td>All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime, regardless of the associated VMID.</td>
</tr>
<tr>
<td></td>
<td>Non-secure</td>
<td>Hyp</td>
<td>All entries for stage 1 or stage 2 of the Non-secure PL1&0 translation regime that match the current VMID.</td>
</tr>
</tbody>
</table>
Table G5-23 Effect of the TLB maintenance instructions (continued)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Executed from</th>
<th>Effect, must invalidate any entry that matches all stated conditions<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBIALLH<sup>c</sup></td>
<td>Secure Monitor</td>
<td>All entries for the Non-secure EL2 translation regime. That is, any entry that was allocated in Non-secure state from Hyp mode.</td>
</tr>
<tr>
<td></td>
<td>Non-secure Hyp</td>
<td></td>
</tr>
</tbody>
</table>
| TLBIMVAL | Secure PL1 | Any entry for stage 1 of the Secure PL1&0 translation regime that is from the last level of the translation table walk and both:
• Matches the VA argument.
• Matches the ASID argument, or is global. |
| | Non-secure PL1 or Hyp | Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from the last level of the translation table walk and to which all of the following apply. The entry:
• Matches the VA argument.
• Matches the ASID argument, or is global.
• Matches the current VMID. |
| TLBIMVAAL | Secure PL1 | Any entry for stage 1 of the Secure PL1&0 translation regime that is from the last level of the translation table walk and matches the VA argument. |
| | Non-secure PL1 or Hyp | Any entry for stage 1 of the Non-secure PL1&0 translation regime that is from the last level of the translation table walk and both:
• Matches the VA argument.
• Matches the current VMID. |
| TLBIMVAH^c | Secure Monitor | Any entry for the Non-secure EL2 translation regime that matches the VA argument. |
| | Non-secure Hyp | |
| TLBIMVALH^c | Secure Monitor | Any entry for the Non-secure EL2 translation regime that is from the last level of the translation table walk and matches the VA argument. |
| | Non-secure Hyp | |
| TLBIIPAS2^{c,d} | Secure Monitor^e | Any entry for stage 2 of the PL1&0 translation regime that both:
• Matches the IPA argument.
• Matches the current VMID. |
| | Non-secure Hyp | |
| TLBIIPAS2L^{c,d} | Secure Monitor^e | Any entry for stage 2 of the PL1&0 translation regime that is from the last level of translation and both:
• Matches the IPA argument.
• Matches the current VMID. |
| | Non-secure Hyp | |

^a When a TLB maintenance instruction is executed at Secure EL1 in AArch32 state when EL3 is using AArch64, it only affects TLB entries related to the Secure EL1 translation regime.

^b The architecture defines variants of these instructions that apply only to instruction TLBs, and only to data TLBs. Arm deprecates any use of these variants. For more information, see the referenced description of the operation.

^c Available only in an implementation that includes EL2. See also [EL2 forced broadcasting of TLB maintenance instructions on page G5-6048](#).

^d This instruction is **CONSTRAINED UNPREDICTABLE** if executed in any AArch32 Secure privileged mode, see [Hyp mode TLB maintenance instructions on page K1-7962](#).

^e This instruction executes as a NOP when SCR.NS == 0.
EL2 forced broadcasting of TLB maintenance instructions

In an implementation that includes EL2, when the value of HCR.FB is 1, the TLB maintenance instructions that are not broadcast across the Inner Shareable domain are forced to operate across the Inner Shareable domain when executed in a Non-secure PL1 mode. For example, when the value of HCR.FB is 1, a TLBIMVA instruction executed in a Non-secure PL1 mode performs the same invalidation as the invalidation performed by a TLBIMVAIS instruction.

TLB maintenance with different translation granule sizes

If a TLB maintenance instruction specifying a VA affecting the EL2 translation regime is broadcast from a PE using AArch32 to a PE using AArch64 using a translation granule size that is different from the AArch32 translation granule size for that same translation regime, the TLB maintenance instruction is not required to perform any invalidation on the recipient PE.

If a TLB maintenance instruction specifying a VA affecting the PL1 translation regime is broadcast from a PE using AArch32 using one translation granule size for that translation regime for a particular ASID, VMID (if applicable), and Security state, to a PE using AArch64 where EL1 for the same ASID, VMID (if applicable), and Security state, is using a translation granule size that is different from the AArch32 translation granule size, the TLB maintenance instruction is not required to perform any invalidation on the recipient PE.
The Arm architecture describes the required behavior of an implementation of the architecture. As far as possible it
does not restrict the implemented microarchitecture, or the implementation techniques that might achieve the
required behavior.

Maintaining this level of abstraction is difficult when describing the relationship between memory address
translation and caches, especially regarding the indexing and tagging policy of caches. This section:
• Summarizes the architectural requirements for the interaction between caches and memory translation.
• Gives some information about the likely implementation impact of the required behavior.

The following sections give this information:
• Data and unified caches.
• Instruction caches.

In addition Cache maintenance requirement created by changing translation table attributes on page G5-6051
describes the cache maintenance required after updating the translation tables to change the attributes of an area of
memory.

For more information about cache maintenance see:
• AArch32 cache and branch predictor support on page G4-5929. This section describes the Arm cache
maintenance instructions.
• Cache maintenance system instructions on page K15-8210. This section summarizes the System register
encodings used for these operations when executing in AArch32 state.

G5.10.1 Data and unified caches

For data and unified caches, the use of memory address translation is entirely transparent to any data access other
than as described in Mismatched memory attributes on page E2-4060.

This means that the behavior of accesses from the same observer to different VAs, that are translated to the same PA
with the same memory attributes, is fully coherent. This means these accesses behave as follows, regardless of
which VA is accessed:
• Two writes to the same PA occur in program order.
• A read of a PA returns the value of the last successful write to that PA.
• A write to a PA that occurs, in program order, after a read of that PA, has no effect on the value returned by
that read.

The memory system behaves in this way without any requirement to use barrier or cache maintenance instructions.
In addition, if cache maintenance is performed on a memory location, the effect of that cache maintenance is visible
to all aliases of that physical memory location.

These properties are consistent with implementing all caches that can handle data accesses as Physically-indexed,
physically-tagged (PIPT) caches.

G5.10.2 Instruction caches

In the Arm architecture, an instruction cache is a cache that is accessed only as a result of an instruction fetch.
Therefore, an instruction cache is never written to by any load or store instruction executed by the PE.

The Arm architecture permits different behaviors for instruction caches. These are identified by descriptions of the
associated expected implementation. The following subsections describe the behavior associated with these cache
types, including any occasions where explicit cache maintenance is required to make the use of memory address
translation transparent to the instruction cache:
• P IPT (Physically-indexed, physically-tagged) instruction caches on page G5-6050.
• VPIPT (VMID-aware PIPT) instruction caches on page G5-6050.
• VIPT (Virtually-indexed, physically-tagged) instruction caches on page G5-6050.
The IVIPT Extension on page G5-6051.

In AArch32 state, the CTR.L1Ip field identifies the form of the instruction caches.

Note

For software to be portable between implementations that might use any of PIPT instruction caches, VPIPT instruction caches, or VIPT instruction caches, software must invalidate the instruction cache whenever any condition occurs that would require instruction cache maintenance for at least one of the instruction cache types.

PIPT (Physically-indexed, physically-tagged) instruction caches

For a PIPT instruction cache:

- The use of memory address translation is entirely transparent to all instruction fetches other than as described in Mismatched memory attributes on page E2-4060.
- If cache maintenance is performed on a memory location, the effect of that cache maintenance is visible to all aliases of that physical memory location.

An implementation that provides PIPT instruction caches implements the IVIPT Extension, see The IVIPT architecture Extension on page G5-6051.

VPIPT (VMID-aware PIPT) instruction caches

An Armv8.2 implementation can implement VPIPT instruction caches. If it does so then it is described as implementing FEAT_VPIPT.

The CTR.L1Ip field identifies the implemented cache type, meaning it identifies whether FEAT_VPIPT is implemented.

For a VPIPT instruction cache:

- Instruction fetches from Non-secure EL1 and Non-secure EL0 are only permitted to hit in the cache if the instruction fetch is made using the VMID that was used when the entry in the instruction cache was fetched.
- An instruction cache maintenance instruction executed at Non-secure EL0 or at Non-secure EL1 is required to have an effect on entries in the instruction cache only if those entries were fetched using the VMID that is current when the cache maintenance instruction is executed.

All other requirements for the use of cache maintenance instructions are the same as for PIPT (Physically-indexed, physically-tagged) instruction caches.

An implementation that provides VPIPT instruction caches implements the IVIPT Extension, see The IVIPT architecture Extension on page G5-6051.

VIPT (Virtually-indexed, physically-tagged) instruction caches

For a VIPT instruction cache:

- The use of memory address translation is transparent to all instruction fetches other than for the effect of memory address translation on instruction cache invalidate by address operations or as described in Mismatched memory attributes on page E2-4060.

Note

Cache invalidation is the only cache maintenance instruction that can be performed on an instruction cache.

- If instruction cache invalidation by address is performed on a memory location, the effect of that invalidation is visible only to the VA supplied with the operation. The effect of the invalidation might not be visible to any other VA aliases of that physical memory location.
The only architecturally-guaranteed way to invalidate all aliases of a PA from a VIPT instruction cache is to invalidate the entire instruction cache.

An implementation that provides VIPT instruction caches implements the IVIPT Extension, see *The IVIPT architecture Extension*.

The IVIPT architecture Extension

In Armv8, any permitted instruction cache implementation can be described as implementing the *IVIPT Extension* to the Arm architecture.

The formal definition of the Arm IVIPT Extension is that it reduces the instruction cache maintenance requirement to the following condition:

- Instruction cache maintenance is required only after writing new data to a PA that holds an instruction.

Note

Previous versions of the Arm architecture have permitted an instruction cache option that does not implement the Arm IVIPT Extension.

G5.10.3 Cache maintenance requirement created by changing translation table attributes

Any change to the translation tables to change the attributes of an area of memory can require maintenance of the translation tables, as described in *General TLB maintenance requirements on page G5-6035*. If the change affects the cacheability attributes of the area of memory, including any change between Write-Through and Write-Back attributes, software must ensure that any cached copies of affected locations are removed from the caches, typically by cleaning and invalidating the locations from the levels of cache that might hold copies of the locations affected by the attribute change. Any of the following changes to the inner cacheability or outer cacheability attribute creates this maintenance requirement:

- Write-Back to Write-Through.
- Write-Back to Non-cacheable.
- Write-Through to Non-cacheable.
- Write-Through to Write-Back.

The cache clean and invalidate avoids any possible coherency errors caused by mismatched memory attributes.

Similarly, to avoid possible coherency errors caused by mismatched memory attributes, the following sequence must be followed when changing the Shareability attributes of a cacheable memory location:

1. Make the memory location Non-cacheable, Outer Shareable.
2. Clean and invalidate the location from them cache.
3. Change the Shareability attributes to the required new values.
G5.11 VMSAv8-32 memory aborts

In a VMSAv8-32 implementation, the following mechanisms cause a PE to take an exception on a failed memory access:

Debug exception An exception caused by the debug configuration, see Chapter G2 AArch32 Self-hosted Debug.

Alignment fault An Alignment fault is generated if the address used for a memory access does not have the required alignment for the operation. For more information see Unaligned data access on page E2-4044 and Alignment faults on page G5-6060.

MMU fault An MMU fault is a fault generated by the fault checking sequence for the current translation regime. See Types of MMU faults on page G5-6053.

External abort Any memory system fault other than a Debug exception, an Alignment fault, or an MMU fault.

Collectively, these mechanisms are called aborts. Chapter G2 AArch32 Self-hosted Debug and Chapter H3 Halting Debug Events describe Debug exceptions, and the remainder of this section describes Alignment faults, MMU faults, and External aborts.

An access that causes an abort is said to be aborted, and uses the Fault Address Registers (FARs) and Fault Status Registers (FSRs) or Exception Syndrome Registers (ESRs) to record context information.

The exception generated on a synchronous memory abort:
• On an instruction fetch is called the Prefetch Abort exception.
• On a data access is called the Data Abort exception.

Note
The Prefetch Abort exception applies to any synchronous memory abort on an instruction fetch. It is not restricted to speculative instruction fetches.

The Exception level and PE mode that a VMSAv8-32 memory abort is taken to depends on the translation regime and stage that generate the abort. The fault context is dependent on whether:
• The abort is reported as a Prefetch Abort or as a Data Abort.
• The exception is taken from the same or a lower Exception level.

Note
A memory access from AArch32 state may be subject to one or more VMSAv8-64 translation stages. For example, a Non-secure EL0 access when EL1 is using AArch64 is subject to both stages of the VMSAv8-64 Non-secure EL1&0 translation regime. A memory abort generated on a VMSAv8-64 translation stage is handled as described in VMSAv8-64 memory aborts on page D5-2645.

For more information, see Routing of aborts taken to AArch32 state on page G1-5762.

External aborts can be reported synchronously or asynchronously. Asynchronous External aborts are reported using the SError interrupt. For more information, see External aborts on page G4-5954.

In AArch32 state, asynchronous memory aborts are a type of External abort, and are treated as a type of Data Abort exception.

The following sections describe the abort mechanisms:
• Types of MMU faults on page G5-6053.
• VMSAv8-32 MMU fault terminology on page G5-6055.
• The MMU fault-checking sequence on page G5-6056.
• Alignment faults on page G5-6060.
• External abort on a translation table walk on page G5-6060.
• AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.

An access that causes an abort is said to be aborted. On an abort, System registers are used to record context information. For more information see Exception reporting in a VMSAv8-32 implementation on page G5-6064.

G5.11 Types of MMU faults

This section describes the faults that might be detected during one of the fault-checking sequences described in The MMU fault-checking sequence on page G5-6056. Unless indicated otherwise, information in this section applies to the fault checking sequences for both the Short-descriptor translation table format and the Long-descriptor translation table format.

MMU faults are always synchronous.

When an MMU fault generates an abort for a region of memory, no memory access is made if that region is or could be marked as any type of Device memory.

The MMU faults that might be detected during a fault checking sequence are:

• Permission fault.
• Translation fault.
• Address size fault.
• Access flag fault.
• Domain fault, short-descriptor translation tables only.
• TLB conflict abort.

See also External abort on a translation table walk on page G5-6060.

___ Note ___

• Although the TLB conflict abort is classified as an MMU fault, it is described in the section Translation Lookaside Buffers (TLBs) on page G5-6031.

• In VMSAv8-64 an External abort on a translation table walk is classified as an MMU fault. However, in VMSAv8-32, for consistency with earlier versions of the architecture these aborts are not classified as MMU faults.

___ Permission fault ___

A Permission fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. See About access permissions on page G5-6008 for information about conditions that cause a Permission fault.

___ Note ___

When using the Short-descriptor translation table format, the translation table descriptors are checked for Permission faults only for accesses to memory regions in Client domains.

A TLB might hold a translation table entry that cause a Permission fault. Therefore, if the handling of a Permission fault results in an update to the associated translation tables, the software that updates the translation tables must invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent memory access. For more information, see the translation table entry update examples in Ordering and completion of TLB maintenance instructions on page G5-6038.

In an implementation that includes EL2, this maintenance requirement applies to Permission faults in both stage 1 and stage 2 translations.

Cache or branch predictor maintenance operations cannot cause a Permission fault, except that a stage 1 translation table walk performed as part of a cache or branch predictor maintenance operation can generate a stage 2 Permission fault as described in Stage 2 fault on a stage 1 translation table walk.
Translation fault

A Translation fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. A Translation fault is generated if bits[1:0] of a translation table descriptor identify the descriptor as either a Fault encoding or a reserved encoding. For more information see:

- VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5980.
- VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5989.

In addition, a Translation fault is generated if the input address for a translation either does not map onto an address range of a TTBR, or the TTBR range that it maps onto is disabled. In these cases the fault is reported as a level 1 Translation fault on the translation stage at which the mapping to a region described by a TTBR failed.

The architecture guarantees that any translation table entry that causes a Translation fault is not cached, meaning the TLB never holds such an entry. Therefore, when a Translation fault occurs, the fault handler does not have to perform any TLB maintenance instructions to remove the faulting entry.

A data or unified cache maintenance by VA instruction can generate a Translation fault. However:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or unified cache maintenance by VA to the Point of Coherency instruction can generate a Translation fault.
- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate a Translation fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate a Translation fault.

Address size fault

An Address size fault can be generated at any level of lookup, and the reported fault code identifies the lookup level.

An Address size fault is generated if the translation table entries or the TTBR for the stage of translation have nonzero address bits above the most significant bit of the maximum output address size. Because VMSAv8-32 supports a maximum PA and IPA size of 40 bits, this means any case where a translation table entry or the TTBR holds an address for which A[47:40] is nonzero generates an Address size fault.

A data or unified cache maintenance by VA instruction can generate an Address size fault. However:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a data or unified cache maintenance by VA instruction can generate an Address size fault.
- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether an instruction cache invalidate by VA operation can generate an Address size fault.

It is IMPLEMENTATION DEFINED whether a branch predictor maintenance operation can generate an Address size fault.

The architecture guarantees that any translation table entry that causes an Address size fault is not cached, meaning the TLB never holds such an entry. Therefore, when an Address size fault occurs, the fault handler does not have to perform any TLB maintenance instructions to remove the faulting entry.

Access flag fault

An Access flag fault can be generated at any level of lookup, and the reported fault code identifies the lookup level. An Access flag fault is generated only if all of the following apply:

- The translation tables support an Access flag bit:
 - The Short-descriptor format supports an Access flag only when SCTLR.AFE is set to 1.
 - The Long-descriptor format always supports an Access flag.
• A translation table descriptor with the Access flag bit set to 0 is loaded.

For more information about the Access flag bit see:
• VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5980
• VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5989.

The architecture guarantees that any translation table entry that causes an Access flag fault is not cached, meaning the TLB never holds such an entry. Therefore, when an Access flag fault occurs, the fault handler does not have to perform any TLB maintenance instructions to remove the faulting entry.

Whether any cache maintenance instruction by VA can generate Access flag faults is IMPLEMENTATION DEFINED.

Whether branch predictor invalidate by VA operations can generate Access flag faults is IMPLEMENTATION DEFINED.

For more information, see The Access flag on page G5-6016.

Domain fault, Short-descriptor format translation tables only

When using the Short-descriptor translation table format, a Domain fault can be generated at level 1 or level 2 of lookup. The reported fault code identifies the lookup level. The conditions for generating a Domain fault are:

Level 1
When a level 1 descriptor fetch returns a valid Section level 1 descriptor, the domain field of that descriptor is checked against the DACR. A level 1 Domain fault is generated if this check fails.

Level 2
When a level 2 descriptor fetch returns a valid level 2 descriptor, the domain field of the level 1 descriptor that required the level 2 fetch is checked against the DACR, and a level 2 Domain fault is generated if this check fails.

For more information, see Domains, Short-descriptor format only on page G5-6016.

Domain faults cannot occur on cache or branch predictor maintenance operations.

A TLB might hold a translation table entry that cause a Domain fault. Therefore, if the handling of a Domain fault results in an update to the associated translation tables, the software that updates the translation tables must invalidate the appropriate TLB entry, to prevent the stale information in the TLB being used on a subsequent memory access. For more information, see the translation table entry update examples in Ordering and completion of TLB maintenance instructions on page G5-6038.

Any change to the DACR must be synchronized by a Context synchronization event. For more information see Synchronization of changes to AArch32 System registers on page G8-6138.

G5.11.2 VMSAv8-32 MMU fault terminology

The Armv7 Large Physical Address Extension introduced new terminology for faults on a stage of address translation, to provide consistent terminology across all implementations. Table G5-24 shows the terminology used in this manual for an MMU faults, compared with older Arm documentation. The current terms are the same for faults that occur with the Short-descriptor translation table format and with the Long-descriptor format, and also apply to faults in a level 3 lookup when using the Long-descriptor translation table format.

<table>
<thead>
<tr>
<th>Current term</th>
<th>Old term</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 Translation fault</td>
<td>Section Translation fault</td>
<td></td>
</tr>
<tr>
<td>Level 2 Translation fault</td>
<td>Page Translation fault</td>
<td></td>
</tr>
<tr>
<td>Level 3 Translation fault</td>
<td>-</td>
<td>Long-descriptor translation table format only.</td>
</tr>
<tr>
<td>Level 1 Access flag fault</td>
<td>Section Access flag fault</td>
<td></td>
</tr>
<tr>
<td>Level 2 Access flag fault</td>
<td>Page Access flag fault</td>
<td></td>
</tr>
<tr>
<td>Level 3 Access flag fault</td>
<td>-</td>
<td>Long-descriptor translation table format only.</td>
</tr>
</tbody>
</table>
In an implementation that includes EL2, MMU faults are also classified by the translation stage at which the fault is generated. This means that a memory access from a Non-secure PL1 or EL0 mode can generate:

- A stage 1 MMU fault, for example, a stage 1 Translation fault.
- A stage 2 MMU fault, for example, a stage 2 Translation fault.

G5.11.3 The MMU fault-checking sequence

This section describes the MMU checks made for the memory accesses required for instruction fetches and for explicit memory accesses:

- If an instruction fetch faults it generates a Prefetch Abort exception.
- If an data memory access faults it generates a Data Abort exception.

For more information about Prefetch Abort exceptions and Data Abort exceptions see [Handling exceptions that are taken to an Exception level using AArch32](#) on page G1-5743.

In VMSAv8-32, all memory accesses require VA to PA translation. Therefore, when a corresponding stage of address translation is enabled, each access requires a lookup of the translation table descriptor for the accessed VA. For more information, see [Translation tables](#) on page G5-5974 and subsequent sections of this chapter. MMU fault checking is performed for each level of translation table lookup. If an implementation includes EL2 and is operating in Non-secure state, MMU fault checking is performed for each stage of address translation.

Note

In an implementation that includes EL2, if a PE is executing in Non-secure state, the operating system or similar Non-secure system software defines the stage 1 translation tables in the IPA address map, and typically is unaware of the stage 2 translation from IPA to PA. However, each Non-secure stage 1 translation table access is subject to stage 2 address translation, and might be faulted at that stage.

The MMU fault checking sequence is largely independent of the translation table format, as the figures in this section show. The differences are:

When using the Short-descriptor format

- There are one or two levels of lookup.
- Lookup always starts at level 1.
- The final level of lookup checks the Domain field of the descriptor and:
 - Faults if there is no access to the Domain.
 - Checks the access permissions only for Client domains.

When using the Long-descriptor format

- There are one, two, or three levels of lookup.
- Lookup starts at either level 1 or level 2.
- Domains are not supported. All accesses are treated as Client domain accesses.
The fault-checking sequence shows a translation from an Input address to an Output address. For more information about this terminology, see About address translation for VMSAv8-32 on page G5-5965.

--- Note ---

The descriptions in this section do not include the possibility that the attempted address translation generates a TLB conflict abort, as described in TLB conflict aborts on page G5-6033.

Types of MMU faults on page G5-6053 describes the faults that an MMU fault-checking sequence can report.

Figure G5-15 shows the process of fetching a descriptor from the translation table. For the top-level fetch for any translation, the descriptor is fetched only if the input address passes any required alignment check. As the figure shows, in an implementation that includes EL2, if the translation is stage 1 of the Non-secure PL1&0 translation regime, then the descriptor address is in the IPA address map, and is subject to a stage 2 translation to obtain the required PA. This stage 2 translation requires a recursive entry to the fault checking sequence.

--- Note ---

Figure G5-15 and Figure G5-16 on page G5-6058 give an overview of the fault checking performed by the MMU. See AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061 for the complete set of possible faults and their prioritization.

--- Figure G5-15 Fetching the descriptor in a VMSAv8-32 translation table walk ---

Figure G5-16 on page G5-6058 shows the full VMSAv8-32 fault checking sequence, including the alignment check on the initial access.
Figure G5-16 VMSAv8-32 fault checking sequence
Stage 2 fault on a stage 1 translation table walk

When an implementation that includes EL2 is operating in a Non-secure PL1 or EL0 mode, any memory access goes through two stages of translation:

- Stage 1, from VA to IPA.
- Stage 2, from IPA to PA.

Note

In a virtualized system that is using AArch32, typically, a Guest OS operating in a Non-secure PL1 mode defines the translation tables and translation table register entries controlling the Non-secure PL1&0 stage 1 translations. A Guest OS has no awareness of the stage 2 address translation, and therefore believes it is specifying translation table addresses in the PA map. However, it actually specifies these addresses in its IPA map. Therefore, to support virtualization, translation table addresses for the Non-secure PL1&0 stage 1 translations are always defined in the IPA address map.

On performing a translation table walk for the stage 1 translations, the descriptor addresses must be translated from IPA to PA, using a stage 2 translation. This means that a memory access made as part of a stage 1 translation table lookup might generate, on a stage 2 translation:

- A Translation fault, Access flag fault, or Permission fault.
- A synchronous External abort on the memory access.

If SCR.EA is set to 1, a synchronous External abort is taken to EL3, and if EL3 is using AArch32 it is taken to Secure Monitor mode. Otherwise, these faults are reported as stage 2 memory aborts. When EL2 is using AArch32, HSR.ISS[7] is set to 1, to indicate a stage 2 fault during a stage 1 translation table walk, and the part of the ISS field that might contain details of the instruction is invalid. For more information see Use of the HSR on page G5-6078.

Alternatively, a memory access made as part of a stage 1 translation table lookup might target an area of memory with the Device memory attribute assigned on the stage 2 translation of the address accessed. When the value of the HCR.PTW bit is 1, such an access generates a stage 2 Permission fault.

Note

On most systems, such a mapping to a Device memory type on the stage 2 translation is likely to indicate a Guest OS error, where the stage 1 translation table is corrupted. Therefore, it is appropriate to trap this access to the hypervisor.

A TLB might hold entries that depend on the effect of HCR.PTW. Therefore, if HCR.PTW is changed without changing the current VMID, the TLBs must be invalidated before executing in a Non-secure PL1 or EL0 mode. For more information see Changing HCR.PTW on page G5-6041.

A cache maintenance instruction executed at Non-secure PL1 can cause a stage 1 translation table walk that might generate a stage 2 Permission fault, as described in this section. However:

- If the Point of Coherency is before any level of cache, it is IMPLEMENTATION DEFINED whether a cache maintenance by VA instruction can generate a Permission fault in this way.
- If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether a data or unified cache clean by VA to the Point of Unification instruction can generate a Permission fault in this way.

Note

This is an exception to the general rule that a cache maintenance instruction cannot generate a Permission fault.
The level associated with MMU faults

When an MMU fault is from a stage of translation that is using Long-descriptor translation table format, Table G5-25 shows how the LL bits in the STATUS field of DFSR, IFSR, and HSR encode the lookup level associated with the fault.

Table G5-25 Use of LL bits to encode the lookup level at which the fault occurred

<table>
<thead>
<tr>
<th>LL bits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Level 0 of translation or translation table base register.</td>
</tr>
<tr>
<td>01</td>
<td>Level 1.</td>
</tr>
<tr>
<td>10</td>
<td>Level 2.</td>
</tr>
<tr>
<td>11</td>
<td>Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.</td>
</tr>
</tbody>
</table>

The lookup level associated with a fault is:

- For a fault generated on a translation table walk, the lookup level of the walk being performed.
- For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because a stage of address translation is disabled, or because the input address is outside the range specified by the appropriate base address register or registers, the fault is reported as a level 1 fault.
- For an Access flag fault, the lookup level of the translation table that gave the fault.
- For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of the final level of translation table accessed for the translation. That is, the lookup level of the translation table that returned a Block or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures on page G5-6063.

G5.11.4 Alignment faults

The Arm memory architecture requires support for strict alignment checking. This checking is controlled by:

- SCTLR.A, for accesses made from any PE mode other than Hyp mode.
- HSCTLR.A, for accesses made from Hyp mode.

In addition, some instructions do not support unaligned accesses, regardless of the value of SCTLR.A or HSCTLR.A.

Unaligned data access on page E2-4044:

- Defines when Alignment faults are generated, for both values of SCTLR.A or HSCTLR.A.
- Describes the possible generation of Alignment faults on accesses to Device memory by AArch32 Load Multiple or Store Multiple instructions when FEAT_LSMAOC is implemented.

An Alignment fault can occur on an access for which the stage of address translation is disabled. Any unaligned access to memory region with any Device memory type attribute generates an Alignment fault.

Routing of aborts taken to AArch32 state on page G1-5762 defines the mode to which an Alignment fault is taken.

The prioritization of Alignment faults depends on whether the fault was generated because of an access to a Device memory type, or for another reason. For more information see AArch32 state prioritization of synchronous aborts from a single stage of address translation on page G5-6061.

G5.11.5 External abort on a translation table walk

An External abort on a translation table walk can be either synchronous or asynchronous. For more information on External aborts, see External aborts on page G4-5954.
An External abort on a translation table walk is reported:

- If the External abort is synchronous, using:
 - A synchronous Prefetch Abort exception if the translation table walk is for an instruction fetch.
 - A synchronous Data Abort exception if the translation table walk is for a data access.

- If the External abort is asynchronous, using an SError interrupt, which is taken as an asynchronous Data Abort exception.

If an implementation reports the error in the translation table walk asynchronously from executing the instruction whose instruction fetch or memory access caused the translation table walk, these aborts behave essentially as interrupts. The aborts are masked when PSTATE.A is set to 1, otherwise they are reported using the Data Abort exception.

Behavior of External aborts on a translation table walk caused by address translation instructions

The address translation instructions summarized in Address translation system instructions on page K15-8210 require translation table walks. An External abort can occur in the translation table walk. The abort generates a Data Abort exception, and can be synchronous or asynchronous. For more information, see Handling of faults and aborts during an address translation instruction on page G5-6087.

G5.11.6 AArch32 state prioritization of synchronous aborts from a single stage of address translation

Note

The priority numbering in this list only shows the relative priorities of aborts from a single stage of address translation in a VMSAv8-32 translation regime. This numbering has no global significance and, for example, does not correlate with the equivalent AArch64 list in AArch64 state prioritization of synchronous aborts from a single stage of address translation on page D5-2652.

For a single stage of translation in a VMSAv8-32 translation regime, the following numbered list shows the priority of the possible memory management faults on a memory access. In this list:

- For memory accesses that undergo two stages of translation, the italic entries show where the faults from the stage 2 translation can occur. A stage 2 fault within a stage 1 translation table walk follows the same prioritization of faults.

- For synchronous External aborts from translation table walks see also Synchronous External abort errors from address translation caching structures on page G5-6063.

The priority order, from highest priority to lowest priority, is:

1. Alignment fault not caused by memory type. This is possible for a stage 1 translation only.
2. Translation fault due to the input address being out of the address range to be translated or requiring an AArch32 TTBR that is disabled. This includes VTCR.SL0 being inconsistent with VTCR.T0SZ or programmed to a reserved value.
3. Address size fault on an AArch32 TTBR caused by the PA being out of the range implemented.
4. Second stage abort on a level 1 lookup of a stage 1 table walk. When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.
5. Synchronous parity or ECC error on a level 1 lookup of a translation table walk.
6. Synchronous External abort on a level 1 lookup level of a translation table walk.
7. Translation fault on a level 1 translation table entry.
8. Address size fault on a level 1 lookup translation table entry caused by the output address being out of the range implemented.
9. Second stage abort on a level 2 lookup of a a stage 1 table walk. When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.
10. Synchronous parity or ECC error on a level 2 lookup of a translation table walk.
11. Synchronous External abort on a level 2 lookup level of a translation table walk.
12. Translation fault on a level 2 translation table entry.
13. Address size fault on a level 2 lookup translation table entry caused by the output address being out of the range implemented.
14. Second stage abort on a level 3 lookup of a a stage 1 table walk. When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented. This is second stage abort during a first stage translation table walk.
15. Synchronous parity or ECC error on a level 3 lookup of a translation table walk.
16. Synchronous External abort on a level 3 lookup level of a translation table walk.
17. Translation fault on a level 3 translation table entry.
18. Address size fault on a level 3 lookup translation table entry caused by the output address being out of the range implemented.
19. Access Flag fault.
20. Alignment fault caused by the memory type.

Note

Domain faults are possible only when using the VMSA v8-32 Short-descriptor translation table format, see Domain fault, Short-descriptor format translation tables only on page G5-6055.

22. Permission fault.
23. A fault from the stage 2 translation of the memory access. When stage 2 address translation is enabled this includes an Address size fault caused by the PA being out of the range implemented.
24. Synchronous parity or ECC error on the memory access.
25. Synchronous External abort on the memory access.

Note

• The prioritization of TLB Conflict aborts is IMPLEMENTATION DEFINED, as the exact cause of these aborts depends on the form of TLBs implemented. However, the TLB conflict abort must have higher priority than any abort that depends on a value held in the TLB.
• The prioritization of IMPLEMENTATION DEFINED MMU faults for a Load-Exclusive or Store-Exclusive to an unsupported memory type is IMPLEMENTATION DEFINED.

See also The MMU fault-checking sequence on page G5-6056.
Synchronous External abort errors from address translation caching structures

A caching structure used for caching translation table walks might support:

- An arbitrary number of levels of translation table lookup.
- One or more stages of translation, that might not correspond to the stages of an address translation lookup.

This might mean that, on a synchronous External abort arising from the caching structure, such as from a parity or ECC error, the PE cannot precisely determine one or both of the translation stage and level of lookup at which the error occurred. In this case:

- If the PE cannot determine precisely the translation stage at which the error occurred, it is reported and prioritized as a stage 1 error.
- If the PE cannot determine precisely the lookup level at which the error occurred, the level is reported and prioritized as either:
 - The lowest-numbered level that could have given rise to the error.
 - Level 1 if it the PE cannot determine any information about the level.
G5.12 Exception reporting in a VMSAv8-32 implementation

This section describes exception reporting, in AArch32 state, in a VMSAv8-32 implementation. That is, it describes only the reporting of exceptions that are taken to an Exception level that is using AArch32. EL2 provides an enhanced reporting mechanism for exceptions taken to the Non-secure EL2 mode, Hyp mode. This means that, for VMSAv8-32, the exception reporting depends on the mode to which the exception is taken.

Note
The enhanced reporting mechanism for exceptions that are taken to Hyp mode is generally similar to the reporting of exceptions that are taken to an Exception level that is using AArch64.

About exception reporting
introduces the general approach to exception reporting, and the following sections then describe exception reporting at different privilege levels:

• Reporting exceptions taken to PL1 modes on page G5-6065.
• Fault reporting in PL1 modes on page G5-6068.
• Summary of register updates on faults taken to PL1 modes on page G5-6073.
• Reporting exceptions taken to Hyp mode on page G5-6074.
• Use of the HSR on page G5-6078.
• Summary of register updates on exceptions taken to Hyp mode on page G5-6081.

Note
The registers used for exception reporting also report information about debug exceptions. For more information see:

• Data Abort exceptions, taken to a PL1 mode on page G5-6066.
• Prefetch Abort exceptions, taken to a PL1 mode on page G5-6068.
• Reporting exceptions taken to Hyp mode on page G5-6074.

G5.12.1 About exception reporting

In an implementation that includes EL2 and EL3, exceptions can be taken to:

• Monitor mode, if EL3 is using AArch32.
• Hyp mode, if EL2 is using AArch32.
• A Secure or Non-secure PL1 mode.

Monitor mode is a PL1 mode, but:

• It is accessible only when EL3 is using AArch32.
• It is present only in Secure state.
• When EL3 is using AArch32, System register controls route some exceptions from Non-secure state to Monitor mode. These are the only cases where taking an exception to an Exception level that is using AArch32 changes the Security state of the PE.

Exception reporting in Hyp mode differs significantly from that in the other modes, but in general, exception reporting returns:

• Information about the exception:
 — On taking an exception to Hyp mode, the Hyp Syndrome Register, HSR, returns syndrome information.
 — On taking an exception to any other mode, a Fault Status Register (FSR) returns status information.
• For synchronous exceptions, one or more addresses associated with the exceptions, returned in Fault Address Registers (FARs). For a permitted exception to this requirement see Fault address reporting on synchronous External aborts on page G5-6065.

In all modes, additional IMPLEMENTATION DEFINED registers can provide additional information about exceptions.
Note

- **PE mode for taking exceptions** on page G1-5753 describes how the mode to which an exception is taken is determined.
- **EL2 provides**:
 - Specific exception types, that can only be taken from Non-secure PL1 and EL0 modes, and are always taken to Hyp mode.
 - Routing controls that can route some exceptions from Non-secure PL1 and EL0 modes to Hyp mode.

These exceptions are reported using the same mechanism as the Hyp mode reporting of VMSAv8-32 memory aborts, as described in this section.

Memory system faults generate either a Data Abort exception or a Prefetch Abort exception, as summarized in:
- **Reporting exceptions taken to PL1 modes**.
- **Memory fault reporting in Hyp mode** on page G5-6076.

On an access that might have multiple aborts, the MMU fault checking sequence and the prioritization of aborts determine which abort occurs. For more information, see **The MMU fault-checking sequence** on page G5-6056 and **AArch32 state prioritization of synchronous aborts from a single stage of address translation** on page G5-6061.

Fault address reporting on synchronous External aborts

The general architectural requirement is that, on a synchronous abort, the faulting address is recorded in a **Fault Address Register** (FAR). This requirement is relaxed for the case of a synchronous External abort that is not a synchronous External abort on a translation table walk. In this case only:
- **It is IMPLEMENTATION DEFINED** whether the faulting address is recorded in a FAR.
- A bit in a fault reporting register, the FnV bit, indicates whether a valid address is recorded.

For exceptions taken to an Exception level that is using AArch32, the details of this reporting depend on whether the exception is taken to:
- A PL1 mode, as described in **Reporting exceptions taken to PL1 modes**.
- Hyp mode, as described in **Reporting exceptions taken to Hyp mode** on page G5-6074.

G5.12.2 Reporting exceptions taken to PL1 modes

The following sections give general information about the reporting of exceptions when they are taken to a Secure or Non-secure PL1 mode:
- **Registers used for reporting exceptions taken to PL1 modes**.
- **Data Abort exceptions, taken to a PL1 mode** on page G5-6066.
- **Prefetch Abort exceptions, taken to a PL1 mode** on page G5-6068.

Fault reporting in PL1 modes on page G5-6068 then describes the fault reporting in these modes, including the encodings used for reporting the faults.

Note

Security state, Exception levels, and AArch32 execution privilege on page G1-5722 describes how the Secure and Non-secure PL1 modes map onto the Exception levels.

Registers used for reporting exceptions taken to PL1 modes

AArch32 state defines the following registers, and register encodings, for exceptions taken to PL1 modes:
- **The DFSR** holds information about a Data Abort exception.
- **The DFAR** holds the faulting address for some synchronous Data Abort exceptions.
- **The IFSR** holds information about a Prefetch Abort exception.
- **The IFAR** holds the faulting address for some synchronous Prefetch Abort exceptions.
In addition, if implemented, the optional ADFSR and AIFSR can provide additional fault information, see **Auxiliary Fault Status Registers**.

Auxiliary Fault Status Registers

AArch32 state defines the following Auxiliary Fault Status Registers:

- The Auxiliary Data Fault Status Register, ADFSR.
- The Auxiliary Instruction Fault Status Register, AIFSR.

The position of these registers is architecturally-defined, but the content and use of the registers is **IMPLEMENTATION DEFINED**. An implementation can use these registers to return additional fault status information. An example use of these registers is to return more information for diagnosing parity or ECC errors.

An implementation that does not need to report additional fault information must implement these registers as RES0. This ensures that an attempt to access these registers from software executing at PL1 does not cause an Undefined Instruction exception.

Data Abort exceptions, taken to a PL1 mode

On taking a Data Abort exception to a PL1 mode:

- If the exception is on an instruction cache or branch predictor maintenance operation by VA, its reporting depends on the value of TTBCR.EAE. For more information about the registers used when reporting the exception, see *Data Abort on an instruction cache or branch predictor maintenance instruction by VA* on page G5-6067.

- Otherwise, the DFSR is updated with details of the fault, including the appropriate Fault status code. If the Data Abort exception is synchronous, DFSR.WnR is updated to indicate whether the faulted instruction was a read or a write. However, if the fault is on a cache maintenance instruction, or on an address translation instruction, WnR is set to 1, to indicate a fault on a write instruction, and the CM bit is set to 1.

 If the Data Abort is external, then DFSR provides fields for additional classification of the abort, see *Provision for classification of External aborts* on page G4-5954.

 If the RAS Extension is implemented, and the exception is a virtual SError interrupt exception, the classification reported in DFSR is taken from VDFSR or VSESR_EL2. For more information, see the *ARM® Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for the ARMv8-A architecture profile*.

 See the register description for more information about the returned fault information. See also *Data Abort on a Watchpoint exception* on page G5-6067.

 If the Data Abort exception is

 - Synchronous, the DFAR is updated with the VA that caused the exception, but see *Fault address reporting on synchronous External aborts* on page G5-6065 for a permitted exception to this requirement.
 - Asynchronous, the DFAR becomes UNKNOWN.

 DFSR.WnR and DFSR.CM are UNKNOWN on an asynchronous Data Abort exception.

For all Data Abort exceptions, if the implementation includes EL3, the Security state of the PE in the mode to which the Data Abort exception is taken determines whether the Secure or Non-secure DFSR and DFAR are updated.
Data Abort on an instruction cache or branch predictor maintenance instruction by VA

If an instruction cache invalidation by VA or branch predictor invalidation by VA operation generates a Data Abort exception that is taken to a PL1 mode, the DFAR is updated to hold the faulting VA. However, the reporting of the fault depends on the value of TTBCR.EAE:

TTBCR.EAE == 0
When the value of TTBCR.EAE is 0, it is IMPLEMENTATION DEFINED which of the following is used when reporting the fault:
• The DFSR indicates an Instruction cache maintenance instruction fault, and the IFSR is valid and indicates the cause of the fault, a Translation fault or Access flag fault.
• The DFSR indicates the cause of the fault, a Translation fault or Access flag fault. The IFSR is UNKNOWN.

In either case:
• DFSR.WnR is set to 1.
• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.

TTBCR.EAE == 1
When the value of TTBCR.EAE is 1:
• DFSR.CM is set to 1, to indicate a fault on a cache maintenance instruction.
• DFSR.STATUS indicates the cause of the fault, a Translation or Access flag fault.
• DFSR.WnR is set to 1.
• The IFSR is UNKNOWN.

Data Abort on a Watchpoint exception

On taking a Data Abort exception caused by a watchpoint:
• DFSR.FS is updated to indicate a debug exception.
• DFSR.{WnR, Domain} are UNKNOWN.
• DFAR is set to the address that generated the watchpoint

Note
• LR_abt indicates the address of the instruction that triggered the watchpoint.
• In some Armv7 AArch32 implementations, the DBGWFAR is set to the address of the instruction that triggered the watchpoint. In Armv8 this register is RES0.

A watchpointed address can be any byte-aligned address. The address reported in DFAR might not be the watchpointed address, and:
• For a watchpoint due to an operation other than a Data Cache maintenance instruction, can be any address between and including:
 — The lowest address accessed by the instruction that triggered the watchpoint.
 — The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated. The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION DEFINED power-of-two size, containing a watchpoint address accessed by that location.

Note
— In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.
— The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the AArch64 DC ZVA operation.

• For a watchpoint due to a Data Cache operation, the address is the address passed to the instruction. This might be an address that is above the watchpointed location.
Prefetch Abort exceptions, taken to a PL1 mode

For a Prefetch Abort exception generated by an instruction fetch, the Prefetch Abort exception is taken synchronously with the instruction that the abort is reported on. This means:

• If the PE attempts to execute the instruction a Prefetch Abort exception is generated.

• If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch Abort exception is generated for that instruction. For example, if the execution flow branches round a prefetched instruction, no Prefetch Abort exception is generated.

In addition, Breakpoint Instruction, Breakpoint, and Vector Catch exceptions, generate a Prefetch Abort exception, see the following for more information:

• Exception syndrome information and preferred return address for a BKPT instruction on page G2-5868.

• Exception syndrome information and preferred return address for a Breakpoint exception on page G2-5893.

• Exception syndrome information and preferred return address for a Vector Catch exception on page G2-5914.

Note

Usually, the term exception syndrome is used only for exceptions taken to Hyp mode, or to AArch64 state. The referenced sections use the term more generally, to include exception information reported in the IFSR.

On taking a Prefetch Abort exception to a PL1 mode:

• The IFSR is updated with details of the fault, including the appropriate fault code. If appropriate, the fault code indicates that the exception was generated by a debug exception. See the register description for more information about the returned fault information.

• For a Prefetch Abort exception generated by an instruction fetch, the IFAR is updated with the VA that caused the exception, but see Fault address reporting on synchronous External aborts on page G5-6065 for a permitted exception to this requirement.

• For a Prefetch Abort exception generated by a debug exception, the IFAR is UNKNOWN.

If the implementation includes EL3, the security state of the PE in the mode to which it takes the Prefetch Abort exception determines whether the exception updates the Secure or Non-secure IFSR and IFAR.

G5.12.3 Fault reporting in PL1 modes

The FSRs provide fault information, including an indication of the fault that occurred. The following subsections describe fault reporting in PL1 modes for each of the translation table formats:

• PL1 fault reporting with the Short-descriptor translation table format on page G5-6069.

• PL1 fault reporting with the Long-descriptor translation table format on page G5-6071.

Reserved encoding in the IFSR and DFSR encodings tables on page G5-6072 gives some additional information about the encodings for both formats.

Summary of register updates on faults taken to PL1 modes on page G5-6073 shows which registers are updated on each of the reported faults.

Reporting of External aborts taken from Non-secure state to Monitor mode describes how the fault status register format is determined for those aborts. For all other aborts, the current translation table format determines the format of the fault status registers.

Reporting of External aborts taken from Non-secure state to Monitor mode

When an External abort is taken from Non-secure state to Monitor mode:

• For a Data Abort exception, the Secure DFSR and DFAR hold information about the abort.
• For a Prefetch Abort exception, the Secure IFSR and IFAR hold information about the abort.
• The abort does not affect the contents of the Non-secure copies of the fault reporting registers.

Normally, the current translation table format determines the format of the DFSR and IFSR. However, when SCR.EA is set to 1, to route External aborts to Monitor mode, and an External abort is taken from Non-secure state, this section defines the DFSR and IFSR format.

For an External abort taken from Non-secure state to Monitor mode, the DFSR or IFSR uses the format associated with the Long-descriptor translation table format, as described in PL1 fault reporting with the Long-descriptor translation table format on page G5-6071, if any of the following applies:
• The value of the Secure TTBCR.EAE field is 1.
• The External abort is synchronous and is taken from either:
 — Hyp mode.
 — A Non-secure PL1 or EL0 mode, and the value of the Non-secure TTBCR.EAE field is 1.

Otherwise:
• For a synchronous External abort from a stage 2 translation routed to Monitor mode when the value of the Secure TTBCR.EAE field is 0 it is IMPLEMENTATION DEFINED whether:
 — The format associated with the Long-descriptor translation table format is used, as described in PL1 fault reporting with the Long-descriptor translation table format on page G5-6071.
 — The format associated with the Short-descriptor translation table format is used, as described in PL1 fault reporting with the Short-descriptor translation table format. Arm deprecates using this format.

When this format is used, the value of DFSR.FS[1] or IFSR.FS[1] is UNKNOWN when reporting a synchronous External abort, or a synchronous parity or ECC error, on the stage 2 translation.
• In all other cases the DFSR or IFSR uses the format associated with the Short-descriptor translation table format, as described in PL1 fault reporting with the Short-descriptor translation table format.

PL1 fault reporting with the Short-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1 when address translation is using the Short-descriptor translation table format.

On taking an exception, bit[9] of the FSR is RAZ, or set to 0, if the PE is using this FSR format.

An FSR encodes the fault in a 5-bit FS field, that comprises FSR[10, 3:0]. Table G5-26 shows the encoding of that field. Summary of register updates on faults taken to PL1 modes on page G5-6073 shows:
• Whether the corresponding FAR is updated on the fault. That is:
 — For a fault reported in the IFSR, whether the IFAR holds a valid address.
 — For a fault reported in the DFSR, whether the DFAR holds a valid address.
• For faults that update DFSR, whether DFSR.Domain is valid

When reading Table G5-26:
• FS values not shown in the table are reserved.
• FS values shown as DFSR only are reserved for the IFSR.

<table>
<thead>
<tr>
<th>FS</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>Alignment fault</td>
<td>DFSR only. Fault on initial lookup</td>
</tr>
<tr>
<td>00100</td>
<td>Fault on instruction cache maintenance</td>
<td>DFSR only</td>
</tr>
<tr>
<td>01100</td>
<td>Synchronous External abort on translation table walk<sup>a</sup>,<sup>b</sup></td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 2</td>
</tr>
</tbody>
</table>

^a Level 1
^b Level 2
The level associated with MMU faults on a Short-descriptor translation table lookup

The lookup level associated with a fault is:

- For a fault generated on a translation table walk, the lookup level of the walk being performed.
- For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because a stage of address translation is disabled, or because the input address is outside the range specified by the appropriate base address register or registers, the fault is reported as a level 1 fault.
- For an Access flag fault, Permission fault, or Domain fault, the lookup level of the final level of translation table accessed for the translation. That is, the lookup level of the translation table that returned a Supersection, Section, or Page descriptor.

Also see Synchronous External abort errors from address translation caching structures on page G5-6063.

The Domain field in the DFSR

The DFSR includes a Domain field. This is inherited from previous versions of the VMSA. The IFSR does not include a Domain field. Summary of register updates on faults taken to PL1 modes on page G5-6073 describes when DFSR.Domain is valid.

<table>
<thead>
<tr>
<th>FS</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11100</td>
<td>Synchronous parity or ECC error on translation table walkᵃ,ᵇ</td>
<td>Level 1 Level 2</td>
</tr>
<tr>
<td>11110</td>
<td>Synchronous parity or ECC error on memory access</td>
<td></td>
</tr>
<tr>
<td>00101</td>
<td>Translation faultᵃ</td>
<td>Level 1 Level 2</td>
</tr>
<tr>
<td>00111</td>
<td>Translation faultᵃ</td>
<td>MMU fault</td>
</tr>
<tr>
<td>00011ᶜ</td>
<td>Access flag faultᵃ</td>
<td>Level 1 Level 2</td>
</tr>
<tr>
<td>00110</td>
<td>Access flag faultᵃ</td>
<td>MMU fault</td>
</tr>
<tr>
<td>01001</td>
<td>Domain faultᵃ</td>
<td>Level 1 Level 2</td>
</tr>
<tr>
<td>01011</td>
<td>Domain faultᵃ</td>
<td>MMU fault</td>
</tr>
<tr>
<td>01101</td>
<td>Permission faultᵃ</td>
<td>Level 1 Level 2</td>
</tr>
<tr>
<td>01111</td>
<td>Permission faultᵃ</td>
<td>MMU fault</td>
</tr>
<tr>
<td>00110</td>
<td>Debug exception</td>
<td>See Chapter G2 AArch32 Self-hosted Debug</td>
</tr>
<tr>
<td>01000</td>
<td>Synchronous External abort</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>TLB conflict abort</td>
<td>See TLB conflict aborts on page G5-6033</td>
</tr>
<tr>
<td>10100</td>
<td>IMPLEMENTATION DEFINED</td>
<td>Lockdown</td>
</tr>
<tr>
<td>10101</td>
<td>IMPLEMENTATION DEFINED</td>
<td>Unsupported Exclusive access</td>
</tr>
<tr>
<td>11001</td>
<td>Synchronous parity or ECC error on memory access</td>
<td></td>
</tr>
<tr>
<td>10110</td>
<td>SError interruptᵈ</td>
<td>DFSR only</td>
</tr>
<tr>
<td>11000</td>
<td>SError interruptᵈ from a parity or ECC error on memory access</td>
<td>DFSR only</td>
</tr>
</tbody>
</table>

ᵃ. See The level associated with MMU faults on a Short-descriptor translation table lookup.
ᵇ. FS[1] is UNKNOWN if the reported error is from a stage 2 translation.
ᶜ. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in VMSAv8-32 mean there should be no possibility of confusing the new use of this encoding with its previous use
d. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.
Arm deprecates any use of the Domain field in the DFSR. The Long-descriptor translation table format does not support a Domain field, and future versions of the Arm architecture might not support a Domain field in the Short-descriptor translation table format. Arm strongly recommends that new software does not use this field.

For both Data Abort exceptions and Prefetch Abort exceptions, software can find the domain information by performing a translation table read for the faulting address and extracting the Domain field from the translation table entry.

PL1 fault reporting with the Long-descriptor translation table format

This subsection describes the fault reporting for a fault taken to a PL1 mode when address translation is using the Long-descriptor translation table format.

When the PE takes an exception, bit[9] of the FSR is set to 1 if the PE is using this FSR format.

The FSRs encode the fault in a 6-bit STATUS field, that comprises FSR[5:0]. Table G5-27 shows the encoding of that field. In addition:

- For a fault taken to a PL1 mode, *Summary of register updates on faults taken to PL1 modes on page G5-6073* shows whether the corresponding FAR is updated on the fault. That is:
 - For a fault reported in the IFSR, whether the IFAR holds a valid address.
 - For a fault reported in the DFSR, whether the DFAR holds a valid address.

- For a fault taken to the Hyp mode, *Summary of register updates on exceptions taken to Hyp mode on page G5-6081* shows what registers are updated on the fault.

Table G5-27 FSR encodings when using the Long-descriptor translation table format

<table>
<thead>
<tr>
<th>STATUS(^a)</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000LL</td>
<td>Address size fault. LL bits indicate level(^b).</td>
<td>MMU fault</td>
</tr>
<tr>
<td>0001LL</td>
<td>Translation fault. LL bits indicate level(^b).</td>
<td>MMU fault</td>
</tr>
<tr>
<td>0010LL</td>
<td>Access flag fault. LL bits indicate level(^b).</td>
<td>MMU fault</td>
</tr>
<tr>
<td>0011LL</td>
<td>Permission fault. LL bits indicate level(^b).</td>
<td>MMU fault</td>
</tr>
<tr>
<td>010000</td>
<td>Synchronous External abort</td>
<td>-</td>
</tr>
<tr>
<td>011000</td>
<td>Synchronous parity or ECC error on memory access.</td>
<td>-</td>
</tr>
<tr>
<td>010001</td>
<td>SError interrupt(^c).</td>
<td>DFSR only</td>
</tr>
<tr>
<td>011001</td>
<td>SError interrupt(^c) from a parity or ECC error on memory access.</td>
<td>DFSR only</td>
</tr>
<tr>
<td>0101LL</td>
<td>Synchronous External abort on translation table walk. LL bits indicate level(^b).</td>
<td>-</td>
</tr>
<tr>
<td>0111LL</td>
<td>Synchronous parity or ECC error on memory access on translation table walk. LL bits indicate level(^b).</td>
<td>-</td>
</tr>
<tr>
<td>100001</td>
<td>Alignment fault.</td>
<td>Fault on initial lookup</td>
</tr>
<tr>
<td>100010</td>
<td>Debug exception.</td>
<td>See Chapter G2 AArch32 Self-hosted Debug</td>
</tr>
<tr>
<td>110000</td>
<td>TLB conflict abort.</td>
<td>See TLB conflict aborts on page G5-6033</td>
</tr>
</tbody>
</table>
The level associated with MMU faults on a Long-descriptor translation table lookup

For MMU faults, Table G5-28 shows how the LL bits in the xFSR.STATUS field encode the lookup level associated with the fault.

Table G5-28 Use of LL bits to encode the lookup level at which the fault occurred

<table>
<thead>
<tr>
<th>LL bits</th>
<th>Meaning</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Address size fault</td>
<td>Address size fault in TTBR0 or TTBR1.</td>
</tr>
<tr>
<td></td>
<td>All other faults</td>
<td>Reserved.</td>
</tr>
<tr>
<td>01</td>
<td>Level 1.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Level 2.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Level 3. When xFSR.STATUS indicates a Domain fault, this value is reserved.</td>
<td></td>
</tr>
</tbody>
</table>

The lookup level associated with a fault is:

- For a fault generated on a translation table walk, the lookup level of the walk being performed.
- For a Translation fault, the lookup level of the translation table that gave the fault. If a fault occurs because a stage of address translation is disabled, or because the input address is outside the range specified by the appropriate base address register or registers, the fault is reported as a level 1 fault.
- For an Access flag fault, the lookup level of the translation table that gave the fault.
- For a Permission fault, including a Permission fault caused by hierarchical permissions, the lookup level of the final level of translation table accessed for the translation. That is, the lookup level of the translation table that returned a Block or Page descriptor.

Also see "Synchronous External abort errors from address translation caching structures" on page G5-6063.

Reserved encoding in the IFSR and DFSR encodings tables

With both the Short-descriptor and the Long-descriptor FSR format, the fault encodings reserve a single encoding for Cache and TLB lockdown faults. The details of these faults and any associated subsidiary registers are IMPLEMENTATION DEFINED.
G5.12.4 Summary of register updates on faults taken to PL1 modes

For faults that generate exceptions that are taken to a PL1 mode, Table G5-29 shows the registers affected by each fault. In this table:

- Yes indicates that the register is updated.
- UNK indicates that the fault makes the register value UNKNOWN.
- A null entry, -, indicates that the fault does not affect the register.

For faults that update the DFSR using the Short-descriptor format FSR encodings, Table G5-30 on page G5-6074 shows whether DFSR.Domain is valid.

Table G5-29 Effect of a fault taken to a PL1 mode on the reporting registers

<table>
<thead>
<tr>
<th>Fault</th>
<th>IFSR</th>
<th>IFAR</th>
<th>DFSR</th>
<th>DFAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults reported as Prefetch Abort exceptions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMU fault, always synchronous</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synchronous External abort on translation table walk</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on translation table walk</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synchronous External abort</td>
<td>Yes</td>
<td>IMP</td>
<td>DEF</td>
<td>-</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on memory access</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TLB conflict abort</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fault reported as Data Abort exception:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alignment fault, always synchronous</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MMU fault, always synchronous</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fault on instruction cache maintenance, when using Long-descriptor translation table format(^b)</td>
<td>UNK</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Fault on instruction cache maintenance, when using Short descriptor translation table format(^c)</td>
<td>either</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>or</td>
<td>UNK</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronous External abort on translation table walk</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on translation table walk</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronous External abort</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>IMP</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on memory access</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>SError interrupt</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>SError interrupt from a parity or ECC error on memory access</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>TLB conflict abort</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Debug exceptions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakpoint, Breakpoint Instruction, or Vector Catch(^d)</td>
<td>Yes</td>
<td>UNK</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Watchpoint(^e)</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(^a\) IMPLEMENTATION DEFINED. The IFSR.FnV or DFSR.FnV bit indicates whether the register holds a valid address. See Fault address reporting on synchronous External aborts on page G5-6065.
b. When using the Long-descriptor translation table format, there is not a specific fault code for a fault on an instruction cache maintenance instruction. For more information see Data Abort on an instruction cache or branch predictor maintenance instruction by VA on page G5-6067.

c. The two lines of this entry show the alternative ways of reporting the fault when using the Short-descriptor translation table format. It is IMPLEMENTATION DEFINED which methods is used, see Data Abort on an instruction cache or branch predictor maintenance instruction by VA on page G5-6067.

d. Generates a Prefetch Abort exception.

e. Generates a Data Abort exception.

For those faults for which Table G5-29 on page G5-6073 shows that the DFSR is updated, if the fault is reported using the Short-descriptor FSR encodings, Table G5-30 shows whether DFSR.Domain is valid. In this table, UNK indicates that the fault makes DFSR.Domain UNKNOWN.

Table G5-30 Validity of Domain field on faults that update the DFSR when using the Short-descriptor encodings

<table>
<thead>
<tr>
<th>DFSR.FS</th>
<th>Source</th>
<th>DFSR.Domain</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>Alignment fault</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>00100</td>
<td>Fault on instruction cache maintenance instruction</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>01100</td>
<td>Synchronous External abort on translation table walk</td>
<td>Level 1</td>
<td>UNK</td>
</tr>
<tr>
<td>01110</td>
<td>Synchronous External abort on translation table walk</td>
<td>Level 2</td>
<td>UNK</td>
</tr>
<tr>
<td>11100</td>
<td>Synchronous parity or ECC error on translation table walk</td>
<td>Level 1</td>
<td>UNK</td>
</tr>
<tr>
<td>11110</td>
<td>Synchronous parity or ECC error on translation table walk</td>
<td>Level 2</td>
<td>UNK</td>
</tr>
<tr>
<td>00101</td>
<td>Translation fault</td>
<td>Level 1</td>
<td>UNK</td>
</tr>
<tr>
<td>00111</td>
<td>Translation fault</td>
<td>Level 2</td>
<td>UNK</td>
</tr>
<tr>
<td>00011a</td>
<td>Access flag fault</td>
<td>Level 1</td>
<td>UNK</td>
</tr>
<tr>
<td>00110</td>
<td>Access flag fault</td>
<td>Level 2</td>
<td>UNK</td>
</tr>
<tr>
<td>01001</td>
<td>Domain fault</td>
<td>Level 1</td>
<td>Valid</td>
</tr>
<tr>
<td>01011</td>
<td>Domain fault</td>
<td>Level 2</td>
<td>Valid</td>
</tr>
<tr>
<td>01101</td>
<td>Permission fault</td>
<td>Level 1</td>
<td>UNK</td>
</tr>
<tr>
<td>01111</td>
<td>Permission fault</td>
<td>Level 2</td>
<td>UNK</td>
</tr>
<tr>
<td>01000</td>
<td>Synchronous External abort</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>10000</td>
<td>TLB conflict abort</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>11001</td>
<td>Synchronous parity or ECC error on memory access</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>10110</td>
<td>SError interruptb</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>11000</td>
<td>SError interruptb from a parity or ECC error on memory access</td>
<td>UNK</td>
<td>-</td>
</tr>
<tr>
<td>00010</td>
<td>Watchpoint</td>
<td>UNK</td>
<td>-</td>
</tr>
</tbody>
</table>

a. Previously, this encoding was a deprecated encoding for Alignment fault. The extensive changes in the memory model in VMSAv8-32 mean there should be no possibility of confusing the new use of this encoding with its previous use

b. Including asynchronous External abort on a data access, a translation table walk, or an instruction fetch.

G5.12.5 Reporting exceptions taken to Hyp mode

Hyp mode is the Non-secure EL2 mode. It is entered by taking an exception to Hyp mode.
Note

Software executing in Monitor mode, or at EL3 when EL3 is using AArch64, can perform an exception return to Hyp mode. This means Hyp mode can be entered either by taking an exception, or by a permitted exception return.

When EL2 is using AArch32, the following exceptions are taken to Hyp mode:

- SError interrupt exceptions, IRQ exceptions, and FIQ exceptions, from Non-secure PL1 and EL0 modes, if not routed to Secure Monitor mode, and if configured by the AMO, FMO or IMO bits. For more information see Asynchronous exception routing controls on page G1-5772.
- When HCR.TGE is set to 1, all exceptions that would be routed to Non-secure PL1 modes. For more information, see Routing exceptions from Non-secure EL0 to EL2 on page G1-5758.
- When HDCR.TDE is set to 1, any debug exception that would otherwise be taken to a Non-secure PL1 mode, see Routing debug exceptions to EL2 using AArch32 on page G1-5760.
- The privilege rules for taking exceptions mean that any exception taken from Hyp mode, if not routed to EL3, must be taken to Hyp mode.
- An abort that Routing of aborts taken to AArch32 state on page G1-5762 identifies as taken to Hyp mode.
- Hypervisor Call exceptions, and Hyp Trap exceptions, are always taken to Hyp mode. These exceptions are supported only as part of EL2.

Synchronous exceptions taken to Hyp mode provide syndrome information in the HSR.

On an abort exception taken to Hyp mode, the syndrome information in the HSR includes the Fault status code otherwise provided by the fault status register, and extends the fault reporting compared to that available for an exception taken to a PL1 mode.

In addition, for a Debug exception taken to Hyp mode, DBGDSCRInt.MOE or DBGDSCRExt.MOE shows what caused the Debug exception. This field is valid regardless of whether the Debug exception was taken from Hyp mode or from another Non-secure mode.

For more information, see the following subsections:
- Registers used for reporting exceptions taken to Hyp mode.
- Memory fault reporting in Hyp mode on page G5-6076.
- Use of the HSR on page G5-6078

Registers used for reporting exceptions taken to Hyp mode

The following registers are used for reporting exceptions taken to Hyp mode:

- The HSR holds syndrome information for the exception.
- The HDFAR holds the VA associated with a Data Abort exception.
- The HIFAR holds the VA associated with a Prefetch Abort exception.
- The HPFAR holds bits[39:12] of the IPA associated with some aborts on stage 2 address translations.

In addition, if implemented, the optional HADFSR and HAI FSR can provide additional fault information, see Hyp Auxiliary Fault Syndrome Registers.

Hyp Auxiliary Fault Syndrome Registers

EL2 also defines encodings for the following Hyp Auxiliary Fault Syndrome Registers:

- The Hyp Auxiliary Data Fault Syndrome Register, HADFSR.
- The Hyp Auxiliary Instruction Fault Syndrome Register, HAI FSR.
An implementation can use these registers to return additional fault status information for aborts taken to Hyp mode. They are the Hyp mode equivalents of the registers described in Auxiliary Fault Status Registers on page G5-6066. An example use of these registers is to return more information for diagnosing parity or ECC errors.

The architectural requirements for the HADFSR and HAIFSR are:

- The position of these registers is architecturally-defined, but the content and use of the registers is IMPLEMENTATION DEFINED.
- An implementation with no requirement for additional fault reporting can implement these registers as RES0, but the architecture does not require it to do so.

Memory fault reporting in Hyp mode

Prefetch Abort and Data Abort exceptions taken to Hyp mode report memory faults. For these aborts, the HSR contains the following fault status information:

- The HSR.EC field indicates the type of abort, as Table G5-31 shows.
- The HSR.ISS field holds more information about the abort. In particular:
 - Bits[5:0] of this field hold the STATUS field for the abort, using the encodings defined in PL1 fault reporting with the Long-descriptor translation table format on page G5-6071.
 - Other subfields of the ISS give more information about the exception, equivalent to the information returned in the FSR for a memory fault reported at PL1.

See the descriptions of the ISS fields for the memory faults, referenced from the Syndrome description column of Table G5-31, for information about the returned fault information.

<table>
<thead>
<tr>
<th>HSR.EC</th>
<th>Abort</th>
<th>Syndrome description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x20</td>
<td>Prefetch Abort taken from Non-secure PL1 or EL0 mode</td>
<td>ISS encoding for exception from a Prefetch Abort on page G8-6340</td>
</tr>
<tr>
<td>0x21</td>
<td>Prefetch Abort taken from Hyp mode</td>
<td></td>
</tr>
<tr>
<td>0x24</td>
<td>Data Abort taken from Non-secure PL1 or EL0 mode</td>
<td>ISS encoding for exception from a Data Abort on page G8-6342</td>
</tr>
<tr>
<td>0x25</td>
<td>Data Abort taken from Hyp mode</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see Use of the HSR on page G5-6078.

A Prefetch Abort exception is taken synchronously with the instruction that the abort is reported on. This means:

- If the PE attempts to execute the instruction a Prefetch Abort exception is generated.
- If an instruction fetch is issued but the PE does not attempt to execute the prefetched instruction, no Prefetch Abort exception is generated for that instruction. For example, if the execution flow branches round a prefetched instruction that would abort if the PE attempted to execute it, no Prefetch Abort exception is generated.

Register updates on exception reporting in Hyp mode

The use of the HSR, and of the other registers listed in Registers used for reporting exceptions taken to Hyp mode on page G5-6075, depends on the cause of the Abort. In reporting these faults, in general:

- If the fault generates a synchronous Data Abort exception, the HDFAR holds the associated VA, but see Fault address reporting on synchronous External aborts on page G5-6065 for a permitted exception to this requirement.
- If the fault generates a Prefetch Abort exception, the HIFAR holds the associated VA, but see Fault address reporting on synchronous External aborts on page G5-6065 for a permitted exception to this requirement.
• In the following cases, the HPFAR holds the faulting IPA:
 — A Translation or Access flag fault on a stage 2 translation.
 — A Translation, Access flag, or Permission fault on the stage 2 translation of an address accessed in a stage 1 translation table walk.
 — A stage 2 Address size fault.
 In all other cases, the HPFAR is UNKNOWN.

• On a Data Abort exception that is taken to Hyp mode, the HIFAR is UNKNOWN.

• On a Prefetch Abort exception that is taken to Hyp mode, the HDFAR is UNKNOWN.

In addition, the reporting of particular aborts is as follows:

Abort on the stage 1 translation for a memory access from Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault. The STATUS subfield of HSR.ISS indicates the type of fault, Translation, Address size, Access flag, or Permission. The HPFAR is UNKNOWN.

Abort on the stage 2 translation for a memory access from a Non-secure PL1 or EL0 mode

This includes aborts on the stage 2 translation of a memory access made as part of a translation table walk for a stage 1 translation. The HDFAR or HIFAR holds the VA that caused the fault. The STATUS subfield of HSR.ISS indicates the type of fault, Translation, Address size, Access flag, or Permission.

For any Access flag fault or Translation fault, and also for any Permission fault on the stage 2 translation of a memory access made as part of a translation table walk for a stage 1 translation, the HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR is UNKNOWN.

Abort caused by a synchronous External abort, or synchronous parity or ECC error, and taken to Hyp mode

The HDFAR or HIFAR holds the VA that caused the fault, but see Fault address reporting on synchronous External aborts on page G5-6065 for a permitted exception to this requirement. The HPFAR is UNKNOWN.

Data Abort caused by a Watchpoint exception and routed to Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a Watchpoint exception generated in a Non-secure PL1 or EL0 mode, that would otherwise generate a Data Abort exception, is routed to Hyp mode and generates a Hyp Trap exception.

HDFAR is set to the address that generated the watchpoint.

—— Note ———

ELR_hyp indicates the address of the instruction that triggered the watchpoint.

A watchpointed address can be any byte-aligned address. The address reported in HDFAR might not be the watchpointed address, and, for a watchpoint due to an operation other than a Data Cache maintenance instruction, can be any address between and including:

• The lowest address accessed by the instruction that triggered the watchpoint.
• The highest watchpointed address accessed by that instruction.

If multiple watchpoints are set in this range, there is no guarantee of which watchpoint is generated.

—— Note ———

In particular, there is no guarantee of generating the watchpoint with the lowest address in the range.

The address must also be within a naturally-aligned block of memory of an IMPLEMENTATION DEFINED power-of-two size, containing a watchpoint address accessed by that location.
The AArch32 Virtual Memory System Architecture
G5.12 Exception reporting in a VMSAv8-32 implementation

--- Note ---

The IMPLEMENTATION DEFINED power-of-two size must be no larger than the block size of the AArch64 DC ZVA operation.

See also *Watchpoint exceptions* on page G2-5895.

In all cases, HPFAR is UNKNOWN.

Prefetch Abort caused by a Breakpoint Instruction exception and taken to Hyp mode

This abort is generated if a BKPT instruction is executed in Hyp mode. The abort leaves the HIFAR and HPFAR UNKNOWN.

See also *Breakpoint Instruction exceptions* on page G2-5867.

Prefetch Abort caused by a Breakpoint Instruction, Breakpoint, or Vector Catch exception, and routed to Hyp mode because HDCR.TDE is set to 1

When HDCR.TDE is set to 1, a debug exception, generated in a Non-secure PL1 or EL0 mode, that would otherwise generate a Prefetch Abort exception, is routed to Hyp mode and generates a Hyp Trap exception.

The abort leaves the HIFAR and HPFAR UNKNOWN. This is identical to the reporting of a Prefetch Abort exception caused by a Debug exception on a BKPT instruction that is executed in Hyp mode.

--- Note ---

The difference between these two cases is:

- The Debug exception on a BKPT instruction executed in Hyp mode generates a Prefetch Abort exception, taken to Hyp mode, and reported in the HSR using EC value 0x21.
- Aborts generated because HDCR.TDE is set to 1 generate a Hyp Trap exception, and are reported in the HSR using EC value 0x20.

Use of the HSR

The HSR holds syndrome information for any synchronous exception taken to Hyp mode. Compared with the reporting of exceptions taken to PL1 modes, the HSR:

- Always provides details of the fault. The DFSR and IFSR are not used.
- Provides more extensive information, for a wider range of exceptions.

--- Note ---

IRQ and FIQ exceptions taken to Hyp mode do not report any syndrome information in the HSR.

This section summarizes the general form of the HSR register, to show how it encodes exception syndrome information, see the register description for more information. The register comprises:

- A 6-bit Exception class field, EC, that indicates the cause of the exception.
- An instruction length bit, IL. When an exception is caused by trapping an instruction to Hyp mode, this bit indicates the length of the trapped instruction, as follows:
 - **0**: 16-bit instruction trapped.
 - **1**: 32-bit instruction trapped.
 - In other cases the IL field is not valid and is RES1.
- An instruction specific syndrome field, ISS. Architecturally, this field could be defined independently for each defined Exception class (EC), but in practice several ISS formats are common to more than one EC.
The format of the HSR depends on the value of the EC field, as follows:

0b000000<EC≤0b001100

The ISS part of the returned value includes the CV and COND fields described in Encoding of ISS[24:20] when 0b000000<EC≤0b001100. Figure G5-17 shows the HSR format in this case.

EC==0b000000 or EC0b001110 There are no generic fields within the ISS. Figure G5-18 shows the HSR format in this case.

Encoding of ISS[24:20] when 0b000000<EC≤0b001100

For EC values that are nonzero and less than or equal to 0b001100, ISS[24:20] provides the Condition code field for the trapped instruction, together with a valid flag for this field. The encoding of this part of the ISS field is:

CV , ISS[24] Condition code valid. Possible values of this bit are:

0 The COND field is not valid.
1 The COND field is valid.

COND, ISS[23:20]
The Condition code for the trapped instruction. This field is valid only when CV is set to 1.

If CV is set to 0, this field is RES0.

The full descriptions of the HSR.ISS formats give more information about the CV field.

Note

In some circumstances, it is IMPLEMENTATION DEFINED whether a conditional instruction that fails its Condition code check generates an Undefined Instruction exception, see Conditional execution of undefined instructions on page G1-5780.
HSR exception classes

Table G5-32 shows the encoding of the HSR exception class field, EC. Values of EC not shown in the table are reserved. For each EC value, the table references a subsection of the description of the HSR that describes the associated ISS format and gives information about the cause of the exception, for example the configuration required to enable the associated trap.

Table G5-32 HSR.EC field encoding

<table>
<thead>
<tr>
<th>EC</th>
<th>Exception class</th>
<th>ISS description, or notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b000000</td>
<td>Unknown reason</td>
<td>ISS encoding for exceptions with an unknown reason on page G8-6329.</td>
</tr>
<tr>
<td>0b000001</td>
<td>Trapped WFI or WFE instruction</td>
<td>ISS encoding for exception from a WFI or WFE instruction on page G8-6331.</td>
</tr>
<tr>
<td>0b000011</td>
<td>Trapped MCR or MRC access with (coproc==0b1111)</td>
<td>ISS encoding for exception from an MCR or MRC access on page G8-6332.</td>
</tr>
<tr>
<td>0b000100</td>
<td>Trapped MCRR or MRRC access with (coproc==0b1111)</td>
<td>ISS encoding for exception from an MCRR or MRRC access on page G8-6334.</td>
</tr>
<tr>
<td>0b000101</td>
<td>Trapped MCR or MRC access with (coproc==0b1110)</td>
<td>ISS encoding for exception from an MCR or MRC access on page G8-6332.</td>
</tr>
<tr>
<td>0b000110</td>
<td>Trapped LDC or STC access</td>
<td>ISS encoding for exception from an LDC or STC instruction on page G8-6335.</td>
</tr>
<tr>
<td>0b001011</td>
<td>Advanced SIMD or floating-point functionality trapped by a HCPTR.{TASE, TCP10} control</td>
<td>ISS encoding for exception from an access to SIMD or floating-point functionality, resulting from HCPTR on page G8-6337.</td>
</tr>
</tbody>
</table>
| 0b001000 | Trapped VMRS access, from ID group traps, that is not reported using EC 0b000111 | ISS encoding for exception from an MCR or MRC access on page G8-6332.
This trap is not taken if the HCPTR settings trap the access. |
| 0b001100 | Trapped MRRC access with (coproc==0b1110) | ISS encoding for exception from an MCRR or MRRC access on page G8-6334. |
| 0b001110 | Illegal exception return to AArch32 state | ISS encoding for exception from an Illegal state or PC alignment fault on page G8-6342. |
| 0b010001 | Exception on SVC execution in AArch32 state routed to EL2 | ISS encoding for exception from HVC or SVC instruction execution on page G8-6338. |
| 0b010010 | HVC instruction execution in AArch32 state, when HVC is not disabled | ISS encoding for exception from SMC instruction execution on page G8-6339. |
| 0b010011 | Trapped execution of SMC instruction in AArch32 state | ISS encoding for exception from SMC instruction execution on page G8-6339. |
| 0b010000 | Prefetch Abort from a lower Exception level | ISS encoding for exception from a Prefetch Abort on page G8-6340. |
| 0b010002 | Prefetch Abort taken without a change in Exception level | ISS encoding for exception from a Prefetch Abort on page G8-6340. |
| 0b010010 | PC alignment exception. | ISS encoding for exception from an Illegal state or PC alignment fault on page G8-6342. |
| 0b010000 | Data Abort from a lower Exception level | ISS encoding for exception from a Data Abort on page G8-6342. |
| 0b010010 | Data Abort taken without a change in Exception level | ISS encoding for exception from a Data Abort on page G8-6342. |

All EC encodings not shown in Table G5-31 on page G5-6076 are reserved by Arm.
G5.12.6 Summary of register updates on exceptions taken to Hyp mode

For memory system faults that generate exceptions that are taken to Hyp mode, Table G5-33 shows the registers affected by each fault. In this table:

- **Yes** indicates that the register is updated.
- **UNK** indicates that the fault makes the register value **UNKNOWN**.
- A null entry, -, indicates that the fault does not affect the register.

Note
For a list of the MMU faults see *Types of MMU faults on page G5-6053*.

<table>
<thead>
<tr>
<th>Fault</th>
<th>HSR</th>
<th>HIFAR</th>
<th>HDFAR</th>
<th>HPFAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults reported as Prefetch Abort exceptions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMU faulta at stage 1.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Translation or Access flag MMU faulta at stage 2.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
</tr>
<tr>
<td>Otherb MMU faulta at stage 2.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Stage 2 MMU faulta on a stage 1 translation.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronous External abort on translation table walk.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on translation table walk.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Synchronous External abort.</td>
<td>Yes</td>
<td>IMP</td>
<td>DEFc</td>
<td>UNK</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on memory access.</td>
<td>Yes</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Fault reported as Data Abort exception:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMU faulta at stage 1.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>Translation or Access flag MMU faulta at stage 2.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Otherb MMU faulta at stage 2.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>Stage 2 MMU faulta on a stage 1 translation.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronous External abort on translation table walk.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on translation table walk.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>Synchronous External abort.</td>
<td>Yes</td>
<td>UNK</td>
<td>IMP</td>
<td>DEFc</td>
</tr>
<tr>
<td>Synchronous parity or ECC error on memory access.</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>SError interrupt</td>
<td>Yes</td>
<td>UNK</td>
<td>Yes</td>
<td>UNK</td>
</tr>
<tr>
<td>SError interrupt from a parity or ECC error on memory access.</td>
<td>Yes</td>
<td>UNK</td>
<td>UNK</td>
<td>UNK</td>
</tr>
<tr>
<td>Debug exception:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakpoint Instructiond, generates a Prefetch Abort exception.</td>
<td>Yes</td>
<td>UNK</td>
<td>-</td>
<td>UNK</td>
</tr>
</tbody>
</table>
Note

Unlike Table G5-29 on page G5-6073, the Hyp mode fault reporting table does not include an entry for a fault on an instruction cache maintenance instruction. That is because, when the fault is taken to Hyp mode, the reporting indicates the cause of the fault, for example a Translation fault, and ISS.CM is set to 1 to indicate that the fault was on a cache maintenance instruction, see ISS encoding for exception from a Data Abort on page G8-6342.

Classification of MMU faults taken to Hyp mode

This subsection gives more information about the MMU faults shown in Table G5-33 on page G5-6081.

Note

All MMU faults are synchronous.

The table uses the following descriptions for MMU faults taken to Hyp mode:

MMU fault at stage 1

This is an MMU fault generated on a stage 1 translation performed in the Non-secure EL2 translation regime.

MMU fault at stage 2

This is an MMU fault generated on a stage 2 translation performed in the Non-secure PL1&0 translation regime.

As the table shows, for the faults in this group:
- Translation and Access flag faults update the HPFAR
- Permission faults leave the HPFAR UNKNOWN.

MMU stage 2 fault on a stage 1 translation

This is an MMU fault generated on the stage 2 translation of an address accessed in a stage 1 translation table walk performed in the Non-secure PL1&0 translation regime. For more information about these faults see Stage 2 fault on a stage 1 translation table walk on page G5-6059.

Figure G5-1 on page G5-5964 shows the different translation regimes and associated stages of translation.

Table G5-33 Effect of an exception taken to Hyp mode on the reporting registers (continued)

<table>
<thead>
<tr>
<th>Fault</th>
<th>HSR</th>
<th>HIFAR</th>
<th>HDFAR</th>
<th>HPFAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug exception routed to Hyp mode because HDCR.TDE is set to 1. Generates a Hyp Trap exception.</td>
<td>Yes</td>
<td>UNK</td>
<td>-</td>
<td>UNK</td>
</tr>
<tr>
<td>Breakpoint Instruction or Vector Catch</td>
<td>Yes</td>
<td>UNK</td>
<td>-</td>
<td>UNK</td>
</tr>
<tr>
<td>Watchpoint</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
<td>UNK</td>
</tr>
</tbody>
</table>

a. For more information see Classification of MMU faults taken to Hyp mode
b. MMU fault other than a Translation fault or an Access flag fault.
c. IMPLEMENTATION DEFINED. The FnV bit in the HSR.ISS field indicates whether the register holds a valid address. See Fault address reporting on synchronous External aborts on page G5-6065.
d. All other debug exceptions are not permitted in Hyp mode.
G5.13 Address translation instructions

The System register encoding space includes encodings for instructions that either:

- Translate a virtual address (VA) to a physical address (PA).
- Translate a virtual address (VA) to an intermediate physical address (IPA).

Address translation system instructions on page K15-8210 summarizes these instructions.

When using the Short-descriptor translation table format, all translations performed by these instructions take account of TEX remap when this is enabled, see Short-descriptor format memory region attributes, with TEX remap on page G5-6022.

An address translation instruction that executes successfully returns the output address, a PA or an IPA, in the PAR. This is a 64-bit register, that can hold addresses of up to 40 bits.

It is IMPLEMENTATION DEFINED whether the address translation instructions return the values held in a TLB or the result of a translation table walk. Therefore, Arm recommends that these instructions are not used at a time when the TLB entries might be different from the underlying translation tables held in memory.

The following sections give more information about these instructions:

- Address translation instruction naming and operation summary.
- Encoding and availability of the address translation instructions on page G5-6085.
- Determining the PAR format on page G5-6087.
- Handling of faults and aborts during an address translation instruction on page G5-6087.

G5.13.1 Address translation instruction naming and operation summary

Some older documentation uses the original names for the address translation instructions that were included in the original Armv7 documentation. Table G5-34 summarizes the instructions that are available in AArch32 state, and relates the old instruction names to the current names.

<table>
<thead>
<tr>
<th>Name</th>
<th>Old name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS1CPR, ATS1CPW, ATS1CUR, ATS1CUW, ATS1CPRP, ATS1CPWP</td>
<td>V2PCWPR, V2PCWPW, V2PCWUR, V2PCWUW</td>
<td>See ATS1C**, Address translation stage 1, current security state on page G5-6084</td>
</tr>
<tr>
<td>ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, ATS12NSOUW</td>
<td>V2POWPWR, V2POWPWP, V2POWUR, V2POWUW</td>
<td>See ATS12NSO**, Address translation stages 1 and 2, Non-secure state only on page G5-6084</td>
</tr>
<tr>
<td>ATS1HR, ATS1HW</td>
<td>Not applicable(^a)</td>
<td>See ATS1H*, Address translation stage 1, Hyp mode on page G5-6085</td>
</tr>
</tbody>
</table>

\(^a\) Instructions are added by FEAT_PAN2 and do not have a previous name.

\(^b\) Instructions are part of EL2 and have no equivalent in the older descriptions.

In an implementation that does not include EL2, there is no distinction between stage 1 translations and stage 1 and 2 combined translations.

For the stage 1 current state and stages 1 and 2 Non-secure state only instructions, the meanings of the final letters of the names are:

- **PR** PL1 mode, read operation.
- **PRP** PL1 mode, read operation, taking account of PSTATE.PAN.
- **PW** PL1 mode, write operation.
- **PWP** PL1 mode, write operation, taking account of PSTATE.PAN.
- **UR** User mode, read operation.
- **UW** User mode, write operation.
User mode can be described as the unprivileged mode. It is the only EL0 mode.

For the stage 1 Hyp mode instructions, the last letter of the instruction name is R for the read operation and W for the write operation.

See also Encoding and availability of the address translation instructions on page G5-6085.

ATS1C**, Address translation stage 1, current security state

Any VMSAv8-32 implementation supports the ATS1C** instructions. They can be executed by any software executing at PL1 or higher, in either Security state.

The ATS1C** instructions are ATS1CPR, ATS1CPW, ATS1CUR, and ATS1CUW and, when FEAT_PAN2 is implemented, ATS1CPRP and ATS1CPWP. These instructions perform the address translations of the PL1&0 translation regime.

In an implementation that includes EL2, when executed in Non-secure state, these instructions return the IPA that is the output address of the stage 1 translation. Figure G5-1 on page G5-5964 shows the different translation regimes.

Note

The Non-secure PL1 and EL0 modes have no visibility of the stage 2 address translations, that can be defined only at EL2, and translate IPAs to be PAs.

See Determining the PAR format on page G5-6087 for the format used when returning the result of these instructions.

ATS12NSO**, Address translation stages 1 and 2, Non-secure state only

A VMSAv8-32 implementation supports the ATS12NSO** instructions only if it includes EL2. In an implementation that includes EL2, in AArch32 state, they can be executed:

• By software executing in Non-secure state at EL2. This means by software executing in Hyp mode.
• If the implementation includes EL3, when EL3 is using AArch32, by software executing in Secure state at PL1.

The ATS12NSO** instructions are ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, and ATS12NSOUW.

In an implementation that includes EL3, when EL3 is using AArch64 and EL1 is using AArch32, any execution of an ATS12NSO** instruction at Secure EL1 is trapped as an exception that is taken to EL3.

In an implementation that does not include EL2 but includes EL3, when EL3 is using AArch32 these instructions are not UNDEFINED but each instruction behaves in the same way as the equivalent ATS1C** instruction.

If an implementation does not include EL2 and does not include EL3 then these instructions are CONSTRAINED UNPREDICTABLE, with the permitted behavior that the instructions are UNDEFINED, see Unallocated System register access instructions on page K1-7944.

Arm deprecates use of these instructions from any Secure PL1 mode other than Monitor mode.

In Secure state and in Non-secure Hyp mode these instructions perform the translations made by the Non-secure PL1&0 translation regime.

These instructions always return the PA and final attributes generated by the translation. That is, for an implementation that includes EL2, they return:

• The result of the two stages of address translation for the specified Non-secure input address.
• The memory attributes obtained by the combination of the stage 1 and stage 2 attributes.
--- Note ---

From Hyp mode, the ATS1C** and ATS12NSO** instructions both return the results of address translations that would be performed in the Non-secure modes other than Hyp mode. The difference is:

- The ATS1C** instructions return the Non-secure PL1 view of the associated address translation. That is, they return the IPA output address corresponding to the VA input address.
- The ATS12NSO** instructions return the EL2, or Hyp mode, view of the associated address translation. That is, they return the PA output address corresponding to the VA input address, generated by two stages of translation.

See Determining the PAR format on page G5-6087 for the format used when returning the result of these instructions.

ATS1H*, Address translation stage 1, Hyp mode

A VMSAv8-32 implementation supports the ATS1H* instructions only if it includes EL2. They can be executed by:

- Software executing in Non-secure state at EL2. This means by software executing in Hyp mode.
- Software executing in Secure state in Monitor mode.

The ATS1H* instructions are ATS1HR and ATS1HW. In an implementation that includes EL3, these instructions are CONSTRAINED UNPREDICTABLE if executed in a Secure PL1 mode other than Monitor mode, see Hyp mode VA to PA address translation instructions on page K1-7962.

If an implementation does not include EL2 then these instructions are CONSTRAINED UNPREDICTABLE, with the permitted behavior that the instructions are UNDEFINED, see Unallocated System register access instructions on page K1-7944.

These instructions perform the translations made by the Non-secure EL2 translation regime. The instruction takes a VA input address and returns a PA output address.

These instructions always return a result in a 64-bit format PAR.

G5.13.2 Encoding and availability of the address translation instructions

Software executing at EL0 never has any visibility of the address translation instructions, but software executing at PL1 or higher can use the unprivileged address translation instructions to find the address translations used for memory accesses by software executing at PL1 and EL0.

--- Note ---

For information about translations when the stage of address translation is disabled see The effects of disabling address translation stages on VMSAv8-32 behavior on page G5-5970.

Table G5-35 shows the encodings for the address translation instructions, and their availability in different implementations in different PE modes and states.

<table>
<thead>
<tr>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>

All VMSAv8-32 implementations, in all modes, at PL1 or higher, see ATS1C**, Address translation stage 1, current security state on page G5-6084
The result of an instruction is always returned in the PAR. The PAR is a RW register and:
- In all implementations, the 32-bit format PAR is accessed using an MCR or MRC instruction with CRn set to c7, CRm set to c4, and opc1 and opc2 both set to 0.
- The 64-bit format PAR is accessed using an MCRR or MRRC instruction with CRm set to c7, and opc1 set to 0.

Address translation instructions that are not available in a particular implementation are reserved and CONSTRAINED UNPREDICTABLE. For example:
- In an implementation that does not include EL2, the encodings with an opc1 value of 4 are reserved and CONSTRAINED UNPREDICTABLE. These are the ATS12NSO** instructions.
- In an implementation that does not include either EL2 or EL3, the encodings with opc2 values of 4-7 are reserved and CONSTRAINED UNPREDICTABLE. These are the ATS12NSO** instructions.

The CONSTRAINED UNPREDICTABLE behavior of these encodings is that they are UNDEFINED, see Unallocated System register access instructions on page K1-7944.

Table G5-35 Address translation instructions in AArch32 state (continued)

<table>
<thead>
<tr>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>c8</td>
<td>0</td>
<td>ATS1CPR</td>
<td>WO</td>
<td>PL1 stage 1 read translation, current state</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>ATS1CPW</td>
<td>WO</td>
<td>PL1 stage 1 write translation, current state</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>ATS1CUR</td>
<td>WO</td>
<td>Unprivileged stage 1 read translation, current state</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>ATS1CUW</td>
<td>WO</td>
<td>Unprivileged stage 1 write translation, current state</td>
</tr>
<tr>
<td></td>
<td>c9</td>
<td>0</td>
<td>ATS1CPRPa</td>
<td>WO</td>
<td>PL1 stage 1 read translation, current state, PSTATE.PANA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>ATS1CPWPa</td>
<td>WO</td>
<td>PL1 stage 1 write translation, current state, PSTATE.PANA</td>
</tr>
</tbody>
</table>

Implementation includes EL2, in Non-secure Hyp mode and Secure PL1 modes, see ATS12NSO**, Address translation stages 1 and 2, Non-secure state only on page G5-6084

<table>
<thead>
<tr>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>c8</td>
<td>4</td>
<td>ATS12NSOPR</td>
<td>WO</td>
<td>Non-secure PL1 stage 1 and 2 read translation</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>ATS12NSOPW</td>
<td>WO</td>
<td>Non-secure PL1 stage 1 and 2 write translation</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>ATS12NSOUR</td>
<td>WO</td>
<td>Non-secure unprivileged stage 1 and 2 read translation</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>ATS12NSOUW</td>
<td>WO</td>
<td>Non-secure unprivileged stage 1 and 2 write translation</td>
</tr>
</tbody>
</table>

Implementation includes EL2, in Non-secure Hyp mode and Secure Monitor mode, see ATS1H*, Address translation stage 1, Hyp mode on page G5-6085

<table>
<thead>
<tr>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>c8</td>
<td>0</td>
<td>ATS1HR</td>
<td>WO</td>
<td>Hyp mode stage 1 read translation</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>ATS1HW</td>
<td>WO</td>
<td>Hyp mode stage 1 write translation</td>
</tr>
</tbody>
</table>

a. Instruction only supported when FEAT_PAN2 is implemented.

The result of an instruction is always returned in the PAR. The PAR is a RW register and:
- In all implementations, the 32-bit format PAR is accessed using an MCR or MRC instruction with CRn set to c7, CRm set to c4, and opc1 and opc2 both set to 0.
- The 64-bit format PAR is accessed using an MCRR or MRRC instruction with CRm set to c7, and opc1 set to 0.

Address translation instructions that are not available in a particular implementation are reserved and CONSTRAINED UNPREDICTABLE. For example:
- In an implementation that does not include EL2, the encodings with an opc1 value of 4 are reserved and CONSTRAINED UNPREDICTABLE. These are the ATS1H* instructions.
- In an implementation that does not include either EL2 or EL3, the encodings with opc2 values of 4-7 are reserved and CONSTRAINED UNPREDICTABLE. These are the ATS12NSO** instructions.

The CONSTRAINED UNPREDICTABLE behavior of these encodings is that they are UNDEFINED, see Unallocated System register access instructions on page K1-7944.
G5.13.3 Determining the PAR format

The PAR is a 64-bit register, that supports both 32-bit and 64-bit PAR formats. This section describes how the PAR format is determined, for returning a result from each of the groups of address translation instructions. The returned result might be the translated address, or might indicate a fault on the translation, see Handling of faults and aborts during an address translation instruction.

ATS1C** instructions

Address translations for the current state. From modes other than Hyp mode:

- TTBCR.EAE determines whether the result is returned using the 32-bit or the 64-bit PAR format.
- If the implementation includes EL3, the translation performed is for the current security state and, depending on that state:
 - The Secure or Non-secure TTBCR.EAE determines the PAR format.
 - The result is returned to the Secure or Non-secure instance of the PAR

Instructions executed in Hyp mode always return a result to the Non-secure PAR, using the 64-bit format.

ATS12NSO** instructions

Address translations for the Non-secure PL1 and EL0 modes. These instructions return a result using the 64-bit PAR format if at least one of the following is true:

- The Non-secure TTBCR.EAE bit is set to 1.
- The implementation includes EL2, and the value of HCR.VM is 1.

Otherwise, the instruction returns a result using the 32-bit PAR format.

Instructions executed in a Secure PL1 mode return a result to the Secure PAR. Instructions executed in Hyp mode return a result to the Non-secure PAR.

ATS1H* instructions

Address translations from Hyp mode. These instructions always return a result using the 64-bit PAR format.

Instructions executed in Secure Monitor mode return a result to the Secure PAR. Instructions executed in Non-secure Hyp mode return a result to the Non-secure PAR.

G5.13.4 Handling of faults and aborts during an address translation instruction

When a stage of address translation is enabled, any corresponding address translation instruction requires a translation table lookup, and this might require a translation table walk. However, the input address for the translation might be a faulting address, either because:

- The translation table entries used for the translation indicate a fault.
- A stage 2 fault or an External abort occurs on the required translation table walk.

VMSAv8-32 memory aborts on page G5-6052 describes the faults that might occur on a translation table walk in AArch32 state.

How the fault is handled, and whether it generates an exception, depends on the cause of the fault, as described in:

- MMU fault on an address translation instruction.
- External abort during an address translation instruction on page G5-6088.
- Stage 2 fault on a current state address translation instruction on page G5-6088.

MMU fault on an address translation instruction

In the following cases, an MMU fault on an address translation is reported in the PAR, and no abort is taken. This applies:

- For a faulting address translation instruction executed in Hyp mode, or in a Secure PL1 mode.
• For a faulting address translation instruction executed in a Non-secure PL1 mode, for cases where the fault would generate a stage 1 abort if it occurred on the equivalent load or store operation.

Using the PAR to report a fault on an address translation instruction gives more information about how these faults are reported.

Note

• The Domain fault encodings shown in Table G5-27 on page G5-6071 are used only for reporting a fault on an address translation instruction that uses the 64-bit PAR format. That is, they are used only in an implementation that includes EL2, and are used for reporting a Domain fault on either:
 — An ATS1C** instruction executed in Hyp mode.
 — An ATS12NSO** instruction executed when the value of HCR.VM is 1.

These encodings are never used for fault reporting in the DFSR, IFSR, or HSR.

• For an address translation instruction executed in a Non-secure PL1 mode, for a fault that would generate a stage 2 abort if it occurred on the equivalent load or store operation, the stage 2 abort is generated as described in Stage 2 fault on a current state address translation instruction.

Using the PAR to report a fault on an address translation instruction

For a fault on an address translation instruction for which no abort is taken, the PAR is updated with the following information, to indicate the fault:

• The fault code, that would normally be written to the Fault status register. The code used depends on the current translation table format, as described in either:
 — PL1 fault reporting with the Short-descriptor translation table format on page G5-6069.
 — PL1 fault reporting with the Long-descriptor translation table format on page G5-6071.

See also the Note at the start of Determining the PAR format on page G5-6087 about the Domain fault encodings shown in Table G5-27 on page G5-6071.

• A status bit, that indicates that the translation operation failed.

The fault does not update any Fault Address Register.

External abort during an address translation instruction

As stated in External abort on a translation table walk on page G5-6060, an External abort on a translation table walk generates a Data Abort exception. The abort can be synchronous or asynchronous, and behaves as follows:

Synchronous External abort on a translation table walk

The fault status and fault address registers of the Security state to which the abort is taken are updated. The fault status register indicates the appropriate External abort on a Translation fault, and the fault address register indicates the input address for the translation.

The PAR is UNKNOWN.

Asynchronous External abort on a translation table walk

The fault status register of the Security state to which the abort is taken is updated, to indicate the asynchronous External abort. No fault address registers are updated.

The PAR is UNKNOWN.

Stage 2 fault on a current state address translation instruction

If the PE is in a Non-secure PL1 mode and executes one of the ATS1C** instructions, then a fault in the stage 2 translation of an address accessed in a stage 1 translation table lookup generates an exception. This is equivalent to the case described in Stage 2 fault on a stage 1 translation table walk on page G5-6059. When this fault occurs on an ATS1C** address translation instruction:

• A Hyp Trap exception is taken to Hyp mode.
• The PAR is UNKNOWN.
• The HSR indicates that:
 — The fault occurred on a translation table walk.
 — The operation that faulted was a cache maintenance instruction.
• The HPFAR holds the IPA that faulted.
• The HDFAR holds the VA that the executing software supplied to the address translation instruction.
G5.14 Pseudocode description of VMSAv8-32 memory system operations

This section contains a list of pseudocode functions describing VMSAv8-32 memory operations. The following subsections describe the pseudocode functions:

- **Alignment fault.**
- **Address translation.**
- **Domain checking.**
- **TLB operations.**
- **Translation table walk.**
- **Reporting syndrome information on page G5-6091.**
- **Memory access decode when TEX remap is enabled on page G5-6091.**

See also the descriptions of pseudocode for general memory system operations in Pseudocode description of general memory System instructions on page G4-5957.

G5.14.1 Alignment fault

The `AArch32.AlignmentFault()` pseudocode function describes the generation of an Alignment fault Data Abort exception.

See also Abort exceptions on page G4-5959.

G5.14.2 Address translation

The `AArch32.TranslateAddress()` and `AArch32.FullTranslate()` pseudocode functions describe a VMSAv8-32 address translation.

The `AArch32.FullTranslate()` function calls either:

- The function described in Address translation when the stage 1 address translation is disabled.
- One of the functions described in Translation table walk.

See also Stage 2 translation table walk on page G5-6091.

Address translation when the stage 1 address translation is disabled

The `AArch32.TranslateAddressS1Off()` pseudocode function describes the address translation performed when the stage 1 address translation is disabled.

G5.14.3 Domain checking

The `AArch32.CheckDomain()` pseudocode function describes domain checking.

G5.14.4 TLB operations

The `TLBRecord` type represents the contents of a TLB entry:

G5.14.5 Translation table walk

Because of the complexity of a translation table walk, the following sections describe the different cases:

- Translation table walk using the Short-descriptor translation table format for stage 1.
- Translation table walk using the Long-descriptor translation table format for stage 1 on page G5-6091.
- Stage 2 translation table walk on page G5-6091.

Translation table walk using the Short-descriptor translation table format for stage 1

The `AArch32.TranslationTableWalkSD()` pseudocode function describes the translation table walk when the stage 1 translation tables use the Short-descriptor format. It calls the function described in Stage 2 translation table walk on page G5-6091 if necessary.
The `ShortConvertAttrsHints()` pseudocode function converts the Normal memory cacheability attribute, from the TTBR or the translation table TEX field, into the separate cacheability attribute and cache allocation hint defined in a Long-descriptor translation table descriptor.

Translation table walk using the Long-descriptor translation table format for stage 1

The `AArch32.TranslationTableWalkLD()` pseudocode function describes the translation table walk when the stage 1 translation tables use the Long-descriptor format. It calls the function described in *Stage 2 translation table walk* if necessary. `AArch32.TranslationTableWalkLD()` calls the `ConvertAttrsHints()` pseudocode function that is defined in *Translation table walk using the Short-descriptor translation table format for stage 1* on page G5-6090.

The `AArch32.S1AttrDecode()` pseudocode function uses the MAIR0 and MAIR1 registers to decode the Attri[2:0] value from a stage 1 translation table descriptor.

The `S2AttrDecode()` pseudocode function decodes the Attri[3:0] value from a stage 2 translation table descriptor.

Stage 2 translation table walk

In the Non-secure EL1&0 translation regime, a descriptor address returned by stage 1 lookup is in the IPA address map, and must be mapped to a PA by a stage 2 translation. When EL2 is using AArch32, function `AArch32.SecondStageWalk()` performs this translation, by calling the `AArch32.SecondStageTranslate()` function. When called from `AArch32.SecondStageWalk()`, the `AArch32.SecondStageTranslate()` function performs a second stage translation, from IPA to PA, of the supplied address, including checking that the access has read permission at the second stage. If the access does not have second stage read permission it generates a second stage Permission fault on the first stage translation table walk. The second stage translation might hit in a TLB, or might involve a translation table walk, which will use the algorithm described in this section. Stage 2 translations always use the Long-desciriptor translation table format.

The `AArch32.CheckPermission()` pseudocode function checks the access permissions for the stage 1 translation.

The `AArch32.CheckS2Permission()` pseudocode function checks the access permissions for the stage 2 translation.

The `AArch32.CombineS1S2Desc()` pseudocode function combines the stage 1 and stage 2 access descriptors:

G5.14.6 Reporting syndrome information

The `AArch32.ReportHypEntry()`, `AArch32.ReportDataAbort()`, and `AArch32.ReportPrefetchAbort()` pseudocode functions write syndrome value information to the appropriate registers for the current mode.

G5.14.7 Memory access decode when TEX remap is enabled

When using the Short-descriptor translation table format, the function `AArch32.RemappedTEXDecode()` decodes the texcb and S attributes derived from the translation tables when TEX remap is enabled. *Short-descriptor format memory region attributes, with TEX remap* on page G5-6022 shows the interpretation of the arguments.
G5.15 About the System registers for VMSAv8-32

The System registers and System instructions that are accessible in AArch32 state are almost all in the encoding space described in *The AArch32 System register interface* on page G1-5809. This section gives general information about these registers, which comprise:

- Registers in the \((\text{coproc}==0b1111)\) encoding space, that provide control and status information for the PE in Non-debug state.
- Registers in the \((\text{coproc}==0b1110)\) encoding space, including:
 - Debug registers.
 - Trace registers.
 - Legacy execution environment registers.

VMSAv8-32 organization of registers in the \((\text{coproc}==0b1110)\) encoding space on page G7-6113 summarizes the registers in the \((\text{coproc}==0b1110)\) encoding space, and indicates where these registers are described, either in this manual or in other architecture specifications.

VMSAv8-32 organization of registers in the \((\text{coproc}==0b1111)\) encoding space on page G7-6116 summarizes the registers in the \((\text{coproc}==0b1111)\) encoding space, and indicates where in this manual these registers are described.

Note

Many implementations include other interfaces to some System registers, for example a memory-mapped interface to some debug System registers. These are described in the appropriate sections of this manual.

G5.15.1 Classification of System registers

Features provided by EL3 and EL2 integrate with many features of the architecture. Therefore, the descriptions of the individual System registers include information about how these Exception levels affect the register. This section:

- Summarizes how EL3 and EL2 affect the implementation of the System registers, and the classification of those registers.
- Summarizes how EL3 controls access to the System registers.
- Describes an EL3 signal that can control access to some registers in the \((\text{coproc}==0b1111)\) encoding space.

It contains the following subsections:

- *Banked System registers.*
- *Restricted access System registers* on page G5-6093.
- *Configurable access System registers* on page G5-6093.
- *EL2-mode System registers* on page G5-6094.
- *Common System registers* on page G5-6095.
- *Access to registers from Monitor mode* on page G5-6095.
- *The CP15SDISABLE and CP15SDISABLE2 input signals* on page G5-6096.

Note

EL3 defines the register classifications of Banked, Restricted access, Configurable, and Common. EL2 defines the EL2-mode classification.

It is **IMPLEMENTATION DEFINED** whether each IMPLEMENTATION DEFINED register is Banked, Restricted access, Configurable, EL2-mode, or Common.

Banked System registers

In an implementation that includes EL3 using AArch32, some System registers are banked. Banked System registers have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or Non-secure instance of the register.
A Banked System register can contain a mixture of:
- Fields that are banked.
- Fields that are read-only in Non-secure PL1 or EL2 modes but read/write in the Secure state.

The System Control Register SCTLR is an example of a register of that contains this mixture of fields.

The Secure copies of the Banked System registers are sometimes referred to as the Secure Banked System registers. The Non-secure copies of the Banked System registers are sometimes referred to as the Non-secure Banked System registers.

Restricted access System registers

In an implementation that includes EL3, some System registers are present only in Secure state. These are called Restricted access registers, and their read/write access permissions are:

- In Non-secure state, software cannot modify Restricted access registers.
- For the NSACR, in Non-secure state:
 - Software running at PL1 or higher can read the register.
 - Unprivileged software, meaning software running at EL0, cannot read the register.
 - This means that Non-secure software running at PL1 or higher can read the access permissions for System registers that have Configurable access.

 If EL3 is using AArch64, then any read of the NSACR from Non-secure EL2 using AArch32, or Non-secure EL1 using AArch32, returns the value 0x00000C00.

- For all other Restricted access registers, Non-secure software cannot read the register.

In an implementation that does not include EL3:

- SDER is implemented only in Secure state.
- Any read of the NSACR returns the value 0x00000C00.
- All other accesses to Restricted access System registers are UNDEFINED.

Configurable access System registers

Secure software can configure the access to some System registers. These registers are called Configurable access registers, and the control can be:

- A bit in the control register determines whether the register is:
 - Accessible from Secure state only.
 - Accessible from both Secure and Non-secure states.

- A bit in the control register changes the accessibility of a register bit or field. For example, setting a bit in the control register might mean that an RW field behaves as RAZ/WI when accessed from Non-secure state.

 Bits in the NSACR control access.

In an AArch32 implementation that includes EL3:

- There are no Configurable access System registers in the (coproc==0b1110) encoding space.
- The only required Configurable access register in the (coproc==0b1111) encoding space is the CPACR.
 - Floating-point Status and Control Register, FPSCR
 - Floating-point Exception register, FPEXC.
 - Floating-point System ID register, FPSID.
 - Media and VFP Feature Register 0, MVFR0.
 - Media and VFP Feature Register 1, MVFR1.
 - Media and VFP Feature Register 2, MVFR2.
EL2-mode System registers

In an implementation that includes EL2, if EL2 can use AArch32, the implementation provides a number of registers for use in the EL2 mode, Hyp mode. As with other System register encodings, some of these register encodings provide write-only operations. When the implementation includes EL3 and EL3 is using AArch32, these registers are also accessible from Monitor mode when the value of SCR.NS is 1.

The following subsections describe the EL2-mode registers:

- Hyp mode read/write registers in the (coproc==0b1111) encoding space.
- Hyp mode encodings for shared (coproc==0b1111) System registers.
- Hyp mode (coproc==0b1111) write-only System instructions on page G5-6095.

There are no EL2-mode registers in the (coproc==0b1110) encoding space.

Hyp mode read/write registers in the (coproc==0b1111) encoding space

These registers are implemented only in Non-secure state, and in Non-secure state they are accessible only from Hyp mode.

Except for accesses to CNTVOFF in an implementation that includes EL3 but not EL2, the behavior of accesses to these registers is as follows:

- In Secure state, the registers can be accessed from EL3 when SCR.NS is set to 1, see Access to registers from Monitor mode on page G5-6095.
- The following accesses are UNDEFINED:
 — Accesses from Non-secure PL1 modes.
 — Accesses in Secure state when SCR.NS is set to 0.

In an implementation that includes EL3 but not EL2, the behavior of accesses to CNTVOFF is as follows:

- Any access from Secure Monitor mode is CONSTRAINED UNPREDICTABLE, regardless of the value of SCR.NS. The CONSTRAINED UNPREDICTABLE behavior is that the access is UNDEFINED, see Unallocated System register access instructions on page K1-7944.
- All other accesses are UNDEFINED.

Note

Except for CNTVOFF, the Hyp mode registers are part of EL2, meaning they are implemented only if the implementation includes EL2. However, conceptually, CNTVOFF is part of any implementation of the Generic Timer, see The virtual offset register on page G6-6106. This means the behavior of CNTVOFF in an implementation that does not include EL2 is not covered by the general definition of the behavior of the Hyp mode (coproc==0b1111) read/write registers.

Hyp mode encodings for shared (coproc==0b1111) System registers

Some Hyp mode registers share the Secure instance of an existing banked register. In this case, the implementation includes an encoding for the register that is accessible only in Hyp mode, or in Monitor mode when SCR.NS is set to 1.

For these registers, the following accesses are UNDEFINED:

- Accesses from Non-secure PL1 modes.
- Accesses in Secure state when SCR.NS is set to 0.

In Monitor mode, the Secure copies of these registers can be accessed either:

- Using the DFAR or IFAR encoding with SCR.NS set to 0.
- Using the HDFAR or HIFAR encoding with SCR.NS set to 1.

However, between accessing a register using one alias and accessing the register using the other alias, a Context synchronization event is required to ensure the ordering of the accesses.
Hyp mode (coproc==0b1111) write-only System instructions

Architecturally, these encodings are an extension of the banked register encodings described in Banked System registers on page G5-6092, where:

- The implementation does not implement the operation in Secure state.
- In Non-secure state, the operation is accessible only at EL2, that is, only from Hyp mode.

In Secure state:

- These instructions can be accessed from Monitor mode regardless of the value of SCR.NS, see Access to registers from Monitor mode.
- Accesses to these instructions are CONSTRAINED UNPREDICTABLE if executed in a Secure mode other than Monitor mode, see Hyp mode TLB maintenance instructions on page K1-7962 and Hyp mode VA to PA address translation instructions on page K1-7962.

Accesses to these instructions are UNDEFINED if accessed from a Non-secure PL1 mode.

Common System registers

Some System registers and operations are common to the Secure and Non-secure Security states. These are described as the Common access registers, or simply as the Common registers. These registers include:

- Read-only registers that hold configuration information.
- Register encodings used for various memory system operations, rather than to access registers.
- The ISR.
- All System registers in the (coproc==0b1110) encoding space.

Secure System registers for the (coproc==0b1111) encoding space

The Secure System registers in the (coproc==0b1111) encoding space comprise:

- The Secure copies of the Banked System registers in the (coproc==0b1111) encoding space.
- The Restricted access System registers in the (coproc==0b1111) encoding space.
- The Configurable access System registers in the (coproc==0b1111) encoding space that are configured to be accessible only from Secure state.

In an implementation that includes EL3, the Non-secure System registers are the System registers other than the Secure System registers.

Access to registers from Monitor mode

When the PE is in Monitor mode, the PE is in Secure state regardless of the value of the SCR.NS bit. In Monitor mode, the SCR.NS bit determines whether, for System registers in the (coproc==0b1111) encoding space, valid uses of the MRC, MCR, MRRC, and MCRR instructions access the Secure Banked System registers or the Non-secure Banked System registers. That is, when:

NS == 0
Common, Restricted access, and Secure Banked System registers are accessed by MRC, MCR, MRRC, and MCRR instructions that target the (coproc==0b1111) encoding space.

If the implementation includes EL2, the registers listed in Hyp mode read/write registers in the (coproc==0b1111) encoding space on page G5-6094 and Hyp mode encodings for shared (coproc==0b1111) System registers on page G5-6094 are not accessible, and any attempt to access them generates an Undefined Instruction exception.

________ Note ________

The operations listed in Hyp mode (coproc==0b1111) write-only System instructions are accessible in Monitor mode regardless of the value of SCR.NS.
System instructions in the \((\text{coproc} == \text{0b1111})\) encoding space use the Security state to determine all resources used, that is, all operations performed by these instructions are performed in Secure state.

\(\text{NS} == 1\) Common, Restricted access and Non-secure Banked System registers are accessed by \(\text{MRC, MCR, MRRC,}\) and \(\text{MCRR}\) instructions that target the \((\text{coproc} == \text{0b1111})\) encoding space.

If the implementation includes EL2, all the registers and operations listed in the subsections of \(\text{EL2-mode System registers on page G5-6094}\) are accessible, using the \(\text{MRC, MCR, MRRC, or MCRR}\) instructions required to access them from Hyp mode.

System instructions in the \((\text{coproc} == \text{0b1111})\) encoding space use the Security state to determine all resources used, that is, all operations by these instructions are performed in Secure state.

The Security state determines whether the Secure or Non-secure banked registers determine the control state.

\[\text{Note}\]
Where the contents of a register select the value accessed by an \(\text{MRC}\) or \(\text{MCR}\) access to a different register, then the register that is used for selection is being used as control state. For example, \(\text{CSSELR}\) selects the current Cache Size Identification Register, and therefore \(\text{CSSELR}\) is used as control state. Therefore, in Monitor mode:

- \(\text{SCR.NS}\) determines whether the Secure or Non-secure \(\text{CSSELR}\) is accessible.
- Because the PE is in Secure state, the Secure \(\text{CSSELR}\) selects the current Cache Size Identification Register.

From Armv8.3, it is possible to have multiple Cache Size Identification Registers. For more details, see Possible formats of the Cache Size Identification Registers, \(\text{CCSIDR and CCSIDR2 on page G4-5931}\).

The \(\text{CP15SDISABLE}\) and \(\text{CP15SDISABLE2}\) input signals

When EL3 is using AArch32, it provides an input signal, \(\text{CP15SDISABLE}\), that disables write access to some of the Secure registers when asserted HIGH. The \(\text{CP15SDISABLE}\) signal has no effect on:

- Register accesses from AArch64 state.
- Register accesses from Secure EL1 when EL3 is using AArch64 and EL1 is using AArch32.

\[\text{Note}\]
When EL3 is using AArch32, the interaction between \(\text{CP15SDISABLE}\) and any IMPLEMENTATION DEFINED register is IMPLEMENTATION DEFINED.

On a reset by the external system that resets the PE into EL3 using AArch32, the \(\text{CP15SDISABLE}\) input signal must be taken LOW. This permits the Reset code to set up the configuration of EL3 features. When the input is asserted HIGH, any attempt to write to the Secure registers that are affected by \(\text{CP15SDISABLE}\) results in an Undefined Instruction exception.

The \(\text{CP15SDISABLE}\) input does not affect reading Secure registers, or reading or writing Non-secure registers. It is IMPLEMENTATION DEFINED how the input is changed and when changes to this input are reflected in the PE, and an implementation might not provide any mechanism for driving the \(\text{CP15SDISABLE}\) input HIGH. However, in an implementation in which the \(\text{CP15SDISABLE}\) input can be driven HIGH, changes in the state of \(\text{CP15SDISABLE}\) must be reflected as quickly as possible. Any change must occur before completion of an Instruction Synchronization Barrier operation, issued after the change, is visible to the PE with respect to instruction execution boundaries. Software must perform an Instruction Synchronization Barrier operation meeting the above conditions to ensure all subsequent instructions are affected by the change to \(\text{CP15SDISABLE}\).

When EL3 is using AArch32, use of \(\text{CP15SDISABLE}\) means key Secure features that are accessible only at PL1 can be locked in a known state. This provides an additional level of overall system security. Arm expects control of \(\text{CP15SDISABLE}\) to reside in the system, in a block dedicated to security.

When \(\text{FEAT_CP15SDISABLE2}\) is implemented and EL3 is using AArch32, EL3 provides a second input signal, \(\text{CP15SDISABLE2}\). \(\text{CP15SDISABLE2}\) has all of the properties of \(\text{CP15SDISABLE}\) described above. The difference between \(\text{CP15SDISABLE}\) and \(\text{CP15SDISABLE2}\) is only in the set of registers each signal affects.
Information on whether a given register is affected by CP15SDisable, or CP15SDisable2 when it is implemented, can be found in the access pseudocode for that register, as described in Chapter G8 AArch32 System Register Descriptions.
This section describes how the System registers in an VMSAv8-32 implementation divide into functional groups. The functional groups of AArch32 registers are:

- Special-purpose registers.
- VMSA-specific registers.
- ID registers.
- Performance monitors registers.
- Activity monitors registers.
- Debug registers.
- The Reliability, Availability, and Serviceability Extension registers.
- Generic timer registers.
- Cache maintenance System instructions.
- Address translation System instructions.
- TLB maintenance System instructions.
- Base system registers.
- Legacy feature registers and System instructions.

For a list of these functional groups and the registers in each group, see Functional index of AArch32 registers and System instructions on page K15-8204.

Chapter G8 AArch32 System Register Descriptions describes each of these registers.

___ Note ___

- Table G7-3 on page G7-6120 lists all of the VMSAv8-32 System registers in the (coproc==0b1111) encoding space, ordered by:
 1. The CRn primary register used when using a 32-bit access to the register. For 64-bit register accesses using an MRR or MRR instruction, the instruction arguments that identify the target register are \{coproc, Rm, opc1\}. The value of Rm determines where these registers appear in Table G7-3 on page G7-6120, so that these registers appear with the 32-bit registers accessed using that value for CRn. So, for example, the 64-bit access to TTBR0, that uses (CRn==c2), appears with the 32-bit access to TTBR0, that uses (CRn==c2).
 2. The opc1 value used when accessing the register.
 3. For 32-bit registers, the \{CRn, opc2\} values used when accessing the register.

- The functional groups defined in this section mainly consist of the VMSAv8-32 System registers, but include some additional System registers.
- Some registers belong to more than one functional group.

For other related information see:

- The AArch32 System register interface on page G1-5809 for general information about the access to the AArch32 System registers, including the main register access instructions MRC and MCR.
- About the System registers for VMSAv8-32 on page G5-6092.
- VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6113.
- VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6116.
- About the AArch32 System registers on page G8-6134.

The register descriptions in Chapter G8 AArch32 System Register Descriptions, assume you are familiar with these functional groups, and use conventions and other information from them without any explanation.
Chapter G6
The Generic Timer in AArch32 state

This chapter describes the implementation of the Arm Generic Timer as an extension to an Armv8 implementation. It includes an overview of the AArch32 System register interface to an Arm Generic Timer.

It contains the following sections:
- About the Generic Timer in AArch32 state on page G6-6100.
- The AArch32 view of the Generic Timer on page G6-6104.

Chapter D11 The Generic Timer in AArch64 state describes the AArch64 view of the Generic Timer, including additional timers that can be implemented in AArch64 state, and Chapter I2 System Level Implementation of the Generic Timer describes the system level implementation of the Generic Timer.
G6.1 About the Generic Timer in AArch32 state

Figure G6-1 shows an example system-on-chip that uses the Generic Timer as a system timer. In this figure:

- This manual defines the architecture of the individual PEs in the multiprocessor blocks.
- The *ARM Generic Interrupt Controller Architecture Specification* defines a possible architecture for the interrupt controllers.
- Generic Timer functionality is distributed across multiple components.

The Generic Timer:

- Provides a system counter, that measures the passing of time in real-time.

 Note

The Generic Timer can also provide other components at a system level, but Figure G6-1 does not show any such components.

- Supports *virtual counters* that measure the passing of virtual-time. That is, a virtual counter can measure the passing of time on a particular virtual machine.
- Timers, that can trigger events after a period of time has passed. The timers:
 - Can be used as count-up or as count-down timers.
 - Can operate in real-time or in virtual-time.

This chapter describes an instance of the Generic Timer component that Figure G6-1 shows as Timer_0 or Timer_1 within the Multiprocessor A or Multiprocessor B block. This component can be accessed from AArch64 state or AArch32 state, and this chapter describes access from AArch32 state. Chapter D11 *The Generic Timer in AArch64 state* describes access to this component from AArch64 state.

Note

The reset requirements of Generic Timer registers are more strict when they are accessed from AArch32 state than when they are accessed from AArch64 state.
A Generic Timer implementation must also include a memory-mapped system component. This component:

- Must provide the System counter shown in Figure G6-1 on page G6-6100.
- Optionally, can provide timer components for use at a system level.

Chapter I2 System Level Implementation of the Generic Timer describes this memory-mapped component.

G6.1.1 The full set of Generic Timer components

Within a system that might include multiple PEs, a full set of Generic Timer components is as follows:

The system counter

This provides a uniform view of system time, see The system counter on page G6-6102. Because this must be implemented at the system level, it is accessed through The system level memory-mapped implementation of the Generic Timer. However, during initialization, a status register in each implemented timer in the system must be programmed with the frequency of the system counter, so that software can read this frequency.

PE implementations of the Generic Timer

Each PE implementation of the Generic Timer provides the following components:

- A physical counter, that gives access to the count value of the system counter. When FEAT_ECV is implemented, EL2 is using AArch64, and EL2 is implemented and enabled in the current Security state, the CNTPOFF_EL2 register allows offsetting of AArch32 physical timers and counters.
- A virtual counter, that gives access to virtual time. In AArch32 state, the CNTVOFF register defines the offset between physical time, as defined by the value of the system counter, and virtual time.
- A number of timers. In an implementation where all Exception levels are implemented and can use AArch32 state, the timers that are accessible from AArch32 state are:
 - A Secure PL1 physical timer.
 - A Non-secure EL1 physical timer.
 - A Non-secure EL2 physical timer.
 - An EL1 virtual timer.
 - A Non-secure EL2 virtual timer.
 - A Secure EL2 virtual timer.
 - A Secure EL2 physical timer.

The Non-secure EL2 virtual timer is available when FEAT_VHE is implemented.

The Secure EL2 timers are available when FEAT_SEL2 is implemented, but are only accessible in AArch32 state if using EL0, when EL0 is using AArch32, Secure EL2 is using AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

Note

The Secure PL1 physical timer uses the Secure banked instances of the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers, and the Non-secure EL1 physical timer uses the Non-secure instances of the same registers.

The AArch32 view of the Generic Timer on page G6-6104 describes these components.

The system level memory-mapped implementation of the Generic Timer

The memory-mapped registers that control the components of the system level implementation of the Generic Timer are grouped into frames. The Generic Timer architecture defines the offset of each register within its frame, but the base address of each frame is IMPLEMENTATION DEFINED, and defined by the system.
Each system level component has one or two register frames. The possible system level components are:

The memory-mapped counter module, required
This module controls the system counter. It has two frames:
- A control frame, CNTControlBase.
- A status frame, CNTReadBase.

The memory-mapped timer control module, required
The system level implementation of the Generic Timer can provide up to eight timers, and the memory-mapped timer control module identifies:
- Which timers are implemented.
- The features of each implemented timer.
This module has a single frame, CNTCTLBase.

Memory-mapped timers, optional
An implemented memory-mapped timer:
- Must provide a privileged view of the timer, in the CNTBaseN frame.
- Optionally, provides an unprivileged view of the timer in the CNTEL0BaseN frame.

\(N \) is the timer number, and the corresponding frame number, in the range 0-7.

Chapter 12 *System Level Implementation of the Generic Timer* describes these components.

G6.1.2 The system counter

The Generic Timer provides a system counter with the following specification:

- **Width**
 - From Armv8.0 to Armv8.5 inclusive, at least 56 bits wide. The value returned by any 64-bit read of the counter is zero-extended to 64 bits.
 - From Armv8.6, must be 64 bits wide.

- **Frequency**
 - From Armv8.0 to Armv8.5 inclusive, increments at a fixed frequency, typically in the range 1-50MHz. It can support one or more alternative operating modes in which it increments by larger amounts at a lower frequency, typically for power-saving.
 - From Armv8.6, increments at a fixed frequency of 1GHz.

- **Roll-over**
 - Roll-over time of not less than 40 years.

- **Accuracy**
 - Arm does not specify a required accuracy, but recommends that the counter does not gain or lose more than ten seconds in a 24-hour period.
 - Use of lower-frequency modes must not affect the implemented accuracy.

- **Start-up**
 - Starts operating from zero.

The system counter, once configured and running, must provide a uniform view of system time. More precisely, it must be impossible for the following sequence of events to show system time going backwards:
1. Device A reads the time from the system counter.
2. Device A communicates with another agent in the system, Device B.
3. After recognizing the communication from Device A, Device B reads the time from the system counter.

The system counter must be implemented in an always-on power domain.

To support lower-power operating modes in architectures from Armv8.0 to Armv8.5, the counter can increment by larger amounts at a lower frequency. For example, a 10MHz system counter might either increment:
- By 1 at 10MHz.
- By 500 at 20kHz, when the system lowers the clock frequency, to reduce power consumption.

In this case, the counter must support transitions between high-frequency, high-precision operation, and lower-frequency, lower-precision operation, without any impact on the required accuracy of the counter.

From Armv8.6 the counter operates at a higher fixed frequency of 1GHz. This implies a resolution of 1ns.
Note

Though each unit of the counter is set to 1ns, this does not require that the counter is incremented every 1ns. A step in the counter might be more than a single bit increment. It is recommended that the count is not incremented at a rate that is less than 50MHz in normal running operation.

The CNTFRQ register is intended to hold a copy of the current clock frequency to allow fast reference to this frequency by software running on the PE. For more information see Initializing and reading the system counter frequency.

The mechanism by which the count from the system counter is distributed to system components is IMPLEMENTATION DEFINED, but each PE with a System register interface to the system counter must have a counter input that can capture each increment of the counter.

Note

So that the system counter can be clocked independently from the PE hardware, the count value might be distributed using a Gray code sequence. Gray-count scheme for timer distribution scheme on page K5-8026 gives more information about this possibility.

Initializing and reading the system counter frequency

The CNTFRQ register must be programmed to the clock frequency of the system counter. Typically, this is done only during the system boot process, by using the System register interface to write the system counter frequency to the CNTFRQ register. Only software executing at the highest implemented Exception level can write to CNTFRQ.

Note

The CNTFRQ register is UNKNOWN at reset, and therefore the counter frequency must be set as part of the system boot process.

Software can read the CNTFRQ register, to determine the current system counter frequency, in the following states and modes:

- Hyp mode.
- Secure PL1 modes and Non-secure EL1 modes.
- When CNTKCTL.{PL0PCTEN, PL0VCTEN} is not {0,0}, Secure and Non-secure EL0 modes.

Memory-mapped controls of the system counter

Some system counter controls are accessible only through the memory-mapped interface to the system counter. These controls are:

- Enabling and disabling the counter.
- Setting the counter value.
- Changing the operating mode, to change the update frequency and increment value.
- Enabling Halt-on-debug, that a debugger can then use to suspend counting.

For descriptions of these controls, see Chapter 12 System Level Implementation of the Generic Timer.
G6.2 The AArch32 view of the Generic Timer

The following sections describe the components and features of a PE implementation of the Generic Timer, as seen from AArch32 state:

- **The physical counter**.
- **The virtual counter** on page G6-6105.
- **Event streams** on page G6-6107.
- **Timers** on page G6-6108.

G6.2.1 The physical counter

The PE includes a physical counter that contains the count value of the system counter. The CNTPCT register holds the current physical counter value. When FEAT_ECV is implemented and EL2 is executing in AArch64 state, the CNTPOFF_EL2 register holds the optional physical offset that can be applied to EL0 and EL1 whether EL0 and EL1 are using AArch64 state or AArch32 state. For more information, see The physical offset register on page D11-2837.

Reads of CNTPCT can occur speculatively and out of order relative to other instructions executed on the same PE.

The self-synchronized view of the physical counter

When FEAT_ECV is implemented, an alternative way to read the physical counter is supported. The CNTPCTSS register is a non-speculative view of the physical counter, as seen from the Exception level that CNTPCTSS is read from.

Access to the CNTPCTSS are subject to the same traps as accesses to the CNTPCT.

Reads of CNTPCT occur in program order relative to reads of CNTPCT or CNTPCTSS.

Reads of CNTPCTSS occur in program order relative to reads of CNTPCT or CNTPCTSS.

Example G6-1 Ensuring reads of the physical counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTPCT must be read, an ISB is used to ensure that the read of CNTPCT occurs after the signal has been read from memory, as shown in the following code sequence:

```
loop ; polling for some communication to indicate a requirement to read the timer
    LDR R1, [R2]  ; has had the value 1 written to it
    CMP R1, #1
    BNE loop
    ISB ; without this the CNTPCT could be read before the memory location in [R2]
    MRC R1, CNTPCT
```

When FEAT_ECV is implemented, an access to CNTPCTSS can be used in place of the CNTPCT which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can be used:

```
loop ; polling for some communication to indicate a requirement to read the timer
    LDR R1, [R2]  ; has had the value 1 written to it
    CMP R1, #1
    BNE loop
    MRC R1, CNTPCTSS
```

Similarly where a read of the physical counter is required to take place after the completion of all loads and stores appearing in program order before the read of the counter, then the following code sequences can be used:

```
... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTPCT could be read before the completion of the earlier loads
    MRC R1, CNTPCT
```
Or, if FEAT_ECV is implemented:

```
...                     ; earlier loads and stores
DSB                     ; completes earlier loads and stores
MRC R1, CNTPCTSS
```

Neither view of the physical counter ensures that:

- Context changes occurring in program order before the read of the counter have been synchronized.
- Accesses to memory appearing in program order after the read of the counter are executed before the counter has been read.

Example G6-2 Ensuring reads of the physical counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been synchronized before the read of the counter, the following sequence should be used:

```
DSB
ISB
MRC Rn, CNTPCT{SS}  ; either view of the physical counter has the same effect in this example
```

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

```
MRC Rn, CNTPCT{SS}  ; either view of the physical counter has the same effect in this example
ISB
LDR Ra, [Rb]       ; this load will be executed after the timer has been read
```

G6.2.2 The virtual counter

An implementation of the Generic Timer always includes a virtual counter, that indicates virtual time.

The virtual counter contains the value of the physical counter minus a 64-bit virtual offset. When executing in a Non-secure EL1 or EL0 mode, the virtual offset value relates to the current virtual machine.

The CNTVOFF register contains the virtual offset, see *The virtual offset register* on page G6-6106.

The CNTVCT register holds the current virtual counter value.

Reads of CNTVCT can occur speculatively and out of order relative to other instructions executed on the same PE.

The self-synchronized view of the virtual counter

When FEAT_ECV is implemented, an alternative way to read the virtual counter is supported. The CNTVCTSS register is a non-speculative view of the virtual counter, as seen from the Exception level that CNTVCTSS is read from.

Accesses to the CNTVCTSS are subject to the same traps as accesses to the CNTVCT.

Reads of CNTVCT occur in program order relative to reads of CNTVCT or CNTVCTSS.

Reads of CNTVCTSS occur in program order relative to reads of CNTVCT or CNTVCTSS.

Example G6-3 Ensuring reads of virtual counter occur after signal read from memory

If a read from memory is used to obtain a signal from another agent that indicates that CNTVCT must be read, an ISB is used to ensure that the read of CNTVCT occurs after the signal has been read from memory, as shown in the following code sequence:

```
loop ; polling for some communication to indicate a requirement to read the timer
```
The Generic Timer in AArch32 state

G6.2 The AArch32 view of the Generic Timer

LDR R1, [R2] ; has had the value 1 written to it
CMP R1, #1 ; without this the CNTVCT could be read before the memory location in [R2]
BNE loop
ISB
MRC R1, CNTVCT

When FEAT_ECV is implemented, an access to CNTVCTSS can be used in place of the CNTVCT, which, because it cannot be accessed speculatively, allows the ISB to be removed. This means that the following code sequence can be used:

loop ; polling for some communication to indicate a requirement to read the timer
LDR R1, [R2]
CMP R1, #1 ; has had the value 1 written to it
BNE loop
MRC R1, CNTVCTSS

Similarly where a read of the virtual counter is required to take place after the completion of all loads and stores appearing in program order before the read of the counter, then the following two sequences can be used:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
ISB ; without this the CNTVCT could be read before the completion of the earlier loads and stores
MRC R1, CNTVCT

Or, if FEAT_ECV is implemented:

... ; earlier loads and stores
DSB ; completes earlier loads and stores
MRC R1, CNTVCTSS

Neither view of the virtual counter ensures that:

• Context changes occurring in program order before the read of the counter have been synchronized.
• Accesses to memory appearing in program order after the read of the counter are executed before the counter has been read.

Example G6-4 Ensuring reads of virtual counter occur after previous memory accesses

To ensure that all previous memory accesses have completed and all previous context changes have been synchronized before the read of the counter, the following sequence should be used:

DSB
ISB
MRC Rn, CNTVCT(SS) ; either view of the virtual counter has the same effect in this example

To ensure that a memory access only occurs after a read of the counter, the following sequence should be used:

MRC Rn, CNTVCT(SS) ; either view of the virtual counter has the same effect in this example
ISB
LDR Ra, [Rb] ; this load will be executed after the timer has been read

The virtual offset register

The virtual counter is a counter that has a virtual offset relative to the physical counter as viewed from EL2 and EL3. This virtual offset is held in the register CNTVOFF. The virtual counter value is the count compared by the EL1 virtual timer.

If EL2 is not implemented and enabled, then the virtual counter uses a fixed virtual offset of zero.
G6.2.3 Event streams

Any implementation of the Generic Timer can use the system counter to generate one or more event streams, to generate periodic wake-up events as part of the mechanism described in Wait for Event mechanism and Send event on page D1-2391.

--- Note ---
An event stream might be used:
- To impose a time-out on a Wait For Event polling loop.
- To safeguard against any programming error that means an expected event is not generated.

The CNTKCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the virtual counter.

In all implementations the CNTHCTL.{EVNTEN, EVNTDIR, EVNTI, EVNTIS} fields define an event stream that is generated from the physical counter.

The event stream is configured as follows:
- EVNTI selects the counter bit that triggers the event.
- If FEAT_ECV is not implemented, EVNTI selects between bits[0:15].
- If FEAT_ECV is implemented, EVNTIS selects whether EVNTI selects between bits[0:15] or bits[8:23].
- EVNTDIR selects whether the event is generated on each 0 to 1 transition, or each 1 to 0 transition, of the selected counter bit.

The operation of an event stream is as follows:
- The pseudocode variables PreviousCNTVCT and PreviousCNTPCT are initialized as:

```
// Variables used for generation of the timer event stream.
bits(64) PreviousCNTVCT = bits(64) UNKNOWN;
bits(64) PreviousCNTPCT = bits(64) UNKNOWN;
```
- The pseudocode functions TestEventCNTV() and TestEventCNTP() are called on each cycle of the PE clock.
- The TestEventCNTx() pseudocode template defines the functions TestEventCNTV() and TestEventCNTP():

```
// TestEventCNTx()
// ===============
// Template for the TestEventCNTV() and TestEventCNTP() functions
// Describes operation when all Exception Levels are using AArch32:
//   CNTxCT         is  CNTVCT          or  CNTPCT          64-bit count value
//   CNTxCTL        is  CNTHCTL         or  CNTKCTL         Control register
//   PreviousCNTxCT is  PreviousCNTVCT  or  PreviousCNTPCT

TestEventCNTx()
if CNTxCTL.EVNTEN == '1' then
  n = Uint(CNTxCTL.EVNTI);
  if CNTxCTL.EVNTIS == '1' then
    n = n + 8;
  SampleBit   = CNTxCT<n>;
  PreviousBit = PreviousCNTxCT<n>;
  if CNTx_CTL.EVNTDIR == '0' then
    if PreviousBit == '0' && SampleBit == '1' then EventRegisterSet();
    else
      if PreviousBit == '1' && SampleBit == '0' then EventRegisterSet();
  PreviousCNTxCT = CNTxCT;
return;
```
G6.2.4 Timers

In an implementation of the Generic Timer that includes EL3 the following timers are accessible from AArch32 state, provided the appropriate Exception level can use AArch32:

- A Non-secure EL1 physical timer. A Non-secure EL1 control determines whether this register is accessible from Non-secure EL0.
- A Secure PL1 physical timer. This timer:
 - Is accessible from Secure EL1 using AArch32 when EL3 is using AArch64.
 - Is accessible from Secure EL3 when EL3 is using AArch32.
 A Secure PL1 control determines whether this register is accessible from Secure EL0.
- A Non-secure EL2 physical timer, accessible from Non-secure EL2.
- An EL1 virtual timer.
- When FEAT_VHE is implemented, a Non-secure EL2 virtual timer.
- When FEAT_SEL2 is implemented, a Secure EL2 physical timer.
- When FEAT_SEL2 is implemented, a Secure EL2 virtual timer.

Note

The Secure EL2 timers are accessible in AArch32 state if using EL0, when EL0 is using AArch32 state, Secure EL2 is using AArch64, and HCR_EL2.{E2H,TGE} == {1, 1}.

The output of each implemented timer:

- Provides an output signal to the system.
- If the PE interfaces to a Generic Interrupt Controller (GIC), signals a Private Peripheral Interrupt (PPI) to that GIC. In a multiprocessor implementation, each PE must use the same interrupt number for each timer.

Each timer:

- Is based around a 64-bit CompareValue that provides a 64-bit unsigned upcounter.
- Provides an alternative view of the CompareValue, called the TimerValue, that appears to operate as a 32-bit downcounter.
- Has, in addition, a 32-bit Control register.

In all implementations, the AArch32 System registers for the EL1 (or PL1) physical timer are banked, to provide the Secure and Non-secure implementations of the timer. Table G6-1 shows the physical timer registers and Table G6-2 on page G6-6109 show the virtual timer registers.

Table G6-1 Physical timer registers summary for the Generic Timer

<table>
<thead>
<tr>
<th>Timer registera</th>
<th>Secure PL1 or Non-secure EL1 physical timer</th>
<th>Non-secure EL2 physical timer</th>
<th>Secure EL2 physical timerb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>CNTP_CVAl</td>
<td>CNTHP_CVAL</td>
<td>CNTHPS_CVAL</td>
</tr>
<tr>
<td>TV</td>
<td>CNTP_TVAl</td>
<td>CNTHP_TVAl</td>
<td>CNTHPS_TVAl</td>
</tr>
<tr>
<td>Control</td>
<td>CNTP_CTLc</td>
<td>CNTHP_CTL</td>
<td>CNTHPS_CTL</td>
</tr>
</tbody>
</table>

a. In this column, CV indicates the CompareValue register, and TV indicates the TimerValue register.
b. Only present when the implementation implements FEAT_SEL2.
c. In AArch32 state, these registers are banked to provide the Non-secure EL1 physical timer and the Secure PL1 physical timer.
Operation of the CompareValue views of the timers

The CompareValue view of a timer operates as a 64-bit upcounter. The timer condition is met when the appropriate counter reaches the value programmed into its CompareValue register. When the timer condition is met an interrupt is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL, CNTHPS_CTL, CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL. For CNTP_CTL, the interrupt is the same as the interrupt asserted by the Non-secure instance of the AArch64 register CNTP_CTL_EL0.

The operation of this view of a timer is:

```
TimerConditionMet = (((Counter[63:0] – Offset[63:0])[63:0] - CompareValue[63:0]) >= 0)
```

Where:

- **TimerConditionMet**: Is TRUE if the timer condition for this counter is met, and FALSE otherwise.
- **Counter**: The physical counter value, that can be read from the CNTPCT register.
- **Offset**: For the EL1 physical timer, if ID_AA64MMFR0_EL1.ECV is 0b10, EL2 is using AArch64 and is implemented and enabled in the current Security state, and CNTHCTL_EL2.ECV is 0b1, then the offset value is held in the CNTPOFF_EL2. Otherwise the offset value for the EL1 physical timer is zero.
 - For the EL1 virtual timer, the offset value is held in the CNTVOFF register.
 - For the EL2 physical and virtual timers, the offset value is zero.
- **CompareValue**: The value of the appropriate CompareValue register, CNTP_CVAL, CNTHP_CVAL, CNTHPS_CVAL, CNTV_CVAL, CNTHV_CVAL, or CNTHVS_CVAL.

In this view of a timer, Counter, Offset, and CompareValue are all 64-bit unsigned values.

--- Note ---

This means that a timer with a CompareValue of, or close to, 0xFFFF_FFFF_FFFF_FFFF might never meet its timer condition. However, there is no practical requirement to use values close to the counter wrap value.

Software can observe the counter value by the offset in some situations by reading CNTVCT.

Operation of the TimerValue views of the timers

The TimerValue view of a timer appears to operate as a signed 32-bit downcounter. A TimerValue register is programmed with a count value. This value decrements on each increment of the appropriate counter, and the timer condition is met when the value reaches zero. When the timer condition is met, an interrupt is generated if the interrupt is not masked in the corresponding timer control register, CNTP_CTL, CNTHP_CTL, CNTHPS_CTL, CNTV_CTL, CNTHV_CTL, or CNTHVS_CTL.

This view of a timer depends on the following behavior of accesses to TimerValue registers:

```
Reads  TimerValue = (CompareValue - (Counter - Offset))[31:0]
```
The Generic Timer in AArch32 state
G6.2 The AArch32 view of the Generic Timer

Writes $ \text{CompareValue} = \{(\text{Counter} - \text{Offset})[63:0] + \text{SignExtend}(\text{TimerValue})\}[63:0]$

Where the arguments other than TimerValue have the definitions used in *Operation of the CompareValue views of the timers on page G6-6109*, and in addition:

TimerValue The value of a TimerValue register, `CNTP_TV AL`, `CNTHP_TV AL`, `CNTHPS_TV AL`, `CNTV_TV AL`, `CNTHV_TV AL`, or `CNTHVS_TV AL`.

In this view of a timer, values are signed, in standard two's complement form.

A read of a TimerValue register after the timer condition has been met indicates the time since the timer condition was met.

--- **Note** ---

- *Operation of the CompareValue views of the timers on page G6-6109* gives a strict definition of TimerConditionMet. However, provided that the TimerValue is not expected to wrap as a 32-bit signed value when decremented from $0x80000000$, the TimerValue view can be used as giving an effect equivalent to:

 `TimerConditionMet = (TimerValue \leq 0)`

- Programming TimerValue to a negative number with magnitude greater than (Counter–Offset) can lead to an arithmetic overflow that causes the CompareValue to be an extremely large positive value. This potentially delays meeting the timer condition for an extremely long period of time.
Chapter G7
AArch32 System Register Encoding

This chapter describes the AArch32 System register encoding space. It contains the following sections:

• The AArch32 System register encoding space on page G7-6112.
• VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6113.
• VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6116.
G7.1 The AArch32 System register encoding space

The T32 and A32 instruction sets includes instructions that access the System register encoding space. These instructions provide:

- Access to System registers, including the debug registers, that provide system control, and system status information.
- The cache, branch predictor, and TLB maintenance instructions, and address translation instructions.

The AArch32 System register interface on page G1-5809 describes the instructions that provide access to these registers and instructions. Chapter G8 AArch32 System Register Descriptions describes these registers and encodings.

When accessing 32-bit registers, or executing these instructions, entries in the encoding space are characterized by the parameter set \{coproc, CRn, opc1, CRm, opc2\}. In Armv8 this encoding space is defined only for the coproc values 0b1110 and 0b1111.

Note

- When accessing 64-bit registers entries in the encoding space are characterized by the parameter set \{coproc, CRm, opc1\}, for the coproc values 0b1110 and 0b1111. A CRm value in this parameter set is equivalent to a CRn value in the parameter set for accessing 32-bit registers.
- Background to the System register interface on page G1-5810 gives more information about this encoding model.

The following describe this encoding space:

- VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6113.
- VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6116.
G7.2 VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space

The System registers in the (coproc==0b1110) encoding space provide a number of distinct control functions, covering:

- Debug.
- Trace.
- Execution environment control, for identification of the trivial Jazelle implementation.

Because these functions are distinct, the descriptions of these registers are distributed, as follows:

- In this manual, Debug registers on page G8-6628 describes the Debug registers.
- The Embedded Trace Macrocell Architecture Specification describes the Trace registers.

This section summarizes the allocation of the System registers in the (coproc==0b1110) encoding space between these different functions, and the register encodings in this space that are reserved.

The 32-bit System register encodings are classified by the {opc1, CRn, opc2, CRm} values required to access them using an MCR or an MRC instruction. The 64-bit System register encodings are classified by the {opc1, CRm} values required to access them using an MRCR or an MRRC instruction. For the registers in the (coproc==0b1110) encoding space, the opc1 value determines the primary allocation of these registers, as follows:

- **opc1==0**: Debug registers.
- **opc1==1**: Trace registers.
- **opc1==7**: Jazelle registers. Jazelle registers are implemented as required for a trivial Jazelle implementation.
- **Other opc1 values**: Reserved.

Note

Primary allocation of (coproc==0b1110) register function by opc1 value differs from the allocation of (coproc==0b1111) registers, where primary allocation is by CRn value for 32-bit register accesses, or CRm value for 64-bit register accesses.

Note

For the Debug and Jazelle registers, Table G7-1 on page G7-6114 defines:

- The {opc1, CRn, opc2, CRm} values used for accessing the 32-bit registers using the MRC and MCR instructions.
- The {opc1, CRm} values used for accessing the 64-bit register using the MRRC instruction.

Some Debug registers can also be accessed using the LDC and STC instructions. Table G7-2 on page G7-6115 defines the CRn values used for accessing the registers using these instructions.

Note

The only permitted uses of the LDC and STC instructions are:

- An LDC access to load data from memory to DBGDTRTXint.
- An STC access to store data to memory from DBGDTRRXint.

In the LDC and STC syntax descriptions in this Manual, the required coproc value of p14 and CRn value of c5 are given explicitly.
G7.2.1 Register access instruction arguments, (coproc==0b1110) registers

Table G7-1 shows the MCR, MRC, and MRRC instruction arguments required for accesses to each register that can be visible in the System register interface in the (coproc==0b1110) encoding.

<table>
<thead>
<tr>
<th>Name</th>
<th>opc1</th>
<th>CRn</th>
<th>opc2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGIDIR<sup>a</sup></td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>c0</td>
</tr>
<tr>
<td>DBGDSCRint</td>
<td></td>
<td></td>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>DBGDCCINT</td>
<td></td>
<td></td>
<td>c2</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRRXint</td>
<td></td>
<td></td>
<td>c5</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRXint</td>
<td></td>
<td></td>
<td>c5</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td>c6</td>
<td></td>
</tr>
<tr>
<td>DBGVCR</td>
<td></td>
<td></td>
<td>c7</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRXext</td>
<td>2</td>
<td>c0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGDSCRext</td>
<td></td>
<td></td>
<td>c2</td>
<td></td>
</tr>
<tr>
<td>DBGDTTRXext</td>
<td></td>
<td></td>
<td>c3</td>
<td></td>
</tr>
<tr>
<td>DBGOSECCR</td>
<td></td>
<td></td>
<td>c6</td>
<td></td>
</tr>
<tr>
<td>DBGBVV<sup>b</sup><n></td>
<td>4</td>
<td>c0-15<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGBCR<n></td>
<td>5</td>
<td>c0-15<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGWVVR<sup>b</sup><n></td>
<td>6</td>
<td>c0-15<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGWCR<n></td>
<td>7</td>
<td>c0-15<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGDRAR 32 bits wide</td>
<td>c1</td>
<td>0</td>
<td>c0</td>
<td></td>
</tr>
<tr>
<td>DBGDRAR 64 bits wide</td>
<td>-</td>
<td>-</td>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>DBGBXV<sup>b</sup><n></td>
<td>c1</td>
<td>1</td>
<td>c0-15<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>DBGOSLAR</td>
<td>4</td>
<td>c0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBGOSLR</td>
<td></td>
<td></td>
<td>c1</td>
<td></td>
</tr>
<tr>
<td>DBGOSDLR</td>
<td></td>
<td></td>
<td>c3</td>
<td></td>
</tr>
<tr>
<td>DBGPRCR</td>
<td></td>
<td></td>
<td>c4</td>
<td></td>
</tr>
<tr>
<td>DBGDSAR 32 bits wide</td>
<td>c2</td>
<td>0</td>
<td>c0</td>
<td></td>
</tr>
<tr>
<td>DBGDSAR 64 bits wide</td>
<td>-</td>
<td>-</td>
<td>c2</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>c4</td>
<td>0-3</td>
<td>c0-15</td>
<td></td>
</tr>
</tbody>
</table>

^a Super register

^b Multiple registers

Table G7-1 Mapping of (coproc==0b1110) MCR, MRC, and MRRC instruction arguments to System registers
Table G7-1 Mapping of (coproc==0b1110) MCR, MRC, and MRRC instruction arguments to System registers (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>opc1</th>
<th>CRn</th>
<th>opc2</th>
<th>CRm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGCLAIMSET</td>
<td>0</td>
<td>c7</td>
<td>6</td>
<td>c8</td>
</tr>
<tr>
<td>DBGCLAIMCLR</td>
<td></td>
<td></td>
<td></td>
<td>c9</td>
</tr>
<tr>
<td>DBGAUTHSTATUS</td>
<td></td>
<td></td>
<td></td>
<td>c14</td>
</tr>
<tr>
<td>DBGDEVID2</td>
<td></td>
<td></td>
<td>7</td>
<td>c0</td>
</tr>
<tr>
<td>DBGDEVID1</td>
<td></td>
<td></td>
<td></td>
<td>c1</td>
</tr>
<tr>
<td>DBGDEVID</td>
<td></td>
<td></td>
<td></td>
<td>c2</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>c0-c7</td>
<td>0-7</td>
<td>c0-c15</td>
</tr>
<tr>
<td>JIDR<sup>c</sup></td>
<td>7</td>
<td>c0</td>
<td>0</td>
<td>c0</td>
</tr>
<tr>
<td>JOSCR<sup>c</sup></td>
<td></td>
<td></td>
<td>c1</td>
<td>0</td>
</tr>
<tr>
<td>JMCRC<sup>c</sup></td>
<td></td>
<td></td>
<td>c2</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>All other encodings</td>
</tr>
</tbody>
</table>

a. If EL1 cannot use AArch32, this register is OPTIONAL and deprecated. See the register description for details.

b. Accesses to not implemented breakpoint and watchpoint register access instructions are UNDEFINED. If EL2 is not implemented or breakpoint n is not context-aware, DBGBXVR<n> is unallocated. CRm encodes <n>, the breakpoint or watchpoint number.

c. Legacy register.

Table G7-2 shows the LDC and STC instruction arguments required for accesses to the Debug registers that can be accessed using these instructions.

Table G7-2 Mapping of LDC and STC instruction arguments to System registers

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGDTXTRXint</td>
<td>c5</td>
<td>LDC</td>
<td>Debug Data Transfer Register, Transmit, Internal View</td>
</tr>
<tr>
<td>DBGDTXXint</td>
<td>c5</td>
<td>STC</td>
<td>Debug Data Transfer Register, Receive, Internal View</td>
</tr>
</tbody>
</table>

Note

In the instruction syntax descriptions for the LDC and STC instructions, the required coproc and CRn values are given explicitly as coproc==p14, CRn==c5.
G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space

For 32-bit accesses to the System registers in the (coproc==0b1111) encoding space, the ordered set of parameters \{CRn, opc1, CRm, opc2\} determine the register order. Within this ordering, the CRn value originally provided a functional grouping of these registers. As the number of System registers has increased this ordering has become less appropriate.

This document now:

- Groups the Armv8.0 System registers in the (coproc==0b1111) encoding space by functional group, see Functional index of AArch32 registers and System instructions on page K15-8204.
- Describes all of the Armv8.0 System registers for VMSAv8-32, in Chapter G8 AArch32 System Register Descriptions.
- Gives additional information about the organization of the VMSAv8-32 System registers in the (coproc==0b1111) encoding space, in the remainder of this section.

Note

Not all System registers introduced by architectural extensions to Armv8.0 are described in Chapter G8 AArch32 System Register Descriptions. For information about the System registers introduced by architectural extensions to Armv8.0, see Chapter A2 Armv8-A Architecture Extensions.

This section presents information about the register ordering by \{CRn, opc1, CRm, opc2\}. It contains the following subsections:

- System register summary for (coproc==0b1111) encodings by CRn value.
- Full list of VMSAv8-32 System registers in the (coproc==0b1111) encoding space on page G7-6119.

Note

The ordered listing of (coproc==0b1111) registers by the \{CRn, opc1, CRm, opc2\} encoding of the 32-bit registers is most likely to be useful to those implementing AArch32 state, and to those validating such implementations. However, otherwise, the grouping of registers by function is more logical.

In addition, the indexes in Appendix K15 Registers Index include all of the System registers.

G7.3.1 System register summary for (coproc==0b1111) encodings by CRn value

Figure G7-1 on page G7-6117 summarizes the grouping of the System registers in the (coproc==0b1111) encoding space, for a VMSAv8-32 implementation, by the value of CRn used for a 32-bit access to the register.
AArch32 System Register Encoding

G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space

Figure G7-1 AArch32 System register groupings for (coproc==0b1111), for 32-bit registers

Note
For the System registers in the (coproc==0b1111) encoding space, Figure G7-1 gives only an overview of the assigned encodings for 32-bit registers for each of the CRn values c0-c15. For more information, see:
• The full list of registers in the (coproc==0b1111) encoding space, in Full list of VMSAv8-32 System registers in the (coproc ==0b1111) encoding space on page G7-6119, for the definition of the assigned and unassigned encodings for that register.
• The register definitions in Chapter G8 AArch32 System Register Descriptions for any dependencies on the implemented Exception levels.

In general, System register accesses using an unallocated set of {CRn, opc1, CRm, opc2} values are UNDEFINED. Behavior of VMSAv8-32 32-bit System registers with (coproc==0b1111, CRn==c0) described the only exceptions to this rule.
The 32-bit System registers with (coproc==0b1111, CRn==c15), and the corresponding 64-bit System registers, are reserved for implementation defined registers. For more information see Reserved encodings in the VMSAv8-32 System register (coproc == 0b1111) space on page G7-6118.

The HSTR.Tn trap on (coproc==0b1111) System registers
As General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc==0b1111) encoding space on page G1-5841 describes, when the value of HSTR.Tn is 1, Non-secure PL1 accesses to System registers in the (coproc==0b1111) encoding space using a CRn or CRm value that corresponds to the value of Tn are trapped to EL2, even if the encoding is UNDEFINED when the value of HSTR.Tn is 0. This applies:
• For 32 bit register accesses when the value of Rn in the MCR or MRC instruction corresponds to Tn.
• For 64 bit register accesses when the value of Rn in the MCR or MRC instruction corresponds to Tn.

If there are matching System register encodings that are accessible from Non-secure EL0 then those accesses are also trapped to EL2 when the value of HSTR.Tn is 1.

Behavior of VMSAv8-32 32-bit System registers with (coproc==0b1111, CRn==c0)
In the (coproc==0b1111) encoding space, the 32-bit System registers with (CRn==c0) provide device and feature identification.
Table G7-3 on page G7-6120 shows all of the architecturally required System registers with \{coproc==0b1111, Crn==c8\}. The behavior of 32-bit System register encodings in this group that are not shown in the table, and encodings that are part of an unimplemented Exception level, depends on the value of opc1, and possibly on the value of Crn and opc2, as follows:

\[
\text{opc1} = 0 \\
\text{All write accesses to the encodings are UNDEFINED.}
\]

For read accesses:

- The following encodings return an UNKNOWN value:
 - Crn==3, opc2==\{0, 1, 2\}.
 - Crn==\{4, 6, 7\}, opc2==\{0, 1\}.
 - Crn==5, opc2==\{0, 1, 4, 5\}.
- All other encodings are RES0.

\[
\text{opc1} > 0 \\
\text{All accesses to the encodings are UNDEFINED.}
\]

See also \textit{Accesses to unallocated encodings in the (coproc==0b111x) encoding space} on page G8-6136.

\[\text{Note}\]

Some of these registers were previously described as being part of the CPUID identification scheme, see \textit{The CPUID identification scheme} on page G8-6135.

\textbf{Reserved encodings in the VMSAv8-32 System register (coproc==0b1111) space}

AArch32 state reserves a number of regions in the (coproc==0b1111) encoding space for IMPLEMENTATION DEFINED System registers. These reservations are defined in terms of the encoding of 32-bit accesses to the System register encoding space. That is, they are defined by the reserved 32-bit \{Crn, opc1, Crn, opc2\} encodings.

In Armv8, reserved encodings that do not have an IMPLEMENTATION DEFINED function are UNDEFINED.

The following subsections give more information about these reserved encodings:

- \textit{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c9\}}.
- \textit{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c10\}}.
- \textit{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c11\}} on page G7-6119.
- \textit{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c15\}} on page G7-6119.

\textbf{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c9\}}

In the AArch32 encoding space, for 32-bit encodings with \{coproc==0b1111, Crn==c9\}, the following encodings are reserved for IMPLEMENTATION DEFINED purposes:

- Encodings with \{coproc==0b1111, Crn==c9, opc1==\{0-7\}, opc2==\{0-7\}, Crm==\{c8-c2, c5-c8\}\} are reserved for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations.
- Encodings with \{coproc==0b1111, Crn==c9, opc1==\{0-7\}, opc2==\{0-7\}, Crm==c15\} are reserved for IMPLEMENTATION DEFINED performance monitors.

\[\text{Note}\]

These are distinct from the OPTIONAL Arm Performance Monitors Extension, the registers for which use the encoding space \{coproc==0b1111, Crn==c9, opc1==\{0-7\}, opc2==\{0-7\}, Crm==\{c12-c14\}\}.

\textbf{Reserved 32-bit encodings with \{coproc==0b1111, Crn==c10\}}

In the AArch32 encoding space, for 32-bit encodings with \{coproc==0b1111, Crn==c10\}, the following encodings are reserved for IMPLEMENTATION DEFINED purposes:

- Encodings with \{coproc==0b1111, Crn==c10, opc==\{0-7\}, Crm==\{c0, c1, c4, c8\}\} are reserved for IMPLEMENTATION DEFINED TLB lockdown operations.
Reserved 32-bit encodings with \{coproc==0b1111, CRn==c11\}

In the AArch32 encoding space, for 32-bit encodings with \{coproc==0b1111, CRn==c11\}, the following encodings are reserved for IMPLEMENTATION DEFINED purposes:

- Encodings with \{coproc==0b1111, CRn==c11, opc==\{0-7\}, CRm==\{c0-c8, c15\}\} are reserved for IMPLEMENTATION DEFINED DMA operations for TCM access.

In Armv8, the remainder of the AArch32 \{coproc==0b1111, CRn==c11\} encoding space is UNDEFINED.

Reserved 32-bit encodings with \{coproc==0b1111, CRn==c15\}

Armv8 reserves the AArch32 System register encodings with \{coproc==0b1111, CRn==c15\} for IMPLEMENTATION DEFINED purposes, and does not impose any restrictions on the use of these encodings. The documentation of the Arm implementation must describe fully any registers implemented in the \{coproc==0b1111, CRn==c15\} encoding space. Normally, for processor implementations by Arm, this information is included in the Technical Reference Manual for the processor.

Typically, an implementation uses the \{coproc==0b1111, CRn==c15\} encodings to provide test features, and any required configuration options that are not covered by this Manual.

This reservation means that the AArch32 64-bit encodings with \{coproc==0b1111, CRn==c15\} are also reserved for IMPLEMENTATION DEFINED purposes, without any restrictions on the use of these encodings.

G7.3.2 Full list of VMSAv8-32 System registers in the \{coproc==0b1111\} encoding space

Table G7-3 on page G7-6120 shows the System registers in the \{coproc==0b1111\} encoding space in VMSAv8-32, in the order of the \{CRn, opc1, CRm, opc2\} parameter values used in MCR or MRC accesses to the 32-bit registers:

- For MCR or MRC accesses to the 32-bit registers, CRn is the primary identifier of the target System register for the access. This applies, also, to MCR or MRC instructions that provide 32-bit accesses to a single word of a 64-bit System register.

- For MCRR or MRRC accesses to the 64-bit registers, CRn is the primary identifier of the target System register for the access. Table G7-3 on page G7-6120 orders the 64-bit registers with the 32-bit registers accessed using the same primary register identifier. For example, the 64-bit encoding of TTBR0, that is accessed with \(\text{CRm==c2}\), is listed with the 32-bit registers that are accessed with \(\text{CRn==c2}\).
<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDR</td>
<td>c0</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CTR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>TCMTR</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBTR</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>MIDR</td>
<td></td>
<td></td>
<td></td>
<td>4, 6a, 7</td>
<td>v8.0</td>
</tr>
<tr>
<td>MPIDR</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>REVIDR</td>
<td></td>
<td></td>
<td></td>
<td>6a</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_PFR0</td>
<td></td>
<td></td>
<td></td>
<td>c1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_PFR1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_DFR0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_AFR0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR0</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR2</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR3</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR0</td>
<td></td>
<td></td>
<td></td>
<td>c2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_ISAR5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR4</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_PFR2</td>
<td></td>
<td></td>
<td></td>
<td>c3</td>
<td>v8.0</td>
</tr>
<tr>
<td>ID_MMFR5</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>CCSIDR</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.6</td>
</tr>
<tr>
<td>CLIDR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>CCSIDR2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>AIDR</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>CSSELDR</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>VPIDR⁵</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>VMPIDR⁵</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
</tbody>
</table>

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order
Table G7-3 VMSA\(8\)-32 \(\text{coproc}=0b1111\) register summary, in \(\text{MCR/\text{MRC}}\) parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTLR</td>
<td>c1</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>ACTLR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTLR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR(^d)</td>
<td>c1</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>SDER(^d)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSACR(^d)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRFCR</td>
<td>c2</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>SDCR</td>
<td>c3</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HSCTLR(^c)</td>
<td>4</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>HACTLR(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HACTLR2(^c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCR(^c)</td>
<td>c1</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HDCR(^c)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HPCTR(^c)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HSTR(^c)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HCR2(^c)</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HACR(^c)</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HTRFCR</td>
<td>c2</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBRO, 32 bits wide</td>
<td>c2</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBRO, 64 bits wide</td>
<td>-</td>
<td>0</td>
<td>c2</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBRI, 32 bits wide</td>
<td>c2</td>
<td>0</td>
<td>c0</td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBRI, 64 bits wide</td>
<td>-</td>
<td>1</td>
<td>c2</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBCR</td>
<td>c2</td>
<td>0</td>
<td>c0</td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>TTBCR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTCR(^c)</td>
<td>4</td>
<td>0</td>
<td>c0</td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>VTCR(^c)</td>
<td>c1</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>HTTBR(^c), 64 bits wide</td>
<td>-</td>
<td>4</td>
<td>c2</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>VTTBR(^c), 64 bits wide</td>
<td>-</td>
<td>6</td>
<td>c2</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>DACR</td>
<td>c3</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>ICC_PMR</td>
<td>c4</td>
<td>0</td>
<td>c6</td>
<td>0</td>
<td>GIC(^c)</td>
</tr>
<tr>
<td>ICV_PMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^c\): Core state
\(^d\): Data state
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPSR<sup>f</sup></td>
<td>c4</td>
<td>3</td>
<td>c5</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>DLR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>DFSR</td>
<td>c5</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>IFSR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ADFSR</td>
<td></td>
<td></td>
<td>c1</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>AIFSR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ERRIDR</td>
<td></td>
<td></td>
<td>c3</td>
<td>0</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERSELR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXFR</td>
<td></td>
<td></td>
<td>c4</td>
<td>0</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXCTRLR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXSTATUS</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXADDR</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXFR2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXCTRLR2</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXADDR2</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC0</td>
<td></td>
<td></td>
<td>c5</td>
<td>0</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC3</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC6</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>RAS#</td>
</tr>
<tr>
<td>ERXMISC7</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>RAS#</td>
</tr>
<tr>
<td>HADFSR<sup>c</sup></td>
<td>4</td>
<td>c1</td>
<td>0</td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>HAIFSR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>HSR<sup>c</sup></td>
<td></td>
<td></td>
<td>c2</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>VDFSR</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>RAS#</td>
</tr>
<tr>
<td>DFAR</td>
<td>c6</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>IFAR</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>HDFAR<sup>c</sup></td>
<td></td>
<td></td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>HIFAR<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
</tbody>
</table>
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPFAR<</td>
<td>c6</td>
<td>4</td>
<td>c0</td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>ICIALLUIS</td>
<td>c7</td>
<td>0</td>
<td>c1</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>BPIALLIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFPRCTX</td>
<td>c3</td>
<td>4</td>
<td></td>
<td></td>
<td>v8.0(^b)</td>
</tr>
<tr>
<td>DVPRCTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v8.0(^b)</td>
</tr>
<tr>
<td>CPPRCTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v8.0(^b)</td>
</tr>
<tr>
<td>PAR, 32 bits wide</td>
<td>c4</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>PAR, 64 bits wide</td>
<td>0</td>
<td></td>
<td>c7</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>ICIALLU</td>
<td>c7</td>
<td>0</td>
<td>c5</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>ICIMVAU</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>CP15ISBi</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>BPIALL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>BPIMVA</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCIMVAC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCISW</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1CPR</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1CPW</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1CUR</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1CUW</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS12NSOPR<</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS12NSOPW<</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS12NSOUR<</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS12NSOUW<</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCCMVAC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCCSW</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>CP15DSBi</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>CP15DMBi</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCCIMVAU</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCCMVAC</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>DCCISW</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1HR<</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>ATS1HW<</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
</tbody>
</table>
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBIALLIS</td>
<td>c8</td>
<td>0</td>
<td>c3</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAIS</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIASIDIS</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAAIS</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVALIS</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAALIS</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>ITLBIALL</td>
<td>c5</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>ITLBIMVA</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>ITLBIASID</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>DTLBIALL</td>
<td>c6</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>DTLBIMVA</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>DTLBIASID</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIALL</td>
<td>c7</td>
<td>0</td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVA</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIASID</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAA</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAL</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLBIMVAAL</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>TLIIPAS2IS</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>c0</td>
</tr>
<tr>
<td>TLIIPAS2LIS</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>c0</td>
</tr>
<tr>
<td>TLIALLHISc</td>
<td>c3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLMVAHISc</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLIALLNSNHISc</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TLMVALHIS</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLIIPAS2</td>
<td></td>
<td></td>
<td></td>
<td>c4</td>
<td></td>
</tr>
<tr>
<td>TLIIPAS2L</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TLIALLHc</td>
<td>c7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLMVAHc</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TLIALLNSNHc</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TLMVALH</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Reservedj</td>
<td>c9</td>
<td>0-7</td>
<td>c0-2</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reservedj</td>
<td></td>
<td></td>
<td></td>
<td>c5-8</td>
<td>0-7</td>
</tr>
</tbody>
</table>
Table G7-3 VMASAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCR<sup>k</sup></td>
<td>c9</td>
<td>0</td>
<td>c12</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCNTENSET<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCNTENCLR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMOVSR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMSWINC<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMSELR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCEID0<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCEID1<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCCNTR<sup>k</sup>, 32 bits wide</td>
<td>c13</td>
<td>0</td>
<td></td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>PMCCNTR_EL0<sup>k</sup>, 64 bits wide</td>
<td>-</td>
<td>0</td>
<td>c9</td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>PMXEVTYPEPER<sup>k</sup></td>
<td>c9</td>
<td>0</td>
<td>c13</td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMXEVCNTR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMUSERENR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>c14</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMINTENSET<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMINTENCLR<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMOVSSET<sup>c,k</sup></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCEID2<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.1</td>
</tr>
<tr>
<td>PMCEID3<sup>k</sup></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>v8.1</td>
</tr>
<tr>
<td>PMMIR</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>v8.4</td>
</tr>
<tr>
<td>Reserved<sup>l</sup></td>
<td></td>
<td>0-7</td>
<td>c15</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reserved<sup>m</sup></td>
<td>c10</td>
<td>0</td>
<td>e0- c1</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>PRRR<sup>n</sup></td>
<td></td>
<td></td>
<td>c2</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>MAIR0<sup>n</sup></td>
<td></td>
<td></td>
<td></td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>NMRR<sup>n</sup></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>MAIR1<sup>n</sup></td>
<td></td>
<td></td>
<td></td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>AMAIR0</td>
<td></td>
<td></td>
<td>c3</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>AMAIR1</td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>Reserved<sup>m</sup></td>
<td></td>
<td></td>
<td>c4, c8</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reserved<sup>m</sup></td>
<td></td>
<td>1-3</td>
<td>c0, c1, c4, c8</td>
<td>0-7</td>
<td>-</td>
</tr>
</tbody>
</table>
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved(m)</td>
<td>c10</td>
<td>4</td>
<td>c0, c1</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>HMAIR0(c)</td>
<td></td>
<td></td>
<td>c2</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>HMAIR1(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>HAMAIR0(c)</td>
<td></td>
<td></td>
<td>c3</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>HAMAIR1(c)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>Reserved(m)</td>
<td></td>
<td></td>
<td>c4, c8</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reserved(m)</td>
<td></td>
<td>5-7</td>
<td>c0, c1, c4, c8</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reserved(p)</td>
<td>c11</td>
<td>0-7</td>
<td>c0-c8</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>Reserved(p)</td>
<td></td>
<td></td>
<td>c15</td>
<td>0-7</td>
<td>-</td>
</tr>
<tr>
<td>ICC_SGI1R, 64 bits wide</td>
<td>-</td>
<td>0</td>
<td>c12</td>
<td>-</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>VBAR</td>
<td>c12</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>MVBAR(d)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>RVBAR</td>
<td></td>
<td></td>
<td></td>
<td>v8.0</td>
<td></td>
</tr>
<tr>
<td>RMR(p)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>ISR(d)</td>
<td>c1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>DISR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>RAS#</td>
</tr>
<tr>
<td>VDISR</td>
<td></td>
<td>4</td>
<td>c1</td>
<td>1</td>
<td>RAS#</td>
</tr>
<tr>
<td>ICC_IAR0</td>
<td>0</td>
<td>c8</td>
<td>0</td>
<td>GIC(c)</td>
<td></td>
</tr>
<tr>
<td>ICC_EOIR0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_HPPIR0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_BPR0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_AP0R0</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_AP0R1</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_AP0R2</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>GIC(c)</td>
</tr>
<tr>
<td>ICC_AP0R3</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>GIC(c)</td>
</tr>
</tbody>
</table>
Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC_AP1R0</td>
<td>c12</td>
<td>0</td>
<td>c9</td>
<td>0</td>
<td>GICe</td>
</tr>
<tr>
<td>ICC_AP1R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_AP1R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_AP1R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_DIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_RPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_IAR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_EOIR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_HPPIR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_BPR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_CTLR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_SRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_IGRPEN0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_IGRPEN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC_ASGI1R, 64 bits wide</td>
<td>-</td>
<td>1</td>
<td>c12</td>
<td>-</td>
<td>GICe</td>
</tr>
<tr>
<td>ICC_SGI0R, 64 bits wide</td>
<td>-</td>
<td>2</td>
<td>c12</td>
<td>-</td>
<td>GICe</td>
</tr>
<tr>
<td>HVBAR<</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v8.0e</td>
</tr>
<tr>
<td>HRMRp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v8.0e</td>
</tr>
<tr>
<td>ICH_AP0R0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICH_AP0R1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICH_AP0R2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICH_AP0R3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>CRn</td>
<td>opc1</td>
<td>CRm</td>
<td>opc2</td>
<td>Source</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>ICH_AP1R0</td>
<td>c12</td>
<td>4</td>
<td>c9</td>
<td>0</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_AP1R1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_AP1R2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_AP1R3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>GICe</td>
</tr>
<tr>
<td>ICC_HSRE</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_HCR</td>
<td>c11</td>
<td>0</td>
<td></td>
<td></td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_VTR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_MISR</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_EISR</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_ELRSR</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_VMCR</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_LR<n>, for n==0 to 7</td>
<td>c12</td>
<td>0-7</td>
<td></td>
<td></td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_LR<n>, for n==8 to 15</td>
<td>c13</td>
<td>0-7</td>
<td></td>
<td></td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_LRC<n>, for n==0 to 7</td>
<td>c14</td>
<td>0-7</td>
<td></td>
<td></td>
<td>GICe</td>
</tr>
<tr>
<td>ICH_LRC<n>, for n==8 to 15</td>
<td>c15</td>
<td>0-7</td>
<td></td>
<td></td>
<td>GICe</td>
</tr>
<tr>
<td>ICC_MCTLR</td>
<td></td>
<td></td>
<td>6</td>
<td>c12</td>
<td>4</td>
</tr>
<tr>
<td>ICC_MSRE</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>GICe</td>
</tr>
<tr>
<td>ICC_MGRPEN1</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>GICe</td>
</tr>
<tr>
<td>FCSEIDR</td>
<td>c13</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CONTEXTIDR</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>TPIDRURW</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>TPIDRULO</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>v8.0</td>
</tr>
<tr>
<td>TPIDRPRW</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>v8.0</td>
</tr>
<tr>
<td>AMCR</td>
<td>c2</td>
<td>0</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCFGR</td>
<td>c2</td>
<td>1</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCGCR</td>
<td>c2</td>
<td>2</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMUSERENR</td>
<td>c2</td>
<td>3</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCNTENCLR0</td>
<td>c2</td>
<td>4</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCNTENSET0</td>
<td>c2</td>
<td>5</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCNTENCLR1</td>
<td>c3</td>
<td>0</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>AMCNTENSET1</td>
<td>c3</td>
<td>1</td>
<td></td>
<td></td>
<td>AMU^4</td>
</tr>
<tr>
<td>Name</td>
<td>CRn</td>
<td>opc1</td>
<td>CRm</td>
<td>opc2</td>
<td>Source</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>AMEVTYPER0<n>, for n==0 to 7</td>
<td>c13</td>
<td>0</td>
<td>c6</td>
<td>0-7</td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVTYPER0<n>, for n==8 to 15</td>
<td></td>
<td></td>
<td>c7</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVTYPER1<n>, for n==0 to 7</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVTYPER1<n>, for n==8 to 15</td>
<td></td>
<td></td>
<td>c15</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVNCTR0<n>, for n==0 to 7, 64 bits wide</td>
<td></td>
<td></td>
<td>c0</td>
<td>0-7</td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVNCTR0<n>, for n==8 to 15, 64 bits wide</td>
<td></td>
<td></td>
<td>c1</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVNCTR1<n>, for n==0 to 7, 64 bits wide</td>
<td></td>
<td></td>
<td>c4</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>AMEVNCTR1<n>, for n==8 to 15, 64 bits wide</td>
<td></td>
<td></td>
<td>c5</td>
<td></td>
<td>AMUq</td>
</tr>
<tr>
<td>HTPIDR<8</td>
<td>c13</td>
<td>4</td>
<td>c0</td>
<td>2</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTPCT<7, 64 bits wide</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTFRQ<r></td>
<td>c14</td>
<td>0</td>
<td>c0</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTKCTL<r></td>
<td></td>
<td></td>
<td>c1</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTP_TVAL<r></td>
<td></td>
<td></td>
<td>c2</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTP_CTL<r></td>
<td></td>
<td></td>
<td>c3</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTV_TVAL<r></td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTV_CTL<r></td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVNCTR<n>, for n==0 to 7<sup>k</sup></td>
<td></td>
<td></td>
<td>c8</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVNCTR<n>, for n==8 to 15<sup>k</sup></td>
<td></td>
<td></td>
<td>c9</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVNCTR<n>, for n==16 to 23<sup>k</sup></td>
<td></td>
<td></td>
<td>c10</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVNCTR<n>, for n==24 to 30<sup>k</sup></td>
<td></td>
<td></td>
<td>c11</td>
<td>0-6</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVTYPE<n>, for n==0 to 7<sup>k</sup></td>
<td></td>
<td></td>
<td>c12</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVTYPE<n>, for n==8 to 15<sup>k</sup></td>
<td></td>
<td></td>
<td>c13</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVTYPE<n>, for n==16 to 23<sup>k</sup></td>
<td></td>
<td></td>
<td>c14</td>
<td>0-7</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMEVTYPE<n>, for n==17 to 30<sup>k</sup></td>
<td></td>
<td></td>
<td>c15</td>
<td>0-6</td>
<td>v8.0</td>
</tr>
<tr>
<td>PMCCFILTR<8</td>
<td></td>
<td></td>
<td>c15</td>
<td>7</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTVCCT<7, 64 bits wide</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTP_CVAL<r>, 64 bits wide</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTV_CVAL<r>, 64 bits wide</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTVOFF<r>, 64 bits wide</td>
<td></td>
<td></td>
<td>c14</td>
<td></td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTTHCTL<r></td>
<td>c14</td>
<td>4</td>
<td>c1</td>
<td>0</td>
<td>v8.0</td>
</tr>
</tbody>
</table>
About the GIC System registers

From version 3.0 of the GIC architecture specification, the specification defines three groups of System registers, identified by the prefix of the register name:

- ICC_: GIC physical CPU interface System registers.
- ICH_: GIC virtual interface control System registers.
- ICV_: GIC Virtual CPU interface System registers.

Note

These registers are in addition to the GIC memory-mapped register groups GICC_, GICD_, GICH_, GICR_, GICV_, and GITS_.

Table G7-3 VMSAv8-32 (coproc==0b1111) register summary, in MCR/MRC parameter order (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTHP_TVAlf</td>
<td>c14</td>
<td>4</td>
<td>c2</td>
<td>0</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTHP_CTLf</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTHP_CVAlg, 64 bits wide</td>
<td>-</td>
<td>6</td>
<td>c14</td>
<td>-</td>
<td>v8.0</td>
</tr>
<tr>
<td>CNTPCTSSf, 64 bits wide</td>
<td>-</td>
<td>8</td>
<td>c14</td>
<td>-</td>
<td>v8.6</td>
</tr>
<tr>
<td>CNTVCTSSf, 64 bits wide</td>
<td>-</td>
<td>9</td>
<td>c14</td>
<td>-</td>
<td>v8.6</td>
</tr>
<tr>
<td>Reservedth</td>
<td>c15</td>
<td>0-7</td>
<td>c0-c15</td>
<td>0-7</td>
<td>-</td>
</tr>
</tbody>
</table>

- About the GIC System registers.
- When FEAT_CCIDX is implemented, CCSIDR2 is implemented.
- Implemented only as part of EL2 when EL2 is using AArch32. Otherwise, encoding is unallocated and UNDEFINED.
- Implemented only as part of EL3 when EL3 is using AArch32. Otherwise, encoding is unallocated and UNDEFINED.
- GIC System register, see About the GIC System registers. As that subsection describes, each ICV_* register uses the same encoding as the corresponding ICC_* register.
- This register is accessible only in Debug state.
- When FEAT_SPECRES is implemented, the execution and data prediction restriction instructions are implemented, see Execution and data prediction restriction System instructions on page G4-5950.
- For performance reasons, Arm deprecates any use of these memory barrier operations.
- Implemented for IMPLEMENTATION DEFINED branch predictor, cache, and TCM operations, see Reserved 32-bit encodings with [coproc==0b1111, CRn==c9] on page G7-6118.
- Performance Monitors Extension System register, see Performance Monitors registers on page G8-6750.
- Reserved for IMPLEMENTATION DEFINED performance monitors, see Reserved 32-bit encodings with [coproc==0b1111, CRn==c9] on page G7-6118.
- Reserved for IMPLEMENTATION DEFINED TLB lockdown operations, see Reserved 32-bit encodings with [coproc==0b1111, CRn==c10] on page G7-6118.
- When an implementation is using the Long descriptor translation table format, these encodings access the MAIR0 and MAIR1 registers. Otherwise, they use PRRR and NMRR.
- Reserved for IMPLEMENTATION DEFINED DMA operations for TCM access, see Reserved 32-bit encodings with [coproc==0b1111, CRn==c11] on page G7-6119.
- Only one of RMR and HRMR is implemented, corresponding to the highest implemented Exception level, and the register is implemented only if that Exception level is using AArch32.
- Activity Monitors System register, see Activity Monitors registers on page G8-6830.
- Generic Timer System register, see Generic Timer registers on page D13-3883.
- Implemented as RW as part of the Generic Timer on an implementation that includes EL2 and when EL2 is using AArch32.
- For more information, see The virtual offset register on page G6-6106.
- Reserved for IMPLEMENTATION DEFINED purposes, see Reserved 32-bit encodings with [coproc==0b1111, CRn==c15] on page G7-6119.

In VMSAv8-32, the GIC System registers are all in the \((\text{coproc}==0b1111)\) encoding space with \((\text{CRn}==c12)\). The ICV_*_ registers have the same \{\text{CRn},\text{opc1},\text{CRn},\text{op2}\} encodings as the corresponding ICC_*_ registers. For these encodings, GIC register configuration fields determine which register is accessed.

When implemented, the GIC System registers form part of an Arm processor implementation, and therefore these registers are included in the register summaries. However, the registers are defined only in the GIC Architecture Specification.

For more information see the ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).
AArch32 System Register Encoding

G7.3 VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space
Chapter G8
AArch32 System Register Descriptions

This chapter describes each of the AArch32 System registers.

It contains the following sections:
• About the AArch32 System registers on page G8-6134.
• General system control registers on page G8-6149.
• Debug registers on page G8-6628.
• Performance Monitors registers on page G8-6750.
• Activity Monitors registers on page G8-6830.
• RAS registers on page G8-6867.
• Generic Timer registers on page G8-6928.
G8.1 About the AArch32 System registers

For general information about the AArch32 System registers, see:

In Chapter G5:
- About the System registers for VMSAv8-32 on page G5-6092.
- Functional grouping of VMSAv8-32 System registers on page G5-6098.

In Chapter G7:
- VMSAv8-32 organization of registers in the (coproc==0b1110) encoding space on page G7-6113.
- VMSAv8-32 organization of registers in the (coproc==0b1111) encoding space on page G7-6116.

In this chapter:
- Fixed values in the System register descriptions.
- General behavior of System registers.
- Principles of the ID scheme for fields in ID registers on page G8-6144.
- About AArch32 System register accesses on page G8-6146.

The remainder of this chapter describes the AArch32 System registers, in the following sections:
- General system control registers on page G8-6149.
- Debug registers on page G8-6628.
- Performance Monitors registers on page G8-6750.
- Generic Timer registers on page G8-6928.

G8.1.1 Fixed values in the System register descriptions

See Fixed values in AArch32 instruction and System register descriptions on page F2-4127. This section defines how the glossary terms RAZ, RES0, RAO, and RES1 can be represented in the System register descriptions.

G8.1.2 General behavior of System registers

Except where indicated, System registers are 32-bits wide. As stated in About the System registers for VMSAv8-32 on page G5-6092, there are some 64-bit registers, and these include cases where software can access either a 32-bit view or a 64-bit view of a register. The register summaries, and the individual register descriptions, identify the 64-bit registers and how they can be accessed.

The following sections give information about the general behavior of these registers:
- Register names.
- Read-only bits in read/write registers on page G8-6135.
- The CPUID identification scheme on page G8-6135.
- IMPLEMENTATION DEFINED performance monitors on page G8-6135.
- UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System register accesses on page G8-6135.
- Read-only and write-only register encodings on page G8-6137.
- Reset behavior of AArch32 System registers on page G8-6138.
- Synchronization of changes to AArch32 System registers on page G8-6138.

Unless otherwise indicated, information in the listed sections applies to all AArch32 System registers

See also About AArch32 System register accesses on page G8-6146.

Register names

The Arm architecture guarantees not to define any register name prefixed with IMP_ as part of the standard Arm architecture.
Note

Arm strongly recommends that any register names created in the IMPLEMENTATION DEFINED register spaces be prefixed with IMP_, where appropriate.

Read-only bits in read/write registers

Some read/write registers include bits that are read-only. These bits ignore writes.

The CPUID identification scheme

The ID_* registers were originally called the CPUID identification scheme registers. However, functionally, there is no value in separating these registers from the slightly larger Identification registers functional group. See Table K15-22 on page K15-8205 for a list of the ID_* registers.

IMPLEMENTATION DEFINED performance monitors

VMSAv8-32 reserves some additional System register encodings in the (coproc==0b111x) encoding space for optional additional IMPLEMENTATION DEFINED performance monitors. Table G8-1 shows the allocation of these encodings:

Table G8-1 Performance Monitors System register encoding allocations

<table>
<thead>
<tr>
<th>CRn</th>
<th>opc1</th>
<th>CRm</th>
<th>opc2</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>c9</td>
<td>0-7</td>
<td>c12-c14</td>
<td>0-7</td>
<td>Performance Monitors Extension registers, see Table K15-23 on page K15-8206</td>
<td>RW or ROa</td>
</tr>
<tr>
<td>c15</td>
<td>0-7</td>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

a. The table referenced in the Name entry shows the type of each of the OPTIONAL Performance Monitors Extension registers.
b. Access depends on the register or operation, and is IMPLEMENTATION DEFINED.

UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for AArch32 System register accesses

This section defines UNPREDICTABLE and UNDEFINED behaviors for accesses to System registers, including those cases where the Armv8 behavior is CONSTRAINED UNPREDICTABLE.

In AArch32 state the following operations are UNDEFINED:

- All LDC and STC accesses, except for the LDC access to DBGDTRTXint and the STC access to DBGDTRRXTint specified in Table G7-2 on page G7-6115.
- All MCR and MRC operations to the (coproc==0b111x) encoding space, except for those explicitly defined as accessing 64-bit System registers specified in Table G7-1 on page G7-6114 and Table G7-3 on page G7-6120.

Unless otherwise indicated in the individual register descriptions:

- Reserved fields in registers are RES0.
- Assigning a reserved value to a field has a CONSTRAINED UNPREDICTABLE effect, see Reserved values in System and memory-mapped registers and translation table entries on page K1-7963.

The following subsections give more information about UNPREDICTABLE, CONSTRAINED UNPREDICTABLE, and UNDEFINED behavior for accesses to the (coproc==0b111x) encoding space:

- Accesses to unallocated encodings in the (coproc==0b111x) encoding space on page G8-6136.
- Additional rules for MCR and MRC accesses to System registers on page G8-6136.
- Effects of EL3 and EL2 on System register accesses on page G8-6136.
Accesses to unallocated encodings in the \((\text{coproc}==0b111x)\) encoding space

In Armv8-A, accesses to unallocated register encodings in the \((\text{coproc}==0b111x)\) encoding space are UNDEFINED.

--- Note ---

In Armv7, except for 32-bit registers encoded with a \(\text{CRn}\) value of c12, accesses to unallocated 32-bit registers were UNPREDICTABLE. The Armv8 CONSTRAINED UNPREDICTABLE behavior of these accesses is that they are UNDEFINED, see Unallocated System register access instructions on page K1-7944.

Additional rules for MCR and MRC accesses to System registers

The following operations are CONSTRAINED UNPREDICTABLE for all encodings in the \((\text{coproc}==0b111x)\) encoding space:

- All MCR operations from the PC.
- All MRC operations to \(\text{APSR}_\text{nzcv}\), except for the \((\text{coproc}==0b1110)\) MRC operation to \(\text{APSR}_\text{nzcv}\) from \(\text{DBGDSCR}_\text{int}\).

The CONSTRAINED UNPREDICTABLE behavior of these operations is described in Using R15 on page K1-7941.

For registers and operations that are accessible from a particular Privilege level, any attempt to access those registers from a lower Privilege level is UNDEFINED.

Some individual registers can be made inaccessible by setting configuration bits, possibly including IMPLEMENTATION DEFINED configuration bits, to disable access to the register. The effects of the architecturally-defined configuration bits are defined individually in this manual. Unless explicitly stated otherwise in this manual, setting a configuration bit to disable access to a register results in the register becoming UNDEFINED for MRC and MCR accesses.

See also Read-only and write-only register encodings on page G8-6137.

Effects of EL3 and EL2 on System register accesses

EL2 and EL3 introduce classes of System registers, described in Classification of System registers on page G5-6092. Some of these classes of register are either:

- Accessible only from certain modes or states.
- Accessible from certain modes or states only when configuration settings permit the access.

Accesses to these registers that are not permitted are UNDEFINED, meaning execution of the register access instruction generates an Undefined Instruction exception.

--- Note ---

This section applies only to registers that are accessible from some modes and states. That is, it applies only to register access instructions using an encoding that, under some circumstances, would perform a valid register access.

The following register classes restrict access in this way:

Restricted access System registers

This register class is defined in any implementation that includes EL3.

Restricted access registers other than the NSACR are accessible only from Secure EL3 modes. All other accesses to these registers are UNDEFINED.

The NSACR is a special case of a Restricted access register and:

- The NSACR is:
 - Read/write accessible from Secure PL1 modes.
 - Is Read-only accessible from Non-secure PL2 and PL1 modes.
- All other accesses to the NSACR are UNDEFINED.

For more information, including behavior when EL3 is using AArch64 or is not implemented, see Restricted access System registers on page G5-6093.
Configurable access System registers

This register class is defined in any implementation that includes EL3.

Most Configurable access registers are accessible from Non-secure state only if control bits in the NSACR permit Non-secure access to the register. Otherwise, a Non-secure access to the register is UNDEFINED.

For other Configurable access registers, control bits in the NSACR control the behavior of bits or fields in the register when it is accessed from Non-secure state. That is, Non-secure accesses to the register are permitted, but the NSACR controls how they behave. The only architecturally-defined register of this type is the CPACR.

For more information, see Configurable access System registers on page G5-6093.

EL2-mode System registers

This register class is defined only in an implementation that includes EL2.

EL2-mode registers are accessible only from:
• The Non-secure EL2 mode, Hyp mode.
• Secure Monitor mode when SCR.NS is set to 1.

All other accesses to these registers are UNDEFINED.

For more information, see Hyp mode read/write registers in the (coproc==0b1111) encoding space on page G5-6094 and Hyp mode encodings for shared (coproc==0b1111) System registers on page G5-6094.

EL2-mode write-only operations

This register class is defined only in an implementation that includes EL2.

EL2-mode write-only operations are accessible only from:
• The Non-secure EL2 mode, Hyp mode.
• Secure Monitor mode, regardless of the value of SCR.NS.

Write accesses to these operations are:
• CONSTRAINED UNPREDICTABLE in Secure EL3 modes other than Monitor mode.
• UNDEFINED in Non-secure modes other than Hyp mode.

For more information, see Hyp mode (coproc==0b1111) write-only System instructions on page G5-6095.

In addition, in any implementation that includes EL3, when EL3 is using AArch32, if write access to a register is disabled by the CP15SDISABLE signal then any MCR access to that register is UNDEFINED.

Read-only and write-only register encodings

Some System registers are read-only (RO) or write-only (WO). For example:
• Most identification registers are read-only.
• Most encodings that perform an operation, such as a cache maintenance instruction, are write-only.

If a particular Privilege level defines a register to be:

• RO, then any attempt to write to that register, at that Privilege level, is UNDEFINED. This means that any access to that register with L== 0 is UNDEFINED.
• WO, then any attempt to read from that register, at that Privilege level, is UNDEFINED. This means that any access to that register with L== 1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED.

Note
This section applies only to registers that this manual defines as RO or WO. It does not apply to registers for which other access permissions are explicitly defined.
Reset behavior of AArch32 System registers

Reset values apply only to RW registers and fields, however:

- Some RO registers or fields, including feature ID registers and some status registers or register fields, always return a known value.

- Some RW and RO registers or register fields return status information about the PE. Unless the register description indicates that the value is UNKNOWN on reset, a read of the register immediately after a reset returns valid information.

- Some RW and RO registers and fields are aliases of other registers or fields. In these cases, the reset behavior of the aliased register or field determines the value returned by a read of the register immediately after a reset.

- WO registers that only have an effect on writes do not have meaningful reset values. However, an access to a WO register might affect underlying state, and that state might have a defined reset value.

- IMPLEMENTATION DEFINED registers have IMPLEMENTATION DEFINED reset behavior.

After a reset, only a limited subset of the PE state is guaranteed to be set to defined values. Also, for debug and trace System registers, reset requirements must take account of different levels of reset. For more information about the reset behavior of System registers when the PE resets into an Exception level that is using AArch32, see:

- PE state on reset into AArch32 state on page G1-5801.
- The appropriate Trace architecture specification, for the Trace System registers.

When the PE resets into an Exception level that is using AArch64, PE state that relates to execution in AArch32 state, including the System register values, is UNKNOWN. The only exception to this is state that applies to execution in both AArch64 state and AArch32 state and that has a defined reset value on the reset into AArch64 state. An example of such PE state is the EDPRSR.SR bit.

For a PE reset into an Exception level that is using AArch32, the architecture defines which AArch32 System registers have a defined reset value, and when that defined reset value applies. The register descriptions include this information, and PE state on reset into AArch32 state on page G1-5801 summarizes these architectural requirements. Otherwise, RW registers reset to an architecturally unknown value.

Note

In an implementation that includes EL3, unless this manual explicitly states otherwise, only the Secure instance of a banked register is reset to the defined value. This means that software must program the Non-secure instance of the register with the required values. Typically, this programming is part of the PE boot sequence.

Pseudocode description of resetting System registers

The AArch32.ResetControlRegisters() pseudocode function resets all System registers, and register fields, that have defined reset values, as described in this section and PE state on reset into AArch32 state on page G1-5801.

Note

For debug and trace System registers, this function resets registers as defined for the appropriate level of reset.

Synchronization of changes to AArch32 System registers

In this section, this PE means the PE on which accesses are being synchronized.

Note

See Definitions of direct and indirect reads and writes and their side-effects on page G8-6143 for definitions of the terms direct write, direct read, indirect write, and indirect read.

A direct write to a System register might become visible at any point after the change to the register, but without a Context synchronization event there is no guarantee that the change becomes visible.
Any direct write to a System register is guaranteed not to affect any instruction that appears, in program order, before the instruction that performed the direct write, and any direct write to a System register must be synchronized before any instruction that appears after the direct write, in program order, can rely on the effect of that write. The only exceptions to this are:

- All direct writes to the same register, using the same encoding, are guaranteed to occur in program order.
- All direct writes to a register are guaranteed to occur in program order relative to all direct reads of the same register using the same encoding.
- Any System register access that an Arm Architecture Specification or equivalent specification defines as not requiring synchronization.
- If an instruction that appears in program order before the direct write performs a memory access, such as a memory-mapped register access, that causes an indirect read or write to a register, that memory access is subject to the memory order model. In this case, if permitted by the memory order model, the instruction that appears in program order before the direct write can be affected by the direct write. For information about the memory order model, see Definition of the Armv8 memory model on page E2-4020.

These rules mean that an instruction that writes to one of the address translation instructions described in Address translation instructions on page G5-6083 must be explicitly synchronized to guarantee that the result of the address translation instruction is visible in the PAR.

--- Note ---

In this case, the direct write to the encoding of the address translation instruction causes an indirect write to the PAR. Without a Context synchronization event after the direct write, there is no guarantee that the indirect write to the PAR is visible.

Conceptually, the explicit synchronization occurs as the first step of any Context synchronization event. This means that if the operation uses the state that had been changed but not synchronized before the operation occurred, the operation is guaranteed to use the state as if it had been synchronized.

--- Note ---

- This explicit synchronization is applied as the first step of the execution of any instruction that causes the synchronization operation. This means it does not synchronize any effect of changes to the System registers that might affect the fetch and decode of the instructions that cause the operation, such as breakpoints or changes to translation tables.
- For a synchronous exception, the control state in use at the time the exception is generated determines the exception syndrome information, and this syndrome information is not changed by this synchronization at the start of taking the exception.

Except for the register reads listed in Registers with some architectural guarantee of ordering or observability on page G8-6141, if no Context synchronization event is performed, direct reads of System registers can occur in any order.

Table G8-2 on page G8-6140 shows the synchronization requirement between two reads or writes that access the same System register. In the column headings, First and Second refer to:

- Program order, for any read or write caused by the execution of an instruction by this PE, other than a read or write caused by a memory access made by that instruction.
- The order of arrival of asynchronous reads or writes made by this PE relative to the execution of instructions by this PE.

In addition:

- For indirect reads or writes caused by an external agent, such as a debugger, the mechanism that determines the order of the reads or writes is defined by that external agent. The external agent can provide mechanisms that ensure that any read or write it makes arrives at the PE. These indirect reads and writes are asynchronous to software execution on the PE.
• For indirect reads or writes caused by memory-mapped reads or writes made by this PE, the ordering of the memory accesses is subject to the memory order model, including the effect of the memory type of the accessed memory address. This applies, for example, if this PE reads or writes one of its registers in a memory-mapped register interface.

The mechanism for ensuring completion of these memory accesses, including ensuring the arrival of the asynchronous read or write at the PE, is defined by the system.

Note

Such accesses are likely to be given a Device memory attribute, but requiring this is outside the scope of the architecture.

• For indirect reads or writes caused by autonomous asynchronous events that are counted, for example events caused by the passage of time, the events are ordered so that:
 — Counts progress monotonically.
 — The events arrive at the PE in finite time and without undue delay.

Table G8-2 Synchronization requirements for updates to System registers

<table>
<thead>
<tr>
<th>First read or write</th>
<th>Second read or write</th>
<th>Context synchronization event required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct read</td>
<td>Direct read</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>No<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>No<sup>a</sup>, but see text in this section for exceptions</td>
</tr>
<tr>
<td>Direct write</td>
<td>Direct read</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>Yes<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>No, but see text in this section for exceptions</td>
</tr>
<tr>
<td>Indirect read</td>
<td>Direct read</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>No</td>
</tr>
<tr>
<td>Indirect write</td>
<td>Direct read</td>
<td>Yes, but see text in this section for exceptions</td>
</tr>
<tr>
<td></td>
<td>Direct write</td>
<td>No, but see text in this section for exceptions</td>
</tr>
<tr>
<td></td>
<td>Indirect read</td>
<td>Yes, but see text in this section for exceptions</td>
</tr>
<tr>
<td></td>
<td>Indirect write</td>
<td>No, but see text in this section for exceptions</td>
</tr>
</tbody>
</table>

^a Although no synchronization is required between a Direct write and a Direct read, or between a Direct read and an Indirect write, this does not imply that a Direct read causes synchronization of a previous Direct write. This means that the sequence Direct write followed by Direct read followed by Indirect read, with no intervening context synchronization, does not guarantee that the Indirect read observes the result of the Direct write.

If the indirect write is to a register that **Registers with some architectural guarantee of ordering or observability on page G8-6141** shows as having some guarantee of the visibility of an indirect write, synchronization might not be required.
If a direct read or a direct write to a register is followed by an indirect write to that register that is caused by an external agent, or by an autonomous asynchronous event, or as a result of a memory-mapped write, then synchronization is required to guarantee the ordering of the indirect write relative to the direct read or direct write.

If an indirect write caused by a direct write is followed by an indirect write caused by an external agent, or by an autonomous asynchronous event, or as a result of a memory-mapped write, then synchronization is required to guarantee the ordering of the two indirect writes.

Where an indirect write occurs as a side-effect of an access, this happens atomically with the access, meaning no other accesses are allowed between the register access and its side-effect. For other information about indirect writes after a direct read or a direct write, see Definitions of direct and indirect reads and writes and their side-effects on page G8-6143.

--- Note ---

Where a register has more than one encoding, a direct write to the register using a particular encoding is not an indirect write to the same register with a different encoding.

Where an indirect write is caused by the action of an external agent, such as a debugger, or by a memory-mapped read or write by the PE, then an indirect write by that agent to a register using a particular access mechanism, followed by an indirect read by that agent to the same register using the same access mechanism and address does not need synchronization.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order. This applies even if the accesses occur simultaneously.

For information about the additional synchronization requirements for memory-mapped registers, see Synchronization requirements for AArch64 System registers on page D13-2863.

To guarantee the visibility of changes to some registers, additional operations might be required before the Context synchronization event. For such a register, the definition of the register identifies these additional requirements.

In this manual, unless the context indicates otherwise:

- **Accessing** a System register refers to a direct read or write of the register.
- **Using** a System register refers to an indirect read or write of the register.

Registers with some architectural guarantee of ordering or observability

For the registers for which Table G8-3 shows that the ordering of direct reads is guaranteed, multiple direct reads of a single register, using the same encoding, occur in program order without any explicit ordering.

For the registers for which Table G8-3 shows that some observability of indirect writes is guaranteed, an indirect write to the register caused by an external agent, an autonomous asynchronous event, or as a result of a memory-mapped write, is both:

- Observable to direct reads of the register, in finite time, without explicit synchronization.
- Observable to subsequent indirect reads of the register without explicit synchronization.

These two sets of registers are similar, as Table G8-3 shows:

<table>
<thead>
<tr>
<th>Register</th>
<th>Ordering of direct reads</th>
<th>Observability of indirect writes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISR</td>
<td>Guaranteed</td>
<td>Guaranteed</td>
<td>Interrupt Status Register</td>
</tr>
<tr>
<td>DBGCLAIMCLR</td>
<td>Guaranteed</td>
<td>Guaranteed</td>
<td>Debug CLAIM registers</td>
</tr>
<tr>
<td>DBGCLAIMSET</td>
<td>-</td>
<td>Guaranteed</td>
<td></td>
</tr>
</tbody>
</table>
In addition to the requirements shown in Table G8-3 on page G8-6141:

- Indirect writes to the following registers as a result of memory-mapped writes, including accesses by external agents, are required to be observable to the indirect read made in determining the response to a subsequent memory-mapped access without explicit synchronization:
 - OSLAR_EL1. OSLAR_EL1 is indirectly read to determine whether the subsequent access is permitted.
 - EDLAR, if implemented. EDLAR is indirectly read to determine whether a subsequent write or side-effect of an access is ignored.

 Note
 OSLAR_EL1 maps to the AArch32 System register DBGOSLAR.

 Note
 This requirement is stricter than the general requirement for the observability of indirect writes.

- The requirement that an indirect write to the registers in Table G8-3 on page G8-6141 is observable to direct reads in finite time does not imply that all observers will observe the indirect write at the same time.

 For example, an increment of the system counter is an autonomous asynchronous event that performs an indirect write to the counter. This asynchronous event might generate a timer interrupt request, resulting in a Context synchronization event. When a GIC is used, the timer interrupt might arrive at the GIC after the PE has taken an interrupt request from another source, but before software reads the current interrupt ID from the GIC. This means that the GIC might identify the timer interrupt as the current interrupt. Software must not assume that a subsequent direct read of the counter register is guaranteed to observe the updated value of that register.
Although this example uses the counter-timer registers, it applies equally to other registers that might be linked to interrupt requests, including the PMU and Statistical Profiling status registers.

- When the PE is in Debug state, there are synchronization requirements for the Debug Communication Channel and Instruction Transfer registers. See DCC and ITR access in Debug state on page H4-7094.

The possibility that direct reads can occur early, in the absence of context synchronization, described in Ordering of reads of System registers on page G8-6146, still applies to the registers listed in Table G8-3 on page G8-6141.

Definitions of direct and indirect reads and writes and their side-effects

Direct and indirect reads and writes are defined as follows:

Direct read
Is a read of a register, using an MRC, MRR, or STC instruction, that the architecture permits for the current PE state.

If a direct read of a register has a side-effect of changing the value of a register, the effect of a direct read on that register is defined to be an *indirect write*, and has the synchronization requirements of an indirect write. This means the indirect write is guaranteed to have occurred, and to be visible to subsequent direct or indirect reads and writes only if synchronization is performed after the direct read.

Note

The indirect write described here can affect either the register written to by the direct write, or some other register. The synchronization requirement is the same in both cases.

Direct write
Is a write to a register, using an MCR, MRR, or LDC instruction, that the architecture permits for the current PE state.

In the following cases, the side-effect of the direct write is defined to be an indirect write of the affected register, and has the synchronization requirements of an indirect write:

- If the direct write has a side-effect of changing the value of a register other than the register accessed by the direct write.
- If the direct write has a side-effect of changing the value of the register accessed by the direct write, so that the value in that register might not be the value that the direct write wrote to the register.

In both cases, this means that the indirect write is not guaranteed to be visible to subsequent direct or indirect reads and writes unless synchronization is performed after the direct write.

Note

- As an example of a direct write to a register having an effect that is an indirect write of that register, writing 1 to a PMCNTENCLR.Px bit is also an indirect write, because if the Px bit had the value 1 before the direct write, the side-effect of the write changes the value of that bit to 0.
- The indirect write described here can affect either the register written to by the direct write, or some other register. The synchronization requirement is the same in both cases.

For example, writing 1 to a PMCNTENCLR.Px bit that is set to 1 also changes the corresponding PMCNTENSET.Px bit from 1 to 0. This means that the direct write to the PMCNTENCLR defines indirect writes to both itself and to the PMCNTENSET.

Indirect read
Is a use of the register by an instruction to establish the operating conditions for the instruction.

Examples of operating conditions that might be determined by an indirect read are the translation table base address, or whether memory accesses are forced to be Non-cacheable.

Indirect reads include situations where the value of one register determines what value is returned by a second register. This means that any read of the second register is an indirect read of the register that determines what value is returned.
Indirect reads also include:

- Reads of the System registers by external agents, such as debuggers, as described in Debug registers on page G8-6628.
- Memory-mapped reads of the System registers made by the PE on which the System registers are implemented.

Where an indirect read of a register has a side-effect of changing the value of a register, that change is defined to be an indirect write, and has the synchronization requirements of an indirect write.

Indirect write Is an update to the value of a register as a consequence of either:

- An exception, operation, or execution of an instruction that is not a direct write to that register.
- The asynchronous operation of an external agent.

This can include:

- The passage of time, as seen in counters or timers, including performance counters.
- The assertion of an interrupt.
- A write from an external agent, such as a debugger.

However, for some registers, the architecture gives some guarantee of visibility without any explicit synchronization, see Registers with some architectural guarantee of ordering or observability on page G8-6141.

Note

Taking an exception is a Context synchronization event. Any indirect write performed as part of an exception entry does not require additional synchronization. This includes the indirect writes to the registers that report the exception, as described in Exception reporting in a VMSAv8-32 implementation on page G5-6064.

G8.1.3 Principles of the ID scheme for fields in ID registers

The Arm architecture specifies a number of **ID registers** that are characterized as comprising a set of 4-bit **ID fields**. Each ID field identifies the presence, and possibly the level of support for, a particular feature in an implementation of the architecture. These fields follow an architectural model that aids their use by software and provides future compatibility. This section describes that model. AArch32 ID registers to which this scheme applies on page G8-6145 identifies the set of ID registers that are accessible from AArch32 state.

A small number of ID fields do not follow the scheme described in this section. In these cases, the field description states that it does not follow this scheme.

Note

- The ID fields described here are distinct from register fields that enumerate the number of resources, such as the number of breakpoints, watchpoints, or performance monitors, or the amount of memory.

- ID fields that do not follow this scheme include the ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon and EDDFR.PMUVer fields, see Alternative ID scheme used for the Performance Monitors Extension version on page G8-6146.

- The presence of an ID field for a feature does not imply that the feature is optional.

To provide forward compatibility, software can rely on the features of these fields that are described in this section. The ID fields, which are either signed or unsigned, use increasing numerical values to indicate increases in functionality. Therefore, if a value of 0x1 indicates the presence of some instructions, then the value 0x2 will indicate the presence of those instructions plus some additional instructions or functionality. This means software can be written in the form:

```c
if (value >= number) {   // do something that relies on the value of the feature}
```
For ID fields where the value 0x0 defines that a feature is not present, the field holds an unsigned value. This covers the vast majority of such fields.

In a few cases, the architecture has been changed to permit implementations to exclude a feature that has previously been required and for which no ID field has been defined. In these cases, a new ID field is defined and:

- The field holds a signed value.
- The field value 0xF indicates that the feature is not implemented.
- The field value 0x0 indicates that the feature is implemented.
- Software that depends on the feature can use the test:
  ```c
  if value >= 0 { // Software features that depend on the presence of the hardware feature }
  ```

In some cases, it has been decided retrospectively that the increase in functionality between two consecutive numerical values is too great, and it is desirable to permit an intermediate degree of functionality, and the means to discover this. This is done by the introduction of a fractional field that both:

- Is referred to in the definition of the original field.
- Applies only when the original field is at the lower value of the step.

In principle, a fractional field can be used for two different fractional steps, with different meanings associated with each of these steps. For this reason, a fractional field must be interpreted in the context of the field to which it relates and the value of that field. Example G8-1 shows the use of such a field.

Example G8-1 Example of the use of a fractional field

For a field describing some class of functionality:

- The value 0x1 was defined as indicating that item A is present.
- The value 0x2 was defined as indicating that items B and C are present, in addition to item A.

Subsequently, it might be necessary to introduce a second ID field to indicate that A and B only are present. This new field is a fractional field, and might be defined as having the value 0x1 when A and B only are present. This fractional field is valid only when the original ID field has the value 0x1.

This approach means that:

- Software that depends on the test if (value >= 0x2) can rely on features A, B, and C being present,
- Software that depends on the test if (value >= 0x1) can rely on feature A being present.
- If new software needs to check only that features A and B are present, then it can test:
  ```c
  if (value >= 0x2 || (value == 0x1 && fractional_value >= 0x1)) { // Software features that depend on A and B only }
  ```

A fractional field uses the same approach of increasing numerical values indicating increasing functionality, and the fractional approach can also be applied recursively to fractional fields.

Unused ID fields, and fractional fields that are not applicable, are RES0 to allow their future use when features, or fractional implementation options, are added.

AArch32 ID registers to which this scheme applies

- The Auxiliary Feature register ID_AFR0.
- The Processor Feature registers ID_PFR0 and ID_PFR1.
- The Debug Feature register ID_DFR0.
- The Memory Model Feature registers ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.
- The Instruction Set Attribute registers ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.
The Media and VFP Feature registers MVFR0, MVFR1, and MVFR2.

--- Note ---

Principles of the ID scheme for fields in ID registers on page D13-2867 includes information about the AArch64 System registers and the memory-mapped registers to which this scheme applies.

Alternative ID scheme used for the Performance Monitors Extension version

The ID_AA64DFR0_EL1.PMUVer, ID_DFR0_EL1.PerfMon, ID_DFR0.PerfMon, and EDDFR.PMUVer fields, which identify the version of the Performance Monitors Extension, do not follow the standard ID scheme. Software must treat these fields as follows:

- The value 0xF indicates that the Arm-architected Performance Monitors Extension is not implemented.
- If the field value is not 0xF the field is treated as an unsigned value, as described for the standard ID scheme.

This means that software that depends on the implementation of a particular version of the Arm Performance Monitors Extension must be written in the form:

```c
if (value != 0xF && value >= number) { // do something that relies on version 'number' of the feature
}
```

For these fields, Arm deprecates use of the value 0xF in new implementations.

G8.4 About AArch32 System register accesses

The following subsections give more information about accesses to the AArch32 System registers:

- **Ordering of reads of System registers.**
- **Accessing 32-bit System registers.**
- **Accessing 64-bit System registers on page G8-6148.**

Ordering of reads of System registers

Reads of the System registers can occur out of order with respect to earlier instructions executed on the same PE, provided that both:

- Any data dependencies between the instructions, as specified in *Synchronization of changes to AArch32 System registers on page G8-6138*, including read-after-read dependencies, are respected.
- The reads to the register do not occur earlier than the most recent *Context synchronization event* to its architectural position in the instruction stream.

--- Note ---

In particular, the values read from System registers that hold self-incrementing counts, such as the Performance Monitors counters or the Generic Timer counter or timers, could be accessed from any time after the previous *Context synchronization event*. For example, where a memory access is used to communicate a read of such a counter, an ISB must be inserted between the read of the memory location that is known to have returned its data, either as a result of a condition on that data or of the read having completed, and the read of the counter, if it is necessary that the counter returns a count value after the memory communication.

Accessing 32-bit System registers

Software accesses most 32-bit System registers using the generic MCR and MRC System register access instructions, specifying some or all of the parameters `{coproc, CRn, opc1, CRm, opc2}`, where:

- **coproc** Identifies the primary region of the System register encoding space. Takes one of the values:
 - p14 Encoded as 0b1110.
 - p15 Encoded as 0b1111.
- **CRn** Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.
In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional group, and CRn is the most significant identifier for the required register within that group.

In the (coproc==0b1111) encoding space, CRn is the most significant identifier for the required register.

opc1 Takes a value in the range 0-7, encoded as its 3-bit binary value.

In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional group, and can take the following values:

0 Debug System registers.
1 Trace System registers.
7 Legacy Jazelle System registers.

In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-7.

CRm Takes a value in the range c0-c15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.

opc2 Takes a value in the range 0-7, encoded as its 3-bit binary value.

opc2 is optional in the MCR and MRC instruction syntax, and if no value is specified the encoding defaults to 0b000.

Rt A general-purpose register to hold a 32-bit value to transfer to or from the System register. Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCR or MRC access to a specific 32-bit System register uses:

• A unique combination of coproc, CRn, opc1, CRm, and opc2, to specify the required System register.
• A general-purpose register, Rt, for the transferred 32-bit value.

See also:

• MCR on page F5-4543.
• MRC on page F5-4566.

A small number of AArch32 debug System registers are accessed using LDC or STC instructions. In these cases, the register to be accessed is identified in the instruction syntax by the use of p14, c5 where:

p14 Identifies that the access is to the (coproc==0b1110) encoding space.

C5 Identifies the target debug System register.

See the instruction descriptions:

• LDC (immediate) on page F5-4432.
• LDC (literal) on page F5-4434.
• STC on page F5-4783.

The only uses of LDC and STC permitted in Armv8-A are:

• An LDC access to load data from memory to DBGDTRTXint, see LDC (immediate) on page F5-4432 and LDC (literal) on page F5-4434.

• An STC access to store data to memory from DBGDTRRXint, see STC on page F5-4783.

A small number of AArch32 System registers are accessed using MRS, MSR, VMRS, or VMSR instructions, see the appropriate register and instruction description for more information, see:

• MRS on page F5-4570.
• MSR (immediate) on page F5-4580,
• MSR (register) on page F5-4582.
• VMRS on page F6-5384.
• VMSR on page F6-5387.

--- Note ---

• For example:
 — The APSR, CPSR, and SPSR are accessed using MRS or MSR instructions.
 — The MVFR0, MVFR1, and MVFR2 are accessed using VMRS or VMSR instructions.
• In addition, the banked register forms of the MRS and MSR instructions can be used to access some System registers associated with PE modes other than the mode in which the PE is currently executing, see MRS (Banked register) on page F5-4572 and MSR (Banked register) on page F5-4576.

Accessing 64-bit System registers

Software accesses a 64-bit System register using the generic MCRR and MRRC System register access instructions, specifying the parameters {coproc, Crm, opc1}, where:

coproc Identifies the primary region of the System register encoding space. Takes one of the values:
 p14 Encoded as 0b1110.
 p15 Encoded as 0b1111.

Crm Takes a value in the range 0-15, encoded the corresponding 4-bit binary value, 0b0000-0b1111.
In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional group, and Crm is the most significant identifier for the required register within that group.
In the (coproc==0b1111) encoding space, Crm is the most significant identifier for the required register.

opc1 Takes a value in the range 0-15, encoded as its 3-bit binary value.
In the (coproc==0b1110) encoding space, the opc1 value identifies the System register functional group, and can take the following values:
 0 Debug System registers.
 1 Trace System registers.
In the (coproc==0b1111) encoding space, opc1 can take any value in the range 0-15.

Rt A general-purpose register to hold bits[31:0] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

Rt2 A general-purpose register to hold bits[63:32] of the value to transfer to or from the System register.
Takes a value in the range R0-R14, encoded as the corresponding 4-bit binary value, 0b0000-0b1110.

This means an MCRR or MRRC access to a specific 64-bit System register uses:
• A unique combination of coproc, Crm and opc1, to specify the required 64-bit System register.
• Two general-purpose registers, each holding 32 bits of the value to transfer.

This means a PE can access a 64-bit System register using:
• An MCRR instruction to write to a System register, see MCRR on page F5-4545.
• An MRRC instruction to read a System register, see MRRC on page F5-4568.

When using an MCRR or MRRC instruction the System register access is 64-bit atomic.

Some 64-bit registers also have an MCR and MRC encoding. The MCR and MRC encodings for these registers access the least significant 32 bits of the register. For example, to access the PAR, software can:

• Use the following instructions to access all 64 bits of the register:
 MCRR p15, 0, <Rt>, <Rt2>, c7 ; Read 64-bit PAR into Rt (low word) and Rt2 (high word)
 MCR p15, 0, <Rt>, <Rt2>, c7 ; Write Rt (low word) and Rt2 (high word) to 64-bit PAR

• Use the following instructions to access the least-significant 32 bits of the register:
 MRC p15, 0, <Rt>, c7, c4, 0 ; Read PAR[31:0] into Rt
 MCR p15, 0, <Rt>, c7, c4, 0 ; Write Rt to PAR[31:0]
G8.2 General system control registers

This section lists the System registers in AArch32 state that are not part of one of the other listed groups.
G8.2.1 ACTLR, Auxiliary Control Register

The ACTLR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED configuration and control options for execution at EL1 and EL0.

Configurations

AArch32 System register ACTLR[31:0] is architecturally mapped to AArch64 System register ACTLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ACTLR are UNDEFINED.

Some bits might define global configuration settings, and be common to the Secure and Non-secure instances of the register.

Attributes

ACTLR is a 32-bit register.

Field descriptions

The ACTLR bit assignments are:

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED, bits [31:0]</td>
<td>IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>This field resets to an architecturally UNKNOWN value.</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the ACTLR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC} \langle c \rangle \langle q \rangle \langle \text{coproc} \rangle, \{\#\langle opc1\rangle\}, \langle Rt \rangle, \langle CRm \rangle, \langle CRn \rangle, \{\#\langle opc2\rangle\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR_NS;
else
 return ACTLR;

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR_NS = R[t];
 else
 ACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR_S = R[t];
 else
 ACTLR_NS = R[t];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
G8.2.2 ACTLR2, Auxiliary Control Register 2

The ACTLR2 characteristics are:

Purpose

Provides additional space to the ACTLR register to hold IMPLEMENTATION DEFINED trap functionality for execution at EL1 and EL0.

Configurations

AArch32 System register ACTLR2[31:0] is architecturally mapped to AArch64 System register ACTLR_EL1[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

ACTLR2 is a 32-bit register.

Field descriptions

The ACTLR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the ACTLR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\{c\}\{q\} \{coproc\}, \{#\}\{opc1\}, \{Rt\}, \{CRn\}, \{CRm\}, \{#\}\{opc2\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TACR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TAC == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR2_NS;
else
 return ACTLR2;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ACTLR2_NS;
 else
 return ACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return ACTLR2_S;
 else
 return ACTLR2_NS;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 ACTLR2_NS = R[t];
 else
 ACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 ACTLR2_S = R[t];
 else
 ACTLR2_NS = R[t];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>
G8.2.3 ADFSR, Auxiliary Data Fault Status Register

The ADFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED fault status information for Data Abort exceptions taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

Configurations
AArch32 System register ADFSR[31:0] is architecturally mapped to AArch64 System register AFSR0_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ADFSR are UNDEFINED.

Attributes
ADFSR is a 32-bit register.

Field descriptions
The ADFSR bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>
```

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

Accessing the ADFSR
Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ADFSR_NS;
 else
 return ADFSR;
elsif PSTATE_EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return ADFSR_NS;
```
else
    return ADFSR;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return ADFSR_S;
    else
        return ADFSR_NS;

### MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} ###

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        ADFSR_NS = R[t];
    else
        ADFSR = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        ADFSR_NS = R[t];
    else
        ADFSR = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        ADFSR_S = R[t];
    else
        ADFSR_NS = R[t];
G8.2.4   AIDR, Auxiliary ID Register

The AIDR characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED identification information.
The value of this register must be used in conjunction with the value of MIDR.

Configurations

AArch32 System register AIDR[31:0] is architecturally mapped to AArch64 System register AIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AIDR are UNDEFINED.

Attributes

AIDR is a 32-bit register.

Field descriptions

The AIDR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the AIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>}, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2> 
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b111 & 0b001 & 0b0000 & 0b0000 & 0b111 \\
\end{array}
\]

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
        AArch32.TakeHypTrapException(0x03);
else
    return AIDR;
elsif PSTATE.EL == EL2 then
    return AIDR;
elsif PSTATE.EL == EL3 then
    return AIDR;
G8.2.5  AIFSR, Auxiliary Instruction Fault Status Register

The AIFSR characteristics are:

**Purpose**

Provides additional IMPLEMENTATION DEFINED fault status information for Prefetch Abort exceptions taken to EL1 modes, and EL3 modes when EL3 is implemented and is using AArch32.

**Configurations**

AArch32 System register AIFSR[31:0] is architecturally mapped to AArch64 System register AFSR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AIFSR are UNDEFINED.

**Attributes**

AIFSR is a 32-bit register.

**Field descriptions**

The AIFSR bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>
```

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the AIFSR**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) & HCR_EL2.TRVM == '1'
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) & HCR.TRVM == '1'
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return AIFSR_NS;
  elsif PSTATE_EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
      return AIFSR_NS;
```


else
 return AIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return AIFSR_S;
 else
 return AIFSR_NS;

MCR{<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AIFSR_NS = R[t];
 else
 AIFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AIFSR_S = R[t];
 else
 AIFSR_NS = R[t];
G8.2.6 AMAIR0, Auxiliary Memory Attribute Indirection Register 0

The AMAIR0 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR0.

Configurations

AArch32 System register AMAIR0[31:0] is architecturally mapped to AArch64 System register AMAIR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AMAIR0 are UNDEFINED.

Attributes

AMAIR0 is a 32-bit register.

Field descriptions

The AMAIR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This register is RES0 in the following cases:

- When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
- When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

- AMAIR0(S) gives the value for memory accesses from Secure state.
- AMAIR0(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR0

Accesses to this register use the following encodings in the System instruction encoding space:
MRC\{c\}\{q\} \{coproc\}, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2>\}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
else
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 AMAIR0_NS = R[t];
 else
 AMAIR0 = R[t];
else
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
else
 if SCR.NS == '0' then
 AMAI0_S = R[t];
 else
 AMAI0_NS = R[t];
G8.2.7 AMAIR1, Auxiliary Memory Attribute Indirection Register 1

The AMAIR1 characteristics are:

Purpose

When using the Long-descriptor format translation tables for stage 1 translations, provides IMPLEMENTATION DEFINED memory attributes for the memory regions specified by MAIR1.

Configurations

AArch32 System register AMAIR1[31:0] is architecturally mapped to AArch64 System register AMAIR_EL1[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to AMAIR1 are UNDEFINED.

When EL3 is using AArch32, write access to AMAIR1(S) is disabled when the CP15SDisable signal is asserted HIGH.

Attributes

AMAIR1 is a 32-bit register.

Field descriptions

The AMAIR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This register is RES0 in the following cases:

- When an implementation does not provide any IMPLEMENTATION DEFINED memory attributes.
- When the Long-descriptor translation table format is not used.

If EL3 is implemented and is using AArch32:

- AMAIR1(S) gives the value for memory accesses from Secure state.
- AMAIR1(NS) gives the value for memory accesses from Non-secure states other than Hyp mode.

Any IMPLEMENTATION DEFINED memory attributes are additional qualifiers for the memory locations and must not change the architected behavior specified by MAIR0 and MAIR1.

In a typical implementation, AMAIR0 and AMAIR1 split into eight one-byte fields, corresponding to the MAIRn.Attr<n> fields, but the architecture does not require them to do so.

IMPLEMENTATION DEFINED, bits [31:0]

This field resets to an architecturally UNKNOWN value.

Accessing the AMAIR1

Accesses to this register use the following encodings in the System instruction encoding space:
MRC<coproc>, <Rt>, <CRn>, <CRm>{, (#)opc2}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR1_NS;
 else
 return AMAIR1:
 elseif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return AMAIR1_NS;
 else
 return AMAIR1:
 elseif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return AMAIR1_S;
 else
 return AMAIR1_NS;
 end if
 end if
 end if
else
 return AMAIR1:
end if

MCR<coproc>, <Rt>, <CRn>, <CRm>{, (#)opc2}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) && ELUsingAArch32(EL3) then
 AMAIR1_NS = R[t];
 else
 AMAIR1 = R[t];
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAAArch32(EL3) then
 AMAIR1_NS = R[t];
 else
 AMAIR1 = R[t];
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elseif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 end if
 end if
 end if
else
 if SCR.NS == '0' then
 AMAIR1_S = R[t];
 else
 AMAIR1_NS = R[t];
G8.2.8 APSR, Application Program Status Register

The APSR characteristics are:

Purpose
Hold program status and control information.

Configurations
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to APSR are UNDEFINED.

Attributes
APSR is a 32-bit register.

Field descriptions
The APSR bit assignments are:

<table>
<thead>
<tr>
<th>31 30 29 28 27 26</th>
<th>20 19 16 15</th>
<th>5 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Z C V Q</td>
<td>RES0</td>
<td>GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N, bit [31]
Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]
Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]
Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]
Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an addition.

Q, bit [27]
Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:20]
Reserved, RES0.

GE, bits [19:16]
Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:5]
Reserved, RES0.

Bit [4]
Reserved, RES1.
Bits [3:0]

Reserved, RES0.

It is permitted that, on a read of APSR:

- Bit[22] returns the value of PSTATE.PAN
- Bit[9] returns the value of PSTATE.E.
- Bit[4:0] returns the value of PSTATE.M[4:0]

--- Note ---

This is an exception to the general rule that an UNKNOWN field must not return information that cannot be obtained, at the current Privilege level, by an architected mechanism.

For more information see The Application Program Status Register, APSR on page E1-3995.
G8.2.9 ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read

The ATS12NSOPR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS12NSOPR are UNDEFINED.

Attributes

ATS12NSOPR is a 32-bit System instruction.

Field descriptions

The ATS12NSOPR input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

If PSTATE.EL == EL0 then

UNDEFINED;

elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.<NS,EEL2> == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 UNDEFINED;

elsif PSTATE.EL == EL2 then

ATS12NSOPR(R[t]);

elsif PSTATE.EL == EL3 then

ATS12NSOPR(R[t]);
G8.2.10 **ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write**

The ATS12NSOPW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL1 and the Non-secure state, with permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS12NSOPW are **UNDEFINED**.

Attributes

ATS12NSOPW is a 32-bit System instruction.

Field descriptions

The ATS12NSOPW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

Input address for translation. The resulting address can be read from the **PAR**.

This System instruction takes a **VA** as input. The resulting address is the **PA** that is the output address of the stage 2 translation.

Executing the ATS12NSOPW instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[MCR\{<c>{q}\} \{coproc\}, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2>\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.<NS,EEL3> == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 endif
elseif PSTATE.EL == EL2 then
 ATS12NSOPW(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOPW(R[t]);
else
 UNDEFINED;
G8.2.11 ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

The ATS12NSOUR characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if reading from the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS12NSOUR are **UNDEFINED**.

Attributes

ATS12NSOUR is a 32-bit System instruction.

Field descriptions

The ATS12NSOUR input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td>Input address for translation</td>
</tr>
</tbody>
</table>

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOUR instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.<NS,EEL3> == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ATS12NSOUR(R[t]);
elsif PSTATE.EL == EL3 then
 ATS12NSOUR(R[t]);
G8.2.12 ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

The ATS12NSOUW characteristics are:

Purpose

Performs stage 1 and 2 address translations as defined for PL0 and the Non-secure state, with permissions as if writing to the given virtual address.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS12NSOUW are UNDEFINED.

Attributes

ATS12NSOUW is a 32-bit System instruction.

Field descriptions

The ATS12NSOUW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td></td>
</tr>
</tbody>
</table>

This System instruction takes a VA as input. The resulting address is the PA that is the output address of the stage 2 translation.

Executing the ATS12NSOUW instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_T7 == '1' then
 AArch32.TakehypTrapException(0x83);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.<NS,EEL3> == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
else
 if PSTATE.EL == EL2 then
 ATS12NSOUW(R[t]);
 elsif PSTATE.EL == EL3 then
 ATS12NSOUW(R[t]);
```
G8.2.13   **ATS1CPR, Address Translate Stage 1 Current state PL1 Read**

The ATS1CPR characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if reading from the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1CPR are UNDEFINED.

**Attributes**

ATS1CPR is a 32-bit System instruction.

**Field descriptions**

The ATS1CPR input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>Input address for translation</td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CPR instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MCR}\{c\}\{q\} <\text{coproc}, \{#\} <\text{opc1}, <Rt}, <\text{CRn}, <\text{CRm}\{, \{#\} <\text{opc2}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        ATS1CPR(R[t]);
    elsif PSTATE.EL == EL2 then
        ATS1CPR(R[t]);
    elseif PSTATE.EL == EL3 then
        ATS1CPR(R[t]);
G8.2.14  ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN

The ATS1CPRP characteristics are:

**Purpose**
Performs a stage 1 address translation at PL1 and in the current Security state, where the value of PSTATE.PAN determines if a read from a location will generate a permission fault for a privileged access.

**Configurations**
This instruction is present only when AArch32 is supported at any Exception level and FEAT_PAN2 is implemented. Otherwise, direct accesses to ATS1CPRP are UNDEFINED.

**Attributes**
ATS1CPRP is a 32-bit System instruction.

**Field descriptions**
The ATS1CPRP input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CPRP instruction**
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}_{(c>)(q<} {coproc, (#)opc1}, <Rt>, <CRn>, <CRm>\), (=#)opc2\)
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        ATS1CPRP(R[t]);
    endif
elsif PSTATE.EL == EL2 then
    ATS1CPRP(R[t]);
elsif PSTATE.EL == EL3 then
    ATS1CPRP(R[t]);
G8.2.15   ATS1CPW, Address Translate Stage 1 Current state PL1 Write

The ATS1CPW characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL1 and the current Security state, with permissions as if writing to the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1CPW are UNDEFINED.

**Attributes**

ATS1CPW is a 32-bit System instruction.

**Field descriptions**

The ATS1CPW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td></td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CPW instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR\{c\}\{q\} \{coproc\}, \{\#\}\{opc1\}, R, CRn, CRm\{, \{\#\}\{opc2\}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        ATS1CPW(R[t]);
    endif
elsif PSTATE.EL == EL2 then
    ATS1CPW(R[t]);
else
    ATS1CPW(R[t]);
eendif
G8.2.16 ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN

The ATS1CPWP characteristics are:

**Purpose**

Performs a stage 1 address translation at PL1 and in the current Security state, where the value of PSTATE.PAN determines if a write to the location will generate a permission fault for a privileged access.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level and FEAT_PAN2 is implemented. Otherwise, direct accesses to ATS1CPWP are UNDEFINED.

**Attributes**

ATS1CPWP is a 32-bit System instruction.

**Field descriptions**

The ATS1CPWP input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Input address for translation</td>
</tr>
</tbody>
</table>

**Input address for translation**

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CPWP instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q}> {coproc}, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        ATS1CPWP(R[t]);
    endif
elsif PSTATE.EL == EL2 then
    ATS1CPWP(R[t]);
elsif PSTATE.EL == EL3 then
    ATS1CPWP(R[t]);
G8.2.17 ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read

The ATS1CUR characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if reading from the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1CUR are UNDEFINED.

**Attributes**

ATS1CUR is a 32-bit System instruction.

**Field descriptions**

The ATS1CUR input value bit assignments are:

| Bit 31 | Bit 30 | Bit 29 | Bit 28 | Bit 27 | Bit 26 | Bit 25 | Bit 24 | Bit 23 | Bit 22 | Bit 21 | Bit 20 | Bit 19 | Bit 18 | Bit 17 | Bit 16 | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 09 | Bit 08 | Bit 07 | Bit 06 | Bit 05 | Bit 04 | Bit 03 | Bit 02 | Bit 01 | Bit 00 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| **31** | **30** | **29** | **28** | **27** | **26** | **25** | **24** | **23** | **22** | **21** | **20** | **19** | **18** | **17** | **16** | **15** | **14** | **13** | **12** | **11** | **10** | **09** | **08** | **07** | **06** | **05** | **04** | **03** | **02** | **01** | **00** |
| Input address for translation |

**Bits [31:0]**

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CUR instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MCR}<c>{q} \text{coproc}, {#}\text{opc1}, \text{<Rt>, <CRn>, <CRm>{, {#}\text{opc2}}} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b011</td>
<td>0b100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        ATS1CUR(R[t]);
    endif
elsif PSTATE.EL == EL2 then
    ATS1CUR(R[t]);
elsif PSTATE.EL == EL3 then
    ATS1CUR(R[t]);
G8.2.18    **ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write**

The ATS1CUW characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL0 and the current Security state, with permissions as if writing to the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1CUW are UNDEFINED.

**Attributes**

ATS1CUW is a 32-bit System instruction.

**Field descriptions**

The ATS1CUW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>Input address for translation</td>
</tr>
</tbody>
</table>

Input address for translation. The resulting address can be read from the PAR.

This System instruction takes a VA as input. If EL2 is implemented and enabled in the current Security state, the resulting address is the IPA that is the output address of the stage 1 translation. Otherwise, the resulting address is a PA.

**Executing the ATS1CUW instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{<c>\}{<q>} \text{<coproc>,} \{\#<opc1>, <Rt>, <CRn>, <CRm>, \{\#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b600</td>
<td>0b011</td>
<td>0b1000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    ATSICUW(R[t]);
  elsif PSTATE.EL == EL2 then
    ATSICUW(R[t]);
elsif PSTATE.EL == EL3 then
  ATSICUW(R[t]);
G8.2.19  ATS1HR, Address Translate Stage 1 Hyp mode Read

The ATS1HR characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if reading from the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1HR are UNDEFINED.

**Attributes**

ATS1HR is a 32-bit System instruction.

**Field descriptions**

The ATS1HR input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

**Executing the ATS1HR instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{\langle c\rangle\}{\langle q\rangle}\ {\langle \#\rangle}{\langle opc1\rangle},\ {\langle Rt\rangle},\ {\langle CRn\rangle},\ {\langle CRm\rangle},\ {\langle \#\rangle}{\langle opc2\rangle}
\]

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ATS1HR(R[t]);
 endif
elsif PSTATE.EL == EL2 then
 ATS1HR(R[t]);
endif
```
elsif PSTATE.EL == EL3 then
    ATSJHR(R[t]);
G8.2.20 ATS1HW, Address Translate Stage 1 Hyp mode Write

The ATS1HW characteristics are:

**Purpose**

Performs stage 1 address translation as defined for PL2 and the Non-secure state, with permissions as if writing to the given virtual address.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ATS1HW are UNDEFINED.

**Attributes**

ATS1HW is a 32-bit System instruction.

**Field descriptions**

The ATS1HW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Input address for translation</th>
</tr>
</thead>
</table>

**Executing the ATS1HW instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{<c>\}{<q>} <\text{coproc}, \{#\}<\text{opc1}>, <Rt>, <\text{CRn}>, <\text{CRm}\}>\{, \{#\}<\text{opc2}>\}
\]

<table>
<thead>
<tr>
<th>\text{coproc}</th>
<th>\text{opc1}</th>
<th>\text{CRn}</th>
<th>\text{CRm}</th>
<th>\text{opc2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0111</td>
<td>0b1000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

\[
\text{if PSTATE.EL} == \text{EL0 then UNDEFINED;} \\
\text{elsif PSTATE.EL} == \text{EL1 then} \\
\hspace{1em} \text{if EL2Enabled()} \&\& \text{ELUsingAArch32}(\text{EL2}) \&\& \text{HSTR.EL2.T7} == '1' \text{ then AArch64.AArch32SystemAccessTrap}(\text{EL2}, 0x83); \\
\hspace{1em} \text{elsif EL2Enabled()} \&\& \text{ELUsingAArch32}(\text{EL2}) \&\& \text{HSTR.T7} == '1' \text{ then AArch32.TakeHypTrapException(0x83); else ATS1HW(R[t]);} \\
\text{elsif PSTATE.EL} == \text{EL2 then ATS1HW(R[t]);}
\]
elsif PSTATE.EL == EL3 then
    ATSJH(R[t]);
G8.2.21 BPIALL, Branch Predictor Invalidate All

The BPIALL characteristics are:

**Purpose**

Invalidate all entries from branch predictors.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to BPIALL are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

**Attributes**

BPIALL is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by \(<Rt>\) is ignored.

**Executing the BPIALL instruction**

The PE ignores the value of \(<Rt>\). Software does not have to write a value to this register before issuing this instruction.

When \(HCR.FB\) is 1, at Non-secure EL1 this instruction executes as a BPIALLIS.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}<c>{q} \ coproc, {#}opc1, <Rt>, <CRn>, <CRm>{, {#}opc2}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if \(PSTATE.EL == EL0\) then
    UNDEFINED;
elsif \(PSTATE.EL == EL1\) then
    if \(EL2\)Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif \(EL2\)Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif \(EL2\)Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
        BPIALLIS();
    else
        BPIALL();
    endif
elsif \(PSTATE.EL == EL2\) then
    BPIALL();
elsif \(PSTATE.EL == EL3\) then
    BPIALL();
### G8.2.22 BPIALLIS, Branch Predictor Invalidate All, Inner Shareable

The BPIALLIS characteristics are:

**Purpose**

Invalidate all entries from branch predictors Inner Shareable.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to BPIALLIS are `UNDEFINED`.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

**Attributes**

BPIALLIS is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by `<Rt>` is ignored.

**Executing the BPIALLIS instruction**

The PE ignores the value of `<Rt>`. Software does not have to write a value to this register before issuing this instruction.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR\{<c>\}{<q>} \{<coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>{, \{#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

```c
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIALLIS();
 endif
elsif PSTATE_EL == EL2 then
 BPIALLIS();
elsif PSTATE_EL == EL3 then
 BPIALLIS();
else
 BPIALLIS();
endif
```
G8.2.23 BPIMVA, Branch Predictor Invalidate by VA

The BPIMVA characteristics are:

**Purpose**

Invalidate virtual address from branch predictors.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to BPIMVA are UNDEFINED.

In an implementation where the branch predictors are architecturally invisible, this instruction can execute as a NOP.

**Attributes**

BPIMVA is a 32-bit System instruction.

**Field descriptions**

The BPIMVA input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use</td>
<td></td>
</tr>
</tbody>
</table>

**Executing the BPIMVA instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b111</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 BPIMVA(R[t]);
 elsif PSTATE.EL == EL2 then
 BPIMVA(R[t]);
 elsif PSTATE.EL == EL3 then
 BPIMVA(R[t]);
```
G8.2.24 CCSIDR, Current Cache Size ID Register

The CCSIDR characteristics are:

**Purpose**

Provides information about the architecture of the currently selected cache.

When `FEAT_CCIDX` is implemented, this register is used in conjunction with CCSIDR2.

**Configurations**

AArch32 System register CCSIDR[31:0] is architecturally mapped to AArch64 System register CCSIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CCSIDR are UNDEFINED.

The implementation includes one CCSIDR for each cache that it can access. CSSELR and the Security state select which Cache Size ID Register is accessible.

**Attributes**

CCSIDR is a 32-bit register.

**Field descriptions**

The CCSIDR bit assignments are:

*When `FEAT_CCIDX` is implemented:*

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>RES0</td>
<td>Associativity</td>
<td>LineSize</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note**

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on these parameters.

**Bits [31:24]**

Reserved, RES0.

**Associativity, bits [23:3]**

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

**LineSize, bits [2:0]**

(Log2(Number of bytes in cache line)) - 4. For example:

For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.

For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.
Otherwise:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>13</th>
<th>12</th>
<th>3</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNK</td>
<td>NumSets</td>
<td>Associativity</td>
<td>LineSize</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- Note ---

The parameters NumSets, Associativity, and LineSize in these registers define the architecturally visible parameters that are required for the cache maintenance by Set/Way instructions. They are not guaranteed to represent the actual microarchitectural features of a design. You cannot make any inference about the actual sizes of caches based on these parameters.

### UNKNOWN, bits [31:28]

Reserved, UNKNOWN.

### NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.

### Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a power of 2.

### LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

- For a line length of 16 bytes: \( \log_2(16) = 4 \), LineSize entry = 0. This is the minimum line length.
- For a line length of 32 bytes: \( \log_2(32) = 5 \), LineSize entry = 1.

### Accessing the CCSIDR

If CSSEL.R.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

- The CCSIDR read is treated as NOP.
- The CCSIDR read is UNDEFINED.
- The CCSIDR read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}<q> \text{ <coproc>, } \{\#<opc1>, \text{ <Rt>, <CRn>, <CRm>, } \{\#<opc2>\}
\]

### Encodings

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b001</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
    return CCSIDR;
elsif PSTATE.EL == EL2 then
    return CCSIDR;
elsif PSTATE.EL == EL3 then
    return CCSIDR;
G8.2.25 CCSIDR2, Current Cache Size ID Register 2

The CCSIDR2 characteristics are:

**Purpose**

When FEAT_CCIDX is implemented, in conjunction with CCSIDR, provides information about the architecture of the currently selected cache.

When FEAT_CCIDX is not implemented, this register is not implemented.

**Configurations**

AArch32 System register CCSIDR2[31:0] is architecturally mapped to AArch64 System register CCSIDR2_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_CCIDX is implemented. Otherwise, direct accesses to CCSIDR2 are UNDEFINED.

The implementation includes one CCSIDR2 for each cache that it can access. CSSEL.R and the Security state select which Cache Size ID Register is accessible.

**Attributes**

CCSIDR2 is a 32-bit register.

**Field descriptions**

The CCSIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>24</td>
<td>NumSets, bits [23:0]</td>
</tr>
<tr>
<td>23</td>
<td>(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to be a power of 2.</td>
</tr>
</tbody>
</table>

**Accessing the CCSIDR2**

If CSSEL.R.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR2 the behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

- The CCSIDR2 read is treated as NOP.
- The CCSIDR2 read is UNDEFINED.
- The CCSIDR2 read returns an UNKNOWN value.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC(cq) <coproc>, (#opc1), <Rt>, <CRn>, <CRm>, (#opc2)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b001</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !(ELUsingAArch32(EL2)) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        return CCSIDR2;
    endif
elsif PSTATE.EL == EL2 then
    return CCSIDR2;
elsif PSTATE.EL == EL3 then
    return CCSIDR2;
G8.2.26  CFPRCTX, Control Flow Prediction Restriction by Context

The CFPRCTX characteristics are:

Purpose

Control Flow Prediction Restriction by Context applies to all Control Flow Prediction Resources that predict execution based on information gathered within the target execution context or contexts. When this instruction is complete and synchronized, control flow prediction does not permit later speculative execution within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

Note

This instruction does not require the invalidation of prediction structures so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute. This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

Configurations

This instruction is present only when AArch32 is supported at any Exception level and FEAT_SPECRES is implemented. Otherwise, direct accesses to CFPRCTX are UNDEFINED.

Attributes

CFPRCTX is a 32-bit System instruction.

Field descriptions

The CFPRCTX input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>28-26</td>
<td>GVMID</td>
</tr>
<tr>
<td>25</td>
<td>NS</td>
</tr>
<tr>
<td>24-16</td>
<td>EL</td>
</tr>
<tr>
<td>15</td>
<td>VMID</td>
</tr>
<tr>
<td>9-8</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7</td>
<td>ASID</td>
</tr>
<tr>
<td>0</td>
<td>GASID</td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

GVMID, bit [27]

Execution of this instruction applies to all VMIDs or a specified VMID.

- 0: Applies to specified VMID for an EL0 or EL1 target execution context.
- 1: Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

NS, bit [26]

Security State.

- 0: Secure state.
0b1  Non-secure state.

If the instruction is executed in Non-secure state, this field has an Effective value of 1.

**EL, bits [25:24]**

Exception Level. Indicates the Exception level of the target execution context.

- 0b00  EL0.
- 0b01  EL1.
- 0b10  EL2.
- 0b11  EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

**VMID, bits [23:16]**

Only applies when bit[27] is 0 and the target execution context is either:

- EL1.
- EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

**Bits [15:9]**

Reserved, RES0.

**GASID, bit [8]**

Execution of this instruction applies to all ASIDs or a specified ASID.

- 0b0  Applies to specified ASID for an EL0 target execution context.
- 0b1  Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field is treated as 0.

**ASID, bits [7:0]**

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

**Executing the CFPRCTX instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && SCTLR_EL1.EnRCTX == '0'
    then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    elsif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
        if ! ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
            AArch32.TakeHypTrapException(0x00);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
            AArch32.TakeHypTrapException(0x00);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x03);
        else
            CFPRCTX(R[t]);
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HSTRT.T7 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
            AArch32.TakeHyp TrapException(0x00);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
            AArch64.SystemAccessTrap(EL2, 0x03);
        else
            CFPRCTX(R[t]);
    elsif PSTATE.EL == EL2 then
        CFPRCTX(R[t]);
    elsif PSTATE.EL == EL3 then
        CFPRCTX(R[t]);
G8.2.27   CLIDR, Cache Level ID Register

The CLIDR characteristics are:

**Purpose**

Identifies the type of cache, or caches, that are implemented at each level and can be managed using
the architected cache maintenance instructions that operate by set/way, up to a maximum of seven
levels. Also identifies the Level of Coherence (LoC) and Level of Unification (LoU) for the cache
hierarchy.

**Configurations**

AArch32 System register CLIDR[31:0] is architecturally mapped to AArch64 System register
CLIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct
accesses to CLIDR are UNDEFINED.

**Attributes**

CLIDR is a 32-bit register.

**Field descriptions**

The CLIDR bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ICB | LoUU | LoC | LoUIS | Ctype7 | Ctype6 | Ctype5 | Ctype4 | Ctype3 | Ctype2 | Ctype1 |

**ICB, bits [31:30]**

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory
regions.

The possible values are:

- **0b00**: Not disclosed by this mechanism.
- **0b01**: L1 cache is the highest Inner Cacheable level.
- **0b10**: L2 cache is the highest Inner Cacheable level.
- **0b11**: L3 cache is the highest Inner Cacheable level.

**LoUU, bits [29:27]**

Level of Unification Uniprocessor for the cache hierarchy.

--- **Note** ---

When **FEAT_S2FWB** is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.

---

**LoC, bits [26:24]**

Level of Coherence for the cache hierarchy.

**LoUIS, bits [23:21]**

Level of Unification Inner Shareable for the cache hierarchy.

--- **Note** ---

When **FEAT_S2FWB** is implemented, the architecture requires that this field is zero so that no
levels of data cache need to be cleaned in order to manage coherency with instruction fetches.
Ctype\textsuperscript{<n>}, bits [3(n-1)+2:3(n-1)], for n = 1 to 7

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the
architected cache maintenance instructions that operate by set/way at each level, from Level 1 up to
a maximum of seven levels of cache hierarchy. Possible values of each field are:

\begin{itemize}
\item 0b000  No cache.
\item 0b001  Instruction cache only.
\item 0b010  Data cache only.
\item 0b011  Separate instruction and data caches.
\item 0b100  Unified cache.
\end{itemize}

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no
 caches that can be managed using the architected cache maintenance instructions that operate by
set/way exist at further-out levels of the hierarchy. So, for example, if Ctype3 is the first Cache Type
field with a value of 000, the values of Ctype4 to Ctype7 must be ignored.

**Accessing the CLIDR**

Accesses to this register use the following encodings in the System instruction encoding space:

\texttt{MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}}

\begin{center}
\begin{tabular}{cccccc}
\hline
\textbf{coproc} & \textbf{opc1} & \textbf{CRn} & \textbf{CRm} & \textbf{opc2} \\
\hline
0b1111 & 0b001 & 0b0000 & 0b0000 & 0b001 \\
\hline
\end{tabular}
\end{center}

if \texttt{PSTATE.EL} == 0 then
\texttt{UNDEFINED};
elseif \texttt{PSTATE.EL} == 1 then
\texttt{if EL2Enabled()} \&\& \texttt{ELUsingAArch32(EL2)} \&\& \texttt{HSTR.EL2.T0 == '1'} then
\texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
elseif \texttt{EL2Enabled()} \&\& \texttt{ELUsingAArch32(EL2)} \&\& \texttt{HSTR.T0 == '1'} then
\texttt{AArch32.TakeHypTrapException(0x03)};
elseif \texttt{EL2Enabled()} \&\& \texttt{ELUsingAArch32(EL2)} \&\& \texttt{HCR.EL2.TID2 == '1'} then
\texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
elseif \texttt{EL2Enabled()} \&\& \texttt{ELUsingAArch32(EL2)} \&\& \texttt{HCR.EL2.TID4 == '1'} then
\texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
else
\texttt{return CLIDR;}
endif
elseif \texttt{PSTATE.EL} == 2 then
\texttt{return CLIDR;}
elseif \texttt{PSTATE.EL} == 3 then
\texttt{return CLIDR;}
else
\texttt{return CLIDR;}
endif
G8.2.28 CONTEXTIDR, Context ID Register

The CONTEXTIDR characteristics are:

Purpose

Identifies the current Process Identifier and, when using the Short-descriptor translation table format, the Address Space Identifier.

The value of the whole of this register is called the Context ID and is used by:

- The debug logic, for Linked and Unlinked Context ID matching.
- The trace logic, to identify the current process.

The significance of this register is for debug and trace use only.

Configurations

AArch32 System register CONTEXTIDR[31:0] is architecturally mapped to AArch64 System register CONTEXTIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CONTEXTIDR are UNDEFINED.

The register format depends on whether address translation is using the Long-descriptor or the Short-descriptor translation table format.

Attributes

CONTEXTIDR is a 32-bit register.

Field descriptions

The CONTEXTIDR bit assignments are:

When TTBCR.EAE == 0:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCID</td>
<td>ASID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROCID, bits [31:8]

Process Identifier. This field must be programmed with a unique value that identifies the current process.

This field resets to an architecturally UNKNOWN value.

ASID, bits [7:0]

Address Space Identifier. This field is programmed with the value of the current ASID.

This field resets to an architecturally UNKNOWN value.

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCID</td>
<td></td>
</tr>
</tbody>
</table>

PROCID, bits [31:0]

Process Identifier. This field must be programmed with a unique value that identifies the current process.
This field resets to an architecturally UNKNOWN value.

**Accessing the CONTEXTIDR**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRC<(<c>)(<q>) <coproc>, (#) <opc1>, <Rt>, <CRn>, <CRm>, (#) <opc2>**

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        return CONTEXTIDR_NS;
    else
        return CONTEXTIDR;
    endif
elsif PSTATE.EL == EL2 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        CONTEXTIDR_NS = R[t];
    else
        CONTEXTIDR = R[t];
    endif
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return CONTEXTIDR_S;
    else
        return CONTEXTIDR_NS;
    endif
else
    return CONTEXTIDR;
endif

**MCR<(<c>)(<q>) <coproc>, (#) <opc1>, <Rt>, <CRn>, <CRm>, (#) <opc2>**

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        CONTEXTIDR_NS = R[t];
    else
        CONTEXTIDR = R[t];
    endif
elsif PSTATE.EL == EL2 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        CONTEXTIDR_NS = R[t];
    else
        CONTEXTIDR = R[t];
    endif
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return CONTEXTIDR_S;
    else
        return CONTEXTIDR_NS;
    endif
else
    return CONTEXTIDR;
endif
else
    CONTEXTIDR = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        CONTEXTIDR_S = R[t];
    else
        CONTEXTIDR_NS = R[t];

G8.2.29 CP15DMB, Data Memory Barrier System instruction

The CP15DMB characteristics are:

**Purpose**
Performs a Data Memory Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the DMB instruction instead.

**Configurations**
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CP15DMB are UNDEFINED.

**Attributes**
CP15DMB is a 32-bit System instruction.

**Field descriptions**
This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the CP15DMB instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{c\}\{q\} \langle coproc\rangle, \langle\#\langle opc1\rangle\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle\#\langle opc2\rangle\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if \( \text{PSTATE.EL} = \text{EL0} \) then
  if \( \text{!EL2Enabled() \&\& HCR\_EL2.\langle E2H,TGE\rangle = '11' \&\& SCTLR\_EL1.CP15BEN = '0' \) then
    UNDEFINED;
  elsif \( \text{EL2Enabled()} \&\& \text{!EL2Enabled()} \&\& \text{HCR\_EL2.\langle E2H,TGE\rangle = '11' \&\& SCTLR\_EL2.CP15BEN = '0' \) then
    UNDEFINED;
  elsif \( \text{EL2Enabled()} \&\& \text{!EL2Enabled()} \&\& \text{HCR\_EL2.\langle E2H,TGE\rangle = '11' \&\& HCR\_EL2.\langle E2H,TGE\rangle = '11' \&\& HSTR\_EL2.T7 = '1' \) then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif \( \text{EL2Enabled()} \&\& \text{EL2Enabled()} \&\& \text{HSTR\_EL2.T7 = '1' \&\& HSTR\_EL2.T7 = '1' \) then
    AArch32.TakeHypTrapException(0x03);
  else
    CP15DMB();
  elsif \( \text{PSTATE.EL} = \text{EL1} \) then
    if \( \text{EL2Enabled()} \&\& \text{EL2Enabled()} \&\& \text{HSTR\_EL2.T7 = '1' \) then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif \( \text{EL2Enabled()} \&\& \text{EL2Enabled()} \&\& \text{HSTR\_EL2.T7 = '1' \) then
      AArch32.TakeHypTrapException(0x03);
    elsif \( \text{SCTLR.CP15BEN = '0' \) then
      UNDEFINED;
    else
      CP15DMB();
  elsif \( \text{PSTATE.EL} = \text{EL2} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL3} \) then

  elseif \( \text{PSTATE.EL} = \text{EL4} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL5} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL6} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL7} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL8} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL9} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL10} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL11} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL12} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL13} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL14} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();
  elseif \( \text{PSTATE.EL} = \text{EL15} \) then
    if \( \text{HSTR\_EL1.T7 = '1' \) then
      UNDEFINED;
    else
      CP15DMB();

  else
    \text{UNDEFINED}.

else
    \text{UNDEFINED}.

end if
if SCTLR.CP15BEN == '0' then
    UNDEFINED;
else
    CP15DMB();

G8.2.30   CP15DSB, Data Synchronization Barrier System instruction

The CP15DSB characteristics are:

**Purpose**

Performs a Data Synchronization Barrier.

Arm deprecates any use of this System instruction, and strongly recommends that software use the DSB instruction instead.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CP15DSB are UNDEFINED.

**Attributes**

CP15DSB is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the CP15DSB instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{<c>\}{<q>} <\text{coproc}>, \{<\#><\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{<\#><\text{opc2}>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && !ELEnabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL1.CP15BEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.CP15BEN == '0' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        CP15DSB();
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
            AArch32.TakeHypTrapException(0x03);
        elsif SCTLR.CP15BEN == '0' then
            UNDEFINED;
        else
            CP15DSB();
        elsif PSTATE.EL == EL2 then
            if HSTR.CP15BEN == '0' then
                UNDEFINED;
            else
                CP15DSB();
            elsif PSTATE.EL == EL3 then
                ...
if SCTLR.CP15BEN == '0' then
    UNDEFINED;
else
    CP15DSB();
G8.2.31 CP15ISB, Instruction Synchronization Barrier System instruction

The CP15ISB characteristics are:

**Purpose**

Performs an Instruction Synchronization Barrier. Arm deprecates any use of this System instruction, and strongly recommends that software use the ISB instruction instead.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CP15ISB are UNDEFINED.

**Attributes**

CP15ISB is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields. The value in the register specified by <Rt> is ignored.

**Executing the CP15ISB instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{<c>\}<q> \{coproc\}, \{#<opc1>\}, <Rt>, <CRn>, <CRm>\{, \{#<opc2>\}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if !ELUsingAArch32(EL1) \&\& !(EL2Enabled() \&\& HCR_EL2.E2H,TGE == '11') \&\& SCTLR_EL1.CP15BEN == '0' then
    UNDEFINED;
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H,TGE == '11' \&\& SCTLR_EL2.CP15BEN == '0' then
    UNDEFINED;
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H,TGE == '11' \&\& HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    CP15ISB();
  elsif PSTATE_EL == EL1 then
    if L2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HSTR_EL2.T7 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif L2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR_EL2.T7 == '1' then
      AArch32.TakeHypTrapException(0x03);
    elsif SCTLR_EL1.CP15BEN == '0' then
      UNDEFINED;
    else
      CP15ISB();
  elsif PSTATE_EL == EL2 then
    if HSTR_EL2.T7 == '1' then
      UNDEFINED:
    else
      CP15ISB();
    elsif PSTATE_EL == EL3 then
      UNDEFINED;
if SCTLR.CP15BEN == '0' then
    UNDEFINED;
else
    CP15ISB();
G8.2.32 CPACR, Architectural Feature Access Control Register

The CPACR characteristics are:

**Purpose**

Controls access to trace, and to Advanced SIMD and floating-point functionality from EL0, EL1, and EL3.

In an implementation that includes EL2, the CPACR has no effect on instructions executed at EL2.

**Configurations**

AArch32 System register CPACR[31:0] is architecturally mapped to AArch64 System register CPACR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CPACR are UNDEFINED.

Bits in the NSACR control Non-secure access to the CPACR fields. See the field descriptions for more information.

--- Note ---

In the register field descriptions, controls are described as applying at specified Privilege levels. This is because, in Secure state, a PL1 control:

- Applies to execution in a Secure EL3 mode when EL3 is using AArch32.
- Applies to execution in a Secure EL1 mode when EL3 is using AArch64.

See [Security state, Exception levels, and AArch32 execution privilege](#) on page G1-5722.

**Attributes**

CPACR is a 32-bit register.

**Field descriptions**

The CPACR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>cp11</td>
<td>cp10</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ASEDIS, bit [31]**

Disables PL0 and PL1 execution of Advanced SIMD instructions.

- 0b0 This control permits execution of Advanced SIMD instructions at PL0 and PL1.
- 0b1 All instruction encodings that are Advanced SIMD instruction encodings, but are not also floating-point instruction encodings, are UNDEFINED at PL0 and PL1.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, this field behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see [Controls of Advanced SIMD operation that do not apply to floating-point operation](#) on page E1-4006.
See the description of CPACR.cp10 for a list of other controls that can disable or trap execution of Advanced SIMD instructions in AArch32 state.

This field resets to 0.

**Bits [30:29]**

Reserved, RES0.

**TRCDIS, bit [28]**

Traps PL0 and PL1 System register accesses to all implemented trace registers to Undefined mode.

- **0b0** This control has no effect on PL0 and PL1 System register accesses to trace registers.
- **0b1** PL0 and PL1 System register accesses to all implemented trace registers are trapped to Undefined mode.

If the implementation does not include a PE trace unit, or does not include a System register interface to the PE trace unit registers, this field is RES0. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, this field behaves as RAO/WI in Non-secure state, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

**Note**

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED.
- The architecture does not provide traps on trace register accesses through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.

This field resets to an architecturally UNKNOWN value.

**Bits [27:24]**

Reserved, RES0.

**cp11, bits [23:22]**

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is UNKNOWN on a direct read of the CPACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI, regardless of its actual value.

This field resets to 0.

**cp10, bits [21:20]**

Defines the access rights for the floating-point and Advanced SIMD functionality. Possible values of the field are:

- **0b00** PL0 and PL1 accesses to floating-point and Advanced SIMD registers or instructions are UNDEFINED.
- **0b01** PL0 accesses to floating-point and Advanced SIMD registers or instructions are UNDEFINED.
- **0b10** Reserved. The effect of programming this field to this value is CONSTRAINED UNPREDICTABLE. See Handling of System register control fields for Advanced SIMD and floating-point operation on page K1-7946.
- **0b11** This control permits full access to the floating-point and Advanced SIMD functionality from PL0 and PL1.
The floating-point and Advanced SIMD features controlled by these fields are:

- Execution of any floating-point or Advanced SIMD instruction.
- Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
- Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.

--- Note ---

The CPACR has no effect on floating-point and Advanced SIMD accesses from PL2. These can be disabled by the HCPTR.TCP10 field.

---

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In Non-secure state, if EL3 is implemented and is using AArch32, when the value of NSACR.cp10 is 0, this field behaves as RAZ/WI, regardless of its actual value.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

- CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
- FPEXC.EN.

- If executing in Non-secure state:
  - HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
  - NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

- For Advanced SIMD instructions only:
  - CPACR.ASEDIS.
  - If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

This field resets to 0.

**Bits [19:0]**

Reserved, RES0.

### Accessing the CPACR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC\{c\}\{q\} \langle coproc\rangle, \{#\}\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \{#\}\langle opc2\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && (!ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
    AArch32.TakeHypTrapException(0x03);
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b000</td>
<td>0b000</td>
<td>0b10</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL1) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
        UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TCPAC == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        CPACR = R[t];
else if PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
        UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    CPACR = R[t];
elsif PSTATE.EL == EL3 then
    CPACR = R[t];
G8.2.33   CPSR, Current Program Status Register

The CPSR characteristics are:

Purpose
Holds PE status and control information.

Configurations
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CPSR are UNDEFINED.

Attributes
CPSR is a 32-bit register.

Field descriptions
The CPSR bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| N  | Z  | C  | V  | Q  | RES0 | GE | RES0 | E  | A  | I  | F  | M  | SSBS | PAN | DIT | RES0 | RES1 | RES0 |

N, bit [31]
Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was positive or zero.

Z, bit [30]
Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of zero often indicates an equal result from a comparison.

C, bit [29]
Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned overflow on an addition.

V, bit [28]
Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a signed overflow on an addition.

Q, bit [27]
Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:24]
Reserved, RES0.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass Safe.
Prohibits speculative loads or stores which might practically allow a cache timing side channel.
A cache timing side channel might be exploited where a load or store uses an address that is derived from a register that is being loaded from memory using a load instruction speculatively read from a memory location. If PSTATE.SSBS is enabled, the address derived from the load instruction might be from earlier in the coherence order than the latest store to that memory location with the same virtual address.

0b0  Hardware is not permitted to load or store speculatively in the manner described.
0b1  Hardware is permitted to load or store speculatively in the manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions to any mode except Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp mode.

This field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never.

0b0  The translation system is the same as Armv8.0.
0b1  Disables privileged read and write accesses to addresses accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is 0, this bit is set to 1.
• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this bit is set to 1.
• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing.

0b0  The architecture makes no statement about the timing properties of any instructions.
0b1  The architecture requires that:

• The timing of every load and store instruction is insensitive to the value of the data being loaded or stored.
• For certain data processing instructions, the instruction takes a time which is independent of:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.
• For certain data processing instructions, the response of the instruction to asynchronous exceptions does not vary based on:
  — The values of the data supplied in any of its registers.
  — The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:
  — AESD, A ESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU, SHA1SU1, SHA256H, SHA256H2, SHA256SU, and SHA256SU1.
A subset of those instructions which use the general-purpose register file. For these instructions, the effects of CPSR.DIT apply only if they do not use R15 as either their source or destination and pass their condition execution check. The instructions are:

- BFI, BFC, CLZ, CNF, CMP, MLA, MLAS, MLD, MOV, MUL, MULS, NOP, PKHTB, PKHTB, RBIT, REV, REV16,
  REXR, SADD16, SADD8, SASX, SBFX, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8,
  SMLAL, SMLAL*, SMLD, SMLD*, SMULL, SMULL*, SMULLD, SMULLD*, SMULLD*, SSAX, SSUB16, SSUB8,
  SXTA, SXTB*, SXTB, STX, TEQ, TST, UADD, UASX, UBFX, UHADD, UHAX, UXH, UXH,
  UMAS, UMAS, UMAS, UMULL, USADAB, USAX, USUB, UXTAB, UXTAH, UXTH, ADC

A subset of those instructions which use the general-purpose register file. For these instructions, the effects of CPSR.DIT apply only if they do not use R15 as either their source or destination. The effects of CPSR.DIT do not depend on these instructions passing their condition execution check. These instructions are:

- ADC (immediate), ADC (register), ADDC (register), ADD (immediate), ADD (register), ADDS (immediate), ADDS (register), AND (immediate), AND (register), ANDS (immediate), ANDS (register), ASR (immediate), ASR (register), ASRS (immediate), ASRS (register), BIC (immediate), BIC (register), BICS (immediate), BICS (register), EOR (immediate), EOR (register), EORS (immediate), EORS (register), LSL (immediate), LSL (register), LSLS (immediate), LSLS (register), LSR (immediate), LSR (register), LSRS (immediate), LSRS (register), MOV (immediate), MOV (register), MOVs (immediate), MOVs (register), MVN (immediate), MVN (register), MVS (immediate), MVS (register), ORR (immediate), ORR (register), ORRS (immediate), ORRS (register), ROR (immediate), ROR (register), RORS (immediate), RORS (register), RSB (immediate), RSB (register), RSBS (immediate), RSBS (register), SBC (immediate), SBC (register), SBCS (immediate), SBCS (register), SUB (immediate), SUB (register), SUBS (immediate), and SUBS (register).

A subset of those instructions which use the SIMD&FP register file. For these instructions, the effects of CPSR.DIT apply only if they pass their condition execution check. These instructions are:

- CRC32B, CRC32H, CRC32C, CRC32CH, CRC32CH, VABA*, VABA, VABS, VACGE, VACGT,
  VACLE, VACL, VADD (integer), VADDH, VADDL, VAND, VBIC, VBIF, VBIT, VBSL, VCEG,
  VCGT, VLC, VCLS, VCLT, VCLZ, VCOMP, VCOMPE, VENT, VEO, VEXT, VHADD, VHSUB, VMX
  (integer), VMIN (integer), VMLA (integer), VMLA, VMLS (integer), VMLSL, VMOV, VMOV, VMOV,
  VMUL (integer and polynomial), VMULL (integer and polynomial), VMV, VNEG, VORN, VDORR,
  VPD, VPD, VPD (integer), VPD, VPD, VPMIEN (integer), VRADDH, VREV, VRHADD,
  VRS, VRSHR, VRSHRN, VRSRA, VRSUBH, VSELEQ, VSELQ, VSELGT, VSELVS, VSHL, VSHL,
  VSHR, VSLI, VSR, VSR, VSUB (integer), VSUBH, VSUBL, VSWP, VTB, VTBX, VTRN, VTS, VZP,
  and VZIP

This field resets to 0.

**Otherwise:**

Reserved, RES0.

**Bit [20]**

Reserved, RES0.
GE, bits [19:16]
Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]
Reserved, RES0.

E, bit [9]
Endianness state bit. Controls the load and store endianness for data accesses:
0b0 Little-endian operation
0b1 Big-endian operation.
Instruction fetches ignore this bit.
If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide
Little-endian support, this bit is RES1.
If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception
return to any Exception level other than EL0.
Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to
any Exception level other than EL0.
When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also
applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]
SError interrupt mask bit. The possible values of this bit are:
0b0 Exception not masked.
0b1 Exception masked.

I, bit [7]
IRQ mask bit. The possible values of this bit are:
0b0 Exception not masked.
0b1 Exception masked.

F, bit [6]
FIQ mask bit. The possible values of this bit are:
0b0 Exception not masked.
0b1 Exception masked.

Bit [5]
Reserved, RES0.

Bit [4]
Reserved, RES1.

M, bits [3:0]
Current PE mode. Possible values are:
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.
G8.2.34  CPPRCTX, Cache Prefetch Prediction Restriction by Context

The CPPRCTX characteristics are:

**Purpose**

Cache Prefetch Prediction Restriction by Context applies to all Cache Allocation Resources that predict cache allocations based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, cache prefetch prediction does not permit later speculative execution within the target execution context to be observable through side channels.

This instruction applies to all:
- Instruction caches.
- Data caches.
- TLB prefetching hardware used by the executing PE that applies to the supplied context or contexts.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

**Note**

This instruction does not require the invalidation of Cache Allocation Resources so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute.
This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level and FEAT_SPECRES is implemented. Otherwise, direct accesses to CPPRCTX are UNDEFINED.

**Attributes**

CPPRCTX is a 32-bit System instruction.

**Field descriptions**

The CPPRCTX input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>16</th>
<th>15</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>NS</td>
<td>EL</td>
<td>VMID</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**GVMD, bit [27]**

Execution of this instruction applies to all VMIDs or a specified VMID.

- 0b0  Applies to specified VMID for an EL0 or EL1 target execution context.
- 0b1  Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.
If the instruction is executed at EL0 or EL1, then this field has an Effective value of 0.
If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

**NS, bit [26]**

Security State.
- 0b0 Secure state.
- 0b1 Non-secure state.
If the instruction is executed in Non-secure state, this field is treated as 1.

**EL, bits [25:24]**

Exception Level. Indicates the Exception level of the target execution context.
- 0b00 EL0.
- 0b01 EL1.
- 0b10 EL2.
- 0b11 EL3.
If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

**VMID, bits [23:16]**

Only applies when bit[27] is 0 and the target execution context is either:
- EL1.
- EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.
Otherwise this field is RES0.
When the instruction is executed at EL1, this field is treated as the current VMID.
When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)), this field is treated as the current VMID.
When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2)), this field is ignored.
If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

**Bits [15:9]**

Reserved, RES0.

**GASID, bit [8]**

Execution of this instruction applies to all ASIDs or a specified ASID.
- 0b0 Applies to specified ASID for an EL0 target execution context.
- 0b1 Applies to all ASID for an EL0 target execution context.
For target execution contexts other than EL0, this field is RES0.
If the instruction is executed at EL0, this field has an Effective value of 0.

**ASID, bits [7:0]**

Only applies for an EL0 target execution context and when bit[8] is 0.
Otherwise, this field is RES0.
When the instruction is executed at EL0, this field is treated as the current ASID.

### Executing the CPPRCTX instruction

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0011</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnRCTX == '0'
    then
      if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
      else
        AArch64.AArch32SystemAccessTrap(EL1, 0x03);
      endif
  else
    UNDEFINED;
  endif
else ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
  endif
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
  AArch32.TakeHypTrapException(0x00);
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T7 == '1'
  && SCR_EL3.FGTEn == '1' && HFGITR_EL2.CPPRCTX == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && !ELUsingAArch32(EL3)
  && HCR_EL2.TGE == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && SCTLR_EL2.EnRCTX == '0'
  then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
  CPPRCTX(R[t]);
endif
else PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
  endif
else EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
  AArch32.TakeHypTrapException(0x00);
else EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
  AArch64.SystemAccessTrap(EL2, 0x03);
else
  CPPRCTX(R[t]);
endif
else PSTATE.EL == EL2 then
  CPPRCTX(R[t]);
else PSTATE.EL == EL3 then
  CPPRCTX(R[t]);
endif
CSSEL, Cache Size Selection Register

The CSSEL characteristics are:

**Purpose**

Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type, which is either instruction cache or data cache.

If FEAT_CCIDX is implemented, CSSEL also selects the current CCSIDR2.

**Configurations**

AArch32 System register CSSEL[31:0] is architecturally mapped to AArch64 System register CSSEL_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CSSEL are UNDEFINED.

**Attributes**

CSSEL is a 32-bit register.

**Field descriptions**

The CSSEL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Permitted values</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>4-3</td>
<td>Level</td>
<td>Cache level of required cache. Permitted values are:</td>
</tr>
<tr>
<td>0</td>
<td>InD</td>
<td>Instruction not Data bit. Permitted values are:</td>
</tr>
</tbody>
</table>

- **RES0**: Reserved, RES0.
- **Level**: Cache level of required cache. Permitted values are:
  - 0b000: Level 1 cache.
  - 0b001: Level 2 cache.
  - 0b010: Level 3 cache.
  - 0b011: Level 4 cache.
  - 0b100: Level 5 cache.
  - 0b101: Level 6 cache.
  - 0b110: Level 7 cache.
  - All other values are reserved.
  - If CSSEL.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSEL is UNKNOWN.
  - This field resets to an architecturally UNKNOWN value.
- **InD**: Instruction not Data bit. Permitted values are:
  - 0b0: Data or unified cache.
  - 0b1: Instruction cache.
  - If CSSEL.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSEL is UNKNOWN.
This field resets to an architecturally UNKNOWN value.

**Accessing the CSSELR**

Accesses to this register use the following encodings in the System instruction encoding space:

**MRC({c}|{q}) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b010</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  return CSSELR_NS;
endif

MCR({c}|{q}) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b010</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  return CSSELR_NS;
endif
AArch32.TakeHypTrapException(0x03);

eelsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    CSSELR_NS = R[t];
else
    CSSELR = R[t];
elseif PSTATE_EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        CSSELR_NS = R[t];
    else
        CSSELR = R[t];
elseif PSTATE_EL == EL3 then
    if SCR_NS == '0' then
        CSSELR_S = R[t];
    else
        CSSELR_NS = R[t];
G8.2.36   CTR, Cache Type Register

The CTR characteristics are:

Purpose

Provides information about the architecture of the caches.

Configurations

AArch32 System register CTR[31:0] is architecturally mapped to AArch64 System register CTR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CTR are UNDEFINED.

Attributes

CTR is a 32-bit register.

Field descriptions

The CTR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES1.</td>
</tr>
<tr>
<td>30</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>29</td>
<td>DIC, bit [29] Instruction cache invalidation requirements for data to instruction coherence.</td>
</tr>
<tr>
<td>28</td>
<td>IDC, bit [28] Data cache clean requirements for instruction to data coherence. The meaning of this bit is:</td>
</tr>
<tr>
<td>27</td>
<td>24-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES1</td>
</tr>
<tr>
<td>30</td>
<td>RES0</td>
</tr>
<tr>
<td>29</td>
<td>DIC</td>
</tr>
<tr>
<td>28</td>
<td>IDC</td>
</tr>
<tr>
<td>27</td>
<td>CWG</td>
</tr>
<tr>
<td>24</td>
<td>ERG</td>
</tr>
<tr>
<td>23</td>
<td>DminLine</td>
</tr>
<tr>
<td>20</td>
<td>L1Ip</td>
</tr>
<tr>
<td>19</td>
<td>RES0</td>
</tr>
<tr>
<td>16</td>
<td>IminLine</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

- The architectural maximum of 512 words (2KB) must be assumed.
- The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This applies, for example, to an implementation that supports only write-through caches.

**ERG, bits [23:20]**

Exclusives reservation granule. \(\log_2\) of the number of words of the maximum size of the reservation granule that has been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

**DminLine, bits [19:16]**

\(\log_2\) of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by the PE.

**L1Ip, bits [15:14]**

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values of this field are:

- 0b00 VMID aware Physical Index, Physical tag (VPIPT)
- 0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
- 0b10 Virtual Index, Physical Tag (VIPT)
- 0b11 Physical Index, Physical Tag (PIPT)

The value 0b00 is permitted only in an implementation that includes FEAT_VPIPT, otherwise the value is reserved.

The value 0b01 is not permitted in Armv8.

**Bits [13:4]**

Reserved, RES0.

**IminLine, bits [3:0]**

\(\log_2\) of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

### Accessing the CTR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC<	ext{c}>(	ext{q}) <	ext{coproc}, (	ext{#})<	ext{opc}1>, <	ext{Rt}, <	ext{CRn}, <	ext{CRm}>(, (	ext{#})<	ext{opc}2>) \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        ...
    end
end

[ARM DDI 0487F.c] Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. G8-6219 Non-Confidential
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then
  AArch32.TakeHypTrapException(0x03);
else
  return CTR;
elsif PSTATE.EL == EL2 then
  return CTR;
elsif PSTATE.EL == EL3 then
  return CTR;
G8.2.37 DACR, Domain Access Control Register

The DACR characteristics are:

**Purpose**

Defines the access permission for each of the sixteen memory domains.

**Configurations**

AArch32 System register DACR[31:0] is architecturally mapped to AArch64 System register DACR32_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DACR are UNDEFINED.

This register has no function when TTBCR.EAE is set to 1, to select the Long-descriptor translation table format.

**Attributes**

DACR is a 32-bit register.

**Field descriptions**

The DACR bit assignments are:

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

D<n>, bits [2n+1:2n], for n = 0 to 15

Domain n access permission, where n = 0 to 15. Permitted values are:

- 0b00 No access. Any access to the domain generates a Domain fault.
- 0b01 Client. Accesses are checked against the permission bits in the translation tables.
- 0b11 Manager. Accesses are not checked against the permission bits in the translation tables.

The value 0b10 is reserved.

This field resets to an architecturally UNKNOWN value.

**Accessing the DACR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{\langle c\rangle}{\langle q\rangle} \langle coproc\rangle, \langle#\rangle{\langle opc1\rangle}, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle#\rangle{\langle opc2\rangle}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b000 & 0b0011 & 0b0000 & 0b000 \\
\end{array}
\]

if PSTATE.EL == EL0 then

UNDEFINED;

elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then

AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then


MCR{<c>}{<q>}<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0011</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsf PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T3 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsf EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T3 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsf EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsf EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x03);
elsf HaveEL(EL3) && ELUsingAArch32(EL3) then
    DACR_NS = R[t];
else
    DACR = R[t];
elsf PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    DACR_NS = R[t];
else
    DACR = R[t];
elsf PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE == HIGH then
    UNDEFINED;
elsf SCR.NS == '0' && CP15SDISABLE2 == HIGH then
    UNDEFINED;
else
    if SCR.NS == '0' then
      DACR_S = R[t];
else
      DACR_NS = R[t];
### G8.2.38 DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC

The DCCIMVAC characteristics are:

**Purpose**

Clean and Invalidate data or unified cache line by virtual address to PoC.

**Configurations**

AArch32 System instruction DCCIMVAC performs the same function as AArch64 System instruction DC CIVAC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCCIMVAC are UNDEFINED.

**Attributes**

DCCIMVAC is a 32-bit System instruction.

**Field descriptions**

The DCCIMVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual address to use. No alignment restrictions apply to this VA.</td>
<td></td>
</tr>
</tbody>
</table>

**Executing the DCCIMVAC instruction**

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *AArch32 data cache maintenance instructions (DC*) on page G4-5941.

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1111</td>
<td>0b1110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        DCCIMVAC(R[t]);
    endif;
elsif PSTATE.EL == EL2 then
    DCCIMVAC(R[t]);
elsif PSTATE.EL == EL3 then
    DCCIMVAC(R[t]);
**G8.2.39 DCCISW, Data Cache line Clean and Invalidate by Set/Way**

The DCCISW characteristics are:

**Purpose**
Clean and Invalidate data or unified cache line by set/way.

**Configurations**
AArch32 System instruction DCCISW performs the same function as AArch64 System instruction DC CISW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCCISW are UNDEFINED.

**Attributes**
DCCISW is a 32-bit System instruction.

**Field descriptions**
The DCCISW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td><strong>SetWay</strong></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td><strong>Level</strong></td>
</tr>
<tr>
<td>0</td>
<td><strong>RES0</strong></td>
</tr>
</tbody>
</table>

**SetWay, bits [31:4]**
Contains two fields:
- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = \( \log_2(\text{ASSOCIATIVITY}) \), \( L = \log_2(\text{LINELEN}) \), \( B = (L + S) \), \( S = \log_2(\text{NSETS}) \).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**
Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**
Reserved, RES0.

**Executing the DCCISW instruction**
If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:
- The instruction is UNDEFINED
- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
  - Multiple arbitrary cache lines.
Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if \( \text{PSTATE.EL} = \text{EL0} \) then
UNDEFINED;
elsif \( \text{PSTATE.EL} = \text{EL1} \) then
if \( \text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR.EL2.T7} = '1' \) then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif \( \text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR.EL2.T7} = '1' \) then
AArch32.TakeHypTrapException(0x03);
elsif \( \text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HCR.EL2.TSW} = '1' \) then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif \( \text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HCR.EL2.TSW} = '1' \) then
AArch32.TakeHypTrapException(0x03);
else
DCCISW(R[t]);
elsif \( \text{PSTATE.EL} = \text{EL2} \) then
DCCISW(R[t]);
elsif \( \text{PSTATE.EL} = \text{EL3} \) then
DCCISW(R[t]);
G8.2.40 DCCMVAC, Data Cache line Clean by VA to PoC

The DCCMVAC characteristics are:

**Purpose**

Clean data or unified cache line by virtual address to PoC.

**Configurations**

AArch32 System instruction DCCMVAC performs the same function as AArch64 System instruction DCVC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCCMVAC are UNDEFINED.

**Attributes**

DCCMVAC is a 32-bit System instruction.

**Field descriptions**

The DCCMVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
</table>

**Executing the DCCMVAC instruction**

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *AArch32 data cache maintenance instructions (DC*) on page G4-5941.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{c\}\{q\} <\text{coproc}>, (\#)<\text{opc1}>, (<Rt>, <CRn>, <CRm>), (\#)<\text{opc2}>
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b000 & 0b0111 & 0b1010 & 0b001 \\
\end{array}
\]

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    DCCMVAC(R[t]);
  endif
else
  if PSTATE.EL == EL2 then
    DCCMVAC(R[t]);
  elseif PSTATE.EL == EL3 then
    DCCMVAC(R[t]);
  endif
G8.2.41 DCCMVAU, Data Cache line Clean by VA to PoU

The DCCMVAU characteristics are:

**Purpose**

Clean data or unified cache line by virtual address to PoU.

**Configurations**

AArch32 System instruction DCCMVAU performs the same function as AArch64 System instruction DC CVAU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCCMVAU are UNDEFINED.

**Attributes**

DCCMVAU is a 32-bit System instruction.

**Field descriptions**

The DCCMVAU input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
</table>

Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DCCMVAU instruction**

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see *AArch32 data cache maintenance instructions (DC*)* on page G4-5941.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR\langle c\rangle\langle q\rangle <coproc>, \langle#\rangle<opc1>, <Rt>, <CRn>, <CRm>\langle, \langle#\rangle<opc2>\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x83);
elif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x83);
elif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x83);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.EL2.TPU == '1' then
    AArch32.TakeHypTrapException(0x83);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.EL2.TOCU == '1' then
    AArch32.TakeHypTrapException(0x83);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
    AArch32.TakeHypTrapException(0x83);
else
  DCCMVAU(R[t]);
elif PSTATE.EL == EL2 then
DCCMVAU(R[t]);
elsif PSTATE.EL == EL3 then
    DCCMVAU(R[t]);
G8.2.42  DCCSW, Data Cache line Clean by Set/Way

The DCCSW characteristics are:

**Purpose**

Clean data or unified cache line by set/way.

**Configurations**

AArch32 System instruction DCCSW performs the same function as AArch64 System instruction DC SW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCCSW are UNDEFINED.

**Attributes**

DCCSW is a 32-bit System instruction.

**Field descriptions**

The DCCSW input value bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SetWay</td>
<td>Level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**SetWay, bits [31:4]**

Contains two fields:

- Way, bits[31:32-A], the number of the way to operate on.
- Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**

Reserved, RES0.

**Executing the DCCSW instruction**

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED

- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
  - Multiple arbitrary cache lines.
Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{<c>\}\{<q>\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2> \]

<table>
<thead>
<tr>
<th></th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        DCCSW(R[t]);
    elseif PSTATE.EL == EL2 then
        DCCSW(R[t]);
    elsif PSTATE.EL == EL3 then
        DCCSW(R[t]);

G8.2.43 DCIMVAC, Data Cache line Invalidate by VA to PoC

The DCIMVAC characteristics are:

**Purpose**

Invalidate data or unified cache line by virtual address to PoC.

**Configurations**

AArch32 System instruction DCIMVAC performs the same function as AArch64 System instruction DCIVAC.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCIMVAC are UNDEFINED.

**Attributes**

DCIMVAC is a 32-bit System instruction.

**Field descriptions**

The DCIMVAC input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
</table>

Virtual address to use. No alignment restrictions apply to this VA.

**Executing the DCIMVAC instruction**

It is IMPLEMENTATION DEFINED whether, when this instruction is executed, it can generate a watchpoint. If this instruction can generate a watchpoint this is prioritized in the same way as other watchpoints.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see AArch32 data cache maintenance instructions (DC*) on page G4-5941.

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MCR{<c>}{<q>}, <coproc>, {#<opc1>, <Rt>, <CRn>, <CRm>{, {#<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TPCP == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPC == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !HCR_EL2.<DC,VM> != '00' then
    DCCIMVAC(R[t]);
  elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
    DCCIMVAC(R[t]);
else
    DCIMVAC(R[t]);
elsif PSTATE.EL == EL2 then
    DCIMVAC(R[t]);
elsif PSTATE.EL == EL3 then
    DCIMVAC(R[t]);
### G8.2.44  DCISW, Data Cache line Invalidate by Set/Way

The DCISW characteristics are:

**Purpose**

Invalidate data or unified cache line by set/way.

**Configurations**

AArch32 System instruction DCISW performs the same function as AArch64 System instruction DCISW.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DCISW are UNDEFINED.

**Attributes**

DCISW is a 32-bit System instruction.

**Field descriptions**

The DCISW input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>SetWay</td>
</tr>
<tr>
<td>4-3</td>
<td>Level</td>
</tr>
<tr>
<td>0</td>
<td>RES0</td>
</tr>
</tbody>
</table>

**SetWay, bits [31:4]**

Contains two fields:

- **Way**, bits[31:32-A], the number of the way to operate on.
- **Set**, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

\[ A = \log_2(\text{ASSOCIATIVITY}), \quad L = \log_2(\text{LINELEN}), \quad B = (L + S), \quad S = \log_2(\text{NSETS}) \]

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the values for the cache level being operated on. The values of A and S are rounded up to the next integer.

**Level, bits [3:1]**

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2 cache.

**Bit [0]**

Reserved, RES0.

**Executing the DCISW instruction**

If this instruction is executed with a set, way or level argument that is larger than the value supported by the implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED

- The instruction performs cache maintenance on one of:
  - No cache lines.
  - A single arbitrary cache line.
  - Multiple arbitrary cache lines.
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR(<c>)(<q>) <\text{coproc}>, (<#<\text{opc}1>), <Rt>, <\text{CRn}>, <\text{CRm}>, (<#<\text{opc}2>)}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b111</td>
<td>0b110</td>
<td>0b10</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TSW == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TSW == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1' then
    DCCISW(R[t]);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00' then
    DCCISW(R[t]);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.SWIO == '1' then
    DCCISW(R[t]);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<DC,VM> != '00' then
    DCCISW(R[t]);
  else
    DCISW(R[t]);
elseif PSTATE.EL == EL2 then
  DCISW(R[t]);
else if PSTATE.EL == EL3 then
  DCISW(R[t]);
### G8.2.45 DFAR, Data Fault Address Register

The DFAR characteristics are:

**Purpose**

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception.

**Configurations**

- AArch32 System register DFAR[31:0] is architecturally mapped to AArch64 System register FAR_EL1[31:0].
- AArch32 System register DFAR[31:0](S) is architecturally mapped to AArch32 System register HDFAR[31:0] when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.
- This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DFAR are UNDEFINED.

**Attributes**

DFAR is a 32-bit register.

**Field descriptions**

The DFAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>VA of faulting address of synchronous Data Abort exception</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

**Accessing the DFAR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<\text{c}>\}<\{\text{q}\}> \text{<coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>}, \{, \{#\}<opc2>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if \(\text{PSTATE\_EL} == \text{EL0}\) then
- UNDEFINED;
else if \(\text{PSTATE\_EL} == \text{EL1}\) then
  - if \(\text{EL2Enabled}() \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR\_EL2.T6} == '1'\) then
    - AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  - elif \(\text{EL2Enabled}() \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR\_EL2.T6} == '1'\) then
    - AArch32.TakeHypTrapException(0x03);
  - elif \(\text{EL2Enabled}() \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HCR\_EL2.TRVM} == '1'\) then
    - AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  - elif \(\text{EL2Enabled}() \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HCR\_TRVM} == '1'\) then
    - AArch32.TakeHypTrapException(0x03);
  - elif \(\text{HaveEL(EL3)} \&\& \text{ELUsingAArch32(EL3)}\) then
    - return DFAR_NS;
  else
    - return DFAR;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return DFAR_NS;
  else
    return DFAR;
  end;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    return DFAR_S;
  else
    return DFAR_NS;
end;

MCR{<c>}{<q>}{coproc}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    DFAR_NS = R[t];
  else
    DFAR = R[t];
  end;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    DFAR_NS = R[t];
  else
    DFAR = R[t];
  end;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    DFAR_S = R[t];
  else
    DFAR_NS = R[t];
end;
G8.2.46  DFSR, Data Fault Status Register

The DFSR characteristics are:

**Purpose**

Holds status information about the last data fault.

**Configurations**

AArch32 System register DFSR[31:0] is architecturally mapped to AArch64 System register ESR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DFSR are UNDEFINED.

The current translation table format determines which format of the register is used.

**Attributes**

DFSR is a 32-bit register.

**Field descriptions**

The DFSR bit assignments are:

*When TTBCR.EAE == 0:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>17</td>
<td>AET</td>
</tr>
<tr>
<td>16</td>
<td>FnV</td>
</tr>
<tr>
<td>15</td>
<td>Domain</td>
</tr>
<tr>
<td></td>
<td>FS[3:0]</td>
</tr>
</tbody>
</table>

**Bits [31:17]**

Reserved, RES0.

**FnV, bit [16]**

Far not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0   DFAR is valid.

0b1   DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Data Abort exceptions.

This field resets to an architecturally UNKNOWN value.

**AET, bits [15:14]**

*When FEAT_RAS is implemented:*

Asynchronous Error Type. When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception. Possible values are:

0b00   Uncontainable (UC).

0b01   Unrecoverable state (UEU).

0b10   Restartable state (UEO).
Recoverable state (UER).

This field is valid only if the DFSC code is \(0b010001\). It is \(RES0\) for all other aborts. In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state is reported.

\[\text{Note}\]

Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

This field resets to an architecturally \text{UNKNOWN} value.

**Otherwise:**

Reserved, \(RES0\).

**CM, bit [13]**

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible values of this bit are:

- \(0b0\): Abort not caused by execution of a cache maintenance instruction.
- \(0b1\): Abort caused by execution of a cache maintenance instruction, or on an address translation.

On a synchronous Data Abort on a translation table walk, this bit is \text{UNKNOWN}.

On an asynchronous fault, this bit is \text{UNKNOWN}.

This field resets to an architecturally \text{UNKNOWN} value.

**ExT, bit [12]**

External abort type. This bit can be used to provide an \text{IMPLEMENTATION DEFINED} classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is \(RES0\).

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally \text{UNKNOWN} value.

**WnR, bit [11]**

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

- \(0b0\): Abort caused by a read instruction.
- \(0b1\): Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the \(\text{coproc==0b1111}\) encoding space this bit always returns a value of 1.

This field resets to an architecturally \text{UNKNOWN} value.

**FS[4], bit [10]**

This field is bit[4] of FS[4:0].

Fault status bits. Possible values of FS[4:0] are:

- \(0b00001\): Alignment fault.
- \(0b00010\): Debug exception.
- \(0b00011\): Access flag fault, level 1.
- \(0b00100\): Fault on instruction cache maintenance.
- \(0b00101\): Translation fault, level 1.
- \(0b00110\): Access flag fault, level 2.
- \(0b00111\): Translation fault, level 2.
0b0100  Synchronous External abort, not on translation table walk.
0b0101  Domain fault, level 1.
0b0111  Domain fault, level 2.
0b1100  Synchronous External abort, on translation table walk, level 1.
0b1101  Permission fault, level 1.
0b1110  Synchronous External abort, on translation table walk, level 2.
0b1111  Permission fault, level 2.
0b1000  TLB conflict abort.
0b1010  IMPLEMENTATION DEFINED fault (Lockdown fault).
0b1011  IMPLEMENTATION DEFINED fault (Unsupported Exclusive access fault).
0b1010  SError interrupt.

When FEAT_RAS is not implemented SError interrupt, from a parity or ECC error on memory access.

When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.

When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 1.

When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on a Short-descriptor translation table lookup on page G5-6070.

The FS field is split as follows:

• FS[4] is DFSR[10].
• FS[3:0] is DFSR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

0b0  Using the Short-descriptor translation table formats.
0b1  Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

Domain, bits [7:4]

The domain of the fault address.

Arm deprecates any use of this field, see The Domain field in the DFSR on page G5-6070.

This field is UNKNOWN for certain faults where the DFSR is updated and reported using the Short-descriptor FSR encodings, see Table G5-30 on page G5-6074.

This field resets to an architecturally UNKNOWN value.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

When \( TTBCR.EAE == 1 \):

<table>
<thead>
<tr>
<th>31</th>
<th>17 16 15 14 13 12 11 10 9 8 6 5 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>AET</td>
</tr>
</tbody>
</table>

FnV

Bits [31:17]
Reserved, RES0.

FnV, bit [16]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0  DFAR is valid.
0b1  DFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Data Abort exceptions.

This field resets to an architecturally UNKNOWN value.

AET, bits [15:14]

When \( FEAT\_RAS \) is implemented:

Asynchronous Error Type. When DFSC is \( 0b010001 \), describes the PE error state after taking the SError interrupt exception. Possible values are:

0b0   Uncontainable (UC).
0b01  Unrecoverable state (UEU).
0b10  Restartable state (UEO).
0b11  Recoverable state (UER).

This field is valid only if the DFSC code is \( 0b010001 \). It is RES0 for all other aborts.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state is reported.

Note
Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CM, bit [13]

Cache maintenance fault. For synchronous faults, this bit indicates whether a cache maintenance instruction generated the fault. The possible values of this bit are:

0b0   Abort not caused by execution of a cache maintenance instruction.
0b1   Abort caused by execution of a cache maintenance instruction.
On a synchronous Data Abort on a translation table walk, this bit is **UNKNOWN**.
On an asynchronous fault, this bit is **UNKNOWN**.
This field resets to an architecturally **UNKNOWN** value.

**ExT, bit [12]**

External abort type. This bit can be used to provide an **IMPLEMENTATION DEFINED** classification of External aborts.
In an implementation that does not provide any classification of External aborts, this bit is **RES0**.
For aborts other than External aborts this bit always returns 0.
This field resets to an architecturally **UNKNOWN** value.

**WnR, bit [11]**

Write not Read bit. Indicates whether the abort was caused by a write or a read instruction. The possible values of this bit are:

- **0b0**: Abort caused by a read instruction.
- **0b1**: Abort caused by a write instruction.

For faults on the cache maintenance and address translation System instructions in the (coproc==0b1111) encoding space this bit always returns a value of 1.
This field resets to an architecturally **UNKNOWN** value.

**Bit [10]**

Reserved, **RES0**.

**LPAE, bit [9]**

On taking a Data Abort exception, this bit is set as follows:

- **0b0**: Using the Short-descriptor translation table formats.
- **0b1**: Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.
This field resets to an architecturally **UNKNOWN** value.

**Bits [8:6]**

Reserved, **RES0**.

**STATUS, bits [5:0]**

Fault status bits. Possible values of this field are:

- **0b000000**: Address size fault in translation table base register.
- **0b000001**: Address size fault, level 1.
- **0b000010**: Address size fault, level 2.
- **0b000011**: Address size fault, level 3.
- **0b000101**: Translation fault, level 1.
- **0b000110**: Translation fault, level 2.
- **0b000111**: Translation fault, level 3.
- **0b001001**: Access flag fault, level 1.
- **0b001010**: Access flag fault, level 2.
- **0b001011**: Access flag fault, level 3.
- **0b001101**: Permission fault, level 1.
- **0b001110**: Permission fault, level 2.
- **0b001111**: Permission fault, level 3.
0b010000  Synchronous External abort, not on translation table walk.
0b010001  Asynchronous SError interrupt.
0b010100  Synchronous External abort on translation table walk, level 1.
0b010101  Synchronous External abort on translation table walk, level 2.
0b010110  Synchronous External abort on translation table walk, level 3.
0b010111  Synchronous External abort on translation table walk, level 3.
0b011000  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access, not on translation table walk.
0b011001  When FEAT_RAS is not implemented  Asynchronous SError interrupt, from a parity or ECC error on memory access.
0b011100  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk, level 1.
0b011101  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk, level 2.
0b011110  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk, level 3.
0b011111  When FEAT_RAS is not implemented  Synchronous parity or ECC error on memory access on translation table walk, level 3.
0b100000  Alignment fault.
0b100010  Debug exception.
0b110000  TLB conflict abort.
0b110100  IMPLEMENTATION DEFINED fault (Lockdown).
0b110101  IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).
All other values are reserved.
For more information about the lookup level associated with a fault, see The level associated with MMU faults on a Long-descriptor translation table lookup on page G5-6072.
This field resets to an architecturally UNKNOWN value.

Accessing the DFSR

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>}{<coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{ (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
    UNDEFINED;
elsf PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsf EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
        AArch32.TakeHypTrapException(0x83);
elsf EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsf EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
        AArch32.TakeHypTrapException(0x83);
elsf HaveEL(EL3) && ELUsingAArch32(EL3) then
        return DFSR_NS;
    else
        return DFSR;
elsf PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        return DFSR_NS;
    else
        return DFSR;

G8-6242  Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.  ARM DDI 0487F.c  Non-Confidential  ID072120
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return DFSR_S;
    else
        return DFSR_NS;
endif PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) then
        DFSR_NS = R[t];
    else
        DFSR = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        DFSR_NS = R[t];
    else
        DFSR = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        DFSR_S = R[t];
    else
        DFSR_NS = R[t];
endif

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
G8.2.47  DTLBIALL, Data TLB Invalidate All

The DTLBIALL characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from data TLBs that are from any level of the translation table walk. The entries that are invalidated are as follows:

- If executed at EL1, all entries that:
  - Would be required for the EL1&0 translation regime.
  - Match the current VMID, if EL2 is implemented and enabled in the current Security state.

- If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.

- If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DTLBIALL are **UNDEFINED**.

**Attributes**

DTLBIALL is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by \(<Rt>\) is ignored.

**Executing the DTLBIALL instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{<c>\}{<q>}\ <\text{coproc}, \{<\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{<\text{opc2}>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T8 == '1' then
    AArch64.TakenHypTrapException(0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR.TTLB == '1' then
    AArch64.TakenHypTrapException(0x03);
  else
    DTLBIALL();
  end
elsif PSTATE.EL == EL2 then
  DTLBIALL();
else
  DTLBIALL();


elsif PSTATE.EL == EL3 then
    DTLBIALL();
G8.2.48 DTLBIASID, Data TLB Invalidate by ASID match

The DTLBIASID characteristics are:

**Purpose**
Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:
- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
  - Is from a level of lookup above the final level.
  - Is a non-global entry from the final level of lookup.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:
- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DTLBIASID are UNDEFINED.

**Attributes**

DTLBIASID is a 32-bit System instruction.

**Field descriptions**

The DTLBIASID input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ASID</td>
</tr>
</tbody>
</table>

**Bits [31:8]**
Reserved, RES0.

**ASID, bits [7:0]**
ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System instruction.

**Executing the DTLBIASID instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR<coproc>, <CRn>, <CRm>{, (#)<opc1>, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        DTLBIASID(R[t]);
    end if;
elsif PSTATE.EL == EL2 then
    DTLBIASID(R[t]);
else
    DTLBIASID(R[t]);
end if;
G8.2.49  DTLBIMVA, Data TLB Invalidate by VA

The DTLBIMVA characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from data TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified address, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DTLBIMVA are UNDEFINED.

**Attributes**

DTLBIMVA is a 32-bit System instruction.

**Field descriptions**

The DTLBIMVA input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

**Executing the DTLBIMVA instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0110</td>
<td>0b001</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 DTLBIMVA(R[t]);
 endif
elsif PSTATE.EL == EL2 then
 DTLBIMVA(R[t]);
elsif PSTATE.EL == EL3 then
 DTLBIMVA(R[t]);
else
 DTLBIMVA(R[t]);
endif
```
G8.2.50   DVPRCTX, Data Value Prediction Restriction by Context

The DVPRCTX characteristics are:

**Purpose**

Data Value Prediction Restriction by Context applies to all Data Value Prediction Resources that predict execution based on information gathered within the target execution context or contexts.

When this instruction is complete and synchronized, data value prediction does not permit later speculative execution within the target execution context to be observable through side channels.

This instruction is guaranteed to be complete following a DSB that covers both read and write behavior on the same PE as executed the original restriction instruction, and a subsequent context synchronization event is required to ensure that the effect of the completion of the instructions is synchronized to the current execution.

--- Note ---

This instruction does not require the invalidation of prediction structures so long as the behavior described for completion of this instruction is met by the implementation.

On some implementations the instruction is likely to take a significant number of cycles to execute. This instruction is expected to be used very rarely, such as on the roll-over of an ASID or VMID, but should not be used on every context switch.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level and FEAT_SPECRES is implemented. Otherwise, direct accesses to DVPRCTX are UNDEFINED.

**Attributes**

DVPRCTX is a 32-bit System instruction.

**Field descriptions**

The DVPRCTX input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-28</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>27-26</td>
<td>NS, EL, VMID, RES0, ASID</td>
</tr>
<tr>
<td>25-24</td>
<td>GVMID</td>
</tr>
<tr>
<td>23-16</td>
<td>GASID</td>
</tr>
</tbody>
</table>

**Bits [31:28]**

Reserved, RES0.

**GVMID, bit [27]**

Execution of this instruction applies to all VMIDs or a specified VMID.

- 0b0: Applies to specified VMID for an EL0 or EL1 target execution context.
- 0b1: Applies to all VMIDs for an EL0 or EL1 target execution context.

For target execution contexts other than EL0 or EL1, this field is RES0.

If the instruction is executed at EL0 or EL1, this field has an Effective value of 0.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

**NS, bit [26]**

Security State.

- 0b0: Secure state.
Non-secure state.
If the instruction is executed in Non-secure state, this field has an Effective value of 1.

**EL, bits [25:24]**

Exception Level. Indicates the Exception level of the target execution context.

- **0b00**: EL0.
- **0b01**: EL1.
- **0b10**: EL2.
- **0b11**: EL3.

If the instruction is executed at an Exception level lower than the specified level, this instruction is treated as a NOP.

**VMID, bits [23:16]**

Only applies when bit[27] is 0 and the target execution context is either:

- EL1.
- EL0 when (HCR_EL2.E2H==0 or HCR_EL2.TGE==0) or EL2 is using AArch32 state.

Otherwise this field is RES0.

When the instruction is executed at EL1, this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==0 or HCR_EL2.TGE==0 or ELUsingAArch32(EL2)), this field is treated as the current VMID.

When the instruction is executed at EL0 and (HCR_EL2.E2H==1 and HCR_EL2.TGE==1 and !ELUsingAArch32(EL2)), this field is ignored.

If EL2 is not implemented or not enabled for the target Security state, this field is RES0.

**Bits [15:9]**

Reserved, RES0.

**GASID, bit [8]**

Execution of this instruction applies to all ASIDs or a specified ASID.

- **0b0**: Applies to specified ASID for an EL0 target execution context.
- **0b1**: Applies to all ASID for an EL0 target execution context.

For target execution contexts other than EL0, this field is RES0.

If the instruction is executed at EL0, this field has an Effective value of 0.

**ASID, bits [7:0]**

Only applies for an EL0 target execution context and when bit[8] is 0.

Otherwise, this field is RES0.

When the instruction is executed at EL0, this field is treated as the current ASID.

**Executing the DVPRCTX instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !EL2Enabled() && !HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL1.EnRCTX == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  elseif ELUsingAArch32(EL1) && SCTLR.EnRCTX == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x03);
    else
      UNDEFINED;
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && HSTR_EL2.T7 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
      AArch32.TakeHypTrapException(0x03);
    elseif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnRCTX == '0' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      DVPRCTX(R[t]);
  elseif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
      AArch32.TakeHypTrapException(0x03);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.NV == '1' then
      AArch64.SystemAccessTrap(EL2, 0x03);
    else
      DVPRCTX(R[t]);
  elseif PSTATE.EL == EL2 then
    DVPRCTX(R[t]);
  elseif PSTATE.EL == EL3 then
    DVPRCTX(R[t]);
**G8.2.51 ELR_hyp, Exception Link Register (Hyp mode)**

The ELR_hyp characteristics are:

**Purpose**

When taking an exception to Hyp mode, holds the address to return to.

**Configurations**

AArch32 System register ELR_hyp[31:0] is architecturally mapped to AArch64 System register ELR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ELR_hyp are UNDEFINED.

**Attributes**

ELR_hyp is a 32-bit register.

**Field descriptions**

The ELR_hyp bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Return address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return address.</td>
<td></td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

**Accessing the ELR_hyp**

ELR_hyp is accessible only at Hyp mode and Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRS{<c>}{<q>} <Rd>, ELR_hyp**

```
R M M1
0b0 0b1 0b1110
```

**MSR{<c>}{<q>} ELR_hyp, <Rn>**

```
R M M1
0b0 0b1 0b1110
```
G8.2.52 FCSEIDR, FCSE Process ID register

The FCSEIDR characteristics are:

**Purpose**

Identifies whether the Fast Context Switch Extension (FCSE) is implemented.

From Armv8, the FCSE is not implemented, so this register is RAZ/WI. Software can access this register to determine that the implementation does not include the FCSE.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FCSEIDR are UNDEFINED.

**Attributes**

FCSEIDR is a 32-bit register.

**Field descriptions**

The FCSEIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>Reserved, RAZ/WI</td>
</tr>
</tbody>
</table>

**Accessing the FCSEIDR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(c\{q\}) <\text{coproc}, \{#<\text{opc1}>, <\text{Rt}, <\text{CRn}, <\text{CRm}, \{#<\text{opc2}\}\} >
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        return FCSEIDR;
    end
elsif PSTATE.EL == EL2 then
    return FCSEIDR;
elsif PSTATE.EL == EL3 then
    return FCSEIDR;

MCR<coproc>, {#<opc1>, <Rt>, <CRn>, <CRm>}, {#<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELusingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    FCSEIDR = R[t];
  endif
elsif PSTATE.EL == EL2 then
  FCSEIDR = R[t];
elsif PSTATE.EL == EL3 then
  FCSEIDR = R[t];
else
  FCSEIDR = R[t];
endif
**G8.2.53 FPEXC, Floating-Point Exception Control register**

The FPEXC characteristics are:

**Purpose**

Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-point status information.

**Configurations**

AArch32 System register FPEXC[31:0] is architecturally mapped to AArch64 System register FPEXC32_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPEXC are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

**Attributes**

FPEXC is a 32-bit register.

**Field descriptions**

The FPEXC bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td><strong>EX</strong></td>
</tr>
<tr>
<td>30</td>
<td><strong>EN</strong></td>
</tr>
<tr>
<td>29</td>
<td><strong>DEX</strong></td>
</tr>
<tr>
<td>28</td>
<td><strong>FP2V</strong></td>
</tr>
<tr>
<td>27</td>
<td><strong>TFV</strong></td>
</tr>
<tr>
<td>26</td>
<td><strong>RES0</strong></td>
</tr>
<tr>
<td>25</td>
<td><strong>VECITR</strong></td>
</tr>
<tr>
<td>11</td>
<td><strong>IOF</strong></td>
</tr>
<tr>
<td>10</td>
<td><strong>DZF</strong></td>
</tr>
<tr>
<td>8</td>
<td><strong>OFF</strong></td>
</tr>
<tr>
<td>7</td>
<td><strong>UFF</strong></td>
</tr>
<tr>
<td>6</td>
<td><strong>IXF</strong></td>
</tr>
<tr>
<td>5</td>
<td><strong>RES0</strong></td>
</tr>
<tr>
<td>4</td>
<td><strong>IDF</strong></td>
</tr>
</tbody>
</table>

**EX, bit [31]**

Exception bit. From Armv8, this bit is RAZ/WI.

This field resets to an architecturally **UNKNOWN** value.

**EN, bit [30]**

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting this field to 0 does not disable the following:

- VMSR accesses to the FPEXC or FPSID.
- VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.
- Accesses to the FPSCR, and any of the SIMD and floating-point registers Q0-Q15, including their views as D0-D31 registers or S0-S31 registers, are UNDEFINED at all Exception levels.
- This control permits access to the Advanced SIMD and floating-point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the following controls:

- **CPACR.cp10**, or, if executing at EL0, **CPACR_EL1.FPEN**.
- **FPEXC.EN**.
• If executing in Non-secure state:
  — HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
  — NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.
• For Advanced SIMD instructions only:
  — CPACR.ASEDIS.
  — If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

______ Note ________
When executing at EL0 using AArch32:
• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is 1.
• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.\{RW, TGE\} is \{1, 1\}, then the behavior is as if the value of FPEXC.EN is 1.
• If EL2 is using AArch64 and enabled in the current Security state, and the value of HCR_EL2.\{RW, TGE\} is \{0, 1\}, then it is IMPLEMENTATION DEFINED whether the behavior is:
  — As if the value of FPEXC.EN is 1.
  — Determined by the value of FPEXC.EN, as described in this field description.
    However, Arm deprecates using the value of FPEXC.EN to determine behavior.

This field resets to 0.

**DEX, bit [29]**
Defined synchronous exception on floating-point execution.
This field identifies whether a synchronous exception generated by the attempted execution of an instruction was generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the FPEXC.TFV field is valid.
The meaning of this bit is:

0b0  The exception was generated by the attempted execution of an unallocated instruction in the encoding space that is identified by the pseudocode function ExecutingCP10or11Instr(). If FPEXC.TFV is RW then it is invalid and UNKNOWN. If FPEXC.\{IDF, IXF, UFF, OFF, DZF, IOF\} are RW then they are invalid and UNKNOWN.

0b1  The exception was generated during the execution of an unallocated encoding. FPEXC.TFV is valid and indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.
On an implementation that both does not support trapping of floating-point exceptions and implements the FPCR.\{Stride, Len\} fields as RAZ, this bit is RES0.
This field resets to an architecturally UNKNOWN value.

**FP2V, bit [28]**
FPINST2 instruction valid bit. From Armv8, this bit is RES0.
This field resets to an architecturally UNKNOWN value.

**VV, bit [27]**
VECITR valid bit. From Armv8, this bit is RES0.
This field resets to an architecturally UNKNOWN value.
TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the exception and therefore whether the FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

0b0 The exception was caused by the execution of a floating-point VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VMOV, VMUL, VNNEG, VNMLA, VNMLS, VNMUL, VSQRT, or VSUB instruction when one or both of FPSCR. {Stride, Len} was non-zero. If the FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} bits are RW then they are invalid and UNKNOWN.

0b1 FPEXC. {IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of trapped floating-point exceptions that had occurred at the time of the exception. Bits are set for all trapped exceptions that had occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR. {Stride, Len} as RAZ, this bit is RAO/WI.

This field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Input Denormal exception occurred while FPSCR.IDE was 1:

0b0 Input Denormal exception has not occurred.

0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Inexact exception occurred while FPSCR.IXE was 1:

0b0 Inexact exception has not occurred.

0b1 Inexact exception has occurred.
This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.
This field resets to an architecturally UNKNOWN value.

UFF, bit [3]
Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Underflow exception occurred while FPSCR.UFE was 1:
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.
Underflow trapped exceptions can occur:
• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.
This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.
This field resets to an architecturally UNKNOWN value.

OFF, bit [2]
Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Overflow exception occurred while FPSCR.OFE was 1:
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.
This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.
This field resets to an architecturally UNKNOWN value.

DZF, bit [1]
Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a Divide by Zero exception occurred while FPSCR.DZE was 1:
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.
This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.
This field resets to an architecturally UNKNOWN value.

IOF, bit [0]
Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an Invalid Operation exception occurred while FPSCR.IOE was 1:
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.
This bit must be cleared to 0 by the exception-handling routine.
When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.
On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

This field resets to an architecturally UNKNOWN value.

**Accessing the FPEXC**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ VMRS\{<c>\}{<q>} <Rt>, <spec_reg> \]

<table>
<thead>
<tr>
<th>reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
    UNDEFINED;
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPACR.cp10 == '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPACR_EL2.FPEN == 'x0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
    AArch32.TakeHypTrapException(0x08);
  else
    return FPEXC;
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '0' && CPACR_EL2.TFP == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif HCR_EL2.E2H == '1' && CPACR_EL2.FPEN == 'x0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
    AArch32.TakeHypTrapException(0x08);
  else
    return FPEXC;
elsif PSTATE.EL == EL3 then
  if CPACR.cp10 == '00' then
    UNDEFINED;
  else
    return FPEXC;

\[ VMSR\{<c>\}{<q>} <spec_reg>, <Rt> \]

<table>
<thead>
<tr>
<th>reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
    UNDEFINED;
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPACR.cp10 == '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPACR_EL2.FPEN == 'x0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
    AArch32.TakeHypTrapException(0x08);
  else
    return FPEXC;
AArch32.TakeHypTrapException(0x08);
else
    FPEXC = R[t];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x07);
    elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x07);
    elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
        AArch32.TakeHypTrapException(0x00);
    else
        FPEXC = R[t];
    elsif PSTATE.EL == EL3 then
        if CPACR.cp10 == '00' then
            UNDEFINED;
        else
            FPEXC = R[t];
        endif
    endif
endif
G8.2.54   FPSCR, Floating-Point Status and Control Register

The FPSCR characteristics are:

**Purpose**

Provides floating-point system status information and control.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPSCR are UNDEFINED.

The named fields in this register map to the equivalent fields in the AArch64 FPCR and FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

**Attributes**

FPSCR is a 32-bit register.

**Field descriptions**

The FPSCR bit assignments are:

```
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 --
 N Z C V FZ Stride Len IOC DZC OFC UFC IXC RES0 IDC IOE DZE OFE UFE IXE RES0 IDE
```

**N, bit [31]**

Negative condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

**Z, bit [30]**

Zero condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.

**C, bit [29]**

Carry condition flag. This is updated by floating-point comparison operations.

This field resets to an architecturally UNKNOWN value.
V, bit [28]
Overflow condition flag. This is updated by floating-point comparison operations.
This field resets to an architecturally UNKNOWN value.

QC, bit [27]
Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer operation has saturated since 0 was last written to this bit.
This field resets to an architecturally UNKNOWN value.

AHP, bit [26]
Alternative half-precision control bit:
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.
This bit is only used for conversions between half-precision floating-point and other floating-point formats.
The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision format, and ignore the value of this bit.
This field resets to an architecturally UNKNOWN value.

DN, bit [25]
Default NaN mode control bit:
0b0 NaN operands propagate through to the output of a floating-point operation.
0b1 Any operation involving one or more NaNs returns the Default NaN.
The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default NaN setting, regardless of the value of the DN bit.
This field resets to an architecturally UNKNOWN value.

FZ, bit [24]
Flush-to-zero mode control bit:
0b0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.
The value of this bit only controls scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-zero setting, regardless of the value of the FZ bit.
This bit has no effect on half-precision calculations.
This field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]
Rounding Mode control field. The encoding of this field is:
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.
The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always uses the Round to Nearest setting, regardless of the value of the RMode bits.
This field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]
It is implementation defined whether this field is RW or RAZ.
If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

This field resets to an architecturally UNKNOWN value.

**FZ16, bit [19]**

*When FEAT_FP16 is implemented:*

Flush-to-zero mode control bit on half-precision data-processing instructions:

0b0  Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the IEEE 754 standard.

0b1  Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

**Len, bits [18:16]**

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

This field resets to an architecturally UNKNOWN value.

**IDE, bit [15]**

Input Denormal floating-point exception trap enable. Possible values are:

0b0  Untrapped exception handling selected. If the floating-point exception occurs then the IDC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the IDC bit. The trap handling software can decide whether to set the IDC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

**Bits [14:13]**

Reserved, RES0.

**IXE, bit [12]**

Inexact floating-point exception trap enable. Possible values are:

0b0  Untrapped exception handling selected. If the floating-point exception occurs then the IXC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the IXC bit. The trap handling software can decide whether to set the IXC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.
When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception handling in AArch32 state. This field resets to an architecturally UNKNOWN value.

**UFE, bit [11]**
Underflow floating-point exception trap enable. Possible values are:

0b0  Untrusted exception handling selected. If the floating-point exception occurs then the UFC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the UFC bit. The trap handling software can decide whether to set the UFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception handling in AArch32 state. This field resets to an architecturally UNKNOWN value.

**OFE, bit [10]**
Overflow floating-point exception trap enable. Possible values are:

0b0  Untrusted exception handling selected. If the floating-point exception occurs then the OFC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the OFC bit. The trap handling software can decide whether to set the OFC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrusted floating-point exception handling in AArch32 state. This field resets to an architecturally UNKNOWN value.

**DZE, bit [9]**
Divide by Zero floating-point exception trap enable. Possible values are:

0b0  Untrusted exception handling selected. If the floating-point exception occurs then the DZC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the DZC bit. The trap handling software can decide whether to set the DZC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrusted floating-point exception handling in AArch32 state. This field resets to an architecturally UNKNOWN value.

**IOE, bit [8]**
Invalid Operation floating-point exception trap enable. Possible values are:

0b0  Untrusted exception handling selected. If the floating-point exception occurs then the IOC bit is set to 1.

0b1  Trapped exception handling selected. If the floating-point exception occurs, the PE does not update the IOC bit. The trap handling software can decide whether to set the IOC bit to 1.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that does not support floating-point exception trapping, this bit is RAZ/WI.
When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped floating-point exception handling in AArch32 state.

This field resets to an architecturally UNKNOWN value.

**IDC, bit [7]**

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IDE bit.

This field resets to an architecturally UNKNOWN value.

**Bits [6:5]**

Reserved, RES0.

**IXC, bit [4]**

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IXE bit.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see [Flush-to-zero on page A1-55](#).

This field resets to an architecturally UNKNOWN value.

**UFC, bit [3]**

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the UFE bit.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see [Flush-to-zero on page A1-55](#).

This field resets to an architecturally UNKNOWN value.

**OFC, bit [2]**

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the OFE bit.

This field resets to an architecturally UNKNOWN value.

**DZC, bit [1]**

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.
Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the DZE bit.

This field resets to an architecturally UNKNOWN value.

**IOC, bit [0]**

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the floating-point calculations performed by the instruction, regardless of the value of the IOE bit.

This field resets to an architecturally UNKNOWN value.

## Accessing the FPSCR

Accesses to this register use the following encodings in the System instruction encoding space:

```
VMRS{<c>}{<q>} <Rt>, <spec_reg>
```

```plaintext
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !ELEnabled() && HCR_EL2.E2H,TGE == '11' && CPACR_EL1.FPEN != '11' then
 if ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 else
 ELUsingAArch32(EL1) && (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 CPACR.cp10 == '0' then
 UNDEFINED;
 else
 ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H,TGE == '11' && CPTR_EL2.FPEN != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 ELEnabled() && !EL_usingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 end
 else
 ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 AArch64.AArch32SystemAccessTrap(EL3) && (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 HPTR.TCP10 == '1' then
 AArch32.TakeHypTrapException(0x08);
 else
 return FPSCR;
 end
 else
 PSTATE.EL == EL1 then
 if CPACR_EL1.FPEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 else
 ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0' ||
 CPACR.cp10 == '0' then
 UNDEFINED;
 else
 ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 end
 else
 ELEnabled() && !ELUsingAArch32(EL2) && (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 HPTR.TCP10 == '1' then
 AArch32.TakeHypTrapException(0x08);
 else
 return FPSCR;
 end
 end
 else
 PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 return FPSCR;
 else
 ELEnabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 ELEnabled() && !ELUsingAArch32(EL2) && (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 HPTR.TCP10 == '1' then
 AArch32.TakeHypTrapException(0x08);
 else
 return FPSCR;
 end
 end
 else
 PSTATE.EL == EL3 then
 if HCR_EL3.E3H == '0' && CPTR_EL3.TFP == '1' then
 return FPSCR;
 else
 ELEnabled() && !ELUsingAArch32(EL3) && HCR_EL3.E3H != '1' && CPTR_EL3.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 else
 ELEnabled() && !ELUsingAArch32(EL3) && (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 HPTR.TCP30 == '1' then
 AArch32.TakeHypTrapException(0x08);
 else
 return FPSCR;
 end
 end
 else
 PSTATE.EL == EL4 then
 if HCR_EL4.E4H == '0' && CPTR_EL4.TFP == '1' then
 return FPSCR;
 else
 ELEnabled() && !ELUsingAArch32(EL4) && HCR_EL4.E4H != '1' && CPTR_EL4.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL4, 0x07);
 else
 ELEnabled() && !ELUsingAArch32(EL4) && (ELUsingAArch32(EL4) && SCR.NS == '1' && NSACR.cp10 == '0') ||
 HPTR.TCP40 == '1' then
 AArch32.TakeHypTrapException(0x08);
 else
 return FPSCR;
 end
 end
 else
 return FPSCR;
 end
```

```
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') then
 if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 endif
 endif
else
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return FPSCR;
 endif
endif
if PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL3) && CPACR_EL1.FPEN != '11' then
 if CPACR_EL1.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x07);
 elseif (ELUsingAArch32(EL3) && SCR.NS == '1') then
 AArch64.AArch32SystemAccessTrap(EL3, 0x07);
 endif
 endif
else
 if PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elseif HCR_EL2.E2H == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 endif
 endif
endif
VMSR{<c>}{<q>} <spec_reg>, <Rt>

VMSR{<c>}{<q>} <spec_reg>, <Rt>
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 FPSCR = R[t];
G8.2.55 FPSID, Floating-Point System ID register

The FPSID characteristics are:

Purpose

Provides top-level information about the floating-point implementation.

This register largely duplicates information held in the MIDR. Arm deprecates use of it.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPSID are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes

FPSID is a 32-bit register.

Field descriptions

The FPSID bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>16</th>
<th>15</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementer</td>
<td>Subarchitecture</td>
<td>PartNum</td>
<td>Variant</td>
<td>Revision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SW

Implementer, bits [31:24]

Implementer codes are the same as those used for the MIDR.

For an implementation by Arm this field is 0x41, the ASCII code for A.

This field resets to an architecturally UNKNOWN value.

SW, bit [23]

Software bit. Defined values are:

0b0 The implementation provides a hardware implementation of the floating-point instructions.

0b1 The implementation supports only software emulation of the floating-point instructions.

In Armv8-A, the only permitted value is 0b0.

This field resets to an architecturally UNKNOWN value.

Subarchitecture, bits [22:16]

Subarchitecture version number. For an implementation by Arm, defined values are:

0b0000000 VFPv1 architecture with an IMPLEMENTATION DEFINED subarchitecture.

0b0000001 VFPv2 architecture with Common VFP subarchitecture v1.

0b0000010 VFPv3 architecture, or later, with Common VFP subarchitecture v2. The VFP architecture version is indicated by the MVFR0 and MVFR1 registers.

0b0000011 VFPv3 architecture, or later, with Null subarchitecture. The entire floating-point implementation is in hardware, and no software support code is required. The VFP architecture version is indicated by the MVFR0 and MVFR1 registers. This value can be used only by an implementation that does not support the trap enable bits in the FPSCR.
0b0000100 VFPv3 architecture, or later, with Common VFP subarchitecture v3, and support for trap enable bits in FPSCR. The VFP architecture version is indicated by the MVFR0 and MVFR1 registers.

For a subarchitecture designed by Arm the most significant bit of this field, register bit[22], is 0. Values with a most significant bit of 0 that are not listed here are reserved.

When the subarchitecture designer is not Arm, the most significant bit of this field, register bit[22], must be 1. Each implementer must maintain its own list of subarchitectures it has designed, starting at subarchitecture version number 0x40.

In Armv8-A, the permitted values are 0b0000011 and 0b0000100.

This field resets to an architecturally UNKNOWN value.

PartNum, bits [15:8]

An IMPLEMENTATION DEFINED part number for the floating-point implementation, assigned by the implementer.

This field resets to an architecturally UNKNOWN value.

Variant, bits [7:4]

An IMPLEMENTATION DEFINED variant number. Typically, this field distinguishes between different production variants of a single product.

This field resets to an architecturally UNKNOWN value.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the floating-point implementation.

This field resets to an architecturally UNKNOWN value.

Accessing the FPSID

Accesses to this register use the following encodings in the System instruction encoding space:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

<table>
<thead>
<tr>
<th>reg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.TFP == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 else
 return FPSID;
 elsif PSTATE_EL == EL3 then
 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' & SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);
else
//no operation
elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then
UNDEFINED;
else
//no operation
VMSR<spec_reg>, <Rt>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
AArch32.TakeHypTrapException(0x08);
else
//no operation
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x00);
else
//no operation
elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then
UNDEFINED;
else
//no operation
HACR, Hyp Auxiliary Configuration Register

The HACR characteristics are:

Purpose

Controls trapping to Hyp mode of IMPLEMENTATION DEFINED aspects of Non-secure EL1 or EL0 operation.

Configurations

AArch32 System register HACR[31:0] is architecturally mapped to AArch64 System register HACR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HACR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HACR is a 32-bit register.

Field descriptions

The HACR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

Accessing the HACR

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HACR;
MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elseif PSTATE.EL == EL2 then
 HACR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACR = R[t];

G8.2.57 HACTLR, Hyp Auxiliary Control Register

The HACTLR characteristics are:

Purpose
Controls IMPLEMENTATION DEFINED features of Hyp mode operation.

Configurations
AArch32 System register HACTLR[31:0] is architecturally mapped to AArch64 System register ACTLR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HACTLR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HACTLR is a 32-bit register.

Field descriptions
The HACTLR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACTLR
Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  return HACTLR;
else
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return HACTLR;
```
MCR<coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elseif PSTATE.EL == EL2 then
 HACTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR = R[t];
HACTLR2, Hyp Auxiliary Control Register 2

The HACTLR2 characteristics are:

Purpose

Provides additional space to the HACTLR register to hold IMPLEMENTATION DEFINED trap functionality.

Configurations

AArch32 System register HACTLR2[31:0] is architecturally mapped to AArch64 System register ACTLR_EL2[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HACTLR2 are UNDEFINED.

In Armv8.0 and Armv8.1, it is IMPLEMENTATION DEFINED whether this register is implemented, or whether it causes UNDEFINED exceptions when accessed. The implementation of this register can be detected by examining ID_MMFR4.AC2.

From Armv8.2 this register must be implemented.

Attributes

HACTLR2 is a 32-bit register.

Field descriptions

The HACTLR2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HACTLR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>_<q>, <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>(#)<opc2>)
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HACTLR2;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then

G8.2.58
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HACTLR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HACTLR2 = R[t];
G8.2.59 HADFSR, Hyp Auxiliary Data Fault Status Register

The HADFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED syndrome information for Data Abort exceptions taken to Hyp mode.

Configurations
AArch32 System register HADFSR[31:0] is architecturally mapped to AArch64 System register AFSR0_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HADFSR are UNDEFINED.

This is an optional register. An implementation that does not require this register can implement it as RES0.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HADFSR is a 32-bit register.

Field descriptions
The HADFSR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>30:0</td>
<td>IMPLEMENTATION DEFINED, bits [31:0]</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

Accessing the HADFSR
Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q}> <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HADFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
else
 return HADFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 HADFSR = R[t];
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HADFSR = R[t];
G8.2.60 HAIFSR, Hyp Auxiliary Instruction Fault Status Register

The HAIFSR characteristics are:

Purpose
Provides additional IMPLEMENTATION DEFINED syndrome information for Prefetch Abort exceptions taken to Hyp mode.

Configurations
AArch32 System register HAIFSR[31:0] is architecturally mapped to AArch64 System register AFSR1_EL2[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HAIFSR are UNDEFINED.
This is an optional register. An implementation that does not require this register can implement it as RES0.
If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HAIFSR is a 32-bit register.

Field descriptions
The HAIFSR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

Accessing the HAIFSR
Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAIFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
else
 return HAIFSR;

MCR{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 HAIFSR = R[t];
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAIFSR = R[t];
 else
 return HAIFSR;
G8.2.61 HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0

The HAMAIR0 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR0. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined in HMAIR0.

Configurations

AArch32 System register HAMAIR0[31:0] is architecturally mapped to AArch64 System register AMAIR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HAMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR0 is a 32-bit register.

Field descriptions

The HAMAIR0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HAMAIR0

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC} \langle c \rangle \langle q \rangle \langle \text{coproc} \rangle, \langle \# \rangle \langle \text{opc1} \rangle, \langle \text{Rt} \rangle, \langle \text{CRn} \rangle, \langle \text{CRm} \rangle, \langle \# \rangle \langle \text{opc2} \rangle
\]

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAMAIR0;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
else
 UNDEFINED;

else
 return HAMAIR0;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR0 = R[t];

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

G8-6284 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
G8.2.62 HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1

The HAMAIR1 characteristics are:

Purpose

Provides IMPLEMENTATION DEFINED memory attributes for the memory attribute encodings defined by HMAIR1. These IMPLEMENTATION DEFINED attributes can only provide additional qualifiers for the memory attribute encodings, and cannot change the memory attributes defined in HMAIR1.

Configurations

AArch32 System register HAMAIR1[31:0] is architecturally mapped to AArch64 System register AMAIR_EL2[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HAMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HAMAIR1 is a 32-bit register.

Field descriptions

The HAMAIR1 bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

If an implementation does not provide any IMPLEMENTATION DEFINED memory attributes, this register is RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the HAMAIR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{<c>\}{<q>}, \langle\#\langle opc1\rangle\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle\{, \langle\#\langle opc2\rangle\rangle\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HAMAIR1;
else PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
else
 return HAMAIR1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HAMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HAMAIR1 = R[t];
G8.2.63 HCPTR, Hyp Architectural Feature Trap Register

The HCPTR characteristics are:

Purpose

Controls:
- Trapping to Hyp mode of Non-secure access, at EL1 or EL0, to trace, and to Advanced SIMD and floating-point functionality.
- Hyp mode access to trace, and to Advanced SIMD and floating-point functionality.

--- Note ---

Accesses to this functionality:
- From Non-secure modes other than Hyp mode are also affected by settings in the CPACR and NSACR.
- From Hyp mode are also affected by settings in the NSACR.

Exceptions generated by the CPACR and NSACR controls are higher priority than those generated by the HCPTR controls.

Configurations

AArch32 System register HCPTR[31:0] is architecturally mapped to AArch64 System register CPTR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCPTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCPTR is a 32-bit register.

Field descriptions

The HCPTR bit assignments are:

TCPAC, bit [31]

Traps Non-secure EL1 accesses to the CPACR to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 accesses to the CPACR are trapped to Hyp mode.

--- Note ---

The CPACR is not accessible at EL0.

In a system where the PE resets into EL2 or EL3, this field resets to 0.
TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps Non-secure EL1 and EL0 accesses to all Activity Monitor registers to EL2.

0b0 Accesses from Non-secure EL1 and EL0 to Activity Monitor registers are not trapped.

0b1 Accesses from Non-secure EL1 and EL0 to Activity Monitor registers are trapped to Hyp mode.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps Non-secure System register accesses to all implemented trace registers to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any Non-secure System register access to an implemented trace register is trapped to Hyp mode, unless the access is trapped to EL1 by a CPACR or NSACR control, or the access is from Non-secure EL0 and the definition of the register in the appropriate trace architecture specification indicates that the register is not accessible from EL0. A trapped instruction generates:

- A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.
- An Undefined Instruction exception taken to Hyp mode, if the exception is taken from Hyp mode.

If the implementation does not include a PE trace unit, or does not include a System register interface to the PE trace unit registers, it is IMPLEMENTATION DEFINED whether this bit:

- Is RES0.
- Is RES1.
- Can be written from Hyp mode, and from Secure Monitor mode when SCR.NS is 1.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSTRCDIS is 1, in Non-secure state this field behaves as RAO/WI, regardless of its actual value.

Note

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and a resulting Undefined Instruction exception is higher priority than a HCPTR.TTA Hyp Trap exception.
- The architecture does not provide traps on trace register accesses through the optional memory-mapped debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [19:16]

Reserved, RES0.
TASE, bit [15]

Traps Non-secure execution of Advanced SIMD instructions to Hyp mode when the value of HCPTR.TCP10 is 0.

\[\text{Bit Value} \]
\[\begin{array}{ll}
\text{0b0} & \text{This control does not cause any instructions to be trapped.} \\
\text{0b1} & \text{When the value of HCPTR.TCP10 is 0, any attempt to execute an Advanced SIMD instruction in Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR or NSACR control. A trapped instruction generates:} \\
& \quad \text{• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.} \\
& \quad \text{• An Undefined Instruction exception taken to Hyp mode, if the exception is taken from Hyp mode.} \\
\end{array} \]

When the value of HCPTR.TCP10 is 1, the value of this field is ignored.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1. Otherwise, it is IMPLEMENTATION DEFINED whether this field is implemented as a RW field. If it is not implemented as a RW field, then it is RAZ/WI.

If EL3 is implemented and is using AArch32, and the value of NSACR.NSASEDIS is 1, in Non-secure state this field behaves as RAO/WI, regardless of its actual value. This applies even if the field is implemented as RAZ/WI.

For the list of instructions affected by this field, see Controls of Advanced SIMD operation that do not apply to floating-point operation on page E1-4006.

In a system where the PE resets into EL2 or EL3, this field resets to \(0 \).

Bit [14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

TCP11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the TCP10 bit then this field is UNKNOWN on a direct read of the HCPTR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless of its actual value.

In a system where the PE resets into EL2 or EL3, this field resets to \(0 \).

TCP10, bit [10]

Trap Non-secure accesses to Advanced SIMD and floating-point functionality to Hyp mode:

\[\text{Bit Value} \]
\[\begin{array}{ll}
\text{0b0} & \text{This control does not cause any instructions to be trapped.} \\
\text{0b1} & \text{Any attempted access to Advanced SIMD and floating-point functionality from Non-secure state is trapped to Hyp mode, unless it is trapped to EL1 by a CPACR or NSACR control. A trapped instruction generates:} \\
& \quad \text{• A Hyp Trap exception, if the exception is taken from Non-secure EL0 or EL1.} \\
& \quad \text{• An Undefined Instruction exception taken to Hyp mode, if the exception is taken from Hyp mode.} \\
\end{array} \]

The Advanced SIMD and floating-point features controlled by these fields are:

\[\begin{array}{ll}
\text{Execution of any floating-point or Advanced SIMD instruction.} \\
\text{Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.} \\
\text{Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.} \\
\end{array} \]
If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES1.

If EL3 is implemented and is using AArch32, and the value of NSACR.cp10 is 0, in Non-secure state this field behaves as RAO/WI, regardless of its actual value.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Bits [9:0]

Reserved, RES1.

Accessing the HCPTR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\}\ <\text{coproc}, \{#\}<\text{opc1}, <\text{Rt}, <\text{CRn}, <\text{CRm}\}, \{#\}<\text{opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end;
  else
    return HCPTR;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return HCPTR;
```

\[
\text{MCR}\{c\}\{q\}\ <\text{coproc}, \{#\}<\text{opc1}, <\text{Rt}, <\text{CRn}, <\text{CRm}\}, \{#\}<\text{opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  UNDEFINED;
```
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 HCPTR = R[t];
 endif
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCPTR = R[t];
 endif
G8.2.64 HCR, Hyp Configuration Register

The HCR characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various Non-secure operations are trapped to Hyp mode.

Configurations

AArch32 System register HCR[31:0] is architecturally mapped to AArch64 System register HCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR is a 32-bit register.

Field descriptions

The HCR bit assignments are:

![HCR Bit Assignments Diagram]

Bit [31]

Reserved, RES0.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps Non-secure EL1 reads of the virtual memory control registers to EL2, when EL2 is enabled in the current Security state.

The registers for which read accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFS, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 read accesses to the specified Virtual Memory controls are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables Non-secure EL1 and EL2 execution of HVC instructions, when EL2 is enabled in the current Security state.

0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and Non-secure EL1.

The Undefined Instruction exception is taken to the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

TGE, bit [27]

Trap General Exceptions, from Non-secure EL0.

0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this control has no effect on execution at EL0.

When EL2 is enabled in the current Security state, then:

- All exceptions that would be routed to EL1 are routed to EL2.
- The SCTLR.M bit is treated as being 0 for all purposes other than returning the result of a direct read of SCTLR.
- The HCR.{FMO, IMO, AMO} bits are treated as being 1 for all purposes other than returning the result of a direct read of HCR.
- All virtual interrupts are disabled.
- Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are disabled.
- An exception return to EL1 is treated as an illegal exception return.
- Monitor mode execution of an MSR or CPS instruction that changes CPSR.M to a Non-secure EL1 mode is an illegal change to PSTATE.M. For more information see [Illegal changes to PSTATE.M](#) on page G1-5739.

Also, when HCR.TGE is 1:

- If EL3 is using AArch32, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing SCR.NS from 0 to 1 results in SCR.NS remaining as 0.
- The HDCR.{TDRA, TDOSA, TDA, TDE} bits are ignored and treated as being 1 other than for the purpose of a direct read of HDCR.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TVM, bit [26]

Trap Virtual Memory controls. Traps Non-secure EL1 writes to the virtual memory control registers to EL2, when EL2 is enabled in the current Security state.
The registers for which write accesses are trapped are as follows:

SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFS, PRRR, NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 write accesses to the specified virtual memory control registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps Non-secure EL1 execution of a TLBI instruction to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

TLBIALIS, TLBIMVAIS, TLLIAISID, TLLIMVAIS, TLLIMVAILIS, ITLIALIS, ITLIMVA, ITLIAISID, DTLIALIS, DTLIMVA, DTLIAISID, TLIALIS, TLLIMVA, TLLIAISID, TLLIMVAI, TLLIMVAIL

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified TLB maintenance instructions are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps Non-secure EL1 execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• ICIMVAAU, ICIAULL, ICIAULLUI, DCCMVAU.

--- Note ---

An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TPC, bit [23]

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps Non-secure EL1 execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

• DCIMVAC, DCCMVAU, DCCMVA.

--- Note ---
An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TSW, bit [22]
Trap data or unified cache maintenance instructions that operate by Set/Way. Traps Non-secure EL1 execution of those cache maintenance instructions by set/way to EL2, when EL2 is enabled in the current Security state.

This applies to the following instructions:

- DCISW, DCCSW, DCCISW.

--- Note ---
An Undefined Instruction exception generated at EL0 is higher priority than this trap to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TAC, bit [21]
Trap Auxiliary Control Registers. Traps Non-secure EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is enabled in the current Security state, from both Execution states.

This applies to the following register accesses:
ACTLR and, if implemented, ACTLR2.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TIDCP, bit [20]
Trap IMPLEMENTATION DEFINED functionality. Traps Non-secure EL1 accesses to the encodings for IMPLEMENTATION DEFINED System Registers to EL2, when EL2 is enabled in the current Security state.

MCR and MRC instructions accessing the following encodings:
- All coproc==p15, CRn==c9, Opcode1 = {0-7}, CRm = {c0-c2, c5-c8}, opcode2 = {0-7}.
- All coproc==p15, CRn==c10, Opcode1 =={0-7}, CRm == {c0, c1, c4, c8}, opcode2 == {0-7}.
- All coproc==p15, CRn==c11, Opcode1=={0-7}, CRm == {c0-c8, c15}, opcode2 == {0-7}.

When HCR.TIDCP is set to 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from Non-secure EL0 is trapped to EL2. Otherwise, it is UNDEFINED and the PE takes an Undefined Instruction exception to Non-secure Undefined mode.

0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the specified System register encodings for IMPLEMENTATION DEFINED functionality are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TSC, bit [19]

Trap SMC instructions. Traps Non-secure EL1 execution of SMC instructions to Hyp mode.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute an SMC instruction at Non-secure EL1 is trapped to Hyp mode, regardless of the value of SCR.SCD.

The Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

--- **Note** ---

- This trap is only implemented if the implementation includes EL3.
- SMC instructions are always UNDEFINED at PL0.
- This bit traps execution of the SMC instruction. It is not a routing control for the SMC exception. Hyp Trap exceptions and SMC exceptions have different preferred return addresses.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID3, bit [18]

Trap ID group 3. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state as follows:

- VMRS access to MVFR0, MVFR1, and MVFR2, reported using EC syndrome value 0x08, unless access is also trapped by HCPTR which takes priority.
- MRC access to the following registers are reported using EC syndrome value 0x03:
 - ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2, ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.
 - If FEAT_FGT is implemented:
 - ID_MMFR4 and ID_MMFR5 are trapped to EL2.
 - ID_ISAR6 is trapped to EL2.
 - ID_DFR1 is trapped to EL2.
 - This field traps all MRC accesses to registers in the following range that are not already mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0, CRm == \{c2-c7\}, opc2 == \{0-7\}.
 - If FEAT_FGT is not implemented:
 - ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.
 - ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_ISAR6 are trapped to EL2.
 - ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_DFR1 are trapped to EL2.
 - Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRC accesses to registers not already mentioned, with coproc == p15, opc1 == 0, CRn == c0, CRm == \{c2-c7\}, opc2 == \{0-7\}.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified Non-secure EL1 read accesses to ID group 3 registers are trapped to EL2.
In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

- Non-secure EL1 and EL0 reads of the CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR.
- Non-secure EL1 and EL0 writes to the CSSELR.

0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 2 registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID1, bit [16]

Trap ID group 1. Traps Non-secure EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state:

TCMTR, TLBTR, REVIDR, AIDR.

0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 1 registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TID0, bit [15]

Trap ID group 0. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

- Non-secure EL1 reads of the JIDR and FPSID.
- If the JIDR is RAZ from Non-secure EL0, Non-secure EL0 reads of the JIDR.

--- Note ---

- It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at EL0. If it is UNDEFINED at EL0 then the Undefined Instruction exception takes precedence over this trap.
- The FPSID is not accessible at EL0.
- Writes to the FPSID are ignored, and not trapped by this control.

0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 read accesses to ID group 0 registers are trapped to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

TWE, bit [14]

Traps Non-secure EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state.

0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at Non-secure EL0 or EL1 is trapped to EL2, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWE.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

--- Note ---

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.
In a system where the PE resets into EL2 or EL3, this field resets to 0.

TWI, bit [13]

Traps Non-secure EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
<tr>
<td>0b1</td>
<td>Any attempt to execute a WFI instruction at Non-secure EL0 or EL1 is trapped to EL2, if the instruction would otherwise have caused the PE to enter a low-power state and it is not trapped by SCTLR.nTWI.</td>
</tr>
</tbody>
</table>

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

DC, bit [12]

Default Cacheability.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>This control has no effect on the Non-secure EL1&0 translation regime.</td>
</tr>
<tr>
<td>0b1</td>
<td>In Non-secure state:</td>
</tr>
<tr>
<td></td>
<td>- The SCTLR.M field behaves as 0 for all purposes other than a direct read of the value of the field.</td>
</tr>
<tr>
<td></td>
<td>- The HCR.VM field behaves as 1 for all purposes other than a direct read of the value of the field.</td>
</tr>
<tr>
<td></td>
<td>- The memory type produced by the first stage of the EL1&0 translation regime is Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer Write-Back Read-Allocate Write-Allocate.</td>
</tr>
</tbody>
</table>

This field has no effect on the EL2 and EL3 translation regimes.

This field is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier instruction executed from Non-secure EL1 or Non-secure EL0:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>No effect.</td>
</tr>
<tr>
<td>0b01</td>
<td>Inner Shareable.</td>
</tr>
<tr>
<td>0b10</td>
<td>Outer Shareable.</td>
</tr>
<tr>
<td>0b11</td>
<td>Full system.</td>
</tr>
</tbody>
</table>

This value is combined with the specified level of the barrier held in its instruction, using the same principles as combining the shareability attributes from two stages of address translation.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed from Non-secure EL1:

- BPIALL, TLBIALL, TLBIMVA, TLBISAD, DTLBIALL, DTLBIMVA, DTLBISAD, ITLBIALL, ITLBIMVA, ITLBISAD, TLBIMVAA, ICIALLU, TLBIMAL, TLBIMVAAL.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>This field has no effect on the operation of the specified instructions.</td>
</tr>
</tbody>
</table>
When one of the specified instruction is executed at Non-secure EL1, the instruction is broadcast within the Inner Shareable shareability domain.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VA, bit [8]

Virtual SError interrupt exception.

0b0 This mechanism is not making a virtual SError interrupt pending.

0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR.TGE is 1. The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VI, bit [7]

Virtual IRQ exception.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR.TGE is 0. The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VF, bit [6]

Virtual FIQ exception.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR.TGE is 0. The Guest OS cannot distinguish the virtual exception from the corresponding physical exception.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

AMO, bit [5]

SError interrupt Mask Override. When this bit is set to 1, it overrides the effect of CPSR.A, and enables virtual exception signaling by the VA bit.

If the value of HCR.TGE is 0, then virtual SError interrupts are enabled in Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.AMO bit behaves as 1 for all purposes other than a direct read of the value of the bit.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

IMO, bit [4]

IRQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.I, and enables virtual exception signaling by the VI bit.

If the value of HCR.TGE is 0, then virtual IRQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.IMO bit behaves as 1 for all purposes other than a direct read of the value of the bit.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

FMO, bit [3]

FIQ Mask Override. When this bit is set to 1, it overrides the effect of CPSR.F, and enables virtual exception signaling by the VF bit.

If the value of HCR.TGE is 0, then virtual FIQ interrupts are enabled in the Non-secure state.

If the value of HCR.TGE is 1, then in Non-secure state the HCR.FMO bit behaves as 1 for all purposes other than a direct read of the value of the bit.
In a system where the PE resets into EL2 or EL3, this field resets to 0.

PTW, bit [2]

Protected Table Walk. In the Non-secure PL1&0 translation regime, a translation table access made as part of a stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two stages of translation means the access might be made to a type of Device memory. If this occurs then the value of this bit determines the behavior:

- **0b0**: The translation table walk occurs as if it is to Normal Non-cacheable memory. This means it can be made speculatively.
- **0b1**: The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

SWIO, bit [1]

Set/Way Invalidation Override. Causes Non-secure EL1 execution of the data cache invalidate by set/way instructions to perform a data cache clean and invalidate by set/way.

- **0b0**: This control has no effect on the operation of data cache invalidate by set/way instructions.
- **0b1**: Data cache invalidate by set/way instructions perform a data cache clean and invalidate by set/way.

When this bit is set to 1, **DCISW** performs the same invalidation as a **DCCISW** instruction.

As a result of changes to the behavior of **DCISW**, this bit is redundant in Armv8. This bit can be implemented as **RES1**.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation regime.

- **0b0**: Non-secure EL1&0 stage 2 address translation disabled.
- **0b1**: Non-secure EL1&0 stage 2 address translation enabled.

If the HCR.DC bit is set to 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is consistent with HCR.VM being 1, regardless of the actual value of HCR.VM, other than the value returned by an explicit read of HCR.VM.

When the value of this bit is 1, data cache invalidate instructions executed at Non-secure EL1 perform a data cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the HCR.SWIO bit.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\{c\}\{q\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HCR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HCR;
 endif;
endif;

MCR{<c>{<q> coproc}, {#}opc1, <Rt>, <CRn>, <CRm>{, {#}opc2}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif;
elsif PSTATE.EL == EL2 then
 HCR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCR = R[t];
 endif;
else
 UNDEFINED;
endif;
HCR2, Hyp Configuration Register 2

The HCR2 characteristics are:

Purpose

Provides additional configuration controls for virtualization.

Configurations

AArch32 System register HCR2[31:0] is architecturally mapped to AArch64 System register HCR_EL2[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HCR2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HCR2 is a 32-bit register.

Field descriptions

The HCR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:23]</th>
<th>31 23 22 21 20 19 18 17 16</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLBIS</td>
<td>RES0</td>
<td>RES0</td>
</tr>
<tr>
<td>RES0</td>
<td>TOCU</td>
<td>RES0</td>
</tr>
<tr>
<td>RES0</td>
<td>TICAB</td>
<td>TID4</td>
</tr>
<tr>
<td>RES0</td>
<td>ID</td>
<td>RES0</td>
</tr>
<tr>
<td>CD</td>
<td>RES0</td>
<td>TERR</td>
</tr>
<tr>
<td>RES0</td>
<td>TEA</td>
<td>MIOCNCE</td>
</tr>
<tr>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TTLBIS, bit [22]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of the following TLB maintenance instructions at EL1 to EL2:

- TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS

 0b0 This control does not cause any instructions to be trapped.

 0b1 Non-secure EL1 execution of the specified TLB maintenance instructions is trapped to EL2.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.
TOCU, bit [20]

When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache maintenance instructions at EL1 or EL0 using AArch64, and at EL1 using AArch32, to EL2.

This applies to the following instructions:

- When Non-secure EL0 is using AArch64, **IC IVAU, DC CVAU**. However, if the value of SCTLR_EL1.UCI is 0 these instructions are **UNDEFINED** at EL0 and any resulting exception is higher priority than this trap to EL2.
- When EL1 is using AArch64, **IC IVAU, IC IALLU, DC CVAU**.
- When Non-secure EL1 is using AArch32, **ICIMVAU, ICIALLU, DCCMVAU**.

Note

An exception generated because an instruction is **UNDEFINED** at EL0 is higher priority than this trap to EL2. In addition:

- **IC IALLUIS** and **IC IALLU** are always **UNDEFINED** at EL0 using AArch64.
- **ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU** are always **UNDEFINED** at EL0 using AArch32.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of data cache, it is **IMPLEMENTATION DEFINED** whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is **IMPLEMENTATION DEFINED** whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bit [19]

Reserved, RES0.

TICAB, bit [18]

When FEAT_EVT is implemented:

Trap **ICIALLUIS** cache maintenance instructions. Traps execution of those cache maintenance instructions at EL1 to EL2.

This applies to the following instructions:

ICIALLUIS.

0b0 This control does not cause any instructions to be trapped.

0b1 Non-secure EL1 execution of the specified cache maintenance instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is **IMPLEMENTATION DEFINED** whether the execution of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control is 1.

When FEAT_VHE and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.
TID4, bit [17]

When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2:

- EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
- EL1 writes to CSSELR.

0b0 This control does not cause any instructions to be trapped.
0b1 The specified Non-secure EL1 and EL0 accesses to ID group 4 registers are trapped to EL2.

When FEAT_VHE is implemented and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of this bit.

Otherwise:

Reserved, RES0.

Bits [16:7]

Reserved, RES0.

MIOCNCE, bit [6]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the Non-secure PL1&0 translation regime.

0b0 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory location that use a common definition of the Shareability and Cacheability of the location, there must be no loss of coherency if the Inner Cacheability attribute for those accesses differs from the Outer Cacheability attribute.

0b1 For the Non-secure PL1&0 translation regime, for permitted accesses to a memory location that use a common definition of the Shareability and Cacheability of the location, there might be a loss of coherency if the Inner Cacheability attribute for those accesses differs from the Outer Cacheability attribute.

For more information, see Mismatched memory attributes on page E2-4060.

This field can be implemented as RAZ/WI.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

TEA, bit [5]

When FEAT_RAS is implemented:

Route synchronous External abort exceptions from EL0 and EL1 to EL2.

0b0 Does not route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2.

0b1 Route synchronous External abort exceptions from Non-secure EL0 and EL1 to EL2, if not routed to EL3.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TERR, bit [4]

When FEAT_RAS is implemented:

Trap Error record accesses from EL1 to EL2. Trap accesses to the following registers from EL1 to EL2:

ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.
When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [3:2]

Reserved, RES0.

ID, bit [1]

Stage 2 Instruction access cacheability disable. For the Non-secure PL1&0 translation regime, when HCR.VM==1, this control forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for instruction accesses to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

CD, bit [0]

Stage 2 Data access cacheability disable. When HCR.VM==1, this forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable for the Non-secure PL1&0 translation regime.

0b0 This control has no effect on stage 2 of the Non-secure PL1&0 translation regime for data accesses and translation table walks.

0b1 For the Non-secure PL1&0 translation regime, forces all stage 2 translations for data accesses and translation table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2 translation regime.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HCR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} \coproc, \{#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
\hline
0b1111 & 0b100 & 0b0001 & 0b0001 & 0b100 \\
\end{array}
\]

\[
\begin{aligned}
\text{if } \text{PSTATE.EL} &= \text{EL0 then} \\
\text{UNDEFINED;}
\end{aligned}
\]

\[
\begin{aligned}
\text{elsif } \text{PSTATE.EL} &= \text{EL1 then} \\
\text{if EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR_EL2.T1} == '1' \text{ then} \\
\text{AArch64.AArch32SystemAccessTrap(EL2, 0x03);} \\
\text{elsif EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HSTR.T1} == '1' \text{ then} \\
\text{AArch32.TakeHypTrapException(0x83);} \\
\text{else} \\
\text{UNDEFINED;}
\end{aligned}
\]

\[
\begin{aligned}
\text{elsif } \text{PSTATE.EL} &= \text{EL2 then} \\
\text{return HCR2;}
\end{aligned}
\]

\[
\begin{aligned}
\text{elsif } \text{PSTATE.EL} &= \text{EL3 then} \\
\text{if SCR.NS == '0' then} \\
\text{UNDEFINED;}
\end{aligned}
\]
else
 return HCR2;

MCR(<c>){<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 HCR2 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HCR2 = R[t];
 endif
else
 UNDEFINED;
endif
HDFAR, Hyp Data Fault Address Register

The HDFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Data Abort exception that is taken to Hyp mode.

Configurations

AArch32 System register HDFAR[31:0] is architecturally mapped to AArch64 System register FAR_EL2[31:0].

AArch32 System register HDFAR[31:0] is architecturally mapped to AArch32 System register DFAR[31:0] (S) when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HDFAR is a 32-bit register.

Field descriptions

The HDFAR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VA of faulting address of synchronous Data Abort exception taken to Hyp mode</td>
</tr>
</tbody>
</table>

Accessing the HDFAR

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

If PSTATE.EL == EL0 then

UNDEFINED;

elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);

else

UNDEFINED;

elsif PSTATE.EL == EL2 then

```
return HDFAR;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return HDFAR;
  end

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
  elsif PSTATE.EL == EL2 then
    HDFAR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    HDFAR = R[t];

G8.2.67  HIFAR, Hyp Instruction Fault Address Register

The HIFAR characteristics are:

**Purpose**

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception that is taken to Hyp mode.

**Configurations**

AArch32 System register HIFAR[31:0] is architecturally mapped to AArch64 System register FAR_EL2[63:32].

AArch32 System register HIFAR[31:0] is architecturally mapped to AArch32 System register IFAR[31:0] (S) when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HIFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

HIFAR is a 32-bit register.

**Field descriptions**

The HIFAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode</td>
</tr>
</tbody>
</table>

**Bits [31:0]**

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

This field resets to an architecturally UNKNOWN value.

**Accessing the HIFAR**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE_EL == EL2 then
  VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode
31 0
```
return HIFAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HIFAR;

MCR{<c>}{<q>}{#}<opc1> <Rt> <CRn> {<CRm>{(#)<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HIFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HIFAR = R[t];
HMAIR0, Hyp Memory Attribute Indirection Register 0

The HMAIR0 characteristics are:

Purpose

Along with HMAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:
- When AttrIndx[2] is 0, HMAIR0 is used.
- When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR0[31:0] is architecturally mapped to AArch64 System register MAIR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR0 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR0 is a 32-bit register.

Field descriptions

The HMAIR0 bit assignments are:

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>24</th>
<th>23</th>
<th>16</th>
<th>15</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attr3</td>
<td>Attr2</td>
<td>Attr1</td>
<td>Attr0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:
- AttrIndx[2:0] gives the value of <n> in Attr<n>.
- AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

<table>
<thead>
<tr>
<th>Attr<n>[7:4]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.</td>
</tr>
<tr>
<td>0b00RW, RW not0b00</td>
<td>Normal memory, Outer Write-Through Transient.</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Outer Non-cacheable.</td>
</tr>
<tr>
<td>0b01RW, RW not0b00</td>
<td>Normal memory, Outer Write-Back Transient.</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Outer Write-Through Non-transient.</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Outer Write-Back Non-transient.</td>
</tr>
</tbody>
</table>
R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

<table>
<thead>
<tr>
<th>Attr<n>[3:0]</th>
<th>Meaning when Attr<n>[7:4] is 0b0000</th>
<th>Meaning when Attr<n>[7:4] is not 0b0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device-nGnRnE memory</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Device-nGnRE memory</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b1000</td>
<td>Device-nGRE memory</td>
<td>Normal memory, Inner Write-Through Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b10RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b1100</td>
<td>Device-GRE memory</td>
<td>Normal memory, Inner Write-Back Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b11RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the HMAIR0

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\langle c\rangle\langle q\rangle , \langle \#\rangle \langle opc1\rangle , \langle Rt\rangle , \langle CRn\rangle , \langle CRm\rangle , \langle \#\rangle \langle opc2\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T10 == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x83);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T10 == '1'
 then
 AArch32.TakeHypTrapException(0x83);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 return HMAIR0;
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HMAIR0;
MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR0 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR0 = R[t];
G8.2.69 HMAIR1, Hyp Memory Attribute Indirection Register 1

The HMAIR1 characteristics are:

Purpose

Along with HMAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:
- When AttrIndx[2] is 0, HMAIR0 is used.
- When AttrIndx[2] is 1, HMAIR1 is used.

Configurations

AArch32 System register HMAIR1[31:0] is architecturally mapped to AArch64 System register MAIR_EL2[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR1 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HMAIR1 is a 32-bit register.

Field descriptions

The HMAIR1 bit assignments are:

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Attr7</td>
</tr>
<tr>
<td>24-23</td>
<td>Attr6</td>
</tr>
<tr>
<td>16-15</td>
<td>Attr5</td>
</tr>
<tr>
<td>8-7</td>
<td>Attr4</td>
</tr>
</tbody>
</table>

Attr<\(n\)>, bits \([8(n-4)+7:8(n-4)]\), for \(n = 4 \text{ to } 7\)

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:
- AttrIndx[2:0] gives the value of \(<n\> in Attr<\(n\)>.
- AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

<table>
<thead>
<tr>
<th>Attr<(n)>[7:4]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Device memory. See encoding of Attr<(n)>[3:0] for the type of Device memory.</td>
</tr>
<tr>
<td>000RW, RW not0b00</td>
<td>Normal memory, Outer Write-Through Transient.</td>
</tr>
<tr>
<td>00100</td>
<td>Normal memory, Outer Non-cacheable.</td>
</tr>
<tr>
<td>001RW, RW not0b00</td>
<td>Normal memory, Outer Write-Back Transient.</td>
</tr>
<tr>
<td>010RW</td>
<td>Normal memory, Outer Write-Through Non-transient.</td>
</tr>
<tr>
<td>011RW</td>
<td>Normal memory, Outer Write-Back Non-transient.</td>
</tr>
</tbody>
</table>
R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.
The meaning of bits [3:0] depends on the value of bits [7:4]:

<table>
<thead>
<tr>
<th>Attr<n>[3:0]</th>
<th>Meaning when Attr<n>[7:4] is 0b0000</th>
<th>Meaning when Attr<n>[7:4] is not 0b0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device-nGnRnE memory</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Device-nGnRE memory</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b1000</td>
<td>Device-nGRE memory</td>
<td>Normal memory, Inner Write-Through Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b10RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b1100</td>
<td>Device-GRE memory</td>
<td>Normal memory, Inner Write-Back Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b11RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.
The R and W bits in some Attr<n> fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the HMAIR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC(}<c>|<q>|<coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHyp TrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HMAIR1;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HMAIR1;
MCR<coproc>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HMAIR1 = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HMAIR1 = R[t];

G8.2.70 HPFAR, Hyp IPA Fault Address Register

The HPFAR characteristics are:

Purpose

Holds the faulting IPA for some aborts on a stage 2 translation taken to Hyp mode.

Configurations

AArch32 System register HPFAR[31:0] is architecturally mapped to AArch64 System register HPFAR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HPFAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HPFAR is a 32-bit register.

Field descriptions

The HPFAR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPA[39:12]</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Execution in any Non-secure mode other than Hyp mode makes this register UNKNOWN.

FIPA[39:12], bits [31:4]

Bits [39:12] of the faulting intermediate physical address.
This field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

Accessing the HPFAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif;
elsif PSTATE.EL == EL2 then
 return HPFAR;
elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then
 UNDEFINED;
else
 return HPFAR;

MCR<coproc>,<Rt>,<CRn>,<CRm>,<opc1>,<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 HPFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HPFAR = R[t];
 endif
G8.2.71 HRMR, Hyp Reset Management Register

The HRMR characteristics are:

Purpose

If EL2 is the highest implemented Exception level and this register is implemented:

- A write to the register at EL2 can request a Warm reset.
- If EL2 can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

Configurations

AArch32 System register HRMR[31:0] is architecturally mapped to AArch64 System register RMR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HRMR are UNDEFINED.

Only implemented if EL2 is the highest implemented Exception level. In this case:

- If EL2 can use AArch32 and AArch64 then this register must be implemented.
- If EL2 cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Attributes

HRMR is a 32-bit register.

Field descriptions

The HRMR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>AA64</td>
</tr>
</tbody>
</table>

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When EL2 can use AArch64, determines which Execution state the PE boots into after a Warm reset:

- 0b0 AArch32.
- 0b1 AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If EL2 cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.
Accessing the HRMR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} \; \langle\text{coproc}\rangle, \{#\}\langle\text{opc1}\rangle, \langle\text{Rt}\rangle, \langle\text{CRn}\rangle, \langle\text{CRm}\rangle\{, \{#\}\langle\text{opc2}\rangle\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 return HRMR;
else
 UNDEFINED;

\[
\text{MCR}\{c\}\{q\} \; \langle\text{coproc}\rangle, \{#\}\langle\text{opc1}\rangle, \langle\text{Rt}\rangle, \langle\text{CRn}\rangle, \langle\text{CRm}\rangle\{, \{#\}\langle\text{opc2}\rangle\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && IsHighestEL(EL2) && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif PSTATE.EL == EL2 && IsHighestEL(EL2) then
 HRMR = R[t];
else
 UNDEFINED;
G8.2.72 HSCTLR, Hyp System Control Register

The HSCTLR characteristics are:

Purpose

Provides top level control of the system operation in Hyp mode.

Configurations

AArch32 System register HSCTLR[31:0] is architecturally mapped to AArch64 System register SCTLR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSCTLR are **UNDEFINED**.

If EL2 is not implemented, this register is **RES0** from EL3.

Attributes

HSCTLR is a 32-bit register.

Field descriptions

The HSCTLR bit assignments are:

![HSCTLR Register Diagram]

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

- **0b0**: PSTATE.SSBS is set to 0 on an exception to Hyp mode.
- **0b1**: PSTATE.SSBS is set to 1 on an exception to Hyp mode.

In a system where the PE resets into EL2, this field resets to an **IMPLEMENTATION DEFINED** value.

Otherwise:

Reserved, **RES0**.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

- **0b0**: Exceptions, including reset, taken to A32 state.
- **0b1**: Exceptions, including reset, taken to T32 state.

In a system where the PE resets into EL2, this field resets to an architecturally **UNKNOWN** value.
Bits [29:28]
Reserved, RES1.

Bits [27:26]
Reserved, RES0.

EE, bit [25]
The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2 translation regime, and the endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode. Stage 1 translation table walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0 translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1 translation table walks in the EL2 translation regime, and stage 2 translation table walks in the PL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]
Reserved, RES0.

Bits [23:22]
Reserved, RES1.

Bits [21:20]
Reserved, RES0.

WXN, bit [19]
Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions that are writable to be treated as XN. The possible values of this bit are:

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 translation regime is forced to XN for accesses from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]
Reserved, RES1.

Bit [17]
Reserved, RES0.

Bit [16]
Reserved, RES1.

Bits [15:13]
Reserved, RES0.
I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

\[0b0 \]
All instruction access to Normal memory from EL2 are Non-cacheable for all levels of instruction and unified cache.
If the value of HSCTRL.R.M is 0, instruction accesses from stage 1 of the EL2 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

\[0b1 \]
All instruction access to Normal memory from EL2 can be cached at all levels of instruction and unified cache.
If the value of HSCTRL.R.M is 0, instruction accesses from stage 1 of the EL2 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the PL1&0 translation regime.

In a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

\[0b0 \]
SETEND instruction execution is enabled at EL2.

\[0b1 \]
SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

\[0b0 \]
All IT instruction functionality is enabled at EL2.

\[0b1 \]
Any attempt at EL2 to execute any of the following is UNDEFINED:

- All encodings of the IT instruction with hw1[3:0]=1000.
- All encodings of the subsequent instruction with the following values for hw1:
 - \[11xxxxxxxxxxxxxx \]: All 32-bit instructions, and the 16-bit instructions B, UDF, SVC, LDM, and STM.
 - \[1011xxxxxxxxxxxxxx \]: All instructions in Miscellaneous 16-bit instructions on page F3-4155.
 - \[10100xxxxxxxxxxx \]: ADD Rd, PC, #imm
 - \[01001xxxxxxxxxxx \]: LDR Rd, [PC, #imm]
 - \[0100x1xxxxxxx111111 \]: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.
 - \[010001xx1xxxx1111 \]: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block.

It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

- A 16-bit instruction, that can only be followed by another 16-bit instruction.
- The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is treated as a 16-bit instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control by an instruction in an IT block on page E1-3998.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this bit is RAZ/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [6]
Reserved, RES0.

CP15BEN, bit [5]
System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from EL2:

0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not implemented then this bit is RAZ/WI.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

LSMAOE, bit [4]
When FEAT_LSMAOC is implemented:
Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL2, A32 and T32 Load Multiple and Store Multiple can have an interrupt taken during the sequence memory accesses, and the memory accesses are not required to be ordered.
0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple at EL2 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to 1.

Otherwise:
Reserved, RES1.

nTLSMD, bit [3]
When FEAT_LSMAOC is implemented:
No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are trapped and generate a stage 1 Alignment fault.
0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL2 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.

In a system where the PE resets into EL2, this field resets to 1.

Otherwise:
Reserved, RES1.
C, bit [2]
Cacheability control, for data accesses at EL2:

0b0 All data access to Normal memory from EL2, and all accesses to the EL2 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to the EL2 translation tables, can be cached at all levels of data and unified cache.

This bit has no effect on the PL1&0 translation regime.

In a system where the PE resets into EL2, this field resets to 0.

A, bit [1]
Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.

All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element or data elements being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

In a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]
MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL2 stage 1 address translation enabled.

In a system where the PE resets into EL2, this field resets to 0.

Accessing the HSCTLR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} \coproc \{\#\op1\}, \Rt, \CRn, \CRm\{\#\op2\}
\]

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    return HSCTLR;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        UNDEFINED;
    endif
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>
else
 return HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
G8.2.73 HSR, Hyp Syndrome Register

The HSR characteristics are:

Purpose

Holds syndrome information for an exception taken to Hyp mode.

Configurations

AArch32 System register HSR[31:0] is architecturally mapped to AArch64 System register ESR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSR is a 32-bit register.

Field descriptions

The HSR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>26 25 24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>IL</td>
<td>ISS</td>
</tr>
</tbody>
</table>

Execution in any Non-secure PE mode other than Hyp mode makes this register UNKNOWN.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of HSR is UNKNOWN. The value written to HSR must be consistent with a value that could be created as a result of an exception from the same Exception level that generated the exception as a result of a situation that is not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

Possible values of this field are:

EC == 0b0000000

Unknown reason.

See ISS encoding for exceptions with an unknown reason.

EC == 0b0000001

Trapped WFI or WFE instruction execution.

Conditional WFE and WFI instructions that fail their condition code check do not cause an exception.

See ISS encoding for exception from a WFI or WFE instruction.

EC == 0b0000011

Trapped MCR or MRC access with (coproc==0b1111) that is not reported using EC 0b0000000.

See ISS encoding for exception from an MCR or MRC access.

EC == 0b0000100

Trapped MCRR or MRRC access with (coproc==0b1111) that is not reported using EC 0b0000000.

See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b000101

Trapped MCR or MRC access with (coproc==0b1110).
See ISS encoding for exception from an MCR or MRC access.

EC == 0b000110
Trapped LDC or STC access.
The only architected uses of these instructions are:
• An STC to write data to memory from DBGDTRRXint.
• An LDC to read data from memory to DBGDTRTXint.
See ISS encoding for exception from an LDC or STC instruction.

EC == 0b000111
Access to Advanced SIMD or floating-point functionality trapped by a HCPTR. {TASE, TCP10} control.
Excludes exceptions generated because Advanced SIMD and floating-point are not implemented. These are reported with EC value 0b000000.
See ISS encoding for exception from an access to SIMD or floating-point functionality, resulting from HCPTR.

EC == 0b001000
Trapped VMRS access, from ID group trap, that is not reported using EC 0b000111.
See ISS encoding for exception from an MCR or MRC access.

EC == 0b001100
Trapped MRRC access with (coproc==0b1110).
See ISS encoding for exception from an MCRR or MRRC access.

EC == 0b001110
Illegal exception return to AArch32 state.
See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b010001
Exception on SVC instruction execution in AArch32 state routed to EL2.
See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010010
HVC instruction execution in AArch32 state, when HVC is not disabled.
See ISS encoding for exception from HVC or SVC instruction execution.

EC == 0b010011
Trapped execution of SMC instruction in AArch32 state.
See ISS encoding for exception from SMC instruction execution.

EC == 0b100000
Prefetch Abort from a lower Exception level.
See ISS encoding for exception from a Prefetch Abort.

EC == 0b100001
Prefetch Abort taken without a change in Exception level.
See ISS encoding for exception from a Prefetch Abort.

EC == 0b100010
PC alignment fault exception.
See ISS encoding for exception from an Illegal state or PC alignment fault.

EC == 0b100100
Data Abort from a lower Exception level.
See ISS encoding for exception from a Data Abort.

EC == 0b100101
Data Abort taken without a change in Exception level.
See ISS encoding for exception from a Data Abort.
All other EC values are reserved by Arm, and:

- Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous exceptions.
- Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is constrained unpredictable.

This field resets to an architecturally unknown value.

IL, bit [25]

Instruction length bit. Indicates the size of the instruction that has been trapped to Hyp mode. When this bit is valid, possible values of this bit are:

- 0b0 16-bit instruction trapped.
- 0b1 32-bit instruction trapped.

This field is res1 and not valid for the following cases:

- When the EC field is 0b000000, indicating an exception with an unknown reason.
- Prefetch Aborts.
- Data Aborts for which the HSR.ISS.ISV field is 0.
- When the EC value is 0b001110, indicating an Illegal state exception.

Note

This is a change from the behavior in Armv7, where the IL field is UNK/SBZP for the corresponding cases.

The IL field is not valid and is unknown on an exception from a PC alignment fault.

This field resets to an architecturally unknown value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception class. However, in practice, some ISS encodings are used for more than one Exception class.

The following subsections describe each ISS format.

ISS encoding for exceptions with an unknown reason

<table>
<thead>
<tr>
<th>24</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [24:0]

Reserved, RES0.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that are generated in the following situations:

- The attempted execution of an instruction bit pattern that has no allocated instruction or is not accessible in the current PE mode in the current Security state, including:
 - A read access using a System register encoding pattern that is not allocated for reads or that does not permit reads in the current PE mode and Security state.
 - A write access using a System register encoding pattern that is not allocated for writes or that does not permit writes in the current PE mode and Security state.
— Instruction encodings that are unallocated.
— Instruction encodings for instructions not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug state.
• The attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted access to Advanced SIMD or floating-point functionality under conditions where that access would be permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.
• An exception generated because of the value of one of the SCTLR.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:
 — An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE.
 — An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD.
 — An HLT instruction when disabled by EDSCR.HDE.
• An HVC instruction when disabled by HCR.HCD, SCR.HCE, or SCR_EL3.HCE. An SMC instruction when disabled by SCR.SCD or SCR_EL3.SMD. An HLT instruction when disabled by EDSCR.HDE.
• An exception generated because of the attempted execution of an MSR (Banked register) or MRS (Banked register) instruction that would access a Banked register that is not accessible from the Security state and PE mode at which the instruction was executed.

—— Note ———
An exception is generated only if the CONSTRAINED UNPREDICTABLE behavior of the instruction is that it is UNDEFINED, see MSR (banked register) and MRS (banked register) on page K1-7963.

————

• Attempted execution, in Debug state, of:
 — A DCPS1 instruction in Non-secure state from EL0 when EL2 is using AArch32 and the value of HCR.TGE is 1.
 — A DCPS2 instruction at EL1 or EL0 when EL2 is not implemented, or when EL3 is using AArch32 and the value of SCR.NS is 0, or when EL3 is using AArch64 and the value of SCR_EL3.NS is 0.
 — A DCPS3 instruction when EL3 is not implemented, or when the value of EDSCR.SDD is 1.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an instruction that is configured to trap to EL3.

Undefined Instruction exception, when the value of HCR.TGE is 1 on page G1-5759 describes the configuration settings for a trap that returns an HSR.EC value of 0b000000.
ISS encoding for exception from a WFI or WFE instruction

24 23 20 19 1 0

<table>
<thead>
<tr>
<th>24 23</th>
<th>20 19</th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>RES0</td>
<td>TI</td>
</tr>
</tbody>
</table>

CV, bit [24]
Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For more information, see the description of the COND field.
This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]
The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:

• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.
This field resets to an architecturally UNKNOWN value.

Bits [19:1]
Reserved, RES0.

TI, bit [0]
Trapped instruction. Possible values of this bit are:
0b0 WFI trapped.
0b1 WFE trapped.
This field resets to an architecturally UNKNOWN value.

Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions on page G1-5837 describes the configuration settings for this trap.
ISS encoding for exception from an MCR or MRC access

CV, bit [24]
Condition code valid. Possible values of this bit are:
0b0 The COND field is not valid.
0b1 The COND field is valid.
When an A32 instruction is trapped, CV is set to 1.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For more information, see the description of the COND field.
This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]
The condition code for the trapped instruction.
When an A32 instruction is trapped, CV is set to 1 and:
• If the instruction is conditional, COND is set to the condition code field value from the instruction.
• If the instruction is unconditional, COND is set to 0b1110.
A conditional A32 instruction that is known to pass its condition code check can be presented either:
• With COND set to 0b1110, the value for unconditional.
• With the COND value held in the instruction.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
• CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.
This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]
The Opc2 value from the issued instruction.
For a trapped VMRS access, holds the value 0b000.
This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]
The Opc1 value from the issued instruction.
For a trapped VMRS access, holds the value 0b111.
This field resets to an architecturally UNKNOWN value.
CRn, bits [13:10]
The CRn value from the issued instruction.
For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.
This field resets to an architecturally UNKNOWN value.

Bit [9]
Reserved, RES0.

Rt, bits [8:5]
The Rt value from the issued instruction, the general-purpose register used for the transfer.
This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]
The CRm value from the issued instruction.
For a trapped VMRS access, holds the value \(0b0000\).
This field resets to an architecturally UNKNOWN value.

Direction, bit [0]
Indicates the direction of the trapped instruction. The possible values of this bit are:
\[0b0\] Write to System register space. MCR instruction.
\[0b1\] Read from System register space. MRC or VMRS instruction.
This field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value \(0b000011\):

- Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the ID registers on page G1-5834.
- Traps to Hyp mode of Non-secure EL0 and EL1 accesses to lockdown, DMA, and TCM operations on page G1-5833.
- Traps to Hyp mode of Non-secure EL1 execution of cache maintenance instructions on page G1-5832.
- Traps to Hyp mode of Non-secure EL1 execution of TLB maintenance instructions on page G1-5831.
- Traps to Hyp mode of Non-secure EL1 accesses to the Auxiliary Control Register on page G1-5832.
- Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers on page G1-5845.
- Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers on page G1-5837.
- Traps to Hyp mode of Non-secure EL1 accesses to the CPACR on page G1-5839.
- Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers on page G1-5830.
- General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc == 0b1111) encoding space on page G1-5841.

The following sections describe configuration settings for traps that are reported using EC value \(0b000101\):

- ID group 0, Primary device identification registers on page G1-5835.
- Traps to Hyp mode of Non-secure System register accesses to trace registers on page G1-5840.
- Trapping Non-secure System register accesses to Debug ROM registers on page G1-5843.
- Trapping Non-secure System register accesses to powerdown debug registers on page G1-5843.
- Trapping general Non-secure System register accesses to debug registers on page G1-5843.
The following sections describes configuration settings for traps that are reported using EC value 0b001000:

- **ID group 0, Primary device identification registers** on page G1-5835.
- **ID group 3, Detailed feature identification registers** on page G1-5836.

ISS encoding for exception from an MCRR or MRRC access

![ISS encoding diagram]

CV, bit [24]

Condition code valid. Possible values of this bit are:

- 0b0 : The COND field is not valid.
- 0b1 : The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For more information, see the description of the COND field.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

- If the instruction is conditional, COND is set to the condition code field value from the instruction.
- If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

- With COND set to 0b1110, the value for unconditional.
- With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

- CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
- CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [15:14]

Reserved, RES0.
Rt2, bits [13:10]
The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. This field resets to an architecturally UNKNOWN value.

Bit [9]
Reserved, RES0.

Rt, bits [8:5]
The Rt value from the issued instruction, the first general-purpose register used for the transfer. This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]
The CRm value from the issued instruction. This field resets to an architecturally UNKNOWN value.

Direction, bit [0]
Indicates the direction of the trapped instruction. The possible values of this bit are:
- 0b0 Write to System register space. MCRR instruction.
- 0b1 Read from System register space. MRRC instruction.
This field resets to an architecturally UNKNOWN value.

The following sections describe configuration settings for traps that are reported using EC value 0b000100:

• **Traps to Hyp mode of Non-secure EL1 accesses to virtual memory control registers** on page G1-5830.
• **Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Performance Monitors registers** on page G1-5845.
• **Traps to Hyp mode of Non-secure EL0 and EL1 accesses to Activity Monitors registers** on page G1-5837.
• **Traps to Hyp mode of Non-secure EL0 and EL1 accesses to the Generic Timer registers** on page G1-5844.
• **General trapping to Hyp mode of Non-secure EL0 and EL1 accesses to System registers in the (coproc == 0b1111) encoding space** on page G1-5841.

The following sections describe configuration settings for traps that are reported using EC value 0b001100:

• **Traps to Hyp mode of Non-secure System register accesses to trace registers** on page G1-5840.
• **Trapping Non-secure System register accesses to Debug ROM registers** on page G1-5843.

ISS encoding for exception from an LDC or STC instruction

<table>
<thead>
<tr>
<th></th>
<th>COND</th>
<th>imm8</th>
<th>RES0</th>
<th>Rn</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>23</td>
<td>20</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV, bit [24]
Condition code valid. Possible values of this bit are:
- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.
When an A32 instruction is trapped, CV is set to 1.
When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For more information, see the description of the COND field.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

- If the instruction is conditional, COND is set to the condition code field value from the instruction.
- If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

- With COND set to 0b1110, the value for unconditional.
- With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

- CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
- CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:9]

Reserved, RES0.

Rn, bits [8:5]

The Rn value from the issued instruction. Valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction.

When AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

- 0b0 Subtract offset.
- 0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

- 0b000 Immediate unindexed.
- 0b001 Immediate post-indexed.
- 0b010 Immediate offset.
- 0b011 Immediate pre-indexed.
0b100 Literal unindexed.
 LDC instruction in A32 instruction set only.
 For a trapped STC instruction or a trapped T32 LDC instruction this encoding is
 reserved.

0b110 Literal offset.
 LDC instruction only.
 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is
that behavior is CONSTRAINED UNPREDICTABLE.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits \{P, W\} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

Trapping general Non-secure System register accesses to debug registers

on page G1-5843 describes the
configuration settings for the trap that is reported using EC value 0b000010.

ISS encoding for exception from an access to SIMD or floating-point functionality, resulting from HCPTR

<table>
<thead>
<tr>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND</td>
<td>RES0</td>
<td>TA</td>
<td>coproc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV

Condition code valid. Possible values of this bit are:

0b0 The COND field is not valid.
0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to
0. For more information, see the description of the COND field.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

- If the instruction is conditional, COND is set to the condition code field value from the
 instruction.
- If the instruction is unconditional, COND is set to 0b1110.
A conditional A32 instruction that is known to pass its condition code check can be presented either:
 • With COND set to 0b1110, the value for unconditional.
 • With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 • CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
 • CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:6]

Reserved, RES0.

TA, bit [5]

Indicates trapped use of Advanced SIMD functionality. The possible values of this bit are:

- 0b0 Exception was not caused by trapped use of Advanced SIMD functionality.
- 0b1 Exception was caused by trapped use of Advanced SIMD functionality.

Any use of an Advanced SIMD instruction that is not also a floating-point instruction that is trapped to Hyp mode because of a trap configured in the HCPTR sets this bit to 1.

For a list of these instructions, see Controls of Advanced SIMD operation that do not apply to floating-point operation on page E1-4006.

This field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RES0.

coproc, bits [3:0]

When the HSR.TA field returns the value 1, this field returns the value 0b1010. Otherwise, this field is RES0.

This field resets to an architecturally UNKNOWN value.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

- General trapping to Hyp mode of Non-secure accesses to the SIMD and floating-point registers on page G1-5838.
- Traps to Hyp mode of Non-secure accesses to Advanced SIMD functionality on page G1-5839.

ISS encoding for exception from HVC or SVC instruction execution

<table>
<thead>
<tr>
<th>24</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>imm16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.
For an HVC instruction, this is the value of the imm16 field of the issued instruction.

For an SVC instruction:

- If the instruction is unconditional, then:
 - For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
 - For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
- For the T32 instruction, this field is zero-extended from the imm8 field of the instruction. For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.
- If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

The HVC instruction is unconditional, and a conditional SVC instruction generates an exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not require conditionality information.

Supervisor Call exception, when the value of HCR.TGE is 1 on page G1-5759 describes the configuration settings for the trap reported with EC value 0b010001.

ISS encoding for exception from SMC instruction execution

```
   24 23 20 19 18 0
   |   |   |   |
   | CV | COND | RES0 |
   | CCKNOWNPASS |
```

CV, bit [24]
Condition code valid. Possible values of this bit are:

- 0b0 The COND field is not valid.
- 0b1 The COND field is valid.

When an A32 instruction is trapped, CV is set to 1.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. For more information, see the description of the COND field.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.
This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]
The condition code for the trapped instruction.

When an A32 instruction is trapped, CV is set to 1 and:

- If the instruction is conditional, COND is set to the condition code field value from the instruction.
- If the instruction is unconditional, COND is set to 0b1110.

A conditional A32 instruction that is known to pass its condition code check can be presented either:

- With COND set to 0b1110, the value for unconditional.
- With the COND value held in the instruction.

When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:

- CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to determine the condition, if any, of the T32 instruction.
• CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional instruction only if the instruction passes its condition code check, these definitions mean that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

- 0b0 The instruction was unconditional, or was conditional and passed its condition code check.
- 0b1 The instruction was conditional, and might have failed its condition code check.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

Traps to Hyp mode of Non-secure EL1 execution of SMC instructions on page G1-5834 describes the configuration settings for this trap, for instructions executed in Non-secure EL1.

ISS encoding for exception from a Prefetch Abort

```
<table>
<thead>
<tr>
<th>24</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td>IFSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Bits [24:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

- 0b0 HIFAR is valid.
- 0b1 HIFAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.
Bit [8]
Reserved, RES0.

S1PTW, bit [7]
For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1
translation table walk:
0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.
For any abort other than a stage 2 fault this bit is RES0.
This field resets to an architecturally UNKNOWN value.

Bit [6]
Reserved, RES0.

IFSC, bits [5:0]
Instruction Fault Status Code. Possible values of this field are:
0b000000 Address size fault in translation table base register.
0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on translation table walk.
0b010101 Synchronous External abort on translation table walk, level 1.
0b010110 Synchronous External abort on translation table walk, level 2.
0b010111 Synchronous External abort on translation table walk, level 3.
0b011000 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory
access, not on translation table walk.
0b011101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory
access on translation table walk, level 1.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory
access on translation table walk, level 2.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory
access on translation table walk, level 3.
0b100010 Debug exception.
0b110000 TLB conflict abort.
All other values are reserved.
For more information about the lookup level associated with a fault, see The level associated with
MMU faults on a Long-descriptor translation table lookup on page G5-6072.
If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a
stage 1 translation walk.
This field resets to an architecturally \textit{UNKNOWN} value.

The following sections describe cases where Prefetch Abort exceptions can be routed to Hyp mode, generating exceptions that are reported in the HSR with EC value $0b100000$:

- \textit{Abort exceptions, when the value of HCR.TGE is 1} on page G1-5759.
- \textit{Routing debug exceptions to EL2 using AArch32} on page G1-5760.

\textbf{ISS encoding for exception from an Illegal state or PC alignment fault}

| 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 0 |
|----|
| RES0 |

\textbf{Bits [24:0]}

Reserved, RES0.

For more information about the Illegal state exception, see:

- \textit{Illegal changes to PSTATE.M} on page G1-5739.
- \textit{Illegal return events from AArch32 state} on page G1-5766.
- \textit{Legal returns that set PSTATE.IL to 1} on page G1-5768.
- \textit{The Illegal Execution state exception} on page G1-5768.

For more information about the PC alignment fault exception, see \textit{Branching to an unaligned PC} on page K1-7942.

\textbf{ISS encoding for exception from a Data Abort}

| 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 0 |
|----|
| SAS | SRT | AET | DFSC | |

\textbf{ISV, bit [24]}

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

\begin{itemize}
 \item $0b0$ No valid instruction syndrome. ISS[23:14] are RES0.
 \item $0b1$ ISS[23:14] hold a valid instruction syndrome.
\end{itemize}

This bit is 0 for all faults except Data Aborts generated by stage 2 address translations for which all the following apply to the instruction that generated the Data Abort exception:

- The instruction is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAP, LDRHT, LDRSB, LDRSBT, LDRB, LDAB, LDRBT, STR, STL, STRT, STRH, STSL, STRT, STRH, STLH, STRHT, STRT, STL, or STRBT instruction.
- The instruction is not performing register writeback.
- The instruction is not using the PC as a source or destination register.
For these cases, ISV is \texttt{UNKNOWN} if the exception was generated in Debug state in memory access mode, as described in \textit{Data Aborts in Memory access mode} on page H4-7084, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

\textbf{Note}

In the A32 instruction set, LDR*T and STR*T instructions always perform register writeback and therefore never return a valid instruction syndrome.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

ISV is set to 0 on a stage 2 abort on a stage 1 translation table walk.

When the RAS Extension is not implemented, it is \texttt{IMPLEMENTATION DEFINED} whether ISV is set to 1 or 0 on a synchronous External abort on a stage 2 translation table walk.

This field resets to an architecturally \texttt{UNKNOWN} value.

\textbf{SAS, bits [23:22]}

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

\begin{verbatim}
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword
\end{verbatim}

This field is \texttt{UNKNOWN} when the value of ISV is \texttt{UNKNOWN}.

This field is \texttt{RES0} when the value of ISV is 0.

This field resets to an architecturally \texttt{UNKNOWN} value.

\textbf{SSE, bit [21]}

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data item must be sign extended. For these cases, the possible values of this bit are:

\begin{verbatim}
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.
\end{verbatim}

For all other operations this bit is 0.

This field is \texttt{UNKNOWN} when the value of ISV is \texttt{UNKNOWN}.

This field is \texttt{RES0} when the value of ISV is 0.

This field resets to an architecturally \texttt{UNKNOWN} value.

\textbf{Bit [20]}

Reserved, \texttt{RES0}.

\textbf{SRT, bits [19:16]}

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction.

This field is \texttt{UNKNOWN} when the value of ISV is \texttt{UNKNOWN}.

This field is \texttt{RES0} when the value of ISV is 0.

This field resets to an architecturally \texttt{UNKNOWN} value.

\textbf{Bit [15]}

Reserved, \texttt{RES0}.

\textbf{AR, bit [14]}

Acquire/Release. When ISV is 1, the possible values of this bit are:

\begin{verbatim}
0b0 Instruction did not have acquire/release semantics.
\end{verbatim}
Instruction did have acquire/release semantics.
This field is \textsc{unknown} when the value of ISV is \textsc{unknown}.
This field is \textsc{res0} when the value of ISV is 0.
This field resets to an architecturally \textsc{unknown} value.

Bits [13:12]

Reserved, \textsc{res0}.

AET, bits [11:10]

\textit{When FEAT_RAS is implemented:}

Asynchronous Error Type. When DFSC is \texttt{0b010001}, describes the PE error state after taking the SError interrupt exception. The possible values of this field are:

- \texttt{0b00}: Uncontainable (UC).
- \texttt{0b01}: Unrecoverable state (UEU).
- \texttt{0b10}: Restartable state (UEO).
- \texttt{0b11}: Recoverable state (UER).

On a synchronous Data Abort, this field is \textsc{res0}.

In the event of multiple errors taken as a single SError interrupt exception, the overall PE error state is reported.

\textbf{Note}

Software can use this information to determine what recovery might be possible. The recovery software must also examine any implemented fault records to determine the location and extent of the error.

\textbf{Note}

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally \textsc{unknown} value.

\textit{Otherwise:}

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

- \texttt{0b0}: HDFAR is valid.
- \texttt{0b1}: HDFAR is not valid, and holds an unknown value.

When the RAS Extension is not implemented, this field is valid only if DFSC is \texttt{0b010000}. It is \textsc{res0} for all other aborts.

When the RAS Extension is implemented:

- If DFSC is \texttt{0b010000}, this field is valid.
- If DFSC is \texttt{0b010001}, this bit forms part of the AET field, becoming AET[0].
- This field is \textsc{res0} for all other aborts.

\textbf{Note}

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally \textsc{unknown} value.
EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. For a synchronous fault, identifies fault that comes from a cache maintenance or address translation instruction. For synchronous faults, the possible values of this bit are:

0b0 Fault not generated by a cache maintenance or address translation instruction.
0b1 Fault generated by a cache maintenance or address translation instruction.

For an asynchronous Data Abort exception, this bit is 0.

This field resets to an architecturally UNKNOWN value.

SIPTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table walk:

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage 1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by a write instruction or a read instruction. The possible values of this bit are:

0b0 Abort caused by a read instruction.
0b1 Abort caused by a write instruction.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

On an asynchronous Data Abort:

- When the RAS Extension is not implemented, this bit is UNKNOWN.
- When the RAS Extension is implemented, this bit is RES0.

Note

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

0b000000 Address size fault in translation table base register.
0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not on translation table walk.
0b010001 Asynchronous SError interrupt.
0b010101 Synchronous External abort on translation table walk, level 1.
0b010110 Synchronous External abort on translation table walk, level 2.
0b010111 Synchronous External abort on translation table walk, level 3.
0b011100 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
0b011101 When FEAT_RAS is not implemented Asynchronous SError interrupt, from a parity or ECC error on memory access.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 1.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 2.
0b100001 Alignment fault.
0b100010 Debug exception.
0b110000 TLB conflict abort.
0b110100 IMPLEMENTATION DEFINED fault (Lockdown).
0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive access).

All other values are reserved.

For more information about the lookup level associated with a fault, see The level associated with MMU faults on a Long-descriptor translation table lookup on page G5-6072.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation walk.

This field resets to an architecturally UNKNOWN value.

The following describe cases where Data Abort exceptions can be routed to Hyp mode, generating exceptions that are reported in the HSR with EC value 0b100100:

- Abort exceptions, when the value of HCR.TGE is 1 on page G1-5759.
- Routing debug exceptions to EL2 using AArch32 on page G1-5760.

The following describe cases that can cause a Data Abort exception that is taken to Hyp mode, and reported in the HSR with EC value of 0b100000 or 0b100100:

- Hyp mode control of Non-secure access permissions on page G5-6017.
- Memory fault reporting in Hyp mode on page G5-6076.

Accessing the HSR

Accesses to this register use the following encodings in the System instruction encoding space:
\[\text{MRC}(<c>)(<q>) <\text{coproc}>, (#)<\text{opc1}>, <Rt>, <CRn>, (CRm), (#)(opc2) \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 return HSR;
\]

\[\text{MCR}(<c>)(<q>) <\text{coproc}>, (#)<\text{opc1}>, <Rt>, <CRn>, (CRm), (#)(opc2) \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 HSR = R[t];
G8.2.74 HSTR, Hyp System Trap Register

The HSTR characteristics are:

Purpose

Controls trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to System registers in the coproc == 0b1111 encoding space:

- By the CRn value used to access the register using MCR or MRC instruction.
- By the CRm value used to access the register using MCRR or MRRC instruction.

Configurations

AArch32 System register HSTR[31:0] is architecturally mapped to AArch64 System register HSTR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSTR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HSTR is a 32-bit register.

Field descriptions

The HSTR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>T15</td>
<td>T14</td>
<td>T13</td>
<td>T12</td>
<td>T11</td>
<td>T10</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

T<n>, bit [n], for n = 0 to 15

Fields T14 and T4 are RES0.

The remaining fields control whether Non-secure EL0 and EL1 accesses, using MCR, MRC, MCRR, and MRRC instructions, to the System registers in the coproc == 0b1111 encoding space are trapped to Hyp mode:

- **0b0** This control has no effect on Non-secure EL0 or EL1 accesses to System registers.
- **0b1** Any Non-secure EL1 MCR or MRC access with coproc == 0b1111 and CRn == <n> is trapped to Hyp mode. A Non-secure EL0 MCR or MRC access with these values is trapped to Hyp mode only if the access is not UNDEFINED when the value of this field is 0.

Any Non-secure EL1 MCRR or MRRC access with coproc == 0b1111 and CRm == <n> is trapped to Hyp mode. A Non-secure EL0 MCRR or MRRC access with these values is trapped to Hyp mode only if the access is not UNDEFINED when the value of this field is 0.
For example, when HSTR.T7 is 1, for instructions executed at Non-secure EL1:

- An MCR or MRC instruction with coproc set to 0b1111 and CRn set to c7 is trapped to Hyp mode.
- An MCRR or MRRC instruction with coproc set to 0b1111 and CRm set to c7 is trapped to Hyp mode.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the HSTR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC} \{<c>\} \{<q>\} \text{ <coproc>}, \{#\text{<opc1>}, \text{<Rt>}, \text{<CRn>}, \text{<CRm>}, \{#\text{<opc2>}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

Examples

```c
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
elsif PSTATE_EL == EL2 then
    return HSTR;
elsif PSTATE_EL == EL3 then
    if SCR_NS == '0' then
        UNDEFINED;
    else
        HSTR = R[Rt];
    endif
```

```c
if PSTATE_EL == EL0 then
    UNDEFINED;
elsif PSTATE_EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
else
    HSTR = R[Rt];
```
G8.2.75 HTCR, Hyp Translation Control Register

The HTCR characteristics are:

Purpose

The control register for stage 1 of the EL2 translation regime.

Note

This stage of translation always uses the Long-descriptor translation table format.

Configurations

AArch32 System register HTCR[31:0] is architecturally mapped to AArch64 System register TCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTCR is a 32-bit register.

Field descriptions

The HTCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES1</td>
</tr>
<tr>
<td>30</td>
<td>IMPLEMENTATION DEFINED, bit [30]</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28</td>
<td>SH0</td>
</tr>
<tr>
<td>27</td>
<td>RES0</td>
</tr>
<tr>
<td>26</td>
<td>T0SZ</td>
</tr>
<tr>
<td>25</td>
<td>IRGN0</td>
</tr>
<tr>
<td>24</td>
<td>ORGN0</td>
</tr>
<tr>
<td>23</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>22</td>
<td>RES0</td>
</tr>
<tr>
<td>21</td>
<td>HWU62</td>
</tr>
<tr>
<td>20</td>
<td>HWU61</td>
</tr>
<tr>
<td>19</td>
<td>HWU60</td>
</tr>
<tr>
<td>18</td>
<td>HWU59</td>
</tr>
<tr>
<td>17</td>
<td>HPD</td>
</tr>
</tbody>
</table>

Bit [31]

Reserved, RES1.

IMPLEMTATION DEFINED, bit [30]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bit [29]

Reserved, RES0.
HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry.

- **0b0**: Bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry.

- **0b0**: Bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry.

- **0b0**: Bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry.

- **0b0**: Bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of HTCR.HPD is 1.

The Effective value of this field is 0 if the value of HTCR.HPD is 0.

Otherwise:

Reserved, RES0.
Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_AA32HPD is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the PL2 translation regime.

- 0b0: Hierarchical permissions are enabled.
- 0b1: Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using HTTBR.

- 0b00: Non-shareable.
- 0b10: Outer Shareable.
- 0b11: Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using HTTBR.

- 0b00: Normal memory, Outer Non-cacheable.
- 0b01: Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using HTTBR.

- 0b00: Normal memory, Inner Non-cacheable.
- 0b01: Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10: Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11: Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

T0SZ, bits [2:0]

The size offset of the memory region addressed by HTTBR. The region size is $2^{(32-T0SZ)}$ bytes.
This field resets to an architecturally UNKNOWN value.

Accessing the HTCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\langle c\rangle\{q\} <\text{coproc}, \{#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

\[
\text{MCR}\langle c\rangle\{q\} <\text{coproc}, \{#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
G8.2.76 HTPIDR, Hyp Software Thread ID Register

The HTPIDR characteristics are:

Purpose

Provides a location where software running in Hyp mode can store thread identifying information that is not visible to Non-secure software executing at EL0 or EL1, for hypervisor management purposes.

The PE makes no use of this register.

Configurations

AArch32 System register HTPIDR[31:0] is architecturally mapped to AArch64 System register TPIDR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTPIDR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

--- Note ---

The PE never updates this register.

Attributes

HTPIDR is a 32-bit register.

Field descriptions

The HTPIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>Thread ID</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the HTPIDR

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

- if PSTATE.EL == EL0 then UNDEFINED;
- elsif PSTATE.EL == EL1 then
 - if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 - elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 - else UNDEFINED;
```
elsif PSTATE.EL == EL2 then
  return HTPIDR;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return HTPIDR;
  end

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

MCR{<c>}{<q>}<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
  endif
elsif PSTATE.EL == EL2 then
  HTPIDR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    HTPIDR = R[t];
  endif

G8.2.77  HTTBR, Hyp Translation Table Base Register

The HTTBR characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of an address translation in the EL2 translation regime, and other information for this translation regime.

Configurations

AArch32 System register HTTBR[47:1] is architecturally mapped to AArch64 System register TTBR0_EL2[47:1].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

HTTBR is a 64-bit register.

Field descriptions

The HTTBR bit assignments are:

Bits [63:48]  
Reserved, RES0.

BADDR, bits [47:1]  
Translation table base address, bits[47:x]. Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

- Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of HTCR.T0SZ as follows:

- If HTCR.T0SZ is 0 or 1, x = 5 - HTCR.T0SZ.
- If HTCR.T0SZ is greater than 1, x = 14 - HTCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated. This field resets to an architecturally UNKNOWN value.
CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by HTTBR is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of HTTBR.CnP is 1.

| 0b0 | The translation table entries pointed to by HTTBR are permitted to differ from corresponding entries for HTTBR for other PEs in the Inner Shareable domain. This is not affected by the value of HTTBR.CnP on those other PEs. |
| 0b1 | The translation table entries pointed to by HTTBR are the same as the translation table entries pointed to by HTTBR on every other PE in the Inner Shareable domain for which the value of HTTBR.CnP is 1. |

--- Note ---

If the value of the HTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those HTTBRs do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the HTTBR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRRC\{c\}\{q\} <coproc>, \{#\}<opc1>, <Rt>, <Rt2>, <CRm>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elseif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elself EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  else
    UNDEFINED;
elself PSTATE.EL == EL2 then
    return HTTBR;
elself PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
elself return HTTBR;
MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b0010</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  HTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    HTTBR = R[t2]:R[t];
**G8.2.78 HVBAR, Hyp Vector Base Address Register**

The HVBAR characteristics are:

**Purpose**

Holds the vector base address for any exception that is taken to Hyp mode.

**Configurations**

AArch32 System register HVBAR[31:0] is architecturally mapped to AArch64 System register VBAR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HVBAR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

HVBAR is a 32-bit register.

**Field descriptions**

The HVBAR bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:5]</td>
<td>Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an exception vector are the exception offset. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>[4:0]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Accessing the HVBAR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>){<q>} <\text{coproc}>, <\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, <\text{opc2}>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HVBAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  HVBAR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    HVBAR = R[t];
else
  UNDEFINED;
ICIA LLU, Instruction Cache Invalidate All to PoU

The ICIA LLU characteristics are:

**Purpose**

Invalidate all instruction caches to PoU. If branch predictors are architecturally visible, also flush branch predictors.

**Configurations**

AArch32 System instruction ICIA LLU performs the same function as AArch64 System instruction ICIA LLU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICIA LLU are UNDEFINED.

**Attributes**

ICIA LLU is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the ICIA LLU instruction**

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

When HCR.FB is 1, at Non-secure EL1 this instruction executes as a ICIA LLUIS.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>
G8.2.80   ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable

The ICIALLUIS characteristics are:

**Purpose**

Invalidate all instruction caches Inner Shareable to PoU. If branch predictors are architecturally visible, also flush branch predictors.

**Configurations**

AArch32 System instruction ICIALLUIS performs the same function as AArch64 System instruction IC IALLUIS.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICIALLUIS are UNDEFINED.

**Attributes**

ICIALLUIS is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the ICIALLUIS instruction**

The PE ignores the value of <Rt>. Software does not have to write a value to this register before issuing this instruction.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{c\}\{q\} \text{ <coproc>, } \{\#<opc1>, <Rt>, <CRn>, <CRm>, \{\#<opc2>\)}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>
G8.2.81 ICIMVAU, Instruction Cache line Invalidate by VA to PoU

The ICIMVAU characteristics are:

**Purpose**

Invalidate instruction cache line by virtual address to PoU.

**Configurations**

AArch32 System instruction ICIMVAU performs the same function as AArch64 System instruction ICIVAU.

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICIMVAU are UNDEFINED.

**Attributes**

ICIMVAU is a 32-bit System instruction.

**Field descriptions**

The ICIMVAU input value bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Virtual address to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td>Virtual address to use. No alignment restrictions apply to this VA.</td>
</tr>
</tbody>
</table>

**Executing the ICIMVAU instruction**

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For more information, see AArch32 instruction cache maintenance instructions (IC*) on page G4-5940.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MCR\langle c\rangle\langle q\rangle\langle coproc\rangle, \langle\#\rangle\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle\#\rangle\langle opc2\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TPU == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TOCU == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPU == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TOCU == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    ICIMVAU(R[t]);
elsif PSTATE.EL == EL2 then
ICIMVAU(R[t]);
elsif PSTATE_EL == EL3 then
  ICIMVAU(R[t]);
G8.2.82 ID_AFR0, Auxiliary Feature Register 0

The ID_AFR0 characteristics are:

**Purpose**

Provides information about the IMPLEMENTATION DEFINED features of the PE in AArch32 state. Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

**Configurations**

AArch32 System register ID_AFR0[31:0] is architecturally mapped to AArch64 System register ID_AFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_AFR0 are UNDEFINED.

**Attributes**

ID_AFR0 is a 32-bit register.

**Field descriptions**

The ID_AFR0 bit assignments are:

```
31 16 15 12 11 8 7 4 3 0
 RES0
```

**Bits [31:16]**

Reserved, RES0.

**IMPLEMENTATION DEFINED, bits [15:12]**

IMPLEMENTATION DEFINED.

**IMPLEMENTATION DEFINED, bits [11:8]**

IMPLEMENTATION DEFINED.

**IMPLEMENTATION DEFINED, bits [7:4]**

IMPLEMENTATION DEFINED.

**IMPLEMENTATION DEFINED, bits [3:0]**

IMPLEMENTATION DEFINED.

**Accessing the ID_AFR0**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  return ID_AFR0;
elseif PSTATE.EL == EL2 then
  return ID_AFR0;
elif PSTATE.EL == EL3 then
  return ID_AFR0;
G8.2.83 ID_DFR0, Debug Feature Register 0

The ID_DFR0 characteristics are:

**Purpose**

Provides top level information about the debug system in AArch32 state.

Must be interpreted with the Main ID Register, MIDR.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

**Configurations**

AArch32 System register ID_DFR0[31:0] is architecturally mapped to AArch64 System register ID_DFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_DFR0 are UNDEFINED.

**Attributes**

ID_DFR0 is a 32-bit register.

**Field descriptions**

The ID_DFR0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TraceFilt</td>
<td>PerfMon</td>
<td>MProfDbg</td>
<td>MMapTrc</td>
<td>CopTrc</td>
<td>MMapDbg</td>
<td>CopSDbg</td>
<td>CopDbg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TraceFilt, bits [31:28]**

Armv8.4 Self-hosted Trace Extension version. Defined values are:

- 0b0000  Armv8.4 Self-hosted Trace Extension not implemented.
- 0b0001  Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality added by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

**PerfMon, bits [27:24]**

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in *Alternative ID scheme used for the Performance Monitors Extension version* on page G8-6146.

Defined values are:

- 0b0000  Performance Monitors Extension not implemented.
- 0b0001  Performance Monitors Extension, PMUv1 implemented.
- 0b0010  Performance Monitors Extension, PMUv2 implemented.
- 0b0011  Performance Monitors Extension, PMUv3 implemented.
- 0b0100  PMUv3 for Armv8.1. As 0b0011, and also includes support for:
  - Extended 16-bit PMEVTYPER<n>.evtCount field.
  - If EL2 is implemented, the HDCR.HPMD control bit.
- 0b0101  PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR register.
G8.2 General system control registers

0b0110  PMUv3 for Armv8.5. As 0b0101, and also includes support for:
• 64-bit event counters.
• If EL2 is implemented, the HDCR.HCCD control bit.
• If EL3 is implemented, the SDCR.SCCD control bit.

0b1111  IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0011.
FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.
FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.
FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.

In any Armv8 implementation, the values 0b0001 and 0b0010 are not permitted.
From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0011 is not permitted.
From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.
From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

--- Note ---
In Armv7, the value 0b0000 can mean that PMUv1 is implemented. PMUv1 is not permitted in an Armv8 implementation.

MProfDbg, bits [23:20]
M Profile Debug. Support for memory-mapped debug model for M profile processors. Defined values are:
0b0000  Not supported.
0b0001  Support for M profile Debug architecture, with memory-mapped access.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

MMapTrc, bits [19:16]
Memory Mapped Trace. Support for memory-mapped trace model. Defined values are:
0b0000  Not supported.
0b0001  Support for Arm trace architecture, with memory-mapped access.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
See the ETM Architecture Specification for more information.

CopTrc, bits [15:12]
Support for System registers-based trace model, using registers in the coproc == 0b1110 encoding space. Defined values are:
0b0000  Not supported.
0b0001  Support for Arm trace architecture, with System registers access.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
See the ETM Architecture Specification for more information.

MMapDbg, bits [11:8]
Memory Mapped Debug. Support for v7 memory-mapped debug model, for A and R profile processors.
In Armv8-A, this field is RES0.
The optional memory map defined by Armv8 is not compatible with Armv7.

**CopSDbg, bits [7:4]**
Support for a System registers-based Secure debug model, using registers in the coproc = 0b1110 encoding space, for an A profile processor that includes EL3.
If EL3 is not implemented and the implemented Security state is Non-secure state, this field is RES0. Otherwise, this field reads the same as bits [3:0].

**CopDbg, bits [3:0]**
Support for System registers-based debug model, using registers in the coproc = 0b1110 encoding space, for A and R profile processors. Defined values are:
- 0b0000: Not supported.
- 0b0010: Support for Armv6, v6 Debug architecture, with System registers access.
- 0b0011: Support for Armv6, v6.1 Debug architecture, with System registers access.
- 0b0100: Support for Armv7, v7 Debug architecture, with System registers access.
- 0b0101: Support for Armv7, v7.1 Debug architecture, with System registers access.
- 0b0110: Support for Armv8 debug architecture, with System registers access.
- 0b0111: Support for Armv8 debug architecture, with System registers access, and Virtualization Host Extensions.
- 0b1000: Support for Armv8.2 debug architecture.
- 0b1001: Support for Armv8.4 debug architecture.
All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.
FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.
In Armv8.0, the only permitted value is 0b0110.
In Armv8.1, the only permitted value is 0b0111.
In Armv8.2, the only permitted value is 0b1000.
From Armv8.4, the only permitted value is 0b1001.

**Accessing the ID_DFR0**
Accesses to this register use the following encodings in the System instruction encoding space:

| MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} |
|-----------------|------|-----|-----|-------|-----|
| coproc opc1 CRn CRm opc2 |
| 0b1111 0b0000 0b0000 0b0001 0b010 |

if PSTATE.EL == EL0 then
    UNDEFINED;
else if PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else if EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
else if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else if EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
        AArch32.TakeHypTrapException(0x03);
else
    return ID_DFR0;
elsif PSTATE.EL == EL2 then
    return ID_DFR0;
elsif PSTATE.EL == EL3 then
    return ID_DFR0;
G8.2.84 ID_DFR1, Debug Feature Register 1

The ID_DFR1 characteristics are:

Purpose

Provides top level information about the debug system in AArch32.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register ID_DFR1[31:0] is architecturally mapped to AArch64 System register ID_DFR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_DFR1 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_DFR1 is a 32-bit register.

Field descriptions

The ID_DFR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>30</td>
<td>MTPMU</td>
</tr>
</tbody>
</table>

Bits [31:4]

Reserved, RES0.

MTPMU, bits [3:0]

Multi-threaded PMU extension. Defined values are:

0b0000 FEAT_MTPMU not implemented. If PMUv3 is implemented, it is IMPLEMENTATION DEFINED whether PMEVTPYPER<\(n\)>.MT are read/write or RES0.

0b0001 FEAT_MTPMU implemented and PMEVTPYPER<\(n\)>.MT are read/write. When FEAT_MTPMU is disabled, the Effective values of PMEVTPYPER<\(n\)>.MT are 0.

0b1111 FEAT_MTPMU not implemented. If PMUv3 is implemented, PMEVTPYPER<\(n\)>.MT are RES0.

All other values are reserved.

FEAT_MTPMU implements the functionality identified by the value 0b0001.

In an Armv8.6-compliant implementation that includes PMUv3, the value 0b0000 is not permitted.

In an implementation that does not include PMUv3, the value 0b0001 is not permitted.

Accessing the ID_DFR1

Accesses to this register use the following encodings in the System instruction encoding space:

---

---
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNCHANGED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        return ID_DFR1;
    end
elsif PSTATE.EL == EL2 then
    return ID_DFR1;
elsif PSTATE.EL == EL3 then
    return ID_DFR1;
else
    return ID_DFR1;
end

if PSTATE.EL == EL0 then
UNCHANGED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        return ID_DFR1;
    end
elsif PSTATE.EL == EL2 then
    return ID_DFR1;
elsif PSTATE.EL == EL3 then
    return ID_DFR1;
else
    return ID_DFR1;
end
G8.2.85 ID_ISAR0, Instruction Set Attribute Register 0

The ID_ISAR0 characteristics are:

**Purpose**

- Provides information about the instruction sets implemented by the PE in AArch32 state.
- Must be interpreted with ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.
- For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

**Configurations**

- AArch32 System register ID_ISAR0[31:0] is architecturally mapped to AArch64 System register ID_ISAR0_EL1[31:0].
- This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR0 are UNDEFINED.

**Attributes**

- ID_ISAR0 is a 32-bit register.

**Field descriptions**

The ID_ISAR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>28 – 24</td>
<td>Divide, bits [27:24]</td>
</tr>
<tr>
<td>23 – 20</td>
<td>Debug, bits [23:20]</td>
</tr>
<tr>
<td>19 – 16</td>
<td>Coproc, bits [19:16]</td>
</tr>
<tr>
<td>15 – 12</td>
<td>CmpBranch</td>
</tr>
<tr>
<td>11 – 8</td>
<td>BitField</td>
</tr>
<tr>
<td>7 – 4</td>
<td>BitCount</td>
</tr>
<tr>
<td>3</td>
<td>Swap</td>
</tr>
</tbody>
</table>

**Bits [31:28]**

- Reserved, RES0.

**Divide, bits [27:24]**

- Indicates the implemented Divide instructions. Defined values are:
  - 0b0000: None implemented.
  - 0b0001: Adds SDIV and UDIV in the T32 instruction set.
  - 0b0010: As for 0b0001, and adds SDIV and UDIV in the A32 instruction set.
- All other values are reserved.
- In Armv8-A, the only permitted value is 0b0010.

**Debug, bits [23:20]**

- Indicates the implemented Debug instructions. Defined values are:
  - 0b0000: None implemented.
  - 0b0001: Adds BKPT.
- All other values are reserved.
- In Armv8-A, the only permitted value is 0b0001.

**Coproc, bits [19:16]**

- Indicates the implemented System register access instructions. Defined values are:
  - 0b0000: None implemented, except for instructions separately attributed by the architecture to provide access to AArch32 System registers and System instructions.
  - 0b0001: Adds generic CDP, LDC, MCR, MRC, and STC.
  - 0b0010: As for 0b0001, and adds generic CDP2, LDC2, MCR2, MRC2, and STC2.
0b0011  As for 0b0010, and adds generic MCRR and MRRC.
0b0100  As for 0b0011, and adds generic MCRR2 and MRRC2.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

CmpBranch, bits [15:12]
Indicates the implemented combined Compare and Branch instructions in the T32 instruction set.
Defined values are:
0b0000  None implemented.
0b0001  Adds CBNZ and CBZ.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

BitField, bits [11:8]
Indicates the implemented BitField instructions. Defined values are:
0b0000  None implemented.
0b0001  Adds BFC, BFI, SBFX, and UBFX.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

BitCount, bits [7:4]
Indicates the implemented Bit Counting instructions. Defined values are:
0b0000  None implemented.
0b0001  Adds CLZ.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Swap, bits [3:0]
Indicates the implemented Swap instructions in the A32 instruction set. Defined values are:
0b0000  None implemented.
0b0001  Adds SWP and SWPB.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

Accessing the ID_ISAR0

Accesses to this register use the following encodings in the System instruction encoding space:

**MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>**

```
<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
```
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_ISAR0;
elif PSTATE.EL == EL2 then
 return ID_ISAR0;
elif PSTATE.EL == EL3 then
 return ID_ISAR0;
G8.2.86 ID_ISAR1, Instruction Set Attribute Register 1

The ID_ISAR1 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR2, ID_ISAR3, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_ISAR1[31:0] is architecturally mapped to AArch64 System register ID_ISAR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR1 are UNDEFINED.

Attributes

ID_ISAR1 is a 32-bit register.

Field descriptions

The ID_ISAR1 bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jazelle</td>
<td>[31:28]</td>
<td>Indicates the implemented Jazelle extension instructions. Defined values are:</td>
</tr>
<tr>
<td></td>
<td>0b0000</td>
<td>No support for Jazelle.</td>
</tr>
<tr>
<td></td>
<td>0b0001</td>
<td>Adds the BXJ instruction, and the J bit in the PSR. This setting might indicate a trivial implementation of the Jazelle extension.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Armv8-A, the only permitted value is 0b0001.</td>
</tr>
<tr>
<td>Interwork</td>
<td>[27:24]</td>
<td>Indicates the implemented Interworking instructions. Defined values are:</td>
</tr>
<tr>
<td></td>
<td>0b0000</td>
<td>None implemented.</td>
</tr>
<tr>
<td></td>
<td>0b0001</td>
<td>Adds the BX instruction, and the T bit in the PSR.</td>
</tr>
<tr>
<td></td>
<td>0b0010</td>
<td>As for 0b0001, and adds the BLX instruction. PC loads have BX-like behavior.</td>
</tr>
<tr>
<td></td>
<td>0b0011</td>
<td>As for 0b0010, and guarantees that data-processing instructions in the A32 instruction set with the PC as the destination and the S bit clear have BX-like behavior.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Armv8-A, the only permitted value is 0b0011.</td>
</tr>
<tr>
<td>Immediate</td>
<td>[23:20]</td>
<td>Indicates the implemented data-processing instructions with long immediates.</td>
</tr>
<tr>
<td></td>
<td>0b0000</td>
<td>None implemented.</td>
</tr>
<tr>
<td></td>
<td>0b0001</td>
<td>Adds:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The MOVT instruction</td>
</tr>
</tbody>
</table>
• The MOV instruction encodings with zero-extended 16-bit immediates.
• The T32 ADD and SUB instruction encodings with zero-extended 12-bit immediates, and the other ADD, ADR, and SUB encodings cross-referenced by the pseudocode for those encodings.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

IfThen, bits [19:16]
Indicates the implemented If-Then instructions in the T32 instruction set. Defined values are:

0b0000 None implemented.
0b0001 Adds the IT instructions, and the IT bits in the PSRs.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Extend, bits [15:12]
Indicates the implemented Extend instructions. Defined values are:

0b0000 No scalar sign-extend or zero-extend instructions are implemented, where scalar instructions means non-Advanced SIMD instructions.
0b0001 Adds the SXTB, SXTH, UXTB, and UXTH instructions.
0b0010 As for 0b0001, and adds the SXTB16, SXTAB, SXTAB16, SXTAH, UXTB16, UXTAB, UXTAB16, and UXTAH instructions.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

Except_AR, bits [11:8]
Indicates the implemented A and R profile exception-handling instructions. Defined values are:

0b0000 None implemented.
0b0001 Adds the SRS and RFE instructions, and the A and R profile forms of the CPS instruction.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Except, bits [7:4]
Indicates the implemented exception-handling instructions in the A32 instruction set. Defined values are:

0b0000 Not implemented. This indicates that the User bank and Exception return forms of the LDM and STM instructions are not implemented.
0b0001 Adds the LDM (exception return), LDM (user registers), and STM (user registers) instruction versions.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Endian, bits [3:0]
Indicates the implemented Endian instructions. Defined values are:

0b0000 None implemented.
0b0001 Adds the SETEND instruction, and the E bit in the PSRs.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
Accessing the ID_ISAR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC\{<c>\}{<q>} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>}} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL = EL0 then
 UNDEFINED;
elsif PSTATE.EL = EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR1;
 elsif PSTATE.EL = EL2 then
 return ID_ISAR1;
 elsif PSTATE.EL = EL3 then
 return ID_ISAR1;
G8.2.87 ID_ISAR2, Instruction Set Attribute Register 2

The ID_ISAR2 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.
Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR3, ID_ISAR4, and ID_ISAR5.
For general information about the interpretation of the ID registers see Principles of the ID scheme
for fields in ID registers on page G8-6144.

Configurations

AArch32 System register ID_ISAR2[31:0] is architecturally mapped to AArch64 System register
ID_ISAR2_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct
accesses to ID_ISAR2 are UNDEFINED.

Attributes

ID_ISAR2 is a 32-bit register.

Field descriptions

The ID_ISAR2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal</td>
<td>PSR_AR</td>
<td>MultU</td>
<td>MultS</td>
<td>Multi</td>
<td>MemHint</td>
<td>LoadStore</td>
<td>MultiAccessInt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reversal, bits [31:28]

Indicates the implemented Reversal instructions. Defined values are:

0b0000 None implemented.
0b0001 Adds the REV, REV16, and REVSH instructions.
0b0010 As for 0b0001, and adds the RBIT instruction.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

PSR_AR, bits [27:24]

Indicates the implemented A and R profile instructions to manipulate the PSR. Defined values are:

0b0000 None implemented.
0b0001 Adds the MRS and MSR instructions, and the exception return forms of data-processing
instructions.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.
The exception return forms of the data-processing instructions are:

• In the A32 instruction set, data-processing instructions with the PC as the destination and the
S bit set. These instructions might be affected by the WithShifts attribute.
• In the T32 instruction set, the SUBS PC,LR,#N instruction.
MultU, bits [23:20]
Indicates the implemented advanced unsigned Multiply instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the UMULL and UMLAL instructions.
- 0b0010: As for 0b0001, and adds the UMAAL instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

MultS, bits [19:16]
Indicates the implemented advanced signed Multiply instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the SMULL and SMLAL instructions.
- 0b0010: As for 0b0001, and adds the SMLABB, SMLABT, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLATB, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, and SMULWT instructions. Also adds the Q bit in the PSRs.
- 0b0011: As for 0b0010, and adds the SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSDLX, SMLA, SMLAR, SMML, SMMLSR, SMMLUL, SMMLUR, SMUAD, SMUADX, SMUSD, and SMUSDX instructions.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0011.

Mult, bits [15:12]
Indicates the implemented additional Multiply instructions. Defined values are:

- 0b0000: No additional instructions implemented. This means only MUL is implemented.
- 0b0001: Adds the MLA instruction.
- 0b0010: As for 0b0001, and adds the MLS instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

MultiAccessInt, bits [11:8]
Indicates the support for interruptible multi-access instructions. Defined values are:

- 0b0000: No support. This means the LDM and STM instructions are not interruptible.
- 0b0001: LDM and STM instructions are restartable.
- 0b0010: LDM and STM instructions are continuable.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

MemHint, bits [7:4]
Indicates the implemented Memory Hint instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the PLD instruction.
- 0b0010: Adds the PLD instruction. (0b0001 and 0b0010 have identical effects.)
- 0b0011: As for 0b0001 (or 0b0010), and adds the PLI instruction.
- 0b0100: As for 0b0011, and adds the PLDW instruction.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0100.
LoadStore, bits [3:0]

Indicates the implemented additional load/store instructions. Defined values are:

- 0b0000: No additional load/store instructions implemented.
- 0b0001: Adds the LDRD and STRD instructions.
- 0b0010: As for 0b0001, and adds the Load Acquire (LDA, LDAH, LDAEX, LDAEXH, LDAEX, LDAEXD) and Store Release (STLB, STLH, STL, STLX, STLEX, STLEXD) instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Accessing the ID_ISAR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC{\langle c \rangle}{\langle q \rangle} \langle coproc \rangle, \{\#\langle opc1 \rangle\}, \langle Rt \rangle, \langle CRn \rangle, \langle CRm \rangle\{, \{\#\langle opc2 \rangle\}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR2;
 endif
elsif PSTATE.EL == EL2 then
 return ID_ISAR2;
elsif PSTATE.EL == EL3 then
 return ID_ISAR2;
G8.2.88 ID_ISAR3, Instruction Set Attribute Register 3

The ID_ISAR3 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR4, and ID_ISAR5.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_ISAR3[31:0] is architecturally mapped to AArch64 System register ID_ISAR3_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR3 are UNDEFINED.

Attributes

ID_ISAR3 is a 32-bit register.

Field descriptions

The ID_ISAR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T32EE</td>
<td>TrueNOP</td>
<td>T32Copy</td>
<td>TabBranch</td>
<td>SynchPrim</td>
<td>SVC</td>
<td>SIMD</td>
<td>Saturate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T32EE, bits [31:28]

Indicates the implemented T32EE instructions. Defined values are:

- 0b0000: None implemented.
- 0b0001: Adds the ENTERX and LEAVEX instructions, and modifies the load behavior to include null checking.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

TrueNOP, bits [27:24]

Indicates the implemented true NOP instructions. Defined values are:

- 0b0000: None implemented. This means there are no NOP instructions that do not have any register dependencies.
- 0b0001: Adds true NOP instructions in both the T32 and A32 instruction sets. This also permits additional NOP-compatible hints.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

T32Copy, bits [23:20]

Indicates the support for T32 non flag-setting MOV instructions. Defined values are:

- 0b0000: Not supported. This means that in the T32 instruction set, encoding T1 of the MOV (register) instruction does not support a copy from a low register to a low register.
- 0b0001: Adds support for T32 instruction set encoding T1 of the MOV (register) instruction, copying from a low register to a low register.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

TabBranch, bits [19:16]

Indicates the implemented Table Branch instructions in the T32 instruction set. Defined values are:
- 0b0000: None implemented.
- 0b0001: Adds the TBB and TBH instructions.
- All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SynchPrim, bits [15:12]

Used in conjunction with ID_ISAR4.SynchPrim_frac to indicate the implemented Synchronization Primitive instructions. Defined values are:
- 0b0000: If SynchPrim_frac == 0b000, no Synchronization Primitives implemented.
- 0b0001: If SynchPrim_frac == 0b000, adds the LDREX and STREX instructions.
- If SynchPrim_frac == 0b011, also adds the CLREX, LDREXB, STREXB, and STREXH instructions.
- 0b0010: If SynchPrim_frac == 0b000, as for [0b000, 0b011] and also adds the LDREXD and STREXD instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0010.

SVC, bits [11:8]

Indicates the implemented SVC instructions. Defined values are:
- 0b0000: Not implemented.
- 0b0001: Adds the SVC instruction.
- All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SIMD, bits [7:4]

Indicates the implemented SIMD instructions. Defined values are:
- 0b0000: None implemented.
- 0b0001: Adds the SSAT and USAT instructions, and the Q bit in the PSRs.
- 0b0011: As for 0b0001, and adds the PKHBT, PKHTB, QADD16, QADD8, QASX, QSUB16, QSUB8, QSAX, SADD16, SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSUB16, SHSUB8, SShASX, SSAT16, SSUB16, SSUB8, SSAX, SXTAB16, SXTB16, UADD16, UADD8, UASX, UHADD16, UHADD8, UHASX, UHSUB16, UHSUB8, UHSAX, UQADD16, UQADD8, UQASX, UQSUB16, UQSUB8, UQAX, USAD8, USADA8, USAT16, USUB16, USUB8, USAX, UXTAB16, and UXTB16 instructions. Also adds support for the GE[3:0] bits in the PSRs.
- All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

The SIMD field relates only to implemented instructions that perform SIMD operations on the general-purpose registers. In an implementation that supports floating-point and Advanced SIMD instructions, MVFR0, MVFR1, and MVFR2 give information about the implemented Advanced SIMD instructions.

Saturate, bits [3:0]

Indicates the implemented Saturate instructions. Defined values are:
- 0b0000: None implemented. This means no non-Advanced SIMD saturate instructions are implemented.
- 0b0001: Adds the QADD, QDADD, QDSUB, and QSUB instructions, and the Q bit in the PSRs.
All other values are reserved.
In Armv8-A, the only permitted value is `0b0001`.

Accessing the ID_ISAR3

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC}\{<c>\}\{<q>\} \text{ <coproc>}, \text{ (#)\text{<opc1>}, <Rt>, <CRn>, <CRm}\{, \text{ (#)\text{<opc2>}} \}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR3;
 elsif PSTATE_EL == EL2 then
 return ID_ISAR3;
 elsif PSTATE_EL == EL3 then
 return ID_ISAR3;
G8.2.89 ID_ISAR4, Instruction Set Attribute Register 4

The ID_ISAR4 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR5.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_ISAR4[31:0] is architecturally mapped to AArch64 System register ID_ISAR4_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR4 are UNDEFINED.

Attributes

ID_ISAR4 is a 32-bit register.

Field descriptions

The ID_ISAR4 bit assignments are:

<table>
<thead>
<tr>
<th>Bit 31</th>
<th>Bit 28-27</th>
<th>Bit 24-23</th>
<th>Bit 20-19</th>
<th>Bit 16-15</th>
<th>Bit 12-11</th>
<th>Bit 8-7</th>
<th>Bit 4-3</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP_frac</td>
<td>PSR_M</td>
<td>Barrier</td>
<td>SMC</td>
<td>Writeback</td>
<td>WithShifts</td>
<td>Unpriv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWP_frac, bits [31:28]

Indicates support for the memory system locking the bus for SWP or SWPB instructions. Defined values are:

- **0b0000**: SWP or SWPB instructions not implemented.
- **0b0001**: SWP or SWPB implemented but only in a uniprocessor context. SWP and SWPB do not guarantee whether memory accesses from other Requesters can come between the load memory access and the store memory access of the SWP or SWPB.

All other values are reserved. This field is valid only if ID_ISAR0.Swap is **0b0000**.

In Armv8-A, the only permitted value is **0b0000**.

PSR_M, bits [27:24]

Indicates the implemented M profile instructions to modify the PSRs. Defined values are:

- **0b0000**: None implemented.
- **0b0001**: Adds the M profile forms of the CPS, MRS, and MSR instructions.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0000**.
SynchPrim_frac, bits [23:20]

Used in conjunction with **ID_ISAR3.SynchPrim** to indicate the implemented Synchronization Primitive instructions. Possible values are:

- **0b0000**: If SynchPrim == 0b0000, no Synchronization Primitives implemented. If SynchPrim == 0b0001, adds the LDREX and STREX instructions. If SynchPrim == 0b0010, also adds the CLREX, LDREXB, LDREXH, STREXB, STREXH, LDREXD, and STREXD instructions.

- **0b0011**: If SynchPrim == 0b0001, adds the LDREX, STREX, CLREX, LDREXB, LDREXH, STREXB, and STREXH instructions.

All other combinations of SynchPrim and SynchPrim_frac are reserved.

In Armv8-A, the only permitted value is 0b0000.

Barrier, bits [19:16]

Indicates the implemented Barrier instructions in the A32 and T32 instruction sets. Defined values are:

- **0b0000**: None implemented. Barrier operations are provided only as System instructions in the (coproc==0b1111) encoding space.

- **0b0001**: Adds the DMB, DSB, and ISB barrier instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

SMC, bits [15:12]

Indicates the implemented SMC instructions. Defined values are:

- **0b0000**: None implemented.

- **0b0001**: Adds the SMC instruction.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Writeback, bits [11:8]

Indicates the support for Writeback addressing modes. Defined values are:

- **0b0000**: Basic support. Only the LDM, STM, PUSH, POP, SRS, and RFE instructions support writeback addressing modes. These instructions support all of their writeback addressing modes.

- **0b0001**: Adds support for all of the writeback addressing modes.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

WithShifts, bits [7:4]

Indicates the support for instructions with shifts. Defined values are:

- **0b0000**: Nonzero shifts supported only in MOV and shift instructions.

- **0b0001**: Adds support for shifts of loads and stores over the range LSL 0-3.

- **0b0011**: As for 0b0001, and adds support for other constant shift options, both on load/store and other instructions.

- **0b0100**: As for 0b0011, and adds support for register-controlled shift options.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0100.

Unpriv, bits [3:0]

Indicates the implemented unprivileged instructions. Defined values are:

- **0b0000**: None implemented. No T variant instructions are implemented.
0b0001 Adds the LDRBT, LDRT, STRBT, and STRT instructions.
0b0010 As for 0b0001, and adds the LDRHT, LDRSBT, LDRSHT, and STRHT instructions.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

Accessing the ID_ISAR4

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\langle c\rangle\langle q\rangle \langle coproc\rangle, \langle\#\rangle\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle\#\rangle\langle opc2\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_ISAR4;
elsif PSTATE.EL == EL2 then
 return ID_ISAR4;
elsif PSTATE.EL == EL3 then
 return ID_ISAR4;
G8.2.90 ID_ISAR5, Instruction Set Attribute Register 5

The ID_ISAR5 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, and ID_ISAR4.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_ISAR5[31:0] is architecturally mapped to AArch64 System register ID_ISAR5_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR5 are UNDEFINED.

Attributes

ID_ISAR5 is a 32-bit register.

Field descriptions

The ID_ISAR5 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCMA</td>
<td>RDM</td>
<td>RES0</td>
<td>CRC32</td>
<td>SHA2</td>
<td>SHA1</td>
<td>AES</td>
<td>SEVL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VCMA, bits [31:28]

Indicates AArch32 support for complex number addition and multiplication where numbers are stored in vectors. Defined values are:

- **0b0000**: The VCMLA and VCADD instructions are not implemented in AArch32.
- **0b0001**: The VCMLA and VCADD instructions are implemented in AArch32.

All other values are reserved.

FEAT_FCMA implements the functionality identified by **0b0001**.

From Armv8.3, the only permitted value is **0b0001**.

RDM, bits [27:24]

Indicates support for the VQRDMLAH and VQRDMLSH instructions in AArch32 state. Defined values are:

- **0b0000**: No VQRDMLAH and VQRDMLSH instructions implemented.
- **0b0001**: VQRDMLAH and VQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value **0b0001**.

From Armv8.1, the only permitted value is **0b0001**.

Bits [23:20]

Reserved, RES0.

CRC32, bits [19:16]

Indicates support for the CRC32 instructions in AArch32 state. Defined values are:

- **0b0000**: No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, and CRC32CW instructions implemented.
All other values are reserved.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]
Indicates support for the SHA2 instructions in AArch32 state.
0b0000 No SHA2 instructions implemented.
0b0001 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1 implemented.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

SHA1, bits [11:8]
Indicates support for the SHA1 instructions are implemented in AArch32 state. Defined values are:
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 implemented.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.

AES, bits [7:4]
Indicates support for the AES instructions in AArch32 state. Defined values are:
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC implemented.
0b0010 As for 0b0001, plus VMULL (polynomial) instructions operating on 64-bit data quantities.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b010.

SEVL, bits [3:0]
Indicates support for the SEVL instruction in AArch32 state. Defined values are:
0b0000 SEVL is implemented as a NOP.
0b0001 SEVL is implemented as Send Event Local.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_ISAR5
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>}{<coproc>}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end if;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end if;
end if;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_ISAR5;
elsif PSTATE.EL == EL2 then
 return ID_ISAR5;
elsif PSTATE.EL == EL3 then
 return ID_ISAR5;
G8.2.91 ID_ISAR6, Instruction Set Attribute Register 6

The ID_ISAR6 characteristics are:

Purpose

Provides information about the instruction sets implemented by the PE in AArch32 state.
Must be interpreted with ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4 and ID_ISAR5.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register ID_ISAR6[31:0] is architecturally mapped to AArch64 System register ID_ISAR6_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_ISAR6 are UNDEFINED.

Note

Prior to the introduction of the features described by this register, this register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_ISAR6 is a 32-bit register.

Field descriptions

The ID_ISAR6 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>I8MM</td>
<td>BF16</td>
<td>SPECRES</td>
<td>SB</td>
<td>FHM</td>
<td>DP</td>
<td>JSCVT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state. Defined values are:

0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 VSMLLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT instructions are implemented.

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:

0b0000 BFloat16 instructions are not implemented.
0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMA, and VMMMA instructions with BF16 operand or result types are implemented.

All other values are reserved.
FEAT_AA32BF16 implements the functionality identified by \(0b0001\).
From Armv8.2, the permitted values are \(0b0000\) and \(0b0001\).

SPECRES, bits [19:16]
Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:
- \(0b0000\) CFPRCTX, DVPRCTX, and CPPRCTX instructions are not implemented.
- \(0b0001\) CFPRCTX, DVPRCTX, and CPPRCTX instructions are implemented.
All other values are reserved.
From Armv8.5, the only permitted value is \(0b0001\).

SB, bits [15:12]
Indicates support for SB instruction in AArch32 state. Defined values are:
- \(0b0000\) SB instruction is not implemented.
- \(0b0001\) SB instruction is implemented.
All other values are reserved.
From Armv8.5, the only permitted value is \(0b0001\).

FHM, bits [11:8]
Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined values are:
- \(0b0000\) VFMAL and VMFSL instructions not implemented.
- \(0b0001\) VFMAL and VMFSL instructions implemented.
FEAT_FHM implements the functionality identified by the value \(0b0001\).

DP, bits [7:4]
Indicates support for dot product instructions in AArch32 state. Defined values are:
- \(0b0000\) No dot product instructions implemented.
- \(0b0001\) VUDOT and VSDOT instructions implemented.
All other values are reserved.
FEAT_DotProd implements the functionality identified by the value \(0b0001\).

JSCVT, bits [3:0]
Indicates support for the Javascript conversion instruction in AArch32 state. Defined values are:
- \(0b0000\) The VJCVT instruction is not implemented.
- \(0b0001\) The VJCVT instruction is implemented.
All other values are reserved.
In Armv8.0, Armv8.1 and Armv8.2 the only permitted value is \(0b0000\).
FEAT_JSCVT implements the functionality identified by \(0b0001\).
From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is \(0b0001\).
From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is \(0b0000\).

Accessing the ID_ISAR6
Accesses to this register use the following encodings in the System instruction encoding space:
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && (IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (IsZero(ID_ISAR6) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_ISAR6;
 endif
elsif PSTATE.EL == EL2 then
 return ID_ISAR6;
elsif PSTATE.EL == EL3 then
 return ID_ISAR6;
end if
G8.2.92 ID_MMFR0, Memory Model Feature Register 0

The ID_MMFR0 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR1, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_MMFR0[31:0] is architecturally mapped to AArch64 System register ID_MMFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR0 are UNDEFINED.

Attributes

ID_MMFR0 is a 32-bit register.

Field descriptions

The ID_MMFR0 bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>InnerShr</td>
<td>FCSE</td>
<td>AuxReg</td>
<td>TCM</td>
<td>ShareLvl</td>
<td>OuterShr</td>
<td>PMSA</td>
<td>VMSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

InnerShr, bits [31:28]

Innermost Shareability. Indicates the innermost shareability domain implemented. Defined values are:

- 0b0000: Implemented as Non-cacheable.
- 0b0001: Implemented with hardware coherency support.
- 0b1111: Shareability ignored.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

This field is valid only if the implementation supports two levels of shareability, as indicated by ID_MMFR0.ShareLvl having the value 0b0001.

When ID_MMFR0.ShareLvl is zero, this field is UNKNOWN.

FCSE, bits [27:24]

Indicates whether the implementation includes the FCSE. Defined values are:

- 0b0000: Not supported.
- 0b0001: Support for FCSE.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

AuxReg, bits [23:20]

Auxiliary Registers. Indicates support for Auxiliary registers. Defined values are:

- 0b0000: None supported.
- 0b0001: Support for Auxiliary Control Register only.
Support for Auxiliary Fault Status Registers (AIFSR and ADFSR) and Auxiliary Control Register.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0010.

Note

Accesses to unimplemented Auxiliary registers are UNDEFINED.

TCM, bits [19:16]
Indicates support for TCMs and associated DMAs. Defined values are:
- 0b0000: Not supported.
- 0b0001: Support is IMPLEMENTATION DEFINED. Armv7 requires this setting.
- 0b0010: Support for TCM only, Armv6 implementation.
- 0b0011: Support for TCM and DMA, Armv6 implementation.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

ShareLvl, bits [15:12]
Shareability Levels. Indicates the number of shareability levels implemented. Defined values are:
- 0b0000: One level of shareability implemented.
- 0b0001: Two levels of shareability implemented.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

OuterShr, bits [11:8]
Outermost Shareability. Indicates the outermost shareability domain implemented. Defined values are:
- 0b0000: Implemented as Non-cacheable.
- 0b0001: Implemented with hardware coherency support.
- 0b1111: Shareability ignored.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000, 0b0001, and 0b1111.

PMSA, bits [7:4]
Indicates support for a PMSA. Defined values are:
- 0b0000: Not supported.
- 0b0001: Support for IMPLEMENTATION DEFINED PMSA.
- 0b0010: Support for PMSAv6, with a Cache Type Register implemented.
- 0b0011: Support for PMSAv7, with support for memory subsections. Armv7-R profile.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

VMSA, bits [3:0]
Indicates support for a VMSA. Defined values are:
- 0b0000: Not supported.
- 0b0001: Support for IMPLEMENTATION DEFINED VMSA.
- 0b0010: Support for VMSAv6, with Cache and TLB Type Registers implemented.
0b0011 Support for VMSAv7, with support for remapping and the Access flag. ARMv7-A profile.
0b0100 As for 0b0011, and adds support for the PXN bit in the Short-descriptor translation table format descriptors.
0b0101 As for 0b0100, and adds support for the Long-descriptor translation table format.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0101.

Accessing the ID_MMFR0

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC<{c}>,{q}>,<coproc>,#{opc1},<Rt>,<CRn>,<CRm>,#{opc2}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_MMFR0;
elsif PSTATE.EL == EL2 then
 return ID_MMFR0;
elsif PSTATE.EL == EL3 then
 return ID_MMFR0;
G8.2.93 ID_MMFR1, Memory Model Feature Register 1

The ID_MMFR1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR2, ID_MMFR3, and ID_MMFR4.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register ID_MMFR1[31:0] is architecturally mapped to AArch64 System register ID_MMFR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR1 are UNDEFINED.

Attributes

ID_MMFR1 is a 32-bit register.

Field descriptions

The ID_MMFR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:28]</td>
<td>BPred</td>
</tr>
<tr>
<td>[27:24]</td>
<td>L1TstClIn</td>
</tr>
<tr>
<td>[23:20]</td>
<td>L1Uni</td>
</tr>
<tr>
<td>[19:16]</td>
<td>L1Hvd</td>
</tr>
<tr>
<td>[15:12]</td>
<td>L1UniSW</td>
</tr>
<tr>
<td>[11:8]</td>
<td>L1HvdSW</td>
</tr>
<tr>
<td>[7:4]</td>
<td>L1UniVA</td>
</tr>
<tr>
<td>[3:0]</td>
<td>L1HvdVA</td>
</tr>
</tbody>
</table>

BPred, bits [31:28]

Branch Predictor. Indicates branch predictor management requirements. Defined values are:

- 0b0000: No branch predictor, or no MMU present. Implies a fixed MPU configuration.
- 0b0001: Branch predictor requires flushing on:
 - Enabling or disabling a stage of address translation.
 - Writing new data to instruction locations.
 - Writing new mappings to the translation tables.
 - Changes to the TTBR0, TTBR1, or TTBCR registers.
 - Changes to the ContextID or ASID, or to the FCSE ProcessID if this is supported.
- 0b0010: Branch predictor requires flushing on:
 - Enabling or disabling a stage of address translation.
 - Writing new data to instruction locations.
 - Writing new mappings to the translation tables.
 - Any change to the TTBR0, TTBR1, or TTBCR registers without a change to the corresponding ContextID or ASID, or FCSE ProcessID if this is supported.
- 0b0011: Branch predictor requires flushing only on writing new data to instruction locations.
- 0b0100: For execution correctness, branch predictor requires no flushing at any time.

All other values are reserved.

In Armv8-A, the permitted values are 0b0010, 0b0011, or 0b0100. For values other than 0b0000 and 0b0100, the Arm Architecture Reference Manual, or the product documentation, might give more information about the required maintenance.
L1TstCln, bits [27:24]
Level 1 cache Test and Clean. Indicates the supported Level 1 data cache test and clean operations, for Harvard or unified cache implementations. Defined values are:

0b0000 None supported.
0b0001 Supported Level 1 data cache test and clean operations are:
 • Test and clean data cache.
0b0010 As for 0b0001, and adds:
 • Test, clean, and invalidate data cache.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1Uni, bits [23:20]
Level 1 Unified cache. Indicates the supported entire Level 1 cache maintenance operations for a unified cache implementation. Defined values are:

0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:
 • Invalidate cache, including branch predictor if appropriate.
 • Invalidate branch predictor, if appropriate.
0b0010 As for 0b0001, and adds:
 • Clean cache, using a recursive model that uses the cache dirty status bit.
 • Clean and invalidate cache, using a recursive model that uses the cache dirty status bit.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1Hvd, bits [19:16]
Level 1 Harvard cache. Indicates the supported entire Level 1 cache maintenance operations for a Harvard cache implementation. Defined values are:

0b0000 None supported.
0b0001 Supported entire Level 1 cache operations are:
 • Invalidate instruction cache, including branch predictor if appropriate.
 • Invalidate branch predictor, if appropriate.
0b0010 As for 0b0001, and adds:
 • Invalidate data cache.
 • Invalidate data cache and instruction cache, including branch predictor if appropriate.
0b0011 As for 0b0010, and adds:
 • Clean data cache, using a recursive model that uses the cache dirty status bit.
 • Clean and invalidate data cache, using a recursive model that uses the cache dirty status bit.

All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1UniSW, bits [15:12]
Level 1 Unified cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a unified cache implementation. Defined values are:

0b0000 None supported.
Supported Level 1 unified cache line maintenance operations by set/way are:

- Clean cache line by set/way.

As for 0b0001, and adds:

- Clean and invalidate cache line by set/way.

As for 0b0010, and adds:

- Invalidate cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdSW, bits [11:8]

Level 1 Harvard cache by Set/Way. Indicates the supported Level 1 cache line maintenance operations by set/way, for a Harvard cache implementation. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported Level 1 Harvard cache line maintenance operations by set/way are:
 - Clean data cache line by set/way.
 - Clean and invalidate data cache line by set/way.
- 0b0010 As for 0b0001, and adds:
 - Invalidate data cache line by set/way.
- 0b0011 As for 0b0010, and adds:
 - Invalidate instruction cache line by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1UniVA, bits [7:4]

Level 1 Unified cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a unified cache implementation. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported Level 1 unified cache line maintenance operations by VA are:
 - Clean cache line by VA.
 - Invalidate cache line by VA.
 - Clean and invalidate cache line by VA.
- 0b0010 As for 0b0001, and adds:
 - Invalidate branch predictor by VA, if branch predictor is implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

L1HvdVA, bits [3:0]

Level 1 Harvard cache by Virtual Address. Indicates the supported Level 1 cache line maintenance operations by VA, for a Harvard cache implementation. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported Level 1 Harvard cache line maintenance operations by VA are:
 - Clean data cache line by VA.
 - Invalidate data cache line by VA.
 - Clean and invalidate data cache line by VA.
 - Clean instruction cache line by VA.
- 0b0010 As for 0b0001, and adds:
 - Invalidate branch predictor by VA, if branch predictor is implemented.
All other values are reserved.
In Armv8-A, the only permitted value is \(0b0000\).

Accessing the ID_MMFR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\langle c\rangle\langle q\rangle, \langle coproc\rangle, \langle \#opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle \#opc2\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HSTR_EL2.T0 == ‘1’ then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T0 == ‘1’ then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR_EL2.TID3 == ‘1’ then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR.TID3 == ‘1’ then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR1;
 elseif PSTATE.EL == EL2 then
 return ID_MMFR1;
elsif PSTATE.EL == EL3 then
 return ID_MMFR1;
G8.2.94 **ID_MMFR2, Memory Model Feature Register 2**

The ID_MMFR2 characteristics are:

Purpose

- Provides information about the implemented memory model and memory management support in AArch32 state.
- Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR3, and ID_MMFR4.
- For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

- AArch32 System register ID_MMFR2[31:0] is architecturally mapped to AArch64 System register ID_MMFR2_EL1[31:0].
- This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR2 are UNDEFINED.

Attributes

- ID_MMFR2 is a 32-bit register.

Field descriptions

The ID_MMFR2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWAccFlg</td>
<td>WFIStall</td>
<td>MemBarr</td>
<td>UnI TLB</td>
<td>HvdTLB</td>
<td>L1HvdRng</td>
<td>L1HvdBG</td>
<td>L1HvdFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HWAccFlg, bits [31:28]

Hardware Access Flag. In earlier versions of the Arm Architecture, this field indicates support for a Hardware Access flag, as part of the VMSAv7 implementation. Defined values are:

- 0b0000 Not supported.
- 0b0001 Support for VMSAv7 Access flag, updated in hardware.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

WFIStall, bits [27:24]

Wait For Interrupt Stall. Indicates the support for Wait For Interrupt (WFI) stalling. Defined values are:

- 0b0000 Not supported.
- 0b0001 Support for WFI stalling.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

MemBarr, bits [23:20]

Memory Barrier. Indicates the supported memory barrier System instructions in the (coproc == 1111) encoding space. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported memory barrier System instructions are:
 - Data Synchronization Barrier (DSB).
0b0010 As for 0b0001, and adds:
 • Instruction Synchronization Barrier (ISB).
 • Data Memory Barrier (DMB).

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

Arm deprecates the use of these operations. ID_ISAR4.Barrier_instrs indicates the level of support for the preferred barrier instructions.

UniTLB, bits [19:16]

Unified TLB. Indicates the supported TLB maintenance operations, for a unified TLB implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported unified TLB maintenance operations are:
 • Invalidate all entries in the TLB.
 • Invalidate TLB entry by VA.

0b0010 As for 0b0001, and adds:
 • Invalidate TLB entries by ASID match.

0b0011 As for 0b0010, and adds:
 • Invalidate instruction TLB and data TLB entries by VA All ASID. This is a shared unified TLB operation

0b0100 As for 0b0011, and adds:
 • Invalidate Hyp mode unified TLB entry by VA.
 • Invalidate entire Non-secure PL1&0 unified TLB.
 • Invalidate entire Hyp mode unified TLB.

0b0101 As for 0b0100, and adds the following operations: TLBIMVALIS, TLBIMVAALIS, TLBIMVALHIS, TLBIMVAL, TLBIMVAAL, TLBIMVALH.

0b0110 As for 0b0101, and adds the following operations: TLBIIPAS2IS, TLBIIPAS2LIS, TLBIIPAS2, TLBIIPAS2L.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0110.

HvdTLB, bits [15:12]

If the value of ID_MMFR2.UniTLB is not 0b0000, then the meaning of this field is IMPLEMENTATION DEFINED. Arm deprecates the use of this field by software.

L1HvdRng, bits [11:8]

Level 1 Harvard cache Range. Indicates the supported Level 1 cache maintenance range operations, for a Harvard cache implementation. Defined values are:

0b0000 Not supported.

0b0001 Supported Level 1 Harvard cache maintenance range operations are:
 • Invalidate data cache range by VA.
 • Invalidate instruction cache range by VA.
 • Clean data cache range by VA.
 • Clean and invalidate data cache range by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.
L1HvdBG, bits [7:4]
Level 1 Harvard cache Background fetch. Indicates the supported Level 1 cache background fetch operations, for a Harvard cache implementation. When supported, background fetch operations are non-blocking operations. Defined values are:
- 0b0000 Not supported.
- 0b0001 Supported Level 1 Harvard cache background fetch operations are:
 - Fetch instruction cache range by VA.
 - Fetch data cache range by VA.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

L1HvdFG, bits [3:0]
Level 1 Harvard cache Foreground fetch. Indicates the supported Level 1 cache foreground fetch operations, for a Harvard cache implementation. When supported, foreground fetch operations are blocking operations. Defined values are:
- 0b0000 Not supported.
- 0b0001 Supported Level 1 Harvard cache foreground fetch operations are:
 - Fetch instruction cache range by VA.
 - Fetch data cache range by VA.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

Accessing the ID_MMFR2
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{<c>\}{<q>} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && ELUsingAAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_MMFR2;
elif PSTATE.EL == EL2 then
 return ID_MMFR2;
elif PSTATE.EL == EL3 then
 return ID_MMFR2;
G8.2.95 ID_MMFR3, Memory Model Feature Register 3

The ID_MMFR3 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR4.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_MMFR3[31:0] is architecturally mapped to AArch64 System register ID_MMFR3_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR3 are UNDEFINED.

Attributes

ID_MMFR3 is a 32-bit register.

Field descriptions

The ID_MMFR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supersec</td>
<td>CMemSz</td>
<td>CohWalk</td>
<td>PAN</td>
<td>MaintBcst</td>
<td>BPMaint</td>
<td>CMaintSW</td>
<td>CMaintVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supersec, bits [31:28]

Supersections. On a VMSA implementation, indicates whether Supersections are supported. Defined values are:

- **0b0000**: Supersections supported.
- **0b1111**: Supersections not supported.

All other values are reserved.

In Armv8-A, the permitted values are **0b0000** and **0b1111**.

CMemSz, bits [27:24]

Cached Memory Size. Indicates the physical memory size supported by the caches. Defined values are:

- **0b0000**: 4GB, corresponding to a 32-bit physical address range.
- **0b0001**: 64GB, corresponding to a 36-bit physical address range.
- **0b0010**: 1TB or more, corresponding to a 40-bit or larger physical address range.

All other values are reserved.

In Armv8-A, the permitted values are **0b0000**, **0b0001**, and **0b0010**.

CohWalk, bits [23:20]

Coherent Walk. Indicates whether Translation table updates require a clean to the Point of Unification. Defined values are:

- **0b0000**: Updates to the translation tables require a clean to the Point of Unification to ensure visibility by subsequent translation table walks.
Updates to the translation tables do not require a clean to the Point of Unification to ensure visibility by subsequent translation table walks.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

PAN, bits [19:16] Privileged Access Never. Indicates support for the PAN bit in CPSR, SPSR, and DSPSR in AArch32 state. Defined values are:

- 0b0000 PAN not supported.
- 0b0001 PAN supported.
- 0b0010 PAN supported and ATS1CPRP and ATS1CPWP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the value 0b0000 is not permitted.

From Armv8.2, the only permitted value is 0b0010.

MaintBcst, bits [15:12] Maintenance Broadcast. Indicates whether Cache, TLB, and branch predictor operations are broadcast. Defined values are:

- 0b0000 Cache, TLB, and branch predictor operations only affect local structures.
- 0b0001 Cache and branch predictor operations affect structures according to shareability and defined behavior of instructions. TLB operations only affect local structures.
- 0b0010 Cache, TLB, and branch predictor operations affect structures according to shareability and defined behavior of instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

BPMaint, bits [11:8] Branch Predictor Maintenance. Indicates the supported branch predictor maintenance operations in an implementation with hierarchical cache maintenance operations. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported branch predictor maintenance operations are:
 • Invalidate all branch predictors.
- 0b0010 As for 0b0001, and adds:
 • Invalidate branch predictors by VA.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0010.

CMaintSW, bits [7:4] Cache Maintenance by Set/Way. Indicates the supported cache maintenance operations by set/way, in an implementation with hierarchical caches. Defined values are:

- 0b0000 None supported.
- 0b0001 Supported hierarchical cache maintenance instructions by set/way are:
 • Invalidate data cache by set/way.
 • Clean data cache by set/way.
 • Clean and invalidate data cache by set/way.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.
In a unified cache implementation, the data cache maintenance operations apply to the unified caches.

CMaintVA, bits [3:0]
Cache Maintenance by Virtual Address. Indicates the supported cache maintenance operations by VA, in an implementation with hierarchical caches. Defined values are:

- **0b0000** None supported.
- **0b0001** Supported hierarchical cache maintenance operations by VA are:
 - Invalidate data cache by VA.
 - Clean data cache by VA.
 - Clean and invalidate data cache by VA.
 - Invalidate instruction cache by VA.
 - Invalidate all instruction cache entries.

All other values are reserved.
In Armv8-A, the only permitted value is **0b0001**.

In a unified cache implementation, data cache maintenance operations apply to the unified caches, and the instruction cache maintenance instructions are not implemented.

Accessing the ID_MMFR3

Accesses to this register use the following encodings in the System instruction encoding space:

$$MRC\{<c>\}{<q>}\ <coproc>,\ (#<opc1>),\ <Rt>,\ <CRn>,\ <CRm>{,\ (#<opc2>)}$$

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        return ID_MMFR3;
    endif
elsif PSTATE.EL == EL2 then
    return ID_MMFR3;
elsif PSTATE.EL == EL3 then
    return ID_MMFR3;
```

G8-6406

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.}

Non-Confidential

ARM DDI 0487F.c

ID072120
G8.2.96 ID_MMFR4, Memory Model Feature Register 4

The ID_MMFR4 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

Must be interpreted with ID_MMFR0, ID_MMFR1, ID_MMFR2, and ID_MMFR3.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_MMFR4[31:0] is architecturally mapped to AArch64 System register ID_MMFR4_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR4 are UNDEFINED.

Attributes

ID_MMFR4 is a 32-bit register.

Field descriptions

The ID_MMFR4 bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>EVT</th>
<th>CCIDX</th>
<th>LSM</th>
<th>HPDS</th>
<th>CnP</th>
<th>XNX</th>
<th>AC2</th>
<th>SpecSEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVT, bits [31:28]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR2.{TTLBIS, TOCU, TICAB, TID4} traps. Defined values are:

- 0b0000: HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are not supported.
- 0b0001: HCR2.{TOCU, TICAB, TID4} traps are supported. HCR2.TTLBIS trap is not supported.
- 0b0010: HCR2.{TTLBIS, TOCU, TICAB, TID4} traps are supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented supporting AArch32, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:
- 0b0000 when EL2 is not implemented.
- 0b010 when EL2 is implemented.

CCIDX, bits [27:24]

Support for use of the revised CCSIDR format and the presence of the CCSIDR2 is indicated. Defined values are:

- 0b0000: 32-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is not implemented.
- 0b0001: 64-bit format implemented for all levels of the CCSIDR, and the CCSIDR2 register is implemented.

All other values are reserved.
FEAT_CCIDX implements the functionality identified by 0b0001.
From Armv8.3, the permitted values are 0b0000 and 0b0001.

LSM, bits [23:20]
Indicates support for LSMAOE and nTLSMD bits in HSCTL and SCTLR. Defined values are:
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.
All other values are reserved.
FEAT_LSMAOC implements the functionality identified by the value 0b0001.
From Armv8.2, the permitted values are 0b0000 and 0b0001.

HPDS, bits [19:16]
Hierarchical permission disables bits in translation tables. Defined values are:
0b0000 Disabling of hierarchical controls not supported.
0b0001 Supports disabling of hierarchical controls using the TTBCR2.HPD0, TTBCR2.HPD1, and HTCR.HPD bits.
0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED use.
All other values are reserved.
FEAT_AA32HPD implements the functionality identified by the value 0b0001.
FEAT_HPDS2 implements the functionality added by the value 0b010.

Note
The value 0b0000 implies that the encoding for TTBCR2 is UNDEFINED.

CnP, bits [15:12]
Common not Private translations. Defined values are:
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.
All other values are reserved.
FEAT_TTCNP implements the functionality identified by the value 0b0001.
From Armv8.2, the only permitted value is 0b0001.

XNX, bits [11:8]
Support for execute-never control distinction by Exception level at stage 2. Defined values are:
0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.
All other values are reserved.
FEAT_XNX implements the functionality identified by the value 0b0001.
When FEAT_XNX is implemented:
• If all of the following conditions are true, it is IMPLEMENTATION DEFINED whether the value of ID.MMFR4.XNX is 0b0000 or 0b0001:
 — ID.AA64MMFR1_EL1.XNX ==1.
 — EL2 cannot use AArch32.
 — EL1 can use AArch32.
• If EL2 can use AArch32 then the only permitted value is 0b0001.
AC2, bits [7:4]
Indicates the extension of the ACTLR and HACTLR registers using ACTLR2 and HACTLR2.
Defined values are:
0b0000 ACTLR2 and HACTLR2 are not implemented.
0b0001 ACTLR2 and HACTLR2 are implemented.
All other values are reserved.
In Armv8.0, the permitted values are 0b0000 and 0b0001.
From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [3:0]
Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including speculative instruction fetches. The defined values of this field are:
0b0000 The PE never generates an SError interrupt due to an External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an External abort on a speculative read.
All other values are reserved.

Accessing the ID_MMFR4
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{<c>\}{<q>} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR.EL2.TID3") && HCR.EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR4) || boolean IMPLEMENTATION_DEFINED "ID_MMFR4 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_MMFR4;
 elsif PSTATE.EL == EL2 then
 return ID_MMFR4;
 elsif PSTATE.EL == EL3 then
 return ID_MMFR4;
endif

G8.2.97 ID_MMFR5, Memory Model Feature Register 5

The ID_MMFR5 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register ID_MMFR5[31:0] is architecturally mapped to AArch64 System register ID_MMFR5_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_MMFR5 are UNDEFINED.

Attributes

ID_MMFR5 is a 32-bit register.

Field descriptions

The ID_MMFR5 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:4]</th>
<th>RES0</th>
<th>ETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS, bits [3:0]</td>
<td>Support for Enhanced Translation Synchronization. Defined values are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0b0000 Enhanced Translation Synchronization is not supported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0b0001 Enhanced Translation Synchronization is supported.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All other values are reserved.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEAT_ETS implements the functionality identified by the value 0b0001.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From Armv8.0, the permitted values are 0b0000 and 0b0001.</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the ID_MMFR5

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR.TID3") && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return ID_MMFRS;
elsif PSTATE.EL == EL2 then
 return ID_MMFRS;
elsif PSTATE.EL == EL3 then
 return ID_MMFRS;
G8.2.98 ID_PFR0, Processor Feature Register 0

The ID_PFR0 characteristics are:

Purpose

Gives top-level information about the instruction sets and other features supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144

Configurations

AArch32 System register ID_PFR0[31:0] is architecturally mapped to AArch64 System register ID_PFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR0 are UNDEFINED.

Attributes

ID_PFR0 is a 32-bit register.

Field descriptions

The ID_PFR0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>DIT</td>
<td>AMU</td>
<td>CSV2</td>
<td>State3</td>
<td>State2</td>
<td>State1</td>
<td>State0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAS, bits [31:28]

RAS Extension version. Defined values are:

- 0b0000 No RAS Extension.
- 0b0001 RAS Extension present.
- 0b0010 FEAT_RASv1p1 present. As 0b0001, and adds support for additional ERXMISC<m> System registers. Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR<n>STATUS and support for the optional RAS Timestamp Extension.

All other values are reserved.

In Armv8.1 and Armv8.0, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR.NUM is 0, the permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010. Otherwise, from Armv8.4, the only permitted value is 0b0010.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

- 0b0000 AArch32 does not guarantee constant execution time of any instructions.
- 0b0001 AArch32 provides the CPSR.DIT mechanism to guarantee constant execution time of certain instructions.

All other values are reserved.
FEAT_DIT implements the functionality identified by the value 0b0001.
From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]
Indicates support for Activity Monitors Extension. Defined values are:
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the activity monitor event counters.
All other values are reserved.
FEAT_AMUv1 implements the functionality identified by the value 0b0001.
FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.
In Armv8.0, the only permitted value is 0b0000.
In Armv8.4, the permitted values are 0b0000 and 0b0001.
From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

CSV2, bits [19:16]
Speculative use of out of context branch targets. Defined values are:
0b0000 This Device does not disclose whether branch targets trained in one hardware described context can affect speculative execution in a different hardware described context.
0b0001 Branch targets trained in one hardware described context can only affect speculative execution in a different hardware described context in a hard-to-determine way.
All other values are reserved.
FEAT_CSV2 implements the functionality identified by 0b0001.
From Armv8.5, the only permitted value is 0b0001.

State3, bits [15:12]
T32EE instruction set support. Defined values are:
0b0000 Not implemented.
0b0001 T32EE instruction set implemented.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

State2, bits [11:8]
Jazelle extension support. Defined values are:
0b0000 Not implemented.
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV on exception entry.
0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on exception entry.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

State1, bits [7:4]
T32 instruction set support. Defined values are:
0b0000 T32 instruction set not implemented.
0b0001 T32 encodings before the introduction of Thumb-2 technology implemented:
• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions
• 32-bit instructions other than BL and BLX cannot be encoded.
0b0011 T32 encodings after the introduction of Thumb-2 technology implemented, for all 16-bit and 32-bit T32 basic instructions.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

- 0b0000 A32 instruction set not implemented.
- 0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_PFR0

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\{<c>\}{<q>} <coproc>, \(#)<opc1>, <Rt>, <CRn>, <CRm>{, \(#)<opc2}> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_PFR0;
elif PSTATE.EL == EL2 then
 return ID_PFR0;
elif PSTATE.EL == EL3 then
 return ID_PFR0;
G8.2.99 ID_PFR1, Processor Feature Register 1

The ID_PFR1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.
Must be interpreted with ID_PFR0.
For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations
AArch32 System register ID_PFR1[31:0] is architecturally mapped to AArch64 System register ID_PFR1_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR1 are UNDEFINED.

Attributes
ID_PFR1 is a 32-bit register.

Field descriptions
The ID_PFR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIC</td>
<td>Virt_frac</td>
<td>Sec_frac</td>
<td>GenTimer</td>
<td>MProgMod</td>
<td>Security</td>
<td>ProgMod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GIC, bits [31:28]
System register GIC CPU interface. Defined values are:
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.
All other values are reserved.

Virt_frac, bits [27:24]
Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the ARMv7 Virtualization Extensions. Defined values are:
0b0000 No features from the ARMv7 Virtualization Extensions are implemented.
0b0001 The following features of the ARMv7 Virtualization Extensions are implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits described in the Virtualization Extensions, if EL3 is implemented.
• The MSR (banked register) and MRS (banked register) instructions.
• The ERET instruction.
All other values are reserved.
In Armv8-A, the permitted values are:
• 0b0000 when EL2 is implemented.
• 0b0001 when EL2 is not implemented.
This field is only valid when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value 0b0000.

--- Note ---
The ID_ISAR registers do not identify whether the instructions added by the ARMv7 Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7 Security Extensions. Defined values are:

- **0b0000** No features from the ARMv7 Security Extensions are implemented.
- **0b0001** The following features from the ARMv7 Security Extensions are implemented:
 - The VBAR register.
 - The TTBCR.PD0 and TTBCR.PD1 bits.
- **0b0010** As for 0b0001, plus the ability to access Secure or Non-secure physical memory is supported.

All other values are reserved.

In Armv8-A, the permitted values are:

- **0b0000** when EL3 is implemented.
- **0b0001** or **0b0010** when EL3 is not implemented.

This field is only valid when the value of ID_PFR1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

- **0b0000** Generic Timer is not implemented.
- **0b0001** Generic Timer is implemented.
- **0b0010** Generic Timer is implemented, and also includes support for CNTHCTL.EVNTIS and CNTKCTL.EVNTIS fields, and CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0 to Armv8.4, the only permitted value is 0b0001.

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

- **0b0000** EL2, Hyp mode, and the HVC instruction not implemented.
- **0b0001** EL2, Hyp mode, the HVC instruction, and all the features described by Virt_frac == 0b0001 implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

- **0b0000** when EL2 is not implemented.
- **0b0001** when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the value 0b0001.

--- Note ---
The ID_ISARs do not identify whether the HVC instruction is implemented.
MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:
- 0b0000 Not supported.
- 0b0010 Support for two-stack programmers' model.
All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:
- 0b0000 EL3, Monitor mode, and the SMC instruction not implemented.
- 0b0001 EL3, Monitor mode, the SMC instruction, and all the features described by Sec_frac == 0b0001 implemented.
- 0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit. Not permitted in Armv8
 as the NSACR.RFR bit is RES0.

All other values are reserved.
In Armv8-A, the permitted values are:
- 0b0000 when EL3 is not implemented.
- 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then
this field has the value 0b0001.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ,
IRQ, Supervisor, Abort, Undefined, and System modes. Defined values are:
- 0b0000 Not supported.
- 0b0001 Supported.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_PFR1

Accesses to this register use the following encodings in the System instruction encoding space:

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return ID_PFR1;
 elif PSTATE_EL == EL2 then
 return ID_PFR1;
elsif PSTATE.EL == EL3 then
 return ID_PFR1;
G8.2.100 ID_PFR2, Processor Feature Register 2

The ID_PFR2 characteristics are:

Purpose

Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0 and ID_PFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register ID_PFR2[31:0] is architecturally mapped to AArch64 System register ID_PFR2_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR2 are UNDEFINED.

Attributes

ID_PFR2 is a 32-bit register.

Field descriptions

The ID_PFR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>31</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAS_frac</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSBS</td>
<td></td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSV3</td>
<td></td>
<td></td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:12]

Reserved, RES0.

RAS_frac, bits [11:8]

RAS Extension fractional field.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>If ID_PFR0.RAS == 0b0001, RAS Extension implemented.</td>
</tr>
<tr>
<td>0b0001</td>
<td>If ID_PFR0.RAS == 0b0001, as 0b0000 and adds support for additional ERXMISC<m> System registers.</td>
</tr>
</tbody>
</table>

Error records accessed through System registers conform to RAS System Architecture v1.1, which includes simplifications to ERR<n>STATUS and support for the optional RAS Timestamp Extension.

All other values are reserved.

This field is valid only if ID_PFR0.RAS == 0b0001.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>AArch32 provides no mechanism to control the use of Speculative Store Bypassing.</td>
</tr>
<tr>
<td>0b0001</td>
<td>AArch32 provides the PSTATE.SSBS mechanism to mark regions that are Speculative Store Bypass Safe.</td>
</tr>
</tbody>
</table>

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

All other values are reserved.
CSV3, bits [3:0]

Speculative use of faulting data. Defined values are:

0b0000 This Device does not disclose whether data loaded under speculation with a permission or domain fault can be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form an address or generate condition codes or SVE predicate values to be used by instructions newer than the load in the speculative sequence.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Accessing the ID_PFR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{\langle c \rangle}\{\langle q \rangle\} <\text{coproc}>, \{\#\langle opc1 \rangle\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{\#\langle opc2 \rangle\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ID_PFR2;
 endif
elsif PSTATE.EL == EL2 then
 return ID_PFR2;
elsif PSTATE.EL == EL3 then
 return ID_PFR2;
G8.2.101 IFAR, Instruction Fault Address Register

The IFAR characteristics are:

Purpose

Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception.

Configurations

AArch32 System register IFAR[31:0] is architecturally mapped to AArch64 System register FAR_EL1[63:32].

AArch32 System register IFAR[31:0](S) is architecturally mapped to AArch32 System register HIFAR[31:0] when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

AArch32 System register IFAR[31:0](S) is architecturally mapped to AArch64 System register FAR_EL2[63:32] when EL2 is implemented.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to IFAR are UNDEFINED.

Attributes

IFAR is a 32-bit register.

Field descriptions

The IFAR bit assignments are:

- **Bits [31:0]**
 VA of faulting address of synchronous Prefetch Abort exception

This field resets to an architecturally UNKNOWN value.

Accessing the IFAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>}, \{#<opc1>\}, <Rt>, <CRn>, <CRm>{, \{#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return IFAR_NS;
else
 return IFAR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFAR_NS;
 else
 return IFAR;
else
 return IFAR_NS;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return IFAR_S;
 else
 return IFAR_NS;
else
 return IFAR_NS;

MCR{c}<q> <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0110</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
else
 IFAR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFAR_NS = R[t];
 else
 IFAR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFAR_S = R[t];
 else
 IFAR_NS = R[t];
G8.2.102 IFSR, Instruction Fault Status Register

The IFSR characteristics are:

Purpose
Holds status information about the last instruction fault.

Configurations
AArch32 System register IFSR[31:0] is architecturally mapped to AArch64 System register IFSR32_EL2[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to IFSR are UNDEFINED.
The current translation table format determines which format of the register is used.

Attributes
IFSR is a 32-bit register.

Field descriptions
The IFSR bit assignments are:

When TTBCR.EAE == 0:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>30</td>
<td>FS[4]</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28</td>
<td>LPAE</td>
</tr>
<tr>
<td>27</td>
<td>FS[3]</td>
</tr>
<tr>
<td>26</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>25</td>
<td>ExT</td>
</tr>
<tr>
<td>24</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>23</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>22</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>21</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>20</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>19</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>18</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>17</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>16</td>
<td>FnV, bit 16</td>
</tr>
<tr>
<td>15</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>14</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>13</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>12</td>
<td>ExT, bit 12</td>
</tr>
<tr>
<td>11</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>10</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>9</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>2</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

FnV, bit [16]
FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

0b0 IFAR is valid.
0b1 IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Prefetch Abort exceptions.
This field resets to an architecturally UNKNOWN value.

ExT, bit [12]
External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.
In an implementation that does not provide any classification of External aborts, this bit is RES0.
For aborts other than External aborts this bit always returns 0.
This field resets to an architecturally UNKNOWN value.
Bit [11]

Reserved, RES0.

FS[4], bit [10]

This field is bit[4] of FS[4:0].

- 0b00001 PC alignment fault.
- 0b00010 Debug exception.
- 0b00011 Access flag fault, level 1.
- 0b00101 Translation fault, level 1.
- 0b00110 Access flag fault, level 2.
- 0b00111 Translation fault, level 2.
- 0b01000 Synchronous External abort, not on translation table walk.
- 0b01001 Domain fault, level 1.
- 0b01011 Domain fault, level 2.
- 0b01100 Synchronous External abort, on translation table walk, level 1.
- 0b01101 Permission fault, level 1.
- 0b01110 Synchronous External abort, on translation table walk, level 2.
- 0b01111 Permission fault, level 2.
- 0b10000 TLB conflict abort.
- 0b10100 IMPLEMENTATION DEFINED fault (Lockdown fault).
- 0b11001 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.
- 0b11100 When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 1.
- 0b11110 When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 2.

All other values are reserved.

For more information about the lookup level associated with a fault, see *The level associated with MMU faults on a Short-descriptor translation table lookup* on page G5-6070.

The FS field is split as follows:

- FS[4] is IFSR[10].
- FS[3:0] is IFSR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

- 0b0 Using the Short-descriptor translation table formats.
- 0b1 Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].

When TTBCR.EAE == 1:

Bits [31:17]

FnV, bit [16]

Far not Valid, for a synchronous External abort other than a synchronous External abort on a translation table walk.

- 0b0: IFAR is valid.
- 0b1: IFAR is not valid, and holds an UNKNOWN value.

This field is only valid for a synchronous External abort other than a synchronous External abort on a translation table walk. It is RES0 for all other Prefetch Abort exceptions.

This field resets to an architecturally UNKNOWN value.

Bits [15:13]

Reserved, RES0.

ExT, bit [12]

External abort type. This bit can be used to provide an IMPLEMENTATION DEFINED classification of External aborts.

In an implementation that does not provide any classification of External aborts, this bit is RES0.

For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

On taking a Data Abort exception, this bit is set as follows:

- 0b0: Using the Short-descriptor translation table formats.
- 0b1: Using the Long-descriptor translation table formats.

Hardware does not interpret this bit to determine the behavior of the memory system, and therefore software can set this bit to 0 or 1 without affecting operation.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status bits. Possible values of this field are:

- 0b000000: Address size fault in translation table base register.
0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b011000 Synchronous External abort, not on translation table walk.
0b011001 Synchronous parity or ECC error on memory access, not on translation table walk.
0b011010 Synchronous External abort on translation table walk, level 1.
0b011101 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 1.
0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 2.
0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 3.
0b100001 PC alignment fault.
0b100010 Debug exception.
0b100000 TLB conflict abort.
All other values are reserved.
When the RAS Extension is implemented, 0b011000, 0b011101, 0b011110, and 0b011111, are reserved.
For more information about the lookup level associated with a fault, see The level associated with MMU faults on a Long-descriptor translation table lookup on page G5-6072.
This field resets to an architecturally UNKNOWN value.

Accessing the IFSR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>(, (#)<opc2>)
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFSR_NS;
else
 return IFSR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return IFSR_NS;
 else
 return IFSR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return IFSR_S;
 else
 return IFSR_NS;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 IFSR_NS = R[t];
 else
 IFSR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 IFSR_S = R[t];
 else
 IFSR_NS = R[t];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>
G8.2.103 ISR, Interrupt Status Register

The ISR characteristics are:

Purpose

Shows the pending status of the IRQ, FIQ, or SError.

When executing at EL2, EL3, or Secure EL1, when SCR_EL3.EEL2 == 0b0, this shows the pending status of the physical interrupts.

When executing at Non-secure EL1, or at Secure EL1, when SCR_EL3.EEL2 == 0b01:

- If the HCR.{IMO,FMO,AMO} bit has a value of 1, the corresponding ISR.{I,F,A} bit shows the pending status of the virtual IRQ, FIQ, or SError.
- If the HCR.{IMO,FMO,AMO} bit has a value of 0, the corresponding ISR.{I,F,A} bit shows the pending status of the physical IRQ, FIQ, or SError.

Configurations

AArch32 System register ISR[31:0] is architecturally mapped to AArch64 System register ISR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ISR are UNDEFINED.

Attributes

ISR is a 32-bit register.

Field descriptions

The ISR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>A</td>
<td>I</td>
<td>F</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:9]

Reserved, RES0.

A, bit [8]

SError interrupt pending bit:

\[\begin{align*}
0b0 & \quad \text{No pending SError interrupt.} \\
0b1 & \quad \text{An SError interrupt is pending.}
\end{align*} \]

If the SError interrupt is edge-triggered, this field is cleared to zero when the physical SError interrupt is taken.

I, bit [7]

IRQ pending bit. Indicates whether an IRQ interrupt is pending:

\[\begin{align*}
0b0 & \quad \text{No pending IRQ.} \\
0b1 & \quad \text{An IRQ interrupt is pending.}
\end{align*} \]

F, bit [6]

FIQ pending bit. Indicates whether an FIQ interrupt is pending:

\[\begin{align*}
0b0 & \quad \text{No pending FIQ.} \\
0b1 & \quad \text{An FIQ interrupt is pending.}
\end{align*} \]
Bits [5:0]
Reserved, RES0.

Accessing the ISR

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC}\{<c>\}{<q>}\ <\text{coproc}>,\ (#)<\text{opc}1>,\ <Rt>,\ <\text{CRn}>,\ <\text{CRm}>,\ (#)<\text{opc}2> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return ISR;
 elsif PSTATE.EL == EL2 then
 return ISR;
elsif PSTATE.EL == EL3 then
 return ISR;
G8.2.104 ITLBIALL, Instruction TLB Invalidate All

The ITLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that are from any level of the translation table walk. The entries that are invalidated are as follows:

- If executed at EL1, all entries that:
 - Would be required for the EL1&0 translation regime.
 - Match the current VMID, if EL2 is implemented and enabled in the current Security state.
- If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
- If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table entries that would be required for the Non-secure PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ITLBIALL are UNDEFINED.

Attributes

ITLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by \(<Rt>\) is ignored.

Executing the ITLBIALL instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR\(<c>\)|\(<q>\) <coproc>, \(#<opc1>, <Rt>, <CRn>, <CRm>, \(#<opc2>\)
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ITLBIALL();
 endif
elsif PSTATE.EL == EL2 then
 ITLBIALL();
elsif PSTATE.EL == EL3 then
 ITLBIAI();
G8.2.105 ITLBIASID, Instruction TLB Invalidate by ASID match

The ITLBIASID characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
 - Is from a level of lookup above the final level.
 - Is a non-global entry from the final level of lookup.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ITLBIASID are **UNDEFINED**.

Attributes

ITLBIASID is a 32-bit System instruction.

Field descriptions

The ITLBIASID input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System instruction.

Executing the ITLBIASID instruction

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ITLBIASID(R[t]);
 endif
elsif PSTATE.EL == EL2 then
 ITLBIASID(R[t]);
elsif PSTATE.EL == EL3 then
 ITLBIASID(R[t]);
G8.2.106 ITLBIMVA, Instruction TLB Invalidate by VA

The ITLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from instruction TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified address, and one of the following applies:
 - The entry is from a level of lookup above the final level and matches the specified ASID.
 - The entry is a global entry from the final level of lookup.
 - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Arm deprecates the use of this System instruction. It is only provided for backwards compatibility with earlier versions of the Arm architecture.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ITLBIMVA are UNDEFINED.

Attributes

ITLBIMVA is a 32-bit System instruction.

Field descriptions

The ITLBIMVA input value bit assignments are:

- VA, bits [31:12]: Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
- Bits [11:8]: Reserved, RES0.
- ASID, bits [7:0]: ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this operation, regardless of the value of the ASID field.

Executing the ITLBIMVA instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MCR\{<c>\}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 ITLBIMVA(R[t]);
 endif;
elsif PSTATE.EL == EL2 then
 ITLBIMVA(R[t]);
elsif PSTATE.EL == EL3 then
 ITLBIMVA(R[t]);
G8.2.107 JIDR, Jazelle ID Register

The JIDR characteristics are:

Purpose

A Jazelle register, which identified the Jazelle architecture version.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JIDR are UNDEFINED.

Attributes

JIDR is a 32-bit register.

Field descriptions

The JIDR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAZ</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:0]

Reserved, RAZ.

Accessing the JIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(c\{q\} \text{ coproc}, \{#}opc1\}, \text{<Rt>}, \text{<CRn>}, \text{<CRm>}, \{\#}opc2\})
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b111</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JIDR UNDEFINED at EL0" then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '1' && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 return JIDR;
 elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x05);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID0 == '1' then
 AArch32.TakeHypTrapException(0x05);
 else
 return JIDR;
 elsif PSTATE_EL == EL2 then
 return JIDR;
 elsif PSTATE_EL == EL3 then
 return JIDR;
G8.2.108 JMCR, Jazelle Main Configuration Register

The JMCR characteristics are:

Purpose

A Jazelle register, which provides control of the Jazelle extension.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JMCR are UNDEFINED.

Attributes

JMCR is a 32-bit register.

Field descriptions

The JMCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RAZ/WI</td>
</tr>
</tbody>
</table>

Accessing the JMCR

For accesses from EL0 it is IMPLEMENTATION DEFINED whether the register is RW or UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} \ <\text{coproc}> , \{#\}<\text{opc1}>, \ <\text{Rt}>, \ <\text{CRn}>, \ <\text{CRm}>\{, \{#\}<\text{opc2}\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1110 & 0b111 & 0b0010 & 0b0000 & 0b000 \\
\end{array}
\]

\[
\text{if} \ \text{PSTATE.EL} == \ \text{EL0} \ \text{then} \\
\quad \text{if} \ \text{boolean IMPLEMENTATION DEFINED} \ "\text{JMCR UNDEFINED at EL0}" \ \text{then} \\
\quad \ \text{UNDEFINED;} \\
\quad \text{else} \\
\quad \ \text{return JMCR;} \\
\text{elsif} \ \text{PSTATE.EL} == \ \text{EL1} \ \text{then} \\
\quad \text{return JMCR;} \\
\text{elsif} \ \text{PSTATE.EL} == \ \text{EL2} \ \text{then} \\
\quad \text{return JMCR;} \\
\text{elsif} \ \text{PSTATE.EL} == \ \text{EL3} \ \text{then} \\
\quad \text{return JMCR;} \\
\]
MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JMCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 //no operation
elsif PSTATE.EL == EL1 then
 //no operation
elsif PSTATE.EL == EL2 then
 //no operation
elsif PSTATE.EL == EL3 then
 //no operation

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b111</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
G8.2.109 JOSCR, Jazelle OS Control Register

The JOSCR characteristics are:

Purpose

A Jazelle register, which provides operating system control of the Jazelle Extension.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to JOSCR are UNDEFINED.

Attributes

JOSCR is a 32-bit register.

Field descriptions

The JOSCR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Reserved, RAZ/WI</th>
</tr>
</thead>
</table>

Accessing the JOSCR

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b111</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 return JOSCR;
elsif PSTATE.EL == EL1 then
 return JOSCR;
elsif PSTATE.EL == EL2 then
 return JOSCR;
elsif PSTATE.EL == EL3 then
 return JOSCR;
MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm> },{ (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b111</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if boolean IMPLEMENTATION_DEFINED "JOSCR UNDEFINED at EL0" then
 UNDEFINED;
 else
 // no operation
 elsif PSTATE.EL == EL1 then
 // no operation
 elsif PSTATE.EL == EL2 then
 // no operation
 elsif PSTATE.EL == EL3 then
 // no operation
MAIR0, Memory Attribute Indirection Register 0

The MAIR0 characteristics are:

Purpose

Along with MAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:
- When AttrIndx[2] is 0, MAIR0 is used.
- When AttrIndx[2] is 1, MAIR1 is used.

Configurations

AArch32 System register MAIR0[31:0] is architecturally mapped to AArch64 System register MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0[31:0] is architecturally mapped to AArch32 System register PRRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0[31:0](MAIR0_NS) is architecturally mapped to AArch32 System register PRRR[31:0] (PRRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR0[31:0](MAIR0_S) is architecturally mapped to AArch32 System register PRRR[31:0] (PRRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR0 are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:
- When it is set to 0, the register is as described in PRRR.
- When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes

MAIR0 is a 32-bit register.

Field descriptions

The MAIR0 bit assignments are:

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>16 15</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attr3</td>
<td>Attr2</td>
<td>Attr1</td>
<td>Attr0</td>
<td></td>
</tr>
</tbody>
</table>

Attr<n>, bits [8n+7:8n], for n = 0 to 3

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:
- AttrIndx[2:0] gives the value of <n> in Attr<n>.
- AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.
Bits [7:4] are encoded as follows:

<table>
<thead>
<tr>
<th>Attr<n>[7:4]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>Normal memory, Outer Write-Through Transient.</td>
</tr>
<tr>
<td>0b100</td>
<td>Normal memory, Outer Non-cacheable.</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>Normal memory, Outer Write-Back Transient.</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Outer Write-Through Non-transient.</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Outer Write-Back Non-transient.</td>
</tr>
</tbody>
</table>

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.
The meaning of bits [3:0] depends on the value of bits [7:4]:

<table>
<thead>
<tr>
<th>Attr<n>[3:0]</th>
<th>Meaning when Attr<n>[7:4] is 0b0000</th>
<th>Meaning when Attr<n>[7:4] is not 0b0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device-nGnRnE memory</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Device-nGnRE memory</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b1000</td>
<td>Device-nGRE memory</td>
<td>Normal memory, Inner Write-Through Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b10RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Non-transient</td>
</tr>
<tr>
<td>0b1100</td>
<td>Device-GRE memory</td>
<td>Normal memory, Inner Write-Back Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b11RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.
The R and W bits in some Attr<n> fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR0

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 end if
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
 end if
 end if
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 end if
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
 end if
 end if
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR0_S;
 else
 return MAIR0_NS;
 end if
 else
 if SCR.NS == '0' then
 return PRRR_S;
 else
 return PRRR_NS;
 end if
 end if

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 end if
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
 end if
 end if
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR0_NS;
 else
 return PRRR_NS;
 end if
 else
 if TTBCR.EAE == '1' then
 return MAIR0;
 else
 return PRRR;
 end if
 end if
elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR0_S;
 else
 return MAIR0_NS;
 end if
 else
 if SCR.NS == '0' then
 return PRRR_S;
 else
 return PRRR_NS;
 end if
 end if
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
 end
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 else
 if TTBCR.EAE == '1' then
 MAIR0 = R[t];
 else
 PRRR = R[t];
 end
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elseif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 end
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];
 end
 end
 end
else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 end
 else
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];
 end
 end
G8.2.111 MAIR1, Memory Attribute Indirection Register 1

The MAIR1 characteristics are:

Purpose

Along with MAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:
- When AttrIndx[2] is 0, MAIR0 is used.
- When AttrIndx[2] is 1, MAIR1 is used.

Configurations

AArch32 System register MAIR1[31:0] is architecturally mapped to AArch64 System register MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1[31:0] is architecturally mapped to AArch32 System register NMRR[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1[31:0](MAIR1_NS) is architecturally mapped to AArch32 System register NMRR[31:0](NMRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR1[31:0](MAIR1_S) is architecturally mapped to AArch32 System register NMRR[31:0](NMRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR1 are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:
- When it is set to 0, the register is as described in NMRR.
- When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes

MAIR1 is a 32-bit register.

Field descriptions

The MAIR1 bit assignments are:

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>16 15</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attr7</td>
<td>Attr6</td>
<td>Attr5</td>
<td>Attr4</td>
<td></td>
</tr>
</tbody>
</table>

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:
- AttrIndx[2:0] gives the value of <n> in Attr<n>.
- AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.
Bits [7:4] are encoded as follows:

<table>
<thead>
<tr>
<th>Attr<n>[7:4]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device memory. See encoding of Attr<n>[3:0] for the type of Device memory.</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>Normal memory, Outer Write-Through Transient.</td>
</tr>
<tr>
<td>0b0100</td>
<td>Normal memory, Outer Non-cacheable.</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>Normal memory, Outer Write-Back Transient.</td>
</tr>
<tr>
<td>0b10RW</td>
<td>Normal memory, Outer Write-Through Non-transient.</td>
</tr>
<tr>
<td>0b11RW</td>
<td>Normal memory, Outer Write-Back Non-transient.</td>
</tr>
</tbody>
</table>

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.
The meaning of bits [3:0] depends on the value of bits [7:4]:

<table>
<thead>
<tr>
<th>Attr<n>[3:0]</th>
<th>Meaning when Attr<n>[7:4] is 0b0000</th>
<th>Meaning when Attr<n>[7:4] is not 0b0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Device-nGnRnE memory</td>
<td>UNPREDICTABLE</td>
</tr>
<tr>
<td>0b00RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Transient</td>
</tr>
<tr>
<td>0b0100</td>
<td>Device-nGnRE memory</td>
<td>Normal memory, Inner Non-cacheable</td>
</tr>
<tr>
<td>0b01RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Transient</td>
</tr>
<tr>
<td>0b1000</td>
<td>Device-nGRE memory</td>
<td>Normal memory, Inner Write-Through Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b10RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Through Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b1100</td>
<td>Device-GRE memory</td>
<td>Normal memory, Inner Write-Back Non-transient (RW=0b00)</td>
</tr>
<tr>
<td>0b11RW, RW not 0b00</td>
<td>UNPREDICTABLE</td>
<td>Normal memory, Inner Write-Back Non-transient</td>
</tr>
</tbody>
</table>

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.
The R and W bits in some Attr<n> fields have the following meanings:

<table>
<thead>
<tr>
<th>R or W</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>No Allocate</td>
</tr>
<tr>
<td>0b1</td>
<td>Allocate</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the MAIR1

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 else
 if TTBCR.EAE == '1' then
 return MAIR1;
 else
 return NMRR;
 elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return MAIR1_NS;
 else
 if SCR.NS == '0' then
 return NMRR_S;
 else
 return NMRR_NS;
 MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 end
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 end
 if TTBCR.EAE == '1' then
 MAIR1 = R[t];
 else
 NMRR = R[t];
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR1_S = R[t];
 else
 MAIR1_NS = R[t];
 end
 else
 NMRR_S = R[t];
 end
 if SCR.NS == '0' then
 NMRR_S = R[t];
 else
 NMRR_NS = R[t];
 end
 end
 end
end
G8.2.112 MIDR, Main ID Register

The MIDR characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

AArch32 System register MIDR[31:0] is architecturally mapped to AArch64 System register MIDR_EL1[31:0].

AArch32 System register MIDR[31:0] is architecturally mapped to External register MIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MIDR are UNDEFINED.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For details of the values of these fields for a particular Armv8 implementation, and any implementation-specific significance of these values, see the product documentation.

Attributes

MIDR is a 32-bit register.

Field descriptions

The MIDR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>20 19</th>
<th>16 15</th>
<th>4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementer</td>
<td>Variant</td>
<td>PartNum</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>

Architecture

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes include the following:

<table>
<thead>
<tr>
<th>Hex representation</th>
<th>Implementer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Reserved for software use</td>
</tr>
<tr>
<td>0xC0</td>
<td>Ampere Computing</td>
</tr>
<tr>
<td>0x41</td>
<td>Arm Limited</td>
</tr>
<tr>
<td>0x42</td>
<td>Broadcom Corporation</td>
</tr>
<tr>
<td>0x43</td>
<td>Cavium Inc.</td>
</tr>
<tr>
<td>0x44</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>0x46</td>
<td>Fujitsu Ltd.</td>
</tr>
<tr>
<td>0x49</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td>0x4D</td>
<td>Motorola or Freescale Semiconductor Inc.</td>
</tr>
<tr>
<td>0x4E</td>
<td>NVIDIA Corporation</td>
</tr>
<tr>
<td>Hex representation</td>
<td>Implementer</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>0x50</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
<tr>
<td>0x51</td>
<td>Qualcomm Inc.</td>
</tr>
<tr>
<td>0x56</td>
<td>Marvell International Ltd.</td>
</tr>
<tr>
<td>0x69</td>
<td>Intel Corporation</td>
</tr>
</tbody>
</table>

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

Architecture, bits [19:16]

Architecture version. Defined values are:

- **0b0001**: Armv4.
- **0b0010**: Armv4T.
- **0b0011**: Armv5 (obsolete).
- **0b0100**: Armv5T.
- **0b0101**: Armv5TE.
- **0b0110**: Armv5TEJ.
- **0b0111**: Armv6.
- **0b1111**: Architectural features are individually identified in the ID_* registers, see ID registers on page K15-8205.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{c\}{q}\ proc, \{\#}\opc1, \{\#\}Rt, CRn, \{\#\}CRm\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>
elsif EL2Enabled() && !ELUsingAArch32(EL2) then
 return VPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then
 return VPIDR;
else
 return MIDR;
elsif PSTATE.EL == EL2 then
 return MIDR;
elsif PSTATE.EL == EL3 then
 return MIDR;
G8.2.113 MPIDR, Multiprocessor Affinity Register

The MPIDR characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configurations

AArch32 System register MPIDR[31:0] is architecturally mapped to AArch64 System register MPIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MPIDR are UNDEFINED.

In a uniprocessor system Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes

MPIDR is a 32-bit register.

Field descriptions

The MPIDR bit assignments are:

```
  31 30 29  25 24 23  16 15  8  7  0
M  U  RES0  Aff2  Aff1  Aff0
MT
```

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing Extensions. The possible values of this bit are:

- 0b0 This implementation does not include the ARMv7 Multiprocessing Extensions functionality.
- 0b1 This implementation includes the ARMv7 Multiprocessing Extensions functionality.

From Armv8, this bit is RAO.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

- 0b0 Processor is part of a multiprocessor system.
- 0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

- 0b0 Performance of PEs at the lowest affinity level, or PEs with MPIDR.MT set to 1, different affinity level 0 values, and the same values for affinity level 1 and higher, is largely independent.
Performance of PEs at the lowest affinity level, or PEs with MPIDR.MT set to 1, different affinity level 0 values, and the same values for affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.\{Aff2, Aff1, Aff0\} or MPIDR._EL1.\{Aff3, Aff2, Aff1, Aff0\} set of fields of each PE must be unique within the system as a whole.

Accessing the MPIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\{<c>\}{<q>} <coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>{, \{#<opc2}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) then
        return VMPIDR_EL2<31:0>;
    elseif EL2Enabled() && ELUsingAArch32(EL2) then
        return VMPIDR;
    else
        return MPIDR;
    endif;
elsif PSTATE.EL == EL2 then
    return MPIDR;
elsif PSTATE.EL == EL3 then
    return MPIDR;
```
G8.2.114 MVBAR, Monitor Vector Base Address Register

The MVBAR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, holds the vector base address for any exception that is taken to Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot sequence.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVBAR are UNDEFINED.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes the last value written to it.

On a reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION DEFINED choice between the following:

- MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN, MVBAR[4:1] = RES0, and MVBAR[0] = 0.
- MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset address, and MVBAR[0] = 1.

Attributes

MVBAR is a 32-bit register.

Field descriptions

The MVBAR bit assignments are:

When programmed with a vector base address:

<table>
<thead>
<tr>
<th>31</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Base Address</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing the MVBAR

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 return RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 return RVBAR;
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];
 endif
 endif
 endif
endif

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];
 endif
 endif
endif

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if IsHighestEL(EL1) then
 return RVBAR;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 return RVBAR;
 else
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 MVBAR = R[t];
 endif
 endif
 endif
endif
G8.2.115 MVFR0, Media and VFP Feature Register 0

The MVFR0 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR1 and MVFR2.

For general information about the interpretation of the ID registers see *Principles of the ID scheme for fields in ID registers* on page G8-6144.

Configurations

AArch32 System register MVFR0[31:0] is architecturally mapped to AArch64 System register MVFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR0 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR0 is a 32-bit register.

Field descriptions

The MVFR0 bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FPRound</td>
<td></td>
<td></td>
<td></td>
<td>FPSqrt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIMDReg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FPShVec</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

FPRound, bits [31:28]

Floating-Point Rounding modes. Indicates whether the floating-point implementation provides support for rounding modes. Defined values are:

- **0b0000**: Not implemented, or only Round to Nearest mode supported, except that Round towards Zero mode is supported for VCVT instructions that always use that rounding mode regardless of the FPSCR setting.
- **0b0001**: All rounding modes supported.

All other values are reserved.

In Armv8-A, the permitted values are **0b0000** and **0b0001**.

FPShVec, bits [27:24]

Short Vectors. Indicates whether the floating-point implementation provides support for the use of short vectors. Defined values are:

- **0b0000**: Short vectors not supported.
- **0b0001**: Short vector operation supported.

All other values are reserved.

In Armv8-A, the only permitted value is **0b0000**.

FPSqrt, bits [23:20]

Square Root. Indicates whether the floating-point implementation provides support for the ARMv6 VFP square root operations. Defined values are:

- **0b0000**: Not supported in hardware.
0b0001 Supported.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
The VSQRT.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VSQRT.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPDivide, bits [19:16]
Indicates whether the floating-point implementation provides support for VFP divide operations. Defined values are:
0b0000 Not supported in hardware.
0b0001 Supported.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0001.
The VDIV.F32 instruction also requires the single-precision floating-point attribute, bits [7:4], and the VDIV.F64 instruction also requires the double-precision floating-point attribute, bits [11:8].

FPTrap, bits [15:12]
Floating Point Exception Trapping. Indicates whether the floating-point implementation provides support for exception trapping. Defined values are:
0b0000 Not supported.
0b0001 Supported.
All other values are reserved.
A value of 0b0001 indicates that, when the corresponding trap is enabled, a floating-point exception generates an exception.

FPDP, bits [11:8]
Double Precision. Indicates whether the floating-point implementation provides support for double-precision operations. Defined values are:
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3, VFPv4, or Armv8. VFPv3 and Armv8 add an instruction to load a double-precision floating-point constant, and conversions between double-precision and fixed-point values.
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0010.
A value of 0b0001 or 0b0010 indicates support for all VFP double-precision instructions in the supported version of VFP, except that, in addition to this field being nonzero:
- VSQRT.F64 is only available if the Square root field is 0b0001.
- VDIV.F64 is only available if the Divide field is 0b0001.
- Conversion between double-precision and single-precision is only available if the single-precision field is nonzero.

FPSP, bits [7:4]
Single Precision. Indicates whether the floating-point implementation provides support for single-precision operations. Defined values are:
0b0000 Not supported in hardware.
0b0001 Supported, VFPv2.
0b0010 Supported, VFPv3 or VFPv4. VFPv3 adds an instruction to load a single-precision floating-point constant, and conversions between single-precision and fixed-point values.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

A value of 0b0001 or 0b0010 indicates support for all VFP single-precision instructions in the supported version of VFP, except that, in addition to this field being nonzero:

- VSQRT.F32 is only available if the Square root field is 0b0001.
- VDIV.F32 is only available if the Divide field is 0b0001.
- Conversion between double-precision and single-precision is only available if the double-precision field is nonzero.

SIMDReg, bits [3:0]

Advanced SIMD registers. Indicates whether the Advanced SIMD and floating-point implementation provides support for the Advanced SIMD and floating-point register bank. Defined values are:

- 0b0000 The implementation has no Advanced SIMD and floating-point support.
- 0b0001 The implementation includes floating-point support with 16 x 64-bit registers.
- 0b0010 The implementation includes Advanced SIMD and floating-point support with 32 x 64-bit registers.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0010.

Accessing the MVFR0

Accesses to this register use the following encodings in the System instruction encoding space:

`VMRS{<c>}{<q>} <Rt>, <spec_reg>`

```
0b0111
```

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if ELUsingAArch32(EL3) & SCR.NS == '1' & NSACR.cp10 == '0') || CPACR.cp10 == '0' then
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPACR.TCP10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPACR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
else
 return MVFR0;
elsif PSTATE_EL == EL2 then
 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 ==
'1') then
 AArch32.TakeHypTrapException(0x00);
 else
 return MVFR0;
 elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return MVFR0;
 end
 end

G8.2.116 MVFR1, Media and VFP Feature Register 1

The MVFR1 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR2.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register MVFR1[31:0] is architecturally mapped to AArch64 System register MVFR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR1 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR1 is a 32-bit register.

Field descriptions

The MVFR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPHP</td>
<td>SIMDHP</td>
<td>SIMDSP</td>
<td>SIMDInt</td>
<td>SIMDLS</td>
<td>FPNaN</td>
<td>FPFIZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIMDFMAC

SIMDFMAC, bits [31:28]

Advanced SIMD Fused Multiply-Accumulate. Indicates whether the Advanced SIMD implementation provides fused multiply accumulate instructions. Defined values are:

0b0000 Not implemented.
0b0001 Implemented.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.

The Advanced SIMD and floating-point implementations must provide the same level of support for these instructions.

FPHP, bits [27:24]

Floating Point Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

0b0000 Not supported.
0b0001 Floating-point half-precision conversion instructions are supported for conversion between single-precision and half-precision.
0b0010 As for 0b0001, and adds instructions for conversion between double-precision and half-precision.
0b0011 As for 0b0010, and adds support for half-precision floating-point arithmetic.

All other values are reserved.
In Armv8-A, the permitted values are:

- 0b0000 in an implementation without floating-point support.
- 0b0010 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
- 0b0011 in an implementation with floating-point support that includes the FEAT_FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the SIMDHP field, meaning the permitted values are:

<table>
<thead>
<tr>
<th>Half Precision instructions supported</th>
<th>FPHP</th>
<th>SIMDHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No support</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
<tr>
<td>Conversions only</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
<tr>
<td>Conversions and arithmetic</td>
<td>0b0011</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

SIMDHP, bits [23:20]

Advanced SIMD Half Precision. Indicates the level of half-precision floating-point support. Defined values are:

- 0b0000 Not supported.
- 0b0001 SIMD half-precision conversion instructions are supported for conversion between single-precision and half-precision.
- 0b0010 As for 0b0001, and adds support for half-precision floating-point arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are:

- 0b0000 in an implementation without SIMD floating-point support.
- 0b0010 in an implementation with SIMD floating-point support that does not include the FEAT_FP16 extension.
- 0b0011 in an implementation with SIMD floating-point support that includes the FEAT_FP16 extension.

The level of support indicated by this field must be equivalent to the level of support indicated by the FPHP field, meaning the permitted values are:

<table>
<thead>
<tr>
<th>Half Precision instructions supported</th>
<th>FPHP</th>
<th>SIMDHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No support</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
<tr>
<td>Conversions only</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
<tr>
<td>Conversions and arithmetic</td>
<td>0b0011</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

SIMDSP, bits [19:16]

Advanced SIMD Single Precision. Indicates whether the Advanced SIMD and floating-point implementation provides single-precision floating-point instructions. Defined values are:

- 0b0000 Not implemented.
- 0b0001 Implemented. This value is permitted only if the SIMDInt field is 0b0001.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0001.
SIMDInt, bits [15:12]

Advanced SIMD Integer. Indicates whether the Advanced SIMD and floating-point implementation provides integer instructions. Defined values are:

- \(0b0000\) Not implemented.
- \(0b0001\) Implemented.

All other values are reserved.

In Armv8-A, the permitted values are \(0b0000\) and \(0b0001\).

SIMDLS, bits [11:8]

Advanced SIMD Load/Store. Indicates whether the Advanced SIMD and floating-point implementation provides load/store instructions. Defined values are:

- \(0b0000\) Not implemented.
- \(0b0001\) Implemented.

All other values are reserved.

In Armv8-A, the permitted values are \(0b0000\) and \(0b0001\).

FPDNaN, bits [7:4]

Default NaN mode. Indicates whether the floating-point implementation provides support only for the Default NaN mode. Defined values are:

- \(0b0000\) Not implemented, or hardware supports only the Default NaN mode.
- \(0b0001\) Hardware supports propagation of NaN values.

All other values are reserved.

In Armv8-A, the permitted values are \(0b0000\) and \(0b0001\).

FPFiZ, bits [3:0]

Flush to Zero mode. Indicates whether the floating-point implementation provides support only for the Flush-to-Zero mode of operation. Defined values are:

- \(0b0000\) Not implemented, or hardware supports only the Flush-to-Zero mode of operation.
- \(0b0001\) Hardware supports full denormalized number arithmetic.

All other values are reserved.

In Armv8-A, the permitted values are \(0b0000\) and \(0b0001\).

Accessing the MVFR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{VMRS\{}<c>\}{<q}> <Rt>, <spec_reg>\]

<table>
<thead>
<tr>
<th>reg</th>
<th>0b0110</th>
</tr>
</thead>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if (ELUsingAArch32(EL1) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCR_EL2.TCP10 == '1') then
 reg 0b0110
AArch32.TakeHypTrapException(0x08);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x08);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then
 AArch32.TakeHypTrapException(0x08);
else
 return MVFR1;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x07);
 elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
 AArch32.TakeHypTrapException(0x00);
 else
 return MVFR1;
 end
elsif PSTATE.EL == EL3 then
 if CPACR.cp10 == '00' then
 UNDEFINED;
 else
 return MVFR1;
 end
G8.2.117 MVFR2, Media and VFP Feature Register 2

The MVFR2 characteristics are:

Purpose

Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.

Must be interpreted with MVFR0 and MVFR1.

For general information about the interpretation of the ID registers see Principles of the ID scheme for fields in ID registers on page G8-6144.

Configurations

AArch32 System register MVFR2[31:0] is architecturally mapped to AArch64 System register MVFR2_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR2 are UNDEFINED.

Implemented only if the implementation includes Advanced SIMD and floating-point instructions.

Attributes

MVFR2 is a 32-bit register.

Field descriptions

The MVFR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:8]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>FPMisc, bits [7:4]</td>
<td>Indicates whether the floating-point implementation provides support for miscellaneous VFP features.</td>
</tr>
<tr>
<td>SIMDMisc, bits [3:0]</td>
<td>Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.</td>
</tr>
</tbody>
</table>

RES0

FPMisc

SIMDMisc

Bits [31:8]

Reserved, RES0.

FPMisc, bits [7:4]

Indicates whether the floating-point implementation provides support for miscellaneous VFP features.

- 0b0000: Not implemented, or no support for miscellaneous features.
- 0b0001: Support for Floating-point selection.
- 0b0010: As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes.
- 0b0011: As 0b0010, and Floating-point Round to Integer Floating-point.
- 0b0100: As 0b0011, and Floating-point MaxNum and MinNum.

All other values are reserved.

In Armv8-A, the permitted values are 0b0000 and 0b0100.

SIMDMisc, bits [3:0]

Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.

- 0b0000: Not implemented, or no support for miscellaneous features.
- 0b0001: Floating-point Conversion to Integer with Directed Rounding modes.
- 0b0010: As 0b0001, and Floating-point Round to Integer Floating-point.
- 0b0011: As 0b0010, and Floating-point MaxNum and MinNum.

All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0011.

Accessing the MVFR2

Accesses to this register use the following encodings in the System instruction encoding space:

$$\text{VMRS}<c>\{<q>\} <Rt>, <\text{spec_reg}>$$

<table>
<thead>
<tr>
<th>reg</th>
<th>0b0101</th>
</tr>
</thead>
</table>

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then
    UNDEFINED;
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' then
    AArch64.AArch32SystemAccess Trap(EL2, 0x07);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
    if EL2 == EL3 then
      AArch64.AArch32SystemAccess Trap(EL2, 0x07);
    else
      AArch32.TakeHypTrapException(0x08);
    end if
  else
    return MVFR2;
  endif
elsif PSTATE.EL == EL2 then
  if HCR_EL2.E2H == '0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  elseif HCR_EL2.E2H == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x07);
  else
    return MVFR2;
  endif
elsif PSTATE.EL == EL3 then
  if CPACR.cp10 == '00' then
    UNDEFINED;
  else
    return MVFR2;
  endif
endif
```
G8.2.118 NMRR, Normal Memory Remap Register

The NMRR characteristics are:

Purpose

Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the PRRR.

Used in conjunction with the PRRR.

Configurations

AArch32 System register NMRR[31:0] is architecturally mapped to AArch64 System register MAIR_EL1[63:32] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR[31:0] is architecturally mapped to AArch32 System register MAIR1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR[31:0](NMRR_S) is architecturally mapped to AArch32 System register MAIR1[31:0] (MAIR1_S) when EL3 is using AArch32.

AArch32 System register NMRR[31:0](NMRR_NS) is architecturally mapped to AArch32 System register MAIR1[31:0] (MAIR1_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to NMRR are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

- When it is set to 0, the register is as described in NMRR.
- When it is set to 1, the register is as described in MAIR1.

Attributes

NMRR is a 32-bit register.

Field descriptions

The NMRR bit assignments are:

When TTBCR.EAE == 0:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
| OR7 | OR6 | OR5 | OR4 | OR3 | OR2 | OR1 | OR0 | IR7 | IR6 | IR5 | IR4 | IR3 | IR2 | IR1 | IR0 |

OR<n>, bits [2n+17:2n+16], for n = 0 to 7

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

- 0b00 Region is Non-cacheable.
- 0b01 Region is Write-Back, Write-Allocate.
- 0b10 Region is Write-Through, no Write-Allocate.
- 0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.
IR<\text{n}>, bits [2n+1:2n], for n = 0 to 7

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<\text{n}> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

- 0b00: Region is Non-cacheable.
- 0b01: Region is Write-Back, Write-Allocate.
- 0b10: Region is Write-Through, no Write-Allocate.
- 0b11: Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of the attribute combination \{TEX[0] = 1, C = 1, B = 0\} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the NMRR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{\text{c}\}\{\text{q}\} <\text{coproc}>, \{\#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{\#\}<\text{opc2}>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 end
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 end
 elsif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return NMRR_S;
 end
 elseif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 end
 elseif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return NMRR_S;
 end
 elseif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 return MAIR1_NS;
 else
 return NMRR_NS;
 end
 elseif PSTATE.EL == EL3 then
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 return MAIR1_S;
 else
 return NMRR_S;
 end
 else
 return NMRR;
 end
 end
 end
 end
 end
 end
end
return MAIR1_NS;
else
 if SCR.NS == '0'
 return NMRR_S;
 else
 return NMRR_NS;

MCR<c><q> <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1'
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1'
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1'
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1'
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1'
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1'
 MAIR1 = R[t];
 else
 NMRR = R[t];
 elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1'
 MAIR1_NS = R[t];
 else
 NMRR_NS = R[t];
 else
 if TTBCR.EAE == '1'
 MAIR1 = R[t];
 else
 NMRR = R[t];
 elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1'
 if SCR.NS == '0'
 MAIR1_S = R[t];
 else
 MAIR1_NS = R[t];
 else
 if SCR.NS == '0'
 NMRR_S = R[t];
 else
 NMRR_NS = R[t];
 endif
 endif
 endif
 endif
endif
G8.2.119 NSACR, Non-Secure Access Control Register

The NSACR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the Non-secure access permissions to Trace, Advanced SIMD and floating-point functionality. Also includes IMPLEMENTATION DEFINED bits that can define Non-secure access permissions for IMPLEMENTATION DEFINED functionality.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to NSACR are UNDEFINED.

Note

In AArch64 state, the NSACR controls are replaced by controls in CPTR_EL3.

Attributes

NSACR is a 32-bit register.

Field descriptions

The NSACR bit assignments are:

If EL3 is implemented and is using AArch64 then:

• Any read of the NSACR from Non-secure EL2 or Non-secure EL1 returns a value of 0x00000C00.
• Any read or write to NSACR from Secure EL1 is trapped as an exception to EL3.

If EL3 is not implemented, then any read of the NSACR from EL2 or EL1 returns a value of 0x00000C00.

Bits [31:21]

Reserved, RES0.

NSTRCDIS, bit [20]

Disables Non-secure System register accesses to all implemented trace registers.

0b0 This control has no effect on:

• System register access to implemented trace registers.
• The behavior of CPACR.TRCDIS and HCPTR.TTA.

0b1 Non-secure System register accesses to all implemented trace registers are disabled, meaning:

• CPACR.TRCDIS behaves as RAO/WI in Non-secure state, regardless of its actual value.
• HCPTR.TTA behaves as RAO/WI, regardless of its actual value.
The implementation of this field must correspond to the implementation of the CPACR.TRCDIS field:

- If CPACR.TRCDIS is RAZ/WI, this field is RAZ/WI.
- If CPACR.TRCDIS is RW, this field is RW.

Note

- The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED.
- The architecture does not provide Non-secure access controls on trace register accesses through the optional memory-mapped external debug interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any side-effects that are normally associated with the access do not occur before the exception is taken.

In a system where the PE resets into EL3, this field resets to 0.

Bit [19]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [18:16]

IMPLEMENTATION DEFINED.

NSASEDIS, bit [15]

Disables Non-secure access to the Advanced SIMD functionality.

0b0 This control has no effect on:
- Non-secure access to Advanced SIMD functionality.
- The behavior of CPACR.ASEDIS and HCPTR.TASE.

0b1 Non-secure access to the Advanced SIMD functionality is disabled, meaning:
- CPACR.ASEDIS behaves as RAO/WI in Non-secure state, regardless of its actual value.
- HCPTR.TASE behaves as RAO/WI, regardless of its actual value.

The implementation of this field must correspond to the implementation of the CPACR.ASEDIS field:

- If CPACR.ASEDIS is RES0, this field is RES0. If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.
- If CPACR.ASEDIS is RAZ/WI, this field is RAZ/WI.
- If CPACR.ASEDIS is RW, this field is RW.

In a system where the PE resets into EL3, this field resets to 0.

Bits [14:12]

Reserved, RES0.

cp11, bit [11]

The value of this field is ignored. If this field is programmed with a different value to the cp10 field then this field is UNKNOWN on a direct read of the NSACR.

If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.
cp10, bit [10]

Enable Non-secure access to the Advanced SIMD and floating-point features. Possible values of the fields are:

- 0b0: Advanced SIMD and floating-point features can be accessed only from Secure state. Any attempt to access this functionality from Non-secure state is UNDEFINED.
 - When the PE is in Non-secure state:
 - The CPACR.{cp11, cp10} fields ignore writes and read as 0b00, access denied.
 - The HCPTR.{TCP11, TCP10} fields behave as RAO/WI, regardless of their actual values.

- 0b1: Advanced SIMD and floating-point features can be accessed from both Security states.
 - If Non-secure access to the Advanced SIMD and floating-point functionality is enabled, the CPACR must be checked to determine the level of access that is permitted.
 - The Advanced SIMD and floating-point features controlled by these fields are:
 - Execution of any floating-point or Advanced SIMD instruction.
 - Any access to the Advanced SIMD and floating-point registers D0-D31 and their views as S0-S31 and Q0-Q15.
 - Any access to the FPSCR, FPSID, MVFR0, MVFR1, MVFR2, or FPEXC System registers.
 - If the implementation does not include Advanced SIMD and floating-point functionality, this field is RES0.
 - In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing the NSACR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
else if PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch64.AArch32TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3:NS == '0' then
 return Zeros(20):'1100':Zeros(8);
else
 return NSACR;
else if PSTATE_EL == EL2 then
 if !HaveEL(EL3) || (!ELUsingAArch32(EL3) && SCR_EL3:NS == '1') then
 return Zeros(20):'1100':Zeros(8);
else
 return NSACR;
elsif PSTATE_EL == EL3 then
 return NSACR;

MCR<coproc>, <Rt>, <CRn>, <CRm>, {opc1}, {opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 UNDEFINED;
elsif PSTATE_EL == EL3 then
 if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 NSACR = R[t];
G8.2.120 PAR, Physical Address Register

The PAR characteristics are:

Purpose

Returns the output address (OA) from an Address translation instruction that executed successfully, or fault information if the instruction did not execute successfully.

Configurations

AArch32 System register PAR[63:0] is architecturally mapped to AArch64 System register PAR_EL1[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to PAR are UNDEFINED.

PAR is accessed as a 32-bit value:

- When the PE is not in Hyp mode and is using the Short-descriptor translation table format.
- When the PE is in Hyp mode and executes an ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, or ATS12NSOUW instruction and the value of HCR.VM is 0 and the value of TTBCR.EAE is 0.

In these cases, PAR[63:32] is RES0.

Otherwise, the PAR is accessed as a 64-bit value, if any of the following is true:

- When using the Long-descriptor translation table format.
- If the stage 1 address translation is disabled and TTBCR.EAE is set to 1.
- In an implementation that includes EL2, for the result of an ATS1Cxx instruction performed from Hyp mode.

For PL1&0 stage 1 translations, TTBCR.EAE selects the translation table format.

Attributes

PAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits[31:0] and do not modify bits[63:32].

The Configurations section specifies the cases where each PAR format is used.

Field descriptions

The PAR bit assignments are:

When the instruction returned a 32-bit value to the PAR, PAR.F==0:

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.
On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values that appear in the translation table descriptors. More precisely:

- Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any applicable configuration bits, instead of reporting the values that appear in the translation table descriptors. This applies to the NOS, SH, Inner, and Outer fields.

- See the NS bit description for constraints on the value it returns.

Bits [63:32]

Reserved, RES0.

PA, bits [31:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[31:12].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

- **0b0** Short-descriptor translation table format used. This means the PAR returned a 32-bit value.

This field resets to an architecturally UNKNOWN value.

NOS, bit [10]

Not Outer Shareable. When the returned value of PAR.SH is 1, indicates the Shareability attribute for the physical memory region:

- **0b0** Memory region is Outer Shareable.
- **0b1** Memory region is Inner Shareable.

When the returned value of PAR.SH is 0 the value returned to this field is UNKNOWN.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [8]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

SH, bit [7]

Shareability. Indicates whether the physical memory region is Non-shareable:

- **0b0** Memory is Non-shareable.
- **0b1** Memory is shareable, and PAR.NOS indicates whether the region is Outer Shareable or Inner Shareable.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.
This field resets to an architecturally UNKNOWN value.

Inner[2:0], bits [6:4]

Inner cacheability attribute for the region. Permitted values are:

- 0b000: Non-cacheable.
- 0b001: Device-nGnRnE.
- 0b011: Device-nGnRE.
- 0b101: Write-Back, Write-Allocate.
- 0b110: Write-Through.
- 0b111: Write-Back, no Write-Allocate.

The values 0b010 and 0b100 are reserved.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Outer[1:0], bits [3:2]

Outer cacheability attribute for the region. Permitted values are:

- 0b00: Non-cacheable.
- 0b01: Write-Back, Write-Allocate.
- 0b10: Write-Through, no Write-Allocate.
- 0b11: Write-Back, no Write-Allocate.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

SS, bit [1]

Supersection. Used to indicate if the result is a Supersection:

- 0b0: Result is not a Supersection. PAR[31:12] contains OA[31:12].
- 0b1: Result is a Supersection, and:
 - PAR[15:12] contains 0b0000.

If an implementation supports less than 40 bits of physical address, the bits in the PAR field that correspond to physical address bits that are not implemented are UNKNOWN.

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

- 0b0: Address translation completed successfully.

This field resets to an architecturally UNKNOWN value.
When the instruction returned a 32-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:16]

IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits [15:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

- 0b0: Short-descriptor translation table format used. This means the PAR returned a 32-bit value.

This field resets to an architecturally UNKNOWN value.

Bits [10:7]

Reserved, RES0.

FS[5], bit [6]

Fault status bits, external abort type. Provides an IMPLEMENTATION DEFINED classification of an External abort. Values are as in the DFSR.ExT field when using the Short-descriptor translation table format.

In an implementation that does not provide any classification of External aborts, this bit is RES0. For aborts other than External aborts this bit always returns 0.

This field resets to an architecturally UNKNOWN value.

FS[4:0], bits [5:1]

Fault status bits. Values are as in the DFSR.FS field when using the Short-descriptor translation table format.

- 0b00001: Alignment fault.
- 0b00011: Access flag fault, level 1.
- 0b00100: Fault on instruction cache maintenance.
- 0b00101: Translation fault, level 1.
- 0b00110: Access flag fault, level 2.
- 0b00111: Translation fault, level 2.
- 0b01001: Domain fault, level 1.
- 0b01011: Domain fault, level 2.
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b01100</td>
<td>Synchronous External abort, on translation table walk, level 1.</td>
</tr>
<tr>
<td>0b01101</td>
<td>Permission fault, level 1.</td>
</tr>
<tr>
<td>0b01110</td>
<td>Synchronous External abort, on translation table walk, level 2.</td>
</tr>
<tr>
<td>0b01111</td>
<td>Permission fault, level 2.</td>
</tr>
<tr>
<td>0b10000</td>
<td>TLB conflict abort.</td>
</tr>
<tr>
<td>0b11001</td>
<td>When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access, not on translation table walk.</td>
</tr>
<tr>
<td>0b11100</td>
<td>When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 1.</td>
</tr>
<tr>
<td>0b11110</td>
<td>When FEAT_RAS is not implemented Synchronous parity or ECC error on translation table walk, level 2.</td>
</tr>
</tbody>
</table>

This field resets to an UNKNOWN value.

F, bit [0]
Indicates whether the instruction performed a successful address translation.

0b1 Address translation aborted.
This field resets to an architecturally UNKNOWN value.

When the instruction returned a 64-bit value to the PAR, PAR.F==0:

```
<table>
<thead>
<tr>
<th>63</th>
<th>56 55</th>
<th>40 39</th>
<th>12 11</th>
<th>10 9</th>
<th>8 7 6</th>
<th>1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR</td>
<td>RES0</td>
<td>PA</td>
<td>NS</td>
<td>SH</td>
<td>RES0</td>
<td>F</td>
</tr>
</tbody>
</table>
```

This section describes the register value returned by the successful execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

On a successful conversion, the PAR can return a value that indicates the resulting attributes, rather than the values that appear in the translation table descriptors. More precisely:

- Memory attribute fields are permitted to report the resulting attributes, as determined by any permitted implementation choices and any applicable configuration bits, instead of reporting the values that appear in the translation table descriptors. This applies to the ATTR and SH fields.
- See the NS bit description for constraints on the value it returns.

ATTR, bits [63:56]
Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in MAIR0 and MAIR1.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

This field resets to an architecturally UNKNOWN value.

Bits [55:40]
Reserved, RES0.
PA, bits [39:12]
Output address. The output address (OA) corresponding to the supplied input address. This field returns address bits[39:12].
This field resets to an architecturally UNKNOWN value.

LPAE, bit [11]
When updating the PAR with the result of the translation operation, this bit is set as follows:
0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit value.
This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bit [10]
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

NS, bit [9]
Non-secure. The NS attribute for a translation table entry from a Secure translation regime.
For a result from a Secure translation regime, this bit reflects the Security state of the physical address space of the translation. This means it reflects the effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the translation.
For a result from a Non-secure translation regime, this bit is UNKNOWN.
This field resets to an architecturally UNKNOWN value.

SH, bits [8:7]
Shareability attribute, for the returned output address. Permitted values are:
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.
The value 0b1 is reserved.

--- Note ---
This field returns the value 0b10 for:
• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices and any applicable configuration bits, instead of the value that appears in the translation table descriptor.
This field resets to an architecturally UNKNOWN value.

Bits [6:1]
Reserved, RES0.

F, bit [0]
Indicates whether the instruction performed a successful address translation.
0b0 Address translation completed successfully.
This field resets to an architecturally UNKNOWN value.
When the instruction returned a 64-bit value to the PAR, PAR.F==1:

This section describes the register value returned by a fault on the execution of an Address translation instruction. Software might subsequently write a different value to the register, and that write does not affect the operation of the PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.

Bits [47:12]

Reserved, RES0.

LPAE, bit [11]

When updating the PAR with the result of the translation operation, this bit is set as follows:

0b1 Long-descriptor translation table format used. This means the PAR returned a 64-bit value.

This field resets to an architecturally UNKNOWN value.

Bit [10]

Reserved, RES0.

FSTAGE, bit [9]

Indicates the translation stage at which the translation aborted:

0b0 Translation aborted because of a fault in the stage 1 translation.
0b1 Translation aborted because of a fault in the stage 2 translation.

This field resets to an architecturally UNKNOWN value.

S2WLK, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table walk.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.
FST, bits [6:1]

Fault status field. Values are as in the DFSR.STATUS and IFSR.STATUS fields when using the Long-descriptor translation table format.

- 0b000000 Address size fault in translation table base register.
- 0b000001 Address size fault, level 1.
- 0b000010 Address size fault, level 2.
- 0b000011 Address size fault, level 3.
- 0b000101 Translation fault, level 1.
- 0b000110 Translation fault, level 2.
- 0b000111 Translation fault, level 3.
- 0b001001 Access flag fault, level 1.
- 0b001010 Access flag fault, level 2.
- 0b001011 Access flag fault, level 3.
- 0b001101 Permission fault, level 1.
- 0b001110 Permission fault, level 2.
- 0b001111 Permission fault, level 3.
- 0b010101 Synchronous External abort on translation table walk, level 1.
- 0b010110 Synchronous External abort on translation table walk, level 2.
- 0b010111 Synchronous External abort on translation table walk, level 3.
- 0b011100 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 1.
- 0b011110 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 2.
- 0b011111 When FEAT_RAS is not implemented Synchronous parity or ECC error on memory access on translation table walk, level 3.
- 0b110000 TLB conflict abort.

This field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

- 0b1 Address translation aborted.

This field resets to an architecturally UNKNOWN value.

Accessing the PAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRC\{<c>\}<q> \langle coproc \rangle, \langle\#
angle<opc1>, <Rt>, <CRn>, <CRm>\langle, \langle\#
angle<opc2>\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 UNDEFINED;
elif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS<31:0>;
else
 return PAR<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return PAR_NS<31:0>;
 else
 return PAR<31:0>;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return PAR_S<31:0>;
 else
 return PAR_NS<31:0>;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = ZeroExtend(R[t]);
 else
 PAR = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = ZeroExtend(R[t]);
 else
 PAR_NS = ZeroExtend(R[t]);

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b0100</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0111</td>
<td>0b0000</td>
</tr>
</tbody>
</table>
return PAR_NS;
else
 return PAR;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return PAR_S;
 else
 return PAR_NS;
 end if;
end if;

MCRR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T7 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T7 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = R[t2]:R[t];
 else
 PAR = R[t2]:R[t];
 end if;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 PAR_NS = R[t2]:R[t];
 else
 PAR = R[t2]:R[t];
 end if;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 PAR_S = R[t2]:R[t];
 else
 PAR_NS = R[t2]:R[t];
 end if;
G8.2.121 PRRR, Primary Region Remap Register

The PRRR characteristics are:

Purpose

Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configurations

AArch32 System register PRRR[31:0] is architecturally mapped to AArch64 System register MAIR_EL1[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR[31:0] is architecturally mapped to AArch32 System register MAIR0[31:0] when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR[31:0](PRRR_S) is architecturally mapped to AArch32 System register MAIR0[31:0] (MAIR0_S) when EL3 is using AArch32.

AArch32 System register PRRR[31:0](PRRR_NS) is architecturally mapped to AArch32 System register MAIR0[31:0] (MAIR0_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to PRRR are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

- When it is set to 0, the register is as described in PRRR.
- When it is set to 1, the register is as described in MAIR0.

Attributes

PRRR is a 32-bit register.

Field descriptions

The PRRR bit assignments are:

When TTBCR.EAE == 0:

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
       RES0  TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0
```

NOS7 NOS6 NOS5 NOS4 NOS3 NOS2 NOS1 NOS0 NS1 NS0 DS1 DS0
NOS<\text{n}>, bit \([n+24]\), for \(n = 0\) to 7

Not Outer Shareable. NOS<\text{n}> is the Outer Shareable property for memory attributes \(n\), if the region is mapped as Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the appropriate PRRR.\{NS0, NS1\} field identifies the region as shareable. \(n\) is the value of the concatenation of the \{TEX[0], C, B\} bits from the translation table descriptor. The possible values of each NOS<\text{n}> field other than NOS6 are:

- \(0b0\) Memory region is Outer Shareable.
- \(0b1\) Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

- Device memory
- Normal memory that is at least one of:
 - Inner Non-cacheable, Outer Non-cacheable.
 - Identified by the appropriate PRRR.\{NS0, NS1\} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Bits \([23:20]\)

Reserved, RES0.

NS1, bit \([19]\)

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the Shareability of a memory region that is mapped to Normal memory and both:

- Is not Inner Non-cacheable, Outer Non-cacheable.
- Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

- \(0b0\) Region is Non-shareable.
- \(0b1\) Region is shareable. The value of the appropriate PRRR.NOS<\text{n}> field determines whether the region is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.

NS0, bit \([18]\)

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the Shareability of a memory region that is mapped to Normal memory and both:

- Is not Inner Non-cacheable, Outer Non-cacheable.
- Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

- \(0b0\) Region is Non-shareable.
- \(0b1\) Region is shareable. The value of the appropriate PRRR.NOS<\text{n}> field determines whether the region is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.

DS1, bit \([17]\)

Mapping of S = 1 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and therefore this bit is RES1.

This field resets to an architecturally UNKNOWN value.

DS0, bit \([16]\)

Mapping of S = 0 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and therefore this bit is RES1.

This field resets to an architecturally UNKNOWN value.
TR<\text{n}>, bits [2\text{n}+1:2\text{n}], for n = 0 to 7

TR<\text{n}> is the primary TEX mapping for memory attributes \text{n}, and defines the mapped memory type for a region with attributes \text{n}. \text{n} is the value of the concatenation of the \{TEX[0], C, B\} bits from the translation table descriptor. The possible values for each field other than TR6 are:

- 0\text{b}00: Device-nGnRnE memory
- 0\text{b}01: Device-nGnRE memory
- 0\text{b}10: Normal memory

The value 0\text{b}11 is reserved. The effect of programming a field to 0\text{b}11 is CONSTRAINED UNPREDICTABLE.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the PRRR

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC}{\langle c\rangle}{\langle q\rangle} \langle \text{coproc} \rangle, \{\#\langle \text{opc1} \rangle, \langle \text{Rt} \rangle, \langle \text{CRn} \rangle, \langle \text{CRm} \rangle, \{\#\langle \text{opc2} \rangle \} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if \text{PSTATE.EL} == EL0 then
\text{UNDEFINED};
elsif \text{PSTATE.EL} == EL1 then
 if \text{EL2Enabled()} && \text{ELUsingAArch32(EL2)} && \text{HSTR_EL2.T10} == '1' then
 \text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 else
 \text{EL2Enabled()} && \text{ELUsingAArch32(EL2)} && \text{HSTR.T10} == '1' then
 \text{AArch32.TakeHypTrapException(0x03)};
 endif
elsif \text{EL2Enabled()} && \text{ELUsingAArch32(EL2)} && \text{HCR_EL2.TRVM} == '1' then
 \text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
elsif \text{EL2Enabled()} && \text{ELUsingAArch32(EL2)} && \text{HCR.TRVM} == '1' then
 \text{AArch32.TakeHypTrapException(0x03)};
elsif \text{HaveEL(EL3)} && \text{ELUsingAArch32(EL3)} then
 if \text{TTBCR.EAE} == '1' then
 return \text{MAIR0_NS};
 else
 return \text{PRRR_NS};
 endif
else
 if \text{TTBCR.EAE} == '1' then
 return \text{MAIR0};
 else
 return \text{PRRR};
 endif
elsif \text{PSTATE.EL} == EL2 then
 if \text{EL2Enabled()} && \text{ELUsingAArch32(EL2)} then
 if \text{TTBCR.EAE} == '1' then
 return \text{MAIR0_NS};
 else
 return \text{PRRR_NS};
 endif
 else
 if \text{TTBCR.EAE} == '1' then
 return \text{MAIR0};
 else
 return \text{PRRR};
 endif
 endif
elsif \text{PSTATE.EL} == EL3 then
 if \text{TTBCR.EAE} == '1' then
 if \text{SCR.NS} == '0' then
 return \text{MAIR0_S};
 else
 return \text{PRRR_NS};
 endif
 else
 return \text{PRRR};
 endif
else
 return \text{MAIR0};
endif

if SCR.NS == '0' then
 return PRRR_S;
else
 return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1010</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 end
 end
 if PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 if TTBCR.EAE == '1' then
 MAIR0_NS = R[t];
 else
 PRRR_NS = R[t];
 end
 end
 if SCR.NS == '0' && CP15SDISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
 UNDEFINED;
 else
 if TTBCR.EAE == '1' then
 if SCR.NS == '0' then
 MAIR0_S = R[t];
 else
 MAIR0_NS = R[t];
 end
 else
 MAIR0_NS = R[t];
 end
 end
 end
 if SCR.NS == '0' then
 if SCR.NS == '0' then
 PRRR_S = R[t];
 else
 PRRR_NS = R[t];
 end
 end
G8.2.122 REVIDR, Revision ID Register

The REVIDR characteristics are:

Purpose

Provides implementation-specific minor revision information.

Configurations

AArch32 System register REVIDR[31:0] is architecturally mapped to AArch64 System register REVIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to REVIDR are UNDEFINED.

If REVIDR has the same value as MIDR, then its contents have no significance.

Attributes

REVIDR is a 32-bit register.

Field descriptions

The REVIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the REVIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(\text{<c>})(\text{<q>}) \text{ <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>, (#<opc2>)}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return REVIDR;
 endif
elsif PSTATE.EL == EL2 then
 return REVIDR;
elsif PSTATE.EL == EL3 then
 return REVIDR;
G8.2.123 RMR, Reset Management Register

The RMR characteristics are:

Purpose

If EL1 or EL3 is the highest implemented Exception level and this register is implemented:

• A write to the register at the highest implemented Exception level can request a Warm reset.
• If the highest implemented Exception level can use AArch32 and AArch64, this register specifies the Execution state that the PE boots into on a Warm reset.

Configurations

AArch32 System register RMR[31:0] is architecturally mapped to AArch64 System register RMR_EL1[31:0] when the highest implemented Exception level is EL1.

AArch32 System register RMR[31:0] is architecturally mapped to AArch64 System register RMR_EL3[31:0] when EL3 is implemented.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to RMR are UNDEFINED.

Only implemented if EL1 or EL3 is the highest implemented Exception level. In this case:

• If the highest implemented Exception level can use AArch32 and AArch64 then this register must be implemented.
• If the highest implemented Exception level cannot use AArch64 then it is IMPLEMENTATION DEFINED whether the register is implemented.

Attributes

RMR is a 32-bit register.

Field descriptions

The RMR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RES0</td>
<td></td>
<td>AA64</td>
</tr>
</tbody>
</table>

Bits [31:2]

Reserved, RES0.

RR, bit [1]

Reset Request. Setting this bit to 1 requests a Warm reset.

This field resets to 0.

AA64, bit [0]

When the highest implemented Exception level can use AArch64, determines which Execution state the PE boots into after a Warm reset:

\[\text{0b0} \] AArch32.

\[\text{0b1} \] AArch64.

On coming out of the Warm reset, execution starts at the IMPLEMENTATION DEFINED reset vector address of the specified Execution state.

If the highest implemented Exception level cannot use AArch64 this bit is RAZ/WI.

When implemented as a RW field, this field resets to 0 on a Cold reset.
Accessing the RMR

When EL3 is implemented, Arm deprecates accessing this register from any PE mode other than Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} \ <\text{coproc}>\ (<\text{opc1}>\ <\text{Rt}>\ <\text{CRn}>, \ <\text{CRm}>, \ (<\text{opc2}>\)}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b000 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE.EL \in \{EL1, EL3\} \&\& \text{IsHighestEL(PSTATE.EL)} then
 return \text{RMR};
else
 \text{UNDEFINED};

\[
\text{MCR}\{c\}\{q\} \ <\text{coproc}>\ (<\text{opc1}>\ <\text{Rt}>\ <\text{CRn}>, \ <\text{CRm}>, \ (<\text{opc2}>\)}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b000 & 0b1100 & 0b0000 & 0b010 \\
\end{array}
\]

if PSTATE.EL \in \{EL1, EL3\} \&\& \text{IsHighestEL(PSTATE.EL)} then
 \text{RMR} = \text{R[t]};
else
 \text{UNDEFINED};
G8.2.124 RVBAR, Reset Vector Base Address Register

The RVBAR characteristics are:

Purpose

If EL3 is not implemented, contains the **IMPLEMENTATION DEFINED** address that execution starts from after reset when executing in AArch32 state.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to RVBAR are **UNDEFINED**.

This register is only implemented if the highest Exception level implemented is capable of using AArch32, and is not EL3.

Attributes

RVBAR is a 32-bit register.

Field descriptions

The RVBAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reset Address[31:1]</td>
</tr>
<tr>
<td>30-1</td>
<td>Reserved, RES1</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES1</td>
</tr>
</tbody>
</table>

Accessing the RVBAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>
\]

```plaintext
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if IsHighestEL(EL1) then
    return RVBAR;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
```
else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if IsHighestEL(EL2) then
 return RVBAR;
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL3 then
 return MVBAR;
G8.2.125 SCR, Secure Configuration Register

The SCR characteristics are:

Purpose

When EL3 is implemented and can use AArch32, defines the configuration of the current Security state. It specifies:

- The Security state, either Secure or Non-secure.
- What mode the PE branches to if an IRQ, FIQ, or External abort occurs.
- Whether the CPSR.F or CPSR.A bits can be modified when SCR.NS==1.

Configurations

AArch32 System register SCR[31:0] can be mapped to AArch64 System register SCR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SCR are UNDEFINED.

Attributes

SCR is a 32-bit register.

Field descriptions

The SCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>TERR, bit [15]</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

Trap Error record accesses. Generate a Monitor Trap exception on accesses to the following registers from modes other than Monitor mode:

ERRIDR, ERRESEL, ERXADDR, ERXADDR2, ERXCTRLR, ERXCTRLR2, ERXF, ERXF2, ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS. When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, ERXMISC7.

0b0 This control does not cause any instructions to be trapped.
Accesses to the specified registers from modes other than Monitor mode generate a Monitor Trap exception.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [14]

Reserved, RES0.

TWE, bit [13]

Traps WFE instructions to Monitor mode.

- **0b0** This control does not cause any instructions to be trapped.
- **0b1** Any attempt to execute a WFE instruction in any mode other than Monitor mode is trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter a low-power state and the attempted execution does not generate an exception that is taken to EL1 or EL2 by SCTLR.nTWE or HCR.TWE.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

--- **Note**

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

In a system where the PE resets into EL3, this field resets to 0.

TWI, bit [12]

Traps WFI instructions to Monitor mode.

- **0b0** This control does not cause any instructions to be trapped.
- **0b1** Any attempt to execute a WFI instruction in any mode other than Monitor mode is trapped to Monitor mode, if the instruction would otherwise have caused the PE to enter a low-power state and the attempted execution does not generate an exception that is taken to EL1 or EL2 by SCTLR.nTWI or HCR.TWI.

Any exception that is taken to EL1 or to EL2 has priority over this trap.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

--- **Note**

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

In a system where the PE resets into EL3, this field resets to 0.

Bits [11:10]

Reserved, RES0.

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory. The possible values for this bit are:

- **0b0** Secure state instruction fetches from Non-secure memory are permitted.
Secure state instruction fetches from Non-secure memory are not permitted.
This bit is permitted to be cached in a TLB.
In a system where the PE resets into EL3, this field resets to 0.

HCE, bit [8]
Hypervisor Call instruction enable. If EL2 is implemented, enables execution of HVC instructions at Non-secure EL1 and EL2.

- **0b0**
 - HVC instructions are:
 - **UNDEFINED** at Non-secure EL1. The Undefined Instruction exception is taken from PL1 to PL1.
 - **UNPREDICTABLE** at EL2. Behavior is one of the following:
 - The instruction is **UNDEFINED**.
 - The instruction executes as a NOP.

- **0b1**
 - HVC instructions are enabled at Non-secure EL1 and EL2.

Note
HVC instructions are always **UNDEFINED** at EL0 and in Secure state.

If EL2 is not implemented, this bit is **RES0** and HVC is **UNDEFINED**.
In a system where the PE resets into EL3, this field resets to 0.

SCD, bit [7]
Secure Monitor Call disable. Disables SMC instructions.

- **0b0**
 - SMC instructions are enabled.

- **0b1**
 - In Non-secure state, SMC instructions are **UNDEFINED**. The Undefined Instruction exception is taken from the current Exception level to the current Exception level.

 - In Secure state, behavior is one of the following:
 - The instruction is **UNDEFINED**.
 - The instruction executes as a NOP.

Note
SMC instructions are always **UNDEFINED** at PL0.

In a system where the PE resets into EL3, this field resets to 0.

nET, bit [6]
Not Early Termination. This bit disables early termination. The possible values of this bit are:

- **0b0**
 - Early termination permitted. Execution time of data operations can depend on the data values.

- **0b1**
 - Disable early termination. The number of cycles required for data operations is forced to be independent of the data values.

This **IMPLEMENTATION DEFINED** mechanism can disable data dependent timing optimizations from multiplies and data operations. It can provide system support against information leakage that might be exploited by timing correlation types of attack.

On implementations that do not support early termination or do not support disabling early termination, this bit is **RES0**.
In a system where the PE resets into EL3, this field resets to 0.
AW, bit [5]
When the value of SCR.EA is 1 and the value of HCR.AMO is 0, this bit controls whether CPSR.A masks an External abort taken from Non-secure state, and the possible values of this bit are:
0b0 External aborts taken from Non-secure state are not masked by CPSR.A, and are taken to EL3.
External aborts taken from Secure state are masked by CPSR.A.
0b1 External aborts taken from either Security state are masked by CPSR.A. When CPSR.A is 0, the abort is taken to EL3.
When SCR.EA is 0 or HCR.AMO is 1, this bit has no effect.
In a system where the PE resets into EL3, this field resets to 0.

FW, bit [4]
When the value of SCR.FIQ is 1 and the value of HCR.FMO is 0, this bit controls whether CPSR.F masks an FIQ interrupt taken from Non-secure state, and the possible values of this bit are:
0b0 An FIQ taken from Non-secure state is not masked by CPSR.F, and is taken to EL3.
An FIQ taken from Secure state is masked by CPSR.F.
0b1 An FIQ taken from either Security state is masked by CPSR.F. When CPSR.F is 0, the FIQ is taken to EL3.
When SCR.FIQ is 0 or HCR.FMO is 1, this bit has no effect.
In a system where the PE resets into EL3, this field resets to 0.

EA, bit [3]
External Abort handler. This bit controls which mode takes External aborts. The possible values of this bit are:
0b0 External aborts taken to Abort mode.
0b1 External aborts taken to Monitor mode.
In a system where the PE resets into EL3, this field resets to 0.

FIQ, bit [2]
FIQ handler. This bit controls which mode takes FIQ exceptions. The possible values of this bit are:
0b0 FIQs taken to FIQ mode.
0b1 FIQs taken to Monitor mode.
In a system where the PE resets into EL3, this field resets to 0.

IRQ, bit [1]
IRQ handler. This bit controls which mode takes IRQ exceptions. The possible values of this bit are:
0b0 IRQs taken to IRQ mode.
0b1 IRQs taken to Monitor mode.
In a system where the PE resets into EL3, this field resets to 0.

NS, bit [0]
Non-secure bit. Except when the PE is in Monitor mode, this bit determines the Security state of the PE:
0b0 PE is in Secure state.
0b1 PE is in Non-secure state.
If the HCR.TGE bit is set, an attempt to change from a Secure PL1 mode to a Non-secure EL1 mode by changing the SCR.NS bit from 0 to 1 results in the SCR.NS bit remaining as 0.
In a system where the PE resets into EL3, this field resets to 0.
Accessing the SCR

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 return SCR;

MCR{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 UNDEFINED;
 elsif PSTATE.EL == EL2 then
 UNDEFINED;
 elsif PSTATE.EL == EL3 then
 SCR = R[t];
G8.2.126 **SCTLR, System Control Register**

The SCTLR characteristics are:

Purpose

Provides the top level control of the system, including its memory system.

Configurations

AArch32 System register SCTLR[31:0] is architecturally mapped to AArch64 System register SCTLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SCTLR are UNDEFINED.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are provided for compatibility with previous versions of the architecture.

Attributes

SCTLR is a 32-bit register.

Field descriptions

The SCTLR bit assignments are:

![Diagram of SCTLR bit assignments]

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

- **0b0** PSTATE.SSBS is set to 0 on an exception to any mode in this security state except Hyp mode
- **0b1** PSTATE.SSBS is set to 1 on an exception to any mode in this security state except Hyp mode

Note

When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

This field resets to an IMPLEMENTATION DEFINED value.
Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception Level that is executing at PL1 are taken to A32 or T32 state:

0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

This field resets to an IMPLEMENTATION DEFINED choice between:

- 0
- a value determined by an input configuration signal.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime, this bit enables use of the AP[0] bit in the translation descriptors as the Access flag, and restricts access permissions in the translation descriptors to the simplified model. The possible values of this bit are:

0b0 In the translation table descriptors, AP[0] is an access permissions bit. The full range of access permissions is supported. No Access flag is implemented.
0b1 In the translation table descriptors, AP[0] is the Access flag. Only the simplified model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of the value of this bit.
The AFE bit is permitted to be cached in a TLB.
This field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two translation table bits that can be managed by the operating system. Enabling this remapping also changes the scheme used to describe the memory region attributes in the VMSA. The possible values of this bit are:

0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to describe the memory region attributes.
0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits managed by the operating system. The TEX[0], C, and B bits are used to describe the memory region attributes, with the MMU remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.
The TRE bit is permitted to be cached in a TLB.
This field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of stage 1 translation table walks in the PL1&0 translation regime.
The possible values of this bit are:

0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or coming out of reset. Stage 1 translation table walks in the PL1&0 translation regime are little-endian.
0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming out of reset. Stage 1 translation table walks in the PL1&0 translation regime are big-endian.
If an implementation does not provide Big-endian support for data accesses at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception Levels higher than EL0, this bit is RES1.

This field resets to an IMPLEMENTATION DEFINED choice between:

- 0.
- a value determined by an input configuration signal.

Bit [24]

Reserved, RES0.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from Secure state when EL3 is using AArch32.

- **0b0** CPSR.PAN is set to 1 in the following situations:
 - In Non-secure state, on taking an exception to EL1.
 - In Secure state, when EL3 is using AArch64, on taking an exception to EL1.
 - In Secure state, when EL3 is using AArch32, on taking an exception to EL3.

- **0b1** The value of CPSR.PAN is left unchanged on taking an exception to EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are writable at PL0 to be treated as XN for accesses from software executing at PL1. The possible values of this bit are:

- **0b0** This control has no effect on memory access permissions.
- **0b1** Any region that is writable at PL0 forced to XN for accesses from software executing at PL1.

The UWXN bit is permitted to be cached in a TLB.

This field resets to 0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory regions that are writable to be treated as XN. The possible values of this bit are:

- **0b0** This control has no effect on memory access permissions.
- **0b1** Any region that is writable in the PL1&0 translation regime is forced to XN for accesses from software executing at PL1 or PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

This field resets to 0.
nTWE, bit [18]
Traps EL0 execution of WFE instructions to Undefined mode.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped to Undefined mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

--- Note ---
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

This field resets to 1.

Bit [17]
Reserved, RES0.

nTWI, bit [16]
Traps EL0 execution of WFI instructions to Undefined mode.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped to Undefined mode, if the instruction would otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

--- Note ---
Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

This field resets to 1.

Bits [15:14]
Reserved, RES0.

V, bit [13]
Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than Monitor mode or Hyp mode:

0b0 Normal exception vectors. Base address is held in VBAR.

0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This base address cannot be remapped.

This field resets to an IMPLEMENTATION DEFINED choice between:

• 0.
• a value determined by an input configuration signal.

I, bit [12]
Instruction access Cacheability control, for accesses at EL1 and EL0:

0b0 All instruction access to Normal memory from PL1 and PL0 are Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1\&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

\(\text{0b1}\)

All instruction access to Normal memory from PL1 and PL0 can be cached at all levels of instruction and unified cache.

If the value of SCTLR.M is 0, instruction accesses from stage 1 of the PL1\&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of the SCTLR.I bit if either:

- EL2 is using AArch32 and the value of HCR.DC is 1.
- EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

This field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_CSV2 is implemented:

Enable EL0 Access to the AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions. The defined values are:

\(\text{0b0}\)

EL0 access to these instructions is disabled, and these instructions are trapped to EL1.

\(\text{0b1}\)

EL0 access to these instructions is enabled.

--- **Note** ---

When EL3 is implemented and is using AArch32, this bit is banked between the two Security states.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

\(\text{0b0}\)

SETEND instruction execution is enabled at PL0 and PL1.

\(\text{0b1}\)

SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

This field resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

\(\text{0b0}\)

All IT instruction functionality is enabled at PL1 and PL0.

\(\text{0b1}\)

Any attempt at PL1 or PL0 to execute any of the following is UNDEFINED:

- All encodings of the IT instruction with hw1[3:0]!=1000.
- All encodings of the subsequent instruction with the following values for hw1:
 - 11xxxxxxxxxxxx: All 32-bit instructions, and the 16-bit instructions B, UDF, SVC, LDM, and STM.
— 1011xxxxxxxxxxxx: All instructions in Miscellaneous 16-bit instructions on page F3-4155.
— 10100xxxxxxxxxxx: ADD Rd, PC, #imm
— 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
— 0100x1xx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV Rd, PC; BX PC; BLX PC.
— 010001xx1xxxx1111: ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block. It is IMPLEMENTATION DEFINED whether the IT instruction is treated as:

• A 16-bit instruction, that can only be followed by another 16-bit instruction.
• The first half of a 32-bit instruction.

This means that, for the situations that are UNDEFINED, either the second 16-bit instruction or the 32-bit instruction is UNDEFINED. An implementation might vary dynamically as to whether IT is treated as a 16-bit instruction or the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by an instruction in an IT block on page E1-3998.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAZ/WI.

This field resets to 0.

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return a UNKNOWN value.

This field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from PL1 and PL0:

0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not implemented then this bit is RAO/WI.

This field resets to 1.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load Multiple and Store Multiple can have an interrupt taken during the sequence memory accesses, and the memory accesses are not required to be ordered.
0b1 The ordering and interrupt behavior of A32 and T32 Load Multiple and Store Multiple at EL1 or EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

This field resets to 1.

Otherwise:

Reserved, RES1.
nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

0b0 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and Store Multiple at EL1 or EL0 that are marked at stage 1 as Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not trapped.

This bit is permitted to be cached in a TLB.

This field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

0b0 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0 stage 1 translation tables, are Non-cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all accesses to the PL1&0 stage 1 translation tables, can be cached at all levels of data and unified cache.

The PE ignores SCTLR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are Cacheable if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

This field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

0b0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than load/store exclusive and load-acquire/store-release, do not check that the address being accessed is aligned to the size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or PL0.

All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element(s) being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

This field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.
This field resets to 0.

Accessing the SCTLR

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC}\{<c>\}{<q>} \text{<coproc>, (#{<opc1>}, <Rt>, <CRn>, <CRm>{, (#{<opc2>}}) }\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return SCTLR_NS;
 else
 return SCTLR;
else
 return SCTLR;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return SCTLR_NS;
 else
 return SCTLR;
else
 return SCTLR_NS;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return SCTLR_S;
 else
 return SCTLR_NS;
else
 SCTLR_NS = R[t];
else
 SCTLR = R[t];
else
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return SCTLR_NS;
else
 SCTLR = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' & CP15DISABLE == HIGH then
 UNDEFINED;
 elsif SCR.NS == '0' & CP15DISABLE2 == HIGH then
 UNDEFINED;
else
 if SCR.NS == '0' then
 SCTLR_S = R[t];
 else
 SCTLR_NS = R[t];
G8.2.127 SPSR, Saved Program Status Register

The SPSR characteristics are:

Purpose

Holds the saved process state for the current mode.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR are UNDEFINED.

Attributes

SPSR is a 32-bit register.

Field descriptions

The SPSR bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 0 |
|----|
| N | Z | C | V | Q | J | IL | GE | IT[7:2] | E | A | I | F | T | M[4:0] |

- **N**, bit [31]

 Set to the value of PSTATE.N on taking an exception to the current mode, and copied to PSTATE.N on executing an exception return operation in the current mode.

- **Z**, bit [30]

 Set to the value of PSTATE.Z on taking an exception to the current mode, and copied to PSTATE.Z on executing an exception return operation in the current mode.

- **C**, bit [29]

 Set to the value of PSTATE.C on taking an exception to the current mode, and copied to PSTATE.C on executing an exception return operation in the current mode.

- **V**, bit [28]

 Set to the value of PSTATE.V on taking an exception to the current mode, and copied to PSTATE.V on executing an exception return operation in the current mode.

- **Q**, bit [27]

 Set to the value of PSTATE.Q on taking an exception to the current mode, and copied to PSTATE.Q on executing an exception return operation in the current mode.

- **IT[1:0]**, bits [26:25]

 IT block state bits for the T32 IT (If-Then) instruction. See IT[7:2] for explanation of this field.

- **J**, bit [24]

 RES0.

 In previous versions of the architecture, the \{J, T\} bits determined the AArch32 Instruction set state. Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.
SSBS, bit [23]

When FEAT_SSBS is implemented:
Speculative Store Bypass Safe. This bit is set to the value of PSTATE.SSBS on taking an exception to the current mode, and copied to PSTATE.SSBS on executing an exception return operation in the current mode.

Otherwise:
Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:
Privileged Access Never. This bit is set to the value of PSTATE.PAN on taking an exception to the current mode, and copied to PSTATE.PAN on executing an exception return operation in the current mode.

Otherwise:
Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:
Data Independent Timing. This bit is set to the value of PSTATE.DIT on taking an exception to the current mode, and copied to PSTATE.DIT on executing an exception return operation in the current mode.

Otherwise:
Reserved, RES0.

IL, bit [20]

Illegal Execution state bit. Shows the value of PSTATE.IL immediately before the exception was taken.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

IT[7:2], bits [15:10]

IT block state bits for the T32 IT (If-Then) instruction. This field must be interpreted in two parts.

- IT[7:5] holds the base condition for the IT block. The base condition is the top 3 bits of the condition code specified by the first condition field of the IT instruction.
- IT[4:0] encodes the size of the IT block, which is the number of instructions that are to be conditionally executed, by the position of the least significant 1 in this field. It also encodes the value of the least significant bit of the condition code for each instruction in the block.

The IT field is 0b00000000 when no IT block is active.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

0b0 Little-endian operation
0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support, this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level other than EL0.
When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]
SError interrupt mask bit.
0b0 Exception not masked.
0b1 Exception masked.

I, bit [7]
IRQ mask bit.
0b0 Exception not masked.
0b1 Exception masked.

F, bit [6]
FIQ mask bit.
0b0 Exception not masked.
0b1 Exception masked.

T, bit [5]
T32 Instruction set state bit. Determines the AArch32 instruction set state that the exception was taken from.
0b0 Taken from A32 state.
0b1 Taken from T32 state.

M[4:0], bits [4:0]
Mode. Set to the mode that an exception was taken from.
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 When EL3 is capable of using AArch32 Monitor.
0b10111 Abort.
0b11010 When EL2 is capable of using AArch32 Hyp.
0b11011 Undefined.
0b11111 System.
Other values are reserved.
G8.2.128 SPSR_abt, Saved Program Status Register (Abort mode)

The SPSR_abt characteristics are:

Purpose

Holds the saved process state when an exception is taken to Abort mode.

Configurations

AArch32 System register SPSR_abt[31:0] is architecturally mapped to AArch64 System register SPSR_abt[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_abt are UNDEFINED.

Attributes

SPSR_abt is a 32-bit register.

Field descriptions

The SPSR_abt bit assignments are:

```
31  30  29  28  27  26  25  24  23  22  21  20  19  16  15  10  9  8  7  6  5  4  0
N  Z  C  V  Q  J  IL  GE  IT[7:2]  E  A  I  F  T  M[4:0]
```

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to PSTATE.Q on executing an exception return operation in Abort mode.

This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

J, bit [24]
RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to PSTATE.SSBS on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to PSTATE.PAN on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to PSTATE.DIT on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to PSTATE.GE on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Abort mode.
SPSR_abt.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]
Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on executing an exception return operation in Abort mode.
If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not support little-endian operation, SPSR_abt.E is RES1. On executing an exception return operation in Abort mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_abt.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_abt.E is RES1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to PSTATE.A on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

T, bit [5]
T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to PSTATE.T on executing an exception return operation in Abort mode.
This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]
Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Abort mode.

0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b11011 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Abort mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.
This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_abt
SPSR_abt is accessible in all modes other than User mode and Abort mode.
Accesses to this register use the following encodings in the System instruction encoding space:
\textit{MRS\{c\}\{q\} \textless Rd\textgreater, SPSR_abt}

\begin{center}
\begin{tabular}{ccc}
\hline
R & M & M1 \\
\hline
0b1 & 0b1 & 0b0100 \\
\hline
\end{tabular}
\end{center}

\textit{MSR\{c\}\{q\} SPSR_abt, \textless Rn\textgreater}

\begin{center}
\begin{tabular}{ccc}
\hline
R & M & M1 \\
\hline
0b1 & 0b1 & 0b0100 \\
\hline
\end{tabular}
\end{center}
G8.2.129 SPSR_fiq, Saved Program Status Register (FIQ mode)

The SPSR_fiq characteristics are:

Purpose

Holds the saved process state when an exception is taken to FIQ mode.

Configurations

AArch32 System register SPSR_fiq[31:0] is architecturally mapped to AArch64 System register SPSR_fiq[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_fiq are UNDEFINED.

Attributes

SPSR_fiq is a 32-bit register.

Field descriptions

The SPSR_fiq bit assignments are:

```
  31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 10  9  8  7  6  5  4  0
    N  Z  C  V  Q  J  IL  GE  IT[7:2]  E  A  F  T  M[4:0]
```

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on executing an exception return operation in FIQ mode. This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on executing an exception return operation in FIQ mode. This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on executing an exception return operation in FIQ mode. This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on executing an exception return operation in FIQ mode. This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q on executing an exception return operation in FIQ mode. This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to
PSTATE.IT[1:0] on executing an exception return operation in FIQ mode.
On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is
valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

J, bit [24]
RES0.
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode,
and copied to PSTATE.SSBS on executing an exception return operation in FIQ mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and
copied to PSTATE.PAN on executing an exception return operation in FIQ mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode,
and copied to PSTATE.DIT on executing an exception return operation in FIQ mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and
copied to PSTATE.IL on executing an exception return operation in FIQ mode.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode,
and copied to PSTATE.GE on executing an exception return operation in FIQ mode.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to
PSTATE.IT[7:2] on executing an exception return operation in FIQ mode.
SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T on executing an exception return operation in FIQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on executing an exception return operation in FIQ mode.

0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in FIQ mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_fiq

SPSR_fiq is accessible in all modes other than User mode and FIQ mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS{<c>}{<q>} <Rd>, SPSR_fiq

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b0</td>
<td>0b1110</td>
</tr>
</tbody>
</table>

MSR{<c>}{<q>} SPSR_fiq, <Rn>

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b0</td>
<td>0b1110</td>
</tr>
</tbody>
</table>
G8.2.130 SPSR_hyp, Saved Program Status Register (Hyp mode)

The SPSR_hyp characteristics are:

Purpose

Holds the saved process state when an exception is taken to Hyp mode.

Configurations

AArch32 System register SPSR_hyp[31:0] is architecturally mapped to AArch64 System register SPSR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_hyp are UNDEFINED.

Attributes

SPSR_hyp is a 32-bit register.

Field descriptions

The SPSR_hyp bit assignments are:

```
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
```

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Hyp mode, and copied to PSTATE.N on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Hyp mode, and copied to PSTATE.Z on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Hyp mode, and copied to PSTATE.C on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Hyp mode, and copied to PSTATE.V on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Hyp mode, and copied to PSTATE.Q on executing an exception return operation in Hyp mode.

This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
 If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Hyp mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Hyp mode.

 On executing an exception return operation in Hyp mode SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.

 This field resets to an architecturally UNKNOWN value.

J, bit [24]
 RES0.

 In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

 Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]
 When FEAT_SSBS is implemented:
 Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Hyp mode, and copied to PSTATE.SSBS on executing an exception return operation in Hyp mode.

 This field resets to an architecturally UNKNOWN value.

 Otherwise:
 Reserved, RES0.

PAN, bit [22]
 When FEAT_PAN is implemented:
 Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Hyp mode, and copied to PSTATE.PAN on executing an exception return operation in Hyp mode.

 This field resets to an architecturally UNKNOWN value.

 Otherwise:
 Reserved, RES0.

DIT, bit [21]
 When FEAT_DIT is implemented:
 Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Hyp mode, and copied to PSTATE.DIT on executing an exception return operation in Hyp mode.

 This field resets to an architecturally UNKNOWN value.

 Otherwise:
 Reserved, RES0.

IL, bit [20]
 Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Hyp mode, and copied to PSTATE.IL on executing an exception return operation in Hyp mode.

 This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
 Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Hyp mode, and copied to PSTATE.GE on executing an exception return operation in Hyp mode.

 This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
 If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Hyp mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Hyp mode.

 SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]
Endianness. Set to the value of PSTATE.E on taking an exception to Hyp mode, and copied to PSTATE.E on executing an exception return operation in Hyp mode.
If the implementation does not support big-endian operation, SPSR_hyp.E is RES0. If the implementation does not support little-endian operation, SPSR_hyp.E is RES1. On executing an exception return operation in Hyp mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_hyp.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_hyp.E is RES1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Hyp mode, and copied to PSTATE.A on executing an exception return operation in Hyp mode.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Hyp mode, and copied to PSTATE.I on executing an exception return operation in Hyp mode.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Hyp mode, and copied to PSTATE.F on executing an exception return operation in Hyp mode.
This field resets to an architecturally UNKNOWN value.

T, bit [5]
T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Hyp mode, and copied to PSTATE.T on executing an exception return operation in Hyp mode.
This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]
Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Hyp mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Hyp mode.
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Abort.
0b10111 Hyp.
0b11011 Undefined.
0b11111 System.
Other values are reserved. If SPSR_hyp.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Hyp mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.
This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_hyp

SPSR_hyp is accessible only in Monitor mode.
Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRS}\{<c>\}{<q>} \text{ } <Rd>, \text{SPSR}_\text{hyp} \]

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b1110</td>
</tr>
</tbody>
</table>

\[\text{MSR}\{<c>\}{<q>} \text{SPSR}_\text{hyp}, <Rn> \]

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b1110</td>
</tr>
</tbody>
</table>
G8.2.131 SPSR_irq, Saved Program Status Register (IRQ mode)

The SPSR_irq characteristics are:

Purpose

Holds the saved process state when an exception is taken to IRQ mode.

Configurations

AArch32 System register SPSR_irq[31:0] is architecturally mapped to AArch64 System register SPSR_irq[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_irq are UNDEFINED.

Attributes

SPSR_irq is a 32-bit register.

Field descriptions

The SPSR_irq bit assignments are:

| | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | |
|---|
| **N** |
| **Z** |
| **C** |
| **V** |
| **Q** |
| **IT[1:0]**| |
| **SSBS** | |
| **PAN** |
| **DIT** |

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N on executing an exception return operation in IRQ mode. This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on executing an exception return operation in IRQ mode. This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on executing an exception return operation in IRQ mode. This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on executing an exception return operation in IRQ mode. This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to PSTATE.Q on executing an exception return operation in IRQ mode. This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the \{J, T\} bits determined the AArch32 Instruction set state. Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to PSTATE.SSBS on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to PSTATE.PAN on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to PSTATE.DIT on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE_IL on taking an exception to IRQ mode, and copied to PSTATE_IL on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to PSTATE.GE on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to PSTATE_IT[7:2] on executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T on executing an exception return operation in IRQ mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on executing an exception return operation in IRQ mode.

0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in IRQ mode is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq

SPSR_irq is accessible in all modes other than User mode and IRQ mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS<q> Rd, SPSR_irq

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

MSR<q> SPSR_irq, <Rn>

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0000</td>
</tr>
</tbody>
</table>
G8.2.132 SPSR_mon, Saved Program Status Register (Monitor mode)

The SPSR_mon characteristics are:

Purpose

Holds the saved process state when an exception is taken to Monitor mode.

Configurations

AArch32 System register SPSR_mon[31:0] can be mapped to AArch64 System register SPSR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_mon are UNDEFINED.

Attributes

SPSR_mon is a 32-bit register.

Field descriptions

The SPSR_mon bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 16 | 15 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 0 |
|----|
| N | Z | C | V | Q | J | IL | GE | IT[7:2] | E | A | I | F | T | M[4:0] |

N, bit [31]
Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Monitor mode, and copied to PSTATE.N on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

Z, bit [30]
Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Monitor mode, and copied to PSTATE.Z on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

C, bit [29]
Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Monitor mode, and copied to PSTATE.C on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

V, bit [28]
Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Monitor mode, and copied to PSTATE.V on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

Q, bit [27]
Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Monitor mode, and copied to PSTATE.Q on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Monitor mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Monitor mode.

On executing an exception return operation in Monitor mode SPSR_mon.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Monitor mode, and copied to PSTATE.SSBS on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Monitor mode, and copied to PSTATE.PAN on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Monitor mode, and copied to PSTATE.DIT on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Monitor mode, and copied to PSTATE.IL on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Monitor mode, and copied to PSTATE.GE on executing an exception return operation in Monitor mode.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Monitor mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Monitor mode.

SPSR_mon.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]
Endianness. Set to the value of PSTATE.E on taking an exception to Monitor mode, and copied to PSTATE.E on executing an exception return operation in Monitor mode.
If the implementation does not support big-endian operation, SPSR_mon.E is RES0. If the implementation does not support little-endian operation, SPSR_mon.E is RES1. On executing an exception return operation in Monitor mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_mon.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_mon.E is RES1.
This field resets to an architecturally UNKNOWN value.

A, bit [8]
SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Monitor mode, and copied to PSTATE.A on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

I, bit [7]
IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Monitor mode, and copied to PSTATE.I on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

F, bit [6]
FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Monitor mode, and copied to PSTATE.F on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

T, bit [5]
T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Monitor mode, and copied to PSTATE.T on executing an exception return operation in Monitor mode.
This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]
Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Monitor mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Monitor mode.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b10000</td>
<td>User.</td>
</tr>
<tr>
<td>0b10001</td>
<td>FIQ.</td>
</tr>
<tr>
<td>0b10010</td>
<td>IRQ.</td>
</tr>
<tr>
<td>0b10011</td>
<td>Supervisor.</td>
</tr>
<tr>
<td>0b10110</td>
<td>Monitor.</td>
</tr>
<tr>
<td>0b10111</td>
<td>Abort.</td>
</tr>
<tr>
<td>0b11010</td>
<td>Hyp.</td>
</tr>
<tr>
<td>0b11011</td>
<td>Undefined.</td>
</tr>
<tr>
<td>0b11111</td>
<td>System.</td>
</tr>
</tbody>
</table>

Other values are reserved. If SPSR_mon.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Monitor mode is an illegal return event, as described in *Illegal return events from AArch32 state* on page G1-5766.
This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_mon

SPSR_mon is only accessible in EL3 modes other than Monitor mode.
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRS}\{<c>\}{<q>} <Rd>, SPSR_mon
\]

\[
\begin{array}{ccc}
R & M & M1 \\
\hline
0b1 & 0b1 & 0b100 \\
\end{array}
\]

\[
\text{MSR}\{<c>\}{<q>} SPSR_mon, <Rn>
\]

\[
\begin{array}{ccc}
R & M & M1 \\
\hline
0b1 & 0b1 & 0b100 \\
\end{array}
\]
G8.2.133 SPSR_svc, Saved Program Status Register (Supervisor mode)

The SPSR_svc characteristics are:

Purpose

Holds the saved process state when an exception is taken to Supervisor mode.

Configurations

AArch32 System register SPSR_svc[31:0] is architecturally mapped to AArch64 System register SPSR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_svc are UNDEFINED.

Attributes

SPSR_svc is a 32-bit register.

Field descriptions

The SPSR_svc bit assignments are:

```
   31  30  29  28  27  26  25  24  23  22  21  20  19  16  15  10   9   8   7   6   5   4   3   2   1   0
   N  Z  C  V  Q  J  IL  GE  IT[7:2]  E  A  I  F  T  M[4:0]
```

- **N, bit [31]**
 Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Supervisor mode, and copied to PSTATE.N on executing an exception return operation in Supervisor mode.
 This field resets to an architecturally UNKNOWN value.

- **Z, bit [30]**
 Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Supervisor mode, and copied to PSTATE.Z on executing an exception return operation in Supervisor mode.
 This field resets to an architecturally UNKNOWN value.

- **C, bit [29]**
 Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Supervisor mode, and copied to PSTATE.C on executing an exception return operation in Supervisor mode.
 This field resets to an architecturally UNKNOWN value.

- **V, bit [28]**
 Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Supervisor mode, and copied to PSTATE.V on executing an exception return operation in Supervisor mode.
 This field resets to an architecturally UNKNOWN value.

- **Q, bit [27]**
 Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Supervisor mode, and copied to PSTATE.Q on executing an exception return operation in Supervisor mode.
 This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Supervisor mode, and copied
to PSTATE.IT[1:0] on executing an exception return operation in Supervisor mode.
On executing an exception return operation in Supervisor mode SPSR_svc.IT must contain a value
that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

J, bit [24]
RES0.
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction
set state.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Supervisor
mode, and copied to PSTATE.SSBS on executing an exception return operation in Supervisor mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Supervisor
mode, and copied to PSTATE.PAN on executing an exception return operation in Supervisor mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Supervisor
mode, and copied to PSTATE.DIT on executing an exception return operation in Supervisor mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Supervisor mode,
and copied to PSTATE.IL on executing an exception return operation in Supervisor mode.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Supervisor
mode, and copied to PSTATE.GE on executing an exception return operation in Supervisor mode.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Supervisor mode, and copied
to PSTATE.IT[7:2] on executing an exception return operation in Supervisor mode.
SPSR_svc.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Supervisor mode, and copied to PSTATE.E on executing an exception return operation in Supervisor mode.

If the implementation does not support big-endian operation, SPSR_svc.E is RES0. If the implementation does not support little-endian operation, SPSR_svc.E is RES1. On executing an exception return operation in Supervisor mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_svc.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_svc.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Supervisor mode, and copied to PSTATE.A on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Supervisor mode, and copied to PSTATE.I on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Supervisor mode, and copied to PSTATE.F on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Supervisor mode, and copied to PSTATE.T on executing an exception return operation in Supervisor mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Supervisor mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Supervisor mode.

- 0b10000: User.
- 0b10001: FIQ.
- 0b10010: IRQ.
- 0b10011: Supervisor.
- 0b10111: Abort.
- 0b11011: Undefined.
- 0b11111: System.

Other values are reserved. If SPSR_svc.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Supervisor mode is an illegal return event, as described in *Illegal return events from AArch32 state* on page G1-5766.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_svc

SPSR_svc is accessible in all modes other than User mode and Supervisor mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS{<c>}{<q>} <Rd>, SPSR_svc

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

MSR{<c>}{<q>} SPSR_svc, <Rn>

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0010</td>
</tr>
</tbody>
</table>
G8.2.134 **SPSR_und, Saved Program Status Register (Undefined mode)**

The SPSR_und characteristics are:

Purpose

Holds the saved process state when an exception is taken to Undefined mode.

Configurations

AArch32 System register SPSR_und[31:0] is architecturally mapped to AArch64 System register SPSR_und[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_und are UNDEFINED.

Attributes

SPSR_und is a 32-bit register.

Field descriptions

The SPSR_und bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----|
| N | Z | C | V | Q | J | IL | GE | IT[7:2] | E | A | I | F | T | M[4:0] |

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to PSTATE.N on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to PSTATE.V on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to PSTATE.Q on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.
IT[1:0], bits [26:25]
If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0] on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

J, bit [24]
RES0.
In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.
Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]
When FEAT_SSBS is implemented:
Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to PSTATE.SSBS on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

PAN, bit [22]
When FEAT_PAN is implemented:
Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to PSTATE.PAN on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

DIT, bit [21]
When FEAT_DIT is implemented:
Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to PSTATE.DIT on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.
Otherwise:
Reserved, RES0.

IL, bit [20]
Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to PSTATE.IL on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]
Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to PSTATE.GE on executing an exception return operation in Undefined mode.
This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]
If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2] on executing an exception return operation in Undefined mode.
SPSR_und.IT must contain a value that is valid for the instruction being returned to.
This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_und.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to PSTATE.A on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to PSTATE.T on executing an exception return operation in Undefined mode.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on executing an exception return operation in Undefined mode.

0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b11011 Abort.
0b11011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, executing an exception return operation in Undefined mode is an illegal return event, as described in illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_und

SPSR_und is accessible in all modes other than User mode and Undefined mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MRS{<c>}{<q>} <Rd>, SPSR_und

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0110</td>
</tr>
</tbody>
</table>

MSR{<c>}{<q>} SPSR_und, <Rn>

<table>
<thead>
<tr>
<th>R</th>
<th>M</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1</td>
<td>0b1</td>
<td>0b0110</td>
</tr>
</tbody>
</table>
G8.2.135 TCMTR, TCM Type Register

The TCMTR characteristics are:

Purpose

Provides information about the implementation of the TCM.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TCMTR are UNDEFINED.

If EL1 or above can use AArch32 then this register must be implemented.

Attributes

TCMTR is a 32-bit register.

Field descriptions

The TCMTR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the TCMTR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>}\{<q>\} <\text{coproc}>, \{#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID1 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return TCMTR;
 elsif PSTATE.EL == EL2 then
 return TCMTR;
elsif PSTATE.EL == EL3 then
 return TCMTR;
G8.2.136 TLBIALL, TLB Invalidate All

The TLBIALL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk. The entries that are invalidated are as follows:

- If executed at EL1, all entries that:
 - Would be required for the EL1&0 translation regime.
 - Match the current VMID, if EL2 is implemented and enabled in the current Security state.
- If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
- If executed at EL2, and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table entries that would be required for the PL1&0 translation regime and matches the current VMID.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALL are UNDEFINED.

Attributes

TLBIALL is a 32-bit System instruction.

Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

Executing the TLBIALL instruction

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & & !ELUsingAArch32(EL2) & & HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HCR_EL2.TTLB == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HCR.TTLB == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HCR.FB == '1' then
 TLBIALLIS();
 else
 TLBIALL();
 elsif PSTATE.EL == EL2 then
 TLBIALL();
```
elsif PSTATE.EL == EL3 then
TLBIALL();
G8.2.137   TLBIALLH, TLB Invalidate All, Hyp mode

The TLBIALLH characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for the Non-secure EL2 translation regime.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALLH are UNDEFINED.

**Attributes**

TLBIALLH is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the TLBIALLH instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

```
coproc opc1 CRn CRm opc2
0b1111 0b100 0b1000 0b0111 0b000
```

```
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
elsif PSTATE_EL == EL2 then
 TLBIALLH();
elsif PSTATE_EL == EL3 then
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 TLBIALLH();
```
G8.2.138 TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable

The TLBIALLHIS characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for the Non-secure EL2 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALLHIS are UNDEFINED.

**Attributes**

TLBIALLHIS is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the TLBIALLHIS instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR} \{c\} \{q\} \{coproc\}, \{\#\ opr1\}, \{Rt\}, \{CRn\}, \{CRm\} \{\#\ opr2\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        TLBIALLHIS();
    elsif PSTATE.EL == EL3 then
        if !HaveEL(EL2) then
            UNDEFINED;
        else
            TLBIALLHIS();
    end if;
## TLBIALLIS, TLB Invalidate All, Inner Shareable

The TLBIALLIS characteristics are:

### Purpose

Invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk. The entries that are invalidated are as follows:

- If executed at EL1, all entries that:
  - Would be required for the EL1&0 translation regime.
  - Match the current VMID, if EL2 is implemented and enabled in the current Security state.
- If executed in Secure state when EL3 is using AArch32, all entries that would be required for the Secure PL1&0 translation regime.
- If executed at EL2 and if EL2 is enabled in the current Security state, the stage 1 or stage 2 translation table entries that would be required for the PL1&0 translation regime and matches the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

### Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALLIS are UNDEFINED.

### Attributes

TLBIALLIS is a 32-bit System instruction.

### Field descriptions

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

### Executing the TLBIALLIS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{<c>\}{<q>}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
    AArch32.TakeHypTrapException(0x03);
  elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    coproc opc1 CRn CRm opc2
    0b1111 0b000 0b1000 0b0011 0b000
  end
else
  coproc opc1 CRn CRm opc2
  0b1111 0b000 0b1000 0b0011 0b000
end
TLBIALLIS();
elsif PSTATE.EL == EL2 then
    TLBIALLIS();
elsif PSTATE.EL == EL3 then
    TLBIALLIS();
G8.2.140 TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp

The TLBIALLNSNH characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALLNSNH are UNDEFINED.

**Attributes**

TLBIALLNSNH is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by \(<Rt>\) is ignored.

**Executing the TLBIALLNSNH instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

```
coproc opc1 CRn CRm opc2
0b111 0b100 0b1000 0b0111 0b100
```

```c
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
elsif PSTATE.EL == EL2 then
 TLBIALLNSNH();
else
 if !HaveEL(EL2) then
 UNDEFINED;
 else
 TLBIALLNSNH();
eendif
```

```c
if PSTATE.EL == EL2 then
 if EL2Enabled() & HSTR_EL2.T8 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
```
G8.2.141  TLBIALLNSNHIS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

The TLBIALLNSNHIS characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for stage 1 or stage 2 of the Non-secure PL1&0 translation regime, regardless of the associated VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIALLNSNHIS are UNDEFINED.

**Attributes**

TLBIALLNSNHIS is a 32-bit System instruction.

**Field descriptions**

This instruction has no applicable fields.

The value in the register specified by <Rt> is ignored.

**Executing the TLBIALLNSNHIS instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR\{<c>\}\{<q>\} <coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    TLBIALLNSNHIS();
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        UNDEFINED;
    else
        TLBIALLNSNHIS();
    endif
else
    UNDEFINED;
endif
G8.2.142 TLBIASID, TLB Invalidate by ASID match

The TLBIASID characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
  - Is from a level of lookup above the final level.
  - Is a non-global entry from the final level of lookup.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIASID are **UNDEFINED**.

**Attributes**

TLBIASID is a 32-bit System instruction.

**Field descriptions**

The TLBIASID input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>29</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:8]**

Reserved, RES0.

**ASID, bits [7:0]**

ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System instruction.

**Executing the TLBIASID instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} {<coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
    TLBIASIDIS(R[t]);
  else
    TLBIASID(R[t]);
  elsif PSTATE.EL == EL2 then
    TLBIASID(R[t]);
  elif PSTATE.EL == EL3 then
    TLBIASID(R[t]);
G8.2.143  TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable

The TLBIASIDIS characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used for the specified ASID, and either:
  - Is from a level of lookup above the final level.
  - Is a non-global entry from the final level of lookup.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIASIDIS are UNDEFINED.

Attributes

TLBIASIDIS is a 32-bit System instruction.

Field descriptions

The TLBIASIDIS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>ASID</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Bits [31:8] Reserved, RES0.

ASID, bits [7:0] ASID value to match. Any TLB entries for non-global pages that match the ASID values will be affected by this System instruction.

Executing the TLBIASIDIS instruction

Accesses to this register use the following encodings in the System instruction encoding space:
## G8.2 General system control registers

### MCR<coproc>, CRn, CRm, {opc1}, {opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    TLBIASIDIS(R[t]);
  end if;
elsif PSTATE.EL == EL2 then
  TLBIASIDIS(R[t]);
elsif PSTATE.EL == EL3 then
  TLBIASIDIS(R[t]);
else
G8.2.144  TLBIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2

The TLBIIPAS2 characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet
the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2
translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise,
direct accesses to TLBIIPAS2 are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2 is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2 input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>IPA[39:12]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2 instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is
CONSTRUCTED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MCR(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b100</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
      AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
  endif;
elsif PSTATE.EL == EL2 then
  TLBIIPAS2(R[t]);
elsif PSTATE.EL == EL3 then
  if !HaveEL(EL2) then
    UNDEFINED;
  elsif SCR.NS == '0' then
    // no operation
  else
    TLBIIPAS2(R[t]);
  endif;
else
  if PSTATE.EL == EL0 then
    UNDEFINED;
  elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
      AArch32.TakeHypTrapException(0x03);
    else
      UNDEFINED;
    endif;
  elsif PSTATE.EL == EL2 then
    TLBIIPAS2(R[t]);
  elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
      UNDEFINED;
    elsif SCR.NS == '0' then
      // no operation
    else
      TLBIIPAS2(R[t]);
    endif;
  else
    UNDEFINED;
endif;
G8.2.145  TLBIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

The TLBIIPAS2IS characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 2 only translation table entry, from any level of the translation table walk.
- SCR.NS is 1.
- The entry would be used for the specified IPA.
- The entry would be used with the current VMID.
- The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIIPAS2IS are UNDEFINED.

**Note**

This System instruction is not implemented in architecture versions before Armv8.

**Attributes**

TLBIIPAS2IS is a 32-bit System instruction.

**Field descriptions**

The TLBIIPAS2IS input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-28</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>27</td>
<td>IPA[39:12]</td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

**Executing the TLBIIPAS2IS instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    end
elsif PSTATE.EL == EL2 then
    TLBIIPAS2IS(R[t]);
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        UNDEFINED;
    elsif SCR.NS == '0' then
        //no operation
    else
        TLBIIPAS2IS(R[t]);
    end
G8.2.146   TLBIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

The TLBIIPAS2L characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
• SCR.NS is 1.
• The entry would be used for the specified IPA.
• The entry would be used with the current VMID.
• The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIIPAS2L are UNDEFINED.

Note

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIIPAS2L is a 32-bit System instruction.

Field descriptions

The TLBIIPAS2L input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td>IPA[39:12]</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

IPA[39:12], bits [27:0]

Bits[39:12] of the intermediate physical address to match.

Executing the TLBIIPAS2L instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  TLBIIPAS2L(R[t]);
elsif PSTATE.EL == EL3 then
  if !HaveEL(EL2) then
    UNDEFINED;
  elsif SCR.NS == '0' then
    //no operation
  else
    TLBIIPAS2L(R[t]);
G8.2.147 TLBIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

The TLBIIPAS2LIS characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that meet the following requirements:
- The entry is a stage 2 only translation table entry, from the final level of the translation table walk.
- SCR.NS is 1.
- The entry would be used for the specified IPA.
- The entry would be used with the current VMID.
- The entry would be required for the PL1&0 translation regime.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIIPAS2LIS are **undefined**.

---

**Note**

This System instruction is not implemented in architecture versions before Armv8.

---

**Attributes**

TLBIIPAS2LIS is a 32-bit System instruction.

**Field descriptions**

The TLBIIPAS2LIS input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28 27</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>IPA[39:12]</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:28]**

Reserved, RES0.

**IPA[39:12], bits [27:0]**

Bits[39:12] of the intermediate physical address to match.

**Executing the TLBIIPAS2LIS instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is **constrained unpredictable**, and one of the following behaviors must occur:
- The instruction is **undefined**.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.
Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{<c>\}{<q>} \{coproc\}, \{#\}<opc1>, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \{#\}<opc2> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  TLBIIPAS2LIS(R[t]);
elsif PSTATE.EL == EL3 then
  if !HaveEL(EL2) then
    UNDEFINED;
  elsif SCR.NS == '0' then
    // no operation
  else
    TLBIIPAS2LIS(R[t]);
G8.2.148   TLBIMVA, TLB Invalidate by VA

The TLBIMVA characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified address, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVA are UNDEFINED.

Attributes

TLBIMVA is a 32-bit System instruction.

Field descriptions

The TLBIMVA input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this operation.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
Executing the TLBIMVA instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MCR}\{<c>\}{<q>} <\text{coproc}>, \{#\}<\text{opc1}>, <Rt>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
        TLBIMVAIS(R[t]);
    else
        TLBIMVA(R[t]);
    elsif PSTATE.EL == EL2 then
        TLBIMVA(R[t]);
    elsif PSTATE.EL == EL3 then
        TLBIMVA(R[t]);
    else
        TLBIMVA(R[t]);
G8.2.149   TLBIMVAA, TLB Invalidate by VA, All ASID

The TLBIMVAA characteristics are:

Purpose
Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.
• The entry would be used to translate the specified address.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations
This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAA are UNDEFINED.

Attributes
TLBIMVAA is a 32-bit System instruction.

Field descriptions
The TLBIMVAA input value bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.</td>
</tr>
<tr>
<td>Bits</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Executing the TLBIMVAA instruction
Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111</td>
<td>0000</td>
<td>0100</td>
<td>0011</td>
<td>0011</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch32.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
    AArch32.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
    TLBIMVAAIS(R[t]);
  else
    TLBIMVAA(R[t]);
  elsif PSTATE_EL == EL2 then
    TLBIMVAA(R[t]);
  elsif PSTATE_EL == EL3 then
    TLBIMVAA(R[t]);
G8.2.150 TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable

The TLBIMVAAIS characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry, from any level of the translation table walk.
- The entry would be used to translate the specified address.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAAIS are UNDEFINED.

**Attributes**

TLBIMVAAIS is a 32-bit System instruction.

**Field descriptions**

The TLBIMVAAIS input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td></td>
<td></td>
<td>RES0</td>
</tr>
</tbody>
</table>

VA, bits [31:12]

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

Bits [11:0]

Reserved, RES0.

**Executing the TLBIMVAAIS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    TLBIMVAIS(R[t]);
  endif
elsif PSTATE.EL == EL2 then
  TLBIMVAIS(R[t]);
elsif PSTATE.EL == EL3 then
  TLBIMVAIS(R[t]);
G8.2.151 TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level

The TLBIMVAAL characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- The entry would be used to translate the specified address.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAAL are UNDEFINED.

---

**Note**

This System instruction is not implemented in architecture versions before Armv8.

---

**Attributes**

TLBIMVAAL is a 32-bit System instruction.

**Field descriptions**

The TLBIMVAAL input value bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-12</td>
<td>VA, Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.</td>
</tr>
<tr>
<td>11-0</td>
<td>RES0, Reserved.</td>
</tr>
</tbody>
</table>

**Executing the TLBIMVAAL instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR\{c\}\{q\} \{coproc\}, \{#\}\{opc1\}, \{Rt\}, \{CRn\}, \{CRm\}\{, \{#\}\{opc2\}\}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FB == '1' then
        TLBIMVAALIS(R\[t\]);
    else
        TLBIMVAAL(R\[t\]);
    elsif PSTATE.EL == EL2 then
        TLBIMVAAL(R\[t\]);
    elsif PSTATE.EL == EL3 then
        TLBIMVAAL(R\[t\]);
else
    TLBIMVAAL(R\[t\]);
G8.2.152 TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable

The TLBIMVAALIS characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry, from the final level of the translation table walk.
- The entry would be used to translate the specified address.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAALIS are UNDEFINED.

---

**Note**

This System instruction is not implemented in architecture versions before Armv8.

---

**Attributes**

TLBIMVAALIS is a 32-bit System instruction.

**Field descriptions**

The TLBIMVAALIS input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VA, bits [31:12]**

Virtual address to match. Any unlocked TLB entries that match the VA will be affected by this System instruction, regardless of the ASID.

**Bits [11:0]**

Reserved, RES0.

**Executing the TLBIMVAALIS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        TLBIMVAALIS(R[t]);
    elsif PSTATE.EL == EL2 then
        TLBIMVAALIS(R[t]);
    elsif PSTATE.EL == EL3 then
        TLBIMVAALIS(R[t]);
else
    if PSTATE.EL == EL0 then
        UNDEFINED;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
            AArch32.TakeHypTrapException(0x03);
        elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
            AArch32.TakeHypTrapException(0x03);
        elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
            AArch32.TakeHypTrapException(0x03);
        else
            TLBIMVAALIS(R[t]);
        elseif PSTATE.EL == EL2 then
            TLBIMVAALIS(R[t]);
        elseif PSTATE.EL == EL3 then
            TLBIMVAALIS(R[t]);
else

G8.2.153  TLBIMVAH, TLB Invalidate by VA, Hyp mode

The TLBIMVAH characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAH are UNDEFINED.

**Attributes**

TLBIMVAH is a 32-bit System instruction.

**Field descriptions**

The TLBIMVAH input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VA, bits [31:12]**

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

**Bits [11:0]**

Reserved, RES0.

**Executing the TLBIMVAH instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

**MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}**

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        // Code for EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1'
AArch32.TakeHypTrapException(0x03);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  TLBIMVAH(R[t]);
elsif PSTATE.EL == EL3 then
  if !HaveEL(EL2) then
    UNDEFINED;
  else
    TLBIMVAH(R[t]);
G8.2.154    TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable

The TLBIMVAHIS characteristics are:

Purpose

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from any level of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAHIS are UNDEFINED.

Attributes

TLBIMVAHIS is a 32-bit System instruction.

Field descriptions

The TLBIMVAHIS input value bit assignments are:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>12</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Bits [11:0]

Reserved, RES0.

Executing the TLBIMVAHIS instruction

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    end
else
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
end
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBIMVAHIS(R[t]);
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        UNDEFINED;
    else
        TLBIMVAHIS(R[t]);
G8.2.155  TLBIMVAIS, TLB Invalidate by VA, Inner Shareable

The TLBIMVAIS characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified address, and one of the following applies:
  - The entry is from a level of lookup above the final level and matches the specified ASID.
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAIS are UNDEFINED.

**Attributes**

TLBIMVAIS is a 32-bit System instruction.

**Field descriptions**

The TLBIMVAIS input value bit assignments are:

```
+-----+-----+-----+-----+-----+
<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.
Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.

**Executing the TLBIMVAIS instruction**

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MCR}\{c\}\{q\}\ <\text{coproc}, \#<opc1>, <Rt>, <CRn>, <CRm>\{, \#<opc2>\}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLB == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TTLBIS == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TTLB == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TTLBIS == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        TLBIMVAIS(R[t]);
    endif
elsif PSTATE.EL == EL2 then
    TLBIMVAIS(R[t]);
elsif PSTATE.EL == EL3 then
    TLBIMVAIS(R[t]);
G8.2.156   TLBIMVAL, TLB Invalidate by VA, Last level

The TLBIMVAL characteristics are:

Purpose

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

• The entry is a stage 1 translation table entry.
• The entry would be used to translate the specified address, and one of the following applies:
  — The entry is a global entry from the final level of lookup.
  — The entry is a non-global entry from the final level of lookup that matches the specified ASID.
• If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

• If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
• If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
• If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

Configurations

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVAL are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

Attributes

TLBIMVAL is a 32-bit System instruction.

Field descriptions

The TLBIMVAL input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td>ASID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VA, bits [31:12]

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Bits [11:8]

Reserved, RES0.

ASID, bits [7:0]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
Executing the TLBIMVAL instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\{<c>\}{<q>} <\text{coproc}>, \{#\}<\text{opc1}>, <Rt>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR.FB == '1' then
    TLBIMVALIS(R[t]);
  else
    TLBIMVAL(R[t]);
elsif PSTATE.EL == EL2 then
  TLBIMVAL(R[t]);
else PSTATE.EL == EL3 then
  TLBIMVAL(R[t]);
G8.2.157   TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode

The TLBIMVALH characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address.

The invalidation only applies to the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVALH are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

**Attributes**

TLBIMVALH is a 32-bit System instruction.

**Field descriptions**

The TLBIMVALH input value bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VA, bits [31:12]**

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

**Bits [11:0]**

Reserved, RES0.

**Executing the TLBIMVALH instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

```plaintext
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0111</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDENNED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBIMVALH(R[t]);
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        UNDEFINED;
    else
        TLBIMVALH(R[t]);

G8.2.158 TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

The TLBIMVALHIS characteristics are:

**Purpose**

If EL2 is implemented, invalidate all cached copies of translation table entries from TLBs that are from the final level of the translation table walk that would be required for the Non-secure EL2 translation regime and used to translate the specified address. The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVALHIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

**Attributes**

TLBIMVALHIS is a 32-bit System instruction.

**Field descriptions**

The TLBIMVALHIS input value bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.</td>
</tr>
<tr>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Executing the TLBIMVALHIS instruction**

If this instruction is executed in a Secure privileged mode other than Monitor mode, then the behavior is CONSTRAINED UNPREDICTABLE, and one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction is treated as a NOP.
- The instruction executes as if it had been executed in Monitor mode.

Accesses to this register use the following encodings in the System instruction encoding space:

`MCR(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>(, (#)<opc2>)`

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    TLBIMVALHIS(R[t]);
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        UNDEFINED;
    else
        TLBIMVALHIS(R[t]);
end if;
G8.2.159 TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable

The TLBIMVALIS characteristics are:

**Purpose**

Invalidate all cached copies of translation table entries from TLBs that meet the following requirements:

- The entry is a stage 1 translation table entry.
- The entry would be used to translate the specified address, and one of the following applies:
  - The entry is a global entry from the final level of lookup.
  - The entry is a non-global entry from the final level of lookup that matches the specified ASID.
- If EL2 is implemented and enabled in the current Security state, the entry would be used with the current VMID.

From the entries that match these requirements, the entries that are invalidated are required for the following translation regime:

- If executed at Secure EL1 when EL3 is using AArch64, the Secure EL1&0 translation regime.
- If executed in Secure state when EL3 is using AArch32, the Secure PL1&0 translation regime.
- If executed in Non-secure state, the Non-secure PL1&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this System instruction.

**Configurations**

This instruction is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBIMVALIS are UNDEFINED.

This System instruction is not implemented in architecture versions before Armv8.

**Attributes**

TLBIMVALIS is a 32-bit System instruction.

**Field descriptions**

The TLBIMVALIS input value bit assignments are:

```
 31 12 11 8 7 0
 VA RES0 ASID
```

**VA, bits [31:12]**

Virtual address to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

**Bits [11:8]**

Reserved, RES0.

**ASID, bits [7:0]**

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the ASID field.
Executing the TLBIMVALIS instruction

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MCR}\{\langle c\rangle}\{\langle q\rangle}\ \langle\text{coproc}\rangle, \langle\#\langle opc1\rangle\rangle, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \langle\#\langle opc2\rangle\rangle} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1000</td>
<td>0b0011</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && HSTR.EL2.T8 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && HSTR.EL2.T8 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && HCR.EL2.TTLB == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && HCR.EL2.TTLBIS == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && HCR.EL2.TTLB == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && HCR.EL2.TTLBIS == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  TLBIMVAL(R[t]);
elsif PSTATE.EL == EL2 then
  TLBIMVAL(R[t]);
elsif PSTATE.EL == EL3 then
  TLBIMVAL(R[t]);
G8.2.160   TLBTR, TLB Type Register

The TLBTR characteristics are:

**Purpose**

Provides information about the TLB implementation. The register must define whether the implementation provides separate instruction and data TLBs, or a unified TLB. Normally, the IMPLEMENTATION DEFINED information in this register includes the number of lockable entries in the TLB.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TLBTR are UNDEFINED.

**Attributes**

TLBTR is a 32-bit register.

**Field descriptions**

The TLBTR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Mask</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-1</td>
<td>1111</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>nU, bit [0]</td>
<td>0b11</td>
<td>Not Unified TLB. Indicates whether the implementation has a unified TLB:</td>
</tr>
<tr>
<td></td>
<td>0b00</td>
<td>Unified TLB.</td>
</tr>
<tr>
<td></td>
<td>0b01</td>
<td>Separate Instruction and Data TLBs.</td>
</tr>
</tbody>
</table>

**Accessing the TLBTR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b011</td>
<td></td>
</tr>
</tbody>
</table>
elsif PSTATE_EL == EL2 then
    return TLBTR;
else if PSTATE_EL == EL3 then
    return TLBTR;
G8.2.161   **TPIDRPRW, PL1 Software Thread ID Register**

The TPIDRPRW characteristics are:

**Purpose**

Provides a location where software executing at EL1 or higher can store thread identifying information that is not visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

**Configurations**

AArch32 System register TPIDRPRW[31:0] is architecturally mapped to AArch64 System register TPIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TPIDRPRW are UNDEFINED.

---

**Note**

The PE never updates this register.

---

**Attributes**

TPIDRPRW is a 32-bit register.

**Field descriptions**

The TPIDRPRW bit assignments are:

31 0

<table>
<thead>
<tr>
<th></th>
<th>Thread ID</th>
</tr>
</thead>
</table>

**Bits [31:0]**

Thread ID. Thread identifying information stored by software running at this Exception level.

This field resets to an architecturally UNKNOWN value.

**Accessing the TPIDRPRW**

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC\{<c>\}{<q>} \{#\}<coproc>, \{#\}<opc1>, \{#\}<CRn>, \{#\}<CRm>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1011</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
   elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
      AArch32.TakeHypTrapException(0x03);
   elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
      return TPIDRPRW_NS;
   else
      return TPIDRPRW;
   end
elsif PSTATE.EL == EL2 then
   Thread ID
if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TPIDRPRW_NS;
else
    return TPIDRPRW;
elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then
    return TPIDRPRW_S;
else
    return TPIDRPRW_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAAArch32(EL3) then
        TPIDRPRW_NS = R[t];
    else
        TPIDRPRW = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAAArch32(EL3) then
        TPIDRPRW_NS = R[t];
    else
        TPIDRPRW = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        TPIDRPRW_S = R[t];
    else
        TPIDRPRW_NS = R[t];
G8.2.162 TPIDRURO, PL0 Read-Only Software Thread ID Register

The TPIDRURO characteristics are:

**Purpose**

Provides a location where software executing at EL1 or higher can store thread identifying information that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

**Configurations**

AArch32 System register TPIDRURO[31:0] is architecturally mapped to AArch64 System register TPIDRRO_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TPIDRURO are UNDEFINED.

---

**Note**

The PE never updates this register.

---

**Attributes**

TPIDRURO is a 32-bit register.

**Field descriptions**

The TPIDRURO bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Thread ID</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:0]**

Thread ID. Thread identifying information stored by software running at this Exception level. This field resets to an architecturally UNKNOWN value.

**Accessing the TPIDRURO**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{c>}{q>}{coproc}, {#<opc1>, <Rt>, <CRn>, <CRm>{, {#<opc2>}}
```

```c
if PSTATE.EL == EL0 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '1' && HSTR_EL2.T13 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '1' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HGRTR_EL2.TPIDRRO_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return TPIDRURO;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
```

---

**Table:**

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TPIDRURO_NS;
else
    return TPIDRURO;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        return TPIDRURO_NS;
    else
        return TPIDRURO;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return TPIDRURO_S;
    else
        return TPIDRURO_NS;
elsif PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        TPIDRURO_NS = R[t];
    else
        TPIDRURO = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        TPIDRURO_NS = R[t];
    else
        TPIDRURO = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        TPIDRURO_S = R[t];
    else
        TPIDRURO_NS = R[t];

MCR{c}{q} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b101</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>
TPIDRURW, PL0 Read/Write Software Thread ID Register

The TPIDRURW characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for OS management purposes.

The PE makes no use of this register.

Configurations

AArch32 System register TPIDRURW[31:0] is architecturally mapped to AArch64 System register TPIDR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TPIDRURW are UNDEFINED.

Note

The PE never updates this register.

Attributes

TPIDRURW is a 32-bit register.

Field descriptions

The TPIDRURW bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Thread ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

Thread ID. Thread identifying information stored by software running at this Exception level. This field resets to an architecturally UNKNOWN value.

Accessing the TPIDRURW

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC\{<c>\{<q>\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2> \} } \]

if PSTATE.EL == EL0 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x80);
  elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HCRRT_EL2.TPIDR_EL0 != '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    return TPIDRURW;
  endif
else
  if PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      return TPIDRURW;
    endif
  endif
endif
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TPIDRURW_NS;
else
    return TPIDRURW;
elif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        return TPIDRURW_NS;
    else
        return TPIDRURW;
elif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return TPIDRURW_S;
    else
        return TPIDRURW_NS;
elsif PSTATE.EL == EL0 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
elif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TPIDRURW_NS = R[t];
else
    TPIDRURW = R[t];
elif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
        AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
    SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TPIDR_EL0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        TPIDRURW_NS = R[t];
else
    TPIDRURW = R[t];
elif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        TPIDRURW_S = R[t];
else
    TPIDRURW_NS = R[t];

MCR<c>{q} <coproc>, {#<opc1>, <Rt>, <CRn>, <CRm>{, {#<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1101</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
G8.2.164 TTBCR, Translation Table Base Control Register

The TTBCR characteristics are:

**Purpose**

The control register for stage 1 of the PL1&0 translation regime. Its controls include:

- Where the VA range is split between addresses translated using TTBR0 and addresses translated using TTBR1.
- The translation table format used by this stage of translation.

From Armv8.2, when the value of TTBCR.{EAE, T2E} is {1, 1}, TTBCR is used with TTBCR2.

**Configurations**

AArch32 System register TTBCR[31:0] is architecturally mapped to AArch64 System register TCR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBCR are UNDEFINED.

The current translation table format determines which format of the register is used.

Some RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. If the PE resets into EL3 using AArch32 then:

- The EAE bit resets to 0 in both the Secure and the Non-secure instances of the register.
- Other reset values apply only to the Secure instance of the register.

**Attributes**

TTBCR is a 32-bit register.

**Field descriptions**

The TTBCR bit assignments are:

*When TTBCR.EAE == 0:*

![TTBCR Bit Assignments Diagram]

**EAE, bit [31]**

Extended Address Enable.

0b0 Use the VMSAv8-32 translation system with the Short-descriptor translation table format.

This field resets to 0.

**Bits [30:6]**

Reserved, RES0.

**PD1, bit [5]**

Translation table walk disable for translations using TTBR1. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using TTBR1.

0b0 Perform translation table walks using TTBR1.
A TLB miss on an address that is translated using TTBR1 generates a Translation fault. 
No translation table walk is performed.

This field resets to 0.

PD0, bit [4]
Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is performed on a TLB miss for an address that is translated using TTBR0.

0b0 Perform translation table walks using TTBR0.
0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault. 
No translation table walk is performed.

This field resets to 0.

Bit [3]
Reserved, RES0.

N, bits [2:0]
Indicate the width of the base address held in TTBR0. In TTBR0, the base address field is bits[31:14-N]. The value of N also determines:

- Whether TTBR0 or TTBR1 is used as the base address for translation table walks.
- The size of the translation table pointed to by TTBR0.

N can take any value from 0 to 7, that is, from 0b000 to 0b111.

When N has its reset value of 0, the translation table base is compatible with Armv5 and Armv6.

This field resets to 0.

When TTBCR.EAE == 1:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 3  | 2  | 0  | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|     | SH1| RES0| T1SZ|    | SH0| RES0| T0SZ|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

EAE, bit [31]
Extended Address Enable.

0b1 Use the VMSAv8-32 translation system with the Long-descriptor translation table format.

This field resets to 0.

IMPLEMENTATION DEFINED, bit [30]
IMPLEMENTATION DEFINED.

This field resets to 0.

SH1, bits [29:28]
Shareability attribute for memory associated with translation table walks using TTBR1.

0b0 Non-shareable.
0b10 Outer Shareable.
0b11      Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is **CONSTRAINED UNPREDICTABLE**.

This field resets to 0.

**ORGN1**, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using **TTBR1**.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Normal memory, Outer Non-cacheable.</td>
</tr>
<tr>
<td>0b01</td>
<td>Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.</td>
</tr>
<tr>
<td>0b10</td>
<td>Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.</td>
</tr>
<tr>
<td>0b11</td>
<td>Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.</td>
</tr>
</tbody>
</table>

This field resets to 0.

**IRGN1**, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using **TTBR1**.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Normal memory, Inner Non-cacheable.</td>
</tr>
<tr>
<td>0b01</td>
<td>Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.</td>
</tr>
<tr>
<td>0b10</td>
<td>Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.</td>
</tr>
<tr>
<td>0b11</td>
<td>Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.</td>
</tr>
</tbody>
</table>

This field resets to 0.

**EPD1**, bit [23]

Translation table walk disable for translations using **TTBR1**. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using **TTBR1**.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Perform translation table walks using <strong>TTBR1</strong>.</td>
</tr>
<tr>
<td>0b1</td>
<td>A TLB miss on an address that is translated using <strong>TTBR1</strong> generates a Translation fault. No translation table walk is performed.</td>
</tr>
</tbody>
</table>

This field resets to 0.

**A1**, bit [22]

Selects whether **TTBR0** or **TTBR1** defines the ASID.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td><strong>TTBR0</strong>.ASID defines the ASID.</td>
</tr>
<tr>
<td>0b1</td>
<td><strong>TTBR1</strong>.ASID defines the ASID.</td>
</tr>
</tbody>
</table>

This field resets to 0.

**Bits [21:19]**

Reserved, **RES0**.

**T1SZ**, bits [18:16]

See *Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-5997* for how **TTBCR.\{T1SZ, T0SZ\}** determine the input address ranges and memory region sizes translated using **TTBR0** and **TTBR1**.

This field resets to 0.

**Bits [15:14]**

Reserved, **RES0**.

**SH0**, bits [13:12]

Shareability attribute for memory associated with translation table walks using **TTBR0**.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b00</td>
<td>Non-shareable</td>
</tr>
<tr>
<td>0b10</td>
<td>Outer Shareable</td>
</tr>
</tbody>
</table>
0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to 0.

**ORGN0, bits [11:10]**

Outer cacheability attribute for memory associated with translation table walks using TTBR0.

- 0b00 Normal memory, Outer Non-cacheable.
- 0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to 0.

**IRGN0, bits [9:8]**

Inner cacheability attribute for memory associated with translation table walks using TTBR0.

- 0b00 Normal memory, Inner Non-cacheable.
- 0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
- 0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
- 0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

This field resets to 0.

**EPD0, bit [7]**

Translation table walk disable for translations using TTBR0. This bit controls whether a translation table walk is performed on a TLB miss, for an address that is translated using TTBR0.

- 0b0 Perform translation table walks using TTBR0.
- 0b1 A TLB miss on an address that is translated using TTBR0 generates a Translation fault. No translation table walk is performed.

This field resets to 0.

**T2E, bit [6]**

*When FEAT_AA32HPD is implemented:*

TTBCR2 Enable.

- 0b0 TTBCR2 is disabled. The contents of TTBCR2 are treated as 0 for all purposes other than reading or writing the register.
- 0b1 TTBCR2 is enabled.

If TTBCR.EAE==0, then the behavior is as if the bit is 0.

*Otherwise:*

Reserved, RES0.

**Bits [5:3]**

Reserved, RES0.

**T0SZ, bits [2:0]**

See *Selecting between TTBR0 and TTBR1, VMSAv8-32 Long-descriptor translation table format on page G5-5997* for how TTBCR.T1SZ, T0SZ determine the input address ranges and memory region sizes translated using TTBR0 and TTBR1.

This field resets to 0.

**Accessing the TTBCR**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
        AArch32.TakenHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakenHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        return TTBCR_NS;
    else
        return TTBCR;
    end
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        return TTBCR_NS;
    else
        return TTBCR;
    end
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return TTBCR_S;
    else
        return TTBCR_NS;
    end
end

MCR{<c>}{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
        AArch32.TakenHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
        AArch32.TakenHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        TTBCR_NS = R[t];
    else
        TTBCR = R[t];
    end
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        TTBCR_NS = R[t];
    else
        TTBCR = R[t];
    end
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' && CP15SDISABLE == HIGH then
        UNDEFINED;
    elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
        UNDEFINED;
else
  if SCR.NS == '0' then
    TTBCR_S = R[t];
  else
    TTBCR_NS = R[t];
G8.2.165   TTBCR2, Translation Table Base Control Register 2

The TTBCR2 characteristics are:

Purpose

The second control register for stage 1 of the PL1&0 translation regime.

If FEAT_A32HPD is not implemented then this register is not implemented and its encoding is UNDEFINED. Otherwise:

- When the value of TTBCR.\{EAE, T2E\} is not \{1, 1\} the contents of TTBCR2 are treated as zero for all purposes other than reading or writing the register.
- When the value of TTBCR.\{EAE, T2E\} is \{1, 1\} TTBCR2 is used with TTBCR.

Configurations

AArch32 System register TTBCR2[31:0] is architecturally mapped to AArch64 System register TCR_EL1[63:32].

This register is present only when AArch32 is supported at any Exception level and FEAT_A32HPD is implemented. Otherwise, direct accesses to TTBCR2 are UNDEFINED.

Attributes

TTBCR2 is a 32-bit register.

Field descriptions

The TTBCR2 bit assignments are:

Bits [31:19]

Reserved, RES0.

HWU162, bit [18]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR1.

0b0   For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1   For translations using TTBR1, bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.
**Otherwise:**

Reserved, RES0.

**HWU161, bit [17]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**HWU160, bit [16]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**HWU159, bit [15]**

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR1.

0b0 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1, bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD1 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD1 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.
HWU062, bit [14]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[62] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [13]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[61] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [12]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
HWU059, bit [11]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or Page entry for translations using TTBR0.

0b0 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0, bit[59] of each stage 1 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the value of TTBCR2.HPD0 is 1.

The Effective value of this field is 0 if the value of TTBCR2.HPD0 is 0 or the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [10]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the translation tables pointed to by TTBR1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

HPD0, bit [9]

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, XNTable, and PXNTable, in the translation tables pointed to by TTBR0.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled if TTBCR.T2E == 1.

When disabled, the permissions are treated as if the bits are 0.

The Effective value of this field is 0 if the value of TTBCR.T2E is 0.

This field resets to an architecturally UNKNOWN value.

Bits [8:0]

Reserved, RES0.

Accessing the TTBCR2

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{c\}\{q\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingArch32(EL2) && HSTR.T2 == '1' then

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
  return TTBCR2_NS;
else
  return TTBCR2;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBCR2_NS;
  else
    return TTBCR2;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    return TTBCR2_S;
  else
    return TTBCR2_NS;
elsif PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBCR2_NS = R[t];
  else
    TTBCR2 = R[t];
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBCR2_NS = R[t];
  else
    TTBCR2 = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE == HIGH then
    UNDEFINED;
  elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
    UNDEFINED;
  else
    if SCR.NS == '0' then
      TTBCR2_S = R[t];
    else
      TTBCR2_NS = R[t];

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b011</td>
</tr>
</tbody>
</table>
G8.2.166 TTBR0, Translation Table Base Register 0

The TTBR0 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the lower VA range in the PL1&0 translation regime, and other information for this translation regime.

Configurations
AArch32 System register TTBR0[63:0] is architecturally mapped to AArch64 System register TTBR0_EL1[63:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBR0 are UNDEFINED.
TTBCR.EAE determines which TTBR0 format is used:
- TTBCR.EAE == 0b0: 32-bit format is used. TTBR0[63:32] are ignored.
- TTBCR.EAE == 0b1: 64-bit format is used.
When EL3 is using AArch32, write access to TTBR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.
Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability and shareability information is held in the TTBCR, not in TTBR0.

Attributes
TTBR0 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0] and do not modify bits [63:32].

Field descriptions
The TTBR0 bit assignments are:

When TTBCR.EAE == 0:

Bits [63:32]
Reserved, RES0.

TTB0, bits [31:7]
Translation table base address, bits[31:x], where x is 14-(TTBCR.N). Register bits [x-1:7] are RES0, with the additional requirement that if these bits are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
- Register bits [x-1:7] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.
This field resets to an architecturally UNKNOWN value.
IRGN[0], bit [6]

This field is bit[0] of IRGN[1:0].

Inner region bits. Bits [0,6] of this register together indicate the Inner Cacheability attributes for the memory associated with the translation table walks. The possible values of IRGN[1:0] are:

- 0b00  Normal memory, Inner Non-cacheable.
- 0b01  Normal memory, Inner Write-Back Write-Allocate Cacheable.
- 0b10  Normal memory, Inner Write-Through Cacheable.
- 0b11  Normal memory, Inner Write-Back no Write-Allocate Cacheable.

--- Note ---

The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region types and to ensure that software written for ARMv7 without the Multiprocessing Extensions can run unmodified on an implementation that includes the functionality introduced by the ARMv7 Multiprocessing Extensions.

The IRGN field is split as follows:

- IRGN[0] is TTBR0[6].
- IRGN[1] is TTBR0[0].

This field resets to an architecturally UNKNOWN value.

NOS, bit [5]

Not Outer Shareable. When the value of TTBR0.S is 1, indicates whether the memory associated with a translation table walk is Inner Shareable or Outer Shareable:

- 0b0  Memory is Outer Shareable.
- 0b1  Memory is Inner Shareable.

This bit is ignored when the value of TTBR0.S is 0.

This field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]

Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

- 0b00  Normal memory, Outer Non-cacheable.
- 0b01  Normal memory, Outer Write-Back Write-Allocate Cacheable.
- 0b10  Normal memory, Outer Write-Through Cacheable.
- 0b11  Normal memory, Outer Write-Back no Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IMP, bit [2]

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any IMPLEMENTATION DEFINED features this bit is RES0.

This field resets to an architecturally UNKNOWN value.

S, bit [1]

Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

- 0b0  Memory is Non-shareable.
- 0b1  Memory is shareable. The TTBR0.NOS field indicates whether the memory is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.
IRGN[1], bit [0]
This field is bit[1] of IRGN[1:0].
See IRGN[0] for the field description.

When TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>56</td>
<td>ASID, bits [55:48]</td>
</tr>
<tr>
<td>48</td>
<td>BADDR, bits [47:1]</td>
</tr>
<tr>
<td>1</td>
<td>CnP, bit [0]</td>
</tr>
</tbody>
</table>

Bits [63:56]
Reserved, RES0.

ASID, bits [55:48]
An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.
This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]
Translation table base address, bits[47:x]. Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

- Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T0SZ as follows:

- If TTBCR.T0SZ is 0 or 1, x = 5 - TTBCR.T0SZ.
- If TTBCR.T0SZ is greater than 1, x = 14 - TTBCR.T0SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.
This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:
Common not Private. When TTBCR.EAE == 1, this bit indicates whether each entry that is pointed to by TTBR0 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR0.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR0, for the current ASID, are permitted to differ from corresponding entries for this instance of TTBR0 for other PEs in the Inner Shareable domain. This is not affected by:
- The value of TTBR0.CnP on those other PEs.
- The value of TTBCR.EAE on those other PEs.
- The value of the current ASID or, for the Non-secure instance of TTBR0, the value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR0 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR0.CnP is 1 for this instance of TTBR0 and all of the following apply:
- The translation table entries are pointed to by this instance of TTBR0.
The value of the applicable TTBCR.EAE field is 1.

- The ASID is the same as the current ASID.
- For the Non-secure instance of TTBR0, the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

--- Note ---

If the value of the TTBR0.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR0s do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

---

This field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

### Accessing the TTBR0

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC{<c>}{<q>}{coproc}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR0_NS<31:0>;
  else
    return TTBR0<31:0>;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR0_NS<31:0>;
  else
    return TTBR0<31:0>;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    return TTBR0_S<31:0>;
  else
    return TTBR0_NS<31:0>;
### MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR0_NS = ZeroExtend(R[t]);
  else
    TTBR0 = ZeroExtend(R[t]);
  endif
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR0_NS = ZeroExtend(R[t]);
  else
    TTBR0 = ZeroExtend(R[t]);
  endif
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE == HIGH then
    UNDEFINED;
  else
    if SCR.NS == '0' then
      TTBR0_S = ZeroExtend(R[t]);
    else
      TTBR0_NS = ZeroExtend(R[t]);
    endif
  endif

### MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR0_NS;
  else
    return TTBR0;
  endif
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR0_NS;
  else
    return TTBR0;
  endif
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    return TTBR0_NS;
  endif
return TTBR0_S;
else
  return TTBR0_NS;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR0_NS = R[t2]:R[t];
  else
    TTBR0 = R[t2]:R[t];
  elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
      TTBR0_NS = R[t2]:R[t];
    else
      TTBR0 = R[t2]:R[t];
  elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' && CP15SDISABLE == HIGH then
      UNDEFINED;
    else
      if SCR.NS == '0' then
        TTBR0_S = R[t2]:R[t];
      else
        TTBR0_NS = R[t2]:R[t];
      endif
    endif
  endif
endif
G8.2.167  TTBR1, Translation Table Base Register 1

The TTBR1 characteristics are:

**Purpose**

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of an address from the higher VA range in the PL1&0 translation regime, and other information for this translation regime.

**Configurations**

AArch32 System register TTBR1[63:0] is architecturally mapped to AArch64 System register TTBR1_EL1[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to TTBR1 are UNDEFINED.

TTBCR.EAE determines which TTBR1 format is used:

- TTBCR.EAE == 0b0: 32-bit format is used. TTBR1[63:32] are ignored.
- TTBCR.EAE == 0b1: 64-bit format is used.

Used in conjunction with the TTBCR. When the 64-bit TTBR1 format is used, cacheability and shareability information is held in the TTBCR, not in TTBR1.

**Attributes**

TTBR1 is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0] and do not modify bits [63:32].

**Field descriptions**

The TTBR1 bit assignments are:

*When TTBCR.EAE == 0:*

- **Bits [63:32]**
  
  Reserved, RES0.

- **TTB1, bits [31:7]**
  
  Translation table base address, bits[31:14]. Register bits [13:7] are RES0, with the additional requirement that if these bits are not all zero, this is a misaligned translation table base address, with effects that are CONstrained UNPREDICTable, and must be one of the following:

  - Register bits [13:7] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
  - The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

  This field resets to an architecturally UNKNOWN value.
IRGN[1], bit [6]
This field is bit[1] of IRGN[1:0].
Inner region bits. IRGN[1:0] indicate the Inner Cacheability attributes for the memory associated with the translation table walks. The possible values of IRGN[1:0] are:

0b00  Normal memory, Inner Non-cacheable.
0b01  Normal memory, Inner Write-Back Write-Allocate Cacheable.
0b10  Normal memory, Inner Write-Through Cacheable.
0b11  Normal memory, Inner Write-Back no Write-Allocate Cacheable.

Note
The encoding of the IRGN bits is counter-intuitive, with register bit[6] being IRGN[0] and register bit[0] being IRGN[1]. This encoding is chosen to give a consistent encoding of memory region types and to ensure that software written for Armv7 without the Multiprocessing Extensions can run unmodified on an implementation that includes the functionality introduced by the ARMv7 Multiprocessing Extensions.

The IRGN field is split as follows:
- IRGN[1] is TTBR1[6].
- IRGN[0] is TTBR1[0].

This field resets to an architecturally UNKNOWN value.

NOS, bit [5]
Not Outer Shareable. When the value of TTBR1.S is 1, indicates whether the memory associated with a translation table walk is Inner Shareable or Outer Shareable:

0b0  Memory is Outer Shareable.
0b1  Memory is Inner Shareable.

This bit is ignored when the value of TTBR1.S is 0.
This field resets to an architecturally UNKNOWN value.

RGN, bits [4:3]
Region bits. Indicates the Outer cacheability attributes for the memory associated with the translation table walks:

0b00  Normal memory, Outer Non-cacheable.
0b01  Normal memory, Outer Write-Back Write-Allocate Cacheable.
0b10  Normal memory, Outer Write-Through Cacheable.
0b11  Normal memory, Outer Write-Back no Write-Allocate Cacheable.

This field resets to an architecturally UNKNOWN value.

IMP, bit [2]
The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not include any IMPLEMENTATION DEFINED features this bit is RES0.
This field resets to an architecturally UNKNOWN value.

S, bit [1]
Shareable. Indicates whether the memory associated with the translation table walks is Non-shareable:

0b0  Memory is Non-shareable.
0b1  Memory is shareable. The TTBR1.NOS field indicates whether the memory is Inner Shareable or Outer Shareable.

This field resets to an architecturally UNKNOWN value.
IRGN[0], bit [0]

This field is bit[0] of IRGN[1:0].
See IRGN[1] for the field description.

When TTBCR.EAE == 1:

Bits [63:56]
Reserved, RES0.

ASID, bits [55:48]
An ASID for the translation table base address. The TTBCR.A1 field selects either TTBR0.ASID or TTBR1.ASID.
This field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]
Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:
- Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of TTBCR.T1SZ as follows:
- If TTBCR.T1SZ is 0 or 1, x = 5 - TTBCR.T1SZ.
- If TTBCR.T1SZ is greater than 1, x = 14 - TTBCR.T1SZ.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.
This field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:
Common not Private. When TTBCR.EAE == 1, this bit indicates whether each entry that is pointed to by TTBR1 is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of TTBR1.CnP is 1.

0b0 The translation table entries pointed to by this instance of TTBR1, for the current ASID, are permitted to differ from corresponding entries for this instance of TTBR1 for other PEs in the Inner Shareable domain. This is not affected by:
- The value of TTBR1.CnP on those other PEs.
- The value of TTBCR.EAE on those other PEs.
- The value of the current ASID or, for the Non-secure instance of TTBR1, the value of the current VMID.

0b1 The translation table entries pointed to by this instance of TTBR1 are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of TTBR1.CnP is 1 for this instance of TTBR1 and all of the following apply:
- The translation table entries are pointed to by this instance of TTBR1.
• The value of the applicable TTBCR.EAE field is 1.
• The ASID is the same as the current ASID.
• For the Non-secure instance of TTBR1, the VMID is the same as the current VMID.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

--- Note ---

If the value of the TTBR1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those TTBR1s do not point to the same translation table entries when the other conditions specified for the case when the value of CnP is 1 apply, then the results of translations are CONstrained UNpredictable, see CONstrained UNpredictable behaviors due to caching of control or data values on page K1-7945.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR1

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}\{<q>\} \text{ <coproc}, \{#\}\text{<opc1}, \text{<Rt}, \text{<CRn}, \text{<CRm}\}^{,\{#\}\text{<opc2}} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        return TTBR1_NS<31:0>;
    else
        return TTBR1<31:0>;
    elsif PSTATE.EL == EL2 then
        if EL2Enabled() && ELUsingAArch32(EL2) then
            return TTBR1_NS<31:0>;
        else
            return TTBR1<31:0>;
    elsif PSTATE.EL == EL3 then
        if SCR.NS == '0' then
            return TTBR1_S<31:0>;
    else
        return TTBR1_NS<31:0>;
}
MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>, (#<opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR1_NS = ZeroExtend(R[t]);
  else
    TTBR1 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR1_NS = ZeroExtend(R[t]);
  else
    TTBR1 = ZeroExtend(R[t]);
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE == HIGH then
    UNDEFINED;
  elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
    UNDEFINED;
  else
    if SCR.NS == '0' then
      TTBR1_S = ZeroExtend(R[t]);
    else
      TTBR1_NS = ZeroExtend(R[t]);
  return TTBR1_NS;
else
  return TTBR1;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR1_NS;
  else
    return TTBR1;

MRRC{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR1_NS;
  else
    return TTBR1;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return TTBR1_NS;
  else
    return TTBR1;
else
  return TTBR1;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    return TTBR1_S;
  else
    return TTBR1_NS;
endif;

\[
\text{TCR} \{c\} \{q\} \text{<coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
    TTBR1_NS = R[t2]:R[t];
  else
    TTBR1 = R[t2]:R[t];
  endif;
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) && ELUsingAAArch32(EL3) then
    TTBR1_NS = R[t2]:R[t];
  else
    TTBR1 = R[t2]:R[t];
  endif;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE == HIGH then
    UNDEFINED;
  else
    if SCR.NS == '0' then
      TTBR1_S = R[t2]:R[t];
    else
      TTBR1_NS = R[t2]:R[t];
    endif;
  endif;
G8.2.168 VBAR, Vector Base Address Register

The VBAR characteristics are:

**Purpose**

When high exception vectors are not selected, holds the vector base address for exceptions that are not taken to Monitor mode or to Hyp mode.

Software must program VBAR(NS) with the required initial value as part of the PE boot sequence.

**Configurations**

AArch32 System register VBAR[31:0] is architecturally mapped to AArch64 System register VBAR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VBAR are **UNDEFINED**.

**Attributes**

VBAR is a 32-bit register.

**Field descriptions**

The VBAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:5]</td>
<td>Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception level. Bits[4:0] of an exception vector are the exception offset. This field resets to an <strong>IMPLEMENTATION DEFINED</strong> value.</td>
</tr>
<tr>
<td>Bits [4:0]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

**Accessing the VBAR**

Access to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>}{<coproc>}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T12 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAAArch32(EL3) then
 return VBAR_NS;
 else
 return VBAR;
 endif
elsif PSTATE_EL == EL2 then
 ...
```
if HaveEL(EL3) && ELUsingAArch32(EL3) then
    return VBAR_NS;
else
    return VBAR;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        return VBAR_S;
    else
        return VBAR_NS;
else
    return VBAR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        VBAR_NS = R[t];
    else
        VBAR = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        VBAR_NS = R[t];
    else
        VBAR = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' && CP15SDISABLE == HIGH then
        UNDEFINED;
    elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
        UNDEFINED;
    else
        if SCR.NS == '0' then
            VBAR_S = R[t];
        else
            VBAR_NS = R[t];

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
        VBAR_NS = R[t];
    else
        VBAR = R[t];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && ELUsingAArch32(EL3) then
        VBAR_NS = R[t];
    else
        VBAR = R[t];
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' && CP15SDISABLE == HIGH then
        UNDEFINED;
    elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
        UNDEFINED;
    else
        if SCR.NS == '0' then
            VBAR_S = R[t];
        else
            VBAR_NS = R[t];
G8.2.169  VMPIDR, Virtualization Multiprocessor ID Register

The VMPIDR characteristics are:

**Purpose**

Holds the value of the Virtualization Multiprocessor ID. This is the value returned by Non-secure EL1 reads of MPIDR.

**Configurations**

AArch32 System register VMPIDR[31:0] is architecturally mapped to AArch64 System register VMPIDR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VMPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MPIDR.

**Attributes**

VMPIDR is a 32-bit register.

**Field descriptions**

The VMPIDR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>bit [31]</td>
</tr>
<tr>
<td>U</td>
<td>bit [30]</td>
</tr>
<tr>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td>Aff2</td>
<td></td>
</tr>
<tr>
<td>Aff1</td>
<td></td>
</tr>
<tr>
<td>Aff0</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td></td>
</tr>
</tbody>
</table>

**M, bit [31]**

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing Extensions. The possible values of this bit are:

- 0b0  This implementation does not include the ARMv7 Multiprocessing Extensions functionality.
- 0b1  This implementation includes the ARMv7 Multiprocessing Extensions functionality.

From Armv8 this bit is RES1.

**U, bit [30]**

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

- 0b0  Processor is part of a multiprocessor system.
- 0b1  Processor is part of a uniprocessor system.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.U.

**Bits [29:25]**

Reserved, RES0.

**MT, bit [24]**

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

- 0b0  Performance of PEs at the lowest affinity level is largely independent.
- 0b1  Performance of PEs at the lowest affinity level is very interdependent.
In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.MT.

**Aff2, bits [23:16]**

Affinity level 2. See the description of Aff0 for more information.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff2.

**Aff1, bits [15:8]**

Affinity level 1. See the description of Aff0 for more information.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff1.

**Aff0, bits [7:0]**

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR.\{Aff2, Aff1, Aff0\} or MPIDR.\_EL1.\{Aff3, Aff2, Aff1, Aff0\} set of fields of each PE must be unique within the system as a whole.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MPIDR.Aff0.

### Accessing the VMPIDR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

\[ MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>
AArch32.TakeHypTrapException(0x03);
else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    VMPIDR = R[t];
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        // no operation
    elsif SCR.NS == '0' then
        UNDEFINED;
    else
        VMPIDR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) then
        return VMPIDR_EL2<31:0>;
    elsif EL2Enabled() && ELUsingAArch32(EL2) then
        return VMPIDR;
    else
        return MPIDR;
elsif PSTATE.EL == EL2 then
    return MPIDR;
else
    return MPIDR;
G8.2.170 VPIDR, Virtualization Processor ID Register

The VPIDR characteristics are:

**Purpose**

Holds the value of the Virtualization Processor ID. This is the value returned by Non-secure EL1 reads of MIDR.

**Configurations**

AArch32 System register VPIDR[31:0] is architecturally mapped to AArch64 System register VPIDR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VPIDR are UNDEFINED.

If EL2 is not implemented but EL3 is implemented, this register takes the value of the MIDR.

**Attributes**

VPIDR is a 32-bit register.

**Field descriptions**

The VPIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit 31</th>
<th>Bit 24</th>
<th>Bit 23</th>
<th>Bit 20</th>
<th>Bit 19</th>
<th>Bit 16</th>
<th>Bit 15</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Implementer</td>
<td>Variant</td>
<td></td>
<td>PartNum</td>
<td></td>
<td>Revision</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Implementer, bits [31:24]**

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes include the following:

<table>
<thead>
<tr>
<th>Hex representation</th>
<th>ASCII representation</th>
<th>Implementer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x41</td>
<td>A</td>
<td>Arm Limited</td>
</tr>
<tr>
<td>0x42</td>
<td>B</td>
<td>Broadcom Corporation</td>
</tr>
<tr>
<td>0x43</td>
<td>C</td>
<td>Cavium Inc.</td>
</tr>
<tr>
<td>0x44</td>
<td>D</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>0x49</td>
<td>I</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td>0x4D</td>
<td>M</td>
<td>Motorola or Freescale Semiconductor Inc.</td>
</tr>
<tr>
<td>0x4E</td>
<td>N</td>
<td>NVIDIA Corporation</td>
</tr>
<tr>
<td>0x50</td>
<td>P</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
<tr>
<td>0x51</td>
<td>Q</td>
<td>Qualcomm Inc.</td>
</tr>
<tr>
<td>0x56</td>
<td>V</td>
<td>Marvell International Ltd.</td>
</tr>
<tr>
<td>0x69</td>
<td>i</td>
<td>Intel Corporation</td>
</tr>
</tbody>
</table>

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.
In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Implementer.

**Variant, bits [23:20]**

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Variant.

**Architecture, bits [19:16]**

Architecture version. Defined values are:

- 0b0001  Armv4.
- 0b0010  Armv4T.
- 0b0011  Armv5 (obsolete).
- 0b0100  Armv5T.
- 0b0101  Armv5TE.
- 0b0110  Armv5TEJ.
- 0b0111  Armv6.
- 0b1111  Architectural features are individually identified in the ID_* registers, see ID registers on page K15-8205.

All other values are reserved.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Architecture.

**PartNum, bits [15:4]**

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.PartNum.

**Revision, bits [3:0]**

An IMPLEMENTATION DEFINED revision number for the device.

In a system where the PE resets into EL2 or EL3, this field resets to the value in MIDR.Revision.

**Accessing the VPIDR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}\{<q>\} <coproc>, \{#<opc1>\}, <Rt>, <CRn>, <CRm>\{, \{#<opc2>\}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
    AArch32.TakeHypTrapException(0x03);
else
  UNDEFINED;
elif PSTATE.EL == EL2 then
  return VPIDR;
elif PSTATE.EL == EL3 then
  if !HaveEL(EL2) then
    return MIDR;
elsif SCR.NS == '0' then
    UNDEFINED;
else
    return VPIDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    VPIDR = R[t];
elsif PSTATE.EL == EL3 then
    if !HaveEL(EL2) then
        //no operation
    elsif SCR.NS == '0' then
        UNDEFINED;
    else
        VPIDR = R[t];
    endif

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) then
        return VPIDR_EL2<31:0>;
    elsif EL2Enabled() && ELUsingAArch32(EL2) then
        return VPIDR;
    else
        return MIDR;
    endif
elsif PSTATE.EL == EL2 then
    return MIDR;
elsif PSTATE.EL == EL3 then
    return MIDR;
G8.2.171 VTCR, Virtualization Translation Control Register

The VTCR characteristics are:

**Purpose**

The control register for stage 2 of the Non-secure PL1&0 translation regime.

--- Note ---

This stage of translation always uses the Long-descriptor translation table format.

**Configurations**

AArch32 System register VTCR[31:0] is architecturally mapped to AArch64 System register VTCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VTCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

VTCR is a 32-bit register.

**Field descriptions**

The VTCR bit assignments are:

Bit [31]

Reserved, RES1.

Bits [30:29]

Reserved, RES0.

HWU62, bit [28]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 2 translation table Block or Page entry.

- 0: Bit[62] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- 1: Bit[62] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.
HWU61, bit [27]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 2 translation table Block or Page entry.

- **0b0**: Bit[61] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[61] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

HWU60, bit [26]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 2 translation table Block or Page entry.

- **0b0**: Bit[60] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[60] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

HWU59, bit [25]

*When FEAT_HPDS2 is implemented:*

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 2 translation table Block or Page entry.

- **0b0**: Bit[59] of each stage 2 translation table Block or Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.
- **0b1**: Bit[59] of each stage 2 translation table Block or Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose.

This field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

Bits [24:14]

Reserved, RES0.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using VTTBR.

- **0b00**: Non-shareable.
- **0b10**: Outer Shareable.
- **0b11**: Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

This field resets to an architecturally UNKNOWN value.
ORGN0, bits [11:10]
Outer cacheability attribute for memory associated with translation table walks using VTTBR.
0b00  Normal memory, Outer Non-cacheable.
0b01  Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.
This field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]
Inner cacheability attribute for memory associated with translation table walks using VTTBR.
0b00  Normal memory, Inner Non-cacheable.
0b01  Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.
0b10  Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.
0b11  Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.
This field resets to an architecturally UNKNOWN value.

SL0, bits [7:6]
Starting level for translation table walks using VTTBR.
0b00  Start at level 2
0b01  Start at level 1
All other values are reserved. If this field is programmed to a reserved value, or to a value that is not consistent with the programming of T0SZ, then a stage 2 level 1 Translation fault is generated.
This field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

S, bit [4]
Sign extension bit. This bit must be programmed to the value of T0SZ[3]. If it is not, then the behavior is CONSTRAINED UNPREDICTABLE and the stage 2 T0SZ value is treated as an UNKNOWN value, see *Misprogramming VTCR.S on page K1-7960.*
This field resets to an architecturally UNKNOWN value.

T0SZ, bits [3:0]
The size offset of the memory region addressed by VTTBR. The region size is 2(32-T0SZ) bytes.
This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.

--- Note ---
This is different from the other translation control registers, where TnSZ holds a three-bit unsigned integer, supporting values from 0 to 7.

---
If this field is programmed to a value that is not consistent with the programming of SL0 then a stage 2 level 1 Translation fault is generated.
This field resets to an architecturally UNKNOWN value.

**Accessing the VTCR**
Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  VTCR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    VTCR = R[t];
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0010</td>
<td>0b0001</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  VTCR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    VTCR = R[t];
G8.2.172 VTTBR, Virtualization Translation Table Base Register

The VTTBR characteristics are:

**Purpose**

Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the Non-secure PL1&0 translation regime, and other information for this translation regime.

**Configurations**

AArch32 System register VTTBR[63:0] is architecturally mapped to AArch64 System register VTTBR_EL2[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to VTTBR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

**Attributes**

VTTBR is a 64-bit register.

**Field descriptions**

The VTTBR bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>56</td>
<td>VMID</td>
</tr>
<tr>
<td>48</td>
<td>BADDR</td>
</tr>
</tbody>
</table>

**Bits [63:56]**

Reserved, RES0.

**VMID, bits [55:48]**

The VMID for the translation table.

In a system where the PE resets into EL2 or EL3, this field resets to 0.

**BADDR, bits [47:1]**

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that if bits[x-1:3] are not all zero, this is a misaligned translation table base address, with effects that are CONSTRAINED UNPREDICTABLE, and must be one of the following:

- Register bits [x-1:3] are treated as if all the bits are zero. The value read back from these bits is either the value written or zero.
- The result of the calculation of an address for a translation table walk using this register can be corrupted in those bits that are nonzero.

x is determined from the value of VTCR.SL0 and VTCR.T0SZ as follows:

- If VTCR.SL0 is 0b00, meaning that lookup starts at level 2, then x is 14 - VTCR.T0SZ.
- If VTCR.SL0 is 0b01, meaning that lookup starts at level 1, then x is 5 - VTCR.T0SZ.
- If VTCR.SL0 is either 0b10 or 0b11 then a stage 2 level 1 Translation fault is generated.

If bits[47:40] of the translation table base address are not zero, an Address size fault is generated.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.
CnP, bit [0]

When FEAT_TTCNP is implemented:

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR is a member of a common set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR.CnP is 1.

| 0b0 | The translation table entries pointed to by VTTBR are permitted to differ from the entries for VTTBR for other PEs in the Inner Shareable domain. This is not affected by the value of the current VMID. |
| 0b1 | The translation table entries pointed to by VTTBR are the same as the translation table entries for every other PE in the Inner Shareable domain for which the value of VTTBR.CnP is 1 and the VMID is the same as the current VMID. |

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry, that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1 and stage 2.

Note

If the value of the VTTBR.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and those VTTBRs do not point to the same translation table entries when the VMID value is the same as the current VMID, then the results of translations are CONSTRAINED UNPREDICTABLE, see CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the VTTBR

Accesses to this register use the following encodings in the System instruction encoding space:

MRRC{<c>}{<q>}{<coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == ‘1’ then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == ‘1’ then
        AArch32.TakeHypTrapException(0x04);
    else
        UNDEFINED;
    elsif PSTATE.EL == EL2 then
        return VTTBR;
elsif PSTATE.EL == EL3 then
    if SCR.NS == ‘0’ then
        UNDEFINED;
    else
        return VTTBR;
```
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T2 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T2 == '1' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTTBR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 UNDEFINED;
 else
 VTTBR = R[t2]:R[t];
```

```
<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0010</td>
<td>0b0110</td>
</tr>
</tbody>
</table>
```
G8.3 Debug registers

This section lists the Debug System registers in AArch32 state, in alphabetic order.
DBGAUTHSTATUS, Debug Authentication Status register

The DBGAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configurations

AArch32 System register DBGAUTHSTATUS[31:0] is architecturally mapped to AArch64 System register DBGAUTHSTATUS_EL1[31:0].

AArch32 System register DBGAUTHSTATUS[31:0] is architecturally mapped to External register DBGAUTHSTATUS_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGAUTHSTATUS are UNDEFINED.

This register is required in all implementations.

Attributes

DBGAUTHSTATUS is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:8]</td>
<td></td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td></td>
<td>0b00</td>
<td>Not implemented. EL3 is not implemented and the Effective value of SCR_NS is 1.</td>
</tr>
<tr>
<td></td>
<td>0b10</td>
<td>Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.</td>
</tr>
<tr>
<td></td>
<td>0b11</td>
<td>Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.</td>
</tr>
<tr>
<td></td>
<td>0b00</td>
<td>Not implemented. EL3 is not implemented and the Effective value of SCR_EL3_NS is 1.</td>
</tr>
<tr>
<td></td>
<td>0b10</td>
<td>Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.</td>
</tr>
<tr>
<td></td>
<td>0b11</td>
<td>Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.</td>
</tr>
</tbody>
</table>

All other values are reserved.
NSID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure Non-invasive debug.

0b00  Not implemented. EL3 is not implemented and the Effective value of SCR.NS is 0.
0b11  Implemented and enabled. EL3 is implemented or the Effective value of SCR.NS is 1.

All other values are reserved.

Otherwise:

Non-secure Non-Invasive Debug.

0b00  Not implemented. EL3 is not implemented and the Effective value of SCR.NS is 0.
0b10  Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
0b11  Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

NSID, bits [1:0]

Non-secure Invasive Debug.

0b00  Not implemented. EL3 is not implemented or the Effective value of SCR_EL3.NS is 0.
0b10  Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
0b11  Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.

All other values are reserved.

Accessing the DBGAUTHSTATUS

Access to this register uses the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>}\ <\text{coproc},\ \{\#<opc1>\},\ <\text{Rt},\ <\text{CRn},\ <\text{CRm}\},\ \{\#<opc2>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1110</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end else
        return DBGAUTHSTATUS;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
    return DBGAUTHSTATUS;
elsif PSTATE.EL == EL3 then
    return DBGAUTHSTATUS;
G8.3.2 DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n> characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>. If EL2 is implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID matching.

Configurations

AArch32 System register DBGBCR<n>[31:0] is architecturally mapped to AArch64 System register DBGBCR<n>_EL1[31:0].

AArch32 System register DBGBCR<n>[31:0] is architecturally mapped to External register DBGBCR<n>_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGBCR<n> are UNDEFINED.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGBCR<n> is a 32-bit register.

Field descriptions

The DBGBCR<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23 20 19</th>
<th>16 15 14 13 12</th>
<th>9 8</th>
<th>5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>BT</td>
<td>LBN</td>
<td>SSC</td>
<td>RES0</td>
</tr>
</tbody>
</table>

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000  Unlinked instruction address match. DBGBVR<n> is the address of an instruction.

0b0001  As 0b0000 with linking enabled.

0b0010  Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then DBGBVR<n>.ContextID must match the CONTEXTIDR_EL2 value. Otherwise, DBGBVR<n>.ContextID must match the CONTEXTIDR value.

0b0011  As 0b0010 with linking enabled.

0b0100  Unlinked instruction address mismatch. DBGBVR<n> is the address of an instruction to be stepped.

0b0101  As 0b0100 with linking enabled.

0b0110  Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>.ContextID is a Context ID compared against CONTEXTIDR.
G8.3 Debug registers

LBN, bits [19:16]
Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.
For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.
This field is ignored when the value of DBGBCR<\n>.E is 0.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]
Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields.
For more information, see Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880 and Reserved DBGBCR<\n>.{SSC, HMC, PMC} values on page G2-5891.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

HMC, bit [13]
Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more information see the SSC, bits [15:14] description.
For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Reserved, RES0.
BAS, bits [8:5]
Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.
The permitted values depend on the breakpoint type.
For Address match breakpoints, the permitted values are:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Match instruction at</th>
<th>Constraint for debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0011</td>
<td>DBGBVR&lt;n&gt;</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1100</td>
<td>DBGBVR&lt;n&gt;+2</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1111</td>
<td>DBGBVR&lt;n&gt;</td>
<td>Use for A32 instructions</td>
</tr>
</tbody>
</table>

All other values are reserved. For more information, see Reserved DBGBCR<n>.BAS values on page G2-5891.

For more information on using the BAS field in Address Match breakpoints, see Using the BAS field in Address Match breakpoints on page G2-5883.

For Context matching breakpoints, this field is RES1 and ignored.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Reserved, RES0.

Bits [4:3]

PMC, bits [2:1]
Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more information see the DBGBCR<n>.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions for which a breakpoint generates Breakpoint exceptions on page G2-5880.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.
E, bit [0]

Enable breakpoint DBGBVR<n>. Possible values are:

0b0  Breakpoint disabled.
0b1  Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR<n>

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{c\}\{q\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>\{, \{#\}<opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if \(\text{PSTATE.EL} = \text{EL0}\) then
  UNDEFINED;
elsif \(\text{PSTATE.EL} = \text{EL1}\) then
  if \(\text{Halted()} \&\& \text{HaveEL(EL3)} \&\& \text{EDSCR.SDD} == '1' \&\& \text{boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !\text{ELUsingAArch32(EL3)} \&\& \text{MDCR_EL3.TDA} == '1'}\) then
    UNDEFINED;
  elsif \(\text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{MDCR_EL2.<TDE,TDA>} != '00'\) then
    \text{AArch64.AArch32SystemAccessTrap(EL2, 0x05)};
  elsif \(\text{EL2Enabled()} \&\& \text{ELUsingAArch32(EL2)} \&\& \text{HDCR.<TDE,TDA>} != '00'\) then
    \text{AArch32.TakeHypTrapException(0x05)};
  elsif \(\text{HaveEL(EL3)} \&\& !\text{ELUsingAArch32(EL3)} \&\& \text{MDCR_EL3.TDA} == '1'\) then
    if \(\text{Halted()} \&\& \text{EDSCR.SDD} == '1'\) then
      UNDEFINED;
    else
      \text{AArch64.AArch32SystemAccessTrap(EL3, 0x05)};
    end
  elsif \(\text{DBGOSLSR.OSLK} == '0' \&\& \text{HaltingAllowed()} \&\& \text{EDSCR.TDA} == '1'\) then
    \text{Halt(DebugHalt_SoftwareAccess)};
  else
    return DBGBCR[UInt(CRm<3:0>)];
  end
elsif \(\text{PSTATE.EL} = \text{EL2}\) then
  if \(\text{Halted()} \&\& \text{HaveEL(EL3)} \&\& \text{EDSCR.SDD} == '1' \&\& \text{boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !\text{ELUsingAArch32(EL3)} \&\& \text{MDCR_EL3.TDA} == '1'}\) then
    UNDEFINED;
  elsif \(\text{HaveEL(EL3)} \&\& !\text{ELUsingAArch32(EL3)} \&\& \text{MDCR_EL3.TDA} == '1'\) then
    if \(\text{Halted()} \&\& \text{EDSCR.SDD} == '1'\) then
      UNDEFINED;
    else
      \text{AArch64.AArch32SystemAccessTrap(EL3, 0x05)};
    end
  elsif \(\text{DBGOSLSR.OSLK} == '0' \&\& \text{HaltingAllowed()} \&\& \text{EDSCR.TDA} == '1'\) then
    \text{Halt(DebugHalt_SoftwareAccess)};
  else
    return DBGBCR[UInt(CRm<3:0>)];
  end
elsif \(\text{PSTATE.EL} = \text{EL3}\) then
  if \(\text{DBGOSLSR.OSLK} == '0' \&\& \text{HaltingAllowed()} \&\& \text{EDSCR.TDA} == '1'\) then
    \text{Halt(DebugHalt_SoftwareAccess)};
  else
    return DBGBCR[UInt(CRm<3:0>)];
  end
else
  return DBGBCR[UInt(CRm<3:0>)];
end
MCR<copec]<coproc>, <coproc>, <Rt>, <CRn>, <CRm>,<opc1>,<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elif EL2Enabled() & !ELUsingAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
elif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
      else
        DBGBCR[UInt(CRm<3:0>)] = R[t];
    endif
  if PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
      else
        DBGBCR[UInt(CRm<3:0>)] = R[t];
    endif
  if PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
      Halt(DebugHalt_SoftwareAccess);
    else
      DBGBCR[UInt(CRm<3:0>)] = R[t];
G8.3.3  DBGBVR<n>, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n> characteristics are:

**Purpose**

Holds a value for use in breakpoint matching, either the virtual address of an instruction or a context ID. Forms breakpoint n together with control register DBGBCR<n>. If EL2 is implemented and this breakpoint supports Context matching, DBGBVR<n> can be associated with a Breakpoint Extended Value Register DBGBXVR<n> for VMID matching.

**Configurations**

AArch32 System register DBGBVR<n>[31:0] is architecturally mapped to AArch64 System register DBGBVR<n>_EL1[31:0].

AArch32 System register DBGBVR<n>[31:0] is architecturally mapped to External register DBGBVR<n>_EL1[31:0].

Note

Writes to DBGBVR<n> do not modify DBGBVR<n>_EL1[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGBVR<n> are UNDEFINED.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

**Attributes**

How this register is interpreted depends on the value of DBGBCR<n>.BT.

- When DBGBCR<n>.BT is 0b0x0x, this register holds a virtual address.
- When DBGBCR<n>.BT is 0bxx1x, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Some breakpoints might not support Context ID comparison. For more information, see the description of the DBGDIDR.CTX_CMPs field.

**Field descriptions**

The DBGBVR<n> bit assignments are:

**When DBGBCR<n>.BT == 0b0x0x:**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>VA[31:2]</td>
</tr>
<tr>
<td>2:1</td>
<td>RES0</td>
</tr>
</tbody>
</table>

VA[31:2], bits [31:2]

- Bits[31:2] of the address value for comparison.
- On a Cold reset, this field resets to an architecturally UNKNOWN value.
- On a Warm reset, the value of this field is unchanged.

Bits [1:0]

- Reserved, RES0.
When DBGBCR<\textsl{n}\.BT == 0b001x:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContextID</td>
<td></td>
</tr>
</tbody>
</table>

**ContextID, bits [31:0]**

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when all of the following are true:

- CONTEXTIDR_EL2 is implemented.
- HCR_EL2.{E2H, TGE} is {1,1}.
- The PE is executing at EL0.
- EL2 is using AArch64 and is enabled in the current Security state.

Otherwise, the value is compared against CONTEXTIDR.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

When DBGBCR<\textsl{n}\.BT == 0b101x and EL2 is implemented:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContextID</td>
<td></td>
</tr>
</tbody>
</table>

**ContextID, bits [31:0]**

Context ID value for comparison against CONTEXTIDR.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

When DBGBCR<\textsl{n}\.BT == 0bx11x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContextID</td>
<td></td>
</tr>
</tbody>
</table>

**ContextID, bits [31:0]**

Context ID value for comparison against CONTEXTIDR.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

**Accessing the DBGBVR<\textsl{n}>**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC<c>{<q>}{<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>}{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TDA & (TDE,TDA) == '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0, 05);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0, 05);
    end
  elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE_EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0, 05);
    end
  elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE_EL == EL3 then
  if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];

MCR<c>{<q>}{<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>}{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0, 05);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0, 05);
    end
  elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE_EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0, 05);
    end
  elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];
elsif PSTATE_EL == EL3 then
  if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  return DBGBVR[UInt(CRm<3:0>)];
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
  Halt(DebugHalt_SoftwareAccess);
else
  DBGBVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    endif
  elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  DBGBVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
  if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
  DBGBVR[UInt(CRm<3:0>)] = R[t];
endif
G8.3.4 DBGBXVR<\textit{n}>, Debug Breakpoint Extended Value Registers, \textit{n} = 0 - 15

The DBGBXVR<\textit{n}> characteristics are:

**Purpose**

Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register DBGBCR<\textit{n}> and a value register DBGBVR<\textit{n}>, where EL2 is implemented and breakpoint \( n \) supports Context matching.

**Configurations**

AArch32 System register DBGBXVR<\textit{n}>[31:0] is architecturally mapped to AArch64 System register DBGBVR<\textit{n}>_EL1[63:32].

AArch32 System register DBGBXVR<\textit{n}>[31:0] is architecturally mapped to External register DBGBVR<\textit{n}>_EL1[63:32].

--- Note ---

Writes to DBGBXVR<\textit{n}> do not modify DBGBVR<\textit{n}>_EL1[31:0]

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGBXVR<\textit{n}> are UNDEFINED.

Accesses to this register are UNDEFINED in any of the following cases:

- Breakpoint \( n \) is not implemented.
- Breakpoint \( n \) does not support Context matching.
- EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

**Attributes**

How this register is interpreted depends on the value of DBGBCR<\textit{n}>.BT.

- When DBGBCR<\textit{n}>.BT is 0b10xx, this register holds a VMID.
- When DBGBCR<\textit{n}>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<\textit{n}>.BT, this register is RES0.

**Field descriptions**

The DBGBXVR<\textit{n}> bit assignments are:

*When DBGBCR<\textit{n}>.BT == 0b10xx and EL2 is implemented:*

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>VMID[15:8]</td>
<td>VMID[7:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16] Reserved, RES0.

VMID[15:8], bits [15:8]

*When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:*

Extension to VMID[7:0]. See VMID[7:0] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.
Otherwise:
Reserved, RES0.

VMID[7:0], bits [7:0]
VMID value for comparison. The VMID is 8 bits when any of the following are true:
- EL2 is using AArch32.
- VTCR_EL2.VS is 0.
- FEAT_VMID16 is not implemented.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

When DBGBCR<n>.BT == 0b11xx and EL2 is implemented:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContextID2</td>
<td></td>
</tr>
</tbody>
</table>

ContextID2, bits [31:0]

When FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented:
Context ID value for comparison against CONTEXTIDR_EL2.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.
Otherwise:
Reserved, RES0.

Accessing the DBGBXVR<n>
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>n[3:0]</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elseif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL1 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);
elseif EL2Enabled() && !Halted() && EDSCR & EDSCR.EDC == '1' && MDCR_EL2.TDA == '1' then
if EL2Enabled() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32SystemAccessTrap(EL2, 0x05);
elseif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);
else
return DBGBXVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end if
else if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
    return DBGXVR[UInt(CRm<3:0>)];
end if
elsif PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGXVR[UInt(CRm<3:0>)];
    end if
else
    DBGBXVR[UInt(CRm<3:0>)] = R[t];
end if
elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end if
else if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
    return DBGXVR[UInt(CRm<3:0>)];
end if
elsif PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGXVR[UInt(CRm<3:0>)];
    end if

MCR<coproc>, {#<opc1>, <Rt>, <CRn>, <CRm}, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>n[3:0]</td>
<td>0b001</td>
</tr>
</tbody>
</table>
G8.3.5  DBGCLAIMCLR, Debug CLAIM Tag Clear register

The DBGCLAIMCLR characteristics are:

**Purpose**

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

**Note**

CLAIM tags are typically used for communication between the debugger and target software.

CLAIM tags are typically used for communication between the debugger and target software.

---

**Configurations**

AArch32 System register DBGCLAIMCLR[31:0] is architecturally mapped to AArch64 System register DBGCLAIMCLR_EL1[31:0].

AArch32 System register DBGCLAIMCLR[31:0] is architecturally mapped to External register DBGCLAIMCLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGCLAIMCLR are UNDEFINED.

An implementation must include eight CLAIM tag bits.

**Attributes**

DBGCLAIMCLR is a 32-bit register.

**Field descriptions**

The DBGCLAIMCLR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAZ/SBZ</td>
<td>CLAIM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:8]**

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.

**CLAIM, bits [7:0]**

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

On a Warm reset, the value of this field is unchanged.

**Accessing the DBGCLAIMCLR**

Accesses to this register use the following encodings in the System instruction encoding space:
### MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    return DBGCLAIMCLR;
  endif
elsif PSTATE_EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR_SDD == '1' then
      UNDEFINED;
    else
      AArch32.TakeHypTrapException(0x05);
    endif
  else
    return DBGCLAIMCLR;
  endif
elsif PSTATE_EL == EL3 then
  return DBGCLAIMCLR;
else
  DBGCLAIMCLR = R[t];
endif

### MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b1001</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    return DBGCLAIMCLR;
  endif
elsif PSTATE_EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR_SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR_SDD == '1' then
      UNDEFINED;
    else
      AArch32.TakeHypTrapException(0x05);
    endif
  else
    return DBGCLAIMCLR;
  endif
elsif PSTATE_EL == EL3 then
  return DBGCLAIMCLR;
else
  DBGCLAIMCLR = R[t];
endif
UNDEFINED;
elseif HaveEl(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    DBGCLAIMCLR = R[t];
  endif
elseif PSTATE.EL == EL3 then
  DBGCLAIMCLR = R[t];
### G8.3.6 DBGCLAIMSET, Debug CLAIM Tag Set register

The DBGCLAIMSET characteristics are:

**Purpose**

Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

--- Note ---

CLAIM tags are typically used for communication between the debugger and target software.

---

Used in conjunction with the DBGCLAIMCLR register.

**Configurations**

AArch32 System register DBGCLAIMSET[31:0] is architecturally mapped to AArch64 System register DBGCLAIMSET_EL1[31:0].

AArch32 System register DBGCLAIMSET[31:0] is architecturally mapped to External register DBGCLAIMSET_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGCLAIMSET are UNDEFINED.

An implementation must include eight CLAIM tag bits.

**Attributes**

DBGCLAIMSET is a 32-bit register.

**Field descriptions**

The DBGCLAIMSET bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>RAZ/SBZ, RESERVED</td>
</tr>
<tr>
<td>7-0</td>
<td>CLAIM, Set CLAIM tags</td>
</tr>
</tbody>
</table>

**Bits [31:8]**

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.

**CLAIM, bits [7:0]**

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

**Accessing the DBGCLAIMSET**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b011</td>
<td>0b1000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

- if PSTATE.EL == EL0 then
  UNDEFINED;
- elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & ELSCLEL3(EL2) & MDCR_EL2.TDE,TDA != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if
- elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & ELSCLEL3(EL2) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end if
  else
    return DBGCLAIMSET;
  elsif PSTATE.EL == EL3 then
    return DBGCLAIMSET;
  else
    DBGCLAIMSET = R[t];
  end if

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b011</td>
<td>0b1000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

- if PSTATE.EL == EL0 then
  UNDEFINED;
- elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & ELSCLEL3(EL2) & MDCR_EL2.TDE,TDA != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if
- elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() & ELSCLEL3(EL2) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end if
  else
    return DBGCLAIMSET;
  elsif PSTATE.EL == EL3 then
    return DBGCLAIMSET;
  else
    DBGCLAIMSET = R[t];
  end if
UNDEFINED;
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    DBGCLAIMSET = R[t];
elif PSTATE.EL == EL3 then
  DBGCLAIMSET = R[t];
G8.3.7 DBGDCCINT, DCC Interrupt Enable Register

The DBGDCCINT characteristics are:

**Purpose**

Enables interrupt requests to be signaled based on the DCC status flags.

**Configurations**

AArch32 System register DBGDCCINT[31:0] is architecturally mapped to AArch64 System register MDCCINT_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDCCINT are UNDEFINED.

**Attributes**

DBGDCCINT is a 32-bit register.

**Field descriptions**

The DBGDCCINT bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>30</td>
<td>RX, bit [30] DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status flags.</td>
<td>0b0</td>
<td>No interrupt request generated by DTRRX.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1</td>
<td>Interrupt request will be generated on RXfull == 1.</td>
</tr>
<tr>
<td>29</td>
<td>TX, bit [29] DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled based on the DCC status flags.</td>
<td>0b0</td>
<td>No interrupt request generated by DTRTX.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1</td>
<td>Interrupt request will be generated on TXfull == 0.</td>
</tr>
<tr>
<td>28-0</td>
<td>Reserved, RES0</td>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**Accessing the DBGDCCINT**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDCC == '1' then
    UNDEFINED;
  elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
    UNDEFINED;
  elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif Halted() & ELUsingAArch32(EL2) & MDCR_EL2.TDCC == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif Halted() & ELUsingAArch32(EL2) & HDCR.TDCC == '1' then
    AArch32.TakeHypTrapException(0x05);
  elsif Halted() & ELUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDCC == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
      AArch32.TakeMonitorTrapException();
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      end
    else
      return DBGDCINT;
    end
  elsif PSTATE_EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDCC == '1' then
      UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
      UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDCC == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      end
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch32.TakeMonitorTrapException();
      end
    elsif Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    end
  end
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() &amp; HaveEL(EL3) &amp; EDSCR.SDD == '1' &amp; boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" &amp; !ELUsingAArch32(EL3) &amp; MDCR_EL3.TDCC == '1' then
    UNDEFINED;
  elseif Halted() &amp; HaveEL(EL3) &amp; EDSCR.SDD == '1' &amp; boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" &amp; ELUsingAArch32(EL3) &amp; SDCR.TDCC == '1' then
    UNDEFINED;
  elseif Halted() &amp; HaveEL(EL3) &amp; EDSCR.SDD == '1' &amp; boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" &amp; !ELUsingAArch32(EL3) &amp; MDCR_EL3.TDA == '1' then
    UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
endif
else
  DBGDCCINT = R[t];
endif

MCR<coproc>,<CRn>,<CRm>,<opc1>,<opc2>,<Rt>,<CRn>,<opc1>,<CRn>,<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  endif
else
  DBGDCCINT = R[t];
elseif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
    AArch32.TakeMonitorTrapException();
  else
    DBGDCCINT = R[t];
G8.3.8  DBGDEVID, Debug Device ID register 0

The DBGDEVID characteristics are:

**Purpose**

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDEVID are UNDEFINED.

This register is required in all implementations.

**Attributes**

DBGDEVID is a 32-bit register.

**Field descriptions**

The DBGDEVID bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>24</th>
<th>23</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIDMask</td>
<td>AuxRegs</td>
<td>DoubleLock</td>
<td>VirtExtns</td>
<td></td>
</tr>
</tbody>
</table>
```

**CIDMask, bits [31:28]**

Indicates the level of support for the Context ID matching breakpoint masking capability. Defined values are:

- `0b0000`  Context ID masking is not implemented.
- `0b0001`  Context ID masking is implemented.

All other values are reserved. The value of this for Armv8 is `0b0000`.

**AuxRegs, bits [27:24]**

Indicates support for Auxiliary registers. Permitted values for this field are:

- `0b0000`  None supported.
- `0b0001`  Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

**DoubleLock, bits [23:20]**

OS Double Lock implemented. Defined values are:

- `0b0000`  OS Double Lock is not implemented. DBGOSDLR is RAZ/WI.
- `0b0001`  OS Double Lock is implemented. DBGOSDLR is RW.

FEAT_DoubleLock implements the functionality identified by the value `0b0001`.

All other values are reserved.

**VirtExtns, bits [19:16]**

Indicates whether EL2 is implemented. Defined values are:

- `0b0000`  EL2 is not implemented.
- `0b0001`  EL2 is implemented.
All other values are reserved.

**VectorCatch, bits [15:12]**

Defines the form of Vector Catch exception implemented. Defined values are:
- **0b0000**: Address matching Vector Catch exception implemented.
- **0b0001**: Exception matching Vector Catch exception implemented.

All other values are reserved.

**BPAddrMask, bits [11:8]**

Indicates the level of support for the instruction address matching breakpoint masking capability. Defined values are:
- **0b0000**: Breakpoint address masking might be implemented. If not implemented, \( \text{DBGBCR}^{n\text{euro}}[28:24] \) is RAZ/WI.
- **0b0001**: Breakpoint address masking is implemented.
- **0b1111**: Breakpoint address masking is not implemented. \( \text{DBGBCR}^{n\text{euro}}[28:24] \) is RES0.

All other values are reserved. The value of this for Armv8 is **0b1111**.

**WPAddrMask, bits [7:4]**

Indicates the level of support for the data address matching watchpoint masking capability. Defined values are:
- **0b0000**: Watchpoint address masking might be implemented. If not implemented, \( \text{DBGWCR}^{n\text{euro}}.\text{MASK} \) (Address mask) is RAZ/WI.
- **0b0001**: Watchpoint address masking is implemented.
- **0b1111**: Watchpoint address masking is not implemented. \( \text{DBGWCR}^{n\text{euro}}.\text{MASK} \) (Address mask) is RES0.

All other values are reserved. The value of this for Armv8 is **0b0001**.

**PCSample, bits [3:0]**

Indicates the level of PC Sample-based Profiling support using external debug registers. Defined values are:
- **0b0000**: PC Sample-based Profiling Extension is not implemented in the external debug registers space.
- **0b0010**: Only \( \text{EDPCSR} \) and \( \text{EDCIDS} \) are implemented. This option is only permitted if EL3 and EL2 are not implemented.
- **0b0011**: \( \text{EDPCSR} \), \( \text{EDCIDS} \), and \( \text{EDVIDS} \) are implemented.

All other values are reserved.

When \( \text{FEAT\_PCSRv8p2} \) is implemented, the only permitted value is **0b0000**.

Note: \( \text{FEAT\_PCSRv8p2} \) implements the PC Sample-based Profiling Extension in the Performance Monitors register space, as indicated by the value of \( \text{PMDEVID\_PCSample} \).

**Accessing the DBGDEVID**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b110</td>
<td>0b000</td>
<td>0b011</td>
<td>0b0010</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end
  else
    return DBGDEVID;
  endif
else
  if PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      end
    else
      return DBGDEVID;
    endif
  elsif PSTATE.EL == EL3 then
    return DBGDEVID;
  end
endif
G8.3.9 DBGDEVID1, Debug Device ID register 1

The DBGDEVID1 characteristics are:

**Purpose**

Adds to the information given by the DBGDIDR by describing other features of the debug implementation.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDEVID1 are UNDEFINED.

This register is required in all implementations.

**Attributes**

DBGDEVID1 is a 32-bit register.

**Field descriptions**

The DBGDEVID1 bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-4</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>PCSROffset</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:4]**

Reserved, RES0.

**PCSROffset, bits [3:0]**

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in Armv8 are:

- 0b0000: EDPCSR is not implemented.
- 0b0010: EDPCSR implemented. Samples have no offset applied and do not sample the instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

--- Note ---

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors register space, as indicated by the value of PMDEVID.PCSample.

**Accessing the DBGDEVID1**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0111</td>
<td>0b0001</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;
elif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
  AArch32.TakeHypTrapException(0x05);
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end
else
  return DBGDEVID1;
elif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1"" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDEVID1;
elif PSTATE.EL == EL3 then
  return DBGDEVID1;
G8.3.10 DBGDEVID2, Debug Device ID register 2

The DBGDEVID2 characteristics are:

**Purpose**
Reserved for future descriptions of features of the debug implementation.

**Configurations**
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDEVID2 are UNDEFINED.

**Attributes**
DBGDEVID2 is a 32-bit register.

**Field descriptions**
The DBGDEVID2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**Accessing the DBGDEVID2**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>coproc = AArch64.AArch32</td>
</tr>
<tr>
<td>0b0000</td>
<td>opc1 = 0b111</td>
</tr>
<tr>
<td>0b0111</td>
<td>CRn = AArch64.AArch32</td>
</tr>
<tr>
<td>0b0000</td>
<td>CRm = 0b111</td>
</tr>
<tr>
<td>0b1111</td>
<td>opc2 = 0b111</td>
</tr>
</tbody>
</table>

If `PSTATE_EL == EL0` then
UNDEFINED;

else if `PSTATE_EL == EL1` then
  if `Halted() && HaveEL(EL3) && EDSCR.SDD == '1'` & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELSUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elseif EL2Enabled() & ELSUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elseif EL2Enabled() & ELSUsingAAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elseif HaveEL(EL3) & ELSUsingAAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if `Halted() && EDSCR.SDD == '1'` then
      UNDEFINED;
    elseif `PSTATE_EL == EL2` then
      if `Halted() && HaveEL(EL3) && EDSCR.SDD == '1'` & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELSUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
      elseif HaveEL(EL3) & ELSUsingAAArch32(EL3) & MDCR_EL3.TDA == '1' then
        if `Halted() && EDSCR.SDD == '1'` then
          UNDEFINED;
        elseif `PSTATE_EL == EL2` then
          if `Halted() && HaveEL(EL3) && EDSCR.SDD == '1'` & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELSUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
            UNDEFINED;
          elseif HaveEL(EL3) & ELSUsingAAArch32(EL3) & MDCR_EL3.TDA == '1' then
            if `Halted() && EDSCR.SDD == '1'` then
              UNDEFINED;
            else
              return DBGDEVID2;
          else
            return DBGDEVID2;
          end if
        else
          return DBGDEVID2;
        end if
      else
        return DBGDEVID2;
      end if
    else
      return DBGDEVID2;
    end if
  else
    return DBGDEVID2;
  end if
UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
        return DBGDEVID2;
elsif PSTATE.EL == EL3 then
    return DBGDEVID2;
G8.3.11 DBGDIDR, Debug ID Register

The DBGDIDR characteristics are:

**Purpose**

Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDIDR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

**Attributes**

DBGDIDR is a 32-bit register.

**Field descriptions**

The DBGDIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-28</td>
<td>WRPs</td>
<td>The number of watchpoints implemented, minus 1.</td>
</tr>
<tr>
<td>27-24</td>
<td>BRPs</td>
<td>The number of breakpoints implemented, minus 1.</td>
</tr>
<tr>
<td>23-20</td>
<td>CTX_CMPs</td>
<td>The number of breakpoints that can be used for Context matching, minus 1.</td>
</tr>
<tr>
<td>19-16</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>15-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-0</td>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>

**WRPs, bits [31:28]**

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

**BRPs, bits [27:24]**

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16 implemented breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

**CTX_CMPs, bits [23:20]**

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context matching breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are implemented and two are Context matching breakpoints, they must be breakpoints 4 and 5.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.
Version, bits [19:16]

The Debug architecture version. Defined values are:

- 0b0001  Armv6, v6 Debug architecture.
- 0b0010  Armv6, v6.1 Debug architecture.
- 0b0011  Armv7, v7 Debug architecture, with baseline CP14 registers implemented.
- 0b0100  Armv7, v7 Debug architecture, with all CP14 registers implemented.
- 0b0101  Armv7, v7.1 Debug architecture.
- 0b0110  Armv8, v8 Debug architecture.
- 0b0111  Armv8.1, v8 Debug architecture, with Virtualization Host Extensions.
- 0b1000  Armv8.2, v8.2 Debug architecture.
- 0b1001  Armv8.4, v8.4 Debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

- If FEAT_VHE is not implemented, the only permitted value is 0b0110.
- In an Armv8.0 implementation, the value 0b1000 or higher is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In Armv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

- 0b0  EL3 not implemented.
- 0b1  EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing the DBGDIDR

Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}{<q>}\ <\text{coproc}, \{\#<opc1>, <Rt>, <CRn>, <CRm>, \{\#<opc2>\}} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR_SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGSCRext.UDCCdis == '1' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
  AArch32.TakeHypTrapException(0x00);
else
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDIDR;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDSCR_EL2.<TDE,TDA> != '00' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDIDR;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDIDR;
elsif PSTATE.EL == EL3 then
  return DBGDIDR;
G8.3.12  DBGDRAR, Debug ROM Address Register

The DBGDRAR characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this register.

Configurations

AArch32 System register DBGDRAR[63:0] is architecturally mapped to AArch64 System register MDRAR_EL1[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDRAR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions

The DBGDRAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-48</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>47-12</td>
<td>ROMADDR[47:12]</td>
</tr>
<tr>
<td>11-2</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>2-0</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to ROMADDR [47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the highest implemented Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED whether the ROM table is also accessible in Secure memory.

If DBGDRAR.Valid == 0b00, then this field is UNKNOWN.

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

00: ROM Table address is not valid. Software must ignore ROMADDR.

1: ROM Table address is valid.

Other values are reserved.
Accessing the DBGDRAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}\{<q>\} <\text{coproc}>, \{#<opc1>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>\{, \{#<opc2>\}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x05);
  elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  end if
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDRA> != '00') then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<TDE,TDRA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  else
    return DBGDRAR<31:0>;
  end if
elsif PSTATE.EL == EL1 then
  if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x05);
  elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  end if
elsif PSTATE.EL == EL2 then
  return DBGDRAR<31:0>;
elsif PSTATE.EL == EL3 then
  return DBGDRAR<31:0>;

MRRC\{<c>\}\{<q>\} <\text{coproc}>, \{#<opc1>\}, <\text{Rt}>, <\text{Rt2}>, <\text{CRm}>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0001</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
  elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  end if
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDRA> != '00') then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.<TDE,TDRA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  else
    return DBGDRAR<31:0>;
  end if
elsif PSTATE.EL == EL1 then
  if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
  elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  end if
elsif PSTATE.EL == EL2 then
  return DBGDRAR<31:0>;
elsif PSTATE.EL == EL3 then
  return DBGDRAR<31:0>;
then
    AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then
        AArch32.TakeHypTrapException(0x0C);
    else
        return DBGDRAR;
    elsif PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
            AArch32.TakeHypTrapException(0x0C);
        else
            return DBGDRAR;
        end if
    elsif PSTATE.EL == EL2 then
        return DBGDRAR;
    elsif PSTATE.EL == EL3 then
        return DBGDRAR;
G8.3.13 DBGDSAR, Debug Self Address Register

The DBGDSAR characteristics are:

Purpose

In earlier versions of the Arm Architecture, this register defines the offset from the base address defined in DBGDRAR of the physical base address of the debug registers for the PE. Armv8 deprecates any use of this register.

Configurations

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDSAR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits [31:0] are read.

Field descriptions

The DBGDSAR bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:2]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[1:0]</td>
<td>Reserved, RAZ.</td>
</tr>
</tbody>
</table>

This field indicates whether the debug self address offset is valid. For ARMv8, this field is always 0b00, the offset is not valid.

Accessing the DBGDSAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>)(<q>)\ <\text{coproc}>, \ #<\text{opc1}>, \ <\text{Rt}>, \ <\text{CRn}>, \ <\text{CRm}>, \ (#)<\text{opc2}>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  if !ELUsingAArch32(EL2) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x05);
  elsif ELUsingAArch32(EL1) && DBGDSRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      AArch32.TakeHypTrapException(0x00);
  else
    AArch32.TakeHypTrapException(0x00);
MRRC\(<c>\){<q>} <coproc>, {(#)<opc1>}, <Rt>, <Rt2>, <CRm>
### G8.3.14 DBGDSCRext, Debug Status and Control Register, External View

The DBGDSCRext characteristics are:

**Purpose**

Main control register for the debug implementation.

**Configurations**

AArch32 System register DBGDSCRext[31:0] is architecturally mapped to AArch64 System register MDSCR_EL1[31:0].

AArch32 System register DBGDSCRext[15:2] is architecturally mapped to AArch32 System register DBGDSRint[15:2].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDSCRext are UNDEFINED.

This register is required in all implementations.

**Attributes**

DBGDSCRext is a 32-bit register.

**Field descriptions**

The DBGDSCRext bit assignments are:

```
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 7 6 5 2 1 0
 TFO RXfull TXfull RES0 RXO TXU RES0 INTdis TDA RES0 SC2 SPNIDdis SPIldis
 NS RES0 MOE
```

**TFO, bit [31]**

*When FEAT_TRF is implemented:*

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When the OS Lock is locked, DBGSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

- When DBGSLSR.OSLK == 1, access to this field is RW.
- When DBGSLSR.OSLK == 0, access to this field is RO.

*Otherwise:*

Reserved, RES0.
RXfull, bit [30]

DTRRX full. Used for save/restore of `EDSCR.RXfull`.
When `DBGOSLSR.OSLK == 0`, software must treat this bit as UNK/SBZP.
When `DBGOSLSR.OSLK == 1`, this bit holds the value of `EDSCR.RXfull`. Reads and writes of this bit are indirect accesses to `EDSCR.RXfull`.
Arm deprecates use of this bit other than for save/restore. Use `DBGDSCRint` to access the DTRRX full status.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When `DBGOSLSR.OSLK == 1`, access to this field is RW.
• When `DBGOSLSR.OSLK == 0`, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of `EDSCR.TXfull`.
When `DBGOSLSR.OSLK == 0`, software must treat this bit as UNK/SBZP.
When `DBGOSLSR.OSLK == 1`, this bit holds the value of `EDSCR.TXfull`. Reads and writes of this bit are indirect accesses to `EDSCR.TXfull`.
Arm deprecates use of this bit other than for save/restore. Use `DBGDSCRint` to access the DTRTX full status.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When `DBGOSLSR.OSLK == 1`, access to this field is RW.
• When `DBGOSLSR.OSLK == 0`, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of `EDSCR.RXO`.
When `DBGOSLSR.OSLK == 0`, software must treat this bit as UNK/SBZP.
When `DBGOSLSR.OSLK == 1`, this bit holds the value of `EDSCR.RXO`. Reads and writes of this bit are indirect accesses to `EDSCR.RXO`.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When `DBGOSLSR.OSLK == 1`, access to this field is RW.
• When `DBGOSLSR.OSLK == 0`, access to this field is RO.

TXU, bit [26]

Used for save/restore of `EDSCR.TXU`.
When `DBGOSLSR.OSLK == 0`, software must treat this bit as UNK/SBZP.
When `DBGOSLSR.OSLK == 1`, this bit holds the value of `EDSCR.TXU`. Reads and writes of this bit are indirect accesses to `EDSCR.TXU`.
The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When `DBGOSLSR.OSLK == 1`, access to this field is RW.
• When `DBGOSLSR.OSLK == 0`, access to this field is RO.

Bits [25:24]

Reserved, RES0.
INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.
When DBGOSLR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and writes of this field are indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When DBGOSLR.OSLK == 1, access to this field is RW.
• When DBGOSLR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.
When DBGOSLR.OSLK == 0, software must treat this bit as UNK/SBZP.
When DBGOSLR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.
Accessing this field has the following behavior:
• When DBGOSLR.OSLK == 1, access to this field is RW.
• When DBGOSLR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.
When DBGOSLR.OSLK == 0, software must treat this bit as UNK/SBZP.
When DBGOSLR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect accesses to EDSCR.SC2.

Accessing this field has the following behavior:
• When DBGOSLR.OSLK == 1, access to this field is RW.
• When DBGOSLR.OSLK == 0, access to this field is RO.

Otherwise:
Reserved, RES0.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure().
Arm deprecates use of this field.
Access to this field is RO.

SPNIDdis, bit [17]

When EL3 is implemented:

Secure privileged profiling disabled status bit.
0b0 Profiling allowed in Secure privileged modes.
0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:
• FEAT_Debugv8p2 is not implemented and ExternalSecureNonInvasiveDebugEnabled() returns TRUE.
• EL3 is using AArch32 and the value of SDCR.SPME is 1.
• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.
  Arm deprecates use of this field.
  Access to this field is RO.

**Otherwise:**
Reserved, RES0.

**SPIDdis, bit [16]**

*When EL3 is implemented:*
Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit depends on the value of SDCR.SPD and the pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

0b0  Self-hosted debug enabled in Secure privileged AArch32 modes.
0b1  Self-hosted debug disabled in Secure privileged AArch32 modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:
• EL3 is using AArch32 and SDCR.SPD has the value 0b10.
• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.
• EL3 is using AArch32, SDCR.SPD has the value 0b00, and AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.
• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.
Access to this field is RO.

**Otherwise:**
Reserved, RES0.

**MDBGen, bit [15]**
Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0  Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
0b1  Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

On a Warm reset, this field resets to 0.

**HDE, bit [14]**
Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.
When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect accesses to EDSCR.HDE.
The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:
• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

**Bit [13]**
Reserved, RES0.

**UDCCdis, bit [12]**
Traps EL0 accesses to the DCC registers to Undefined mode.

0b0  This control does not cause any instructions to be trapped.
0b1  EL0 accesses to the DBGDSCRint, DBGDTRRXint, DBGDTRTXint, DBGDIR, DBGDSAR, and DBGDRAR are trapped to Undefined mode.
Note

All accesses to these registers are trapped, including LDC and STC accesses to DBGDTRXINT and DBGDTRRXINT, and MRRC accesses to DBGDSAR and DBGDRAR.

Traps of EL0 accesses to the DBGDTRXINT and DBGDTRTXINT are ignored in Debug state.

On a Warm reset, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When DBGOSLSR.OSLK == 1, access to this field is RW.
- When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the event that caused the exception:

- 0b0001 Breakpoint.
- 0b0011 Software breakpoint (BKPT) instruction.
- 0b0101 Vector catch.
- 0b1010 Watchpoint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSRtxt

Individual fields within this register might have restricted accessibility when the OS lock is unlocked, DBGOSLSR.OSLK == 0. See the field descriptions for more detail.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>){<q>} <\text{coproc}>, {(#)}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>{, {(#)}<\text{opc2}>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !(ELUsingAArch32(EL3)) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    return DBGDSCRext;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDSCRext;
elsif PSTATE.EL == EL3 then
  return DBGDSCRext;
endif

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b000</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  DBGDSCRext = R[t];
elsif PSTATE.EL == EL3 then
  DBGDSCRext = R[t];
G8.3.15 DBGDSCRint, Debug Status and Control Register, Internal View

The DBGDSCRint characteristics are:

Purpose

Main control register for the debug implementation. This is an internal, read-only view.

Configurations

AArch32 System register DBGDSCRint[30:29] is architecturally mapped to AArch64 System register MDCCSR_EL0[30:29].
AArch32 System register DBGDSCRint[15:2] is architecturally mapped to AArch32 System register DBGDSCRext[15:2].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDSCRint are UNDEFINED.
This register is required in all implementations.

DBGDSCRint. {NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the register is accessed at EL0. However, although these values are not accessible at EL0 by instructions that are neither UNPREDICTABLE nor return UNKNOWN values, it is permissible for an implementation to return the values of DBGDSCRext. {NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of DBGDSCRint at EL1 or above. (This is the case even if the implementation does not support AArch32 at EL1 or above.)

Attributes

DBGDSCRint is a 32-bit register.

Field descriptions

The DBGDSCRint bit assignments are:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td>RXfull, bit [30]</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>TXfull, bit [29]</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>SPNIDdis</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>SPIDdis</td>
</tr>
<tr>
<td>23</td>
<td>22</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>NS</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>UDCCdis</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>MOE</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

Bit [31]  
Reserved, RES0.

RXfull, bit [30]  
DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]  
DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]  
Reserved, RES0.
NS, bit [18]
Non-secure status.
Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPNIDdis, bit [17]
Secure privileged non-invasive debug disable.
Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPIDdis, bit [16]
Secure privileged invasive debug disable.
Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

MDBGen, bit [15]
Monitor debug events enable.
Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]
Reserved, RES0.

UDCCdis, bit [12]
User mode access to Debug Communications Channel disable.
Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

Bits [11:6]
Reserved, RES0.

MOE, bits [5:2]
Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field is set to indicate the event that caused the exception:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0001</td>
<td>Breakpoint</td>
</tr>
<tr>
<td>0b0011</td>
<td>Software breakpoint (BKPT) instr</td>
</tr>
<tr>
<td>0b0101</td>
<td>Vector catch</td>
</tr>
<tr>
<td>0b1010</td>
<td>Watchpoint</td>
</tr>
</tbody>
</table>

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]
Reserved, RES0.

Accessing the DBGDSCRint
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{<c>\}{<q>}\ <coproc>, \ (#)<opc1>, \ <Rt>, \ <CRn>, \ <CRm>, \ (#)<opc2>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;
elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
elsif !ELUsingAArch32(EL1) & MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    else
        AArch64.AArch32SystemAccessTrap(EL1, 0x05);
    endif
elsif ELUsingAArch32(EL1) & DBGDSRCEx_t.U6CCdis == '1' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
        AArch32.TakeHypTrapException(0x00);
    else
        UNDEFINED;
    endif
elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDSCR_EL2.TDCC == '1' then
    if EL3Enabled() & MDSCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    elsif EL3Enabled() & MDSCR_EL3.TDA == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
        return DBGDSRCInt;
    endif
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
        UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() & EDSCR.SDD == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & ((HCR_EL2.TGE == '1') || (MDCR_EL2.<TDE,TDA> != '00')) then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & !ELUsingAArch32(EL2) & (HCR_TGE == '1') || !ELUsingAArch32(EL2) & (MDCR_EL2.<TDE,TDA> != '00')) then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL3.TDCC == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        elsif Halted() & EDSCR.SDD == '1' then
            AArch32.TakeMonitorTrapException();
        elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDSCR_EL3.TDCC == '1' then
            if Halted() & EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch32.TakeHypTrapException(0x05);
            end
        elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDSCR_EL3.TDA == '1' then
            if Halted() & EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch32.TakeHypTrapException(0x05);
            end
        else
            AArch32.TakeHypTrapException(0x05);
        end
        return DBGDSRCInt;
    else
        UNDEFINED;
    end
endif
else
    UNDEFINED;
endi
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    return DBGDSRint;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
    UNDEFINED;
else
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  return DBGDSRint;
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
    AArch32.TakeMonitorTrapException();
else
  return DBGDSRint;
G8.3.16 DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

The DBGDTRRXext characteristics are:

**Purpose**

Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

**Configurations**

AArch32 System register DBGDTRRXext[31:0] is architecturally mapped to AArch64 System register OSDTRRX_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDTRRXext are UNDEFINED.

**Attributes**

DBGDTRRXext is a 32-bit register.

**Field descriptions**

The DBGDTRRXext bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td>Update DTRRX without side-effect</td>
</tr>
</tbody>
</table>

Accessing the DBGDTRRXext

Arm deprecates reads and writes of DBGDTRRXext through the System register interface when the OS Lock is unlocked, DBGOSLSR.OSLK = 0.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(\langle c\rangle\langle q\rangle, \langle \#\rangle\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle \#\rangle\langle opc2\rangle)
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>
priority when SDD == '1' && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then 
  UNDEFINED;
else if EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then 
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else if EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then 
  AArch32.TakeHypTrapException(0x05);
else if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then 
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else if EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then 
  AArch32.TakeHypTrapException(0x05);
else if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then 
  if Halted() && EDSCR.SDD == '1' then 
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else if HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then 
  if Halted() && EDSCR.SDD == '1' then 
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
else if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then 
  if Halted() && EDSCR.SDD == '1' then 
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGDTRRXext;
end if;
else if PSTATE.EL == EL2 then 
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then 
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else if HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then 
  if Halted() && EDSCR.SDD == '1' then 
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
else if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then 
  if Halted() && EDSCR.SDD == '1' then 
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGDTRRXext;
end if;
else if PSTATE.EL == EL3 then 
  if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then 
    AArch32.TakeMonitorTrapException();
  else
    return DBGDTRRXext;
  end if;
else
  return DBGDTRRXext;
end if;
MCR{<c>}{<q>}, <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b0000</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0
  UNDEFINED;
elsif PSTATE.EL == EL1
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDCC == '1' then
    UNDEFINED;
  elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SDCR.TDCC == '1' then
    UNDEFINED;
  elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& MDCR_EL2.TDCC == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HDCR.TDCC == '1' then
    AArch32.TakeHypTrapException(0x05);  
  elsif EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05); 
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05); 
  elsif HaveEL(EL3) \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDCC == '1' then
    if Halted() \&\& EDSCR.SDD == '1' then
      UNDEFINED;
    else 
      AArch64.AArch32SystemAccessTrap(EL3, 0x05); 
      elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SDCR.TDCC == '1' then
        if Halted() \&\& EDSCR.SDD == '1' then
          UNDEFINED;
        else 
          AArch32.TakeMonitorTrapException(); 
          elsif HaveEL(EL3) \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDA == '1' then
            if Halted() \&\& EDSCR.SDD == '1' then
              UNDEFINED;
            else 
              AArch64.AArch32SystemAccessTrap(EL3, 0x05); 
              elsif DBGDTRRXext = R[t];
                elsif PSTATE.EL == EL2
                  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDCC == '1' then
                    UNDEFINED;
                  elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SDCR.TDCC == '1' then
                    UNDEFINED;
                  elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDA == '1' then
                    UNDEFINED;
                  elsif HaveEL(EL3) \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDCC == '1' then
                    if Halted() \&\& EDSCR.SDD == '1' then
                      UNDEFINED;
                    else 
                      AArch64.AArch32SystemAccessTrap(EL3, 0x05); 
                      elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SDCR.TDCC == '1' then
                        if Halted() \&\& EDSCR.SDD == '1' then
                          UNDEFINED;
                        else 
                          AArch32.TakeMonitorTrapException(); 
                          elsif HaveEL(EL3) \&\& !ELUsingAArch32(EL3) \&\& MDCR_EL3.TDA == '1' then
                            if Halted() \&\& EDSCR.SDD == '1' then
                              UNDEFINED;
else
    AArch64.AArch32SystemAccessTrap(El3, 0x05);
else
    DBGDTRRXext = R[t];
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
        AArch32.TakeMonitorTrapException();
    else
        DBGDTRRXext = R[t];
G8.3.17  DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger
transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural
mappings. It is a component of the Debug Communications Channel.

Configurations

AArch32 System register DBGDTRRXint[31:0] is architecturally mapped to AArch64 System
register DBGDTRRX_EL0[31:0].

AArch32 System register DBGDTRRXint[31:0] is architecturally mapped to External register
DBGDTRRX_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct
accesses to DBGDTRRXint are UNDEFINED.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

The DBGDTRRXint bit assignments are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Update DTRRX</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:0]

Update DTRRX.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRRX.
- If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug
Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXint

Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC{\langle c\rangle}{\langle q\rangle} \langle coproc\rangle, \{\#\langle opc1\rangle\}, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \{\#\langle opc2\rangle\} \]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1110 & 0b000 & 0b0000 & 0b0101 & 0b000 \\
\end{array}
\]

if Halted() then
    return DBGDTRRXint;
elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    else
        AArch64.AArch32SystemAccessTrap(EL1, 0x05);
    endif; 
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && HCR.TGE == '1' then
        AArch32.TakeHypTrapException(0x05);
    else
        UNDEFINED;
    endif; 
elsif EL2Enabled() && ELUsingAArch32(EL2) && MDSCR_EL2.TDCC == '1' then
    if EL3Enabled() && !ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    elsif EL3Enabled() && SDSCR.TDCC == '1' then
        AArch32.TakeMonitorTrapException();
    elsif EL3Enabled() && MDCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    endif; 
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && MDSCR_EL2.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && HCR.TDCC == '1' then
        AArch32.TakeHypTrapException(0x05);
    elsif EL2Enabled() && MDSCR_EL2.<TDE,TDA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && HCR.<TDE,TDA> != '00' then
        AArch32.TakeHypTrapException(0x05);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDSCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    elsif HaveEL(EL3) && SDSCR.TDCC == '1' then
        AArch32.TakeMonitorTrapException();
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
        return DBGDTRRXint;
    endif; 
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDSCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    elsif HaveEL(EL3) && SDSCR.TDCC == '1' then
        AArch32.TakeMonitorTrapException();
    elsif HaveEL(EL3) && MDSCR_EL3.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
        return DBGDTRRXint;
    endif; 
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SDSCR.TDCC == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return DBGDTRRXint;
G8.3.18  DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

The DBGDTRTXext characteristics are:

**Purpose**

Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

**Configurations**

AArch32 System register DBGDTRTXext[31:0] is architecturally mapped to AArch64 System register OSDTRTX_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDTRTXext are UNDEFINED.

**Attributes**

DBGDTRTXext is a 32-bit register.

**Field descriptions**

The DBGDTRTXext bit assignments are:

Return DTRTX without side-effect.

- Reads of this register return the value in DTRTX and do not change TXfull.
- Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

**Accessing the DBGDTRTXext**

Arm deprecates reads and writes of DBGDTRTXext through the System register interface when the OS Lock is unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings in the System instruction encoding space:

-MRC\(\langle c\rangle\{<q>\} <coproc>, \{#\}<opc1>, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \{#\}<opc2>-\)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SDTCR.TDCC == '1' then
        UNDEFINED;
    elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SDTCR.TDCC == '1' then
        UNDEFINED;
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
elsif Halted() && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
return DBGDTRTXext;
elsif PSTATE.EL == EL2 then
if Halted() && PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();
else
return DBGDTRTXext;
MCR{<c>}{<q>}, <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0011</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
        AArch32.TakeHypTrapException(0x05);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDA != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
        AArch32.TakeHypTrapException(0x05);
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        endif
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        endif
    else
        DBGDTRText = R[t];
    endif
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        endif
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    elseif PSTATE.EL == EL3 then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        DBGDTRText = R[t];
    endif
endif
else
  AArch64.AArch32SystemAccessTrap(El3, 0x05);
else
  DBGDTXTExt = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then
    AArch32.TakeMonitorTrapException();
  else
    DBGDTXTExt = R[t];
G8.3.19 DBGDTXTXint, Debug Data Transfer Register, Transmit

The DBGDTXTXint characteristics are:

**Purpose**

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication Channel.

**Configurations**

AArch32 System register DBGDTXTXint[31:0] is architecturally mapped to AArch64 System register DBGDTRTX_EL0[31:0].

AArch32 System register DBGDTXTXint[31:0] is architecturally mapped to External register DBGDTRTX_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGDTXTXint are UNDEFINED.

**Attributes**

DBGDTXTXint is a 32-bit register.

**Field descriptions**

The DBGDTXTXint bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return DTRTX</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:0]**

Return DTRTX.

Writes to this register:

- If TXfull is set to 1, set DTRTX to UNKNOWN.
- If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

**Accessing the DBGDTXTXint**

Data can be loaded from memory into this register using LDC (immediate) and LDC (literal).

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MCR}\langle c\rangle\langle q\rangle, \langle\#\rangle\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, (\#)\langle opc2\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if Halted() then

DBGDTXTXint = R[t];

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) & MDSCR_EL1.TDCC == '1' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  else
    AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) & DBGDSRext.UDDCdis == '1' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
  AArch32.TakeHypTrapException(0x00);
elsif !ELUsingAArch32(EL2) & MDSCR_EL2.TDCC == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' || MDSCR_EL2.<TDE,TDA> != '00' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR.<TDE,TDA> != '00' then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDSCR_EL3.TDCC == '1' then
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
  AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  DBGDTRTXint = R[t];
elsif PSTATE.EL == EL1 then
  if EL2Enabled() & !ELUsingAArch32(EL2) & MDSCR_EL2.TDCC == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR.<TDE,TDA> != '00' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR.<TDE,TDA> != '00' then
  AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR.<TDE,TDA> != '00' then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDSCR_EL3.TDCC == '1' then
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
  AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  DBGDTRTXint = R[t];
elsif PSTATE.EL == EL2 then
  if HaveEL(EL3) & !ELUsingAArch32(EL3) & MDSCR_EL3.TDCC == '1' then
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SDCR.TDCC == '1' then
  AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
  AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
  DBGDTRTXint = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor & SDCR.TDCC == '1' then
    AArch32.TakeMonitorTrapException();
else
  DBGDTRTXint = R[t];
G8.3.20   DBGOSDLR, Debug OS Double Lock Register

The DBGOSDLR characteristics are:

Purpose

Locks out the external debug interface.

Configurations

AArch32 System register DBGOSDLR[31:0] is architecturally mapped to AArch64 System register
OSDLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct
accesses to DBGOSDLR are UNDEFINED.

Attributes

DBGOSDLR is a 32-bit register.

Field descriptions

The DBGOSDLR bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  6 |  5 |  4 |  3 |  2 |  1 |  0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| RES0 | DLK |

Bits [31:1]

Reserved, RES0.

DLK, bit [0]

When FEAT_DoubleLock is implemented:

OS Double Lock control bit.

0b0   OS Double Lock unlocked.

0b1   OS Double Lock locked, if DBGPRCR.CORENPDRQ (Core no powerdown request) bit is set to 0 and the PE is in Non-debug state.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

Accessing the DBGOSDLR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}(<c>)(<q>) <\text{coproc}>, (<#>)<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, (<#>)<\text{opc2}> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA")
then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by HDCR.TDOSA")
then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGOSDLR;
endif;

When PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGOSDLR;
endif;

When PSTATE.EL == EL3 then
  if Halted() && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA")
then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by HDCR.TDOSA")
then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGOSDLR;
endif;

MCR<{c}>{q}<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b0000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL2.TDOSA")
then
  AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by HDCR.TDOSA")
then
  AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' &&
(IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end if;
else
  return DBGOSDLR;
endif;


AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
    DBGOSDLR = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' && (IsFeatureImplemented("FEAT_DoubleLock") || boolean IMPLEMENTATION_DEFINED "Trapped by MDCR_EL3.TDOSA")
then
    if Halted() && EDSCR.SDD == '1'
    UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
        DBGOSDLR = R[t];
else
    DBGOSDLR = R[t];
elsif PSTATE.EL == EL3 then
    DBGOSDLR = R[t];
G8.3.21 DBGOSECCR, Debug OS Lock Exception Catch Control Register

The DBGOSECCR characteristics are:

Purpose

Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configurations

AArch32 System register DBGOSECCR[31:0] is architecturally mapped to AArch64 System register OSECCR_EL1[31:0].

AArch32 System register DBGOSECCR[31:0] is architecturally mapped to External register EDECCR[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGOSECCR are UNDEFINED.

If DBGOSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores writes.

Attributes

DBGOSECCR is a 32-bit register.

Field descriptions

The DBGOSECCR bit assignments are:

When DBGOSLSR.OSLK == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDECCR</td>
<td></td>
</tr>
</tbody>
</table>

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the DBGOSECCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}\{<q>\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>\{, \{#\}<opc2>\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDO == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  end;
else
  return DBGOSECCR;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end;
  else
    return DBGOSECCR;
elsif PSTATE.EL == EL3 then
  return DBGOSECCR;
elsif PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end;
  else
    return DBGOSECCR;
else
  PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end;
  else
    DBGOSECCR = R[t];
  end;
elsif PSTATE.EL == EL3 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end;
  else
    DBGOSECCR = R[t];
else
  DBGOSECCR = R[t];
end;

MCR<{c}<{q}>, <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b010</td>
</tr>
</tbody>
</table>
G8.3.22 DBGOSLAR, Debug OS Lock Access Register

The DBGOSLAR characteristics are:

Purpose

Provides a lock for the debug registers. The OS Lock also disables some debug exceptions and debug events.

Configurations

AArch32 System register DBGOSLAR[31:0] is architecturally mapped to AArch64 System register OSLAR_EL1[31:0].

AArch32 System register DBGOSLAR[31:0] is architecturally mapped to External register OSLAR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGOSLAR are UNDEFINED.

Attributes

DBGOSLAR is a 32-bit register.

Field descriptions

The DBGOSLAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>OSLA</td>
</tr>
</tbody>
</table>

OSLA, bits [31:0]

OS Lock Access. Writing the value 0xC5ACCE55 to the DBGOSLAR sets the OS lock to 1. Writing any other value sets the OS lock to 0.

Use DBGOSLSR.OSLK to check the current status of the lock.

Accessing the DBGOSLAR

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MCR\{<c>\}\{<q>\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>\{, \{#\}<opc2>\} \]

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && EDSCR.TDE,TDOSA != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif EL2Enabled() && HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch32.AArch32SystemAccessTrap(EL3, 0x05);
    end if
  else
    AArch32.TakeHypTrapException(0x05);
  end if
elsif HaveEL(EL3) && EDSCR.TDE,TDOSA != '00' then
  AArch32.TakeHypTrapException(0x05);
AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
    DBGOSLAR = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        end
    else
        DBGOSLAR = R[t];
    end
elsif PSTATE.EL == EL3 then
    DBGOSLAR = R[t];
G8.3.23  DBGOSLSR, Debug OS Lock Status Register

The DBGOSLSR characteristics are:

Purpose

Provides status information for the OS Lock.

Configurations

AArch32 System register DBGOSLSR[31:0] is architecturally mapped to AArch64 System register OSLSR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGOSLSR are UNDEFINED.

The OS Lock status is also visible in the external debug interface through EDPRSR.

Attributes

DBGOSLSR is a 32-bit register.

Field descriptions

The DBGOSLSR bit assignments are:

```
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 RES0 OSLM[1] OSLM[0] nTT OSLK
```

Bits [31:4]

Reserved, RES0.

OSLM[1], bit [3]

This field is bit[1] of OSLM[1:0].

OS lock model implemented. Identifies the form of OS save and restore mechanism implemented.

0b00  OS Lock not implemented.

0b10  OS Lock implemented.

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

•  OSLM[1] is DBGOSLSR[3].
•  OSLM[0] is DBGOSLSR[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status. The possible values are:

0b0  OS Lock unlocked.

0b1  OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.
On a Cold reset, this field resets to 1.
On a Warm reset, the value of this field is unchanged.

**OSLM[0], bit [0]**

This field is bit[0] of OSLM[1:0].
See OSLM[1] for the field description.

**Accessing the DBGOSLSR**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && HDTCR.<TDE,TDOSA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end
  else
    return DBGOSLSR;
  end
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    end
  else
    return DBGOSLSR;
  end
elsif PSTATE.EL == EL3 then
  return DBGOSLSR;
G8.3.24  DBGPRCR, Debug Power Control Register

The DBGPRCR characteristics are:

Purpose

Controls behavior of the PE on powerdown request.

Configurations

AArch32 System register DBGPRCR[31:0] is architecturally mapped to AArch64 System register DBGPRCR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGPRCR are UNDEFINED.

Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.

The other bits in these registers are not mapped to each other.

Attributes

DBGPRCR is a 32-bit register.

Field descriptions

The DBGPRCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>1</td>
<td>CORENPDRQ</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:1]

Reserved, RES0.

CORENPDRQ, bit [0]

When FEAT_DoPD is implemented:

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

0b0  If the system responds to a powerdown request, it powers down Core power domain.

0b1  If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see Core power domain power states on page H6-7118.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On a Cold reset, if the powerup request is implemented and the powerup request has been asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request is not asserted, this field is set to 0.

On a Warm reset, the value of this field is unchanged.

Otherwise:
Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

\[
\begin{align*}
0b0 & \quad \text{If the system responds to a powerdown request, it powers down Core power domain.} \\
0b1 & \quad \text{If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.}
\end{align*}
\]

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see Core power domain power states on page H6-7118.

Note

 Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGPRCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{<c>\}{<q>} <coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
        UNDEFINED;
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
        AArch32.TakeHypTrapException(0x05);
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        end;
    else
        return DBGPRCR;
    end;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
        UNDEFINED;
    else
        return DBGPRCR;
    end;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    return DBGPRCR;
elsif PSTATE.EL == EL3 then
  return DBGPRCR;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && EDSCR.SDD == '1' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
      DBGPRCR = R[t];
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDOSA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    DBGPRCR = R[t];
elsif PSTATE.EL == EL0 then
  UNDEFINED;
if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDOSA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && EDSCR.SDD == '1' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    DBGPRCR = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDOSA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
  else
    DBGPRCR = R[t];
elsif PSTATE.EL == EL3 then
  DBGPRCR = R[t];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b110</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b100</td>
<td>0b100</td>
</tr>
</tbody>
</table>
G8.3.25 DBGVCR, Debug Vector Catch Register

The DBGVCR characteristics are:

**Purpose**

Controls Vector Catch debug events.

**Configurations**

AArch32 System register DBGVCR[31:0] is architecturally mapped to AArch64 System register DBGVCR32_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGVCR are UNDEFINED.

This register is required in all implementations.

**Attributes**

DBGVCR is a 32-bit register.

**Field descriptions**

The DBGVCR bit assignments are:

*When EL3 is implemented and EL3 is using AArch32:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>NSF, FIQ vector catch enable in Non-secure state. The exception vector offset is 0x1C. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
<td>0x1C</td>
</tr>
<tr>
<td>30</td>
<td>NSI, IRQ vector catch enable in Non-secure state. The exception vector offset is 0x18. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
<td>0x18</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>NSD, Data Abort vector catch enable in Non-secure state. The exception vector offset is 0x10.</td>
<td>0x10</td>
</tr>
<tr>
<td></td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**NSP, bit [27]**

Prefetch Abort vector catch enable in Non-secure state.
The exception vector offset is `0x0C`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**NSS, bit [26]**

Supervisor Call (SVC) vector catch enable in Non-secure state.
The exception vector offset is `0x08`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**NSU, bit [25]**

Undefined Instruction vector catch enable in Non-secure state.
The exception vector offset is `0x04`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**Bits [24:16]**

Reserved, **RES0**.

**MF, bit [15]**

FIQ vector catch enable in Monitor mode.
The exception vector offset is `0x1C`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**MI, bit [14]**

IRQ vector catch enable in Monitor mode.
The exception vector offset is `0x18`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**Bit [13]**

Reserved, **RES0**.

**MD, bit [12]**

Data Abort vector catch enable in Monitor mode.
The exception vector offset is `0x10`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**MP, bit [11]**

Prefetch Abort vector catch enable in Monitor mode.
The exception vector offset is `0x0C`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**MS, bit [10]**

Secure Monitor Call (SMC) vector catch enable in Monitor mode.
The exception vector offset is `0x08`.
On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

**Bits [9:8]**

Reserved, **RES0**.

**SF, bit [7]**

FIQ vector catch enable in Secure state.
The exception vector offset is 0x1C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SI, bit [6]**

IRQ vector catch enable in Secure state.
The exception vector offset is 0x18.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bit [5]**

Reserved, RES0.

**SD, bit [4]**

Data Abort vector catch enable in Secure state.
The exception vector offset is 0x10.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SP, bit [3]**

Prefetch Abort vector catch enable in Secure state.
The exception vector offset is 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SS, bit [2]**

Supervisor Call (SVC) vector catch enable in Secure state.
The exception vector offset is 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SU, bit [1]**

Undefined Instruction vector catch enable in Secure state.
The exception vector offset is 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bit [0]**

Reserved, RES0.

*When EL3 is implemented and EL3 is using AArch64:*

**NSF, bit [31]**

FIQ vector catch enable in Non-secure state.
The exception vector offset is 0x1C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

**NSI, bit [30]**

- IRQ vector catch enable in Non-secure state.
- The exception vector offset is 0x18.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bit [29]**

- Reserved, RES0.

**NSD, bit [28]**

- Data Abort vector catch enable in Non-secure state.
- The exception vector offset is 0x10.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**NSP, bit [27]**

- Prefetch Abort vector catch enable in Non-secure state.
- The exception vector offset is 0x0C.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**NSS, bit [26]**

- Supervisor Call (SVC) vector catch enable in Non-secure state.
- The exception vector offset is 0x08.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**NSU, bit [25]**

- Undefined Instruction vector catch enable in Non-secure state.
- The exception vector offset is 0x04.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bits [24:8]**

- Reserved, RES0.

**SF, bit [7]**

- FIQ vector catch enable in Secure state.
- The exception vector offset is 0x1C.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SI, bit [6]**

- IRQ vector catch enable in Secure state.
- The exception vector offset is 0x18.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**Bit [5]**

- Reserved, RES0.

**SD, bit [4]**

- Data Abort vector catch enable in Secure state.
- The exception vector offset is 0x10.
- On a Warm reset, this field resets to an architecturally UNKNOWN value.

**SP, bit [3]**

- Prefetch Abort vector catch enable in Secure state.
The exception vector offset is 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SS, bit [2]
Supervisor Call (SVC) vector catch enable in Secure state.
The exception vector offset is 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

SU, bit [1]
Undefined Instruction vector catch enable in Secure state.
The exception vector offset is 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]
Reserved, RES0.

_When EL3 is not implemented:_

```
+---------+---------+---------+---------+---------+---------+---------+
| 31 | 30 | 29 | 28 | 27 | 26 | 25 |
| RES0 | F | I | D | P | S | U |
+---------+---------+---------+---------+---------+---------+---------+
```

Bits [31:8]
Reserved, RES0.

F, bit [7]
FIQ vector catch enable.
The exception vector offset is 0x1C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [6]
IRQ vector catch enable.
The exception vector offset is 0x18.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]
Reserved, RES0.

D, bit [4]
Data Abort vector catch enable.
The exception vector offset is 0x10.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

P, bit [3]
Prefetch Abort vector catch enable.
The exception vector offset 0x0C.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
S, bit [2]

Supervisor Call (SVC) vector catch enable.
The exception vector offset is 0x08.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [1]

Undefined Instruction vector catch enable.
The exception vector offset is 0x04.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing the DBGVCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#<\text{opc2}>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDA != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            return DBGVCR;
        endif
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    endif
else
    return DBGVCR;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            return DBGVCR;
        endif
    else
        return DBGVCR;
    endif
elsif PSTATE.EL == EL3 then
    return DBGVCR;
MCR\{<c>\}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0111</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDSCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elsif EL2Enabled() && EDSCR_EL2.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    else
      DBGVCR = R[t];
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      else
        DBGVCR = R[t];
    elsif PSTATE.EL == EL3 then
      DBGVCR = EL3 then

G8.3.26  DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n> characteristics are:

**Purpose**

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>.

**Configurations**

AArch32 System register DBGWCR<n>[31:0] is architecturally mapped to AArch64 System register DBGWCR<n>_EL1[31:0].

AArch32 System register DBGWCR<n>[31:0] is architecturally mapped to External register DBGWCR<n>_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGWCR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

**Attributes**

DBGWCR<n> is a 32-bit register.

**Field descriptions**

The DBGWCR<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>29</th>
<th>28</th>
<th>24</th>
<th>23</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>MASK</td>
<td>RES0</td>
<td>LBN</td>
<td>SSC</td>
<td>BAS</td>
<td>LSC</td>
<td>PAC</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

When the E field is zero, all the other fields in the register are ignored.

**Bits [31:29]**

Reserved, RES0.

**MASK, bits [28:24]**

Address mask. Only objects up to 2GB can be watched using a single mask.

- 0b00000: No mask.
- 0b00001: Reserved.
- 0b00010: Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

- MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
- The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00011 masking 3 address bits (0x00000007 mask for address) to 0b11111 masking 31 address bits (0xFFFFFFFF mask for address).

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.
Bits [23:21]

Reserved, RES0.

WT, bit [20]

Watchpoint type. Possible values are:

0b0  Unlinked data address match.
0b1  Linked data address match.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the
Context-matching breakpoint linked to.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Watchpoint debug event for
watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.
For more information, see Execution conditions for which a breakpoint generates Breakpoint
exceptions on page G2-5880, and Reserved DBGBCR<n>.{SSC, HMC, PMC} values on
page G2-5891.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug
event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC
fields.
For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions
for which a watchpoint generates Watchpoint exceptions on page G2-5897.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

BAS, bits [12:5]

Byte address select. Each bit of this field selects whether a byte from within the word or
double-word addressed by DBGWVR<n> is being watched.

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0bxxxxxx1x</td>
<td>Match byte at DBGWVR&lt;n&gt;</td>
</tr>
<tr>
<td>0bxxxxxx1x</td>
<td>Match byte at DBGWVR&lt;n&gt;+1</td>
</tr>
<tr>
<td>0bxxxxxx1x</td>
<td>Match byte at DBGWVR&lt;n&gt;+2</td>
</tr>
<tr>
<td>0bxxxxxx1x</td>
<td>Match byte at DBGWVR&lt;n&gt;+3</td>
</tr>
</tbody>
</table>
In cases where DBGWVR<n> addresses a double-word:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description, if DBGWVR&lt;n&gt;[2] == 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0bxxxx1xxxx</td>
<td>Match byte at DBGWVR&lt;n&gt;+4</td>
</tr>
<tr>
<td>0bxx1xxxx</td>
<td>Match byte at DBGWVR&lt;n&gt;+5</td>
</tr>
<tr>
<td>0bx1xxxx</td>
<td>Match byte at DBGWVR&lt;n&gt;+6</td>
</tr>
<tr>
<td>0b1xxxx</td>
<td>Match byte at DBGWVR&lt;n&gt;+7</td>
</tr>
</tbody>
</table>


The valid values for BAS are non-zero binary numbers all of whose set bits are contiguous. All other values are reserved and must not be used by software. See Reserved DBGWCR<n>.BAS values on page G2-5905.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

LSC, bits [4:3]
Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:
- 0b01  Match instructions that load from a watchpointed address.
- 0b10  Match instructions that store to a watchpointed address.
- 0b11  Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

PAC, bits [2:1]
Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page G2-5897.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable watchpoint n. Possible values are:
- 0b0  Watchpoint disabled.
- 0b1  Watchpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGWCR<n>

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
        AArch32.TakeHypTrapException(EL2, 0x05);
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
            Halt(DebugHalt_SoftwareAccess);
        else
            return DBGWCR[UInt(CRm<3:0>)];
    endif
elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        elsif DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
            Halt(DebugHalt_SoftwareAccess);
        else
            return DBGWCR[UInt(CRm<3:0>)];
    endif
elsif PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        return DBGWCR[UInt(CRm<3:0>)];
    endif
endif

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc  opc1  CRn  CRm  opc2
0b1110  0b0000  0b0000  n[3:0]  0b111
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
    DBGWCR[Unit(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x05);
    elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        DBGWCR[Unit(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        DBGWCR[Unit(CRm<3:0>)] = R[t];
### G8.3.27 DBGWFAR, Debug Watchpoint Fault Address Register

The DBGWFAR characteristics are:

**Purpose**

Previously returned information about the address of the instruction that accessed a watchpointed address. Is now deprecated and RES0.

**Configurations**

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGWFAR are UNDEFINED.

**Attributes**

DBGWFAR is a 32-bit register.

**Field descriptions**

The DBGWFAR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>RES0</th>
</tr>
</thead>
</table>

**Accessing the DBGWFAR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\langle c\rangle\langle q\rangle, \langle\#\rangle\langle opc1\rangle, \langle Rt\rangle, \langle CRn\rangle, \langle CRm\rangle, \langle\#\rangle\langle opc2\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>0b0110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsiif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
UNDEFINED;
elsiif EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.TDA != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsiif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TDE & HDCR.TDA != '00' then
    AArch32.TakeHypTrapException(0x05);
elsiif HaveEL(EL3) & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
UNDEFINED;
elsielse
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsielse
    return DBGWFAR;
elsiif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
UNDEFINED;
elsiif HaveEL(EL3) & ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else
    return DBGWFAR;
elsif PSTATE.EL == EL3 then
    return DBGWFAR;
elsif PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x05);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
        AArch32.TakeHypTrapException(0x05);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x05);
        else
            DBGWFAR = R[t];
    elsif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.AArch32SystemAccessTrap(EL3, 0x05);
            else
                DBGWFAR = R[t];
        elsif PSTATE.EL == EL3 then
            DBGWFAR = R[t];
    else
        DBGWFAR = R[t];
else
    DBGWFAR = R[t];
else
    DBGWFAR = R[t];
G8.3.28  DBGWVR<n>, Debug Watchpoint Value Registers, n = 0 - 15

The DBGWVR<n> characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register DBGWCR<n>.

Configurations

AArch32 System register DBGWVR<n>[31:0] is architecturally mapped to AArch64 System register DBGWVR<n>_EL1[31:0].

AArch32 System register DBGWVR<n>[31:0] is architecturally mapped to External register DBGWVR<n>_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DBGWVR<n> are UNDEFINED.

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes

DBGWVR<n> is a 32-bit register.

Field descriptions

The DBGWVR<n> bit assignments are:

\[
\begin{array}{cccc}
31 & 2 & 1 & 0 \\
\hline
VA & & & \\
\end{array}
\]

VA, bits [31:2]

Bits[31:2] of the address value for comparison.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
UNDEFINED;
elif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1110</td>
<td>0b000</td>
<td>0b0000</td>
<td>n[3:0]</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elseif EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.<TDE,TDA> != '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x05);
  elseif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.<TDE,TDA> != '00' then
    AArch32.TakeHypTrapException(0x05);
  elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TDA == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x05);
      if DBGOSLSR.OSLK == '0' & HaltingAllowed() & EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
      else
        return DBGWVR[UInt(CRm<3:0>)];
    endif
  endif
else
  return DBGWVR[UInt(CRm<3:0>)];
endif
else
    AArch64.AArch32SystemAccessTrap(El3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
    DBGWVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL3 then
    if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
        Halt(DebugHalt_SoftwareAccess);
    else
        DBGWVR[UInt(CRm<3:0>)] = R[t];
    else
        AArch64.AArch32SystemAccessTrap(El3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
    Halt(DebugHalt_SoftwareAccess);
else
    DBGWVR[UInt(CRm<3:0>)] = R[t];
G8.3.29 DLR, Debug Link Register

The DLR characteristics are:

Purpose

In Debug state, holds the address to restart from.

Configurations

AArch32 System register DLR[31:0] is architecturally mapped to AArch64 System register DLR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DLR are UNDEFINED.

Attributes

DLR is a 32-bit register.

Field descriptions

The DLR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Restart address</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Restart address</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the DLR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC\{<c>\}{<q>} <coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2>\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b011 & 0b0100 & 0b0101 & 0b001 \\
\end{array}
\]

\[
\text{if } \neg \text{Halted}() \text{ then}
\]
\[
\text{UNDEFINED;}
\]
\[
\text{else}
\]
\[
\text{return DLR;}
\]

\[
MCR\{<c>\}{<q>} <coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2>\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b1111 & 0b011 & 0b0100 & 0b0101 & 0b001 \\
\end{array}
\]

\[
\text{if } \neg \text{Halted}() \text{ then}
\]
\[
\text{UNDEFINED;}
\]
\[
\text{else}
\]
\[
\text{DLR} = R[t];
\]
G8.3.30 DSPSR, Debug Saved Program Status Register

The DSPSR characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this register. On exiting Debug state, values are copied from this register to PSTATE.

Configurations

AArch32 System register DSPSR[31:0] is architecturally mapped to AArch64 System register DSPSR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DSPSR are UNDEFINED.

Attributes

DSPSR is a 32-bit register.

Field descriptions

The DSPSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>N</td>
<td>Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting Debug state. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>30</td>
<td>Z</td>
<td>Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug state. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug state. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>28</td>
<td>V</td>
<td>Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting Debug state. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>27</td>
<td>Q</td>
<td>Overflow or saturation flag. Set to the value of PSTATE.Q on entering Debug state, and copied to PSTATE.Q on exiting Debug state. This field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>

[Diagram of DSPSR bit assignments]
IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on entering Debug state, and copied to PSTATE.IT[1:0] on exiting Debug state.

On exiting Debug state DSPSR.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on entering Debug state, and copied to PSTATE.GE on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on entering Debug state, and copied to PSTATE.IT[7:2] on exiting Debug state.

DSPSR.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.
E, bit [9]

Endianness. Set to the value of PSTATE.E on entering Debug state, and copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR.E is RES0. If the implementation does not support little-endian operation, DSPSR.E is RES1. On exiting Debug state, if the implementation does not support big-endian operation at the Exception level being returned to, DSPSR.E is RES0, and if the implementation does not support little-endian operation at the Exception level being returned to, DSPSR.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on entering Debug state, and copied to PSTATE.T on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on entering Debug state, and copied to PSTATE.M[4:0] on exiting Debug state.

- 0b10000 User.
- 0b10001 FIQ.
- 0b10010 IRQ.
- 0b10011 Supervisor.
- 0b10110 Monitor.
- 0b10111 Abort.
- 0b11010 Hyp.
- 0b11011 Undefined.
- 0b11111 System.

Other values are reserved. If DSPSR.M[4:0] has a Reserved value, or a value for an unimplemented Exception level, exiting Debug state is an illegal return event, as described in Illegal return events from AArch32 state on page G1-5766.

This field resets to an architecturally UNKNOWN value.

### Accessing the DSPSR

Accesses to this register use the following encodings in the System instruction encoding space:
MRC\{<c>|<q>|\} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if !Halted() then
    UNDEFINED;
else
    return DSPSR;

MCR\{<c>|<q>|\} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b011</td>
<td>0b0100</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if !Halted() then
    UNDEFINED;
else
    DSPSR = R[t];
G8.3.31 HDCR, Hyp Debug Control Register

The HDCR characteristics are:

**Purpose**

Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and trace architectures and the Performance Monitors Extension.

**Configurations**

AArch32 System register HDCR[31:0] is architecturally mapped to AArch64 System register MDCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the register, the PE behaves as if HDCR.HPMN == PMCR.N.

**Attributes**

HDCR is a 32-bit register.

**Field descriptions**

The HDCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-29</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>28</td>
<td>MTPME</td>
</tr>
<tr>
<td>27</td>
<td>Multi-threaded PMU Enable</td>
</tr>
<tr>
<td>26</td>
<td>Enables use of the</td>
</tr>
<tr>
<td>25-24</td>
<td>PMEVTYPE&lt;0&gt;MTM bits.</td>
</tr>
<tr>
<td>23</td>
<td>0b0: FEAT_MTPMU is disabled.</td>
</tr>
<tr>
<td>22</td>
<td>The Effective value of</td>
</tr>
<tr>
<td>21</td>
<td>PMEVTYPE&lt;0&gt;M.T is zero.</td>
</tr>
<tr>
<td>20</td>
<td>0b1: PMEVTYPE&lt;0&gt;M.T bits</td>
</tr>
<tr>
<td>19-16</td>
<td>Not affected by this bit.</td>
</tr>
<tr>
<td>15-10</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>9</td>
<td>HLP</td>
</tr>
<tr>
<td>8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>5</td>
<td>TTRF</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3-0</td>
<td>HPMD</td>
</tr>
</tbody>
</table>

**Bits [31:29]**

Reserved, RES0.

**MTPME, bit [28]**

*When FEAT_MTPMU is implemented and EL3 is not implemented:*

Multi-threaded PMU Enable. Enables use of the PMEVTYPE<0>M.T bits.

- 0b0: FEAT_MTPMU is disabled. The Effective value of PMEVTYPE<0>M.T is zero.
- 0b1: PMEVTYPE<0>M.T bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

*Otherwise:*

Reserved, RES0.
TDCC, bit [27]

*When FEAT_FGT is implemented:*

- Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.
  - 0b0: This control does not cause any register accesses to be trapped.
  - 0b1: If EL2 is implemented and enabled in the current Security state, accesses to the DCC registers at EL1 and EL0 generate a Hyp Trap exception, unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:
- `DBGDTRRXext, DBGDTRTText, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state, DBGDTRRXint and DBGDTRTXXint`.

The traps are reported with EC syndrome value:
- 0x05 for trapped `MRC` and `MCR` accesses with `coproc == 0b1110`.
- 0x06 for trapped `LDC` to `DBGDTRTXXint` and `STC` from `DBGDTRRXint`.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:
- `DBGDTRRXint` and `DBGDTRTXXint`.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

*Otherwise:*

Reserved, RES0.

HLP, bit [26]

*When FEAT_PMUv3p5 is implemented:*

- Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.
  - 0b0: Event counter overflow on increment that causes unsigned overflow of `PMEVCNTR<n>[31:0]`.
  - 0b1: Event counter overflow on increment that causes unsigned overflow of `PMEVCNTR<n>[63:0]`.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is read/write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range `[HDCR.HPMN..(PMCR.N-1)]`. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the HDCR.HPMN field.

Note

`PMEVCNTR<n>[63:32]` cannot be accessed directly in AArch32 state.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

*Otherwise:*

Reserved, RES0.

**Bits [25:24]**

Reserved, RES0.
HCCD, bit [23]

When `FEAT_PMUv3p5` is implemented:

- Hypervisor Cycle Counter Disable. Prohibits `PMCCNTR` from counting at EL2.
  - 0b0  Cycle counting by `PMCCNTR` is not affected by this bit.
  - 0b1  Cycle counting by `PMCCNTR` is prohibited at EL2.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When `FEAT_TRF` is implemented:

- Traps use of the Trace Filter Control registers at EL1 to EL2.
  - 0b0  Accesses to `TRFCR` at EL1 are not affected by this control bit.
  - 0b1  Accesses to `TRFCR` at EL1 generate a Hyp Trap exception.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When `FEAT_PMUv3p1` is implemented:

- Guest Performance Monitors Disable. This control prohibits event counting at EL2.
  - 0b0  Event counting allowed in Hyp mode.
  - 0b1  Event counting prohibited in Hyp mode.

If `FEAT_Debugv8p2` is not implemented, event counting is prohibited unless enabled by the `IMPLEMENTATION DEFINED` authentication interface `ExternalSecureNoninvasiveDebugEnabled()`.

This control applies only to:
- The event counters in the range `[0..(HDCR.HPMN-1)]`.
- If `PMCR.DP` is set to 1, `PMCCNTR`.

The other event counters are unaffected. When `PMCR.DP` is set to 0, `PMCCNTR` is unaffected.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

- Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug ROM registers to Hyp mode.
  - 0b0  This control does not cause any instructions to be trapped.
0b1  Non-secure EL0 and EL1 System register accesses to the DBGDRAR or DBGDSAR are trapped to Hyp mode, unless it is trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]

**When FEAT_DoubleLock is implemented:**
Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode.

0b0  This control does not cause any instructions to be trapped.

0b1  Non-secure EL1 System register accesses to the powerdown debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:
- DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
- Any implementation defined register with similar functionality that the implementation specifies as trapped by this bit.

--- Note ---
These registers are not accessible at EL0.

---
If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**Otherwise:**
Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug registers to Hyp mode.

0b0  This control does not cause any instructions to be trapped.

0b1  Non-secure EL1 System register accesses to the powerdown debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:
- DBGOSLSR, DBGOSLAR, and DBGPRCR.
- Any implementation defined register with similar functionality that the implementation specifies as trapped by this bit.

It is implementation defined whether accesses to DBGOSDLR are trapped.

--- Note ---
These registers are not accessible at EL0.

---
If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in the (coproc==0b1110) encoding space that are not trapped by either of the following:
- HDCR.TDRA.
- HDCR.TDOSA.

0b0  This control does not cause any instructions to be trapped.
Non-secure EL0 or EL1 System register accesses to the debug registers, other than the registers trapped by HDCR.TDRA and HDCR.TDOSA, are trapped to Hyp mode, unless it is trapped by DBGDSCRext:UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**TDE, bit [8]**

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

0b0  The debug target Exception level is EL1.

0b1  If EL2 is enabled for the current Effective value of SCR.NS, the debug target Exception level is EL2, otherwise the debug target Exception level is EL1.

The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes other than returning the result of a direct read of the register.

For more information, see *Routing debug exceptions on page G2-5859*.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of a direct read of the register.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**HPME, bit [7]**

*When FEAT_PMUv3 is implemented:*

[HDCR.HPMN.(N-1)] event counters enable.

0b0  Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are disabled.

0b1  Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are enabled by PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, the event counters in the range [HDCR.HPMN..(PMCR.N-1)], are enabled and disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

**Note**

The effect of HDCR.HPMN on the operation of this bit applies regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.

**Otherwise:**

Reserved, RES0.

**TPM, bit [6]**

*When FEAT_PMUv3 is implemented:*

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors registers to Hyp mode.

0b0  This control does not cause any instructions to be trapped.

0b1  Non-secure EL0 and EL1 accesses to all Performance Monitors registers are trapped to Hyp mode.
--- Note ---
EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.

--- Note ---
On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**Otherwise:**
Reserved, RES0.

**TPMCR, bit [5]**

*When FEAT_PMUv3 is implemented:*

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

0b0  This control does not cause any instructions to be trapped.

0b1  Non-secure EL0 and EL1 accesses to the PMCR are trapped to Hyp mode, unless it is trapped by PMUSERENR.EN.

--- Note ---
EL2 does not provide traps on Performance Monitor register accesses through the optional memory-mapped external debug interface.

--- Note ---
On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**Otherwise:**
Reserved, RES0.

**HPMN, bits [4:0]**

*When FEAT_PMUv3 is implemented:*

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0 modes if unprivileged access is enabled.

If HPMN is less than PMCR.N, HPMN divides the event counters into two ranges, [0..(HPMN-1)] and [HPMN..(PMCR.N-1)].

For an event counter in the range [0..(HPMN-1)],

- The counter is accessible from EL1 and EL2, and from EL0 if unprivileged access to the counters is enabled.
- If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflows at PMEVCNTR<<[31:0] or PMEVCNTR<<[63:0].
- PMCR.E enables the operation of counters in this range.

--- Note ---
If HPMN is equal to PMCR.N, this applies to all event counters.

If HPMN is less than PMCR.N, for an event counter in the range [HPMN..(PMCR.N-1)],

- The counter is accessible only from EL2 and from Secure state.
- If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflows at PMEVCNTR<<[31:0] or PMEVCNTR<<[63:0].
- HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED UNPREDICTABLE behaviors apply:

- The value returned by a direct read of HDCR.HPMN is UNKNOWN.
- Either:
  - An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR.N.
All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and Non-secure EL0.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in PMCR.N.

Otherwise:
Reserved, RES0.

Accessing the HDCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(c\{q\}) \text{ \{coproc, \{#opc1\}, \{Rt\}, \{CRn\}, \{CRm\}\{, \{#opc2\}\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
else
  return HDCR;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' && ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
      return HDCR;
else
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return HDCR;

\[
\text{MCR}(c\{q\}) \text{ \{coproc, \{#opc1\}, \{Rt\}, \{CRn\}, \{CRm\}\{, \{#opc2\}\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
else
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  else
    HDCR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    HDCR = R[t];
### HTRFCR, Hyp Trace Filter Control Register

The HTRFCR characteristics are:

**Purpose**

Provides EL2 controls for Trace.

**Configurations**

AArch32 System register HTRFCR[31:0] is architecturally mapped to AArch64 System register TRFCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_TRF is implemented. Otherwise, direct accesses to HTRFCR are UNDEFINED.

If EL2 is not implemented, this register is RES0 from Monitor mode when SCR.NS == 1.

**Attributes**

HTRFCR is a 32-bit register.

**Field descriptions**

The HTRFCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7-6</td>
<td>Timestamp Control. Controls which timebase is used for trace timestamps.</td>
</tr>
<tr>
<td>5</td>
<td>The timestamp is controlled by TRFCR.TS.</td>
</tr>
<tr>
<td>4</td>
<td>VMID Trace Enable.</td>
</tr>
<tr>
<td>3</td>
<td>VMID tracing is not allowed.</td>
</tr>
<tr>
<td>2</td>
<td>VMID tracing is allowed.</td>
</tr>
</tbody>
</table>

- **TS** bits [6:5]:
  - **0b00**: Virtual timestamp. The traced timestamp is the physical counter value minus the value of CNTVOFF.
  - **0b01**: Physical timestamp. The traced timestamp is the physical counter value.

- **Bit [4]**: Reserved, RES0.

- **CX** bit [3]:
  - **0b0**: VMID tracing is not allowed.
  - **0b1**: VMID tracing is allowed.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.
Bit [2]

Reserved, RES0.

E2TRE, bit [1]
EL2 Trace Enable.

0b0  Tracing is prohibited at EL2.
0b1  Tracing is allowed at EL2.

When SelfHostedTraceEnabled() == FALSE, this field is ignored.
On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

E0HTRE, bit [0]
EL0 Trace Enable.

0b0  Tracing is prohibited at EL0 when HCR.TGE == 1.
0b1  Tracing is allowed at EL0 when HCR.TGE == 1.

This field is ignored if any of the following are true:
- The PE is in Secure state.
- SelfHostedTraceEnabled() == FALSE.
- HCR.TGE == 0.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

**Accessing the HTRFCR**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    endif
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        endif
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        UNDEFINED;
    endif
else
    AArch32.TakeMonitorTrapException();
else
    UNDEFINED;
```
```c
return HTRFCR;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        UNDEFINED;
    else
        return HTRFCR;
    end if;
end if;

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>
```

```c
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
        AArch32.TakeHypTrapException(0x03);
    else
        UNDEFINED;
    end if;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        end if;
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TTRF == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        end if;
    else
        HTRFCR = R[t];
    end if;
elsif PSTATE.EL == EL3 then
    if SCR.NS == '0' then
        UNDEFINED;
    else
        HTRFCR = R[t];
    end if;
```

G8.3.33 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation to software.

Configurations

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to PMMIR are UNDEFINED.

Attributes

PMMIR is a 32-bit register.

Field descriptions

The PMMIR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SLOTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is not implemented, this field might read as zero.

Accessing the PMMIR

Accesses to this register use the following encodings in the System instruction encoding space:

```assembly
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

Assembly Code Example

if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && EDSCR.SDD == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && EDSCR.SDD == '1' then
 if Halted() then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
```
else
    return PMMIR;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        else
            return PMMIR;
    elsif PSTATE.EL == EL3 then
        return PMMIR;
G8.3.34 SDCR, Secure Debug Control Register

The SDCR characteristics are:

**Purpose**

Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors Extension.

**Configurations**

AArch32 System register SDCR[31:0] can be mapped to AArch64 System register MDCR_EL3[31:0], but this is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SDCR are UNDEFINED.

**Attributes**

SDCR is a 32-bit register.

**Field descriptions**

The SDCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>MTPME, bit [28]</td>
<td>0b0, 0b1</td>
</tr>
<tr>
<td>27</td>
<td>When FEAT_MTPMU is implemented:</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Multi-threaded PMU Enable. Enables use of the PMEVTYPER&lt;\n&gt;.MT bits.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SPD</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:29]**

Reserved, RES0.

**MTPME, bit [28]**

*When FEAT_MTPMU is implemented:*

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<\n>.MT bits.

0b0 FEAT_MTPMU is disabled. The Effective value of PMEVTYPER<\n>.MT is zero.

0b1 PMEVTYPER<\n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

**Otherwise:**

Reserved, RES0.
TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor mode.

- **0b0**: This control does not cause any register accesses to be trapped.
- **0b1**: Accesses to the DCC registers in modes other than Monitor mode generate a Monitor Trap exception, unless the access also generates a higher priority exception.

Traps on the DCC data transfer registers are ignored when the PE is in Debug state.

The DCC registers trapped by this control are:

- `DBGDTRRXext`, `DBGDTRTExt`, `DBGDSCRint`, `DBGDCCINT`, and, when the PE is in Non-debug state, `DBGDTRRXint` and `DBGDTRTExt`.

When the PE is in Debug state, `SDCR.TDCC` does not trap any accesses to:

- `DBGDTRRXint` and `DBGDTRTExt`.

In a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

- Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

- **0b0**: Cycle counting by PMCCNTR is not affected by this bit.
- **0b1**: Cycle counting by PMCCNTR is prohibited in Secure state.

This bit does not affect the CPU_CYCLES event or any other event that counts cycles.

In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

- Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure access disable. Controls Non-secure access to Performance Monitors registers by an external debugger.

- **0b0**: Non-secure access to the Performance Monitors registers from an external debugger is permitted.
- **0b1**: Non-secure access to the Performance Monitors registers from an external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

In a system where the PE resets into EL3, this field resets to 0.
When FEAT_PMUv3 is implemented:

External Performance Monitors access disable. Controls access to Performance Monitors registers by an external debugger.

0b0  Access to Performance Monitors registers from an external debugger is permitted.
0b1  Access to Performance Monitors registers from an external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.
Otherwise, if EL3 is not implemented and the Effective value of SCR:NS is 0b0, then the Effective value of this field is 0b1.
In a system where the PE resets into EL3, this field resets to 0.

Otherwise:
Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external debugger.

0b0  Non-secure access to debug registers from an external debugger is permitted.
0b1  Non-secure access to breakpoint registers, watchpoint registers, and OSLAR_EL1 from an external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR:NS is 0b0, then the Effective value of this field is 0b1.
In a system where the PE resets into EL3, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external debugger.

0b0  Access to debug registers from an external debugger is permitted.
0b1  Access to breakpoint registers, watchpoint registers and OSLAR_EL1 from an external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.

If EL3 is not implemented and the Effective value of SCR:NS is 0b0, then the Effective value of this field is 0b1.
In a system where the PE resets into EL3, this field resets to 0.

Otherwise:

External debug access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an external debugger.

0b0  Access to debug registers from an external debugger is permitted.
0b1  Access to breakpoint registers and watchpoint registers from an external debugger is not permitted, unless overridden by the IMPLEMENTATION DEFINED authentication interface.
     It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1 register from an external debugger is permitted or not permitted.

If EL3 is not implemented and the Effective value of SCR:NS is 0b0, then the Effective value of this field is 0b1.
In a system where the PE resets into EL3, this field resets to 0.
TTRF, bit [19]

*When FEAT_TRF is implemented:*

Trap Trace Filter controls. Controls whether accesses at EL2 and EL1 to the trace filter control registers are trapped to EL3.

- **0b0**: Accesses to HTRFCR and TRFCR registers are not affected by this control bit.
- **0b1**: When not in Monitor mode, accesses to HTRFCR and TRFCR registers generate a Monitor Trap exception, unless the access generates a higher priority exception.

In a system where the PE resets into EL3, this field resets to 0.

*Otherwise:*

Reserved, RES0.

STE, bit [18]

*When FEAT_TRF is implemented:*

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication required by an external debugger to enable external tracing.

- **0b0**: Trace is prohibited in Secure state unless overridden by the IMPLEMENTATION DEFINED authentication interface.
- **0b1**: Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See [Register controls to enable self-hosted trace](#) on page G3-5920.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, the PE behaves as if this bit is set to 0b1.

In a system where the PE resets into EL3, this field resets to 0.

*Otherwise:*

Reserved, RES0.

SPME, bit [17]

*When FEAT_Debugv8p2 is implemented and FEAT_PMUv3 is implemented:*

Secure Performance Monitors enable. This allows event counting in Secure state.

- **0b0**: Event counting prohibited in Secure state.
- **0b1**: Event counting allowed in Secure state.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

*When FEAT_PMUv3 is implemented:*

Secure Performance Monitors enable. This allows event counting in Secure state.

- **0b0**: Event counting prohibited in Secure state, unless ExternalSecureNoninvasiveDebugEnabled() is TRUE.
- **0b1**: Event counting allowed in Secure state.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

In a system where the PE resets into EL3, this field resets to 0.

*Otherwise:*

Reserved, RES0.

Bit [16]

Reserved, RES0.
SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3, other than Breakpoint Instruction exceptions

0b00 Legacy mode. Debug exceptions from EL3 are enabled by the authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from EL3 are disabled.
0b11 Secure privileged debug enabled. Debug exceptions from EL3 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b11.

In a system where the PE resets into EL3, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing the SDCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{<\text{opc1}>\}, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{<\text{opc2}>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif !ELUsingAArch32(EL2) \&\& SCR_EL3.<NS,EEL2> == '01' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif !ELUsingAArch32(EL3) \&\& SCR_EL3.NS == '0' then
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
  UNDEFINED;
elsif PSTATE.EL == EL2 then
  UNDEFINED;
elsif PSTATE.EL == EL3 then
  return SDCR;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  else
    UNDEFINED;
  elseif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
    UNDEFINED;
  else
    SDCR = R[t];
G8.3.35   SDER, Secure Debug Enable Register

The SDER characteristics are:

Purpose

Controls invasive and non-invasive debug in the Secure EL0 mode.

Configurations

AArch32 System register SDER[31:0] is architecturally mapped to AArch64 System register SDER32_EL3[31:0].

This register is present only when AArch32 is supported at any Exception level, or EL3 is implemented or the implemented Security state is Secure state. Otherwise, direct accesses to SDER are UNDEFINED.

This register is ignored by the PE when one or more of the following are true:

• The PE is in Non-secure state.
• EL1 is using AArch64.

Attributes

SDER is a 32-bit register.

Field descriptions

The SDER bit assignments are:

```
31 2 1 0
 | | |
 RES0 SUIDEN SUNIDEN

Bits [31:2]

Reserved, RES0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

0b0 This bit does not affect Performance Monitors event counting at Secure EL0
0b1 If EL3 or EL1 is using AArch32, Performance Monitors event counting is allowed in Secure EL0.

On a Warm reset, this field resets to 0.

SUIDEN, bit [0]

Secure User Invasive Debug Enable.

0b0 This bit does not affect the generation of debug exceptions at Secure EL0.
0b1 If EL3 or EL1 is using AArch32, debug exceptions from Secure EL0 are enabled.

On a Warm reset, this field resets to 0.

Accessing the SDER

Accesses to this register use the following encodings in the System instruction encoding space:
\texttt{MRC\{<c>\}<q>\} <coproc>, \{\#\}<opc1>, <Rt>, <CRn>, <CRm>\{, \{\#\}<opc2>\} }

\begin{center}
\begin{tabular}{cccccc}
\hline
\texttt{coproc} & \texttt{opc1} & \texttt{CRn} & \texttt{CRm} & \texttt{opc2} \\
\hline
0b1111 & 0b0000 & 0b0001 & 0b0001 & 0b001 \\
\hline
\end{tabular}
\end{center}

if \texttt{PSTATE.EL} == \texttt{EL0} then
\texttt{UNDEFINED};
else
if \texttt{PSTATE.EL} == \texttt{EL1} then
 if \texttt{EL2Enabled()} && \texttt{ELUsingAArch32(EL2)} && \texttt{HSTR_EL2.T1} == '1' then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 elseif \texttt{EL2Enabled()} && \texttt{ELUsingAArch32(EL2)} && \texttt{HSTR.T1} == '1' then
 \texttt{AArch32.TakeHypTrapException(0x03)};
 else
 \texttt{UNDEFINED};
 endif
endif
elif \texttt{PSTATE.EL} == \texttt{EL2} then
\texttt{UNDEFINED};
elseif \texttt{PSTATE.EL} == \texttt{EL3} then
if \texttt{SCR.NS} == '0' && \texttt{CP15DISABLE} == \texttt{HIGH} then
\texttt{UNDEFINED};
else
\texttt{SDER} = \texttt{R[t]};
endif
\else
\texttt{SDER} = \texttt{R[t]};
\endif

\texttt{MCR\{<c>\}<q>\} <coproc>, \{\#\}<opc1>, <Rt>, <CRn>, <CRm>\{, \{\#\}<opc2>\} }

\begin{center}
\begin{tabular}{cccccc}
\hline
\texttt{coproc} & \texttt{opc1} & \texttt{CRn} & \texttt{CRm} & \texttt{opc2} \\
\hline
0b1111 & 0b0000 & 0b0001 & 0b0001 & 0b001 \\
\hline
\end{tabular}
\end{center}

if \texttt{PSTATE.EL} == \texttt{EL0} then
\texttt{UNDEFINED};
else
if \texttt{PSTATE.EL} == \texttt{EL1} then
 if \texttt{EL2Enabled()} && \texttt{ELUsingAArch32(EL2)} && \texttt{HSTR_EL2.T1} == '1' then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 elseif \texttt{EL2Enabled()} && \texttt{ELUsingAArch32(EL2)} && \texttt{HSTR.T1} == '1' then
 \texttt{AArch32.TakeHypTrapException(0x03)};
 else
 \texttt{UNDEFINED};
 endif
endif
elif \texttt{PSTATE.EL} == \texttt{EL2} then
\texttt{UNDEFINED};
elseif \texttt{PSTATE.EL} == \texttt{EL3} then
 if \texttt{SCR.NS} == '0' && \texttt{CP15DISABLE} == \texttt{HIGH} then
 \texttt{UNDEFINED};
 else
 \texttt{SDER} = \texttt{R[t]};
 endif
\end{center}
G8.3.36 TRFCR, Trace Filter Control Register

The TRFCR characteristics are:

Purpose

Provides EL1 controls for Trace.

Configurations

AArch32 System register TRFCR[31:0] is architecturally mapped to AArch64 System register TRFCR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_TRF is implemented. Otherwise, direct accesses to TRFCR are UNDEFINED.

Attributes

TRFCR is a 32-bit register.

Field descriptions

The TRFCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>7</td>
<td>TS</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>E0TRE</td>
</tr>
<tr>
<td></td>
<td>E1TRE</td>
</tr>
</tbody>
</table>

Bits [31:7]

Reserved, RES0.

TS, bits [6:5]

Timestamp Control. Controls which timebase is used for trace timestamps.

0b00 Virtual timestamp. The traced timestamp is the physical counter value, minus the value of CNTVOFF.

0b10 **When FEAT_ECV is implemented** Guest Physical timestamp. The traced timestamp is the physical counter value, minus the value of CNTPOFF_EL2.

0b11 Physical timestamp. The traced timestamp is the physical counter value.

All other values are reserved.

This field is ignored if any of the following are true:

- `SelfHostedTraceEnabled()` == FALSE.
- `HTRFCR.TS` is not 0b00.

If FEAT_ECV is implemented, the physical counter uses a fixed physical offset of zero if any of the following are true:

- When EL2 is implemented and enabled in the current Security state and is using AArch32.
- `CNYHCTL_EL2.ECV` is 0.
- `SCR_EL3.ECVEn` is 0.
- `HCR_EL2.{E2H, TGE}` is {1, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [4:2]

Reserved, RES0.
E1TRE, bit [1]
EL1 Trace Enable.

- **0b0**: Tracing is prohibited in PL1 modes.
- **0b1**: Tracing is allowed in PL1 modes.

This field is ignored if `SelfHostedTraceEnabled()` == FALSE.

On a Warm reset, this field resets to 0.

E0TRE, bit [0]
EL0 Trace Enable.

- **0b0**: Tracing is prohibited at EL0.
- **0b1**: Tracing is allowed at EL0.

This field is ignored if any of the following are true:
- `SelfHostedTraceEnabled()` == FALSE.
- EL2 is implemented and enabled in the current security state and `HCR.TGE == 1`.

On a Warm reset, this field resets to 0.

Accessing the TRFCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(<c>){<q>} <\text{coproc}>, (#)<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>(, (#)<\text{opc2}>)
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 UNDEFINED;
 elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SDCR.TTRF == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then
 AArch32.TakeHypTrapException(0x83);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TTRF == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TTRF == '1' then
 AArch32.TakeHypTrapException(0x83);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TTRF == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 return TRFCR;
 endif
 endif
else
end

UNDEFINED;
elsif Halted() & HaveEL(EL3) & EDSCR_SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SDCR.TTRF == '1' then
UNDEFINED;
elsif HaveEL(EL3) & EDSCR_SDD == '1' then
if Halted() & EDSCR_SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) & EDSCR_SDD == '1' then
if Halted() & EDSCR_SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
else
return TRFCR;
else
return TFRCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0001</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>
if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SDCR.TTRF == '1' then
 if Halted() \&\& EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 end
elsif PSTATE.EL == EL3 then
 if PSTATE.M != M32_Monitor \&\& SDCR.TTRF == '1' then
 AArch32.TakeMonitorTrapException();
 else
 TRFCR = R[t];
 end
else
 TRFCR = R[t];
end
G8.4 Performance Monitors registers

This section lists the Performance Monitors registers in AArch32.
G8.4.1 PMCCFILTR, Performance Monitors Cycle Count Filter Register

The PMCCFILTR characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR, increments.

Configurations

AArch32 System register PMCCFILTR[31:0] is architecturally mapped to AArch64 System register PMCCFILTR_EL0[31:0].

AArch32 System register PMCCFILTR[31:0] is architecturally mapped to External register PMCCFILTR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCCFILTR are UNDEFINED.

Attributes

PMCCFILTR is a 32-bit register.

Field descriptions

The PMCCFILTR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR.NSK bit.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Count cycles in EL1.</td>
</tr>
<tr>
<td>0b1</td>
<td>Do not count cycles in EL1.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to 0.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR.NSU bit.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Count cycles in EL0.</td>
</tr>
<tr>
<td>0b1</td>
<td>Do not count cycles in EL0.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to 0.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMCCFILTR.P, cycles in Non-secure EL1 are counted. Otherwise, cycles in Non-secure EL1 are not counted.
On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMCCFILTR.U, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [26:0]

Reserved, RES0.

Accessing the PMCCFILTR

PMCCFILTR can also be accessed by using PMXEVTYPEP with PMSELR.SEL set to 0b11111.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{c}{q} <coproc>, {#<opc1>, <Rt>, <CRn>, <CRm>{, {#<opc2>}}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b1111</td>
<td>0b111</td>
</tr>
</tbody>
</table>

```python
if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
        end
else
    elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.TGE == '1' then
            AArch32.TakeHypTrapException(0x00);
        else
            UNDEFINED;
        end
    elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
```
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMCFILTR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCCFILTR;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCCFILTR;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCCFILTR;
elsif PSTATE.EL == EL3 then
return PMCCFILTR;

MCR(<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>(, (#)<opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b1111</td>
<td>0b111</td>
</tr>
</tbody>
</table>
SCR_EL3.FGTEn == '1' && HDFGWR_EL2.PMCCFILTR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMCCFILTR = R[t];
elsif PSTATE.EL == EL3 then
 PMCCFILTR = R[t];
G8.4.2 PMCCNTR, Performance Monitors Cycle Count Register

The PMCCNTR characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. See *Time as measured by the Performance Monitors cycle counter on page D7-2696* for more information.

PMCCFILTR determines the modes and states in which the PMCCNTR can increment.

Configurations

AArch32 System register PMCCNTR[63:0] is architecturally mapped to AArch64 System register PMCCNTR_EL0[63:0].

AArch32 System register PMCCNTR[63:0] is architecturally mapped to External register PMCCNTR_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCCNTR are UNDEFINED.

All counters are subject to any changes in clock frequency, including clock stopping caused by the WFI and WFE instructions. This means that it is CONSTRAINED UNPREDICTABLE whether or not PMCCNTR continues to increment when clocks are stopped by WFI and WFE instructions.

Attributes

PMCCNTR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, accesses read and write bits [31:0] and do not modify bits [63:32].

Field descriptions

The PMCCNTR bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

CCNT, bits [63:0]

Cycle count. Depending on the values of PMCR.{LC,D}, this field increments in one of the following ways:

- Every processor clock cycle.
- Every 64th processor clock cycle.

Writing 1 to PMCR.C sets this field to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCCNTR

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>{<q>}, <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return PMCCNTR<31:0>;
elsif PSTATE.EL == EL3 then
 return PMCCNTR<31:0>;
else
 return PMCCNTR<31:0>;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elsif EL2Enabled() & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 ELSE
 UNDEFINED;
 end if;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 ELSE
 UNDEFINED;
 end if;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 ELSE
 UNDEFINED;
 end if;
 else
 PMCCNTR = ZeroExtend(R[t]);
 end if;
else
 if PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 PMCCNTR = ZeroExtend(R[t]);
 end if;
 elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 PMCCNTR = ZeroExtend(R[t]);
 end if;
 end if;
else
 PMCCNTR = ZeroExtend(R[t]);
end if;
else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 PMCNTR = ZeroExtend(R[t]);
elsif PSTATE.EL == El3 then
 PMCNTR = ZeroExtend(R[t]);

MRRC{<c>}{<q>}{<coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1001</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR.EL3.TPM == '1' then
 UNDEFINED;
 else if !ELUsingAArch32(EL1) & PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(El1, 0x04);
 elseif !ELUsingAArch32(EL1) & PMUSERENR.<CR,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x04);
 else
 UNDEFINED;
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HCR.EL2.<E2H,TGE> != '11' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 return PMCNTR;
 endif
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR.EL3.TPM == '1' then
 UNDEFINED;
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR.EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & MDCR.EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & !ELUsingAArch32(EL1) & MDCR.EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL1) & HSTR.EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR.EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & MDCR.EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
 elseif !ELUsingAArch32(EL3) & MDCR.EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else
 AArch64.AArch32SystemAccessTrap(El3, 0x04);
return PMCCNTR;

elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 if Halted() & & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 end
 else
 return PMCCNTR;
 end

elsif PSTATE.EL == EL3 then
 return PMCCNTR;

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1001</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & & HaveEL(EL3) & & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & & !ELUsingAArch32(EL2) & & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 end
 elsif EL2Enabled() & & PMUSERENR.EN == '0' then
 if EL2Enabled() & & !ELUsingAArch32(EL2) & & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HCR_EL2.<E2H,TGE> != '11' & & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 UNDEFINED;
 end

elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HCR_EL2.<E2H,TGE> != '11' & & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() & & ELUsingAArch32(EL2) & & MDCC_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 if Halted() & & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 end

else
 if PSTATE.EL == EL1 then
 if Halted() & & HaveEL(EL3) & & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & MDCC_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 end

PMCCNTR = R[t2]:R[t];

elsif PSTATE.EL == EL1 then
 if Halted() & & HaveEL(EL3) & & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & !ELUsingAArch32(EL3) & & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x04);
 elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & MDCC_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
 else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else
 PMCCNTR = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 PMCCNTR = R[t2]:R[t];
G8.4.3 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x0000 to 0x001F. When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see *The PMU event number space and common events* on page D7-2715.

Configurations

AArch32 System register PMCEID0[31:0] is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0].

AArch32 System register PMCEID0[31:0] is architecturally mapped to External register PMCEID0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID0 are UNDEFINED.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
| ID31 | ID30 | ID29 | ID28 | ID27 | ID26 | ID25 | ID24 | ID23 | ID22 | ID21 | ID20 | ID19 | ID18 | ID17 | ID16 | ID15 | ID14 | ID13 | ID12 | ID11 | ID10 | ID9 | ID8 | ID7 | ID6 | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 |

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event n.
For each bit:

0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

Note
Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<\text{n}> registers of that earlier version of the PMU architecture.

Accessing the PMCEID0

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC}{c}\langle q\rangle \langle \text{coproc} \rangle, \{\#}\langle \text{opc1} \rangle, \langle \text{Rt} \rangle, \langle \text{CRm}\rangle, \langle \text{CRn}\rangle, \{\#}\langle \text{opc2}\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1000</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return PMCEID0;
 end
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCEID0;
 end
else
 if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCEID0;
 end
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCEID0;
 end
 elsif PSTATE.EL == EL3 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCEID0;
 end
 else
 return PMCEID0;
end
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
else
 return PMCEID0;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 end
else
 return PMCEID0;
elsif PSTATE.EL == EL3 then
 return PMCEID0;
G8.4.4 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x0020 to 0x003F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

--- Note ---

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see *The PMU event number space and common events* on page D7-2715.

Configurations

AArch32 System register PMCEID1[31:0] is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0].

AArch32 System register PMCEID1[31:0] is architecturally mapped to External register PMCEID1[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCEID1 are UNDEFINED.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event (0x0020 + n).
For each bit:

0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---
Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<\n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID1

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if
elsif EL2Enabled() & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 end if
else UNDEFINED;
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 if Halted() & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x00);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if
 end if
else return PMCEID1;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if
 else
 return PMCEID1;
 end if
else
 return PMCEID1;
end if
AArch64::Arch32SystemAccessTrap(EL2, 0x03);
else if EL2Enabled() && ELUsingAArch32(EL2) && HSCR.TPM == '1' then
 AArch32::TakeHypTrapException(0x03);
else if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64::Arch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID1;
else if PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 else
 UNDEFINED;
else if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64::Arch32SystemAccessTrap(EL3, 0x03);
else
 return PMCEID1;
else if PSTATE_EL == EL3 then
 return PMCEID1;
PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range $0x4000$ to $0x401F$.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The PMU event number space and common events on page D7-2715.

Configurations

AArch32 System register PMCEID2[31:0] is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32].

AArch32 System register PMCEID2[31:0] is architecturally mapped to External register PMCEID2[63:32].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID2 are UNDEFINED.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDhi<n>, bit[n], for n = 0 to 31</td>
<td></td>
</tr>
</tbody>
</table>

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event ($0x4000 + n$).

For each bit:

| 0b0 | The common event is not implemented, or not counted. |
| 0b1 | The common event is implemented. |

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID2

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 else
 return PMCEID2;
 endif
else
 if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 else
 return PMCEID2;
 endif
else
 if PSTATE.EL == EL3 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 else
 return PMCEID2;
 endif
 else
 return PMCEID2;
 endif
else
 return PMCEID2;
endif
return PMCEID2;
elsif PSTATE.EI == EL3 then
 return PMCEID2;
G8.4.6 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers see The PMU event number space and common events on page D7-2715.

Configurations

AArch32 System register PMCEID3[31:0] is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32].

AArch32 System register PMCEID3[31:0] is architecturally mapped to External register PMCEID3[63:32].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID3 are UNDEFINED.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

<table>
<thead>
<tr>
<th>IDhi<n>, bit[n], for n = 0 to 31</th>
</tr>
</thead>
</table>

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID3

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if ELZEnabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if ELZEnabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELZEnabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 elsif ELZEnabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE != '1' & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELZEnabled() & ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif ELZEnabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELZEnabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif ELZEnabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif ELZEnabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMCEID3;
return PMCEID3;
elsif PSTATE_EL == EL3 then
 return PMCEID3;
G8.4.7 PMCNTENCLR, Performance Monitors Count Enable Clear register

The PMCNTENCLR characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR<\(n\)>. Reading this register shows which counters are enabled.

PMCNTENCLR is used in conjunction with the PMCNTENSET register.

Configurations

AArch32 System register PMCNTENCLR[31:0] is architecturally mapped to AArch64 System register PMCNTENCLR_EL0[31:0].

AArch32 System register PMCNTENCLR[31:0] is architecturally mapped to External register PMCNTENCLR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCNTENCLR are UNDEFINED.

Attributes

PMCNTENCLR is a 32-bit register.

Field descriptions

The PMCNTENCLR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>C, bit [31] PMCCNTR disable bit. Disables the cycle counter register.</td>
</tr>
<tr>
<td>30 to 0</td>
<td>P<n>, bit [n] Event counter disable bit for PMEVCNTR<(n)></td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENCLR

Accesses to this register use the following encodings in the System instruction encoding space:
if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elsif ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SODD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif !ELUsingAArch32(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SODD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCNTENCLR;
 elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SODD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SODD == '1' then
 UNDEFINED;
 else
 AArch32.TakeHypTrapException(0x03);
 end
 else
 return PMCNTENCLR;
 end
end
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return PMCNTENCLR;
elsif PSTATE.EL == EL3 then
 return PMCNTENCLR;

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elseif EL2Enabled() & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMCNTENCLR = R[t];
 end
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif !ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 end
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
PMCTENCLR = R[t];
ellif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
 when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMCTENCLR = R[t];
ellif PSTATE.EL == EL3 then
 PMCTENCLR = R[t];
G8.4.8 PMCNTENSET, Performance Monitors Count Enable Set register

The PMCNTENSET characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR, and any implemented event counters PMEVCNTR\(<n>\). Reading this register shows which counters are enabled.

PMCNTENSET is used in conjunction with the PMCNTENCLR register.

Configurations

AArch32 System register PMCNTENSET[31:0] is architecturally mapped to AArch64 System register PMCNTENSET_EL0[31:0].

AArch32 System register PMCNTENSET[31:0] is architecturally mapped to External register PMCNTENSET_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCNTENSET are UNDEFINED.

Attributes

PMCNTENSET is a 32-bit register.

Field descriptions

The PMCNTENSET bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P(<n>), bit ([n])</td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]

PMCCNTR enable bit. Enables the cycle counter register.

- **0b0**: When read, means the cycle counter is disabled. When written, has no effect.
- **0b1**: When read, means the cycle counter is enabled. When written, enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P\(<n>\), bit \([n]\), for \(n = 0\) to \(30\)

Event counter enable bit for PMEVCNTR\(<n>\).

If \(N\) is less than 31, then bits \([30:N]\) are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, \(N\) is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, \(N\) is the value in PMCR.N.

- **0b0**: When read, means that PMEVCNTR\(<n>\) is disabled. When written, has no effect.
- **0b1**: When read, means that PMEVCNTR\(<n>\) event counter is enabled. When written, enables PMEVCNTR\(<n>\).

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENSET

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} {<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>}, {#}<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCNTENSET;
 end
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif !ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end
 else
 return PMCNTENSET;
 end
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMCNTENSET;
 end

G8-6778 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487F.c Non-Confidential ID072120
```c
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    return PMCNTENSET;
elsif PSTATE.EL == EL3 then
    return PMCNTENSET;

MCR{<c>}{<q>} <coproc>, (#{opc1}, <Rt>, <CRn>, <CRm>{, (#{opc2})

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
        UNDEFINED;
    elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
        if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
        endif
    else
        UNDEFINED;
    endelsif
    elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' && !ELUsingAArch32(EL3) && SCR_EL3.FGTEn == '1' & HDFGWTR_EL2.PMCNEN == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
        AArch32.TakeHypTrapException(0x00);
   elseif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
        AArch32.TakeHypTrapException(0x03);
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        endif
    else
        PMCNTENSET = R[t];
    endelsif
    elsif PSTATE.EL == EL1 then
        if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
            UNDEFINED;
        elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
            if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x03);
            else
                AArch64.AArch32SystemAccessTrap(EL1, 0x03);
            endif
        else
            UNDEFINED;
        endelsif
        elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' && !ELUsingAArch32(EL3) && HDFGWTR_EL2.PMCNEN == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
            AArch32.TakeHypTrapException(0x03);
        elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
            AArch32.TakeHypTrapException(0x03);
        elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
            if Halted() & EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.AArch32SystemAccessTrap(EL3, 0x03);
            endif
        else
            PMCNTENSET = R[t];
        endelsif
    else
        return PMCNTENSET;
    endif
```

PMCNTENSET = R[t];
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 end if
 else
 PMCNTENSET = R[t];
 elsif PSTATE_EL == EL3 then
 PMCNTENSET = R[t];
 end if

G8.4.9 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

AArch32 System register PMCR[31:0] is architecturally mapped to AArch64 System register PMCR_EL0[31:0].

AArch32 System register PMCR[7:0] is architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR are UNDEFINED.

Attributes

PMCR is a 32-bit register.

Field descriptions

The PMCR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>16 15</th>
<th>11 10</th>
<th>8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP</td>
<td>IDCODE</td>
<td>N</td>
<td>RES0</td>
<td>LP LC DR X D C P E</td>
</tr>
</tbody>
</table>

IMP, bits [31:24]

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The implementer codes are allocated by Arm. A non-zero value has the same interpretation as MIDR.Implementer.

Use of this field is deprecated.

This field reads as an IMPLEMENTATION DEFINED value.

Access to this field is RO.

IDCODE, bits [23:16]

When PMCR.IMP != 0x00:

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b000000-0b111111. If the value is 0b000000 then only PMCCNTR is implemented. If the value is 0b111111 PMCCNTR and 31 event counters are implemented.
In an implementation that includes EL2:

- If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of HDCR.HPMN.
- If EL2 is using AArch64 and enabled in the current Security state, reads of this field from EL1 and EL0 return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bits [10:8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

- **0b0** Event counter overflow on increment that causes unsigned overflow of PMEVCNTR<\(n\)[31:0].
- **0b1** Event counter overflow on increment that causes unsigned overflow of PMEVCNTR<\(n\)[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI.

If EL2 is implemented and HDCR.HPMN or MDCR_EL2.HPMN is less than PMCR.N, this bit does not affect the operation of event counters in the range \([HDCR.HPMN..(PMCR.N-1)]\) or \([MDCR_EL2.HPMN..(PMCR.N-1)]\).

PMEVCNTR<\(n\)[63:32] cannot be accessed directly in AArch32 state.

Note

The effect of HDCR.HPMN or MDCR_EL2.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of HDCR.HPMN or MDCR_EL2.HPMN.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

- **0b0** Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR[31:0].
- **0b1** Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

- **0b0** Cycle counting by PMCCNTR is not affected by this bit.
- **0b1** When event counting for counters in the range \([0..(HDCR.HPMN-1)]\) or \([0..(MDCR_EL2.HPMN-1)]\) is prohibited, cycle counting by PMCCNTR is disabled.

For more information see *Prohibiting event counting on page D7-2703*
On a Warm reset, this field resets to 0.

Otherwise:
Reserved, RES0.

X, bit [4]

When the implementation includes an PMU event export bus:
Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.
This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to 0.

Otherwise:
Reserved, RAZ/WI.

D, bit [3]

Clock divider. The possible values of this bit are:

0b0 When enabled, PMCCNTR counts every clock cycle.
0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.
Arm deprecates use of PMCR.D = 1.

On a Warm reset, this field resets to 0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.
0b1 Reset PMCCNTR to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR does not change the cycle counter overflow bit.
The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

0b0 No action.
0b1 Reset all event counters accessible in the current Exception level, not including PMCCNTR, to zero.

This bit is always RAZ.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and HDCR.HPMN or MDCR_EL2.HPMN is less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range [HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].
If EL2 is not implemented, EL2 is disabled in the current Security state, or HDCR.HPMN or MDCR_EL2.HPMN is equal to PMCR_EL0.N, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

Resetting the event counters does not change the event counter overflow bits.

If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP are ignored and bits [63:0] of all affected event counters are reset.

Access to this field is WO.

E, bit [0]

Enable.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>All event counters in the range [0..(PMN-1)] and PMCCNTR, are disabled.</td>
</tr>
<tr>
<td>01</td>
<td>All event counters in the range [0..(PMN-1)] and PMCCNTR, are enabled by PMCNTENSET.</td>
</tr>
</tbody>
</table>

If EL2 is implemented then:

- If EL2 is using AArch32, PMN is HDCR.HPMN.
- If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
- If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the range [PMN..(PMCR.N-1)].

If EL2 is not implemented, PMN is PMCR.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, regardless of whether EL2 is enabled in the current Security state. For more information, see the description of MDCR_EL2.HPMN or HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\} <\text{coproc}>, \{#\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#\}<\text{opc2}>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 end
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
else
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE != '1' && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCR;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCR;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return PMCR;
elsif PSTATE.EL == EL3 then
return PMCR;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 else
 UNDEFINED;
 end
elsif EL2Enabled() && ELUsingAArch32(EL2) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H<TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL2.FGTEn == '1' && HDFGWTR_EL2.MCR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDFCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDFWR_EL2.MCR_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDFCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDFCHCR_TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
else
 PMCR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDFCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDFCR.TPMCR == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
end
PMCR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMCR = R[t];
 end
elsif PSTATE.EL == EL3 then
 PMCR = R[t];
G8.4.10 PMEVCNTR<\(n\)>, Performance Monitors Event Count Registers, \(n = 0 - 30\)

The PMEVCNTR<\(n\)> characteristics are:

Purpose

Holds event counter \(n\), which counts events, where \(n\) is 0 to 30.

Configurations

AArch32 System register PMEVCNTR<\(n\)>[31:0] is architecturally mapped to AArch64 System register PMEVCNTR<\(n\)>_EL0[31:0].

AArch32 System register PMEVCNTR<\(n\)>[31:0] is architecturally mapped to External register PMEVCNTR<\(n\)>_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<\(n\)> are UNDEFINED.

Attributes

PMEVCNTR<\(n\)> is a 32-bit register.

Field descriptions

The PMEVCNTR<\(n\)> bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Event counter (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Event counter (n)</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:0]

Event counter \(n\). Value of event counter \(n\), where \(n\) is the number of this register and is a number from 0 to 30.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part of the event counter is accessible in AArch32 state:

- Reads from PMEVCNTR<\(n\)> return bits [31:0] of the counter.
- Writes to PMEVCNTR<\(n\)> update bits [31:0] and leave bits [63:32] unchanged.
- There is no means to access bits [63:32] directly from AArch32 state.
- If the implementation does not support AArch64 at any Exception level, bits [31:0] are not required to be implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<\(n\)>

PMEVCNTR<\(n\)> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to the value of <\(n\)>.

If FEAT_FGT is implemented and <\(n\)> is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMEVCNTR<\(n\)> is as follows:

- If <\(n\)> is an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <\(n\)> is greater than or equal to the number of accessible counters, then reads and writes of PMEVCNTR<\(n\)> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
If \(n \) is greater than or equal to the number of accessible event counters, then reads and writes of PMEVCNTR\(n \) are constrained unpredictable, and the following behaviors are permitted:

- Accesses to the register are undefined.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.
- If EL2 is implemented and enabled in the current Security state, and \(n < k \) is less than the number of implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

--- Note ---

In EL0, an access is permitted if it is enabled by PMUSERENR.\{ER,EN\} or PMUSERENR_EL0.\{ER,EN\}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

- If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.
- If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}(c)(q) \; \text{<coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>{, {#<opc2>}}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b10:n[4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 UNDEFINED;
 elsif EL2Enabled() && PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
endif

if PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
else
 if Halted() && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
 endif
 elseif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
 endif
 endif
else
 if Halted() && EDSCR.SDO == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" then
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
 endif
endif
when SDD == '1' && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TPM == '1' then
 AArch32.TakeHyp TrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif PSTATE.EL == EL3 then
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
 when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL3 then
 PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
G8.4.11 PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch32 System register PMEVTYPER<n>[31:0] is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0[31:0].

AArch32 System register PMEVTYPER<n>[31:0] is architecturally mapped to External register PMEVTYPER<n>_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

The PMEVTYPER<n> bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>.NSK bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0 Count events in EL1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1 Do not count events in EL1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>.NSU bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0 Count events in EL0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1 Do not count events in EL0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>NSK</td>
<td>[29]</td>
<td>Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.</td>
</tr>
</tbody>
</table>

When EL3 is implemented:
If the value of this bit is equal to the value of PMEVTYPER<\text{n}.P, events in Non-secure EL1 are counted. Otherwise, events in Non-secure EL1 are not counted. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:
Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMEVTYPER<\text{n}.U, events in Non-secure EL0 are counted. Otherwise, events in Non-secure EL0 are not counted. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:
EL2 (Hyp mode) filtering bit. Controls counting in EL2.

- 0b0: Do not count events in EL2.
- 0b1: Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [26]
Reserved, RES0.

MT, bit [25]

When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:

Multithreading.

- 0b0: Count events only on controlling PE.
- 0b1: Count events from any PE with the same affinity at level 1 and above as this PE.

Note

- When the lowest level of affinity consists of logical PEs that are implemented using a multi-threading type approach, an implementation is described as multi-threaded. That is, the performance of PEs at the lowest affinity level is highly interdependent.
- Events from a different thread of a multithreaded implementation are not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bits [24:16]
Reserved, RES0.
evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.
Software must program this field with an event that is supported by the PE being programmed.
The ranges of event numbers allocated to each type of event are shown in Table D7-7 on page D7-2715.
If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:
• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
 external read of the evtCount field is the value written to the field.
• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and
 the value returned by a direct or external read of the evtCount field is the value written to the
 field.
• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
 and the value returned by a direct or external read of the evtCount field is UNKNOWN.

——— Note ————

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>

PMEVTYPER<n> can also be accessed by using PMXEVTPYER with PMSELR.SEL set to n.
If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:
• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads
and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
If <n> is greater or equal to the number of accessible event counters, then reads and writes of PMEVTYPER<n>
are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
 implemented counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.
Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

- If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.
- If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>}\ \text{<coproc>},\ {#}\text{<opc1>},\ \text{<Rt>},\ \text{<CRn>},\ \text{<CRm>}\{,\ {#}\text{<opc2>}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b11:n[4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
 end
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 UNDEFINED;
 end
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEl(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEl(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
 end
elsif PSTATE.EL == EL3 then
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
end

MCR<coproc>{opc1}{CRn}{CRm}{opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b11:0[n:4:3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEl(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end
 elsif EL2Enabled() & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & !ELUsingAArch32(EL1) & !EL2Enabled() & SCR_EL3.FGTEn == '1' & HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 if Halted() & HCR_EL2.<E2H,TGE> != '11' & !HaveEl(EL3) || MDCR_EL3.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & ELUsingAArch32(EL1) & MDCR_EL1.TPM == '1' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR.EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
 end
 elsif PSTATE.EL == EL1 then
 if Halted() & HaveEl(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 end
 elsif EL2Enabled() & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
 end
}
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMEVPTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
 elsif PSTATE_EL == EL3 then
 PMEVPTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
 else
 PMEVPTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
 end

G8.4.12 PMINTENCLR, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR\(<n>\). Reading the register shows which overflow interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

Configurations
AArch32 System register PMINTENCLR[31:0] is architecturally mapped to AArch64 System register PMINTENCLR_EL1[31:0].

AArch32 System register PMINTENCLR[31:0] is architecturally mapped to External register PMINTENCLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMINTENCLR are UNDEFINED.

Attributes
PMINTENCLR is a 32-bit register.

Field descriptions
The PMINTENCLR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P(<n>), bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]
PMCCNTR overflow interrupt request disable bit.
- 0b0 When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.
- 0b1 When read, means the cycle counter overflow interrupt request is enabled. When written, disables the cycle count overflow interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P\(<n>\), bit [n], for n = 0 to 30
Event counter overflow interrupt request disable bit for PMEVCNTR\(<n>\).

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

- 0b0 When read, means that the PMEVCNTR\(<n>\) event counter interrupt request is disabled. When written, has no effect.
- 0b1 When read, means that the PMEVCNTR\(<n>\) event counter interrupt request is enabled. When written, disables the PMEVCNTR\(<n>\) interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENCLR
Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 else
 return PMINTENCLR;
 endif
elseif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 else
 return PMINTENCLR;
 endif
elseif PSTATE.EL == EL3 then
 return PMINTENCLR;
endif

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 else
 return PMINTENCLR;
 endif
elseif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 else
 return PMINTENCLR;
 endif
elseif PSTATE.EL == EL3 then
 return PMINTENCLR;
endif
UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMINTENCLR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMINTENCLR = R[t];
 end
elsif PSTATE.EL == EL3 then
 PMINTENCLR = R[t];
else
 PMINTENCLR = R[t];
G8.4.13 PMINTENSET, Performance Monitors Interrupt Enable Set register

The PMINTENSET characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR\(<n>\). Reading the register shows which overflow interrupt requests are enabled.

PMINTENSET is used in conjunction with the PMINTENCLR register.

Configurations

AArch32 System register PMINTENSET[31:0] is architecturally mapped to AArch64 System register PMINTENSET_EL1[31:0].

AArch32 System register PMINTENSET[31:0] is architecturally mapped to External register PMINTENSET_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMINTENSET are UNDEFINED.

Attributes

PMINTENSET is a 32-bit register.

Field descriptions

The PMINTENSET bit assignments are:

<table>
<thead>
<tr>
<th>31 30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>P<(n>), bit ([n])</td>
<td></td>
</tr>
</tbody>
</table>

C, bit \([31]\)

PMCCNTR overflow interrupt request enable bit.

- \(0b0\) When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.
- \(0b1\) When read, means the cycle counter overflow interrupt request is enabled. When written, enables the cycle count overflow interrupt request.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

P<\(n>\), bit \([n]\), for \(n = 0\) to \(30\)

Event counter overflow interrupt request enable bit for PMEVCNTR<\(n>\>.

If \(N\) is less than 31, then bits \([30:N]\) are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1, \(N\) is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, \(N\) is the value in PMCR.N.

- \(0b0\) When read, means that the PMEVCNTR<\(n>\> event counter interrupt request is disabled. When written, has no effect.
- \(0b1\) When read, means that the PMEVCNTR<\(n>\> event counter interrupt request is enabled. When written, enables the PMEVCNTR<\(n>\> interrupt request.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Accessing the PMINTENSET

Accesses to this register use the following encodings in the System instruction encoding space:
if PSTATE_EL == EL0 then
 UNDEFINED;
elsif PSTATE_EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch32.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
else
 return PMINTENSET;
endif

if PSTATE_EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 else
 return PMINTENSET;
endif

if PSTATE_EL == EL3 then
 return PMINTENSET;
endif
UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 PMINTENSE = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEl(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEl(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 end
 end
 else
 PMINTENSE = R[t];
 end
elsif PSTATE.EL == EL3 then
 PMINTENSE = R[t];
endif
PMOVSR, Performance Monitors Overflow Flag Status Register

The PMOVSR characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>. Writing to this register clears these bits.

Configurations
AArch32 System register PMOVSR[31:0] is architecturally mapped to AArch64 System register PMOVSCLR_EL0[31:0].
AArch32 System register PMOVSR[31:0] is architecturally mapped to External register PMOVSCLR_EL0[31:0].
This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMOVSR are UNDEFINED.

Attributes
PMOVSR is a 32-bit register.

Field descriptions
The PMOVSR bit assignments are:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>P<n>, bit [n]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]
Cycle counter overflow clear bit. Possible values are:
- 0b0 When read, means the cycle counter has not overflowed since this bit was last cleared. When written, has no effect.
- 0b1 When read, means the cycle counter has overflowed since this bit was last cleared. When written, clears the cycle counter overflow bit to 0.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0] or unsigned overflow of PMEVCNTR[n].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30
Event counter overflow clear bit for PMEVCNTR<n>.
If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDR.CHPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.
- 0b0 When read, means that PMEVCNTR<n> has not overflowed since this bit was last cleared. When written, has no effect.
- 0b1 When read, means that PMEVCNTR<n> has overflowed since this bit was last cleared. When written, clears the PMEVCNTR<n> overflow bit to 0.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDR.HLP, and PMCR.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned overflow of PMEVCNTR<n>[63:32]. PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMOVSR

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC\{<c>\}{<q>\} <coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>, \{#\}<opc2}\} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR.EN == '0' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif

elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 endif

elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 return PMOVSR;
endif

elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 if Halted() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 endif
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
else
 return PMOVSR;
endif

elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 return PMOVSR;
endif
UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSR;
elsif PSTATE.EL == EL3 then
 return PMOVSR;

MCR(<c>){<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE != '1' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 PMOVSR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif ForEl(EL2) && ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMOVSR = R[t];
UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMOVSR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSR = R[t];
elsif PSTATE.EL == EL3 then
 PMOVSR = R[t];
G8.4.15 PMOVSSET, Performance Monitors Overflow Flag Status Set register

The PMOVSSET characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR, and each of the implemented event counters PMEVCNTR<n>.

Configurations

AArch32 System register PMOVSSET[31:0] is architecturally mapped to AArch64 System register PMOVSSET_EL0[31:0].

AArch32 System register PMOVSSET[31:0] is architecturally mapped to External register PMOVSSET_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMOVSSET are UNDEFINED.

Attributes

PMOVSSET is a 32-bit register.

Field descriptions

The PMOVSSET bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]

Cycle counter overflow set bit.

0b0 When read, means the cycle counter has not overflowed since this bit was last cleared. When written, has no effect.

0b1 When read, means the cycle counter has overflowed since this bit was last cleared. When written, sets the cycle counter overflow bit to 1.

PMCR.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR[31:0] or unsigned overflow of PMCCNTR[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow set bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1 and EL0, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

0b0 When read, means that PMEVCNTR<n> has not overflowed since this bit was last cleared. When written, has no effect.

0b1 When read, means that PMEVCNTR<n> has overflowed since this bit was last cleared. When written, sets the PMEVCNTR<n> overflow bit to 1.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP, HDCR.HLP, and PMCR.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<n>[31:0] or unsigned overflow of PMEVCNTR<n>[63:0]. PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMOVSSET

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\langle c\rangle\langle q\rangle\langle \text{coproc}\rangle, \langle \#\text{opc1}\rangle, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \langle \#\text{opc2}\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 end if;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMOVS == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if;
else
 return PMOVSSET;
end if;
elseif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 end if;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if;
else
 return PMOVSSET;
end if;
elseif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 end if;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if;
else
 return PMOVSSET;
end if;
elseif PSTATE.EL == EL3 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 end if;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end if;
else
 return PMOVSSET;
end if;
UNDEFINED;
elsif HaveEL(EL3) && !ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMOVSET;
elsif PSTATE.EL == EL3 then
 return PMOVSET;

MCR(<c>){<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingArch32(EL0) && PMUSERENR.EL0.EN == '0' then
 if EL2Enabled() && !ELUsingArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 elsif EL2Enabled() && ELUsingArch32(EL0) && PMUSERENR.EL0.EN == '0' then
 if EL2Enabled() && !ELUsingArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingArch32(EL2) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif EL2Enabled() && !ELUsingArch32(EL1) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSET = R[t];
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif EL2Enabled() && ELUsingArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif EL2Enabled() && !ELUsingArch32(EL3) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL3) && HDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && !ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elseif !ELUsingArch32(EL3) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif EL2Enabled() && !ELUsingArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif HaveEL(EL3) && !ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMOVSET = R[t];
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elseif EL2Enabled() && ELUsingArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingArch32(EL2) && HDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif HaveEL(EL3) && !ELUsingArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 PMOVSET = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 else
 PMOVSET = R[t];
 end
elsif PSTATE.EL == EL3 then
 PMOVSET = R[t];
elsif PSTATE.EL == EL2 then
 PEVFL = R[t];
elsif PSTATE.EL == EL1 then
 PMOVSET = R[t];
G8.4.16 PMSELR, Performance Monitors Event Counter Selection Register

The PMSELR characteristics are:

Purpose

Selects the current event counter PMEVCNTR<\(n\)> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a selected event counter, and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEV CNTR, to determine the value of a selected event counter.

Configurations

AArch32 System register PMSELR[31:0] is architecturally mapped to AArch64 System register PMSELR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMSELR are UNDEFINED.

Attributes

PMSELR is a 32-bit register.

Field descriptions

The PMSELR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>5</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<\(n\)>, where \(n\) is the value held in this field. This value identifies which event counter is accessed when a subsequent access to PMXEVTYPER or PMXEV CNTR occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111, it selects the cycle counter and:

- A read of the PMXEVTYPER returns the value of PMCCFILTR.
- A write of the PMXEVTYPER writes to PMCCFILTR.
- A read or write of PMXEV CNTR has CONSTRAINED UNPREDICTABLE effects. See PMXEV CNTR for more details.

For details of the results of accesses to event counters, see PMXEVTYPER and PMXEV CNTR.

For information about the number of counters accessible at each Exception level, see HDCR.HPMN and MDCR_EL2.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSELR

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL1) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL1) & PMUSERENR_EL0.<CR,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & SCR_EL2.FGTEn == '1' & HDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 AArch32.TakeHyp_trapException(0x00);
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end;
else
 return PMSELR;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL1) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end;
else
 return PMSELR;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 return PMSELR;
else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 return PMSELR;
else if PSTATE.EL == El3 then
 return PMSELR;

MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1001</td>
<td>0b1100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == El0 then
 if Halted() && HaveEl(El3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "El3 trap priority when SDD == '1'" && !ELUsingAArch32(El3) && MDCR.EL3.TPM == '1' then
 UNDEFINED;
 else if !ELUsingAArch32(El1) && PMUSERENR.EL0.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(El1, 0x03);
 else if ELUsingAArch32(El1) && PMUSERENR.<ER,EN> == '00' then
 if EL2Enabled() && !ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else if EL2Enabled() && ELUsingAArch32(El2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elseif EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.<E2H,TGE> != '11' && HSTR.T9 == '1' then
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if haveEl(El3) && Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 else
 if Halted() && haveEl(El3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "El3 trap priority when SDD == '1'" && !ELUsingAArch32(El3) && MDCR.EL3.TPM == '1' then
 UNDEFINED;
 else if EL2Enabled() && !ELUsingAArch32(El2) && HSTR.EL2.T9 == '1' then
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 else
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 else
 PMSELR = R[t];
 else if PSTATE.EL == El1 then
 if Halted() && haveEl(El3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "El3 trap priority when SDD == '1'" && !ELUsingAArch32(El3) && MDCR.EL3.TPM == '1' then
 UNDEFINED;
 else if EL2Enabled() && !ELUsingAArch32(El2) && HSTR.EL2.T9 == '1' then
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 else
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if haveEl(El3) && Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 else
 if EL2Enabled() && !ELUsingAArch32(El2) && HSTR.EL2.T9 == '1' then
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HCR.EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 else
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if haveEl(El3) && Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 else
 if EL2Enabled() && !ELUsingAArch32(El2) && MDCR.EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if haveEl(El3) && Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
 else
 if EL2Enabled() && !ELUsingAArch32(El2) && MDCR.EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if EL2Enabled() && ELUsingAArch32(El2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 if Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 if haveEl(El3) && Scr.EL3.FGTE == '1' && HDFGWR_EL2.PMSELR.EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(El2, 0x03);
 else
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
PMSELR = R[t];
elsif PSTATE_EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end else
 else
 PMSELR = R[t];
elsif PSTATE_EL == EL3 then
 PMSELR = R[t];
G8.4.17 PMSWINC, Performance Monitors Software Increment register

The PMSWINC characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see SW_INCR.

Configurations

AArch32 System register PMSWINC[31:0] is architecturally mapped to AArch64 System register PMSWINC_EL0[31:0].

AArch32 System register PMSWINC[31:0] is architecturally mapped to External register PMSWINC_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMSWINC are UNDEFINED.

Attributes

PMSWINC is a 32-bit register.

Field descriptions

The PMSWINC bit assignments are:

<table>
<thead>
<tr>
<th>31 30</th>
<th>0</th>
<th>0b0</th>
<th>0b1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>P<n>, bit [n]</td>
<td>No action. The write to this bit is ignored.</td>
<td>If PMEVCNTR<n> is enabled and configured to count the software increment event, increments PMEVCNTR<n> by 1. If PMEVCNTR<n> is disabled, or not configured to count the software increment event, the write to this bit is ignored.</td>
</tr>
</tbody>
</table>

Accessing the PMSWINC

Accesses to this register use the following encodings in the System instruction encoding space:
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b101</td>
<td>0b100</td>
<td></td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.<SW,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif EL2Enabled() & PMUSERENR.<SW,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & HSTR_EL2.<E2H,TGE> != '11' & (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSWINC_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 elseif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32SystemAccessTrap(EL3, 0x03);
 endif
 elseif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 PMSWINC = R[t];
elsif PSTATE.EL == EL3 then
 PMSWINC = R[t];
PMUSERENR, Performance Monitors User Enable Register

The PMUSERENR characteristics are:

Purpose

Enables or disables User mode access to the Performance Monitors.

Configurations

AArch32 System register PMUSERENR[31:0] is architecturally mapped to AArch64 System register PMUSERENR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMUSERENR are UNDEFINED.

Attributes

PMUSERENR is a 32-bit register.

Field descriptions

The PMUSERENR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:4]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[3]</td>
<td>Event counter read trap control:</td>
</tr>
<tr>
<td></td>
<td>1b0: EL0 reads of the PMXEVCNTR and PMEVCNTR<n>, and EL0 RW access to the PMSELR, are trapped to Undefined mode if PMUSERENR.EN is also 0.</td>
</tr>
<tr>
<td></td>
<td>1b1: Overrides PMUSERENR.EN and enables RO access to PMXEVCNTR and PMEVCNTR<n>, and RW access to PMSELR.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to 0.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>Cycle counter read trap control:</td>
</tr>
<tr>
<td></td>
<td>1b0: EL0 reads of the PMCCNTR are trapped to Undefined mode if PMUSERENR.EN is also 0.</td>
</tr>
<tr>
<td></td>
<td>1b1: Overrides PMUSERENR.EN and enables access to PMCCNTR.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to 0.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Software increment write trap control:</td>
</tr>
<tr>
<td></td>
<td>1b0: EL0 writes to the PMSWINC are trapped to Undefined mode if PMUSERENR.EN is also 0.</td>
</tr>
<tr>
<td></td>
<td>1b1: Overrides PMUSERENR.EN and enables access to PMSWINC.</td>
</tr>
</tbody>
</table>

On a Warm reset, this field resets to 0.
EN, bit [0]

Traps EL0 accesses to the Performance Monitors registers to Undefined mode, as follows:

- PMCR, PMOVSER, PMSELR, PMCEID0, PMCEID1, PMCCNTR, PMXEVTPER,
PMXEVCTR, PMCNTENSE, PMCNTECNCL, PMOVSSET, PMEVCNTR<\text{n}>,
 PMEVTPER<\text{n}>, PMCCFILTER, PMSWINC.

- If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

- If FEAT_PMUv3p4 is implemented, PMMIR.

| b0 | While at EL0, accesses to the specified registers at EL0 are trapped to Undefined mode, unless overridden by one of PMUSERENR.{ER, CR, SW}. |
| b1 | While at EL0, software can access all of the specified registers. |

On a Warm reset, this field resets to 0.

Accessing the PMUSERENR

Accesses to this register use the following encodings in the System instruction encoding space:

**MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1110</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
 end
 return PMUSERENR;
 end
 end
end

else
 return PMUSERENR;
elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMUSERENR;
 elsif PSTATE.EL == EL3 then
 return PMUSERENR;
else
 else
 return PMUSERENR;
elsif PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & !ELUsingAArch32(EL2) & HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
 elsif PSTATE.EL == EL2 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 if Halted() & EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 PMUSERENR = R[t];
 elsif PSTATE.EL == EL3 then
 PMUSERENR = R[t];
G8.4.19 PMXEVCNTR, Performance Monitors Selected Event Count Register

The PMXEVCNTR characteristics are:

Purpose

Reads or writes the value of the selected event counter, PMEVCNTR<\text{n}>. PMSELR.SEL determines which event counter is selected.

Configurations

AArch32 System register PMXEVCNTR[31:0] is architecturally mapped to AArch64 System register PMXEVCNTR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVCNTR are UNDEFINED.

Attributes

PMXEVCNTR is a 32-bit register.

Field descriptions

The PMXEVCNTR bit assignments are:

\[
\begin{array}{c|c}
31 & 0 \\
\hline
& \text{PMEVCNTR}<\text{n}>
\end{array}
\]

PMEVCNTR<\text{n}>, bits [31:0]

Value of the selected event counter, PMEVCNTR<\text{n}>, where \text{n} is the value stored in PMSELR.SEL.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part of the event counter is accessible in AArch32 state:

- Reads from PMXEVCNTR return bits [31:0] of the counter.
- There is no means to access bits [63:32] directly from AArch32 state.
- If the implementation does not support AArch64 at any Exception level, bits [63:32] are not required to be implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVCNTR

If FEAT_FGT is implemented and PMSELR.SEL is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMXEVCNTR is as follows:

- If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR.SEL is greater than or equal to the number of accessible counters, then reads and writes of PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP
Accesses to the register behave as if PMSELR_SEL has an UNKNOWN value less than the number of event counters accessible at the current Exception level and Security state.

If EL2 is implemented and enabled in the current Security state, and PMSELR_SEL is less than the number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

- If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.
- If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} \text{ coproc}, \{#<opc1>\}, \text{ <Rt>}, \text{ <CRn>}, \text{ <CRm>}, \{#<opc2>\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) & PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 elsif EL2Enabled() & ELUsingAArch32(EL1) & PMUSERENR_EL0.<ER,EN> == '00' then
 if EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 else
 UNDEFINED;
 end if;
else
 if EL2Enabled() & !ELUsingAArch32(EL1) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
 else
 ELUsingAArch32(EL1) & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end if;
else
 if EL2Enabled() & ELUsingAArch32(EL2) & MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if;
else
 if PSTATE_EL == EL1 then
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 else
 return PMXEVCNTR;
 end if;
else
 if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & MDCR_EL3.TPM == '1' then
 UNDEFINED;
 else
 PMXEVCNTR;
 end if;
end if;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;
if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
 elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;
if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
 elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
 elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;
if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return PMXEVCNTR;
 endif
 elsif PSTATE.EL == EL3 then
 return PMXEVCNTR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b010</td>
</tr>
</tbody>
</table>
else
 AArch32.AArch32SystemAccessTrap(El3, 0x03);
else
 PMXEVCTR = R[t];
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 PMXEVCTR = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
else
 AArch64.AArch32SystemAccessTrap(El3, 0x03);
else
 PMXEVCTR = R[t];
elsif PSTATE.EL == EL3 then
 PMXEVCTR = R[t];
G8.4.20 PMXEVTYPER, Performance Monitors Selected Event Type Register

The PMXEVTYPER characteristics are:

Purpose

When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<\(n\)> register. When PMSELR.SEL selects the cycle counter, this accesses PMCCFILTR.

Configurations

AArch32 System register PMXEVTYPER[31:0] is architecturally mapped to AArch64 System register PMXEVTYPER_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVTYPER are UNDEFINED.

Attributes

PMXEVTYPER is a 32-bit register.

Field descriptions

The PMXEVTYPER bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Event type register or PMCCFILTR</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the PMXEVTYPER

If FEAT_FGT is implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMXEVTYPER is as follows:

- If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
- Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible counters, then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a \texttt{NOP}
- Accesses to the register behave as if PMSELR.SEL has an unknown value less than the number of event counters accessible at the current Exception level and Security state.
- Accesses to the register behave as if PMSELR.SEL is 31.
- If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.
--- Note ---

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

- If EL2 is using AArch32, HDCR.HPMN identifies the number of accessible event counters.
- If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of accessible event counters.

Otherwise, the number of accessible event counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{c\}\{q\}\ <\text{coproc}, \{#\}opc1>, <Rt>, \langle CRn\rangle, \langle CRm\rangle, \{#\}opc2>\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 undefined;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end;
 elsif EL2Enabled() && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 undefined;
 end;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 undefined;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end;
 else
 return PMXEVTYPER;
 end;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 undefined;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x83);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end else
 return PMXEVTYPER;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 UNDEFINED;
 if HALTED_EL2 == '1' && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 UNDEFINED;
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end else
 return PMXEVTYPER;
elsif PSTATE.EL == EL3 then
 return PMXEVTYPER;
elsif PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 end else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL1) && SCR_EL2.FGTEn == '1' then
 if Halted() && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 end else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end else
 return PMXEVTYPER;
elsif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
 UNDEFINED;
 end else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 end if

MCR{<c>}{<q>}{coproc}, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1001</td>
<td>0b1101</td>
<td>0b001</td>
</tr>
</tbody>
</table>
when SDD == '1' && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 end
else
 PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then
 PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then
 PMXEVTYPER = R[t];
G8.5 Activity Monitors registers

This section lists the Activity Monitoring registers in AArch32.
G8.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.

Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both the architected and the auxiliary counter groups.

Configurations

- AArch32 System register AMCFGR[31:0] is architecturally mapped to AArch64 System register AMCFGR_EL0[31:0].
- AArch32 System register AMCFGR[31:0] is architecturally mapped to External register AMCFGR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCFGR are UNDEFINED.

Attributes

AMCFGR is a 32-bit register.

Field descriptions

The AMCFGR bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Mask</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCG</td>
<td>0000</td>
<td>Defines the number of counter groups. The number of implemented counter groups is defined as ([\text{AMCFGR.NCG} + 1]). If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of (0b0000). Otherwise, this field has a value of (0b0001).</td>
</tr>
<tr>
<td>RES0</td>
<td></td>
<td>Reserved, (0b0). AMCR.HDBG is (0b0). AMCR.HDBG is read/write.</td>
</tr>
<tr>
<td>RAZ</td>
<td>1111</td>
<td>Reserved, RAZ.</td>
</tr>
<tr>
<td>SIZE</td>
<td>0111</td>
<td>Defines the size of activity monitor event counters. The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as ([\text{AMCFGR.SIZE} + 1]).</td>
</tr>
<tr>
<td>HDBG</td>
<td></td>
<td>Halt-on-debug supported. From Armv8, this feature must be supported, and so this bit is (0b1). (0b0) AMCR.HDBG is RES0. (0b1) AMCR.HDBG is read/write.</td>
</tr>
</tbody>
</table>

NCG, bits [31:28]

Defines the number of counter groups.

The number of implemented counter groups is defined as \([\text{AMCFGR.NCG} + 1]\).

If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of \(0b0000\). Otherwise, this field has a value of \(0b0001\).

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.

From Armv8, this feature must be supported, and so this bit is \(0b1\).

\(0b0\) AMCR.HDBG is RES0.

\(0b1\) AMCR.HDBG is read/write.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.

The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as \([\text{AMCFGR.SIZE} + 1]\).
From Armv8, the counters are 64-bit, and so this field is \(0b111111 \).

--- Note ---

Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.

N, bits [7:0]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as \([\text{AMCFGR}.N + 1]\).

Accessing the AMCFGR

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\langle c\rangle\{<q>\} \langle\#\rangle<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \langle\#\rangle<\text{opc2}> \\
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if \(\text{PSTATE.EL} = \text{EL0} \) then
 if \(\text{Halted()} \) \&\& \(\text{HaveEL(EL3)} \) \&\& \(\text{EDSCR.SDD} = '1' \) \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& \(\text{ELUsingArch32(EL3)} \) \&\& \(\text{CPR}_\text{EL3.TAM} = '1' \) then
 UNDEFINED;
 elsif \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL2)} \) \&\& \(\text{HCR.EL2.TGE} = '1' \) then
 \(\text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)} \);
 else
 \(\text{AArch64.AArch32SystemAccessTrap(EL1, 0x03)} \);
 end if
elsif \(\text{ELEnabled()} \) \&\& \(\text{AMUSERENR.EL0.EN} = '0' \) then
 if \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL2)} \) \&\& \(\text{HCR.EL2.TGE} = '1' \) then
 \(\text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)} \);
 else
 \(\text{AArch64.AArch32SystemAccessTrap(EL1, 0x03)} \);
 end if
elsif \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL1)} \) \&\& \(\text{AMUSERENR.EN} = '0' \) then
 if \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL2)} \) \&\& \(\text{HCR.EL2.TGE} = '1' \) then
 \(\text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)} \);
 else
 \(\text{AArch64.AArch32SystemAccessTrap(EL1, 0x03)} \);
 end if
else
 UNDEFINED;
endif

if \(\text{PSTATE.EL} = \text{EL1} \) then
 if \(\text{Halted()} \) \&\& \(\text{HaveEL(EL3)} \) \&\& \(\text{EDSCR.SDD} = '1' \) \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& \(\text{ELUsingArch32(EL3)} \) \&\& \(\text{CPR}_\text{EL3.TAM} = '1' \) then
 UNDEFINED;
 elsif \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL2)} \) \&\& \(\text{HSTR.EL2.T13} = '1' \) \&\& \(\text{HSTR.EL2.TGE} = '1' \) then
 \(\text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)} \);
 else
 \(\text{AArch64.AArch32SystemAccessTrap(EL1, 0x03)} \);
 end if
elsif \(\text{PSTATE.EL} = \text{EL2} \) then
 if \(\text{Halted()} \) \&\& \(\text{HaveEL(EL3)} \) \&\& \(\text{EDSCR.SDD} = '1' \) \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& \(\text{ELUsingArch32(EL3)} \) \&\& \(\text{CPR}_\text{EL3.TAM} = '1' \) then
 UNDEFINED;
 elsif \(\text{ELEnabled()} \) \&\& \(\text{ELUsingArch32(EL2)} \) \&\& \(\text{HCPR.TAM} = '1' \) then
 \(\text{AArch32.TakeHypTrapException(0x03)} \);
 else
 \(\text{AArch64.AArch32SystemAccessTrap(EL3, 0x03)} \);
 end if
else
 return AMCFGR;
end if
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 else
 return AMCFGR;
elsif PSTATE.EL == EL2 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
 return AMCFGR;
elsif PSTATE.EL == EL3 then
 return AMCFGR;
extif PSTATE.EL == EL3 then
 return AMCFGR;
G8.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

AArch32 System register AMCGCR[31:0] is architecturally mapped to AArch64 System register AMCGCR_EL0[31:0].

AArch32 System register AMCGCR[31:0] is architecturally mapped to External register AMCGCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCGCR are UNDEFINED.

Attributes

AMCGCR is a 32-bit register.

Field descriptions

The AMCGCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit assigned</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-16</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>15-8</td>
<td>CG1NC, Counter Group 1 Number of Counters.</td>
</tr>
<tr>
<td>7-0</td>
<td>CG0NC, Counter Group 0 Number of Counters.</td>
</tr>
</tbody>
</table>

Accessing the AMCGCR

Accesses to this register use the following encodings in the System instruction encoding space:

```
mrc{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

if PSTATE.EL == EL0 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
 UNDEFINED;
 elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b010</td>
</tr>
</tbody>
</table>
else
  AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif EL2Enabled() & & AMUSERENR.EN == '0' then
  if EL2Enabled() & & ELUsingAArch32(EL2) & & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HCR.TGE == '1' then
    AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HCR_EL2.<E2H,TGE> != '11' & & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & CPTR_EL2.TAM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & & ELUsingAArch32(EL2) & & CPTR_EL2.TAM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) & & !ELUsingAArch32(EL3) & & CPTR_EL3.TAM == '1' then
    if Halted() & & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end;
else
  return AMCGCR;
elsif PSTATE.EL == EL1 then
  if Halted() & & HaveEL(EL3) & & EDSCR.SDD == '1' & & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & ELUsingAArch32(EL3) & & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & & ELUsingAArch32(EL2) & & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() & & !ELUsingAArch32(EL2) & & CPTR_EL2.TAM == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & & ELUsingAArch32(EL2) & & CPTR_EL2.TAM == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) & & !ELUsingAArch32(EL3) & & CPTR_EL3.TAM == '1' then
    if Halted() & & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end;
else
  return AMCGCR;
elsif PSTATE.EL == EL2 then
  if Halted() & & HaveEL(EL3) & & EDSCR.SDD == '1' & & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & & ELUsingAArch32(EL3) & & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) & & !ELUsingAArch32(EL3) & & CPTR_EL3.TAM == '1' then
    if Halted() & & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end;
else
  return AMCGCR;
elsif PSTATE.EL == EL3 then
  return AMCGCR;
G8.5.3 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

**Purpose**

Disable control bits for the architected activity monitors event counters, AMEVCNTR0<\text<n>>.

**Configurations**

AArch32 System register AMCNTENCLR0[31:0] is architecturally mapped to AArch64 System register AMCNTENCLR0_EL0[31:0].

AArch32 System register AMCNTENCLR0[31:0] is architecturally mapped to External register AMCNTENCLR0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0 are undefined.

**Attributes**

AMCNTENCLR0 is a 32-bit register.

**Field descriptions**

The AMCNTENCLR0 bit assignments are:

| 31 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| RES0 | P<\text<n>>, bit [\text<n>]| |

**Bits [31:16]**

Reserved, RES0.

**P<\text<n>>, bit [\text<n>], for \text<n> = 0 to 15**

Activity monitor event counter disable bit for AMEVCNTR0<\text<n>>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

- **0b0** When read, means that AMEVCNTR0<\text<n>> is disabled. When written, has no effect.
- **0b1** When read, means that AMEVCNTR0<\text<n>> is enabled. When written, disables AMEVCNTR0<\text<n>>.

On a Cold reset, this field resets to 0.

**Accessing the AMCNTENCLR0**

Accesses to this register use the following encodings in the System instruction encoding space:

\[\text{MRC (<c>)(<q>) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>}, \text{(,#)<opc2>}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SOD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      UNDEFINED;
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elif EL2Enabled() && AMUSERENR.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);
else
UNDEFINED;
elif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HC_PTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMCNTEN0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return AMCNTENCLR0;
elif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
UNDEFINED;
elif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);
elif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elif EL2Enabled() && ELUsingAArch32(EL2) && HC_PTR.TAM == '1' then
AArch32.TakeHypTrapException(0x03);
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return AMCNTENCLR0;
elif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
UNDEFINED;
elif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
return AMCNTENCLR0;
elif PSTATE.EL == EL3 then
return AMCNTENCLR0;
MCR(<c>){<q>}, (<#>)<opc1>, <Rt>, <CRn>, <CRm>{, (<#>)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
    AMCNTECLR0 = R[t];
else
    UNDEFINED;
G8.5.4 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

**Purpose**

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<\textit{n}>

**Configurations**

AArch32 System register AMCNTENCLR1[31:0] is architecturally mapped to AArch64 System register AMCNTENCLR1_EL0[31:0].

AArch32 System register AMCNTENCLR1[31:0] is architecturally mapped to External register AMCNTENCLR1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1 are UNDEFINED.

**Attributes**

AMCNTENCLR1 is a 32-bit register.

**Field descriptions**

The AMCNTENCLR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-16</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>15-0</td>
<td>( P&lt;n&gt;, \text{bit [n]} )</td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**P<\textit{n}>, bit [\textit{n}], for \textit{n} = 0 to 15**

Activity monitor event counter disable bit for AMEVCNTR1<\textit{n}>

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG1NC.

Possible values of each bit are:

\( \text{\texttt{0b0}} \) When read, means that AMEVCNTR1<\textit{n}> is disabled. When written, has no effect.

\( \text{\texttt{0b1}} \) When read, means that AMEVCNTR1<\textit{n}> is enabled. When written, disables AMEVCNTR1<\textit{n}>.

On a Cold reset, this field resets to \texttt{0}.

**Accessing the AMCNTENCLR1**

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENCLR1 are UNDEFINED.

--- **Note** ---

The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR.NCG == \texttt{0b0000}.

Accesses to this register use the following encodings in the System instruction encoding space:
if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSEREN.EL0.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    end if
  else
    UNDEFINED;
  end if
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & AMUSEREN.EL0.EN == '0' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
  end if
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & CPTR_EL2.TAM == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
  AArch32.TakeHypTrapException(0x03);
end if
if Halted() & EDSCR.SDD == '1' then
  UNDEFINED;
else
  return AMCNTENCLR1;
end if
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSERENR.EL0.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    end if
  else
    UNDEFINED;
  end if
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & AMUSERENR.EL0.EN == '0' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
  end if
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & AMUSERENR.EL0.EN == '0' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    UNDEFINED;
  end if
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & !ELUsingAArch32(EL1) & AMCNTEN1 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    return AMCNTENCLR1;
  end if
elsif !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' & boolean IMPLEMENTATION_DEFINED "EL2 trap priority when SDD == '1'" & !ELUsingAArch32(EL2) & CPTR_EL2.TAM == '1' then
  UNDEFINED;
elsif !ELUsingAArch32(EL1) & AMUSERENR.EL0.EN == '0' then
  if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  end if
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & CPTR_EL2.TAM == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HAVEEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    return AMCNTENCLR1;
  end if
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
else
  return AMCNTENCLR1;
end if
else
  return AMCNTENCLR1;
end if

else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    return AMCNTENCLR1;
elsif PSTATE.EL == EL3 then
    return AMCNTENCLR1;


MCR<coproc>, <Rt>, <CRn>, <CRm>, (#<opc1>, (#<opc2>))

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
    AMCNTENCLR1 = R[t];
else
    UNDEFINED;
G8.5.5 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0<n>.

Configurations

AArch32 System register AMCNTENSET0[31:0] is architecturally mapped to AArch64 System register AMCNTENSET0_EL0[31:0].

AArch32 System register AMCNTENSET0[31:0] is architecturally mapped to External register AMCNTENSET0[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0 are UNDEFINED.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

The AMCNTENSET0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 15

Activity monitor event counter enable bit for AMEVCNTR0<n>. Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

- 0b0: When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.
- 0b1: When read, means that AMEVCNTR0<n> is enabled. When written, enables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

if PSTATE_EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      RES0
    else
      0b1111 0b000 0b1101 0b0010 0b101
    end
  else
    0b1111 0b000 0b1101 0b0010 0b101
  end
end
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
    AArch32.TakeHypTrapException(0x00);
else
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
### MCR(cq) <coproc>, (#) <opc1>, <Rt>, <CRn>, <CRm>(#, (#) <opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAAArch32(EL2) && HSTR.T13 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
AMCNTENSET0 = R[t];
else
UNDEFINED;
G8.5.6 AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

**Purpose**

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n>.

**Configurations**

AArch32 System register AMCNTENSET1[31:0] is architecturally mapped to AArch64 System register AMCNTENSET1_EL0[31:0].

AArch32 System register AMCNTENSET1[31:0] is architecturally mapped to External register AMCNTENSET1[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1 are UNDEFINED.

**Attributes**

AMCNTENSET1 is a 32-bit register.

**Field descriptions**

The AMCNTENSET1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>16-15</td>
<td>P&lt;n&gt;, bit [n]</td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**P<n>, bit [n], for n = 0 to 15**

Activity monitor event counter enable bit for AMEVCNTR1<n>.

Bits [31:16] are RES0. Bits [15:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

- **0b0** When read, means that AMEVCNTR1<n> is disabled. When written, has no effect.
- **0b1** When read, means that AMEVCNTR1<n> is enabled. When written, enables AMEVCNTR1<n>.

On a Cold reset, this field resets to 0.

**Accessing the AMCNTENSET1**

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENSET1 are UNDEFINED.

--- **Note** ---

The number of auxiliary activity monitor counters implemented is zero when AMCFGR.NCG === 000000.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC(<c>){<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>)(#, (#<opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) && AMUSERENR.EL0.EN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    end if;
  else
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    end if;
  end if;
else
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  end if;
end if;
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    return AMCNTENSET1;
elsif PSTATE.EL == EL3 then
    return AMCNTENSET1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
    AMCNTENSET1 = R[t];
else
    UNDEFINED;
G8.5.7 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

**Purpose**

Global control register for the activity monitors implementation. AMCR is applicable to both the architected and the auxiliary counter groups.

**Configurations**

AArch32 System register AMCR[31:0] is architecturally mapped to AArch64 System register AMCR_EL0[31:0].

AArch32 System register AMCR[31:0] is architecturally mapped to External register AMCR[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCR are UNDEFINED.

**Attributes**

AMCR is a 32-bit register.

**Field descriptions**

The AMCR bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>18</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>17</td>
<td>CG1RZ</td>
</tr>
<tr>
<td>16</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>10</td>
<td>HDBG</td>
</tr>
<tr>
<td>9</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

**Bits [31:18]**

Reserved, RES0.

**CG1RZ, bit [17]**

*When FEAT_AMUv1p1 is implemented:*

Counter Group 1 Read Zero.

0b0 System register reads of AMEVCNTR1<n> return the event count at all implemented and enabled Exception levels.

0b1 If the current Exception level is the highest implemented Exception level, system register reads of AMEVCNTR1<n> return the event count. Otherwise, reads of AMEVCNTR1<n> return a zero value.

---

**Note**

Reads from the memory-mapped view are unaffected by this field.

---

**Otherwise:**

Reserved, RES0.

**Bits [16:11]**

Reserved, RES0.

**HDBG, bit [10]**

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.
Bits [9:0]  
Reserved, RES0.

Accessing the AMCR  
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} \{<coproc>, \{#<opc1>, <Rt>, <CRn>, <CRm>\}, \{#<opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  else if !ELUsingAArch32(EL1) & AMUSERENR_EL0.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  else
    if EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      UNDEFINED;
  else
    if EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    if EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
      AArch32.TakeHypTrapException(0x03);
    else
      UNDEFINED;
  else
    if Halted() & EDSCR.SDD == '1' then
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  else
    return AMCR;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  else if EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else if EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  else
    return AMCR;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
  UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  end
else
  return AMCR;
elsif PSTATE.EL == EL3 then
  return AMCR;

MCR<c>{<q> <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) then
  AMCR = R[t];
else
  UNDEFINED;
G8.5.8 AMEVCNTR0\(<n>\), Activity Monitors Event Counter Registers 0, \(n = 0 - 15\)

The AMEVCNTR0\(<n>\) characteristics are:

**Purpose**

Provides access to the architected activity monitor event counters.

**Configurations**

AArch32 System register AMEVCNTR0\(<n>\)[63:0] is architecturally mapped to AArch64 System register AMEVCNTR0\(<n>_EL0\)[63:0].

AArch32 System register AMEVCNTR0\(<n>\)[63:0] is architecturally mapped to External register AMEVCNTR0\(<n>\)[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0\(<n>\) are UNDEFINED.

**Attributes**

AMEVCNTR0\(<n>\) is a 64-bit register.

**Field descriptions**

The AMEVCNTR0\(<n>\) bit assignments are:

```
 63 0
 ? ? ACNT
```

ACNT, bits [63:0]

Architected activity monitor event counter n.

Value of architected activity monitor event counter n, where n is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR_EL2.AMVOFFEN is 1, SCR_EL3.AMVOFFEN is 1, HCR_EL2.{E2H, TGE} is not {1,1}, and EL2 is using AArch64 and is implemented in the current Security state, access to these registers at EL0 or EL1 return (PCount\(<63:0>\) - AMEVCNTRVOFF0\(<n>_EL2\[63:0>\)).

PCount is the physical count returned when AMEVCNTR0\(<n>\) is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

**Accessing the AMEVCNTR0\(<n>\)**

If \(<n>\) is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVCNTR0\(<n>\) are UNDEFINED.

--- **Note** ---

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
if CRm == '0000' then
  if PSTATE.EL == EL0 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
      UNDEFINED;
    elseif EL2Enabled() && AMUSERENR_EL0.EN == '0' then
      if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
      else
        AArch64.AArch32SystemAccessTrap(EL1, 0x04);
      end
    elseif ELUsingAArch32(EL1) && AMUSERENR.EN == '0' then
      if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch32.AArch32SystemAccessTrap(EL2, 0x04);
      else
        UNDEFINED;
      end
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
      AArch32.TakeHypTrapException(0x04);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HCPR.TAM == '1' then
      AArch32.TakeHypTrapException(0x04);
    elseif EL2Enabled() && !ELUsingAArch32(EL2) && (HaveEL(EL3) || SCR_EL3.FGEn == '1') && HAFCTR_EL2.AMEVCNTR0<n>_EL0 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x04);
      end
    elseif PSTATE.EL == EL1 then
      if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
        UNDEFINED;
      elseif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
      elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x04);
      elseif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
      elseif EL2Enabled() && ELUsingAArch32(EL2) && HCPR.TAM == '1' then
        AArch32.TakeHypTrapException(0x04);
      elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        end
      elseif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1''" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
          UNDEFINED;
        elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
          UNDEFINED;
        end
      end
    end
  end
end

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000:n[3]</td>
<td>0b0:n[2:0]</td>
</tr>
</tbody>
</table>
if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x04);
else
    return AMEVCTR0[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL3 then
    return AMEVCTR0[UInt(CRm<0>:opc1<2:0>)];
else
    UNDEFINED;

return AMEVCTR0[UInt(CRm<0>:opc1<2:0>)];

if CRm == '0000' then
    if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then
        AArch32.TakeHypTrapException(0x04);
    elsif IsHighestEL(PSTATE.EL) then
        AMEVCTR0[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
    else
        UNDEFINED;
    else
        UNDEFINED;

### Table: MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000:n[3]</td>
<td>0b0:n[2:0]</td>
</tr>
</tbody>
</table>
G8.5.9 AMEVCNTR1<\(n\)>, Activity Monitors Event Counter Registers 1, \(n = 0 - 15\)

The AMEVCNTR1<\(n\)> characteristics are:

**Purpose**

Provides access to the auxiliary activity monitor event counters.

**Configurations**

AArch32 System register AMEVCNTR1<\(n\)>[63:0] is architecturally mapped to AArch64 System register AMEVCNTR1<\(n\)>\_EL0[63:0].

AArch32 System register AMEVCNTR1<\(n\)>[63:0] is architecturally mapped to External register AMEVCNTR1<\(n\)>[63:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<\(n\)> are UNDEFINED.

**Attributes**

AMEVCNTR1<\(n\)> is a 64-bit register.

**Field descriptions**

The AMEVCNTR1<\(n\)> bit assignments are:

```
+----------------+----------------+
| ACNT | |
| 63:0 | 0 |
```

**ACNT, bits [63:0]**

Auxiliary activity monitor event counter \(n\).

Value of auxiliary activity monitor event counter \(n\), where \(n\) is the number of this register and is a number from 0 to 15.

If FEAT_AMUv1p1 is implemented, HCR\_EL2.AMVOFFEN is 1, SCR\_EL3.AMVOFFEN is 1, HCR\_EL2.{E2H, TGE} is not \{1,1\}, EL2 is using AArch64 and is implemented in the current Security state, and AMCR\_EL0.CG1RZ is 0, reads to these registers at EL0 or EL1 return (PCount<63:0> - AMEVCNTVOFF1<\(n\)>\_EL2<63:0>).

PCount is the physical count returned when AMEVCNTR1<\(n\)> is read from EL2 or EL3.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

**Accessing the AMEVCNTR1<\(n\)>**

If <\(n\)> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<\(n\)> are UNDEFINED.

---

**Note**

AMCGCR.CG1INC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
if CRm == '0100' then
    if PSTATE.EL == EL0 then
        if Halted() && HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
            UNDEFINED;
        elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x04);
        end
    elseif !ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
        if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        else
            if EL2Enabled() & AMUSERENR.EN == '0' then
                if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
                    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
                else
                    AArch32.TakeHypTrapException(0x00);
                end
            end
        end
    elseif ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
        if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x04);
        else
            if EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
                AArch32.TakeHypTrapException(0x04);
            elseif EL2Enabled() & !ELUsingAArch32(EL1) & HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HAFGRTR_EL2.AMEVCNTR1<EL0> == '1' then
                AArch64.AArch32SystemAccessTrap(EL2, 0x04);
            elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
                if Halted() & EDSCR.SDD == '1' then
                    UNDEFINED;
                else
                    AArch64.AArch32SystemAccessTrap(EL3, 0x04);
                end
        end
    elseif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
        return Zeros();
    elseif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
        return Zeros();
    else
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    end
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elseif EL2Enabled() & !ELUsingAArch32(EL2) & CPTR_EL2.TAM == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    elseif EL2Enabled() & ELUsingAArch32(EL2) & HCPTR.TAM == '1' then
        AArch32.TakeHypTrapException(0x04);
    elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        end
    elseif !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
        return Zeros();
    elseif HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
        return Zeros();
    else
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    end
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elseif HaveEL(EL3) & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
        if Halted() & EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x04);
        end
    elseif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
        return Zeros();
    elseif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
        return Zeros();
    else
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
    end
end

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b010:n[3]</td>
<td>0b0:n[2:0]</td>
</tr>
</tbody>
</table>
UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x04);
elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
  return Zeros();
elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
  return Zeros();
else
  return AMEVCNTR1[UInt(CrM<0>:opc1<2:0>)];
endif
end

elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
  return Zeros();
elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
  return Zeros();
else
  return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SODD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x04);
      elsif !IsHighestEL(PSTATE.EL) && !HighestELUsingAArch32() && AMCR_EL0.CG1RZ == '1' then
        return Zeros();
      elsif !IsHighestEL(PSTATE.EL) && HighestELUsingAArch32() && AMCR.CG1RZ == '1' then
        return Zeros();
      else
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
      elsif PSTATE.EL == EL3 then
        return AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)];
      else
        UNDEFINED;

### MCRR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b010:3</td>
<td>0b0:2</td>
</tr>
</tbody>
</table>

if CRm == '0000' then
  if IsHighestEL(PSTATE.EL) then
    AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
  else
    UNDEFINED;
elsif CRm == '0001' then
  if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x04);
  elsif IsHighestEL(PSTATE.EL) then
    AMEVCNTR1[UInt(CRm<0>:opc1<2:0>)] = R[t2]:R[t];
  else
    UNDEFINED;
else
  UNDEFINED;
G8.5.10 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

The AMEVTYPER0<n> characteristics are:

**Purpose**

Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n> counts.

**Configurations**

AArch32 System register AMEVTYPER0<n>[31:0] is architecturally mapped to AArch64 System register AMEVTYPER0<n>_EL0[31:0].

AArch32 System register AMEVTYPER0<n>[31:0] is architecturally mapped to External register AMEVTYPER0<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n> are UNDEFINED.

**Attributes**

AMEVTYPER0<n> is a 32-bit register.

**Field descriptions**

The AMEVTYPER0<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>evtCount</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**evtCount, bits [15:0]**

Event to count. The event number of the event that is counted by the architected activity monitor event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

- **0x0011 When n == 0** Processor frequency cycles
- **0x4004 When n == 1** Constant frequency cycles
- **0x0008 When n == 2** Instructions retired
- **0x4005 When n == 3** Memory stall cycles

**Accessing the AMEVTYPER0<n>**

If <n> is greater than or equal to the number of architected activity monitor event counters, reads and writes of AMEVTYPER0<n> are UNDEFINED.

--- **Note** ---

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b011n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    & !ELUsingArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
else if !ELUsingArch32(EL1) & AMUSERENR_EL0.EN == '0' then
    if EL2Enabled() & !ELUsingArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      UNDEFINED;
else EL2Enabled() & !ELUsingArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      UNDEFINED;
else EL2Enabled() & ELUsingArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      UNDEFINED;
else EL2Enabled() & !ELUsingArch32(EL2) & HSTR_EL2.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
else PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    & !ELUsingArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
else if !ELUsingArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      UNDEFINED;
else EL2Enabled() & ELUsingArch32(EL2) & HSTR.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
else PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    & !ELUsingArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
else if EL2Enabled() & !ELUsingArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      UNDEFINED;
else EL2Enabled() & !ELUsingArch32(EL2) & HSTR.T13 == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
      return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
else PSTATE.EL == EL3 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    & !ELUsingArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
else if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
      return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
else PSTATE.EL == EL4 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'
    & !ELUsingArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
else if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
      return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE_EL == EL3 then
  return AMEVTYPER0[UInt(CRm<0>:opc2<2:0>)];
G8.5.11 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

**Purpose**

Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<n> counts.

**Configurations**

AArch32 System register AMEVTYPER1<n>[31:0] is architecturally mapped to AArch64 System register AMEVTYPER1<n>_EL0[31:0].

AArch32 System register AMEVTYPER1<n>[31:0] is architecturally mapped to External register AMEVTYPER1<n>[31:0].

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER1<n> are UNDEFINED.

**Attributes**

AMEVTYPER1<n> is a 32-bit register.

**Field descriptions**

The AMEVTYPER1<n> bit assignments are:

<table>
<thead>
<tr>
<th>Bit Location</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-16</td>
<td>RES0</td>
</tr>
<tr>
<td>15-0</td>
<td>evtCount</td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**evtCount, bits [15:0]**

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR1<n>.

It is IMPLEMENTATION DEFINED what values are supported by each counter.

If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<n>, then:

- It is UNPREDICTABLE which event will be counted.
- The value read back is UNKNOWN.

The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.

**Accessing the AMEVTYPER1<n>**

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads and writes of AMEVTYPER1<n> are UNDEFINED.

---

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC<
>c{q}<
coproc,
>{#}opc1,
<Rt>,
<CRn>
,
<CRm>{, {#}opc2
>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b111n[3]</td>
<td>n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
    endif
  elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x00);
  else
    AArch32.SystemAccessTrap(EL1, 0x03);
  endif

if PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
    endif
  elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x00);
  else
    AArch32.SystemAccessTrap(EL1, 0x03);
  endif

return AMEVTYPEPER1(UInt(CRm<0>:opc2<2:0>));

elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
    endif
  elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x00);
  else
    AArch32.SystemAccessTrap(EL1, 0x03);
  endif

return AMEVTYPEPER1(UInt(CRm<0>:opc2<2:0>));

elsif PSTATE.EL == EL3 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'' & !ELUsingAArch32(EL3) & CPTR_EL3.TAM == '1' then
    UNDEFINED;
  elsif !ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) & AMUSERENR.EN == '0' then
    if EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
    endif
  elseif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x00);
  else
    AArch32.SystemAccessTrap(EL1, 0x03);
  endif

return AMEVTYPEPER1(UInt(CRm<0>:opc2<2:0>));
else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];
elsif PSTATE.EL == EL3 then
    return AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)];

MCR{<c>}{<q}> <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>})

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b1111</td>
<td>n[3:] n[2:0]</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif PSTATE.EL == EL1 && EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif IsHighestEL(PSTATE.EL) && !boolean IMPLEMENTATION_DEFINED "AMEVCNTR1<n> is fixed" then
    AMEVTYPER1[UInt(CRm<0>:opc2<2:0>)] = R[t];
else
    UNDEFINED;
G8.5.12 AMUSERENR, Activity Monitors User Enable Register

The AMUSERENR characteristics are:

**Purpose**
Global user enable register for the activity monitors. Enables or disables EL0 access to the activity monitors. AMUSERENR is applicable to both the architected and the auxiliary counter groups.

**Configurations**
AArch32 System register AMUSERENR[31:0] is architecturally mapped to AArch64 System register AMUSERENR_EL0[31:0].
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMUSERENR are UNDEFINED.

**Attributes**
AMUSERENR is a 32-bit register.

**Field descriptions**
The AMUSERENR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-1</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>EN</td>
</tr>
</tbody>
</table>

EN, bit [0]
Traps EL0 accesses to the activity monitors registers to EL1.

- **0b0** EL0 accesses to the activity monitors registers are trapped to EL1.
- **0b1** This control does not cause any instructions to be trapped. Software can access all activity monitor registers at EL0.

_____ Note _____
- AMUSERENR can always be read at EL0 and is not governed by this bit.

**Accessing the AMUSERENR**
Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}<\{q\}\} <\text{coproc}, \{\#<opc1>, <Rt>, <CRn>, <CRm>\}, \{\#<opc2>\})
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if Halted() & HaveEL(EL3) & EDSR.SDD == '1' & boolean IMPLEMENTATION_DEFINED 'EL3 trap priority when SDD == '1' then
    if PSTATE.EL3.TAM == '1' then
      UNDEFINED;
    else
      if EL2Enabled() & ELSR.INIT == '1' & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T13 == '1' then
        UNDEFINED;
      endif
    endif
  endif
else
  if EL2Enabled() & ELSR.INIT == '1' & HCR_EL2.<E2H,TGE> != '11' & HSTR_EL2.T13 == '1' then
    UNDEFINED;
  endif
endif
AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T13 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return AMUSERENR; endif

elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.T13 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return AMUSERENR; endif

elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return AMUSERENR; endif

elsif PSTATE.EL == EL3 then return AMUSERENR;

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then UNDEFINED; elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T13 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.T13 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTR.TAM == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCPTER.TAM == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    else
        AMUSERENR = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
        UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else
    AMUSERENR = R[t];
elsif PSTATE.EL == EL3 then
    AMUSERENR = R[t];
G8.6 RAS registers

This section lists The Reliability, Availability, and Serviceability Extension registers in AArch32.
G8.6.1 DISR, Deferred Interrupt Status Register

The DISR characteristics are:

**Purpose**
Records that an SError interrupt has been consumed by an ESB instruction.

**Configurations**
AArch32 System register DISR[31:0] is architecturally mapped to AArch64 System register DISR_EL1[31:0] when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR are UNDEFINED.

**Attributes**
DISR is a 32-bit register.

**Field descriptions**
The DISR bit assignments are:

*When the ESB instruction is executed at EL2:*

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>30</td>
<td>AET</td>
</tr>
<tr>
<td>29</td>
<td>RES0</td>
</tr>
<tr>
<td>28</td>
<td>DFSC</td>
</tr>
<tr>
<td>27</td>
<td>EA</td>
</tr>
</tbody>
</table>

A, bit [31]
Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [30:12]
Reserved, RES0.

AET, bits [11:10]
Asynchronous Error Type. See the description of HSR.AET for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]
External abort Type. See the description of HSR.EA for an SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]
Reserved, RES0.

DFSC, bits [5:0]
Fault Status Code. See the description of HSR.DFSC for an SError interrupt.

This field resets to an architecturally UNKNOWN value.
When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 0:

<table>
<thead>
<tr>
<th>31 30</th>
<th>16 15 14 13 12 11 10 9 8 4 3 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RES0</td>
</tr>
<tr>
<td></td>
<td>AET</td>
</tr>
<tr>
<td></td>
<td>RES0</td>
</tr>
<tr>
<td></td>
<td>FS[3:0]</td>
</tr>
<tr>
<td></td>
<td>LPAE</td>
</tr>
<tr>
<td></td>
<td>FS[4]</td>
</tr>
<tr>
<td></td>
<td>RES0</td>
</tr>
<tr>
<td></td>
<td>ExT</td>
</tr>
<tr>
<td></td>
<td>RES0</td>
</tr>
</tbody>
</table>

A, bit [31]
Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.
This field resets to an architecturally UNKNOWN value.

Bits [30:16]
Reserved, RES0.

AET, bits [15:14]
Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bit [13]
Reserved, RES0.

ExT, bit [12]
External abort Type. See the description of DFSR.ExT for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bit [11]
Reserved, RES0.

FS[4], bit [10]
This field is bit[4] of FS[4:0].
Fault Status Code. See the description of DFSR.FS for an SError interrupt.
The FS field is split as follows:
• FS[4] is DISR[10].
• FS[3:0] is DISR[3:0].
This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]
Format.
0b0 Using the Short-descriptor translation table format.
This field resets to an architecturally UNKNOWN value.

Bits [8:4]
Reserved, RES0.
FS[3:0], bits [3:0]
This field is bits[3:0] of FS[4:0].

When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 1:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RES0</td>
<td>AET</td>
<td>RES0</td>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, bit [31]
Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.
This field resets to an architecturally UNKNOWN value.

Bits [30:16]
Reserved, RES0.

AET, bits [15:14]
Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bit [13]
Reserved, RES0.

ExT, bit [12]
External abort Type. See the description of DFSR.ExT for an SError interrupt.
This field resets to an architecturally UNKNOWN value.

Bits [11:10]
Reserved, RES0.

LPAE, bit [9]
Format.
0b1 Using the Long-descriptor translation table format.
This field resets to an architecturally UNKNOWN value.

Bits [8:6]
Reserved, RES0.

STATUS, bits [5:0]
Fault Status Code. See the description of DFSR.FS for an SError interrupt.
This field resets to an architecturally UNKNOWN value.
Accessing the DISR

An indirect write to DISR made by an ESB instruction does not require an explicit synchronization operation for the value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

DISR is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, and any of the following apply:

- EL3 is using AArch64, SCR_EL3.EA == 1, and any of the following apply:
  - The PE is executing at EL2.
  - The PE is executing at EL1 and ((SCR_EL3.NS == 0 & SCR_EL3.EE == 0) || HCR_EL2.AMO == 0).
- EL3 is using AArch32, SCR.EA == 1, and any of the following apply:
  - The PE is executing at EL2.
  - The PE is executing at EL1 and (SCR.NS == 0 || HCR.AMO == 0).

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}{<q>} \text{coproc}, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

\[ \text{MCR}\{<c>\}{<q>} \text{coproc}, \{#\}<opc1>, <Rt>, <CRn>, <CRm>{, \{#\}<opc2>} \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>
DISR = R[t];
elsif PSTATE.EL == EL2 then
    DISR = R[t];
elsif PSTATE.EL == EL3 then
    DISR = R[t];
G8.6.2 ERRIDR, Error Record ID Register

The ERRIDR characteristics are:

**Purpose**

Defines the highest numbered index of the error records that can be accessed through the Error Record System registers.

**Configurations**

AArch32 System register ERRIDR[31:0] is architecturally mapped to AArch64 System register ERRIDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERRIDR are UNDEFINED.

**Attributes**

ERRIDR is a 32-bit register.

**Field descriptions**

The ERRIDR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>NUM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**NUM, bits [15:0]**

Highest numbered index of the records that can be accessed through the Error Record System registers plus one. Zero indicates that no records can be accessed through the Error Record System registers.

Each implemented record is owned by a node. A node might own multiple records.

**Accessing the ERRIDR**

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\langle\text{c}\rangle\langle\text{q}\rangle\ <\text{coproc}> , \langle\#\rangle\langle\text{opc1}\rangle, <\text{Rt}>, <\text{CRn}>, <\text{CRm}\rangle{} , \langle\#\rangle\langle\text{opc2}\rangle
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T5 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        end;
    else
        return ERRIDR;
    end;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        end;
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        end;
    else
        return ERRIDR;
    end;
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERRIDR;
    end;
elsif PSTATE.M == M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
else
    return ERRIDR;
end;
G8.6.3 ERRSELR, Error Record Select Register

The ERRSELR characteristics are:

**Purpose**

Selects an error record to be accessed through the Error Record System registers.

**Configurations**

AArch32 System register ERRSELR[31:0] is architecturally mapped to AArch64 System register ERRSELR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERRSELR are UNDEFINED.

If ERRIDR indicates that zero error records are implemented, then it is IMPLEMENTATION DEFINED whether ERRSELR is UNDEFINED or RES0.

**Attributes**

ERRSELR is a 32-bit register.

**Field descriptions**

The ERRSELR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:16]**

Reserved, RES0.

**SEL, bits [15:0]**

Selects the error record accessed through the ERX registers.

For example, if ERRSELR.SEL is set to 0x0004, then direct reads and writes of ERXSTATUS access ERR4STATUS.

If ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then all of the following apply:

- The value read back from ERRSELR.SEL is UNKNOWN.
- One of the following occurs:
  - An UNKNOWN error record is selected.
  - The ERX* registers are RAZ/WI.
  - ERX* register reads and writes are NOPs.
  - ERX* register reads and writes are UNDEFINED.

This field resets to an architecturally UNKNOWN value.

**Accessing the ERRSELR**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC(<c>){<q>} <coproc>, <#opc1>, <Rt>, <CRn>, <CRm>{, <#opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && SDD.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch32.TakeMonitorTrapException();
    else
      return ERRSELR;
  elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
      UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
      if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
      elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch32.TakeMonitorTrapException();
        else
          return ERRSELR;
    elsif PSTATE.EL == EL3 then
      if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
      else
        return ERRSELR;
MCR(<c>){<q>}{coproc}, {#}opc1, <Rt>, <CRn>, <CRm>{, {#}opc2}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SCR.TERR == '1' then
    UNDEFINED;
  elsif EL2Enabled() & !ELUsingAArch32(EL2) & HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
    if Halted() & EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) & ELUsingAArch32(EL3) & PSTATE.M != M32_Monitor & SCR.TERR == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch32.TakeMonitorTrapException();
      error
    else
      AArch32.TakeMonitorTrapException();
    end if
  else
    ERRSELR = R[t];
  elsif PSTATE.EL == EL2 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & !ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
      UNDEFINED;
    elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SCR.TERR == '1' then
      UNDEFINED;
    elsif HaveEL(EL3) & !ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
      if Halted() & EDSCR.SDD == '1' then
        UNDEFINED;
      else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
      elsif HaveEL(EL3) & ELUsingAArch32(EL3) & SCR.TERR == '1' then
        if Halted() & EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch32.TakeMonitorTrapException();
        else
          errSELR = R[t];
        elseif PSTATE.EL == EL3 then
          if PSTATE.M != M32_Monitor & SCR.TERR == '1' then
            AArch32.TakeMonitorTrapException();
          else
            ERRSELR = R[t];
          end if
        end if
      end if
    end if
  end if
end if
## G8.6.4 ERXADDR, Selected Error Record Address Register

The ERXADDR characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<n>ADDR for the error record <n> selected by ERRSEL.R.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXADDR[31:0] is architecturally mapped to AArch64 System register ERXADDR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXADDR are UNDEFINED.

**Attributes**

ERXADDR is a 32-bit register.

**Field descriptions**

The ERXADDR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>ERXADDR accesses bits [31:0] of ERR&lt;n&gt;ADDR, where &lt;n&gt; is the value in ERRSEL.R.SEL.</th>
</tr>
</thead>
</table>

**Accessing the ERXADDR**

If ERRIDR.NUM == 0x0000 or ERRSEL.R.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXADDR is RAZ/WI.
- Direct reads and writes of ERXADDR are NOPs.
- Direct reads and writes of ERXADDR are UNDEFINED.

ERR<n>ADDR describes additional constraints that also apply when ERR<n>ADDR is accessed through ERXADDR.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>}\ <\text{coproc}, \{#}<opc1>, <Rt>, <CRn>, <CRm>{, \{#}<opc2>}
\]

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
class priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
else
return ERXADDR;
else
PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
class priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
class priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
else
return ERXADDR;
else
PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();
else
return ERXADDR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
class priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
class priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch32.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  end if;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
elsif !EL2Enabled() && !ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  end if;
elsif !EL2Enabled() && !ELUsingAArch32(EL2) && !ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif !EL2Enabled() && !ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif !EL2Enabled() && !ELUsingAArch32(EL2) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  end if;
elsif !EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeSystemAccessTrap();
  end if;
elsif EL2Enabled() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if;
else
  ERXADDR = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && EL2Enabled() && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL2 trap priority when SDD == '1'" && !ELUsingAArch32(EL2) && SCR_EL2.TERR == '1' then
    UNDEFINED;
  else
    AArch32.AArch32SystemAccessTrap(EL2, 0x03);
  end if;
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    ERXADDR = R[t];
  end if;
else
  ERXADDR = R[t];
endif;
G8.6.5 ERXADDR2, Selected Error Record Address Register 2

The ERXADDR2 characteristics are:

**Purpose**

Accesses bits [63:32] of ERR<\text{n}>ADDR for the error record <\text{n}> selected by ERRSEL.R SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXADDR2[31:0] is architecturally mapped to AArch64 System register ERXADDR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXADDR2 are UNDEFINED.

**Attributes**

ERXADDR2 is a 32-bit register.

**Field descriptions**

The ERXADDR2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [63:32] of ERR&lt;\text{n}&gt;ADDR</td>
<td></td>
</tr>
</tbody>
</table>

**Bits [31:0]**

ERXADDR2 accesses bits [63:32] of ERR<\text{n}>ADDR, where <\text{n}> is the value in ERRSEL.R SEL.

**Accessing the ERXADDR2**

If ERRIDR.NUM == 0x0000 or ERRSEL.R SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXADDR2 is RAZ/WI.
- Direct reads and writes of ERXADDR2 are NOPs.
- Direct reads and writes of ERXADDR2 are UNDEFINED.

ERR<\text{n}>ADDR describes additional constraints that also apply when ERR<\text{n}>ADDR is accessed through ERXADDR2.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} \text{coproc}, \{\#<opc1>, <Rt>, <CRn>, <CRm>, \{\#<opc2>\} } \\
\text{if PSTATE.EL == EL0 then UNDEFINED; } \\
\text{elsif PSTATE.EL == EL1 then } \\
\text{if Halted() && HaveEL(EL3) && EDSCR.SDD == `1` && boolean IMPLEMENTATION_DEFINED "EL3 trap priority}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b111</td>
</tr>
</tbody>
</table>
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
else
  AArch32.SystemAccessTrap(EL3, 0x03);
endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  return ERXADDR2;
endif
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
    priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
    priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
  else
    AArch32.SystemAccessTrap(EL3, 0x03);
  endif
else
  AArch32.SystemAccessTrap(EL3, 0x03);
endif
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    return ERXADDR2;
  endif
else
  return ERXADDR2;
endif

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
    priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
    priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        end if
    else
        ERXADDR2 = R[t];
    elsif PSTATE.EL == EL2 then
        if Halted() && HAVEEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
            UNDEFINED;
        elsif Halted() && HAVEEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.AArch32SystemAccessTrap(EL3, 0x03);
            end if
        elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch32.TakeMonitorTrapException();
            end if
        else
            ERXADDR2 = R[t];
        end if
    elsif PSTATE.EL == EL3 then
        if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
            AArch32.TakeMonitorTrapException();
        else
            ERXADDR2 = R[t];
        end if
    end if
end if

else
    ERXADDR2 = R[t];
end if

G8.6.6 ERXCTLR, Selected Error Record Control Register

The ERXCTLR characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<n>CTRL for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXCTLR[31:0] is architecturally mapped to AArch64 System register ERXCTRL_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXCTRL are UNDEFINED.

**Attributes**

ERXCTRL is a 32-bit register.

**Field descriptions**

The ERXCTRL bit assignments are:

<table>
<thead>
<tr>
<th>Field Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:0] of ERR&lt;n&gt;CTRL</td>
</tr>
</tbody>
</table>

**Accessing the ERXCTRL**

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXCTRL is RAZ/WI.
- Direct reads and writes of ERXCTRL are NOPs.
- Direct reads and writes of ERXCTRL are UNDEFINED.

If ERRSELR.SEL is not the index of the first error record owned by a node, then ERR<n>CTRL[31:0] is not present, meaning reads and writes of ERXCTRL are RES0.

Accesses to this register use the following encodings in the System instruction encoding space:

**MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>coproc</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0b1111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD = '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD = '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && ELUsingAArch32(EL3) && SCR.TERR = '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 = '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 = '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR = '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR = '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
    if Halted() && EDSCR.SDD = '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR = '1' then
        if Halted() && EDSCR.SDD = '1' then
            UNDEFINED;
        else
            return ERXCTLR;
        end
    elsif PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD = '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
            UNDEFINED;
        elsif Halted() && HaveEL(EL3) && EDSCR.SDD = '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && ELUsingAArch32(EL3) && SCR.TERR = '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
            if Halted() && EDSCR.SDD = '1' then
                UNDEFINED;
            else
                return ERXCTLR;
            end
        elsif PSTATE.EL == EL3 then
            if PSTATE.M != M32_Monitor && SCR.TERR = '1' then
                AArch32.TakeMonitorTrapException();
            else
                return ERXCTLR;
            end
        else
            AArch32.TakeMonitorTrapException();
        end
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
    if Halted() && EDSCR.SDD = '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR = '1' then
    if Halted() && EDSCR.SDD = '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    end
else
    return ERXCTLR;
end

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rl>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD = '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR = '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD = '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD = '1'" && ELUsingAArch32(EL3) && SCR.TERR = '1' then
        UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  ERXCTLR = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  ERXCTLR = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    ERXCTLR = R[t];
end
G8.6.7   ERXCTRLR2, Selected Error Record Control Register 2

The ERXCTRLR2 characteristics are:

Purpose

Accesses bits [63:32] of ERR<n>CTRL for the error record <n> selected by ERRSEL.R_SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXCTRLR2[31:0] is architecturally mapped to AArch64 System register ERXCTRLR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXCTRLR2 are UNDEFINED.

Attributes

ERXCTRLR2 is a 32-bit register.

Field descriptions

The ERXCTRLR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERXCTRLR2 accesses bits [63:32] of ERR&lt;n&gt;CTRL, where &lt;n&gt; is the value in ERRSEL.R_SEL.</td>
</tr>
</tbody>
</table>

Accessing the ERXCTRLR2

If ERRIDR.NUM == 0x0000 or ERRSEL.R_SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXCTRLR2 is RAZ/WI.
- Direct reads and writes of ERXCTRLR2 are NOPs.
- Direct reads and writes of ERXCTRLR2 are UNDEFINED.

If ERRSEL.R_SEL is not the index of the first error record owned by a node, then ERR<n>CTRL[63:32] is not present, meaning reads and writes of ERXCTRLR2 are RES0.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} \text{ <coproc>, \{#<opc1>, \text{ <Rt>, <CRn>, <CRm>}, \{#<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then AArch32.TakeHypTrapException(0x03);
elseif EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL2.TERR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elseif EL2Enabled() && ELUsingAArch32(EL2) && SCR2.TERR == '1' then AArch32.TakeHypTrapException(0x03);
elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  else
    AArch32.TakeMonitorTrapException();
else
  return ERXCTRL2;
elseif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch32.TakeMonitorTrapException();
else
  return ERXCTRL2;
elseif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
else
  return ERXCTRL2;

MCR{<c>}{<q>} <coproc>, (#{<opc1>}, <Rt>, <CRn>, <CRm>}, (#{<opc2>})

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b101</td>
<td>0b100</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elseif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    endif
else
    ERXCTRL2 = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    endif
else
    ERXCTRL2 = R[t];
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXCTRL2 = R[t];
    endif
}
G8.6.8 ERXFR, Selected Error Record Feature Register

The ERXFR characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<n>FR for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXFR[31:0] is architecturally mapped to AArch64 System register ERXFR_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXFR are UNDEFINED.

**Attributes**

ERXFR is a 32-bit register.

**Field descriptions**

The ERXFR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERXFR accesses bits [31:0] of ERR&lt;n&gt;FR, where &lt;n&gt; is the value in ERRSELR.SEL.</td>
</tr>
</tbody>
</table>

**Accessing the ERXFR**

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

• An UNKNOWN error record is selected.
• ERXFR is RAZ.
• Direct reads of ERXFR are NOPs.
• Direct reads of ERXFR are UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} \text{ <coproc>, } \{\#\}\text{<opc1>, } \text{<Rt>, } \text{<CRn>, } \text{<CRm>}, \{\#\}\text{<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && 1ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && 1ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    else
        UNDEFINED;
    endif
else
    UNDEFINED;
endif
priority when SDD == '1' && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    elsif Halted() && EDSCR.SDD == '1' then
        AArch32.TakeHypTrapException();
    else
        return ERXFR;
    end if;
else
    if PSTATE.EL == EL2 then
        if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
            UNDEFINED;
        endif;
        elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
            UNDEFINED;
        elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.AArch32SystemAccessTrap(EL3, 0x03);
            endif;
        elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch32.TakeHypTrapException();
            endif;
        else
            return ERXFR;
        endif;
    endif;
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXFR;
    endif;
else
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXFR;
    endif;
else
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXFR;
    endif;
G8.6.9 ERXFR2, Selected Error Record Feature Register 2

The ERXFR2 characteristics are:

**Purpose**

Accesses bits [63:32] of ERR<n>FR for the error record <n> selected by ERRSEL.R_SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXFR2[31:0] is architecturally mapped to AArch64 System register ERXFR_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXFR2 are UNDEFINED.

**Attributes**

ERXFR2 is a 32-bit register.

**Field descriptions**

The ERXFR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERXFR2 accesses bits [63:32] of ERR&lt;n&gt;FR, where &lt;n&gt; is the value in ERRSEL.R_SEL.</td>
</tr>
<tr>
<td>0</td>
<td>Bits [63:32] of ERR&lt;n&gt;FR</td>
</tr>
</tbody>
</table>

**Accessing the ERXFR2**

If ERRIDR.NUM == 0x0000 or ERRSEL.R_SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXFR2 is RAZ.
- Direct reads of ERXFR2 are NOPs.
- Direct reads of ERXFR2 are UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#}<\text{opc}1>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{#}<\text{opc}2> \\
\text{if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then}
\]

\[\text{if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED; elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED; }
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b100</td>
</tr>
</tbody>
</table>
priority when SDD == '1' && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR_EL3.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
endif;
elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();
else
return ERXFR2;
endif;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && EDSCR.SDD == '1' then
if SCR_EL3.TERR == '1' then
AArch64.AArch32SystemAccessTrap(El3, 0x03);
endif;
elsif SCR_EL3.TERR == '1' then
if SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();
else
return ERXFR2;
endif;
elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
AArch64.AArch32SystemAccessTrap(El3, 0x03);
elsif SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();
else
return ERXFR2;
endif;
G8.6.10  ERXMISC0, Selected Error Record Miscellaneous Register 0

The ERXMISC0 characteristics are:

Purpose

Accesses bits [31:0] of ERR<n>MISC0 for the error record <n> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC0[31:0] is architecturally mapped to AArch64 System register ERXMISC0_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC0 are UNDEFINED.

Attributes

ERXMISC0 is a 32-bit register.

Field descriptions

The ERXMISC0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0] of ERR&lt;n&gt;MISC0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
</tr>
</tbody>
</table>

Accessing the ERXMISC0

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC0 is RAZ/WI.
- Direct reads and writes of ERXMISC0 are NOPs.
- Direct reads and writes of ERXMISC0 are UNDEFINED.

ERR<n>MISC0 describes additional constraints that also apply when ERR<n>MISC0 is accessed through ERXMISC0.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ MRC\{c\}\{q\} \langle coproc \rangle, \langle#\rangle \langle opc1 \rangle, \langle Rt \rangle, \langle CRn \rangle, \langle CRm \rangle, \{#\} \langle opc2 \rangle \]

\[
\begin{array}{cccccc}
coproc & opc1 & CRn & CRm & opc2 \\
0b1111 & 0b0000 & 0b0101 & 0b0101 & 0b0000
\end{array}
\]

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    endif
else
    return ERXMISC0;
else
    PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        endif
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        return ERXMISC0;
    endif
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXMISC0;
    endif
else
    PSTATE.EL == EL0 then
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
else
    return ERXMISC0;
endif

MCR<c,cq> <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>, (#<opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
else
    return ERXMISC0;
endif
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
else
    AArch32.TakeMonitorTrapException();
endelse

elsif PSTATE_EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        endif
    elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        ERXMISC0 = R[t];
    endelse
elsif PSTATE_EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXMISC0 = R[t];
    endif
else
    ERXMISC0 = R[t];
elsif PSTATE_EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXMISC0 = R[t];
    endif
G8.6.11 ERXMISC1, Selected Error Record Miscellaneous Register 1

The ERXMISC1 characteristics are:

Purpose

Accesses bits [63:32] of ERR<\textless{}n\textgreater{}>MISC0 for the error record \textless{}n\textgreater{} selected by ERRSEL.R SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC1[31:0] is architecturally mapped to AArch64 System register ERXMISC0_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC1 are UNDEFINED.

Attributes

ERXMISC1 is a 32-bit register.

Field descriptions

The ERXMISC1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERXMISC1 accesses bits [63:32] of ERR&lt;\textless{}n\textgreater{}&gt;MISC0, where \textless{}n\textgreater{} is the value in ERRSEL.R SEL.</td>
</tr>
</tbody>
</table>

Accessing the ERXMISC1

If ERRIDR.NUM == 0x0000 or ERRSEL.R SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

• An \textbf{UNKNOWN} error record is selected.
• ERXMISC1 is RAZ/WI.
• Direct reads and writes of ERXMISC1 are NOPs.
• Direct reads and writes of ERXMISC1 are UNDEFINED.

ERR<\textless{}n\textgreater{}>MISC0 describes additional constraints that also apply when ERR<\textless{}n\textgreater{}>MISC0 is accessed through ERXMISC1.

Accesses to this register use the following encodings in the System instruction encoding space:

\[ \text{MRC}\{<c>\}{<q>} \langle\text{coproc}\rangle, \langle\#\text{opc1}\rangle, \langle\text{Rt}\rangle, \langle\text{CRn}\rangle, \langle\text{CRm}\rangle, \langle\#\text{opc2}\rangle \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
AArch32.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
AArch32.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
else
return ERXMISC1;
elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
if Halted() && EDSCR.SDD == '1' then
UNDEFINED;
else
AArch32.TakeMonitorTrapException();
else
return ERXMISC1;
elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
AArch32.TakeMonitorTrapException();
else
return ERXMISC1;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    endif
else
    ERXMISC1 = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        ERXMISC1 = R[t];
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXMISC1 = R[t];
G8.6.12 ERXMISC2, Selected Error Record Miscellaneous Register 2

The ERXMISC2 characteristics are:

Purpose

Accesses bits [31:0] of ERR<\text{n}>MISC1 for the error record <\text{n}> selected by ERRSEL.R_SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

AArch32 System register ERXMISC2[31:0] is architecturally mapped to AArch64 System register ERXMISC1_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC2 are UNDEFINED.

Attributes

ERXMISC2 is a 32-bit register.

Field descriptions

The ERXMISC2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
<td>ERXMISC2 accesses bits [31:0] of ERR&lt;\text{n}&gt;MISC1, where &lt;\text{n}&gt; is the value in ERRSEL.R_SEL.</td>
</tr>
</tbody>
</table>

Accessing the ERXMISC2

If ERRIDR.NUM == 0x0000 or ERRSEL.R_SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC2 is RAZ/WI.
- Direct reads and writes of ERXMISC2 are NOPs.
- Direct reads and writes of ERXMISC2 are UNDEFINED.

ERR<\text{n}>MISC1 describes additional constraints that also apply when ERR<\text{n}>MISC1 is accessed through ERXMISC2.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{c\}\{q\} <coproc>, \{#\}<opc1>, \text{<Rt>}, \text{<CRn>}, \text{<CRm>\{, \{#\}<opc2>\}}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif Halted() && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    elseif HaveEL(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakMonitorTrapException();
        else
            return ERXMISC2;
    else
        return ERXMISC2;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
else
    AArch32.TakMonitorTrapException();
else
    return ERXMISC2;
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
else
    return ERXMISC2;

MCR{<c>}{<q>} <coproc>, {(#)<opc1>, <Rt>, <CRn>, <CRm>{(#)<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  ERXMISC2 = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  ERXMISC2 = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    ERXMISC2 = R[t];

G8.6.13   ERXMISC3, Selected Error Record Miscellaneous Register 3

The ERXMISC3 characteristics are:

**Purpose**

Accesses bits [63:32] of ERR<\(n\)>MISC1 for the error record <\(n\)> selected by ERRSELR.SEL.

For details of this, see the *Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile*.

**Configurations**

AArch32 System register ERXMISC3[31:0] is architecturally mapped to AArch64 System register ERXMISC1_EL1[63:32].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXMISC3 are UNDEFINED.

**Attributes**

ERXMISC3 is a 32-bit register.

**Field descriptions**

The ERXMISC3 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>ERXMISC3 accesses bits [63:32] of ERR&lt;(n)&gt;MISC1, where &lt;(n)&gt; is the value in ERRSELR.SEL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

**Accessing the ERXMISC3**

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An **UNKNOWN** error record is selected.
- ERXMISC3 is RAZ/WI.
- Direct reads and writes of ERXMISC3 are NOPs.
- Direct reads and writes of ERXMISC3 are UNDEFINED.

ERR<\(n\)>MISC1 describes additional constraints that also apply when ERR<\(n\)>MISC1 is accessed through ERXMISC3.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{<c>\}\{<q>\} <coproc>, \{#<opc1>\}, <Rt>, <CRn>, <CRm>{, \{#<opc2>\}}}
\]

<table>
<thead>
<tr>
<th>cooproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      return ERXMISC3;
    else
      AArch32.TakeMonitorTrapException();
      return ERXMISC3;
    elsif PSTATE.EL == EL2 then
      if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
      elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
      elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
          UNDEFINED;
        else
          AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
          if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
          else
            AArch32.TakeMonitorTrapException();
          else
            return ERXMISC3;
        elsif PSTATE.EL == EL3 then
          if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
            AArch32.TakeMonitorTrapException();
          else
            return ERXMISC3;
        else
          return MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b101</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    end
else
    ERXMISC3 = R[t];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        end
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        end
    else
        ERXMISC3 = R[t];
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXMISC3 = R[t];
G8.6.14 ERXMISC4, Selected Error Record Miscellaneous Register 4

The ERXMISC4 characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<\textless n\textgreater>MISC2 for the error record \textless n\textgreater selected by ERRSELR.SEL.

For details of this, see the \textit{Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile}.

**Configurations**

AArch32 System register ERXMISC4[31:0] is architecturally mapped to AArch64 System register ERXMISC2_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC4 are UNDEFINED.

**Attributes**

ERXMISC4 is a 32-bit register.

**Field descriptions**

The ERXMISC4 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERR&lt;\textless n\textgreater&gt;MISC2</td>
</tr>
</tbody>
</table>

Bits [31:0]

ERXMISC4 accesses bits [31:0] of ERR<\textless n\textgreater>MISC2, where \textless n\textgreater is the value in ERRSELR.SEL.

**Accessing the ERXMISC4**

If ERRIDR.NUM \text{==} 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An \textit{UNKNOWN} error record is selected.
- ERXMISC4 is RAZ/WI.
- Direct reads and writes of ERXMISC4 are NOPs.
- Direct reads and writes of ERXMISC4 are UNDEFINED.

ERR<\textless n\textgreater>MISC2 describes additional constraints that also apply when ERR<\textless n\textgreater>MISC2 is accessed through ERXMISC4.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c}\}{<q}\ <\text{coproc},\ <\text{opc1},\ <\text{Rt},\ <\text{CRn},\ <\text{CRm}\}{,\ <\text{opc2}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL \text{==} EL0 then

UNDEFINED;

elsif PSTATE.EL \text{==} EL1 then

if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD = '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then AArch32.TakeHypTrapException(0x03);
  elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    end if
  elseif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  end if
  return ERXMISC4;
else
  if PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
  elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
  elseif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  end if
  return ERXMISC4;
else
  if PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
      AArch32.TakeMonitorTrapException();
    else
      return ERXMISC4;
    end if
  else
    return ERXMISC4;
  end if
end if

MCR{<c>}<q> <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>})

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then UNDEFINED;
  elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then UNDEFINED;
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR_EL2.T5 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HSTR.T5 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.TERR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR2.TERR == '1' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) & ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) & ELUsingAArch32(EL3) & PSTATE.M != M32_Monitor & SCR.TERR == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
else
  ERXMISC4 = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" & ELUsingAArch32(EL3) & SCR.TERR == '1' then
    UNDEFINED;
elsif HaveEL(EL3) & ELUsingAArch32(EL3) & SCR_EL3.TERR == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) & ELUsingAArch32(EL3) & SCR.TERR == '1' then
  if Halted() & EDSCR.SDD == '1' then
    UNDEFINED;
else
  AArch32.TakeMonitorTrapException();
else
  ERXMISC4 = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor & SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
else
  ERXMISC4 = R[t];
G8.6.15  ERXMISC5, Selected Error Record Miscellaneous Register 5

The ERXMISC5 characteristics are:

**Purpose**

Accesses bits [63:32] of ERR\(<n>\)MISC2 for the error record \(<n>\) selected by ERRSELR.SEL.

For details of this, see the *Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile*.

**Configurations**

AArch32 System register ERXMISC5[31:0] is architecturally mapped to AArch64 System register ERXMISC2_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC5 are UNDEFINED.

**Attributes**

ERXMISC5 is a 32-bit register.

**Field descriptions**

The ERXMISC5 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERXMISC5 accesses bits [63:32] of ERR(&lt;n&gt;)MISC2, where (&lt;n&gt;) is the value in ERRSELR.SEL.</td>
<td></td>
</tr>
</tbody>
</table>

**Accessing the ERXMISC5**

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC5 is RAZ/W1.
- Direct reads and writes of ERXMISC5 are NOPs.
- Direct reads and writes of ERXMISC5 are UNDEFINED.

ERR\(<n>\)MISC2 describes additional constraints that also apply when ERR\(<n>\)MISC2 is accessed through ERXMISC5.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.TS == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.TS == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' then
    UNDEFINED;
else
    if Halted() && EDSCR.SDD == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXMISC5;
    endif
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.AArch32SystemAccessTrap(EL3, 0x03);
        endif
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch32.TakeMonitorTrapException();
        endif
    else
        return ERXMISC5;
    endif
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXMISC5;
    endif
else
    UNDEFINED;
elseif EL2Enabled() && PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        UNDEFINED;
    else
        return ERXMISC5;
    endif
elseif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        return ERXMISC5;
    endif
else
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    else
        return ERXMISC5;
    endif
else
    UNDEFINED;
endif

MCR{<c>}{<q>}{<coproc>}{#<opc1>}{<Rt>}{<CRn>}{<CRm>}{(#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    elseif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
  priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    else
        return ERXMISC5;
    endif
else
    UNDEFINED;
endif
elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR_EL2.TERR == '1' then
  AArch32.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() \&\& ELUsingAArch32(EL2) \&\& HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SCR_EL3.TERR == '1' then
  if Halted() \&\& EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
else HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& PSTATE.M != M32_Monitor \&\& SCR.TERR == '1' then
  if Halted() \&\& EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
elsif PSTATE.EL == EL2 then
  if Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SCR_EL3.TERR == '1' then
    UNDEFINED;
  elsif Halted() \&\& HaveEL(EL3) \&\& EDSCR.SDD == '1' \&\& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" \&\& ELUsingAArch32(EL3) \&\& SCR.TERR == '1' then
    UNDEFINED;
  elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SCR_EL3.TERR == '1' then
    if Halted() \&\& EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
  elsif HaveEL(EL3) \&\& ELUsingAArch32(EL3) \&\& SCR.TERR == '1' then
    if Halted() \&\& EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch32.TakeMonitorTrapException();
    endif
  else
    ERXMSCS = R[t];
  endif
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor \&\& SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    ERXMSCS = R[t];
  endif
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor \&\& SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    ERXMSCS = R[t];
  endif
G8.6.16  ERXMISC6, Selected Error Record Miscellaneous Register 6

The ERXMISC6 characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<n>MISC3 for the error record <n> selected by ERRSELR_SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXMISC6[31:0] is architecturally mapped to AArch64 System register ERXMISC3_EL1[31:0].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC6 are UNDEFINED.

**Attributes**

ERXMISC6 is a 32-bit register.

**Field descriptions**

The ERXMISC6 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 0</td>
</tr>
</tbody>
</table>

ERXMISC6 accesses bits [31:0] of ERR<n>MISC3, where <n> is the value in ERRSELR_SEL.

**Accessing the ERXMISC6**

If ERRIDR_NUM == 0x0000 or ERRSELR_SEL is set to a value greater than or equal to ERRIDR_NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC6 is RAZ/WI.
- Direct reads and writes of ERXMISC6 are NOPs.
- Direct reads and writes of ERXMISC6 are UNDEFINED.

ERR<n>MISC3 describes additional constraints that also apply when ERR<n>MISC3 is accessed through ERXMISC6.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC\{<c>\{<q>\{<coproc>, \{#\}<opc1>, <Rt>, <CRn>, <CRm>\}, \{#\}<opc2>\}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b010</td>
<td>0b010</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
  UNDEFINED;
elsif PSTATE_EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1' **&& ELE\text{UsingAArch32}(EL3) **&& SCR\_EL3.TERR == '1' then
    \text{UNDEFINED};
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' **&& boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1'" **&& ELE\text{UsingAArch32}(EL3) **&& SCR\_EL3.TERR == '1' then
        \text{UNDEFINED};
    elsif EL2Enabled() **&& ELE\text{UsingAArch32}(EL2) **&& HSTR\_EL2.TS == '1' then
        \text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
    elsif EL2Enabled() **&& ELE\text{UsingAArch32}(EL2) **&& HSTR.TS == '1' then
        \text{AArch32.TakeHypTrapException(0x03)};
    elsif EL2Enabled() **&& ELE\text{UsingAArch32}(EL2) **&& HCR\_EL2.TERR == '1' then
        \text{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
    elsif EL2Enabled() **&& ELE\text{UsingAArch32}(EL2) **&& HCR2.TERR == '1' then
        \text{AArch32.TakeHypTrapException(0x03)};
    elsif HaveEL(EL3) **&& ELE\text{UsingAArch32}(EL3) **&& SCR\_EL3.TERR == '1' then
        \text{if Halted() && EDSCR.SDD == '1' then}
            \text{UNDEFINED};
        \text{else}
            \text{AArch64.AArch32SystemAccessTrap(EL3, 0x03)};
    elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32\_Monitor && SCR.TERR == '1' then
        \text{if Halted() && EDSCR.SDD == '1' then}
            \text{UNDEFINED};
        \text{else}
            \text{AArch32.TakeMonitorTrapException()};
    else
        \text{return ERXMISC6};
    end

else
    if PSTATE.EL == EL2 then
        \text{if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1'" && ELE\text{UsingAArch32}(EL3) && SCR\_EL3.TERR == '1' then}
            \text{UNDEFINED};
    endif
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
        \text{UNDEFINED};
    elsif HaveEL(EL3) && ELE\text{UsingAArch32}(EL3) && SCR\_EL3.TERR == '1' then
        \text{if Halted() && EDSCR.SDD == '1' then}
            \text{UNDEFINED};
    else
        \text{AArch64.AArch32SystemAccessTrap(EL3, 0x03)};
    endif
    else
        \text{AArch32.TakeMonitorTrapException()};
    end
when PSTATE.EL == EL3 then
    if PSTATE.M != M32\_Monitor && SCR.TERR == '1' then
        \text{AArch32.TakeMonitorTrapException()};
    else
        \text{return ERXMISC6};
    end

\textbf{MCR\{<c>\}<q> <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
    \text{UNDEFINED};
else
    if PSTATE.EL == EL1 then
        \text{if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION\_DEFINED "EL3 trap priority when SDD == '1'" && ELE\text{UsingAArch32}(EL3) && SCR\_EL3.TERR == '1' then}
            \text{UNDEFINED};
        \text{else}
            \text{AArch64.AArch32SystemAccessTrap(EL3, 0x03)};
        \text{endif}
    endif

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch32.TakeMonitorTrapException();
    endif
else
    ERXMISC6 = R[t];
endif
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
else
    AArch32.TakeMonitorTrapException();
else
    ERXMISC6 = R[t];
endif
elsif PSTATE.EL == EL3 then
    if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
        AArch32.TakeMonitorTrapException();
    else
        ERXMISC6 = R[t];
    endif
G8.6.17 ERXMISC7, Selected Error Record Miscellaneous Register 7

The ERXMISC7 characteristics are:

**Purpose**

Accesses bits [63:32] of ERR<\(n\)>MISC3 for the error record <\(n\)> selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXMISC7[31:0] is architecturally mapped to AArch64 System register ERXMISC3_EL1[63:32].

This register is present only when FEAT_RASv1p1 is implemented. Otherwise, direct accesses to ERXMISC7 are UNDEFINED.

**Attributes**

ERXMISC7 is a 32-bit register.

**Field descriptions**

The ERXMISC7 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ERXMISC7 accesses bits [63:32] of ERR&lt;(n)&gt;MISC3, where &lt;(n)&gt; is the value in ERRSELR.SEL.</td>
</tr>
</tbody>
</table>

**Accessing the ERXMISC7**

If ERRIDR.NUM == 0x0000 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN error record is selected.
- ERXMISC7 is RAZ/WI.
- Direct reads and writes of ERXMISC7 are NOPs.
- Direct reads and writes of ERXMISC7 are UNDEFINED.

ERR<\(n\)>MISC3 describes additional constraints that also apply when ERR<\(n\)>MISC3 is accessed through ERXMISC7.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}\{<q>\} \text{coproc}, \{\#\}\text{opc1}, <Rt>, <CRn>, <CRm>\{, \{\#\}\text{opc2}\}
\]

If PSTATE.EL == EL0 then UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() & HaveEL(EL3) & EDSCR.SDD == '1' & boolean IMPLEMENTATION_DEFINED "EL3 trap priority"
when SDD == '1' && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeHypTrapException();
  else
    return ERXMISC7;
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1'
when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
else
  return ERXMISC7;
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    return ERXMISC7;
else
  return ERXMISC7;

MCR<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0101</td>
<td>0b111</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1'
when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
delayed priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    UNDEFINED;
```c
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
 AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 endif
else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL2 then
 if Halted() && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
 elseif Halted() && ELUsingAArch32(EL3) && SCR.TERR == '1' then
 UNDEFINED;
 elseif !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.AArch32SystemAccessTrap(EL3, 0x03);
 endif
 elseif !ELUsingAArch32(EL3) && SCR.TERR == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch32.TakeMonitorTrapException();
 endif
 else
 ERXMISC7 = R[t];
elsif PSTATE.EL == EL3 then
 if NotUsingAArch32(EL3) && SCR.TERR == '1' then
 AArch32.TakeMonitorTrapException();
 else
 ERXMISC7 = R[t];
```
ERXSTATUS, Selected Error Record Primary Status Register

The ERXSTATUS characteristics are:

**Purpose**

Accesses bits [31:0] of ERR<n>STATUS for the error record selected by ERRSELR.SEL.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

**Configurations**

AArch32 System register ERXSTATUS[31:0] is architecturally mapped to AArch64 System register ERXSTATUS_EL1[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to ERXSTATUS are UNDEFINED.

**Attributes**

ERXSTATUS is a 32-bit register.

**Field descriptions**

The ERXSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0] of ERR&lt;n&gt;STATUS</th>
</tr>
</thead>
</table>

Bits [31:0]

ERXSTATUS accesses bits [31:0] of ERR<n>STATUS, where n is the value in ERRSELR.SEL.

**Accessing the ERXSTATUS**

If ERRIDR.NUM == 0 or ERRSELR.SEL is set to a value greater than or equal to ERRIDR.NUM, then one of the following occurs:

- An UNKNOWN record is selected.
- ERXSTATUS is RAZ/WI.
- Direct reads and writes of ERXSTATUS are NOPs.
- Direct reads and writes of ERXSTATUS are UNDEFINED.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

```cpp
if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && 1ELUsingArch32(EL3) && SCR_EL3.TERR == '1' then
 UNDEFINED;
elifs Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'"
```
priority when SDD == '1' && ELUsingAArch32(EL3) && SCR.TERR == '1' then undefined;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    undefined;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    undefined;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  return ERXSTATUS;
endif
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    undefined;
  else
    Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    undefined;
  endif
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    undefined;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
else
  AArch32.TakeMonitorTrapException();
else
  return ERXSTATUS;
endif
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
  else
    return ERXSTATUS;
endif

MCR{<c>}{<q>}{coproc}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b0101</td>
<td>0b0100</td>
<td>0b010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  undefined;
elsif PSTATE.EL == EL1 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    undefined;
  else
    Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.TERR == '1' then
    undefined;
  endif
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TERR == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TERR == '1' then
  AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch64.AArch32SystemAccessTrap(EL3, 0x03);
  endif
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.TERR == '1' then
  if Halted() && EDSCR.SDD == '1' then
    UNDEFINED;
  else
    AArch32.TakeMonitorTrapException();
  endif
else
  ERXSTATUS = R[t];
elsif PSTATE.EL == EL2 then
  if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" then
    UNDEFINED;
  elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1" then
    UNDEFINED;
  elseif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.TERR == '1' then
    if Halted() && EDSCR.SDD == '1' then
      UNDEFINED;
    else
      AArch64.AArch32SystemAccessTrap(EL3, 0x03);
    endif
else
  AArch32.TakeMonitorTrapException();
else
  ERXSTATUS = R[t];
elsif PSTATE.EL == EL3 then
  if PSTATE.M != M32_Monitor && SCR.TERR == '1' then
    AArch32.TakeMonitorTrapException();
else
  ERXSTATUS = R[t];
G8.6.19 VDFSR, Virtual SError Exception Syndrome Register

The VDFSR characteristics are:

**Purpose**
Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on executing an E58 instruction at EL1.

When a virtual SError interrupt is taken, the syndrome value is reported in DFSR.{AET, ExT} and the remainder of the DFSR is set as defined by VMSAv8-32. For more information, see Chapter G5 The AArch32 Virtual Memory System Architecture.

If the virtual SError interrupt is deferred by an E58 instruction, then the syndrome value is written to VDISR.

**Configurations**
AArch32 System register VDFSR[31:0] is architecturally mapped to AArch64 System register VSESR_EL2[31:0] when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDFSR are UNDEFINED.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

**Attributes**
VDFSR is a 32-bit register.

**Field descriptions**
The VDFSR bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AET</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ExT</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

**Bits [31:16]**
Reserved, RES0.

**AET, bits [15:14]**
When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VDFSR.AET.
When a virtual SError interrupt is deferred by an E58 instruction, VDISR[15:4] is set to VDFSR.AET.
This field resets to an architecturally UNKNOWN value.

**Bit [13]**
Reserved, RES0.

**ExT, bit [12]**
When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VDFSR.ExT.
When a virtual SError interrupt is deferred by an E58 instruction, VDISR[12] is set to VDFSR.ExT.
This field resets to an architecturally UNKNOWN value.

**Bits [11:0]**
Reserved, RES0.
Accessing the VDFSR

Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged modes other than Monitor mode.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{\text{c}\}\{\text{q}\}\ <\text{coproc}>, \{\text{#}\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{\text{#}\}<\text{opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

\[
\text{MCR}\{\text{c}\}\{\text{q}\}\ <\text{coproc}>, \{\text{#}\}<\text{opc1}>, <\text{Rt}>, <\text{CRn}>, <\text{CRm}>, \{\text{#}\}<\text{opc2}\}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b0101</td>
<td>0b0010</td>
<td>0b011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  return VDFSR;
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    return VDFSR;

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif PSTATE.EL == EL2 then
  VDFSR = R[t];
elsif PSTATE.EL == EL3 then
  if SCR.NS == '0' then
    UNDEFINED;
  else
    VDFSR = R[t];
G8.6.20 VDISR, Virtual Deferred Interrupt Status Register

The VDISR characteristics are:

Purpose

Records that an SError interrupt has been consumed by an ESB instruction.

Configurations

AArch32 System register VDISR[31:0] is architecturally mapped to AArch64 System register VDISR_EL2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDISR are UNDEFINED.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Attributes

VDISR is a 32-bit register.

Field descriptions

The VDISR bit assignments are:

When TTBCR.EAE == 0:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RES0</td>
<td>AET</td>
<td>RES0</td>
<td>FS[3:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

This field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.
FS[4], bit [10]

This field is bit[4] of FS[4:0].

Fault status code. Set to 0b10110 when an E58 instruction defers a virtual SError interrupt.

0b10110   Asynchronous SError interrupt.
All other values are reserved.

The FS field is split as follows:
- FS[4] is VDISR[10].
- FS[3:0] is VDISR[3:0].

This field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an E58 instruction defers a virtual SError interrupt.

0b0   Using the Short-descriptor translation table format.

This field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

FS[3:0], bits [3:0]

This field is bits[3:0] of FS[4:0].


When TTBCR.EAE == 1:

| 31 | 30 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 6 | 5 | 0 |
|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|
| A  | RES0 | AET | RES0 | STATUS |

A, bit [31]

Set to 1 when an E58 instruction defers a virtual SError interrupt.

This field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

This field resets to an architecturally UNKNOWN value.
Bits [11:10]
Reserved, RES0.

LPAE, bit [9]
Format.
Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

0b1 Using the Long-descriptor translation table format.
This field resets to an architecturally UNKNOWN value.

Bits [8:6]
Reserved, RES0.

STATUS, bits [5:0]
Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

0b010001 Asynchronous SError interrupt.
All other values are reserved.
This field resets to an architecturally UNKNOWN value.

Accessing the VDISR

Direct reads and writes of VDISR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged modes other than Monitor mode.

An indirect write to VDISR made by an ESB instruction does not require an explicit synchronization operation for the value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>
MCR<q> <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
    AArch32.TakeHypTrapException(0x03);
  else
    UNDEFINED;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
  return VDISR_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.AMO == '1' then
  return VDISR;
else
  return DISR;
elsif PSTATE.EL == EL2 then
  return DISR;
elsif PSTATE.EL == EL3 then
  return DISR;

MRC<q> <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1100</td>
<td>0b0001</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  UNDEFINED;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
    AArch32.TakeHypTrapException(0x03);
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
    AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then
    VDISR_EL2 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then
    VDISR = R[t];
else
    DISR = R[t];
elsif PSTATE.EL == EL2 then
    DISR = R[t];
elsif PSTATE.EL == EL3 then
    DISR = R[t];
G8.7  Generic Timer registers

This section lists the Generic Timer registers in AArch32.
G8.7.1 CNTFRQ, Counter-timer Frequency register

The CNTFRQ characteristics are:

**Purpose**

This register is provided so that software can discover the frequency of the system counter. It must be programmed with this value as part of system initialization. The value of the register is not interpreted by hardware.

**Configurations**

AArch32 System register CNTFRQ[31:0] is architecturally mapped to AArch64 System register CNTFRQ_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTFRQ are UNDEFINED.

**Attributes**

CNTFRQ is a 32-bit register.

**Field descriptions**

The CNTFRQ bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Clock frequency</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Accessing the CNTFRQ**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC<c>{<q>} <coproc>, {#<opc1>}, <Rt>, <CRn>, <CRm>{, {#<opc2>}}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.<EL0PCTEN,EL0VCTEN> == '00' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PCTEN == '0' && CNTKCTL.PL0VCTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch32.TakeHypTrapException(0x00);
  else
    UNDEFINED;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '11' && CNTHCTL_EL2.<EL0PCTEN,EL0VCTEN> == '00' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
```
else
 return CNTFRQ;
elif PSTATE.EL == EL1 then
 return CNTFRQ;
elif PSTATE.EL == EL2 then
 return CNTFRQ;
elif PSTATE.EL == EL3 then
 return CNTFRQ;

MCR{<c>{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>}, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b000</td>
<td>0b110</td>
<td>0b000</td>
<td>0b000</td>
</tr>
</tbody>
</table>

ifIsActive(PSTATE.EL) then
 CNTFRQ = R[t];
else
 UNDEFINED;
G8.7.2 CNTHCTL, Counter-timer Hyp Control register

The CNTHCTL characteristics are:

Purpose

Controls the generation of an event stream from the physical counter, and access from Non-secure EL1 modes to the physical counter and the Non-secure EL1 physical timer.

Configurations

AArch32 System register CNTHCTL[31:0] is architecturally mapped to AArch64 System register CNTHCTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTHCTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHCTL is a 32-bit register.

Field descriptions

The CNTHCTL bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>RES0</td>
<td>EVNTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVNTIS, bit [17]

When FEAT_ECV is implemented:

Controls the scale of the generation of the event stream.

- 0b0 The CNTHCTL.EVNTI field applies to CNTPCT[15:0].
- 0b1 The CNTHCTL.EVNTI field applies to CNTPCT[23:8].

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [16:8]

Reserved, RES0.

EVNTI, bits [7:4]

Selects which bit of the counter register CNTPCT is the trigger for the event stream generated from that counter, when that stream is enabled.

If FEAT_ECV is implemented, and CNTHCTL.EVNTIS is 1, this field selects a trigger bit in the range 8 to 23 of the counter register CNTPCT is the trigger.

Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.
This field resets to an architecturally UNKNOWN value.

EVNTDIR, bit [3]

Controls which transition of the counter register CNTPCT trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

0b0 A 0 to 1 transition of the trigger bit triggers an event.
0b1 A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally UNKNOWN value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register CNTPCT:

0b0 Disables the event stream.
0b1 Enables the event stream.

This field resets to an architecturally UNKNOWN value.

PL1PCEN, bit [1]

Traps Non-secure EL0 and EL1 accesses to the physical timer registers to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TV AL are trapped to Hyp mode, unless the it is trapped by CNTKCTL.PL0PTEN.
0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

This field resets to an architecturally UNKNOWN value.

PL1PCTEN, bit [0]

Traps Non-secure EL0 and EL1 accesses to the physical counter register to Hyp mode.

0b0 Non-secure EL0 and EL1 accesses to the CNTPCT are trapped to Hyp mode, unless it is trapped by CNTKCTL.PL0PCTEN.
0b1 This control does not cause any instructions to be trapped.

If EL3 is implemented and EL2 is not implemented, behavior is as if this bit is 1 other than for the purpose of a direct read.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHCTL

Accesses to this register use the following encodings in the System instruction encoding space:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CNTHCTL;
elsif PSTATE.EL == EL3 then
 return CNTHCTL;
MCR(c)(q) <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>(, (#)<opc2>)

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHCTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTHCTL = R[t];
G8.7.3 CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

The CNTHP_CTL characteristics are:

Purpose

Control register for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_CTL[31:0] is architecturally mapped to AArch64 System register CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CTL is a 32-bit register.

Field descriptions

The CNTHP_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>3:2</td>
<td>ISTATUS</td>
</tr>
<tr>
<td>1</td>
<td>IMASK</td>
</tr>
<tr>
<td>0</td>
<td>ENABLE</td>
</tr>
</tbody>
</table>

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

- 0b0 Timer condition is not met.
- 0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN. This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

- 0b0 Timer interrupt is not masked by the IMASK bit.
- 0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.
ENABLE, bit [0]

 Enables the timer. Permitted values are:

 0b0 Timer disabled.
 0b1 Timer enabled.

 Setting this bit to 0 disables the timer output signal, but the timer value accessible from
 CNTHP_TVAL continues to count down.

 --- Note ---

 Disabling the output signal might be a power-saving option.

 In a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the CNTHP_CTL

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <Rt>, <CRn>, <CRm>\{, \{#<\text{opc2}>\}\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b111 & 0b100 & 0b1110 & 0b0010 & 0b001 \\
\end{array}
\]

\[
\text{if PSTATE.EL == EL0 then}
\text{UNDEFINED;}
\text{elsif PSTATE.EL == EL1 then}
\text{UNDEFINED;}
\text{elsif PSTATE.EL == EL2 then}
\text{return CNTHP_CTL;}
\text{elsif PSTATE.EL == EL3 then}
\text{return CNTHP_CTL;}
\]

\[
\text{MCR}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <Rt>, <CRn>, <CRm>\{, \{#<\text{opc2}>\}\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b111 & 0b100 & 0b1110 & 0b0010 & 0b001 \\
\end{array}
\]

\[
\text{if PSTATE.EL == EL0 then}
\text{UNDEFINED;}
\text{elsif PSTATE.EL == EL1 then}
\text{UNDEFINED;}
\text{elsif PSTATE.EL == EL2 then}
\text{CNTHP_CTL = R[t];}
\text{elsif PSTATE.EL == EL3 then}
\text{CNTHP_CTL = R[t];}
\]

\[
\text{MRC}\{<c>\}{<q>} <\text{coproc}>, \{#<\text{opc1}>\}, <Rt>, <CRn>, <CRm>\{, \{#<\text{opc2}>\}\}
\]

\[
\begin{array}{cccccc}
\text{coproc} & \text{opc1} & \text{CRn} & \text{CRm} & \text{opc2} \\
0b111 & 0b000 & 0b1110 & 0b0010 & 0b001 \\
\end{array}
\]

\[
\text{if PSTATE.EL == EL0 then}
\text{if !ELUsingAArch32(EL1) & !(EL2Enabled() & HCR_EL2.<E2H,TGE> == '11') & CNTHP_CTL_EL1.EL0PTEN == '0' then}
\]
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTHCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif;
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 UNDEFINED;
endif;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '0' &&
 CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
 CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' &&
 CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 else
 return CNTP_CTL_NS;
 endif;
else
 if EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.NS == '1' then
 return CNTHP_CTL_EL2;
 else
 return CNTP_CTL;
 endif;
endif;
else
 return CNTP_CTL;
endif;
if PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
 endif;
endif;
else
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;
 endif;
endif;
if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&
 CNTHCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
 CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif;
 if ELUsingAArch32(EL1) && CNTHCTL.PL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif;
 else
 UNDEFINED;
 endif;
endif;
if PSTATE.EL == EL2 then
 if !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
if PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;
 endif;
endif;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th></th>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
<td></td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&
 CNTHCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
 CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif;
 if ELUsingAArch32(EL1) && CNTHCTL.PL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 endif;
 else
 UNDEFINED;
 endif;
endif;
else
 if !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif;
endif;
else
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;
 endif;
endif;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th></th>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
<td></td>
</tr>
</tbody>
</table>
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR.E2H == '0' & CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_E2H.TGE == '10' & CNTHCTL_EL2.ELIPCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & !ELUsingAArch32(EL2) & HCR_E2H.TGE == '11' & CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR.E2H == '0' & CNTHCTL_EL2.EL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.EH == '1' & SCR_EL3.NS == '0' & IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CTL_EL2 = R[t];
elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.EH == '1' & SCR_EL3.NS == '1' then
 CNTHP_CTL_EL2 = R[t];
else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.EH == '0' & CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & HCR_EL2.EH == '1' & CNTHCTL_EL2.ELIPCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() & ELUsingAArch32(EL2) & CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) & ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) & ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
else
 CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
else
 CNTP_CTL_NS = R[t];
G8.7.4 CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register

The CNTHP_CVAL characteristics are:

Purpose

Holds the compare value for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_CVAL[63:0] is architecturally mapped to AArch64 System register CNTHP_CVAL_EL2[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTHP_CVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_CVAL is a 64-bit register.

Field descriptions

The CNTHP_CVAL bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit 63-0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CompareValue</td>
</tr>
</tbody>
</table>
```

CompareValue, bits [63:0]

Holds the EL2 physical timer CompareValue.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.

When the timer condition is met:

- CNTHP_CTL.ISTATUS is set to 1.
- If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_CVAL

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b110</td>
<td>0b0110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 ...
return CNTHP_CVAL;
elsif PSTATE.EL == EL3 then
 return CNTHP_CVAL;

MCRR(<c>){<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0110</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elseif PSTATE.EL == EL1 then
 UNDEFINED;
elseif PSTATE.EL == EL2 then
 CNTHP_CVAL = R[t2]:R[t];
elseif PSTATE.EL == EL3 then
 CNTHP_CVAL = R[t2]:R[t];

MRRC(<c>){<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHCTL_EL1.EL0PTEN == '0'
then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x84);
 else
 UNDEFINED;
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 UNDEFINED;
 else
 UNDEFINED;
elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '11' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
else
 return CNTP_CVAL;
elseif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 UNDEFINED;
 endif
endif

desc
AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
else
 return CNTP_CVAL;
elsif PSTATE_EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE_EL == EL3 then
 if SCR_NS == '0' then
 return CNTP_CVAL_NS;
 else
 return CNTP_CVAL;
elsif PSTATE_EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL1.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR_EL3.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x00);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTPHPS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
 elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x00);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x00);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
 elsif PSTATE_EL == EL2 then

<table>
<thead>
<tr>
<th>coproc</th>
<th>Crm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

MCRR<seq><seq> <coproc>, (#<opc1>, <Rt>, <Rt2>, <Cr>)
if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
 else
 CNTP_CVAL_NS = R[t2]:R[t];
G8.7.5 CNTHP_TVAL, Counter-timer Hyp Physical Timer TimerValue register

The CNTHP_TVAL characteristics are:

Purpose

Holds the timer value for the Hyp mode physical timer.

Configurations

AArch32 System register CNTHP_TVAL[31:0] is architecturally mapped to AArch64 System register CNTHP_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTHP_TVAL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes

CNTHP_TVAL is a 32-bit register.

Field descriptions

The CNTHP_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
<th>TimerValue</th>
</tr>
</thead>
</table>

TimerValue, bits [31:0]

The TimerValue view of the EL2 physical timer.

On a read of this register:

- If CNTHP_CTL.ENABLE is 0, the value returned is UNKNOWN.
- If CNTHP_CTL.ENABLE is 1, the value returned is (CNTHP_CVAL - CNTPCT).

On a write of this register, CNTHP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTHP_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.

When the timer condition is met:

- CNTHP_CTL.ISTATUS is set to 1.
- If CNTHP_CTL.IMASK is 0, an interrupt is generated.

When CNTHP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_TVAL

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

```
<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b100</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>
```

```java
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    return CNTHP_TVAL;
elsif PSTATE.EL == EL3 then
    return CNTHP_TVAL;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

```java
if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CNTHP_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTHP_TVAL = R[t];
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

```java
if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0'
then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
        AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
        if !EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
            AArch32.TakeHypTrapException(0x03);  
        else
            UNDEFINED;
        elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '0' && CNTHTCT_EL2.EL1PCEN == '0' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '0' && CNTHTCT_EL2.EL1PTEN == '0' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' && CNTHTCT_EL2.EL1PTEN == '0' then
            AArch32.TakeHypTrapException(0x03);
        else
            UNDEFINED;
    endif
```
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTP_TVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_TVAL_EL2;
else
 return CNTP_TVAL;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTKCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
else
 return CNTP_TVAL;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_TVAL_S;
 else
 return CNTP_TVAL_NS;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = R[t];
 else
 CNTHPS_TVAL_EL2 = R[t];
 else
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then
 CNTP_TVAL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_TVAL_EL2 = R[t];
 else
 return CNTHP_TVAL_EL2;
CNTP_TVAL = R[t];
elseif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elseif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
elseif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];
G8.7.6 CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

The CNTHPS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_CTL[31:0] is architecturally mapped to AArch64 System register CNTHPS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_CTL are UNDEFINED.

Attributes

CNTHPS_CTL is a 32-bit register.

Field descriptions

The CNTHPS_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:3]</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>ISTATUS, bit [2]</td>
<td>The status of the timer. This bit indicates whether the timer condition is met:</td>
</tr>
<tr>
<td>IMASK, bit [1]</td>
<td>Timer interrupt mask bit. Permitted values are:</td>
</tr>
<tr>
<td>ENABLE, bit [0]</td>
<td>Enables the timer. Permitted values are:</td>
</tr>
</tbody>
</table>

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the CNTHPS_CTL.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

0b0 Timer disabled.
0b1 Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TV_AL_EL2 continues to count down.

--- Note ---
Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL

This register is accessed using the encoding for CNTP_CTL.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRC}\langle c\rangle|\langle q\rangle\langle \text{coproc}, \langle #\rangle\langle \text{opc1}, \langle R\rangle\langle CRn\rangle, \langle CRm\rangle\langle #\rangle\langle opc2\rangle}\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b0011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTHPS_CTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 elsif !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CTL_EL2;
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTP_CTL_NS;
 else
 return CNTP_CTL;
else
 if PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> == '0' && CNTHPS_CTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '10' && CNTHPS_CTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '0' && CNTHPS_CTL_EL2.EL0PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && CNTHPS_CTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHPS_CTL_EL2;
 else
 return CNTP_CTL;
 elseif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTHPS_CTL_EL3;
 else
 return CNTP_CTL;
 elseif PSTATE.EL == EL3 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTHPS_CTL_EL3;
 else
 return CNTP_CTL;
return CNTP_CTL_NS;
else
return CNTP_CTL;
elsif PSTATE_EL == EL3 then
if SCR_NS == '0' then
return CNTP_CTL_S;
else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
if !ELUsing(AArch32(EL1)) && !ELEnabled(EL2) && HCR_EL2.<E2H,TGE> == '1' && CNTKCTL_EL1.EL0PTEN == '0' then
if ELEnabled(EL2) && !ELUsing(AArch32(EL2)) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
UNDEFINED;
elsif ELEnabled(EL2) && !ELUsing(AArch32(EL2)) && HCR_EL2.<E2H,TGE> == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 CNTP_CTL_NS = R[t];
G8.7.7 CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2)

The CNTHPS_CVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the compare value for the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_CVAL[63:0] is architecturally mapped to AArch64 System register CNTHPS_CVAL_EL2[63:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_CVAL are UNDEFINED.

Attributes

CNTHPS_CVAL is a 64-bit register.

Field descriptions

The CNTHPS_CVAL bit assignments are:

<table>
<thead>
<tr>
<th>CompareValue, bits [63:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holds the EL2 physical timer CompareValue.</td>
</tr>
<tr>
<td>When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:</td>
</tr>
<tr>
<td>• CNTHPS_CTL_EL2.ISTATUS is set to 1.</td>
</tr>
<tr>
<td>• If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.</td>
</tr>
<tr>
<td>When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count</td>
</tr>
</tbody>
</table>

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CVAL

This register is accessed using the encoding for CNTP_CVAL.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRRC{<c>}{<q>} <coproc>, {#<opc1>, <Rt>, <Rt2>, <CRm>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
 else
 return CNTP_CVAL;
 elsif PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 endif
 endif
 endif
 else
 if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 endif
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 endif
 endif
 else
 return CNTP_CVAL;
 endif
 endif
 else
 return CNTP_CVAL;
 endif
endif

coproc CRm opc1

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0010</td>
</tr>
</tbody>
</table>
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTRL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTRL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 CNTHPS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHP_CVAL_EL2 = R[t2]:R[t];
else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTRL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CVAL_NS = R[t2]:R[t];
 else
 CNTP_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CVAL_S = R[t2]:R[t];
else
 CNTP_CVAL_NS = R[t2]:R[t];
G8.7.8 CNTHPS_TVAL, Counter-timer Secure Physical Timer TimerValue Register (EL2)

The CNTHPS_TVAL characteristics are:

Purpose

Provides AArch32 access from EL0 to the timer value for the Secure EL2 physical timer.

Configurations

AArch32 System register CNTHPS_TVAL[31:0] is architecturally mapped to AArch64 System register CNTHPS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_TVAL are UNDEFINED.

Attributes

CNTHPS_TVAL is a 32-bit register.

Field descriptions

The CNTHPS_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimerValue</td>
<td>The TimerValue view of the EL2 physical timer.</td>
</tr>
</tbody>
</table>

On a read of this register:

- If CNTHPS_CTL_EL2.ENABLE is 0, the value returned is UNKNOWN.
- If CNTHPS_CTL_EL2.ENABLE is 1, the value returned is (CNTHPS_CVAL_EL2 - CNTPCT_EL0).

On a write of this register, CNTHPS_CVAL_EL2 is set to (CNTPCT_EL0 + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHPS_CTL_EL2.ENABLE is 1, the timer condition is met when (CNTPCT_EL0 - CNTHPS_CVAL_EL2) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTHPS_CTL_EL2.ISTATUS is set to 1.
- If CNTHPS_CTL_EL2.IMASK is 0, an interrupt is generated.

When CNTHPS_CTL_EL2.ENABLE is 0, the timer condition is not met, but CNTPCT_EL0 continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_TVAL

This register is accessed using the encoding for CNTP_TVAL.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC(<c>)(<q>)
<coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>, (#)<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.E2H.TGE == '1') && CNTKCTL_EL1.EL0PTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTCHTL_EL2.EL1PCEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' && CNTCHTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2")
 then
 return CNTP_TVAL_NS;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' &&
 CNTHCTL.PL1PCEN == '0' &&
 IsFeatureImplemented("FEAT_SEL2")
 then
 return CNTHPS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' && SCR_EL3.NS == '1'
 then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
 else
 PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H.TGE == '1' && CNTCHTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTCHTL.EL2.EL1PCEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0'
 then
 AArch32.TakeHypTrapException(0x03);
 else
 HaveEL(EL3) && ELUsingAArch32(EL3)
 then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
 else
 PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3)
 then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
 else
 PSTATE.EL == EL3 then
 if SCR.NS == '0'
 then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL_NS;
```
MCR<c>{q}<coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.E2TGE == '11') && CNTKCTL_EL1.EL0PTEN == '0'
  then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0'
  then
    AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    else
      UNDEFINED;
  elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PTEN == '0'
  then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && SCR_EL3.NS == '0'
  then
    CNTP_TVAL_NS = R[t];
    elsif EL2Enabled() && ELUsingAArch32(EL2) && SCR_EL3.NS == '1'
  then
    CNTP_TVAL_NS = R[t];
    else
      CNTP_TVAL = R[t];
  elsif PSTATE.EL == EL1 then
    if !ELUsingAArch32(EL2) && SCR_EL3.NS == '0'
  then
    CNTP_TVAL_S = R[t];
    else
      CNTP_TVAL_NS = R[t];
  else
    CNTP_TVAL = R[t];
  elsif PSTATE.EL == EL2 then
    if EL3Enabled() && ELUsingAArch32(EL3) then
      CNTP_TVAL_NS = R[t];
    else
      CNTP_TVAL = R[t];
  elsif PSTATE.EL == EL3 then
    if SCR.NS == '0'
  then
    CNTP_TVAL_S = R[t];
    else
      CNTP_TVAL_NS = R[t];
```
G8.7.9 CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

The CNTHV_CTL characteristics are:

Purpose

Provides AArch32 access to the control register for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CTL[31:0] is architecturally mapped to AArch64 System register CNTHV_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_CTL are UNDEFINED.

Attributes

CNTHV_CTL is a 32-bit register.

Field descriptions

The CNTHV_CTL bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>
| 3   | ISTATUS       | The status of the timer. This bit indicates whether the timer condition is met:
|      |               | 0b0   Timer condition is not met.                                           |
|      |               | 0b1   Timer condition is met.                                              |
| 2   | IMASK         | Timer interrupt mask bit. Permitted values are:
|      |               | 0b0   Timer interrupt is not masked by the IMASK bit.                      |
|      |               | 0b1   Timer interrupt is masked by the IMASK bit.                          |
| 1   | ENABLE        | Enables the timer. Permitted values are:                                   |
|      |               | 0b0   Timer disabled.                                                      |
|      |               | 0b1   Timer enabled.                                                       |
```

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.

ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is **UNKNOWN**.

This bit is read-only.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TV AL continues to count down.

Note
Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRC{<c>}{<q>}{coproc}, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && CNTHCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_CTL;
 elsif PSTATE.EL == EL2 then
 return CNTV_CTL;
 elsif PSTATE.EL == EL3 then
 return CNTV_CTL;
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHSV_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
 elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
 elseif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];
G8.7.10 CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2)

The CNTHV_CVAL characteristics are:

Purpose

Provides AArch32 access to the compare value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_CVAL[63:0] is architecturally mapped to AArch64 System register CNTHV_CVAL_EL2[63:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_CVAL are UNDEFINED.

Attributes

CNTHV_CVAL is a 64-bit register.

Field descriptions

The CNTHV_CVAL bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit Width</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>
```

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTHV_CTL.ISTATUS is set to 1.
- If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing the CNTHV_CVAL

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0') then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
else if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.ELOVTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTV_CVAL_EL2;
else if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
else
 return CNTV_CVAL;
endif
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1VTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif PSTATE.EL == EL2 then
 return CNTV_CVAL;
 elseif PSTATE.EL == EL3 then
 return CNTV_CVAL;
 endif
else
 if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.ELOVTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 endif
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.ELOVTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];
 endif
 endif
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTKCTL_EL2.ELOVTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.ELOVTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTV_CVAL_EL2;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL;
 endif
 endif
 endif
endif

<table>
<thead>
<tr>
<th>coproc CRm opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
</tr>
<tr>
<td>0b1110</td>
</tr>
<tr>
<td>0b0011</td>
</tr>
</tbody>
</table>
AArch32 System Register Descriptions

G8.7 Generic Timer registers

AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];
G8.7.11 CNTHV_TVAL, Counter-timer Virtual Timer TimerValue register (EL2)

The CNTHV_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the EL2 virtual timer.

Configurations

AArch32 System register CNTHV_TVAL[31:0] is architecturally mapped to AArch64 System register CNTHV_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_TVAL are UNDEFINED.

Attributes

CNTHV_TVAL is a 32-bit register.

Field descriptions

The CNTHV_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
</table>

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

- If CNTHV_CTL.ENABLE is 0, the value returned is **UNKNOWN**.
- If CNTHV_CTL.ENABLE is 1, the value returned is (CNTHV_CVAL - CNTVCT).

On a write of this register, CNTHV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHV_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTHV_CTL.ISTATUS is set to 1.
- If CNTHV_CTL.IMASK is 0, an interrupt is generated.

When CNTHV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue to count down.

Accessing the CNTHV_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

MCR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <CRn>, <CRm>{, (#)<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.E2H.TGE == '1') && CNTKCTL_EL1.EL0VTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 endif
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL1VTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTKCTL_EL2.EL1VTEN == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL1VTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.TGE == '1'
 then
 AArch32.TakeHypTrapException(0x00);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1'
 then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
 && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
 then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
 endif
 else
 return CNTV_TVAL;
 endif
 elsif PSTATE_EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTKCTL_EL2.EL1VTEN == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
 endif
 elsif PSTATE_EL == EL2 then
 return CNTV_TVAL;
 elsif PSTATE_EL == EL3 then
 return CNTV_TVAL;
 endif
 else
 return CNTV_TVAL;
 endif
endif
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTHV_TVAL_EL2 = R[t];
else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL = R[t];
G8.7.12 CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

The CNTHVS_CTL characteristics are:

Purpose

Provides AArch32 access from EL0 to the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CTL[31:0] is architecturally mapped to AArch64 System register CNTHVS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHVS_CTL are UNDEFINED.

Attributes

CNTHVS_CTL is a 32-bit register.

Field descriptions

The CNTHVS_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:3]</th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 3 2 1 0</td>
<td></td>
</tr>
</tbody>
</table>

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

- 0: Timer condition is not met.
- 1: Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

This bit is read-only.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

- 0: Timer interrupt is not masked by the IMASK bit.
- 1: Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

- 0: Timer disabled.
- 1: Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL continues to count down.

Note
Disabling the output signal might be a power-saving option.

Accessing the CNTHVS_CTL

This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings in the System instruction encoding space:

|MRC<coproc><c> {<q>, <Rt>, <CRn>, CRm}, (#)<opc1>, <CRm>{, (#)<opc2>} |
|---|---|---|---|---|---|
|coproc| opc1| CRn| CRm| opc2|
|0b1111| 0b0000| 0b1110| 0b0011| 0b001|

```
if PSTATE.EL == EL0 then
    if !ELUsingAArch32(EL1) && !EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL1.EL0VTEN == '0' then
        if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
        return CNTHVS_CTL_EL2;
    elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
        return CNTHV_CTL_EL2;
    else
        return CNTV_CTL;
else
    if PSTATE.EL == EL1 then
        if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1VTEN == '1' then
            AArch64.AArch32SystemAccessTrap(EL2, 0x03);
        else
            return CNTV_CTL;
    elsif PSTATE.EL == EL2 then
        return CNTV_CTL;
    elsif PSTATE.EL == EL3 then
        return CNTV_CTL;
```
MCR(<c>){<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL2) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && HCR_EL2<TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2<TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTKCTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHSV_CTL_EL2 = R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 CNTTHV_CTL_EL2 = R[t];
 else
 CNTV_CTL = R[t];
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTKTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 CNTV_CTL = R[t];
 elsif PSTATE.EL == EL2 then
 CNTV_CTL = R[t];
 elsif PSTATE.EL == EL3 then
 CNTV_CTL = R[t];
G8.7.13 CNTHVS_CV AL, Counter-timer Secure Virtual Timer CompareValue Register (EL2)

The CNTHVS_CV AL characteristics are:

Purpose

Provides AArch32 access to the compare value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_CV AL[63:0] is architecturally mapped to AArch64 System register CNTHVS_CV AL_EL2[63:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHVS_CV AL are UNDEFINED.

Attributes

CNTHVS_CV AL is a 64-bit register.

Field descriptions

The CNTHVS_CV AL bit assignments are:

```
63     0
       |
       v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| CompareValue
```

CompareValue, bits [63:0]

Holds the EL2 virtual timer CompareValue.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTHVS_CTL.ISTATUS is set to 1.
- If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

Accessing the CNTHVS_CVAL

This register is accessed using the encoding for CNTV_CV AL.

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0011</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif EL2Enabled() && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & CNTCHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & CNTCHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' &
 IsFeatureImplemented("FEAT_SEL2") then
 return CNTHVS_CVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 return CNTHV_CVAL_EL2;
 else
 return CNTV_CVAL;
 endif
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) & CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) & HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 endif
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & CNTCHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> != '11' & CNTCHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '0' &
 IsFeatureImplemented("FEAT_SEL2") then
 CNTHVS_CVAL_EL2 = R[t2]:R[t];
 elsif EL2Enabled() && !ELUsingAArch32(EL2) & HCR_EL2.<E2H,TGE> == '11' & SCR_EL3.NS == '1' then
 CNTHV_CVAL_EL2 = R[t2]:R[t];
 else
 CNTV_CVAL = R[t2]:R[t];
 endif
 endif

MCRR{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 CNTV_CVAL = R[t2]:R[t];
 endif
elsif PSTATE.EL == EL2 then
 CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
 CNTV_CVAL = R[t2]:R[t];
G8.7.14 CNTHVS_TVAL, Counter-timer Secure Virtual Timer TimerValue Register (EL2)

The CNTHVS_TVAL characteristics are:

Purpose

Provides AArch32 access to the timer value for the Secure EL2 virtual timer.

Configurations

AArch32 System register CNTHVS_TVAL[31:0] is architecturally mapped to AArch64 System register CNTHVS_TVAL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHVS_TVAL are UNDEFINED.

Attributes

CNTHVS_TVAL is a 32-bit register.

Field descriptions

The CNTHVS_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-31</td>
<td>TimerValue</td>
</tr>
</tbody>
</table>

TimerValue, bits [31:0]

The TimerValue view of the EL2 virtual timer.

On a read of this register:

- If CNTHVS_CTL.ENABLE is 0, the value returned is **UNKNOWN**.
- If CNTHVS_CTL.ENABLE is 1, the value returned is (CNTHVS_CVAL - CNTVCT).

On a write of this register, CNTHVS_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTHVS_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTHVS_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer. When the timer condition is met:

- CNTHVS_CTL.ISTATUS is set to 1.
- If CNTHVS_CTL.IMASK is 0, an interrupt is generated.

When CNTHVS_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue to count down.

Accessing the CNTHVS_TVAL

This register is accessed using the encoding for CNTV_TVAL.

Accesses to this register use the following encodings in the System instruction encoding space:
MRC\(\langle c\rangle\langle q\rangle\) <coproc>, (#)\<opc1>, <Rt>, <CRn>, <CRm>, (#)\<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
 elsif PSTATE.EL == EL2 then
 return CNTV_TVAL;
 elsif PSTATE.EL == EL3 then
 return CNTV_TVAL;

MCR\(\langle c\rangle\langle q\rangle\) <coproc>, (#)\<opc1>, <Rt>, <CRn>, <CRm>, (#)\<opc2>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHS_TVAL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHV_TVAL_EL2;
 else
 return CNTV_TVAL;
 elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1VT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_TVAL;
 elsif PSTATE.EL == EL2 then
 return CNTV_TVAL;
 elsif PSTATE.EL == EL3 then
 return CNTV_TVAL;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2")
then
 CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then
 CNTHV_TVAL_EL2 = R[t];
else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1'
then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
 CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
 CNTV_TVAL = R[t];
G8.7.15 CNTKCTL, Counter-timer Kernel Control register

The CNTKCTL characteristics are:

Purpose
Controls the generation of an event stream from the virtual counter, and access from EL0 modes to the physical counter, virtual counter, EL1 physical timers, and the virtual timer.

Configurations
AArch32 System register CNTKCTL[31:0] is architecturally mapped to AArch64 System register CNTKCTL_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTKCTL are UNDEFINED.

Attributes
CNTKCTL is a 32-bit register.

Field descriptions
The CNTKCTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Bit Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>18</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>17</td>
<td>EVNTIS</td>
<td>Controls the scale of the generation of the event stream.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When FEAT_ECV is implemented:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls the scale of the generation of the event stream.</td>
</tr>
<tr>
<td>0b0</td>
<td></td>
<td>The CNTKCTL.EVNTI field applies to CNTVCT[15:0].</td>
</tr>
<tr>
<td>0b1</td>
<td></td>
<td>The CNTKCTL.EVNTI field applies to CNTVCT[23:8].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This control applies regardless of the value of the CNTHCTL_EL2.ECV bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>9</td>
<td>PL0PTEN</td>
<td>Traps PL0 accesses to the physical timer registers to Undefined mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When FEAT_ECV is implemented:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers are trapped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Undefined mode.</td>
</tr>
<tr>
<td>0b0</td>
<td></td>
<td>PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers are trapped</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Undefined mode.</td>
</tr>
<tr>
<td>0b1</td>
<td></td>
<td>This control does not cause any instructions to be trapped.</td>
</tr>
</tbody>
</table>

Bits [31:18] Reserved, RES0.

Bits [16:10] Reserved, RES0.

PL0PTEN, bit [9]
Traps PL0 accesses to the physical timer registers to Undefined mode.

0b0 PL0 accesses to the CNTP_CTL, CNTP_CVAL, and CNTP_TVAL registers are trapped to Undefined mode.

0b1 This control does not cause any instructions to be trapped.
This field resets to an architecturally **UNKNOWN** value.

PL0VTEN, bit [8]

Traps PL0 accesses to the virtual timer registers to Undefined mode.

- **0b0**: PL0 accesses to the **CNTV_CTL**, **CNTV_CVAL**, and **CNTV_TVAL** registers are trapped to Undefined mode.
- **0b1**: This control does not cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

EVNTI, bits [7:4]

Selects which bit of the counter register **CNTVCT** is the trigger for the event stream generated from that counter, when that stream is enabled.

- If **FEAT_ECV** is implemented, and **CNTKCTL.EVNTIS** is 1, this field selects a trigger bit in the range 8 to 23 of the counter register **CNTVCT**.
- Otherwise, this field selects a trigger bit in the range 0 to 15 of the counter register.

This field resets to an architecturally **UNKNOWN** value.

EVNTDIR, bit [3]

Controls which transition of the counter register **CNTVCT** trigger bit, defined by EVNTI, generates an event when the event stream is enabled:

- **0b0**: A 0 to 1 transition of the trigger bit triggers an event.
- **0b1**: A 1 to 0 transition of the trigger bit triggers an event.

This field resets to an architecturally **UNKNOWN** value.

EVNTEN, bit [2]

Enables the generation of an event stream from the counter register **CNTVCT**:

- **0b0**: Disables the event stream.
- **0b1**: Enables the event stream.

This field resets to an architecturally **UNKNOWN** value.

PL0VCTEN, bit [1]

Traps PL0 accesses to the frequency register and virtual counter register to Undefined mode.

- **0b0**: PL0 accesses to the **CNTVCT** are trapped to Undefined mode.
- **0b1**: PL0 accesses to the **CNTFRQ** register are trapped to Undefined mode, if **CNTKCTL.PL0PCTEN** is also 0.

This control does not cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

PL0PCTEN, bit [0]

Traps PL0 accesses to the frequency register and physical counter register to Undefined mode.

- **0b0**: PL0 accesses to the **CNTPCT** are trapped to Undefined mode.
- **0b1**: PL0 accesses to the **CNTFRQ** register are trapped to Undefined mode, if **CNTKCTL.PL0VCTEN** is also 0.

This control does not cause any instructions to be trapped.

This field resets to an architecturally **UNKNOWN** value.

Accessing the CNTKCTL

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 return CNTKCTL;
elsif PSTATE.EL == EL2 then
 return CNTKCTL;
elsif PSTATE.EL == EL3 then
 return CNTKCTL;

MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL2 then
 CNTKCTL = R[t];
elsif PSTATE.EL == EL3 then
 CNTKCTL = R[t];
G8.7.16 **CNTP_CTL, Counter-timer Physical Timer Control register**

The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configurations
AArch32 System register CNTP_CTL[31:0] is architecturally mapped to AArch64 System register CNTP_CTL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTP_CTL are UNDEFINED.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS, bit [2]</td>
</tr>
<tr>
<td>2</td>
<td>IMASK, bit [1]</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE, bit [0]</td>
</tr>
</tbody>
</table>

Bits [31:3]
Reserved, RES0.

ISTATUS, bit [2]
The status of the timer. This bit indicates whether the timer condition is met:

- **0b0** Timer condition is not met.
- **0b1** Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

This bit is read-only.

IMASK, bit [1]
Timer interrupt mask bit. Permitted values are:

- **0b0** Timer interrupt is not masked by the IMASK bit.
- **0b1** Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]
Enables the timer. Permitted values are:

- **0b0** Timer disabled.
- **0b1** Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from \texttt{CNTP_TVAL} continues to count down.

\textbf{Note}

Disabling the output signal might be a power-saving option.

This field resets to 0.

\section*{Accessing the CNTP_CTL}

Accesses to this register use the following encodings in the System instruction encoding space:

\begin{verbatim}
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
\end{verbatim}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if \texttt{PSTATE.EL} == \texttt{EL0} then
 if \texttt{!ELUsingAArch32(EL1)} \&\& \texttt{!(EL2Enabled() \&\& HCR_EL2.<E2H,TGE> == '11') \&\& CNTHCTL_EL1.EL0PTEN == '0'} then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 else
 \texttt{AArch64.AArch32SystemAccessTrap(EL1, 0x03)};
 elsif \texttt{EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.TGE == '1'} then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 else
 \texttt{AArch64.AArch32SystemAccessTrap(EL1, 0x03)};
 endif

if \texttt{PSTATE.EL} == \texttt{EL1} then
 if \texttt{EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '0' \&\& CNTHCTL_EL2.EL1PCEN == '0'} then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 elsif \texttt{EL2Enabled() \&\& !ELUsingAArch32(EL2) \&\& HCR_EL2.E2H == '10' \&\& CNTHCTL_EL2.EL1PTEN == '0'} then
 \texttt{AArch64.AArch32SystemAccessTrap(EL2, 0x03)};
 else
 \texttt{AArch64.AArch32SystemAccessTrap(EL1, 0x03)};
 endif

if \texttt{PSTATE.EL} == \texttt{EL2} then
 if \texttt{HaveEL(EL3)} \&\& \texttt{ELUsingAArch32(EL3)} then
 \texttt{return CNTP_CTL_NS};
 else
 \texttt{return CNTP_CTL};
 endif

if \texttt{PSTATE.EL} == \texttt{EL3} then
 if \texttt{!HaveEL(EL3)} \&\& \texttt{ELUsingAArch32(EL3)} then
 \texttt{return CNTP_CTL_NS};
 else
 \texttt{return CNTP_CTL};
 endif

else
 \texttt{return CNTP_CTL};
endif
return CNTP_CTL;
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_CTL_S;
 else
 return CNTP_CTL_NS;

MCR<coproc>,<CRn>,<CRm>,<opc1>,<opc2>,<Rt>

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0001</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.TGE == '1') && CNTKCTL_EL1.EL0PTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 else
 UNDEFINED;
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x00);
 end
 end
 end
elsif PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTTHCTL_EL2.EL1PCEN == '0'
 then
 if EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL0PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 end
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x03);
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
 end
 end
 end
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
 then
 if EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 end
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL0PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 end
 end
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
 then
 if EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 end
 else
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL0PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch32.TakeHypTrapException(0x03);
 end
 end
 end
 end
 end
 end
 end
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_CTL_NS = R[t];
 else
 CNTP_CTL = R[t];
 end
elsif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_CTL_S = R[t];
else
 CNTP_CTL_NS = R[t];
G8.7.17 CNTP_CVAL, Counter-timer Physical Timer CompareValue register

The CNTP_CVAL characteristics are:

Purpose

Holds the compare value for the EL1 physical timer.

Configurations

AArch32 System register CNTP_CVAL[63:0] is architecturally mapped to AArch64 System register CNTP_CVAL_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTP_CVAL are UNDEFINED.

Attributes

CNTP_CVAL is a 64-bit register.

Field descriptions

The CNTP_CVAL bit assignments are:

CompareValue, bits [63:0]

Holds the EL1 physical timer CompareValue.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:

- CNTP_CTL.ISTATUS is set to 1.
- If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count.

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL

Accesses to this register use the following encodings in the System instruction encoding space:

\[
\text{MRRC}\{<c>}\{<q>\} \; \text{<coproc>}, \; \{#\text{<opc1>}, \; \text{<Rt>}, \; \text{<Rt2>}, \; \text{<CRm>}}
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b111</td>
<td>0b1110</td>
<td>0b0010</td>
</tr>
</tbody>
</table>

```cpp
if PSTATE_EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.E2H,TGE == '1') && CNTPCTL_EL1.EL0PTEN == '0'
    then
      if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
        AArch64.AArch32SystemAccessTrap(EL2, 0x04);
      else
```
AArch32.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccess Trap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTKCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2") then
 return CNTHPS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
 return CNTHP_CVAL_EL2;
else
 return CNTP_CVAL;
elsif PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b00010</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif ELUsingAArch32(EL2) && CNTKCTL.PL0PTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
AArch32 System Register Descriptions

G8.7 Generic Timer registers

else
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsActiveFeatureImplemented("FEAT_SEL2") then
CNTHPS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
CNTHP_CVAL_EL2 = R[t2]:R[t];
else
CNTP_CVAL = R[t2]:R[t];
elsif PSTATE_EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x04);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];
else
CNTP_CVAL = R[t2]:R[t];
elsif PSTATE_EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CVAL_NS = R[t2]:R[t];
else
CNTP_CVAL = R[t2]:R[t];
elsif PSTATE_EL == EL3 then
if SCR.NS == '0' then
CNTP_CVAL_S = R[t2]:R[t];
else
CNTP_CVAL_NS = R[t2]:R[t];
G8.7.18 CNTP_TVAL, Counter-timer Physical Timer TimerValue register

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

AArch32 System register CNTP_TVAL[31:0] is architecturally mapped to AArch64 System register CNTP_TVAL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTP_TVAL are UNDEFINED.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-31</td>
<td>TimerValue</td>
</tr>
</tbody>
</table>

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:

- If CNTP_CTL.ENABLE is 0, the value returned is UNKNOWN.
- If CNTP_CTL.ENABLE is 1, the value returned is (CNTP_CVAL - CNTPCT).

On a write of this register, CNTP_CVAL is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CNTP_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.

When the timer condition is met:

- CNTP_CTL.ISTATUS is set to 1.
- If CNTP_CTL.IMASK is 0, an interrupt is generated.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.TGE == '1') && CNTKCTL_EL1.EL0PTEN == '0'
 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
endif

if PSTATE.EL == EL1 then
 if !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTKCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTKCTL_EL2.EL1PTEN == '0'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 endif
endif

if PSTATE.EL == EL2 then
 if HaveEL(EL3) && ELUsingAArch32(EL3) then
 return CNTP_TVAL_NS;
 else
 return CNTP_TVAL;
 endif
endif

if PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 return CNTP_TVAL_S;
 else
 return CNTP_TVAL_NS;
 endif
endif
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0010</td>
<td>0b000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !EL2Enabled() && HCR_EL2.E2H == '11' && CNTKCTL_EL1.EL0PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 UNDEFINED;
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
 elseif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elseif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
 AArch32.TakeHypTrapException(0x03);
 elseif HaveEL(EL3) && ELUsingAArch32(EL3) then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL = R[t];
 elseif PSTATE.EL == EL2 then
 if EL2Enabled() && ELUsingAArch32(EL2) then
 CNTP_TVAL_NS = R[t];
 elseif PSTATE.EL == EL3 then
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];
 if SCR.NS == '0' then
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL_NS = R[t];
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];
 else
 CNTP_TVAL_NS = R[t];
 end if
 if SCR.NS == '0' then
 CNTP_TVAL_S = R[t];
 else
 CNTP_TVAL_NS = R[t];
 end if
G8.7.19 CNTPCT, Counter-timer Physical Count register

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCT[63:0] is architecturally mapped to AArch64 System register CNTPCT_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTPCT are UNDEFINED.

All reads to the CNTPCT occur in program order relative to reads to CNTPCTSS or CNTPCT.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

The CNTPCT bit assignments are:

Bits [63:0]

Physical count value.

Accessing the CNTPCT

Accesses to this register use the following encodings in the System instruction encoding space:

MRRC{<c>}{<q>}, <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE_EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && CNTHCTL_EL1.EL0PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' & CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '1' && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
else
 return CNTPCT;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 return CNTPCT;
 elsif PSTATE.EL == EL2 then
 return CNTPCT;
 elsif PSTATE.EL == EL3 then
 return CNTPCT;
G8.7.20 CNTPCTSS, Counter-timer Self-Synchronized Physical Count register

The CNTPCTSS characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

AArch32 System register CNTPCTSS[63:0] is architecturally mapped to AArch64 System register CNTPCTSS_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_ECV is implemented. Otherwise, direct accesses to CNTPCTSS are UNDEFINED.

All reads to the CNTPCTSS occur in program order relative to reads to CNTPCT or CNTPCTSS. This register is a self-synchronised view of the CNTPCT counter, and cannot be read speculatively.

Attributes

CNTPCTSS is a 64-bit register.

Field descriptions

The CNTPCTSS bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Self-Synchronized Physical count value</th>
</tr>
</thead>
</table>

Accessing the CNTPCTSS

Accesses to this register use the following encodings in the System instruction encoding space:

MRRC{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <Rt2>, <CRm>

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b1000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.TGE == '1') && CNTHCTL_EL2.EL1PCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL0PCTEN == '0' then
 if EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
else
 return CNTPCTSS;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1PCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCTEN == '0' then
 AArch32.TakeHypTrapException(0x04);
 else
 return CNTPCTSS;
elsif PSTATE.EL == EL2 then
 return CNTPCTSS;
elsif PSTATE.EL == EL3 then
 return CNTPCTSS;
G8.7.21 CNTV_CTL, Counter-timer Virtual Timer Control register

The CNTV_CTL characteristics are:

Purpose

Control register for the virtual timer.

Configurations

AArch32 System register CNTV_CTL[31:0] is architecturally mapped to AArch64 System register CNTV_CTL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTV_CTL are UNDEFINED.

Attributes

CNTV_CTL is a 32-bit register.

Field descriptions

The CNTV_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS</td>
<td>The status of the timer. This bit indicates whether the timer condition is met:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0 Timer condition is not met.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1 Timer condition is met.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted. When the value of the ENABLE bit is 0, the ISTATUS field is UNDEFINED. This bit is read-only.</td>
</tr>
<tr>
<td>2</td>
<td>IMASK</td>
<td>Timer interrupt mask bit. Permitted values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0 Timer interrupt is not masked by the IMASK bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1 Timer interrupt is masked by the IMASK bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For more information, see the description of the ISTATUS bit. This field resets to an architecturally UNDEFINED value.</td>
</tr>
<tr>
<td>0</td>
<td>ENABLE</td>
<td>Enables the timer. Permitted values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b0 Timer disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0b1 Timer enabled.</td>
</tr>
</tbody>
</table>

RES0

ENABLE

IMASK

ISTATUS
Setting this bit to 0 disables the timer output signal, but the timer value accessible from `CNTV_TVAL` continues to count down.

--- Note ---
Disabling the output signal might be a power-saving option.

This field resets to 0.

Accessing the CNTV_CTL

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && (EL2Enabled(EL1) && HCR_EL2.TGE == '1') && CNTKCTL_EL1.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
 else
 UNDEFINED;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' && CNTHCTL_EL2.EL0VTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' && SCR_EL3.NS != '0' && IsFeatureImplemented("FEAT_SEL2") then
 return CNTHV_CTL_EL2;
 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 return CNTHV_CTL_EL2;
 else
 return CNTV_CTL;
else
 if PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1VTEN == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x03);
 else
 return CNTV_CTL;
 else
 if PSTATE.EL == EL2 then
 return CNTV_CTL;
 elsif PSTATE.EL == EL3 then
 return CNTV_CTL;
 else
 return CNTV_CTL;
```
MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && CNTKCTL_EL1.EL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
  elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
  elsif EL2Enabled() && ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> == '11' && CNTKHL_EL2.EL0VTEN == '0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTKHL_EL2.EL1TVT == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    CNTVNS_CTL_EL2 = R[t];
  elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    CNTVNS_CTL_EL2 = R[t];
  else
    CNTV_CTL = R[t];
  endif
else
  PSTATE.EL == EL1 then
    if EL2Enabled() && ELUsingAArch32(EL2) && CNTKHL_EL2.EL1TVT == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      CNTV_CTL = R[t];
    endif
  elseif PSTATE.EL == EL2 then
    CNTV_CTL = R[t];
  elseif PSTATE.EL == EL3 then
    CNTV_CTL = R[t];
  endif
endif
G8.7.22 CNTV_CVAL, Counter-timer Virtual Timer CompareValue register

The CNTV_CVAL characteristics are:

**Purpose**

Holds the compare value for the virtual timer.

**Configurations**

AArch32 System register CNTV_CVAL[63:0] is architecturally mapped to AArch64 System register CNTV_CVAL_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTV_CVAL are UNDEFINED.

**Attributes**

CNTV_CVAL is a 64-bit register.

**Field descriptions**

The CNTV_CVAL bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
</table>
| CompareValue   | Holds the EL1 virtual timer CompareValue. When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer. When the timer condition is met:  
  • CNTV_CTL.ISTATUS is set to 1.  
  • If CNTV_CTL.IMASK is 0, an interrupt is generated.  
When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count. If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0. The value of this field is treated as zero-extended in all counter calculations. This field resets to an architecturally UNKNOWN value. |

**Accessing the CNTV_CVAL**

Accesses to this register use the following encodings in the System instruction encoding space:

```
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0011</td>
</tr>
</tbody>
</table>

```plaintext
if PSTATE_EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.E2H,TGE == '1') && CNTKCTL_EL1.EL0VTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
```
AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
  if EL2Enabled() && !ELUsingAAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  else
    UNDEFINED;
  endif;
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
  return CNTHVS_CVAL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
  return CNTHV_CVAL_EL2;
else
  return CNTV_CVAL;
endif;
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  else
    return CNTV_CVAL;
  endif;
elsif PSTATE.EL == EL2 then
  return CNTV_CVAL;
elsif PSTATE.EL == EL3 then
  return CNTV_CVAL;
else
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x04);
    else
      UNDEFINED;
    endif;
  endif;
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  else
    UNDEFINED;
  endif;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
  AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
  CNTHVS_CVAL_EL2 = R[t2]:R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
  CNTHV_CVAL_EL2 = R[t2]:R[t];
else
  CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL1 then
  return CNTV_CVAL;
elsif PSTATE.EL == EL2 then
  return CNTV_CVAL;
elsif PSTATE.EL == EL3 then
  return CNTV_CVAL;
else
  return CNTV_CVAL;
endif;

\textbf{MCRR\{<c>\}<q>\{coproc\}, \#<opc1>, <Rt>, <Rt2>, <CRm>}

coproc & CRm & opc1
\begin{tabular}{lll}
0b1111 & 0b1110 & 0b0011
\end{tabular}
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else
    CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL2 then
    CNTV_CVAL = R[t2]:R[t];
elsif PSTATE.EL == EL3 then
    CNTV_CVAL = R[t2]:R[t];
G8.7.23 CNTV_TVAL, Counter-timer Virtual Timer TimerValue register

The CNTV_TVAL characteristics are:

**Purpose**

Holds the timer value for the virtual timer.

**Configurations**

AArch32 System register CNTV_TVAL[31:0] is architecturally mapped to AArch64 System register CNTV_TVAL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTV_TVAL are UNDEFINED.

**Attributes**

CNTV_TVAL is a 32-bit register.

**Field descriptions**

The CNTV_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimerValue</td>
<td></td>
</tr>
</tbody>
</table>

**TimerValue, bits [31:0]**

The TimerValue view of the virtual timer.

On a read of this register:
- If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
- If CNTV_CTL.ENABLE is 1, the value returned is (CNTV_CVAL - CNTVCT).

On a write of this register, CNTV_CVAL is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CNTP_CVAL) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.

When the timer condition is met:
- CNTV_CTL.ISTATUS is set to 1.
- If CNTV_CTL.IMASK is set to 1, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

**Accessing the CNTV_TVAL**

Accesses to this register use the following encodings in the System instruction encoding space:
MRC{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VTEN == '0' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("FEAT_SEL2") then
    return CNTHVS_TVAL_EL2;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
    return CNTHV_TVAL_EL2;
  else
    return CNTV_TVAL;
  endif
endif

MCR{<c>}{<q>} <coproc>, (#<opc1>, <Rt>, <CRn>, <CRm>{, (#<opc2>)}

<table>
<thead>
<tr>
<th>coproc</th>
<th>opc1</th>
<th>CRn</th>
<th>CRm</th>
<th>opc2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b0000</td>
<td>0b1110</td>
<td>0b0011</td>
<td>0b0000</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
  if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    else
      AArch64.AArch32SystemAccessTrap(EL1, 0x03);
    endif
  elseif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then
    if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
      AArch64.AArch32SystemAccessTrap(EL2, 0x03);
    elseif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
      AArch32.TakeHypTrapException(0x00);
    else
      UNDEFINED;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL1TVT == '1' then
    return CNTHVS_TVAL_EL2;
  elseif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHV_TVAL_EL2 == '1' then
    return CNTHV_TVAL_EL2;
  else
    return CNTV_TVAL;
  endif
endif
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0'
then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1'
then
  AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented("FEAT_SEL2")
then
  CNTHVS_TVAL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
  CNTHV_TVAL_EL2 = R[t];
else
  CNTV_TVAL = R[t];
elsif PSTATE.EL == EL1 then
  if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x03);
  else
    CNTV_TVAL = R[t];
elsif PSTATE.EL == EL2 then
  CNTV_TVAL = R[t];
elsif PSTATE.EL == EL3 then
  CNTV_TVAL = R[t];
G8.7.24 CNTVCT, Counter-timer Virtual Count register

The CNTVCT characteristics are:

**Purpose**

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value minus the virtual offset visible in CNTVFF.

**Configurations**

AArch32 System register CNTVCT[63:0] is architecturally mapped to AArch64 System register CNTVCT_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTVCT are UNDEFINED.

The value of this register is the same as the value of CNTPCT in the following conditions:
- When EL2 is not implemented.
- When EL2 is implemented and is using AArch64, HCR_EL2.{E2H, TGE} is {1, 1}, and this register is read from Non-secure EL0.

All reads to the CNTVCT occur in program order relative to reads to CNTVCTSS or CNTVCT.

**Attributes**

CNTVCT is a 64-bit register.

**Field descriptions**

The CNTVCT bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual count value</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Accessing the CNTVCT**

Accesses to this register use the following encodings in the System instruction encoding space:

```c
MRRC{<c>}{<q>} <coproc>, (#)<opc1>, <Rt>, <Rt2>, <CRm>
```

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL1.EL0VCTEN == '0' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
  else
    AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then
  if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
    AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
  AArch32.TakeHypTrapException(0x00);
```
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
else
 return CNTVCT;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTVCT;
elsif PSTATE.EL == EL2 then
 return CNTVCT;
elsif PSTATE.EL == EL3 then
 return CNTVCT;
G8.7.25 CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register

The CNTVCTSS characteristics are:

Purpose
Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value visible in CNTPTCT minus the virtual offset visible in CNTVOFF.

Configurations
AArch32 System register CNTVCTSS[63:0] is architecturally mapped to AArch64 System register CNTVCTSS_EL0[63:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_ECV is implemented. Otherwise, direct accesses to CNTVCTSS are UNDEFINED.

All reads to the CNTVCTSS occur in program order relative to reads to CNTVCT or CNTVCTSS.

This register is a self-synchronised view of the CNTVCT counter, and cannot be read speculatively.

Attributes
CNTVCTSS is a 64-bit register.

Field descriptions
The CNTVCTSS bit assignments are:

![Self-Synchronized Virtual count value]

Bits [63:0]
Self-Synchronized Virtual count value.

Accessing the CNTVCTSS
Accesses to this register use the following encodings in the System instruction encoding space:

\[
MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>
\]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b1001</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '1') && CNTKCTL_EL1.EL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VCTEN == '0' then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 AArch64.AArch32SystemAccessTrap(EL1, 0x04);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
 AArch32.TakeHypTrapException(0x00);
else
 UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTKCTL_EL2.EL0VCTEN == '0' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '1' && CNTHCTL_EL2.EL1TVCT == '1'
 then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTVCTSS;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVCT == '1' then
 AArch64.AArch32SystemAccessTrap(EL2, 0x04);
 else
 return CNTVCTSS;
elsif PSTATE.EL == EL2 then
 return CNTVCTSS;
elsif PSTATE.EL == EL3 then
 return CNTVCTSS;
G8.7.26 CNTVOFF, Counter-timer Virtual Offset register

The CNTVOFF characteristics are:

Purpose

Holds the 64-bit virtual offset. This is the offset between the physical count value visible in CNTPCT and the virtual count value visible in CNTVCT.

Configurations

AArch32 System register CNTVOFF[63:0] is architecturally mapped to AArch64 System register CNTVOFF_EL2[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTVOFF are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3 and the virtual counter uses a fixed virtual offset of zero.

Note

When EL2 is implemented and is using AArch64, if HCR_EL2.{E2H, TGE} is \{1, 1\}, the virtual counter uses a fixed virtual offset of zero when CNTVCT is read from Non-secure EL0.

Attributes

CNTVOFF is a 64-bit register.

Field descriptions

The CNTVOFF bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:0</td>
<td>Virtual offset.</td>
</tr>
</tbody>
</table>

If the Generic counter is implemented at a size less than 64 bits, then this field is permitted to be implemented at the same width as the counter, and the upper bits are RES0.

The value of this field is treated as zero-extended in all counter calculations.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF

Accesses to this register use the following encodings in the System instruction encoding space:

\[MRRC\{<c>\}\{<q>\} <coproc>, \#<opc1>, <Rt>, <Rt2>, <CRm> \]

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1110</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
UNDEFINED;
elsi
if PSTATE.EL == EL1 then
UNDEFINED;
elsi
if PSTATE.EL == EL2 then
return CNTVOFF;
elif PSTATE.EL == EL3 then
 return CNTVOFF;

\textbf{MCRR\{c\}\{q\} \{coproc\}, \{\#\}\{opc1\}, \{Rt\}, \{Rt2\}, \{CRm\}}

<table>
<thead>
<tr>
<th>coproc</th>
<th>CRm</th>
<th>opc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1111</td>
<td>0b1010</td>
<td>0b0100</td>
</tr>
</tbody>
</table>

if PSTATE.EL == EL0 then
 UNDEFINED;
elif PSTATE.EL == EL1 then
 UNDEFINED;
elif PSTATE.EL == EL2 then
 CNTVOFF = R[t2]:R[t];
elif PSTATE.EL == EL3 then
 CNTVOFF = R[t2]:R[t];
Part H
External Debug
Chapter H1

About External Debug

This chapter gives an overview of Armv8 external debug, and specifies the required debug authentication. It contains the following sections:

- Introduction to external debug on page H1-7010.
- External debug on page H1-7011.
- Required debug authentication on page H1-7012.

Note

For information about self-hosted debug, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32 Self-hosted Debug.
H1.1 Introduction to external debug

Armv8 supports both:

Self-hosted debug

The PE itself hosts a debugger. That is, developers developing software to run on the PE use debugger software running on the same PE.

External debug

The debugger is external to the PE. The debugging might be either on-chip, for example in a second PE, or off-chip, for example a JTAG debugger that accesses the chip through a Debug Access Port.

External debug is particularly useful for:

- Hardware bring-up. That is, debugging during development when a system is first powered up and not all of the software functionality is available.
- PEs that are deeply embedded inside systems.

To support external debug, the Arm architecture defines required features that are called *external debug features*.

Note

An external debugger has a potentially high level of control over and visibility into the PE. The system sets this level using debug authentication. See [Required debug authentication](#) on page H1-7012.

If the debug authentication level is set too low, agents may be able to bypass elements of the security and privilege models. This includes both off-chip agents and on-chip agents such as unprivileged or Non-secure software.

H1.1.1 Definition and constraints of a debugger in the context of external debug

When the description of external debug in this Part of the manual describes a *debugger* as controlling external debug this debugger might be a second on-chip PE or an off-chip device such as a JTAG debugger using a Debug Access Port (DAP).

If a Debug Access Port is implemented:

- When debug is prohibited at the Debug Access Port, the port must not generate accesses to the external debug interface of the PE.
- When Secure debug is prohibited at the Debug Access Port, the port must not generate Secure accesses to the external debug interface of the PE.
- When Secure accesses are allowed at the Debug Access Port, the port must be able to generate Secure accesses.

If FEAT_Debugv8p4 is not implemented, accesses to the PE are controlled by the external authentication interface functions, `ExternalInvasiveDebugEnabled()`, `ExternalNoninvasiveDebugEnabled()`, `ExternalSecureNoninvasiveDebugEnabled()` and `ExternalSecureInvasiveDebugEnabled()`. The external authentication interface functions override MDCR_EL3.{EPMAD, EDAD}.

If FEAT_TRF is implemented, the bus Requester, which may be the Debug Access Port, controls the accesses it makes to the PE and MDCR_EL3.{EPMAD, EDAD} control Non-secure access to registers.

The Debug Access Port is not required to use the same authentication interface as the PE.

Arm recommends the following authentication interface:

- When `ExternalSecureInvasiveDebugEnabled()== FALSE` at the PE, Secure debug is disabled at the DAP.
- When `ExternalInvasiveDebugEnabled()== FALSE` at the PE, all debug is prohibited at the DAP.
About External Debug

H1.2 External debug

Debug events allow an external debugger to halt the PE. Armv8 provides the following debug events:

- **Halting Step debug events on page H3-7056:**
 - The debugger can use this resource to make the PE step through code one line at a time.

- **Halt Instruction debug event on page H3-7066:**
 - This might occur when software executes the Halting breakpoint instruction, HLT.

- **Exception Catch debug event on page H3-7067:**
 - This can be programmed to occur on all entries to a given Exception level.

- **External Debug Request debug event on page H3-7071:**
 - An embedded cross-trigger can signal this debug event.

- **OS Unlock Catch debug event on page H3-7072:**
 - This might occur when the state of the OS Lock changes from locked to unlocked.

- **Reset Catch debug events on page H3-7073:**
 - This might occur when the PE exits reset state.

- **Software Access debug event on page H3-7074:**
 - This can be programmed to occur when software tries to access the Breakpoint Value registers, the Breakpoint Control registers, the Watchpoint value registers, or the Watchpoint Control registers. It caused a trap to Debug state.

Breakpoints and watchpoints can also halt the PE.

When the PE is in Debug state:

- It stops executing instructions from the location indicated by the program counter, and is instead controlled through the external debug interface.

- The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state:
 - The ITR contains a single register, EDITR, and associated flow-control flags.

- The Debug Communications Channel, DCC, passes data between the PE and the debugger:
 - The DCC includes the data transfer registers, DTRRX and DTRTX, and associated flow-control flags.
 - Although the DCC is an essential part of Debug state operation, it can also be used in Non-debug state.

- The PE cannot service any interrupts in Debug state.

Chapter H2 Debug State describes Debug state in more detail.
H1.3 Required debug authentication

Any implementation must provide the debug authentication defined in this section, that controls:

- Whether the PE can halt.
- Whether non-invasive debug is permitted.
- Some legacy aspects of the AArch32 self-hosted debug model.

The pseudocode functions shown in Table H1-1, and the conditions that follow that table, define the architectural requirements for debug authentication.

Table H1-1 Debug authentication functions

<table>
<thead>
<tr>
<th>Pseudocode function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExternalSecureNoninvasiveDebugEnabled()</td>
<td>Returns TRUE if Secure non-invasive debug is enabled.</td>
</tr>
<tr>
<td>AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()</td>
<td>Returns TRUE if Secure invasive self-hosted debug is enabled in AArch32 state.</td>
</tr>
<tr>
<td>ExternalSecureInvasiveDebugEnabled()</td>
<td>Returns TRUE if Secure invasive debug is enabled.</td>
</tr>
<tr>
<td>ExternalNoninvasiveDebugEnabled()</td>
<td>Returns TRUE if Non-secure non-invasive debug is enabled.</td>
</tr>
<tr>
<td>ExternalInvasiveDebugEnabled()</td>
<td>Returns TRUE if Non-secure invasive debug is enabled.</td>
</tr>
</tbody>
</table>

The following conditions always apply:

- If ExternalInvasiveDebugEnabled() is FALSE then ExternalSecureInvasiveDebugEnabled() is FALSE.
- If ExternalNoninvasiveDebugEnabled() is FALSE then ExternalSecureNoninvasiveDebugEnabled() is FALSE.
- If ExternalInvasiveDebugEnabled() is TRUE then ExternalNoninvasiveDebugEnabled() is TRUE.
- If ExternalSecureInvasiveDebugEnabled() is TRUE then ExternalSecureNoninvasiveDebugEnabled() is TRUE.

If FEAT_Debugv8p4 is implemented:

- ExternalNoninvasiveDebugEnabled() always returns TRUE.
- ExternalSecureNoninvasiveDebugEnabled() returns the same as ExternalSecureInvasiveDebugEnabled().

Arm recommends the use of the interface described in Recommended authentication interface on page K2-7989 to provide this debug authentication. The pseudocode functions in Chapter J1 Armv8 Pseudocode, that are linked to by the entries in the Pseudocode function column of Table H1-1, assume that this interface is implemented.
Chapter H2
Debug State

This chapter describes Debug state. It contains the following sections:

• About Debug state on page H2-7014.
• Halting the PE on debug events on page H2-7015.
• Entering Debug state on page H2-7021.
• Behavior in Debug state on page H2-7024.
• Exiting Debug state on page H2-7051.

——— Note ————
Table K15-1 on page K15-8160 disambiguates the general register references used in this chapter.
H2.1 About Debug state

In external debug, debug events allow an external debugger to halt the PE. The PE then enters Debug state. When the PE is in Debug state:

• It stops executing instructions from the location indicated by the program counter, and is instead controlled through the external debug interface.

• The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

• The Debug Communications Channel, DCC, passes data between the PE and the debugger.

The PE cannot service any interrupts in Debug state.
H2.2 Halting the PE on debug events

For details of debug events, see *Introduction to Halting debug events* on page H3-7054 and *Breakpoint and Watchpoint debug events* on page H2-7016.

On a debug event, the PE must do one of the following:

- Enter Debug state.
- Pend the debug event.
- Generate a debug exception.
- Ignore the debug event.

This behavior depends on both:

- Whether halting is allowed by the current state of the debug authentication interface. See *Halting allowed and halting prohibited*.

- The type of debug event and the programming of the debug control registers.
 - See *Halting debug events* for all Halting debug events.
 - See *Breakpoint and Watchpoint debug events* on page H2-7016 for Breakpoint and Watchpoint debug events.

See also *Other debug exceptions* on page H2-7016.

This means that behavior can be CONSTRAINED UNPREDICTABLE if the conditions change. See *Synchronization and Halting debug events* on page H3-7075.

Summary of debug events and possible outcomes on page H3-7054 summarizes the possible outcomes of each type of debug event.

H2.2.1 Halting allowed and halting prohibited

Halting can be either allowed or prohibited:

- Halting is always prohibited in Debug state.

- Halting is always prohibited when DoubleLockStatus() == TRUE.
 - This means that FEAT_DoubleLock is implemented and OS Double lock is locked.

- Halting is also controlled by the IMPLEMENTATION DEFINED authentication interface, and is prohibited when either:
 - The PE is in Non-secure state and ExternalInvasiveDebugEnabled() == FALSE.
 - The PE is in Secure state and ExternalSecureInvasiveDebugEnabled() == FALSE.

 Note
 See *Appendix K2 Recommended External Debug Interface* for more information on these functions.

- Otherwise, halting is allowed.

For more information see:

- *Pseudocode description of Halting on debug events* on page H2-7020
- *Required debug authentication* on page H1-7012.

H2.2.2 Halting debug events

The Halting debug events are described in *Chapter H3 Halting Debug Events*.

When a Halting debug event is generated, it causes entry to Debug state if all of:

- Halting is allowed. See *Halting allowed and halting prohibited*.
- The Halting debug event is one of:
 - A Halt Instruction debug event and EDSCR.HDE == 1.
A Software Access debug event and OSLSR_EL1.OSLK == 0, meaning that the OS Lock is unlocked.

Neither a Halt Instruction debug event nor a Software Access debug event.

Note

A Halt Instruction debug event is the only Halting debug event that relies on EDSCR.HDE == 1.

Halting on Breakpoint and Watchpoint debug events is also controlled by EDSCR.HDE. See Breakpoint and Watchpoint debug events.

EDSCR.HDE can be written by software when the OS Lock is locked. Privileged code can use MDCR_EL3.TDOSA and HDCR.TDOSA to trap writes to these registers.

If a Halting debug event does not generate entry to Debug state because the conditions listed in this section do not hold, then:

• If the Halting debug event is a Halt Instruction debug event, the instruction that generated the Halting debug event is treated as UNDEFINED.

• If the Halting debug event is an Exception Catch debug event or a Software Access debug event, it is ignored.

In all other cases the Halting debug event is pended, see Pending Halting debug events on page H3-7075.

Summary of actions from debug events on page H2-7019 summarizes the possible outcome for each type of Debug event.

Note

Halting debug events never generate debug exceptions.

H2.2.3 Breakpoint and Watchpoint debug events

A breakpoint or watchpoint generates an entry to Debug state if all of the following conditions hold:

• Halting debug is enabled, that is EDSCR.HDE == 1.

• Halting is allowed. See Halting allowed and halting prohibited on page H2-7015.

• The OS Lock is unlocked, that is OSLSR.OSLK == 0.

The Address Mismatch breakpoint type is reserved when all of these conditions are met.

MDSCR_EL1.MDE or DBGDSCRext.MDBGen is ignored when determining whether to enter Debug state. A breakpoint or watchpoint that generates entry to Debug state is a Breakpoint or Watchpoint debug event and does not generate a debug exception.

A breakpoint or watchpoint that does not generate an entry to Debug state either:

• Generates a Breakpoint or Watchpoint exception.

• Is ignored.

Note

EDSCR.HDE is ignored when determining whether to generate a debug exception. The debug exception is suppressed only if the PE enters Debug state. This means that the use of Halting debug mode in Non-secure state does not affect the Exception model in Secure state.

See Chapter D2 AArch64 Self-hosted Debug, Chapter G2 AArch32 Self-hosted Debug, and the Note in Other debug exceptions.

H2.2.4 Other debug exceptions

The following events never generate entry to Debug state:

• Breakpoint Instruction exceptions.

• Software Step exceptions.

• Vector Catch exceptions.
The behavior of these events is unchanged when Halting debug mode is enabled, that is when EDSCR.HDE == 1. This means that these events can do one of the following:

- They can generate a debug exception.
- They can be ignored.

For additional information, see Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32 Self-hosted Debug.

H2.2.5 Debug state entry and debug event prioritization

The following are synchronous debug events:

- Breakpoint debug event.
- Watchpoint debug event.
- Halting Step debug event.
- Halt Instruction debug event.
- Exception Catch debug event.
- Software Access debug event.
- Reset Catch debug event.

Each of these synchronous debug events are treated as a synchronous exception generated by an instruction, or by the taking of an exception or reset. That is, if halting is allowed, the synchronous debug event must be taken before any subsequent instructions are executed. Reset Catch debug events must be taken before the PE executes the instruction at the reset vector.

Note

- Reset Catch and Exception Catch debug events might be generated asynchronously, because they can result from an asynchronous exception. However, if halting is allowed after the reset or asynchronous exception has been processed, the Reset Catch or Exception Catch debug event is taken synchronously.

- The Halting Step debug event is generated by the instruction after the stepped instruction. Therefore, if the stepped instruction generates any other synchronous exceptions or debug events these are taken first.

If halting is prohibited then Halting Step debug events and Reset Catch debug events might be pended and taken asynchronously. OS Unlock Catch debug events are always pended and taken asynchronously. See Pending Halting debug events on page H3-7075.

The architecture does not define when asynchronous debug events are taken, and therefore the prioritization of asynchronous debug events is IMPLEMENTATION DEFINED. See Synchronization and Halting debug events on page H3-7075.

The following list shows how the synchronous debug events are prioritized, with 1 being the highest priority.

Note

The priority numbering is the same as the numbering for AArch64 synchronous exception priorities listed in Synchronous exception types, routing and priorities on page D1-2348, and in particular Prioritization and recognition of interrupts on page D1-2365. This numbering correlates with the equivalent AArch32 list in Exception prioritization for exceptions taken to AArch32 state on page G1-5746.

The priority for synchronous debug events is as follows:

1. Reset Catch debug event. See Reset Catch debug events on page H3-7073. This debug event has a higher priority than the synchronous exceptions listed in Synchronous exception types, routing and priorities on page D1-2348.

2. Exception Catch debug event. See Exception Catch debug event on page H3-7067. This debug event can be assigned one of two priorities. When it has a priority of 2, it has a higher priority than the synchronous exceptions listed in the Exception model. See Exception Catch debug event on page H3-7067.
Halting Step debug event. See Halting Step debug events on page H3-7056.
This debug event has a higher priority than the synchronous exceptions listed in the Exception model.

This event is not a debug event.

Exception Catch debug event. See Exception Catch debug event on page H3-7067.
This debug event can be assigned one of two priorities, 0 or 5. See Exception Catch debug event on page H3-7067.

These events are not debug events.

Breakpoint exception or debug event or Address Matching Vector Catch exception. See Breakpoint exceptions on page D2-2433, and Vector Catch exceptions on page G2-5909.
These two debug events have the same priority.

This event is not a debug event.

Halt Instruction debug event. See Halt Instruction debug event on page H3-7066.

These events are not debug events.

Software Access debug event. See Software Access debug event on page H3-7074.

These events are not debug events.

Watchpoint exception or debug event. See Watchpoint exceptions on page D2-2451 for exceptions taken from AArch64 state, or Watchpoint exceptions on page G2-5895 for exceptions taken from AArch32 state.

This event is not a debug event.

For Reset Catch debug events and Halting Step debug events the priorities listed in this section only apply when halting is allowed at the time the event is generated. This means that the event is taken synchronously and not pended.

For more information on the prioritization of exceptions see:
• Synchronous exception types, routing and priorities on page D1-2348.
• Prioritization and recognition of interrupts on page D1-2365.
• Exception prioritization for exceptions taken to AArch32 state on page G1-5746. This section covers synchronous and asynchronous exceptions.

Breakpoint debug events and Vector Catch exception

An Address Matching Vector Catch exception has the same priority as a Breakpoint debug event. See Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349.

The prioritization of these events is unchanged even if the breakpoint generates entry to Debug state instead of a Breakpoint exception. This means that if a single instruction generates both an Address Matching Vector Catch exception and a Breakpoint debug event, there is a CONSTRAINED UNPREDICTABLE choice of:
• The PE entering Debug state due to the Breakpoint debug event.
• A Vector Catch exception.

This only applies if all of the following are true:
• Halting debug is enabled.
• Halting is allowed.
• The OS Lock is unlocked.

An Exception Trapping Vector Catch exception must be generated immediately following the exception that generated it. This means that it does not appear in the priority table.
H2.2.6 Imprecise entry to Debug state

Entry to Debug state is normally precise, meaning that the PE cannot enter Debug state if it can neither complete nor abandon all currently executing instructions and leave the PE in a precise state.

A debugger can write a value of 1 to EDRCR.CBRRQ to allow imprecise entry to Debug state. An External Debug Request debug event must be pending before writing 1 to this bit. Support for this feature is OPTIONAL and it is IMPLEMENTATION DEFINED when it is effective at forcing entry to Debug state.

The PE ignores writes to this bit if either:

- External debugging is not enabled, meaning ExternalInvasiveDebugEnabled() == FALSE.
- Secure external debugging is not enabled, meaning ExternalSecureInvasiveDebugEnabled() == FALSE, and either:
 - EL3 is not implemented and the implemented Security state is Secure state.
 - EL3 is implemented.

Example H2-1 shows how entry to Debug state can be forced.

Example H2-1 Forcing entry to Debug state

The debugger pends an External Debug Request debug event through the CTI to halt a program that has stopped responding. However, the memory system is not responding and a memory access instruction cannot complete. This means that Debug state cannot be entered precisely. The debugger writes a value of 1 to EDRCR.CBRRQ. The PE cancels all outstanding memory accesses and enters Debug state. As some instructions might not have completed correctly, entry to Debug state is imprecise.

When Debug state is entered imprecisely, all memory access instructions executed through the ITR have CONSTRAINED UNPREDICTABLE behavior. The value of all registers is UNKNOWN, but might be useful for diagnostic purposes.

H2.2.7 Summary of actions from debug events

Table H2-1 on page H2-7020 shows the Software and Halting debug events. In Table H2-1 on page H2-7020 the columns have the following meaning:

Debug event type

This means the type of debug event where:

<table>
<thead>
<tr>
<th>Other software</th>
<th>Other Halting</th>
</tr>
</thead>
<tbody>
<tr>
<td>This means one of:</td>
<td>This means one of the following:</td>
</tr>
<tr>
<td>Software Step exceptions on page D2-2466.</td>
<td>Halting Step debug events on page H3-7056.</td>
</tr>
<tr>
<td>Breakpoint Instruction exceptions on page D2-2431.</td>
<td>External Debug Request debug event on page H3-7071.</td>
</tr>
<tr>
<td>Vector Catch exceptions on page D2-2465 for AArch64 state or Vector Catch exceptions on page G2-5909 for AArch32 state.</td>
<td>Reset Catch debug events on page H3-7073.</td>
</tr>
</tbody>
</table>

Other debug events are referred to explicitly.

Authentication

This means halting is allowed by the IMPLEMENTATION DEFINED external authentication interface. It is the result of one of the following pseudocode functions:

- In Secure state ExternalSecureInvasiveDebugEnabled().
In Non-secure state ExternalInvasiveDebugEnabled().

DLK This indicates whether FEAT_DoubleLock is implemented and locked, DoubleLockStatus() == TRUE.

OSLK This is the value of OSLSR.OSLK. It indicates whether the OS Lock is locked.

HDE This is the value of EDSCR.HDE. It indicates whether Halting debug is enabled.

The letter X in Table H2-1 indicates that the value can be either 0 or 1.

<table>
<thead>
<tr>
<th>Debug event type</th>
<th>Authentication</th>
<th>DLK</th>
<th>OSLK</th>
<th>HDE</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other software</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Handled by the Exception model</td>
</tr>
<tr>
<td>Breakpoint or Watchpoint debug event</td>
<td>X</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td>Handled by the Exception model (ignored)</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>FALSE</td>
<td>1</td>
<td>X</td>
<td>Handled by the Exception model (ignored)</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>0</td>
<td>X</td>
<td></td>
<td>Handled by the Exception model</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Handled by the Exception model</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>0</td>
<td>1</td>
<td></td>
<td>Entry to Debug state</td>
</tr>
<tr>
<td>Halt Instruction debug event</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>undefined</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>undefined</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>X</td>
<td>0</td>
<td></td>
<td>undefined</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>X</td>
<td>1</td>
<td></td>
<td>Entry to Debug state</td>
</tr>
<tr>
<td>Exception Catch debug event</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ignored</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Ignored</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Entry to Debug state</td>
</tr>
<tr>
<td>Software Access debug event</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ignored</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Ignored</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>1</td>
<td>X</td>
<td></td>
<td>Ignored</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>0</td>
<td>X</td>
<td></td>
<td>Entry to Debug state</td>
</tr>
<tr>
<td>Other Halting</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Debug event is pended</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Debug event is pended</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Entry to Debug state</td>
</tr>
</tbody>
</table>

H2.2.8 Pseudocode description of Halting on debug events

The Halted(), Restarting(), HaltingAllowed(), and HaltOnBreakpointOrWatchpoint() functions are described in the Armv8 pseudocode.
H2.3 Entering Debug state

On entry to Debug state, the preferred restart address and PSTATE are saved in DLR and DSPSR. The PE remains in the mode and security state from which it entered Debug state.

If EDRCR.CBRRQ has a value of 0, entry to Debug state is precise. If EDRCR.CBRRQ has a value of 1, then imprecise entry to Debug state is permitted.

If a Watchpoint debug event causes an entry to Debug state, the address of the access that generated the Watchpoint debug event is recorded in EDWAR.

For more information see:

* Determining the memory location that caused a Watchpoint exception on page D2-2459 for a debug event taken from AArch64 state.
* Determining the memory location that caused a Watchpoint exception on page G2-5902 for a debug event taken from AArch32 state.

Other than the effect on PSTATE and EDSCR, entry to Debug state is not a Context synchronization event. The effects of entry to Debug state on PSTATE and EDSCR are synchronized.

H2.3.1 Entering Debug state from AArch32 state

When entering Debug state from AArch32 state, the PE remains in AArch32 state. In AArch32 Debug state the PE executes T32 instructions, regardless of the value of PSTATE.T before entering Debug state.

To allow the debugger to determine the state of the PE, the current Execution state for all four Exception levels can be read from EDSCR.RW, and the current Exception level can be read from EDSCR.EL.

The current endianness state, PSTATE.E, is unchanged on entry to Debug state.

Note

* If EL1 is using AArch32 state, the current endianness state can differ from that indicated by SCTLR.EE.
* If EL2 is using AArch32 state, the current endianness state can differ from that indicated by HSCTLR.EE.
* On entry to Debug state from AArch32 state, PSTATE.SS is copied to DSPSR.SS, even though the PE remains in AArch32 state.

See also Effect of entering Debug state on PSTATE on page H2-7023.

H2.3.2 Effect of Debug state entry on DLR and DSPSR

DLR is set to the preferred restart address for the debug event, that depends on the event type. The value of PSTATE is saved in DSPSR.

For entry to Debug state from AArch32 state, the values saved in DSPSR.IT are always correct for the preferred restart address.

For synchronous Halting debug events, the preferred restart address is the address of the instruction that generated the debug event. It is CONSTRAINED UNPREDICTABLE whether DSPSR_EL0.BTYPE is set to the value of PSTATE.BTYPE or 0 for synchronous debug events other than the following debug events:

* A Halting Step debug event.
* A Breakpoint debug event.
* A Halt Instruction debug event.

For asynchronous Halting debug events, including pending Halting debug events taken asynchronously, the preferred restart address is the address of the first instruction that must be executed on exit from Debug state.
This means that:

- For Breakpoint and Watchpoint debug events, the preferred restart address is the same as the preferred return address for a debug exception, as described in Chapter D2 AArch64 Self-hosted Debug and Chapter G2 AArch32 Self-hosted Debug.

- For Halt Instruction debug events, DLR is set to the address of the HLT instruction and DSPSR.IT is correct for the HLT instruction.

- For Software Access debug events, DLR is set to the address of the accessing instruction and DSPSR.IT is correct for this instruction.

- For Halting Step debug events taken synchronously, DLR and DSPSR are set as the ELR and SPSR would be set for a Software Step exception. This is usually the address of, and PSTATE for, the instruction after the one that was stepped.

- For Exception Catch debug events:
 - If the debug event is generated on taking an exception to a trapped Exception level, the DLR is set to the address of the exception vector the PE would have started fetching from. This is UNKNOWN if the VBAR for the Exception level has never been initialized. The DSPSR records the value of PSTATE after taking the exception. The Exception Catch occurs after the SPSR and the Link register are set, and the debugger can use these registers to determine where in the application program the exception occurred.

 ______ Note ______

 Depending on the target Exception level and Execution state for the exception, the Link register is one of ELR_EL1, ELR_EL2, ELR_EL3, ELR_hyp, or LR (R14).

 — If the debug event is generated on an exception return to a trapped Exception level, the DLR is set to the target address of the exception return and the DSPSR records the value of PSTATE after the exception return.

- Reset Catch debug events taken synchronously behave like Exception Catch debug events.

- For Reset Catch debug events and Exception Catch debug events generated on reset to a trapped Exception level, the DLR is set to the reset address and the DSPSR records the reset value of PSTATE.

- For pending Halting debug events and External Debug Request debug events, DLR is set to the address of the first instruction that must be executed on exit from Debug state and DSPSR.IT is correct for this instruction. See Pending Halting debug events on page H3-7075.

Normally DLR is aligned according to the instruction set state indicated in DSPSR. However, a debug event might be taken at a point where the PC is not aligned.

H2.3.3 Effect of Debug state entry on System registers, the Event register, and Exclusives monitors

Entering Debug state has no effect on System registers other than DLR and DSPSR. In particular, ESRs, FARs, and FSRs are not updated on entering Debug state. SCR is unchanged, even when entering Debug state from EL3.

Entering Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors.

______ Note ______

Entry to Debug state might set the Event Register or clear the Exclusives monitors, or both. However, this is not a requirement, and debuggers must not rely on any implementation specific behavior.

Unless otherwise described in this reference manual, instructions executed in Debug state have their architecturally-defined effects on the System registers, the Event register, and Exclusives monitors.
H2.3.4 Effect of entering Debug state on PSTATE

The effect of an entry to Debug state on PSTATE is described in *Entering Debug state* on page H2-7021 and *Entering Debug state from AArch32 state* on page H2-7021.

On entry to Debug state after PSTATE is saved in DSPSR:

- PSTATE.IL is cleared to 0.
- PSTATE.TCO is set to 1.
- PSTATE.BTYPE is set to 0.
- PSTATE.{IT, T, SS, D, A, I, F, SSBS} are set to UNKNOWN values.

PSTATE.{N, Z, C, V , Q, GE, E, M, nRW, EL, SP, PAN, UAO, DIT} are unchanged.

For more information see *PSTATE in Debug state* on page H2-7024.

H2.3.5 Entering Debug state during loads and stores

The PE can enter Debug state during instructions that perform a sequence of memory accesses, as opposed to a single single-copy atomic access, because of a Watchpoint debug event. The effect of entering Debug state on such an instruction is the same as taking a Data Abort exception during such an instruction.

In addition, when executing in AArch64 state, the PE can enter Debug state during instructions that perform a sequence of memory accesses because of an External Debug Request debug event. The effect of entering Debug state on such an instruction is the same as taking an interrupt exception during such an instruction.

This applies to all memory types.

H2.3.6 Entering Debug state and Software Step

When Software Step is active, a debug event that causes entry to Debug state behaves like an exception taken to an Exception level above the debug target Exception level. That is:

- If the instruction that is stepped generates a synchronous debug event that causes entry to Debug state, or an asynchronous debug event is taken before the step completes, the PE enters Debug state with DSPSR.SS set to 1.
- A pending Halting debug event or an asynchronous debug event can be taken after the step has completed. In this case the PE enters Debug state with DSPSR.SS set to 0.

In addition:

- If the instruction that is stepped generates an exception trapped by an Exception Catch debug event, the PE enters Debug state at the exception vector with DSPSR.SS set to 0. This is because PSTATE.SS is set to 0 by taking the exception.
- If the PE is reset, PSTATE.SS is reset to 0. If the following debug events are enabled, the PE enters Debug state with DSPSR.SS set to 0:
 - Reset Catch debug event at the reset Exception level.
 - Exception Catch debug event at the reset Exception level.
 - Halting Step debug event.
- If Halting Step is also active, then Halting Step and Software Step operate in parallel and can both become active-pending. In this case Halting step has a higher priority than Software step. This means that the PE enters Debug state and DSPSR.SS is set to 0.

H2.3.7 Pseudocode description of entering Debug state

The Debug\texttt{halt} constants are described in *shared/debug/halting/DebugHalt* on page J1-7823 in the Armv8 pseudocode. The \texttt{UpdateEDSCRFields()} and \texttt{Halt()} functions are described in *Chapter J1 Armv8 Pseudocode*.
H2.4 Behavior in Debug state

Instructions are executed in Debug state from the Instruction Transfer Register, ITR. The debugger controls which instructions are executed in Debug state by writing the instructions to the External Debug Instruction Transfer register, EDITR. The Execution state of the PE determines which instruction set is executed:

- If the PE is in AArch64 state it executes A64 instructions.
- If the PE is in AArch32 state it executes T32 instructions:
 - For a 32-bit T32 instruction, EDITR[15:0] specifies the first halfword and EDITR[31:16] specifies the second halfword.
 - For a 16-bit T32 instruction, EDITR[15:0] contains the instruction and EDITR[31:16] is ignored. All 16-bit T32 instructions are UNPREDICTABLE in Debug state.

The PE does not execute A32 instructions in Debug state.

Some instructions are available only in Debug state. See Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7042. In Non-debug state these instructions are UNDEFINED.

The following sections describe behavior in Debug state:

- PSTATE in Debug state.
- Executing instructions in Debug state on page H2-7025.
- Decode tables on page H2-7037.
- Security in Debug state on page H2-7041.
- Privilege in Debug state on page H2-7042.
- Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7042.
- Exceptions in Debug state on page H2-7045.
- Accessing registers in Debug state on page H2-7047.
- Accessing memory in Debug state on page H2-7050.

This section specifies the CONSTRAINED UNPREDICTABLE behaviors that apply in Debug state, but see Changing the value of EDECR.SS when not in Debug state on page H3-7063 for a change in Non-debug state that causes CONSTRAINED UNPREDICTABLE behavior.

H2.4.1 PSTATE in Debug state

PSTATE.{N, Z, C, V, Q, GE, IT, T, SS, D, A, I, F, SSBS} are all ignored in Debug state:

- There are no conditional instructions in Debug state.
- In AArch32 state, the PE only executes T32 instructions and PSTATE.IT is ignored.
- Asynchronous exceptions and debug events are ignored.
- Software step is inactive.

Instructions executed in Debug state indirectly read PSTATE.{UAO, PAN, IL, E, M, nRW, EL, SP} as they would in Non-debug state.

——— Note ————

PSTATE.DIT is not guaranteed to have any effect in Debug state.

In Debug state:

- PSTATE.PAN is set to 1 by:
 - A DCPS instruction to EL1 using AArch64 if SCTLR_EL1.SPAN == 0.
 - A DCPS instruction to EL2 using AArch64 if SCTLR_EL2.SPAN == 0.
- PSTATE.UAO is set to 0 by a DCPS instruction to AArch64 state.
- PSTATE.TCO is set to 1 by a DCPS instruction to AArch64 state.
- PSTATE can also be changed by taking exceptions in Debug state, and by the execution of DCPS and DRPS instructions.

When in Debug state, if FEAT_SSBS is implemented, then hardware is permitted to load or store speculatively, regardless of the value of PSTATE.SSBS.
Executing instructions in Debug state

The instructions executed in Debug state must be either A64 instructions or T32 instructions, depending on the current Execution state.

Each instruction falls into one of the following groups:

- **Debug state instructions.** These are instructions that are changed in Debug state. See *A64 instructions that are changed in Debug state* and *T32 instructions that are changed in Debug state* on page H2-7031.

- **Instructions that are unchanged in Debug state.** See *A64 instructions that are unchanged in Debug state* and *T32 instructions that are unchanged in Debug state* on page H2-7032.

- **Instructions that are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Debug state.** See *A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state* on page H2-7028 and *T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state* on page H2-7034.

All T32 instructions are treated as unconditional, regardless of PSTATE.IT. See *PSTATE in Debug state* on page H2-7024.

If EDSCR.SDD == 1 then an instruction executed in Non-secure state cannot cause entry into Secure state. See *Security in Debug state* on page H2-7041

Executing A64 instructions in Debug state

The following sections describe the behavior of the A64 instructions in Debug state:

- *A64 instructions that are changed in Debug state.*
- *A64 instructions that are unchanged in Debug state.*
- *A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state* on page H2-7028.

A64 instructions that are changed in Debug state

The following A64 instructions are defined in Debug state, but are undefined in Non-debug state:

- DCPS.

 Note

 DCPS can be UNDEFINED in certain conditions in Debug state. See *DCPS<n>* on page H2-7042.

- DRPS.
- MSR (DLR_EL0), MSR (DSPSR_EL0), MSR (DLR_EL0), MSR (DSPSR_EL0)

For more information see *Debug state operations, DCPS, DRPS, MRS, MSR* on page H2-7042.

A64 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state:

Any instruction that is UNDEFINED in Non-debug state

This list of instructions excludes:

- Any instruction listed in *A64 instructions that are changed in Debug state.*
- Any instruction listed in *A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state* on page H2-7028 that is UNDEFINED because an enable or disable bit is not RES0 or RES1

Instructions that move System or Special-purpose registers to or from a general-purpose register

This list of instructions:

- Includes the instructions to transfer a general-purpose register to or from the DTR, which can be executed at any Exception level.
- Excludes PSTATE access instructions.
These instructions are:

- `MRS <special_reg>, MSR <special_reg>.

--- Note ---

This does not include NZCV, DAIF, DAIFSet, DAIFClr, SPSel, CurrentEL, PAN, UAO, DIT, and TCO.

- `MRS <system_reg>, MSR <system_reg>.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:

- `FMOV` (between a general-purpose register and a half-precision register).
- `FMOV` (between a general-purpose register and a single-precision register).
- `FMOV` (between a general-purpose register and a double-precision register).
- `FMOV` (between a general-purpose register and a SIMD element).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:

- `INS` (from a general-purpose register to a SIMD element).
- `UMOV` (from a SIMD element to a general-purpose register).

Barriers

These instructions are:

- `DMB`.
- `DSB`.
- `ESB`, when the The Reliability, Availability, and Serviceability Extension is implemented.
- `ISB`.
- `PSB`, when the Statistical Profiling Extension is implemented.
- `SB`, when FEAT_SB is implemented.
- `CSDB`, when FEAT_SSBS is implemented.
- `SSBB`, when FEAT_SSBS is implemented.
- `PSSBB`, when FEAT_SSBS is implemented.

Memory access instructions at various access sizes

The following constraints apply:

- General purpose-registers only.
- One of the following addressing modes:
 - Unscaled (9-bit signed) immediate offset.
 - Immediate (9-bit signed) post-indexed.
 - Immediate (9-bit signed) pre-indexed.
 - Unprivileged (9-bit signed).
- Not literal.
- One of the following types:
 - (Single) register.
 - Exclusive.
 - Exclusive pair.
 - Acquire/Release.
 - Acquire/Release Exclusive.
 - Acquire/Release Exclusive pair.
- 32-bit and 64-bit target register variants.

These instructions are:

- `LDR, LDRB, LDRH, LDRSB, LDRSH, LDRSW` (immediate, not literal).
- `LDUR, LDURB, LDURH, LDURSB, LDURSH, LDURSW` (immediate).
• LDTR, LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW (immediate).
• LDAR, LDARB, LDARH, LDXR, LDXRB, LDXRH, LDAXR, LDAXRB, LDAXXR.
• LDXP, LDXTP.
• STR, STRB, STRH (immediate).
• STUR, STURB, STURH (immediate).
• STTR, STTRB, STTRH (immediate).
• STL, STLX, STXR, STLXR, STLXRH.
• STXP, STLXP.

• LDAR, LDLAR, LDLARH - Armv8.1 instructions.
• STLL, STLLRBB, STLLRH - Armv8.1 instructions.
• CAS, CASB, CASH, CASP - Armv8.1 instructions.
• SWP, SWPB, SWPH - Armv8.1 instructions.
• LDADD, LDADDB, LDADDH - Armv8.1 instructions.
• LDCLR, LDCLB, LDCLRH - Armv8.1 instructions.
• LDEOR, LDEORB, LDEORH - Armv8.1 instructions.
• LDSET, LDSETB, LDSETH - Armv8.1 instructions.
• LDSMAX, LDSMAXB, LDSMAXH - Armv8.1 instructions.
• LDSMIN, LDSMINB, LDSMINH - Armv8.1 instructions.
• LDUMAX, LDUMAXB, LDUMAXH - Armv8.1 instructions.
• LDUMIN, LDUMINB, LDUMINH - Armv8.1 instructions.
• STADD, STADDB, STADDH - Armv8.1 instructions.
• STCLR, STCLB, STCLRH - Armv8.1 instructions.
• STEOR, STEORB, STEORH - Armv8.1 instructions.

Move immediato to general-purpose register

These instructions are:
• MOVZ, MOVN, MOVK (immediate).
• MOV (between a general-purpose register and the stack pointer).

System instructions, Send Event, NOP, Clear Exclusive, and Prediction

In this context, the System instructions are the Cache maintenance instructions, TLB maintenance instructions, Address translation instructions, and the prediction restriction instructions.

These instructions are:
• IC.
• DC.
• TLBI.
• AT.
• SEV, SEVL.
• NOP.
• CLREX.
• CFP.
• CPP.
• DVP.
Basic pointer authentication instructions

When FEAT_PAuth is implemented, these instructions are:

- AUTIA, AUTIA1716, AUTIASP, AUTI AZ, AUTIZ.
- AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB.
- AUTDA, AUTDAZ.
- AUTDB, AUTDBZ.
- PACIA, PACIA1716, PACIASP, PACI AZ, PACIZA.
- PACIB, PACIB1716, PACIBSP, PACI BZ, PACIBZ.
- PACDA, PACDZA.
- PACDB, PACDDB.
- PACGA.
- XPACD, XPACI, XPACLRI.

Memory Tagging Extension Instructions

When FEAT_MTE is implemented:

- Loads and stores in Debug state follow the same rules for Tag Checking as loads and stores when not in Debug state.
- If Memory-access mode is enabled and PSTATE.TCO is 0, reads and writes to the external debug interface DTR registers are CONSTRAINED UNPREDICTABLE, with the following permitted behaviors:
 — The PE behaves as if PSTATE.TCO is 0. That is, the load or store operation performs the tag check if required.
 — The PE behaves as if PSTATE.TCO is 1. That is, the load or store operation does not perform the tag check.

For more information see Chapter D6 Memory Tagging Extension.

The following instructions are unchanged in Debug state:

- ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>
- SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>
- STG <Xt>, [<Xn|SP>{, #<simm>}], signed offset.
- STZG <Xt>, [<Xn|SP>{, #<simm>}], signed offset.
- ST2G <Xt>, [<Xn|SP>{, #<simm>}], signed offset.
- STZ2G <Xt>, [<Xn|SP>{, #<simm>}], signed offset.
- LDG <Xt>, [<Xn|SP>{, #<simm>}]
- LDGM <Xt>, [<Xn|SP>]
- STGM <Xt>, [<Xn|SP>]
- STZGM <Xt>, [<Xn|SP>]
- STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

A64 instructions that are CONSTRAINED UNPREDICTABLE in Debug state

This subsection describes all instruction not listed in either:

- A64 instructions that are changed in Debug state on page H2-7025.
- A64 instructions that are unchanged in Debug state on page H2-7025.

These instructions are CONSTRAINED UNPREDICTABLE in Debug state. In general, the permissible behaviors are:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.
- If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next instruction, it sets DLR_EL0 and DSPSR_EL0 to UNKNOWN values.
• If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.

• The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for A64 instruction in Debug state. An instruction might appear multiple times in the list, in which case the choice of permissible behaviors is any of those listed. An example of this is CMP.

Exception-generating instructions

These instructions are:

- SVC.
- HVC.
- SMC.
- BRK.
- HLT.

These instructions behave in one of the following ways:

- They are **UNDEFINED**.
- They execute as a **NOP**.
- SVC behaves as DCP1.
- HVC behaves as DCP2.
- SMC behaves as DCP3.
- They generate the exception that the instruction would generate in Non-debug state. The exception is taken as described in *Exceptions in Debug state on page H2-7045*

--- **Note**

SMC must not generate a Secure Monitor Call exception from Non-secure state if EDSR .SDD is set to 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

- B, B.cond, BL, BLR, BR, CBZ, CBNZ, RET, TBZ, TBNZ.

These instructions behave in one of the following ways:

- They are **UNDEFINED**.
- They execute as a **NOP**.
- They execute as in Non-debug state without branching and set DSPSR_EL0 and DLR_EL0 to **UNKNOWN** values.

Exception return and related instructions

These instructions are:

- ERET.

These instructions behave in one of the following ways:

- They are **UNDEFINED**.
- They execute as a **NOP**.
- They execute as in Non-debug state without branching. They set DSPSR_EL0 and DLR_EL0 to **UNKNOWN** values, and either:
 - Execute the DRPS operation instead of performing an exception return, using **UNKNOWN** SPSR values.
 - Not change the Exception level.

Instructions that request entry to a low-power state

These instructions are:

- WFE, WFI.
These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They generate a synchronous exception if the corresponding instruction would be trapped in Non-debug state. See Configurable instruction enables and disables, and trap controls on page D1-2367.
- A WFE instruction clears the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

- LDR (literal), LDRSW (literal).
- ADR, ADRP.
- PRFM (literal).

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state, using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and DRPS

These instructions are:

- ADDS, SUBS, ADCS, SBCS, ANDS, BICS, COMN, COMP.
- FCMP, FCMP.E, FCMP.F, FCMP.E.
- MSR DAIFSet (immediate), MSR DAIFClr (immediate), MSR SPSEL (immediate).
- MSR NZCV (register), MSR DAIF (register), MSR SPSEL (register).
- When FEAT_PAN is implemented, MSR PAN (immediate) and MSR PAN (register).
- When FEAT_UAO is implemented, MSR UAO (immediate) and MSR UAO (register).
- When FEAT_FlagM is implemented, CFIN1, RMIF, SETF8, SETF16.
- When FEAT_DIT is implemented, MSR DIT.
- When FEAT_FlagM2 is implemented, AXFLAG and XAFLAG.
- When FEAT_MTE is implemented, MSR TCO.
- When FEAT_RNG is implemented, MRS RDR and MRS RDRRS.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state, setting DSPSR_EL0 and DLR_EL0 to UNKNOWN values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

- CSEL, CSINC, CSINV, CSNEG, COMN, COMP, FCSEL, FCMP, FCMP.E.
- ADC, ADCS, SBC, SBCS.
- CFIN1.
- MRS NZCV, MRS DAIF, MRS SPSEL, MRS CurrentEL.
- When FEAT_PAN is implemented, MRS PAN.
- When FEAT_UAO is implemented, MRS UAO.
- When FEAT_FlagM is implemented, CFIN1.
- When FEAT_DIT is implemented, MRS DIT.
- When FEAT_MTE is implemented MRS TCO.
These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state:
 - For the conditional operations and those using the PSTATE.C flag as an input, these instructions use an UNKNOWN value for the Condition flag.
 - For the MRS instruction, they return an UNKNOWN value.

Hint instructions

These instructions are:

- When FEAT_DGH is implemented, DGH.

These instructions behave in one of the following ways:

- They execute as a NOP.
- They execute as in Non-debug state.

All other instructions

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state.

--- **Note** ---

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Non-debug state. These instructions are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Debug state.

Executing T32 instructions in Debug state

The following sections describe the behavior of the T32 instructions in Debug state:

- T32 instructions that are changed in Debug state.
- T32 instructions that are unchanged in Debug state on page H2-7032.
- T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state on page H2-7034.

T32 instructions that are changed in Debug state

The following T32 instructions are defined in Debug state, but are undefined in Non-debug state:

- **DCPS**

 --- **Note** ---

 DCPS can be UNDEFINED in certain conditions in Debug state. See DCPS<n> on page H2-7042.

- **MRC p15,3,<Rt>,c4,c5,0 (DSPSR).**
- **MCR p15,3,<Rt>,c4,c5,0 (DSPSR).**
- **MRC p15,3,<Rt>,c4,c5,1 (DLR).**
- **MCR p15,3,<Rt>,c4,c5,1 (DLR).**

In addition, ERET executes the DRPS operation in Debug state.

For more information see Debug state operations, DCPS, DRPS, MRS, MSR on page H2-7042.

T32 instructions that are unchanged in Debug state

The following list shows the instructions that are unchanged in Debug state. Any T32 instruction that uses the PC or APSR, {N, Z, C, V} as the source or destination register is not included in the list. Moreover, the list only includes the 32-bit T32 encodings.

Any instruction that is UNDEFINED in Non-debug state

The list of instructions:
- Excludes any instruction listed in [T32 instructions that are changed in Debug state](#).
- Excludes any instruction listed in [T32 instructions that are CONSTRAINED UNPREDICTABLE in Debug state](#) that is UNDEFINED because an enable or disable bit is not RES0 or RES1.

Instructions that move System or Special-purpose registers to or from a general-purpose register

The list of instructions:
- Includes the instructions to transfer a general-purpose register to or from the DTR, which can be executed at any Exception level.
- Excludes APSR and CPSR access instructions.
- Excludes instructions for accessing banked registers for the current mode.

These instructions are:
- `MRS <banked_reg>, MSR <banked_reg>`.
 — **Note**
 This does not apply to cases which are UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Non-debug state in the current mode.
- `MRC, MCR`.
 — **Note**
 This includes all allocated System registers in the (cproc==0b111x) encoding space other than an MRC move to APSR_nzcv.
- `MRS SPSR, MSR SPSR`.
- `VMRS <vfp_system_reg>, VMSR <vfp_system_reg>`.
 — **Note**
 This includes all allocated Advanced SIMD and floating-point System registers, other than an a VMRS move to APSR_nzcv.

Floating-point moves between a SIMD&FP register and a general-purpose register

These instructions are:
- `VMOV` (between a general-purpose register and a single-precision register).
- `VMOV` (between a general-purpose register and a doubleword floating-point register).

SIMD moves between a SIMD&FP register and a general-purpose register

These instructions are:
- `VMOV` (between a general-purpose register and a scalar).

Barriers

These instructions are:
- `CSDB`, when [FEAT_SSBS](#) is implemented.
- `DMB`.
- `DSB`.
- `ESB`, when the [The Reliability, Availability, and Serviceability Extension](#) is implemented.
• ISB.
• PSSBB, when FEAT_SSBS is implemented.
• SB, when FEAT_SB is implemented.
• SSBB, when FEAT_SSBS is implemented.

Memory access instructions at various access sizes

The following constraints apply:
• General purpose-registers only.
• One of the following addressing modes:
 — Immediate (8-bit or 12-bit) offset.
 — Immediate (8-bit) post-indexed.
 — Immediate (8-bit) pre-indexed.
 — Unprivileged (8-bit).
• Not literal.
• One of the following types:
 — (Single) register.
 — Dual.
 — Exclusive.
 — Exclusive doubleword.
 — Acquire/Release.
 — Acquire/Release Exclusive.
 — Acquire/Release Exclusive doubleword.

These instructions are:
• LDR.W, LDRB.W, LDRH.W, LDRD, LDRSB.W, LDRSH.W (immediate, not literal).
• LDRT, LDRBT, LDRHT, LDRSBT, LDRSHT (immediate).
• LDREX, LDREXB, LDREXH, LDA, LDAB, LDAH, LDAEX, LDAEXB, LDAEXH.
• LDREXD, LDAEXD.
• STR.W, STRB.W, STRH.W, STRD (immediate).
• STRT, STRBT, STRHT (immediate).
• STREX, STREXB, STREXH, STL, STLB, STLH, STLEX, STLEXB, STLEXH.
• STREXD, STLEXD.

Move to general-purpose register

These instructions are:
• MOVW, MOV (immediate).

System instructions, Send Event, NOP, and Clear Exclusive

The System instructions are Cache maintenance instructions, TLB maintenance instructions, and Address translation instructions. These are encoded in the (coproc==0b1111) System register encoding space.

These instructions are:
• ICIAALLU, ICIAALLUIS, ICIMVAU.
• DCCIMVAC, DCCISW, DCCMVAC, DCCMVAU, DCCSW, DCIMVAC, DCISW.
• TLBIALLLH, TLBIALLHIS, TLBIALLIS, TLBIALNSNH, TLBIALNSNHIS, TLBIASSID, TLBIASSIDIS, TLBIIIPAS2, TLBIIIPAS2IS, TLBIIIPAS2L, TLBIIIPAS2LIS, TLBIMVA, TLBIMVAA, TLBIMVAAIS, TLBIMVAAL, TLBIMVAALIS, TLBIMVAH, TLBIMVAHS, TLBIMVAIS, TLBIMVAAL, TLBIMVAALH, TLBIMVAALHIS, TLBIMVALIS.
• ATS12NSOPR, ATS12NSOPW, ATS12NSOUR, ATS12NSOURW, ATS1CPR, ATS1CPW, ATS1CUR, ATS1CUW, ATS1HR, ATS1HW.
• BPIALL, BPIALLIS, BPIMVA.
T32 instructions that are CONstrained UNPREDICTable in Debug state

This subsection describes all instruction not listed in either:

- T32 instructions that are changed in Debug state on page H2-7031.
- T32 instructions that are unchanged in Debug state on page H2-7032.

These instructions are CONstrained UNPREDICTable in Debug state. In general, the permissible behaviors are:

- The instruction generates an Undefined Instruction exception.
- The instruction executes as a NOP.
- If the instruction reads the PC or PSTATE, it uses an UNKNOWN value.
- If the instruction modifies the PC or PSTATE, other than by advancing the PC to the sequentially next instruction, it sets DLR and DSPSR to UNKNOWN values.
- If the instruction is similar to a Debug state instruction, it executes as that Debug state instruction.
- The instruction has the same behavior as in Non-debug state.

The following list shows the permissible behaviors for T32 instruction in Debug state. An instruction might appear multiple times in the list, in which case the choice of permissible behaviors is any of those listed.

Exception-generating instructions

These instructions are:

- SVC.
- HVC.
- SMC.
- UDF.
- BKPT.
- HLT.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- SVC behaves as DCPS1.
- HVC behaves as DCPS2.
- SMC behaves as DCPS3.
- They generate the exception the instruction would generate in Non-debug state. The exception is taken as described in Exceptions in Debug state on page H2-7045.

Note

SMC must not generate a Secure Monitor Call exception from Non-secure state if EDSR.SDD is set to 1.

Instructions that explicitly write to the PC (branches)

These instructions are:

- B, B (conditional), CBZ, CBNZ BL.
- BX, BLX (register or immediate).
- BXJ, TBB, TBH.
- MOV pc and related instructions.
- LDR pc, LDM (with a register list includes the PC), POP (with a register list that includes the PC).
These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state without branching and set DSPSR and DLR to UNKNOWN values.

Exception return and related instructions, other than ERET

These instructions are:

- SRS, RFE, SUBS pc, 1r, and related instructions.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state without branching, setting DLR and DSPSR to UNKNOWN values, and either:
 - Execute the DRPS operation instead of performing an exception return, using UNKNOWN SPSR values.
 - Not changing Exception level or PE mode.

Instructions that request entry to a low-power state

These instructions are:

- WFE, WFI.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They generate a synchronous exception if the corresponding instruction would be trapped in Non-debug state. See Configurable instruction enables and disables, and trap controls on page G1-5818.
- A WFE instruction is permitted to clear the Event register if it is set.

Note

This means that these instructions must not suspend execution.

Instructions that read the PC

These instructions are:

- LDR (literal), LDRB (literal), LDRH (literal), LDRSB (literal), LDRSH (literal).
- ADR, ADRL, ADRH.
- PLD (literal), PLI (literal).

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state using an UNKNOWN value for the PC operand.

Instructions that explicitly modify PSTATE, other than DCPS and ERET

These instructions are:

- CMP, TST, TEQ, CMN.
- <opc>S.
- MRC p14,0,APSR_nzcv,c8,c1,0 (accessing DBGDSCRint).
- CPS, SETEND, IT.
- MSR CPSR (immediate), MSR CPSR (register), MSR APSR (immediate), MSR APSR (register).
- VMRS APSR_nzcv, FPSCR.
Debug State
H2.4 Behavior in Debug state

- QADD, QDADD, QSUB, QDSUB.
- SMLABB, SMLABT, SMLATB, SMLATT, SMLAD, SMLAWB, SMLAWT, SMLSD, SMLUD.
- SSAT, SSAT16, USAT, USAT16.
- SADD, SADD8, SADD16, SASX, SSAX, SSUB, SSUB8, SSUB16.
- UADD, UADD8, UADD16, USAX, USAAX, USUB, USUB8, USUB16.
- When FEAT_PAN is implemented, SETPAN.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state, setting DSPR_EL0 and DLR_EL0 to UNKNOWN values.

Instructions that read PSTATE.{N, Z, C, V} or other PSTATE fields

These instructions are:

- SEL, VSEL.
- ADC, SBC, all instructions with an RRX shift.
- MRS CPSR.

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They execute as in Non-debug state:
 - For the conditional operations and those using the PSTATE.C flag as an input, these instructions use an UNKNOWN value for the Condition flag.
 - For the MRS instruction, they return an UNKNOWN value

All other instructions

These instructions behave in one of the following ways:

- They are UNDEFINED.
- They execute as a NOP.
- They have the same behavior as in Non-debug state.

--- Note ---

This includes instructions defined as UNPREDICTABLE or CONSTRAINED UNPREDICTABLE in Non-debug state. These instructions are CONSTRAINED UNPREDICTABLE in Debug state. This includes some T32 instructions that specify R15 as a destination or source register.

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors describes the CONSTRAINED UNPREDICTABLE behavior for these instructions. In Debug state these CONSTRAINED UNPREDICTABLE choices are further restricted:

- Instructions that specify R15 as a destination register:
 - Are not permitted to branch, because the architecture does not define a branch operation in Debug state.
 - Might set DLR and DSPR to UNKNOWN values.
 - Might have any of the other permitted behaviors.

- Instructions that specify R15 as a source operand:
 - Cannot use PC + offset, because there is no architecturally-defined PC in Debug state.
 - Might have any of the other permitted behaviors, including using an UNKNOWN value.
H2.4.3 Decode tables

The syntax in the tables is defined as follows:

1 The bit has a fixed value of 1.
0 The bit has a fixed value of 0.
!= The field has any value other than the value or values specified. The field might be an encoding field in the instruction whose value is supplied by the debugger.

--- Note ---

The instruction encodings in Chapter C6 A64 Base Instruction Descriptions and Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions might show these bits as (0) or (1). A debugger must set these bits to 0 or 1, as appropriate.

Any other value indicates an encoding field in the instruction whose value is supplied by the debugger. Some values might be reserved or undefined, in which case the instruction is UNDEFINED or CONSTRAINED UNPREDICTABLE in Debug state, as it is in Non-debug state.

For more information about the instruction encodings, see:

- Chapter C6 A64 Base Instruction Descriptions.
- Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions.

For information about the syntax used in Table H2-2, Table H2-3, Table H2-4 on page H2-7038, and Table H2-5 on page H2-7039, see:

- Common syntax terms on page C1-181.
- Assembler symbols on page F2-4117.

Table H2-2 shows the A64 instructions that are modified in Debug state. For details of how these are packed in the EDITR see the register description.

<table>
<thead>
<tr>
<th>Description</th>
<th>1 1 0 1 0 1 0 0 1 0 1</th>
<th>mm16</th>
<th>0 0</th>
<th>!==00</th>
<th>DCPS<opt></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 0 1 0 1 0 1 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td>MRS</td>
</tr>
<tr>
<td></td>
<td>1 1 0 1 0 1 0 1 0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td>MRS</td>
</tr>
<tr>
<td></td>
<td>1 1 0 1 0 1 0 1 0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td>RPS</td>
</tr>
</tbody>
</table>

Table H2-3 shows the T32 instructions that are modified in Debug state, with the first halfword on the left side and the second halfword on the right side. For details of how these are packed in the EDITR see the register description.

<table>
<thead>
<tr>
<th>Description</th>
<th>1 5 1 4 1 3 1 2 1 1 1 0</th>
<th>9 8</th>
<th>7 6 5 4 3 2 1 0</th>
<th>1 5 1 4 1 3 1 2 1 1 1 0</th>
<th>9 8</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>ERET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>ERET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>ERET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>ERET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>1 1 1 0 1 1 1 0 1 1 1 0</td>
<td>0 0 1 0 1 0 1 0 1 1</td>
<td>ERET</td>
<td></td>
</tr>
</tbody>
</table>

Table H2-4 contains the A64 instructions that are modified in Debug state.

Table H2-5 contains the T32 instructions that are modified in Debug state.
Table H2-4 A64 instructions that are unchanged in Debug state

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV <Rn>, SP</td>
<td>MOV <Rn>, SP</td>
</tr>
<tr>
<td>PAGCA</td>
<td>PAGCA</td>
</tr>
<tr>
<td><Xn></td>
<td></td>
</tr>
</tbody>
</table>

Table H2-4 lists the A64 instructions that are unchanged in Debug state, other than some unallocated and UNDEFINED instructions.
Table H2-4 A64 instructions that are unchanged in Debug state (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>15141312</th>
<th>11109 8</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMOV <Dm>,<Rt>,<Rt2></td>
<td>=1111</td>
<td>=1111</td>
<td>1 0 1 1 0 0</td>
</tr>
<tr>
<td>VMOV <Rt>,<Rt2>,<Dm></td>
<td>=1111</td>
<td>=1111</td>
<td>1 0 1 1 0 0</td>
</tr>
<tr>
<td>SUBG <Xd</td>
<td>SP>, <Xn</td>
<td>SP>, #<uimm>, #<uimm4></td>
<td>=1111</td>
</tr>
<tr>
<td>VMOV <Sn>,<Rt></td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>VMRS, VMSR</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>MSR, SMSR</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>LDRD, STRD</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
</tbody>
</table>

Table H2-5 lists the T32 instructions that are unchanged in Debug state, other than some unallocated and UNDEFINED instructions. It shows the T32 instructions with the first halfword on the left side and the second halfword on the right side.

Table H2-5 T32 instructions that are unchanged in Debug state

<table>
<thead>
<tr>
<th>Description</th>
<th>15141312</th>
<th>11109 8</th>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMOV <Dm>,<Rt>,<Rt2></td>
<td>=1111</td>
<td>=1111</td>
<td>1 0 1 1 0 0</td>
</tr>
<tr>
<td>VMOV <Rt>,<Rt2>,<Dm></td>
<td>=1111</td>
<td>=1111</td>
<td>1 0 1 1 0 0</td>
</tr>
<tr>
<td>SUBG <Xd</td>
<td>SP>, <Xn</td>
<td>SP>, #<uimm>, #<uimm4></td>
<td>=1111</td>
</tr>
<tr>
<td>VMOV <Sn>,<Rt></td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>VMRS, VMSR</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>MSR, SMSR</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
<tr>
<td>LDRD, STRD</td>
<td>=1111</td>
<td>=1111</td>
<td>1 1 0 1 0 0</td>
</tr>
</tbody>
</table>
Table H2-5 T32 instructions that are unchanged in Debug state (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRS <Rd>,<spec_reg><mode></td>
<td>1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>MRS <Rd>,SPSR</td>
<td>1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>STR{B</td>
<td>H}.W (12-bit immediate)</td>
<td>1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>STR{B</td>
<td>H}.W (8-bit immediate)</td>
<td>1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>LDR{SB</td>
<td>SH</td>
<td>B</td>
</tr>
<tr>
<td>LDR{SB</td>
<td>SH</td>
<td>B</td>
</tr>
</tbody>
</table>
H2.4.4 Security in Debug state

If EL3 is implemented or the implemented Security state is Secure state, security in Debug state is governed by the Secure debug disabled flag, EDSCR.SDD.

On entry to Debug state

If entering in Secure state, EDSCR.SDD is set to 0. Otherwise EDSCR.SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled(). That is:

- If ExternalSecureInvasiveDebugEnabled() == TRUE, EDSCR.SDD is set to 0.
- If ExternalSecureInvasiveDebugEnabled() == FALSE, EDSCR.SDD is set to 1.

Note

Normally, if ExternalSecureInvasiveDebugEnabled() == FALSE then halting is prohibited and it is not possible to enter Debug state from Secure state. However, because changes to the authentication signals require a Context synchronization event to guarantee their effect, there is a period during which the PE might halt even though the authentication signals prohibit halting.

In Debug state

The value of EDSCR.SDD does not change, even if ExternalSecureInvasiveDebugEnabled() changes.

Note

- DBGAUTHSTATUS_EL1.{SNID, SID, NSNID, NSID} are not frozen in Debug state.
- If EDSCR.SDD set to 1 in Debug state, then there is no means to enter Secure state from Non-secure state. In this case it is impossible for the PE to be in Secure state. This is a general principle of behavior in Debug state.

In Non-debug state

EDSCR.SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control ExternalSecureInvasiveDebugEnabled() change, a Context synchronization event is required to guarantee their effect.

Note

- In Non-debug state, EDSCR.SDD is unaffected by the Security state of the PE.
- A Context synchronization event is also required to guarantee that changes in the authentication signals are visible in DBGAUTHSTATUS_EL1.{SNID, SID, NSNID, NSID}.

If EL3 is not implemented and the implemented Security state is Non-Secure state, EDSCR.SDD is RES1.
H2.4.5 Privilege in Debug state

The only additional privileges offered to Debug state are:

- The privilege to execute Debug state operations, DCPS, DRPS, MRS, MSR.
- The privilege to execute DTR access instructions regardless of the Exception level and traps.

The DTR access instructions can be executed at any Exception level, including EL0, regardless of any control register settings that might force these instructions to be undefined or trapped in Non-debug state. These instruction are:

- The MRS and MSR instructions that access DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0 in AArch64 state.
- The MRC and MCR instructions that access DBGDTRTXint and DBGDTRRXint in AArch32 state.

All other instructions operate with the privilege determined by the current Exception level and security state. This applies to all Special-purpose and System registers accesses, memory accesses, and undefined instructions, and includes generating exceptions when the System registers trap or disable an instruction.

H2.4.6 Debug state operations, DCPS, DRPS, MRS, MSR

Armv8 defines operations to change between Exception levels in Debug state. These operations can also change the mode at the current Exception level.

DCPS<n>

Executing a DCPS<n> instruction in Debug state moves the PE to a higher Exception level or to a specific mode at the current Exception level.

If the DCPS<n> instruction is executed in AArch32 state and the target Exception level is using AArch64:

- The current instruction set switches from T32 to A64.
- The effect on registers that are not visible or only partially visible in AArch32 state is the same as for system calls in Non-debug state. See Execution state on page D1-2315.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level. However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

- In AArch64 state the current endianness is determined by the value of SCTLR_ELx.EE for the target Exception level.
- In AArch32 state the current endianness is determined by the value of SCTLR.EE or HSCTL.R.EE for the target Exception level.

The DCPS<n> instructions are:

In AArch64 state

- DCPS1
- DCPS2
- DCPS3

In AArch32 state, in the T32 instruction set only

- DCPS1
- DCPS2
- DCPS3

The DCPS instructions are undefined in Non-debug state.
Table H2-6 shows the target of the instruction. In Table H2-6 the entries have the following meaning:

<table>
<thead>
<tr>
<th>EL1h/Svc</th>
<th>This means that the target is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• EL1h if EL1 is using AArch64.</td>
</tr>
<tr>
<td></td>
<td>• EL1 and Supervisor mode if EL1 is using AArch32.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EL2h/Hyp</th>
<th>This means that the target is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• EL2h if EL2 is using AArch64.</td>
</tr>
<tr>
<td></td>
<td>• EL2 and Hyp mode if EL2 is using AArch32.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EL3h/Monitor</th>
<th>This means that the target is:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• EL3h if EL3 is using AArch64.</td>
</tr>
<tr>
<td></td>
<td>• EL3 and Monitor mode if EL3 is using AArch32.</td>
</tr>
</tbody>
</table>

| Svc | Secure Supervisor mode, in EL3 using AArch32. |
| Monitor | Secure Monitor mode, in EL3 using AArch32. |

Table H2-6 Target for DCPS instructions in Debug state

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Target when DCPS instruction executed at stated Exception level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EL0</td>
</tr>
<tr>
<td>DCPS1</td>
<td>EL1h/Svc</td>
</tr>
<tr>
<td>DCPS2</td>
<td>EL2h/Hyp</td>
</tr>
<tr>
<td>DCPS3</td>
<td>EL3h/Monitor</td>
</tr>
</tbody>
</table>

In AArch32 Monitor mode, DCPS1 and DCPS3 clear SCR.NS to 0.

--- Note ---

In AArch64 state, at EL3, DCPS<> does not change SCR_EL3.NS.

However:

- **DCPS1** is undefined at EL0 if either:
 - EL2 is implemented and enabled in the current Security state, and is using AArch64 and HCR_EL2.TGE == 1.
 - In Non-secure state, EL2 is implemented and using AArch32 and HCR.TGE == 1.

- **DCPS2** is undefined at all Exception levels if EL2 is not implemented.

- **DCPS2** is undefined at the following Exception levels if EL2 is implemented:
 - At EL0 and EL1 in Secure state if EL2 is disabled in the current Security state.
 - At EL3 if EL3 is using AArch32.

- **DCPS3** is undefined at all Exception levels if either:
 - EDSR.SDD == 1.
 - EL3 is not implemented.

--- Note ---

The references to DCPS1, DCPS2, and DCPS3 in this section link to the descriptions of the instructions in the A64 instruction set. The DCPS<> instructions are also defined in the T32 instruction set, see DCPS1, DCPS2, DCPS3. These instructions are not defined in the A32 instruction set, because A32 instructions cannot be executed in Debug state.
On executing a DCPS instruction:

- If the target Exception level is using AArch64:
 - ELR_ELx of the target Exception level becomes UNKNOWN.
 - SPSR_ELx of the target Exception level becomes UNKNOWN.
 - ESR_ELx of the target Exception level becomes UNKNOWN.
 - DLR_EL0 and DSPSR_EL0 become UNKNOWN.

- If the target Exception level is using AArch32 DLR and DSPSR become UNKNOWN and:
 - If the target Exception level is EL1 or EL3, the LR and SPSR of the target mode become UNKNOWN.
 - If the target Exception level is EL2, then ELR_hyp, SPSR_hyp, and HSR become UNKNOWN.

If the target Exception level is using AArch32, and the target Exception level is EL1 or EL3, the LR and SPSR of the target mode become UNKNOWN.

If FEAT_SSBS is implemented, the DCPS<op> instruction leaves the PSTATE.SSBS bit UNKNOWN.

The DCPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

DRPS

Executing the DRPS operation in Debug state moves the PE to a lower Exception level, or to another PE mode at the current Exception level, by copying the current SPSR to PSTATE.

If DRPS is executed in AArch64 state and the target Exception level is using AArch32:

- The current instruction set switches from A64 to T32.
- The effect on registers that are not visible or only partially visible in AArch32 state is the same as for exception returns in Non-debug state. See Execution state on page D1-2315.

Otherwise, the instruction set state does not change.

If the target Exception level is the same as the current Exception level, then the PE does not change Exception level. However, the PE might change mode.

The effect on endianness is the same as for exceptions and exception returns in Non-debug state:

- If targeting an Exception level using AArch64, current endianness is set according to SCTLR_ELx.EE, or SCTLR_EL1.E0E for the target Exception level.
- If targeting an Exception level using AArch32, current endianness is set by SPSR.E as appropriate.

The DRPS instructions are:

In AArch64 state
- DRPS

In AArch32 state, in the T32 instruction set only
- ERET

If the SPSR specifies an illegal exception return, then PSTATE.{M, nRW, EL, SP} are unchanged and PSTATE.IL is set to 1. For further information on illegal exception returns, see Illegal return events from AArch64 state on page D1-2345.

PSTATE.{N, Z, C, V, Q, GE, IT, T, SS, D, A, I, F} are ignored in Debug state. This means that the effect of the DRPS operation on these fields is to set them to an UNKNOWN value that might be the value from the SPSR. For more information see PSTATE in Debug state on page H2-7024.

All other PSTATE fields are copied from SPSR.

DRPS is undefined at EL0 and in Non-debug state.
Note

Unlike an exception return, the DRPS operation has no architecturally-defined effect on the Event Register and Exclusives monitors. DRPS might set the Event Register or clear the Exclusives monitors, or both, but this is not a requirement and debuggers must not rely on any implementation specific behavior.

On executing a DRPS instruction:

- If the target Exception level is using AArch64:
 - DLR_EL0 and DSPSR_EL0 become UNKNOWN.
- If the target Exception level is using AArch32:
 - DLR and DSPSR become UNKNOWN.

If FEAT_SSBS is implemented, the DRPS instruction leaves the PSTATE.SSBS bit UNKNOWN.

The DRPSInstruction() function is described in Chapter J1 Armv8 Pseudocode.

MRS and MSR

The other Debug state instructions are used to read or write DLR_EL0 and DSPSR_EL0.

These instructions are:

In AArch64 state
- MRS
- MSR (register)

In AArch32 state
- MRC
- MCR

MRS <Xt>, DLR_EL0 ; Copy DLR_EL0 to <Xt>
MRS <Xt>, DSPSR_EL0 ; Copy DSPSR_EL0 to <Xt>
MSR DLR_EL0, <Xt> ; Copy <Xt> to DLR_EL0
MSR DSPSR_EL0, <Xt> ; Copy <Xt> to DSPSR_EL0

These instructions can be executed at any Exception level when in Debug state, including EL0. They are undefined in Non-debug state.

H2.4.7 Exceptions in Debug state

The following sections describe how exceptions are handled in Debug state:

- Generating exceptions when in Debug state.
- Taking exceptions when in Debug state on page H2-7046.
- Reset in Debug state on page H2-7047.

Generating exceptions when in Debug state

In Debug state:

- Instruction Abort exceptions cannot happen because instructions are not fetched from memory.
- Interrupts, including SError and virtual interrupts are ignored and remain pending:
 - The pending interrupt remains visible in ISR.
- Debug exceptions and debug events are ignored.
- SCR.EA is treated as if it were set to 0, regardless of its actual state, other than for the purpose of reading the bit.
- Any attempt to execute an instruction bit pattern that is an allocated instruction at the current Exception level, but is listed in Executing instructions in Debug state on page H2-7025 as undefined in Debug state, generates an exception, that is taken to the current Exception level, or to EL1 if executing at EL0.
--- Note ---
If the exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined Instruction exception.

The priority and syndrome for these exceptions is the same as for executing an encoding that does not have an allocated instruction.

- **Instructions executed at EL2, EL1 and EL0 that are configured by EL3 control registers to trap to EL3:**
 - When the value of EDSR.SDD is 0, generate the appropriate trap exception that is taken to EL3.
 - When the value of EDSR.SDD is 1, are treated as UNDEFINED and generate an exception that is taken to the current Exception level, or to EL1 if the instruction is executed at EL0. If the exception is taken to an Exception level that is using AArch32 it is taken as an Undefined Instruction exception.

 If the exception is taken to an Exception level using AArch64 or to AArch32 Hyp mode, then it is reported with an EC value of 0x00.

 Otherwise configurable traps, enables, and disables for instructions are unaffected by Debug state, and executing an affected instruction generates the appropriate exception.

Otherwise, synchronous exceptions, including Data Aborts, are generated as they would be in Non-debug state and taken to the appropriate Exception level in Debug state.

--- Note ---
If EDSR.SDD == 1 then an exception from Non-secure state is never taken to Secure state. See Security in Debug state on page H2-7041.

--- Taking exceptions when in Debug state ---

When the PE is in Debug state, all exceptions are synchronous. When an exception is generated, it is taken to Debug state. This means that:

- The target Exception level is as defined for the exception in Non-debug state.
- If the target Exception level is using AArch32 then the target PE mode is as defined for the exception in Non-debug state.
- The exception syndrome is reported as defined for the exception in Non-debug state, except for the case described in Data Aborts in Memory access mode on page H4-7084 for which the reporting requirements are relaxed.

The exception syndrome is reported using the syndrome register or registers for the target Exception level. In AArch64 state, these are ESR_ELx, and FAR_ELx. In AArch32 state, these are DFSR, DFAR, HSR, HDFAR, and HPFAR. For example:

- If a Data Abort exception is taken to Abort mode at EL1 or EL3 and the exception is taken from AArch32 state and using the Short-descriptor translation table format, the DFSR reports the exception using the Short-descriptor format fault encoding. For exceptions other than Data Abort exceptions taken to Abort mode, DFSR is not updated.
- If an instruction is trapped to an Exception level using AArch64 due to a configurable trap, disable, or enable, the exception code reported is the same as it would be in Non-debug state.

The effect on auxiliary syndrome registers, such as AFSR, is IMPLEMENTATION DEFINED.

--- Note ---
Generally, the AArch32 Fault Address Registers (FARs) and Fault Status Registers (FSRs) are not described as syndrome registers, although the term is appropriate to their function.

- The PE remains in Debug state and changes to the target mode.
- If EL3 is using AArch32 and the exception is taken from Monitor mode, SCR.NS is cleared to 0.
If the exception is taken to an Exception level using AArch32, the PE continues to execute T32 instructions, regardless of the TE bit in the System register for the target Exception level.

The endianness switches to that indicated by the EE bit of the System register for the target Exception level.

The SPSR for the target Exception level or mode is corrupted and becomes UNKNOWN.

If the target Exception level is using AArch64, ELR_ELx for the target Exception level becomes unknown.

If the target Exception level is EL2 using AArch32, ELR_hyp becomes unknown.

If the target Exception level is EL1 or EL3 using AArch32, LR_<mode> for the target mode becomes unknown.

DLR and DSPSR become UNKNOWN.

The cumulative error flag, EDSCR.ERR, is set to 1. See Cumulative error flag on page H4-7088.

PSTATE.IL is cleared to 0.

PSTATE.{IT, T, SS, D, A, I, F} are set to UNKNOWN values, and PSTATE.{N, Z, C, V, Q, GE} are unchanged. However, these fields are ignored and are not observable in Debug state. For more information see PSTATE in Debug state on page H2-7024.

The debugger must save any state that can be corrupted by an exception before executing an instruction that might generate another exception.

Pseudocode description of taking exceptions in Debug state

The pseudocode function `AArch64.TakeException()` shows the behavior when the PE takes an exception to an Exception level using AArch64 in Non-debug state. In Debug state, this is replaced with the function `AArch64.TakeExceptionInDebugState()`.

The pseudocode functions `AArch32.EnterMode()`, `AArch32.EnterHypMode()`, and `AArch32.EnterMonitorMode()` show the behavior when the PE takes an exception to an Exception level using AArch32 in Non-debug state. In Debug state:

- `AArch32.EnterMode()` is replaced with the function `AArch32.EnterModeInDebugState()`.
- `AArch32.EnterHypMode()` is replaced with the function `AArch32.EnterHypModeInDebugState()`.
- `AArch32.EnterMonitorMode()` is replaced with `AArch32.EnterMonitorModeInDebugState()`.

Reset in Debug state

If the PE is reset when in Debug state, it exits Debug state and enters Non-debug reset state. When the PE is in reset state, EDSCR.STATUS == 0b000010 and writes to EDITR are ignored.

Note

If EDECR.RCE == 1 or CTIDEVCTL.RCE == 1, meaning that a Reset Catch debug event is programmed, and if halting is allowed on exiting reset state, then on exiting reset state the PE halts and re-enters Debug state. See Reset Catch debug events on page H3-7073. All PE registers have taken their reset values, which might be UNKNOWN.

H2.4.8 Accessing registers in Debug state

Register accesses are unchanged in Debug state. The view of each register is determined by either the current Exception level or the mode, or both, and accesses might be disabled or trapped by controls at a higher Exception level.
General-purpose register access, other than AArch64 state SP access

A single general-purpose register can be read by issuing an MSR instruction through the ITR to write DBGDTR_EL0 in AArch64 state, or an MCR instruction through the ITR to write DBGDTRXTXint in AArch32 state. The debugger can then read the DTR register or registers through the external debug interface. The reverse sequence writes to a general-purpose register.

Figure H2-1 shows the reading and writing of general-purpose registers, other than SP, in Debug state in AArch64 state.

Figure H2-1 Reading and writing general-purpose registers, other than SP, in Debug state in AArch64 state

Figure H2-2 on page H2-7049 shows the reading and writing of general-purpose registers in Debug state in AArch32 state.
H2.4 Behavior in Debug state

SIMD and floating-point register, System register, and AArch64 state SP accesses

To read a SIMD and floating-point register or a System register, the debugger must first copy the value into a general-purpose register using:

- An \texttt{FMOV} instruction in AArch64 state or a \texttt{VMOV} instruction in AArch32 state for floating-point transfers to SIMD and FP registers.
- A \texttt{UMOV} instruction in AArch64 state or a \texttt{VMOV} instruction in AArch32 state for SIMD transfers to SIMD and FP registers.
- An \texttt{MRS} instruction in AArch64 state or an \texttt{MRC} instruction in AArch32 state for System registers.
- A \texttt{MOV Xd,SP} instruction for the SP register in AArch64 state.

The debugger can then read out the particular general-purpose register. The reverse sequence writes a register.

PC and PSTATE access

The debugger reads the program counter and PSTATE of the process being debugged through the DLR_EL0 and DSPSR_EL0 System registers. The actual values of PC and PSTATE cannot be directly observed in Debug state:

- Instructions that are used for direct reads and writes of PC and PSTATE in Non-debug state are UNDEFINED in Debug state.
- On taking an exception, ELR_ELx and SPSR_ELx at the target Exception level are UNKNOWN. They do not record the PC and PSTATE.

PSTATE, \{IL, E, M, nRW, EL, SP\} are indirectly read by instructions executed in Debug state, but all other PSTATE fields are ignored and cannot be observed. See also:

- \textit{PSTATE in Debug state} on page H2-7024.
- \textit{Executing instructions in Debug state} on page H2-7025.
- \textit{Exceptions in Debug state} on page H2-7045.
H2.4.9 Accessing memory in Debug state

How the PE accesses memory is unchanged in Debug state. This includes:

- The operation of the MMU, including address translation, tagged address handling, access permissions, memory attribute determination, and the operation of any TLBs.
- The operation of any caches and coherency mechanisms.
- Alignment support.
- Endianness support.
- The Memory order model.

Simple memory transfers

Simple memory accesses can be performed in Debug state by issuing memory access instructions through the ITR and passing data through the DTR registers. Executing instructions in Debug state on page H2-7025 lists the memory access instructions that are supported in Debug state.

Bulk memory transfers

Memory access mode can accelerate bulk memory transfers in Debug state. See DCC and ITR access modes on page H4-7082.
H2.5 Exiting Debug state

The PE exits Debug state when it receives a Restart request trigger event. If EDSCR.ITE == 0 the behavior of any instruction issued through the ITR in Normal access mode or an operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

- It must complete execution in Debug state before the PE executes the restart sequence.
- It must complete execution in Non-debug state after the PE executes the restart sequence.
- It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an UNKNOWN state.

--- Note ---
- Implementations can set EDSCR.ITE to 1 to indicate that further instructions can be accepted by ITR before the previous instructions have completed. If any previous instruction has not completed and EDSCR.ITE == 1, then the PE must complete these instructions in Debug state before executing the restart sequence. EDSCR.ITE == 0 indicates that the PE is not ready to restart.
- A debugger must observe that any instructions issued through EDITR that might generate a synchronous exception, as complete, before issuing a restart request. It can do this by observing the completion of a later instruction, as synchronous exceptions must occur in program order. For example, a debugger can observe that an instruction that reads or writes a DTR register is complete because of its effect on the EDSCR.{TXfull, RXfull} flags.

On exiting Debug state, the PE sets the program counter to the address in DLR, where:

- If exiting to AArch32 state:
 - Bits[31:1] of the PC are set to the value of bits[31:1] of DLR.
 - Bit[0] of the PC is set to a CONSTRAINED UNPREDICTABLE choice of 0 or the value of bit[0] in DLR.
- If exiting to AArch64 state:
 - Bits[63:56] of DLR_EL0 might be ignored as part of tagged address handling. See Address tagging in AArch64 state on page D5-2528.
 - Otherwise the PC is set from DLR_EL0.

--- Note ---
Bits[63:32] of DLR_EL0 are ignored when exiting to AArch32 state.

Exit from Debug state can give rise to a PC alignment fault exception when the program counter is used. Unlike an exception return, this might also happen when returning to AArch32 state. For more information, see PC alignment checking on page D1-2327.

On exiting Debug state, PSTATE is set from DSPSR in the same way that an exception return sets PSTATE from SPSR_ELx:

- The same illegal exception return checks that apply to an exception return also apply to exiting Debug state. If the return from Debug state is an illegal exception return then the effect on PSTATE and the PC is the same as for any other illegal exception return. See Exception return on page D1-2344 and Exception return to an Exception level using AArch32 on page G1-5765.
- The checks on the PSTATE.IT bits that apply to exiting Debug state into AArch32 state are the same as those that apply to an exception return. See Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.
- PSTATE.SS is copied from DSPSR.SS if all of the following hold:
 - MDSCR_EL1.SS == 1.
 - The debug target Exception level is using AArch64.
 - Software step exceptions from the restart Exception level are enabled.
Otherwise PSTATE.SS is set to 0.
Note

Unlike a return using ERET, PSTATE.SS must be restored from DSPSR.SS because otherwise it is UNKNOWN.

However, if OSDLR.DLK == 1 and DBGPRCR.CORENPDRQ == 0, meaning FEAT_DoubleLock is implemented and locked in Non-debug state and therefore Software Step exceptions are disabled, but otherwise Software Step exceptions would be enabled from the restart Exception level, it is CONSTRAINED UNPREDICTABLE whether PSTATE.SS is copied from DSPSR.SS.

- If FEAT_SSBS is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.SSBS is copied to PSTATE.SSBS.
- If FEAT_SSBS is implemented, on exit from Debug state to AArch32 state, DSPSR.SSBS is copied to CPSR.SSBS.
- If FEAT_PAN is implemented, DSPSR_EL0.PAN is copied to PSTATE.PAN.
- If FEAT_UAO is implemented, DSPSR_EL0.UAO is copied to PSTATE.UAO.
- If FEAT_DIT is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.DIT is copied to PSTATE.DIT.
- If FEAT_DIT is implemented, on exit from Debug state to AArch32 state, DSPSR.DIT is copied to CPSR.DIT.
- If FEAT_MTE is implemented, on exit from Debug state to AArch64 state, DSPSR_EL0.TCO is copied to PSTATE.TCO. On exit from Debug state to AArch32 state, PSTATE.TCO is not updated.
- If FEAT_BTI is implemented, DSPSR_EL0.BTYPE is copied to PSTATE.BTYPE.

Note

- One important difference between Debug state exit and an exception return is that the PE can exit Debug state at EL0. Despite this, the behavior of an exit from Debug state is similar to an exception return. For example, PSTATE.{D, A, I, F} is updated regardless of the value of SCTLR_EL1.UMA.
- Exit from Debug state has no architecturally-defined effect on the Event Register and Exclusives monitors. An exit from Debug state might set the Event Register or clear the Exclusives monitors, or both, but this is not a requirement and debuggers must not rely on any implementation specific behavior.

The ExitDebugState() function is described in Chapter J1 Armv8 Pseudocode.
Chapter H3
Halting Debug Events

This chapter describes a particular class of debug events. It contains the following sections:

- Introduction to Halting debug events on page H3-7054.
- Halting Step debug events on page H3-7056.
- Halt Instruction debug event on page H3-7066.
- Exception Catch debug event on page H3-7067.
- External Debug Request debug event on page H3-7071.
- OS Unlock Catch debug event on page H3-7072.
- Reset Catch debug events on page H3-7073.
- Software Access debug event on page H3-7074.
- Synchronization and Halting debug events on page H3-7075.

Note
Table K15-1 on page K15-8160 disambiguates the general register references used in this chapter.
H3.1 Introduction to Halting debug events

External debug defines Halting debug events. The following Halting debug events are available in Armv8:

- Halting Step debug events on page H3-7056.
- Halt Instruction debug event on page H3-7066.
- Exception Catch debug event on page H3-7067.
- External Debug Request debug event on page H3-7071.
- OS Unlock Catch debug event on page H3-7072.
- Reset Catch debug events on page H3-7073.
- Software Access debug event on page H3-7074.

If halting is allowed, a Halting debug event halts the PE. The PE enters Debug state.

In addition, breakpoints and watchpoints might halt the PE if halting is allowed. See Breakpoint and Watchpoint debug events on page H2-7016. Because breakpoints and watchpoints can generate an exception or halt the PE, Breakpoint and Watchpoint debug events are not classified as Halting debug events.

For a definition of Debug state, see Chapter H2 Debug State. For a definition of halting allowed, see Halting allowed and halting prohibited on page H2-7015.

Debug state entry and debug event prioritization on page H2-7017 describes the behavior when multiple debug events are generated by an instruction.

See also Synchronization and Halting debug events on page H3-7075.

Table H3-1 shows the behavior of Breakpoint, Watchpoint, and Halting debug events.

Table H3-1 Summary of debug events and possible outcomes

<table>
<thead>
<tr>
<th>Debug event type</th>
<th>PE behavior when halting is:</th>
<th>Allowed</th>
<th>Prohibited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakpoint and Watchpoint debug events on page H2-7016</td>
<td>Halt</td>
<td>See Table D2-1 on page D2-2420 and Table G2-1 on page G2-5857</td>
<td></td>
</tr>
<tr>
<td>Halt Instruction debug event on page H3-7066</td>
<td>Halt</td>
<td>UNDEFINED</td>
<td></td>
</tr>
<tr>
<td>Software Access debug event on page H3-7074</td>
<td>Halt</td>
<td>Ignored</td>
<td></td>
</tr>
<tr>
<td>Exception Catch debug event on page H3-7067</td>
<td>Halt</td>
<td>Ignored</td>
<td></td>
</tr>
<tr>
<td>Halting Step debug events on page H3-7056</td>
<td>Halt</td>
<td>Pended</td>
<td></td>
</tr>
<tr>
<td>External Debug Request debug event on page H3-7071</td>
<td>Halt</td>
<td>Pended</td>
<td></td>
</tr>
<tr>
<td>Reset Catch debug events on page H3-7073</td>
<td>Halt</td>
<td>Pended</td>
<td></td>
</tr>
<tr>
<td>OS Unlock Catch debug event on page H3-7072</td>
<td>Pended</td>
<td>Pended</td>
<td></td>
</tr>
</tbody>
</table>

Table H3-2 shows where the pseudocode for each Halting debug event type is located.

Table H3-2 Pseudocode description of Halting debug events

<table>
<thead>
<tr>
<th>Halting debug event type</th>
<th>Pseudocode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halting Instruction debug event on page H3-7066</td>
<td>Pseudocode description of Halting Instruction debug events on page H3-7066</td>
</tr>
<tr>
<td>Software Access debug event on page H3-7074</td>
<td>Pseudocode description of Software Access debug event on page H3-7074</td>
</tr>
<tr>
<td>Exception Catch debug event on page H3-7067</td>
<td>Pseudocode description of Exception Catch debug events on page H3-7070</td>
</tr>
</tbody>
</table>
Table H3-2 Pseudocode description of Halting debug events (continued)

<table>
<thead>
<tr>
<th>Halting debug event type</th>
<th>Pseudocode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halting Step debug events on page H3-7056</td>
<td>Pseudocode description of Halting Step debug events on page H3-7065</td>
</tr>
<tr>
<td>External Debug Request debug event on page H3-7071</td>
<td>Pseudocode description of External Debug Request debug events on page H3-7071</td>
</tr>
<tr>
<td>Reset Catch debug events on page H3-7073</td>
<td>Pseudocode description of Reset Catch debug event on page H3-7073</td>
</tr>
<tr>
<td>OS Unlock Catch debug event on page H3-7072</td>
<td>Pseudocode description of OS Unlock Catch debug event on page H3-7072</td>
</tr>
</tbody>
</table>
H3.2 Halting Step debug events

Halting Step is a debug resource that a debugger can use to make the PE step through code one instruction at a time. This section describes the Halting Step debug events. It is divided into the following sections:

- Overview of a Halting Step debug event.
- The Halting Step state machine.
- Using Halting Step on page H3-7059.
- Detailed Halting Step state machine behavior on page H3-7059.
- Synchronization and the Halting Step state machine on page H3-7062.
- Stepping T32 IT instructions on page H3-7064.
- Disabling interrupts while stepping on page H3-7064.
- Syndrome information on Halting Step on page H3-7064.
- Pseudocode description of Halting Step debug events on page H3-7065.

The architecture describes the behavior as a simple Halting Step state machine. See The Halting Step state machine.

H3.2.1 Overview of a Halting Step debug event

The behavior of Halting Step is defined by a state machine, shown in Figure H3-1 on page H3-7058. A Halting Step debug event executes a single instruction and then returns control to the debugger. When the debugger software wants to execute a Halting Step:

1. With the PE in Debug state, the debugger activates Halting Step.
2. The debugger signals the PE to exit Debug state and return to the instruction that is to be stepped.
3. The PE executes that single instruction.
4. The PE enters Debug state before executing the next instruction.

However, an exception might be generated while the instruction is being stepped. That is either:

- A synchronous exception generated by the instruction being stepped.
- An asynchronous exception taken before or after the instruction being stepped.

Halting Step has its own enable control bit, EDECR.SS and EDESR.SS.

Note

Because the Halting Step state machine states occur as a result of normal PE operation, the states can be described as both:

- PE states.
- Halting Step states.

H3.2.2 The Halting Step state machine

The state machine states are:

Inactive

Halting Step is inactive. No Halting Step debug events can be generated, therefore execution is not affected by Halting Step. The PE is in this state whenever either of the following is true:

- Halting Step is disabled. That is, EDECR.SS is set to 0 and EDESR.SS is set to 0.
- Halting is prohibited. See Halting the PE on debug events on page H2-7015. In this state, if EDECR.SS is set to 1 then a Halting Step debug event is pending.

In Figure H3-1 on page H3-7058 this state is shown in red.

Active-not-pending

Halting Step is enabled and active. This is the state in which the PE steps an instruction. EDECR.SS == 1 and EDESR.SS == 0. Software must not set EDECR.SS to 1 unless the PE is in Debug state, otherwise behavior is CONSTRAINED UNPREDICTABLE, as described in Changing the value of EDECR.SS when not in Debug state on page H3-7063.

In Figure H3-1 on page H3-7058 this state is shown in green.
Active-pending

Halting Step is enabled and active. The step has completed, and the PE enters Debug state.

\[\text{EDESR.SS} = 1. \]

In Figure H3-1 on page H3-7058 this state is shown in green.

Whenever Halting Step is enabled and active, whether the state machine is in the active-not-pending state or in the active-pending state depends on EDESR.SS. Halting Step state machine states on page H3-7059 shows this.

In the simple sequential execution of the program the PE executes the Halting Step state machine, as follows:

1. Initially, Halting Step is inactive.
2. After exiting Debug state, Halting Step is active-not-pending.
3. The PE executes an instruction and Halting Step is active-pending.
4. The pending Debug state entry is taken on the next instruction and the step is complete.

Exceptions and other changes to the PE context can interrupt this sequence.

Figure H3-1 on page H3-7058 shows a Halting Step state machine.
Figure H3-1 Halting Step state machine

a. Step completed occurs when:
 • A debug event, other than a Halting Step debug event, causes entry into Debug state.

b. Step completed occurs when:
 • An instruction is executed without taking an exception.
 • An exception is taken to a state where halting is allowed.
 • A reset.

c. Step completed occurs when:
 • An SMC exception is taken to Secure state where halting is prohibited.

d. An asynchronous exception taken to a state where halting is allowed.

e. An asynchronous exception taken to Secure state where halting is prohibited.
Note

Figure H3-1 on page H3-7058 only describes state transitions to and from the inactive state by exit from Debug state, executing an exception return, or taking an exception. Other changes to the PE context, including writes to registers such as EDECR and OSDLR and changes to the authentication interface can also cause changes to the Halting Step state machine. These can lead to UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior. See Synchronization and the Halting Step state machine on page H3-7062.

The following bits control the state machine, as shown in Table H3-3:

- EDECR.SS. This is the Halting Step enable bit.
- EDESR.SS. This is the Halting Step debug event pending bit.

Table H3-3 shows the Halting Step state machine states. The letter X in a register column means that the relevant bit can be set to either zero or one.

Table H3-3 Halting Step state machine states

<table>
<thead>
<tr>
<th>Halting</th>
<th>EDECR.SS</th>
<th>EDESR.SS</th>
<th>Halting Step state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prohibited</td>
<td>X</td>
<td>X</td>
<td>Inactive (Halting Step debug even not pending)</td>
</tr>
<tr>
<td>Prohibited</td>
<td>X</td>
<td>1</td>
<td>Inactive (Halting Step debug event pending).</td>
</tr>
<tr>
<td>Allowed</td>
<td>0</td>
<td>0</td>
<td>Inactive</td>
</tr>
<tr>
<td>Allowed</td>
<td>1</td>
<td>0</td>
<td>Active-not-pending</td>
</tr>
<tr>
<td>Allowed</td>
<td>X</td>
<td>1</td>
<td>Active-pending</td>
</tr>
</tbody>
</table>

H3.2.3 Using Halting Step

To step a single instruction the PE must be in Debug state:

1. The debugger sets EDECR.SS to 1 to enable Halting step.
2. The debugger signals the PE to exit Debug state with DLR set to the address of the instruction being stepped. The PE clears EDESR.SS to 0 and the Halting Step state machine enter the active-not-pending state.
3. The PE executes the instruction being stepped. If an exception is taken to a state where halting is prohibited, then EDESR.SS is always correct for the preferred return address of the exception.
4. The PE enters Debug state before executing the next instruction and the step is complete.

Note

- If FEAT_DoPD is not implemented, EDECR.SS value is in the Debug power domain, meaning that the state machine is maintained over a powerdown of the Core power domain.
- If FEAT_DoPD is implemented, the values of EDECR.SS and EDESR.SS are set to 0 on a Cold reset, and, if the PE was stepping an instruction, EDESR.SS is effectively UNKNOWN after a Warm reset. A debugger must use a Reset Catch debug event to step over a powerdown state.
- A debugger must only change the value of EDECR.SS when the PE is in Debug state, otherwise behavior is CONSTRAINED UNPREDICTABLE as described in Changing the value of EDECR.SS when not in Debug state on page H3-7063.

H3.2.4 Detailed Halting Step state machine behavior

The behavior of the Halting Step state machine is described in the following sections:

- Entry the active-not-pending state on page H3-7060.
- PE behavior in the active-not-pending state on page H3-7060.
- Entering the active-pending state on page H3-7061.
• PE behavior in the active-pending state on page H3-7062
• PE behavior in the inactive state when in Non-debug state on page H3-7062.
• PE behavior in Debug state on page H3-7062.

Entering the active-not-pending state

The PE enters the active-not-pending state:

• By exiting Debug state with EDECR.SS == 1.
• By an exception return from a state where halting is prohibited to a state where halting is allowed with EDECR.SS == 1 and EDESR.SS == 0.
• As described in Synchronization and the Halting Step state machine on page H3-7062.

PE behavior in the active-not-pending state

When the PE is in the active-not-pending state it does one of the following:

• It executes one instruction and does one of the following:
 — Completes it without generating a synchronous exception.
 — Generates a synchronous exception.
 — Generates a debug event that causes entry to Debug state.
• It takes an asynchronous exception without executing any instruction.
• It takes an asynchronous debug event into Debug state.

If no exception or debug event is generated

If no exception or debug event is generated the PE sets EDESR.SS to 1. This means that the Halting Step state machine advances to the active-pending state.

If an exception or debug event is generated

The PE sets EDESR.SS according to all of the following:

• The type of exception.
• The target Exception level of the exception.
• If the exception is taken to Secure state, whether halting is prohibited in Secure state.
 — This is determined by the result of ExternalSecureInvasiveDebugEnabled().

If an exception or debug event is generated, the PE sets EDESR.SS to 1 if one of the following applies:

• A synchronous exception is generated by the instruction and one of the following applies:
 — The exception is taken to EL1 or EL2.
 — The exception is taken to EL3, it is not an SMC exception, and ExternalSecureInvasiveDebugEnabled() == TRUE.
 — The exception is an SMC exception.
• An asynchronous exception is generated before executing an instruction and this is either:
 — Taken to EL1 or EL2.
 — Taken to EL3 and ExternalSecureInvasiveDebugEnabled() == TRUE.
• A PE reset occurs.

Otherwise EDESR.SS is unchanged. This happens when:

• No instruction is executed because either:
 — An asynchronous exception is taken to EL3 and ExternalSecureInvasiveDebugEnabled() == FALSE.
 — An asynchronous debug event causes entry to Debug state.
An instruction is executed and either:

- Generates a synchronous exception other than an SMC exception which is taken to EL3, and
 `ExternalSecureInvasiveDebugEnabled()` == FALSE.
- Generates a synchronous debug event and causes entry to Debug state.

It is **UNPREDICTABLE** whether `EDESR.SS` is set to 1 or unchanged when an SError interrupt is taken to EL3 without executing the instruction, and `ExternalSecureInvasiveDebugEnabled()` == FALSE.

If halting is prohibited after taking the exception or debug event, then the Halting Step state machine advances to the inactive state. Otherwise the Halting Step state machine advances to the active-pending state.

Note

The underlying criteria for the value of `EDESR.SS` on an exception are:

- Whether halting is allowed at the target of the exception. If halting is allowed, the PE must step into the exception. If halting is prohibited, the PE must step over the exception.
- Whether the preferred return address of the exception is the instruction itself or the next instruction, if the PE steps over the exception.

Table H3-4 shows the behavior of the active-not-pending state. The letter X indicates that `ExternalSecureInvasiveDebugEnabled()` can be either TRUE or FALSE.

Table H3-4 Summary of active-not-pending state behavior

<table>
<thead>
<tr>
<th>Event</th>
<th>Target Exception level</th>
<th><code>ExternalSecureInvasiveDebugEnabled()</code></th>
<th>Value written to <code>EDESR.SS</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>No exception or debug event</td>
<td>Not applicable</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>SMC exception</td>
<td>EL3</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Reset</td>
<td>Highest</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Exception, other than SMC exception</td>
<td>EL1</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EL2</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EL3</td>
<td>TRUE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FALSE</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Debug event</td>
<td>Debug state</td>
<td>X</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

Entering the active-pending state

The PE enters the active-pending state by one of the following:

- From the active-not-pending state by:
 - Executing an instruction without taking an exception.
 - Taking an exception so that the PE remains in a state where halting is allowed.
- An exception return from a state where halting is prohibited when `EDESR.SS` == 1.

Note

That is, an exception return from Secure state with `ExternalSecureInvasiveDebugEnabled()` == FALSE to Non-secure state with `ExternalInvasiveDebugEnabled()` == TRUE.

- A reset when the value of `EDECR.SS` == 1, regardless of the state the PE was in before the reset occurred.
PE behavior in the active-pending state

When the PE is in the active-pending state, it enters Debug state before executing an instruction. The entry into Debug state has higher priority than all other types of synchronous debug event and synchronous exception. However, the architecture does not define the prioritization of this Debug state entry with respect to any unmasked pending asynchronous exception. If an asynchronous exception is prioritized over the entry to Debug state, then EDESR.SS is unchanged.

For more information on the prioritization of debug events, see Debug state entry and debug event prioritization on page H2-7017.

PE behavior in the inactive state when in Non-debug state

EDESR.SS is not updated by the execution of an instruction or the taking of an exception when Halting Step is inactive. This means that EDESR.SS is not changed by an exception handled in a state where halting is prohibited.

On return to a state where halting is allowed, the Halting Step state machine is restored either to the active-pending state or the active-not-pending state, depending on the value of EDESR.SS. The return to a state where halting is allowed is normally by an exception return, which in some situations is a Context synchronization event.

See also Synchronization and the Halting Step state machine.

PE behavior in Debug state

Halting Step is inactive in Debug state because halting is prohibited, see Halting allowed and halting prohibited on page H2-7015.

Entry to Debug state does not change EDESR.SS.

EDESR.SS is cleared to 0 on exiting Debug state as the result of a restart request. If EDECR.SS == 1, Halting Step enters the active-not-pending state.

Note

This means that EDESR.SS is never cleared to 0 by the execution of an instruction in Debug state, or by taking an exception when in Debug state as described in PE behavior in the active-not-pending state on page H3-7060, because the Halting Step state machine is not in the active-not-pending state. EDESR.SS can be cleared by a write to EDESR, see the register description.

However, if the PE exits Debug state as the result of a PE reset and EDECR.SS == 1, then Halting Step immediately enters the active-pending state, as EDESR.SS is set to the value of EDECR.SS.

H3.2.5 Synchronization and the Halting Step state machine

The Halting Step state machine also changes state if:

- Halting becomes allowed or prohibited other than by exit from Debug state, an exception return, or taking an exception. This means that halting becomes allowed or prohibited because:
 - The security state changes without an exception return. See State and mode changes without explicit context synchronization events on page G2-5916.
 - The external authentication interface changes.
 - FEAT_DoubleLock is implemented and the status, DoubleLockStatus(), changes.
- A write to EDECR when the PE is in Non-debug state changes the value of EDECR.SS.
--- Note ---

Behavior is **CONSTRAINED UNPREDICTABLE** if the value of EDECR.SS is changed when the PE is in Non-debug state, see *Changing the value of EDECR.SS when not in Debug state.*

- A write to EDES when the PE is in Non-debug state clears EDES.SS to 0.

These operations are guaranteed to take effect only after a **Context synchronization event**. If the instruction being stepped generates a **Context synchronization event**, then the PE might use the old or new state.

The PE must perform the required behavior of the new state before or immediately following the next **Context synchronization event**, but it is not required to do so immediately. This means that the PE can perform the required behavior of the old state before the next **Context synchronization event**. This is illustrated in Example H3-1 and Example H3-2.

Example H3-1 Synchronization requirements 1

EDECR.SS is set to 1 in Debug state, requesting the active-not-pending state on exit from Debug state. On exit from Debug state the PE immediately takes an exception to Secure state. ExternalSecureInvasiveDebugEnabled() == FALSE, meaning that halting is prohibited in Secure state. The PE does not step any instructions but executes the software in Secure state as normal. EDES.SS remains set to 0. If ExternalSecureInvasiveDebugEnabled() subsequently becomes TRUE, meaning that halting is now allowed, the PE must perform the required behavior of the active-not-pending state before or immediately following the next **Context synchronization event**, but it is not required to do so immediately.

Example H3-2 Synchronization requirements 2

EDECR.SS is set to 1 in Debug state. On exit from Debug the PE executes an MSR instruction that sets OSDLR_EL1.DLK to 1 and DoubleLockStatus() becomes TRUE. This change requires a **Context synchronization event** to guarantee its effect, meaning it is **CONSTRAINED UNPREDICTABLE** whether:

- Halting is allowed:
 - The PE enters Debug state on the next instruction.
- Halting is prohibited:
 - The PE does not enter Debug state.

The value in EDES.SS depends on whether halting was allowed or prohibited when the write to OSDLR_EL1.DLK completed, and so it might be 0 or 1. If a second MSR instruction clears OSDLR_EL1.DLK to 0, the PE must perform the required behavior of the state indicated by EDES.SS before or immediately following the next **Context synchronization event**, but it is not required to do so immediately.

See also *Synchronization and Halting debug events on page H3-7075.*

Changing the value of EDECR.SS when not in Debug state

If software changes the value of EDECR.SS when the PE is not in Debug state then behavior is **CONSTRAINED UNPREDICTABLE**, and one or more of the following behaviors occurs:

- The value of EDECR.SS becomes UNKNOWN.
- The state of the Halting Step state machine becomes UNKNOWN.
- On a reset of the PE, the value of EDECR.SS and the state of the Halting Step state machine are UNKNOWN.
H3.2.6 Stepping T32 IT instructions

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction and another 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field that applies to the current Exception level is 1.

For the purpose of stepping an item, it is IMPLEMENTATIONDEFINED whether:

- The PE considers such a pair of instructions to be one instruction.
- The PE considers such a pair of instructions be two instructions.

It is IMPLEMENTATIONDEFINED whether this behavior depends on the value of the applicable ITD bit. For example:

- The debug logic might consider such a pair of instructions as one instruction, regardless of the state of the applicable ITD field.
- The debug logic might consider such a pair of instructions as two instructions, regardless of the state of the applicable ITD field.
- The debug logic might consider such a pair of instructions as one instruction when the value of the applicable ITD field is 1, and as two instructions when the value of the ITD field is 0.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

The ITD control fields are:

- HSCTLR.ITD
 Applies to execution at EL2 when EL2 is using AArch32.

- SCTLR.ITD
 Applies to execution at EL0 or EL1 when EL1 is using AArch32.

- SCTLR_EL1.ITD
 Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

H3.2.7 Disabling interrupts while stepping

When using Halting Step, the sequence of entering Debug state, interacting with the debugger, and then exiting Debug state for each instruction reduces the rate at which the PE executes instructions. However, the rate at which certain interrupts, such as timer interrupts, are generated might be fixed by the system. This means it might be necessary to disable interrupts while using Halting Step by setting EDSCR.INTdis, to allow the code being debugged to make forward progress.

H3.2.8 Syndrome information on Halting Step

Three EDSCR.STATUS encodings record different scenarios for entering Debug state on a Halting Step debug event:

- Halting Step, normal
 An instruction other than a Load-Exclusive instruction was stepped.

- Halting Step, exclusive
 A Load-Exclusive instruction was stepped.

- Halting Step, no syndrome
 The syndrome data is not available.

If the PE enters Debug state due to a Halting Step debug event immediately after stepping an instruction in the active-not-pending state, EDSCR.STATUS is set to either:

- Halting Step, normal, if the stepped instruction was not a Load-Exclusive instruction.
- Halting Step, exclusive, if the stepped instruction was a Load-Exclusive instruction.
If the stepped instruction was a conditional Load-Exclusive instruction that failed its Condition code check, `EDSCR.STATUS` is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, normal, or Halting Step, exclusive.

Otherwise the PE enters Debug state without stepping an instruction. This means that the Halting Step state machine enters the active-pending state directly from the inactive state, without going through active-not-pending state. In this case, `EDSCR.STATUS` is set to Halting Step, no syndrome. This happens when:

- The PE enters directly into the active-pending state on an exception return to Non-secure state from EL3 when Halting is prohibited in Secure state.
- The active-pending state is entered for other reasons. See Synchronization and the Halting Step state machine on page H3-7062

In addition, `EDSCR.STATUS` is CONSTRAINED UNPREDICTABLE when:

- The instruction being stepped generated a Halting Step debug event before the instruction was executed. In this case `EDSCR.STATUS` is set to a CONSTRAINED UNPREDICTABLE choice of:
 - Halting Step, no syndrome, or Halting Step, normal, if the stepped instruction was not a Load-Exclusive instruction.
 - Halting Step, no syndrome, or Halting Step, exclusive, if the stepped instruction was a Load-Exclusive instruction.
- The instruction that was stepped was an Exception Return instruction or an ISB. As these instructions are not in the Load-Exclusive instructions, `EDSCR.STATUS` is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, no syndrome or Halting Step, normal.
- The PE enters directly into the active-pending state on reset because `EDECR.SS` is set to 1. `EDSCR.STATUS` is set to a CONSTRAINED UNPREDICTABLE choice of Halting Step, no syndrome or Halting Step, normal.

In all cases, if `EDSCR.STATUS` is not set to Halting Step, no syndrome, then it must indicate whether the stepped instruction was a Load-Exclusive instruction by setting `EDSCR.STATUS` to Halting Step, normal or Halting Step, exclusive.

--- Note ---

In an implementation that always sets `EDSCR.STATUS` to Halting Step, no syndrome is not compliant.

H3.2.9 Pseudocode description of Halting Step debug events

There are two pseudocode functions for Halting Step debug events:

- `RunHaltingStep()`. This is called after an instruction has executed and any exception generated by the instruction is taken. It is also called after taking a reset before executing any instructions. That is, reset is treated like an asynchronous exception, even if `EDECR.RCE` == 1 or `CTIDEVCTL.RCE` == 1. `RunHaltingStep()` affects the next instruction.
- `CheckHaltingStep()`. This is called before the next instruction is executed. If a step is pending, it generates the debug event.
H3.3 Halt Instruction debug event

A Halt Instruction debug event is generated when EDSCR.HDE == 1, halting is allowed, and the PE executes the Halt instruction, HLT.

The pseudocode for Halt Instruction debug events is described in HLT on page C6-929 for A64 and HLT on page F5-4411 for A32 and T32.

HLT never generates a debug exception. It is treated as UNDEFINED if EDSCR.HDE == 0, or if halting is prohibited.

Note

A debugger can replace a program instruction with a Halt instruction to generate a Halt Instruction debug event. Debuggers that use the HLT instruction must be aware of the Armv8-A rules for concurrent modification of executable code, CMODX. The rules for concurrent modification and execution of instructions do not allow one thread of execution or an external debugger to replace an instruction with an HLT instruction when these same instructions are being executed by a different thread of execution. See Concurrent modification and execution of instructions on page B2-120.

The T32 HLT instruction is unconditionally executed inside an IT block, even when it is treated as undefined. The A32 HLT instruction is CONSTRAINED UNPREDICTABLE if the Condition code field is not 0b1110, with the set of behaviors the same as for BKPT. See Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors.

Note

The HLT instruction is part of the external debug solution for Armv8-A. As such, the presence of the HLT instruction is not indicated in the ID registers. In particular, the AArch32 System register ID_ISAR0. Debug does not indicate the presence of the HLT instruction.

H3.3.1 HLT instructions as the first instruction in a T32 IT block

In an implementation that supports the ITD control, the architecture permits a combination of one T32 IT instruction and certain other 16-bit T32 instruction to be treated as a single 32-bit instruction when the value of the ITD field that applies to the current Exception level is 1.

The T32 HLT instruction cannot be combined with an IT instruction in this way. In an implementation that supports the ITD control, if the first instruction in an IT block is an HLT instruction, then the behavior of the instruction depends on the value of the applicable ITD field:

• If the value of the ITD field is 1, then the combination is treated as undefined and an Undefined Instruction exception is generated either by the IT instruction or by the HLT instruction.

• If the value of the ITD field is 0, then the HLT instruction unconditionally executed.

An implementation that does not support the ITD control behaves as if the value of the ITD field is 0.

To set an Halt Instruction debug event on the first instruction of an IT block, debuggers must replace the IT instruction with an HLT instruction to ensure consistent behavior.

The ITD control fields are:

HSCTLR.ITD
Applies to execution at EL2 when EL2 is using AArch32.

SCTLR.ITD
Applies to execution at EL0 or EL1 when EL1 is using AArch32.

SCTLR_EL1.ITD
Applies to execution at EL0 using AArch32 when EL1 is using AArch64.

Note

An HLT instruction is always unconditional, even within an IT block.
H3.4 Exception Catch debug event

Exception Catch debug events:

- Are generated when the corresponding bit in the Exception Catch Control Register, EDECCR, is set to 1 on all entries to a given Exception level. This means:
 - Exceptions taken to the Exception level.
 - Exception returns to the Exception level.
 - It is IMPLEMENTATION DEFINED whether a reset into an Exception level generates an Exception Catch debug event.

- Are taken synchronously, after the exception or reset entry or the exception return has been processed by the PE.

- Ignore the Execution state of the target Exception level.

- Are ignored if halting is prohibited.

For exception returns, the final Exception level of the exception return determines whether an Exception Catch debug event is generated. On an illegal exception return, an Exception Catch debug event is generated only if EDECCR is programmed to generate an Exception Catch debug event for an exception return to the current Exception level.

The EDECCR contains two sets of fields to generate Exception Catch debug events:

- NSE, and when FEAT_Debugv8p2 is implemented, NSR for Non-secure state.
- SE, and when FEAT_Debugv8p2 is implemented, SR for Secure state.

Each field within each set contains one bit for each Exception level in that state. Bits corresponding to Exception levels that are not implemented, or that are not implemented in the Security state, are RES0.

Note

- EDECCR does not replace DBGVCR:
 - DBGVCR is retained in AArch32 state for backwards compatibility.
 - DBGVCR is ignored in AArch64 state and never generates entries to Debug state.
 - DBGVCR cannot be accessed by the external debug interface.

- EDECCR is only visible as OSECCR_EL1 by System register instructions in AArch64 state, and as DBGOSECCR by System register access instructions in AArch32 state, when the OS Lock is locked to allow software to save and restore it over a powerdown.

- Exception Catch debug events are not disabled when the OS Lock is locked.

When an Exception Catch debug event is generated after exception entry, the PE halts and enters Debug state:

- Before the first instruction at the handler is executed.

- After the exception entry has updated the program counter, PSTATE and syndrome registers for the exception. This means that on entering Debug state:
 - The current Exception level is the target Exception level of the exception.
 - The ELR, SPSR, ESR, and other syndrome registers contain information about the exception.
 - DLR contains the exception vector address or the reset address.

When an Exception Catch debug event is generated on exception return, the PE halts and enters Debug state:

- After the exception return has updated the program counter and PSTATE.

- Before the execution of the first instruction at the return address is completed.

The PE does not fetch instructions from the vector address before entering Debug state, if address translation is disabled in the translation regime at the target Exception level.
The following rules define the prioritization of Exception Catch debug events:

- It is IMPLEMENTATION DEFINED whether Exception Catch debug events are higher or lower priority than each of Software Step exceptions and Halting Step debug events.
- Exception Catch debug events are higher priority than all synchronous exceptions other than Software Step exceptions.
- Exception Catch debug events are lower priority than Reset Catch debug events.
- The prioritization of Exception Catch debug events against pending asynchronous exceptions depends on whether FEAT_Debugv8p2 is implemented and is described in Exception Catch debug events when FEAT_Debugv8p2 is implemented and Exception Catch debug events when FEAT_Debugv8p2 is not implemented on page H3-7069.

Note

As described in Synchronous exception prioritization for exceptions taken to AArch64 state on page D1-2349, an exception trapping form of a Vector Catch debug event might generate a second debug exception as part of the exception entry, before the Exception Catch debug event is taken. See Vector Catch exceptions on page D2-2465 or Vector Catch exceptions on page G2-5909.

H3.4.1 Exception Catch debug events when FEAT_Debugv8p2 is implemented

When FEAT_Debugv8p2 is implemented, the fields NSR, SR, NSE, and SE in EDECCR control generation of Exception Catch debug events:

- On exception entry but not on exception return.
- On exception return but not on exception entry.
- On exception entry and exception return.

Exception entry, reset and exception return Exception Catch debug events are enabled as shown in Table H3-5.

<table>
<thead>
<tr>
<th>(N)SR<\text{n}></th>
<th>(N)SE<\text{n}></th>
<th>Behavior on exception return to EL\text{n}</th>
<th>Behavior on exception taken to EL\text{n}, and if resets are Exception Catch debug events, reset into EL\text{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>No action.</td>
<td>No action.</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
<td>Halt if allowed.</td>
<td>Halt if allowed.</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>Halt if allowed.</td>
<td>No action.</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>No action.</td>
<td>Halt if allowed.</td>
</tr>
</tbody>
</table>

When an Exception Catch debug event is generated on exception entry, the PE halts and enters Debug state before any asynchronous exception or debug event is taken at the first instruction in the exception handler.

Note

There is no prioritization between asynchronous exceptions, asynchronous debug events, and an Exception Catch debug event generated on an exception return.

See also Debug state entry and debug event prioritization on page H2-7017.
H3.4.2 Exception Catch debug events when FEAT_Debugv8p2 is not implemented

When FEAT_Debugv8p2 is not implemented, all Exception Catch debug events are enabled by a combination of the fields NSE and SE in EDECCR, as shown in Table H3-6.

Table H3-6 Summary of Exception Catch debug event control when FEAT_Debugv8p2 is not implemented

<table>
<thead>
<tr>
<th>(N)SE<n></th>
<th>Behavior on exception taken to ELn, return to ELn, and if resets are Exception Catch debug events, reset into ELn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No action.</td>
</tr>
<tr>
<td>1</td>
<td>Halt if allowed.</td>
</tr>
</tbody>
</table>

A second unmasked asynchronous exception can be taken before the PE enters Debug state. If this second exception does not generate an Exception Catch debug event, the exception handler executed at the higher Exception level later returns to the trapped Exception level, causing the Exception Catch debug event to be generated again.

When the PE is executing code at a given Exception level, and the corresponding EDECCR bit is 1, it is CONstrained UnPredictable whether an Exception Catch debug event is generated.

Note

It is possible to generate Exception Catch debug events:
- As a trap on all instruction fetches from the trapped Exception level as part of an instruction fetch.
- On entry to the Exception level, as described in Detailed Halting Step state machine behavior on page H3-7059.

This is similar to the implementation options allowed for Vector Catch debug events. The architecture does not require that the event is generated following an ISB operation executed at the Exception level.

Examples of this are:
- If the debugger writes to EDECCR so that the current Exception level is trapped.
- If the OS restore code writes to OSECCR so that the current Exception level is trapped.
- If the code executing in AArch32 state changes the Exception level or security state other than by an exception return, and the target Exception level is trapped. See State and mode changes without explicit context synchronization events on page G2-5916.

H3.4.3 Examples of Exception Catch debug events

If EDECCR == 0x0020, meaning that the Exception Catch debug event is enabled for Non-secure EL1, then the following exceptions generate Exception Catch debug events:
- An exception taken from Non-secure EL0 to Non-secure EL1.
- An exception return from EL2 to Non-secure EL1.
- An exception return from EL3 to Non-secure EL1.

For example, on taking a Data Abort exception from Non-secure EL0 to Non-secure EL1, using AArch64:
- ELR_EL1 and SPSR_EL1 are written with the preferred return address and PE state for a return to EL0.
- ESR_EL1 and FAR_EL1 are written with the syndrome information for the exception.
- DLR_EL0 is set to VBAR_EL1 + 0x400, the synchronous exception vector.
- DSPSR_EL0 is written with the PE state for an exit to EL1.

The following do not generate Exception Catch debug events:
- An exception taken from EL0 to EL2, in either Security state, or EL3.
- An exception return from EL2, in either Security state, to EL0.
- An exception taken from Secure EL0 to Secure EL1.
H3.4 Exception Catch debug event

- An exception return from EL3 to Secure EL1.

H3.4.4 Pseudocode description of Exception Catch debug events

The pseudocode function `CheckExceptionCatch()` is described in Chapter J1 Armv8 Pseudocode.
H3.5 External Debug Request debug event

External Debug Request debug events are asynchronous debug events.

An External Debug Request debug event is generated when signaled by the embedded cross-trigger. See Chapter H5 The Embedded Cross-Trigger Interface.

Note
Armv8-A requires the implementation of an embedded cross-trigger.

An implementation might also support IMPLEMENTATION DEFINED ways of generating an External Debug Request debug event.

H3.5.1 Synchronization and External Debug Request debug events

An External Debug Request debug event that is asserted before a Context synchronization event is taken and the PE enters Debug state before the first instruction following the Context synchronization event completes its execution, provided that halting is allowed after completion of the Context synchronization event.

An External Debug Request debug event that is being asserted when the PE comes out of reset is taken, and the PE enters Debug state before the first instruction after the reset completes its execution, provided that halting is allowed when the PE exits reset state.

If the first instruction after the Context synchronization event or after coming out of reset generates a synchronous exception then the architecture does not define the order in which the debug event and the exception or exceptions are taken.

Otherwise, when halting is allowed, External Debug Request debug events must be taken in finite time, without requiring the synchronization of any necessary change to the external authentication interface.

Note
These rules are based on the rules that apply when taking asynchronous exceptions. See Asynchronous exception types, routing, masking and priorities on page D1-2357.

If an unmasked External Debug Request debug event was pending but is changed to not pending before it is taken, then the architecture permits the External Debug Request debug event to be taken, but does not require this to happen. If the External Debug Request debug event is taken then it must be taken before the first Context synchronization event after the External Debug Request debug event was changed to not pending.

Example H3-3 shows an example of the synchronization requirements.

Example H3-3 Synchronization requirements

Secure software locks up in a tight loop, so it executes indefinitely without any synchronization operations. An External debug request must be able to break the PE out of that loop. This is a requirement even if DBGEN or SPIDEN or both are LOW on entry to the loop, meaning that halting is prohibited, and are only asserted HIGH later.

H3.5.2 Pseudocode description of External Debug Request debug events

The ExternalDebugRequest() function is described in Chapter J1 Armv8 Pseudocode.
H3.6 OS Unlock Catch debug event

An OS Unlock Catch debug event is generated when enabled and the state of the OS Lock changes from locked to unlocked. When FEAT_DoPD is implemented, CTIDEVCTL.OSUCE enables an OS Unlock Catch debug event, otherwise EDECR.OSUCE enables an OS Unlock Catch debug event.

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled, and the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. However, this is an indirect write to EDESR.OSUC, meaning the OS Unlock Catch debug event is not guaranteed to be taken before a subsequent Context synchronization event. If the PE enters Debug state or the OS Unlock Catch debug event is disabled before EDESR.OSUCE becomes set to 1, then EDESR.OSUC might not be set.

OS Unlock Catch debug events are not generated if the OS Lock is unlocked when the PE is in Debug state. See also Synchronization and Halting debug events on page H3-7075.

EDESR.OSUC is cleared to 0 on a Warm reset and on exiting Debug state.

H3.6.1 Using the OS Unlock Catch debug event

When the Core power domain is completely off or in a low-power state, a debugger is permitted to access a debug register that is implemented in the External debug power domain. However, if a debugger attempts to access a debug register that is implemented in the Core power domain when the Core power domain registers cannot be accessed, and that access returns an error, the debugger must retry the access.

Regularly powering down the Core power domain can result in unreliable debugger behavior.

The debugger can program a Reset Catch debug event to halt the PE when it has powered up, and can program the debug registers from Debug state. However, if the PE boot software restores the debug registers, as described in Debug OS Save and Restore sequences on page H6-7123, then newly written values are overwritten by the restore sequence.

The debugger can program an OS Unlock Catch debug event to halt the PE after the restore sequence has completed, and program the debug registers from Debug state.

H3.6.2 Pseudocode description of OS Unlock Catch debug event

The CheckOSUnlockCatch() function is called when the OS Lock is unlocked.

The CheckPendingOSUnlockCatch() function is called before an instruction is executed. If an OS Unlock Catch is pending, it generates the debug event.
H3.7 Reset Catch debug events

A Reset Catch debug event is generated when enabled, and the PE exits reset state. When the Reset Catch debug event is generated, it is recorded by setting EDESR.RC to 1. When FEAT_DoPD is implemented, CTIDEVCTL.RCE enables a Reset Catch debug event, otherwise EDECR.RCE enables a Reset Catch debug event.

If halting is allowed when the event is generated, the Reset Catch debug event is taken immediately and synchronously. On entering Debug state, DLR has the address of the reset vector. The PE must not fetch any instructions from memory.

Otherwise, the Reset Catch debug event is pended and taken when halting is allowed. See Synchronization and Halting debug events on page H3-7075 for more information.

This means that EDESR.RC is set to the value of EDECR.RCE or CTIDEVCTL.RCE on a Warm reset. EDESR.RC is cleared to 0 on exiting Debug state.

H3.7.1 Pseudocode description of Reset Catch debug event

The CheckResetCatch() function is called after reset before executing any instruction.

The CheckPendingResetCatch() function is called before an instruction is executed. If a Reset Catch is pending, it generates the Reset Catch debug event.
H3.8 Software Access debug event

When the value of EDSCR.TDA is 1, software access to the following AArch64 and AArch32 debug System registers generate a Software Access debug event:

- The Breakpoint Value Registers, DBGBVR.
- The Breakpoint Control Registers, DBGBCR.
- The Watchpoint Value Registers, DBGWVR.
- The Watchpoint Control Registers, DBGWCR.

However, EDSCR.TDA is ignored if any of the following applies:

- The value of OSLSR.OSLK == 1, meaning that the OS Lock is locked.
- Halting is prohibited. See Halting allowed and halting prohibited on page H2-7015.
- The register access generates an exception.

--- Note ---

- The only accesses to the specified registers that generate a Software Access debug event are:
 - Accesses to System registers in AArch64 state.
 - Accesses to System registers in the (coprec==0b1110) encoding space in AArch32 state.
- Accesses by a PE using the external debug interface never generate a Software Access debug event.

H3.8.1 Pseudocode description of Software Access debug event

The CheckSoftwareAccessToDebugRegisters() function is described in Chapter J1 Armv8 Pseudocode.
H3.9 Synchronization and Halting debug events

The behavior of external debug depends on:

- Indirect reads of:
 - External debug registers.
 - System registers, including system debug registers.
 - Special-purpose registers.
- The state of the external authentication interface.

For some registers, all read and write accesses that update the register occur in program order, without any additional synchronization, but others require an explicit **Context synchronization event**. For more information on the synchronization of register updates, see:

- *Synchronization requirements for AArch64 System registers* on page D13-2863.
- *Synchronization of changes to the external debug registers* on page H8-7138.
- *State and mode changes without explicit context synchronization events* on page G2-5916.

Changes to the external authentication interface do not require explicit synchronization to affect External Debug Request debug events. See *Synchronization and External Debug Request debug events* on page H3-7071.

For changes that require explicit synchronization, it is CONSTRAINED UNPREDICTABLE whether instructions between the change and the **Context synchronization event** observe the old state or the new state.

This means that any change to these registers or the external authentication interface requires explicit synchronization by a **Context synchronization event** before the change takes effect. This ensures that for instructions appearing in program order after the change, the change affects the following:

- The generation and behavior of Breakpoint and Watchpoint debug events. See *Synchronization and debug exceptions* on page D2-2479 for exceptions taken from AArch64 state, or *Synchronization and debug exceptions* on page G2-5916 for exceptions taken from AArch32 state.
- The generation of all Halting debug events by instructions.
- Taking a pending Halting debug event or other asynchronous Debug event. See:
 - **Pending Halting debug events**.
 - *Synchronization and External Debug Request debug events* on page H3-7071.
- The behavior of the Halting Step state machine. See *Synchronization and the Halting Step state machine* on page H3-7062.

H3.9.1 Pending Halting debug events

A Halting debug event might be pending:

1. If Halting Step of an instruction sets EDESR.SS is set to 1, and halting is prohibited following the step, then the Halting Step state machine is inactive but a Halting Step debug event is pending.
2. If a Reset Catch debug event sets EDESR.RC to 1, and halting is prohibited following reset, then a Reset Catch debug event is pending.
3. If an OS Unlock Catch debug event sets EDESR.OSUC to 1, then an OS Unlock Catch debug event is pending.

Pending Halting debug events are taken asynchronously when halting is allowed.

Pending Halting debug events are discarded by a Cold reset. The debugger can also force a pending event to be dropped by writing to EDESR.

Any Halting debug event that is observed as pending in the EDESR before a **Context synchronization event** is taken and the PE enters Debug state before the first instruction following the **Context synchronization event** completes its execution. This is only possible if halting is allowed after completion of the **Context synchronization event**.
If the first instruction after the *Context synchronization event* generates a synchronous exception then the architecture does not define the order in which the debug event and the exception or exceptions are taken, unless both:

- A Halting Step debug event is pending. $EDESR.SS == 1$.
- The *Context synchronization event* is an exception return from a state where halting is prohibited to a state where halting is allowed.

__________ **Note** ____________

This applies to an exception return from Secure state with $\text{ExternalSecureInvasiveDebugEnabled()} \equiv \text{FALSE}$ to Non-secure state with $\text{ExternalInvasiveDebugEnabled()} \equiv \text{TRUE}$.

In this case the order in which the debug events are handled is specified to avoid a double-step. See *Entering the active-pending state* on page H3-7061.

If an asynchronous exception is also pending after the *Context synchronization event* then the architecture does not define the order in which the debug event and the exception or exceptions are taken.

__________ **Note** ____________

These rules are based on the rules that apply to taking asynchronous exceptions. See *Asynchronous exception types, routing, masking and priorities* on page D1-2357.
Chapter H4
The Debug Communication Channel and Instruction Transfer Register

This chapter describes communication between a debugger and the implemented debug logic, using the Debug Communications Channel (DCC) and the Instruction Transfer Register (ITR), and associated control flags. It contains the following sections:

• Introduction on page H4-7078.
• DCC and ITR registers on page H4-7079.
• DCC and ITR access modes on page H4-7082.
• Flow control of the DCC and ITR registers on page H4-7086.
• Synchronization of DCC and ITR accesses on page H4-7090.
• Interrupt-driven use of the DCC on page H4-7096.
• Pseudocode description of the operation of the DCC and ITR registers on page H4-7097.

---- Note -----
Where necessary, Table K15-1 on page K15-8160 disambiguates the general register references used in this chapter.
H4.1 Introduction

The Debug Communications Channel, DCC, is a channel for passing data between the PE and an external agent, such as a debugger. The DCC provides a communications channel between:

- An external debugger, described as the debug host.
- The debug implementation on the PE, described as the debug target.

The DCC can be used:

- As a 32-bit full-duplex channel.
- As a 64-bit half-duplex channel.

The DCC is an essential part of Debug state operation and can also be used in Non-debug state.

The Instruction Transfer Register, ITR, passes instructions to the PE to execute in Debug state.

The PE includes flow-control mechanisms for both the DCC and ITR.
H4.2 DCC and ITR registers

The DCC comprises data transfer registers, the DTRs, and associated flow-control flags. The data transfer registers are DTRRX and DTRTX.

The ITR comprises a single register, EDITR, and associated flow-control flags.

In AArch64 state, software can access the data transfer registers as:

- A receive and transmit pair for 32-bit full duplex operation:
 - The write-only DBGDTRTX_EL0 register to transmit data.
 - The read-only DBGDTRRX_EL0 register to receive data.
- A single 64-bit read/write register, DBGDTR_EL0, for 64-bit half-duplex operation.
- The read/write OSDTRTX_EL1 and OSDTRRX_EL1 registers for save and restore.

In AArch32 state, software can only access the data transfer registers as:

- A receive and transmit pair, for 32-bit full duplex operation:
 - The write-only DBGDTRTXint register to transmit data.
 - The read-only DBGDTRRXint register to receive data.
- The read/write DBGDTRTXext and DBGDTRRXext registers for save and restore.

The data transfer registers are also accessible by the external debug interface as a pair of 32-bit registers, DBGDTRRX_EL0 and DBGDTRTX_EL0. Both registers are read/write, allowing both 32-bit full-duplex and 64-bit half-duplex operation.

The DCC flow-control flags are EDSCR. {RXfull, TXfull, RXO, TXU}:

- The RXfull and TXfull ready flags are used for flow-control and are visible to software in the Debug system registers in DCCSR.
- The RX overrun flag, RXO, and the TX underrun flag, TXU, report flow-control errors.
- The flow-control flags are also accessible by software as simple read/write bits for saving and restoring over a powerdown when the OS Lock is locked in DSCR.
- The flow-control flags are accessible from the external debug interface in EDSCR.

Figure H4-1 on page H4-7080 shows the System register and external debug interface views of the EDSCR and DTR registers in both AArch64 state and AArch32 state. These figures do not include the save and restore views.
H4.2 DCC and ITR registers

Figure H4-1 System register and external debug interface views of EDSCR and DTR registers, Normal access mode

EDITR and the ITR flow-control flags, EDSCR.ITE, ITO are accessible only by the external debug interface:

- The EDITR specifies an instruction to execute in Debug state.
- The ITR empty flag, ITE, is used for flow-control.
- The ITR overrun flag, ITO, reports flow-control errors.

Figure H4-2 External debug interface views of EDSCR and EDITR registers, Normal access mode

The sticky overflow flag, EDSCR.ERR, is used by both the DCC and ITR to report flow-control errors.

To save and restore the DCC registers for an external debugger over powerdown, software uses:

- The MDSCR_EL1, OSDTRTX_EL1, and OSDTRRX_EL1 registers in AArch64 state.
• The DBGDSCRext, DBGDTRTXext, and DBGDTRRXext registers in AArch32 state.

Note
There is no save and restore mechanism for the ITR registers as the ITR is only used in Debug state.

![System register interface diagram](image)

Figure H4-3 System register views of EDSCR and DTR registers for save and restore
H4.3 **DCC and ITR access modes**

The DCC and ITR support two access modes:

<table>
<thead>
<tr>
<th>DCC and ITR access mode, links to description</th>
<th>Applies when:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal access mode</td>
<td>EDSCR.MA == 0 or the PE is in Non-debug state</td>
</tr>
<tr>
<td>Memory access mode on page H4-7083</td>
<td>EDSCR.MA == 1 and the PE is in Debug state</td>
</tr>
</tbody>
</table>

H4.3.1 Normal access mode

The Normal access mode allows use of the DCC as a communications channel between target and host. It also allows the use of the ITR for issuing instructions to the PE in Debug state.

In Normal access mode, if there is no overrun or underrun, the following occurs:

For accesses by software:

- Direct writes to DBGDTRTX update the value in DTRTX and indirectly write 1 to TXfull.
- Direct reads from DBGDTRRX return the value in DTRRX and indirectly write 0 to RXfull.
- In AArch64 state, direct writes to DBGDTR_EL0 update both DTRTX and DTRRX, indirectly write 1 to TXfull, and do not change RXfull:
 - DTRTX is set from bits[31:0] of the transfer register.
 - DTRRX is set from bits[63:32] of the transfer register.
- In AArch64 state, direct reads from DBGDTR_EL0 return the concatenation of DTRRX and DTRTX, indirectly write 0 to RXfull, and do not change TXfull:
 - Bits[31:0] of the transfer register are set from DTRRX.
 - Bits[63:32] of the transfer register are set from DTRTX.

Note

For DBGDTR_EL0, the word order is reversed for reads with respect to writes.

Software reads TXfull and RXfull using DCCSR.

For accesses by the external debug interface:

- Writes to EDITR trigger the instruction to be executed if the PE is in Debug state:
 - If the PE is in AArch64 state, this is an A64 instruction.
 - If the PE is in AArch32 state, this is a T32 instruction. The T32 instruction is a pair of halfwords where the first halfword is taken from the lower 16-bits, and the second halfword is taken from the upper 16-bits.
- Reads of DBGDTRTX_EL0 return the value in DTRTX and indirectly write 0 to TXfull.
- Writes to DBGDTRTX_EL0 update the value in DTRTX and do not change TXfull.
- Reads of DBGDTRRX_EL0 return the value in DTRRX and do not change RXfull.
- Writes to DBGDTRRX_EL0 update the value in DTRRX and indirectly write 1 to RXfull.

TXfull and RXfull are visible to the external debug interface in EDSCR.

The PE detects overrun and underrun by the external debug interface, and records errors in EDSCR. [TXU, RXO, ITO, ERR]. See *Flow control of the DCC and ITR registers* on page H4-7086.

See also *Synchronization of DCC and ITR accesses* on page H4-7090.
H4.3.2 Memory access mode

When the PE is in Debug state, Memory access mode can be selected to accelerate word-aligned block reads or writes of memory by an external debugger. Memory access mode can only be enabled in Debug state, and no instructions can be issued directly by the debugger when in Memory access mode.

If there is no overrun or underrun when in Memory access mode, an access by the external debug interface results in the following:

- External reads from DBGDTRTX_EL0 cause:
 1. The existing value in DTRTX to be returned. This clears EDSCR.TXfull to 0.
 2. The equivalent of LDR W1,[X0],#4, if in AArch64 state, or LDR R1,[R0],#4, if in AArch32 state, to be executed.
 3. The equivalent of the MSR DBGDTRX_EL0,X1 instruction, if in AArch64 state, or the MCR p14,0,R1,c0,c5,0 instruction, if in AArch32 state, to be executed.
 4. EDSCR.{TXfull, ITE} to be set to {1,1}, and X1 or R1 to be set to an UNKNOWN value.

- External writes to DBGDTRRX_EL0 cause:
 1. The value in DTRRX to be updated. This sets EDSCR.RXfull to 1.
 2. The equivalent of the instruction MRS X1,DBGDTRRX_EL0, if in AArch64 state, or MRC p14,0,R1,c0,c5,0 if in AArch32 state, to be executed.
 3. The equivalent of the instruction STR W1,[X0],#4, if in AArch64 state, or STR R1,[R0],#4, if in AArch32 state, to be executed.
 4. EDSCR.{RXfull, ITE} to be set to {0,1}, and X1 or R1 to be set to an UNKNOWN value.

- External reads from DBGDTRTX_EL0 return the last value written to DTRRX.
- External writes to EDITR generate an overrun error.

During these accesses, EDSCR.{TXfull, RXfull, ITE} are used for flow control.

Note

An overrun or underrun might result in EDSCR.ERR being set to 1 asynchronously to the sequence of operations that are outlined in this section. As this is timing-dependent, it is UNPREDICTABLE when the EDSCR.ERR flag affects the instructions and therefore whether neither instruction, only the first instruction, or both instructions are executed. If the second instruction is executed, then the first instruction must have been executed. However, in each case X1 or R1 is set to an UNKNOWN value. This means that:

- In both cases, if the memory access instruction is not executed, then the base register X0 or R0 is not updated, meaning the debugger can determine the last accessed location.
- In the list describing External reads from DBGDTRTX_EL0, DTRTX and EDSCR.TXfull get set to UNKNOWN values. If the load was executed, then the value that was read by the PE is lost. This means the operation might need to be repeated by the debugger, and it is not advisable to use Memory access mode to read from read-sensitive locations using the underrun and overrun detection for flow control.
- In the list describing External writes to DBGDTRRX_EL0, EDSCR.RXfull is set to an UNKNOWN value.

A Data Abort from the memory access can also set EDSCR.ERR to 1. See Data Aborts in Memory access mode on page H4-7084.

The architecture does not require precisely when these flags are set or cleared by the sequence of operations outlined in this section. For example, in the case of an external write to DBGDTRRX_EL0, in AArch64 state, RXfull might be cleared after step 2, or it might not be cleared until after step 3, as an implementation is free to fuse these steps into a single operation. The architecture does require that the flags are set as at step 4 when the PE is ready to accept a further read or write without causing an overrun error or an underrun error.

The process outlined in this section represents a simple sequential execution model of Memory access mode. An implementation is free to pipeline, buffer, and re-order instructions and transactions, as long as the following remain true:

- Data items are transferred into and out of the DTR in order and without loss of data, other than as a result of an overrun or an underrun.
• Data Aborts occur in order.
• The constraints of the memory type are met.

• In the list describing External reads from DBGDTRTX_EL0 on page H4-7083:
 — The MSR equivalent operation at step 3 of the sequence reads the value loaded by step 2.
 — If the list is performed in a loop, for all but the first iteration of this list, the value read by step 1 returns the values written by the MSR equivalent operation at the previous iteration of step 3.

• In the list describing External writes to DBGDTRRX_EL0 on page H4-7083:
 — The MRS equivalent operation at step 2 of the sequence returns the value written at step 1.
 — The STR equivalent at step 3 of the sequence writes the value read at step 2.

• If the PE cannot accept a read or write, as applicable, during the sequence, then the flags are updated to indicate an overrun or underrun.

See Flow control of the DCC and ITR registers on page H4-7086 for more information on overrun and underrun.

Ordering, access sizes and effect on Exclusives monitors

For the purposes of memory ordering, access sizes, and effect on the Exclusives monitor, accesses in Memory access mode are consistent with Load/Store word instructions executed by the PE.

The simple sequential access model of Memory-access mode, as stated in Memory access mode on page H4-7083, must also be ordered with respect to instructions executed as a result of explicit writes to EDITR in Normal mode both before and after accesses to the DTR registers in Memory-access mode.

Data Aborts in Memory access mode

If a memory access generates a Data Abort, then:

• The Data Abort exception is taken. See Exceptions in Debug state on page H2-7045:
 — This means EDSCR.ERR is set to 1, see Cumulative error flag on page H4-7088.
 — If the Data Abort occurs on stage 2 of an address translation, then the values returned in the ISV field and in bits[23:14] of the ISS are UNKNOWN.
 If this Data Abort is taken to EL2 using AArch64, the ISS is returned by ESR_EL2. ISS encoding for an exception from a Data Abort on page D13-2987 describes the usual encoding of this ISS.
 If EL2 is using AArch32 and this Data Abort is taken to Hyp mode, the ISS is returned by HSR. ISS encoding for exception from a Data Abort on page G8-6342 describes the usual encoding of this ISS.

 • Register R0 retains the address that generated the abort.
 • Register R1 is set to an UNKNOWN value.
 • EDSCR.TXfull, for a load, or EDSCR.RXfull, for a store, is set to an UNKNOWN value.
 • DTRTX, for a load, or DTRRX, for a store, is set to an UNKNOWN value.
 • EDSCR.ITE is set to 1.

Illegal Execution state exception

If PSTATE.IL is set to 1 when EDSCR.MA == 1, then on an external write access to DBGDTRRX_EL0 or an external read from DBGDTRTX_EL0, it is CONSTRAINED UNPREDICTABLE whether the PE:

• Takes an Illegal Execution state exception without performing any operations. In this case:
 — EDSCR.ERR is set to 1, see Cumulative error flag on page H4-7088.
 — Register R0 is unchanged.
 — Register R1 is set to an UNKNOWN value.
 — EDSCR.TXfull or EDSCR.RXfull, as applicable, is set to an UNKNOWN value.
— DTRTX or DTRRX, as applicable, is set an unknown value.
— EDSCR.ITE is set to 1.

See also Exceptions in Debug state on page H2-7045.

• Ignores PSTATE.IL.

Note

The typical usage model for Memory access mode involves executing instructions in Normal access mode to set up X0 before setting EDSCR.MA to 1. These instructions generate an Illegal state exception if PSTATE.IL is set to 1.

Alignment constraints

If the address in R0 is not aligned to a multiple of four, the behavior is as follows:

• For each external DTR access a constrained unpredictable choice of:
 1. The PE makes an unaligned memory access to R0. If alignment checking is enabled for the memory access, this generates an Alignment fault.
 2. The PE makes a memory access to Align(X[0], 4) in AArch64 state, or Align(R[0], 4) in AArch32 state.
 3. The PE generates an Alignment fault, regardless of whether alignment checking is enabled.
 4. The PE does nothing.

• Following each memory access, if there is no Data Abort, R0 is updated with an unknown value.

• For external writes to DBGDTRRX_EL0, if the PE writes to memory, an unknown value is written.

• For external reads of DBGDTRTX_EL0 an unknown value is returned.

• The RXfull and TXfull flags are left in an unknown state, meaning that a DBGDTRTX_EL0 read can trigger a TX underrun, and a DBGDTRTX_EL0 write can trigger an RX overrun.

H4.3.3 Memory-mapped accesses to the DCC and ITR

 Writes to the flags in EDSCR by external debug interface accesses to the DCC and the ITR registers are indirect writes, because they are a side-effect of the access. The indirect write might not occur for a memory-mapped access to the external debug interface. For more information, see Register access permissions for memory-mapped accesses on page H8-7142.
H4.4 Flow control of the DCC and ITR registers

- Ready flags.
- Buffering writes to EDITR.
- Overrun and underrun flags.
- Cumulative error flag on page H4-7088.

H4.4.1 Ready flags

In Normal access mode:

- For the DTR registers there are two ready flags:
 - EDSCR.RXfull == 1 indicates that DBGDTRRX_EL0 contains a valid value that has been written by the external debugger and not yet read by software running on the target.
 - EDSCR.TXfull == 1 indicates that DBGDTRTX_EL0 contains a valid value that has been written by software running on the target and not yet read by an external debugger.

- For the ITR register there is a single ready flag:
 - EDSCR.ITE == 1 indicates that the PE is ready to accept an instruction to the ITR.

Note
The architecture permits a PE to continue to accept and buffer instructions when previous instructions have not completed their architecturally defined behavior, as long as those instructions are discarded if EDSCR.ERR is set, either by an underrun or overrun or by any of the other error conditions described in this architecture, such as an instruction generating an abort.

In Memory access mode:

- EDSCR.{RXfull, ITE} == {0,1} indicates that DBGDTRRX_EL0 is empty and the PE is ready to accept a word external write to DBGDTRRX_EL0.
- EDSCR.{TXfull, ITE} == {1,1} indicates that DBGDTRTX_EL0 is full and the PE is ready to accept a word external read from DBGDTRTX_EL0.

All other values indicate that the PE is not ready, and result in a DTR overrun or underrun error, an ITR overrun error, or both, as defined in Overrun and underrun flags.

EDSCR.{ITE, RXfull, TXfull} shows the status of the ITR and DCC registers. It ignores the question of whether a read or write cannot be accepted because, for example, EDSCR.ERR is set or the OPTIONAL Software Lock is locked for memory-mapped accesses (EDLSR.SLK == 1).

H4.4.2 Buffering writes to EDITR

The architecture permits a processor to continue to accept and buffer instructions when previous instructions have not completed their architecturally defined behavior, provided that:

- Those instructions are discarded if EDSCR.ERR is set to 1, either by an underrun or an overrun, or by any other error conditions described in this architecture, such as an instruction generating an abort.
- The PE maintains the simple sequential execution model with the order of instructions determined by the order in which the PE accepts the EDITR writes. In particular, the buffered instructions must be executed in the Execution state consistent with a simple sequential execution of the instructions, even if one of the previous instructions is a state changing operation, such as DCPS or DRPS.

H4.4.3 Overrun and underrun flags

Each of the ready flags has a corresponding overrun or a corresponding underrun flag. These are sticky status flags that are set if the register is accessed using the external debug interface when the corresponding ready flag is not in the ready state.
If the PE is in Debug state and Memory access mode, the corresponding error flag is also set if the PE is not ready to accept an operation because a previous load or store is still in progress. The sticky status flag remains set until cleared by writing 1 to EDRCR.CSE.

Note
The architecture permits a PE to continue to accept and buffer data to write to memory in Memory access mode.

Table H4-1 shows DCC and ITR ready flags and the overrun and underrun flags associated with them.

Table H4-1 DCC and ITR ready flags and the associated overrun/underrun flags

<table>
<thead>
<tr>
<th>External debug interface access</th>
<th>Overrun/Underrun condition</th>
<th>EDCR flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write DBGDTRRX_EL0</td>
<td>EDSCR.RXfull == '1'</td>
<td></td>
</tr>
<tr>
<td>Read DBGDTRTX_EL0</td>
<td>EDSCR.TXfull == '0'</td>
<td></td>
</tr>
<tr>
<td>Write EDITR</td>
<td>Halted() && (EDSCR.ITE == '0'</td>
<td></td>
</tr>
</tbody>
</table>

When an overrun or underrun flag is set to 1, the cumulative error flag, EDCR.ERR, described in [Cumulative error flag](#) on page H4-7088, is also set to 1.

In the event of an external write to DBGDTRRX_EL0 or EDITR generating an overrun, or an external read from DBGDTRTX_EL0 generating an underrun:

- For a write, the written value is ignored.
- For a read, an UNKNOWN value is returned.

EDSCR.TXfull, EDSCR.RXfull or EDSCR.ITE, as applicable, are not updated.

There is no overrun or underrun detection on external reads of DBGDTRRX_EL0 or external writes of DBGDTRTX_EL0.

There is no overrun or underrun detection of direct reads and direct writes of the DTR System registers by software:

- If RXfull == 0, a direct read of DBGDTRRX or DBGDTR_EL0 returns UNKNOWN.
- If TXfull == 1, a direct write of:
 - DBGDTRTX sets DTRTX to UNKNOWN.
 - DBGDTR_EL0 sets DTRRX and DTRTX to UNKNOWN.

See [DCC accesses in Non-debug state](#) for more information.

Accessing 64-bit data

In AArch64 state, a software access to the DBGDTR_EL0 register and an external debugger access to both DBGDTRRX_EL0 and DBGDTRTX_EL0 can perform a 64-bit half-duplex operation.

However, there is only overrun and underrun detection on one of the external debug registers. That is:

- If software directly writes a 64-bit value to DBGDTR_EL0, only TXfull is set to 1, meaning:
 - A subsequent external write to DBGDTRRX_EL0 would not be detected as an overrun.
 - If the external debugger reads DBGDTRTX_EL0 first, software might observe MDCCSR_EL0.TXfull == 0 and send a second value before the external debugger reads DBGDTRRX_EL0, leading to an undetected overrun.
- On external writes to both DBGDTRRX_EL0 and DBGDTRTX_EL0 only RXfull is set to 1, meaning:
 - A subsequent direct write of DBGDTRTX_EL0 would not be detected as an overrun.
If the external debugger writes to DBGDTRRX_EL0 first, software might observe MDCCSR_EL0.RXfull == 1 and read a full 64-bit value, before the external debugger writes to DBGDTRTX_EL0, leading to an undetected underrun.

To avoid this, debuggers need to be aware of the data size used by software for transfers and ensure that 64-bit data is read or written in the correct order. If the PE is in Non-debug state, this order is as follows:

- The external debugger must check EDSCR.{RXfull, TXfull} before each transfer.
- To receive a 64-bit value from the target, the external debugger must read DBGDTRRX_EL0 before reading DBGDTRTX_EL0.
- To send a 64-bit value to the target, the external debugger must write to DBGDTRTX_EL0 before writing DBGDTRRX_EL0.

Because three accesses are required to transfer 64 bits of data, 64-bit transfers are not recommended for regular communication between host and target. The use of underrun and overrun detection means that only one access is required for 32 bits of data when using 32-bit transfers.

In Debug state, the debugger controls the instructions executed by the PE, so these limitations do not apply. 64-bit transfers provide a means to transfer a 64-bit general register between the host and the target in Debug state.

H4.4.4 Cumulative error flag

The cumulative error flag, EDSCR.ERR, is set to 1:

- On taking an exception from Debug state.
- On any signalled overrun or underrun in the DCC or ITR.

When EDSCR.ERR == 1:

- External reads of DBGDTRTX_EL0 do not have any side-effects.
- External writes to DBGDTRRX_EL0 are ignored.
- External writes to EDITR are ignored.
- No further instructions can be issued in Debug state. This includes any instructions previously accepted as external writes to EDITR that occur in program order after the instruction or access that caused the error.

This allows a debugger to stream data, or, in Debug state, instructions, to the target without having to:

- Check EDSCR.{RXfull, TXfull, ITE} before each access.
- Check EDSCR.{ITO, RXO, TXU} following each access, for overrun or underrun.
- Check PSTATE or other syndrome registers, or both, for an exception following each instruction executed in Debug state that might generate a synchronous exception.

The cumulative error flag remains set until cleared to 0 by writing 1 to EDRCR.CSE. However, the effect of writing 1 to EDRCR.CSE to clear EDSCR.ERR is CONSTRAINED UNPREDICTABLE when both of the following apply:

- The PE is in Debug state.
- The value of EDSCR.ITE is 0.

When these conditions apply and a value of 1 is written to EDRCR.CSE, either or both of the following might occur:

- EDSCR.ERR is not cleared to 0.
- Any instructions in EDITR that have not been executed might be executed subsequently, rather than being ignored.

Note

This means that a debugger must poll EDSCR.ITE until it has the value 1, indicating that EDITR is empty, before writing to EDRCR.CSE to clear the EDSCR.ERR flag to 0.

For overruns and underruns, EDSCR.{ITO, RXO, TXU} record the error type.
Pseudocode description of clearing the error flag

The `ClearStickyErrors()` pseudocode function is described in Chapter J1 *Armv8 Pseudocode*.
H4.5 Synchronization of DCC and ITR accesses

In addition to the standard synchronization requirements for register accesses, the following subsections describe additional requirements that apply for the DCC and ITR registers:

• Summary of System register accesses to the DCC.
• DCC accesses in Non-debug state on page H4-7091.
• Synchronization of DCC interrupt request signals on page H4-7094.
• DCC and ITR access in Debug state on page H4-7094.

In these sections, accesses by the external debug interface are referred to as external reads and external writes. Accesses to System registers are referred to as direct reads, direct writes, indirect reads, and indirect writes.

Note

In Synchronization requirements for AArch64 System registers on page D13-2863 external reads and external writes are described as forms of indirect access. This whole section uses more explicit terminology.

The DTR registers and the DCC flags, TXfull and RXfull, form a communication channel, with one end operating asynchronously to the other. Implementations must respect the ordering of accesses to these registers in order to maintain the correct behavior of the channel.

External reads of, and external writes to DBGDTRRX_EL0 and DBGDTRTX_EL0 are asynchronous to direct reads of, and direct writes to, DBGDTRRX, DBGDTRTX, and in AArch64 state DBGDTR_EL0, made by software using System register access instructions. The direct reads and direct writes indirectly write to the DCC flags. The external reads and external writes indirectly read the DCC flags to check for underrun and overrun.

Throughout this section:

DCC flags Means any or all of the following:
 • The EDSCR.RXfull.TXfull ready flags.
 • The EDSCR.RXO overrun flag.
 • The EDSCR.TXU underrun flag.
 • The EDSCR.ERR cumulative error flag.

ITR flags Means any or all of the following:
 • The EDSCR.ITE ready flag.
 • The EDSCR.ITO overrun flag.
 • The EDSCR.ERR cumulative error flag.

H4.5.1 Summary of System register accesses to the DCC

System register accesses to the DTR registers are direct reads and writes of those registers, as shown in Table H4-2 on page H4-7091. Several of these instructions access the same registers using different encodings.

DBGDTRRX_EL0 and DBGDTRTX_EL0 are encoded as MRS and MSR accesses respectively to the same System register, even though they access different underlying register values. DBGDTRRX and DBGDTRTX are similarly encoded as MRC and MCR accesses respectively to the same System register. The encoding means that direct reads and writes using these encodings must be ordered with respect to each other. For more information, see Synchronization requirements for AArch64 System registers on page D13-2863 and Synchronization of changes to AArch32 System registers on page G8-6138.
Table H4-2 shows a summary of System register accesses to the DCC.

<table>
<thead>
<tr>
<th>Operation</th>
<th>OS Lock</th>
<th>AArch64 (MRS/MSR)</th>
<th>AArch32 (MRC/MCR)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>-</td>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRXint</td>
<td>Direct read of DTRRX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indirect write to the DCC flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>An STC instruction that reads DBGDTRRXint makes an indirect write to DBGDSCRint.RXfull</td>
</tr>
<tr>
<td>Write</td>
<td>-</td>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTXint</td>
<td>Direct read of DTRTX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indirect write to the DCC flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>An LDC instruction that writes to DBGDTRTXint using a value read from memory is a direct write to DBGDTRTXint</td>
</tr>
<tr>
<td>Read/write</td>
<td>-</td>
<td>DBGDTR_EL0</td>
<td>-</td>
<td>Direct read/write of both DTRRX and DTRTX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indirect write to the DCC flags</td>
</tr>
<tr>
<td>Read</td>
<td>-</td>
<td>MDCCSR_EL0</td>
<td>DBGDSCRint</td>
<td>Direct read of the DCC flags</td>
</tr>
<tr>
<td>Read/write</td>
<td>-</td>
<td>OSDTRRX_EL1</td>
<td>DBGDTRRXext</td>
<td>Direct read/write of DTRRX</td>
</tr>
<tr>
<td>Read/write</td>
<td>-</td>
<td>OSDTRTX_EL1</td>
<td>DBGDTRTXext</td>
<td>Direct read/write of DTRTX</td>
</tr>
<tr>
<td>Read</td>
<td>Unlocked</td>
<td>MDSCR_EL1</td>
<td>DBGDSCRext</td>
<td>Direct read of DCC flags</td>
</tr>
<tr>
<td>Read/write</td>
<td>Locked</td>
<td>MDSCR_EL1</td>
<td>DBGDSCRext</td>
<td>Direct read/write of DCC flags</td>
</tr>
</tbody>
</table>

H4.5.2 DCC accesses in Non-debug state

In Non-debug state DCC accesses are as described in Normal access mode on page H4-7082:

- If a direct read of DCCSR returns RXfull == 1, then a following direct read of DBGDTRRX, or in AArch64 state of DBGDTR_EL0, returns valid data and indirectly writes 0 to DCCSR.RXfull as a side-effect.
- If a direct read of DCCSR returns TXfull == 0, then a following direct write to DBGDTRTX, or in AArch64 state to DBGDTR_EL0, writes the intended value, and indirectly writes 1 to DCCSR.TXfull as a side-effect.

No Context synchronization event is required between these two instructions. Overrun and underrun detection prevents intervening external reads and external writes affecting the outcome of the second instruction.

The indirect write to the DCC flags as part of the DTR access instruction is made atomically with the DTR access.

Because a direct read of DBGDTRRX is an indirect write to DCCSR.RXfull, it must occur in program order with respect to the direct read of DCCSR, meaning it must not return a speculative value for DTRRX that predates the RXfull flag returned by the read of DCCSR. The direct write to DBGDTRTX must not be executed speculatively.

Direct reads of DBGDTRRX, or in AArch64 state DBGDTR_EL0, and DCCSR, must occur in program order with respect to other direct reads of the same register using the same encoding.

The following accesses have an implied order within the atomic access:

- In the simple sequential execution of the program the indirect write of the DCC flags occurs immediately after the direct DTR access.

Note

For an access to DBGDTR_EL0, this means the indirect write happens after both DBGDTRRX_EL0 and DBGDTRTX_EL0 have been accessed.
• In the simple sequential execution model, for an external read of DBGDTRTX_EL0 or an external write of DBGDTRRX_EL0:
 — The check of the DCC flags for overrun or underrun occurs immediately before the access.
 — If there is no underrun or overrun, the update of the DCC flags occurs immediately after the access.
 — If there is underrun or overrun, the update of the DCC underrun or overrun flags occurs immediately after the access.

All observers must observe the same order for accesses.

Note

These requirements do not create order where order does not otherwise exist. It applies only for ordered accesses.

Without explicit synchronization following external writes and external reads:

• The value written by the external write to DBGDTRRX_EL0 that does not overrun, must be observable to direct reads of DBGDTRRX and DBGDTR_EL0 in finite time.

• The DCC flags that are updated as a side-effect of the external write or external read must be observable:
 — To subsequent external reads of EDSCR.
 — To subsequent external reads of DBGDTRRX_EL0 when checking for underrun.
 — To subsequent external writes to DBGDTRTX_EL0 when checking for overrun.
 — To direct reads of DCCSR in finite time.

However, explicit synchronization is required to guarantee that a direct read of DCCSR returns up-to-date DCC flags. This means that if a signal is received from another agent that indicates that DCCSR must be read, an ISB is required to ensure that the direct read of DCCSR occurs after the signal has been received. This also synchronizes the value in DBGDTRRX, if applicable. However, if that signal is an interrupt exception triggered by COMMIRQ, COMMTX, or COMMRX, the exception entry is sufficient synchronization. See Synchronization of DCC interrupt request signals on page H4-7094.

Explicit synchronization is required following a direct read or direct write:

• To ensure that a value directly written to DBGDTRTX is observable to external reads of DBGDTRTX_EL0.

• To ensure that a value directly written to DBGDTR_EL0 is observable to external reads of DBGDTRTX_EL0 and DBGDTRRX_EL0.

• To guarantee that the indirect writes to the DCC flags that were a side-effect of the direct read or direct write have occurred, and therefore that the updated values are:
 — Observable to external reads of EDSCR.
 — Observable to external reads of DBGDTRRX_EL0 when checking for underrun.
 — Observable to external writes of DBGDTRTX_EL0 when checking for overrun.
 — Returned by a following direct read of DCCSR.

See also Memory-mapped accesses to the DCC and ITR on page H4-7085 and Synchronization of changes to the external debug registers on page H8-7138.

Note

These ordering rules mean that software:

• Must not read DBGDTRRX without first checking DCCSR.RXfull or if the previously-read value of DCCSR.RXfull is 0.
 It is not sufficient to read both registers and then later decide whether to discard the read value, as there might be an intervening write from the external debug interface.

• Must not write DBGDTRTX without first checking DCCSR.TXfull or if the previously-read value of DCCSR.TXfull is 1.
 The write to DBGDTRTX overwrites the value in DTRTX, and the external debugger might or might not have read this value.
Must ensure there is an explicit *Context synchronization event* following a DTR access, even if not immediately returning to read DCCSR again. This synchronization operation can be an exception return.

Derived requirements

The rules for DCC accesses in Non-debug state are as follows:

- **Following a direct read of DBGDTRRX when RXfull is 1:**
 - If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of RXfull is 0, the value returned by the previous direct read must not be affected by the external write.
 - If an external read of ESCR returns a RXfull value of 0, then the value returned by the previous direct read must not be affected by a following external write to DBGDTRRX, and the following external write does not overrun.

- **Following a direct read of DBGDTR_EL0, when RXfull is 1:**
 - If an external write to DBGDTRRX checks the RXfull flag for overrun and observes that the value of RXfull is 0, the value returned by the previous direct read must not be affected by the external write and by a following direct write to DBGDTRTX.
 - If an external read of ESCR returns a RXfull value of 0, then the value returned by the previous direct read must not be affected by subsequent external writes to DBGDTRRX and DBGDTRTX in any order, and the following external write of DBGDTRRX will not overrun.

- **Following a direct write to DBGDTRTX, when TXfull is 0:**
 - If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of TXfull is 1, the value returned by the external read must be the value written by the previous direct write.
 - If an external read of ESCR returns a TXfull value of 1, then the value returned by a following external read of DBGDTRRX must be the value written by the previous direct read, and the subsequent external read will not underrun.

- **Following a direct write to DBGDTR_EL0, when TXfull is 0:**
 - If an external read of DBGDTRTX checks the TXfull flag for underrun and observes that the value of TXfull is 1, the values returned by the external read and by a subsequent external read of DBGDTRRX must be the value written by the previous direct write.
 - If an external read of ESCR returns a TXfull value of 1, then the value returned by subsequent external reads of DBGDTRRX and DBGDTRTX, in any order, must be the value written by the previous direct read, and the subsequent external read of DBGDTRTX does not underrun.

- **Following an external read of DBGDTRTX that does not underrun, if a direct read of DCCSR returns a TXfull value of 0,** then the value returned by the external read must not be affected by a following direct write to DBGDTRTX.

- **Following a first external read DBGDTRRX and a following second external read of DBGDTRTX that does not underrun,** if a direct read of DCCSR returns a TXfull value of 0, then the values returned by the external reads must not be affected by a following direct write to DBGDTR_EL0.

- **Following an external write to DBGDTRRX that does not overrun,** if a direct read of DCCSR returns an RXfull value of 1, then the value returned by a following direct read of DBGDTRRX or DBGDTR_EL0 must be the value written by the previous external write.

- **Following a first external write to DBGDTRTX and a following second external write to DBGDTRRX that does not overrun,** if a direct read of DCCSR returns an RXfull value of 1, then the value returned by a subsequent direct read of DBGDTR_EL0 must return the values written by the previous external writes.
H4.5 Synchronization of DCC and ITR accesses

H4.5.3 Synchronization of DCC interrupt request signals

Following an external read or external write access to the DTR registers, the interrupt request signals, COMMIRQ, COMMTX, and COMMRX, must be updated in finite time without explicit synchronization.

The updated values must be observable to a direct read of DCCSR or DBGDTRRX, or a direct write of DBGDTRTx executed after taking an interrupt exception generated by the interrupt request. The updated values must also be observable to a direct write of DBGDTRTx executed after taking an interrupt exception generated by the interrupt request.

Note

The requirement that indirect writes to registers are observable to direct reads in finite time does not imply that all observers will observe the indirect write at the same time. For more information, see Synchronization requirements for AArch64 System registers on page D13-2863 and Synchronization of changes to AArch32 System registers on page G8-6138.

Following a direct read of DBGDTRRX or a direct write to DBGDTRRX, software must execute a Context synchronization event to guarantee the interrupt request signals have been updated in finite time. This synchronization operation can be an exception return.

H4.5.4 DCC and ITR access in Debug state

In Debug state, stricter observability rules apply for instructions issued through the ITR, to maintain communication between a debugger and the PE, without requiring excessive explicit synchronization.

In Normal access mode, without explicit synchronization:

- A direct read or direct write of the DTR registers by an instruction written to EDITR must be observable to an external write or an external read in finite time:
 - A direct read of DBGDTRRX must be observable to an external write of DBGDTRRX_EL0.
 - A direct read of DBGDTR_EL0 must be observable to an external write of DBGDTRRX_EL0 and DBGDTRTX_EL0.
 - A direct write of DBGDTRTX must be observable to an external read of DBGDTRRX_EL0.
 - A direct write of DBGDTR_EL0 must be observable to an external read of DBGDTRRX_EL0 and DBGDTRTX_EL0.

This includes the indirect write to the DCC flags that occurs atomically with the access as described in DCC accesses in Non-debug state on page H4-7091.

The subsequent external write or external read must observe either the old or the new values of both the DTR contents and DCC flags. If the old values are observed, this typically results in overrun or underrun, assuming the old values of the DCC flags indicate an overrun or underrun condition, as would normally be the case.

This means the debugger can observe the direct read or direct write without explicit synchronization and without explicitly testing the DCC flags in EDSCR, because it can rely on overrun and underrun tests.

- External reads of DBGDTRTX_EL0 that do not underrun and external writes to DBGDTRRX_EL0 that do not overrun must be observable to an instruction subsequently written to EDITR on completion of the first external access. This includes the indirect write to the DCC flags.

 This means that without explicit synchronization and without the need to first check the DCC flags in DCCSR:
 - If the instruction is a direct read of DBGDTRRX, it observes the external write.
 - If the instruction is a direct write of DBGDTRTX, it observes the external read.

- Writes to EDITR that do not overrun commit an instruction for execution immediately. The instruction must complete execution in finite time without requiring any further operation by the debugger.

- After an external write to the EDITR, the ITR flags that are updated as a side effect of that write must be observable by:
 - An external read of the EDSCR that follows the external write to the EDITR.
 - When checking for overrun, another external write to the EDITR that follows the original external write to the EDITR.
In Memory access mode, these requirements shift to the instructions implicitly executed by external reads and external writes of the DTR registers, as described in Memory access mode on page H4-7083.
H4.6 Interrupt-driven use of the DCC

Arm recommends implementations provide a level-sensitive DCC interrupt request through the IMPLEMENTATION DEFINED interrupt controller as a private peripheral interrupt for the originating PE.

Note

• In addition to connection to the interrupt controller Arm also recommends COMMIRQ, COMMTX, and COMMRX signals that might be implemented for use by any legacy system peripherals.

• GICv3 reserves a private peripheral interrupt number for the COMMIRQ interrupt.

The DCCINT register provides a first level of interrupt masking within the PE, meaning only a single interrupt source, COMMIRQ, is needed at the interrupt controller.

See also Synchronization of DCC interrupt request signals on page H4-7094.
H4.7 Pseudocode description of the operation of the DCC and ITR registers

The basic operation of the DCC and ITR registers is shown by the following pseudocode functions. These functions do not cover the behavior when OSLSR.OSLK == 1, meaning that the OS Lock is locked:

- `DBGDTR_EL0[]`
- `DBGDTRRX_EL0[]`
- `DBGDTRTX_EL0[]`
- `EDITR[]`
- `CheckForDCCInterrupts()`

For the definition of the DTR Registers, see `shared/debug/dccanditr/DTR` on page J1-7820.
The Debug Communication Channel and Instruction Transfer Register
H4.7 Pseudocode description of the operation of the DCC and ITR registers
Chapter H5

The Embedded Cross-Trigger Interface

This chapter describes the embedded cross-trigger interface. It contains the following sections:

- *About the Embedded Cross-Trigger (ECT)* on page H5-7100.
- *Basic operation on the ECT* on page H5-7102.
- *Cross-triggers on a PE in an Armv8 implementation* on page H5-7106.
- *Description and allocation of CTI triggers* on page H5-7107.
- *CTI registers programmers’ model* on page H5-7111.
- *Examples* on page H5-7112.
H5.1 About the Embedded Cross-Trigger (ECT)

The Embedded Cross-Trigger, ECT, allows a debugger to:

- Send trigger events to a PE. For example, this might be done to halt the PE.
- Send a trigger event to one or more PEs, or other system components, when a trigger event occurs on another PE or system component. For example, this might be done to halt all PEs when one individual PE halts.

Figure H5-1 shows the logical structure of an ECT.

![Figure H5-1 Structure of an embedded cross-trigger](image)

The ECT can deliver many types of trigger events, which are described in the following sections:

- Debug request trigger event on page H5-7107.
- Restart request trigger event on page H5-7108.
- Cross-halt trigger event on page H5-7108.
- Performance Monitors overflow trigger event on page H5-7108.
- Generic trace external input trigger events on page H5-7109.
- Generic trace external output trigger events on page H5-7109.
- Generic CTI interrupt trigger event on page H5-7109.

An Armv8-A implementation must:

- Include a cross-trigger interface, CTI.
- Implement at least the input and output triggers defined in this architecture.

In addition, see Cross-triggers on a PE in an Armv8 implementation on page H5-7106.

Arm recommends that this cross-trigger interface includes:

- The ability to route trigger events between Trace Units, which typically have advanced event triggering logic.
- An output trigger to the interrupt controller.

Also, Arm recommends that the Embedded Cross-Trigger includes the capability to send and receive IMPLEMENTATION DEFINED system trigger events to and from other system components, including a system counter, using a system CTI. See Halt-on-debug on page I2-7330.

--- Note ---

The ECT and CTI must only signal trigger events for external debugging. They must not route software events, such as interrupts. For example, the Performance Monitors overflow input trigger is provided to allow entry to Debug state on a counter overflow, and the output trigger to the interrupt controller is provided to generally allow events from the external debug sub-system to be routed to a software agent. However, the combination of the two must not be used as a mechanism to route Performance Monitors overflows to an interrupt controller.
H5.1 About the Embedded Cross-Trigger (ECT)

Note

CTI version 1 (CTIv1) is defined by the CoreSight™ SoC Technical Reference Manual. CTIv2 extends CTIv1 with the addition of the input channel gate see Implementation with CTIv2.

H5.1.1 Implementation with a CoreSight CTI

For details of the recommended connections in an Armv8-A implementation, see Appendix K2 Recommended External Debug Interface. See also CoreSight™ SoC Technical Reference Manual.

H5.1.2 Implementation with CTIv2

If the CTI implemented is CTIv2 then:

- The CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1 registers must be implemented.
- If the channel gate function is implemented, it applies to both input and output channels.
- The input channel gate function must be implemented if either of the following is true:
 - The CTM is implemented and the architecture variant is Armv8.5 or higher.
 - The CTIDEVARCH.REVISION field reads as 0b0001 or higher.

Implementation of CTIv2 features in architecture variants below Armv8.5 is OPTIONAL, but Arm recommends that CTIv2 is implemented, CTIv2 must be implemented from Armv8.5.
H5.2 Basic operation on the ECT

The ECT comprises a Cross-Trigger Matrix, CTM, and one Cross-Trigger Interface, CTI, for each PE. The ECT might also include other CTIs for other system components. The CTM passes events between the CTI blocks over channels. The CTM can have a maximum of 32 channels.

The main interfaces of the cross-trigger interface, CTI, are:

• The input triggers:
 — These are trigger event inputs from the PE to the CTI.

• The output triggers:
 — These are trigger event outputs from the CTI to the PE.

• The input channels:
 — These are channel event inputs from the cross-trigger matrix, CTM, to the CTI.

• The output channels:
 — These are channel event outputs from the CTI to the CTM.

Each CTI block has:

• Up to 32 input triggers that come from the PE:
 — The input triggers are numbered 0-31.

• Up to 32 output triggers that go to the PE:
 — The output triggers are numbered 0-31.

If the CTI is not powered up when the Core power domain is powered up, the CTI ignores all input triggers and input channel events, and does not generate any output triggers or output channel events.

Figure H5-2 on page H5-7103 shows the logical internal structure of a CTI.
Figure H5-2 Structure of a cross-trigger interface

Note

- The number of triggers is IMPLEMENTATION DEFINED. Figure H5-2 shows eight input and eight output triggers.
- The number of channels is IMPLEMENTATION DEFINED. Figure H5-2 shows four channels.
- In Figure H5-2 the input channel gate function is a CTIv2 feature.

When the CTI receives an input trigger event, this generates channel events on one or more internal channels, according to the *mapping function* defined by the `Input trigger → output channel mapping registers, CTIINEN<n>`.

The CTI also contains an *application trigger* and *channel pulse* to allow a debugger to create channel events directly on internal channels by writing to the CTI control registers.
Channel events on each internal channel are passed to a corresponding output channel that is controlled by a channel gate. The channel gate can block propagation of channel events from an internal channel to an output channel.

--- Note ---
If the CTM is implemented:
- The gate function must be implemented.
- If the CTI is CTIv1, the gate function applies to output triggers only.

The output channels from a CTI are combined, using a logical OR function, with the output channels from all other CTIs to form the input channels on other CTIs. The input channels of this CTI are the logical OR of the output channels on all other CTIs. This is the cross-trigger matrix, CTM. Therefore, the number of input channels must equal the number of output channels.

--- Note ---
The number of input triggers and output triggers is not required to be the same.

The internal channels form an internal cross-trigger matrix within the CTI. This delivers events directly from the input triggers to the output triggers. Therefore the number of internal channels is the same as the number of input and output channels on the external CTM, and there is a direct mapping between the two.

Channel events received on each input channel are passed to the corresponding internal channel. It is IMPLEMENTATION DEFINED whether the cross-trigger gate also blocks propagation of channel events from input channels to internal channels.

--- Note ---
If CTIv2 is implemented, the cross-trigger gate also blocks propagation of channel events from input channels to internal channels.

When the CTI receives a channel event on an internal channel this generates trigger events on one or more output triggers, according to the mapping function defined by the Input channel → output trigger mapping registers, CTIOUTEN<n>.

The CTI contains the input and output trigger interfaces to the PE and the interface of the cross-trigger matrix. The architecture does not define the signal protocol used on the trigger interfaces, and:
- It is IMPLEMENTATION DEFINED whether the CTI supports multicycle input trigger events.
- It is IMPLEMENTATION DEFINED whether the CTM supports multicycle channel events.

See Multicycle events on page H5-7105.

However, an output trigger is asserted until acknowledged. The output trigger can be:
- Self-acknowledging. This means that no further action is required from the debugger.
- Acknowledged by the debugger writing 1 to the corresponding bit of CTIINTACK.

The time taken to propagate a trigger event from the first PE, through its CTI, across the CTM to another CTI, and thereby to a second PE is IMPLEMENTATION DEFINED.

--- Note ---
Arm recommends that this path is not longer than the shortest software communication path between those PEs. This is because if the first PE halts, the Cross-halt trigger event can propagate through the ECT and halt the second PE without causing software on the second PE to malfunction because the first PE is in Debug state and is not responding.
H5.2.1 Multicycle events

A multicycle event is one with a continuous state that might persist over many cycles, as opposed to a discrete event. A typical implementation of a multicycle event is a level-based signal interface, whereas a discrete event might be implemented as a pulse signal or message.

CTI support for multicycle trigger events is IMPLEMENTATION DEFINED. Use of multicycle trigger events is deprecated. Of the architecturally defined input trigger events, the Performance Monitors overflow trigger event and Generic trace external output trigger events can be multicycle input triggers.

CTM support for multicycle channel events is IMPLEMENTATION DEFINED. A CTM that does not support multicycle channel events cannot propagate a multicycle trigger event between CTIs.

--- Note ---
A full ECT might comprise a mix of CTIs, some of which can support multicycle trigger events. In bridging these components, multicycle channel events become single channel events at the boundary between the CTIs.

An ECT that supports multicycle trigger events

When an ECT supports multicycle trigger events, an input trigger event to the CTI continuously asserts channel events on all output channels mapped to it until either:

• The input trigger event is removed.
• The channel mapping function is disabled.

This means that an input trigger that is asserted for multiple cycles causes any channels that are mapped to it to become active for multiple cycles. Consequently, any output triggers mapped from that channel are asserted for multiple cycles.

--- Note ---
The output trigger remains asserted for at least as long as the channel remains active. This means that even if the output trigger is acknowledged, it remains asserted until the channel deactivates.

The CTI does not guarantee that these events have precisely the same duration, as the triggers and channels can cross between clock domains.

CTIAPPSET and CTIAPPCLEAR can set a channel active for multiple cycles. CTIAPPnPULSE generates a single channel event. CTICHINSTATUS and CTICHOUTSTATUS can report whether a channel is active.

An ECT that does not support multicycle trigger events

When an ECT does not support multicycle trigger events, an input trigger event to the CTI generates a single channel event on all output channels mapped to it, regardless of how long the input trigger event is asserted.

This means that an input trigger event that is asserted for multiple cycles generates a single channel event on any channels mapped to it. Consequently any self-acknowledging output triggers mapped from those channels are single trigger events.

--- Note ---
A single event is typically a single cycle, but there is no guarantee that this is always the case.

CTIAPPSET and CTIAPPCLEAR can only generate a single channel event. CTIAPPnPULSE generates a single channel event. If the ECT does not support multicycle channel events, use of CTIAPPSET and CTIAPPCLEAR is deprecated, and the debugger must only use CTIAPPnPULSE. CTICHINSTATUS and CTICHOUTSTATUS must be treated as UNKNOWN.
H5.3 Cross-triggers on a PE in an Armv8 implementation

An Armv8 PE must include a cross-trigger interface, and the implementation must include at least the input and output triggers defined in this architecture. The number of channels in the cross-trigger matrix is IMPLEMENTATION DEFINED, but there must be a minimum of three. Software can read CTIDEVID.NUMCHAN to discover the number of implemented channels.

The CTM must connect to all PEs in the same Inner Shareability domain as the Armv8-A PE, but can also connect to additional PEs. Arm strongly recommends that the CTM connects all PEs implementing a CTI in the system. This includes Armv7-A PEs and other PEs that can be connected using a CoreSight CTI module.

--- Note ---

In a uniprocessor system the CTM is OPTIONAL. In a multiprocessor system the CTM is required. The CTM might be connected other CTI modules for non-PEs, such as triggers for system visibility components. Arm recommends that the CTM is implemented.

Any CTI connected to a PE that is not an Armv8-A PE must implement at least:

- The Debug request trigger event.
- The Restart trigger event.
- The Cross-halt trigger event.

For more information about the CTI, see the CoreSight™ SoC Technical Reference Manual. Armv8-A refines the generic CTI by defining roles for each of the implemented input and output triggers.
H5.4 Description and allocation of CTI triggers

Table H5-1 shows the output trigger events defined by the architecture and the related trigger numbers.

<table>
<thead>
<tr>
<th>Number</th>
<th>Source</th>
<th>Destination</th>
<th>Event description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CTI</td>
<td>PE</td>
<td>Debug request trigger event</td>
</tr>
<tr>
<td>1</td>
<td>CTI</td>
<td>PE</td>
<td>Restart request trigger event on page H5-7108</td>
</tr>
<tr>
<td>2</td>
<td>CTI</td>
<td>IRQ controller</td>
<td>Generic CTI interrupt trigger event on page H5-7109</td>
</tr>
<tr>
<td>3 - 7</td>
<td>-</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>4 - 7</td>
<td>CTI</td>
<td>PE Trace Unit</td>
<td>OPTIONAL Generic trace external input trigger events on page H5-7109</td>
</tr>
</tbody>
</table>

Note: Output triggers from the CTI are inputs to other blocks.

Table H5-2 shows the input trigger events defined by the architecture and the related trigger numbers.

<table>
<thead>
<tr>
<th>Number</th>
<th>Source</th>
<th>Destination</th>
<th>Event description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PE</td>
<td>CTI</td>
<td>Cross-halt trigger event on page H5-7108</td>
</tr>
<tr>
<td>1</td>
<td>PE</td>
<td>CTI</td>
<td>Performance Monitors overflow trigger event on page H5-7108</td>
</tr>
<tr>
<td>2</td>
<td>PE</td>
<td>CTI</td>
<td>Statistical Profiling Extension sample trigger event on page H5-7109</td>
</tr>
<tr>
<td>3 - 7</td>
<td>-</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>4 - 7</td>
<td>PE Trace Unit</td>
<td>CTI</td>
<td>OPTIONAL Generic trace external output trigger events on page H5-7109</td>
</tr>
</tbody>
</table>

Note: Input triggers to the CTI are outputs from other blocks.

Table H5-1 and Table H5-2 show the minimum set of trigger events defined by the architecture. However:

- The Generic trace external input and output trigger events are only required if the OPTIONAL PE Trace Unit is implemented. If the OPTIONAL PE Trace Unit is not implemented, these trigger events are reserved.
- Support for the generic CTI interrupt trigger event is IMPLEMENTATION DEFINED because details of interrupt handling in the system, including any interrupt controllers, are IMPLEMENTATION DEFINED. Details regarding how the CTI interrupt is connected to an interrupt controller and its allocated interrupt number lie outside the scope of the architecture. Arm strongly recommends that implementations provide a means to generate interrupts based on external debug events.
- The other trigger events are required by the architecture.

An Armv8-A implementation can extend the CTI with additional triggers. These start with the number eight.

H5.4.1 Debug request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to force the PE into Debug state. The trigger event is asserted until acknowledged by the debugger. The debugger acknowledges the trigger event by writing 1 to CTIINTACK[0].
A debugger must poll CTITRIGOUTSTATUS[0] until it reads as 0, to confirm that the output trigger has been
deasserted before generating any event that must be ordered after the write to CTIINTACK, such as a write to
CTIAPPPULSE to activate another trigger.

If the PE is already in Debug state, the PE ignores the trigger event, but the CTI continues to assert it until it is
removed by the debugger. See also External Debug Request debug event on page H3-7071.

H5.4.2 Restart request trigger event

This is an output trigger event from the CTI, and an input trigger event to the PE, asserted by the CTI to request the
PE to exit Debug state. If the PE is in Non-debug state, the request is ignored by the PE.

If a Restart request trigger event is received at or about the same time as the PE enters Debug state, it is
CONSTRAINED UNPREDICTABLE whether:
• The request is ignored by the PE. In this case the PE enters Debug state and remains in Debug state.
• The PE enters Debug state and then immediately restarts.

Debuggers must program the CTI to send Restart request trigger events only to PEs that are halted. To enable the
PE to disambiguate discrete Restart request trigger events, after sending a Restart request trigger event, the debugger
must confirm that the PE has restarted and halted before sending another Restart request trigger event. Debuggers
can use EDPRSR.{SDR, HALTED} to determine the Execution state of the PE.

Note
Before generating a Restart request trigger event for a PE, a debugger must ensure any Debug request trigger event
targeting that PE is cleared. Debug request trigger event on page H5-7107 describes how to do this.

The trigger event is self-acknowledging, meaning that the debugger requires no further action to remove the trigger
event. The trigger event is acknowledged even if the request is ignored by the PE. See also Exiting Debug state
on page H2-7051.

H5.4.3 Cross-halt trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted by a PE when it is entering
Debug state.

Note
To reduce the latency of halting, Arm recommends that an implementation issues the Cross-halt trigger event early
in the committed process of entering Debug state. This means that there is no requirement to wait until all aspects
of entry to Debug state have completed before issuing the trigger event. Speculative emission of Cross-halt trigger
events is not allowed. The Cross-halt trigger event must not be issued early enough for a subsequent Debug request
trigger event, that might be derived from the Cross-halt trigger event, to be recorded in the EDSCR.STATUS field.
This applies to Debug request trigger events that are acting as inputs to the PE.

H5.4.4 Performance Monitors overflow trigger event

This is an input trigger event to the CTI, and an output trigger event from the PE, asserted each time the PE asserts
a new Performance Monitors counter overflow interrupt request. See Chapter D7 The Performance Monitors
Extension.

If the CTI supports multicycle trigger events, then the trigger event remains asserted until the overflow is cleared
by a write to PMOVSCLR_EL0. Otherwise, the trigger event is asserted when the value of PMOVSCLR_EL0
changes from zero to a non-zero value.
H5.4 Description and allocation of CTI triggers

Note

- This does not replace the recommended connection of Performance Monitors overflow trigger event to an interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow without programming the CTI.

- Events can be counted when `ExternalNoninvasiveDebugEnabled()` == FALSE, and, in Secure state, when `ExternalSecureNoninvasiveDebugEnabled()` == FALSE. Secure software must be aware that overflow trigger events are nevertheless visible to the CTI.

H5.4.5 Statistical Profiling Extension sample trigger event

If the Statistical Profiling Extension is implemented, and a sample record is written to memory, CTI input trigger 2 is asserted. This trigger might also be directly connected to other IMPLEMENTATION DEFINED debug features.

For more information see Chapter D9 The Statistical Profiling Extension.

H5.4.6 Generic trace external input trigger events

These are output trigger events from the CTI, and input trigger events to the OPTIONAL PE Trace Unit, that are used in conjunction with the Generic trace external output trigger events to pass trigger events between:

- The PE and the OPTIONAL PE Trace Unit.
- The OPTIONAL PE Trace Unit and any other component attached to the CTM, including other Trace Units.

There are four Generic trace external input trigger events.

The trigger events are self-acknowledging. This means that the debugger does not have to take any further action to remove the events.

H5.4.7 Generic trace external output trigger events

These are input trigger events to the CTI, and output trigger events from the OPTIONAL PE Trace Unit, used in conjunction with the Generic trace external input trigger events to pass trigger events between:

- The PE and the OPTIONAL PE Trace Unit.
- The OPTIONAL PE Trace Unit and any other component attached to the CTM, including other Trace Units.

There are four Generic trace external output trigger events.

H5.4.8 Generic CTI interrupt trigger event

This is an output trigger event from the CTI, and an input to an IMPLEMENTATION DEFINED interrupt controller, and can transfer trigger events from the PE, PE Trace Units, or any other component attached to the CTI and CTM to software as an interrupt. The Generic CTI interrupt trigger event must be connected to the interrupt controller as an interrupt that can target the originating PE.

Note

- Arm recommends that the Generic CTI interrupt trigger event is a private peripheral interrupt, but implementations might instead make this trigger event available as a shared peripheral interrupt or a local peripheral interrupt.

- GICv3 reserves a private peripheral interrupt number for this interrupt.

It is IMPLEMENTATION DEFINED whether this trigger event is:

- Self-acknowledging. This means that the debugger is not required to take any further action, and that the interrupt controller must treat the trigger event as a pulse or edge-sensitive interrupt.
• Acknowledged by the debugger. The debugger acknowledges the trigger event by writing 1 to CTINTACK[2]. This means that the interrupt controller must treat the trigger event as a level-sensitive interrupt.

Arm recommends that the Generic CTI interrupt trigger event is a self-acknowledging trigger event.
H5.5 CTI registers programmers’ model

The CTI registers programmers’ model is described in Chapter H8 About the External Debug Registers. The following sections contain information specific to the CTI:

• External debug register resets on page H8-7158.
• External debug interface register access permissions on page H8-7145.
• Cross-trigger interface registers on page H8-7156.
• The individual register descriptions in Cross-Trigger Interface registers on page H9-7272.

See also Memory-mapped accesses to the external debug interface on page H8-7142.

H5.5.1 CTI reset

An External Debug reset resets the CTI. See External debug register resets on page H8-7158 for details of CTI register resets. All CTI output triggers and output channels are deasserted on an External Debug reset.

——— Note ————

An indirect read of an output trigger might not observe the deasserted state until the processor is Cold reset. For more information, see Synchronization of changes to the external debug registers on page H8-7138.

H5.5.2 CTI authentication

The CTI ignores the state of the IMPLEMENTATION DEFINED authentication interface. This means that:

• CTITRIGINSTATUS shows the status of the input triggers and CTICHINSTATUS shows the status of the input channels, regardless of the value of ExternalNoninvasiveDebugEnabled().

——— Note ————

The PE does not generate the Cross-halt trigger event and the PE Trace Unit does not generate Generic trace external output trigger events when ExternalNoninvasiveDebugEnabled()==FALSE. However, the PE can generate Performance Monitors overflow trigger events.

———

• The CTI can generate external triggers regardless of the value of ExternalInvasiveDebugEnabled().

——— Note ————

The PE ignores Debug request and Restart request trigger events when ExternalInvasiveDebugEnabled()==FALSE. The PE Trace Unit ignores Generic trace external input trigger events when ExternalNoninvasiveDebugEnabled()==FALSE. The behavior of Generic CTI interrupt requests is part of the IMPLEMENTATION DEFINED handling of these interrupts, but it is permissible for an interrupt controller to receive these requests even when ExternalInvasiveDebugEnabled()==FALSE.
H5.6 Examples

The CTI is fully programmable and allows for flexible cross-triggering of events within a PE and between PEs in a multiprocessor system. For example:

- The Cross-halt trigger event and the Debug request trigger event can be used for cross-triggering in a multiprocessor system.
- The Cross-halt trigger event and the Generic interrupt trigger event can be used for event-driven debugging in a multiprocessor system.
- The Performance Monitors overflow trigger event and the Debug request trigger event can force entry to Debug state on overflow of a Performance Monitors event counter, for event-driven profiling.

--- Note ---

This does not replace the recommended connection of Performance Monitors overflow trigger events to an interrupt controller. Software must be able to program an interrupt on Performance Monitors overflow without programming the CTI. Arm recommends that the Performance Monitors overflow signal is directly available as a local interrupt source.

- The Generic trace external input and Generic trace external output trigger events can pass trace events into and out of the event logic of the PE Trace Unit. They can do this:
 - To pass trace events between Trace Units.
 - In conjunction with the Performance Monitors overflow trigger event, to couple the Performance Monitors to the PE Trace Unit.
 - In conjunction with the Debug request trigger event, to trigger entry to Debug state on a trace event.
 - In conjunction with other CTIs, to signal a trace trigger event onto a CoreSight trace interconnect.

The following sections describe some examples in more detail:

- Halting a single PE.
- Halting all PEs in a group when any one PE halts on page H5-7113.
- Synchronously restarting a group of PEs on page H5-7113.
- Halting a single PE on Performance Monitors overflow on page H5-7113.

Example H5-1 Halting a single PE

To halt a single PE, set:

1. **CTIGATE[0]** to 0, so that the CTI does not pass channel events on internal channel 0 to the CTM.
2. **CTIOUTEN0[0]** to 1, so that the CTI generates a Debug request trigger event in response to a channel event on channel 0.

--- Note ---

The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instance of **CTIOUTEN<n>** for which <n> is 0.

3. **CTIAPPnPULSE[0]** to 1, to generate a channel event on channel 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to **CTIINTACK[0]**, before restarting the PE.
Example H5-2 Halting all PEs in a group when any one PE halts

To program a group of PEs so that when one PE in the group halts, all of the PEs in that group halt, set the following registers for each PE in the group:

1. CTIGATE[2] to 1, so that each CTI passes channel events on internal channel 2 to the CTM.
2. CTIINEN0[2] to 1, so that each CTI generates a channel event on channel 2 in response to a Cross-halt trigger event.
3. CTIOUTEN0[2] to 1, so that each CTI generates a Debug request trigger event in response to a channel event on channel 2.

Note
The Cross-halt trigger event is input trigger 0, meaning it is controlled by the instances of CTIINEN<n> and CTIOUTEN<n> for which <n> is 0.

When a PE has halted, clear the Debug request trigger event by writing a value of 1 to CTIINTACK[0], before restarting the PE.

Example H5-3 Synchronously restarting a group of PEs

To restart a group of PEs, for each PE in the group:

1. If the PE was halted because of a Debug request trigger event, the debugger must ensure the trigger event is deasserted. It can do this by:
 a. Writing 1 to CTIINTACK[0] to clear the Debug request trigger event.
 b. Polling CTITRIGOUTSTATUS[0], until it reads as 0, to confirm that the trigger event has been deasserted.
2. Set CTIGATE[1] to 1, so that each CTI passes channel events on internal channel 1 to the CTM.
3. Set CTIOUTEN1[1] to 1, so that each CTI generates a Restart request trigger event in response to a channel event on channel 1.

Note
This example must use the instance of CTIOUTEN<n> for which <n> is 1.

4. Set CTIAPPULSE[1] to 1 on any one PE in the group, to generate a channel event on channel 1.

Example H5-4 Halting a single PE on Performance Monitors overflow

To halt a single PE on a Performance Monitors overflow set:

1. CTIGATE[3] to 0, so that the CTI does not pass channel events on internal channel 3 to the CTM.
2. CTIINEN1[3] to 1, so that the CTI generates a channel event on channel 3 in response to a Performance Monitors overflow trigger event.

Note
This step of this example must use the instance of CTIINEN<n> for which <n> is 1.

3. CTIOUTEN0[3] to 1, so that the CTI generates a Debug request trigger event in response to a channel event on channel 3.
Note

This step of this example must use the instance of CTIOUTEN<n> for which <n> is 0.

When the PE has entered Debug state, clear the Debug request trigger event by writing 1 to CTIINTACK[0], before restarting the PE. Clear the overflow status by writing to PMOVSCLR_EL0.
Chapter H6
Debug Reset and Powerdown Support

This chapter describes the reset and powerdown support in the Debug architecture. It contains the following sections:

- About Debug over powerdown on page H6-7116.
- Power domains and debug on page H6-7117.
- Core power domain power states on page H6-7118.
- Emulating low-power states on page H6-7121.
- Powerup request mechanism on page H6-7120.
- Debug OS Save and Restore sequences on page H6-7123.
- Reset and debug on page H6-7129.

______ Note ________
Where necessary, Table K15-1 on page K15-8160 disambiguates the general register references used in this chapter.
H6.1 About Debug over powerdown

Armv8 external debug defines a logical model for the hardware on which a PE executes. This hardware is logically split into the **Core power domain** and the **Debug power domain**, and the model contains descriptions of the states of those domains. See:

- *Power domains and debug* on page H6-7117.
- *Core power domain power states* on page H6-7118.

An implementation may allow power domains to be powered up and down independently. Debug over powerdown provides:

- A facility for software executing on the PE to save and restore the PE state on behalf of a self-hosted or external debugger or both. See *Debug OS Save and Restore sequences* on page H6-7123.

- A facility for an external debugger to request power up of the Core power domain. See *Powerup request mechanism* on page H6-7120.

- A facility for an external debugger, or software executing on the PE, to request emulation of powerdown of the Core power domain. See *Emulating low-power states* on page H6-7121.
H6.2 Power domains and debug

Armv8 external debug has two logical power domains, each with its own reset:

- The Debug power domain contains the interface between the PE and the external debugger, and is powered up whenever an external debugger is connected to the SoC. It remains powered up while the external debugger is connected. When the Core power domain is completely off or in a low-power state, a debugger is permitted to access a register that is implemented in the Debug power domain. Registers in this domain are reset by an External Debug reset.

- The Core power domain contains the rest of the PE, and might be allowed to power up and power down independently of the Debug power domain.

____ Note ______

- The model of two logical power domains has an impact on the reset and access permission requirements of the debug programmers’ model.

- The power domains are described as logical because the architecture defines the requirements but does not require two physical power domains. Any power domain split that meets the requirements of the programmers’ model is a valid implementation.

The Core power domain contains several types of registers:

- Non-debug logic refers to all registers and logic that are not associated with debug.
- Self-hosted debug logic refers to registers and logic associated solely with the self-hosted debug aspects of the architecture.
- Shared debug logic refers to registers and logic associated with both the self-hosted and external debug aspects of the architecture.
- External debug logic refers to registers and logic associated solely with the external debug aspects of the architecture.

For information about which groups of registers and components are in each power domain, and which registers change power domain if FEAT_DoPD is implemented, see:

- Access permissions for the External debug interface registers on page H8-7151.
- Cross-trigger interface registers on page H8-7156.
- Management register access permissions on page K2-7992.
- Access permissions for external views of the Performance Monitors on page I3-7339.
The Arm architecture does not define the power states of the PE as these are not normally visible to software. However, they are visible to the external debugger. Armv8 external debug uses a four logical power states model for the Core power domain. The four logical power states are as follows:

Normal

The Core power domain is fully powered up and the debug registers are accessible.

Standby

The Core power domain is on, but there are measures to reduce energy consumption. In a typical implementation, the PE enters standby by executing a `WFI` or `WFE` instruction, and exits on a wake-up event. There can be other IMPLEMENTATION DEFINED measures the OS can take to enter standby.

The PE preserves the PE state, including the debug logic state. Changing from standby to normal operation does not involve a reset of the PE.

Standby is the least invasive OS energy saving state. Standby implies only that the PE is unavailable and does not clear any debug settings. For standby, the Debug architecture requires only the following:

- An External Debug Request debug event is a wake-up event when halting is allowed. This means that the PE must exit standby to handle the debug event. If the PE executed a `WFE` or a `WFI` instruction to enter standby, then it retires that instruction.
- If the external debug interface is accessed, the PE must respond to that access. Arm recommends that, if the PE executed a `WFI` or `WFE` instruction to enter standby, then it does not retire that instruction.

Standby is transparent, meaning that to software and to an external debugger it is indistinguishable from normal operation.

Retention

The OS takes some measures, including IMPLEMENTATION DEFINED code sequences and registers, to reduce energy consumption. The PE state, including debug settings, is preserved in low-power structures, allowing the Core power domain to be at least partially turned off.

Changing from low-power retention to normal operation does not involve a reset of the PE. The saved PE state is restored on changing from low-power retention state to normal operation. If software has to use an IMPLEMENTATION DEFINED code sequence before entering, or after leaving, a retention state, this is referred to as a software-visible retention state. It is IMPLEMENTATION DEFINED whether the value of `DBGPRCR.CORENPDRQ` is set to its Cold reset value on leaving the software-visible retention state. See the description of `DBGPRCR.CORENPDRQ` for more information.

External Debug Request debug events stay pending and registers in the Core power domain cannot be accessed.

Powerdown

The OS takes some measures to reduce energy consumption by turning the Core power domain off. These measures must include the OS saving any PE state, including the debug settings, that must be preserved over powerdown.

If `FEAT_DoubleLock` is implemented, it is used during powerdown.

Changing from powerdown to normal operation must include:

- A Cold reset of the PE after the power level has been restored.
- The OS restoring the saved PE state.

External Debug Request debug events stay pending and debug registers in the Core power domain cannot be accessed.
An implementation might support enabling and disabling threads, either dynamically or once at reset time. Threads that are disabled in this way must appear to the external debugger as either:

- Powered off, meaning they are either:
 - In a powerdown state.
 - In a retention state.
- Held in reset state.

Armv8 external debug uses a simpler two states model for the Debug power domain. The two states are:

- **Off**: The Debug power domain is turned off.
- **On**: The Debug power domain is turned on.

The available power states, including the cross-product of Core power domain and Debug power domain power states is **IMPLEMENTATION DEFINED**. Implementations are not required to implement all of these states and might include additional states. These additional states must appear to the debugger as one of the logical power states defined by this model. The control of power states is **IMPLEMENTATION DEFINED**.

--- **Note** ---

As a result, it is **IMPLEMENTATION DEFINED** whether it is possible for the Debug power domain to be on when the Core power domain is off.

If the Debug power domain is implemented but is not powered up when the Core power domain is powered up, the Reset Catch debug event and the OS Unlock Catch debug event are disabled.
H6.4 Powerup request mechanism

If a powerup request mechanism is implemented, asserting the powerup request requests the power controller to power up the Core power domain, and to emulate any subsequent powerdown requests, until the powerup request mechanism is deasserted.

H6.4.1 Powerup request mechanism if FEAT_DoPD is implemented

If FEAT_DoPD is implemented, the external debug component implements an OPTIONAL powerup request mechanism.

If the powerup request mechanism is implemented, the powerup request must be a CoreSight Class 0x9 ROM table block that contains both:

- A parent entry for the debug registers of the PE.
- A parent entry for the PMU registers of the PE, if the OPTIONAL PMU with an external debug interface is implemented.

A parent entry of a component is an entry in a ROM table that either locates the component, or locates another ROM table that contains the parent entry for the component.

Note

The ROM table and any descendants might describe other debug components, including debug components for other PEs.

The ROM table might have a parent entry in a second ROM table and that parent entry might also have a powerup request mechanism in the second ROM table. This applies recursively.

The parent entries for the debug components have the following properties:

For the debug registers and Performance Monitors registers:

These components are in the Core power domain.

The POWERIDVALID bit is 1.

All parent entries must have the same IMPLEMENTATION DEFINED POWERID value.

Note

The IMPLEMENTATION DEFINED POWERID value does not need to be unique for each PE.

For the CTI registers:

This component is in the Debug power domain.

The POWERIDVALID bit is IMPLEMENTATION DEFINED.

If the POWERIDVALID bit is 1, the entries must have a valid POWERID value.

For more information about Coresight Class 0x9 ROM Tables, see ARM® CoreSight™ Architecture Specification.

On reset, if FEAT_DoPD is implemented, DBGPRCR.CORENPDRQ is set to to an IMPLEMENTATION DEFINED choice between 0 and 1 if the powerup request is implemented and asserted, and 0 otherwise.

H6.4.2 Powerup request mechanism if FEAT_DoPD is not implemented

If FEAT_DoPD is not implemented, the bit EDPRCR.COREPURQ is the powerup request mechanism.

The control registers DBGPRCR.CORENPDRQ and EDPRCR.COREPURQ provide an interface between the power controller and the PE. They typically map directly to signals in the recommended external debug interface.

On reset, if FEAT_DoPD is not implemented, DBGPRCR.CORENPDRQ is set to the value of EDPRCR.COREPURQ.
H6.5 Emulating low-power states

DBGPRCR.CORENPDRQ and the powerup request mechanism can request the power controller to emulate states where the Core power domain is completely off or in a low-power state where the Core power domain registers cannot be accessed. This simplifies the requirements on software by sacrificing entirely realistic behavior.

If FEAT_DoPd is not implemented, EDPRSR.{SPD, PU} indicates the Core power domain power state. For more information see:

- The DBGPRCR_EL1 and DBGPRCR System register descriptions.
- The EDPRCR and EDPRSR external debug register descriptions.
- Appendix K2 Recommended External Debug Interface.

The measures to emulate powerdown are IMPLEMENTATION DEFINED. The ability of the debugger to access the state of the PE and the system might be limited as a result of the measures adopted.

In an emulated powerdown state, the debugger must be able to access all debug, PMU, CTI, and trace unit registers that are accessible on the external debug interface and are in one of:

- The Debug power domain.
- The Core power domain.
- When a trace unit with a separate trace unit Core power domain is implemented, and the trace unit Core power domain is powered on, the trace unit Core power domain.

That is, the debugger must be able to read and write to such registers without receiving errors. This allows an external debugger to debug the powerup sequence.

Arm recommends that any IMPLEMENTATION DEFINED registers that are on the external debug interface and in either the Core power domain or the Debug power domain are also accessible in an emulated powerdown state.

If FEAT_DoubleLock is implemented, `DoubleLockStatus() == FALSE` when DBGPRCR.CORENPDRQ == 1.

Otherwise, the behavior of the PE in emulated powerdown must be similar to that in a real powerdown state. In particular, the PE must not respond to other system stimuli, such as interrupts.

Example H6-1 and Example H6-2 are examples of two approaches to emulating powerdown.

Example H6-1 An example of emulating powerdown

The PE is held in Standby state, isolated from any system stimuli. It is IMPLEMENTATION DEFINED whether the PE can respond to debug stimuli such as an External Debug Request debug event.

If the PE can enter Debug state, then the external debugger is able to use the ITR to execute instructions, such as loads and stores. This causes the external debugger to interact with the system. If the external debugger restarts the PE, the PE leaves Standby state and restarts fetching instructions from memory.

Example H6-2 Another example of emulating powerdown

The PE is held in Warm reset. This limits the ability of an external debugger to access the resources of the PE. For example, the PE cannot be put into Debug state.

On exit from emulated powerdown the PE is reset. However, the debug registers that are only reset by a Cold reset must not be reset. Typically this means that a Warm reset is substituted for the Cold reset. As such, the effect of accessing any register that is reset by a Warm reset while the PE is in the emulated powerdown state will have an IMPLEMENTATION DEFINED effect on that register.
Note

- Warm reset and Cold reset have different effects apart from resetting the debug registers. In particular,
 RMR_ELx is reset by a Cold reset and controls the reset state on a Warm reset. This means that if a Cold reset
 is substituted by a Warm reset, the behavior of the reset code might be different.

- The timing effects of powering down are typically not factored in the powerdown emulation. Examples of
 these timing effects are clock and voltage stabilization.

- Emulation does not model the state lost during powerdown, meaning that it might mask errors in the state
 storage and recovery routines.
H6.6 Debug OS Save and Restore sequences

In Armv8-A, the following registers provide the OS Save and Restore mechanism:

- The OS Lock Access Register, OSLAR, locks the OS Lock to restrict access to debug registers before starting an OS Save sequence, and unlocks the OS Lock after an OS Restore sequence.
- The OS Lock Status Register, OSLSR, shows the status of the OS Lock.
- The PE can be configured to generate an OS Unlock Catch debug event on page H3-7072 when the OS Lock is unlocked.
- If FEAT_DoubleLock is implemented, the OS Double Lock locks out an external debug interface entirely. This is only used immediately before a powerdown sequence.

See also:
- FEAT_DoubleLock on page A2-64
- Reset and debug on page H6-7129
- Appendix K8 Example OS Save and Restore Sequences

H6.6.1 EDPRSR.{DLK, SPD, PU} and the Core power domain

If FEAT_DoPD is not implemented, a debugger uses EDPRSR.{DLK, SPD, PU} to determine whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read.

Table H6-1 Interpretation of the EDPRSR.{DLK, SPD, PU} bits

<table>
<thead>
<tr>
<th>DLK</th>
<th>SPD</th>
<th>PU</th>
<th>Power</th>
<th>Accesses</th>
<th>State lost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>On</td>
<td>OK</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>On</td>
<td>OK</td>
<td>Yes</td>
<td>SPD is cleared to 0 following the read.</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>On</td>
<td>Error</td>
<td>Not known</td>
<td>FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. Software locks the OS Double Lock before removing power.</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>Off</td>
<td>Error</td>
<td>Yes</td>
<td>A Cold reset will be asserted on exiting powerdown state, but not on exiting low-power retention state.</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>Not known</td>
<td>Error</td>
<td>Not known</td>
<td></td>
</tr>
</tbody>
</table>

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If the Core power domain is powered up and DoubleLockStatus() == TRUE, then:

- When FEAT_Debugv8p2 is not implemented, EDPRSR.{DLK, SPD, PU} can read either \{1, UNKNOWN, 1\} or \{UNKNOWN, 0, 0\};
- When FEAT_Debugv8p2 is implemented, and FEAT_Debugv8p4 is not implemented, EDPRSR.{DLK, SPD, PU} can only read \{UNKNOWN, 0, 0\}.
H6.6.2 EDPRSR.SPD when the Core domain is in either retention or powerdown state

If FEAT_DoPD is not implemented, when the Core power domain is in either the retention or powerdown state, EDPRSR.SPD is not cleared following a read of EDPRSR and it is IMPLEMENTATION DEFINED whether:

- EDPRSR.SPD shows whether the state of the debug registers in the Core power domain has been lost since the last time that EDPRSR was read. This means that:
 - When the Core power domain is in the powerdown state, EDPRSR.SPD is RAO, this indicates that the state of the debug registers has been lost.
 - When the Core power domain is in the retention state, EDPRSR.SPD indicates whether the state of the debug registers was lost before the Core power domain entered retention state.

- EDPRSR.SPD is RAZ, and:
 - On leaving the powerdown state, EDPRSR.SPD is set to 1 which indicates that the state of the debug registers has been lost.
 - On leaving the retention state, EDPRSR.SPD reverts the value it had on entering the retention state.

Note

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a retention state.

H6.6.3 EDPRSR.{DLK, R} and reset state

If FEAT_DoPD is implemented, accesses to EDPRSR return an error when the Core power domain is off or in a retention state, meaning successful reads of EDPRSR always return 1 for EDPRSR.PU.

When FEAT_Debugv8p4 is implemented, and whenever FEAT_DoubleLock is not implemented, EDPRSR.DLK is always 0.

If FEAT_DoubleLock is not implemented, DoubleLockStatus() always returns FALSE.

If FEAT_DoubleLock is implemented and enabled, the behavior of all registers and fields except EDPRSR.DLK is the same as their behavior if FEAT_Debugv8p4 is not implemented.

If FEAT_Debugv8p4 is implemented EDPRSR.DLK is always 0 and does not give any information about the OS Double Lock.

EDPRSR.R is UNKNOWN when DoubleLockStatus() == TRUE. OSDLR_EL1.DLK is cleared to 0 by a reset. If the Core power domain is powered up and entered reset state with the OS Double Lock locked, it is CONSTRAINED UNPREDICTABLE whether a read of EDPRSR while the PE is in reset state returns:

- EDPRSR.{DLK, R, PU} == {1, UNKNOWN, 1} indicating that the OS Double Lock is locked. This is not permitted from Armv8.2.
- EDPRSR.{DLK, R, PU} == {0, 1, 1} indicating that the PE is in reset state.
- EDPRSR.{DLK, R, PU} == {UNKNOWN, UNKNOWN, 0} indicating that the registers in the Core power domain cannot be accessed because the OS Double Lock is locked.

If the PE was powered up and the OS Double Lock was unlocked when the PE was reset, then EDPRSR.{DLK, R, PU} reads as {0, 1, 1} while the PE is in reset state.

On leaving reset state, EDPRSR.{DLK, R} reads as {0, 0}.
H6.6.4 Debug registers to save over powerdown

Table H6-2 shows the different requirements for self-hosted debug over powerdown and external debug over powerdown:

- The column labeled Self-hosted lists registers that software must preserve over powerdown so that it can support self-hosted debug over powerdown. This does not require use of the OS Save and Restore mechanism.

- The column labeled External lists registers that software must preserve over powerdown so that it can support external debug over powerdown. This requires use of the OS Save and Restore mechanism:
 - Some external debug registers are not normally accessible to software executing on the PE. Additional debug registers are provided that give software the required access to save and restore these external debug registers when OSLR.OSLK is locked. These registers include OSECCR, OSDTRRX, and OSDTRTX.

- Some registers might only present in some implementations, or might not be accessible at all Exception levels or in Non-secure state. DBGVCR32_EL2 and SDER32_EL3 are only required to support AArch32.

Table H6-2 does not include registers for the optional Trace and Performance Monitor extensions.

<table>
<thead>
<tr>
<th>Register in AArch64 state</th>
<th>Register in AArch32 state</th>
<th>Self-hosted</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDSCR_EL1</td>
<td>DBGDSCRext</td>
<td>Yes</td>
<td>Yesa</td>
</tr>
<tr>
<td>DBGVRn_EL1</td>
<td>DBGVRn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DBGBCRn_EL1</td>
<td>DBGBCRn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DBGWVRn_EL1</td>
<td>DBGWVRn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DBGWCRn_EL1</td>
<td>DBGWCRn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DBGVCR32_EL2</td>
<td>DBGVCR</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>MDCR_EL2</td>
<td>HDCR</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>SDER32_EL3</td>
<td>SDER</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>MDCR_EL3</td>
<td>SDCR</td>
<td>Yesb</td>
<td>-</td>
</tr>
<tr>
<td>MDCINT_EL1</td>
<td>DBGDCCINT</td>
<td>-</td>
<td>Yesb</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET,</td>
<td>-</td>
<td>Yesc</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSECCR_EL1</td>
<td>DBGOSECCR</td>
<td>-</td>
<td>Yesab</td>
</tr>
<tr>
<td>OSDTRRX_EL1</td>
<td>DBGDTRRXext</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>OSDTRTX_EL1</td>
<td>DBGDTRTXext</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The OS Lock must be locked to save and restore for external debug. When the OS Lock is locked, DSCR is part of the software save and restore mechanism for external debug. It provides a mechanism for an operating system to access some fields of EDSCR that are otherwise read-only or not visible to software. This allows the operating system to save and restore these settings over a powerdown for the external debugger.

b. This register is new in Armv8-A. Sequences written for Armv7 do not preserve the register over powerdown.

c. Read DBGCLAIMCLR to save, write DBGCLAIMSET to restore.
H6.6.5 OS Save sequence

To preserve the debug logic state over a powerdown, the state must be saved to nonvolatile storage. This means the OS Save sequence must:

1. Lock the OS Lock by:
 - Writing the key value 0xC5A9CE55 to the DBGOSLAR in AArch32 state.
 - Writing 1 to OSLAR_EL1.OSLK in AArch64 state.
2. Execute an ISB instruction.
3. Walk through the debug registers listed in Debug registers to save over powerdown on page H6-7125 and save the values to the nonvolatile storage.

If the FEAT_DoubleLock is implemented, before removing power from the Core power domain, software must:

1. Lock the OS Double Lock by:
 - Writing 1 to DBGOSDLR.DLK in AArch32 state.
 - Writing 1 to OSDLR_EL1.DLK in AArch64 state.

If FEAT_DoubleLock is not implemented, OSDLR_EL1 and DBGOSDLR ignore writes.

2. Execute a Context synchronization event.

H6.6.6 OS Restore sequence

After a powerdown, the OS Restore sequence must perform the following steps to restore the debug logic state from the non-volatile storage:

1. Lock the OS Lock, as described in OS Save sequence. The OS Lock is generally locked by the Cold reset, but this step ensures that it is locked.
2. Execute an ISB instruction.
3. To ensure that, if an external debugger clears the OS Lock before the end of this sequence, no debug exceptions are generated:
 - Write 0 to MDSCR_EL1 if executing in AArch64 state.
 - Write 0 to DBGDSCRext if executing in AArch32 state.
4. Walk through the debug registers listed in Debug registers to save over powerdown on page H6-7125, and restore the values from the nonvolatile storage. The last register to be restored must be:
 - MDSCR_EL1 if executing in AArch64 state.
 - DBGDSCRext if executing in AArch32 state.
5. Execute an ISB instruction.
6. Unlock the OS Lock by:
 - Writing any non-key value to DBGOSLAR if executing in AArch32 state.
 - Writing 0 to OSLAR_EL1.OSLK if executing in AArch64 state.
7. Execute a Context synchronization event.

Note

The OS Restore sequence overwrites the debug registers with the values that were saved. If there are valid values in these registers immediately before the restore sequence, then those values are lost.

H6.6.7 Debug behavior when the OS Lock is locked

The main purpose of the OS Lock is to prevent updates to debug registers during an OS Save or OS Restore operation. The OS Lock is locked on a Cold reset.
When the OS Lock is locked:

- Access to debug registers through the System register interface is mainly unchanged except that:
 - Certain registers are read and written without side-effects.
 - Fields in DSCR and OSECCR that are normally read-only become read/write.
 This allows the state to be saved or restored. For more information, see the relevant register description in Chapter H9 External Debug Register Descriptions.
- Access to debug registers by the external debug interface is restricted to prevent an external debugger modifying the registers that are being saved or restored. For more information see External debug interface register access permissions summary on page H8-7146.
- Debug exceptions, other than Breakpoint Instruction exceptions are not generated.
- Breakpoint and Watchpoint debug events are not generated. The OS Lock has no effect on Breakpoint Instruction exceptions and other debug events.

H6.6.8 Debug behavior when the OS Lock is unlocked

When the OS Lock is unlocked, the PE sets EDESR.OSUC to 1 if the OS Unlock Catch debug event is enabled and the PE is in Non-debug state, meaning the OS Unlock Catch debug event becomes pending. See OS Unlock Catch debug event on page H3-7072.

H6.6.9 Debug behavior when the OS Double Lock is locked

If the FEAT_DoubleLock is implemented, software locks the OS Double Lock immediately before a powerdown sequence.

The OS Double Lock ensures that it is safe to remove core power by forcing the debug interfaces to be quiescent.

When DoubleLockStatus() == TRUE:

- The external debug interface only has restricted access to the debug registers, so that it is quiescent before removing power. See External debug interface register access permissions summary on page H8-7146.
- Debug exceptions, other than Breakpoint Instruction exceptions, are not generated.
- Halting is prohibited. See Halting allowed and halting prohibited on page H2-7015.

Note

Pending Halting debug events might be lost when core power is removed.

- No asynchronous debug events are WFI or WFE wake-up events.

If the FEAT_DoubleLock is not implemented, the PE ensures these conditions are met before allowing power to be removed.

Software must synchronize the update to OSDLR before it indicates to the system that core power can be removed. The interface between the PE and its power controller is IMPLEMENTATION DEFINED.

Typically software indicates that core power can be removed by entering the Wait For Interrupt state. This means that software must explicitly synchronize the OSDLR update before issuing the WFI instruction.

OSDLR.DLK is ignored and DoubleLockStatus() == FALSE if either:

- The PE is in Debug state.
- DBGPRCR.CORENPDRQ is set to 1.
--- Note ---

It is possible to enter Debug state with OSDLR.DLK set to 1. This is because a Context synchronization event is required to ensure the OS Double Lock is locked, meaning that Debug state might be entered before the OSDLR update is synchronized.

Because OSDLR.DLK is ignored when DBGPRCR.CORENPDRQ is set to 1, an external debugger can write to DBGPRCR.CORENPDRQ, and the FEAT_DoubleLock is not always implemented, software must not rely on using the OS Double Lock to disable debug exceptions or to prohibit halting, or both. Arm deprecates use of the OS Double Lock for these purposes, and instead recommends that software:

- Uses the OS Lock to disable debug exceptions during save or restore sequences.
- Uses the debug authentication interface to prohibit halting and external debug access to debug registers at times other than immediately prior to removing power.

As the purpose of the OS Double Lock is to ensure that it is safe to remove core power, if the FEAT_DoubleLock is implemented, it is important to avoid race conditions that defeat this purpose. Arm recommends that:

- Once the write to OSDLR.DLK has been synchronized by a Context synchronization event and DoubleLockStatus() == TRUE, a PE must:
 - Not allow a debug event generated before the Context synchronization event to cause an entry to Debug state or act as a wake-up event for a WFI or WFE instruction after the Context synchronization event has completed.
 - Complete any external debug access started before the Context synchronization event completes.

--- Note ---

A debug register access might be in progress when software sets OSDLR.DLK to 1. An implementation must not permit the synchronization of locking the OS Double Lock to stall indefinitely while waiting for that access to complete. This means that any debug register access that is in progress when software sets OSDLR.DLK to 1 must complete or return an error in finite time.

- If a write to DBGPRCR or EDPRCR made when OSDLR.DLK == 1 changes DBGPRCR.CORENPDRQ or EDPRCR.CORENPDRQ from 1 to 0, meaning DoubleLockStatus() changes from FALSE to TRUE, then before signaling to the system that the CORENPDRQ field has been cleared and emulation of powerdown is no longer requested, meaning the system can remove core power, the PE must ensure that all the requirements for DoubleLockStatus() == TRUE listed in this section are met.

In a standard OS Save sequence, the OS Lock is locked before the OS Double Lock is locked. This means that writes to CORENPDRQ are ignored by the time the OS Double Lock is locked. However, if DoubleLockStatus() == FALSE, an external debugger can clear the OS Lock at any time, and then write to EDPRCR.
H6.7 Reset and debug

All registers in the Core power domain are either:
- Reset by both a Cold and a Warm reset.
- Reset only by a Cold reset and are not changed by a Warm reset.

For more information, see Reset on page D1-2329.

All registers in the Debug power domain are reset by an External Debug reset.

Figure H6-1 shows this reset scheme. The following three reset signals are an example implementation of the reset scheme:
- CORERESET, which must be asserted for a Warm reset.
- CPUPORESET, which must be asserted for a Cold reset.
- PRESETDBG, which must be asserted for an External Debug reset.

As shown in the figure, the external debug logic is split between the Debug power domain and the Core power domain.

Figure H6-1 Power and reset domains

For more information about power domains and power states, see Power domains and debug on page H6-7117.

When power is first applied to the Debug power domain, PRESETDBG must be asserted.

When power is first applied to the Core power domain, CPUPORESET must be asserted.

Note

In this scheme, logic in the Warm reset domain is reset by asserting either CORERESET or CPUPORESET. This implies a particular implementation style that permits these approaches.

CPUPORESET is not normally asserted on moving from a low-power state, where power has not been removed, to a full-power state. This can occur, for example, on exiting a low-power retention state. See also Emulating low-power states on page H6-7121 and the EDPRSR register description.
H6.7.1 External debug interface accesses to registers in reset

If a reset signal is asserted and the external debug interface:

- Writes a register, or indirectly writes a register or register field as a side-effect of an access:
 — Then, if the register or register field is reset by that reset signal, it is CONstrained UNPredictable (Constrained UNPredictable) whether the register or register field takes the reset value or the value written. The reset value might be UNKNOWN.
 — Otherwise the register or register field takes the value that is written.

- Reads a register, or indirectly reads a register or register field, as part of an access:
 — Then, if the register or register field is reset by that reset signal, the value returned is UNKNOWN.
 — Otherwise, the value of the register or register field is returned.

It is IMPLEMENTATION DEFINED whether any register can be accessed when External Debug reset is being asserted. The result of these accesses is IMPLEMENTATION DEFINED.
This chapter describes the OPTIONAL PC Sample-based Profiling Extension that provides a non-invasive external debug component.

It contains the following section:

• *About the PC Sample-based Profiling Extension* on page H7-7132.
H7.1 About the PC Sample-based Profiling Extension

The PC Sample-based Profiling Extension is an optional extension that provides coarse-grained, non-invasive profiling by an external debugger. See also Non-invasive behavior on page D7-2697.

PC Sample-based Profiling creates samples so that tools can populate a statistical model of the performance of software executing on the PE.

Note

Data returned by periodic sampling of PC Sample-based Profiling registers is sufficient to allow tools to estimate the distribution of time spent executing software on the PE.

The delay between an instruction being executed by the PE and its address appearing in the PC Sample Register is not defined, and Armv8 does not require that the sampled instruction was recently executed. For example, if a piece of software executes a load instruction that reads the PC Sample Register of the PE it is running on, there is no guaranteed relationship between the address of the load instruction and the value read. The PC Sample Register is intended only for use by an external agent to provide statistical information for software profiling.

It must be possible to sample references to branch targets. It is implementation defined whether references to other instructions can be sampled. The branch target for a conditional branch instruction that fails its condition check is the instruction that follows the conditional branch instruction. The branch target for an exception is the exception vector address.

To keep the implementation and validation cost low, a reasonable degree of inaccuracy in the sampled data is acceptable. Arm does not define a reasonable degree of inaccuracy but recommends the following guidelines:

• In exceptional circumstances, such as a change in Security state or other boundary condition, it is acceptable for the sample to represent an instruction that was not committed for execution.

• Under unusual non-repeating pathological cases, the sample can represent an instruction that was not committed for execution. These cases are likely to occur as a result of asynchronous exceptions, such as interrupts, where the chance of a systematic error in sampling is very unlikely.

• Under normal operating conditions, the sample must reference an instruction that was committed for execution, including its context, and must not reference instructions that are fetched but not committed for execution.

Note

In the Armv7 PC Sample-based Profiling Extension, an offset was applied to the sampled program counter value and this offset and the instruction set state indicated in bits [1:0] of the sampled value. In the Armv8 PC Sample-based Profiling Extension, the sampled value is the address of an instruction that has executed, with no offset and no indication of the instruction set state.

H7.1.1 Controlling the PC Sample-based Profiling Extension

PC Sample-based Profiling is controlled by the implementation defined authentication interface ExternalNoninvasiveDebugEnabled().

PC Sample-based Profiling is prohibited unless both:

• It is allowed by the implementation defined authentication interface ExternalNoninvasiveDebugEnabled().

• At least one of the following applies:
 — The PE is executing in Non-secure state.
 — EL3 is not implemented.
— EL3 is implemented, the PE is executing in Secure state, and non-invasive debug is allowed by the IMPLEMENTATION DEFINED authentication interface ExternalSecureNoninvasiveDebugEnabled().
— EL3 is implemented, EL3 or EL1 is using AArch32, the PE is executing at EL0 in Secure state, and the value of SDER.SUNIDEN is 1.

The state of the IMPLEMENTATION DEFINED authentication interface is visible through DBGAUTHSTATUS_EL1. See Recommended authentication interface on page K2-7989.

H7.1.2 Registers implemented by the PC Sample-based Profiling Extension

The options for implementing the PC Sample-based Profiling extension are:

• The extension is implemented in the external debug register space. EDDEVID.PCSample and identifies the implemented level of profiling, and EDDEVID1.PCSROffset also indicates that this option is implemented. From Armv8.2 this option is not permitted.

• FEAT_PCSRv8p2 is implemented, meaning the PC Sample-based Profiling extension is implemented in the Performance Monitors memory-mapped register space. PMDEVID.PCSample identifies the implemented level of profiling.

If PC Sample-based Profiling is implemented in the external debug register space:

• The following external debug registers can be implemented:
 — EDCIDSR.
 — EDPCSR.
 — EDVIDSR.

 See External debug interface register map on page H8-7149.

• If FEAT_VHE is implemented, EDSCR.SC2 controls what PC Sample-based Profiling samples.

If FEAT_PCSRv8p2 is implemented, the following registers can be implemented in the Performance Monitors memory-mapped register space:

• PMCID1SR and PMCID2SR.
• PMPCSR.
• PMVIDSR.

See Performance Monitors external register views on page I5-7350.

If the PC Sample-based Profiling Extension is implemented with FEAT_PCSRv8p2 but the Performance Monitors Extension is not implemented, then the PC Sample-based Profiling Extension is implemented in its own memory-mapped register space, within the area that is reserved for the Performance Monitors, see Table H7-1. If CoreSight compliance is required:

• The management registers are defined as in Table K2-3 on page K2-7991.
• The support for PC Sample-based profiling is defined in the following registers:
 — PMDEVTYPE.MAJOR has the value 0x8.
 — PMDEVARCH.ARCHID has the value 0x0A10.

Table H7-1 PC Sample-based Profiling register map without the Performance Monitors Extension

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x200</td>
<td>PMPCSR[31:0]</td>
</tr>
<tr>
<td>0x204</td>
<td>PMPCSR[63:32]</td>
</tr>
<tr>
<td>0x208</td>
<td>PMCID1SR</td>
</tr>
<tr>
<td>0x20C</td>
<td>PMVIDSR</td>
</tr>
<tr>
<td>0x220</td>
<td>PMPCSR[31:0] (alias)</td>
</tr>
<tr>
<td>0x224</td>
<td>PMPCSR[63:32] (alias)</td>
</tr>
</tbody>
</table>
H7.1 About the PC Sample-based Profiling Extension

H7.1.3 Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN

The architecture permits IMPLEMENTATION DEFINED extensions to external debug to define mechanisms that make the values of the PC Sample-based profiling registers UNKNOWN. However, it requires that any such mechanism is disabled by default. This means that powerup or a hard reset of the PE must leave the PE in a state where the PC Sample-based Profiling Extension, if implemented, exhibits its architecturally-defined behavior.

Note

A mechanism that, when enabled, makes the PC Sample-based profiling registers UNKNOWN might use other sample-based profiling events that are appropriate for a use that is independent of PC Sample-based Profiling.

If no instruction has been retired since the PE left Debug state, Reset state, or a state where PC Sample-based profiling is prohibited, the sampled value is UNKNOWN. If an instruction has been retired but this is the first time the PMPCSR or EDPCSR is read since the PE left Reset state, the sampled value is permitted but not required to return the value \(0xFFFFFFFF \).

H7.1.4 Pseudocode description of PC Sample-based Profiling

When PC Sample-based Profiling is implemented but not with FEAT_PCSRv8p2, the functionality is described by the pseudocode functions:

- CreatePCSample(), which populates a variable of type PCSample.
- EDPCSRlo[], which writes a PC sample to the EDPCSR and associated registers.

When FEAT_PCSRv8p2 is implemented, the functionality is described by the pseudocode functions:

- CreatePCSample(), which populates a variable of type PCSample.
- PMPCSR[], which writes a PC Sample to the PMPCSR and associated registers.

Table H7-1: PC Sample-based Profiling register map without the Performance Monitors Extension

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x228</td>
<td>PMCID1SR (alias)</td>
</tr>
<tr>
<td>0x22C</td>
<td>PMCID2SR</td>
</tr>
<tr>
<td>0x600-0x6FC</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0xE80-0xEC</td>
<td>IMPLEMENTATION DEFINED for CoreSight compliance</td>
</tr>
<tr>
<td>0xFF0-0xFFc</td>
<td>Management and CoreSight compliance registers</td>
</tr>
</tbody>
</table>
Chapter H8
About the External Debug Registers

This chapter provides some additional information about the external debug registers. It contains the following sections:

- *Relationship between external debug and System registers* on page H8-7136.
- *Endianness and supported access sizes* on page H8-7137.
- *Synchronization of changes to the external debug registers* on page H8-7138.
- *Memory-mapped accesses to the external debug interface* on page H8-7142.
- *External debug interface register access permissions* on page H8-7145.
- *External debug interface registers* on page H8-7149.
- *Cross-trigger interface registers* on page H8-7156.
- *External debug register resets* on page H8-7158.

Note

Where necessary, *Table K15-1 on page K15-8160* disambiguates the general register references used in this chapter.
H8.1 Relationship between external debug and System registers

Table H8-1 shows the relationship between external debug registers and System registers. Where no relationship exists, the registers are not listed.

<table>
<thead>
<tr>
<th>System register</th>
<th>AArch64</th>
<th>AArch32</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRXint</td>
<td>See also Summary of System register accesses to the DCC on page H4-7090</td>
</tr>
<tr>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTXint</td>
<td></td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1</td>
<td>DBGOSLR</td>
<td></td>
</tr>
<tr>
<td>DBGBVR<n>_EL1[31:0]</td>
<td>DBGBVR<n>_EL1[31:0]</td>
<td>DBGBVR<n></td>
<td></td>
</tr>
<tr>
<td>DBGBCR<n>_EL1</td>
<td>DBGBCR<n>_EL1</td>
<td>DBGBCR<n></td>
<td></td>
</tr>
<tr>
<td>DBGWVR<n>_EL1[31:0]</td>
<td>DBGWVR<n>_EL1[31:0]</td>
<td>DBGWVR<n></td>
<td></td>
</tr>
<tr>
<td>DBGWCR<n>_EL1</td>
<td>DBGWCR<n>_EL1</td>
<td>DBGWCR<n></td>
<td></td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET</td>
<td></td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR</td>
<td></td>
</tr>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS</td>
<td>Read-only</td>
</tr>
<tr>
<td>EDSCR</td>
<td>MDSR_EL1</td>
<td>DBGDSCRx</td>
<td>Only some fields map</td>
</tr>
<tr>
<td>EDECCR</td>
<td>OSECCR_EL1</td>
<td>DBGOSECCR</td>
<td>Applies when the OS Lock is locked.</td>
</tr>
<tr>
<td>MIDR_EL1</td>
<td>MIDR_EL1</td>
<td>MIDR</td>
<td>Read-only copies of Processor ID Registers</td>
</tr>
<tr>
<td>EDDEVAFF0</td>
<td>MPIDR_EL1[31:0]a</td>
<td>MPIDR</td>
<td>Read-only copies of system ID registers</td>
</tr>
<tr>
<td>EDDEVAFF1</td>
<td>MPIDR_EL1[63:32]a</td>
<td>MPIDR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External debug register</th>
<th>AArch64</th>
<th>AArch32</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDSCR</td>
<td>MDSCR_EL1</td>
<td>DBGDSCRx</td>
<td>Only some fields map</td>
</tr>
<tr>
<td>EDECCR</td>
<td>OSECCR_EL1</td>
<td>DBGOSECCR</td>
<td>Applies when the OS Lock is locked.</td>
</tr>
<tr>
<td>MIDR_EL1</td>
<td>MIDR_EL1</td>
<td>MIDR</td>
<td>Read-only copies of Processor ID Registers</td>
</tr>
<tr>
<td>EDDEVAFF0</td>
<td>MPIDR_EL1[31:0]a</td>
<td>MPIDR</td>
<td>Read-only copies of system ID registers</td>
</tr>
<tr>
<td>EDDEVAFF1</td>
<td>MPIDR_EL1[63:32]a</td>
<td>MPIDR</td>
<td></td>
</tr>
</tbody>
</table>

In addition:

- EDSCR.{TXfull, RXfull} are read-only aliases for DCCSR.{TXfull, RXfull}.
- EDPBCR.CORENPDRQ is a read/write alias for DBGPDCR.CORENPDRQ.
- EDPSCR.OSLP is a read-only alias for OSLR.OSLK.
- If the FEAT_DoubleLock is implemented, EDPSCR.DLK is a read-only function of OSLR.DLK.
H8.2 Endianness and supported access sizes

The debug registers, Performance Monitors registers, and CTI registers are implemented as memory-mapped peripherals. The Arm architecture requires memory-mapped peripherals to be little-endian.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses to the debug registers, Performance Monitors registers, and CTI registers, implementations must:

• Comply with the requirements of Supported access sizes on page I1-7320.
• Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

——— Note ————

These requirements mean that a system implementing the debug registers using a 32-bit bus, such as an AMBA APB3, with a wider system interconnect must implement a bridge between the system and the debug bus that can split 64-bit accesses.

For accesses from the external debug interface, the size of an access is determined by the interface. For an access from an ADIv5-compliant Memory Access Port, MEM-AP, this is specified by the MEM-AP CSW register.
H8.3 Synchronization of changes to the external debug registers

This section describes the synchronization requirements for the external debug interface.

For more information on how these requirements affect debug, see:

- Synchronization and debug exceptions on page D2-2479 for exceptions taken from AArch64 state.
- Synchronization and debug exceptions on page G2-5916 for exceptions taken from AArch32 state.
- Synchronization and Halting debug events on page H3-7075.
- Synchronization of DCC and ITR accesses on page H4-7090.

This section refers to accesses from the external debug interface as external reads and external writes. It refers to accesses to System registers as direct reads, direct writes, indirect reads, and indirect writes.

Note

Synchronization requirements for AArch64 System registers on page D13-2863 and Synchronization of changes to AArch32 System registers on page G8-6138 define direct read, direct write, indirect read, and indirect write, and classifies external reads as indirect reads, and external writes as indirect writes.

For general information about synchronization, access completion, ordering, and observability, see Synchronization of memory-mapped registers on page I1-7322.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although some observers might not observe all of the writes. With the exception of DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, and DBGWVR<n>_EL1, external writes to different registers are not necessarily observed in the same order by all observers as the order in which they complete.

Synchronization of DCC and ITR accesses on page H4-7090 describes the synchronization requirements for the DCC and ITR.

Changes to the IMPLEMENTATION DEFINED authentication interface are external writes to the authentication status registers by the Requester of the authentication interface. See Synchronization and the authentication interface on page H8-7139.

The external agent must be able to guarantee completion of a write. For example by:

- Marking the memory as Device-nGnRnE and executing a DSBB barrier, if the system supports this property.
- Reading back the value written.
- Some guaranteed property of the connection between the PE and the external agent.

Note

For an external Debug Access Port, access completion is an IMPLEMENTATION DEFINED property. For a CoreSight system using APB-AP to access a debug APB, accesses complete in order.

However, the external agent cannot force synchronization of completed writes without halting the PE. Executing an ISB instruction, either in Debug state or in Non-debug state, and exiting from Debug state forces synchronization.

For any given observer, external writes to the following register groups are guaranteed to be observable in the same order in which they complete:

- The breakpoint registers, DBGBCR<n>_EL1 and DBGBVR<n>_EL1.
- The watchpoint registers, DBGWCR<n>_EL1 and DBGWVR<n>_EL1.

This guarantee only applies to external writes to registers within one of these groups. There is no guarantee regarding the ordering of the observability of external writes within these groups with respect to external writes to registers, for example EDSCR, or between breakpoints and watchpoints, including watchpoints linked to context matching breakpoints.
About the External Debug Registers

H8.3 Synchronization of changes to the external debug registers

--- Note ---

This means that a debugger can rely on the external writes to be observed in the same order in which they complete. It does not mean that a debugger can rely on the external writes being observed in finite time.

In a simple sequential execution an indirect write that occurs as a side-effect of an access happens atomically with the access, meaning no other accesses are allowed between the register access and its side-effect.

If two or more interfaces simultaneously access a register, the behavior must be as if the accesses occurred atomically and in any order. This is described in Examples of the synchronization of changes to the external debug registers.

Some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an effect. This means that simultaneous writes must be merged. Registers that have this property and support both external debug and System register access include DBGCLAIMSET_EL1, DBGCLAIMCLR_EL1, PMCR_EL0.{C,P}, PMOVSET_EL0, PMOVSCLR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, and PMSWINC_EL0. This last register is OPTIONAL and deprecated in the external debug interface.

H8.3.1 Synchronization and the authentication interface

Changes to the authentication interface are indirect writes to the state of the PE by the Requester of the authentication interface.

For an external debug interface read of any Authentication Status register, or an indirect read of the authentication interface made in determining the response to a subsequent external debug interface access, a change on the authentication interface must be observable following a subsequent explicit Context synchronization event, and:

- It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable in finite time.
- It is IMPLEMENTATION DEFINED whether a change is guaranteed to be observable following an entry to Debug state.

For a System register read of DBGAUTHSTATUS_EL1, a change on the authentication interface is guaranteed to be observable only after a Context synchronization event.

--- Note ---

- In some systems the authentication interface is fixed by configuration, or changed under the control of software. These systems can require explicit synchronization for any change to the authentication interface.
- In other systems, the authentication interface is controlled dynamically by an external agent. In these systems, it is desirable that changes to the authentication interface do not require explicit synchronization by software executing on the PE to be observable by subsequent external debug interface accesses, and are either observable in finite time or are synchronized by entry to Debug state. Otherwise there are scenarios where a debugger is not able to halt and debug the system.

H8.3.2 Examples of the synchronization of changes to the external debug registers

Example H8-1, Example H8-2 on page H8-7140, and Example H8-3 on page H8-7140 show the synchronization of changes to the external debug registers.

Example H8-1 Order of synchronization of Breakpoint and Watchpoint register writes

Initially DBGVR<n>_EL1 is 0x8000 and DBGBCR<n>_EL1 is 0x0181. This means that a breakpoint is enabled on the halfword T32 instruction at address 0x8000.

A sequence of external writes occurs in the following order:

1. 0x0000 is written to DBGBCR<n>_EL1, disabling the breakpoint.
2. 0x9000 is written to DBGVR<n>_EL1[31:0].
3. \(0x0061\) is written to DBGCR\(n\)_EL1, enabling a breakpoint on the halfword at address \(0x9002\).

The external writes must be observable to indirect reads in the same order as the external writes complete. This means that at no point is there a breakpoint enabled on either of the halfwords at address \(0x8002\) and \(0x9000\).

Similarly a breakpoint or watchpoint must be disabled:
- If both halves of a 64-bit address have to be updated.
- If any of the DBGCR\(n\)_EL1 or DBGWCR\(n\)_EL1 fields are modified at the same time as updating the address.

Example H8-2 Simultaneous accesses to DTR registers

Initially EDSCR.\{TXfull, TXU, ERR\} are 0. Then:
- \(0x00CD0A7A\) is directly written to DBGDTRX_EL0 by an MSR instruction.
- DBGDTRX_EL0 is indirectly read by the external debug interface.

These accesses might happen at the same time and in any order.

If the direct write of \(0x00CD0A7A\) to DBGDTRX_EL0 is handled first, then:
- The external debug interface read of DBGDTRX_EL0 clears EDSCR.TXfull to 0.
- EDSCR.\{TXU, ERR\} are unchanged.
- The external debug interface read returns \(0x00CD0A7A\).

If the indirect read of DBGDTRX_EL0 by the external debug interface is handled first, then:
- The external debug interface read of DBGDTRX_EL0 causes an underrun and as a result EDSCR.\{TXU, ERR\} are both set to 1.
- The external debug interface returns an UNKNOWN value.
- Writing \(0x00CD0A7A\) to DBGDTRX_EL0 sets DTRX to \(0x00CD0A7A\) and EDSCR.TXfull to 1.

Example H8-3 Simultaneous writes to CLAIM registers

Initially all CLAIM tag bits are 0. Then:
- \(0x01\) is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit *Context synchronization event*.
- \(0x02\) is written to DBGCLAIMSET_EL1 by an external write.

These events might happen at the same time and in either order.

After this:
- DBGCLAIMCLR_EL1 is read by a direct read.
- DBGCLAIMCLR_EL1 is read by an external read.

In this case, a direct read can return either \(0x01\) or \(0x03\), and the external read can return either \(0x02\) or \(0x03\).

The only permitted final result for the CLAIM tags is the value \(0x03\), because this would be the result regardless of whether \(0x01\) or \(0x02\) is written first. This is because the external write is guaranteed to be observable to a direct read in finite time. See *Synchronization requirements for AArch64 System registers* on page D13-2863.

It is not possible for a direct read to return \(0x01\) and the external read to return \(0x02\), because the writes to DBGCLAIMCLR_EL1 are serialized.

In the following scenario, there is only one permitted result. Both observers observe the value \(0x03\), and then, at the same time, two writes occur:
- \(0x04\) is written to DBGCLAIMSET_EL1 by a direct write, followed by an explicit *Context synchronization event*.
- \(0x01\) is written to DBGCLAIMCLR_EL1 by an external write.
In this case only permitted final result for the CLAIM tags is the value 0x06.
H8.4 Memory-mapped accesses to the external debug interface

Support for memory-mapped access to the external debug interface is OPTIONAL. When memory-mapped access to the external debug interface is supported, the external debug interface is accessed as a little-endian memory-mapped peripheral.

If the external debug interface is CoreSight compliant, then an OPTIONAL Software Lock can be implemented for memory-mapped accesses to each component.

The Software Lock is OPTIONAL and deprecated. If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented. If it is not implemented, the behavior is as if it is unlocked. The Software Locks are controlled by EDLSR and EDLAR, PMLSR and PMLAR, and CTILSR and CTILAR. See Management registers and CoreSight compliance on page K2-7991.

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug components in the Core power domain.

With the exception of these registers and the effect of the Software Lock, the behavior of the memory-mapped accesses is the same as for other accesses to the external debug interface.

--- Note ---

The recommended memory-mapped accesses to the external debug interface are not compatible with the memory-mapped interface defined in Armv7. In particular:

- The memory map is different.
- Memory-mapped accesses do not behave differently to Debug Access Port accesses when OSLSR.OSLK == 1, meaning that the OS Lock is locked.

The following sections give more information about these memory-mapped accesses:

- Register access permissions for memory-mapped accesses.
- Synchronization of memory-mapped accesses to external debug registers on page H8-7144.

See also Supported access sizes on page I1-7320.

H8.4.1 Register access permissions for memory-mapped accesses

It is IMPLEMENTATION DEFINED whether unprivileged memory-mapped accesses are allowed. Privileged software is responsible for controlling memory-mapped accesses using the MMU.

If FEAT_Debugv8p4 is implemented, the Secure view of a debug component is mapped into Secure physical memory and the Non-secure view is mapped into Non-secure physical memory.

If FEAT_Debugv8p4 is implemented, the access permissions are different in each Security state, but Secure and Non-secure views of the debug components are identical. Arm recommends the views are located at the same address in the Secure and Non-secure physical address maps.

If memory-mapped accesses are made through an ADIv5 interface, the Debug Access Port can block the access using DBGSWENABLE. This is outside the scope of the Armv8-A architecture. See Arm® Debug Interface Architecture Specification ADIv5.0 to ADIv5.2.

Effect of the OPTIONAL Software Lock on memory-mapped access

For memory-mapped accesses, if other controls permit access to a register, the OPTIONAL Software Lock is implemented, and EDLSR.SLK, PMLSR.SLK, or CTILSR.SLK is set to 1, meaning the Software Lock is locked, then with the exception of the LAR itself:

- If other controls permit access to a register, then writes are ignored. That is:
 - Read/write (RW) registers become read-only, writes ignored (RO/WI).
 - Write-only (WO) registers become writes ignored (WI).
• Reads and writes have no side-effects. A side-effect is where a direct read or a direct write of a register creates an indirect write of the same or another register. When the Software Lock is locked, the indirect write does not occur.

• Writes to EDLR, PMLR, and CTILR are unaffected.

This behavior must also apply to all IMPLEMENTATION DEFINED registers.

For example, if EDLSR.SLK is set to 1:

• EDSCR.{TXfull, TXU, ERR} are unchanged by a memory-mapped read from DBGDTRTX_EL0.
• EDSCR.{RXfull, RXO, ERR} are unchanged by a memory-mapped write to DBGDTRRX_EL0 that is ignored.
• EDSCR.{ITE, ITO, ERR} are unchanged by a memory-mapped write to EDITR that is ignored.
• OSLR.OSLK is unchanged by a memory-mapped write to OSLAR_EL1 that is ignored.
• EDPCSR[63:32], EDCIDSR, and EDVIDSR are unchanged by a memory-mapped read from EDPCSR[31:0].

—— Note ———

Updating EDVIDSR, EDCIDSR, and EDPCSR hi are side-effects of reading EDPCSR lo, such that these registers contain the matching context for EDPCSR lo. The process that updates EDPCSR lo with PC samples is not a side-effect of the access. Reads of EDPCSR lo made when the Software Lock is locked can be used to profile software.

——— ———

• PMPCSR[63:32], PMCID1SR/PMCID2SR, and PMVIDSR are unchanged by a memory-mapped read from PMPCSR[31:0].

—— Note ———

Updating PMVIDSR, PMCID1SR/PMCID2SR, and PMPCSR[31:0] are side-effects of reading PMPCSR[63:32], such that these registers contain the matching context for PMPCSR[63:32]. The process that updates PMPCSR[63:32] with PC samples is not a side-effect of the access. Reads of PMPCSR[63:32] made when the Software Lock is locked can be used to profile software.

——— ———

• EDPRSR.{SDR, SPMAD, SDAD, SR, SPD} are unchanged by a memory-mapped read from EDPRSR.
• EDPRSR.SDAD is not set if an error response is returned due to a memory-mapped read or write of any debug register as the result of the value of the EDAD field.

• The CLAIM tags are unchanged by memory-mapped writes to DBGCLAIMSET_EL1 and DBGCLAIMCLR_EL1 which are ignored.

Similarly, if PMLSR.SLK is set to 1, then EDPRSR.SPMAD is not set if an error response is returned to a memory-mapped read or write of any Performance Monitors register due to the value of the EPMAD field.

Behavior of a not permitted memory-mapped access

Where the architecture requires that an external debug interface access generates an error response, a memory-mapped access must also generate an error response. However, it is IMPLEMENTATION DEFINED how the error response is handled, as this depends on the system.

Arm recommends that the error is returned as either:

• A synchronous external Data Abort.
• An SError interrupt.
H8.4.2 Synchronization of memory-mapped accesses to external debug registers

The synchronization requirements for memory-mapped accesses to the external debug interface is described in *Synchronization of changes to the external debug registers on page H8-7138* and *Synchronization of memory-mapped registers on page I1-7322*.

The synchronization requirements between different routes to the external debug interface, that is, between Debug Access Port accesses and memory-mapped accesses are IMPLEMENTATION DEFINED.
H8.5 External debug interface register access permissions

Some external accesses to debug registers and Performance Monitor registers are not permitted and return an error response if:

- The Core power domain is powered down or is in low-power state where the registers cannot be accessed.
- \text{OSLSR.OSLK} == 1, meaning the OS Lock is locked.
- \text{FEAT_DoubleLock} is implemented and \text{DoubleLockStatus()} == \text{TRUE}, meaning the OS Double Lock is locked.
- The access is disabled by either the authentication interface or secure monitor.

Not all registers are affected in all of these cases. For details, see \textit{External debug interface register access permissions summary} on page H8-7146.

H8.5.1 External debug over powerdown and locks

Accessing registers using the external debug interface is not possible when the Debug power domain is off. In this case all accesses return an error.

External accesses to debug and Performance Monitors registers in the Core power domain are not permitted and return an error response if:

- The Core power domain is off or in low-power state where the registers cannot be accessed.
- \text{OSLSR.OSLK} == 1, meaning that the OS Lock is locked. This allows software to prevent external debugger modification of the registers while it saves and restores them over powerdown.
- \text{FEAT_DoubleLock} is implemented and \text{DoubleLockStatus()} == \text{TRUE}. This means that the OS Double Lock is locked. The OS Double Lock ensures that it is safe to remove Core power by forcing the debug interface to be quiescent.

If \text{FEAT_DoubleLock} is not implemented, the hardware must provide another method to safely remove Core power.

The OS Lock condition does not apply to the following debug registers:

- \text{OSLAR_EL1}. This means that an external debugger can override this lock.
- \text{EDESR}. This means that an external debugger can program a debug event for when software unlocks the OS Lock. See \textit{OS Unlock Catch debug event} on page H3-7072.
- The ID registers that describe the PE to the debugger.

See also \textit{Debug registers to save over powerdown} on page H6-7125.

H8.5.2 External access disabled

Accesses are further controlled by the external authentication interface. An untrusted external debugger cannot program the breakpoint and watchpoint registers to generate spurious debug exceptions. If external invasive debugging is not enabled, these external accesses to the registers are disabled. If EL3 is implemented, then \text{SDCR} provides additional external access controls for those registers.

The disable applies to:

- The \text{DBGVR<n>_EL1}, \text{DBGBCR<n>_EL1}, \text{DBGWVR<n>_EL1}, and \text{DBGWCR<n>_EL1} registers.
- From Armv8.2, the \text{OSLAR_EL1} register.

If \text{FEAT_Debugv8p2} is not implemented, it is \text{IMPLEMENTATION DEFINED} whether the disable applies to \text{OSLAR_EL1}.

If \text{FEAT_Debugv8p4} is not implemented, the external debug interface cannot access these registers if any of the following are true:

- \text{ExternalInvasiveDebugEnabled()} == \text{FALSE}.
- \text{ExternalSecureInvasiveDebugEnabled()} == \text{FALSE}, EL3 is not implemented, and the PE behaves as if the Security state is Secure.
- \text{ExternalSecureInvasiveDebugEnabled()} == \text{FALSE}, EL3 is implemented and \text{SDCR.EDAD} == 1.
If FEAT_Debugv8p4 is implemented, Non-secure accesses from the external debug interface to these registers are not permitted if any of the following are true:

- EL3 is not implemented and the PE behaves as if the Security state is Secure.
- EL3 is implemented and SDCR.EDAD == 1.

The AllowExternalDebugAccess() pseudocode function describes these accessibility rules.

PEs might also provide an optional external debug interface to the Performance Monitor registers. The authentication interface and SDCR provide similar external access disable controls for those registers.

If FEAT_Debugv8p4 is not implemented, the external debug interface cannot access the Performance Monitor registers if any of the following are true:

- ExternalNoninvasiveDebugEnabled() == FALSE.
- ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is not implemented and the PE behaves as if the Security state is Secure.
- ExternalSecureNoninvasiveDebugEnabled() == FALSE, EL3 is implemented and SDCR.EPMAD == 1.

___ Note ___

- Arm recommends that secure software that is not making use of debug hardware does not lock out the external debug interface.
- Armv8-A does not provide the equivalent control over access to Trace extension registers, which means if FEAT_Debugv8p4 is implemented, the Non-secure and Secure views are identical.

If FEAT_Debugv8p4 is implemented, Non-secure accesses from the external debug interface to these registers are not permitted if any of the following are true:

- EL3 is not implemented and the PE behaves as if the Security state is Secure.
- EL3 is implemented and SDCR.EPMAD == 1.

The AllowExternalPMUAccess() pseudocode function describes these accessibility rules.

H8.5.3 Behavior of a not permitted access

For an external debug interface access by a Debug Access Port, the Debug Access Port receives the error response and must signal this to the external debugger. For an ADIV5 implementation of a Debug Access Port, the error sets a sticky error flag in the Debug Access Port that the debugger can poll, and that suppresses further accesses until it is explicitly cleared.

When an error is returned because external access is disabled, and this is the highest priority error condition, a sticky error flag in EDPRSR is indirectly written to 1 as a side-effect of the access:

- For a debug register access when AllowExternalDebugAccess() == FALSE, EDPRSR.SDAD is indirectly written to 1.
- For Performance Monitor register access when AllowExternalPMUAccess() == FALSE, EDPRSR.SPMAD is indirectly written to 1.

The indirect write might not occur for a memory-mapped access to the external debug interface. For more information, see Register access permissions for memory-mapped accesses on page H8-7142.

If no error is returned, or the error is returned because of a higher priority error condition, the flag in EDPRSR is unchanged.

See also Behavior of a not permitted memory-mapped access on page H8-7143.

For more information, see Arm® Debug Interface Architecture Specification.

H8.5.4 External debug interface register access permissions summary

For accesses to:

- IMPLEMENTATION DEFINED registers, see IMPLEMENTATION DEFINED registers on page H8-7147.
• OPTIONAL registers for CoreSight compliance, see Management registers and CoreSight compliance on page K2-7991.
• Reserved, unallocated, or unimplemented registers, writes to read-only registers, and reads of write-only registers, see Reserved and unallocated registers.

For all other external debug interface, CTI, and Performance Monitor registers, Table H8-3 on page H8-7152, Table H8-4 on page H8-7153, Table H8-6 on page H8-7157 and Table I3-1 on page I3-7340, show the response of the PE to accesses by the external debug interface.

H8.5.5 IMPLEMENTATION DEFINED registers

For debug registers, Performance Monitors registers, CTI registers, register access permissions for IMPLEMENTATION DEFINED registers are IMPLEMENTATION DEFINED.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints on memory-mapped accesses to registers. These constraints must also apply to IMPLEMENTATION DEFINED registers.

For more information see Register access permissions for memory-mapped accesses on page H8-7142.

If FEAT_DoPD is not implemented, the power domain of these registers in which these registers are implemented is also IMPLEMENTATION DEFINED. The registers must apply the constraint that if the OPTIONAL Software Lock is locked, writes are ignored and accesses have no side-effects.

If FEAT_DoPD is implemented, then:

• For debug registers and Performance Monitors registers, IMPLEMENTATION DEFINED registers are implemented in the Core power domain. Accesses return an error when the Core power domain is off or in a low-power state.
• For CTI registers, IMPLEMENTATION DEFINED registers are implemented in the Debug power domain.

H8.5.6 Reserved and unallocated registers

The default access requirements for reserved and unallocated registers are described in Access requirements for reserved and unallocated registers on page I1-7324.

_____ Note _______

Reads of RO and writes to RO refers to the default access permissions for a register. For example, when the SLK field is set, meaning that the relevant registers become RO, a memory-mapped write to a RW register is ignored, and not treated as a reserved access.

The following reserved registers are RES0 in all conditions, other than when debug power is off:

• All reserved CTI registers.
• For the debug registers, and Performance Monitors registers, if the implementation is CoreSight architecture compliant, and either FEAT_DoPD is not implemented or the Core power domain is on, all reserved registers in the range 0xF00 - 0xFFF. See Management register access permissions on page K2-7992.

Otherwise, the architecture defines that:

1. If debug power is off, all register accesses, including reserved accesses, return an error.
2. For reserved debug registers and Performance Monitors registers, if FEAT_DoPD is implemented, and the Core power domain is off or in a low-power state, the response is an error. Otherwise the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0, when any of the following hold:

 | OFF | The Core power domain is either completely off or in a low-power state in which the Core power domain registers cannot be accessed. |
 | DLK | FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is locked. |
 | OSLK | OSLSR.OSLK == 1. The OS Lock is locked. |
3. In addition, for reserved debug registers in the address ranges 0x400 - 0x4FC and 0x800 - 0x8FC, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

 EDAD AllowExternalDebugAccess() == FALSE. External debug is disabled.

 ——— Note ———

 See also Behavior of a not permitted access on page H8-7146.

4. In addition, for reserved Performance Monitors registers in the address ranges 0x000 - 0xEFC, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when conditions 1 or 2 do not apply and:

 EPMAD AllowExternalPMUAccess() == FALSE. External Performance Monitor access is disabled.

 ——— Note ———

 See also Behavior of a not permitted access on page H8-7146.

5. For reads of WO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the architecture permits or requires a write to the location to return an error.

6. For writes of RO locations, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the architecture permits or requires a read to the location to return an error.

7. For reads and writes of locations for features that are not implemented, the response is a CONSTRAINED UNPREDICTABLE choice of error or RES0 when the architecture permits or requires an access to the location to return an error if the feature is implemented.
H8.6 External debug interface registers

The external debug interface register map is described by:

- Performance Monitors external register views on page I5-7350.
- Cross-trigger interface registers on page H8-7156.
- External debug interface register map.

Table H8-2 External debug interface register map

<table>
<thead>
<tr>
<th>Offset</th>
<th>Mnemonic</th>
<th>Register, or additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x020</td>
<td>EDESР</td>
<td>EDESР, External Debug Event Status Register on page H9-7218</td>
</tr>
<tr>
<td>0x024</td>
<td>EDEСR</td>
<td>EDEСR, External Debug Execution Control Register on page H9-7216</td>
</tr>
<tr>
<td>0x030</td>
<td>EDWAR[31:0]</td>
<td>EDWAR, External Debug Watchpoint Address Register on page H9-7266</td>
</tr>
<tr>
<td>0x034</td>
<td>EDWAR[63:32]</td>
<td></td>
</tr>
<tr>
<td>0x080</td>
<td>DBGDТRRX_EL0</td>
<td>Chapter H4 The Debug Communication Channel and Instruction Transfer Register</td>
</tr>
<tr>
<td>0x084</td>
<td>EDITR</td>
<td>EDITR, External Debug Instruction Transfer Register on page H9-7222</td>
</tr>
<tr>
<td>0x088</td>
<td>EDSCR</td>
<td>EDSCR, External Debug Status and Control Register on page H9-7256</td>
</tr>
<tr>
<td>0x08C</td>
<td>DBGDТRTX_EL0</td>
<td>Chapter H4 The Debug Communication Channel and Instruction Transfer Register</td>
</tr>
<tr>
<td>0x090</td>
<td>EDRCR</td>
<td>EDRCR, External Debug Reserve Control Register on page H9-7254</td>
</tr>
<tr>
<td>0x094</td>
<td>EDACR</td>
<td>EDACR, External Debug Auxiliary Control Register on page H9-7191</td>
</tr>
<tr>
<td>0x098</td>
<td>EDECCR</td>
<td>EDECCR, External Debug Exception Catch Control Register on page H9-7211</td>
</tr>
<tr>
<td>0x0A0</td>
<td>EDPCSRLo^a</td>
<td>EDPCSR, External Debug Program Counter Sample Register on page H9-7228</td>
</tr>
<tr>
<td>0x0A4</td>
<td>EDCIDSR</td>
<td>EDCIDSR, External Debug Context ID Sample Register on page H9-7197</td>
</tr>
<tr>
<td>0x0A8</td>
<td>EDVIDSR</td>
<td>EDVIDSR, External Debug Virtual Context Sample Register on page H9-7262</td>
</tr>
<tr>
<td>0x0AC</td>
<td>EDPCSRhi</td>
<td>EDPCSR, External Debug Program Counter Sample Register on page H9-7228</td>
</tr>
<tr>
<td>0x0B0</td>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1, OS Lock Access Register on page H9-7270</td>
</tr>
<tr>
<td>0x0B10</td>
<td>EDPRСR</td>
<td>EDPRСR, External Debug Power/Reset Control Register on page H9-7242</td>
</tr>
<tr>
<td>0x0B14</td>
<td>EDПPRSR</td>
<td>EDПPRSR, External Debug Processor Status Register on page H9-7246</td>
</tr>
<tr>
<td>0x0B00+16^n</td>
<td>DBGВВR<n>_EL1[31:0]bc</td>
<td>DBGВВR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on page H9-7170</td>
</tr>
<tr>
<td>0x0B00+16^n</td>
<td>DBGВВR<n>_EL1[63:32]bc</td>
<td></td>
</tr>
<tr>
<td>0x0B08+16^n</td>
<td>DBGВСR<n>_EL1</td>
<td>DBGВСR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on page H9-7166</td>
</tr>
<tr>
<td>0x0B80+16</td>
<td>DBGWВR<n>_EL1[31:0]bc</td>
<td>DBGWВR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on page H9-7187</td>
</tr>
<tr>
<td>0x0B80+16</td>
<td>DBGWВR<n>_EL1[63:32]bc</td>
<td></td>
</tr>
<tr>
<td>0x0B88+16</td>
<td>DBGWСR<n>_EL1</td>
<td>DBGWСR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on page H9-7183</td>
</tr>
<tr>
<td>0xC00-0xCFC</td>
<td>IMPLEMENTATION DEFINED</td>
<td>-</td>
</tr>
<tr>
<td>0xD00</td>
<td>MIDR_EL1</td>
<td>Main ID register</td>
</tr>
<tr>
<td>0xD04-0xD1C</td>
<td>Reserved, RES0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>
Table H8-2 External debug interface register map (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Mnemonic</th>
<th>Register, or additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x20</td>
<td>EDPFR[31:0]</td>
<td>External Debug Processor Feature Register 0</td>
</tr>
<tr>
<td>0x24</td>
<td>EDPFR[63:32]</td>
<td></td>
</tr>
<tr>
<td>0x28</td>
<td>EDDFR[31:0]</td>
<td>External Debug Feature Register 0</td>
</tr>
<tr>
<td>0x2C</td>
<td>EDDFR[63:32]</td>
<td></td>
</tr>
<tr>
<td>0x30</td>
<td>Reserved, see next column</td>
<td>Previously defined as Instruction Set Attribute Register 0 bits[31:0]. Behavior is: Bits[31:20] RES0. Bits[19:4] UNKNOWN. Bits[3:0] RES0.</td>
</tr>
<tr>
<td>0x34</td>
<td>RES0</td>
<td>Previously defined as Instruction Set Attribute Register 0 bits[63:32]</td>
</tr>
<tr>
<td>0x38</td>
<td>UNKNOWN</td>
<td>Previously defined as Memory Model Feature Register 0</td>
</tr>
<tr>
<td>0x3C</td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td>0x40–0xFD</td>
<td>RES0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0x60</td>
<td>EDAA32PFR[31:0]</td>
<td>External Debug AArch32 Processor Feature Register</td>
</tr>
<tr>
<td>0x64</td>
<td>EDAA32PFR[63:32]</td>
<td>External Debug AArch32 Processor Feature Register</td>
</tr>
<tr>
<td>0x68–0xEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>-</td>
</tr>
<tr>
<td>0xF0–0xEFC</td>
<td>Management registers</td>
<td>Management registers and CoreSight compliance on page K2-7991</td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page H9-7177</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page H9-7175</td>
</tr>
<tr>
<td>0xFA8</td>
<td>EDDEVAFF0</td>
<td>EDDEVAFF0, External Debug Device Affinity register 0 on page H9-7199</td>
</tr>
<tr>
<td>0xFAC</td>
<td>EDDEVAFF1</td>
<td>EDDEVAFF1, External Debug Device Affinity register 1 on page H9-7200</td>
</tr>
<tr>
<td>0xFB0–0xFB4</td>
<td>Management registers</td>
<td>Management registers and CoreSight compliance on page K2-7991</td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1, Debug Authentication Status register on page H9-7164</td>
</tr>
<tr>
<td>0xFC0</td>
<td>EDDEVID2</td>
<td>EDDEVID, External Debug Device ID register 0 on page H9-7203</td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDDEVID1</td>
<td>EDDEVID1, External Debug Device ID register 1 on page H9-7205</td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDDEVID2</td>
<td>EDDEVID2, External Debug Device ID register 2 on page H9-7206</td>
</tr>
</tbody>
</table>

| 0xFD0–0xFFC | Management registers | Management registers and CoreSight compliance on page K2-7991 |

a. Supported only if the OPTIONAL PC Sample-Based Profiling is implemented but FEAT_PCSRv8p2 is not implemented. See Chapter H7 The PC Sample-based Profiling Extension.

b. A 64-bit register mapped to a pair of 32-bit locations. Doubleword accesses to this register are not guaranteed to be 64-bit single copy atomic. See Endianness and supported access sizes on page H8-7137. Software must ensure a breakpoint or watchpoint is disabled before altering the value register.

c. Implemented breakpoints and watchpoints only. n is the breakpoint or the watchpoint number.

Note

All other locations are reserved.
H8.6.1 Access permissions for the External debug interface registers

Table H8-3 on page H8-7152 and Table H8-4 on page H8-7153 show the access permissions for the external debug interface registers in an Armv8-A Debug implementation. The terms are defined as follows:

Domain

This describes the power domain in which the register is logically implemented. Registers described as implemented in the Core power domain might be implemented in the Debug power domain, as long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power domain, as shown in Table H8-3 on page H8-7152.

If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown in Table H8-4 on page H8-7153.

Conditions

This lists the conditions under which the access is attempted.

To determine the access permissions for a register, read these columns from left to right, and stop at first column that lists the condition as being true.

The conditions are:

- Off: The Core power domain is completely off, or in low-power state. In these cases the Core power domain registers cannot be accessed, and if FEAT_DoPD is not implemented, EDPRSR.PU will read as 0.

 Note

 When the Core power domain is off, or in a low-power state, a debugger is permitted to access a debug register that is implemented in the external Debug power domain.

 When the Debug power domain is off, all accesses to the registers in the external Debug power domain return an error.

- DLK: FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE. The OS Double Lock is locked. If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented and so Table H8-3 on page H8-7152 does not include this column.

- OSLK: OSLR.OSLK == 1. The OS Lock is locked.

- EDAD: AllowExternalDebugAccess() == FALSE. External debug access is disabled for the access. If FEAT_Debugv8p4 is implemented, this applies only for Non-secure accesses to the register. See also Behavior of a not permitted access on page H8-7146.

- EPMAD: AllowExternalPMUAccess() == FALSE. Access to the external Performance Monitors is disabled for the access. If FEAT_Debugv8p4 is implemented, this applies only for Non-secure accesses to the register. See also Behavior of a not permitted access on page H8-7146.

- SLK: The Software Lock is implemented and SoftwareLockStatus() == TRUE. This provides the modified default access permissions for OPTIONAL memory-mapped accesses to the external debug interface if the OPTIONAL Software Lock is locked. See Register access permissions for memory-mapped accesses on page H8-7142. If FEAT_DoPD is implemented, the Software Lock is not locked or not implemented, this column is ignored.

- Default: This provides the default access permissions, if there are no conditions that prevent access to the register.

The access permissions are:

- This means that the default access permission applies. See the Default column, or the SLK column, if applicable.

- RO: This means that the register or field is read-only, and:
 - Unless the register description states otherwise, a RO field in an RW register ignores writes.
 - Where the SLK control makes a RW register RO, the register ignores writes.
About the External Debug Registers

H8-6 External debug interface registers

RW
This means that the register or field is read/write. Individual fields within the register might be RO or WO. See the relevant register description for details.

RC
This means that a read of the register bit clears the field to 0.

WO
This means that the register or field is write-only. Unless the register description states otherwise, a WO field in a RW register returns an UNKNOWN value on a read of the register.

WI
This means that the register or field ignores writes.

IMP DEF
This means that the access permissions are IMPLEMENTATION DEFINED.

If optional memory-mapped access to the external debug interface is supported, there might be additional constraints on memory-mapped accesses. See *Register access permissions for memory-mapped accesses on page H8-7142*.

For the reset values for the external debug interface registers, see *Table H8-7 on page H8-7159*.

Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority from left to right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x020</td>
<td>EDESR</td>
<td>Core</td>
<td>Error - - - RW</td>
</tr>
<tr>
<td>0x024</td>
<td>EDECR</td>
<td>Core</td>
<td>Error - - - RW</td>
</tr>
<tr>
<td>0x030</td>
<td>EDWAR[31:0]</td>
<td>Core</td>
<td>Error - - RO</td>
</tr>
<tr>
<td>0x034</td>
<td>EDWAR[63:32]</td>
<td>Core</td>
<td>Error - - RO</td>
</tr>
<tr>
<td>0x080</td>
<td>DBGDTRRX_EL0</td>
<td>Core</td>
<td>Error - - RO</td>
</tr>
<tr>
<td>0x084</td>
<td>EDITR</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x088</td>
<td>EDSCR</td>
<td>Core</td>
<td>Error - Error - RW</td>
</tr>
<tr>
<td>0x08C</td>
<td>DBGDTRTX_EL0</td>
<td>Core</td>
<td>Error - Error - RW</td>
</tr>
<tr>
<td>0x090</td>
<td>EDRCR</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x094</td>
<td>EDACR</td>
<td>Core</td>
<td>Error - Error - IMP DEF - RW</td>
</tr>
<tr>
<td>0x098</td>
<td>EDECCR</td>
<td>Core</td>
<td>Error - Error - RW</td>
</tr>
<tr>
<td>0x0A0</td>
<td>EDPCSR[31:0]</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x0A4</td>
<td>EDCIDSRa</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x0A8</td>
<td>EDVIDSRa</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x0AC</td>
<td>EDPCSR[63:32]</td>
<td>Core</td>
<td>Error - Error - RO</td>
</tr>
<tr>
<td>0x300</td>
<td>OSLAR_EL1</td>
<td>Core</td>
<td>Error - - Error - WO</td>
</tr>
<tr>
<td>0x310</td>
<td>EDPRCR</td>
<td>Core</td>
<td>Error - - - RW</td>
</tr>
<tr>
<td>0x314</td>
<td>EDPRSRS</td>
<td>Core</td>
<td>Error - - - RO</td>
</tr>
<tr>
<td>0x400+16×n</td>
<td>DBGBVR<n>_EL1[31:0]b</td>
<td>Core</td>
<td>Error - Error - Error - RW</td>
</tr>
<tr>
<td>0x404+16×n</td>
<td>DBGBVR<n>_EL1[63:32]b</td>
<td>Core</td>
<td>Error - Error - Error - RW</td>
</tr>
<tr>
<td>0x408+16×n</td>
<td>DBGBCR<n>_EL1b</td>
<td>Core</td>
<td>Error - Error - Error - RW</td>
</tr>
</tbody>
</table>
Table H8-3 Access permissions for the external debug interface registers if FEAT_DoPD is implemented (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority from left to right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x800+16×n</td>
<td>DBGWVR<n>_EL1[31:0]<sup>b</sup></td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x804+16×n</td>
<td>DBGWVR<n>_EL1[63:32]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x808+16×n</td>
<td>DBGWCR<n>_EL1<sup>b</sup></td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD00</td>
<td>MIDR_EL1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD20</td>
<td>EDPRF[31:0]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD24</td>
<td>EDPRF[63:32]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD28</td>
<td>EDDDR[31:0]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD2C</td>
<td>EDDDR[63:32]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD60</td>
<td>EDAA32PFR[31:0]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xD64</td>
<td>EDAA32PFR[63:32]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFA8</td>
<td>EDEVAFF0</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xCAF</td>
<td>EDEVAFF1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFC0</td>
<td>EDEVID2</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDEVID1</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDEVID2</td>
<td>Core</td>
<td>Error</td>
</tr>
</tbody>
</table>

a. Implemented only if the PC Sample-based profiling Extension is implemented and FEAT_PCSRv8p2 is not implemented.

b. Implemented breakpoints and watchpoints only. ⁿ is the breakpoint or watchpoint number.

Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority from left to right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x020</td>
<td>EDESR</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x024</td>
<td>EDECR</td>
<td>Debug</td>
<td>-</td>
</tr>
<tr>
<td>0x030</td>
<td>EDWAR[31:0]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x034</td>
<td>EDWAR[63:32]</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x080</td>
<td>DBGDTRRX_EL0</td>
<td>Core</td>
<td>Error</td>
</tr>
<tr>
<td>0x084</td>
<td>EDITR</td>
<td>Core</td>
<td>Error</td>
</tr>
</tbody>
</table>

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. H8-7153
ID072120 Non-Confidential
Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority from left to right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x088</td>
<td>EDSCR</td>
<td>Core</td>
<td>Error Error Error Error - RW RO</td>
</tr>
<tr>
<td>0x08C</td>
<td>DBGDTRTX_EL0</td>
<td>Core</td>
<td>Error Error Error Error - RW RO</td>
</tr>
<tr>
<td>0x090</td>
<td>EDRCR</td>
<td>Core</td>
<td>Error Error Error Error - WO WI</td>
</tr>
<tr>
<td>0x094</td>
<td>EDACR</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RW RO</td>
</tr>
<tr>
<td>0x098</td>
<td>EDECCR</td>
<td>Core</td>
<td>Error Error Error Error - RW RO</td>
</tr>
<tr>
<td>0x0A0</td>
<td>EDPCSR[31:0]</td>
<td>Core</td>
<td>Error Error Error Error - RO RO</td>
</tr>
<tr>
<td>0x0A4</td>
<td>EDCIDSR</td>
<td>Core</td>
<td>Error Error Error Error - RO RO</td>
</tr>
<tr>
<td>0x0A8</td>
<td>EDVIDSR</td>
<td>Core</td>
<td>Error Error Error Error - RO RO</td>
</tr>
<tr>
<td>0x0AC</td>
<td>EDPCCSR[63:32]</td>
<td>Core</td>
<td>Error Error Error Error - RO RO</td>
</tr>
<tr>
<td>0x300</td>
<td>OSLAR_EL1</td>
<td>Core</td>
<td>Error Error Error Error - IMP DEF RO</td>
</tr>
<tr>
<td>0x310</td>
<td>EDPCCR</td>
<td>Core and Debug</td>
<td>- - - - - RW RO</td>
</tr>
<tr>
<td>0x314</td>
<td>EDPSSR</td>
<td>Core and Debug</td>
<td>- - - - - RO RO</td>
</tr>
<tr>
<td>0x400+16×n</td>
<td>DBGBVR<n>_EL1[31:0]</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x404+16×n</td>
<td>DBGBVR<n>_EL1[63:32]</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x408+16×n</td>
<td>DBGBCR<n>_EL1</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x800+16×n</td>
<td>DBGWVR<n>_EL1[31:0]</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x804+16×n</td>
<td>DBGWVR<n>_EL1[63:32]</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x808+16×n</td>
<td>DBGWCR<n>_EL1</td>
<td>Core</td>
<td>Error Error Error Error Error RW RO</td>
</tr>
<tr>
<td>0x080</td>
<td>MIDR_EL1</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x020</td>
<td>EDPFR[31:0]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x024</td>
<td>EDPFR[63:32]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x028</td>
<td>EDDFR[31:0]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x02C</td>
<td>EDDFR[63:32]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x060</td>
<td>EDAA32PFR[31:0]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0x064</td>
<td>EDAA32PFR[63:32]</td>
<td>IMP DEF</td>
<td>IMP DEF IMP DEF IMP DEF - RO RO</td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
<td>Core</td>
<td>Error Error Error Error - RW RO</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1</td>
<td>Core</td>
<td>Error Error Error Error - RW RO</td>
</tr>
<tr>
<td>0xFA8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>Debug</td>
<td>- - - - - RO RO</td>
</tr>
<tr>
<td>0xFAC</td>
<td>EDEVAFF0</td>
<td>Debug</td>
<td>- - - - - RO RO</td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>Debug</td>
<td>- - - - - RO RO</td>
</tr>
</tbody>
</table>
Table H8-4 Access permissions for the external debug interface registers if FEAT_DoPD is not implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Off</th>
<th>DLK</th>
<th>OSLK</th>
<th>EDAD</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFC0</td>
<td>EDDEVID2</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDDEVID1</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDDEVID</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
</tbody>
</table>

a. Implemented only if the PC Sample-based profiling Extension is implemented.
b. If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether an error is returned. See External access disabled on page H8-7145. If no error is returned, the access is permitted.
c. Some bits are in the Debug power domain and some bits are in the Core power domain. See register field descriptions for information.
d. Implemented breakpoints and watchpoints only. \(n \) is the breakpoint or watchpoint number.
e. It is IMPLEMENTATION DEFINED whether an error is returned. See External debug over powerdown and locks on page H8-7145. If no error is returned, the access is permitted.
H8.7 Cross-trigger interface registers

The embedded Cross-trigger Interface, CTI, is located within its own block of the external debug memory map. There must be one such block for each PE.

If the CTI of a PE does not implement the CTIDEVAFF0 or CTIDEVAFF1 registers it must be located 64KB above the debug registers in the external debug interface.

When FEAT_Debugv8p4 is implemented, each debug component has a Secure and Non-secure view. The Secure view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug components are identical.

Table H8-5 shows the CTI register map.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Mnemonic</th>
<th>Location of further details</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CTICONTROL</td>
<td>CTICONTROL, CTI Control register on page H9-7286</td>
</tr>
<tr>
<td>0x010</td>
<td>CTIINTACK</td>
<td>CTIINTACK, CTI Output Trigger Acknowledge register on page H9-7300</td>
</tr>
<tr>
<td>0x014</td>
<td>CTIAPPSET</td>
<td>CTIAPPSET, CTI Application Trigger Set register on page H9-7276</td>
</tr>
<tr>
<td>0x018</td>
<td>CTIAPPCLEAR</td>
<td>CTIAPPCLEAR, CTI Application Trigger Clear register on page H9-7274</td>
</tr>
<tr>
<td>0x01C</td>
<td>CTIAPPPULSE</td>
<td>CTIAPPPULSE, CTI Application Pulse register on page H9-7275</td>
</tr>
<tr>
<td>0x020+4n</td>
<td>CTIEN<n>a</td>
<td>CTIEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31 on page H9-7299</td>
</tr>
<tr>
<td>0x0A0+4n</td>
<td>CTIOUTEN<n>a</td>
<td>CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31 on page H9-7308</td>
</tr>
<tr>
<td>0x130</td>
<td>CTITRIGINSTATUS</td>
<td>CTITRIGINSTATUS, CTI Trigger In Status register on page H9-7314</td>
</tr>
<tr>
<td>0x134</td>
<td>CTITRIGOUTSTATUS</td>
<td>CTITRIGOUTSTATUS, CTI Trigger Out Status register on page H9-7315</td>
</tr>
<tr>
<td>0x138</td>
<td>CTICHINSTATUS</td>
<td>CTICHINSTATUS, CTI Channel In Status register on page H9-7278</td>
</tr>
<tr>
<td>0x13C</td>
<td>CTICHOUTSTATUS</td>
<td>CTICHOUTSTATUS, CTI Channel Out Status register on page H9-7279</td>
</tr>
<tr>
<td>0x140</td>
<td>CTIGATE</td>
<td>CTIGATE, CTI Channel Gate Enable register on page H9-7298</td>
</tr>
<tr>
<td>0x144</td>
<td>ASICCTL</td>
<td>ASICCTL, CTI External Multiplexer Control register on page H9-7273</td>
</tr>
<tr>
<td>0xEB0 - 0xEFC</td>
<td>IMPLEMENTATION</td>
<td>IMPLEMENTATION DEFINED. See Management registers and CoreSight compliance on page K2-7991</td>
</tr>
<tr>
<td>0xF00 - 0xFBC</td>
<td>Management registers</td>
<td>Management registers and CoreSight compliance on page K2-7991</td>
</tr>
<tr>
<td>0xFC0</td>
<td>CTIDEVID2</td>
<td>CTIDEVID2, CTI Device ID register 2 on page H9-7296</td>
</tr>
<tr>
<td>0xFC4</td>
<td>CTIDEVID1</td>
<td>CTIDEVID1, CTI Device ID register 1 on page H9-7295</td>
</tr>
<tr>
<td>0xFC8</td>
<td>CTIDEVID</td>
<td>CTIDEVID, CTI Device ID register 0 on page H9-7293</td>
</tr>
<tr>
<td>0xFD0 - 0xFFC</td>
<td>Management registers</td>
<td>Management registers and CoreSight compliance on page K2-7991</td>
</tr>
</tbody>
</table>

a. Implemented triggers, including triggers that are not connected, only. \(n \) is the trigger number.
Table H8-6 shows the access permissions for the CTI registers in an Armv8-A Debug implementation. For a definition of the terms used, see External debug interface registers on page H8-7149.

Table H8-6 Access permissions for the CTI registers

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Off</th>
<th>DLK</th>
<th>OSLK</th>
<th>EDAD</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CTICONTROL</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x010</td>
<td>CTIINTACK</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>WO</td>
<td>WI</td>
</tr>
<tr>
<td>0x014</td>
<td>CTIAPPSET</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x018</td>
<td>CTIAPPCLEAR</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>WO</td>
<td>WI</td>
</tr>
<tr>
<td>0x01C</td>
<td>CTIAPPPULSE</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>WO</td>
<td>WI</td>
</tr>
<tr>
<td>0x020+4*n</td>
<td>CTINEN(<n>^a$$</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x0A0+4*n</td>
<td>CTIOUTEN(<n>$$</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x130</td>
<td>CTITRIGINSTATUS</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x134</td>
<td>CTITRIGOUTSTATUS</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x138</td>
<td>CTICHINSTATUS</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x13C</td>
<td>CTICHOUTSTATUS</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x140</td>
<td>CTIGATE</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC0</td>
<td>CTIDEVID2</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC4</td>
<td>CTIDEVID1</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC8</td>
<td>CTIDEVID</td>
<td>Debug</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
</tbody>
</table>

a. Implemented triggers only (including triggers that are not connected). \(n \) is the trigger number.

For the reset values of the CTI registers, see Table H8-8 on page H8-7160.
H8.8 External debug register resets

Each register or field has a defined reset domain:

• Registers and fields in the Warm reset domain are also reset by a Cold reset and unchanged by an External
 Debug reset that is not coincident with a Cold reset or a Warm reset.

• Registers and fields in the Cold reset domain are unchanged by a Warm reset or an External Debug reset that
 is not coincident with a Cold reset.

• Registers and fields in the External Debug reset domain are unchanged by a Cold reset or a Warm reset that
 is not coincident with an External Debug reset.

A reset might change the value of a register. Specific rules apply to the observability of registers in the External
Debug reset domain by indirect reads from the Core power domain when an External Debug reset is asserted without
a coincident Cold reset. For more information, see Synchronization of changes to the external debug registers on
page H8-7138.

Table H8-7 on page H8-7159 and Table H8-8 on page H8-7160 show the external debug register and CTI register
resets. For other debug registers and Performance Monitors registers, see Management register resets on
page K2-7998 and Power domains and Performance Monitors registers reset on page I3-7341.

Note
By reference to Figure H6-1 on page H6-7129 the power domain can be deduced from the reset domain. Table K2-9
on page K2-7998 also shows reset power domains.

Table H8-7 on page H8-7159 and Table H8-8 on page H8-7160 do not include:

• Read-only identification registers, such as Processor ID Registers and PMCFGR, that have a fixed value from
 reset.

• Read-only status registers, such as EDSCR.RW, that are evaluated each time the register is read and that have
 no meaningful reset value.

• Write-only registers, such as EDRCR, that only have an effect on writes, and have no meaningful reset value.

• Read/write registers, such as breakpoint and watchpoint registers, and EDPRCR.CORENPDRQ, that alias
 other registers. The reset values are described by the descriptions of those other registers.

• IMPLEMENTATION DEFINED registers. The reset values and reset domains of these registers are also
 IMPLEMENTATION DEFINED and might be UNKNOWN.

All other fields in the registers are set to an IMPLEMENTATION DEFINED value that can be UNKNOWN. The register is
in the specified reset domain.

Note
An IMPLEMENTATION DEFINED reset value, which can be UNKNOWN, means that hardware is not required to reset
the register on the specified reset, but software must not rely on the register being preserved over reset.
Table H8-7 Summary of external debug register resets, debug registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Reset domain</th>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGPRCR_EL1</td>
<td>Cold into AArch64 state</td>
<td>CORENPDRQ</td>
<td>The value of the powerup request</td>
<td>Debug Power Control Register.</td>
</tr>
<tr>
<td>DBGPRCR</td>
<td>Cold into AArch32 state</td>
<td>CORENPDRQ</td>
<td>The value of the powerup request</td>
<td>Debug Power Control Register.</td>
</tr>
<tr>
<td>EDESR</td>
<td>Warm</td>
<td>SS</td>
<td>EDECR.SS</td>
<td>Halting Step debug event pending</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC</td>
<td>EDECR.RCE</td>
<td>Reset Catch debug event pending</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSUC</td>
<td>0</td>
<td>OS Unlock Catch debug event pending</td>
</tr>
<tr>
<td>EDESR if FEAT_DoPD is implemented</td>
<td>Cold</td>
<td>SS</td>
<td>0</td>
<td>Halting Step debug event pending</td>
</tr>
<tr>
<td></td>
<td>Warm</td>
<td>RC</td>
<td>CTIDEVCTL.RCE</td>
<td>Reset Catch debug event pending</td>
</tr>
<tr>
<td>EDECR if FEAT_DoPD is implemented</td>
<td>Cold</td>
<td>SS</td>
<td>0</td>
<td>Halting Step debug event enable</td>
</tr>
<tr>
<td>EDECR if FEAT_DoPD is not implemented</td>
<td>External debug</td>
<td>SS</td>
<td>0</td>
<td>Halting Step debug event enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCE</td>
<td>0</td>
<td>Reset Catch debug event enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSUCE</td>
<td>0</td>
<td>OS Unlock Catch debug event enable</td>
</tr>
<tr>
<td>EDWAR</td>
<td>Cold</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>EDSCR</td>
<td>Cold</td>
<td>RXfull</td>
<td>0</td>
<td>DTRRX register full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TXfull</td>
<td>0</td>
<td>DTRTX register full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RXO</td>
<td>0</td>
<td>DTRRX overrun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TXU</td>
<td>0</td>
<td>DTRTX underrun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTdis</td>
<td>0</td>
<td>Interrupt disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDA</td>
<td>0</td>
<td>Trap debug register accesses to Debug state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA</td>
<td>0</td>
<td>Memory access mode in Debug state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDE</td>
<td>0</td>
<td>Halting debug mode enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ERR</td>
<td>0</td>
<td>Cumulative error flag</td>
</tr>
<tr>
<td>EDECCR</td>
<td>Cold</td>
<td>NSE[2:1]</td>
<td>0b00</td>
<td>Coarse-grained Non-secure Exception Catch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE[3,1]</td>
<td>0b00</td>
<td>Coarse-grained Secure Exception Catch</td>
</tr>
<tr>
<td>EDPCSR</td>
<td>Cold</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>EDCDSR</td>
<td>Cold</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>EDVIDSR</td>
<td>Cold</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
</tbody>
</table>
Table H8-7 Summary of external debug register resets, debug registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Reset domain</th>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDPRCR if FEAT_DoPD is implemented</td>
<td>Cold</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDPRCR if FEAT_DoPD is not implemented</td>
<td>External debug</td>
<td>COREPURQ</td>
<td>-</td>
<td>Core powerup request</td>
</tr>
<tr>
<td>EDPRSR</td>
<td>Warm</td>
<td>SDR</td>
<td>-</td>
<td>Sticky debug restart</td>
</tr>
<tr>
<td>Cold</td>
<td>SPMAD</td>
<td>0</td>
<td>Sticky EPMAD error</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>SDAD</td>
<td>0</td>
<td>Sticky EDAD error</td>
<td></td>
</tr>
<tr>
<td>Warm</td>
<td>SR</td>
<td>1</td>
<td>Sticky reset status</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>SPD</td>
<td>1</td>
<td>Sticky powerdown status</td>
<td></td>
</tr>
</tbody>
</table>

a. If FEAT_DoPD is not implemented, the powerup request is the EDPRCR.COREPURQ control bit.
b. If FEAT_DoPD is not implemented, on a Cold reset into AArch64 state, DBGPRCR_EL1.CORENPDRQ resets to the value of EDPRCR.COREPURQ. On a Cold reset into AArch32 state, DBGPRCR.CORENPDRQ resets to the value of EDPRCR.COREPURQ. If an External Debug reset and a Cold reset coincide, both EDPRCR.COREPURQ and the CORENPDRQ field of the appropriate System register are reset to 0.

Table H8-8 shows the reset values for the CTI registers

Table H8-8 Summary of external debug register resets, CTI registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Reset domain</th>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTICONTROL</td>
<td>External debug</td>
<td>GLBEN</td>
<td>0</td>
<td>CTI global enable</td>
</tr>
<tr>
<td>CTIDEVCTL</td>
<td>External debug</td>
<td>RCE</td>
<td>0</td>
<td>If FEAT_DoPD is implemented, Reset Catch debug event enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OSUCE</td>
<td>0</td>
<td>If FEAT_DoPD is implemented, OS Unlock Catch debug event enable</td>
</tr>
<tr>
<td>CTIAPPSET</td>
<td>External debug</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>CTIINEN<n></td>
<td>External debug</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>CTIOUTEN<n></td>
<td>External debug</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>CTIGATE</td>
<td>External debug</td>
<td>-</td>
<td>-</td>
<td>All fields</td>
</tr>
<tr>
<td>ASICCTL</td>
<td>IMPLEMENTATION DEFINED</td>
<td>-</td>
<td>IMPLEMENTATION DEFINED</td>
<td>All of register</td>
</tr>
</tbody>
</table>
Chapter H9
External Debug Register Descriptions

This chapter provides a description of the external debug registers.

It contains the following sections:

• *About the debug registers* on page H9-7162.
• *External debug registers* on page H9-7163.
• *Cross-Trigger Interface registers* on page H9-7272.
H9.1 About the debug registers

The following sections describe the registers that are accessible through the external debug interface:

- *External debug registers* on page H9-7163.
- *Cross-Trigger Interface registers* on page H9-7272.
H9.2 External debug registers

This section describes the debug registers that are accessible through the external debug interface and are used for external debug.

This section lists the registers that are accessible through the external debug interface.
H9.2.1 DBGAUTHSTATUS_EL1, Debug Authentication Status register

The DBGAUTHSTATUS_EL1 characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for debug.

Configurations

External register DBGAUTHSTATUS_EL1[31:0] is architecturally mapped to AArch64 System register DBGAUTHSTATUS_EL1[31:0].

External register DBGAUTHSTATUS_EL1[31:0] is architecturally mapped to AArch32 System register DBGAUTHSTATUS[31:0].

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

DBGAUTHSTATUS_EL1 is a 32-bit register.

Field descriptions

The DBGAUTHSTATUS_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8-7</td>
<td>SNID</td>
</tr>
<tr>
<td>5-4</td>
<td>SID</td>
</tr>
<tr>
<td>3-2</td>
<td>NSID</td>
</tr>
<tr>
<td>1-0</td>
<td>NSID</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SNID, bits [7:6]

When FEAT_Debugv8p4 is implemented:

Secure non-invasive debug.

This field has the same value as DBGAUTHSTATUS_EL1.SID.

Otherwise:

Secure non-invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureNoninvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureNoninvasiveDebugEnabled() == TRUE.

All other values are reserved.

SID, bits [5:4]

Secure invasive debug.

0b00 Not implemented. EL3 is not implemented and the Effective value of SCR_EL3.NS is 1.

0b10 Implemented and disabled. ExternalSecureInvasiveDebugEnabled() == FALSE.

0b11 Implemented and enabled. ExternalSecureInvasiveDebugEnabled() == TRUE.

All other values are reserved.
NSNID, bits [3:2]

When FEAT_Debugv8p4 is implemented:

Non-secure non-invasive debug.
- 0b00: Not implemented. EL3 is not implemented and the effective value of SCR_EL3.NS is 0.
- 0b11: Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.

If the effective value of SCR_EL3.NS is 1, or if EL3 is implemented and EL2 is not implemented, this field reads as 0b11.
All other values are reserved.

Otherwise:

Non-secure non-invasive debug.
- 0b00: Not implemented. EL3 is not implemented and the effective value of SCR_EL3.NS is 0.
- 0b10: Implemented and disabled. ExternalNoninvasiveDebugEnabled() == FALSE.
- 0b11: Implemented and enabled. ExternalNoninvasiveDebugEnabled() == TRUE.
All other values are reserved.

NSID, bits [1:0]

Non-secure invasive debug.
- 0b00: Not implemented. EL3 is not implemented and the effective value of SCR_EL3.NS is 0.
- 0b10: Implemented and disabled. ExternalInvasiveDebugEnabled() == FALSE.
- 0b11: Implemented and enabled. ExternalInvasiveDebugEnabled() == TRUE.
All other values are reserved.

Accessing the DBGAUTHSTATUS_EL1:

DBGAUTHSTATUS_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose
Holds control information for a breakpoint. Forms breakpoint n together with value register DBGBVR<n>_EL1.

Configurations
External register DBGBCR<n>_EL1[31:0] is architecturally mapped to AArch64 System register DBGBCR<n>_EL1[31:0].
External register DBGBCR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGBCR<n>[31:0].
DBGBCR<n>_EL1 is in the Core power domain.
If breakpoint n is not implemented then accesses to this register are:
- RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess().
- A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes
DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions
The DBGBCR<n>_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>24</td>
<td>BT</td>
</tr>
<tr>
<td>23</td>
<td>LBN</td>
</tr>
<tr>
<td>20</td>
<td>SSC</td>
</tr>
<tr>
<td>19</td>
<td>RES0</td>
</tr>
<tr>
<td>16</td>
<td>BAS</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]
Reserved, RES0.

BT, bits [23:20]
Breakpoint Type. Possible values are:
- 0b0000: Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an instruction.
- 0b0001: As 0b0000 but linked to a Context matching breakpoint.
- 0b0010: Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise, DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.
- 0b0011: As 0b0010, with linking enabled.
- 0b0100: Unlinked instruction address mismatch. DBGBVR<n>_EL1 is the address of an instruction to be stepped.
- 0b0101: As 0b0100, with linking enabled.
Unlinked CONTEXTIDR_EL1 match. DBGBVR<\(n\rangle_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1.

As 0b0110, with linking enabled.

Unlinked VMID match. DBGBVR<\(n\rangle_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

As 0b1000, with linking enabled.

Unlinked VMID and Context ID match. DBGBVR<\(n\rangle_EL1.ContextID is a Context ID compared against CONTEXTIDR_EL1, and DBGBVR<\(n\rangle_EL1.VMID is a VMID compared against VTTBR_EL2.VMID.

As 0b1010, with linking enabled.

Unlinked CONTEXTIDR_EL2 match. DBGBVR<\(n\rangle_EL1.ContextID2 is a Context ID compared against CONTEXTIDR_EL2.

As 0b1100, with linking enabled.

Unlinked Full Context ID match. DBGBVR<\(n\rangle_EL1.ContextID is compared against CONTEXTIDR_EL1, and DBGBVR<\(n\rangle_EL1.ContextID2 is compared against CONTEXTIDR_EL2.

As 0b1110, with linking enabled.

Constraints on breakpoint programming mean some values are reserved under certain conditions. For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of programming this field to a reserved value, see *Execution conditions for which a breakpoint generates Breakpoint exceptions* on page D2-2442 and *Reserved DBGBCR<\(n\rangle_EL1.BT values* on page D2-2447.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN value.

This field is ignored when the value of DBGBCR<\(n\rangle_EL1.E is 0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for breakpoint \(n\) is generated. This field must be interpreted along with the HMC and PMC fields, and there are constraints on the permitted values of the \{HMC, SSC, PMC\} fields. For more information, including the effect of programming the fields to a reserved set of values, see *Reserved DBGBCR<\(n\rangle_EL1.[SSC, HMC, PMC] values* on page D2-2448.

For more information on the operation of the SSC, HMC, and PMC fields, see *Execution conditions for which a breakpoint generates Breakpoint exceptions* on page D2-2442.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.
HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see *Execution conditions for which a breakpoint generates Breakpoint exceptions on page D2-2442.*

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [12:9]

Reserved, RES0.

BAS, bits [8:5]

When AArch32 is supported at any Exception level:

Byte address select. Defines which half-words an address-matching breakpoint matches, regardless of the instruction set and Execution state.

The permitted values depend on the breakpoint type.
For Address match breakpoints in either AArch32 or AArch64 state, the permitted values are:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Match instruction at</th>
<th>Constraint for debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0011</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1100</td>
<td>DBGBVR<n>_EL1 + 2</td>
<td>Use for T32 instructions</td>
</tr>
<tr>
<td>0b1111</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for A64 and A32 instructions</td>
</tr>
</tbody>
</table>

All other values are reserved.
For more information, see *Using the BAS field in Address Match breakpoints on page G2-5883.*

For Address mismatch breakpoints in an AArch32 stage 1 translation regime, the permitted values are:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Match instruction at</th>
<th>Constraint for debuggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>-</td>
<td>Use for a match anywhere breakpoint</td>
</tr>
<tr>
<td>0b0011</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for stepping T32 instructions</td>
</tr>
<tr>
<td>0b1100</td>
<td>DBGBVR<n>_EL1 + 2</td>
<td>Use for stepping T32 instructions</td>
</tr>
<tr>
<td>0b1111</td>
<td>DBGBVR<n>_EL1</td>
<td>Use for stepping A64 and A32 instructions</td>
</tr>
</tbody>
</table>

For more information, see *Using the BAS field in Address Match breakpoints on page G2-5883.*

For Context matching breakpoints, this field is RES1 and ignored.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES1.
Bits [4:3]
Reserved, RES0.

PMC, bits [2:1]
Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the \{HMC, SSC, PMC\} fields. For more
information see the DBGBCR\(<n>_EL1.SSC description.
For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions on page D2-2442.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable breakpoint DBGBVR\(<n>_EL1. Possible values are:
0b0 Breakpoint disabled.
0b1 Breakpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGBCR\(<n>_EL1:

--- Note ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBCR\(<n>_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x408 + (16 * n)</td>
<td>DBGBCR(<n>_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
 SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
 !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.3 DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose

Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together with control register DBGBCR<n>_EL1.

Configurations

External register DBGBVR<n>_EL1[63:0] is architecturally mapped to AArch64 System register DBGBCR<n>_EL1[63:0].

External register DBGBVR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGBCR<n>[31:0].

If the breakpoint is context-aware and EL2 is implemented then External register DBGBVR<n>_EL1[63:32] is architecturally mapped to AArch32 System register DBGBCR<n>[31:0]. Otherwise, there is no External register access to DBGBVR<n>_EL1[63:32] from AArch32 state.

DBGBVR<n>_EL1 is in the Core power domain.

If breakpoint n is not implemented then accesses to this register are:

- RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess().
- A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

- When DBGBCR<n>_EL1.BT == 0b000, this register holds a virtual address.
- When DBGBCR<n>_EL1.BT == 0b001, 0b011, or 0b110, this register holds a Context ID.
- When DBGBCR<n>_EL1.BT == 0b100, this register holds a VMID.
- When DBGBCR<n>_EL1.BT == 0b101, this register holds a VMID and a Context ID.
- When DBGBCR<n>_EL1.BT == 0b111, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

Field descriptions

The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT == 0b000:

- **RESS[14:4]**, bits [63:53]:
 - Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant bit of VA is 1.
 - Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:
 - The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always return the hardwired value.
- The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

- On a Cold reset, this field resets to an architecturally UNKNOWN value.
- On an External debug reset, the value of this field is unchanged.
- On a Warm reset, the value of this field is unchanged.

Otherwise:

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:
- This field contains bits[48:2] of the address for comparison.
- When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are RESS.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this field are RES0, and the rest of the field contains bits[31:2] of the address for comparison.
- On a Cold reset, this field resets to an architecturally UNKNOWN value.
- On an External debug reset, the value of this field is unchanged.
- On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ContextID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when FEAT_VHE is implemented, EL2 is using AArch64, HCR_EL2.E2H is 1, and either:
- The PE is executing at EL2.
- HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.

Otherwise, the value is compared against the following:
- CONTEXTIDR when the PE is executing at AArch32
- CONTEXTIDR_EL1 when the PE is executing at AArch64.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
- On an External debug reset, the value of this field is unchanged.
- On a Warm reset, the value of this field is unchanged.
When DBGBCR<\text{n}>_EL1.BT == 0b011x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

63 32 31 0

\begin{tabular}{|c|}
\hline
RES0 \hline
\end{tabular}

\begin{tabular}{|c|}
\hline
ContextID \hline
\end{tabular}

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

When DBGBCR<\text{n}>_EL1.BT == 0b100x and EL2 is implemented:

63 48 47 40 39 32 31 0

\begin{tabular}{|c|c|}
\hline
RES0 & VMID[15:8] \hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
VMID[7:0] & RES0 \hline
\end{tabular}

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

\textbf{When FEAT_VHE is implemented and VTCR_EL2.VS == 1:}

Extension to VMID[7:0]. See DBGBVR<\text{n}>_EL1.VMID[7:0] for more details.
If EL2 is using AArch32, this field is RES0.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

\textit{Otherwise:}

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.
The VMID is 8 bits when any of the following are true:
\begin{itemize}
 \item EL2 is using AArch32.
 \item VTCR_EL2.VS is 0.
 \item FEAT_VMID16 is not implemented.
\end{itemize}
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [31:0]

Reserved, RES0.
When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

| Bits [63:48] | Reserved, RES0. |
| VMID[15:8], bits [47:40] | When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1: |
| VMID[7:0], bits [39:32] | VMID value for comparison. |
| ContextID, bits [31:0] | Context ID value for comparison against CONTEXTIDR_EL1. |

Otherwise:

| Bits [31:0] | Reserved, RES0. |

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.
External Debug Register Descriptions
H9.2 External debug registers

Bits [31:0]
Reserved, RES0.

When DBGBCR<\(n\)> EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented):

ContextID2, bits [63:32]
Context ID value for comparison against CONTEXTIDR_EL2.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

ContextID, bits [31:0]
Context ID value for comparison against CONTEXTIDR_EL1.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Accessing the DBGVR<\(n\)> EL1:

Note
SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGVR<\(n\)> EL1[63:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>(0 \times 400 + (16 \times n))</td>
<td>DBGVR<(n)> EL1</td>
<td>63:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.4 DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

The DBGCLAIMCLR_EL1 characteristics are:

Purpose

Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0. The architecture does not define any functionality for the CLAIM tag bits.

--- Note ---

CLAIM tags are typically used for communication between the debugger and target software. Used in conjunction with the DBGCLAIMSET_EL1 register.

Configurations

External register DBGCLAIMCLR_EL1[31:0] is architecturally mapped to AArch64 System register DBGCLAIMCLR_EL1[31:0].

External register DBGCLAIMCLR_EL1[31:0] is architecturally mapped to AArch32 System register DBGCLAIMCLR[31:0].

DBGCLAIMCLR_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMCLR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:8]</td>
<td>RAZ/SBZ</td>
</tr>
<tr>
<td>Bits [7:0]</td>
<td>CLAIM</td>
</tr>
</tbody>
</table>

Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

Accessing the DBGCLAIMCLR_EL1:

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xA4</td>
<td>DBGCLAIMCLR_EL1</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.5 DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

The DBGCLAIMSET_EL1 characteristics are:

Purpose

- Used by software to set the CLAIM tag bits to 1.
- The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and target software.

Configurations

- External register DBGCLAIMSET_EL1[31:0] is architecturally mapped to AArch64 System register DBGCLAIMSET_EL1[31:0].
- External register DBGCLAIMSET_EL1[31:0] is architecturally mapped to AArch32 System register DBGCLAIMSET[31:0].
- DBGCLAIMSET_EL1 is in the Core power domain.
- An implementation must include eight CLAIM tag bits.

Attributes

DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions

The DBGCLAIMSET_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RAZ/SBZ</td>
</tr>
<tr>
<td>8-0</td>
<td>CLAIM</td>
</tr>
</tbody>
</table>

Bits [31:8]

- Reserved, RAZ/SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on writes. Implementations must ignore writes.

CLAIM, bits [7:0]

- Set CLAIM tag bits.
- This field is RAO.
- Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag bits. A single write operation can set multiple CLAIM tag bits to 1.
- Writing 0 to one of these bits has no effect.

Accessing the DBGCLAIMSET_EL1:

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.6 DBGDTRRX_EL0, Debug Data Transfer Register, Receive

The DBGDTRRX_EL0 characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communications Channel.

Configurations

External register DBGDTRRX_EL0[31:0] is architecturally mapped to AArch64 System register DBGDTRRX_EL0[31:0].

External register DBGDTRRX_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRRXint[31:0].

DBGDTRRX_EL0 is in the Core power domain.

Attributes

DBGDTRRX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRRX_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Update DTRRX</td>
</tr>
</tbody>
</table>

Bits [31:0]

Update DTRRX.

Writes to this register:

- If RXfull is set to 1, set DTRRX to UNKNOWN.
- If RXfull is set to 0, update the value in DTRRX.

After the write, RXfull is set to 1.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRRX.
- If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGDTRRX_EL0:

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

- It must complete execution in Debug state before the PE executes the restart sequence.
- It must complete execution in Non-debug state before the PE executes the restart sequence.
- It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an UNKNOWN state.

DBGDTRRX_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x080</td>
<td>DBGDTRRX_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.7 DBGDTRTX_EL0, Debug Data Transfer Register, Transmit

The DBGDTRTX_EL0 characteristics are:

Purpose

Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication Channel.

Configurations

External register DBGDTRTX_EL0[31:0] is architecturally mapped to AArch64 System register DBGDTRTX_EL0[31:0].

External register DBGDTRTX_EL0[31:0] is architecturally mapped to AArch32 System register DBGDTRXTxin[31:0].

DBGDTRTX_EL0 is in the Core power domain.

Attributes

DBGDTRTX_EL0 is a 32-bit register.

Field descriptions

The DBGDTRTX_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Return DTRTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

Reads of this register:

- If TXfull is set to 1, return the last value written to DTRTX.
- If TXfull is set to 0, return an UNKNOWN value.

After the read, TXfull is cleared to 0.

Writes to this register:

- If TXfull is set to 1, set DTRTX to UNKNOWN.
- If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull remains unchanged.

For the full behavior of the Debug Communications Channel, see Chapter H4 The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the DBGDTRTX_EL0:

If EDSCRITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

- It must complete execution in Debug state before the PE executes the restart sequence.
- It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an UNKNOWN state.

DBGDTRTX_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x08C</td>
<td>DBGDTRTX_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.
H9.2.8 DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15

The DBGWCR<n>_EL1 characteristics are:

Purpose

Holds control information for a watchpoint. Forms watchpoint n together with value register DBGWVR<n>_EL1.

Configurations

External register DBGWCR<n>_EL1[31:0] is architecturally mapped to AArch64 System register DBGWCR<n>_EL1[31:0].

External register DBGWCR<n>_EL1[31:0] is architecturally mapped to AArch32 System register DBGWCR<n>[31:0].

DBGWCR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

- When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess(), RES0.
- Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWCR<n>_EL1 is a 32-bit register.

Field descriptions

The DBGWCR<n>_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>0b00000</td>
</tr>
<tr>
<td>29</td>
<td>MASK</td>
<td>0b00000</td>
</tr>
<tr>
<td>28</td>
<td>RES0</td>
<td>0b00000</td>
</tr>
<tr>
<td>24</td>
<td>LBN</td>
<td>0b00000</td>
</tr>
<tr>
<td>23</td>
<td>SSC</td>
<td>0b00000</td>
</tr>
<tr>
<td>21</td>
<td>BAS</td>
<td>0b00000</td>
</tr>
<tr>
<td>19</td>
<td>LSC</td>
<td>0b00000</td>
</tr>
<tr>
<td>16</td>
<td>PAC</td>
<td>0b00000</td>
</tr>
<tr>
<td>15</td>
<td>E</td>
<td>0b00000</td>
</tr>
</tbody>
</table>

When the E field is zero, all the other fields in the register are ignored.

Bits [31:29]

Reserved, RES0.

MASK, bits [28:24]

Address mask. Only objects up to 2GB can be watched using a single mask.

- 0b08000 No mask.
- 0b08001 Reserved.
- 0b08010 Reserved.

If programmed with a reserved value, a watchpoint must behave as if either:

- MASK has been programmed with a defined value, which might be 0 (no mask), other than for a direct read of DBGWCRn_EL1.
- The watchpoint is disabled.

Software must not rely on this property because the behavior of reserved values might change in a future revision of the architecture.

Other values mask the corresponding number of address bits, from 0b00001 masking 3 address bits (0b000000007 mask for address) to 0b11111 masking 31 address bits (0x7FFFFFFF mask for address).

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [23:21]
Reserved, RES0.

WT, bit [20]
Watchpoint type. Possible values are:
0b0 Unlinked data address match.
0b1 Linked data address match.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

LBN, bits [19:16]
Linked breakpoint number. For Linked data address watchpoints, this specifies the index of the Context-matching breakpoint linked to.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

SSC, bits [15:14]
Security state control. Determines the Security states under which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the HMC and PAC fields.
For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

HMC, bit [13]
Higher mode control. Determines the debug perspective for deciding when a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and PAC fields.
For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

BAS, bits [12:5]
Byte address select. Each bit of this field selects whether a byte from within the word or double-word addressed by DBGWVR<\alpha>_EL1 is being watched.

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxxxxx1</td>
<td>Match byte at DBGWVR<\alpha>_EL1</td>
</tr>
<tr>
<td>xxxxxxx1x</td>
<td>Match byte at DBGWVR<\alpha>_EL1 + 1</td>
</tr>
<tr>
<td>xxxxxxx1xx</td>
<td>Match byte at DBGWVR<\alpha>_EL1 + 2</td>
</tr>
<tr>
<td>xxxxxxx1xxx</td>
<td>Match byte at DBGWVR<\alpha>_EL1 + 3</td>
</tr>
</tbody>
</table>
In cases where DBGWVR<n>_EL1 addresses a double-word:

<table>
<thead>
<tr>
<th>BAS</th>
<th>Description, if DBGWVR<n>_EL1[2] == 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx1xxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 4</td>
</tr>
<tr>
<td>xx1xxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 5</td>
</tr>
<tr>
<td>x1xxxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 6</td>
</tr>
<tr>
<td>1xxxxxxx</td>
<td>Match byte at DBGWVR<n>_EL1 + 7</td>
</tr>
</tbody>
</table>

If DBGWVR<n>_EL1[2] == 1, only BAS[3:0] is used. Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

The valid values for BAS are non-zero binary number all of whose set bits are contiguous. All other values are reserved and must not be used by software. See Restricted DBGWCR<n>.BAS values on page G2-5905.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

LSC, bits [4:3]
Load/store control. This field enables watchpoint matching on the type of access being made. Possible values of this field are:

- 00: Match instructions that load from a watchpointed address.
- 01: Match instructions that store to a watchpointed address.
- 10: Match instructions that load from or store to a watchpointed address.

All other values are reserved, but must behave as if the watchpoint is disabled. Software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

PAC, bits [2:1]
Privilege of access control. Determines the Exception level or levels at which a Watchpoint debug event for watchpoint n is generated. This field must be interpreted along with the SSC and HMC fields.

For more information on the operation of the SSC, HMC, and PAC fields, see Execution conditions for which a watchpoint generates Watchpoint exceptions on page D2-2453.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

E, bit [0]
Enable watchpoint n. Possible values are:

- 0: Watchpoint disabled.
- 1: Watchpoint enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Accessing the DBGWCR<n>_EL1:

Note
SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGWCR<n>_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x808 + (16 * n)</td>
<td>DBGWCR<n>_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.9 DBGWVR<\textit{n}>_EL1, Debug Watchpoint Value Registers, \textit{n} = 0 - 15

The DBGWVR<\textit{n}>_EL1 characteristics are:

Purpose

Holds a data address value for use in watchpoint matching. Forms watchpoint \textit{n} together with control register DBGWCR<\textit{n}>_EL1.

Configurations

External register DBGWVR<\textit{n}>_EL1[63:0] is architecturally mapped to AArch64 System register DBGWVR<\textit{n}>_EL1[63:0].

External register DBGWVR<\textit{n}>_EL1[31:0] is architecturally mapped to AArch32 System register DBGWVR<\textit{n}>[31:0].

DBGWVR<\textit{n}>_EL1 is in the Core power domain.

If watchpoint \textit{n} is not implemented then accesses to this register are:

- When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess(), RES0.
- Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes

DBGWVR<\textit{n}>_EL1 is a 64-bit register.

Field descriptions

The DBGWVR<\textit{n}>_EL1 bit assignments are:

```
<table>
<thead>
<tr>
<th>63</th>
<th>53</th>
<th>52</th>
<th>49</th>
<th>48</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>
```

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

- The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored, and reads to the bits always return the hardwired value.
- The value in those bits can be written, and reads will return the last value written. The value held in those bits is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Otherwise:

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are RES0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1:

--- Note ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGWVR<n>_EL1[63:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x800 + (16 * n)</td>
<td>DBGWVR<n>_EL1</td>
<td>63:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.10 **EDAA32PFR, External Debug Auxiliary Processor Feature Register**

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

--- **Note** ---

The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that defined this register only when AArch64 was not supported at any Exception level.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

Configurations

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

The EDAA32PFR bit assignments are:

<table>
<thead>
<tr>
<th>Bit 63:20</th>
<th>Bit 19:10</th>
<th>Bit 11:8</th>
<th>Bit 7:4</th>
<th>Bit 3:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>MSA_frac</td>
<td>EL3</td>
<td>EL2</td>
<td>PMSA</td>
</tr>
</tbody>
</table>

Bits [63:20]

Reserved, RES0.

MSA_frac, bits [19:16]

When EDAA32PFR.PMSA == 0b0000 and EDAA32PFR.VMSA == 0b1111:

Memory System Architecture fractional field. This holds the information on additional Memory System Architectures supported. Defined values are:

- 0b0001: PMSAv8-64 supported in all translation regimes. VMSAv8-64 not supported.
- 0b0010: PMSAv8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1 EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

--- **Note** ---

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:

Reserved, RES0.

EL3, bits [15:12]

When EDPFR.EL3 == 0b0000:

AArch32 EL3 Exception level handling. Defined values are:

- 0b0000: EL3 is not implemented or can be executed in AArch64 state.
- 0b0001: EL3 can be executed in AArch32 state only.

All other values are reserved.

--- **Note** ---

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.
Otherwise:
Reserved, RAZ.

EL2, bits [11:8]

When EDPFR.EL2 == 0b0000:
AArch32 EL2 Exception level handling. Defined values are:
0b0000 EL2 is not implemented or can be executed in AArch64 state.
0b0001 EL2 can be executed in AArch32 state only.
All other values are reserved.

Note EDPFR.EL1, EL0 indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:
Reserved, RAZ.

PMSA, bits [7:4]
Indicates support for a 32-bit PMSA. Defined values are:
0b0000 PMSA-32 not supported.
0b0100 PMSAv8-32 supported.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

VMSA, bits [3:0]

When EDAA32PFR.PMSA != 0b0000:
Indicates support for a VMSA in addition to a 32-bit PMSA Defined values are:
0b0000 VMSA not supported.
All other values are reserved.

When EDAA32PFR.PMSA == 0b0000:
Defined values are:
0b0000 VMSAv8-64 supported.
0b1111 Memory system architecture described by EDAA32PFR.MSA_frac.
All other values are reserved.
In Armv8-A, the only permitted value is 0b0000.

Otherwise:
Reserved, RAZ.

Accessing the EDAA32PFR:
EDAA32PFR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x060</td>
<td>EDAA32PFR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
- Otherwise accesses to this register are IMPDEF.
H9.2.11 EDACR, External Debug Auxiliary Control Register

The EDACR characteristics are:

Purpose

Allows implementations to support IMPLEMENTATION DEFINED controls.

Configurations

It is IMPLEMENTATION DEFINED whether EDACR is implemented in the Core power domain or in the Debug power domain.

If FEAT_DoPD is implemented, this register is implemented in the Core power domain.

If FEAT_DoPD is not implemented, the power domain that this register is implemented in is IMPLEMENTATION DEFINED.

Changing this register from its reset value causes IMPLEMENTATION DEFINED behavior, including possible deviation from the architecturally-defined behavior.

If the EDACR contains any control bits that must be preserved over power down, then these bits must be accessible by the external debug interface when the OS Lock is locked, OSLSR_EL1.OSLK = 1, and when the Core is powered off.

Attributes

EDACR is a 32-bit register.

Field descriptions

The EDACR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

The following resets apply:

- If the register is implemented in the Core power domain:
 - On a Cold reset, this field resets to an architecturally UNKNOWN value.
 - On an External debug reset, the value of this field is unchanged.
 - On a Warm reset, the value of this field is unchanged.
- If the register is implemented in the External debug power domain:
 - On a Cold reset, the value of this field is unchanged.
 - On an External debug reset, this field resets to an architecturally UNKNOWN value.
 - On a Warm reset, the value of this field is unchanged.

Accessing the EDACR:

EDACR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x094</td>
<td>EDACR</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register are IMPDEF.
H9.2.12 EDCIDR0, External Debug Component Identification Register 0

The EDCIDR0 characteristics are:

Purpose
Provides information to identify an external debug component.
For more information, see About the Component Identification scheme on page K2-8002.

Configurations
Implementation of this register is OPTIONAL.
If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.
This register is required for CoreSight compliance.

Attributes
EDCIDR0 is a 32-bit register.

Field descriptions
The EDCIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:8 Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>7:0 PRMBL_0</td>
<td>Preamble</td>
</tr>
<tr>
<td></td>
<td>Reads as 0x0D.</td>
</tr>
</tbody>
</table>

Accessing the EDCIDR0:
EDCIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFF0</td>
<td>EDCIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.13 EDCIDR1, External Debug Component Identification Register 1

The EDCIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see *About the Component Identification scheme on page K2-8002.*

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR1 is a 32-bit register.

Field descriptions

The EDCIDR1 bit assignments are:

```
+---+---+---+---+---+
|   |   |   |   |   |
| 31| 30| 29| 28| 27|
| RES0 | CLASS | PRMBL_1 |
+---+---+---+---+---+
```

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

- **0b1001** CoreSight component.

- Other values are defined by the CoreSight Architecture.

 This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Accessing the EDCIDR1:

EDCIDR1 can be accessed through the external debug interface:

```
<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFF4</td>
<td>EDCIDR1</td>
</tr>
</tbody>
</table>
```

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.14 EDCIDR2, External Debug Component Identification Register 2

The EDCIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR2 is a 32-bit register.

Field descriptions

The EDCIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>8 - 0</td>
<td>PRMBL_2</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Accessing the EDCIDR2:

EDCIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFF8</td>
<td>EDCIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.15 EDCIDR3, External Debug Component Identification Register 3

The EDCIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is **OPTIONAL**.

If `FEAT_DoPD` is implemented, this register is in the Core power domain. If `FEAT_DoPD` is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDCIDR3 is a 32-bit register.

Field descriptions

The EDCIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>PRMBL_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Accessing the EDCIDR3:

EDCIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFFC</td>
<td>EDCIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When `FEAT_DoPD` is not implemented or `IsCorePowered()` accesses to this register are **RO**.
- Otherwise accesses to this register generate an error response.
H9.2.16 EDCIDSR, External Debug Context ID Sample Register

The EDCIDSR characteristics are:

Purpose

Contains the sampled value of the Context ID, captured on reading EDPCSR[31:0].

Configurations

EDCIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise, direct accesses to EDCIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers space.

--- **Note**

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors registers space.

Attributes

EDCIDSR is a 32-bit register.

Field descriptions

The EDCIDSR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTEXTIDR</td>
<td></td>
</tr>
</tbody>
</table>

CONTEXTIDR, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent EDPCSR sample. When the most recent EDPCSR sample was generated:

- If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.
- If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.
- If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register, and EDCIDSR samples the current banked copy of CONTEXTIDR for the Security state that is associated with the most recent EDPCSR sample.

Because the value written to EDCIDSR is an indirect read of CONTEXTIDR, it is constrained unpredictable whether EDCIDSR is set to the original or new value if EDPCSR samples:

- An instruction that writes to CONTEXTIDR.
- The next Context synchronization event.
- Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the EDCIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see *Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN* on page H7-7134.
EDCIDSR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xA4</td>
<td>EDCIDSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.17 EDDEVAFF0, External Debug Device Affinity register 0

The EDDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the external debug component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVAFF0 is a 32-bit register.

Field descriptions

The EDDEVAFF0 bit assignments are:

```
31  0
   0
```

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the EDDEVAFF0:

EDDEVAFF0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFA8</td>
<td>EDDEVAFF0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.
H9.2.18 EDDEVAFF1, External Debug Device Affinity register 1

The EDDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the external debug component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVAFF1 is a 32-bit register.

Field descriptions

The EDDEVAFF1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>MPIDR_EL1hi</td>
</tr>
</tbody>
</table>

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the EDDEVAFF1:

EDDEVAFF1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFAC</td>
<td>EDDEVAFF1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.19 EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers’ model architecture of the external debug component.

Configurations

Implementation of this register is OPTIONAL.
If FEAT_DoPD is implemented, this register is in the Core power domain.
If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVARCH is a 32-bit register.

Field descriptions

The EDDEVARCH bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ARCHITECT</td>
</tr>
<tr>
<td>21</td>
<td>REVISION</td>
</tr>
<tr>
<td>19</td>
<td>ARCHVER</td>
</tr>
<tr>
<td>16</td>
<td>ARCHPART</td>
</tr>
<tr>
<td>0</td>
<td>PRESENT</td>
</tr>
</tbody>
</table>

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.
Bits [31:28] are the JEP106 continuation code, 0x4.
Bits [27:21] are the JEP106 ID code, 0x3B.

PRESENT, bit [20]

When set to 1, indicates that the DEVARCH is present.
This field is 1 in Armv8.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.
For debug, the revision defined by Armv8-A is 0x8.
All other values are reserved.

ARCHVER, bits [15:12]

Defines the architecture version of the component. This is the same value as
ID_AA64DFR0_EL1.DebugVer and DBGIDR.Version. The defined values of this field are:

- 0b0110: Armv8.0 Debug architecture.
- 0b0111: Armv8.0 Debug architecture with Virtualization Host Extensions.
- 0b1000: Armv8.2 Debug architecture.
- 0b1001: Armv8.4 Debug architecture.

FEAT_Debugv8p4 adds the functionality indicated by the value 0b1001.FEAT_Debugv8p2 adds the
functionality indicated by the value 0b1000. If FEAT_VHE is not implemented, the only permitted
value is 0b0110.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHVER is
ARCHID[15:12].
ARCHPART, bits [11:0]

0xA15 The part number of the Armv8-A debug component.

The fields ARCHVER and ARCHPART together form the field ARCHID, so that ARCHPART is ARCHID[11:0].

Accessing the EDDEVARCH:

EDDEVARCH can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFBC</td>
<td>EDDEVARCH</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.20 EDDEVID, External Debug Device ID register 0

The EDDEVID characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVID is a 32-bit register.

Field descriptions

The EDDEVID bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 28 27 24 23</td>
<td>AuxRegs</td>
</tr>
<tr>
<td>8 7 4 3 0</td>
<td>DebugPower</td>
</tr>
<tr>
<td></td>
<td>PCSample</td>
</tr>
</tbody>
</table>

Bits [31:28]

Reserved, RES0.

AuxRegs, bits [27:24]

Indicates support for Auxiliary registers. Defined values are:

- 0b0000 None supported.
- 0b0001 Support for External Debug Auxiliary Control Register, EDACR.

All other values are reserved.

Bits [23:8]

Reserved, RES0.

DebugPower, bits [7:4]

Indicates support for the FEAT_DoPD feature. Defined values are:

- 0b0000 FEAT_DoPD not implemented. Registers in the external debug interface register map are implemented in a mix of the Debug and Core power domains.
- 0b0001 FEAT_DoPD implemented. All registers in the external debug interface register map are implemented in the Core power domain.

FEAT_DoPD implements the functionality added by the value 0b0001.

All other values are reserved.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using external debug registers. Defined values are:

- 0b0000 PC Sample-based Profiling Extension is not implemented in the external debug registers space.
- 0b0010 Only EDPCSR and EDCIDSR are implemented. This option is only permitted if EL3 and EL2 are not implemented.
- 0b0011 EDPCSR, EDCIDSR, and EDVIDSR are implemented.

All other values are reserved.
When \texttt{FEAT_PCSRv8p2} is implemented, the only permitted value is \texttt{0b0000}.

\textbf{Note}

\texttt{FEAT_PCSRv8p2} implements the PC Sample-based Profiling Extension in the Performance Monitors register space, as indicated by the value of \texttt{PMDEVID.PCSample}.

Accessing the EDDEVID:

EDDEVID can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFC8</td>
<td>EDDEVID</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When \texttt{FEAT_DoPD} is not implemented or \texttt{IsCorePowered()} accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.21 EDDEVID1, External Debug Device ID register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVID1 is a 32-bit register.

Field descriptions

The EDDEVID1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>PCSROffset</td>
</tr>
</tbody>
</table>

Bits [31:4]

Reserved, RES0.

PCSROffset, bits [3:0]

This field indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in Armv8 are:

- 0b0000 EDPCSR not implemented.
- 0b0100 EDPCSR implemented, and samples have no offset applied and do not sample the instruction set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors register space, as indicated by the value of PMDEVID.PCSample.

Accessing the EDDEVID1:

EDDEVID1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFC4</td>
<td>EDDEVID1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.22 EDDEVID2, External Debug Device ID register 2

The EDDEVID2 characteristics are:

Purpose

Reserved for future descriptions of features of the debug implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVID2 is a 32-bit register.

Field descriptions

The EDDEVID2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Bits [31:0]

Reserved, RES0.

Accessing the EDDEVID2:

EDDEVID2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFC0</td>
<td>EDDEVID2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.23 EDDEVTYPE, External Debug Device Type register

The EDDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs debug logic.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDDEVTYPE is a 32-bit register.

Field descriptions

The EDDEVTYPE bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8</td>
<td>SUB, bits [7:4]</td>
</tr>
<tr>
<td>4</td>
<td>MAJOR, bits [3:0]</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x5 to indicate this is a debug logic component.

Accessing the EDDEVTYPE:

EDDEVTYPE can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFCC</td>
<td>EDDEVTYPE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.24 EDDFR, External Debug Feature Register

The EDDFR characteristics are:

Purpose

Provides top level information about the debug system.

--- **Note** ---

Debuggers must use `EDDEVARCH` to determine the Debug architecture version.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

Configurations

It is IMPLEMENTATION DEFINED whether EDDFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDDFR is a 64-bit register.

Field descriptions

The EDDFR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>TraceFilt</td>
<td>Armv8.4 Self-hosted Trace Extension version. Defined values are:</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>0b0000 Armv8.4 Self-hosted Trace Extension is not implemented.</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0b0001 Armv8.4 Self-hosted Trace Extension is implemented.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All other values are reserved.</td>
</tr>
<tr>
<td>39</td>
<td>UNKOWN</td>
<td>FEAT_TRF implements the functionality added by 0b0001.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Armv8.4, the permitted values are 0b0000 and 0b0001.</td>
</tr>
<tr>
<td>32</td>
<td>CTX_CMPs</td>
<td>Number of breakpoints that are context-aware, minus 1. These are the highest numbered breakpoints.</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64DFR0_EL1.CTX_CMPs.</td>
</tr>
<tr>
<td>27</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>WRPs</td>
<td>Number of watchpoints, minus 1. The value of 0b0000 is reserved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64DFR0_EL1.WRPs.

Bits [19:16]
Reserved, RES0.

BRPs, bits [15:12]
Number of breakpoints, minus 1. The value of 0b0000 is reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64DFR0_EL1.BRPs.

PMUVer, bits [11:8]
Performance Monitors Extension version.
This field does not follow the standard ID scheme, but uses the alternative ID scheme described in Alternative ID scheme used for the Performance Monitors Extension version on page D13-2869
Defined values are:
0b0000 Performance Monitors Extension not implemented.
0b0001 Performance Monitors Extension, PMUv3 implemented.
0b0100 PMUv3 for Armv8.1. As 0b0001, and also includes support for:
 • Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.
 • If EL2 is implemented, the MDCR_EL2.HPMD control bit.
0b0101 PMUv3 for Armv8.4. As 0b0100, and also includes support for the PMMIR_EL1 register.
0b0110 PMUv3 for Armv8.5. As 0b0101, and also includes support for:
 • 64-bit event counters.
 • If EL2 is implemented, the MDCR_EL2.HCCD control bit.
 • If EL3 is implemented, the MDCR_EL3.SCCD control bit.
0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not supported. Arm does not recommend this value for new implementations.
All other values are reserved.
FEAT_PMUv3 implements the functionality identified by the value 0b0001.
FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.
FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.
FEAT_PMUv3p5 implements the functionality identified by the value 0b0110.
From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.
From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.
From Armv8.5, if FEAT_PMUv3 is implemented, the value 0b0101 is not permitted.

TraceVer, bits [7:4]
Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:
0b0000 PE trace unit System registers not implemented.
0b0001 PE trace unit System registers implemented.
All other values are reserved.
A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented. A PE trace unit might nevertheless be implemented without a System register interface.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64DFR0_EL1.TraceVer.
UNKNOWN, bits [3:0]
Reserved, UNKNOWN.

Accessing the EDDFR:

EDDFR[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xD28</td>
<td>EDDFR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[31:0] are RO.
- Otherwise accesses to EDDFR[31:0] are IMPDEF.

EDDFR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xD2C</td>
<td>EDDFR</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered() and !DoubleLockStatus() accesses to EDDFR[63:32] are RO.
- Otherwise accesses to EDDFR[63:32] are IMPDEF.
H9.2.25 EDECCR, External Debug Exception Catch Control Register

The EDECCR characteristics are:

Purpose

Controls Exception Catch debug events.

Configurations

- External register EDECCR[31:0] is architecturally mapped to AArch64 System register OSECCR_EL1[31:0].
- External register EDECCR[31:0] is architecturally mapped to AArch32 System register DBGOSECCR[31:0].
- EDECCR is in the Core power domain.

Attributes

EDECCR is a 32-bit register.

Field descriptions

The EDECCR bit assignments are:

When FEAT_Debugv8p2 is implemented:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>16-14</td>
<td>SE0, SE1, SE2, SE3, NSE0, NSE1, NSE2, NSE3, SR0, SR1, SR2, SR3, NSR0, NSR1, NSR2, NSR3</td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

NSR<\(n\), bit \([n+12]\), for \(n = 0\) to \(3\)

Controls Non-secure exception catch on exception return to EL<\(n\)> in conjunction with NSE<\(n\)>.

For information, see Table H3-5 on page H3-7068.

0b0 If the corresponding NSE<\(n\)> bit is 0, then Exception Catch debug events are disabled for Non-secure Exception level <\(n\)>.

If the corresponding NSE<\(n\)> bit is 1, then Exception Catch debug events are enabled for exception entry, reset entry and exception return to Non-secure Exception level <\(n\)>.
If the corresponding NSE\(<n>\) bit is 0, then Exception Catch debug events are enabled for exception returns to Non-secure Exception level \(<n>\).
If the corresponding NSE\(<n>\) bit is 1, then Exception Catch debug events are enabled for exception entry and reset entry to Non-secure Exception level \(<n>\).

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0.

--- Note ---

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is permitted to generate an Exception Catch debug event.

A value of the NSR field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the NSR field is programmed with a reserved value then:
- The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
- The value returned for NSR by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

SR\(<n>\), bit \([n+8]\), for \(n = 0\) to 3

Controls Secure exception catch on exception return to EL\(<n>\) in conjunction with SE\(<n>\). For information, see Table H3-5 on page H3-7068.

- If the corresponding SE\(<n>\) bit is 0, then Exception Catch debug events are disabled for Secure Exception level \(<n>\).
- If the corresponding SE\(<n>\) bit is 1, then Exception Catch debug events are enabled for exception entry, reset entry and exception return to Secure Exception level \(<n>\).

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

--- Note ---

It is IMPLEMENTATION DEFINED whether a reset entry to an Exception level is permitted to generate an Exception Catch debug event.

A value of the SR field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the SR field is programmed with a reserved value then:
- The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
- The value returned for SR by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

NSE\(<n>\), bit \([n+4]\), for \(n = 0\) to 3

Coarse-grained Non-secure exception catch for EL\(<n>\). This controls whether Exception Catch debug events are enabled for Non-secure EL\(<n>\). This also controls:
- The behavior of exception catch on exception entry to EL\(<n>\).
The behavior of exception catch on exception return to EL<\(n\)> in conjunction with NSR<\(n\>).

- If the corresponding NSR<\(n\)> bit is 0, then Exception Catch debug events are disabled for Non-secure Exception level <\(n\)>.
- If the corresponding NSR<\(n\)> bit is 1, then Exception Catch debug events are enabled for exception returns to Non-secure Exception level <\(n\)>.

0b1
- If the corresponding NSR<\(n\)> bit is 0, then Exception Catch debug events are enabled for exception entry, reset entry and exception return to Non-secure Exception level <\(n\)>.
- If the corresponding NSR<\(n\)> bit is 1, then Exception Catch debug events are enabled for exception entry and reset entry to Non-secure Exception level <\(n\)>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0.

A value of the NSE field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the NSE field is programmed with a reserved value then:

- The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
- The value returned for NSE by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

SE<\(n\)> bit [\(n\)], for \(n = 0\) to 3

Coarse-grained Secure exception catch for EL<\(n\>). This field controls whether Exception Catch debug events are enabled for Secure EL<\(n\>).

- The behavior of exception catch on exception entry to EL<\(n\)>.
- The behavior of exception catch on exception return to EL<\(n\)> in conjunction with SR<\(n\>).

0b0
- If the corresponding SR<\(n\)> bit is 0, then Exception Catch debug events are disabled for Secure Exception level <\(n\)>.
- If the corresponding SR<\(n\)> bit is 1, then Exception Catch debug events are enabled for exception returns to Secure Exception level <\(n\)>.

0b1
- If the corresponding SR<\(n\)> bit is 0, then Exception Catch debug events are enabled for exception entry, reset entry and exception return to Secure Exception level <\(n\)>.
- If the corresponding SR<\(n\)> bit is 1, then Exception Catch debug events are enabled for exception entry and reset entry to Secure Exception level <\(n\)>.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

A value of the SE field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the SE field is programmed with a reserved value then:

- The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
- The value returned for SE by a read of EDECCR is UNKNOWN.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.
Otherwise:

Bits [31:8]

Reserved, RES0.

NSE<\text{n}>, bit [n+4], for n = 0 to 3

Coarse-grained Non-secure exception catch. If EL3 and EL2 are not implemented and the PE behaves as if SCR_EL3.NS is set to 0, this field is reserved, RES0. Otherwise, possible values for this field are:

0b0 Exception Catch debug events are disabled for Non-secure Exception level \text{<n>}.
0b1 Exception Catch debug events are enabled for Non-secure Exception level \text{<n>}.

A value of the NSE field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the NSE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for NSE by a read of EDECCR is \text{UNKNOWN}.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

SE<\text{n}>, bit [n], for n = 0 to 3

Coarse-grained Secure exception catch.

0b0 Exception Catch debug events are disabled for Secure Exception level \text{<n>}.
0b1 Exception Catch debug events are enabled for Secure Exception level \text{<n>}.

If EL3 is not implemented and the PE behaves as if SCR_EL3.NS is set to 1, this field is reserved, RES0.

A value of the SE field that enables an Exception Catch debug event for an Exception level that is not implemented is reserved. If the SE field is programmed with a reserved value then:

• The PE behaves as if it is programmed with a defined value, other than for a read of EDECCR.
• The value returned for SE by a read of EDECCR is \text{UNKNOWN}.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.
Accessing the EDECCR:

EDECCR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x098</td>
<td>EDECCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.26 EDECR, External Debug Execution Control Register

The EDECR characteristics are:

Purpose

 Controls Halting debug events.

Configurations

 If FEAT_DoPD is implemented, this register is in the Core power domain.
 If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDECR is a 32-bit register.

Field descriptions

The EDECR bit assignments are:

```
+------+-
| RES0 | OSUCE|
+------+-
      | RES0|
      | RES0|
+------+-+------+-
| SS    | RCE   |
+------+-+------+-
```

Bits [31:3]

Reserved, RES0.

SS, bit [2]

Halting step enable. Possible values of this field are:

- **0b0** Halting step debug event disabled.
- **0b1** Halting step debug event enabled.

If the value of EDECR.SS is changed when the PE is in Non-debug state, behavior is constrained unpredictable as described in *Changing the value of EDECR.SS when not in Debug state* on page H3-7063.

On a Cold reset, when FEAT_DoPD is implemented, this field resets to 0.
On a Cold reset, when FEAT_DoPD is not implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 0.
On a Warm reset, the value of this field is unchanged.

RCE, bit [1]

When **FEAT_DoPD** is not implemented:

Reset Catch Enable.

- **0b0** Reset Catch debug event disabled.
- **0b1** Reset Catch debug event enabled.

On a Cold reset, when FEAT_DoPD is implemented, this field resets to 0.
On a Cold reset, when FEAT_DoPD is not implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 0.
On a Warm reset, the value of this field is unchanged.

Otherwise:
Reserved, RES0.

OSUCE, bit [0]

When FEAT_DoPD is not implemented:
OS Unlock Catch Enable.
0b0 OS Unlock Catch debug event disabled.
0b1 OS Unlock Catch debug event enabled.
On a Cold reset, when FEAT_DoPD is implemented, this field resets to 0.
On a Cold reset, when FEAT_DoPD is not implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is implemented, the value of this field is unchanged.
On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 0.
On a Warm reset, the value of this field is unchanged.

Otherwise:
Reserved, RES0.

Accessing the EDECR:

EDECR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x024</td>
<td>EDECR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When (FEAT_DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this register are RO.

• When (FEAT_DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.
H9.2.27 EDESR, External Debug Event Status Register

The EDESR characteristics are:

Purpose

Indicates the status of internally pending Halting debug events.

Configurations

EDESR is in the Core power domain.

Attributes

EDESR is a 32-bit register.

Field descriptions

The EDESR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>SS</td>
</tr>
<tr>
<td>2</td>
<td>Reset Catch debug event pending</td>
</tr>
<tr>
<td>1</td>
<td>OSUC</td>
</tr>
<tr>
<td>0</td>
<td>RC</td>
</tr>
</tbody>
</table>

Bits [31:3]

Reserved, RES0.

SS, bit [2]

When FEAT_DoPD is implemented:

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the pending Halting step debug event.

On a Cold reset, this field resets to 0.

Otherwise:

Halting step debug event pending. Possible values of this field are:

0b0 Reading this means that a Halting step debug event is not pending. Writing this means no action.

0b1 Reading this means that a Halting step debug event is pending. Writing this clears the pending Halting step debug event.

On a Warm reset, this field resets to the value in EDECR.SS.

RC, bit [1]

Reset Catch debug event pending. Possible values of this field are:

0b0 Reading this means that a Reset Catch debug event is not pending. Writing this means no action.

0b1 Reading this means that a Reset Catch debug event is pending. Writing this clears the pending Reset Catch debug event.

On a Warm reset, when FEAT_DoPD is implemented, this field resets to the value in CTIDEVCTL.RCE.
On a Warm reset, when FEAT_DoPD is not implemented, this field resets to the value in EDECR.RCE.

OSUC, bit [0]

OS Unlock Catch debug event pending. Possible values of this field are:

- **0b0**
 Reading this means that an OS Unlock Catch debug event is not pending. Writing this means no action.

- **0b1**
 Reading this means that an OS Unlock Catch debug event is pending. Writing this clears the pending OS Unlock Catch debug event.

On a Warm reset, this field resets to 0.

Accessing the EDESR:

If a request to clear a pending Halting debug event is received at or about the time when halting becomes allowed, it is CONstrained UNPREDICTABLE whether the event is taken.

If Core power is removed while a Halting debug event is pending, it is lost. However, it might become pending again when the Core is powered back on and Cold reset.

EDESR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x020</td>
<td>EDESR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.28 EDITCTRL, External Debug Integration mode Control register

The EDITCTRL characteristics are:

Purpose

Enables the external debug to switch from its default mode into integration mode, where test software can control directly the inputs and outputs of the PE, for integration testing or topology detection.

Configurations

It is IMPLEMENTATION DEFINED whether EDITCTRL is implemented in the Core power domain or in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

EDITCTRL is a 32-bit register.

Field descriptions

The EDITCTRL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
<td>0x0</td>
</tr>
</tbody>
</table>
| 0 | IME, Integration mode enable | 0b0 Normal operation.
| | | 0b1 Integration mode enabled. |

The following resets apply:

- Whichever power domain the register is implemented in, this field resets to 0.
- Otherwise, the value of this field is unchanged.

Accessing the EDITCTRL:

EDITCTRL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xF00</td>
<td>EDITCTRL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register are IMPDEF.
H9.2.29 EDITR, External Debug Instruction Transfer Register

The EDITR characteristics are:

Purpose
Used in Debug state for passing instructions to the PE for execution.

Configurations
EDITR is in the Core power domain.

Attributes
EDITR is a 32-bit register.

Field descriptions
The EDITR bit assignments are:

When AArch32 is supported at any Exception level and in AArch32 state:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-15</td>
<td>T32Second</td>
</tr>
<tr>
<td>15-0</td>
<td>T32First</td>
</tr>
</tbody>
</table>

T32Second, bits [31:16]
Second halfword of the T32 instruction to be executed on the PE. When EDITR contains a 16-bit T32 instruction, this field is ignored. For more information, see Behavior in Debug state on page H2-7024.

T32First, bits [15:0]
First halfword of the T32 instruction to be executed on the PE.

When AArch64 is supported at any Exception level and in AArch64 state:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>A64 instruction to be executed on the PE</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the EDITR:
If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of any instruction issued through the ITR in Normal access mode that has not completed execution is CONSTRAINED UNPREDICTABLE, and must do one of the following:

- It must complete execution in Debug state before the PE executes the restart sequence.
- It must complete execution in Non-debug state before the PE executes the restart sequence.
- It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed by the instruction are left in an UNKNOWN state.

EDITR ignores writes if the PE is in Non-debug state.
EDITR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x084</td>
<td>EDITR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When `IsCorePowered()`, `!DoubleLockStatus()`, `!OSLockStatus()` and `SoftwareLockStatus()` accesses to this register are WI.
- When `IsCorePowered()`, `!DoubleLockStatus()`, `!OSLockStatus()` and `!SoftwareLockStatus()` accesses to this register are WO.
- Otherwise accesses to this register generate an error response.
H9.2.30 EDLAR, External Debug Lock Access Register

The EDLAR characteristics are:

Purpose

Allows or disallows access to the external debug registers through a memory-mapped interface.
The optional Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug components of the PE in the Core power domain.
If FEAT_DoPD is not implemented, this register is in the Debug power domain.
Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLAR is a 32-bit register.

Field descriptions

The EDLAR bit assignments are:

When Software Lock is implemented:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>KEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this component’s registers through a memory-mapped interface.
Writing any other value to this register locks the lock, disabling write accesses to this component’s registers through a memory mapped interface.

Otherwise:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>RES0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Otherwise

Bits [31:0]

Reserved, RES0.
Accessing the EDLAR:

EDLAR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFB0</td>
<td>EDLAR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are WO.
- Otherwise accesses to this register generate an error response.
H9.2.31 EDLSR, External Debug Lock Status Register

The EDLSR characteristics are:

Purpose

Indicates the current status of the software lock for external debug registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the debug registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the debug registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses EDLAR to set or clear the lock, and EDLSR to check the current status of the lock.

Attributes

EDLSR is a 32-bit register.

Field descriptions

The EDLSR bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:3</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>2</td>
<td>nTT, bit [2]</td>
</tr>
<tr>
<td>1</td>
<td>SLK, bit [1]</td>
</tr>
</tbody>
</table>

When Software Lock is implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field are:

- **0b0**: Lock clear. Writes are permitted to this component's registers.
- **0b1**: Lock set. Writes to this component's registers are ignored, and reads have no side effects.

On a Cold reset, when FEAT_DoPD is implemented, this field resets to 1.

On a Cold reset, when FEAT_DoPD is not implemented, the value of this field is unchanged.

On an External debug reset, when FEAT_DoPD is implemented, the value of this field is unchanged.

On an External debug reset, when FEAT_DoPD is not implemented, this field resets to 1.

On a Warm reset, the value of this field is unchanged.
Outside:
Reserved, RAZ.

SLI, bit [0]
Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:
0b0 Software Lock not implemented or not memory-mapped access.
0b1 Software Lock implemented and memory-mapped access.

Accessing the EDLSR:
EDLSR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFB4</td>
<td>EDLSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.
H9.2.32 EDPCSR, External Debug Program Counter Sample Register

The EDPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

EDPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise, direct accesses to EDPCSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers space.

--- **Note**

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors registers space.

--- **Attributes**

EDPCSR is a pair of 32-bit registers.

If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions

The EDPCSR bit assignments are:

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

<table>
<thead>
<tr>
<th>63</th>
<th>32</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Sample high word, EDPCSRhi</td>
<td></td>
<td>PC Sample low word</td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the sampled instruction address value. The translation regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

- The PE is in Debug state.
- PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

- The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is prohibited.
• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values. Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

When FEAT_VHE is implemented and EDSR.SC2 == 1:

<table>
<thead>
<tr>
<th>NS</th>
<th>EL</th>
<th>RES0</th>
<th>PC Sample high word, EDPCSRhi</th>
<th>PC Sample low word</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>62</td>
<td>61 60</td>
<td>56 55</td>
<td>32 31</td>
</tr>
</tbody>
</table>

NS, bit [63]
Non-secure state sample. Indicates the Security state that is associated with the most recent EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

EL, bits [62:61]
Exception level status sample. Indicates the Exception level that is associated with the most recent EDPCSR sample or, when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [60:56]
Reserved, RES0.
Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

- The PE is in Debug state.
- PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

- The PE is in Reset state.
- No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is prohibited.
- No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the EDPCSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7134.

EDPCSR[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xA0</td>
<td>EDPCSR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDPCSR[31:0] are RO.
- Otherwise accesses to EDPCSR[31:0] generate an error response.
EDPCSR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xA0</td>
<td>EDPCSR</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDPCSR[63:32] are RO.
- Otherwise accesses to EDPCSR[63:32] generate an error response.
H9.2.33 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see *Principles of the ID scheme for fields in ID registers* on page D13-2867.

Configurations

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

The EDPFR bit assignments are:
AMU, bits [47:44]
Indicates support for Activity Monitors Extension. Defined values are:
- 0b0000 Activity Monitors Extension is not implemented.
- 0b0001 FEAT_AMUv1 is implemented.
- 0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support for virtualization of the activity monitor event counters.

All other values are reserved.
FEAT_AMUv1 implements the functionality identified by the value 0b0001.
FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.
In Armv8.0, the only permitted value is 0b0000.
In Armv8.4, the permitted values are 0b0000 and 0b0001.
From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

UNKNOWN, bits [43:40]
From Armv8.2:
Reserved, UNKNOWN.
Otherwise:
Reserved, RES0.

SEL2, bits [39:36]
Secure EL2. Defined values are:
- 0b0000 Secure EL2 is not implemented.
- 0b0001 Secure EL2 is implemented.

All other values are reserved.

SVE, bits [35:32]
Scalable Vector Extension. Defined values are:
- 0b0000 SVE is not implemented.
- 0b0001 SVE is implemented.

All other values are reserved.

UNKNOWN, bits [31:28]
From Armv8.2:
Reserved, UNKNOWN.
Otherwise:
Reserved, RES0.

GIC, bits [27:24]
System register GIC interface support. Defined values are:
- 0b0000 GIC CPU interface system registers not implemented.
- 0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.
- 0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.GIC.
AdvSIMD, bits [23:20]
Advanced SIMD. Defined values are:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD operations:
 • Integer byte, halfword, word and doubleword element operations.
 • Single-precision and double-precision floating-point arithmetic.
 • Conversions between single-precision and half-precision data types, and double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented. All other values are reserved.

This field must have the same value as the FP field. The permitted values are:
 • 0b0000 in an implementation with Advanced SIMD support, that does not include the FEAT_FP16 extension.
 • 0b0001 in an implementation with Advanced SIMD support, that includes the FEAT_FP16 extension.
 • 0b1111 in an implementation without Advanced SIMD support.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]
Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:
 • Single-precision and double-precision floating-point types.
 • Conversions between single-precision and half-precision data types, and double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented. All other values are reserved.

This field must have the same value as the AdvSIMD field. The permitted values are:
 • 0b0000 in an implementation with floating-point support, that does not include the FEAT_FP16 extension.
 • 0b0001 in an implementation with floating-point support, that includes the FEAT_FP16 extension.
 • 0b1111 in an implementation without floating-point support.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]
AArch64 EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented or cannot be executed in AArch64 state.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in both Execution states.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0b0000. All other values are reserved.
In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:
- 0b0000 EL2 is not implemented or cannot be executed in AArch64 state.
- 0b0001 EL2 can be executed in AArch64 state only.
- 0b0010 EL2 can be executed in both Execution states.

When the value of EDAA32PFR.EL2 is non-zero, this field must be 0b0000.
All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:
- 0b0000 EL1 cannot be executed in AArch64 state.
- 0b0001 EL1 can be executed in both Execution states.
- 0b0010 EL1 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.EL1.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:
- 0b0000 EL0 cannot be executed in AArch64 state.
- 0b0001 EL0 can be executed in both Execution states.
- 0b0010 EL0 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64 state in at least one Exception level, this field returns the value of ID_AA64PFR0_EL1.EL0.

Accessing the EDPFR:

EDPFR[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xD20</td>
<td>EDPFR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[31:0] are RO.
- Otherwise accesses to EDPFR[31:0] are IMPDEF.

EDPFR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xD24</td>
<td>EDPFR</td>
<td>63:32</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[63:32] are RO.
- Otherwise accesses to EDPFR[63:32] are IMPDEF.
H9.2.34 EDPIDR0, External Debug Peripheral Identification Register 0

The EDPIDR0 characteristics are:

Purpose

Provides information to identify an external debug component.
For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.
If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.
This register is required for CoreSight compliance.

Attributes

EDPIDR0 is a 32-bit register.

Field descriptions

The EDPIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>8-0</td>
<td>PART_0</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the EDPIDR0:

EDPIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFE0</td>
<td>EDPIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.35 EDPIDR1, External Debug Peripheral Identification Register 1

The EDPIDR1 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see *About the Peripheral identification scheme on page K2-7999.*

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR1 is a 32-bit register.

Field descriptions

The EDPIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>8-7</td>
<td>DES_0</td>
</tr>
<tr>
<td>4-3</td>
<td>PART_1</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the EDPIDR1:

EDPIDR1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFE4</td>
<td>EDPIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.36 EDPIDR2, External Debug Peripheral Identification Register 2

The EDPIDR2 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see *About the Peripheral identification scheme on page K2-7999*.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain. This register is required for CoreSight compliance.

Attributes

EDPIDR2 is a 32-bit register.

Field descriptions

The EDPIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>RES0</td>
</tr>
<tr>
<td>7-4</td>
<td>REVISION</td>
</tr>
<tr>
<td>3</td>
<td>JEDEC</td>
</tr>
<tr>
<td>2-0</td>
<td>DES_1</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the EDPIDR2:

EDPIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFE8</td>
<td>EDPIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.37 EDPIDR3, External Debug Peripheral Identification Register 3

The EDPIDR3 characteristics are:

Purpose

Provides information to identify an external debug component.

For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR3 is a 32-bit register.

Field descriptions

The EDPIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit 31</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
</tr>
<tr>
<td>REVAND</td>
<td>REVAND</td>
<td>REVAND</td>
<td>REVAND</td>
<td>REVAND</td>
<td>REVAND</td>
</tr>
<tr>
<td>CMOD</td>
<td>CMOD</td>
<td>CMOD</td>
<td>CMOD</td>
<td>CMOD</td>
<td>CMOD</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using EDPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the EDPIDR3:

EDPIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFE</td>
<td>EDPIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.38 EDPIDR4, External Debug Peripheral Identification Register 4

The EDPIDR4 characteristics are:

Purpose

Provides information to identify an external debug component. For more information, see *About the Peripheral identification scheme on page K2-7999.*

Configurations

Implementation of this register is *OPTIONAL.*

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

EDPIDR4 is a 32-bit register.

Field descriptions

The EDPIDR4 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:8</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7:4</td>
<td>SIZE, bits</td>
</tr>
<tr>
<td>3:0</td>
<td>DES_2, bits</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. Log2 of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the EDPIDR4:

EDPIDR4 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xFD0</td>
<td>EDPIDR4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.39 **EDPRCR, External Debug Power/Reset Control Register**

The EDPRCR characteristics are:

Purpose
Controls the PE functionality related to powerup, reset, and powerdown.

Configurations
EDPRCR contains fields that are in the Core power domain and fields that are in the Debug power domain.
If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.
CORENPDRQ is the only field that is mapped between the EDPRCR and DBGPRCR and DBGPRCR_EL1.

Attributes
EDPRCR is a 32-bit register.

Field descriptions
The EDPRCR bit assignments are:

When FEAT_DoPD is implemented:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>30</td>
<td>CORENPDRQ</td>
</tr>
<tr>
<td>29</td>
<td>CWRR, bit [1]</td>
</tr>
<tr>
<td>28</td>
<td>Warm reset request. Write-only bit that reads as zero. The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:</td>
</tr>
<tr>
<td>27</td>
<td>• The request is ignored.</td>
</tr>
<tr>
<td>26</td>
<td>• Only this PE is Warm reset.</td>
</tr>
<tr>
<td>25</td>
<td>• This PE and other components of the system, possibly including other PEs, are Warm reset.</td>
</tr>
<tr>
<td>24</td>
<td>Arm deprecates use of this bit, and recommends that implementations ignore the request.</td>
</tr>
<tr>
<td>23</td>
<td>0b0 No action.</td>
</tr>
<tr>
<td>22</td>
<td>0b1 Request Warm reset.</td>
</tr>
</tbody>
</table>

This field is in the Core power domain

The PE ignores writes to this bit if any of the following are true:

• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is Non-secure state.
• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is Secure state.
• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the DBGRSTREQ signal.
On a Warm reset, this field resets to 0.
Accessing this field has the following behavior:
• When OSLockStatus() or SoftwareLockStatus(), access to this field is WI.
• Otherwise, access to this field is WO.

CORENPDRQ, bit [0]
Core no powerdown request. Requests emulation of powerdown.
This request is typically passed to an external power controller. This means that whether a request
causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power
controller must not allow the Core power domain to switch off while this bit is 1.
0b0 If the system responds to a powerdown request, it powers down Core power domain.
0b1 If the system responds to a powerdown request, it does not powerdown the Core power
domain, but instead emulates a powerdown of that domain.
When this bit reads as UNKNOWN, the PE ignores writes to this bit.
This field is in the Core power domain, and permitted accesses to this field map to the
DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.
In an implementation that includes the recommended external debug interface, this bit drives the
DBGNOPWRDWN signal.
It is IMPLEMENTATION DEFINED whether this bit is reset to the Cold reset value on exit from an
IMPLEMENTATION DEFINED software-visible retention state. For more information about retention
states, see Core power domain power states on page H6-7118.

Note
 Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This
means that a debugger can request emulation of powerdown regardless of whether invasive debug
is permitted.

On a Cold reset, if the powerup request is implemented and the powerup request has been asserted,
this field is an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request is not asserted,
this field is set to 0.
On a Warm reset, the value of this field is unchanged.
Accessing this field has the following behavior:
• When OSLockStatus(), access to this field is UNKNOWN.
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RW.

Otherwise:

Bits [31:4]
Reserved, RES0.
COREPURQ, bit [3]
Core powerup request. Allows a debugger to request that the power controller power up the core, enabling access to the debug register in the Core power domain, and that the power controller emulates powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

0b0 Do not request power up of the Core power domain.
0b1 Request power up of the Core power domain, and emulation of powerdown.

In an implementation that includes the recommended external debug interface, this bit drives the DBGWRUPREQ signal.

This field is in the Debug power domain and can be read and written when the Core power domain is powered off.

--- Note ---
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On an External debug reset, this field resets to 0.
Accessing this field has the following behavior:
• When SoftwareLockStatus(), access to this field is RO.
• Otherwise, access to this field is RW.

Bit [2]
Reserved, RES0.

CWRR, bit [1]
Warm reset request. Write-only bit that reads as zero.

The extent of the reset is IMPLEMENTATION DEFINED, but must be one of:
• The request is ignored.
• Only this PE is Warm reset.
• This PE and other components of the system, possibly including other PEs, are Warm reset.

Arm deprecates use of this bit, and recommends that implementations ignore the request.

0b0 No action.
0b1 Request Warm reset.

This field is in the Core power domain.

The PE ignores writes to this bit if any of the following are true:
• ExternalInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is Non-secure state.
• ExternalSecureInvasiveDebugEnabled() == FALSE, EL3 is not implemented, and the implemented Security state is Secure state.
• ExternalSecureInvasiveDebugEnabled() == FALSE and EL3 is implemented.

In an implementation that includes the recommended external debug interface, this bit drives the DBG_RSTREQ signal.

On a Warm reset, this field resets to 0.
Accessing this field has the following behavior:
• When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or SoftwareLockStatus(), access to this field is WI.
• Otherwise, access to this field is WO.
CORENPDRQ, bit [0]

Core no powerdown request. Requests emulation of powerdown.

This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.

0b0 If the system responds to a powerdown request, it powers down Core power domain.
0b1 If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain.

When this bit reads as UNKNOWN, the PE ignores writes to this bit.

This field is in the Core power domain, and permitted accesses to this field map to the DBGPRCR.CORENPDRQ and DBGPRCR_EL1.CORENPDRQ fields.

In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.

It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPSCR.COREPURQ on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states, see Core power domain power states on page H6-7118.

Note

Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.

On a Cold reset, this field resets to the value in EDPSCR.COREPURQ.

On a Warm reset, the value of this field is unchanged.

Accessing this field has the following behavior:
 • When !IsCorePowered(), or DoubleLockStatus() or OSLockStatus(), access to this field is UNKNOWN.
 • When SoftwareLockStatus(), access to this field is RO.
 • Otherwise, access to this field is RW.

Accessing the EDPSCR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

EDPSCR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x310</td>
<td>EDPSCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When (FEAT_DoPD is not implemented or IsCorePowered()) and SoftwareLockStatus() accesses to this register are RO.
• When (FEAT_DoPD is not implemented or IsCorePowered()) and !SoftwareLockStatus() accesses to this register are RW.
• Otherwise accesses to this register generate an error response.
H9.2.40 EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

Configurations

EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power domain.

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

The EDPRSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>12</td>
<td>SDR, bit [11]</td>
</tr>
<tr>
<td>11</td>
<td>Sticky Debug Restart. Set to 1 when the PE exits Debug state.</td>
</tr>
<tr>
<td>10</td>
<td>Permitted values are:</td>
</tr>
<tr>
<td>9</td>
<td>0b0 The PE has not restarted since EDPRSR was last read.</td>
</tr>
<tr>
<td>8</td>
<td>0b1 The PE has restarted since EDPRSR was last read.</td>
</tr>
</tbody>
</table>

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is **UNKNOWN** on Warm reset, meaning a debugger must also use the SR bit to determine whether the PE has left Debug state.

If The Core power domain is powered up, then following a read of EDPRSR:
- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is **CONSTRAINED UNPREDICTABLE** whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain. This field resets to an architecturally **UNKNOWN** value.
Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- When SoftwareLockStatus(), access to this field is RO.
- Otherwise, access to this field is RC.

SPMAD, bit [10]

When FEAT_Debugv8p4 is implemented:

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors register returns an error because AllowExternalPMUAccess() == FALSE.

Permitted values are:

- 0b0: No Non-secure external debug interface accesses to the external Performance Monitors registers have failed because AllowExternalPMUAccess() == FALSE for the access since EDPRSR was last read.
- 0b1: At least one Non-secure external debug interface access to the external Performance Monitors register has failed and returned an error because AllowExternalPMUAccess() == FALSE for the access since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
- If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- When SoftwareLockStatus(), access to this field is RO.
- Otherwise, access to this field is RC.

Otherwise:

Sticky EPMAD error.

- 0b0: No external debug interface accesses to the Performance Monitors registers have failed because AllowExternalPMUAccess() == FALSE since EDPRSR was last read.
- 0b1: At least one external debug interface access to the Performance Monitors registers has failed and returned an error because AllowExternalPMUAccess() == FALSE since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
- If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or OSLockStatus(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- When SoftwareLockStatus(), access to this field is RO.
- Otherwise, access to this field is RC.
EPMAD, bit [9]

When FEAT_Debugv8p4 is implemented:

External Performance Monitors Access Disable status.

- 0b0 External Non-secure Performance Monitors access enabled. AllowExternalPMUAccess() == TRUE for a Non-secure access.
- 0b1 External Non-secure Performance Monitors access disabled. AllowExternalPMUAccess() == FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

Otherwise:

External Performance Monitors access disable status.

- 0b0 External Performance Monitors access enabled. AllowExternalPMUAccess() == TRUE.
- 0b1 External Performance Monitors access disabled. AllowExternalPMUAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or OSLockStatus(), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

SDAD, bit [8]

When FEAT_Debugv8p4 is implemented:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because AllowExternalDebugAccess() == FALSE.

- 0b0 No Non-secure external debug interface accesses to the debug registers have failed because AllowExternalDebugAccess() == FALSE for the access since EDPRSR was last read.
- 0b1 At least one Non-secure external debug interface access to the debug registers has failed and returned an error because AllowExternalDebugAccess() == FALSE for the access since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

Otherwise:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because AllowExternalDebugAccess() == FALSE.

- 0b0 No external debug interface accesses to the debug registers have failed because AllowExternalDebugAccess() == FALSE since EDPRSR was last read.
At least one external debug interface access to the debug registers has failed and returned an error because AllowExternalDebugAccess() == FALSE since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This bit is UNKNOWN on reads if OSLockStatus() == TRUE and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

EDAD, bit [7]

When FEAT_Debugv8p4 is implemented:

External Debug Access Disable status.

0b0 External Non-secure access to breakpoint registers, watchpoint registers, and OSLAR_EL1 enabled. AllowExternalDebugAccess() == TRUE for a Non-secure access.

0b1 External Non-secure access to breakpoint registers, watchpoint registers, and OSLAR_EL1 disabled. AllowExternalDebugAccess() == FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1 enabled. AllowExternalDebugAccess() == TRUE.

0b1 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1 disabled. AllowExternalDebugAccess() == FALSE.

This bit is not valid and reads UNKNOWN if OSLockStatus() == TRUE and external debug writes to OSLAR_EL1 do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

- When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

Otherwise:

External Debug Access Disable status.

0b0 External access to breakpoint registers, watchpoint registers, and OSLAR_EL1 enabled. AllowExternalDebugAccess() == TRUE.

0b1 External access to breakpoint registers, watchpoint registers disabled. It is IMPLEMENTATION DEFINED whether accesses to OSLAR_EL1 are enabled or disabled. AllowExternalDebugAccess() == FALSE.
This field is in the Core power domain.
Accessing this field has the following behavior:
• When (FEAT_DoPD is not implemented and !IsCorePowered()), or DoubleLockStatus() or EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

DLK, bit [6]

When FEAT_Debugv8p4 is implemented:
This field is RES0.

When FEAT_Debugv8p2 is implemented and FEAT_DoubleLock is implemented:
Double Lock.
From Armv8.2, this field is deprecated.
This field is in the Core power domain.
Accessing this field has the following behavior:
• When IsCorePowered() and !DoubleLockStatus(), access to this field is RAZ.
• Otherwise, access to this field is UNKNOWN.

When FEAT_DoubleLock is implemented:
Double Lock.
This field returns the result of the pseudocode function DoubleLockStatus().
If the Core power domain is powered up and DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED whether:
• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is UNKNOWN.
• EDPRSR.PU reads as 0, EDPRSR.DLK is UNKNOWN, and EDPRSR.SPD reads as 0.
This field is in the Core power domain.
0b0 DoubleLockStatus() returns FALSE.
0b1 DoubleLockStatus() returns TRUE and the Core power domain is powered up.
Accessing this field has the following behavior:
• When FEAT_DoPD is not implemented and !IsCorePowered(), access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

Otherwise:
Reserved, RES0.

OSLK, bit [5]
OS Lock status bit.
A read of this bit returns the value of OSLSR_EL1.OSLK.
This field is in the Core power domain.
Accessing this field has the following behavior:
• When (FEAT_DoPD is not implemented and !IsCorePowered()), DoubleLockStatus() and EDPRSR.R == 1, access to this field is UNKNOWN.
• Otherwise, access to this field is RO.

HALTED, bit [4]
Halted status bit.
0b0 PE is in Non-debug state.
0b1 PE is in Debug state.
This field is in the Core power domain.
Accessing this field has the following behavior:
- When FEAT_DoPD is not implemented and !IsCorePowered(), access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

SR, bit [3]

Sticky core Reset status bit.
Permitted values are:
- 0b0: The non-debug logic of the PE is not in reset state and has not been reset since the last time EDPRSR was read.
- 0b1: The non-debug logic of the PE is in reset state or has been reset since the last time EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is in a powerup state and that the non-debug logic of the PE is not in reset state, then following a read of EDPRSR:
- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is UNPREDICTABLE whether this bit clears to 0 or is unchanged.

This field is in the Core power domain and the Warm reset domain.
This field resets to 1.
Accessing this field has the following behavior:
- When (FEAT_DoPD is not implemented and !IsCorePowered()) or DoubleLockStatus(), access to this field is UNKNOWN.
- When SoftwareLockStatus(), access to this field is RO.
- Otherwise, access to this field is RC.

R, bit [2]

PE Reset status bit.
Permitted values are:
- 0b0: The non-debug logic of the PE is not in reset state.
- 0b1: The non-debug logic of the PE is in reset state.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more information, see EDPRSR.{DLK, R} and reset state on page H6-7124.

This field is in the Core power domain.
Accessing this field has the following behavior:
- When (FEAT_DoPD is not implemented and !IsCorePowered()) or DoubleLockStatus(), access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

SPD, bit [1]

Sticky core Powerdown status bit.

If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, then:
- If FEAT_Debugv8p2 is implemented, this bit reads as 0.
- If FEAT_Debugv8p2 is not implemented, this bit might read as 0 or 1.

For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7123.

0b0: If EDPRSR.PU is 0, it is not known whether the state of the debug registers in the Core power domain is lost.
If EDPRSR.PU is 1, the state of the debug registers in the Core power domain has not been lost.

0b1 The state of the debug registers in the Core power domain has been lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is CONSTRAINED UNPREDICTABLE whether this bit clears to 0 or is unchanged.

When FEAT_DoPD is not implemented and the Core power domain is in either retention or powerdown state, the value of EDPRSR.SPD is IMPLEMENTATION DEFINED. For more information, see EDPRSR.SPD when the Core domain is in either retention or powerdown state on page H6-7124.

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read. For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7123.

This field is in the Core power domain and the Cold reset domain.

On a Cold reset, this field resets to 1.

Accessing this field has the following behavior:

- When FEAT_DoPD is not implemented and !IsCorePowered(), access to this field is RAZ.
- When IsCorePowered() and DoubleLockStatus(), access to this field is UNKNOWN.
- Otherwise, access to this field is RO.

PU, bit [0]

When FEAT_DoPD is implemented:

Core powerup status bit.

Access to this field is RAO.

When FEAT_Debugv8p2 is implemented:

Core powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

0b0 Either the Core power domain is in a low-power or powerdown state, or FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, meaning the debug registers in the Core power domain cannot be accessed.

0b1 The Core power domain is in a powerup state, and either FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, meaning the debug registers in the Core power domain can be accessed.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more information, see EDPRSR.{DLK, R} and reset state on page H6-7124

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read. For more information, see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7123

Access to this field is RO.

Otherwise:

Core powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

When the Core power domain is powered-up and DoubleLockStatus() == TRUE, then the value of EDPRSR.PU is IMPLEMENTATION DEFINED. See the description of the DLK bit for more information.
Otherwise, permitted values are:

0b0 Core power domain is in a low-power or powerdown state where the debug registers in
the Core power domain cannot be accessed.

0b1 Core power domain is in a powerup state where the debug registers in the Core power
domain can be accessed.

If FEAT_DoubleLock is implemented, the Core power domain is powered up, and
DoubleLockStatus() == TRUE, it is IMPLEMENTATION DEFINED whether this bit reads as 0 or 1.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with
the OS Double Lock locked this bit has a CONSTRAINED UNPREDICTABLE value. For more
information see EDPRSR.{DLK, R} and reset state on page H6-7124

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed,
and whether their state has been lost since the last time the register was read. For more information,
see EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7123.

Access to this field is RO.

Accessing the EDPRSR:

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field
descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, then:
 — EDPRSR.{SDR, SPMAD, SDAD, SPD} are cleared to 0.
 — EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).
- Otherwise it is CONSTRAINED UNPREDICTABLE whether or not this clearing occurs.

If FEAT_DoPD is not implemented and the Core power domain is powered down (EDPRSR.PU == 0), then:

- EDPRSR.{SDR, SPMAD, SDAD, SR} are all UNKNOWN, and are either reset or restored on being powered
 up.
- EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

EDPRSR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x314</td>
<td>EDPRSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.41 EDRCR, External Debug Reserve Control Register

The EDRCR characteristics are:

Purpose

This register is used to allow imprecise entry to Debug state and clear sticky bits in EDSCR.

Configurations

EDRCR is in the Core power domain.

Attributes

EDRCR is a 32-bit register.

Field descriptions

The EDRCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>30</td>
<td>CSE</td>
</tr>
<tr>
<td>29</td>
<td>CSPA</td>
</tr>
<tr>
<td>28</td>
<td>CBRRQ</td>
</tr>
<tr>
<td>27</td>
<td>CBRRQ, bit [4]</td>
</tr>
<tr>
<td>26</td>
<td>Allow imprecise entry to Debug state</td>
</tr>
<tr>
<td>25</td>
<td>The actions on writing to this bit are:</td>
</tr>
<tr>
<td>24</td>
<td>0b0 No action.</td>
</tr>
<tr>
<td>23</td>
<td>0b1 Allow imprecise entry to Debug state,</td>
</tr>
<tr>
<td></td>
<td>for example by canceling pending bus accesses.</td>
</tr>
</tbody>
</table>

Setting this bit to 1 allows a debugger to request imprecise entry to Debug state. An External Debug Request debug event must be pending before the debugger sets this bit to 1.

This feature is optional. If this feature is not implemented, writes to this bit are ignored.

CSPA, bit [3]

Clear Sticky Pipeline Advance. This bit is used to clear the EDSCR.PipeAdv bit to 0. The actions on writing to this bit are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Clear Sticky Pipeline Advance</td>
</tr>
<tr>
<td>21</td>
<td>No action.</td>
</tr>
<tr>
<td>20</td>
<td>Clear the EDSCR.PipeAdv bit to 0.</td>
</tr>
</tbody>
</table>

CSE, bit [2]

Clear Sticky Error. Used to clear the EDSCR cumulative error bits to 0. The actions on writing to this bit are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Clear Sticky Error.</td>
</tr>
<tr>
<td>18</td>
<td>No action.</td>
</tr>
<tr>
<td>17</td>
<td>Clear the EDSCR.{TXU, RXO, ERR} bits, and, if the PE is in Debug state, the EDSCR.ITO bit, to 0.</td>
</tr>
</tbody>
</table>

Bits [1:0]

Reserved, RES0.
Accessing the EDRCR:

EDRCR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x90</td>
<td>EDRCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are WI.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are WO.
- Otherwise accesses to this register generate an error response.
H9.2.42 EDSCR, External Debug Status and Control Register

The EDSCR characteristics are:

Purpose
Main control register for the debug implementation.

Configurations
External register EDSCR[30:29] is architecturally mapped to AArch64 System register MDCCSR_EL0[30:29].
EDSCR is in the Core power domain.

Attributes
EDSCR is a 32-bit register.

Field descriptions
The EDSCR bit assignments are:

```
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 10 | 9 | 8 | 7 | 6 | 5 | 0 | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|     | TFO | RXfull | TXfull | ITO | RXO | TXU | PipeAdv | ITE | INTdis | TDA | MA | SC2 | RES0 | SDD |     | RW | EL | A | STATUS |
|     | ERR | HDE | RES0 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
```

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace any visible Exception level.

0b0 Trace Filter controls are not affected.

0b1 Trace Filter controls in TRFCR_EL1, TRFCR_EL2 are ignored.
Trace Filter controls TRFCR and HTRFCR are ignored.

When OLSR_EL1.OSLK == 1, this bit can be indirectly read and written through the MDSCR_EL1 and DBGDSCRext System registers.

This bit is ignored by the PE when ExternalSecureNoninvasiveDebugEnabled() == FALSE and the Effective value of MDCR_EL3.STE == 1.

On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Otherwise:
Reserved, RES0.

RXfull, bit [30]
DTRRX full.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Access to this field is RO.

TXfull, bit [29]
DTRTX full.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Access to this field is RO.

ITO, bit [28]
ITR overrun.
If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.
Access to this field is RO.

RXO, bit [27]
DTRRX overrun.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Access to this field is RO.

TXU, bit [26]
DTRTX underrun.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Access to this field is RO.

PipeAdv, bit [25]
Pipeline advance. Set to 1 every time the PE pipeline retires one or more instructions. Cleared to 0 by a write to EDRCR.CSPA.
The architecture does not define precisely when this bit is set to 1. It requires only that this happen periodically in Non-debug state to indicate that software execution is progressing.
Access to this field is RO.

ITE, bit [24]
ITR empty.
If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.
Access to this field is RO.
External Debug Register Descriptions

H9.2 External debug registers

INTdis, bits [23:22]

When FEAT_Debugv8p4 is implemented:

Interrupt disable. Disables taking interrupts in Non-Debug state.

- 0b0: Masking of interrupts is controlled by PSTATE and interrupt routing controls.
- 0b1: If ExternalSecureDebugEnabled() == TRUE, then all interrupts, including virtual and SError interrupts, are masked.
 If ExternalSecureDebugEnabled() == FALSE, then all interrupts targeting Non-secure state are masked.

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and DBGDSCRext System registers.

This field is ignored by the PE and treated as zero when ExternalDebugEnabled() == FALSE.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Interrupt disable.

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and DBGDSCRext System registers.

- 0b00: Do not disable interrupts.
- 0b01: Disable interrupts taken to Non-secure EL1.
- 0b10: Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If ExternalSecureInvasiveDebugEnabled() == TRUE, also disable interrupts taken to Secure EL1.
- 0b11: Disable interrupts taken only to Non-secure EL1 and Non-secure EL2. If ExternalSecureInvasiveDebugEnabled() == TRUE, also disable all other interrupts.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

TDA, bit [21]

Traps accesses to the following debug System registers:

- AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
- AArch32: DBGBCR<n>, DBGBVR<n>, DBGXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

- 0b0: Accesses to debug System registers do not generate a Software Access Debug event.
- 0b1: Accesses to debug System registers generate a Software Access Debug event, if OSLSR_EL1.OSLK is 0 and if halting is allowed.

On a Cold reset, this field resets to 0.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC.

This bit is ignored if in Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

- 0b0: Normal access mode.
- 0b1: Memory access mode.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and FEAT_PCSRv8p2 is not implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples CONTEXTIDR_EL2 or VTTBR_EL2.VMID.

0b0 Sample VTTBR_EL2.VMID.
0b1 Sample CONTEXTIDR_EL2.

On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:
Reserved, RES0.

NS, bit [18]
Non-secure status. When in Debug state, gives the current Security state:

0b0 Secure state, IsSecure() == TRUE.
0b1 Non-secure state, IsSecure() == FALSE.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Bit [17]
Reserved, RES0.

SDD, bit [16]
Secure debug disabled.
On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled() changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to guarantee their effect.
• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.
Access to this field is RO.

Bit [15]
Reserved, RES0.

HDE, bit [14]
Halting debug enable. The possible values of this field are:

0b0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction debug events.
0b1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction debug events.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of each Exception level.

- **0b1111** All Exception levels are using AArch64 or the PE is in Non-debug state.
- **0b1110** When **AArch32 is supported at any Exception level** The PE is in Debug state. EL0 is using AArch32. All other Exception levels are using AArch64. Only permitted if the PE is executing at EL0.
- **0b110x** When **AArch32 is supported at any Exception level** The PE is in Debug state. EL0 and EL1 are using AArch32. EL2 and EL3 are using AArch64. Only permitted if EL2 is implemented and enabled in the current Security state.
- **0b10xx** When **AArch32 is supported at any Exception level, EL3 is implemented, EL3 is using AArch64 and EL2 is implemented** The PE is in Debug state. EL0, EL1, and, if implemented in the current Security state, EL2 are using AArch32. EL3 is using AArch64.
- **0b0xxx** When **AArch32 is supported at any Exception level** The PE is in Debug state. All Exception levels are using AArch32.

In Non-debug state, this field is RAO.
Access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, this gives the current Exception level of the PE.
In Non-debug state, this field is RAZ.
Access to this field is RO.

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:
- If **HCR_EL2.{AMO, TGE} = {1, 0}**, EL2 is enabled in the current Security state, and the PE is executing at EL0 or EL1, a virtual SError interrupt.
- Otherwise, a physical SError interrupt.

- **0b0** No SError interrupt pending.
- **0b1** SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further instructions. A pending SError might indicate data from target memory is corrupted.
UNKNOWN in Non-debug state.
Access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled overrun or underrun on the DTR or EDITR.
On a Cold reset, this field resets to 0.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.
Access to this field is RO.

STATUS, bits [5:0]

Debug status flags.

- **0b000001** PE is restarting, exiting Debug state.
0b000010 PE is in Non-debug state.
0b000111 Breakpoint.
0b010011 External debug request.
0b011011 Halting step, normal.
0b011111 Halting step, exclusive.
0b100011 OS Unlock Catch.
0b100111 Reset Catch.
0b101011 Watchpoint.
0b101111 HLT instruction.
0b110011 Software access to debug register.
0b110111 Exception Catch.
0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing the EDSCR:

EDSCR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x088</td>
<td>EDSCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
H9.2.43 EDVIDSR, External Debug Virtual Context Sample Register

The EDVIDSR characteristics are:

Purpose
Contains sampled values captured on reading EDPCSR[31:0].

Configurations
EDVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise, direct accesses to EDVIDSR are RES0.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers space, if EL2 is not implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED whether EDVIDSR is implemented.

Note
FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors registers space.

Attributes
If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Field descriptions
The EDVIDSR bit assignments are:

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

<table>
<thead>
<tr>
<th>31 30 29 28 27</th>
<th>16 15</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>RES0</td>
<td>VMID[15:8]</td>
<td>VMID</td>
</tr>
</tbody>
</table>

This format applies in all Armv8.0 implementations.

NS, bit [31]
Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.
E2, bit [30]

When EL2 is implemented:

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

0b0 Sample is not from EL2.
0b1 Sample is from EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

E3, bit [29]

When EL3 is implemented and the highest implemented Exception level is using AArch64 state:

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3 using AArch64.

0b0 Sample is not from EL3 using AArch64.
0b1 Sample is from EL3 using AArch64.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be nonzero:

0b0 Bits[63:32] of the most recent EDPCSR sample are zero.
0b1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a hint that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and EL2 is implemented:

Extension to VMID[7:0]. See VMID[7:0] for more details.
On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.
VMID, bits [7:0]

When EL2 is implemented:
VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample. When the most recent EDPCSR sample was generated:
- This field is RES0 if any of the following apply:
 - The PE is executing in Secure state.
 - The PE is executing at EL2.
- Otherwise:
 - If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.
 - If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0, PMVIDSR.VMID[7:0] is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.
 - If EL2 is using AArch32, this field is set to VTTBRR.VMID.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Otherwise:
Reserved, RES0.

When (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and EDSCR.SC2 == 1:

CONTEXTIDR_EL2, bits [31:0]
Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR sample. When the most recent EDPCCSR sample was generated:
- If EL2 was using AArch64 and the PE was executing in Non-secure state, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.
- If EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Accessing the EDVIDSR:
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7134.

EDVIDSR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0xA8</td>
<td>EDVIDSR</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
H9.2.44 EDWAR, External Debug Watchpoint Address Register

The EDWAR characteristics are:

Purpose

Returns the virtual data address being accessed when a Watchpoint Debug Event was triggered.

Configurations

EDWAR is in the Core power domain.

Attributes

EDWAR is a 64-bit register.

Field descriptions

The EDWAR bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:32]</th>
<th>Watchpoint address</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:0]

Watchpoint address. The data virtual address being accessed when a Watchpoint Debug Event was triggered and caused entry to Debug state. This address must be within a naturally-aligned block of memory of power-of-two size no larger than the DC ZVA block size.

The value of this register is UNKNOWN if the PE is in Non-debug state, or if Debug state was entered other than for a Watchpoint debug event.

The value of EDWAR[63:32] is UNKNOWN if Debug state was entered for a Watchpoint debug event taken from AArch32 state.

The EDWAR is subject to the same alignment rules as the reporting of a watchpointed address in the FAR. See Determining the memory location that caused a Watchpoint exception on page D2-2459.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the EDWAR:

EDWAR[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x070</td>
<td>EDWAR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDWAR[31:0] are RO.
- Otherwise accesses to EDWAR[31:0] generate an error response.
EDWAR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x034</td>
<td>EDWAR</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to EDWAR[63:32] are RO.
- Otherwise accesses to EDWAR[63:32] generate an error response.
H9.2.45 MIDR_EL1, Main ID Register

The MIDR_EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configurations

External register MIDR_EL1[31:0] is architecturally mapped to AArch64 System register MIDR_EL1[31:0].

External register MIDR_EL1[31:0] is architecturally mapped to AArch32 System register MIDR[31:0].

It is IMPLEMENTATION DEFINED whether MIDR_EL1 is implemented in the Core power domain or in the Debug power domain.

Attributes

MIDR_EL1 is a 32-bit register.

Field descriptions

The MIDR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>20 19</th>
<th>16 15</th>
<th>4 3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementer</td>
<td>Variant</td>
<td></td>
<td>PartNum</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>

Architecture

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes include the following:

<table>
<thead>
<tr>
<th>Hex representation</th>
<th>Implementer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Reserved for software use</td>
</tr>
<tr>
<td>0xC0</td>
<td>Ampere Computing</td>
</tr>
<tr>
<td>0x41</td>
<td>Arm Limited</td>
</tr>
<tr>
<td>0x42</td>
<td>Broadcom Corporation</td>
</tr>
<tr>
<td>0x43</td>
<td>Cavium Inc.</td>
</tr>
<tr>
<td>0x44</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>0x46</td>
<td>Fujitsu Ltd.</td>
</tr>
<tr>
<td>0x49</td>
<td>Infineon Technologies AG</td>
</tr>
<tr>
<td>0x4D</td>
<td>Motorola or Freescale Semiconductor Inc.</td>
</tr>
<tr>
<td>0x4E</td>
<td>NVIDIA Corporation</td>
</tr>
<tr>
<td>0x50</td>
<td>Applied Micro Circuits Corporation</td>
</tr>
</tbody>
</table>
Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

Architecture, bits [19:16]

Architecture version. Defined values are:
- 0b0001 Armv4.
- 0b0010 Armv4T.
- 0b0011 Armv5 (obsolete).
- 0b0100 Armv5T.
- 0b0101 Armv5TE.
- 0b0110 Armv5TEJ.
- 0b0111 Armv6.
- 0b1111 Architectural features are individually identified in the ID_* registers, see Table K15-9 on page K15-8181.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR_EL1:

MIDR_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x00</td>
<td>MIDR_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.
- Otherwise accesses to this register are IMPDEF.
H9.2.46 OSLAR_EL1, OS Lock Access Register

The OSLAR_EL1 characteristics are:

Purpose

Used to lock or unlock the OS lock.

Configurations

External register OSLAR_EL1[31:0] is architecturally mapped to AArch64 System register OSLAR_EL1[31:0].

External register OSLAR_EL1[31:0] is architecturally mapped to AArch32 System register DBGOSLAR[31:0].

OSLAR_EL1 is in the Core power domain.

If FEAT_Debugv8p2 is not implemented, it is IMPLEMENTATION DEFINED whether external debug accesses to OSLAR_EL1 are ignored and return an error when AllowExternalDebugAccess() returns FALSE for the access.

If FEAT_Debugv8p2 is implemented, external debug accesses to OSLAR_EL1 are ignored and return an error when AllowExternalDebugAccess() returns FALSE for the access.

Attributes

OSLAR_EL1 is a 32-bit register.

Field descriptions

The OSLAR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>30</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>28</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>27</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>26</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>25</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>24</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>23</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>22</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>21</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>20</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>19</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>18</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>17</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>16</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>15</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>14</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>13</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>12</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>11</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>10</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>9</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>6</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>5</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>3</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>2</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>OSLK</td>
</tr>
</tbody>
</table>

Accessing the OSLAR_EL1:

--- Note ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

OSLAR_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>0x300</td>
<td>OSLAR_EL1</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are WI.
- When IsCorePowered(), !DoubleLockStatus(), AllowExternalDebugAccess() and !SoftwareLockStatus() accesses to this register are WO.
- When IsCorePowered(), !DoubleLockStatus(), !AllowExternalDebugAccess() and FEAT_Debugv8p2 is not implemented accesses to this register are IMPDEF.
- Otherwise accesses to this register generate an error response.
H9.3 Cross-Trigger Interface registers

This section lists the Cross-Trigger Interface registers.
H9.3.1 ASICCTL, CTI External Multiplexer Control register

The ASICCTL characteristics are:

Purpose

Can be used to provide implementation defined controls for the CTI. For example, the register might be used to control multiplexors for additional implementation defined triggers. The implementation defined controls provided by this register might modify the architecturally defined behavior of the CTI.

--- Note ---
The architecturally-defined triggers must not be multiplexed.

Configurations

It is implementation defined whether ASICCTL is implemented in the Core power domain or in the Debug power domain.

If it is implemented in the Core power domain then it is implementation defined whether it is in the Cold reset domain or the Warm reset domain.

This register must reset to a value that supports the architecturally-defined behavior of the CTI. Changing the value of the register from its reset value causes implementation defined behavior that might differ from the architecturally-defined behavior of the CTI.

Other than the requirements listed in this register description, all aspects of the reset behavior of the ASICCTL are implementation defined.

Attributes

ASICCTL is a 32-bit register.

Field descriptions

The ASICCTL bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ASICCTL:

ASICCTL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x244</td>
<td>ASICCTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and SoftwareLockStatus() accesses to this register are RO.
- Otherwise accesses to this register are IMPDEF.
H9.3.2 CTIAPPCLEAR, CTI Application Trigger Clear register

The CTIAPPCLEAR characteristics are:

Purpose
Cleans bits of the Application Trigger register.

Configurations
CTIAPPCLEAR is in the Debug power domain.

Attributes
CTIAPPCLEAR is a 32-bit register.

Field descriptions
The CTIAPPCLEAR bit assignments are:

<table>
<thead>
<tr>
<th>Field description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPCLEAR<x>, bit [x]</td>
<td>for x = 0 to 31</td>
</tr>
</tbody>
</table>

APPCLEAR<x>, bit [x], for x = 0 to 31
Application trigger <x> disable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:
- 0b0 No effect.
- 0b1 Clear corresponding bit in CTIAPPTRIG to 0 and clear the corresponding channel event.

If the ECT does not support multicycle channel events, use of CTIAPPCLEAR is deprecated and the debugger must only use CTIAPPULSE.

Accessing the CTIAPPCLEAR:

CTIAPPCLEAR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x018</td>
<td>CTIAPPCLEAR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are WI.
- When !SoftwareLockStatus() accesses to this register are WO.
H9.3.3 CTIAPPPULSE, CTI Application Pulse register

The CTIAPPPULSE characteristics are:

Purpose
Causes event pulses to be generated on ECT channels.

Configurations
CTIAPPPULSE is in the Debug power domain.

Attributes
CTIAPPPULSE is a 32-bit register.

Field descriptions
The CTIAPPPULSE bit assignments are:

<table>
<thead>
<tr>
<th>APPPULSE<x>, bit [x]</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
</table>

APPPULSE<x>, bit [x], for x = 0 to 31
Generate event pulse on ECT channel <x>.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Writing to this bit has the following effect:

- **0b0** No effect.
- **0b1** Channel <x> event pulse generated.

Note
- The CTIAPPPULSE operation does not affect the state of the Application Trigger register, CTIAPPTRIG. If the channel is active, either because of an earlier event or from the application trigger, then the value written to CTIAPPPULSE might have no effect.
- Multiple pulse events that occur close together might be merged into a single pulse event.

Accessing the CTIAPPPULSE:
It is CONSTRAINED UNPREDICTABLE whether a write to CTIAPPPULSE generates an event on a channel if CTICONTROL.GLBNEN is 0.

CTIAPPPULSE can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x10</td>
<td>CTIAPPPULSE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are WI.
- When !SoftwareLockStatus() accesses to this register are WO.
H9.3.4 CTIAPPSET, CTI Application Trigger Set register

The CTIAPPSET characteristics are:

Purpose
Sets bits of the Application Trigger register.

Configurations
CTIAPPSET is in the Debug power domain.

Attributes
CTIAPPSET is a 32-bit register.

Field descriptions
The CTIAPPSET bit assignments are:

<table>
<thead>
<tr>
<th>31-0</th>
<th>APPSET<x>, bit [x]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPSET<x>, bit [x], for x = 0 to 31
Application trigger <x> enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

0b0 Reading this means the application trigger is inactive. Writing this has no effect.
0b1 Reading this means the application trigger is active. Writing this sets the corresponding bit in CTIAPPTRIG to 1 and generates a channel event.

If the ECT does not support multicycle channel events, use of CTIAPPSET is deprecated and the debugger must only use CTIAPPULSE.

On a Cold reset, the value of this field is unchanged.
On an External debug reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the CTIAPPSET:
CTIAPPSET can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x014</td>
<td>CTIAPPSET</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.5 CTIAUTHSTATUS, CTI Authentication Status register

The CTIAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for CTI.

Configurations

CTIAUTHSTATUS is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance.

Attributes

CTIAUTHSTATUS is a 32-bit register.

Field descriptions

The CTIAUTHSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bit 31</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>RAZ</td>
<td>NSNID</td>
<td>NSID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

Bits [7:4]

Reserved, RAZ.

NSNID, bits [3:2]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSNID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the same value as DBGAUTHSTATUS_EL1.SNID.

NSID, bits [1:0]

If EL3 is implemented, this field holds the same value as DBGAUTHSTATUS_EL1.NSID.

If EL3 is not implemented and the implemented Security state is Secure state, this field holds the same value as DBGAUTHSTATUS_EL1.SID.

Accessing the CTIAUTHSTATUS:

CTIAUTHSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFB8</td>
<td>CTIAUTHSTATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.6 CTICHINSTATUS, CTI Channel In Status register

The CTICHINSTATUS characteristics are:

Purpose
Provides the raw status of the ECT channel inputs to the CTI.

Configurations
CTICHINSTATUS is in the Debug power domain.

Attributes
CTICHINSTATUS is a 32-bit register.

Field descriptions
The CTICHINSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIN<n>, bit [n], for n = 0 to 31</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>CHIN<n>, bit [n]</td>
</tr>
<tr>
<td>0</td>
<td>CHIN<n>, bit [n]</td>
</tr>
</tbody>
</table>

CTICHINSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x138</td>
<td>CTICHINSTATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.7 CTICHOUTSTATUS, CTI Channel Out Status register

The CTICHOUTSTATUS characteristics are:

Purpose

Provides the status of the ECT channel outputs from the CTI.

Configurations

CTICHOUTSTATUS is in the Debug power domain.

Attributes

CTICHOUTSTATUS is a 32-bit register.

Field descriptions

The CTICHOUTSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>CHOUT<(n)>, bit [(n)]</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output channel <(n)> status.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits \([31:N]\) are RAZ. \(N\) is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

Possible values of this bit are:

- \(0b0\): Output channel <\(n\)> is inactive.
- \(0b1\): Output channel <\(n\)> is active.

If the ECT channels do not support multicycle events then it is IMPLEMENTATION DEFINED whether an output channel can be observed as active.

Note

The value in CTICHOUTSTATUS is after gating by the channel gate. For more information, see CTIGATE.

Accessing the CTICHOUTSTATUS:

CTICHOUTSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x13C</td>
<td>CTICHOUTSTATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.8 CTICIDR0, CTI Component Identification Register 0

The CTICIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

CTICIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR0 is a 32-bit register.

Field descriptions

The CTICIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7-0</td>
<td>PRMBL_0, bits [7:0]</td>
</tr>
</tbody>
</table>

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Accessing the CTICIDR0:

CTICIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFF0</td>
<td>CTICIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.9 CTICIDR1, CTI Component Identification Register 1

The CTICIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

CTICIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR1 is a 32-bit register.

Field descriptions

The CTICIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>CLASS</td>
</tr>
<tr>
<td>7</td>
<td>Component class.</td>
</tr>
<tr>
<td>6</td>
<td>0b1001 CoreSight component.</td>
</tr>
<tr>
<td>5</td>
<td>Other values are defined by the CoreSight Architecture.</td>
</tr>
<tr>
<td>4</td>
<td>This field reads as 0x9.</td>
</tr>
<tr>
<td>3</td>
<td>PRMBL_1, bits [3:0]</td>
</tr>
<tr>
<td>2</td>
<td>Preamble. RAZ.</td>
</tr>
<tr>
<td>1</td>
<td>Reads as 0b0000.</td>
</tr>
</tbody>
</table>

Accessing the CTICIDR1:

CTICIDR1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFF4</td>
<td>CTICIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.10 CTICIDR2, CTI Component Identification Register 2

The CTICIDR2 characteristics are:

Purpose

Provides information to identify a CTI component. For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

CTICIDR2 is in the Debug power domain. Implementation of this register is OPTIONAL. This register is required for CoreSight compliance.

Attributes

CTICIDR2 is a 32-bit register.

Field descriptions

The CTICIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>PRMBL_2</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>Preamble.</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Reads as 0x05.</td>
</tr>
</tbody>
</table>

Accessing the CTICIDR2:

CTICIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFF8</td>
<td>CTICIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.11 CTICIDR3, CTI Component Identification Register 3

The CTICIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Component Identification scheme on page K2-8002.

Configurations

CTICIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTICIDR3 is a 32-bit register.

Field descriptions

The CTICIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7-0</td>
<td>PRMBL_3, Preamble</td>
</tr>
</tbody>
</table>

Accessing the CTICIDR3:

CTICIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFFC</td>
<td>CTICIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RO.
H9.3.12 CTCLAIMCLR, CTI CLAIM Tag Clear register

The CTCLAIMCLR characteristics are:

Purpose

Used by software to read the values of the CLAIM bits, and to clear CLAIM tag bits to 0.

Configurations

CTCLAIMCLR is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTCLAIMCLR is a 32-bit register.

Field descriptions

The CTCLAIMCLR bit assignments are:

<table>
<thead>
<tr>
<th>Component Offset Instance</th>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFA4</td>
<td>CTCLAIMCLR</td>
<td></td>
</tr>
</tbody>
</table>

CLAIM<\(x\)>, bit \([x]\), for \(x = 0\) to \(31\)

CLAIM tag clear bit.

For values of \(x\) greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ. Software can rely on these bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations must ignore writes.

For other values of \(x\), reads return the value of CLAIM\([x]\) and the behavior on writes is:

- **0b0** No action.
- **0b1** Indirectly clear CLAIM\([x]\) to 0.

A single write to CTCLAIMCLR can clear multiple tags to 0.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTCLAIMCLR:

CTCLAIMCLR can be accessed through the external debug interface:

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.13 CTICLAIMSET, CTI CLAIM Tag Set register

The CTICLAIMSET characteristics are:

Purpose

Used by software to set CLAIM bits to 1.

Configurations

CTICLAIMSET is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTICLAIMSET is a 32-bit register.

Field descriptions

The CTICLAIMSET bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAIM<x>, bit [x]</td>
<td></td>
</tr>
</tbody>
</table>

CLAIM<x>, bit [x], for x = 0 to 31

CLAIM tag set bit.

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ. Software can rely on these bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations must ignore writes.

For other values of x, the bit is RAO and the behavior on writes is:

0b0 No action.
0b1 Indirectly set CLAIM[x] tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET:

CTICLAIMSET can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFA0</td>
<td>CTICLAIMSET</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.14 CTICONTROL, CTI Control register

The CTICONTROL characteristics are:

Purpose
 Controls whether the CTI is enabled.

Configurations
 CTICONTROL is in the Debug power domain.

Attributes
 CTICONTROL is a 32-bit register.

Field descriptions
The CTICONTROL bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:1</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>GLBEN, bit [0]</td>
</tr>
</tbody>
</table>

GLBEN, bit [0]
Enables or disables the CTI mapping functions. Possible values of this field are:

- 0b0: CTI mapping functions and application trigger disabled.
- 0b1: CTI mapping functions and application trigger enabled.

When GLBEN is 0, the input channel to output trigger, input trigger to output channel, and application trigger functions are disabled and do not signal new events on either output triggers or output channels. If a previously asserted output trigger has not been acknowledged, it remains asserted after the mapping functions are disabled. All output triggers are disabled by CTI reset.

If the ECT supports multicycle channel events any existing output channel events will be terminated.

On a Cold reset, the value of this field is unchanged.
On an External debug reset, this field resets to 0.
On a Warm reset, the value of this field is unchanged.

Accessing the CTICONTROL:

CTICONTROL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x000</td>
<td>CTICONTROL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.15 CTIDEVAFF0, CTI Device Affinity register 0

The CTIDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF0 is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF1 must also be implemented. If the CTI of a PE does not implement the CTI Device Affinity registers, the CTI block of the external debug memory map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF0 is a 32-bit register.

Field descriptions

The CTIDEVAFF0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPIDR_EL1lo</td>
</tr>
</tbody>
</table>

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the CTIDEVAFF0:

CTIDEVAFF0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFA8</td>
<td>CTIDEVAFF0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.16 CTIDEVAFF1, CTI Device Affinity register 1

The CTIDEVAFF1 characteristics are:

Purpose

Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the CTI component relates to.

Configurations

CTIDEVAFF1 is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is implemented, then CTIDEVAFF0 must also be implemented. If the CTI of a PE does not implement the CTI Device Affinity registers, the CTI block of the external debug memory map must be located 64KB above the debug registers in the external debug interface.

Attributes

CTIDEVAFF1 is a 32-bit register.

Field descriptions

The CTIDEVAFF1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>MPIDR_EL1hi</td>
</tr>
</tbody>
</table>

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the CTIDEVAFF1:

CTIDEVAFF1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFA0</td>
<td>CTIDEVAFF1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.17 CTIDEVARCH, CTI Device Architecture register

The CTIDEVARCH characteristics are:

Purpose

Identifies the programmers’ model architecture of the CTI component.

Configurations

CTIDEVARCH is in the Debug power domain.

If the CTI is CTIv1, this register is OPTIONAL. If the CTI is CTIv2, this register is mandatory.

Arm recommends that the CTI is CTIv2.

In an Armv8.5 compliant implementation, the CTI must be CTIv2.

If this register is not implemented, CTIDEVAFF0 and CTIDEVAFF1 are also not implemented.

Attributes

CTIDEVARCH is a 32-bit register.

Field descriptions

The CTIDEVARCH bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ARCHITECT</td>
<td>Defines the architecture of the component. For CTI, this is Arm Limited.</td>
</tr>
<tr>
<td>28</td>
<td>Bits [31:28]</td>
<td>JEP106 continuation code, 0x4.</td>
</tr>
<tr>
<td>27</td>
<td>Bits [27:21]</td>
<td>JEP106 ID code, 0x3B.</td>
</tr>
<tr>
<td>20</td>
<td>PRESENT</td>
<td>When set to 1, indicates that the DEVARCH is present.</td>
</tr>
<tr>
<td>19</td>
<td>REVISION</td>
<td>Revision.</td>
</tr>
<tr>
<td>0</td>
<td>ARCHID</td>
<td>Defines this part to be an Armv8 debug component. For architectures defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by Arm this is further subdivided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For CTI:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bits [15:12] are the architecture version, 0x1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bits [11:0] are the architecture part number, 0xA14.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This corresponds to CTI architecture version CTIv2.</td>
</tr>
</tbody>
</table>
Accessing the CTIDEVARCH:

CTIDEVARCH can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFBC</td>
<td>CTIDEVARCH</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.18 CTDEVCTL, CTI Device Control register

The CTDEVCTL characteristics are:

Purpose

Provides target-specific device controls

Configurations

CTDEVCTL is in the Debug power domain.
This register is present only when FEAT_DoPD is implemented. Otherwise, direct accesses to CTDEVCTL are RES0.

Attributes

CTDEVCTL is a 32-bit register.

Field descriptions

The CTDEVCTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
<td>0x0</td>
</tr>
<tr>
<td>2</td>
<td>RCE, bit [1]</td>
<td>0b0, 0b1</td>
</tr>
<tr>
<td></td>
<td>Reset Catch Enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reset Catch debug event disabled.</td>
<td>0b0</td>
</tr>
<tr>
<td></td>
<td>Reset Catch debug event enabled.</td>
<td>0b1</td>
</tr>
<tr>
<td>1</td>
<td>OSUCE, bit [0]</td>
<td>0b0, 0b1</td>
</tr>
<tr>
<td></td>
<td>OS Unlock Catch Enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OS Unlock Catch debug event disabled.</td>
<td>0b0</td>
</tr>
<tr>
<td></td>
<td>OS Unlock Catch debug event enabled.</td>
<td>0b1</td>
</tr>
</tbody>
</table>

On a Cold reset, the value of this field is unchanged.
On an External debug reset, this field resets to 0.
On a Warm reset, the value of this field is unchanged.
Accessing the CTIDEVCTL:

CTIDEVCTL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x150</td>
<td>CTIDEVCTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.19 CTIDEVID, CTI Device ID register 0

The CTIDEVID characteristics are:

Purpose

Describes the CTI component to the debugger.

Configurations

CTIDEVID is in the Debug power domain.

Attributes

CTIDEVID is a 32-bit register.

Field descriptions

The CTIDEVID bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>26-24</td>
<td>NUMCHAN</td>
</tr>
<tr>
<td>15-14</td>
<td>NUMTRIG</td>
</tr>
<tr>
<td>8-7</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

InOut, bits [25:24]

Input/output options. Indicates presence of the input gate. If the CTM is not implemented or CTIv2 is not implemented, this field is RAZ.

0b00 CTIGATE does not mask propagation of input events from external channels.
0b01 CTIGATE masks propagation of input events from external channels.

All other values are reserved.

Bits [23:22]

Reserved, RES0.

NUMCHAN, bits [21:16]

Number of ECT channels implemented. IMPLEMENTATION DEFINED. For Armv8, valid values are:

0b000011 3 channels (0..2) implemented.
0b000100 4 channels (0..3) implemented.
0b000101 5 channels (0..4) implemented.
0b000110 6 channels (0..5) implemented.
... and so on up to 0b100000, 32 channels (0..31) implemented.

All other values are reserved.

Bits [15:14]

Reserved, RES0.

NUMTRIG, bits [13:8]

Number of triggers implemented. IMPLEMENTATION DEFINED. This is one more than the index of the largest trigger, rather than the actual number of triggers.
For Armv8, valid values are:
- \(0b000011\) Up to 3 triggers (0..2) implemented.
- \(0b001000\) Up to 8 triggers (0..7) implemented.
- \(0b001001\) Up to 9 triggers (0..8) implemented.
- \(0b001010\) Up to 10 triggers (0..9) implemented.
and so on up to \(0b100000\), 32 triggers (0..31) implemented.

All other values are reserved. If the PE contains a Trace extension, this field must be at least \(0b001000\). There is no guarantee that any of the implemented triggers, including the highest numbered, are connected to any components.

Bits [7:5]

Reserved, RES0.

EXTMUXNUM, bits [4:0]

Number of multiplexors available on triggers. This value is used in conjunction with External Control register, ASICCTL.

Accessing the CTIDEVID:

CTIDEVID can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFC8</td>
<td>CTIDEVID</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.20 CTIDEVID1, CTI Device ID register 1

The CTIDEVID1 characteristics are:

Purpose
Reserved for future information about the CTI component to the debugger.

Configurations
CTIDEVID1 is in the Debug power domain.

Attributes
CTIDEVID1 is a 32-bit register.

Field descriptions
The CTIDEVID1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the CTIDEVID1:
CTIDEVID1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFC4</td>
<td>CTIDEVID1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.
H9.3.21 CTIDEVID2, CTI Device ID register 2

The CTIDEVID2 characteristics are:

Purpose
Reserved for future information about the CTI component to the debugger.

Configurations
CTIDEVID2 is in the Debug power domain.

Attributes
CTIDEVID2 is a 32-bit register.

Field descriptions
The CTIDEVID2 bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:0]</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

Accessing the CTIDEVID2:
CTIDEVID2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xF0</td>
<td>CTIDEVID2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.22 CTIDEVTYPE, CTI Device Type register

The CTIDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PEs cross-trigger interface.

Configurations

CTIDEVTYPE is in the Debug power domain.

Implementation of this register is **OPTIONAL**.

Attributes

CTIDEVTYPE is a 32-bit register.

Field descriptions

The CTIDEVTYPE bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:8]</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>SUB, bits [7:4]</td>
<td>Subtype. Must read as 0x1 to indicate this is a component within a PE.</td>
</tr>
<tr>
<td>MAJOR, bits [3:0]</td>
<td>Major type. Must read as 0x4 to indicate this is a cross-trigger component.</td>
</tr>
</tbody>
</table>

Accessing the CTIDEVTYPE:

CTIDEVTYPE can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFCC</td>
<td>CTIDEVTYPE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.23 CTIGATE, CTI Channel Gate Enable register

The CTIGATE characteristics are:

Purpose

Determines whether events on channels propagate through the CTM to other ECT components, or from the CTM into the CTI.

Configurations

CTIGATE is in the Debug power domain.

Attributes

CTIGATE is a 32-bit register.

Field descriptions

The CTIGATE bit assignments are:

<table>
<thead>
<tr>
<th>GATE<x>, bit [x]</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

GATE<x>, bit [x], for x = 0 to 31

Channel <x> gate enable.

Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.

- 0b0 Disable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.
- 0b1 Enable output and, if CTIDEVID.INOUT == 0b01, input channel <x> propagation.

If GATE[x] is set to 0, no new events will be propagated to the ECT, and if the ECT supports multicycle channel events any existing output channel events will be terminated.

On a Cold reset, the value of this field is unchanged.

On an External debug reset, this field resets to an architecturally UNKNOWN value.

On a Warm reset, the value of this field is unchanged.

Accessing the CTIGATE:

CTIGATE can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x140</td>
<td>CTIGATE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
CTIINEN<\(n\)>, CTI Input Trigger to Output Channel Enable registers, \(n = 0 - 31\)

The CTIINEN<\(n\)> characteristics are:

Purpose

Enables the signaling of an event on output channels when input trigger event \(n\) is received by the CTI.

Configurations

CTIINEN<\(n\)> is in the Debug power domain.

If input trigger \(n\) is not connected, the behavior of CTIINEN<\(n\)> is IMPLEMENTATION DEFINED.

Attributes

CTIINEN<\(n\)> is a 32-bit register.

Field descriptions

The CTIINEN<\(n\)> bit assignments are:

<table>
<thead>
<tr>
<th>Field Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN<(x)>, bit [(x)]</td>
<td>Input trigger (n) to output channel (x) enable.</td>
</tr>
</tbody>
</table>

- **INEN<\(x\)>, bit [\(x\)], for \(x = 0\) to 31**
 - Input trigger \(n\) to output channel \(x\) enable.
 - Bits [31:N] are RAZ/WI. \(N\) is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.
 - 0b0: Input trigger \(n\) will not generate an event on output channel \(<x>\).
 - 0b1: Input trigger \(n\) will generate an event on output channel \(<x>\).

 - On a Cold reset, the value of this field is unchanged.
 - On an External debug reset, this field resets to an architecturally UNKNOWN value.
 - On a Warm reset, the value of this field is unchanged.

Accessing the CTIINEN<\(n\)>:

CTIINEN<\(n\)> can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x020 + (4 * (n))</td>
<td>CTIINEN<(n)></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.25 CTINTACK, CTI Output Trigger Acknowledge register

The CTINTACK characteristics are:

Purpose
Can be used to deactivate the output triggers.

Configurations
CTINTACK is in the Debug power domain.

Attributes
CTINTACK is a 32-bit register.

Field descriptions
The CTINTACK bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

ACK<n>, bit [n], for n = 0 to 31

Acknowledge for output trigger <n>.

Bits [31:N] are RAZ/WI. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.

If any of the following is true, writes to ACK<n> are ignored:
- n ≥ CTIDEVID.NUMTRIG, the number of implemented triggers.
- Output trigger n is not active.
- The channel mapping function output, as controlled by CTIOUTEN<n>, is still active.

Otherwise, if any of the following are true, it is IMPLEMENTATION DEFINED whether writes to ACK<n> are ignored:
- Output trigger n is not implemented.
- Output trigger n is not connected.
- Output trigger n is self-acknowledging and does not require software acknowledge.

Otherwise, the behavior on writes to ACK<n> is as follows:
- 0b0 No effect
- 0b1 Deactivate the trigger.

Accessing the CTINTACK:

A debugger must read CTITRIGOUTSTATUS to confirm that the output trigger has been acknowledged before generating any event that must be ordered after the write to CTINTACK, such as a write to CTIAPPPULSE to activate another trigger.

CTINTACK can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x010</td>
<td>CTINTACK</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are WI.
- When !SoftwareLockStatus() accesses to this register are WO.
H9.3.26 CTITCTRL, CTI Integration mode Control register

The CTITCTRL characteristics are:

Purpose

Enables the CTI to switch from its default mode into integration mode, where test software can control directly the inputs and outputs of the PE, for integration testing or topology detection.

Configurations

It is IMPLEMENTATION DEFINED whether CTITCTRL is implemented in the Core power domain or in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

CTITCTRL is a 32-bit register.

Field descriptions

The CTITCTRL bit assignments are:

- **Bits [31:1]**
 - Reserved, RES0.

- **IME, bit [0]**
 - Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.
 - 0b0 Normal operation.
 - 0b1 Integration mode enabled.

The following resets apply:

- If the register is implemented in the Core power domain:
 - On a Cold reset, this field resets to 0.
 - On an External debug reset, the value of this field is unchanged.
 - On a Warm reset, the value of this field is unchanged.

- If the register is implemented in the External debug power domain:
 - On a Cold reset, the value of this field is unchanged.
 - On an External debug reset, this field resets to 0.
 - On a Warm reset, the value of this field is unchanged.
Accessing the CTIITCTRL:

CTIITCTRL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xF00</td>
<td>CTIITCTRL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register are IMPDEF.
H9.3.27 CTILAR, CTI Lock Access Register

The CTILAR characteristics are:

Purpose

Allows or disallows access to the CTI registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

CTILAR is in the Debug power domain.

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILAR is a 32-bit register.

Field descriptions

The CTILAR bit assignments are:

When the Software Lock is implemented:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td></td>
</tr>
</tbody>
</table>

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACE5 to this field unlocks the lock, enabling write accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a memory-mapped interface.

Otherwise:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>

Otherwise

Bits [31:0]

Reserved, RES0.
Accessing the CTILAR:

CTILAR can be accessed through a memory-mapped interface access to the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFB0</td>
<td>CTILAR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are WO.
H9.3.28 CTILSR, CTI Lock Status Register

The CTILSR characteristics are:

Purpose

Indicates the current status of the Software Lock for CTI registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Cross-Trigger Interface registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the Cross-Trigger Interface registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

CTILSR is in the Debug power domain.

If FEAT_Debugv8p4 is implemented, the Software Lock is not implemented.

Software uses CTILAR to set or clear the lock, and CTILSR to check the current status of the lock.

Attributes

CTILSR is a 32-bit register.

Field descriptions

The CTILSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Bit Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved</td>
</tr>
<tr>
<td>30</td>
<td>SLI</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SLK</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>nTT</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:3]

Reserved, RES0.

nTT, bit [2]

Not thirty-two bit access required. RAZ.

SLK, bit [1]

When the Software Lock is implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when the Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when the Software Lock is implemented, possible values of this field are:

- **0b0**
 Lock clear. Writes are permitted to this component's registers.

- **0b1**
 Lock set. Writes to this component's registers are ignored, and reads have no side effects.

On a Cold reset, the value of this field is unchanged.

On an External debug reset, this field resets to 1.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RAZ.
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:

- **0b0**
 Software Lock not implemented or not memory-mapped access.
- **0b1**
 Software Lock implemented and memory-mapped access.

Accessing the CTILSR:

CTILSR can be accessed through a memory-mapped interface access to the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFB4</td>
<td>CTILSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.29 CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31

The CTIOUTEN<n> characteristics are:

Purpose
Defines which input channels generate output trigger n.

Configurations
CTIOUTEN<n> is in the Debug power domain.
If output trigger n is not connected, the behavior of CTIOUTEN<n> is IMPLEMENTATION DEFINED.

Attributes
CTIOUTEN<n> is a 32-bit register.

Field descriptions
The CTIOUTEN<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>…</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTEN<x>, bit [x]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTEN<x>, bit [x], for x = 0 to 31
Input channel <x> to output trigger <n> enable.
Bits [31:N] are RAZ/WI. N is the number of ECT channels implemented as defined by the CTIDEVID.NUMCHAN field.
Possible values of this bit are:
- 0b0: An event on input channel <x> will not cause output trigger <n> to be asserted.
- 0b1: An event on input channel <x> will cause output trigger <n> to be asserted.

On a Cold reset, the value of this field is unchanged.
On an External debug reset, this field resets to an architecturally UNKNOWN value.
On a Warm reset, the value of this field is unchanged.

Accessing the CTIOUTEN<n>:
CTIOUTEN<n> can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x0A0 + (4 * n)</td>
<td>CTIOUTEN<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When SoftwareLockStatus() accesses to this register are RO.
- When !SoftwareLockStatus() accesses to this register are RW.
H9.3.30 CTIPIDR0, CTI Peripheral Identification Register 0

The CTIPIDR0 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

CTIPIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR0 is a 32-bit register.

Field descriptions

The CTIPIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>8</td>
<td>PART_0</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the CTIPIDR0:

CTIPIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFE0</td>
<td>CTIPIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.31 CTIPIDR1, CTI Peripheral Identification Register 1

The CTIPIDR1 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

CTIPIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR1 is a 32-bit register.

Field descriptions

The CTIPIDR1 bit assignments are:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
| RES0 | DES_0 | PART_1 |

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the CTIPIDR1:

CTIPIDR1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFE4</td>
<td>CTIPIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.32 CTIPIDR2, CTI Peripheral Identification Register 2

The CTIPIDR2 characteristics are:

Purpose

Provides information to identify a CTI component.
For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

CTIPIDR2 is in the Debug power domain.
Implementation of this register is OPTIONAL.
This register is required for CoreSight compliance.

Attributes

CTIPIDR2 is a 32-bit register.

Field descriptions

The CTIPIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:8</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7:4</td>
<td>REVISION, Part major revision. Parts can also use this field to extend Part number to 16-bits.</td>
</tr>
<tr>
<td>3</td>
<td>JEDEC, RAO. Indicates a JEP106 identity code is used.</td>
</tr>
<tr>
<td>2:0</td>
<td>DES_1, Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.</td>
</tr>
</tbody>
</table>

Accessing the CTIPIDR2:

CTIPIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFE8</td>
<td>CTIPIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.33 CTIPIDR3, CTI Peripheral Identification Register 3

The CTIPIDR3 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

CTIPIDR3 is in the Debug power domain.
Implementation of this register is OPTIONAL.
This register is required for CoreSight compliance.

Attributes

CTIPIDR3 is a 32-bit register.

Field descriptions

The CTIPIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8-7</td>
<td>REV AND, Part minor revision. Parts using CTIPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.</td>
</tr>
<tr>
<td>4-0</td>
<td>CMOD, Customer modified. Indicates someone other than the Designer has modified the component.</td>
</tr>
</tbody>
</table>

Accessing the CTIPIDR3:

CTIPIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xFE</td>
<td>CTIPIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.34 CTIPIDR4, CTI Peripheral Identification Register 4

The CTIPIDR4 characteristics are:

Purpose

Provides information to identify a CTI component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

CTIPIDR4 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes

CTIPIDR4 is a 32-bit register.

Field descriptions

The CTIPIDR4 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SIZE</td>
<td>DES_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. \(\log_2 \) of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is \(0b0100 \).

Accessing the CTIPIDR4:

CTIPIDR4 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0xF00</td>
<td>CTIPIDR4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.35 CTITRIGINSTATUS, CTI Trigger In Status register

The CTITRIGINSTATUS characteristics are:

Purpose

Provides the status of the trigger inputs.

Configurations

CTITRIGINSTATUS is in the Debug power domain.

Attributes

CTITRIGINSTATUS is a 32-bit register.

Field descriptions

The CTITRIGINSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIN<n>, bit [n]</td>
<td>Trigger input <n> status.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bits [31:N] are RAZ. N is the number of CTI triggers implemented as defined by the CTIDEVID.NUMTRIG field.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0b0 Input trigger n is inactive.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0b1 Input trigger n is active.</td>
<td>1</td>
</tr>
</tbody>
</table>

Not implemented and not-connected input triggers are always inactive.

It is IMPLEMENTATION DEFINED whether an input trigger that does not support multicycle events can be observed as active.

Accessing the CTITRIGINSTATUS:

CTITRIGINSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x130</td>
<td>CTITRIGINSTATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
H9.3.36 **CTITRIGOUTSTATUS, CTI Trigger Out Status register**

The CTITRIGOUTSTATUS characteristics are:

Purpose

Provides the raw status of the trigger outputs, after processing by any IMPLEMENTATION DEFINED trigger interface logic. For output triggers that are self-acknowledging, this is only meaningful if the CTI implements multicycle channel events.

Configurations

CTITRIGOUTSTATUS is in the Debug power domain.

Attributes

CTITRIGOUTSTATUS is a 32-bit register.

Field descriptions

The CTITRIGOUTSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TROUT<n>, bit [n], for n = 0 to 31</td>
<td>Trigger output <n> status.</td>
</tr>
<tr>
<td>Bits [31:N]</td>
<td>are RAZ. N is the value in CTIDEVID.NUMTRIG.</td>
</tr>
<tr>
<td>If n < N, and output trigger <n> is implemented and connected, and either the trigger is not self-acknowledging or the CTI implements multicycle channel events, then permitted values for TROUT<n> are:</td>
<td></td>
</tr>
<tr>
<td>0b0</td>
<td>Output trigger n is inactive.</td>
</tr>
<tr>
<td>0b1</td>
<td>Output trigger n is active.</td>
</tr>
<tr>
<td>Otherwise when n < N it is IMPLEMENTATION DEFINED whether TROUT<n> behaves as described here or is RAZ.</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the CTITRIGOUTSTATUS:

CTITRIGOUTSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTI</td>
<td>0x134</td>
<td>CTITRIGOUTSTATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
Part I

Memory-mapped Components of the Armv8 Architecture
Chapter I1
Requirements for Memory-mapped Components

This chapter provides some additional information about memory-mapped components. It contains the following sections:

- Supported access sizes on page 11-7320.
- Synchronization of memory-mapped registers on page 11-7322.
- Access requirements for reserved and unallocated registers on page 11-7324.
I1.1 Supported access sizes

The information in this section applies to all accesses to memory-mapped components of the Armv8 architecture, unless a register or component description explicitly states otherwise.

The memory access sizes that are supported by any peripheral are IMPLEMENTATION DEFINED by the peripheral.

When `HaveSecureExtDebugView()` == TRUE, each debug component has a Secure and Non-secure view. The Secure view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug components are identical.

An implementation of a memory-mapped component that is compatible with the Armv8 architecture must support the following:

- Word-aligned 32-bit accesses to access 32-bit registers.
- If any PE in the system implements AArch32, word-aligned 32-bit accesses to either half of a 64-bit register that is mapped to a doubleword-aligned pair of adjacent 32-bit locations.

Note

Some memory-mapped components of the Armv8 architecture require support for word-aligned 32-bit accesses to either half of a 64-bit memory mapped register regardless of whether any PE in the system implements AArch32. These include:

- The memory-mapped interface to the external debug and CTI registers that are described in Chapter H9 External Debug Register Descriptions.
- The memory-mapped interfaces to the Generic Timer registers that are described in Chapter I2 System Level Implementation of the Generic Timer.
- The memory-mapped interfaces to the Performance Monitors registers that are described in Chapter I3 Recommended External Interface to the Performance Monitors.
- The memory-mapped interfaces to the Activity Monitors registers that are described in Chapter I4 Recommended External Interface to the Activity Monitors.

- Doubleword-aligned 64-bit accesses to access 64-bit registers that are mapped to a doubleword-aligned pair of adjacent 32-bit locations.

All registers are only single-copy atomic at word granularity. This means that for 64-bit accesses to a 64-bit register, the system might generate a pair of 32-bit accesses. The order in which the two halves are accessed is not specified.

The following accesses are not supported:

- Byte accesses.
- Halfword accesses.
- Unaligned word accesses. These accesses are not word single-copy atomic.
- Unaligned doubleword accesses. These accesses are not doubleword single-copy atomic.
- Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair that forms a 64-bit register.
- Quadword accesses or higher accesses.
- Exclusive accesses.

For unsupported accesses, it is CONSTRAINED UNPREDICTABLE whether:

- The access generates an External abort or not.
- The defined side-effects of a read occur or not. A read returns UNKNOWN values.
- A write is ignored or sets the accessed register or registers to UNKNOWN.
- The access generates a fault handling interrupt or not. A read returns UNKNOWN data.
For memory-mapped accesses from a PE that complies with an Arm architecture, the single-copy atomicity rules for the instruction, the type of instruction, and the type of memory that is accessed, determine the size of the access that is made by an instruction. Example I1-1 shows this.

Example I1-1 Access sizes for memory-mapped accesses

Two Load Doubleword instructions that are made to consecutive doubleword-aligned locations generate a pair of single-copy atomic doubleword reads. However, if the accesses are made to Normal memory or Device-GRE memory they might appear as a single quadword access that is not supported by the peripheral.

The Armv8 architecture does not require the size of each element that is accessed by a multi-register load or store instruction to be identifiable by the memory system beyond the PE. Unless otherwise specified by the component, any access to a memory-mapped component of the Armv8 architecture is defined to be beyond the PE.

Software must use a Device-nGRE or stronger memory type, and only single register load and store instructions, to create memory accesses that are supported by the peripheral. For more information, see Memory types and attributes on page B2-153.
I1.2 Synchronization of memory-mapped registers

This section describes the synchronization requirements for the memory-mapped accesses to System registers.

This section refers to accesses to external system control registers as external reads and external writes. It refers to accesses to System registers as direct reads, direct writes, indirect reads and indirect writes.

--- Note ---

Synchronization requirements for AArch64 System registers on page D13-2863 and Synchronization of changes to AArch32 System registers on page G8-6138 define direct read, direct write, indirect read, and indirect write, and classifies external reads as indirect reads and external writes as indirect writes.

Writes to the same register are serialized, meaning they are observed in the same order by all observers, although some observers might not observe all of the writes. Unless otherwise stated, external writes to different registers are not necessarily observed in the same order by all observers as the order in which they complete.

Explicit synchronization is not required for an external read or an external write by an external agent to be observable to a following external read or external write by that agent to the same register using the same address, and so is never required for registers that are accessible as external system control registers.

Unless required to be observable to all observers in finite time, without explicit synchronization, explicit synchronization is normally required following an external write to any register for that write to be observable by:

- A direct access.
- An indirect read by an instruction.
- An external read of the register using a different address.

This means that an external write by an external agent is guaranteed to have an effect on subsequent instructions executed by the PE only if all of the following are true:

- The write has completed.
- The PE has executed a Context synchronization event.
- The Context synchronization event was executed after the write completed.

The order and synchronization of direct reads and direct writes of System registers is defined by:

- Synchronization requirements for AArch64 System registers on page D13-2863
- Synchronization of changes to AArch32 System registers on page G8-6138

The external agent must be able to guarantee completion of a write. For example, the agent can:

- Mark the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.
- If the register is read/write and reads are not destructive, read back the value written.
- Use some guaranteed property of the connection between the PE and the external agent.

The external agent and PE can guarantee ordering by, for example, passing messages in an ordered way with respect to the external write and the Context synchronization event, and relying on the memory ordering rules provided by the memory model.

External reads and external write complete in the order in which they arrive at the PE. For accesses to different register locations the external agent must create this order. The agent can:

- Mark the memory as Device-nGnRnE or Device-nGnRE.
- Use the appropriate memory barriers.
- Rely on some guaranteed property of the connection between the PE and the external agent.

However, the external agent cannot force the synchronization of completed writes.

In a simple sequential execution, an indirect write that occurs as a side-effect of an access happens atomically with the access, meaning no other accesses are allowed between the register access and its side-effect.

Without explicit synchronization to guarantee the order of the accesses, where the same register is accessed by two or more of a System register access instruction, and external agent, and autonomous asynchronous event, or as a result of a memory-mapped access, the behavior must be as if the accesses occurred atomically and in any order. This applies even if the accesses occur simultaneously.
For example, some registers have the property that for certain bits a write of 0 is ignored and a write of 1 has an effect. This means the simultaneous writes must be merged.
I1.3 Access requirements for reserved and unallocated registers

This section describes the access requirements for reserved and unallocated memory-mapped components.

The following information relates to certain types of reserved accesses:

• Reads and writes of unallocated locations. These accesses are reserved for the architecture.

• Reads and writes of locations for features that are not implemented, including:
 — OPTIONAL features that are not implemented.
 — Breakpoints and watchpoints that are not implemented.
 — Performance Monitors counters that are not implemented.
 — CTI triggers that are not implemented.
 — Error records that are not implemented.

 These accesses are reserved.

• Reads of WO locations. These accesses are reserved for the architecture.

• Writes to RO locations. These accesses are reserved for the architecture.

Reserved accesses are normally RAZ/WI. However, software must not rely on this property as the behavior of reserved values might change in a future revision of the architecture. Software must treat reserved accesses as RES0.
Chapter I2
System Level Implementation of the Generic Timer

This chapter defines the system level implementation of the Generic Timer. It contains the following sections:

- *About the Generic Timer specification* on page I2-7326.
- *Memory-mapped counter module* on page I2-7328.
- *Memory-mapped timer components* on page I2-7332.

Note

- *Generic Timer memory-mapped register descriptions* on page I5-7464 describes the System level Generic Timer registers. These registers are memory-mapped.
- Appendix K5 *Additional Information for Implementations of the Generic Timer* gives additional information, that does not form part of the architectural definition of a system level implementation of the Generic Timer,
- Chapter D11 *The Generic Timer in AArch64 state* gives a general description of the AArch64 state view of the Generic Timer, and describes the AArch64 System register interface to the Generic Timer.
- Chapter G6 *The Generic Timer in AArch32 state* gives a general description of the AArch32 state view of the Generic Timer, and describes the AArch32 System register interface to the Generic Timer.
I2.1 About the Generic Timer specification

Chapter D11 The Generic Timer in AArch64 state describes the Arm Generic Timer and its implementation as seen from AArch64 state. Chapter G6 The Generic Timer in AArch32 state describes the Arm Generic Timer and its implementation as seen from AArch32 state. These chapters include the definition of the low-latency System register interface to the Generic Timer. However, the Arm Generic Timer architecture also defines a memory-mapped component, that comprises:

- A memory-mapped counter module, that controls the generation of the Count value used by the Generic Timer.
 This memory-mapped counter module is required in any Arm Generic Timer implementation that requires software control of the Count value of the Generic Timer.
- Optional memory-mapped timer modules. These give a standardized way of providing timers for programmable system components other than PEs that implement the Arm architecture.

The full set of Generic Timer components on page D11-2833 summarizes these components as seen from AArch64 state, and The full set of Generic Timer components on page G6-6101 summarizes them as seen from AArch32 state. The system level components of the Generic Timer on page I2-7327 summarizes the system level components.

I2.1.1 Registers in the system level implementation of the Generic Timer

Registers that control components of the system level implementation of the Generic Timer are grouped into frames. This specification defines the registers in each frame, and their offsets within the frame. The system defines the position of each frame in the memory map. This means the base addresses for each frame is IMPLEMENTATION DEFINED.

Note
The final 12 words of the first or only 4KB block of a register memory frame is an ID block.

Each frame must be in its own memory page, or memory protection region, and must be aligned to the size of the translation granule or protection granule.

Note
When a system level implementation of the Generic Timer is accessed by a PE:

- Using a VMSA, each frame is in its own memory page, aligned to the size of the translation granule.
- Using a PMSA, each frame is in its own memory protection region, aligned to the size of the memory protection granule.

The following sections give more information about the requirements for the system level Generic Timer component:

- Endianness and supported access sizes.
- Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Endianness and supported access sizes

All memory-mapped peripherals defined in the Arm architecture must be little-endian. This means the system-level Generic Timer registers, and the register frames, are little-endian.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses to the memory-mapped Generic Timer registers implementations must:

- Comply with the requirements of Supported access sizes on page I1-7320.
- Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.
Power and reset domains for the system level implementation of the Generic Timer

The power and reset domains of the system level implementation of the Generic Timer are IMPLEMENTATION DEFINED as part of the system implementation. These domains can be outside the PE power and reset domains defined by the remainder of this manual.

The Arm architecture requires that the CNTCR.{FCREQ, EN} and CNTSR.FCACK fields reset to 0. These reset values apply only on powerup of the power domain in which the registers are implemented or a reset of the reset domain in which they are implemented.

Every other register, or register field, of a system level implementation of the Generic Timer resets to a value that is architecturally UNKNOWN if it has a meaningful reset value. This applies on powerup of the power domain in which the register is implemented, and on a reset of the reset domain in which it is implemented.

I2.1.2 The system level components of the Generic Timer

Each system level component has one or two register frames. The possible system level components are:

The memory-mapped counter module, required

This module controls the system counter. It has two frames:
- A control frame, CNTControlBase.
- A status frame, CNTReadBase.

Memory-mapped counter module on page I2-7328 describes this component.

The memory-mapped timer control module, required

The system level implementation of the Generic Timer can provide up to eight timers, and the memory-mapped timer control module identifies:
- Which timers are implemented.
- The features of each implemented timer.

This module has a single frame, CNTCTLBase.

The CNTCTLBase frame on page I2-7333 describes this frame.

Memory-mapped timers, optional

An implemented memory-mapped timer:
- Must provide a privileged view of the timer, in the CNTBaseN frame.
- Optionally provides an unprivileged view of the timer in the CNTEL0BaseN frame.

N is the timer number, and the corresponding frame number, in the range 0-7.

The CNTBaseN and CNTEL0BaseN frames on page I2-7334 describes these frames.
I2.2 Memory-mapped counter module

The memory-mapped counter module provides top-level control of the system counter. The CNTControlBase frame holds the registers for the memory-mapped counter, and provides:

- An RW control register CNTCR, that provides:
 - An enable bit for the system counter.
 - An enable bit for Halt-on-debug. For more information, see Halt-on-debug on page I2-7330.
 - A field that can be written to request a change to the update frequency of the system counter, with a corresponding change to the increment made at each update. This mechanism means that, for example, if the update frequency is halved, the increment at each update is doubled.
 For more information, see Control of counter operating frequency and increment on page I2-7329.
 Writes to this register are rare. In a system that supports two Security states, this register is writable only by Secure writes.

- A RO status register, CNTSR, that provides:
 - A bit that indicates whether the system counter is halted because of an asserted Halt-on-debug signal.
 - A field that indicates the current update frequency of the system counter. This field can be polled to determine when a requested change to the update frequency has been made.

- Two contiguous 32-bit RW registers that hold the current system counter value, CNTCV. If the system supports 64-bit atomic accesses, these two registers must be accessible by such accesses.
 The system counter must be disabled before writing to these registers, otherwise the effect of the write is UNPREDICTABLE.
 Writes to these registers are rare. In a system that supports two Security states, these registers are writable only by Secure writes.

- A Frequency modes table of one or more 32-bit entries, where:
 - The first entry in the table defines the base frequency of the system counter. This is the maximum frequency at which the counter updates.
 - Each subsequent entry in the table defines an alternative frequency of the system counter, that must be an exact divisor of the base frequency.
 A 32-bit zero entry immediately follows the last table entry.
 This table can be RO or RW. For more information, see The Frequency modes table on page I2-7329.
 In addition, the CNTReadBase frame includes a read-only copy of the system counter value, CNTCV, as two contiguous 32-bit RO registers. If the system supports 64-bit atomic accesses, these two registers must be accessible by such accesses.

Counter module control and status register summary on page I2-7330 describes CNTReadBase and CNTControlBase memory maps, and the registers in each frame.
I2.2.1 Control of counter operating frequency and increment

The system counter has a fixed base frequency, and must maintain the required counter accuracy, meaning Arm recommends that it does not gain or lose more than ten seconds in a 24-hour period, see The system counter on page D11-2834. However, the counter can increment at a lower frequency than the base frequency, using a correspondingly larger increment. For example, it can increment by four at a quarter of the base frequency. Any lower-frequency operation, and any switching between operating frequencies, must not reduce the accuracy of the counter.

Control of the system counter frequency and increment is provided only through the memory-mapped counter module. The following sections describe this control:

- The Frequency modes table.
- Changing the system counter and increment.

The Frequency modes table

The Frequency modes table starts at offset 0x20 in the CNTControlBase frame.

Table entries are 32-bits, and each entry specifies a system counter update frequency, in Hz.

The first entry in the table specifies the base frequency of the system counter.

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each counter update is given by:

\[
\text{increment} = \frac{\text{base frequency}}{\text{selected frequency}}
\]

A 32-bit word of zero value marks the end of the table. That is, the word of memory immediately after the last entry in the table must be zero.

The only required entry in the table is the entry for the base frequency.

Typically, the Frequency modes table is in RO memory. However, a system implementation might use RW memory for the table, and initialize the table entries as part of its startup sequence. Therefore, the CNTControlBase memory map shows the table region as RO or RW.

Arm strongly recommends that the Frequency modes table is not updated once the system is running.

The architecture can support up to 1004 entries in the Frequency modes table, including the zero-word end marker, and the number of entries is IMPLEMENTATION DEFINED, up to this limit.

Note

- Arm considers it likely that implementations will require significantly fewer entries than the architectural limit.

- In the CNTControlBase frame, the offset range 0x0C0-0x0FC can be used for IMPLEMENTATION DEFINED registers. If any registers are defined in this space, then the Frequency modes table cannot extend beyond offset 0x088, with a zero word at offset 0x08C. This means that if any IMPLEMENTATION DEFINED registers are defined the maximum number of entries in the table is 40, including the zero-word end marker.

Changing the system counter and increment

The value of the CNTCR.FREQ field specifies which entry in the Frequency modes table specifies the system counter update frequency.

Changing the value of CNTCR.FREQ requests a change to the system counter update frequency. To ensure the frequency change does not affect the overall accuracy of the counter, a change is made as follows:

- When changing from a higher frequency to a lower frequency, the counter:
 1. Continues running at the higher frequency until the count reaches an integer multiple of the required lower frequency.
 2. Switches to operating at the lower frequency.
When changing from a lower frequency to a higher frequency, the counter:
1. Waits until the end of the current lower-frequency cycle.
2. Makes the counter increment required for operation at that lower frequency.
3. Switches to operating at the higher frequency.

When the frequency has changed, CNTSR is updated to indicate the new frequency. Therefore, a system component that is waiting for a frequency change can poll CNTSR to detect the change.

I2.2.2 Halt-on-debug

The CNTCR register provides an enable bit for an OPTIONAL Halt-on-debug signal.

When the CNTCR.HDBG bit is set to 1, and the Halt-on-debug signal is implemented and asserted, the system counter is halted. Otherwise, the system counter ignores the state of this signal.

Arm recommends that a system counter implements a Halt-on-debug signal that can be controlled by a debugger using the Embedded Cross-Trigger (ECT) using a system-level cross-trigger interface that includes:
- A debug request output trigger event that asserts the Halt-on-debug signal.
- A restart request output trigger event that deasserts the Halt-on-debug signal.

For more information, see About the Embedded Cross-Trigger (ECT) on page H5-7100.

Note
Software must use the Halt-on-debug enable bit to ensure that the timers cannot be halted maliciously in an attempt to prohibit progress.

For more information about Halt-on-debug, contact Arm.

I2.2.3 Counter module control and status register summary

The Counter module control and status registers are memory-mapped registers in the following register memory frames:
- A control frame, with base address CNTControlBase.
- A status frame, with base address CNTReadBase.

Each of these register memory frames is in its own memory page or memory protection region, and the frame base address points to the start of this region. Each base address must be aligned to the size of the translation granule or protection granule.

Note
Each frame of a memory-mapped Generic Timer takes the name of its base address.

In each register memory frame, the memory at offset 0xF00-0xFFF is reserved for twelve 32-bit IMPLEMENTATION DEFINED ID registers, see the CounterID<n> register descriptions for more information.

Note
The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the counter is little-endian.

In an implementation that supports Secure and Non-secure memory maps, CNTControlBase is accessible only by Secure accesses.

Table I2-1 on page I2-7331 shows the CNTControlBase control registers, in order of their offsets from the CNTControlBase base address, for an implementation that includes registers in the IMPLEMENTATION DEFINED register space 0x000-0x0FC, and also has fewer than 39 CNTFID<n> registers. The Frequency modes table on page I2-7329 describes how this memory map differs if more CNTFID<n> registers are implemented.
Generic Timer memory-mapped register descriptions on page 15-7464 describes each of these registers.

Table I2-1 CNTControlBase memory map

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CNTCR</td>
<td>RW</td>
<td>Counter Control Register.</td>
</tr>
<tr>
<td>0x004</td>
<td>CNTSR</td>
<td>RO</td>
<td>Counter Status Register.</td>
</tr>
<tr>
<td>0x008</td>
<td>CNTCV[31:0]</td>
<td>RW</td>
<td>Counter Count Value register.</td>
</tr>
<tr>
<td>0x00C</td>
<td>CNTCV[63:32]</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>0x010</td>
<td>CNTSCRa</td>
<td>RW</td>
<td>Counter Scale Register.</td>
</tr>
<tr>
<td>0x014-0x018</td>
<td>-</td>
<td>RES0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x01C</td>
<td>CNTIDa</td>
<td>RO</td>
<td>Counter Identification Register.</td>
</tr>
<tr>
<td>0x020</td>
<td>CNTFID0</td>
<td>RO or RW</td>
<td>Frequency modes table, and end marker.</td>
</tr>
<tr>
<td>0x020+4n</td>
<td>CNTFID<n></td>
<td>RO or RW</td>
<td>For more information, see The Frequency modes table on page 12-7329.</td>
</tr>
<tr>
<td>0x024+4n</td>
<td>-</td>
<td>RO or RW, RAZ</td>
<td></td>
</tr>
<tr>
<td>0x028+4n-0x08C</td>
<td>-</td>
<td>RO, RES0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x0C0-0x0FC</td>
<td>-</td>
<td>IMPLEMENTATION DEFINED</td>
<td>Reserved for IMPLEMENTATION DEFINED registers.</td>
</tr>
<tr>
<td>0x100-0xFFC</td>
<td>-</td>
<td>RO, RES0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0xFD0-0xFFC</td>
<td>CounterID<n></td>
<td>RO</td>
<td>Counter ID registers 0-11.</td>
</tr>
</tbody>
</table>

a. Implemented only if FEAT_CNTSC is implemented.

Table I2-2 shows the CNTReadBase control registers, in order of their offsets from the CNTReadBase base address. Generic Timer memory-mapped register descriptions on page 15-7464 describes each of these registers.

Table I2-2 CNTReadBase memory map

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CNTCV[31:0]</td>
<td>RO</td>
<td>Counter Count Value register</td>
</tr>
<tr>
<td>0x004</td>
<td>CNTCV[63:32]</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0x008-0xFFC</td>
<td>-</td>
<td>RES0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0xFD0-0xFFC</td>
<td>CounterID<n></td>
<td>RO</td>
<td>Counter ID registers 0-11.</td>
</tr>
</tbody>
</table>
I2.3 Memory-mapped timer components

This part of the Arm Generic Timer specification defines an optional memory-mapped timer component. This can be implemented as part of any programmable system component that does not incorporate a System register mapped Arm Generic Timer, to provide that system component with the timer functionality of an Arm Generic Timer.

The memory map consists of up to eight timer frames. The base address of a frame is CNTBaseN, where N numbers from 0 up to a maximum permitted value of 7.

Each CNTBaseN timer frame:

- Provides its own set of timers and associated interrupts.
- Is implemented in its own memory page or memory protection region.
- Is implemented at a base address, identified as CNTBaseN, that is aligned to the size of the translation granule or memory protection region.

For each implemented CNTBaseN frame the system can optionally provide an unprivileged view of the frame, described as the EL0 view of the frame. The base address of this second view of the CNTBaseN frame is CNTEL0BaseN.

--- Note ---
In the naming of the registers associated with a CNTBaseN or CNTEL0BaseN frame, the value of N is represented as <n>, for example CNTACR<n>.

--- Note ---
If a CNTEL0BaseN frame is implemented:

- Is implemented in its own memory page or memory protection region and is aligned to the size of the translation granule or memory protection region.
- All registers visible in CNTBaseN, except for CNTVOFF and CNTEL0ACR, can be visible in CNTEL0BaseN.
 — Control fields in CNTEL0ACR determine whether each register is visible.
- The offsets of all visible registers are the same as their offsets in the CNTBaseN frame.

In addition to the implemented CNTBaseN and CNTEL0BaseN frames, the system must provide a single control frame at base address CNTCTLBase. CNTCTLBase must be implemented in its own memory page or memory protection region and is aligned to the size of the translation granule or memory protection region.

The system defines the position of each frame in the memory map. This means the values of each of the CNTBaseN, CNTEL0BaseN, and CNTCTLBase base addresses is IMPLEMENTATION DEFINED.

--- Note ---
The Arm architecture requires memory-mapped peripherals to be little-endian, and therefore the memory-mapped timers are little-endian.

The following sections describe the implementation of a memory-mapped view of the counter and timer:

- The CNTCTLBase frame on page I2-7333.
- The CNTBaseN and CNTEL0BaseN frames on page I2-7334.

--- Note ---
Providing a complete set of features in a system level implementation on page K5-8024 gives an implementation example for a system level Generic Timer implementation that provides equivalent features to a System registers Generic Timer implementation in a PE that includes all of the Exception levels.
I2.3.1 The CNTCTLBase frame

The CNTCTLBase frame contains:

- An identification register for the features of the memory-mapped counter and timer implementation.
- Access controls for each CNTBaseN frame.
- A virtual offset register for frames that implement a virtual timer.

Table I2-3 shows the CNTCTLBase registers, in order of their offsets from the CNTCTLBase base address.

Note

CNTFRQ and CNTVOFF registers are also implemented in a System register interface to the Generic Timer.

Generic Timer memory-mapped register descriptions on page I5-7464 describes each of these registers.

Table I2-3 CNTCTLBase memory map

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Type</th>
<th>Security</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CNTFRQb</td>
<td>RW</td>
<td>Secure</td>
<td>Counter Frequency register.</td>
</tr>
<tr>
<td>0x004</td>
<td>CNTNSAR</td>
<td>RW</td>
<td>Secure</td>
<td>Counter Non-Secure Access register.</td>
</tr>
<tr>
<td>0x008</td>
<td>CNTTIDR</td>
<td>RO</td>
<td>Both</td>
<td>Counter Timer ID register.</td>
</tr>
<tr>
<td>0x00C-0x03F</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x040+4Nc</td>
<td>CNTACR<n></td>
<td>RW</td>
<td>Configurable</td>
<td>Counter Access Control register N.</td>
</tr>
<tr>
<td>0x060-0x07F</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x080+8Nc</td>
<td>CNTVOFF<n>[31:0]b</td>
<td>RWc</td>
<td>Configurable</td>
<td>Virtual Offset register N. If the CNTBaseN frame has virtual timer capability then CNTVOFF is implemented as an RW register, otherwise its location is RAZ/WI.</td>
</tr>
<tr>
<td>0x084+8Nc</td>
<td>CNTVOFF<n>[63:32]b</td>
<td>RWc</td>
<td>Configurable</td>
<td>Virtual Offset register N. If the CNTBaseN frame has virtual timer capability then CNTVOFF is implemented as an RW register, otherwise its location is RAZ/WI.</td>
</tr>
<tr>
<td>0x0C0-0x0FC</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0x100-0x17F</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>0x800-0x8FC</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0xFC0-0xFFC</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
<td>IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>0xFD0-0xFFC</td>
<td>CounterID<n></td>
<td>RO</td>
<td>Both</td>
<td>Counter ID registers 0-11.</td>
</tr>
</tbody>
</table>

- **a.** Access security requirement in an implementation that supports two Security states. In an implementation that does not support multiple Security states all registers are accessible as shown in the *Type* column.
- **b.** These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in *Generic Timer registers on page D13-3883* and *Generic Timer registers on page G8-6928*. The bit assignments of the registers are identical in the System register interface and in the memory-mapped system level interface.
- **c.** Implemented for each value of N from 0 to 7 for which a CNTBaseN frame is implemented.
- **d.** The CNTNSAR determines the Non-secure accessibility of the CNTACR<n>s and the CNTVOFF<n> in the CNTCTLBase frame. For more information, see the register descriptions.
- **e.** Address is reserved, RAZ/WI if register not implemented.

All implementations of the Generic Timer include the virtual counter. Therefore, conceptually, all implementations include the CNTVOFF register that defines the virtual offset between the physical count and the virtual count. If a memory-mapped Generic component does not distinguish between real time and virtual time, then it can implement CNTVOFF as RAZ/WI. Otherwise CNTVOFF is an RW register, and Arm strongly recommends that the system only permits access to CNTVOFF from EL2 or higher.
I2.3.2 The CNTBaseN and CNTEL0BaseN frames

Each CNTBaseN frame, or \{CNTBaseN, CNTEL0BaseN\} pair of frames, provides a memory-mapped counter and timer, see:

- *The CNTBaseN frame*.
- *The CNTEL0BaseN frame on page I2-7335*.
- *CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335*.

The CNTBaseN frame

Table I2-4 shows the CNTBaseN registers, in order of their offsets from the CNTBaseN base address. Whether a frame includes a virtual timer is IMPLEMENTATION DEFINED. If it does not, then memory at offsets 0x030-0x03C is RAZ/WI. Except for CNTEL0ACR and the CounterID<\(n\)> registers, equivalent registers are also implemented in a System register interface to the timer component of a Generic Timer.

Generic Timer memory-mapped register descriptions on page I5-7464 describes each of these registers.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000</td>
<td>CNTPCT[31:0](^a)</td>
<td>RO</td>
<td>Physical Count register.</td>
</tr>
<tr>
<td>0x004</td>
<td>CNTPCT[63:32](^a)</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0x008</td>
<td>CNTVCT[31:0](^a)</td>
<td>RO</td>
<td>Virtual Count register.</td>
</tr>
<tr>
<td>0x00C</td>
<td>CNTVCT[63:32](^a)</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0x010</td>
<td>CNTFRQ(^a)</td>
<td>RO(^c)</td>
<td>Counter Frequency register.</td>
</tr>
<tr>
<td>0x014</td>
<td>CNTEL0ACR</td>
<td>RW(^b)</td>
<td>Counter EL0 Access Control Register, optional in the CNTBaseN memory map.</td>
</tr>
<tr>
<td>0x018</td>
<td>CNTVOFF[31:0](^a)</td>
<td>RO(^c)</td>
<td>Virtual Offset register. If CNTVOFF in the CNTCTLBase frame is an RW register, a read of this register returns the value of that register. Otherwise is RAZ.</td>
</tr>
<tr>
<td>0x01C</td>
<td>CNTVOFF[63:32](^a)</td>
<td>RO(^c)</td>
<td></td>
</tr>
<tr>
<td>0x020</td>
<td>CNTP_CV AL[31:0](^a)</td>
<td>RW</td>
<td>Physical Timer CompareValue register.</td>
</tr>
<tr>
<td>0x024</td>
<td>CNTP_CV AL[63:32](^a)</td>
<td>RW</td>
<td></td>
</tr>
<tr>
<td>0x028</td>
<td>CNTP_TVAL(^a)</td>
<td>RW</td>
<td>Physical TimerValue register.</td>
</tr>
<tr>
<td>0x02C</td>
<td>CNTP_CTL(^a)</td>
<td>RW</td>
<td>Physical Timer Control register.</td>
</tr>
<tr>
<td>0x030</td>
<td>CNTV_CV AL[31:0](^a)</td>
<td>RW(^b)</td>
<td>Virtual Timer CompareValue register, optional in the CNTBaseN memory map.</td>
</tr>
<tr>
<td>0x034</td>
<td>CNTV_CV AL[63:32](^a)</td>
<td>RW(^b)</td>
<td></td>
</tr>
<tr>
<td>0x038</td>
<td>CNTV_TVAL(^a)</td>
<td>RW(^b)</td>
<td>Virtual TimerValue register, optional in the CNTBaseN memory map.</td>
</tr>
<tr>
<td>0x03C</td>
<td>CNTV_CTL(^a)</td>
<td>RW(^b)</td>
<td>Virtual Timer Control register, optional in the CNTBaseN memory map.</td>
</tr>
<tr>
<td>0x048-0xFCF</td>
<td>-</td>
<td>RES0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>0xFD0-0xFFC</td>
<td>CounterID<(n)></td>
<td>RO</td>
<td>Counter ID registers 0-11.</td>
</tr>
</tbody>
</table>

\(^a\) These registers are also defined in the System register interface to the Generic Timer, and therefore are also described in *Generic Timer registers on page D13-3883* and *Generic Timer registers on page G8-6928*. The bit assignments of the registers are identical in the System register interface and in the memory-mapped system level interface.

\(^b\) Address is reserved, RAZ/WI if register not implemented.

\(^c\) The CNTCTLBase frame includes an RW view of this register.
The CNTEL0BaseN frame

For any value of \(N \), the layout of the registers in the CNTEL0BaseN frame is identical to the CNTBaseN frame, except that, in the CNTEL0BaseN frame:

- CNTVOFF is never visible, and the memory at \(0x018-0x01C \) is RAZ/WI.
- CNTEL0ACR is never visible, and the memory at \(0x014 \) is RAZ/WI.
- If implemented in the CNTBaseN frame, CNTEL0ACR controls whether CNTPCT, CNTVCT, CNTFRQ, the Physical Timer, and the Virtual Timer registers are visible in the CNTEL0BaseN frame.

 If CNTEL0ACR is not implemented then these registers are not visible in the CNTEL0BaseN frame, and their addresses in that frame are RAZ/WI.

If an implementation supports 64-bit atomic accesses, then CNTPCT, CNTVCT, CNTVOFF, CNTP_CVAL, and CNTV_CVAL must be accessible as atomic 64-bit values.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames

In the CNTCTLBase frame:

CNTTIDR controls:

- Whether each CNTBaseN frame is implemented.
- If a CNTBaseN frame is implemented, whether:
 - That CNTBaseN frame has virtual timer capability.
 - A corresponding CNTEL0BaseN frame is implemented.

CNTNSAR controls:

In an implementation that recognizes two Security states, determines whether each implemented CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

This control also determines whether, in the CNTCTLBase frame, the CNTACR\(<n>\) and CNTVOFF\(<n>\) registers are accessible by Non-secure accesses.

The CNTACR\(<n>\) registers control:

For each implemented CNTBaseN frame, the accessibility of the following registers in that frame:

- CNTP_CTL, CNTP_CVAL, and CNTP_TVAL.
- CNTV_CTL, CNTV_CVAL, and CNTV_TVAL.
- CNTVOFF.
- CNTFRQ.
- CNTPCT.
- CNTVCT.

For CNTACR\(<n>\), the value of \(<n>\) corresponds to the value of \(N \) for the controlled CNTBaseN frame.

The CNTVOFF\(<n>\) registers provide:

For each implemented CNTBaseN frame that has virtual capability, the RW copy of the CNTVOFF register for that frame.

--- Note ---

In a CNTBaseN frame that has virtual timer capability the CNTVOFF register is RO.

For CNTVOFF\(<n>\), the value of \(<n>\) corresponds to the value of \(N \) for the controlled CNTBaseN frame.
System Level Implementation of the Generic Timer
I2.3 Memory-mapped timer components
Chapter I3
Recommended External Interface to the Performance Monitors

This chapter describes the recommended external interface to the Performance Monitors. It contains the following section:

• About the external interface to the Performance Monitors registers on page I3-7338.

——— Note ————

Performance Monitors external register descriptions on page I5-7353 describes the external view of the Performance Monitors registers.
I3.1 About the external interface to the Performance Monitors registers

Arm recommends that:

- An implementation provides the **OPTIONAL** external debug interface to the Performance Monitors registers.

 ______ Note ________

 A debugger can use this interface to access counters in the Performance Monitors.

- The implementation includes the **OPTIONAL** support for memory-mapped access to the External debug interface.

 ______ Note ________

 — Software running on any PE in a system can use this interface to access counters in the Performance Monitors.

 — Privileged software should use the MMU to control access to this interface.

- The external debug interface is implemented as defined in Appendix K2 *Recommended External Debug Interface*.

The following sections describe the memory-mapped views of the Performance Monitors registers:

- Differences in the external views of the Performance Monitors registers
- Synchronization of changes to the memory-mapped views on page I3-7339.
- Access permissions for external views of the Performance Monitors on page I3-7339.

In this section, unless the context explicitly indicates otherwise, any reference to a *memory-mapped view* applies equally to a register view using:

- An access through an external debug interface.
- A memory-mapped access.

I3.1.1 Endianness and supported access sizes

When an implementation supports memory-mapped access to the external debug interface the interface is accessed as a little-endian memory-mapped peripheral. *External Performance Monitors registers summary* on page I3-7350 gives the memory map of these registers.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For accesses to the external interface to the Performance Monitors registers implementations must:

- Comply with the requirements of *Supported access sizes* on page I1-7320.
- Support word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

I3.1.2 Differences in the external views of the Performance Monitors registers

An external view of the Performance Monitors registers accesses the same registers as the System registers interface described in *Performance Monitors Extension registers* on page D7-2766, except that:

1. The **PMSELR** is accessible only in the System registers interface.
2. The following registers are accessible only in external views:
 - **PMCFGR**
 - **PMDEVAFF0**
 - **PMDEVAFF1**
 - **PMLAR**
 - **PMLSR**
 - **PMAUTHSTATUS**
• PMDEVARCH
• PMDEVTYPE
• PMPIDR0
• PMPIDR1
• PMPIDR2
• PMPIDR3
• PMPIDR4
• PMCIDR0
• PMCIDR1
• PMCIDR2
• PMCIDR3

Performance Monitors external register descriptions on page I5-7353 describes these registers.

3. The following controls do not affect the external views:
 • PMSELR.
 • PMUSERENR.
 • HDCR.{TPM, TPMCR, HPMN}.

 Instead, see the register descriptions in Chapter I5 External System Control Register Descriptions.

I3.1.3 Synchronization of changes to the memory-mapped views

Synchronization must comply with Synchronization of memory-mapped registers on page I1-7322.

In particular, if a Performance Monitor is visible in both System register and an external view, and is accessed simultaneously through these two mechanisms, the behavior must be as if the access occurred atomically in any order. For more information, see Synchronization of changes to the external debug registers on page H8-7138.

I3.1.4 Access permissions for external views of the Performance Monitors

For more information, see External debug interface register access permissions on page H8-7145.

Table I3-1 on page I3-7340 shows the access permissions for the Performance Monitors registers in a v8 Debug implementation. This table uses the following terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLK</td>
<td>When FEAT_DoubleLock is implemented and locked, DoubleLockStatus() == TRUE, accesses to some registers produce an error. Applies to both interfaces.</td>
</tr>
<tr>
<td>EPMAD</td>
<td>When AllowExternalPMUAccess() == FALSE, external debug access is disabled for the access. If FEAT_Debugv8p4 is implemented, this applies only for Non-secure access to the register. See also Behavior of a not permitted memory-mapped access on page H8-7143.</td>
</tr>
<tr>
<td>Error</td>
<td>Indicates that the access gives an error response.</td>
</tr>
<tr>
<td>Default</td>
<td>This shows the default access permissions, if none of the conditions in this list prevent access to the register.</td>
</tr>
<tr>
<td>Off</td>
<td>The Core power domain is completely off, or in a low-power state where the Core power domain registers cannot be accessed, and EDPRSR.PU will read as zero.</td>
</tr>
</tbody>
</table>

Note If debug power is off, then all external debug interface accesses return an error.

| OSLK | When the OS Lock is locked, OSLAR_EL1.OSLK == 1, accesses to some registers produces an error. This column shows the effect of this control on accesses using the external debug interface. |
| SLK | This indicates the modified default access permissions for OPTIONAL memory-mapped accesses to the external debug interface if the optional Software Lock is locked. See Register access permissions for memory-mapped accesses on page H8-7142. |
For all other accesses, this column is ignored.

- Indicates that the control has no effect on the behavior of the access:
 - If no other control affects the behavior, the Default access behavior applies.
 - However, another control might determine the behavior.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Off</th>
<th>DLK</th>
<th>OSLK</th>
<th>EPMAD</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x000+8xn</td>
<td>PMEVCNTR<\n> EL0a</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x0F8</td>
<td>PMCCNTR_EL0[31:0]</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x0FC</td>
<td>PMCCNTR_EL0[63:32]</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x200</td>
<td>PMPCSR[31:0]b</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x204</td>
<td>PMPCSR[63:32]b</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x208</td>
<td>PMCID1SRb</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x20C</td>
<td>PMVIDSRb</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x220</td>
<td>PMPCSR[31:0]b</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x22C</td>
<td>PMCID2SRb</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>-</td>
<td>RO</td>
<td>RO</td>
</tr>
<tr>
<td>0x400+4xn</td>
<td>PMEVTYPER<\n> EL0a</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RW</td>
<td>RO</td>
</tr>
<tr>
<td>0x47C</td>
<td>PMCCFILTR_EL0</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RW</td>
<td>RO</td>
</tr>
</tbody>
</table>
| 0x600-0x6FC | - | - | Access is IMPLEMENTATION DEFINED
| 0xA00-0xBFC | - | - | Access is IMPLEMENTATION DEFINED
| 0xC00 | PMCNTENSET_EL0 | Core | Error | Error | Error | Error | RW | RO |
| 0xC20 | PMCNTENCLR_EL0 | Core | Error | Error | Error | Error | RW | RO |
| 0xC40 | PMINTENSET_EL1 | Core | Error | Error | Error | Error | RW | RO |
| 0xC60 | PMINTENCLR_EL1 | Core | Error | Error | Error | Error | RW | RO |
| 0xC80 | PMOVSCLR_EL0 | Core | Error | Error | Error | Error | RW | RO |
| 0xCA0 | PMSWINC_EL0c | Core | Error | Error | Error | Error | WO | WI |
| 0xCC0 | PMOVSSET_EL0 | Core | Error | Error | Error | Error | RW | RO |
| 0xD80-0xDFC | - | - | Access is IMPLEMENTATION DEFINED
| 0xE00 | PMCFG | Core | Error | Error | Error | Error | RO | RO |
| 0xE04 | PMCR_EL0 | Core | Error | Error | Error | Error | RW | RO |
| 0xE20 | PMCEID0 | Core | Error | Error | Error | Error | RO | RO |
| 0xE24 | PMCEID1 | Core | Error | Error | Error | Error | RO | RO |
I3.5 Power domains and Performance Monitors registers reset

For Armv8-A implementations, Arm recommends that Performance Monitors are implemented as part of the Core power domain, not as part of a separate Debug power domain. There is no interface to access the Performance Monitors registers when the Core power domain is powered down.

A Warm or Cold reset sets the Performance Monitors registers to their reset values. An External Debug reset does not change the values of the Performance Monitors registers.

For more information about the reset scheme recommended for a v8 Debug implementation see Chapter H6 Debug Reset and Powerdown Support.

Table I3-2 on page I3-7342 shows the Performance Monitors register resets for writable register fields. The column headings use the following terms:

- **64**: This is the architectural reset value when resetting into AArch64 state.
- **32**: This is the architectural reset value when resetting into AArch32 state.
- **-**: This indicates an IMPLEMENTATION DEFINED reset value on the specified reset. This might be UNKNOWN.

Note

This table does not include:

- Read-only identification registers and fields that have a fixed value. In this case, the reset value is that fixed value. An example of this is PMCR_EL0.N.
- Write-only registers and fields that only have an effect on writes. These do not have a reset value. An example of this is PMSWINC_EL0.
- IMPLEMENTATION DEFINED registers. In this case, the reset domains are IMPLEMENTATION DEFINED. The reset values are IMPLEMENTATION DEFINED and might be UNKNOWN.

Table I3-1 Access permissions for the Performance Monitors registers (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Off</th>
<th>DLK</th>
<th>OSLK</th>
<th>EPMAD</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xE28</td>
<td>PMCEID2</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RO</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0xE2C</td>
<td>PMCEID3</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RO</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0xE40</td>
<td>PMMIR</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
<td>Error</td>
<td>RO</td>
<td>RO</td>
<td></td>
</tr>
<tr>
<td>0xE80-0xEFC</td>
<td>Integration registers</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Access is IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>0xF00-0xFFC</td>
<td>Management registers and CoreSight compliance</td>
<td>on page K2-7991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

This table does not include:

- Read-only identification registers and fields that have a fixed value. In this case, the reset value is that fixed value. An example of this is PMCR_EL0.N.
- Write-only registers and fields that only have an effect on writes. These do not have a reset value. An example of this is PMSWINC_EL0.
- IMPLEMENTATION DEFINED registers. In this case, the reset domains are IMPLEMENTATION DEFINED. The reset values are IMPLEMENTATION DEFINED and might be UNKNOWN.
Table I3-2 Performance Monitors System register resets

<table>
<thead>
<tr>
<th>Register</th>
<th>Domain</th>
<th>Field</th>
<th>64</th>
<th>32</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCR_EL0</td>
<td>Warm</td>
<td>DP</td>
<td>-</td>
<td>0</td>
<td>Disable PMCCNTR_EL0 when prohibited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>Export enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>Clock divider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>0</td>
<td>0</td>
<td>Performance Monitors enable</td>
</tr>
<tr>
<td>PMCNTENSET_EL0</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMCNTENCLR_EL0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMOVSET_EL0</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMSELR_EL0</td>
<td>Warm</td>
<td>SEL</td>
<td>-</td>
<td>-</td>
<td>Selected event counter</td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMEVTYPER<n>_EL0</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMCCFILTR_EL0</td>
<td>Warm</td>
<td>[31:26]</td>
<td>0x00</td>
<td>PMCCNTR_EL0 filtering controls</td>
<td></td>
</tr>
<tr>
<td>PMEVCNTR<n>_EL0</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMUSERENR_EL0</td>
<td>Warm</td>
<td>ER</td>
<td>-</td>
<td>0</td>
<td>Enable counter read access in EL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR</td>
<td>0</td>
<td>0</td>
<td>Enable PMCCNTR_EL0 read access in EL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW</td>
<td>0</td>
<td>0</td>
<td>Enable PMSWINC_EL0 write access in EL0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN</td>
<td>0</td>
<td>0</td>
<td>Enable Performance Monitors access in EL0</td>
</tr>
<tr>
<td>PMINTENSET_EL1</td>
<td>Warm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>All fields in register</td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter I4
Recommended External Interface to the Activity Monitors

This chapter describes the optional external interface to the Activity Monitors Extension registers. It contains the following section:

• About the external interface to the Activity Monitors Extension registers on page I4-7344

Note
Activity Monitors external register descriptions on page I5-7428 describes the external view of the Activity Monitors Extension registers.
I4.1 About the external interface to the Activity Monitors Extension registers

If an implementation supports the Activity Monitors Extension, it may optionally support an external memory-mapped interface to the Activity Monitors Extension, and, if so, may further optionally support CoreSight device registers and ID registers.

The memory access sizes supported by the external interface to the Activity Monitors registers:

- Comply with the requirements of Supported access sizes on page I5-7320.
- Include word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register mapped to a doubleword-aligned pair of adjacent 32-bit locations, even if no PE in the system implements AArch32.

The base address of the memory-mapped view is aligned to a 4KB boundary, but is otherwise IMPLEMENTATION DEFINED. The address offsets for the memory-mapped view are given in Table I5-2 on page I5-7426.

I4.1.1 Differences in the external views of the Activity Monitors Extension registers

The external memory-mapped interface view of the Activity Monitors Extension registers accesses the same registers as the System registers interface to the registers, except that:

- The following are accessible only in the System registers interface:
 - AMUSERENR_EL0
 - AMEVNRTVOFF0<\text{n}>_EL2
 - AMEVNRTVOFF1<\text{n}>_EL2
 - AMCG1IDR_EL0

- If implemented, the following registers are accessible only in the memory-mapped view:
 - AMIIDR
 - AMDEVALF0
 - AMDEVALF1
 - AMDEVARCH
 - AMDEVTYPE
 - AMPIDR0
 - AMPIDR1
 - AMPIDR2
 - AMPIDR3
 - AMPIDR4
 - AMCIDR0
 - AMCIDR1
 - AMCIDR2
 - AMCIDR3

Activity Monitors external register descriptions on page I5-7428 describes these registers.

- If FEAT_AMUv1p1 virtualization of the activity monitors is enabled, the memory-mapped view of the registers presents the physical view of the counter without any offset. Virtualization of the Activity Monitors does not affect the memory-mapped view of the registers.

Note

The memory mapped view of the activity monitors is unaffected by AMCR_EL0.CG1RZ and AMCR.CG1RZ.
I4.1.2 Access during reset and power transitions

As described in Power and reset domains on page D8-2769, the power and reset domains of the activity monitoring unit are IMPLEMENTATION DEFINED, and when a Cold reset of the power domain of the activity monitoring unit occurs, the activity monitoring unit is reset and the counters are reset to zero.

If the power domain of the activity monitoring unit is an always-on power domain, while the PE is reset or powered down counter values may be preserved and might be accessible by memory-mapped access.

If the power domain of the activity monitoring unit is the Core power domain, while the PE is reset or powered down and when a memory-mapped access occurs, the access reads as zero and the bus access completes without an error.
Recommended External Interface to the Activity Monitors

4.1 About the external interface to the Activity Monitors Extension registers
Chapter I5
External System Control Register Descriptions

This chapter describes the external system control registers. It excludes the External debug registers that are described in Chapter H9 External Debug Register Descriptions. It contains the following sections:

• About the external system control register descriptions on page I5-7348.
• External Performance Monitors registers summary on page I5-7350.
• Performance Monitors external register descriptions on page I5-7353.
• External Activity Monitors Extension registers summary on page I5-7426.
• Activity Monitors external register descriptions on page I5-7428.
• Generic Timer memory-mapped registers overview on page I5-7463.
• Generic Timer memory-mapped register descriptions on page I5-7464.
• RAS register descriptions on page I5-7508.
I5.1 About the external system control register descriptions

This chapter describes the external system control registers other than the external debug registers. That is, it describes:

An external view of the Performance Monitors registers

Arm recommends that implementations provide access to the Performance Monitors registers through the OPTIONAL External debug interface, and provide the OPTIONAL memory-mapped interface to this interface:

- External Performance Monitors registers summary on page I5-7350 lists the registers that are accessible in this view of the Performance Monitors, and describes their memory map.
- Performance Monitors external register descriptions on page I5-7353 describes each of the memory-mapped registers.

Chapter I3 Recommended External Interface to the Performance Monitors describes the recommended interface to these registers.

Note

Chapter D7 The Performance Monitors Extension describes the Performance Monitors. The following sections describe the System register interfaces to the Performance Monitors:

- Performance Monitors registers on page D13-3678, for accesses from an Exception level that is using AArch64.
- Performance Monitors registers on page G8-6750, for accesses from an Exception level that is using AArch32.

An external view of the Activity Monitors Extension registers

An implementation which supports the Activity Monitors Extension may support an optional external memory-mapped interface to the Activity Monitors Extension registers.

- External Activity Monitors Extension registers summary on page I5-7426 lists the registers that are accessible in this view of the Performance Monitors, and describes their memory map.
- Activity Monitors external register descriptions on page I5-7428 describes each of the memory-mapped registers.

Chapter I3 Recommended External Interface to the Performance Monitors describes the recommended interface to these registers.

Note

Chapter D8 The Activity Monitors Extension describes the Activity Monitors. The following sections describe the System register interfaces to the Activity Monitors:

- Activity Monitors registers on page D13-3745, for accesses from an Exception level that is using AArch64.
- Activity Monitors registers on page G8-6830, for accesses from an Exception level that is using AArch32.

The registers for the system level Generic Timer component

Any implementation that includes the Generic Timer must include the memory-mapped system level component described in Chapter I2 System Level Implementation of the Generic Timer. In this chapter:

- Generic Timer memory-mapped registers overview on page I5-7463 gives an overview of the registers, referring to Chapter I2 for more information.
- Generic Timer memory-mapped register descriptions on page I5-7464 describes each of the memory-mapped registers.
Chapter D11 The Generic Timer in AArch64 state describes the Generic Timer component that is accessible using the System registers. The following sections describe the System register interfaces to that component:

- Generic Timer registers on page D13-3883, for accesses from an Exception level that is using AArch64.
- Generic Timer registers on page G8-6928, for accesses from an Exception level that is using AArch32.

Chapter H9 External Debug Register Descriptions describes the external debug registers.
I5.2 **External Performance Monitors registers summary**

When an implementation provides access to the Performance Monitors registers through the External debug interface, that interface provides access to:

- Performance Monitors System registers.
- A read-only configuration register, PMCFGR.
- The OPTIONAL CoreSight registers for the Performance Monitors, if they are implemented.

The locations of the registers are defined as offsets from a system-defined base address. *Performance Monitors external register views* defines this memory map.

I5.2.1 **Performance Monitors external register views**

Table I5-1 shows the external view of the Performance Monitors registers. All other entries are reserved.

Note

- Counters that are reserved because HDCR.HPMN has been changed from its reset value remain visible in any external view.
- The registers that relate to an implemented event counter, PMNx, are PMEVCNTR<n> and PMEVTYPE<n>.
- The mapping of the *Performance Monitors Event Counter Registers*, at offsets 0x000-0xF4, has changed compared to the mappings of the equivalent registers in Armv7.

Each entry in the Name column links to the register description in *Performance Monitors external register descriptions* on page I5-7353, and:

- If the *System register?* column of the table shows that the register is a System register, the memory-mapped interface provides a view of the System register described in:
 - *Performance Monitors registers* on page D13-3678, for the AArch64 System register.
 - *Performance Monitors registers* on page G8-6750, for the AArch32 System register.
- Otherwise, the register is accessible only using the external interface.

Table I5-1 Performance Monitors external register views

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>System register?</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMEVCNTR<n>_EL0</td>
<td>RW</td>
<td>Performance Monitors Event Counter Register.</td>
<td>Yes</td>
<td>0x000+8n</td>
</tr>
<tr>
<td>PMCCNTR_EL0[31:0]</td>
<td>RW</td>
<td>Performance Monitors Cycle Counter Register<sup>a</sup></td>
<td>Yes</td>
<td>0x0F8</td>
</tr>
<tr>
<td>PMCCNTR_EL0[63:32]</td>
<td>RW</td>
<td>Performance Monitors Cycle Counter Register<sup>a</sup></td>
<td>Yes</td>
<td>0x0FC</td>
</tr>
<tr>
<td>PMPCSR[31:0]<sup>b</sup></td>
<td>RW</td>
<td>Program Counter Sample Register, bits[31:0]</td>
<td>No</td>
<td>0x200</td>
</tr>
<tr>
<td>PMPCSR[63:32]<sup>b</sup></td>
<td>RW</td>
<td>Program Counter Sample Register, bits[63:32]</td>
<td>No</td>
<td>0x204</td>
</tr>
<tr>
<td>PMCID1SR<sup>b</sup></td>
<td>RW</td>
<td>CONTEXTIDR_EL1 Sample Register</td>
<td>No</td>
<td>0x208</td>
</tr>
<tr>
<td>PMVIDSR<sup>b</sup></td>
<td>RW</td>
<td>VMID Sample Register</td>
<td>No</td>
<td>0x20C</td>
</tr>
<tr>
<td>PMPCSR[31:0]<sup>b</sup></td>
<td>RW</td>
<td>Program Counter Sample Register, bits[31:0], alias</td>
<td>No</td>
<td>0x220</td>
</tr>
<tr>
<td>PMPCSR[63:32]<sup>b</sup></td>
<td>RW</td>
<td>Program Counter Sample Register, bits[63:32], alias</td>
<td>No</td>
<td>0x224</td>
</tr>
<tr>
<td>PMCID1SR<sup>b</sup></td>
<td>RW</td>
<td>CONTEXTIDR_EL1 Sample Register (alias)</td>
<td>No</td>
<td>0x248</td>
</tr>
<tr>
<td>PMCID2SR<sup>b</sup></td>
<td>RW</td>
<td>CONTEXTIDR_EL2 Sample Register</td>
<td>No</td>
<td>0x22C</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
<td>System register?</td>
<td>Offset</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>---</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>PMEVTYPE<\n>_EL0</td>
<td>RW</td>
<td>Performance Monitors Event Type and Filter Register</td>
<td>Yes</td>
<td>0x400+4n</td>
</tr>
<tr>
<td>PMCCFILTR_EL0</td>
<td>RW</td>
<td>Performance Monitors Cycle Counter Filter Register</td>
<td>Yes</td>
<td>0x47C</td>
</tr>
<tr>
<td>PM��TENSET_EL0</td>
<td>RW</td>
<td>Performance Monitors Count Enable Set register</td>
<td>Yes</td>
<td>0xC00</td>
</tr>
<tr>
<td>PM��TENCLR_EL0</td>
<td>RW</td>
<td>Performance Monitors Count Enable Clear register</td>
<td>Yes</td>
<td>0xC20</td>
</tr>
<tr>
<td>PM��TENSET_EL1</td>
<td>RW</td>
<td>Performance Monitors Interrupt Enable Set register</td>
<td>Yes</td>
<td>0xC40</td>
</tr>
<tr>
<td>PM��TENCLR_EL1</td>
<td>RW</td>
<td>Performance Monitors Interrupt Enable Clear register</td>
<td>Yes</td>
<td>0xC60</td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td>RW</td>
<td>Performance Monitors Overflow Flag Status Clear register</td>
<td>Yes</td>
<td>0xC80</td>
</tr>
<tr>
<td>PMSWINC_E\l0</td>
<td>WO</td>
<td>Performance Monitors Software Increment register</td>
<td>Yes</td>
<td>0xCA0</td>
</tr>
<tr>
<td>PMOVSSET_EL0</td>
<td>RW</td>
<td>Performance Monitors Overflow Flag Status Set register</td>
<td>Yes</td>
<td>0xCC0</td>
</tr>
<tr>
<td>PM桴CFG\r</td>
<td>RO</td>
<td>Performance Monitors Configuration Register</td>
<td>No</td>
<td>0xE00</td>
</tr>
<tr>
<td>PM桴CR_EL0</td>
<td>RW</td>
<td>Performance Monitors Control Register</td>
<td>Yes</td>
<td>0xE04</td>
</tr>
<tr>
<td>PM桴EID0</td>
<td>RO</td>
<td>Performance Monitors Common Event Identification register 0</td>
<td>Yes</td>
<td>0xE20</td>
</tr>
<tr>
<td>PM桴EID1</td>
<td>RO</td>
<td>Performance Monitors Common Event Identification register 1</td>
<td>Yes</td>
<td>0xE24</td>
</tr>
<tr>
<td>PM桴EID2</td>
<td>RO</td>
<td>Performance Monitors Common Event Identification register 2</td>
<td>Yes</td>
<td>0xE28</td>
</tr>
<tr>
<td>PM桴EID3</td>
<td>RO</td>
<td>Performance Monitors Common Event Identification register 3</td>
<td>Yes</td>
<td>0xE2C</td>
</tr>
<tr>
<td>PM桴CTRL</td>
<td>RW</td>
<td>Integration Model Control registers</td>
<td>No</td>
<td>0xF00</td>
</tr>
<tr>
<td>PM桴EVAFF0</td>
<td>RO</td>
<td>Device Affinity registers</td>
<td>No</td>
<td>0xFA8</td>
</tr>
<tr>
<td>PM桴EVAFF1\c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFBAC</td>
</tr>
<tr>
<td>PM桴LAR\c, d</td>
<td>WO</td>
<td>Lock Access register</td>
<td>No</td>
<td>0xFB0</td>
</tr>
<tr>
<td>PM桴LSR\c, d</td>
<td>RO</td>
<td>Lock Status register</td>
<td>No</td>
<td>0xFB4</td>
</tr>
<tr>
<td>PMAuthstatus\c</td>
<td>RO</td>
<td>Authentication Status register</td>
<td>No</td>
<td>0xFB8</td>
</tr>
<tr>
<td>PM桴EVAR\c</td>
<td>RO</td>
<td>Device Architecture register</td>
<td>No</td>
<td>0xFB0</td>
</tr>
<tr>
<td>PM桴EVID\b</td>
<td>RO</td>
<td>Performance Monitors Device ID register</td>
<td>No</td>
<td>0xFC8</td>
</tr>
<tr>
<td>PM桴ETYPE\c</td>
<td>RO</td>
<td>Device Type register</td>
<td>No</td>
<td>0xFC8</td>
</tr>
</tbody>
</table>
Table I5-1 Performance Monitors external register views (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>System register?</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMPIDR4c</td>
<td>RO</td>
<td>Peripheral ID registers</td>
<td>No</td>
<td>0xFD0</td>
</tr>
<tr>
<td>PMPIDR0c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFE0</td>
</tr>
<tr>
<td>PMPIDR1c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFE4</td>
</tr>
<tr>
<td>PMPIDR2c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFE8</td>
</tr>
<tr>
<td>PMPIDR3c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFEC</td>
</tr>
<tr>
<td>PMCIDR0c</td>
<td>RO</td>
<td>Component ID registers</td>
<td>No</td>
<td>0xFF0</td>
</tr>
<tr>
<td>PMCIDR1c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFF4</td>
</tr>
<tr>
<td>PMCIDR2c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFF8</td>
</tr>
<tr>
<td>PMCIDR3c</td>
<td>RO</td>
<td></td>
<td></td>
<td>0xFFC</td>
</tr>
</tbody>
</table>

a. The interface must support at least single-copy atomic 32-bit accesses. If single-copy atomic 64-bit access to the registers is not possible, software must use a high-low-high read access to read the counter value if the counter is enabled.

b. PC Sample-based Profiling Extension registers. Implemented only when FEAT_PCSRv8p2 is implemented, except that from Armv8.2 PMDEVIDt is required regardless of whether FEAT_PCSRv8p2 is implemented. Before Armv8.2, the PC Sample-based Profiling Extension can, instead, be implemented in the memory-mapped debug registers space, see Chapter H7 The PC Sample-based Profiling Extension.

c. CoreSight interface registers, see Management registers and CoreSight compliance on page K2-7991.

d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and whether the OPTIONAL Software lock is implemented. See the register description for details.
I5.3 Performance Monitors external register descriptions

This section describes the external view of the Performance Monitors registers. _External Performance Monitors registers summary on page I5-7350_ lists these registers in offset order.
I5.3.1 PMAUTHSTATUS, Performance Monitors Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose

Provides information about the state of the IMPLEMENTATION DEFINED authentication interface for Performance Monitors.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is OPTIONAL, and is required for CoreSight compliance. Arm recommends that this register is implemented.

Attributes

PMAUTHSTATUS is a 32-bit register.

Field descriptions

The PMAUTHSTATUS bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7-6</td>
<td>SNID, holds the same value as DBGAUTHSTATUS_EL1.SNID.</td>
</tr>
<tr>
<td>5-4</td>
<td>SID, secure invasive debug. Possible values: 0b00 Not implemented. All other values are reserved.</td>
</tr>
<tr>
<td>3-2</td>
<td>NSNID, holds the same value as DBGAUTHSTATUS_EL1.NSNID.</td>
</tr>
<tr>
<td>1-0</td>
<td>NSID, non-secure invasive debug. Possible values: 0b00 Not implemented. All other values are reserved.</td>
</tr>
</tbody>
</table>

Accessing the PMAUTHSTATUS:

PMAUTHSTATUS can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFB8</td>
<td>PMAUTHSTATUS</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.2 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

- External register PMCCFILTR_EL0[31:0] is architecturally mapped to AArch64 System register PMCCFILTR_EL0[31:0].
- External register PMCCFILTR_EL0[31:0] is architecturally mapped to AArch32 System register PMCCFILTR[31:0].
- PMCCFILTR_EL0 is in the Core power domain.
- On a Warm or Cold reset, RW fields in this register reset:
 - To architecturally UNKNOWN values if the reset is to an Exception level that is using AArch64.
 - To 0 if the reset is to an Exception level that is using AArch32.
- The register is not affected by an External debug reset.

Attributes

PMCCFILTR_EL0 is a 32-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>U</td>
<td>M</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, bit [31]

- Privileged filtering bit. Controls counting in EL1.
- If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR_EL0.NSK bit.
- 0b0 Count cycles in EL1.
- 0b1 Do not count cycles in EL1.

U, bit [30]

- User filtering bit. Controls counting in EL0.
- If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR_EL0.NSU bit.
- 0b0 Count cycles in EL0.
- 0b1 Do not count cycles in EL0.
NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

- If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1 are counted.
- Otherwise, cycles in Non-secure EL1 are not counted.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

- If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure EL0 are counted.
- Otherwise, cycles in Non-secure EL0 are not counted.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

- If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the PMCCFILTR_EL0.SH bit.
 - 0b0: Do not count cycles in EL2.
 - 0b1: Count cycles in EL2.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

- If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are counted.
- Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

Otherwise:

Reserved, RES0.

Bit [25]

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented:

Secure EL2 filtering.

- If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure EL2 are counted.
Otherwise, cycles in Secure EL2 are not counted.
If Secure EL2 is disabled, this field is RES0.

--- Note ---
This field is not visible in the AArch32 PMCCFILTR System register.

Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0:

--- Note ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCFILTR_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x47C</td>
<td>PMCCFILTR_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.3 PMCCNTR_EL0, Performance Monitors Cycle Counter

The PMCCNTR_EL0 characteristics are:

Purpose

Holds the value of the processor Cycle Counter, CCNT, that counts processor clock cycles. For more information, see *Time as measured by the Performance Monitors cycle counter* on page D7-2696. PMCCFILTR_EL0 determines the modes and states in which the PMCCNTR_EL0 can increment.

Configurations

External register PMCCNTR_EL0[63:0] is architecturally mapped to AArch64 System register PMCCNTR_EL0[63:0].
External register PMCCNTR_EL0[63:0] is architecturally mapped to AArch32 System register PMCCNTR[63:0].
PMCCNTR_EL0 is in the Core power domain.

Attributes

PMCCNTR_EL0 is a 64-bit register.

Field descriptions

The PMCCNTR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
</table>
| CCNT, bits [63:0] | Cycle count. Depending on the values of PMCR_EL0.{LC,D}, the cycle count increments in one of the following ways:
 - Every processor clock cycle.
 - Every 64th processor clock cycle.
 Writing 1 to PMCR_EL0.C sets this field to 0.
 On a Warm reset, this field resets to an architecturally UNKNOWN value. |

Accessing the PMCCNTR_EL0:

--- **Note** ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCNTR_EL0[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xF8</td>
<td>PMCCNTR_EL0</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to PMCCNTR_EL0[31:0] are RO.
• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to PMCCNTR_EL0[31:0] are RW.

• Otherwise accesses to PMCCNTR_EL0[31:0] generate an error response.

PMCCNTR_EL0[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xF0FC</td>
<td>PMCCNTR_EL0</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to PMCCNTR_EL0[63:32] are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to PMCCNTR_EL0[63:32] are RW.

• Otherwise accesses to PMCCNTR_EL0[63:32] generate an error response.
I5.3.4 PMCEID0, Performance Monitors Common Event Identification register 0

The PMCEID0 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x0000 to 0x001F

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers, see The PMU event number space and common events on page D7-2715.

Note

• Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.
• This view of the register was previously called PMCEID0_EL0.

Configurations

External register PMCEID0[31:0] is architecturally mapped to AArch64 System register PMCEID0_EL0[31:0].

External register PMCEID0[31:0] is architecturally mapped to AArch32 System register PMCEID0[31:0].

PMCEID0 is in the Core power domain.

Attributes

PMCEID0 is a 32-bit register.

Field descriptions

The PMCEID0 bit assignments are:
ID<\text{n}>, bit [\text{n}], for n = 0 to 31

ID[\text{n}] corresponds to common event n.

For each bit:

0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<\text{n}> registers of that earlier version of the PMU architecture.

--- Accessing the PMCEID0: ---

--- Note ---

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCEID0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE20</td>
<td>PMCEID0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.5 PMCEID1, Performance Monitors Common Event Identification register 1

The PMCEID1 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x020 to 0x03F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

For more information about the common events and the use of the PMCEIDn registers, see The PMU event number space and common events on page D7-2715.

Note

- Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.
- This view of the register was previously called PMCEID1_EL0.

Configurations

External register PMCEID1[31:0] is architecturally mapped to AArch64 System register PMCEID1_EL0[31:0].

External register PMCEID1[31:0] is architecturally mapped to AArch32 System register PMCEID1[31:0].

PMCEID1 is in the Core power domain.

Attributes

PMCEID1 is a 32-bit register.

Field descriptions

The PMCEID1 bit assignments are:

```
<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>22</th>
<th>21</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID31</td>
<td></td>
</tr>
<tr>
<td>ID30</td>
<td></td>
</tr>
<tr>
<td>ID29</td>
<td></td>
</tr>
<tr>
<td>ID28</td>
<td></td>
</tr>
<tr>
<td>ID27</td>
<td></td>
</tr>
<tr>
<td>ID26</td>
<td></td>
</tr>
<tr>
<td>ID25</td>
<td></td>
</tr>
<tr>
<td>ID24</td>
<td></td>
</tr>
<tr>
<td>ID23</td>
<td></td>
</tr>
<tr>
<td>ID22</td>
<td></td>
</tr>
<tr>
<td>ID21</td>
<td></td>
</tr>
<tr>
<td>ID20</td>
<td></td>
</tr>
<tr>
<td>ID19</td>
<td></td>
</tr>
<tr>
<td>ID18</td>
<td></td>
</tr>
<tr>
<td>ID17</td>
<td></td>
</tr>
<tr>
<td>ID16</td>
<td></td>
</tr>
</tbody>
</table>
```

ID<n>, bit [n], for n = 0 to 31

ID[n] corresponds to common event (0x0020 + n).

For each bit:

0b0 The common event is not implemented, or not counted.
0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.

Accessing the PMCEID1:

--- Note ---

AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCEID1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE24</td>
<td>PMCEID1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.6 PMCEID2, Performance Monitors Common Event Identification register 2

The PMCEID2 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4000 to 0x401F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

Note

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers, see The PMU event number space and common events on page D7-2715.

Configurations

External register PMCEID2[31:0] is architecturally mapped to AArch64 System register PMCEID0_EL0[63:32].

External register PMCEID2[63:32] is architecturally mapped to AArch32 System register PMCEID2[31:0].

PMCEID2 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID2 are RES0.

Attributes

PMCEID2 is a 32-bit register.

Field descriptions

The PMCEID2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDhi<n>, bit[n], for n = 0 to 31</td>
<td></td>
</tr>
</tbody>
</table>

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4000 + n).

For each bit:

0b0 The common event is not implemented, or not counted.

0b1 The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

Note

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.
Accessing the PMCEID2:

--- Note ---
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCEID2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE28</td>
<td>PMCEID2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.7 PMCEID3, Performance Monitors Common Event Identification register 3

The PMCEID3 characteristics are:

Purpose

Defines which common architectural events and common microarchitectural events are implemented, or counted, using PMU events in the range 0x4020 to 0x403F.

When the value of a bit in the register is 1 the corresponding common event is implemented and counted.

--- Note ---

Arm recommends that, if a common event is never counted, the value of the corresponding register bit is 0.

For more information about the common events and the use of the PMCEIDn registers, see *The PMU event number space and common events on page D7-2715*.

Configurations

External register PMCEID3[31:0] is architecturally mapped to AArch64 System register PMCEID1_EL0[63:32].

External register PMCEID3[63:32] is architecturally mapped to AArch32 System register PMCEID3[31:0].

PMCEID3 is in the Core power domain.

This register is present only when FEAT_PMUv3p1 is implemented. Otherwise, direct accesses to PMCEID3 are RES0.

Attributes

PMCEID3 is a 32-bit register.

Field descriptions

The PMCEID3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>IDhi<n>, bit[n], for n = 0 to 31</td>
</tr>
</tbody>
</table>

IDhi<n>, bit [n], for n = 0 to 31

IDhi[n] corresponds to common event (0x4020 + n).

For each bit:

- **0b0**: The common event is not implemented, or not counted.
- **0b1**: The common event is implemented.

A bit that corresponds to a reserved event number is reserved. The value might be used in a future revision of the architecture to identify an additional common event.

--- Note ---

Such an event might be added retrospectively to an earlier version of the PMU architecture, provided the event does not require any additional PMU features and has an event number that can be represented in the PMCEID<n> registers of that earlier version of the PMU architecture.
Accessing the PMCEID3:

--- Note ---
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCEID3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE2C</td>
<td>PMCEID3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.8 PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose
Contains PMU-specific configuration data.

Configurations
PMCFGR is in the Core power domain.

Attributes
PMCFGR is a 32-bit register.

Field descriptions
The PMCFGR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>20</th>
<th>19</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCG</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCG, bits [31:28]
This feature is not supported, so this field is RAZ.

Bits [27:20]
Reserved, RES0.

UEN, bit [19]
User-mode Enable Register supported. PMUSERENR_EL0 is not visible in the external debug interface, so this bit is RAZ.

WT, bit [18]
This feature is not supported, so this bit is RAZ.

NA, bit [17]
This feature is not supported, so this bit is RAZ.

EX, bit [16]
Export supported. Value is IMPLEMENTATION DEFINED.
0b0 PMCR_EL0.X is RES0.
0b1 PMCR_EL0.X is read/write.

CCD, bit [15]
Cycle counter has prescale.
This is RES1 if AArch32 is supported at any Exception level, and RAZ otherwise.
0b0 PMCR_EL0.D is RES0.
0b1 PMCR_EL0.D is read/write.
CC, bit [14]
Dedicated cycle counter (counter 31) supported. This bit is RAO.

SIZE, bits [13:8]
Size of counters, minus one. This field defines the size of the largest counter implemented by the Performance Monitors Unit.
From Armv8, the largest counter is 64-bits, so the value of this field is \(0b111111\).
This field is used by software to determine the spacing of the counters in the memory-map. From Armv8, the counters are a doubleword-aligned addresses.

N, bits [7:0]
Number of counters implemented in addition to the cycle counter, PMCCNTR_EL0. The maximum number of event counters is 31.

- \(0x00\) Only PMCCNTR_EL0 implemented.
- \(0x01\) PMCCNTR_EL0 plus one event counter implemented.
and so on up to \(0b00011111\), which indicates PMCCNTR_EL0 and 31 event counters implemented.

Accessing the PMCFGR:

Note
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCFGR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE00</td>
<td>PMCFGR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and AllowExternalPMUAccess() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.9 PMCIDR0, Performance Monitors Component Identification Register 0

The PMCIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR0 is a 32-bit register.

Field descriptions

The PMCIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>PRMBL_0</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble. Reads as 0x0D.

Accessing the PMCIDR0:

PMCIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFF0</td>
<td>PMCIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.10 PMCIDR1, Performance Monitors Component Identification Register 1

The PMCIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR1 is a 32-bit register.

Field descriptions

The PMCIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:8]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[7:4]</td>
<td>CLASS, Component class.</td>
</tr>
<tr>
<td></td>
<td>0b1001 CoreSight component.</td>
</tr>
<tr>
<td></td>
<td>Other values are defined by the CoreSight Architecture.</td>
</tr>
<tr>
<td></td>
<td>This field reads as 0x9.</td>
</tr>
<tr>
<td>[3:0]</td>
<td>PRMBL_1, Preamble. RAZ.</td>
</tr>
<tr>
<td></td>
<td>Reads as 0b0000.</td>
</tr>
</tbody>
</table>

Accessing the PMCIDR1:

PMCIDR1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFFF4</td>
<td>PMCIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.11 PMCIDR2, Performance Monitors Component Identification Register 2

The PMCIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is **OPTIONAL**.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR2 is a 32-bit register.

Field descriptions

The PMCIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>PRMBL_2</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Accessing the PMCIDR2:

PMCIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFF8</td>
<td>PMCIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.12 PMCIDR3, Performance Monitors Component Identification Register 3

The PMCIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMCIDR3 is a 32-bit register.

Field descriptions

The PMCIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RES0</td>
<td>PRMBL_3</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Accessing the PMCIDR3:

PMCIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFFC</td>
<td>PMCIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.13 PMCID1SR, CONTEXTIDR_EL1 Sample Register

The PMCID1SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL1, captured on reading PMPCSR[31:0].

Configurations

PMCID1SR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to PMCID1SR are RES0.

--- Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMCID1SR is a 32-bit register.

Field descriptions

The PMCID1SR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTEXTIDR_EL1</td>
<td></td>
</tr>
</tbody>
</table>

CONTEXTIDR_EL1, bits [31:0]

Context ID. The value of CONTEXTIDR that is associated with the most recent PMPCSR sample. When the most recent PMPCSR sample was generated:

- If EL1 is using AArch64, then the Context ID is sampled from CONTEXTIDR_EL1.
- If EL1 is using AArch32, then the Context ID is sampled from CONTEXTIDR.
- If EL3 is implemented and is using AArch32, then CONTEXTIDR is a banked register and PMCID1SR samples the current banked copy of CONTEXTIDR for the Security state that is associated with the most recent PMPCSR sample.

Because the value written to PMCID1SR is an indirect read of CONTEXTIDR, it is constrained unpredictable whether PMCID1SR is set to the original or new value if PMPCSR samples:

- An instruction that writes to CONTEXTIDR.
- The next Context synchronization event.
- Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the PMCID1SR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7134.
PMCID1SR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x208</td>
<td>PMCID1SR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.

PMCID1SR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x228</td>
<td>PMCID1SR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.14 PMCID2SR, CONTEXTIDR_EL2 Sample Register

The PMCID2SR characteristics are:

Purpose

Contains the sampled value of CONTEXTIDR_EL2, captured on reading PMPCSR[31:0].

Configurations

PMCID2SR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented. Otherwise, direct accesses to PMCID2SR are RES0.

Note

If FEAT_PCSRv8p2 is not implemented, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMCID2SR is a 32-bit register.

Field descriptions

The PMCID2SR bit assignments are:

```
31 0
```

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent PMPCSR sample. When the most recent PMPCSR sample was generated:

- If EL2 is using AArch64, then this field is set to the Context ID sampled from CONTEXTIDR_EL2.
- If EL2 is using AArch32, then this field is set to an UNKNOWN value.

Because the value written to PMCID2SR is an indirect read of CONTEXTIDR_EL2, it is CONSTRAINED UNPREDICTABLE whether PMCID2SR is set to the original or new value if PMPCSR samples:

- An instruction that writes to CONTEXTIDR_EL2.
- The next Context synchronization event.
- Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the PMCID2SR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN on page H7-7134.
PMCID2SR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x22C</td>
<td>PMCID2SR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.15 PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register

The PMCNTENCLR_EL0 characteristics are:

Purpose

Disables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

External register PMCNTENCLR_EL0[31:0] is architecturally mapped to AArch64 System register PMCNTENCLR_EL0[31:0].

External register PMCNTENCLR_EL0[31:0] is architecturally mapped to AArch32 System register PMCNTENCLR[31:0].

PMCNTENCLR_EL0 is in the Core power domain.

Attributes

PMCNTENCLR_EL0 is a 32-bit register.

Field descriptions

The PMCNTENCLR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]

PMCCNTR_EL0 disable bit. Disables the cycle counter register. Possible values are:

- 0b0: When read, means the cycle counter is disabled. When written, has no effect.
- 0b1: When read, means the cycle counter is enabled. When written, disables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter disable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

- 0b0: When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.
- 0b1: When read, means that PMEVCNTR<n>_EL0 is enabled. When written, disables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENCLR_EL0:

--- Note ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.
PMCNTENCLR_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xC20</td>
<td>PMCNTENCLR_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.16 PMCNTENSET_EL0, Performance Monitors Count Enable Set register

The PMCNTENSET_EL0 characteristics are:

Purpose

Enables the Cycle Count Register, PMCCNTR_EL0, and any implemented event counters PMEVCNTR<n>. Reading this register shows which counters are enabled.

Configurations

External register PMCNTENSET_EL0[31:0] is architecturally mapped to AArch64 System register PMCNTENSET_EL0[31:0].

External register PMCNTENSET_EL0[31:0] is architecturally mapped to AArch32 System register PMCNTENSET[31:0].

PMCNTENSET_EL0 is in the Core power domain.

Attributes

PMCNTENSET_EL0 is a 32-bit register.

Field descriptions

The PMCNTENSET_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>P<n></td>
</tr>
</tbody>
</table>

C, bit [31]

PMCCNTR_EL0 enable bit. Enables the cycle counter register. Possible values are:

- 0b0 When read, means the cycle counter is disabled. When written, has no effect.
- 0b1 When read, means the cycle counter is enabled. When written, enables the cycle counter.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

- 0b0 When read, means that PMEVCNTR<n>_EL0 is disabled. When written, has no effect.
- 0b1 When read, means that PMEVCNTR<n>_EL0 event counter is enabled. When written, enables PMEVCNTR<n>_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMCNTENSET_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.
PMCNTENSET_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xC00</td>
<td>PMCNTENSET_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.17 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters implemented, and configures and controls the counters.

Configurations

External register PMCR_EL0[7:0] is architecturally mapped to AArch32 System register PMCR[7:0].

External register PMCR_EL0[7:0] is architecturally mapped to AArch64 System register PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means to discover the information held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>RAZ/WI</td>
<td>RES0</td>
<td>LPLCDP</td>
<td>X</td>
<td>D</td>
<td>C</td>
<td>P</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-write sequence to write to the register.

Bits [10:8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by a counter overflow bit.

0b0 Event counter overflow on increment that causes unsigned overflow of PMEVCNTR<\textless n\textgreater >_EL0[31:0].

0b1 Event counter overflow on increment that causes unsigned overflow of PMEVCNTR<\textless n\textgreater >_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [MDCR_EL2.HPMN:(PMCR_EL0.N-1)].

If EL2 is implemented and HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)].
Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit always applies if EL2 is implemented, at all Exception levels including EL2 and EL3, and regardless of whether EL2 is enabled in the current Security state. For more information, see the description of MDCR_EL2.HPMN or HDCR.HPMN.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or RAZ/WI.

Otherwise:
Reserved, RES0.

LC, bit [6]

When AArch32 is supported at any Exception level:
Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

0b0 Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):
Disable cycle counter when event counting is prohibited. The possible values of this bit are:

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by PMCCNTR_EL0 is disabled.

For more information, see Prohibiting event counting on page D7-2703.
When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:
• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:
Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:
Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.
0b1 Export events where not prohibited.
This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device, for example to an OPTIONAL PE trace unit.
No events are exported when counting is prohibited.
This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.
When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

- A value that is architecturally **UNKNOWN** if the reset is into an Exception level that is using AArch64.
- 0 if the reset is into an Exception level that is using AArch32.

Otherwise:
Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

- 0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
- 0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

- A value that is architecturally **UNKNOWN** if the reset is into an Exception level that is using AArch64.
- 0 if the reset is into an Exception level that is using AArch32.

Otherwise:
Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

- 0b0 No action.
- 0b1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Note
Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

Access to this field is WO.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

- 0b0 No action.
- 0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Note
Resetting the event counters does not change the event counter overflow bits.

If FEAT_PMUv3p5 is implemented, the value of MDCR_EL2.HLP, or PMCR_EL0.LP is ignored and bits [63:0] of all event counters are reset.

Access to this field is WO.

E, bit [0]

Enable.

- 0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are disabled.
All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are enabled by PMCNTENSET_EL0.

If EL2 is implemented then:

- If EL2 is using AArch32, PMN is HDCR.HPMN.
- If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
- If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range [PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

--- Note ---

The effect of the following fields on the operation of this bit applies if EL2 is implemented regardless of whether EL2 is enabled in the current Security state:

- HDCR.HPMN. See the description of HDCR.HPMN for more information.
- MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more information.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0:

--- Note ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE04</td>
<td>PMCR_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.18 PMDEVAFF0, Performance Monitors Device Affinity register 0

The PMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the Performance Monitor component relates to.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required if the external interface to the PMU is implemented.

Attributes

PMDEVAFF0 is a 32-bit register.

Field descriptions

The PMDEVAFF0 bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPIDR_EL1lo</td>
<td>MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.</td>
</tr>
</tbody>
</table>

Accessing the PMDEVAFF0:

PMDEVAFF0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFA8</td>
<td>PMDEVAFF0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.19 PMDEVAFF1, Performance Monitors Device Affinity register 1

The PMDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the Performance Monitor component relates to.

Configurations
If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.
This register is required if the external interface to the PMU is implemented.

Attributes
PMDEVAFF1 is a 32-bit register.

Field descriptions
The PMDEVAFF1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>MPIDR_EL1hi</td>
</tr>
</tbody>
</table>

MPIDR_EL1hi, bits [31:0]

MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the PMDEVAFF1:
PMDEVAFF1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFAC</td>
<td>PMDEVAFF1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.20 PMDEVARCH, Performance Monitors Device Architecture register

The PMDEVARCH characteristics are:

Purpose

Identifies the programmers’ model architecture of the Performance Monitor component.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

PMDEVARCH is a 32-bit register.

Field descriptions

The PMDEVARCH bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECT</td>
<td>[31:21]</td>
<td>Defines the architecture of the component. For Performance Monitors, this is Arm Limited. Bits [31:28] are the JEP106 continuation code, 0x4. Bits [27:21] are the JEP106 ID code, 0x3B.</td>
</tr>
<tr>
<td>PRESENT</td>
<td>bit [20]</td>
<td>When set to 1, indicates that the DEVARCH is present. This field is 1 in Armv8.</td>
</tr>
<tr>
<td>REVISION</td>
<td>[19:16]</td>
<td>Defines the architecture revision. For architectures defined by Arm this is the minor revision. For Performance Monitors, the revision defined by Armv8 is 0x0. All other values are reserved.</td>
</tr>
<tr>
<td>ARCHID</td>
<td>[15:0]</td>
<td>Defines this part to be an Armv8 debug component. For architectures defined by Arm this is further subdivided. For Performance Monitors: Bits [15:12] are the architecture version, 0x2. Bits [11:0] are the architecture part number, 0xA16. This corresponds to Performance Monitors architecture version PMUv3.</td>
</tr>
</tbody>
</table>

Note

The PMUv3 memory-mapped programmers' model can be used by devices other than Armv8 processors. Software must determine whether the PMU is attached to an Armv8 processor by using the PMDEVAFF0 and PMDEVAFF1 registers to discover the affinity of the PMU to any Armv8 processors.
Accessing the PMDEVARCH:

PMDEVARCH can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFBC</td>
<td>PMDEVARCH</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.21 PMDEVID, Performance Monitors Device ID register

The PMDEVID characteristics are:

Purpose

Provides information about features of the Performance Monitors implementation.

Configurations

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required from Armv8.2 and in any implementation that includes FEAT_PCSRv8p2. Otherwise, its location is RES0.

--- Note ---

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMDEVID is a 32-bit register.

Field descriptions

The PMDEVID bit assignments are:

<table>
<thead>
<tr>
<th>Bitassignments</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:4</td>
<td>RES0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0:0</td>
<td>PCSample</td>
<td>PC Sample-based Profiling support using PM registers.</td>
</tr>
</tbody>
</table>

Bits [31:4]

Reserved, RES0.

PCSample, bits [3:0]

Indicates the level of PC Sample-based Profiling support using Performance Monitors registers.

- 0b0000: PC Sample-based Profiling Extension not implemented in the Performance Monitors register space.
- 0b0001: PC Sample-based Profiling Extension implemented in the Performance Monitors register space.

All other values are reserved.

FEAT_PCSRv8p2 implements the functionality identified by the value 0b0001.

Accessing the PMDEVID:

PMDEVID can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFc8</td>
<td>PMDEVID</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.22 PMDEVTYPE, Performance Monitors Device Type register

The PMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

PMDEVTYPE is a 32-bit register.

Field descriptions

The PMDEVTYPE bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SUB</td>
<td>MAJOR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SUB, bits [7:4]

Subtype. Must read as 0x1 to indicate this is a component within a PE.

MAJOR, bits [3:0]

Major type. Must read as 0x6 to indicate this is a performance monitor component.

Accessing the PMDEVTYPE:

PMDEVTYPE can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFCC</td>
<td>PMDEVTYPE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.23 PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose

Holds event counter n, which counts events, where n is 0 to 30.

Configurations

External register PMEVCNTR<n>_EL0[31:0] is architecturally mapped to AArch64 System register PMEVCNTR<n>_EL0[31:0].

External register PMEVCNTR<n>_EL0[31:0] is architecturally mapped to AArch32 System register PMEVCNTR<n>[31:0].

PMEVCNTR<n>_EL0 is in the Core power domain.

Attributes

PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions

The PMEVCNTR<n>_EL0 bit assignments are:

When FEAT_PMUv3p5 is implemented:

```
63 0
```

Event counter n

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

If the highest implemented Exception level is using AArch32, the optional external interface to the performance monitors is implemented, and the PMCR.LP and HDCR.HLP bits are RAZ/WI, then locations in the external interface to the performance monitors that map to PMEVCNTR<n>_EL0[63:32] return UNKNOWN values on reads.

If the implementation does not support AArch64 at any Exception level, bits [63:32] of the event counters are not required to be implemented.

This field resets to an architecturally UNKNOWN value.

Otherwise:

```
31 0
```

Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

This field resets to an architecturally UNKNOWN value.
Accessing the PMEVCNTR<n>_EL0:

External accesses to the performance monitors ignore PMUSERENR_EL0 and, if implemented, MDCR_EL2.TPM, TPMCR, HPMN} and MDCR_EL3.TPM. This means that all counters are accessible regardless of the current Exception level or privilege of the access.

If FEAT_PMUv3p5 is not implemented, when IsCorePowered(), DoubleLockStatus(), OSLockStatus() or !AllowExternalPMUAccess(), 32-bit accesses to 0x004+8×n have a CONSTRAINED UNPREDICTABLE behavior.

--- Note ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVCNTR<n>_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x000+(8*n)</td>
<td>PMEVCNTR<n>_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.24 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

External register PMEVTYPER<n>_EL0[31:0] is architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0[31:0].

External register PMEVTYPER<n>_EL0[31:0] is architecturally mapped to AArch32 System register PMEVTYPER<n>_EL0[31:0].

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented then accesses to this register are:

- RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess().
- A CONstrained UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>26</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>16</th>
<th>15</th>
<th>10</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>U</td>
<td>M</td>
<td>RES0</td>
<td>evtCount[15:10]</td>
<td>evtCount[9:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, bit [31]

Privileged filtering bit. Controls counting in EL1.
If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.

0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.
If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.

0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.
NSK, bit [29]

When EL3 is implemented:

- Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.
- If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.
- Otherwise, events in Non-secure EL1 are not counted.
- On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

- Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.
- If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.
- Otherwise, events in Non-secure EL0 are not counted.
- On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

- EL2 (Hypervisor) filtering bit. Controls counting in EL2.
- If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the PMEVTYPER<n>_EL0.SH bit.
 - 0b0: Do not count events in EL2.
 - 0b1: Count events in EL2.
- On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

- Secure EL3 filtering bit.
- If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.
- Otherwise, events in Secure EL3 are not counted.
- Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally **UNKNOWN** value.

Otherwise:

Reserved, RES0.
MT, bit [25]

When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:

Multithreading.

- **0b0** Count events only on controlling PE.
- **0b1** Count events from any PE with the same affinity at level 1 and above as this PE.

--- **Note** ---

- When the lowest level of *affinity* consists of logical PEs that are implemented using a multi-threading type approach, an implementation is described as multi-threaded. That is, the performance of PEs at the lowest affinity level is highly interdependent.
- Events from a different thread of a multithreaded implementation are not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.

--- **Note** ---

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in **Table D7-7 on page D7-2715**.
If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value written:

- For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of the evtCount field is the value written to the field.
- If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value returned by a direct or external read of the evtCount field is the value written to the field.
- For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned by a direct or external read of the evtCount field is UNKNOWN.

--- Note ---

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0:

--- Note ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x400 + (4 * n)</td>
<td>PMEVTYPER<n>_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.25 PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR_EL1 characteristics are:

Purpose
Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configurations
- External register PMINTENCLR_EL1[31:0] is architecturally mapped to AArch64 System register PMINTENCLR_EL1[31:0].
- External register PMINTENCLR_EL1[31:0] is architecturally mapped to AArch32 System register PMINTENCLR[31:0].
- PMINTENCLR_EL1 is in the Core power domain.

Attributes
PMINTENCLR_EL1 is a 32-bit register.

Field descriptions
The PMINTENCLR_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

- **C, bit [31]**
 - PMCCNTR_EL0 overflow interrupt request disable bit. Possible values are:
 - 0b0: When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.
 - 0b1: When read, means the cycle counter overflow interrupt request is enabled. When written, disables the cycle count overflow interrupt request.
 - On a Warm reset, this field resets to an architecturally UNKNOWN value.

- **P<n>, bit [n], for n = 0 to 30**
 - Event counter overflow interrupt request disable bit for PMEVCNTR<n>_EL0.
 - If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.
 - 0b0: When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is disabled. When written, has no effect.
 - 0b1: When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is enabled. When written, disables the PMEVCNTR<n>_EL0 interrupt request.
 - On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENCLR_EL1:

--- **Note** ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.
PMINTENCLR_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xC60</td>
<td>PMINTENCLR_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.26 PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register

The PMINTENSET_EL1 characteristics are:

Purpose

Enables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR_EL0, and the event counters PMEVCNTR<n>_EL0. Reading the register shows which overflow interrupt requests are enabled.

Configurations

External register PMINTENSET_EL1[31:0] is architecturally mapped to AArch64 System register PMINTENSET_EL1[31:0].

External register PMINTENSET_EL1[31:0] is architecturally mapped to AArch32 System register PMINTENSET[31:0].

PMINTENSET_EL1 is in the Core power domain.

Attributes

PMINTENSET_EL1 is a 32-bit register.

Field descriptions

The PMINTENSET_EL1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>P<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

C, bit [31]

PMCCNTR_EL0 overflow interrupt request enable bit. Possible values are:

- **0b0** When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.
- **0b1** When read, means the cycle counter overflow interrupt request is enabled. When written, enables the cycle count overflow interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 0 to 30

Event counter overflow interrupt request enable bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.

- **0b0** When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is disabled. When written, has no effect.
- **0b1** When read, means that the PMEVCNTR<n>_EL0 event counter interrupt request is enabled. When written, enables the PMEVCNTR<n>_EL0 interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENSET_EL1:

--- **Note** ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.
PMINTENSEL_EL1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xC40</td>
<td>PMINTENSEL_EL1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.27 PMITCTRL, Performance Monitors Integration mode Control register

The PMITCTRL characteristics are:

Purpose

Enables the Performance Monitors to switch from default mode into integration mode, where test software can control directly the inputs and outputs of the PE, for integration testing or topology detection.

Configurations

It is IMPLEMENTATION DEFINED whether PMITCTRL is implemented in the Core power domain or in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes

PMITCTRL is a 32-bit register.

Field descriptions

The PMITCTRL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>Integration mode enable (IME)</td>
</tr>
</tbody>
</table>

Bits [31:1]
Reserved, RES0.

IME, bit [0]
Integration mode enable. When IME == 1, the device reverts to an integration mode to enable integration testing or topology detection. The integration mode behavior is IMPLEMENTATION DEFINED.

- **Normal operation.**
- **Integration mode enabled.**

The following resets apply:

- **If the register is implemented in the Core power domain:**
 - On a Cold reset, this field resets to 0.
 - On an External debug reset, the value of this field is unchanged.
 - On a Warm reset, the value of this field is unchanged.

- **If the register is implemented in the External debug power domain:**
 - On a Cold reset, the value of this field is unchanged.
 - On an External debug reset, this field resets to 0.
 - On a Warm reset, the value of this field is unchanged.
Accessing the PMITCTRL:

PMITCTRL can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xF00</td>
<td>PMITCTRL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register are IMPDEF.
I5.3.28 PMLAR, Performance Monitors Lock Access Register

The PMLAR characteristics are:

Purpose

Allows or disallows access to the Performance Monitors registers through a memory-mapped interface.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLAR is a 32-bit register.

Field descriptions

The PMLAR bit assignments are:

When Software Lock is implemented:

```
<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td></td>
</tr>
</tbody>
</table>
```

KEY, bits [31:0]

Lock Access control. Writing the key value 0xC5ACCE55 to this field unlocks the lock, enabling write accesses to this component's registers through a memory-mapped interface.

Writing any other value to this register locks the lock, disabling write accesses to this component's registers through a memory mapped interface.

Otherwise:

```
<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
</tr>
</tbody>
</table>
```

Otherwise

Bits [31:0]

Reserved, RES0.
Accessing the PMLAR:

PMLAR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFB0</td>
<td>PMLAR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are WO.
- Otherwise accesses to this register generate an error response.
I5.3.29 PMLSR, Performance Monitors Lock Status Register

The PMLSR characteristics are:

Purpose

Indicates the current status of the software lock for Performance Monitors registers.

The optional Software Lock provides a lock to prevent memory-mapped writes to the Performance Monitors registers. Use of this lock mechanism reduces the risk of accidental damage to the contents of the Performance Monitors registers. It does not, and cannot, prevent all accidental or malicious damage.

Configurations

If FEAT_DoPD is implemented, Software Lock is not implemented by the architecturally-defined debug components of the PE in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Software uses PMLAR to set or clear the lock, and PMLSR to check the current status of the lock.

Attributes

PMLSR is a 32-bit register.

Field descriptions

The PMLSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>3</td>
<td>nTT, bit [2]</td>
</tr>
<tr>
<td>2</td>
<td>Not thirty-two bit access required. RAZ.</td>
</tr>
<tr>
<td>1</td>
<td>SLK, bit [1]</td>
</tr>
<tr>
<td>0</td>
<td>SLI</td>
</tr>
</tbody>
</table>

When Software Lock is implemented and FEAT_DoPD is not implemented:

Software Lock status for this component. For an access to LSR that is not a memory-mapped access, or when Software Lock is not implemented, this field is RES0.

For memory-mapped accesses when Software Lock is implemented, possible values of this field are:

- **0b0**: Lock clear. Writes are permitted to this component's registers.
- **0b1**: Lock set. Writes to this component's registers are ignored, and reads have no side effects.

On a Cold reset, the value of this field is unchanged.

On an External debug reset, this field resets to 1.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RAZ.
SLI, bit [0]

Software Lock implemented. For an access to LSR that is not a memory-mapped access, this field is RAZ. For memory-mapped accesses, the value of this field is IMPLEMENTATION DEFINED. Permitted values are:

- **0b0** Software Lock not implemented or not memory-mapped access.
- **0b1** Software Lock implemented and memory-mapped access.

Accessing the PMLSR:

PMLSR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFB4</td>
<td>PMLSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.30 PMMIR, Performance Monitors Machine Identification Register

The PMMIR characteristics are:

Purpose

Describes Performance Monitors parameters specific to the implementation.

Configurations

PMMIR is in the Core power domain.

This register is present only when FEAT_PMUv3p4 is implemented. Otherwise, direct accesses to PMMIR are RES0.

Attributes

PMMIR is a 32-bit register.

Field descriptions

The PMMIR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31–8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7–0</td>
<td>SLOTS</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SLOTS, bits [7:0]

Operation width. The largest value by which the STALL_SLOT event might increment by in a single cycle. If the STALL_SLOT event is implemented, this field must not be zero.

Accessing the PMMIR:

If the Core power domain is off or in a low-power state, access on this interface returns an Error.

PMMIR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xE40</td>
<td>PMMIR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When !IsCorePowered(), or DoubleLockStatus(), or OSLockStatus() or !AllowExternalPMUAccess() accesses to this register generate an error response.
- Otherwise accesses to this register are RO.
I5.3.31 PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear register

The PMOVSCLR_EL0 characteristics are:

Purpose
Contains the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<\(n\)>. Writing to this register clears these bits.

Configurations
External register PMOVSCLR_EL0[31:0] is architecturally mapped to AArch64 System register PMOVSCLR_EL0[31:0].
External register PMOVSCLR_EL0[31:0] is architecturally mapped to AArch32 System register PMOVSR[31:0].
PMOVSCLR_EL0 is in the Core power domain.

Attributes
PMOVSCLR_EL0 is a 32-bit register.

Field descriptions
The PMOVSCLR_EL0 bit assignments are:

<table>
<thead>
<tr>
<th></th>
<th>C, bit [31]</th>
<th>P<(n)>, bit [n]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cycle counter overflow clear bit.</td>
<td>Event counter overflow clear bit for PMEVCNTR<(n)>_EL0.</td>
</tr>
<tr>
<td>00</td>
<td>When read, means the cycle counter has not overflowed since this bit was last cleared. When written, has no effect.</td>
<td>If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are RAZ/WI.</td>
</tr>
<tr>
<td>01</td>
<td>When read, means the cycle counter has overflowed since this bit was last cleared. When written, clears the cycle counter overflow bit to 0.</td>
<td>When read, means that PMEVCNTR<(n)>_EL0 has not overflowed since this bit was last cleared. When written, has no effect.</td>
</tr>
<tr>
<td>10</td>
<td>When read, means that PMEVCNTR<(n)>_EL0 has overflowed since this bit was last cleared. When written, clears the PMEVCNTR<(n)>_EL0 overflow bit to 0.</td>
<td>When read, means that PMEVCNTR<(n)>_EL0 has overflowed since this bit was last cleared. When written, clears the PMEVCNTR<(n)>_EL0 overflow bit to 0.</td>
</tr>
<tr>
<td>11</td>
<td>If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<(n)>_EL0[31:0] or unsigned overflow of PMEVCNTR<(n)>_EL0[63:0]. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
<td>If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<(n)>_EL0[31:0] or unsigned overflow of PMEVCNTR<(n)>_EL0[63:0]. On a Warm reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
</tbody>
</table>
Accessing the PMOVSCLR_EL0:

--- Note ---
SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMOVSCLR_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xC80</td>
<td>PMOVSCLR_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.32 PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register

The PMOVSSET_EL0 characteristics are:

Purpose

Sets the state of the overflow bit for the Cycle Count Register, PMCCNTR_EL0, and each of the implemented event counters PMEVCNTR<n>.

Configurations

External register PMOVSSET_EL0[31:0] is architecturally mapped to AArch64 System register PMOVSSET_EL0[31:0].
External register PMOVSSET_EL0[31:0] is architecturally mapped to AArch32 System register PMOVSSET[31:0].
PMOVSSET_EL0 is in the Core power domain.

Attributes

PMOVSSET_EL0 is a 32-bit register.

Field descriptions

The PMOVSSET_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>C, bit [31]</td>
<td></td>
<td>Cycle counter overflow set bit.</td>
</tr>
<tr>
<td>30</td>
<td>P<n>, bit [n]</td>
<td></td>
<td>Event counter overflow set bit for PMEVCNTR<n>_EL0.</td>
</tr>
</tbody>
</table>

- **C, bit [31]**
 - 0b0 When read, means the cycle counter has not overflowed since this bit was last cleared. When written, has no effect.
 - 0b1 When read, means the cycle counter has overflowed since this bit was last cleared. When written, sets the cycle counter overflow bit to 1.

PMCR_EL0.LC controls whether an overflow is detected from unsigned overflow of PMCCNTR_EL0[31:0] or unsigned overflow of PMCCNTR_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

- **P<n>, bit [n]**, for n = 0 to 30
 - When read, means that PMEVCNTR<n>_EL0 has not overflowed since this bit was last cleared. When written, has no effect.
 - When read, means that PMEVCNTR<n>_EL0 has overflowed since this bit was last cleared. When written, sets the PMEVCNTR<n>_EL0 overflow bit to 1.

If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP and PMCR_EL0.LP control whether an overflow is detected from unsigned overflow of PMEVCNTR<n>_EL0[31:0] or unsigned overflow of PMEVCNTR<n>_EL0[63:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.
Accessing the PMOVSET_EL0:

Note
SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMOVSET_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xCC0</td>
<td>PMOVSET_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are RO.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are RW.
- Otherwise accesses to this register generate an error response.
I5.3.33 PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configurations

PMPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to PMPCSR are RES0.

--- **Note** ---

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Support for 64-bit atomic reads is IMPLEMENTATION DEFINED. If 64-bit atomic reads are implemented, a 64-bit read of PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE is in Debug state then a 64-bit atomic read returns bits[31:0] == 0xFFFFFFFF and bits[63:32] UNKNOWN.

Attributes

PMPCSR is a 64-bit register.

Field descriptions

The PMPCSR bit assignments are:

<table>
<thead>
<tr>
<th>NS</th>
<th>EL</th>
<th>RES0</th>
<th>PCSample[55:32]</th>
<th>PCSample[31:0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>56 55</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28 27</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

- **0b0** Sample is from Secure state.
- **0b1** Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

- **0b00** Sample is from EL0.
- **0b01** Sample is from EL1.
- **0b10** Sample is from EL2.
- **0b11** Sample is from EL3.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.
On a Warm reset, the value of this field is unchanged.

Bits [60:56]

Reserved, RES0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xFFFFFFFF when any of the following are true:

- The PE is in Debug state.
- PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of PMPCSR[31:0] is permitted but not required to return 0xFFFFFFFF.

PMPCSR[31:0] reads as an UNKNOWN value when any of the following are true:

- The PE is in Reset state.
- No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based Profiling is prohibited.
- No instruction has retired since the last read of PMPCSR[31:0].

For the cases where a read of PMPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of setting PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR to UNKNOWN values.

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect of indirectly writing to PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the OPTIONAL Software Lock is locked, then the side-effect of the access does not occur and PMPCSR[63:32], PMCID1SR, PMCID2SR, and PMVIDSR are unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the PMPCSR:

IMPLEMETATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see *Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN* on page H7-7134.

PMPCSR[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x200</td>
<td>PMPCSR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[31:0] are RO.
• Otherwise accesses to PMPCSR[31:0] generate an error response.

PMPCSR[31:0] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x220</td>
<td>PMPCSR</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[31:0] are RO.
• Otherwise accesses to PMPCSR[31:0] generate an error response.

PMPCSR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x204</td>
<td>PMPCSR</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[63:32] are RO.
• Otherwise accesses to PMPCSR[63:32] generate an error response.

PMPCSR[63:32] can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x224</td>
<td>PMPCSR</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to PMPCSR[63:32] are RO.
• Otherwise accesses to PMPCSR[63:32] generate an error response.
I5.3.34 PMPIDR0, Performance Monitors Peripheral Identification Register 0

The PMPIDR0 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.
For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.
If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.
This register is required for CoreSight compliance.

Attributes

PMPIDR0 is a 32-bit register.

Field descriptions

The PMPIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>PART_0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, least significant byte.

Accessing the PMPIDR0:

PMPIDR0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFE0</td>
<td>PMPIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
5.3.35 PMPIDR1, Performance Monitors Peripheral Identification Register 1

The PMPIDR1 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR1 is a 32-bit register.

Field descriptions

The PMPIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>DES_0</td>
<td>PART_1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, least significant nibble of JEP106 ID code. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]

Part number, most significant nibble.

Accessing the PMPIDR1:

PMPIDR1 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFE4</td>
<td>PMPIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.36 PMPIDR2, Performance Monitors Peripheral Identification Register 2

The PMPIDR2 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR2 is a 32-bit register.

Field descriptions

The PMPIDR2 bit assignments are:

![Diagram of PMPIDR2 bit assignments]

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Part major revision. Parts can also use this field to extend Part number to 16-bits.

JEDEC, bit [3]

RAO. Indicates a JEP106 identity code is used.

DES_1, bits [2:0]

Designer, most significant bits of JEP106 ID code. For Arm Limited, this field is 0b011.

Accessing the PMPIDR2:

PMPIDR2 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFE8</td>
<td>PMPIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.37 PMPIDR3, Performance Monitors Peripheral Identification Register 3

The PMPIDR3 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR3 is a 32-bit register.

Field descriptions

The PMPIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>REVAND</td>
<td>CMOD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Part minor revision. Parts using PMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

Accessing the PMPIDR3:

PMPIDR3 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFEC</td>
<td>PMPIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.38 PMPIDR4, Performance Monitors Peripheral Identification Register 4

The PMPIDR4 characteristics are:

Purpose

Provides information to identify a Performance Monitor component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes

PMPIDR4 is a 32-bit register.

Field descriptions

The PMPIDR4 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>8</td>
<td>SIZE</td>
</tr>
<tr>
<td>4</td>
<td>DES_2</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. RAZ. \(\log_2 \) of the number of 4KB pages from the start of the component to the end of the component ID registers.

DES_2, bits [3:0]

Designer, JEP106 continuation code, least significant nibble. For Arm Limited, this field is 0b0100.

Accessing the PMPIDR4:

PMPIDR4 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xFD0</td>
<td>PMPIDR4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.3.39 PMSWINC_EL0, Performance Monitors Software Increment register

The PMSWINC_EL0 characteristics are:

Purpose

Increments a counter that is configured to count the Software increment event, event 0x00. For more information, see SW_INCR.

Configurations

External register PMSWINC_EL0[31:0] is architecturally mapped to AArch64 System register PMSWINC_EL0[31:0].

External register PMSWINC_EL0[31:0] is architecturally mapped to AArch32 System register PMSWINC[31:0].

PMSWINC_EL0 is in the Core power domain.

Implementation of this register is OPTIONAL.

If this register is implemented, use of it is deprecated.

If 1 is written to bit [n] from the external debug interface, it is CONSTRAINED UNPREDICTABLE whether or not a SW_INCR event is created for counter n. This is consistent with not implementing the register in the external debug interface.

Attributes

PMSWINC_EL0 is a 32-bit register.

Field descriptions

The PMSWINC_EL0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P<n>, bit [n]</td>
<td></td>
</tr>
</tbody>
</table>

RES0

Bit [31]

Reserved, RES0.

P<n>, bit [n], for n = 0 to 30

Event counter software increment bit for PMEVCNTR<n>_EL0.

If PMCFGR.N is less than 31, bits [30:PMCFGR.N] are WI.

0b0 No action. The write to this bit is ignored.

0b1 It is CONSTRAINED UNPREDICTABLE whether a SW_INCR event is generated for event counter n.

Accessing the PMSWINC_EL0:

--- **Note** ---

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the Pseudocode definitions for more information.
PMSWINC_EL0 can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0xCA0</td>
<td>PMSWINC_EL0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and SoftwareLockStatus() accesses to this register are WI.
- When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and !SoftwareLockStatus() accesses to this register are WO.
- Otherwise accesses to this register generate an error response.
I5.3.40 PMVIDSR, VMID Sample Register

The PMVIDSR characteristics are:

Purpose

Contains the sampled VMID value that is captured on reading PMPCSR[31:0].

Configurations

PMVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented. Otherwise, direct accesses to PMVIDSR are RES0.

--- Note ---

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Attributes

PMVIDSR is a 32-bit register.

Field descriptions

The PMVIDSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>VMID[15:8]</th>
<th>VMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented:

Extension to VMID[7:0]. See VMID[7:0] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent PMPCSR sample. When the most recent PMPCSR sample was generated:

- This field is set to an UNKNOWN value if any of the following apply:
 - EL2 is disabled in the current Security state.
 - The PE is executing at EL2.
 - EL2 is enabled in the current Security state, the PE is executing at EL0, EL2 is using AArch64, HCR_EL2.E2H == 1, and HCR_EL2.TGE == 1.
- Otherwise:
 - If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or VTCR_EL2.VS is 1, this field is set to VTTBR_EL2.VMID.
— If EL2 is using AArch64, `FEAT_VMID16` is implemented, and `VTCR_EL2.VS` is 0, `PMVIDSR.VMID[7:0]` is set to `VTTBR_EL2.VMID[7:0]` and `PMVIDSR.VMID[15:8]` is RES0.

— If EL2 is using AArch32, this field is set to `VTTBR.VMID`.

Because the value written to PMVIDR is an indirect read of the VMID value, it is CONSTRAINED UNPREDICTABLE whether PMVIDSR is set to the original or new value if PMPCSR samples:

- An instruction that writes to the VMID value.
- The next Context synchronization event.
- Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

On an External debug reset, the value of this field is unchanged.

On a Warm reset, the value of this field is unchanged.

Accessing the PMVIDSR:

IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see *Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN* on page H7-7134.

PMVIDSR can be accessed through the external debug interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMU</td>
<td>0x20C</td>
<td>PMVIDSR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
- Otherwise accesses to this register generate an error response.
I5.4 External Activity Monitors Extension registers summary

The memory-mapped interface to the Activity Monitors Extension registers provides read-only access to:

- Read-only copies of the Activity Monitors Extension System registers, with the exception of AMUSERENR.
- An implementation identification register, AMIIDR.
- If they are implemented, the OPTIONAL Activity Monitors CoreSight and ID registers.

The locations of the registers are defined as offsets from a base address. The base address of the memory-mapped view must be aligned to a 4KB boundary, but is otherwise IMPLEMENTATION DEFINED. Activity Monitors external register views defines this memory map.

I5.4.1 Activity Monitors external register views

Table I5-2 shows the external view of the Activity Monitors registers. All implemented registers are RO. Offsets within the 4KB region not defined in this table are RAZ/WI.

Each entry in the Name column links to the register description in Activity Monitors external register descriptions on page I5-7428, and:

- If the System register? on page I5-7350 column of the table shows that the register is a System register, the memory-mapped interface provides a view of the System register described in:
 - Activity Monitors registers on page D13-3745, for the AArch64 System register.
 - Activity Monitors registers on page G8-6830, for the AArch32 System register.
- Otherwise, the register is accessible only using the external memory-mapped interface.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System register?</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEVCTR0<n></td>
<td>Activity Monitor Event Counter registers 0</td>
<td>Yes</td>
<td>0x000+8n</td>
</tr>
<tr>
<td>AMEVCTR0<n></td>
<td></td>
<td></td>
<td>0x004+8n</td>
</tr>
<tr>
<td>AMEVCTR1<n></td>
<td>Activity Monitor Event Counter registers 1</td>
<td>Yes</td>
<td>0x100+8n</td>
</tr>
<tr>
<td>AMEVCTR1<n></td>
<td></td>
<td></td>
<td>0x104+8n</td>
</tr>
<tr>
<td>AMEVTYPER0<n></td>
<td>Activity Monitor Event Type registers 0</td>
<td>Yes</td>
<td>0x400+4n</td>
</tr>
<tr>
<td>AMEVTYPER1<n></td>
<td>Activity Monitor Event Type registers 1</td>
<td>Yes</td>
<td>0x480+4n</td>
</tr>
<tr>
<td>AMCNTESET0</td>
<td>Activity Monitors Counter Enable Set register 0</td>
<td>Yes</td>
<td>0xC00</td>
</tr>
<tr>
<td>AMCNTESET1</td>
<td>Activity Monitors Counter Enable Set register 1</td>
<td>Yes</td>
<td>0xC04</td>
</tr>
<tr>
<td>AMCNTECLR0</td>
<td>Activity Monitors Counter Enable Clear register 0</td>
<td>Yes</td>
<td>0xC20</td>
</tr>
<tr>
<td>AMCNTECLR1</td>
<td>Activity Monitors Counter Enable Clear register 1</td>
<td>Yes</td>
<td>0xC24</td>
</tr>
<tr>
<td>AMCGCR</td>
<td>Activity Monitors Counter Group Configuration Register</td>
<td>Yes</td>
<td>0xCE0</td>
</tr>
<tr>
<td>AMCFG</td>
<td>Activity Monitors Configuration Register</td>
<td>Yes</td>
<td>0xE00</td>
</tr>
<tr>
<td>AMCR</td>
<td>Activity Monitors Control Register</td>
<td>Yes</td>
<td>0xE04</td>
</tr>
<tr>
<td>AMIIDR</td>
<td>Activity Monitors Implementation Identification Register</td>
<td>No</td>
<td>0xE08</td>
</tr>
<tr>
<td>AMDEVAFF0a</td>
<td>Device Affinity registers</td>
<td>No</td>
<td>0xFA8</td>
</tr>
<tr>
<td>AMDEVAFF1a</td>
<td></td>
<td>No</td>
<td>0xFAC</td>
</tr>
<tr>
<td>AMDEVARCHa</td>
<td>Device Architecture register</td>
<td>No</td>
<td>0xFBC</td>
</tr>
</tbody>
</table>
Table I5-2 Activity Monitors external register views (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System register?</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDEVTYPEa</td>
<td>Device Type register</td>
<td>No</td>
<td>0xFCC</td>
</tr>
<tr>
<td>AMPIDR4a</td>
<td>Peripheral ID registers</td>
<td>No</td>
<td>0xFD0</td>
</tr>
<tr>
<td>AMPIDR0a</td>
<td></td>
<td>No</td>
<td>0xFE0</td>
</tr>
<tr>
<td>AMPIDR1a</td>
<td></td>
<td>No</td>
<td>0xFE4</td>
</tr>
<tr>
<td>AMPIDR2a</td>
<td></td>
<td>No</td>
<td>0xFE8</td>
</tr>
<tr>
<td>AMPIDR3a</td>
<td></td>
<td>No</td>
<td>0xFEC</td>
</tr>
<tr>
<td>AMCIDR0a</td>
<td>Component ID registers</td>
<td>No</td>
<td>0xFF0</td>
</tr>
<tr>
<td>AMCIDR1a</td>
<td></td>
<td>No</td>
<td>0xFF4</td>
</tr>
<tr>
<td>AMCIDR2a</td>
<td></td>
<td>No</td>
<td>0xFF8</td>
</tr>
<tr>
<td>AMCIDR3a</td>
<td></td>
<td>No</td>
<td>0xFFF</td>
</tr>
</tbody>
</table>

a. CoreSight interface registers, see Management registers and CoreSight compliance on page K2-7991.
I5.5 Activity Monitors external register descriptions

This section lists the external Activity Monitors registers.
I5.5.1 AMCFGR, Activity Monitors Configuration Register

The AMCFGR characteristics are:

Purpose

Global configuration register for the activity monitors.
Provides information on supported features, the number of counter groups implemented, the total number of activity monitor event counters implemented, and the size of the counters. AMCFGR is applicable to both thearchitected and the auxiliary counter groups.

Configurations

External register AMCFGR[31:0] is architecturally mapped to AArch64 System register AMCFGR_EL0[31:0].

External register AMCFGR[31:0] is architecturally mapped to AArch32 System register AMCFGR[31:0].
The power domain of AMCFGR is IMPLEMENTATION DEFINED.
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCFGR are RES0.

Attributes

AMCFGR is a 32-bit register.

Field descriptions

The AMCFGR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>28</th>
<th>27</th>
<th>25</th>
<th>24</th>
<th>23</th>
<th>14</th>
<th>13</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCG</td>
<td>RES0</td>
<td>RAZ</td>
<td>SIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HDBG

NCG, bits [31:28]

Defines the number of counter groups.
The number of implemented counter groups is defined as [AMCFGR.NCG + 1].
If the number of implemented auxiliary activity monitor event counters is zero, this field has a value of 0b0000. Otherwise, this field has a value of 0b0001.

Bits [27:25]

Reserved, RES0.

HDBG, bit [24]

Halt-on-debug supported.
From Armv8, this feature must be supported, and so this bit is 0b1.
0b0 AMCR.HDBG is RES0.
0b1 AMCR.HDBG is read/write.

Bits [23:14]

Reserved, RAZ.

SIZE, bits [13:8]

Defines the size of activity monitor event counters.
The size of the activity monitor event counters implemented by the Activity Monitors Extension is defined as \([\text{AMCFGR.SIZE} + 1]\).

From Armv8, the counters are 64-bit, and so this field is 0b111111.

Note

Software also uses this field to determine the spacing of counters in the memory-map. From Armv8, the counters are at doubleword-aligned addresses.

\[\text{N, bits [7:0]} \]

Defines the number of activity monitor event counters.

The total number of counters implemented in all groups by the Activity Monitors Extension is defined as \([\text{AMCFGR.N} + 1]\).

Accessing the AMCFGR:

AMCFGR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xE00</td>
<td>AMCFGR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.2 AMCGCR, Activity Monitors Counter Group Configuration Register

The AMCGCR characteristics are:

Purpose

Provides information on the number of activity monitor event counters implemented within each counter group.

Configurations

External register AMCGCR[31:0] is architecturally mapped to AArch64 System register AMCGCR_EL0[31:0].

External register AMCGCR[31:0] is architecturally mapped to AArch32 System register AMCGCR[31:0].

The power domain of AMCGCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCGCR are RES0.

Attributes

AMCGCR is a 32-bit register.

Field descriptions

The AMCGCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>16 - 15</td>
<td>CG1NC Counter Group 1 Number of Counters. The number of counters in the auxiliary counter group. In an implementation that includes FEAT_AMUv1, the permitted range of values is 0 to 16.</td>
</tr>
<tr>
<td>8 - 7</td>
<td>CG0NC Counter Group 0 Number of Counters. The number of counters in the architected counter group. In an implementation that includes FEAT_AMUv1, the value of this field is 4.</td>
</tr>
</tbody>
</table>

Accessing the AMCGCR:

AMCGCR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xCE0</td>
<td>AMCGCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.3 AMCIDR0, Activity Monitors Component Identification Register 0

The AMCIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.
For more information, see About the Component Identification scheme on page K2-8002.

Configurations

The power domain of AMCIDR0 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR0 is a 32-bit register.

Field descriptions

The AMCIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>PRMBL_0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.
Reads as 0x0D.

Accessing the AMCIDR0:

AMCIDR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFFF0</td>
<td>AMCIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RO.
5.5.4 AMCIDR1, Activity Monitors Component Identification Register 1

The AMCIDR1 characteristics are:

Purpose

Provides information to identify an activity monitors component.
For more information, see About the Component Identification scheme on page K2-8002.

Configurations

The power domain of AMCIDR1 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR1 is a 32-bit register.

Field descriptions

The AMCIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8-7</td>
<td>CLASS, Component class.</td>
</tr>
<tr>
<td>3-0</td>
<td>PRMBL_1, Preamble.</td>
</tr>
</tbody>
</table>

- **CLASS**, bits [7:4]

 Component class.
 0b1001 CoreSight component.
 Other values are defined by the CoreSight Architecture.
 This field reads as 0x9.

- **PRMBL_1**, bits [3:0]

 Preamble.
 Reads as 0b0000.

Accessing the AMCIDR1:

AMCIDR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFF4</td>
<td>AMCIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.5 AMCIDR2, Activity Monitors Component Identification Register 2

The AMCIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see About the Component Identification scheme on page K2-8002.

Configurations

The power domain of AMCIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR2 is a 32-bit register.

Field descriptions

The AMCIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>PRMBL_2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Accessing the AMCIDR2:

AMCIDR2 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFF8</td>
<td>AMCIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.6 AMCIDR3, Activity Monitors Component Identification Register 3

The AMCIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see *About the Component Identification scheme* on page K2-8002.

Configurations

The power domain of AMCIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMCIDR3 is a 32-bit register.

Field descriptions

The AMCIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td></td>
<td></td>
<td>PRMBL_3</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Accessing the AMCIDR3:

AMCIDR3 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFFC</td>
<td>AMCIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.7 AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0

The AMCNTENCLR0 characteristics are:

Purpose

Disable control bits for the architected event counters, AMEVCNTR0<n>.

Configurations

External register AMCNTENCLR0[31:0] is architecturally mapped to AArch64 System register AMCNTENCLR0_EL0[31:0].

External register AMCNTENCLR0[31:0] is architecturally mapped to AArch32 System register AMCNTENCLR0[31:0].

The power domain of AMCNTENCLR0 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0 are RES0.

Attributes

AMCNTENCLR0 is a 32-bit register.

Field descriptions

The AMCNTENCLR0 bit assignments are:

<table>
<thead>
<tr>
<th>P<n>, bit [n], for n = 0 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

P<n>, bit [n], for n = 0 to 31

Activity monitor event counter disable bit for AMEVCNTR0<n>.

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

- **0b0** When read, means that AMEVCNTR0<n> is disabled. When written, has no effect.
- **0b1** When read, means that AMEVCNTR0<n> is enabled. When written, disables AMEVCNTR0<n>.

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR0:

AMCNTENCLR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xC20</td>
<td>AMCNTENCLR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.8 AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1\(<n>\).

Configurations

External register AMCNTENCLR1[31:0] is architecturally mapped to AArch64 System register AMCNTENCLR1_EL0[31:0].

External register AMCNTENCLR1[31:0] is architecturally mapped to AArch32 System register AMCNTENCLR1[31:0].

The power domain of AMCNTENCLR1 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1 are RES0.

Attributes

AMCNTENCLR1 is a 32-bit register.

Field descriptions

The AMCNTENCLR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(<n>), bit ([n])</td>
<td></td>
</tr>
</tbody>
</table>

P\(<n>\), bit \([n]\), for \(n = 0 \text{ to } 31

Activity monitor event counter disable bit for AMEVCNTR1\(<n>\).

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

- 0b0 When read, means that AMEVCNTR1\(<n>\) is disabled. When written, has no effect.
- 0b1 When read, means that AMEVCNTR1\(<n>\) is enabled. When written, disables AMEVCNTR1\(<n>\).

On a Cold reset, this field resets to 0.

Accessing the AMCNTENCLR1:

If the number of auxiliary activity monitor event counters implemented is zero, reads of AMCNTENCLR1 are RAZ/WI. Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on page I1-7324.

Note

The number of auxiliary activity monitor event counters implemented is zero exactly when AMCFGR.NCG == 0b0000.

AMCNTENCLR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x024</td>
<td>AMCNTENCLR1</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.9 AMCNTENSET0, Activity Monitors Count Enable Set Register 0

The AMCNTENSET0 characteristics are:

Purpose

Enable control bits for the architected activity monitors event counters, AMEVCNTR0\<n>.

Configurations

External register AMCNTENSET0[31:0] is architecturally mapped to AArch64 System register AMCNTENSET0_EL0[31:0].

External register AMCNTENSET0[31:0] is architecturally mapped to AArch32 System register AMCNTENSET0[31:0].

The power domain of AMCNTENSET0 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET0 are RES0.

Attributes

AMCNTENSET0 is a 32-bit register.

Field descriptions

The AMCNTENSET0 bit assignments are:

<table>
<thead>
<tr>
<th>P(\langle n\rangle), bit ([n])</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
</tr>
</tbody>
</table>

P\(\langle n\rangle\), bit \([n]\), for \(n = 0\) to \(31\)

Activity monitor event counter enable bit for AMEVCNTR0\(<n>\).

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG0NC.

Possible values of each bit are:

- 0b0 When read, means that AMEVCNTR0\(<n>\) is disabled. When written, has no effect.
- 0b1 When read, means that AMEVCNTR0\(<n>\) is enabled. When written, enables AMEVCNTR0\(<n>\).

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET0:

AMCNTENSET0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xC00</td>
<td>AMCNTENSET0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
AMCNTENSET1, Activity Monitors Count Enable Set Register 1

The AMCNTENSET1 characteristics are:

Purpose

Enable control bits for the auxiliary activity monitors event counters, AMEVCNTR1\(<n>\).

Configurations

External register AMCNTENSET1[31:0] is architecturally mapped to AArch64 System register AMCNTENSET1_EL0[31:0].

External register AMCNTENSET1[31:0] is architecturally mapped to AArch32 System register AMCNTENSET1[31:0].

The power domain of AMCNTENSET1 is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENSET1 are RES0.

Attributes

AMCNTENSET1 is a 32-bit register.

Field descriptions

The AMCNTENSET1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(<n>), bit [n]</td>
<td>for n = 0 to 31</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

P\(<n>\), bit [n], for n = 0 to 31

Activity monitor event counter enable bit for AMEVCNTR1\(<n>\).

Bits [31:N] are RAZ/WI. N is the value in AMCGCR.CG1NC.

Possible values of each bit are:

- 0b0: When read, means that AMEVCNTR1\(<n>\) is disabled. When written, has no effect.
- 0b1: When read, means that AMEVCNTR1\(<n>\) is enabled. When written, enables AMEVCNTR1\(<n>\).

On a Cold reset, this field resets to 0.

Accessing the AMCNTENSET1:

If the number of auxiliary activity monitor event counters implemented is zero, reads of AMCNTENSET1 are RAZ/WI. Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on page I1-7324.

Note

The number of auxiliary activity monitor counters implemented is zero exactly when AMCFGR.NCG == 0b0000.

AMCNTENSET1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xC04</td>
<td>AMCNTENSET1</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.11 AMCR, Activity Monitors Control Register

The AMCR characteristics are:

Purpose

Global control register for the activity monitors implementation. AMCR is applicable to both the
architected and the auxiliary counter groups.

Configurations

External register AMCR[31:0] is architecturally mapped to AArch64 System register
AMCR_EL0[31:0].

External register AMCR[31:0] is architecturally mapped to AArch32 System register AMCR[31:0].

The power domain of AMCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to
AMCR are RES0.

Attributes

AMCR is a 32-bit register.

Field descriptions

The AMCR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>30</td>
<td>HDBG, bit [10]</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RAZ/WI</td>
</tr>
</tbody>
</table>

Bits [31:11]

Reserved, RES0.

HDBG, bit [10]

This bit controls whether activity monitor counting is halted when the PE is halted in Debug state.

0b0 Activity monitors do not halt counting when the PE is halted in Debug state.

0b1 Activity monitors halt counting when the PE is halted in Debug state.

Bits [9:0]

Reserved, RAZ/WI.

Accessing the AMCR:

AMCR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xE04</td>
<td>AMCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.12 AMDEVAFF0, Activity Monitors Device Affinity Register 0

The AMDEVAFF0 characteristics are:

Purpose

Copy of the low half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the AMU component relates to.

Configurations

The power domain of AMDEVAFF0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVAFF0 is a 32-bit register.

Field descriptions

The AMDEVAFF0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>MPIDR_EL1lo</td>
</tr>
</tbody>
</table>

MPIDR_EL1lo, bits [31:0]

MPIDR_EL1 low half. Read-only copy of the low half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the AMDEVAFF0:

AMDEVAFF0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFA8</td>
<td>AMDEVAFF0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.13 AMDEVAFF1, Activity Monitors Device Affinity Register 1

The AMDEVAFF1 characteristics are:

Purpose
Copy of the high half of the PE MPIDR_EL1 register that allows a debugger to determine which PE in a multiprocessor system the AMU component relates to.

Configurations
The power domain of AMDEVAFF1 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMDEVAFF1 is a 32-bit register.

Field descriptions
The AMDEVAFF1 bit assignments are:

<table>
<thead>
<tr>
<th>MPIDR_EL1hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
</tr>
</tbody>
</table>

MPIDR_EL1hi, bits [31:0]
MPIDR_EL1 high half. Read-only copy of the high half of MPIDR_EL1, as seen from the highest implemented Exception level.

Accessing the AMDEVAFF1:
AMDEVAFF1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFAC</td>
<td>AMDEVAFF1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.14 AMDEVARCH, Activity Monitors Device Architecture Register

The AMDEVARCH characteristics are:

Purpose

 Identifies the programmers’ model architecture of the AMU component.

Configurations

The power domain of AMDEVARCH is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVARCH is a 32-bit register.

Field descriptions

The AMDEVARCH bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>ARCHITECT</td>
<td>Defines the architecture of the component. For AMU, this is Arm Limited.</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>Bits [31:28] are the JEP106 continuation code, 0x4.</td>
</tr>
<tr>
<td>21</td>
<td>REVISION</td>
<td>Defines the architecture revision. For architectures defined by Arm this is the minor revision.</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0b0000 Architecture revision is AMUv1.</td>
</tr>
<tr>
<td>15</td>
<td>ARCHID</td>
<td>Defines this part to be an AMU component. For architectures defined by Arm this is further subdivided.</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Bits [15:12] are the architecture version, 0x0.</td>
</tr>
<tr>
<td>0</td>
<td>PRESENT</td>
<td>When set to 1, indicates that the DEVARCH is present.</td>
</tr>
</tbody>
</table>

This field is 1 in Armv8.

For AMU:

• Bits [15:12] are the architecture version, 0x0.
• Bits [11:0] are the architecture part number, 0xA66.

This corresponds to AMU architecture version AMUv1.
Accessing the AMDEVARCH:

AMDEVARCH can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xF8C</td>
<td>AMDEVARCH</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.15 AMDEVTYPE, Activity Monitors Device Type Register

The AMDEVTYPE characteristics are:

Purpose

Indicates to a debugger that this component is part of a PE's performance monitor interface.

Configurations

The power domain of AMDEVTYPE is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMDEVTYPE is a 32-bit register.

Field descriptions

The AMDEVTYPE bit assignments are:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:8]</td>
<td>Reserved, RES0</td>
<td></td>
</tr>
<tr>
<td>[7:4]</td>
<td>SUB, Subtype</td>
<td>0x1</td>
</tr>
<tr>
<td>[3:0]</td>
<td>MAJOR, Major Type</td>
<td>0x6</td>
</tr>
</tbody>
</table>

Accessing the AMDEVTYPE:

AMDEVTYPE can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFCC</td>
<td>AMDEVTYPE</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.16 AMEVCNTR0\(<n>\), Activity Monitors Event Counter Registers 0, \(n = 0 - 15\)

The AMEVCNTR0\(<n>\) characteristics are:

Purpose

Provides access to the architected activity monitor event counters.

Configurations

External register AMEVCNTR0\(<n>\)[63:0] is architecturally mapped to AArch64 System register AMEVCNTR0\(<n>\)_EL0[63:0].

External register AMEVCNTR0\(<n>\)[63:0] is architecturally mapped to AArch32 System register AMEVCNTR0\(<n>\)[63:0].

The power domain of AMEVCNTR0\(<n>\) is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR0\(<n>\) are RES0.

Attributes

AMEVCNTR0\(<n>\) is a 64-bit register.

Field descriptions

The AMEVCNTR0\(<n>\) bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

ACNT, bits [63:0]

Architected activity monitor event counter \(n\).

Value of architected activity monitor event counter \(n\), where \(n\) is the number of this register and is a number from 0 to 15.

If the counter is enabled, writes to this register have UNPREDICTABLE results.

On a Cold reset, this field resets to 0.

Accessing the AMEVCNTR0\(<n>\):

If \(<n>\) is greater than or equal to the number of architected activity monitor event counters, reads of AMEVCNTR0\(<n>\) are RAZ/WI. Software must treat reserved accesses as RES0. See *Access requirements for reserved and unallocated registers* on page I1-7324.

Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

AMEVCNTR0\(<n>\>[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x000 + (8 * (n))</td>
<td>AMEVCNTR0(<n>)</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to AMEVCNTR0\(<n>\>[31:0] are RO.
AMEVCNTR0<n>[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x004 + (8 * n)</td>
<td>AMEVCNTR0<n></td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to AMEVCNTR0<n>[63:32] are RO.
5.17 AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15

The AMEVCNTR1<n> characteristics are:

Purpose
Provides access to the auxiliary activity monitor event counters.

Configurations
- External register AMEVCNTR1<n>[63:0] is architecturally mapped to AArch64 System register AMEVCNTR1<n>_EL0[63:0].
- External register AMEVCNTR1<n>[63:0] is architecturally mapped to AArch32 System register AMEVCNTR1<n>[63:0].
- The power domain of AMEVCNTR1<n> is IMPLEMENTATION DEFINED.
- This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVCNTR1<n> are RES0.

Attributes
AMEVCNTR1<n> is a 64-bit register.

Field descriptions
The AMEVCNTR1<n> bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACNT [63:0]</td>
<td>Auxiliary activity monitor event counter n. Value of auxiliary activity monitor event counter n, where n is the number of this register and is a number from 0 to 15. If the counter is enabled, writes to this register have UNPREDICTABLE results. On a Cold reset, this field resets to 0.</td>
</tr>
</tbody>
</table>

Accessing the AMEVCNTR1<n>
If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of AMEVCNTR1<n> are RAZ/WI. Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on page I1-7324.

--- Note ---
AMECGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

AMEVCNTR1<n>[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x108 + (8 * n)</td>
<td>AMEVCNTR1<n></td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to AMEVCNTR1<n>[31:0] are RO.
AMEVCNTR1<\text{n}>[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x104 + (8 * n)</td>
<td>AMEVCNTR1<\text{n}></td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to AMEVCNTR1<\text{n}>[63:32] are RO.
I5.5.18 AMEVTYPER0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15

The AMEVTYPER0<n> characteristics are:

Purpose

Provides information on the events that an architected activity monitor event counter AMEVCNTR0<n> counts.

Configurations

External register AMEVTYPER0<n>[31:0] is architecturally mapped to AArch64 System register AMEVTYPER0<n>_EL0[31:0].
External register AMEVTYPER0<n>[31:0] is architecturally mapped to AArch32 System register AMEVTYPER0<n>[31:0].
The power domain of AMEVTYPER0<n> is IMPLEMENTATION DEFINED.
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER0<n> are RES0.

Attributes

AMEVTYPER0<n> is a 32-bit register.

Field descriptions

The AMEVTYPER0<n> bit assignments are:

<table>
<thead>
<tr>
<th>31 25 24</th>
<th>16 15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAZ</td>
<td>RES0</td>
<td>evtCount</td>
</tr>
</tbody>
</table>

Bits [31:25]

Reserved, RAZ.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the architected activity monitor event counter AMEVCNTR0<n>. The value of this field is architecturally mandated for each architected counter.

The following table shows the mapping between required event numbers and the corresponding counters:

- 0x0011 When n == 0 Processor frequency cycles
- 0x4004 When n == 1 Constant frequency cycles
- 0x0008 When n == 2 Instructions retired
- 0x4005 When n == 3 Memory stall cycles

Accessing the AMEVTYPER0<n>:

If <n> is greater than or equal to the number of architected activity monitor event counters, reads of AMEVTYPER0<n> are RAZ/WI. Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on page I1-7324.
Note

AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

AMEVTYPER0<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x400 + (4 * n)</td>
<td>AMEVTYPER0<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.19 AMEVTYPER1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15

The AMEVTYPER1<n> characteristics are:

Purpose

Provides information on the events that an auxiliary activity monitor event counter AMEVCNTR1<n> counts.

Configurations

External register AMEVTYPER1<n>[31:0] is architecturally mapped to AArch64 System register AMEVTYPER1<n>_EL0[31:0].
External register AMEVTYPER1<n>[31:0] is architecturally mapped to AArch32 System register AMEVTYPER1<n>[31:0].
The power domain of AMEVTYPER1<n> is IMPLEMENTATION DEFINED.
This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMEVTYPER1<n> are RES0.

Attributes

AMEVTYPER1<n> is a 32-bit register.

Field descriptions

The AMEVTYPER1<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>25 24</th>
<th>16 15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAZ</td>
<td>RES0</td>
<td>evtCount</td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:25]

Reserved, RAZ.

Bits [24:16]

Reserved, RES0.

evtCount, bits [15:0]

Event to count. The event number of the event that is counted by the auxiliary activity monitor event counter AMEVCNTR1<n>.
It is IMPLEMENTATION DEFINED what values are supported by each counter.
If software writes a value to this field which is not supported by the corresponding counter AMEVCNTR1<n>, then:

- It is UNPREDICTABLE which event will be counted.
- The value read back is UNKNOWN.

Note

The event counted by AMEVCNTR1<n> might be fixed at implementation. In this case, the field is read-only and writes are UNDEFINED.

If the corresponding counter AMEVCNTR1<n> is enabled, writes to this register have UNPREDICTABLE results.
Accessing the AMEVTYPER1<n>:

If <n> is greater than or equal to the number of auxiliary activity monitor event counters, reads of AMEVTYPER1<n> are RAZ/WI. Software must treat reserved accesses as RES0. See Access requirements for reserved and unallocated registers on page I1-7324.

Note

AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

AMEVTYPER1<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0x480 + (4 * n)</td>
<td>AMEVTYPER1<n></td>
</tr>
</tbody>
</table>
I5.5.20 AMIIDR, Activity Monitors Implementation Identification Register

The AMIIDR characteristics are:

Purpose

Defines the implementer and revisions of the AMU.

Configurations

The power domain of AMIIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMIIDR are RES0.

Attributes

AMIIDR is a 32-bit register.

Field descriptions

The AMIIDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-20</td>
<td>ProductID</td>
</tr>
<tr>
<td>19-16</td>
<td>Variant</td>
</tr>
<tr>
<td>15-12</td>
<td>Revision</td>
</tr>
<tr>
<td>11-0</td>
<td>Implementer</td>
</tr>
</tbody>
</table>

ProductID, bits [31:20]

This field is an AMU part identifier.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR0 is implemented, AMPIDR0.PART_0 matches bits [27:20] of this field.

If AMPIDR1 is implemented, AMPIDR1.PART_1 matches bits [31:28] of this field.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR2 is implemented, AMPIDR2.REVISION matches AMIIDR.Variant.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

The value of this field is IMPLEMENTATION DEFINED.

If AMPIDR3 is implemented, AMPIDR3.REVAND matches AMIIDR.Revision.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the AMU.

For an Arm implementation, this field reads as 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer.

Bit 7 is RES0

Bits [6:0] contain the JEP106 identity code of the implementer.

If AMPIDR4 is implemented, AMPIDR4.DES_2 matches bits [11:8] of this field.

If AMPIDR2 is implemented, AMPIDR2.DES_1 matches bits [6:4] of this field.

If AMPIDR1 is implemented, AMPIDR1.DES_0 matches bits [3:0] of this field.
Accessing the AMIIDR:
AMIIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:
- Accesses to this register are RO.

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xE08</td>
<td>AMIIDR</td>
</tr>
</tbody>
</table>
I5.5.21 AMPIDR0, Activity Monitors Peripheral Identification Register 0

The AMPIDR0 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

The power domain of AMPIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR0 is a 32-bit register.

Field descriptions

The AMPIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>PART_0, bits [7:0]</td>
<td>Part number</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>least significant byte.</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>The value of this field is IMPLEMENTATION DEFINED.</td>
</tr>
</tbody>
</table>

Accessing the AMPIDR0:

AMPIDR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFE0</td>
<td>AMPIDR0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.22 AMPIDR1, Activity Monitors Peripheral Identification Register 1

The AMPIDR1 characteristics are:

Purpose
Provides information to identify an activity monitors component.
For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations
The power domain of AMPIDR1 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMPIDR1 is a 32-bit register.

Field descriptions
The AMPIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>DES_0</td>
<td>PART_1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]
Reserved, RES0.

DES_0, bits [7:4]
Designer, least significant nibble of JEP106 ID code.
The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b1011.

PART_1, bits [3:0]
Part number, most significant nibble.
The value of this field is IMPLEMENTATION DEFINED.

Accessing the AMPIDR1:
AMPIDR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFE4</td>
<td>AMPIDR1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

* Accesses to this register are RO.
I5.5.23 AMPIDR2, Activity Monitors Peripheral Identification Register 2

The AMPIDR2 characteristics are:

Purpose

Provides information to identify an activity monitors component.
For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

The power domain of AMPIDR2 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR2 is a 32-bit register.

Field descriptions

The AMPIDR2 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>REVISION</td>
<td>Part major revision. Parts can also use this field to extend Part number to 16-bits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value of this field is IMPLEMENTATION DEFINED.</td>
</tr>
<tr>
<td>3</td>
<td>JEDEC</td>
<td>RA0. Indicates a JEP106 identity code is used.</td>
</tr>
<tr>
<td>2:0</td>
<td>DES_1</td>
<td>Designer, most significant bits of JEP106 ID code.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is 0b011.</td>
</tr>
</tbody>
</table>

Accessing the AMPIDR2:

AMPIDR2 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFE8</td>
<td>AMPIDR2</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.24 **AMPIDR3, Activity Monitors Peripheral Identification Register 3**

The AMPIDR3 characteristics are:

Purpose

Provides information to identify an activity monitors component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

The power domain of AMPIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR3 is a 32-bit register.

Field descriptions

The AMPIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:8</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>7:4</td>
<td>REV AND</td>
</tr>
<tr>
<td>3:0</td>
<td>CMOD</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REV AND, bits [7:4]

Part minor revision. Parts using AMPIDR2.REVISION as an extension to the Part number must use this field as a major revision number.

The value of this field is IMPLEMENTATION DEFINED.

CMOD, bits [3:0]

Customer modified. Indicates someone other than the Designer has modified the component.

The value of this field is IMPLEMENTATION DEFINED.

Accessing the AMPIDR3:

AMPIDR3 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFEC</td>
<td>AMPIDR3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.5.25 AMPIDR4, Activity Monitors Peripheral Identification Register 4

The AMPIDR4 characteristics are:

Purpose

Provides information to identify an activity monitors component.
For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

The power domain of AMPIDR4 is IMPLEMENTATION DEFINED.
Implementation of this register is OPTIONAL.
This register is present only when FEAT_AMUv1 is implemented.

Attributes

AMPIDR4 is a 32-bit register.

Field descriptions

The AMPIDR4 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8-0</td>
<td>SIZE, bits [7:4]</td>
</tr>
<tr>
<td></td>
<td>DES_2, bits [3:0]</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component. Log2 of the number of 4KB pages from the start of the component to the end of the component ID registers.
This field reads as \(0b0000\).

DES_2, bits [3:0]

Designer. JEP106 continuation code, least significant nibble.
The value of this field is IMPLEMENTATION DEFINED. For Arm Limited, this field is \(0b0100\).

Accessing the AMPIDR4:

AMPIDR4 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>0xFD0</td>
<td>AMPIDR4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.6 Generic Timer memory-mapped registers overview

The Generic Timer memory-mapped registers are implemented as multiple register frames, with each register frame having its own base address, as follows:

- A single CNTCTLBase register frame, at base address CNTCTLBase.
- Between one and seven CNTBaseN register frames, each with its own base address CNTBaseN.
- For each CNTBaseN register frame, if required, a CNTEL0BaseN register frame, at base address CNTEL0BaseN, that provides an EL0 view of the CNTBaseN register frame.

For more information, see:

- Memory-mapped timer components on page I2-7332.
- The CNTBaseN and CNTEL0BaseN frames on page I2-7334. This section includes the memory map of the CNTBaseN and CNTBaseN register frames.
- The CNTCTLBase frame on page I2-7333. This section includes the memory map of the CNTCTLBase register frame.

--- Note ---

Providing a complete set of features in a system level implementation on page K5-8024 gives an implementation example for a system level implementation of the Generic Timer.
I5.7 Generic Timer memory-mapped register descriptions

This section describes the Generic Timer registers. *Generic Timer memory-mapped registers overview on page I5-7463* gives an overview of these registers, and includes links to their memory maps.
I5.7.1 CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

The CNTACR<n> characteristics are:

Purpose

Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the controls for frame CNTBaseN.

In addition to the CNTACR<n> control:

- CNTNSAR controls whether CNTACR<n> is accessible by Non-secure accesses.
- If frame CNTEL0BaseN is implemented, the CNTEL0ACR in frame CNTBaseN provides additional control of accesses to frame CNTEL0BaseN.

Configurations

The power domain of CNTACR<n> is IMPLEMENTATION DEFINED.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I2-7327.

Implemented only if the value of CNTTIDR.Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the features. In this case, the associated field in the CNTACR<n> register is:

- RAZ/WI if access is always denied.
- RAO/WI if access is always permitted.

Attributes

CNTACR<n> is a 32-bit register.

Field descriptions

The CNTACR<n> bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>6</td>
<td>RWPT, bit [5]</td>
</tr>
<tr>
<td>5</td>
<td>Read/write access to the EL1 Physical Timer registers CNTP_CVAL, CNTP_TVAL, and CNTP_CTL, in frame <n>. The possible values of this bit are:</td>
</tr>
<tr>
<td>0</td>
<td>No access to the EL1 Physical Timer registers in frame <n>. The registers are RES0.</td>
</tr>
<tr>
<td>1</td>
<td>Read/write access to the EL1 Physical Timer registers in frame <n>.</td>
</tr>
</tbody>
</table>

This field resets to an architecturally UNKNOWN value.
RWVT, bit [4]
Read/write access to the Virtual Timer register CNTV_CVAL, CNTV_TVAL, and CNTV_CTL, in frame <n>. The possible values of this bit are:
0b0 No access to the Virtual Timer registers in frame <n>. The registers are RES0.
0b1 Read/write access to the Virtual Timer registers in frame <n>.
This field resets to an architecturally UNKNOWN value.

RVOFF, bit [3]
Read-only access to CNTVOFF, in frame <n>. The possible values of this bit are:
0b0 No access to CNTVOFF in frame <n>. The register is RES0.
0b1 Read-only access to CNTVOFF in frame <n>.
This field resets to an architecturally UNKNOWN value.

RFRQ, bit [2]
Read-only access to CNTFRQ, in frame <n>. The possible values of this bit are:
0b0 No access to CNTFRQ in frame <n>. The register is RES0.
0b1 Read-only access to CNTFRQ in frame <n>.
This field resets to an architecturally UNKNOWN value.

RVCT, bit [1]
Read-only access to CNTVCT, in frame <n>. The possible values of this bit are:
0b0 No access to CNTVCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTVCT in frame <n>.
This field resets to an architecturally UNKNOWN value.

RPCT, bit [0]
Read-only access to CNTPCT, in frame <n>. The possible values of this bit are:
0b0 No access to CNTPCT in frame <n>. The register is RES0.
0b1 Read-only access to CNTPCT in frame <n>.
This field resets to an architecturally UNKNOWN value.

Accessing the CNTACR<n>:

In a system that recognizes two Security states:

- CNTACR<n> is always accessible by Secure accesses.
- CNTNSAR.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x040 + (4 * n)</td>
<td>CNTACR<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.2 CNTCR, Counter Control Register

The CNTCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during debug.

Configurations

The power domain of CNTCR is IMPLEMENTATION DEFINED.

For more information, see [Power and reset domains for the system level implementation of the Generic Timer](#) on page I2-7327.

Attributes

CNTCR is a 32-bit register.

Field descriptions

The CNTCR bit assignments are:

```
<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:18</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>17:8</td>
<td>FCREQ</td>
</tr>
<tr>
<td>7:3</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>2</td>
<td>SCEN</td>
</tr>
</tbody>
</table>
```

Bits [31:18]

Reserved, RES0.

FCREQ, bits [17:8]

Frequency change request. Indicates the number of the entry in the Frequency modes table to select. Selecting an unimplemented entry, or an entry that contains 0, has no effect on the counter.

The maximum number of entries in the Frequency modes table is IMPLEMENTATION DEFINED up to a maximum of 1004 entries, see [The Frequency modes table](#) on page I2-7329. An implementation is only required to implement an FCREQ field that can hold values from 0 to the highest supported Frequency modes table entry. Any unrequired most-significant bits of FCREQ can be implemented as RES0.

This field resets to 0.

Bits [7:3]

Reserved, RES0.

SCEN, bit [2]

When **FEAT_CNTSC** is implemented:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Scaling is not enabled. The counter value is incremented by 0x1.0000000 for each counter tick.</td>
</tr>
<tr>
<td>1</td>
<td>Scaling is enabled. The counter is incremented by CNTSCR.ScaleVal for each counter tick.</td>
</tr>
</tbody>
</table>

The SCEN bit can only be changed when the counter is disabled, when CNTCR.EN == 0.
If the value of CNTCR.SCEN changes when CNTCR.EN == 1 then:

- The counter value becomes UNKNOWN.
- The counter value remains UNKNOWN on future ticks of the clock.

When the CNTCV register in the CNTControlBase frame of the memory mapped counter module is written to, the accumulated fraction information is reset to zero.

This field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HDBG, bit [1]

Halt-on-debug. Controls whether a Halt-on-debug signal halts the system counter:

- 0b0 System counter ignores Halt-on-debug.
- 0b1 Asserted Halt-on-debug signal halts system counter update.

This field resets to an architecturally UNKNOWN value.

EN, bit [0]

Enables the counter:

- 0b0 System counter disabled.
- 0b1 System counter enabled.

This field resets to 0.

Accessing the CNTCR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in the Secure memory map.

CNTCR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x000</td>
<td>CNTCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.3 CNTCV, Counter Count Value register

The CNTCV characteristics are:

Purpose

Indicates the current count value.

Configurations

The power domain of CNTCV is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes

CNTCV is a 64-bit register.

Field descriptions

The CNTCV bit assignments are:

63 0

CountValue

CountValue, bits [63:0]

Indicates the counter value.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTCV:

<table>
<thead>
<tr>
<th>Frame</th>
<th>Accessibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTControlBase</td>
<td>RW</td>
</tr>
<tr>
<td>CNTReadBase</td>
<td>RO</td>
</tr>
</tbody>
</table>

A write to CNTCV must be visible in the CNTPCT register of each running processor in a finite time.

For the instance of the register in the CNTControlBase frame:

- In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, and therefore this register instance, is implemented only in the Secure memory map.

- If the counter is enabled, the effect of writing to the register is UNKNOWN.

In an implementation that supports 64-bit atomic memory accesses, this register must be accessible using a 64-bit atomic access.

CNTCV[63:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x008</td>
<td>CNTCV</td>
<td>63:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTCV[63:0] are RW.
CNTCV[63:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTReadBase</td>
<td>0x000</td>
<td>CNTCV</td>
<td>63:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTCV[63:0] are RO.
5.7.4 CNTELOACR, Counter-timer EL0 Access Control Register

The CNTELOACR characteristics are:

Purpose

An implementation of CNTELOACR in the frame at CNTBaseN controls whether the CNTPCT, CNTVCT, CNTFRQ, EL1 Physical Timer, and Virtual Timer registers are visible in the frame at CNTELOBaseN.

Configurations

The power domain of CNTELOACR is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I2-7327.

Attributes

CNTELOACR is a 32-bit register.

Field descriptions

The CNTELOACR bit assignments are:

```
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | | | | |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |  9 |  8 |  7 |  2 |  1 |  0 |
| RES0 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | RES0 |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | EL0PCTEN |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | EL0VCTEN |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | EL0VTEN |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | EL0PTEN |
```

Bits [31:10]

Reserved, RES0.

EL0PTEN, bit [9]

Second view read/write access control for the EL1 Physical Timer registers. This bit controls whether the CNTP_CVAL, CNTP_TVAL, and CNTP_CTL registers in the current CNTBaseN frame are also accessible in the corresponding CNTELOBaseN frame. The possible values of this bit are:

- 0b0: No access. Registers are RES0 in the second view.
- 0b1: Access permitted. If the registers are accessible in the current frame then they are accessible in the second view.

This field resets to an architecturally UNKNOWN value.

EL0VTEN, bit [8]

Second view read/write access control for the Virtual Timer registers. This bit controls whether the CNTV_CVAL, CNTV_TVAL, and CNTV_CTL registers in the current CNTBaseN frame are also accessible in the corresponding CNTELOBaseN frame. The possible values of this bit are:

- 0b0: No access. Registers are RES0 in the second view.
- 0b1: Access permitted. If the registers are accessible in the current frame then they are accessible in the second view.
The definition of this bit means that, if the Virtual Timer registers are not implemented in the current CNTBaseN frame, then the Virtual Timer register addresses are RES0 in the corresponding CNTEL0BaseN frame, regardless of the value of this bit.

This field resets to an architecturally UNKNOWN value.

Bits [7:2]

Reserved, RES0.

EL0VCTEN, bit [1]

Second view read access control for CNTVCT and CNTFRQ. The possible values of this bit are:

- **0b0**: CNTVCT is not visible in the second view.

 If EL0PCTEN is set to 0, CNTFRQ is not visible in the second view.

- **0b1**: Access permitted. If CNTVCT and CNTFRQ are visible in the current frame then they are visible in the second view.

This field resets to an architecturally UNKNOWN value.

EL0PCTEN, bit [0]

Second view read access control for CNTPCT and CNTFRQ. The possible values of this bit are:

- **0b0**: CNTPCT is not visible in the second view.

 If EL0VCTEN is set to 0, CNTFRQ is not visible in the second view.

- **0b1**: Access permitted. If CNTPCT and CNTFRQ are visible in the current frame then they are visible in the second view.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTEL0ACR:

CNTEL0ACR can be implemented in any implemented CNTBaseN frame.

CNTCTRLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

If CNTEL0ACR is not implemented in an implemented CNTBaseN frame:

- The register location in that frame is RAZ/WI.

 If the corresponding CNTEL0BaseN frame is implemented, the registers CNTFRQ, CNTP_CTL, CNTP_CVAL, CNTP_TVAL, CNTPCT, CNTV_CTL, CNTV_CVAL, CNTV_TVAL, and CNTVCT are not visible in that frame.

CNTEL0ACR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x014</td>
<td>CNTEL0ACR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.5 CNTFID0, Counter Frequency ID

The CNTFID0 characteristics are:

Purpose
Indicates the base frequency of the system counter.

Configurations
The power domain of CNTFID0 is IMPLEMENTATION DEFINED.
For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.
The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with the base frequency, CNTFID0. For more information, see The Frequency modes table on page I2-7329.
The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the table.
Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/write memory for the table, and initialize the table entries as part of its start-up sequence.
If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is not updated once the system is running.

Attributes
CNTFID0 is a 32-bit register.

Field descriptions
The CNTFID0 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>

Frequency, bits [31:0]
The base frequency of the system counter, in Hz.
This field resets to an architecturally UNKNOWN value.

Accessing the CNTFID0:
It is IMPLEMENTATION DEFINED whether this register is RO or RW
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in the Secure memory map.
CNTFID0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x020</td>
<td>CNTFID0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO or RW.
I5.7.6 CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003

The CNTFID<n> characteristics are:

Purpose

Indicates alternative system counter update frequencies.

Configurations

The power domain of CNTFID<n> is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

The possible frequencies for the system counter are stored in the Frequency modes table as 32-bit words starting with the base frequency, CNTFID0, see The Frequency modes table on page I2-7329.

The number of CNTFID<n> registers is IMPLEMENTATION DEFINED, and the only required CNTFID<n> register is CNTFID0.

The final entry in the Frequency modes table must be followed by a 32-bit word of zero value, to mark the end of the table.

The architecture can support up to 1004 entries in the Frequency modes table, including the zero-word end marker, and the number of entries is IMPLEMENTATION DEFINED up to this limit. For an implementation that includes registers in the IMPLEMENTATION DEFINED register space 0x0C0-0x0FC, the maximum number of entries in the Frequency modes table is 40, including the zero-word end marker.

Typically, the Frequency modes table will be in read-only memory. However, a system implementation might use read/write memory for the table, and initialize the table entries as part of its start-up sequence.

If the Frequency modes table is in read/write memory, Arm strongly recommends that the table is not updated once the system is running.

Attributes

CNTFID<n> is a 32-bit register.

Field descriptions

The CNTFID<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
</tbody>
</table>

Frequency, bits [31:0]

A system counter update frequency, in Hz. Must be an exact divisor of the base frequency. Arm strongly recommends that all frequency values in the Frequency modes table are integer power-of-two divisors of the base frequency.

When the system timer is operating at a lower frequency than the base frequency, the increment applied at each counter update is given by:

\[
\text{increment} = \left(\frac{\text{base frequency}}{\text{selected frequency}}\right)
\]

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFID<n>:

It is IMPLEMENTATION DEFINED whether this register is RO or RW
In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes these registers, is implemented only in the Secure memory map.

CNTFID<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x020 + (4 * n)</td>
<td>CNTFID<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO or RW.
I5.7.7 CNTFRQ, Counter-timer Frequency

The CNTFRQ characteristics are:

Purpose

This register is provided so that software can discover the frequency of the system counter. The instance of the register in the CNTCTLB frame must be programmed with this value as part of system initialization. The value of the register is not interpreted by hardware.

Configurations

The power domain of CNTFRQ is IMPLEMENTATION DEFINED.

For more information see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes

CNTFRQ is a 32-bit register.

Field descriptions

The CNTFRQ bit assignments are:

<table>
<thead>
<tr>
<th>Bits [31:0]</th>
<th>Clock frequency</th>
</tr>
</thead>
</table>

Clock frequency. Indicates the system counter clock frequency, in Hz.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTFRQ:

CNTFRQ must be implemented as an RW register in the CNTCTLB frame.

In a system that recognizes two Security states, the instance of the register in the CNTCTLB frame is only accessible by Secure accesses.

CNTFRQ can be implemented as a RO register in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

CNTCTLB status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

- CNTFRQ is accessible in that frame, as a RO register, if the value of CNTACR<n>.RFRQ is 1.
- Otherwise, the CNTFRQ address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTFRQ is accessible as a RO register in that frame if both:
 - CNTFRQ is accessible in the corresponding CNTBaseN frame.
Either the value of `CNTEL0ACR.EL0VCTEN` is 1 or the value of `CNTEL0ACR.EL0PCTEN` is 1.

- Otherwise, the CNTFRQ address in that frame is RAZ/WI.

CNTFRQ can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x010</td>
<td>CNTFRQ</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.

CNTFRQ can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x010</td>
<td>CNTFRQ</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.

CNTFRQ can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x000</td>
<td>CNTFRQ</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.7.8 CNTID, Counter Identification Register

The CNTID characteristics are:

Purpose

Indicates whether counter scaling is implemented.

Configurations

The power domain of CNTID is IMPLEMENTATION DEFINED.

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to CNTID are RES0.

Attributes

CNTID is a 32-bit register.

Field descriptions

The CNTID bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>CNTSC</td>
</tr>
<tr>
<td>2</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0</td>
</tr>
</tbody>
</table>

Bits [31:4]

Reserved, RES0.

CNTSC, bits [3:0]

Indicates whether Counter Scaling is implemented

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0000</td>
<td>Counter scaling is not implemented.</td>
</tr>
<tr>
<td>0b0001</td>
<td>Counter scaling is implemented.</td>
</tr>
</tbody>
</table>

All other values are reserved.

Accessing the CNTID:

In a system that supports Secure and Non-secure memory maps, the CNTControlBase frame, that includes this register, is implemented only in the Secure memory map.

CNTID can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x1C</td>
<td>CNTID</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

* Accesses to this register are RO.
I5.7.9 CNTNSAR, Counter-timer Non-secure Access Register

The CNTNSAR characteristics are:

Purpose

Provides the highest-level control of whether frames CNTBaseN and CNTEL0BaseN are accessible by Non-secure accesses.

Configurations

The power domain of CNTNSAR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes

CNTNSAR is a 32-bit register.

Field descriptions

The CNTNSAR bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits [31:8]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

NS<n>, bit [n], for n = 0 to 7

Non-secure access to frame n. The possible values of this bit are:

- 0b0 Secure access only. Behaves as RES0 to Non-secure accesses.
- 0b1 Secure and Non-secure accesses permitted.

This bit also determines whether, in the CNTCTLBase frame, CNTACR<n> and CNTVOFF<n> are accessible to Non-secure accesses.

If frame CNTBase<n>:

- Is not implemented, then NS<n> is RES0.
- Is not Configurable access, and is accessible only by Secure accesses, then NS<n> is RES0.
- Is not Configurable access, and is accessible by both Secure and Non-secure accesses, then NS<n> is RES1.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTNSAR:

In a system that recognizes two Security states, this register is only accessible by Secure accesses.
CNTNSAR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x004</td>
<td>CNTNSAR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.10 CNTP_CTL, Counter-timer Physical Timer Control

The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configurations
The power domain of CNTP_CTL is IMPLEMENTATION DEFINED.
For more information, see Power and reset domains for the system level implementation of the
Generic Timer on page I2-7327.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>3</td>
<td>ISTATUS</td>
</tr>
<tr>
<td>2</td>
<td>IMASK</td>
</tr>
<tr>
<td>1</td>
<td>ENABLE</td>
</tr>
<tr>
<td>0</td>
<td>ENABLE</td>
</tr>
</tbody>
</table>

Bits [31:3]
Reserved, RES0.

ISTATUS, bit [2]
The status of the timer. This bit indicates whether the timer condition is met:
0b0 Timer condition is not met.
0b1 Timer condition is met.
When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the
value of IMASK is 0 then the timer interrupt is asserted.
When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.
This bit is read-only.

IMASK, bit [1]
Timer interrupt mask bit. Permitted values are:
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.
For more information, see the description of the ISTATUS bit.
This field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]
Enables the timer. Permitted values are:
0b0 Timer disabled.
0b1 Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from
CNTP_TV AL continues to count down.

--- Note ---
Disabling the output signal might be a power-saving option.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL:

CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames
on page I2-7335 describes
the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any
corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:
 — CNTP_CTL is accessible in the corresponding CNTBaseN frame:
 — The value of CNTEL0ACR.EL0PTEN is 1.
• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

CNTP_CTL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x02C</td>
<td>CNTP_CTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RW.

CNTP_CTL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x02C</td>
<td>CNTP_CTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RW.
I5.7.11 CNTP_CVAL, Counter-timer Physical Timer CompareValue

The CNTP_CVAL characteristics are:

Purpose
Holds the 64-bit compare value for the EL1 physical timer.

Configurations
The power domain of CNTP_CVAL is IMPLEMENTATION DEFINED.
For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I5-7327.

Attributes
CNTP_CVAL is a 64-bit register.

Field descriptions
The CNTP_CVAL bit assignments are:

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63:0</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>

CompareValue, bits [63:0]
Holds the EL1 physical timer CompareValue.
When CNTP_CTL.ENABLE is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.
When the timer condition is met:
• CNTP_CTL.ISTATUS is set to 1.
• An interrupt is generated if CNTP_CTL.IMASK is 0.

When CNTP_CTL.ENABLE is 0, the timer condition is not met, but CNTPCT continues to count. This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CVAL:
CNTP_CVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I5-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:
• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:
• CNTP_CVAL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.
For an implemented CNTEL0BaseN frame:

- CNTP_CVAL is accessible in that frame if both:
 - CNTP_CVAL is accessible in the corresponding CNTBaseN frame:
 - The value of CNTEL0ACR.EL0PTEN is 1.

- Otherwise, the CNTP_CVAL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTP_CVAL register must be accessible as an atomic 64-bit value.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x020</td>
<td>CNTP_CVAL</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTP_CVAL[31:0] are RW.

CNTP_CVAL[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x020</td>
<td>CNTP_CVAL</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTP_CVAL[31:0] are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x024</td>
<td>CNTP_CVAL</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTP_CVAL[63:32] are RW.

CNTP_CVAL[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x024</td>
<td>CNTP_CVAL</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTP_CVAL[63:32] are RW.
I5.7.12 CNTP_TVAL, Counter-timer Physical Timer TimerValue

The CNTP_TVAL characteristics are:

Purpose

Holds the timer value for the EL1 physical timer.

Configurations

The power domain of CNTP_TVAL is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes

CNTP_TVAL is a 32-bit register.

Field descriptions

The CNTP_TVAL bit assignments are:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

TimerValue, bits [31:0]

The TimerValue view of the EL1 physical timer.

On a read of this register:
- If **CNTP_CTL.ENABLE** is 0, the value returned is UNKNOWN.
- If **CNTP_CTL.ENABLE** is 1, the value returned is (CompareValue - CNTPCT).

On a write of this register, CompareValue is set to (CNTPCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When **CNTP_CTL.ENABLE** is 1, the timer condition is met when (CNTPCT - CompareValue) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.

When the timer condition is met:
- **CNTP_CTL.ISTATUS** is set to 1.
- If **CNTP_CTL.IMASK** is 0, an interrupt is generated.

When **CNTP_CTL.ENABLE** is 0, the timer condition is not met, but CNTPCT continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTP_TVAL:

CNTP_TVAL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame.

CNTCTLB status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.
For an implemented CNTBaseN frame:

- CNTP_TVAL is accessible in that frame if the value of CNTACR<\n>.RWPT is 1.
- Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTP_TVAL is accessible in that frame if both:
 - CNTP_TVAL is accessible in the corresponding CNTBaseN frame:
 - The value of CNTEL0ACR.EL0PTEN is 1.
- Otherwise, the CNTP_TVAL address in that frame is RAZ/WI.

CNTP_TVAL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x828</td>
<td>CNTP_TVAL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.

CNTP_TVAL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x828</td>
<td>CNTP_TVAL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.13 CNTPCT, Counter-timer Physical Count

The CNTPCT characteristics are:

Purpose

Holds the 64-bit physical count value.

Configurations

The power domain of CNTPCT is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I5-7327.

Attributes

CNTPCT is a 64-bit register.

Field descriptions

The CNTPCT bit assignments are:

- **Bits [63:0]**

 Physical count value

Accessing the CNTPCT:

CNTPCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I5-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

- CNTPCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RPCT is 1.
- Otherwise, the CNTPCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTPCT is accessible in that frame if both:
 - CNTPCT is accessible in the corresponding CNTBaseN frame.
 - The value of CNTEL0ACR.EL0PCTEN is 1.
- Otherwise, the CNTPCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTPCT register must be accessible as an atomic 64-bit value.
CNTPCT[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x000</td>
<td>CNTPCT</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTPCT[31:0] are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x000</td>
<td>CNTPCT</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTPCT[31:0] are RO.

CNTPCT[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x004</td>
<td>CNTPCT</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTPCT[63:32] are RO.
I5.7.14 CNTSCR, Counter Scale Register

The CNTSCR characteristics are:

Purpose

Enables the counter, controls the counter frequency setting, and controls counter behavior during debug.

Configurations

The power domain of CNTSCR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_CNTSC is implemented. Otherwise, direct accesses to CNTSCR are RES0.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I2-7327.

Attributes

CNTSCR is a 32-bit register.

Field descriptions

The CNTSCR bit assignments are:

```
  31 0
```

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleVal</td>
<td></td>
</tr>
</tbody>
</table>

ScaleVal, bits [31:0]

Scale Value

When counter scaling is enabled, ScaleVal is the amount added to the counter value for every counter tick.

Counter tick is defined as one period of the current operating frequency of the Generic counter.

ScaleVal is expressed as an unsigned fixed point number with an 8-bit integer value and a 24-bit fractional value.

CNTSCR.ScaleVal can only be changed when CNTCR.EN == 0. If the value of this field is changed when CNTCR.EN == 1:

- The counter value becomes UNKNOWN.
- The counter value remains UNKNOWN on future ticks of the clock.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTSCR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in the Secure memory map.

CNTSCR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x10</td>
<td>CNTSCR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.15 CNTSR, Counter Status Register

The CNTSR characteristics are:

Purpose

Provides counter frequency status information.

Configurations

The power domain of CNTSR is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes

CNTSR is a 32-bit register.

Field descriptions

The CNTSR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>FCACK, Frequency change acknowledge. Indicates the currently selected entry in the Frequency modes table, see The Frequency modes table on page I2-7329. This field resets to 0.</td>
</tr>
<tr>
<td>8:7</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>2</td>
<td>DBGH, Indicates whether the counter is halted because the Hall-on-debug signal is asserted: 0: Counter is not halted. 1: Counter is halted. This field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>1</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>0</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

Accessing the CNTSR:

In a system that supports Secure and Non-secure memory maps the CNTControlBase frame, that includes this register, is implemented only in the Secure memory map.

CNTSR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0x004</td>
<td>CNTSR</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

• Accesses to this register are RO.
I5.7.16 CNTTIDR, Counter-timer Timer ID Register

The CNTTIDR characteristics are:

Purpose

Indicates the implemented timers in the memory map, and their features. For each value of N from 0 to 7 it indicates whether:

- Frame CNTBaseN is a view of an implemented timer.
- Frame CNTBaseN has a second view, CNTEL0BaseN.
- Frame CNTBaseN has a virtual timer capability.

Configurations

The power domain of CNTTIDR is IMPLEMENTATION DEFINED.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I2-7327.

Attributes

CNTTIDR is a 32-bit register.

Field descriptions

The CNTTIDR bit assignments are:

Frame<n>, bits [4n+3:4n], for n = 0 to 7

A 4-bit field indicating the features of frame CNTBase<n>.

Bit[3] of the field is RES0.

Bit[2], the FEL0 subfield, indicates whether frame CNTBase<n> has a second view, CNTEL0Base<n>. The possible values of this bit are:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Frame<n> does not have a second view. The CNTEL0ACR register in the first view of the frame is RES0</td>
</tr>
<tr>
<td>0b1</td>
<td>Frame<n> has a second view, CNTEL0Base<n>.</td>
</tr>
</tbody>
</table>

If bit[0] is 0, bit[2] is RES0.

Bit[1], the FVI subfield, indicates whether both:

- Frame CNTBase<n> implements the virtual timer registers CNTV_CVAL, CNTV_TVAL, and CNTV_CTL.
- This CNTCTLBase frame implements the virtual timer offset register CNTVOFF<n>.

The possible values of bit[1] are:

<table>
<thead>
<tr>
<th>Bit[1]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Frame<n> does not have virtual capability. The virtual time and offset registers areRES0.</td>
</tr>
<tr>
<td>0b1</td>
<td>Frame<n> has virtual capability. The virtual time and offset registers are implemented</td>
</tr>
</tbody>
</table>
If bit[0] is 0, bit[1] is RES0.

Bit[0], the FI subfield, indicates whether frame CNTBase<n> is implemented. The possible values of this bit are:

<table>
<thead>
<tr>
<th>Bit[0]</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Frame<n> is not implemented. All registers associated with the frame are RES0.</td>
</tr>
<tr>
<td>0b1</td>
<td>Frame<n> is implemented</td>
</tr>
</tbody>
</table>

Accessing the CNTTIDR:

In a system that recognizes two Security states this register is accessible by both Secure and Non-secure accesses. CNTTIDR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x008</td>
<td>CNTTIDR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.7.17 CNTV_CTL, Counter-timer Virtual Timer Control

The CNTV_CTL characteristics are:

Purpose
Control register for the virtual timer.

Configurations
The power domain of CNTV_CTL is IMPLEMENTATION DEFINED.
For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions
The CNTV_CTL bit assignments are:

31 3 2 1 0

RES0

- **Bits [31:3]**
 Reserved, RES0.

- **ISTATUS, bit [2]**
The status of the timer. This bit indicates whether the timer condition is met:
 0b0 Timer condition is not met.
 0b1 Timer condition is met.
When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.
When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.
This bit is read-only.

- **IMASK, bit [1]**
 Timer interrupt mask bit. Permitted values are:
 0b0 Timer interrupt is not masked by the IMASK bit.
 0b1 Timer interrupt is masked by the IMASK bit.
For more information, see the description of the ISTATUS bit.
This field resets to an architecturally UNKNOWN value.

- **ENABLE, bit [0]**
 Enables the timer. Permitted values are:
 0b0 Timer disabled.
 0b1 Timer enabled.
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TV continues to count down.

Note
Disabling the output signal might be a power-saving option.

This field resets to an architecturally **UNKNOWN** value.

Accessing the CNTV_CTL:

CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page 12-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

- CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
- Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTV_CTL is accessible in that frame if both:
 - CNTV_CTL is accessible in the corresponding CNTBaseN frame:
 - The value of CNTEL0ACR.EL0VTEN is 1.
- Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

CNTV_CTL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x03C</td>
<td>CNTV_CTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.

CNTV_CTL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x03C</td>
<td>CNTV_CTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.18 CNTV_CVAL, Counter-timer Virtual Timer CompareValue

The CNTV_CVAL characteristics are:

Purpose

Holds the 64-bit compare value for the virtual timer.

Configurations

The power domain of CNTV_CVAL is IMPLEMENTATION DEFINED.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I5-7327.

Attributes

CNTV_CVAL is a 64-bit register.

Field descriptions

The CNTV_CVAL bit assignments are:

<table>
<thead>
<tr>
<th>Bit assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:0]</td>
<td>CompareValue</td>
</tr>
</tbody>
</table>

CompareValue, bits [63:0]

Holds the virtual timer CompareValue.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that CompareValue acts like a 64-bit upcounter timer.

When the timer condition is met:

- CNTV_CTL.ISTATUS is set to 1.
- An interrupt is generated if CNTV_CTL.IMASK is 0.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CVAL:

CNTV_CVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding CNTEL0BaseN frame.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I5-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

- CNTV_CVAL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
- Otherwise, the CNTV_CVAL address in that frame is RAZ/WI.
For an implemented CNTEL0BaseN frame:

- CNTV_CV AL is accessible in that frame if both:
 - CNTV_CV AL is accessible in the corresponding CNTBaseN frame:
 - The value of CNTEL0ACR.EL0VTEN is 1.

- Otherwise, the CNTV_CV AL address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTV_CV AL register must be accessible as an atomic 64-bit value.

CNTV_CV AL[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN 0x030</td>
<td>CNTV_CVAL</td>
<td>31:0</td>
<td></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTV_CV AL[31:0] are RW.

CNTV_CV AL[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN 0x030</td>
<td>CNTV_CVAL</td>
<td>31:0</td>
<td></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTV_CV AL[31:0] are RW.

CNTV_CV AL[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN 0x034</td>
<td>CNTV_CVAL</td>
<td>63:32</td>
<td></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTV_CV AL[63:32] are RW.

CNTV_CV AL[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN 0x034</td>
<td>CNTV_CVAL</td>
<td>63:32</td>
<td></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTV_CV AL[63:32] are RW.
I5.7.19 CNTV_TVAL, Counter-timer Virtual Timer TimerValue

The CNTV_TVAL characteristics are:

Purpose

Holds the timer value for the virtual timer.

Configurations

The power domain of CNTV_TVAL is IMPLEMENTATION DEFINED. For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page I5-7327.

Attributes

CNTV_TVAL is a 32-bit register.

Field descriptions

The CNTV_TVAL bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>TimerValue</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TimerValue, bits [31:0]

The TimerValue view of the virtual timer.

On a read of this register:

- If CNTV_CTL.ENABLE is 0, the value returned is UNKNOWN.
- If CNTV_CTL.ENABLE is 1, the value returned is (CompareValue - CNTVCT).

On a write of this register, CompareValue is set to (CNTVCT + TimerValue), where TimerValue is treated as a signed 32-bit integer.

When CNTV_CTL.ENABLE is 1, the timer condition is met when (CNTVCT - CompareValue) is greater than or equal to zero. This means that TimerValue acts like a 32-bit downcounter timer.

When the timer condition is met:

- CNTV_CTL.ISTATUS is set to 1.
- If CNTV_CTL.IMASK is 0, an interrupt is generated.

When CNTV_CTL.ENABLE is 0, the timer condition is not met, but CNTVCT continues to count, so the TimerValue view appears to continue to count down.

This field resets to an architecturally UNKNOWN value.

Accessing the CNTV_TVAL:

CNTV_TVAL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the corresponding CNTEL0BaseN frame. *CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames* on page I5-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.
For an implemented CNTBaseN frame that has virtual timer capability:

- CNTV_TV AL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
- Otherwise, the CNTV_TV AL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTV_TV AL is accessible in that frame if both:
 - CNTV_TV AL is accessible in the corresponding CNTBaseN frame:
 - The value of CNTEL0ACR.EL0VTEN is 1.
- Otherwise, the CNTV_TV AL address in that frame is RAZ/WI.

CNTV_TV AL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x038</td>
<td>CNTV_TV AL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.

CNTV_TV AL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x038</td>
<td>CNTV_TV AL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.7.20 CNTVCT, Counter-timer Virtual Count

The CNTVCT characteristics are:

Purpose

Holds the 64-bit virtual count value.

Configurations

The power domain of CNTVCT is IMPLEMENTATION DEFINED.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer on page I2-7327*.

Attributes

CNTVCT is a 64-bit register.

Field descriptions

The CNTVCT bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual count value</th>
</tr>
</thead>
</table>

Accessing the CNTVCT:

CNTVCT can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN frame, as a RO register.

CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

- CNTVCT is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVCT is 1.
- Otherwise, the CNTVCT address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

- CNTVCT is accessible in that frame if both:
 - CNTVCT is accessible in the corresponding CNTBaseN frame.
 - The value of CNTEL0ACR.EL0VCTEN is 1.
- Otherwise, the CNTVCT address in that frame is RAZ/WI.

If the implementation supports 64-bit atomic accesses, then the CNTVCT register must be accessible as an atomic 64-bit value.
CNTVCT[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x008</td>
<td>CNTVCT</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTVCT[31:0] are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0x008</td>
<td>CNTVCT</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTVCT[31:0] are RO.

CNTVCT[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x00C</td>
<td>CNTVCT</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to CNTVCT[63:32] are RO.
I5.7.21 CNTVOFF, Counter-timer Virtual Offset

The CNTVOFF characteristics are:

Purpose
Holds the 64-bit virtual offset for a CNTBaseN frame that has virtual timer capability. This is the offset between real time and virtual time.

Configurations
The power domain of CNTVOFF is IMPLEMENTATION DEFINED.
For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

Attributes
CNTVOFF is a 64-bit register.

Field descriptions
The CNTVOFF bit assignments are:

<table>
<thead>
<tr>
<th>Bits [63:0]</th>
<th>Virtual offset</th>
</tr>
</thead>
</table>

This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF:
CNTVOFF is implemented, as a RO register, in any implemented CNTBaseN frame that has virtual timer capability. CNTCTLBBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a CNTBaseN frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

- CNTVOFF is accessible in that frame, as a RO register, if the value of CNTACR<n>.RVOFF is 1.
- Otherwise, the CNTVOFF address in that frame is RAZ/WI.

Note
CNTVOFF is never visible in any CNTEL0BaseN frame. This means that the CNTVOFF address in any implemented CNTEL0BaseN frame is RAZ/WI.

In an implementation that supports 64-bit atomic accesses, a CNTVOFF{<n>} register must be accessible as an atomic 64-bit value.
CNTVOFF[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x018</td>
<td>31:0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
• Accesses to CNTVOFF[31:0] are RO.

CNTVOFF[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0x01C</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
• Accesses to CNTVOFF[63:32] are RO.
5.7.22 CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7

The CNTVOFF<n> characteristics are:

Purpose

Holds the 64-bit virtual offset for frame CNTBase<n>. This is the offset between real time and virtual time.

Configurations

The power domain of CNTVOFF<n> is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

For more information, see *Power and reset domains for the system level implementation of the Generic Timer* on page 12-7327.

Attributes

CNTVOFF<n> is a 64-bit register.

Field descriptions

The CNTVOFF<n> bit assignments are:

- **Bits [63:0]**
 - Virtual offset.
 - This field resets to an architecturally UNKNOWN value.

Accessing the CNTVOFF<n>:

In the CNTCTLBase frame a CNTVOFF<n> register must be implemented, as a RW register, for each CNTBaseN frame that has virtual timer capability. For more information, see *CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames* on page 12-7335.

Note

The value of <n> in an instance of CNTVOFF<n> specifies the value of N for the associated CNTBaseN frame.

In a system that recognizes two Security states, for any CNTVOFF<n> register in the CNTCTLBase frame:

- CNTVOFF<n> is always accessible by Secure accesses.
- CNTNSAR.NS<n> determines whether CNTVOFF<n> is accessible by Non-secure accesses.

The register location of any unimplemented CNTVOFF<n> register in the CNTCTLBase frame is RAZ/WI.

The CNTVOFF<n> register is accessible in the CNTBaseN frame using CNTVOFF.

In an implementation that supports 64-bit atomic accesses, then the CNTVOFF<n> registers must be accessible as atomic 64-bit values.

CNTVOFF<n>[31:0] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x080 + (8 * n)</td>
<td>31:0</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to CNTVOFFₙ[31:0] are RW.

CNTVOFFₙ[63:32] can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0x084 + (8 * n)</td>
<td>63:32</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to CNTVOFFₙ[63:32] are RW.
I5.7.23 CounterID<n>, Counter ID registers, n = 0 - 11

The CounterID<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED identification registers 0 to 11 for the memory-mapped Generic Timer.

Configurations

The power domain of CounterID<n> is IMPLEMENTATION DEFINED.

For more information, see Power and reset domains for the system level implementation of the Generic Timer on page I2-7327.

These registers are implemented independently in each of the implemented Generic Timer memory-mapped frames.

If the implementation of the Counter ID registers requires an architecture version, the value for this version of the Arm Generic Timer is version 0.

The Counter ID registers can be implemented as a set of CoreSight ID registers, comprising Peripheral ID Registers and Component ID Registers. An implementation of these registers for the Generic Timer must use a Component class value of 0xF.

Attributes

CounterID<n> is a 32-bit register.

Field descriptions

The CounterID<n> bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the CounterID<n>:

These registers must be implemented, as RO registers, in every implemented Generic Timer memory-mapped frame.

For the CNTCTLBase frame, in a system that recognizes two Security states these registers are accessible by both Secure and Non-secure accesses.

For the CNTControlBase frame, in a system that supports Secure and Non-secure memory maps the frame is implemented only in the Secure memory map, meaning these registers are implemented only in the Secure memory map.

For the CNTBaseN frames, CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames on page I2-7335 describes the status fields that identify whether a frame is implemented, and for an implemented frame:

- Whether the CNTBaseN frame has virtual timer capability.
- Whether the corresponding CNTEL0BaseN frame is implemented.
- For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.
CounterID<\textit{n}> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTControlBase</td>
<td>0xFD0 + (4 * n)</td>
<td>CounterID<\textit{n}></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.

CounterID<\textit{n}> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTReadBase</td>
<td>0xFD0 + (4 * n)</td>
<td>CounterID<\textit{n}></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.

CounterID<\textit{n}> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTBaseN</td>
<td>0xFD0 + (4 * n)</td>
<td>CounterID<\textit{n}></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.

CounterID<\textit{n}> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTEL0BaseN</td>
<td>0xFD0 + (4 * n)</td>
<td>CounterID<\textit{n}></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.

CounterID<\textit{n}> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Frame</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>CNTCTLBase</td>
<td>0xFD0 + (4 * n)</td>
<td>CounterID<\textit{n}></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.
I5.8 RAS register descriptions

This section describes the RAS registers.
I5.8.1 ERRCIDR0, Component Identification Register 0

The ERRCIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see *About the Peripheral identification scheme on page K2-7999*.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR0 is a 32-bit register.

Field descriptions

The ERRCIDR0 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>RES0</td>
</tr>
<tr>
<td>8-7</td>
<td>PRMBL_0</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Accessing the ERRCIDR0:

ERRCIDR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFFF0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.2 ERRCIDR1, Component Identification Register 1

The ERRCIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR1 is a 32-bit register.

Field descriptions

The ERRCIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8-7</td>
<td>CLASS</td>
</tr>
<tr>
<td>4-3</td>
<td>ATTRIBUTES</td>
</tr>
<tr>
<td>0-0</td>
<td>PRMBL_1</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

- 0b1111 Generic peripheral with IMPLEMENTATION DEFINED register layout.
- Other values are defined by the CoreSight Architecture.
- This field reads as 0xF.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Accessing the ERRCIDR1:

ERRCIDR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFF4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.3 ERRCIDR2, Component Identification Register 2

The ERRCIDR2 characteristics are:

Purpose
Provides discovery information about the component.
For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations
Implementation of this register is OPTIONAL.
ERRCIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR2 is a 32-bit register.

Field descriptions
The ERRCIDR2 bit assignments are:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RES0</td>
<td>PRMBL_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]
Reserved, RES0.

PRMBL_2, bits [7:0]
Component identification preamble, segment 2.
Reads as 0x05.

Accessing the ERRCIDR2:
ERRCIDR2 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFF8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.4 ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCIDR3 is a 32-bit register.

Field descriptions

The ERRCIDR3 bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8-7</td>
<td>Component identification preamble, segment 3. Reads as 0xB1.</td>
</tr>
</tbody>
</table>

Accessing the ERRCIDR3:

ERRCIDR3 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFFC</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.5 ERRCRICR0, Critical Error Interrupt Configuration Register 0

The ERRCRICR0 characteristics are:

Purpose
Critical Error Interrupt configuration register.

Configurations
This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRCRICR0 are RES0.

ERRCRICR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR0 is a 64-bit register.

Field descriptions
The ERRCRICR0 bit assignments are:

When the Critical Error Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>63</th>
<th>56-55</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ADDR</td>
<td>RES0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:56]
Reserved, RES0.

ADDR, bits [55:2]
Message Signaled Interrupt address. (ERRCRICR0.ADDR << 2) is the address that the component writes to when signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.

Unimplemented high-order physical address bits are RES0.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]
Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

IMPLEMENTATION DEFINED, bits [63:0]
IMPLEMENTATION DEFINED.
Accessing the ERRCRICR0:

ERRCRICR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xEA0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
ERRCRICR1, Critical Error Interrupt Configuration Register 1

The ERRCRICR1 characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<\n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRCRICR1 are RES0.

ERRCRICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR1 is a 32-bit register.

Field descriptions

The ERRCRICR1 bit assignments are:

When the Critical Error Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<\n> registers:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>DATA</td>
</tr>
</tbody>
</table>

DATA, bits [31:0]

Payload for the message signaled interrupt.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<\n> registers:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR1:

ERRCRICR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xEA8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.7 ERRCRICR2, Critical Error Interrupt Configuration Register 2

The ERRCRICR2 characteristics are:

Purpose

Critical Error Interrupt control and configuration register.

Configurations

This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRCRICR2 are RES0.

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRCRICR2 is a 32-bit register.

Field descriptions

The ERRCRICR2 bit assignments are:

When the Critical Error Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

Bit [7]

When the component does not support disabling message signaled interrupts:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

Otherwise:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

- 0b0: Disabled.
- 0b1: Enabled.

On an Error recovery reset, this field resets to 0.

On a Cold reset, this field resets to 0.

Bit [6]

When the component allows Non-secure writes to ERRCRICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.
When the component does not support configuring the Security attribute for message signaled interrupts:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts. The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [5:4]

When the component does not support configuring the Shareability domain:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRCRJCR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

When the component does not support configuring the memory type:

Reserved, RES0.

Memory type.

The component does not support configuring the memory type, meaning the memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-nGRE memory.

0b0011 Device-GRE memory.

0b0100 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
I5.8 RAS register descriptions

All other values are reserved.

Note

This is the same format as the VMSA v8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<\text{n}> registers:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xEAC</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.8 ERRDEVAFF, Device Affinity Register

The ERRDEVAFF characteristics are:

Purpose

For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a copy of MPIDR_EL1 or part of MPIDR_EL1:

- If the group of error records has affinity with a single PE, the affinity level is 0, ERRDEVAFF reads the same value as MPIDR_EL1, and ERRDEVAFF.F0V reads-as-one to indicate affinity level 0.
- If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3, parts of ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of ERRDEVAFF indicates the level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

- All the PEs in the group have the same values in MPIDR_EL1.{Aff3,Aff2}, and these values are equal to ERRDEVAFF.{Aff3,Aff2}.
- ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,F0V} read-as-zero, to indicate at least affinity level 1. The subset of PEs at level 1 that the group of error records has affinity with is indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this example, if ERRDEVAFF.Aff1[2:0] is 0b100, then the group of error records has affinity with the up-to 8 PEs that have MPIDR_EL1.Aff1[7:3] == ERRDEVAFF.Aff1[7:3].

If RAS System Architecture v1.1 is not implemented, ERRDEVAFF can only describe a group of error records that is affine with a single PE or all the PEs at an affinity level.

Configurations

This register is present only when the group of error records has affinity with a PE or cluster of PEs. Otherwise, direct accesses to ERRDEVAFF are RES0.

ERRDEVAFF is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVAFF is a 64-bit register.

Field descriptions

The ERRDEVAFF bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>63:40</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>Aff3</td>
<td>39:32</td>
<td>PE affinity level 3. The MPIDR_EL1.Aff3 field, viewed from the highest Exception level of the associated PE or PEs.</td>
</tr>
<tr>
<td>F0V</td>
<td>31</td>
<td>Indicates that the ERRDEVAFF.Aff0 field is valid. 0b0 ERRDEVAFF.Aff0 is not valid, and the PE affinity is above level 0 or a subset of level 0.</td>
</tr>
</tbody>
</table>

| Aff0 | 30 | |
| Aff2 | 29 | |
| Aff1 | 28 | |
| Aff0 | 8-7 | |
| MT | | |
U, bit [30]

When ERRDEV AFF.F0V == 1:

Uniprocessor. The MPIDR_EL1.U bit, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]

Reserved, RES0.

MT, bit [24]

When ERRDEV AFF.F0V == 1:

Multithreaded. The MPIDR_EL1.MT bit, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]

When affine with a PE or PEs at affinity level 2 or below:

PE affinity level 2. The MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PE or PEs.

When affine with a sub-set of PEs at affinity level 2:

PE affinity level 2. Defines part of the MPIDR_EL1.Aff2 field, viewed from the highest Exception level of the associated PEs.

0bxxxxxxx1 ERRDEV AFF.Aff2[7:1] is the value of MPIDR_EL1.Aff2[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEV AFF.Aff2[7:2] is the value of MPIDR_EL1.Aff2[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxxx100 ERRDEV AFF.Aff2[7:3] is the value of MPIDR_EL1.Aff2[7:3], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 ERRDEV AFF.Aff2[7:4] is the value of MPIDR_EL1.Aff2[7:4], viewed from the highest Exception level of the associated PEs.

0bxxx10000 ERRDEV AFF.Aff2[7:5] is the value of MPIDR_EL1.Aff2[7:5], viewed from the highest Exception level of the associated PEs.

0bxx100000 ERRDEV AFF.Aff2[7:6] is the value of MPIDR_EL1.Aff2[7:6], viewed from the highest Exception level of the associated PEs.

0bx1000000 ERRDEV AFF.Aff2[7] is the value of MPIDR_EL1.Aff2[7], viewed from the highest Exception level of the associated PEs.

Otherwise:

PE affinity level 2. Indicates whether the PE affinity is at level 3.

0x80 PE affinity is at level 3.

All other values are reserved.

Aff1, bits [15:8]

When affine with a PE or PEs at affinity level 1 or below:

PE affinity level 1. The MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PE or PEs.
When affine with a sub-set of PEs at affinity level 1:

PE affinity level 1. Defines part of the MPIDR_EL1.Aff1 field, viewed from the highest Exception level of the associated PEs.

0bxxxxxx01 ERRDEVAFF.Aff1[7:1] is the value of MPIDR_EL1.Aff1[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff1[7:2] is the value of MPIDR_EL1.Aff1[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff1[7:3] is the value of MPIDR_EL1.Aff1[7:3], viewed from the highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff1[7:4] is the value of MPIDR_EL1.Aff1[7:4], viewed from the highest Exception level of the associated PEs.

0bxx000000 ERRDEVAFF.Aff1[7:5] is the value of MPIDR_EL1.Aff1[7:5], viewed from the highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff1[7] is the value of MPIDR_EL1.Aff1[7], viewed from the highest Exception level of the associated PEs.

Otherwise:

PE affinity level 1. Indicates whether the PE affinity is at level 2.

0x0 PE affinity is above level 2 or a subset of level 2.

0x80 PE affinity is at level 2.

Aff0, bits [7:0]

When affine with a PE at affinity level 0:

PE affinity level 0. The MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PE.

When affine with a sub-set of PEs at affinity level 0:

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of the associated PEs.

0bxxxxxx01 ERRDEVAFF.Aff0[7:1] is the value of MPIDR_EL1.Aff0[7:1], viewed from the highest Exception level of the associated PEs.

0bxxxxxx10 ERRDEVAFF.Aff0[7:2] is the value of MPIDR_EL1.Aff0[7:2], viewed from the highest Exception level of the associated PEs.

0bxxxx1000 ERRDEVAFF.Aff0[7:3] is the value of MPIDR_EL1.Aff0[7:3], viewed from the highest Exception level of the associated PEs.

0bxx100000 ERRDEVAFF.Aff0[7:4] is the value of MPIDR_EL1.Aff0[7:4], viewed from the highest Exception level of the associated PEs.

0bxx000000 ERRDEVAFF.Aff0[7:5] is the value of MPIDR_EL1.Aff0[7:5], viewed from the highest Exception level of the associated PEs.

0bx1000000 ERRDEVAFF.Aff0[7] is the value of MPIDR_EL1.Aff0[7], viewed from the highest Exception level of the associated PEs.

Otherwise:

PE affinity level 0. Indicates whether the PE affinity is at level 1.

0x0 PE affinity is above level 1 or a subset of level 1.

0x80 PE affinity is at level 1.
Accessing the ERRDEVAFF:

ERRDEVAFF can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFA8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.9 ERRDEVARCH, Device Architecture Register

The ERRDEVARCH characteristics are:

Purpose
Provides discovery information for the component.

Configurations
ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVARCH is a 32-bit register.

Field descriptions
The ERRDEVARCH bit assignments are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECT</td>
<td>[31:21]</td>
<td>Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code. 0b01000111011 JEP106 continuation code 0x4, ID code 0x3B. Arm Limited. Other values are defined by the JEDEC JEP106 standard. This field reads as 0x23B.</td>
</tr>
<tr>
<td>PRESENT</td>
<td>[20]</td>
<td>DEV ARCH Present. Defines that the DEV ARCH register is present. 0b0 Device Architecture information not present. 0b1 Device Architecture information present. This bit reads as 0b1.</td>
</tr>
<tr>
<td>REVISION</td>
<td>[19:16]</td>
<td>Revision. Defines the architecture revision of the component. 0b0000 RAS System Architecture v1.0. 0b0001 RAS System Architecture v1.1. As 0b0000 and also: • Simplifies ERR<n>STATUS. • Adds support for additional ERR<n>MISC<m> registers. • Adds support for the optional RAS Timestamp Extension. • Adds support for the optional RAS Common Fault Injection Model Extension. All other values are reserved.</td>
</tr>
<tr>
<td>ARCHVER</td>
<td>[15:12]</td>
<td>Architecture Version. Defines the architecture version of the component. 0b0000 RAS System Architecture v1. All other values are reserved.</td>
</tr>
</tbody>
</table>
ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].
This field reads as 0b0000.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.
0xA00 RAS System Architecture.
ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].
This field reads as 0xA00.

Accessing the ERRDEVARCH:
ERRDEVARCH can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFBC</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
• Accesses to this register are RO.
I5.8.10 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose

Provides discovery information for the component.

Configurations

ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVID is a 32-bit register.

Field descriptions

The ERRDEVID bit assignments are:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>16</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>RES0</td>
<td>NUM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:16]

Reserved, RES0.

NUM, bits [15:0]

Highest numbered index of the error records in this group, plus one. Each implemented record is owned by a node. A node might own multiple records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is implemented, and up to 56 otherwise.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the ERRDEVID:

ERRDEVID can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFC8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RO.
I5.8.11 ERRERICR0, Error Recovery Interrupt Configuration Register 0

The ERRERICR0 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR0 are RES0.

ERRERICR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR0 is a 64-bit register.

Field descriptions

The ERRERICR0 bit assignments are:

When the Error Recovery Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>63</th>
<th>56</th>
<th>55</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ADDR</td>
<td>RES0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRERICR0.ADDR << 2) is the address that the component writes to when signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED.

Unimplemented high-order physical address bits are RES0.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>63</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION DEFINED</td>
<td></td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.
Accessing the ERRERICR0:

ERRERICR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE90</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.12 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICR1 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR1 are RES0.

ERRERICR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR1 is a 32-bit register.

Field descriptions

The ERRERICR1 bit assignments are:

When the Error Recovery Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>DATA</td>
</tr>
</tbody>
</table>

DATA, bits [31:0]

Payload for the message signaled interrupt.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR1:

ERRERICR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE98</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.13 ERRERICR2, Error Recovery Interrupt Configuration Register 2

The ERRERICR2 characteristics are:

Purpose

Error Recovery Interrupt control and configuration register.

Configurations

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRERICR2 are RES0.

ERRERICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRERICR2 is a 32-bit register.

Field descriptions

The ERRERICR2 bit assignments are:

When the Error Recovery Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

```
+----------+----------+----------+----------+----------+----------+----------+----------+
| 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       |
|          |          | 7        | 6        | 5        | 4        | 3        | 2        |
| RESERVED | RESERVED | RESERVED | MESSAGE  | MESSAGE  | MESSAGE  | MESSAGE  | MESSAGE  |
|          |          |          | 0        | 1        | 0        | 1        | 0        |
| 0        | 1        | 0        | 1        | 0        | 1        | 0        | 1        |
```

Bits [31:8]

Reserved, RES0.

Bit [7]

When the component does not support disabling message signaled interrupts:

Reserved, RES0.

Message signaled interrupt enable. Message signaled interrupts are always enabled.

Otherwise:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

0b0 Disabled.

0b1 Enabled.

On an Error recovery reset, this field resets to 0.

On a Cold reset, this field resets to 0.

Bit [6]

When the component allows Non-secure writes to ERRERICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.
When the component does not support configuring the Security attribute for message signaled interrupts:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts. The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Security attribute. Defines the physical address space for message signaled interrupts.

0b0 Secure.

0b1 Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [5:4]

When the component does not support configuring the Shareability domain:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Shareability. Defines the Shareability domain for message signaled interrupts.

0b00 Not shared.

0b10 Outer Shareable.

0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.

• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

When the component does not support configuring the memory type:

Reserved, RES0.

Memory type.

The component does not support configuring the memory type, meaning the memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Memory type. Defines the memory type and attributes for message signaled interrupts.

0b0000 Device-nGnRnE memory.

0b0001 Device-nGnRE memory.

0b0010 Device-GRE memory.

0b0011 Normal memory, Inner Non-cacheable, Outer Non-cacheable.

0b0100 Normal memory, Inner Write-Through, Outer Non-cacheable.

0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b1001</td>
<td>Normal memory, Inner Non-cacheable, Outer Write-Through.</td>
</tr>
<tr>
<td>0b1010</td>
<td>Normal memory, Inner Write-Through, Outer Write-Through.</td>
</tr>
<tr>
<td>0b1011</td>
<td>Normal memory, Inner Write-Back, Outer Write-Through.</td>
</tr>
<tr>
<td>0b1101</td>
<td>Normal memory, Inner Non-cacheable, Outer Write-Back.</td>
</tr>
<tr>
<td>0b1110</td>
<td>Normal memory, Inner Write-Through, Outer Write-Back.</td>
</tr>
<tr>
<td>0b1111</td>
<td>Normal memory, Inner Write-Back, Outer Write-Back.</td>
</tr>
</tbody>
</table>

All other values are reserved.

--- Note ---

This is the same format as the VMSA v8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

31 0

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE9C</td>
</tr>
</tbody>
</table>

Accessing the ERRERICR2:

ERRERICR2 can be accessed through its memory-mapped interface:

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.14 ERRFHICR0, Fault Handling Interrupt Configuration Register 0

The ERRFHICR0 characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHICR0 are RES0.

ERRFHICR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICR0 is a 64-bit register.

Field descriptions
The ERRFHICR0 bit assignments are:

When the Fault Handling Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:56]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[55:2]</td>
<td>ADDR, Message Signaled Interrupt address. (ERRFHICR0.ADDR << 2) is the address that the component writes to when signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero. The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented high-order physical address bits are RES0. On an Error recovery reset, this field resets to an architecturally UNKNOWN value. On a Cold reset, this field resets to an architecturally UNKNOWN value.</td>
</tr>
<tr>
<td>[1:0]</td>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:0]</td>
<td>IMPLEMENTATION DEFINED.</td>
</tr>
</tbody>
</table>
Accessing the ERRFHICR0:

ERRFHICR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.15 ERRFHIRCR1, Fault Handling Interrupt Configuration Register 1

The ERRFHIRCR1 characteristics are:

Purpose
Fault Handling Interrupt configuration register.

Configurations
This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHIRCR1 are RES0.

ERRFHIRCR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHIRCR1 is a 32-bit register.

Field descriptions
The ERRFHIRCR1 bit assignments are:

When the Fault Handling Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>DATA</td>
</tr>
</tbody>
</table>

DATA, bits [31:0]
Payload for the message signaled interrupt.
On an Error recovery reset, this field resets to an architecturally UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.

Accessing the ERRFHIRCR1:

ERRFHIRCR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE88</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.16 ERRFHICR2, Fault Handling Interrupt Configuration Register 2

The ERRFHICR2 characteristics are:

Purpose

Fault Handling Interrupt control and configuration register.

Configurations

This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use the recommended layout for the ERRIRQCR<\text{o}> registers) and interrupt configuration registers are implemented. Otherwise, direct accesses to ERRFHICR2 are RES0.

ERRFHICR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRFHICR2 is a 32-bit register.

Field descriptions

The ERRFHICR2 bit assignments are:

When the Fault Handling Interrupt is implemented and the implementation uses the recommended layout for the ERRIRQCR<\text{o}> registers:

![Field diagram]

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>30</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>29</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>28</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>7</td>
<td>Message signaled interrupt enable. Message signaled interrupts are always enabled.</td>
</tr>
<tr>
<td>6</td>
<td>Message signaled interrupt enable. Enables generation of message signaled interrupts. 0b0 Disabled. 0b1 Enabled. On an Error recovery reset, this field resets to 0. On a Cold reset, this field resets to 0.</td>
</tr>
</tbody>
</table>

When the component does not support disabling message signaled interrupts:

Reserved, RES0.

Otherwise:

Reserved, RES0.

When the component allows Non-secure writes to ERRFHICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts. The Security attribute used for message signaled interrupts is Non-secure.
When the component does not support configuring the Security attribute for message signaled interrupts:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts. The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Security attribute. Defines the physical address space for message signaled interrupts.

- **0b0**: Secure.
- **0b1**: Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.
On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [5:4]

When the component does not support configuring the Shareability domain:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Shareability. Defines the Shareability domain for message signaled interrupts.

- **0b00**: Not shared.
- **0b10**: Outer Shareable.
- **0b11**: Inner Shareable.

All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

- Any Device memory type.
- Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

When the component does not support configuring the memory type:

Reserved, RES0.

Memory type.

The component does not support configuring the memory type, meaning the memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

Otherwise:

Memory type. Defines the memory type and attributes for message signaled interrupts.

- **0b0000**: Device-nGnRnE memory.
- **0b0001**: Device-nGnRE memory.
- **0b0010**: Device-nGRE memory.
- **0b0011**: Device-GRE memory.
- **0b0101**: Normal memory, Inner Non-cacheable, Outer Non-cacheable.
- **0b0110**: Normal memory, Inner Write-Through, Outer Non-cacheable.
- **0b0111**: Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.
All other values are reserved.

--- Note ---
This is the same format as the VMSA v8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

When the implementation does not use the recommended layout for the ERRIRQCR<n> registers:

| 31 | 0 |
|-------------------------|
| IMPLEMENTATION DEFINED |

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.

Accessing the ERRFHICR2:
ERRFHICR2 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE8C</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.17 ERRGSR, Error Group Status Register

The ERRGSR characteristics are:

Purpose

Shows the status for the records in the group.

Configurations

ERRGSR is implemented only as part of a memory-mapped group of error records.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral. For a 4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is implemented, and up to 56 otherwise.

Attributes

ERRGSR is a 64-bit register.

Field descriptions

The ERRGSR bit assignments are:

| Bits [63:56] | Reserved, RES0. |
| S<m>, bit [m], for m = 0 to 55 |

When error record <m> is implemented and error record <m> supports this type of reporting:

The status for error record <m>. A read-only copy of ERR<n>STATUS.V.

- **0b0** No error.
- **0b1** One or more errors.

If the Common Fault Injection Model is implemented, up-to 24 records can be implemented meaning bits [55:24] are RES0.

Otherwise:

Reserved, RES0.

Accessing the ERRGSR:

ERRGSR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE00</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.18 ERRIIDR, Implementation Identification Register

The ERRIIDR characteristics are:

Purpose

Defines the implementer of the component.

Configurations

Implementation of this register is OPTIONAL.

This register is present only when RAS System Architecture v1.1 is implemented.

Attributes

ERRIIDR is a 32-bit register.

Field descriptions

The ERRIIDR bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>20</th>
<th>19</th>
<th>16</th>
<th>15</th>
<th>12</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ProductID</td>
<td>Variant</td>
<td>Revision</td>
<td>Implementer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ProductID, bits [31:20]

Part number, bits [11:0]. The part number is selected by the designer of the component.

If ERRPIDR0 and ERRPIDR1 are implemented, ERRPIDR0.PART_0 matches bits [7:0] of ERRIIDR.ProductID and ERRPIDR1.PART_1 matches bits [11:8] of ERRIIDR.ProductID.

Variant, bits [19:16]

Component major revision.

This field distinguishes product variants or major revisions of the product.

If ERRPIDR2 is implemented, ERRPIDR2.REVISION matches ERRIIDR.Variant.

Revision, bits [15:12]

Component minor revision.

This field distinguishes minor revisions of the product.

If ERRPIDR3 is implemented, ERRPIDR3.REVAND matches ERRIIDR.Revision.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the RAS component. For an Arm implementation, this field has the value 0x43B.

Bits [11:8] contain the JEP106 continuation code of the implementer, and bits [6:0] contain the JEP106 identity code of the implementer. Bit 7 is RES0.

If ERRPIDR4 is implemented, ERRPIDR2 is implemented, and ERRPIDR1 is implemented, ERRPIDR4.DES_2 matches bits [11:8] of ERRIIDR.Implementer, ERRPIDR2.DES_1 matches bits [6:4] of ERRIIDR.Implementer, and ERRPIDR1.DES_0 matches bits [3:0] of ERRIIDR.Implementer.
Accessing the ERRIIDR:

ERRIIDR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xE10</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.19 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191

The ERRIMPDEF<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED RAS extensions.

Configurations

This register is present only when the RAS Common Fault Injection Model Extension is not implemented, ERRDEVID.NUM <= 32 and an implementation implements ERRIMPDEF<n>. Otherwise, direct accesses to ERRIMPDEF<n> are RES0.

Attributes

ERRIMPDEF<n> is a 64-bit register.

Field descriptions

The ERRIMPDEF<n> bit assignments are:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing the ERRIMPDEF<n>:

ERRIMPDEF<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x800 + (8 * n)</td>
<td>ERRIMPDEF<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.20 ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15

The ERRIRQCR<n> characteristics are:

Purpose

The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration registers. The architecture provides a recommended layout for the ERRIRQCR<n> registers. These registers are named:

- ERRFHICR0, ERRFHICR1, and ERRFHICR2 for the fault handling interrupt controls.
- ERRERICR0, ERRERICR1, and ERRERICR2 for the error recovery interrupt controls.
- ERRCRICR0, ERRCRICR1, and ERRCRICR2 for the critical error interrupt controls.
- ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when the interrupt configuration registers are implemented. Otherwise, direct accesses to ERRIRQCR<n> are RES0.

ERRIRQCR<n> is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQCR<n> is a 64-bit register.

Field descriptions

The ERRIRQCR<n> bit assignments are:

![Bitmap](https://example.com/image)

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

Accessing the ERRIRQCR<n>:

ERRIRQCR<n> can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>@xE00 + (8 * n)</td>
<td>ERRIRQCR<n></td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.21 ERRIRQSR, Error Interrupt Status Register

The ERRIRQSR characteristics are:

Purpose

Interrupt status register.

Configurations

This register is present only when interrupt configuration registers are implemented. Otherwise, direct accesses to ERRIRQSR are RES0.

ERRIRQSR is implemented only as part of a memory-mapped group of error records.

Attributes

ERRIRQSR is a 64-bit register.

Field descriptions

The ERRIRQSR bit assignments are:

When the implementation uses the recommended layout for the ERRIRQCR<n> registers:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>6</td>
<td>FHIERR</td>
</tr>
<tr>
<td>5</td>
<td>ERERR</td>
</tr>
<tr>
<td>4</td>
<td>ERI</td>
</tr>
<tr>
<td>3</td>
<td>CRIERR</td>
</tr>
<tr>
<td>2</td>
<td>CRI</td>
</tr>
<tr>
<td>1</td>
<td>FHI</td>
</tr>
<tr>
<td>0</td>
<td>RES0</td>
</tr>
</tbody>
</table>

Bits [63:6]

Reserved, RES0.

CRIERR, bit [5]

When the Critical Error Interrupt is implemented:

Critical Error Interrupt error.

- 0: Critical Error Interrupt write has not returned an error since this bit was last cleared to zero.
- 1: Critical Error Interrupt write has returned an error since this bit was last cleared to zero.

This bit is read/write-one-to-clear.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CRI, bit [4]

When the Critical Error Interrupt is implemented:

Critical Error Interrupt write in progress.

- 0: Critical Error Interrupt write not in progress.
- 1: Critical Error Interrupt write in progress.
Software must not disable an interrupt whilst the write is in progress.

Note
This bit does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt is in progress.
To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS registers.

Access to this field is RO.

Otherwise:
Reserved, RES0.

ERIERR, bit [3]
When the Error Recovery Interrupt is implemented:
Error Recovery Interrupt error.
\[0\] Error Recovery Interrupt write has not returned an error since this bit was last cleared to zero.
\[1\] Error Recovery Interrupt write has returned an error since this bit was last cleared to zero.

This bit is read/write-one-to-clear.
On an Error recovery reset, this field resets to an architecturally UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

ERI, bit [2]
When the Error Recovery Interrupt is implemented:
Error Recovery Interrupt write in progress.
\[0\] Error Recovery Interrupt write not in progress.
\[1\] Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

Note
This bit does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt is in progress.
To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS registers.

Access to this field is RO.

Otherwise:
Reserved, RES0.

FHIERR, bit [1]
When the Fault Handling Interrupt is implemented:
Fault Handling Interrupt error.
\[0\] Fault Handling Interrupt write has not returned an error since this bit was last cleared to zero.
\[1\] Fault Handling Interrupt write has returned an error since this bit was last cleared to zero.

This bit is read/write-one-to-clear.
On an Error recovery reset, this field resets to an architecturally UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

FHI, bit [0]

When the Fault Handling Interrupt is implemented:
Fault Handling Interrupt write in progress.

- 0b0 Fault Handling Interrupt write not in progress.
- 0b1 Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

--- **Note**
This bit does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<i>STATUS registers.

Access to this field is RO.

Otherwise:
Reserved, RES0.

When the implementation does not use the recommended layout for the ERRIRQCR<i> registers:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>62</td>
<td>IMPLEMENTATION DEFINED, bits [63:0]</td>
</tr>
</tbody>
</table>

Accessing the ERRIRQSR:

ERRIRQSR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xEF8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
RAS register descriptions

I5.8.22 ERR<\text{n}>ADDR, Error Record Address Register, \text{n} = 0 - 65534

The ERR<\text{n}>ADDR characteristics are:

Purpose

If an address is associated with a detected error, then it is written to ERR<\text{n}>ADDR when the error is recorded. It is IMPLEMENTATION DEFINED how the recorded address maps to the software-visible physical address. Software might have to reconstruct the actual physical addresses using the identity of the node and knowledge of the system.

Configurations

This register is present only when error record \text{n} is implemented and error record \text{n} includes an address associated with an error. Otherwise, direct accesses to ERR<\text{n}>ADDR are RES0. ERR<\text{n}>FR describes the features implemented by the node that owns error record \text{n}. \text{q} is the index of the first error record owned by the same node as error record \text{n}. If the node owns a single record, then \text{q} = \text{n}.

Attributes

ERR<\text{n}>ADDR is a 64-bit register.

Field descriptions

The ERR<\text{n}>ADDR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Non-secure attribute.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Secure Incorrect. Indicates whether the NS bit is valid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Address Incorrect. Indicates whether the PADDR field is a valid physical address that is known to match the programmers' view of the physical address for the recorded location.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>RES0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>PADDR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SI, bit [62]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 62</td>
<td>NS, bit [63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 55</td>
<td>AI, bit [61]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>VA</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

NS, bit [63]
Non-secure attribute.
- \text{0b0} The address is Secure.
- \text{0b1} The address is Non-secure.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

SI, bit [62]
Secure Incorrect. Indicates whether the NS bit is valid.
- \text{0b0} The NS bit is correct. That is, it matches the programmers' view of the Non-secure attribute for this recorded location.
- \text{0b1} The NS bit might not be correct, and might not match the programmers' view of the Non-secure attribute for the recorded location.
It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

AI, bit [61]
Address Incorrect. Indicates whether the PADDR field is a valid physical address that is known to match the programmers' view of the physical address for the recorded location.
- \text{0b0} The PADDR field is a valid physical address. That is, it matches the programmers' view of the physical address for the recorded location.
The PADDR field might not be a valid physical address, and might not match the programmers' view of the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]

Virtual Address. Indicates whether the PADDR field is a virtual address.

0b0 The PADDR field is not a virtual address.

0b1 The PADDR field is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA == 0b1, ERR<n>ADDR.{NS,SLAI} read as \{0,1,1\}.

Support for this bit is optional. If this bit is not implemented and ERR<n>ADDR.PADDR field is a virtual address, then ERR<n>ADDR.{NS,SLAI} read as \{0,1,1\}.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [59:56]

Reserved, RES0.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this component is smaller than the size of this field, then high-order bits are unimplemented and either RES0 or have a fixed read-only IMPLEMENTATION DEFINED value. Low-order address bits might also be unimplemented and RES0, for example, if the physical address is always aligned to the size of a protection granule.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>ADDR:

ERR<n>ADDR ignores writes if all of the following are true:

- Any of the following are true:
 - The RAS Common Fault Injection Model Extension is implemented by the node that owns this error record and ERR<n>PFGF.AV == 0b0.
 - The RAS Common Fault Injection Model Extension is not implemented by the node that owns this error record.
- ERR<n>STATUS.AV == 0b1.

ERR<n>ADDR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x018 + (64 * n)</td>
<td>ERR<n>ADDR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.23 ERR<\text{n}>CTLR, Error Record Control Register, n = 0 - 65534

The ERR<\text{n}>CTLR characteristics are:

Purpose

The error control register contains enable bits for the node that writes to this record:

- Enabling error detection and correction.
- Enabling the critical error, error recovery, and fault handling interrupts.
- Enabling in-band error response for Uncorrected errors.

For each bit, if the selected node does not support the feature, then the bit is RES0. The definition of each record is IMPLEMENTATION DEFINED.

Configurations

This register is present only when error record <\text{n}> is implemented and error record <\text{n}> is the first error record owned by a node. Otherwise, direct accesses to ERR<\text{n}>CTLR are RES0. ERR<\text{n}>FR describes the features implemented by the node.

Attributes

ERR<\text{n}>CTLR is a 64-bit register.

Field descriptions

The ERR<\text{n}>CTLR bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>IMPLEMENTATION DEFINED</td>
</tr>
<tr>
<td>32-31</td>
<td>RES0</td>
</tr>
<tr>
<td>14-10</td>
<td>CI</td>
</tr>
<tr>
<td>9-5</td>
<td>ED</td>
</tr>
<tr>
<td>4-0</td>
<td>FI, UI</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:14]

Reserved, RES0.

CI, bit [13]

When ERR<\text{n}>FR.CI == 0b10:

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical error condition.

- 0b0 Critical error interrupt not generated for critical errors. Critical errors are treated as Uncontained errors.
- 0b1 Critical error interrupt generated for critical errors.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

Bit [12]
Reserved, RES0.

WDUI, bit [11]

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for detected Deferred errors on writes.
0b0 Error recovery interrupt not generated for deferred errors on writes.
0b1 Error recovery interrupt generated for deferred errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

DUI, bit [10]

When ERR<n>FR.DUI == 0b10:

Error recovery interrupt for deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Deferred errors.
0b0 Error recovery interrupt not generated for deferred errors.
0b1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on reads enable.

When ERR<n>FR.DUI == 0b11, this bit is named RDUI.

When enabled, the error recovery interrupt is generated for detected Deferred errors on reads.
0b0 Error recovery interrupt not generated for deferred errors on reads.
0b1 Error recovery interrupt generated for deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.
WCFI, bit [9]

When ERR<\(n\)>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on writes enable.

When enabled:
- If the node implements Corrected error counters for writes, then the fault handling interrupt is generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see ERR<\(n\)>MISC0.
- Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.

0b0 Fault handling interrupt not generated for Corrected errors on writes.
0b1 Fault handling interrupt generated for Corrected errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CFI, bit [8]

When ERR<\(n\)>FR.CFI == 0b10:

Fault handling interrupt for Corrected errors enable.

When ERR<\(n\)>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:
- If the node implements Corrected error counters, then the fault handling interrupt is generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see ERR<\(n\)>MISC0.
- Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.

0b0 Fault handling interrupt not generated for Corrected errors.
0b1 Fault handling interrupt generated for Corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<\(n\)>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on reads enable.

When ERR<\(n\)>FR.CFI == 0b11, this bit is named RCFI.

When enabled:
- If the node implements Corrected error counters for reads, then the fault handling interrupt is generated when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see ERR<\(n\)>MISC0.
- Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.

0b0 Fault handling interrupt not generated for Corrected errors on reads.
0b1 Fault handling interrupt generated for Corrected errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUE, bit [7]

When ERR<n>FR.UE == 0b11:

In-band Uncorrected error reporting on writes enable.

- When enabled, responses to writes that detect an Uncorrected error that cannot be deferred are signaled in-band as a detected Uncorrected error (External Abort).
 - 0b0: External Abort response for Uncorrected errors on writes disabled.
 - 0b1: External Abort response for Uncorrected errors on writes enabled.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WFI, bit [6]

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on writes enable.

When enabled:

- The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
- If the corresponding fault handling interrupt for Corrected errors control is not implemented:
 - If the node implements Corrected error counters for writes, then the fault handling interrupt is also generated when a counter overflows and the overflow bit for the counter is set to 0b1.
 - Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.

- 0b0: Fault handling interrupt on writes disabled.
- 0b1: Fault handling interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUI, bit [5]

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on writes that are not deferred.

- 0b0: Error recovery interrupt on writes disabled.
- 0b1: Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
External System Control Register Descriptions

I5.8 RAS register descriptions

Otherwise:
Reserved, RES0.

UE, bit [4]

When \(ERR<n>FR.UE == 0b10 \):
In-band Uncorrected error reporting enable.
When \(ERR<n>FR.UE == 0b10 \), this control applies to errors arising from both reads and writes.
When enabled, responses to transactions that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

- \(0b0 \) External Abort response for Uncorrected errors disabled.
- \(0b1 \) External Abort response for Uncorrected errors enabled.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

When \(ERR<n>FR.UE == 0b11 \):
In-band Uncorrected error reporting on reads enable.
When \(ERR<n>FR.UE == 0b11 \), this bit is named RUE.
When enabled, responses to reads that detect an Uncorrected error that cannot be deferred are
signaled in-band as a detected Uncorrected error (External Abort).

- \(0b0 \) External Abort response for Uncorrected errors on reads disabled.
- \(0b1 \) External Abort response for Uncorrected errors on reads enabled.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

FI, bit [3]

When \(ERR<n>FR.FI == 0b10 \):
Fault handling interrupt enable.
When \(ERR<n>FR.FI == 0b10 \), this control applies to errors arising from both reads and writes.
When enabled:
- The fault handling interrupt is generated for all detected Deferred errors and Uncorrected
 errors.
- If the fault handling interrupt for Corrected errors control is not implemented:

 — If the node implements Corrected error counters, then the fault handling interrupt is
 also generated when a counter overflows and the overflow bit for the counter is set to
 \(0b1 \).

 — Otherwise, the fault handling interrupt is also generated for all detected Corrected
 errors.

- \(0b0 \) Fault handling interrupt disabled.
- \(0b1 \) Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

When \(ERR<n>FR.FI == 0b11 \):
Fault handling interrupt on reads enable.
When \(ERR<n>FR.FI == 0b11 \), this bit is named RFI.
When enabled:
- The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
- If the corresponding fault handling interrupt for Corrected errors control is not implemented:
 - If the node implements Corrected error counters for reads, then the fault handling interrupt is also generated when a counter overflows and the overflow bit for the counter is set to 0b1.
 - Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Fault handling interrupt on reads disabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>Fault handling interrupt on reads enabled.</td>
</tr>
</tbody>
</table>

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

UI, bit [2]

When ERR<n>FR.UI == 0b10:
Uncorrected error recovery interrupt enable.
When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.
When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are not deferred.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Error recovery interrupt disabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>Error recovery interrupt enabled.</td>
</tr>
</tbody>
</table>

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UI == 0b11:
Uncorrected error recovery interrupt on reads enable.
When ERR<n>FR.UI == 0b11, this bit is named RUI.
When enabled, the error recovery interrupt is generated for detected Uncorrected errors on reads that are not deferred.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b0</td>
<td>Error recovery interrupt on reads disabled.</td>
</tr>
<tr>
<td>0b1</td>
<td>Error recovery interrupt on reads enabled.</td>
</tr>
</tbody>
</table>

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher priority error.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RES0.

IMPLEMENTATION DEFINED, bit [1]
Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.
ED, bit [0]

When ERR<n>FR.ED == 0b10:

Error reporting and logging enable. When disabled, the node behaves as if error detection and correction are disabled, and no errors are recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for error injection.

- 0b0 Error reporting disabled.
- 0b1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when reporting is disabled. That is, even with error reporting disabled, the node might continue to silently correct errors. Uncorrectable errors might result in corrupt data being silently propagated by the node.

--- Note ---

If this node requires initialization after Cold reset to prevent signaling false errors, then Arm recommends this bit is set to 0b0 on Cold reset, meaning errors are not reported from Cold reset. This allows boot software to initialize a node without signaling errors. Software can enable error reporting after the node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED. If the Cold reset value is 0b1, the reset values of other controls in this register are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Accessing the ERR<n>CTLR:

ERR<n>CTLR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x000 + (64 * n)</td>
<td>ERR<n>CTLR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
5.8.24 ERR<n>FR, Error Record Feature Register, n = 0 - 65534

The ERR<n>FR characteristics are:

Purpose

Defines whether <n> is the first record owned by a node:

- If <n> is the first error record owned by a node, then ERR<n>FR.ED != 0b00.
- If <n> is not the first error record owned by a node, then ERR<n>FR.ED == 0b00.

If <n> is the first record owned by the node, defines which of the common architecturally-defined features are implemented by the node and, of the implemented features, which are software programmable.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>FR are RES0.

Attributes

ERR<n>FR is a 64-bit register.

Field descriptions

The ERR<n>FR bit assignments are:

When ERR<n>FR.ED != 0b00:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>55</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>54</td>
<td>CE</td>
</tr>
<tr>
<td>53</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>52</td>
<td>DE</td>
</tr>
<tr>
<td>51</td>
<td>UEO</td>
</tr>
<tr>
<td>50</td>
<td>UER</td>
</tr>
<tr>
<td>49</td>
<td>UEU</td>
</tr>
<tr>
<td>48</td>
<td>UC</td>
</tr>
<tr>
<td>47</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>32</td>
<td>TS</td>
</tr>
<tr>
<td>31</td>
<td>CI</td>
</tr>
<tr>
<td>30</td>
<td>INJ</td>
</tr>
<tr>
<td>29</td>
<td>CEO</td>
</tr>
<tr>
<td>28</td>
<td>DUI</td>
</tr>
<tr>
<td>27</td>
<td>RP</td>
</tr>
<tr>
<td>26</td>
<td>CEC</td>
</tr>
<tr>
<td>25</td>
<td>CFI</td>
</tr>
<tr>
<td>24</td>
<td>UE</td>
</tr>
<tr>
<td>23</td>
<td>FI</td>
</tr>
<tr>
<td>22</td>
<td>UI</td>
</tr>
<tr>
<td>21</td>
<td>ED</td>
</tr>
</tbody>
</table>

IMPLEMENTATION DEFINED, bits [63:55]

- When ERR<n>FR.FRX != 1:
 - Reserved for identifying IMPLEMENTATION DEFINED controls.
- Otherwise:
 - Reserved, RES0.

CE, bits [54:53]

- When ERR<n>FR.FRX == 1:
 - Corrected Error recording. Describes the types of Corrected Error the node can record.
 - 0b00: The node does not record any type of Corrected Error.
 - 0b01: The node can record transient or persistent Corrected Errors (Corrected Errors that are recorded as ERR<n>STATUS.CE == 0b01 and 0b11).
 - 0b10: The node can record of a non-specific Corrected Error (a Corrected Error that is recorded as ERR<n>STATUS.CE == 0b10).
0b11 The node can record any type of Corrected Error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

DE, bit [52]
When ERR<n>FRX == 1:
Deferred Error recording. Describes whether the node can record this type of error.
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

UEO, bit [51]
When ERR<n>FRX == 1:
Latent or Restartable Error recording. Describes whether the node can record this type of error.
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

UER, bit [50]
When ERR<n>FRX == 1:
Signaled or Recoverable Error recording. Describes whether the node can record this type of error.
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

UEU, bit [49]
When ERR<n>FRX == 1:
Unrecoverable Error recording. Describes whether the node can record this type of error.
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

UC, bit [48]
When ERR<n>FRX == 1:
Uncontainable Error recording. Describes whether the node can record this type of error.
0b0 The node does not record this type of error.
0b1 The node can record this type of error.

Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.

IMPLEMENTATION DEFINED, bits [47:32]
Reserved for identifying IMPLEMENTATION DEFINED controls.
FRX, bit [31]

When RAS System Architecture v1.1 is implemented:

- Feature Register extension. Defines whether ERR<\(\text{n}\)>FR[63:48] are architecturally defined.
 - 0b0: ERR<\(\text{n}\)>FR[63:48] are IMPLEMENTATION DEFINED.
 - 0b1: ERR<\(\text{n}\)>FR[63:48] are defined by the architecture.

Otherwise:

Reserved, RES0.

Bits [30:26]

Reserved, RES0.

TS, bits [25:24]

Timestamp Extension. Indicates whether, for each error record <\(\text{m}\)> owned by this node, ERR<\(\text{n}\)>MISC3 is used as the timestamp register, and, if it is, the timebase used by the timestamp.

- 0b00: The node does not support a timestamp register.
- 0b01: The node implements a timestamp register. The timestamp uses the same timebase as the system Generic Timer.

Note

For an error record which has an affinity to a PE, this is the same timer that is visible through CNTPCT_EL0 at the highest Exception level on that PE.

- 0b10: The node implements a timestamp register. The timebase for the timestamp is IMPLEMENTATION DEFINED.

All other values are reserved.

CI, bits [23:22]

Critical error interrupt. Indicates whether the critical error interrupt and associated controls are implemented.

- 0b00: Does not support the critical error interrupt. ERR<\(\text{n}\)>CTLR.CI is RES0.
- 0b01: Critical error interrupt is supported and always enabled. ERR<\(\text{n}\)>CTLR.CI is RES0.
- 0b10: Critical error interrupt is supported and controllable using ERR<\(\text{n}\)>CTLR.CI.

All other values are reserved.

INJ, bits [21:20]

Fault Injection Extension. Indicates whether the RAS Common Fault Injection Model Extension is implemented.

- 0b00: The node does not support the RAS Common Fault Injection Model Extension.
- 0b01: The node implements the RAS Common Fault Injection Model Extension. See ERR<\(\text{n}\)>PFGF for more information.

All other values are reserved.

CEO, bits [19:18]

When ERR<\(\text{n}\)>FR.CEC ! = 0b000:

Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first Corrected error has been recorded by an error record <\(\text{m}\)> owned by the node.

- 0b00: Counts Corrected errors if a counter is implemented. Keeps the previous error syndrome. If the counter overflows, or no counter is implemented, then ERR<\(\text{n}\)>STATUS.OF is set to 0b1.
- 0b01: Counts Corrected errors. If ERR<\(\text{n}\)>STATUS.OF == 0b1 before the Corrected error is counted, then keeps the previous syndrome. Otherwise the previous syndrome is overwritten. If the counter overflows, then ERR<\(\text{n}\)>STATUS.OF is set to 0b1.
All other values are reserved.

Otherwise:
Reserved, RES0.

DUI, bits [17:16]

When ERR<n>FR.UI != 0b00:
Error recovery interrupt for deferred errors control. Indicates whether the control for enabling error recovery interrupts on deferred errors are implemented.
0b00 Does not support the control for enabling error recovery interrupts on deferred errors. ERR<n>CTRLR.DUI is RES0.
0b10 Control for enabling error recovery interrupts on deferred errors is supported and controllable using ERR<n>CTRLR.DUI.
0b11 Control for enabling error recovery interrupts on deferred errors is supported and controllable using ERR<n>CTRLR.WDUI for writes and ERR<n>CTRLR.RDUI for reads.

All other values are reserved.

Otherwise:
Reserved, RES0.

RP, bit [15]

When ERR<n>FR.CEC != 0b000:
Repeat counter. Indicates whether the node implements the repeat Corrected error counter in ERR<n>MISC0 for each error record <m> owned by the node that implements the standard Corrected error counter.
0b0 A single CE counter is implemented.
0b1 A first (repeat) counter and a second (other) counter are implemented. The repeat counter is the same size as the primary error counter.

Otherwise:
Reserved, RES0.

CEC, bits [14:12]
Corrected Error Counter. Indicates whether the node implements the standard Corrected error counter (CE counter) mechanisms in ERR<n>MISC0 for each error record <m> owned by the node that can record countable errors.
0b000 Does not implement the standard Corrected error counter model.
0b010 Implements an 8-bit Corrected error counter in ERR<n>MISC0[39:32].
0b100 Implements a 16-bit Corrected error counter in ERR<n>MISC0[47:32].

All other values are reserved.

Note
Implementations might include other error counter models, or might include the standard model and not indicate this in ERR<n>FR.

CFI, bits [11:10]

When ERR<n>FR.FI != 0b00:
Fault handling interrupt for corrected errors. Indicates whether the control for enabling fault handling interrupts on corrected errors are implemented.
0b00 Does not support the control for enabling fault handling interrupts on corrected errors. ERR<n>CTRLR.CFI is RES0.
0b10 Control for enabling fault handling interrupts on corrected errors is supported and controllable using ERR<n>CTRLR.CFI.
Control for enabling fault handling interrupts on corrected errors is supported and controllable using ERR<\textit{n}>CTRL.RCFI for reads and ERR<\textit{n}>CTRL.WCFI for writes.

All other values are reserved.

\textit{Otherwise:}

Reserved, RES0.

UE, bits [9:8]

In-band uncorrected error reporting. Indicates whether the in-band uncorrected error reporting (External Aborts) and associated controls are implemented.

- \texttt{0b00}: Does not support the in-band uncorrected error reporting (External Aborts). ERR<\textit{n}>CTRL.UE is RES0.
- \texttt{0b01}: In-band uncorrected error reporting (External Aborts) is supported and always enabled. ERR<\textit{n}>CTRL.UE is RES0.
- \texttt{0b10}: In-band uncorrected error reporting (External Aborts) is supported and controllable using ERR<\textit{n}>CTRL.UE.
- \texttt{0b11}: In-band uncorrected error reporting (External Aborts) is supported and controllable using ERR<\textit{n}>CTRL.WUE for writes and ERR<\textit{n}>CTRL.RUE for reads.

FI, bits [7:6]

Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are implemented.

- \texttt{0b00}: Does not support the fault handling interrupt. ERR<\textit{n}>CTRL.FI is RES0.
- \texttt{0b01}: Fault handling interrupt is supported and always enabled. ERR<\textit{n}>CTRL.FI is RES0.
- \texttt{0b10}: Fault handling interrupt is supported and controllable using ERR<\textit{n}>CTRL.FI.
- \texttt{0b11}: Fault handling interrupt is supported and controllable using ERR<\textit{n}>CTRL.WFI for writes and ERR<\textit{n}>CTRL.RFI for reads.

UI, bits [5:4]

Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and associated controls are implemented.

- \texttt{0b00}: Does not support the error handling interrupt. ERR<\textit{n}>CTRL.UI is RES0.
- \texttt{0b01}: Error handling interrupt is supported and always enabled. ERR<\textit{n}>CTRL.UI is RES0.
- \texttt{0b10}: Error handling interrupt is supported and controllable using ERR<\textit{n}>CTRL.UI.
- \texttt{0b11}: Error handling interrupt is supported and controllable using ERR<\textit{n}>CTRL.WUI for writes and ERR<\textit{n}>CTRL.RUI for reads.

IMPLEMENTATION DEFINED, bits [3:2]

IMPLEMENTATION DEFINED.

ED, bits [1:0]

Error reporting and logging. Indicates whether error record <\textit{n}> is the first record owned the node, and, if so, whether it implements the controls for enabling and disabling error reporting and logging.

- \texttt{0b01}: Error reporting and logging always enabled. ERR<\textit{n}>CTRL.ED is RES0.
- \texttt{0b10}: Error reporting and logging is controllable using ERR<\textit{n}>CTRL.ED.

All other values are reserved.
When ERR<n>FR.ED == 0b00:

<table>
<thead>
<tr>
<th>63</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>ED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:2]
Reserved, RES0.

ED, bits [1:0]
Error reporting and logging. Indicates error record <n> is not the first record owned the node.

- 0b00 Error record <n> is not the first record owned by the node.
- This field reads as 0b00.

Accessing the ERR<n>FR:
ERR<n>FR can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x000 + (64 * n)</td>
<td>ERR<n>FR</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:
- Accesses to this register are RO.
I5.8.25 ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534

The ERR<n>MISC0 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

- Information to identify the FRU in which the error was detected, and might contain enough information to locate the error within that FRU.
- A Corrected error counter or counters.
- Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements architecturally-defined error counters (ERR<n>FR.CEC != 0b000), and error record <n> can record countable errors, then ERR<n>MISC0 implements the architecturally-defined error counter or counters.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC0 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC0, writing zero returns the error record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

--- **Note**

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC0 is a 64-bit register.

Field descriptions

The ERR<n>MISC0 bit assignments are:

When ERR<q>FR.CEC == 0b000:

```
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.
When ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 0:

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

OF, bit [47]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

- 0b0: Counter has not overflowed.
- 0b1: Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [46:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 0:

IMPLEMENTATION DEFINED, bits [63:40]

IMPLEMENTATION DEFINED syndrome.

OF, bit [39]

Sticky overflow bit. Set to 1 when ERR<n>MISC0.CEC is incremented and wraps through zero.

- 0b0: Counter has not overflowed.
- 0b1: Counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally **UNKNOWN** value.

CEC, bits [38:32]

Corrected error count. Incremented for each Corrected error. It is **IMPLEMENTATION DEFINED** and might be **UNPREDICTABLE** whether Deferred and Uncorrected errors are counted.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally **UNKNOWN** value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

*When **ERR<q>FR.CEC == 0b100 and ERR<q>FR.RP == 1:***

OFO, bit [63]

Sticky overflow bit, other. Set to 1 when **ERR<n>MISC0.CECO** is incremented and wraps through zero.

- **0b0**: Other counter has not overflowed.
- **0b1**: Other counter has overflowed.

A direct write that modifies this bit might indirectly set **ERR<n>STATUS.OF** to an **UNKNOWN** value and a direct write to **ERR<n>STATUS.OF** that clears it to zero might indirectly set this bit to an **UNKNOWN** value.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally **UNKNOWN** value.

CECO, bits [62:48]

Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing **ERR<n>MISC0.CECR**.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally **UNKNOWN** value.

OFR, bit [47]

Sticky overflow bit, repeat. Set to 1 when **ERR<n>MISC0.CECR** is incremented and wraps through zero.

- **0b0**: Repeat counter has not overflowed.
- **0b1**: Repeat counter has overflowed.

A direct write that modifies this bit might indirectly set **ERR<n>STATUS.OF** to an **UNKNOWN** value and a direct write to **ERR<n>STATUS.OF** that clears it to zero might indirectly set this bit to an **UNKNOWN** value.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally **UNKNOWN** value.
CECR, bits [46:32]
Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

Note
For example, the other syndrome might include the set and way information for an error detected in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a first Corrected error. ERR<n>MISC0.CECR is then incremented for each subsequent Corrected Error in the same set and way.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED syndrome.

When ERR<q>FR.CEC == 0b010 and ERR<q>FR.RP == 1:

OFO, bit [47]
Sticky overflow bit, other. Set to 1 when ERR<n>MISC0.CECO is incremented and wraps through zero.
0b0 Other counter has not overflowed.
0b1 Other counter has overflowed.

A direct write that modifies this bit might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct write to ERR<n>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [46:40]
Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing ERR<n>MISC0.CECR.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [39]
Sticky overflow bit, repeat. Set to 1 when ERR<n>MISC0.CECR is incremented and wraps through zero.
0b0 Repeat counter has not overflowed.
0b1 Repeat counter has overflowed.
A direct write that modifies this bit might indirectly set ERR<\text{n}>STATUS.OF to an UNKNOWN value and a direct write to ERR<\text{n}>STATUS.OF that clears it to zero might indirectly set this bit to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [38:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected errors are countable errors.

___ Note ___

For example, the other syndrome might include the set and way information for an error detected in a cache. This might be recorded in the IMPLEMENTATION DEFINED ERR<\text{n}>MISC<\text{m}> fields on a first Corrected error. ERR<\text{n}>MISC0.CECR is then incremented for each subsequent Corrected Error in the same set and way.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<\text{n}>MISC0:

Reads from ERR<\text{n}>MISC0 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and ERR<\text{n}>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<\text{n}>STATUS.MV == 0b1. See ERR<\text{n}>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends that:

- Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

- When ERR<\text{n}>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error ignores writes.

___ Note ___

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being logged.

ERR<\text{n}>MISC0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x020 + (64 * n)</td>
<td>ERR<\text{n}>MISC0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.26 ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534

The ERR<n>MISC1 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

- Information to identify the FRU in which the error was detected, and might contain enough information to locate the error within that FRU.
- A Corrected error counter or counters.
- Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC1 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC1 is a 64-bit register.

Field descriptions

The ERR<n>MISC1 bit assignments are:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC1:

Reads from ERR<n>MISC1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and ERR<n>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1. See ERR<n>PFGF.MV for more information.
For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends that:

- Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
- When ERR<{} STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error ignores writes.

--- Note ---

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being logged.

ERR<{} MISC1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x828 + (64 * n)</td>
<td>ERR<{} MISC1</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
15.8.27 ERR<n>MISC2, Error Record Miscellaneous Register 2, \(n = 0 - 65534 \)

The ERR<n>MISC2 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

- Information to identify the FRU in which the error was detected, and might contain enough information to locate the error within that FRU.
- A Corrected error counter or counters.
- Other state information not present in the corresponding status and address registers.

Configurations

This register is present only when (an implementation implements ERR<n>MISC2 or RAS System Architecture v1.1 is implemented) and error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC2 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. \(q \) is the index of the first error record owned by the same node as error record <n>. If the node owns a single record, then \(q = n \).

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC2 does not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC2 is a 64-bit register.

Field descriptions

The ERR<n>MISC2 bit assignments are:

```
  63 0  
```

- IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC2:

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED behavior.
If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<\text{n}>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<\text{n}>STATUS.MV == 0b1. See
ERR<\text{n}>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<\text{n}>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded
 error ignores writes.

\textbf{Note}

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<\text{n}>MISC2 can be accessed through its memory-mapped interface:

\begin{center}
\begin{tabular}{|l|c|c|}
\hline
Component & Offset & Instance \\
\hline
RAS & 0x030 + (64 * n) & \text{ERR<\text{n}>MISC2} \\
\hline
\end{tabular}
\end{center}

This interface is accessible as follows:

• Accesses to this register are RW.
I5.8.28 ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

- Information to identify the FRU in which the error was detected, and might contain enough information to locate the error within that FRU.
- A Corrected error counter or counters.
- Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<n>FR.TS != 0b00), then ERR<n>MISC3 contains the timestamp value for error record n when the error was detected. Otherwise the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when (an implementation implements ERR<n>MISC3 or RAS System Architecture v1.1 is implemented) and error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC3 are RES0.

ERR<n>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommends that ERR<n>MISC3 does not require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in ERR<n>CTLR.

Attributes

ERR<n>MISC3 is a 64-bit register.

Field descriptions

The ERR<n>MISC3 bit assignments are:

When ERR<q>FR.TS != 0b00:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>TS</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
TS, bits [63:0]

Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<\(n\)>STATUS.V == 0b1.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

When ERR<\(q\)>FR.TS == 0b00:

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<\(n\)>MISC3:

Reads from ERR<\(n\)>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and ERR<\(n\)>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<\(n\)>STATUS.MV == 0b1. See ERR<\(n\)>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends that:

- Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
- When ERR<\(n\)>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being logged.

ERR<\(n\)>MISC3 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x038 + (64 * n)</td>
<td>ERR<(n)>MISC3</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.29 ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534

The ERR<n>PFGCDN characteristics are:

Purpose

Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

For details of this, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture profile.

Configurations

This register is present only when error record <n> is implemented, the node implements the RAS Common Fault Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node. Otherwise, direct accesses to ERR<n>PFGCDN are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes

ERR<n>PFGCDN is a 64-bit register.

Field descriptions

The ERR<n>PFGCDN bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-32</td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>31-0</td>
<td>CDN</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

CDN, bits [31:0]

Countdown value.

This field is copied to Error Generation Counter when either:

- Software writes ERR<n>PFGCTL.CDNEN with 1.
- The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R == 0b1.

While ERR<n>PFGCTL.CDNEN == 0b1 and the Error Generation Counter is nonzero, the counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches 0, one of the errors enabled in the ERR<n>PFGCTL register is generated.

Note

The current Error Generation Counter value is not visible to software.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>PFGCDN:

ERR<n>PFGCDN can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x810 + (64 * n)</td>
<td>ERR<n>PFGCDN</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.30 ERR<\(n\)>PFGCTL, Pseudo-fault Generation Control Register, \(n = 0 - 65534\)

The ERR<\(n\)>PFGCTL characteristics are:

Purpose

Enables controlled fault generation.

Configurations

This register is present only when error record \(<n\> is implemented, the node implements the RAS Common Fault Injection Model Extension (ERR<\(n\)>FR.INJ \(!= 0b00\) and error record \(<n\> is the first error record owned by a node. Otherwise, direct accesses to ERR<\(n\)>PFGCTL are RES0.

ERR<\(n\)>FR describes the features implemented by the node.

Attributes

ERR<\(n\)>PFGCTL is a 64-bit register.

Field descriptions

The ERR<\(n\)>PFGCTL bit assignments are:

<table>
<thead>
<tr>
<th>Bit Assignments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63:32]</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>[31] CDNEN</td>
<td>Countdown Enable. Controls transfers from the value that is held in the ERR<(n)>PFGCDN into the Error Generation Counter and enables this counter.</td>
</tr>
<tr>
<td>[30] R</td>
<td>Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the ERR<(n)>PFGCDN value or stops.</td>
</tr>
</tbody>
</table>

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers from the value that is held in the ERR<\(n\)>PFGCDN into the Error Generation Counter and enables this counter.

- **0b0**: The Error Generation Counter is disabled.
- **0b1**: The Error Generation Counter is enabled. On a write of 0b1 to this bit, the Error Generation Counter is set to ERR<\(n\)>PFGCDN.CDN.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to 0.

R, bit [30]

Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the ERR<\(n\)>PFGCDN value or stops.

- **0b0**: On reaching 0, the Error Generation Counter will stop.
- **0b1**: On reaching 0, the Error Generation Counter is set to ERR<\(n\)>PFGCDN.CDN.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [29:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome. The value that is written to ERR\(^n\)STATUS.MV when an injected error is recorded.

- \(0b0\) ERR\(^n\)STATUS.MV is set to \(0b0\) when an injected error is recorded.
- \(0b1\) ERR\(^n\)STATUS.MV is set to \(0b1\) when an injected error is recorded.

This bit reads-as-one if the node always records some syndrome in ERR\(^n\)MISC\(^m\), setting ERR\(^n\)STATUS.MV to 1, when an injected error is recorded. This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged. On a Cold reset, this field resets to an architecturally UNKNOWN value.

AV, bit [11]

Address syndrome. The value that is written to ERR\(^n\)STATUS.AV when an injected error is recorded.

- \(0b0\) ERR\(^n\)STATUS.AV is set to \(0b0\) when an injected error is recorded.
- \(0b1\) ERR\(^n\)STATUS.AV is set to \(0b1\) when an injected error is recorded.

This bit reads-as-one if the node always sets ERR\(^n\)STATUS.AV to \(0b1\) when an injected error is recorded. This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged. On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [10]

Poison flag. The value that is written to ERR\(^n\)STATUS.PN when an injected error is recorded.

- \(0b0\) ERR\(^n\)STATUS.PN is set to \(0b0\) when an injected error is recorded.
- \(0b1\) ERR\(^n\)STATUS.PN is set to \(0b1\) when an injected error is recorded.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged. On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [9]

Error Reported flag. The value that is written to ERR\(^n\)STATUS.ER when an injected error is recorded.

- \(0b0\) ERR\(^n\)STATUS.ER is set to \(0b0\) when an injected error is recorded.
- \(0b1\) ERR\(^n\)STATUS.ER is set to \(0b1\) when an injected error is recorded.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [8]

Critical Error flag. The value that is written to ERR\(^n\)STATUS.CI when an injected error is recorded.

- \(0b0\) ERR\(^n\)STATUS.CI is set to \(0b0\) when an injected error is recorded.
- \(0b1\) ERR\(^n\)STATUS.CI is set to \(0b1\) when an injected error is recorded.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

CE, bits [7:6]

Corrected Error generation enable. Controls the type of Corrected Error condition that might be generated.

- **0b00**: No error of this type will be generated.
- **0b01**: A non-specific Corrected Error, that is, a Corrected Error that is recorded as ERR<n>-STATUS.CE == 0b10, might be generated when the Error Generation Counter decrements to zero.
- **0b10**: A transient Corrected Error, that is, a Corrected Error that is recorded as ERR<n>-STATUS.CE == 0b01, might be generated when the Error Generation Counter decrements to zero.
- **0b11**: A persistent Corrected Error, that is, a Corrected Error that is recorded as ERR<n>-STATUS.CE == 0b11, might be generated when the Error Generation Counter decrements to zero.

The set of permitted values for this field is defined by ERR<n>-PFGF.CE.

This field is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [5]

Deferred Error generation enable. Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

- **0b0**: No error of this type will be generated.
- **0b1**: An error of this type might be generated when the Error Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UEO, bit [4]

Latent or Restartable Error generation enable. Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

- **0b0**: No error of this type will be generated.
- **0b1**: An error of this type might be generated when the Error Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UER, bit [3]

Signaled or Recoverable Error generation enable. Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

- **0b0**: No error of this type will be generated.
- **0b1**: An error of this type might be generated when the Error Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
UEU, bit [2]

Unrecoverable Error generation enable. Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

UC, bit [1]

Uncontainable Error generation enable. Controls whether this type of error condition might be generated. It is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [0]

Overflow flag. The value that is written to ERR<n>STATUS.OF when an injected error is recorded.

0b0 ERR<n>STATUS.OF is set to 0b0 when an injected error is recorded.
0b1 ERR<n>STATUS.OF is set to 0b1 when an injected error is recorded.

This bit is RES0 if the node does not support this control.
On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>PFGCTL:

ERR<n>PFGCTL can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x808 + (64 * n)</td>
<td>ERR<n>PFGCTL</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

• Accesses to this register are RW.
I5.8.31 ERR_nPFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

The ERR_nPFGF characteristics are:

Purpose

Defines which common architecturally-defined fault generation features are implemented.

Configurations

This register is present only when error record _n is implemented, the node implements the RAS Common Fault Injection Model Extension (ERR_nFR.INJ != 0b00) and error record _n is the first error record owned by a node. Otherwise, direct accesses to ERR_nPFGF are RES0.

ERR_nFR describes the features implemented by the node.

Attributes

ERR_nPFGF is a 64-bit register.

Field descriptions

The ERR_nPFGF bit assignments are:

<table>
<thead>
<tr>
<th>Bit 63-31</th>
<th>Bit 30</th>
<th>Bit 29</th>
<th>Bit 13-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>R</td>
<td>RES0</td>
<td>PN</td>
</tr>
<tr>
<td>CI</td>
<td>CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF</td>
<td>UC</td>
<td>UEU</td>
<td>UER</td>
</tr>
<tr>
<td>UEO</td>
<td>DE</td>
<td>ER</td>
<td>AV</td>
</tr>
<tr>
<td>MV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [63:31]

Reserved, RES0.

R, bit [30]

Restartable. Support for Error Generation Counter restart mode.

- 0b0: The node does not support this feature.
- 0b1: Feature controllable.

SYN, bit [29]

Syndrome. Fault syndrome injection.

- 0b0: When an injected error is recorded, the node sets ERR_nSTATUS. {IERR, SERR} to IMPLEMENTATION DEFINED values. ERR_nSTATUS. {IERR, SERR} are UNKNOWN when ERR_nSTATUS.V == 0b0.
- 0b1: When an injected error is recorded, the node does not update the ERR_nSTATUS. {IERR, SERR} fields. ERR_nSTATUS. {IERR, SERR} are writable when ERR_nSTATUS.V == 0b0.
I5.8 RAS register descriptions

Note

If ERR<\n>PFGF.SYN == 0b1, software can write specific values into the ERR<\n>STATUS.[IERR, SERR] fields when setting up a fault injection event. The sets of values that can be written to these fields is IMPLEMENTATION DEFINED.

Bits [28:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded in the ERR<\n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which syndrome fields in ERR<\n>MISC<m> this refers to, as some fields might always be recorded by an error. For example, a Corrected Error counter.

- **0b0** When an injected error is recorded, the node might record IMPLEMENTATION DEFINED additional syndrome in ERR<\n>MISC<m>. If any syndrome is recorded in ERR<\n>MISC<m>, then ERR<\n>STATUS.MV is set to 0b1.
- **0b1** When an injected error is recorded, the node does not update all the syndrome fields in the ERR<\n>MISC<m> and does one of:
 - The node does not update any fields in ERR<\n>MISC<m> and sets ERR<\n>STATUS.MV to ERR<\n>PFGCTL.MV.
 - The node records some syndrome in ERR<\n>MISC<m> and sets ERR<\n>STATUS.MV to 0b1. ERR<\n>PFGCTL.MV is RAO.

The syndrome fields that the node does not update are unchanged and are writable when ERR<\n>STATUS.MV == 0b0.

Note

If ERR<\n>PFGF.MV == 0b1, software can write specific values into the ERR<\n>MISC<m> registers when setting up a fault injection event. The values that can be written to these registers are IMPLEMENTATION DEFINED.

AV, bit [11]

Address syndrome. Address syndrome injection.

- **0b0** When an injected error is recorded, the node either sets ERR<\n>ADDR and ERR<\n>STATUS.AV for the access, or leaves these unchanged.
- **0b1** When an injected error is recorded, the node does not update ERR<\n>ADDR and does one of:
 - Sets ERR<\n>STATUS.AV to ERR<\n>PFGCTL.AV.
 - Sets ERR<\n>STATUS.AV to 0b1. ERR<\n>PFGCTL.AV is RAO.

ERR<\n>ADDR is writable when ERR<\n>STATUS.AV == 0b0.

Note

If ERR<\n>PFGF.AV == 0b1, software can write a specific value into ERR<\n>ADDR when setting up a fault injection event.

PN, bit [10]

Poison flag. Describes how the fault generation feature of the node sets the ERR<\n>STATUS.PN status flag.

- **0b0** When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets ERR<\n>STATUS.PN to 0b1.
When an injected error is recorded, ERR\textsubscript{n}\textgreater STATUS.PN is set to ERR\textsubscript{n}\textgreater PFGCTL.PN.

This behavior replaces the architecture-defined rules for setting the PN bit.

This bit reads-as-zero if the node does not support this flag.

ER, bit [9]

Error Reported flag. Describes how the fault generation feature of the node sets the ERR\textsubscript{n}\textgreater STATUS.ER status flag.

- 0b0 When an injected error is recorded, the node sets ERR\textsubscript{n}\textgreater STATUS.ER according to the architecture-defined rules for setting the ER bit.

- 0b1 When an injected error is recorded, ERR\textsubscript{n}\textgreater STATUS.ER is set to ERR\textsubscript{n}\textgreater PFGCTL.ER. This behavior replaces the architecture-defined rules for setting the ER bit.

This bit reads-as-zero if the node does not support this flag.

CI, bit [8]

Critical Error flag. Describes how the fault generation feature of the node sets the ERR\textsubscript{n}\textgreater STATUS.CI status flag.

- 0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets ERR\textsubscript{n}\textgreater STATUS.CI to 0b1.

- 0b1 When an injected error is recorded, ERR\textsubscript{n}\textgreater STATUS.CI is set to ERR\textsubscript{n}\textgreater PFGCTL.CI. This behavior replaces the architecture-defined rules for setting the CI bit.

This bit reads-as-zero if the node does not support this flag.

CE, bits [7:6]

Corrected Error generation. Describes the types of Corrected Error that the fault generation feature of the node can generate.

- 0b00 The fault generation feature of the node cannot generate this type of error.

- 0b01 The fault generation feature of the node allows generation of a non-specific Corrected Error, that is, a Corrected Error that is recorded as ERR\textsubscript{n}\textgreater STATUS.CE == 0b10.

- 0b11 The fault generation feature of the node allows generation of transient or persistent Corrected Errors, that is, Corrected Errors that are recorded as ERR\textsubscript{n}\textgreater STATUS.CE == 0b01 and 0b11.

All other values are reserved.

If ERR\textsubscript{n}\textgreater FR.FRX is 0b1 then ERR\textsubscript{n}\textgreater FR.CE indicates whether the node supports this type of error.

This field reads-as-zeros if the node does not support this type of error.

DE, bit [5]

Deferred Error generation. Describes whether the fault generation feature of the node can generate this type of error.

- 0b0 The fault generation feature of the node cannot generate this type of error.

- 0b1 The fault generation feature of the node allows generation of this type of error.

If ERR\textsubscript{n}\textgreater FR.FRX is 0b1 then ERR\textsubscript{n}\textgreater FR.DE indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

UEO, bit [4]

Latent or Restartable Error generation. Describes whether the fault generation feature of the node can generate this type of error.

- 0b0 The fault generation feature of the node cannot generate this type of error.
The fault generation feature of the node allows generation of this type of error.
If ERR<\text{n}>FR.FR is 0b1 then ERR<\text{n}>FR.UE indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UER, bit [3]

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can generate this type of error.
0b0 The fault generation feature of the node cannot generate this type of error.
0b1 The fault generation feature of the node allows generation of this type of error.
If ERR<\text{n}>FR.FR is 0b1 then ERR<\text{n}>FR.UER indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UEU, bit [2]

Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate this type of error.
0b0 The fault generation feature of the node cannot generate this type of error.
0b1 The fault generation feature of the node allows generation of this type of error.
If ERR<\text{n}>FR.FR is 0b1 then ERR<\text{n}>FR.UEU indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

UC, bit [1]

Uncontainable Error generation. Describes whether the fault generation feature of the node can generate this type of error.
0b0 The fault generation feature of the node cannot generate this type of error.
0b1 The fault generation feature of the node allows generation of this type of error.
If ERR<\text{n}>FR.FR is 0b1 then ERR<\text{n}>FR.UC indicates whether the node supports this type of error.
This bit reads-as-zero if the node does not support this type of error.

OF, bit [0]

Overflow flag. Describes how the fault generation feature of the node sets the ERR<\text{n}>STATUS.OF status flag.
0b0 When an injected error is recorded, the node sets ERR<\text{n}>STATUS.OF according to the architecture-defined rules for setting the OF bit.
0b1 When an injected error is recorded, ERR<\text{n}>STATUS.OF is set to ERR<\text{n}>PFCTRL.OF. This behavior replaces the architecture-defined rules for setting the OF bit.
This bit reads-as-zero if the node does not support this flag.

Accessing the ERR<\text{n}>PF:

ERR<\text{n}>PF can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x800 + (64 * n)</td>
<td>ERR<\text{n}>PF</td>
</tr>
</tbody>
</table>
This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.32 **ERR\(<n>\)STATUS, Error Record Primary Status Register, n = 0 - 65534**

The ERR\(<n>\)STATUS characteristics are:

Purpose

Contains status information for error record \(<n>\), including:

- Whether any error has been detected (valid).
- Whether any detected error was not corrected, and returned to a Requester.
- Whether any detected error was not corrected and deferred.
- Whether an error record has been discarded because additional errors have been detected before the first error was handled by software (overflow).
- Whether any error has been reported.
- Whether the other error record registers contain valid information.
- Whether the error was reported because poison data was detected or because a corrupt value was detected by an error detection code.
- A primary error code.
- An IMPLEMENTATION DEFINED extended error code.

Within this register:

- The \{AV, V, MV\} bits are valid bits that define whether error record \(<n>\) registers are valid.
- The \{UE, OF, CE, DE, UET\} bits encode the types of error or errors recorded.
- The \{CI, ER, PN, IERR, SERR\} fields are syndrome fields.

Configurations

This register is present only when error record \(<n>\) is implemented. Otherwise, direct accesses to ERR\(<n>\)STATUS are RES0.

ERR\(<n>\)FR describes the features implemented by the node that owns error record \(<n>\). \(<q>\) is the index of the first error record owned by the same node as error record \(<n>\). If the node owns a single record, then \(q = n\).

For IMPLEMENTATION DEFINED fields in ERR\(<n>\)STATUS, writing zero returns the error record to an initial quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in ERR\(<n>\)CTRL.

Attributes

ERR\(<n>\)STATUS is a 64-bit register.

Field descriptions

The ERR\(<n>\)STATUS bit assignments are:
When RAS System Architecture v1.1 is implemented:

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record <n> includes an address associated with an error:

Address Valid.

0b0 ERR<n>ADDR not valid.

0b1 ERR<n>ADDR contains an address associated with the highest priority error recorded by this record.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

0b0 ERR<n>STATUS not valid.

0b1 ERR<n>STATUS valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

0b0 No errors have been detected, or all detected errors have been either corrected or deferred.

0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
ER, bit [28]

Error Reported.

0b0 No in-band error (External Abort) reported.
0b1 An External Abort was signaled by the node to the Requester making the access or other transaction. This can be because any of the following are true:

- The applicable one of the $\text{ERR}<n>\text{CTL.R.}{\{\text{WUE},\text{RUE},\text{UE}\}}$ bits is implemented and was set to 0b1 when an Uncorrected error was detected.
- The applicable one of the $\text{ERR}<n>\text{CTL.R.}{\{\text{WUE},\text{RUE},\text{UE}\}}$ bits is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

When clearing $\text{ERR}<n>\text{STATUS.V}$ to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

- $\text{ERR}<n>\text{STATUS.V} == 0b0$.
- $\text{ERR}<n>\text{STATUS.UE} == 0b0$ and this bit is never set to 0b1 by a Deferred error.
- $\text{ERR}<n>\text{STATUS.} \{\text{UE,DE}\} == \{0,0\}$ and this bit can be set to 0b1 by a Deferred error.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the node might be masked and not generate any exception.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

- A Corrected error counter is implemented, an error is counted, and the counter overflows.
- $\text{ERR}<n>\text{STATUS.V}$ was previously set to 0b1, a Corrected error counter is not implemented, and a Corrected error is recorded.
- $\text{ERR}<n>\text{STATUS.V}$ was previously set to 0b1, and a type of error other than a Corrected error is recorded.

Otherwise, this bit is unchanged when an error is recorded.

If a Corrected error counter is implemented:

- A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.
- A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an UNKNOWN value.

0b0 Since this bit was last cleared to zero, no error syndrome has been discarded and, if a Corrected error counter is implemented, it has not overflowed.
0b1 Since this bit was last cleared to zero, at least one error syndrome has been discarded or, if a Corrected error counter is implemented, it might have overflowed.

When clearing $\text{ERR}<n>\text{STATUS.V}$ to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if $\text{ERR}<n>\text{STATUS.V} == 0b0$.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
MV, bit [26]

When error record \(<n>\) includes an additional information for an error:

Miscellaneous Registers Valid.

- \(0\) ERR\(<n>\)-MISC\(<m>\) not valid.
- \(1\) The IMPLEMENTATION DEFINED contents of the ERR\(<n>\)-MISC\(<m>\) registers contains additional information for an error recorded by this record.

This bit is read/write-one-to-clear.

Note

If the ERR\(<n>\)-MISC\(<m>\) registers can contain additional information for a previously recorded error, then the contents must be self-describing to software or a user. For example, certain fields might relate only to Corrected errors, and other fields only to the most recent error that was not discarded.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

- \(00\) No errors were corrected.
- \(01\) At least one transient error was corrected.
- \(10\) At least one error was corrected.
- \(11\) At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to \(10\) when an error is corrected.

When clearing ERR\(<n>\)-STATUS.V to \(0\), if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR\(<n>\)-STATUS.V == \(0\).

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

- \(0\) No errors were deferred.
- \(1\) At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR\(<n>\)-STATUS.V to \(0\), if this bit is nonzero, then Arm recommends that software write \(1\) to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR\(<n>\)-STATUS.V == \(0\).

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.
PN, bit [22]

Poison.
0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for example, by an error detection code (EDC), or Corrected error recorded.
0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:
• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.DE,UE == {0,0}.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.
0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if any of the following are true:
• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN value.

--- Note ---
Software might use the information in the error record registers to determine what recovery is necessary.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.
0b0 No critical error condition.
0b1 Critical error condition.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.
This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [18:16]

Reserved, RES0.
IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<\(n\)>STATUS.SERR value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<\(n\)>MISC<\(m\)> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

- Any of the following are true:
 - The RAS Common Fault Injection Model Extension is implemented by the node that owns this error record and ERR<\(n\)>PFGF.SYN == 0b0.
 - The RAS Common Fault Injection Model Extension is not implemented by the node that owns this error record.
- ERR<\(n\)>STATUS.V == 0b0.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or generate a short log entry.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>No error.</td>
</tr>
<tr>
<td>0x01</td>
<td>IMPLEMENTATION DEFINED error.</td>
</tr>
<tr>
<td>0x02</td>
<td>Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.</td>
</tr>
<tr>
<td>0x03</td>
<td>IMPLEMENTATION DEFINED pin. For example, nSEI pin.</td>
</tr>
<tr>
<td>0x04</td>
<td>Assertion failure. For example, consistency failure.</td>
</tr>
<tr>
<td>0x05</td>
<td>Error detected on internal data path. For example, parity on ALU result.</td>
</tr>
<tr>
<td>0x06</td>
<td>Data value from associative memory. For example, ECC error on cache data.</td>
</tr>
<tr>
<td>0x07</td>
<td>Address/control value from associative memory. For example, ECC error on cache tag.</td>
</tr>
<tr>
<td>0x08</td>
<td>Data value from a TLB. For example, ECC error on TLB data.</td>
</tr>
<tr>
<td>0x09</td>
<td>Address/control value from a TLB. For example, ECC error on TLB tag.</td>
</tr>
<tr>
<td>0x0A</td>
<td>Data value from producer. For example, parity error on write data bus.</td>
</tr>
<tr>
<td>0x0B</td>
<td>Address/control value from producer. For example, parity error on address bus.</td>
</tr>
<tr>
<td>0x0C</td>
<td>Data value from (non-associative) external memory. For example, ECC error in SDRAM.</td>
</tr>
<tr>
<td>0x0D</td>
<td>Illegal address (software fault). For example, access to unpopulated memory.</td>
</tr>
<tr>
<td>0x0E</td>
<td>Illegal access (software fault). For example, byte write to word register.</td>
</tr>
<tr>
<td>0x0F</td>
<td>Illegal state (software fault). For example, device not ready.</td>
</tr>
<tr>
<td>0x10</td>
<td>Internal data register. For example, parity on a SIMD&FP register. For a PE, all general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.</td>
</tr>
<tr>
<td>0x11</td>
<td>Internal control register. For example, Parity on a System register. For a PE, all registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are control registers.</td>
</tr>
</tbody>
</table>
0x12 Error response from Completer of access. For example, error response from cache write-back.
0x13 External timeout. For example, timeout on interaction with another node.
0x14 Internal timeout. For example, timeout on interface within the node.
0x15 Deferred error from Completer not supported at Requester. For example, poisoned data received from the Completer of an access by a Requester that cannot defer the error further.
0x16 Deferred error from Requester not supported at Completer. For example, poisoned data received from the Requester of an access by a Completer that cannot defer the error further.
0x17 Deferred error from Completer passed through. For example, poisoned data received from the Completer of an access and returned to the Requester.
0x18 Deferred error from Requester passed through. For example, poisoned data received from the Requester of an access and deferred to the Completer.
0x19 Error recorded by PCIe error logs. Indicates that the node has recorded an error in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or other mechanisms defined by PCIe.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is written to this register, then the value read back from this field is UNKNOWN.

--- Note ---
This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:
• Any of the following are true:
 — The RAS Common Fault Injection Model Extension is implemented by the node that owns this error record and ERR<n>PFGF.SYN == 0b0.
 — The RAS Common Fault Injection Model Extension is not implemented by the node that owns this error record.
• ERR<n>STATUS.V == 0b0.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When RAS System Architecture v1.0 is implemented:

Bits [63:32]
Reserved, RES0.
AV, bit [31]

When error record \(<n>\) includes an address associated with an error:

Address Valid.

- 0b0: ERR\(<n>\)ADDR not valid.
- 0b1: ERR\(<n>\)ADDR contains an address associated with the highest priority error recorded by this record.

This bit ignores writes if ERR\(<n>\)STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

- 0b0: ERR\(<n>\)STATUS not valid.
- 0b1: ERR\(<n>\)STATUS valid. At least one error has been recorded.

This bit ignores writes if ERR\(<n>\)STATUS.{CE,DE,UE} != {0b00,0,0}, and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

- 0b0: No errors have been detected, or all detected errors have been either corrected or deferred.
- 0b1: At least one detected error was not corrected and not deferred.

When clearing ERR\(<n>\)STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR\(<n>\)STATUS.V == 0b0. This bit ignores writes if ERR\(<n>\)STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [28]

Error Reported.

- 0b0: No in-band error (External Abort) reported.
- 0b1: An External Abort was signaled by the node to the Requester making the access or other transaction. This can be because any of the following are true:
 - The applicable one of the ERR\(<n>\)CTLR.{WUE,RUE,UE} bits is implemented and was set to 0b1 when an Uncorrected error was detected.
 - The applicable one of the ERR\(<n>\)CTLR.{WUE,RUE,UE} bits is not implemented and the node always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.
If this bit is nonzero, then Arm recommends that software write \(0b1 \) to this bit to clear this bit to zero, when any of:

- Clearing \(\text{ERR}<n>\text{STATUS.V} \) to \(0b0 \).
- Clearing \(\text{ERR}<n>\text{STATUS.UE} \) to \(0b0 \), if this bit is never set to \(0b1 \) by a Deferred error.
- Clearing \(\text{ERR}<n>\text{STATUS.UE,DE} \) to \(\{0,0\} \), if this bit can be set to \(0b1 \) by a Deferred error.

This bit is not valid and reads \text{UNKNOWN} \ if any of the following are true:

- \(\text{ERR}<n>\text{STATUS.V} = 0b0 \).
- \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \) and this bit is never set to \(0b1 \) by a Deferred error.
- \(\text{ERR}<n>\text{STATUS.UE,DE} = \{0,0\} \) and this bit can be set to \(0b1 \) by a Deferred error.

This bit ignores writes if \(\text{ERR}<n>\text{STATUS.UE,DE} \neq \{0,0\} \), and the highest priority of these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the node might be masked and not generate any exception.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally \text{UNKNOWN} \ value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to \(0b1 \) when one of the following occurs:

- An Uncorrected error is detected and \(\text{ERR}<n>\text{STATUS.UE} = 0b1 \).
- A Deferred error is detected, \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \) and \(\text{ERR}<n>\text{STATUS.DE} = 0b1 \).
- A Corrected error is detected, no Corrected error counter is implemented, \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \), \(\text{ERR}<n>\text{STATUS.DE} = 0b0 \), and \(\text{ERR}<n>\text{STATUS.CE} \neq 0b00 \). \(\text{ERR}<n>\text{STATUS.CE} \) might be updated for the new Corrected error.
- A Corrected error counter is implemented, \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \), \(\text{ERR}<n>\text{STATUS.DE} = 0b0 \), and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is set to \(0b1 \) when one of the following occurs:

- A Deferred error is detected and \(\text{ERR}<n>\text{STATUS.UE} = 0b1 \).
- A Corrected error is detected, no Corrected error counter is implemented, and either or both the \(\text{ERR}<n>\text{STATUS.UE} \) or \(\text{ERR}<n>\text{STATUS.DE} \) bits are set to \(0b1 \).
- A Corrected error counter is implemented, either or both the \(\text{ERR}<n>\text{STATUS.UE} \) or \(\text{ERR}<n>\text{STATUS.DE} \) bits are set to \(0b1 \), and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is cleared to \(0b0 \) when one of the following occurs:

- An Uncorrected error is detected and \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \).
- A Deferred error is detected, \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \) and \(\text{ERR}<n>\text{STATUS.DE} = 0b0 \).
- A Corrected error is detected, \(\text{ERR}<n>\text{STATUS.UE} = 0b0 \), \(\text{ERR}<n>\text{STATUS.DE} = 0b0 \) and \(\text{ERR}<n>\text{STATUS.CE} = 0b00 \).

The IMPLEMENTATION DEFINED clearing of this bit might also depend on the value of the other error status bits.

If a Corrected error counter is implemented:

- A direct write that modifies the counter overflow flag indirectly might set this bit to an \text{UNKNOWN} \ value.
A direct write to this bit that clears this bit to 0b0 might indirectly set the counter overflow flag to an unknown value.

Note

This bit might have been set to 0b1 when an error syndrome was discarded and later cleared to 0b0 when a higher priority syndrome was recorded.

Note

This bit is not valid and reads unknown if ERR<\texttt{n}>STATUS.V == 0b0.

Note

This bit is read/write-one-to-clear.

Note

On an Error recovery reset, the value of this field is unchanged.

Note

On a Cold reset, this field resets to an architecturally unknown value.

MV, bit [26]

When error record \texttt{<n>} includes an additional information for an error:

- **Miscellaneous Registers Valid.**
 - 0b0: ERR<\texttt{n}>MISC<\texttt{m}> not valid.
 - 0b1: The implementation defined contents of the ERR<\texttt{n}>MISC<\texttt{m}> registers contains additional information for an error recorded by this record.

This bit ignores writes if ERR<\texttt{n}>STATUS.{CE,DE,UE} \neq {0b0,0,0}, and the highest priority of these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

Note

If the ERR<\texttt{n}>MISC<\texttt{m}> registers can contain additional information for a previously recorded error, then the contents must be self-describing to software or a user. For example, certain fields might relate only to Corrected errors, and other fields only to the most recent error that was not discarded.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.
- 0b00: No errors were corrected.
- 0b01: At least one transient error was corrected.
- 0b10: At least one error was corrected.
- 0b11: At least one persistent error was corrected.
The mechanism by which a node detects whether a correctable error is transient or persistent is IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to 0b10 when an error is corrected.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN value.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

0b0 No errors were deferred.
0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [22]

Poison.

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for example, by an error detection code (EDC), or Corrected error recorded.
0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero, when any of:
- Clearing ERR<n>STATUS.V to 0b0.
- Clearing both ERR<n>STATUS.{DE, UE} to 0b0.

This bit is not valid and reads UNKNOWN if any of the following are true:
- ERR<n>STATUS.V == 0b0.
- ERR<n>STATUS.{DE,UE} == {0,0}.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b0,0,0}, and the highest priority of these is not being cleared to zero in the same write.

This bit is read/write-one-to-clear.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero, when any of:

- Clearing ERR<\n>STATUS.V to 0b0.
- Clearing ERR<\n>STATUS.UE to 0b0.

This field is not valid and reads UNKNOWN if any of the following are true:

- ERR<\n>STATUS.V == 0b0.
- ERR<\n>STATUS.UE == 0b0.

This field ignores writes if ERR<\n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being cleared to zero in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN value.

--- Note ---

Software might use the information in the error record registers to determine what recovery is necessary.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [19:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<\n>STATUS.SERR value. Further IMPLEMENTATION DEFINED information can be placed in the ERR<\n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is written to this register, then the value read back from this field is UNKNOWN.

--- Note ---

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

- Any of the following are true:
 - The RAS Common Fault Injection Model Extension is implemented by the node that owns this error record and ERR<\n>PFGF.SYN == 0b0.
 - The RAS Common Fault Injection Model Extension is not implemented by the node that owns this error record.
- ERR<\n>STATUS.V == 0b0.

This field ignores writes if ERR<\n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being cleared to zero in the same write.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or generate a short log entry.

0x00 No error.
0x01 IMPLEMENTATION DEFINED error.
0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
0x04 Assertion failure. For example, consistency failure.
0x05 Error detected on internal data path. For example, parity on ALU result.
0x06 Data value from associative memory. For example, ECC error on cache data.
0x07 Address/control value from associative memory. For example, ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.
0x09 Address/control value from a TLB. For example, ECC error on TLB tag.
0x0A Data value from producer. For example, parity error on write data bus.
0x0B Address/control value from producer. For example, parity error on address bus.
0x0C Data value from (non-associative) external memory. For example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word register.
0x0F Illegal state (software fault). For example, device not ready.
0x10 Internal data register. For example, parity on a SIMD&FP register. For a PE, all general-purpose, stack pointer, SIMD&FP, and SVE registers are data registers.
0x11 Internal control register. For example, Parity on a System register. For a PE, all registers other than general-purpose, stack pointer, SIMD&FP, and SVE registers are control registers.
0x12 Error response from Completer of access. For example, error response from cache write-back.
0x13 External timeout. For example, timeout on interaction with another node.
0x14 Internal timeout. For example, timeout on interface within the node.
0x15 Deferred error from Completer not supported at Requester. For example, poisoned data received from the Completer of an access by a Requester that cannot defer the error further.
0x16 Deferred error from Requester not supported at Completer. For example, poisoned data received from the Requester of an access by a Completer that cannot defer the error further.
0x17 Deferred error from Completer passed through. For example, poisoned data received from the Completer of an access and returned to the Requester.
0x18 Deferred error from Requester passed through. For example, poisoned data received from the Requester of an access and deferred to the Completer.
0x19 Error recorded by PCIe error logs. Indicates that the node has recorded an error in a PCIe error log. This might be the PCIe device status register, AER, DVSEC, or other mechanisms defined by PCIe.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is written to this register, then the value read back from this field is UNKNOWN.

--- Note ---

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.
This field is not valid and reads UNKNOWN if all of the following are true:

• Any of the following are true:
 — The RAS Common Fault Injection Model Extension is implemented by the node that owns this error record and ERR<\n>PFGF.SYN == 0b0.
 — The RAS Common Fault Injection Model Extension is not implemented by the node that owns this error record.

• ERR<\n>STATUS.V == 0b0.

This field ignores writes if ERR<\n>STATUS.[CE,DE,UE] != \{0b00,0,0\}, and the highest priority of these is not being cleared to zero in the same write.

On an Error recovery reset, the value of this field is unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<\n>STATUS:

The \{AV, V, UE, OF, MV, CE, DE, PN, UET, CI\} fields are write-one-to-clear, meaning writes of zero are ignored, and a write of one or all-ones to the field clears the field to zero. The \{IERR, SERR\} fields are read/write fields, although the set of implemented valid values is IMPLEMENTATION DEFINED. See also ERR<\n>PFGF.SYN.

After reading ERR<\n>STATUS, software must clear the valid bits in the register to allow new errors to be recorded. However, between reading the register and clearing the valid bits, a new error might have overwritten the register. To prevent this error being lost by software, the register prevents updates to fields that might have been updated by a new error.

When RAS System Architecture v1.0 is implemented:

• Writes to the \{UE, DE, CE\} fields are ignored if the OF bit is set and is not being cleared.

• Writes to the V bit are ignored if any of the \{UE, DE, CE\} fields are nonzero and are not being cleared.

• Writes to the \{AV, MV\} bits and \{ER, PN, UET, IERR, SERR\} syndrome fields are ignored if the highest priority error status field is nonzero and not being cleared. The error status fields in priority order from highest to lowest, are UE, DE, and CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of \{V, UE, OF, CE, DE\} fields are nonzero before the write.

• The write does not clear the nonzero \{V, UE, OF, CE, DE\} fields to zero by writing ones to the applicable field or fields.

Some of the fields in ERR<\n>STATUS are also defined as UNKNOWN where certain combinations of the \{V, DE, UE\} status fields are zero. The rules for writes to ERR<\n>STATUS allow a node to implement such a field as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<\n>STATUS when ERR<\n>STATUS.V is 1 results in either ERR<\n>STATUS.V field being cleared to zero, or ERR<\n>STATUS.V not changing. Since all fields in ERR<\n>STATUS, other than \{AV, V, MV\}, usually read as UNKNOWN values when ERR<\n>STATUS.V is zero, this means those fields can be implemented as read-only if applicable.

To ensure correct and portable operation, when software is clearing the valid bits in the register to allow new errors to be recorded, Arm recommends that software:

• Determine which fields to clear to zero by reading ERR<\n>STATUS.

• Write ones to all the write-one-to-clear fields that are nonzero.

• Write zero to all the read/write fields.

• Write zero to all the write-one-to-clear fields that are zero.

Otherwise, these fields might not have the correct value when a new fault is recorded.
An exception is when the node supports writing to these fields as part of fault injection. See also ERR\(<n>\)PFGF.SYN.

ERR\(<n>\)STATUS can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
<th>Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0x010 + (64 * n)</td>
<td>ERR(<n>)STATUS</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RW.
I5.8.33 ERRPIDR0, Peripheral Identification Register 0

The ERRPIDR0 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR0 is a 32-bit register.

Field descriptions

The ERRPIDR0 bit assignments are:

```
   31  8  7  0

   RES0  PART_0
```

Bits [31:8]

Reserved, RES0.

PART_0, bits [7:0]

Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a 16-bit part number:

- If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the component.
- If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the ERRPIDR0:

ERRPIDR0 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFE0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.34 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDR1 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see About the Peripheral identification scheme on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR1 is a 32-bit register.

Field descriptions

The ERRPIDR1 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>DES_0</td>
<td>PART_1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

DES_0, bits [7:4]

Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code is not included. The code identifies the designer of the component, which might not be the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x38.

PART_1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a 16-bit part number:

- If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REV AND, available to define the revision of the component.
- If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

This field reads as an IMPLEMENTATION DEFINED value.
Accessing the ERRPIDR1:

ERRPIDR1 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFE4</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see *About the Peripheral identification scheme on page K2-7999.*

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR2 is a 32-bit register.

Field descriptions

The ERRPIDR2 bit assignments are:

When the component uses a 12-bit part number:

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-8</td>
<td>Reserved (RES0)</td>
<td>0</td>
</tr>
<tr>
<td>7-4</td>
<td>Revision (REVISION)</td>
<td>0b0000</td>
</tr>
<tr>
<td>3-0</td>
<td>Designer (DES_1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>JEDEC</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits [31:8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved, RES0.</td>
</tr>
</tbody>
</table>

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision number of the component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code is not included. The code identifies the designer of the component, which might not be the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 identification code is 0x3B.
When the component uses a 16-bit part number:

| Bits [31:8] | Reserved, RES0. |
| PART_2, bits [7:4] | Part number, bits [15:12]. The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a 16-bit part number: |
| - If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVISION, available to define the revision of the component. |
| - If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component. |
| This field reads as an IMPLEMENTATION DEFINED value. |

JEDEC, bit [3]
JEDEC-assigned JEP106 implementer code is used.
Reads as 0b1.

DES_1, bits [2:0]
Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code is not included. The code identifies the designer of the component, which might not be the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.
This field reads as an IMPLEMENTATION DEFINED value.

Note
For a component designed by Arm Limited, the JEP106 identification code is 0x3B.

Accessing the ERRPIDR2:
ERRPIDR2 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFE8</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.36 ERRPIDR3, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see *About the Peripheral identification scheme* on page K2-7999.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR3 is a 32-bit register.

Field descriptions

The ERRPIDR3 bit assignments are:

When the component uses a 12-bit part number:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>REVAND</td>
<td>CMOD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REVAND, bits [7:4]

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision number of the component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND the least significant part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that software can differentiate the different revisions of the component. If ERRPIDR2.REVISION is increased then ERRPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

- If the value of the CMOD fields of both components equals zero, the components are identical.
- If the CMOD fields of both components have the same non-zero value, it does not necessarily mean that they have the same modifications.
- If the value of the CMOD field of either of the two components is non-zero, they might not be identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.
When the component uses a 16-bit part number:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Reserved, RES0.</td>
</tr>
<tr>
<td>8</td>
<td>Reserved, REVISION</td>
</tr>
<tr>
<td>4</td>
<td>Reserved, CMOD</td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure that software can differentiate the different revisions of the component.

This field reads as an IMPLEMENTATION DEFINED value.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 0b0000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.

For any two components with the same Unique Component Identifier:

- If the value of the CMOD fields of both components equals zero, the components are identical.
- If the CMOD fields of both components have the same non-zero value, it does not necessarily mean that they have the same modifications.
- If the value of the CMOD field of either of the two components is non-zero, they might not be identical, even though they have the same Unique Component Identifier.

This field reads as an IMPLEMENTATION DEFINED value.

Accessing the ERRPIDR3:

ERRPIDR3 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFEC</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
I5.8.37 ERRPIDR4, Peripheral Identification Register 4

The ERRPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

For more information, see *About the Peripheral identification scheme on page K2-7999*.

Configurations

Implementation of this register is OPTIONAL.

ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Attributes

ERRPIDR4 is a 32-bit register.

Field descriptions

The ERRPIDR4 bit assignments are:

<table>
<thead>
<tr>
<th>31</th>
<th>8</th>
<th>7</th>
<th>4</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES0</td>
<td>SIZE</td>
<td>DES_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits [31:8]

Reserved, RES0.

SIZE, bits [7:4]

Size of the component.

The distance from the start of the address space used by this component to the end of the component identification registers.

A value of 0b0000 means one of the following is true:

- The component uses a single 4KB block.
- The component uses an IMPLEMENTATION DEFINED number of 4KB blocks.

Any other value means the component occupies \(2^{ERRPIDR4\cdot SIZE}\) 4KB blocks.

Using this field to indicate the size of the component is deprecated. This field might not correctly indicate the size of the component. Arm recommends that software determine the size of the component from the Unique Component Identifier fields, and other IMPLEMENTATION DEFINED registers in the component.

This field reads as an IMPLEMENTATION DEFINED value.

DES_2, bits [3:0]

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer of the component, minus 1. The code identifies the designer of the component, which might not be the same as the implementer of the device containing the component. To obtain a number, or to see the assignment of these codes, contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the value 0x4.
Accessing the ERRPIDR4:

ERRPIDR4 can be accessed through its memory-mapped interface:

<table>
<thead>
<tr>
<th>Component</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>0xFD0</td>
</tr>
</tbody>
</table>

This interface is accessible as follows:

- Accesses to this register are RO.
Part J

Architectural Pseudocode
Chapter J1
Armv8 Pseudocode

This chapter contains pseudocode that describes many features of the Armv8 architecture. It contains the following sections:

- *Pseudocode for AArch64 operation* on page J1-7612.
- *Pseudocode for AArch32 operation* on page J1-7733.
- *Shared pseudocode* on page J1-7812.
Pseudocode for AArch64 operation

This section holds the pseudocode for execution in AArch64 state. Functions that are listed in this section are identified as AArch64.FunctionName. Some of these functions have an equivalent AArch32 function, AArch32.FunctionName. This section is organized by functional groups, with the functional groups being indicated by hierarchical path names, for example aarch64/debug/breakpoint.

The top-level sections of the AArch64 pseudocode hierarchy are:

- aarch64/debug
- aarch64/exceptions
- aarch64/functions
- aarch64/instrs
- aarch64/translation

J1.1.1 aarch64/debug

This section includes the following pseudocode functions:

- aarch64/debug/breakpoint/AArch64.BreakpointMatch
- aarch64/debug/breakpoint/AArch64.BreakpointValueMatch on page J1-7613.
- aarch64/debug/breakpoint/AArch64.StateMatch on page J1-7614.
- aarch64/debug/enables/AArch64.GenerateDebugExceptions on page J1-7615.
- aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom on page J1-7615.
- aarch64/debug/pmuv/AArch64.CheckForPMUOverflow on page J1-7616.
- aarch64/debug/pmuv/AArch64.CountEvents on page J1-7616.
- aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess on page J1-7617.
- aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess on page J1-7617.
- aarch64/debug/statisticalprofiling/CollectContextIDR1 on page J1-7618.
- aarch64/debug/statisticalprofiling/CollectContextIDR2 on page J1-7618.
- aarch64/debug/statisticalprofiling/CollectPhysicalAddress on page J1-7618.
- aarch64/debug/statisticalprofiling/CollectRecord on page J1-7618.
- aarch64/debug/statisticalprofiling/CollectTimeStamp on page J1-7619.
- aarch64/debug/statisticalprofiling/OpType on page J1-7619.
- aarch64/debug/statisticalprofiling/ProfilingBufferEnabled on page J1-7620.
- aarch64/debug/statisticalprofiling/ProfilingBufferOwner on page J1-7620.
- aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier on page J1-7620.
- aarch64/debug/statisticalprofiling/SysRegAccess on page J1-7620.
- aarch64/debug/statisticalprofiling/TimeStamp on page J1-7620.
- aarch64/debug/takeexceptiondbg/AAArch64.TakeExceptionInDebugState on page J1-7621.
- aarch64/debug/watchpoint/AAArch64.WatchpointByteMatch on page J1-7621.
- aarch64/debug/watchpoint/AAArch64.WatchpointMatch on page J1-7622.

aarch64/debug/breakpoint/AArch64.BreakpointMatch

// AArch64.BreakpointMatch()
// ==
// Breakpoint matching in an AArch64 translation regime.

boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, AccType acctype, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFR0_EL1.BRPs);

enabled = DBGBCR_EL1[n].E == '1';
ispriv = PSTATE.EL != EL0;
mlinked = DBGBCR_EL1[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;

state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
linked, DBGBCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);
value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

if HaveAnyAArch32() & size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();
if vaddress<1> == '1' & DBGBCR_EL1[n].BAS == '1111' then
 // The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
 // at the address DBGVR_EL1[n]+2.
if value_match then value_match = ConstrainUnpredictableBool();

match = value_match && state_match && enabled;
return match;

aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

// AArch64.BreakpointValueMatch()
// ==============================

boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n > UInt(ID_AA64DFR0_EL1.BRPs) then
 (c, n) = ConstrainUnpredictableInteger(0, UInt(ID_AA64DFR0_EL1.BRPs));
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking).
 if DBGBCR_EL1[n].E == '0' then return FALSE;

 context_aware = (n >= UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 dbgtype = DBGBCR_EL1[n].BT;

if dbgtype IN {'011x', '11xx'}) && !HaveVirtHostExt() && !HaveV82Debug()) || // Context matching
 dbgtype = '010x' || // Reserved
 dbgtype != '0x0x' && !context_aware) || // Context matching
 dbgtype = '1xxx' && !HaveEL(EL2)) then // EL2 extension
 (c, dbgtype) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;

 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value
 // Determine what to compare against.
 match_addr = (dbgtype == '0x0x');
 match_vmid = (dbgtype == '10xx');
 match_cid = (dbgtype == '001x');
 match_cid1 = (dbgtype IN {'101x', 'x11x'});
 match_cid2 = (dbgtype == '11xx');
linked = (dbgtype == 'xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// VMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.
if linked_to & (!linked || match_addr) then return FALSE;

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to & linked & !match_addr then return FALSE;

// Do the comparison.
if match_addr then
 byte = UInt(vaddress<1:0>);
 if HaveAnyAArch32() then
 // T32 instructions can be executed at EL0 in an AArch64 translation regime.
 assert byte IN {0,2}; // "vaddress" is halfword aligned
 byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');
 else
 assert byte == 0; // "vaddress" is word aligned
 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
 end if
top = AddrTop(vaddress, TRUE, PSTATE.EL);
 BVR_match = vaddress<top:2> == DBGBVR_EL1[n]<top:2> & byte_select_match;
elsif match_cid then
 if IsInHost() then
 BVR_match = (CONTEXTIDR_EL2 == DBGBVR_EL1[n]<31:0>);
 else
 BVR_match = (PSTATE.EL IN {EL0, EL1} & CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
 end if
elsif match_cid1 then
 BVR_match = (PSTATE.EL IN {EL0, EL1} & !IsInHost() & CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
if match_vmid then
 if !Have16bitVMID() | VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
 else
 vmid = VTTBR_EL2.VMID;
 bvr_vmid = DBGBVR_EL1[n]<47:32>;
 end if
 BXVR_match = (PSTATE.EL IN {EL0, EL1} & !EL2Enabled() & !IsInHost() &
 !vmid == bvr_vmid);
elsif match_cid2 then
 BXVR_match = ((HaveVirtHostExt() | HaveV82Debug()) & EL2Enabled() &
 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);
 bvr_match_valid = (match_addr || match_cid || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);
match = (!bxvr_match_valid || BXVR_match) & (!bvr_match_valid || BVR_match);
return match;

aarch64/debug/breakpoint/AArch64.StateMatch

// AArch64.StateMatch()
// ==============
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.
boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, AccType acctype, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.
 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
// Otherwise the HMC, SSC, PxC values are either valid or the values returned by
// CheckValidStateMatch are valid.
EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
EL2_match = HaveEL(EL2) && (HMC == '1' && (SSC:PxC != '1000')) || SSC == '11';
EL1_match = PxC<0> == '1';
EL0_match = PxC<1> == '1';

if HaveNV2Ext() && acctype == AccType_NV2REGISTER && !isbreakpnt then
 priv_match = EL2_match;
elsif !ispriv && !isbreakpnt then
 priv_match = EL0_match;
else
 case PSTATE.EL of
 when EL3 priv_match = EL3_match;
 when EL2 priv_match = EL2_match;
 when EL1 priv_match = EL1_match;
 when EL0 priv_match = EL0_match;
 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure
 only
 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = (UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));
 last_ctx_cmp = UInt(ID_AA64DFR0_EL1.BRPs);
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint
 if linked then
 vaddress = bits(64) UNKNOWN;
 linked_to = TRUE;
 linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);
 return priv_match && security_state_match && (!linked || linked_match);

aarch64/debug/enables/AArch64.GenerateDebugExceptions

 // AArch64.GenerateDebugExceptions()
 // -----------------------------------
 boolean AArch64.GenerateDebugExceptions()
 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

 // AArch64.GenerateDebugExceptionsFrom()
 // -------------------------------------
 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)
 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;
route_to_el2 = HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');
target = (if route_to_el2 then EL2 else EL1);
enabled = !HaveEL(EL3) || !secure || MDCR_EL3.SDD == '0';

if from == target then
 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
else
 enabled = enabled && UInt(target) > UInt(from);

return enabled;

aarch64/debug/pmu/AArch64.CheckForPMUOverflow

// AArch64.CheckForPMUOverflow()
// =============================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch64.CheckForPMUOverflow()

 pmuirq = PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1';
 for n = 0 to UInt(PMCR_EL0.N) - 1
 if HaveEL(EL2) then
 E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);
 else
 E = PMCR_EL0.E;
 if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);
 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

 return pmuirq;

aarch64/debug/pmu/AArch64.CountEvents

// AArch64.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch64.CountEvents(integer n)

 assert n == 31 || n < UInt(PMCR_EL0.N);

 // Event counting is disabled in Debug state
 debug = Halted();

 // In Non-secure state, some counters are reserved for EL2
 if HaveEL(EL2) then
 E = if n < UInt(MDCR_EL2.HPMN) || n == 31 then PMCR_EL0.E else MDCR_EL2.HPME;
 else
 E = PMCR_EL0.E;
 enabled = E == '1' && PMCINTENSET_EL0<n> == '1';

 // Event counting in Secure state is prohibited unless any one of:
 // * EL3 is not implemented
 // * EL3 is using AArch64 and MDCR_EL3.SPMERE == 1
 prohibited = HaveEL(EL3) && IsSecure() && MDCR_EL3.SPMERE == '0';

 // Event counting at EL2 is prohibited if all of:
 // * The HPMD Extension is implemented
 // * Executing at EL2
 // * PMN<31> is not reserved for EL2
 // * MDCR_EL2.HPMD == 1
if !prohibited && HaveEL(EL2) && HaveHPMDExt() && PSTATE.EL == EL2 && (n < UInt(MDCR_EL2.HPMN) || n == 31) then
prohibited = (MDCR_EL2.HPMD == '1');

// The IMPLEMENTATION DEFINED authentication interface might override software controls
if prohibited && !HaveNoSecurePMUDisableOverride() then
prohibited = !ExternalSecureNoninvasiveDebugEnabled();
// For the cycle counter, PMCR_EL0.DP enables counting when otherwise prohibited
if prohibited && n == 31 then prohibited = (PMCR_EL0.DP == '1');

// If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
// This is not overridden by PMCR_EL0.DP.
if Havev85PMU() && n == 31 then
 if HaveEL(EL3) && IsSecure() && MDCR_EL3.SCCD == '1' then
 prohibited = TRUE;
 if PSTATE.EL == EL2 && MDCR_EL2.HCCD == '1' then
 prohibited = TRUE;

// Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH} bits
filter = if n == 31 then PMCCFILTR_EL0[31:0] else PMEVTYPER_EL0[n<31:0>];

P = filter<31>;
U = filter<30>;
NSK = if HaveEL(EL3) then filter<29> else '0';
NSU = if HaveEL(EL3) then filter<28> else '0';
NSH = if HaveEL(EL2) then filter<27> else '0';
M = if HaveEL(EL3) then filter<26> else '0';
SH = if HaveEL(EL3) && HaveSecureEL2Ext() then filter<24> else '0';

case PSTATE.EL of
 when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
 when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
 when EL2 filtered = (if IsSecure() then NSH == SH else NSH == '0');
 when EL3 filtered = (M != P);
return !debug && enabled && !prohibited && !filtered;

aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

// CheckProfilingBufferAccess()
// -----------------------------

SysRegAccess CheckProfilingBufferAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
 return SysRegAccess_UNDEFINED;
if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.E2PB<0> != '1' then
 return SysRegAccess_TrapToEL2;
if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
 return SysRegAccess_TrapToEL3;
return SysRegAccess_OK;

aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess

// CheckStatisticalProfilingAccess()
// ---------------------------------

SysRegAccess CheckStatisticalProfilingAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
 return SysRegAccess_UNDEFINED;
if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.TPMS == '1' then
 return SysRegAccess_TrapToEL2;
if HaveEL(EL3) & PSTATE.EL != EL3 & MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
 return SysRegAccess_TrapToEL3;
return SysRegAccess_OK;

aarch64/debug/statisticalprofiling/CollectContextIDR1

// CollectContextIDR1()
// ===============

boolean CollectContextIDR1()
 if !StatisticalProfilingEnabled() then return FALSE;
 if PSTATE.EL == EL2 then return FALSE;
 if EL2Enabled() & HCR_EL2.TGE == '1' then return FALSE;
 return PMSCR_EL1.CX == '1';

aarch64/debug/statisticalprofiling/CollectContextIDR2

// CollectContextIDR2()
// ===============

boolean CollectContextIDR2()
 if !StatisticalProfilingEnabled() then return FALSE;
 if EL2Enabled() then return FALSE;
 return PMSCR_EL2.CX == '1';

aarch64/debug/statisticalprofiling/CollectPhysicalAddress

// CollectPhysicalAddress()
// ===============

boolean CollectPhysicalAddress()
 if !StatisticalProfilingEnabled() then return FALSE;
 (secure, el) = ProfilingBufferOwner();
 if ((!secure & HaveEL(EL2)) || IsSecureEL2Enabled()) then
 return PMSCR_EL2.PA == '1' & (el == EL2 || PMSCR_EL1.PA == '1');
 else
 return PMSCR_EL1.PA == '1';

aarch64/debug/statisticalprofiling/CollectRecord

// CollectRecord()
// ===============

boolean CollectRecord(bits(64) events, integer total_latency, OpType optype)
 assert StatisticalProfilingEnabled();
 // Filtering by event
 if PMSCFR_EL1.FE == '1' & !IsZero(PMSEVFR_EL1) then
 bits(64) mask = 0xFFFF0000FF00F0AA<63:0>; // Bits [63:48,31:24,15:12,7,5,3,1]
 if HaveStatisticalProfiling() then
 mask<11> = '1'; // Alignment flag
 if HaveSVE() then mask<18:17> = Ones(); // Predicate flags
 e = events AND mask;
 m = PMSEVFR_EL1 AND mask;
 if !IsZero(NOT(e) AND m) then return FALSE;
 // Filtering by type
 if PMSCFR_EL1.FT == '1' & !IsZero(PMSCFR_EL1.<B,LD,ST>) then
 case optype of
 when OpType_Branch
 if PMSCFR_EL1.B == '0' then return FALSE;
 when OpType_Load
 if PMSCFR_EL1.LD == '0' then return FALSE;
 when OpType_Store
if PMSFCR_EL1.ST == '0' then return FALSE;
when OpType_LoadAtomic
 if PMSFCR_EL1.<LD,ST> == '00' then return FALSE;
otherwise
 return FALSE;

// Filtering by latency
if PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT) then
 if total_latency < UInt(PMSLATFR_EL1.MINLAT) then
 return FALSE;

// Check for UNPREDICTABLE cases
if ((PMSFCR_EL1.FE == '1' && !IsZero(PMSEVFR_EL1)) ||
(PMSFCR_EL1.FT == '1' && !IsZero(PMSFCR_EL1.<B,LD,ST>)) ||
(PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT))) then
 return ConstrainUnpredictableBool();
return TRUE;

aarch64/debug/statisticalprofiling/CollectTimeStamp

// CollectTimeStamp()
// ==================

TimeStamp CollectTimeStamp()
if !StatisticalProfilingEnabled() then return TimeStamp_None;
(secure, el) = ProfilingBufferOwner();
if el == EL2 then
 if PMSCR_EL2.TS == '0' then return TimeStamp_None;
else
 if PMSCR_EL1.TS == '0' then return TimeStamp_None;
if EL2Enabled() then
 case PMSCR_EL2.PCT of
 when '00' return TimeStamp_Virtual;
 when '01' return TimeStamp_Physical;
 when '11' if (el == EL2 || PMSCR_EL1.PCT != '00') && HaveECVExt() then
 return TimeStamp_OffsetPhysical;
 otherwise Unreachable();
 case PMSCR_EL1.PCT of
 when '00' return TimeStamp_Virtual;
 when '01' return TimeStamp_Physical;
 when '11' if HaveECVExt() then return TimeStamp_OffsetPhysical;
 otherwise Unreachable();

aarch64/debug/statisticalprofiling/OpType

enumeration OpType {
 OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and
 OpType_Store, // Any memory-write operation, including atomics without return
 OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
 OpType_Branch, // Software write to the PC
 OpType_Other // Any other class of operation
};

aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

// ProfilingBufferEnabled()
// ========================

boolean ProfilingBufferEnabled()
if !HaveStatisticalProfiling() then return FALSE;
(sector, el) = ProfilingBufferOwner();
non_secure_bit = if secure then '0' else '1';
return ((ELUsingAArch32(el)) && non_secure_bit == SCR_EL3.NS &&
PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

aarch64/debug/statisticalprofiling/ProfilingBufferOwner

// ProfilingBufferOwner()
// ========================

(boolean, bits(2)) ProfilingBufferOwner()
secure = if HaveEL(EL3) then (MDCR_EL3.NSPB<1> == '0') else IsSecure();
el = if !secure && HaveEL(EL2) && MDCR_EL2.E2PB == '00' then EL2 else EL1;
return (secure, el);

aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

// Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
// addresses have been translated such that writes to the profiling buffer have been initiated.
// A following DSB completes when writes to the profiling buffer have completed.
ProfilingSynchronizationBarrier();

aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

// StatisticalProfilingEnabled()
// =============================

boolean StatisticalProfilingEnabled()
if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then
return FALSE;
in_host = EL2Enabled() && HCR_EL2.TGE == '1';
(sector, el) = ProfilingBufferOwner();
if UInt(el) < UInt(PSTATE.EL) || secure != IsSecure() || (in_host && el == EL1) then
return FALSE;
case PSTATE.EL of
when EL3 Unreachable();
when EL2 spe_bit = PMSCR_EL2.E2SPE;
when EL1 spe_bit = PMSCR_EL1.E1SPE;
when EL0 spe_bit = (if in_host then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);
return spe_bit == '1';

aarch64/debug/statisticalprofiling/SysRegAccess

enumeration SysRegAccess { SysRegAccess_OK,
SysRegAccess_UNDEFINED,
SysRegAccess_TrapToEL1,
SysRegAccess_TrapToEL2,
SysRegAccess_TrapToEL3 };

aarch64/debug/statisticalprofiling/TimeStamp

enumeration TimeStamp {
Timestamp_NoTime,
Timestamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
Timestamp_Physical, // Physical counter value with no offset
Timestamp_OffsetPhysical, // Physical counter value minus CNTPOFF_EL2
Timestamp_Virtual }; // Physical counter value minus CNTVOFF_EL2
aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

// AArch64.TakeExceptionInDebugState()
// ===================================
// Take an exception in Debug state to an Exception Level using AArch64.

AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
sync_errors = HaveIESB() && SCTLR[target_el].IESB == '1';
if HaveDoubleFaultExt() then sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && target_el == EL3);
if !ConstrainUnpredictableBool() then sync_errors = FALSE;

SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(target_el);

AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el;
PSTATE.nRW = '0';
PSTATE.SP = '1';
SPSR[] = bits(32) UNKNOWN;
ELR[] = bits(64) UNKNOWN;

// PSTATE.<SS,D,A,I,F> are not observable and ignored in Debug state, so behave as if UNKNOWN.
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
PSTATE.IL = '0';
if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES0
if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
 SCTLR[].SPAN == '0') then
 PSTATE.PAN = '1';
if HaveUAOExt() then PSTATE.UAO = '0';
if HaveBTIExt() then PSTATE.BTYPE = '00';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
if HaveMTEExt() then PSTATE.TCO = '1';

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;

EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSR processor state flags.

if sync_errors then
 SynchronizeErrors();
EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

// AArch64.WatchpointByteMatch()
// =============================

boolean AArch64.WatchpointByteMatch(integer n, AccType acctype, bits(64) vaddress)
el = if HaveNV2Ext() && acctype == AccType_NV2REGISTER then EL2 else PSTATE.EL;
top = AddrTop(vaddress, FALSE, el);
bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR_EL1[n].BAS<Int(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR_EL1[n].MASK);

// If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
// DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 & & !IsOnes(DBGWCR_EL1[n].BAS) then
byte_select_match = ConstrainUnpredictableBool();
else
LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
byte_select_match = ConstrainUnpredictableBool();
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 & & mask <= 2 then
(c, mask) = ConstrainUnpredictableInteger(3, 31);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of
when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match & & !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
WVR_match = ConstrainUnpredictableBool();
else
WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

return WVR_match & & byte_select_match;

aarch64/debug/watchpoint/AArch64.WatchpointMatch

// AArch64.WatchpointMatch()
// ================
// Watchpoint matching in an AArch64 translation regime.

boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
 AccType acctype, boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFR0_EL1.WRPs);

// "ispriv" is FALSE for LDRT/STRR instructions executed at EL1 and all
// load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
// loads.
enabled = DBGWCR_EL1[n].E == '1';
linked = DBGWCR_EL1[n].WT == '1';
isbreakpnt = FALSE;

state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
 linked, DBGWCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);
ls_match = (DBGWCR_EL1[n].LSC<if iswrite then 1 else 0> == '1');
value_match = FALSE;
for byte = 0 to size - 1
 value_match = value_match || AArch64.WatchpointByteMatch(n, acctype, vaddress + byte);
return value_match & & state_match & & ls_match & & enabled;

J1.1.2 aarch64/exceptions

This section includes the following pseudocode functions:
• aarch64/exceptions/aborts/AArch64.Abort on page J1-7624.
• aarch64/exceptions/aborts/AArch64.AbortSyndrome on page J1-7624.
• aarch64/exceptions/aborts/AArch64.CheckPCLevel on page J1-7624.
• aarch64/exceptions/aborts/AArch64.DataAbort on page J1-7624.
• aarch64/exceptions/aborts/AArch64.EffectiveTCF on page J1-7625.
• aarch64/exceptions/aborts/AArch64.InstructionAbort on page J1-7625.
• aarch64/exceptions/aborts/AArch64.PCAlignmentFault on page J1-7626.
• aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault on page J1-7626.
• aarch64/exceptions/aborts/AArch64.ReportTagCheckFault on page J1-7626.
• aarch64/exceptions/aborts/AArch64.SPAlignmentFault on page J1-7627.
• aarch64/exceptions/aborts/AArch64.TagCheckFault on page J1-7627.
• aarch64/exceptions/aborts/BranchTargetException on page J1-7627.
• aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException on page J1-7628.
• aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException on page J1-7628.
• aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException on page J1-7628.
• aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException on page J1-7629.
• aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException on page J1-7629.
• aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException on page J1-7629.
• aarch64/exceptions/debug/AArch64.BreakpointException on page J1-7630.
• aarch64/exceptions/debug/AArch64.SoftwareBreakpoint on page J1-7630.
• aarch64/exceptions/debug/AArch64.SoftwareStepException on page J1-7630.
• aarch64/exceptions/debug/AArch64.VectorCatchException on page J1-7631.
• aarch64/exceptions/debug/AArch64.WatchpointException on page J1-7631.
• aarch64/exceptions/exceptions/AArch64.ExceptionClass on page J1-7631.
• aarch64/exceptions/exceptions/AArch64.ReportException on page J1-7632.
• aarch64/exceptions/exceptions/AArch64.ResetControlRegisters on page J1-7633.
• aarch64/exceptions/exceptions/AArch64.TakeReset on page J1-7633.
• aarch64/exceptions/ieeefp/AArch64.FPTrappedException on page J1-7634.
• aarch64/exceptions/syscalls/AArch64.CallHypervisor on page J1-7634.
• aarch64/exceptions/syscalls/AArch64.CallSecureMonitor on page J1-7634.
• aarch64/exceptions/syscalls/AArch64.CallSupervisor on page J1-7635.
• aarch64/exceptions/takeexception/AArch64.TakeException on page J1-7635.
• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap on page J1-7637.
• aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome on page J1-7637.
• aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap on page J1-7638.
• aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps on page J1-7638.
• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled on page J1-7639.
• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap on page J1-7639.
• aarch64/exceptions/traps/AArch64.CheckForERetTrap on page J1-7639.
• aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap on page J1-7640.
• aarch64/exceptions/traps/AArch64.CheckForSVCTrap on page J1-7640.
• aarch64/exceptions/traps/AArch64.CheckForWFxTrap on page J1-7641.
• aarch64/exceptions/traps/AArch64.CheckIllegalState on page J1-7641.
• aarch64/exceptions/traps/AArch64.MonitorModeTrap on page J1-7641.
• aarch64/exceptions/traps/AArch64.SystemAccessTrap on page J1-7641.
• aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome on page J1-7642.
• aarch64/exceptions/traps/AArch64.UndefinedFault on page J1-7642.
• aarch64/exceptions/traps/AArch64.WFxTrap on page J1-7643.
• aarch64/exceptions/traps/CheckFPAdvSIMDEnabled on page J1-7643.
• aarch64/exceptions/traps/WFETrapDelay on page J1-7643.
aarch64/exceptions/aborts/AArch64.Abort

// AArch64.Abort()
// ===============
// Abort and Debug exception handling in an AArch64 translation regime.
AArch64.Abort(bits(64) vaddress, FaultRecord fault)

if IsDebugException(fault) then
 if fault.acctype == AccType_IFETCH then
 if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
 AArch64.VectorCatchException(fault);
 else
 AArch64.BreakpointException(fault);
 else
 AArch64.WatchpointException(vaddress, fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch64.InstructionAbort(vaddress, fault);
 else
 AArch64.DataAbort(vaddress, fault);

aarch64/exceptions/aborts/AArch64.AbortSyndrome

// AArch64.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort and Watchpoint exceptions
// from an AArch64 translation regime.
ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)

 exception = ExceptionSyndrome(exceptype);
 d_side = exceptype IN {Exception_DataAbort, Exception_NV2DataAbort, Exception_Watchpoint, Exception_NV2Watchpoint};

 exception.syndrome = AArch64.FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.NS = fault.ipaddress.NS;
 exception.ipaddress = fault.ipaddress.address;
 else
 exception.ipavalid = FALSE;

 return exception;

aarch64/exceptions/aborts/AArch64.CheckPCAlignment

// AArch64.CheckPCAlignment()
// ==========================
AArch64.CheckPCAlignment()

 bits(64) pc = ThisInstrAddr();
 if pc<1:0> != '00' then
 AArch64.PCAlignmentFault();

aarch64/exceptions/aborts/AArch64.DataAbort

// AArch64.DataAbort()
// ===================
AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)

 route_to_el3 = HaveEl(EI3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR_EL2.TGE == '1' ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 (HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER) ||
 (HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER));
IsSecondStage(fault));

bits(64) preferred_exception_return = ThisInstrAddr();
if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&
 IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
 vect_offset = 0x180;
else
 vect_offset = 0x0;
if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
 exception = AArch64.AbortSyndrome(Exception_NV2DataAbort, fault, vaddress);
else
 exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.EffectiveTCF

// AArch64.EffectiveTCF()
// -------------------
// Returns the TCF field applied to tag check faults in the given Exception Level.

bits(2) AArch64.EffectiveTCF(bits(2) el)
bits(2) tcf;
if el == EL3 then
tcf = SCTLR_EL3.TCF;
elsif el == EL2 then
tcf = SCTLR_EL2.TCF;
elsif el == EL1 then
tcf = SCTLR_EL1.TCF;
elsif el == EL0 && HCR_EL2.<E2H,TGE> == '11' then
tcf = SCTLR_EL2.TCF0;
elsif el == EL0 && HCR_EL2.<E2H,TGE> != '11' then
tcf = SCTLR_EL1.TCF0;
if tcf == '11' then
 (-,tcf) = ConstrainUnpredictableBits();
return tcf;

aarch64/exceptions/aborts/AArch64.InstructionAbort

// AArch64.InstructionAbort()
// -------------------------
AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
// External aborts on instruction fetch must be taken synchronously
if HaveDoubleFaultExt() then assert fault.statuscode != Fault_AsyncExternal;
route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || IsSecondStage(fault)) ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault))));

bits(64) preferred_exception_return = ThisInstrAddr();
if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&
 IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
 vect_offset = 0x180;
else
 vect_offset = 0x0;
exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
if PSTATE_EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE_EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

// AArch64.PCAlignmentFault()
// --
// Called on unaligned program counter in AArch64 state.
AArch64.PCAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault

// AArch64.RaiseTagCheckFault()
// ---
// Raise a tag check fault exception.
AArch64.RaiseTagCheckFault(bits(64) va, boolean write)

 bits(2) target_el;
 bits(64) preferred_exception_return = ThisInstrAddr();
 integer vect_offset = 0x0;

 if PSTATE_EL == EL0 then
 target_el = if HCR_EL2.TGE == '0' then EL1 else EL2;
 else
 target_el = PSTATE_EL;

 exception = ExceptionSyndrome(Exception_DataAbort);
 exception.syndrome<5:0> = '010001';
 if write then
 exception.syndrome<6> = '1';
 exception.vaddress = bits(4) UNKNOWN : va<59:0>;

 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.ReportTagCheckFault

// AArch64.ReportTagCheckFault()
// --
// Records a tag check fault exception into the appropriate TCFR_ELx.
AArch64.ReportTagCheckFault(bits(2) el, bit ttbr)

 if el == EL3 then
 assert ttbr == '0';
 TFSR_EL3.TF0 = '1';
 elsif el == EL2 then
 if ttbr == '0' then
 TFSR_EL2.TF0 = '1';
else
 TFSR_EL2.TF1 = '1';
elsif el == EL1 then
 if ttbr == '0' then
 TFSR_EL1.TF0 = '1';
 else
 TFSR_EL1.TF1 = '1';
elsif el == EL0 then
 if ttbr == '0' then
 TFSRE0_EL1.TF0 = '1';
 else
 TFSRE0_EL1.TF1 = '1';

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

// AArch64.SPAlignmentFault()
// ==========================
// Called on an unaligned stack pointer in AArch64 state.
AArch64.SPAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_SPAlignment);
 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.TagCheckFault

// AArch64.TagCheckFault()
// =======================
// Handle a tag check fault condition.
AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
 bits(2) tcf = AArch64.EffectiveTCF(PSTATE.EL);
 if tcf == '01' then
 AArch64.RaiseTagCheckFault(vaddress, iswrite);
 elsif tcf == '10' then
 AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);

aarch64/exceptions/aborts/BranchTargetException

// BranchTargetException
// =====================
// Raise branch target exception.
AArch64.BranchTargetException(bits(52) vaddress)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_BranchTarget);
 exception.syndrome<1:0> = PSTATE.BTYPE;
 exception.syndrome<24:2> = Zeros(); // RES0
 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
AArch64.TAKEException(EL2, exception, preferred_exception_return, vect_offset);
else
AArch64.TAKEException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TAKEPhysicalFIQException

// AArch64.TAKEPhysicalFIQException()
// ---------------------------------

AArch64.TAKEPhysicalFIQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled()) &&
(HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1');
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;
exception = ExceptionSyndrome(Exception_FIQ);
if route_to_el3 then
AArch64.TAKEException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TAKEException(EL2, exception, preferred_exception_return, vect_offset);
else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TAKEException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TAKEPhysicalIRQException

// AArch64.TAKEPhysicalIRQException()
// ---------------------------------

// Take an enabled physical IRQ exception.

AArch64.TAKEPhysicalIRQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled()) &&
(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1');
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;
exception = ExceptionSyndrome(Exception_IRQ);
if route_to_el3 then
AArch64.TAKEException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TAKEException(EL2, exception, preferred_exception_return, vect_offset);
else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TAKEException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TAKEPhysicalSErrorException

// AArch64.TAKEPhysicalSErrorException()
// -------------------------------------

AArch64.TAKEPhysicalSErrorException(boolean impdef_syndrome, bits(24) syndrome)

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled()) &&
(HCR_EL2.TGE == '1' || (IsInHost() && HCR_EL2.AMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;
exception = ExceptionSyndrome(ExceptionSError);
exception.syndrome<24> = if impdef_syndrome then '1' else '0';
exception.syndrome<23:0> = syndrome;

ClearPendingPhysicalSError();

if PSTATE.EL == EL3 || route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
elsif PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException

// AArch64.TakeVirtualFIQException()
// -----------------------------------
AArch64.TakeVirtualFIQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;

exception = ExceptionSyndrome(Exception_FIQ);
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException

// AArch64.TakeVirtualIRQException()
// -----------------------------------
AArch64.TakeVirtualIRQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException

// AArch64.TakeVirtualSErrorException()
// -------------------------------------
AArch64.TakeVirtualSErrorException(boolean impdef_syndrome, bits(24) syndrome)

assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;

exception = ExceptionSyndrome(Exception_SError);
if HaveRASExt() then
 exception.syndrome<24> = VSESR_EL2.IDS;
 exception.syndrome<23:0> = VSESR_EL2.ISS;
else
 exception.syndrome<24> = if impdef_syndrome then '1' else '0';
 if impdef_syndrome then exception.syndrome<23:0> = syndrome;
ClearPendingVirtualSError();
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

// AArch64.BreakpointException()
// =============================
AArch64.BreakpointException(FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1}) && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);
if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

// AArch64.SoftwareBreakpoint()
// ============================
AArch64.SoftwareBreakpoint(bits(16) immediate)

route_to_el2 = (PSTATE.EL IN {EL0, EL1}) &&
EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);

if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

// AArch64.SoftwareStepException()
// ===============================
AArch64.SoftwareStepException()
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1}) && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_SoftwareStep);

if SoftwareStep_DidNotStep() then
 exception.syndrome<24> = '0';
else
 exception.syndrome<24> = '1';
 exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';

if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

// AArch64.VectorCatchException()
// ==============================
// Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
// being routed to EL2, as Vector Catch is a legacy debug event.

AArch64.VectorCatchException(FaultRecord fault)
 assert PSTATE.EL != EL2;
 assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

// AArch64.WatchpointException()
// =============================

AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
 assert PSTATE.EL != EL3;
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
 exception = AArch64.AbortSyndrome(Exception_NV2Watchpoint, fault, vaddress);
 else
 exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);
 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass

// AArch64.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in ESR

(integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)
 il = if ThisInstrLength() == 32 then '1' else '0';
 from_32 = UsingAArch32();
 assert from_32 || il == '1'; // AArch64 instructions always 32-bit
 case exceptype of
 when Exception_Uncategorized
 ec = 0x00; il = '1';
when Exception_WFxTrap ec = 0x01;
when Exception_CPI1SRTrap ec = 0x03; assert from_32;
when Exception_CPI1SRRTrap ec = 0x04; assert from_32;
when Exception_CPI14RTTrap ec = 0x05; assert from_32;
when Exception_CPI4DTRtrap ec = 0x06; assert from_32;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPITrap ec = 0x08;
when Exception_PACTrap ec = 0x09;
when Exception_CPI44RTTtrap ec = 0x0C; assert from_32;
when Exception_BranchTarget ec = 0x00;
when Exception_IllegalState ec = 0x0E; il = '1';
when Exception_SupervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
when Exception_SVEAccessTrap ec = 0x19; assert !from_32;
when Exception_ERetTrap ec = 0x1A;
when Exception_PACFail ec = 0x1C;
when Exception_InstructionAbort ec = 0x20; il = '1';
when Exception_PCAlignment ec = 0x24;
when Exception_DataAbort ec = 0x25;
when Exception_NV2DataAbort ec = 0x26; il = '1'; assert !from_32;
when Exception_FPTrappedException ec = 0x28;
when Exception_SError ec = 0x2F; il = '1';
when Exception_Breakpoint ec = 0x30; il = '1';
when Exception_SoftwareStep ec = 0x32; il = '1';
when Exception_Watchpoint ec = 0x34; il = '1';
when Exception_NV2Watchpoint ec = 0x35; il = '1';
when Exception_SoftwareBreakpoint ec = 0x38;
when Exception_VectorCatch ec = 0x3A; il = '1'; assert from_32;
otherwise Unreachable();

if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
ec = ec + 1;

if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
ec = ec + 4;

return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

// AArch64.ReportException()
// =========================
// Report syndrome information for exception taken to AArch64 state.

AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

Exception exceptype = exception.exceptype;
(ec,il) = AArch64.ExceptionClass(exceptype, target_el);
iss = exception.syndrome;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

ESR[target_el] = ec5:0::il::iss;

if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment, Exception_DataAbort,
Exception_NV2DataAbort, Exception_NV2Watchpoint,
Exception_Watchpoint} then
 FAR[target_el] = exception.vaddress;
else
 FAR[target_el] = bits(64) UNKNOWN;
if target_el == EL2 then
 if exception.ipavalid then
 HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
 if IsSecureEL2Enabled() && IsSecure() then
 HPFAR_EL2.NS = exception.NS;
 else
 HPFAR_EL2.NS = '0';
 end
 else
 HPFAR_EL2<43:4> = bits(40) UNKNOWN;
 end
 return;
end

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset

// AArch64.TakeReset()
// ===================
// Reset into AArch64 state
AArch64.TakeReset(boolean cold_reset)
 assert !HighestELUsingAArch32();

 // Enter the highest implemented Exception level in AArch64 state
 PSTATE.nRW = '0';
 if HaveEL(EL3) then
 PSTATE.EL = EL3;
 elsif HaveEL(EL2) then
 PSTATE.EL = EL2;
 else
 PSTATE.EL = EL1;
 end

 // Reset the system registers and other system components
 AArch64.ResetControlRegisters(cold_reset);

 // Reset all other PSTATE fields
 PSTATE.SP = '1'; // Select stack pointer
 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
 PSTATE.SS = '0'; // Clear software step bit
 PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch64.ResetGeneralRegisters();
 AArch64.ResetSIMDFPRegisters();
 AArch64.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(64) rv; // IMPLEMENTATION DEFINED reset vector

 if HaveEL(EL3) then
 rv = RVBAR_EL3;
 elsif HaveEL(EL2) then
 rv = RVBAR_EL2;
 else
 rv = RVBAR_EL1;
 end

 // The reset vector must be correctly aligned
assert \text{IsZero}(rv<63: \text{PAMax}()>)) \&\& \text{IsZero}(rv<1:0>);

BranchTo(rv, \text{BranchType_RESET});

\texttt{aarch64/exceptions/ieeefp/AArch64.FPTrappedException}

\texttt{// AArch64.FPTrappedException()}
\texttt{// --}
\texttt{AArch64.FPTrappedException(boolean is_ase, integer element, bits(8) accumulated_exceptions)}
\texttt{exception = ExceptionSyndrome(Exception_FPTrappedException);}
\texttt{if is_ase then}
\texttt{if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then}
\texttt{exception.syndrome<23> = '1'; \quad \text{TFV}}
\texttt{else}
\texttt{exception.syndrome<23> = '0'; \quad \text{TFV}}
\texttt{else}
\texttt{exception.syndrome<23> = '1'; \quad \text{TFV}}
\texttt{exception.syndrome<10:8> = bits(3) UNKNOWN; \quad \text{VECITR}}
\texttt{if exception.syndrome<23> == '1' then}
\texttt{exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; \quad \text{IDF,IXF,UFF,OFF,DZF,IOF}}
\texttt{else}
\texttt{exception.syndrome<7,4:0> = bits(6) UNKNOWN;}\texttt{route_to_el2 = EL2Enabled() \&\& HCR_EL2.TGE == '1';}
\texttt{bits(64) preferred_exception_return = ThisInstrAddr();}
\texttt{vect_offset = 0x0;}
\texttt{if UInt(PSTATE.EL) > UInt(EL1) then}
\texttt{AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);}
\texttt{elsif route_to_el2 then}
\texttt{AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);}
\texttt{else}
\texttt{AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);}\texttt{\texttt{aarch64/exceptions/syscalls/AArch64.CallHypervisor}}

\texttt{// AArch64.CallHypervisor()}
\texttt{// --}
\texttt{\texttt{// Performs a HVC call}}
\texttt{AArch64.CallHypervisor(bits(16) immediate)}
\texttt{assert HaveEL(EL2);}\texttt{if UsingAArch32() then AArch32.ITAdvance();}
\texttt{SSAdvance();}
\texttt{bits(64) preferred_exception_return = NextInstrAddr();}
\texttt{vect_offset = 0x0;}
\texttt{exception = ExceptionSyndrome(Exception_HypervisorCall);}\texttt{exception.syndrome<15:0> = immediate;}\texttt{if PSTATE.EL == EL3 then}
\texttt{AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);}
\texttt{else}
\texttt{AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);}\texttt{\texttt{aarch64/exceptions/syscalls/AArch64.CallSecureMonitor}}

\texttt{// AArch64.CallSecureMonitor()}
\texttt{// --}
\texttt{AArch64.CallSecureMonitor(bits(16) immediate)}
\texttt{assert HaveEL(EL2) \&\& !ELUsingAArch32(EL3);}\texttt{if UsingAArch32() then AArch32.ITAdvance();}
SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = immediate;

 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

 aarch64/exceptions/syscalls/AArch64.CallSupervisor

 // AArch64.CallSupervisor()
 // ========================
 // Calls the Supervisor
 AArch64.CallSupervisor(bits(16) immediate)

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 route_to_el2 = PSTATE.EL == EL0 & EL2Enabled() & HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

 aarch64/exceptions/takeexception/AArch64.TakeException

 // AArch64.TakeException()
 // =======================
 // Take an exception to an Exception Level using AArch64.
 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
 bits(64) preferred_exception_return, integer vect_offset)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 sync_errors = HaveIESB() && SCTLR[target_el].IESB == '1';
 if HaveDoubleFaultExt() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && target_el == EL3);
 if sync_errors & InsertIESBBeforeException(target_el) then
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(target_el);

 if UInt(target_el) > UInt(PSTATE.EL) then
 boolean lower_32;
 if target_el == EL3 then
 if EL2Enabled() then
 lower_32 = ELUsingAArch32(EL2);
 else
 lower_32
 ...
lower_32 = ELUsingAArch32(EL1);
elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
 lower_32 = ELUsingAArch32(EL0);
else
 lower_32 = ELUsingAArch32(target_el - 1);
vector_offset = vector_offset + (if lower_32 then 0x600 else 0x400);
elsif PSTATE.SP == '1' then
 vector_offset = vector_offset + 0x200;

spsr = GetPSRFromPSTATE();

if PSTATE.EL == EL1 & target_el == EL1 & EL2Enabled() then
 if HaveNV2Ext() & (HCR_EL2.<NV,NV1,NV2> == '100' || HCR_EL2.<NV,NV1,NV2> == '111') then
 spsr<3:2> = '10';
 else
 if HaveNVExt() & HCR_EL2.<NV,NV1> == '10' then
 spsr<3:2> = '10';
 if HaveBTIExt() & !UsingAArch32() then
 // SPSR[].BTYPE is only guaranteed valid for these exception types
 if exception.exceptype IN {Exception_SError, Exception_IRQ, Exception_FIQ, Exception_SoftwareStep, Exception_PCAlignment, Exception_InstructionAbort, Exception_Breakpoint, Exception_VectorCatch, Exception_SoftwareBreakpoint, Exception_IllegalState, Exception_BranchTarget} then
 zero_btype = FALSE;
 else
 zero_btype = ConstrainUnpredictableBool();
 if zero_btype then spsr<11:10> = '00';
 if HaveNV2Ext() & exception.exceptype == Exception_NV2DataAbort & target_el == EL3 then
 // external aborts are configured to be taken to EL3
 exception.exceptype = Exception_DataAbort;
 if ! (exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el;
PSTATE.mRW = '0';
PSTATE.SP = '1';

SPSR[] = spsr;
ELR[] = preferred_exception_return;

PSTATE.SS = '0';
PSTATE.<D,A,I,F> = '1111';
PSTATE.IL = '0';
if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if (HavePANExt() & (PSTATE.EL == EL1 || (PSTATE.EL == EL2 & ELIsInHost(EL0))) & SCTLR[].SPAN == '0') then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveBTIExt() then PSTATE.BTYPE = '00';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;
 if HaveMTEExt() then PSTATE.TCO = '1';
BranchTo(VBAR[].<63:11>:vector_offset<10:0>, BranchType_EXCEPTION);

if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

EndOfInstruction();
aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

// AArch64.AArch32SystemAccessTrap()
// ==
// Trapped AARCH32 system register access.

AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

// AArch64.AArch32SystemAccessTrapSyndrome()
// ==
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;
 case ec of
 when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
 when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();
 endcase
 bits(20) iss = Zeros();
 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
 if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<13:10> = instr<19:16>; // CRn
 iss<4:1> = instr<3:0>; // CRm
 elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
 iss<19:17> = '000';
 iss<16:14> = '111';
 iss<13:10> = instr<19:16>; // reg
 iss<4:1> = '0000';
 else
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 endif
 else
 if instr<20> == '1' & & instr<15:12> == '1111' then // MRC, Rt==15
 iss<9:5> = '11111';
 elseif instr<20> == '0' & & instr<15:12> == '1111' then // MCR, Rt==15
 iss<9:5> = bits(5) UNKNOWN;
 else
 iss<0:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 endif
 endif
 elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap, Exception_CP15RRTTrap} then
 if instr<19:16> == '1111' then // Rt2==15
 iss<14:10> = bits(5) UNKNOWN;
 else
 iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;
 endif
 endif

ARM DDI 0487F.c
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
if instr<15:12> == '1111' then // Rt==15
iss<9:5> = bits(5) UNKNOWN;
else
 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
 iss<4:1> = instr<3:0>; // CRm
elsif exception.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<9:5> = bits(5) UNKNOWN;
 iss<3> = '1';
elsif exception.exceptype == Exception_Uncategorized then
 // Trapped for unknown reason
iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
iss<3> = '0';
iss<0> = instr<20>; // Direction
exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<19:0> = iss;
return exception;

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

// AArch64.AdvSIMDFPAccessTrap()
// ==
// Trapped access to Advanced SIMD or FP registers due to CPACR[].

AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');
 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
 return;

aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

// AArch64.CheckCP15InstrCoarseTraps()
// ==
// Check for coarse-grained AArch32 CP15 traps in HSTR_EL2 and HCR_EL2.

boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 // Check for MCR, MRC and MRR disabled by HSTR_EL2<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then
 return TRUE;
 // Check for MRC and MRR disabled by HCR_EL2<TIDCP>
 if (HCR_EL2.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 })))
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15})) then
 return TRUE;

return FALSE;

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

// AArch64.CheckFPAdvSIMDEnabled()
// ===============================
// Check against CPACR[]
AArch64.CheckFPAdvSIMDEnabled()
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check if access disabled in CPACR_EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);
AArch64.CheckFPAdvSIMDEnabled(); // Also check against CPTR_EL2 and CPTR_EL3

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

// AArch64.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.
AArch64.CheckFPAdvSIMDTrap()
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 // Check if access disabled in CPTR_EL2
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);
 if HaveEL(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);
 return;

aarch64/exceptions/traps/AArch64.CheckForERetTrap

// AArch64.CheckForERetTrap()
// ==========================
// Check for trap on ERET, ERETA, ERETAB instruction
AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)
route_to_el2 = FALSE;
// Non-secure EL1 execution of ERET, ERETA, ERETAB when either HCR_EL2.NV or HFCITR_EL2.ERET is set,
// is trapped to EL2
 if route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() &&
 ((HaveNVExt() & HCR_EL2.NV == '1') ||
 (HaveFGEExt() & HCR_EL2.<E2H, TGE> != '11' &&
 (!HaveEL(EL3) || SCR_EL3.FGEn == '1') && HFCITR_EL2.ERET == '1')
 if route_to_el2 then
 ExceptionRecord exception;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vector_offset = 0x0;
 exception = ExceptionSyndrome(Exception_ERetTrap);
if !eret_with_pac then // ERET
 exception.syndrome<1> = '0';
 exception.syndrome<0> = '0'; // RES0
else
 exception.syndrome<1> = '1';
 if pac_uses_key_a then // ERETAA
 exception.syndrome<0> = '0';
 else // ERTAB
 exception.syndrome<0> = '1';
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

// AArch64.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction
AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
if PSTATE.EL == EL0 then UNDEFINED;
if (!(PSTATE.EL == EL1 && EL2Enabled() &&
 HaveEl(EL3) && SCR_EL3.SMD == '1')) then
 UNDEFINED;
 route_to_el2 = FALSE;
if !HaveEl(EL3) then
 if PSTATE.EL == EL1 && EL2Enabled() then
 if HaveNVExt() && HCR_EL2.NV == '1' && HCR_EL2.TSC == '1' then
 route_to_el2 = TRUE;
 else
 UNDEFINED;
 else
 UNDEFINED;
else
 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
if route_to_el2 then
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = imm;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForSVCTrap

// AArch64.CheckForSVCTrap()
// =========================
// Check for trap on SVC instruction
AArch64.CheckForSVCTrap(bits(16) immediate)
if HaveFGTExt() then
 route_to_el2 = FALSE;
if PSTATE.EL == EL0 then
 route_to_el2 = (!ELUsingAArch32(EL0) && !ELUsingAArch32(EL1) && EL2Enabled() &&
 HFGITR_EL2.SVC_EL0 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEl(EL3) || SCR_EL3.FGTEn == '1')));
elsif PSTATE.EL == EL1 then
 route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL1 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));
if route_to_el2 then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
aarch64/exceptions/traps/AArch64.CheckForWFxTrap

// AArch64.CheckForWFxTrap()
// =====================================
// Check for trap on WFE or WFI instruction

AArch64.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
 assert HaveEL(target_el);
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';
 if trap then
 AArch64.WFxTrap(target_el, is_wfe);

aarch64/exceptions/traps/AArch64.CheckIllegalState

// AArch64.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch64.CheckIllegalState()
 if PSTATE.IL == '1' then
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_IllegalState);
 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);
 aarch64/exceptions/traps/AArch64.MonitorModeTrap

// AArch64.MonitorModeTrap()
// =========================
// Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

AArch64.MonitorModeTrap()
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_Uncategorized);
 if IsSecureEL2Enabled() then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 aarch64/exceptions/traps/AArch64.SystemAccessTrap

// AArch64.SystemAccessTrap()
// ==========================
// Trapped access to AArch64 system register or system instruction.

AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);
Armv8 Pseudocode

J1.1 Pseudocode for AArch64 operation

```c
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

// AArch64.SystemAccessTrapSyndrome()
// ==================================
// Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
{
  ExceptionRecord exception;
  case ec of
    when 0x0                                                     // Trapped access due to unknown
      reason.
      exception = ExceptionSyndrome(Exception_Uncategorized);
    when 0x7                                                     // Trapped access to SVE, Advance
      SIMD&FP system register.
      exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
      exception.syndrome<24:20> = ConditionSyndrome();
    when 0x18                                                    // Trapped access to system
      register or system instruction.
      exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
      instr = ThisInstr();
      exception.syndrome<21:20> = instr<20:19>;          // Op0
      exception.syndrome<19:17> = instr<7:5>;            // Op2
      exception.syndrome<16:14> = instr<18:16>;          // Op1
      exception.syndrome<13:10> = instr<15:12>;          // Crn
      exception.syndrome<9:5>   = instr<4:0>;            // Rt
      exception.syndrome<4:1>   = instr<11:8>;           // Crm
      exception.syndrome<0>     = instr<21>;             // Direction
    when 0x19                                                    // Trapped access to SVE System
      register
      exception = ExceptionSyndrome(Exception_SVEAccessTrap);
    otherwise
      Unreachable();

  return exception;

aarch64/exceptions/traps/AArch64.UndefinedFault

// AArch64.UndefinedFault()
// ========================

AArch64.UndefinedFault()

route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

if UInt(PSTATE.EL) > UInt(EL1) then
  AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
elsif route_to_el2 then
  AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
  AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);
```
aarch64/exceptions/traps/AArch64.WFxTrap

// AArch64.WFxTrap()
// ===============

AArch64.WFxTrap(bits(2) target_el, boolean is_wfe)
assert UInt(target_el) > UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vec_offset = 0x0;

exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<0> = if is_wfe then '1' else '0';

if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vec_offset);
else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vec_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

// CheckFPAdvSIMDEnabled64()
// =========================

// AArch64 instruction wrapper

CheckFPAdvSIMDEnabled64()
AArch64.CheckFPAdvSIMDEnabled();

aarch64/exceptions/traps/WFETrapDelay

// WFETrapDelay()
// ==============

// Returns TRUE when delay in trap to WFE is enabled with value to amount of delay,
// FALSE otherwise.

(boolean, integer) WFETrapDelay(bits(2) target_el)
 case target_el of
 when EL1
 if !IsInHost() then
 delay_enabled = SCTRL_EL1.TWEDEN == '1';
 delay = 1 << (UInt(SCTRL_EL1.TWEDEL) + 8);
 else
 delay_enabled = SCTRL_EL2.TWEDEN == '1';
 delay = 1 << (UInt(SCTRL_EL2.TWEDEL) + 8);
 when EL2
 delay_enabled = HCR_EL2.TWEDEN == '1';
 delay = 1 << (UInt(HCR_EL2.TWEDEL) + 8);
 when EL3
 delay_enabled = SCR_EL3.TWEDEN == '1';
 delay = 1 << (UInt(SCR_EL3.TWEDEL) + 8);
 return (delay_enabled, delay);

aarch64/exceptions/traps/WaitForEventUntilDelay

// WaitForEventUntilDelay()
// ========================

// Returns TRUE if WaitForEvent() returns before WFE trap delay expires,
// FALSE otherwise.

boolean WaitForEventUntilDelay(boolean delay_enabled, integer delay)
 boolean eventarrived = FALSE;
 // set eventarrived to TRUE if WaitForEvent() returns before
 // 'delay' expires when delay_enabled is TRUE.
 return eventarrived;
J1.1.3 aarch64/functions

This section includes the following pseudocode functions:

- aarch64/functions/aborts/AArch64.CreateFaultRecord on page J1-7647.
- aarch64/functions/aborts/AArch64.FaultSyndrome on page J1-7647.
- aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass on page J1-7648.
- aarch64/functions/exclusive/AArch64.IsExclusiveVA on page J1-7648.
- aarch64/functions/exclusive/AArch64.MarkExclusiveVA on page J1-7648.
- aarch64/functions/exclusive/AArch64.SetExclusiveMonitors on page J1-7648.
- aarch64/functions/fusedrstep/FPRSqrtStepFused on page J1-7649.
- aarch64/functions/fusedrstep/FPRecipStepFused on page J1-7649.
- aarch64/functions/memory/AArch64.AccessIsTagChecked on page J1-7650.
- aarch64/functions/memory/AArch64.AddressWithAllocationTag on page J1-7650.
- aarch64/functions/memory/AArch64.CheckAlignment on page J1-7651.
- aarch64/functions/memory/AArch64.CheckTag on page J1-7651.
- aarch64/functions/memory/AArch64.IsBlockDescriptorNTBitValid on page J1-7654.
- aarch64/functions/memory/AArch64.IsTagCheckedInstruction on page J1-7654.
- aarch64/functions/memory/MemAtomic on page J1-7655.
- aarch64/functions/memory/MemAtomicCompareAndSwap on page J1-7656.
- aarch64/functions/memory/NTMem on page J1-7656.
- aarch64/functions/memory/SetTagCheckedInstruction on page J1-7657.
- aarch64/functions/pac/auth/AArch64.PACFailException on page J1-7662.
• aarch64/functions/pac/computepac/TweakInvShuffle on page J1-7669.
• aarch64/functions/pac/computepac/TweakShuffle on page J1-7670.
• aarch64/functions/pac/pac/HaveEnhancedPAC on page J1-7670.
• aarch64/functions/pac/pac/HaveEnhancedPAC2 on page J1-7670.
• aarch64/functions/pac/pac/HaveFPAC on page J1-7671.
• aarch64/functions/pac/pac/HaveFPACCombined on page J1-7671.
• aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges on page J1-7671.
• aarch64/functions/pac/strip/Strip on page J1-7671.
• aarch64/functions/pac/trappacuse/TrapPACUse on page J1-7671.
• aarch64/functions/ras/AArch64.ESBOperation on page J1-7672.
• aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome on page J1-7672.
• aarch64/functions/ras/AArch64.ReportDeferredSError on page J1-7672.
• aarch64/functions/ras/AArch64.vESBOperation on page J1-7673.
• aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers on page J1-7673.
• aarch64/functions/registers/AArch64.ResetGeneralRegisters on page J1-7673.
• aarch64/functions/registers/AArch64.ResetSIMDFPRegisters on page J1-7674.
• aarch64/functions/registers/AArch64.ResetSpecialRegisters on page J1-7674.
• aarch64/functions/registers/AArch64.ResetSystemRegisters on page J1-7674.
• aarch64/functions/registers/PC on page J1-7674.
• aarch64/functions/registers/SP on page J1-7675.
• aarch64/functions/registers/V on page J1-7675.
• aarch64/functions/registers/Vpart on page J1-7675.
• aarch64/functions/registers/X on page J1-7676.
• aarch64/functions/sve/AArch32.IsFPEnabled on page J1-7676.
• aarch64/functions/sve/AArch64.IsFPEnabled on page J1-7677.
• aarch64/functions/sve/CeilPow2 on page J1-7677.
• aarch64/functions/sve/CheckSVEEnabled on page J1-7678.
• aarch64/functions/sve/DecodePredCount on page J1-7678.
• aarch64/functions/sve/ElemFFR on page J1-7679.
• aarch64/functions/sve/ElemP on page J1-7679.
• aarch64/functions/sve/FFR on page J1-7679.
• aarch64/functions/sve/FPCmpareNE on page J1-7680.
• aarch64/functions/sve/FPCmpareUN on page J1-7680.
• aarch64/functions/sve/FPConvertSVE on page J1-7680.
• aarch64/functions/sve/FPExpA on page J1-7680.
• aarch64/functions/sve/FPExpCoefficient on page J1-7681.
• aarch64/functions/sve/FPMinNormal on page J1-7683.
• aarch64/functions/sve/FPOne on page J1-7684.
• aarch64/functions/sve/FPPointFive on page J1-7684.
• aarch64/functions/sve/FPProcess on page J1-7684.
• aarch64/functions/sve/FPScale on page J1-7684.
• aarch64/functions/sve/FPTrigMAdd on page J1-7685.
• aarch64/functions/sve/FPTrigMAddCoefficient on page J1-7685.
• aarch64/functions/sve/FPTrigSMul on page J1-7686.
• aarch64/functions/sve/FPTrigSSel on page J1-7686.
• aarch64/functions/sve/FirstActive on page J1-7686.
• aarch64/functions/sve/FloorPow2 on page J1-7687.
• aarch64/functions/sve/HaveSVE on page J1-7687.
• aarch64/functions/sve/HaveSVEFP32MatMulExt on page J1-7687.
- `aarch64/functions/sve/HaveSVEFP64MatMulExt` on page J1-7687.
- `aarch64/functions/sve/ImplementedSVEVectorLength` on page J1-7687.
- `aarch64/functions/sve/IsEven` on page J1-7687.
- `aarch64/functions/sve/IsFPEnabled` on page J1-7688.
- `aarch64/functions/sve/IsSVEEnabled` on page J1-7688.
- `aarch64/functions/sve/LastActive` on page J1-7688.
- `aarch64/functions/sve/LastActiveElement` on page J1-7689.
- `aarch64/functions/sve/MAX_PL` on page J1-7689.
- `aarch64/functions/sve/MAX_VL` on page J1-7689.
- `aarch64/functions/sve/MaybeZeroSVEUppers` on page J1-7689.
- `aarch64/functions/sve/MemNF` on page J1-7689.
- `aarch64/functions/sve/MemSingleNF` on page J1-7690.
- `aarch64/functions/sve/NoneActive` on page J1-7691.
- `aarch64/functions/sve/P` on page J1-7691.
- `aarch64/functions/sve/PL` on page J1-7691.
- `aarch64/functions/sve/PredTest` on page J1-7692.
- `aarch64/functions/sve/ReducePredicated` on page J1-7692.
- `aarch64/functions/sve/Reverse` on page J1-7692.
- `aarch64/functions/sve/SVEAccessTrap` on page J1-7692.
- `aarch64/functions/sve/SVECmp` on page J1-7692.
- `aarch64/functions/sve/SVEMoveMaskPreferred` on page J1-7692.
- `aarch64/functions/sve/System` on page J1-7693.
- `aarch64/functions/sve/VL` on page J1-7693.
- `aarch64/functions/sve/Z` on page J1-7694.
- `aarch64/functions/sysregisters/CNTKCTL` on page J1-7694.
- `aarch64/functions/sysregisters/CNTKCTLTy` on page J1-7694.
- `aarch64/functions/sysregisters/CPACR` on page J1-7694.
- `aarch64/functions/sysregisters/CPACRTy` on page J1-7694.
- `aarch64/functions/sysregisters/ELR` on page J1-7695.
- `aarch64/functions/sysregisters/ESR` on page J1-7695.
- `aarch64/functions/sysregisters/ESRTy` on page J1-7696.
- `aarch64/functions/sysregisters/FAR` on page J1-7696.
- `aarch64/functions/sysregisters/MAIR` on page J1-7696.
- `aarch64/functions/sysregisters/MAIRTy` on page J1-7697.
- `aarch64/functions/sysregisters/SCTL` on page J1-7697.
- `aarch64/functions/sysregisters/SCTLRTy` on page J1-7697.
- `aarch64/functions/sysregisters/VBAR` on page J1-7697.
- `aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled` on page J1-7697.
- `aarch64/functions/system/AArch64.CheckSystemAccess` on page J1-7698.
- `aarch64/functions/system/AArch64.ChooseNonExcludedTag` on page J1-7698.
- `aarch64/functions/system/AArch64.ExecutingATSxPlnstr` on page J1-7699.
- `aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr` on page J1-7699.
- `aarch64/functions/system/AArch64.ExecutingBTIInstr` on page J1-7699.
- `aarch64/functions/system/AArch64.NextRandomTagBit` on page J1-7700.
- `aarch64/functions/system/AArch64.RandomTag` on page J1-7700.
- `aarch64/functions/system/AArch64.SysInstr` on page J1-7700.
- `aarch64/functions/system/AArch64.SysInstrWithResult` on page J1-7700.
- `aarch64/functions/system/AArch64.SysRegRead` on page J1-7700.
• aarch64/functions/system/BTypeCompatible on page J1-7700.
• aarch64/functions/system/BTypeCompatible_BTI on page J1-7701.
• aarch64/functions/system/BTypeCompatible_PACIXSP on page J1-7701.
• aarch64/functions/system/BTypeNext on page J1-7701.
• aarch64/functions/system/InGuardedPage on page J1-7701.
• aarch64/functions/system/SetBTypeCompatible on page J1-7701.
• aarch64/functions/system/SetBTypeNext on page J1-7701.
• aarch64/functions/system/_ChooseRandomNonExcludedTag on page J1-7702.

aarch64/functions/aborts/AArch64.CreateFaultRecord

// AArch64.CreateFaultRecord()
// -----------------------------

FaultRecord AArch64.CreateFaultRecord(Fault statuscode, bits(52) ipaddress, boolean NS,
integer level, AccType acctype, boolean write, bit extflag,
bits(2) errortype, boolean secondstage, boolean s2fs1walk)

FaultRecord fault;
fault.statuscode = statuscode;
fault.domain = bits(4) UNKNOWN; // Not used from AArch64
fault.debugmoe = bits(4) UNKNOWN; // Not used from AArch64
fault.errortype = errortype;
fault.ipaddress.NS = if NS then '1' else '0';
fault.ipaddress.address = ipaddress;
fault.level = level;
fault.acctype = acctype;
fault.write = write;
fault.extflag = extflag;
fault.secondstage = secondstage;
fault.s2fs1walk = s2fs1walk;
return fault;

aarch64/functions/aborts/AArch64.FaultSyndrome

// AArch64.FaultSyndrome()
// -----------------------
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// an Exception Level using AArch64.

bits(25) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros();
if HaveRASExt() & IsExternalSyncAbort(fault) then iss<24:14> = fault.errortype; // SET
if d_side then
 if IsSecondStage(fault) & fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
 if HaveNV2Ext() & fault.acctype == AccType_NV2REGISTER then
 iss<13> = '1'; // Value of '1' indicates fault is generated by use of VNCR_EL2
 if fault.acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_IC, AccType_AT} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);
return iss;
aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

// AArch64.ExclusiveMonitorsPass()
// ===============================

// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);
 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());
 if passed then
 if memaddrdesc.memattrs.shareable then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
 end
 end
 end

 return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
// It is always safe to return TRUE which will check the physical address only.

boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

// AArch64.SetExclusiveMonitors()
// ===============================

// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.
AArch64.SetExclusiveMonitors(bits(64) address, integer size)
acctype = AccType_ATOMIC;
iswrite = FALSE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 return;

if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/fusedrstep/FPRSqrtStepFused

// FPRSqrtStepFused()
// =============

bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
op1 = FPNeg(op1);

FPRounding rounding = FPRoundingMode(FPCR);

(type1,sign1,value1) = FPUnpack(op1, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);

if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPOnePointFive('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add and halve
 result_value = (3.0 + (value1 * value2)) / 2.0;
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
 result = FPFZero(sign);
 else
 result = FPRound(result_value, FPCR, rounding);

 return result;

aarch64/functions/fusedrstep/FPRecipStepFused

// FPRecipStepFused()
// =============

bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
op1 = FPNeg(op1);
FPRounding rounding = FPRoundingMode(FPCR);

(type1,sign1,value1) = FPUnpack(op1, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);

if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add
 result_value = 2.0 + (value1 * value2);
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, FPCR, rounding);
 end

 return result;
 end

aarch64/functions/memory/AArch64.AccessIsTagChecked

// AArch64.AccessIsTagChecked()
//=--
// TRUE if a given access is tag-checked, FALSE otherwise.

boolean AArch64.AccessIsTagChecked(bits(64) vaddr, AccType acctype)
 if PSTATE.M<4> == '1' then return FALSE;

 if EffectiveTBI(vaddr, FALSE, PSTATE.EL) == '0' then
 return FALSE;

 if EffectiveTCMA(vaddr, PSTATE.EL) == '1' && (vaddr<59:55> == '00000' || vaddr<59:55> == '11111') then
 return FALSE;

 if !AArch64.AllocationTagAccessIsEnabled(acctype) then
 return FALSE;

 if acctype IN {AccType_IFETCH, AccType_PTW} then
 return FALSE;

 if acctype == AccType_NV2REGISTER then
 return FALSE;

 if PSTATE.TCO=='1' then
 return FALSE;

 if !IsTagCheckedInstruction() then
 return FALSE;

 return TRUE;

aarch64/functions/memory/AArch64.AddressWithAllocationTag

// AArch64.AddressWithAllocationTag()
//=--
// Generate a 64-bit value containing a Logical Address Tag from a 64-bit
// virtual address and an Allocation Tag.
// If the extension is disabled, treats the Allocation Tag as '0000'.

bits(64) AArch64.AddressWithAllocationTag(bits(64) address, AccType acctype, bits(4) allocation_tag)
 bits(64) result = address;
 bits(4) tag;
 if AArch64.AllocationTagAccessIsEnabled(acctype) then
 tag = allocation_tag;
 else
 tag = '0000';
 result<59:56> = tag;
 return result;

aarch64/functions/memory/AArch64.AllocationTagFromAddress

// AArch64.AllocationTagFromAddress()
// ---------------------------------
// Generate an Allocation Tag from a 64-bit value containing a Logical Address Tag.

bits(4) AArch64.AllocationTagFromAddress(bits(64) tagged_address)
 return tagged_address<59:56>;

aarch64/functions/memory/AArch64.CheckAlignment

// AArch64.CheckAlignment()
// ------------------------

boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype, boolean iswrite)
 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
 vector = acctype == AccType_VEC;
 if SCTLR[].A == '1' then check = TRUE;
 elsif HaveLSE2Ext() then
 check = (UInt(address<0+:4>) + alignment > 16) && ((ordered && SCTLR[].nAA == '0') || atomic);
 else check = atomic || ordered;
 if check && !aligned then
 secondstage = FALSE;
 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
 return aligned;

aarch64/functions/memory/AArch64.CheckTag

// AArch64.CheckTag()
// ------------------
// Performs a Tag Check operation for a memory access and returns
// whether the check passed

boolean AArch64.CheckTag(AddressDescriptor memaddrdesc, bits(4) ptag, boolean write)
 if memaddrdesc.memattrs.tagged then
 return ptag == _MemTag[memaddrdesc];
 else
 return TRUE;

aarch64/functions/memory/AArch64.MemSingle

// AArch64.MemSingle[] - non-assignment (read) form
// ---
// Perform an atomic, little-endian read of 'size' bytes.
bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTEExt() then
if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);
value = _Mem[memaddrdesc, size, accdesc];
return value;

// AArch64.MemSingle[] - assignment (write) form
// --
// Perform an atomic, little-endian write of 'size' bytes.
AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareable then
ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTEExt() then
if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);
_Mem[memaddrdesc, size, accdesc] = value;
return;

aarch64/functions/memory/AArch64.MemTag

// AArch64.MemTag[] - non-assignment (read) form
// --
// Load an Allocation Tag from memory.

bits(4) AArch64.MemTag[bits(64) address, AccType acctype]
assert acctype == AccType_NORMAL;
AddressDescriptor memaddrdesc;
bits(4) value;
iswrite = FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, TRUE, TAG_GRANULE);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

// Return the granule tag if tagging is enabled...
if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then
 return _MemTag[memaddrdesc];
else
 // ...otherwise read tag as zero.
 return '0000';

// AArch64.MemTag [] - assignment (write) form
// ==
// Store an Allocation Tag to memory.
AArch64.MemTag[bits(64) address, AccType acctype] = bits(4) value
assert acctype == AccType_NORMAL;
AddressDescriptor memaddrdesc;
iswrite = TRUE;

// Stores of allocation tags must be aligned
if address != Align(address, TAG_GRANULE) then
 boolean secondstage = FALSE;
 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

wasaligned = TRUE;
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, TAG_GRANULE);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then
 _MemTag[memaddrdesc] = value;

aarch64/functions/memory/AArch64.PhysicalTag

// AArch64.PhysicalTag()
// =====================
// Generate a Physical Tag from a Logical Tag in an address

bits(4) AArch64.PhysicalTag(bits(64) vaddr)
return vaddr<59:56>;

aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

// AArch64.TranslateAddressForAtomicAccess()
// ==
// Performs an alignment check for atomic memory operations.
// Also translates 64-bit Virtual Address into Physical Address.

AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
 boolean iswrite = FALSE;
 size = sizeinbits DIV 8;
 assert size IN {1, 2, 4, 8, 16};
 aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);

 // MMU or MPU lookup
 memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);
// Effect on exclusives
if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

if HaveMTEExt() & AArch64.AccessIsTagChecked(address, AccType_ATOMICRW) then
 bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
 AArch64.TagCheckFault(address, AccType_ATOMICRW, iswrite);
return memaddrdesc;

aarch64/functions/memory/CheckSPAlignment

// CheckSPAlignment()
// ================
// Check correct stack pointer alignment for AArch64 state.
CheckSPAlignment()
bits(64) sp = SP[];
if PSTATE.EL == EL0 then
 stack_align_check = (SCTLR[].SA0 != '0');
else
 stack_align_check = (SCTLR[].SA != '0');
if stack_align_check & sp != Align(sp, 16) then
 AArch64.SPAlignmentFault();
return;

aarch64/functions/memory/IsBlockDescriptorNTBitValid

// If the implementation supports changing the block size without a break-before-make
// approach, then for implementations that have level 1 or 2 support, the nT bit in
// the block descriptor is valid.
boolean IsBlockDescriptorNTBitValid();

aarch64/functions/memory/IsTagCheckedInstruction

// Returns True if the current instruction uses tag-checked memory access,
// False otherwise.
boolean IsTagCheckedInstruction();

aarch64/functions/memory/Mem

// Mem[] - non-assignment (read) form
// =================================
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch64.MemSingle directly.
bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 boolean iswrite = FALSE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 atomic = aligned;
 else
 // 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);
 if !atomic then
 assert size > 1;
value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
 value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned];
 value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned];
else
 value = AArch64.MemSingle[address, size, acctype, aligned];

if (HaveNV2Ext() && acctype == AccType_NV2REGISTER && SCTLR_EL2.EE == '1') || BigEndian() then
 value = BigEndianReverse(value);
return value;

// Mem[] - assignment (write) form
// ===============================
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value

boolean iswrite = TRUE;

if (HaveNV2Ext() && acctype == AccType_NV2REGISTER && SCTLR_EL2.EE == '1') || BigEndian() then
 value = BigEndianReverse(value);

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 atomic = aligned;
else
 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);

if !atomic then
 assert size > 1;
 AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 AArch64.MemSingle[address, 8, acctype, aligned] = value<63:0>;
 AArch64.MemSingle[address+8, 8, acctype, aligned] = value<127:64>;
else
 AArch64.MemSingle[address, size, acctype, aligned] = value;
return;
aarch64/functions/memory/MemAtomic

// MemAtomic()
// ============
// Performs load and store memory operations for a given virtual address.
bits(size) MemAtomic(bits(64) address, MemAtomicOp op, bits(size) value, AccType ldacctype, AccType stacctype)

bits(size) newvalue;
memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
ldaccdesc = CreateAccessDescriptor(ldacctype);
staccdesc = CreateAccessDescriptor(stacctype);

// All observers in the shareability domain observe the
// following load and store atomically.
oldvalue = _Mem[memaddrdesc, size DIV 8, ldaccdesc];
if BigEndian() then
 oldvalue = BigEndianReverse(oldvalue);

case op of
 when MemAtomicOp_ADD newvalue = oldvalue + value;
 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
 when MemAtomicOp_EOR newvalue = oldvalue EOR value;
 when MemAtomicOp_ORR newvalue = oldvalue OR value;
 when MemAtomicOp_SMAX newvalue = if SInt(oldvalue) > SInt(value) then oldvalue else value;
 when MemAtomicOp_SMIN newvalue = if SInt(oldvalue) > SInt(value) then value else oldvalue;
 when MemAtomicOp_UMAX newvalue = if UInt(oldvalue) > UInt(value) then oldvalue else value;
 when MemAtomicOp_UMIN newvalue = if UInt(oldvalue) > UInt(value) then value else oldvalue;
 when MemAtomicOp_SWP newvalue = value;
 if BigEndian() then
 newvalue = BigEndianReverse(newvalue);
 _Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;

// Load operations return the old (pre-operation) value
return oldvalue;

aarch64/functions/memory/MemAtomicCompareAndSwap

// MemAtomicCompareAndSwap()
// =========================
// Compares the value stored at the passed-in memory address against the passed-in expected
// value. If the comparison is successful, the value at the passed-in memory address is swapped
// with the passed-in new_value.

bits(size) MemAtomicCompareAndSwap(bits(64) address, bits(size) expectedvalue,
bits(size) newvalue, AccType ldacctype, AccType stacctype)
memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
ldaccdesc = CreateAccessDescriptor(ldacctype);
staccdesc = CreateAccessDescriptor(stacctype);

// All observers in the shareability domain observe the
// following load and store atomically.
oldvalue = _Mem[memaddrdesc, size DIV 8, ldaccdesc];
if BigEndian() then
 oldvalue = BigEndianReverse(oldvalue);
if oldvalue == expectedvalue then
 if BigEndian() then
 newvalue = BigEndianReverse(newvalue);
 _Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;
 return oldvalue;

aarch64/functions/memory/NVMem

// NVMem[] - non-assignment form
// =============================
// This function is the load memory access for the transformed System register read access
// when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
// The address for the load memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// « VNCR_EL2.BADDR holds the base address of the memory location, and

ARM DDI 0487F.c
Non-Confidential
ID072120
// Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

bits(64) NVMem[integer offset]
assert offset > 0;
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 return Mem[address, 8, AccType_NV2REGISTER];

// NVMem[] - assignment form
// ==
// This function is the store memory access for the transformed System register write access
// when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
// The address for the store memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// * VNCR_EL2.BADDR holds the base address of the memory location, and
// * Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

NVMem[integer offset] = bits(64) value
assert offset > 0;
 bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
 Mem[address, 8, AccType_NV2REGISTER] = value;
 return;

aarch64/functions/memory/SetTagCheckedInstruction
// Flag the current instruction as using/not using memory tag checking.
SetTagCheckedInstruction(boolean checked);

aarch64/functions/memory/_MemTag
// This _MemTag[] accessor is the hardware operation which perform a single-copy atomic,
// Allocation Tag granule aligned, memory access from the tag in PA space.
// The function address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an external abort.
bits(4) _MemTag[AddressDescriptor desc, AccessDescriptor accdesc];

aarch64/functions/pac/addpac/AddPAC
// AddPAC()
// ========
// Calculates the pointer authentication code for a 64-bit quantity and then
// inserts that into pointer authentication code field of that 64-bit quantity.

bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
 bits(64) PAC;
 bits(64) result;
 bits(64) ext_ptr;
bits(64) extfield;
bit selbit;
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
integer top_bit = if tbi then 55 else 63;

// If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
// the pointer to select between upper and lower ranges, and preserve this.
// This handles the awkward case where there is apparently no correct choice between
// the upper and lower address range - i.e an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
// and 0xxxxxxx1 with TBI1=0 and TBI0=1:
if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 if data then
 if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
 (TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 end if
 else
 // EL2 translation regime registers
 if data then
 if TCR_EL2.TBI1 == '1' || TCR_EL2.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0') ||
 (TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 end if
 end if
else
 selbit = if tbi then ptr<55> else ptr<63>;
end if

integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

// The pointer authentication code field takes all the available bits in between
extfield = Replicate(selbit, 64);

// Compute the pointer authentication code for a ptr with good extension bits
if data then
 ext_ptr = ptr<63:56>:extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;
else
 ext_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;
end if

PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

// Check if the ptr has good extension bits and corrupt the pointer authentication code if not
if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then
 if HaveEnhancedPAC() then
 PAC = 0x0000000000000000<63:0>;
 elsif !HaveEnhancedPAC2() then
 PAC<top_bit-1> = NOT(PAC<top_bit-1>);
 end if
else
 // preserve the determination between upper and lower address at bit<55> and insert PAC
 if !HaveEnhancedPAC2() then
 if tbi then
 result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 end if
 else
 if tbi then
 result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 end if
 end if
end if
result = ptr<63:56>:selbit:(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
else
result = (ptr<63:56> EOR PAC<63:56>):selbit:(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
return result;

aarch64/functions/pac/addpacda/AddPACDA

// AddPACDA()
//=
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDKey_EL1.

bits(64) AddPACDA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDKey_EL1;

APDKey_EL1 = APDKeyHi_EL1<63:0> : APDKeyLo_EL1<63:0>;
case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = SITranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
 TrapEL2 = (EL2Enabled() & HCR_EL2.API == '0' &
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = EL2Enabled() & HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return AddPAC(X, Y, APDKey_EL1, TRUE);

aarch64/functions/pac/addpacdb/AddPACDB

// AddPACDB()
//=
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDKey_EL1.

bits(64) AddPACDB(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
case PSTATE.EL of
 when EL0

boolean IsELRegime = S1TranslationRegime() == EL1;
Enable = if IsELRegime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = (EL2Enabled() & HCR_EL2.API == '0' &
(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
when EL1
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = EL2Enabled() & HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
when EL2
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
when EL3
 Enable = SCTLR_EL3.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APDBKey_EL1, TRUE);

aarch64/functions/pac/addpacga/AddPACGA

// AddPACGA()
// =========
// Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
// a 32-bit pointer authentication code which is derived using a cryptographic
// algorithm as a combination of X, Y and the APGAKey_EL1.
bits(64) AddPACGA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(128) APGAKey_EL1;
 APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 TrapEL2 = (EL2Enabled() & HCR_EL2.API == '0' &
(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL1
 TrapEL2 = EL2Enabled() & HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL2
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) & SCR_EL3.API == '0';
 when EL3
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
 if TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>:Zeros(32));
 end case;

aarch64/functions/pac/addpacia/AddPACIA

// AddPACIA()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y, and the
// APIAKey_EL1.
bits(64) AddPACIA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;

case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
 TrapEL2 = (EL2Enabled() & HCR_EL2.API == '0' & &
 (HCR_EL2.TGE == '0' | | HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = EL2Enabled() & & HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIA;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
if Enable == '0' then return X;
elseif TrapEL2 then TrapPACUse(EL2);
elseif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIAKey_EL1, FALSE);

aarch64/functions/pac/addpacib/AddPACIB

// AddPACIB()
// =========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APIBKey_EL1.

bits(64) AddPACIB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0>:APIBKeyLo_EL1<63:0>;

case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
 TrapEL2 = (EL2Enabled() & & HCR_EL2.API == '0' & &
 (HCR_EL2.TGE == '0' | | HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = EL2Enabled() & & HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) & & SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIBKey_EL1, FALSE);

aarch64/functions/pac/auth/AArch64.PACFailException

// AArch64.PACFailException()
// =========================
// Generates a PAC Fail Exception
AArch64.PACFailException(bits(2) syndrome)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PACFail);
 exception.syndrome<1:0> = syndrome;
 exception.syndrome<24:2> = Zeros(); // RES0

 if UInt(PSTATE.EL) > UInt(EL0) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/functions/pac/auth/Auth

// Auth()
// ======
// Restores the upper bits of the address to be all zeros or all ones (based on the
// value of bit[55]) and computes and checks the pointer authentication code. If the
// check passes, then the restored address is returned. If the check fails, the
// second-top and third-top bits of the extension bits in the pointer authentication code
// field are corrupted to ensure that accessing the address will give a translation fault.

bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number, boolean
is_combined)
 bits(64) PAC;
 bits(64) result;
 bits(64) original_ptr;
 bits(2) error_code;
 bits(64) extfield;

 // Reconstruct the extension field used of adding the PAC to the pointer
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
 extfield = Replicate(ptr<55>, 64);

 if tbi then
 original_ptr = ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;
 else
 original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

 PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
 // Check pointer authentication code
 if tbi then
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63:55>:error_code:original_ptr<52:0>;
 else
 result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
if HaveFPACCombined() || (HaveFPA() && !is_combined) then
 if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
else
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
 result = original_ptr;
 else
 if PAC<54:bottom_PAC_bit> != ptr<54:bottom_PAC_bit> && PAC<63:56> != ptr<63:56> then
 error_code = key_number:NOT(key_number);
 result = original_ptr<63>:error_code:original_ptr<60:0>;
 else
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 result<63:56> = result<63:56> EOR PAC<63:56>;
 if HaveFPACCombined() || (HaveFPA() && !is_combined) then
 if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 if !HaveEnhancedPAC2() then
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 result<63:56> = result<63:56> EOR PAC<63:56>;
 if HaveFPACCombined() || (HaveFPA() && !is_combined) then
 if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 return result;
 else
 return result;

aarch64/functions/pac/authda/AuthDA

// AuthDA()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACDA().

bits(64) AuthDA(bits(64) X, bits(64) Y, boolean is_combined)

 boolean TrapEl2;
 boolean TrapEl3;
 bits(1) Enable;
 bits(128) APDAkey_El1;

 APDAkey_El1 = APDAKeyHi_El1<63:0> : APDAKeyLo_El1<63:0>;
 case PSTATE.EL of
 when El0
 boolean IsEl1Regime = SITranslationRegime() == El1;
 Enable = if IsEl1Regime then SCTLR_El1.EnDA else SCTLR.El1.Enda;
 TrapEl2 = (EL2Enabled() & HCR_El2.API == '0' &
 (HCR_El2.TGE == '0' || HCR_El2.E2H == '0'));
 TrapEl3 = HaveEL(El3) & SCR_El3.API == '0';
 when El1
 Enable = SCTLR_El1.EnDA;
 TrapEl2 = EL2Enabled() & HCR_El2.API == '0';
 TrapEl3 = HaveEL(El3) & SCR_El3.API == '0';
 when El2
 Enable = SCTLR_El2.EnDA;
 TrapEl2 = FALSE;
 TrapEl3 = HaveEL(El3) & SCR_El3.API == '0';
 when El3
 Enable = SCTLR_El3.EnDA;
 TrapEl2 = FALSE;
 TrapEl3 = FALSE;
 if Enable == '0' then return X;
 elsif TrapEl2 then TrapPACUse(El2);
 elsif TrapEl3 then TrapPACUse(El3);
 else return Auth(X, Y, APDAkey_El1, TRUE, '0', is_combined);
aarch64/functions/pac/authdb/AuthDB

// AuthDB()
// =========
// Returns a 64-bit value containing X, but replacing the pointer authentication code field bits with the extension of the address bits. The instruction checks a pointer authentication code in the pointer authentication code field bits of X, using the same algorithm and key as AddPACDB().

bits(64) AuthDB(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

 APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = SITranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEl(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEl(EL3) && SCR_EL3.API == '0';
 when EL2
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEl(EL3) && SCR_EL3.API == '0';
 when EL3
 Enable = SCTLR_EL3.EnDB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;
 endcase
 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 elsif TrapEL3 then TrapPACUse(EL3);
 else return Auth(X, Y, APDBKey_EL1, TRUE, '1', is_combined);

aarch64/functions/pac/authia/AuthIA

// AuthIA()
// =========
// Returns a 64-bit value containing X, but replacing the pointer authentication code field bits with the extension of the address bits. The instruction checks a pointer authentication code in the pointer authentication code field bits of X, using the same algorithm and key as AddPACIA().

bits(64) AuthIA(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIAKey_EL1;

 APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
 case PSTATE.EL of
 when EL0
 boolean IsEL1Regime = SITranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEl(EL3) && SCR_EL3.API == '0';
 when EL1
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';

TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIAKey_EL1, FALSE, '0', is_combined);

aarch64/functions/pac/authib/AuthIB

// AuthIB()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIB().

bits(64) AuthIB(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;
APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
case PSTATE.EL of
when EL0
 boolean IsEL1Regime = S1TranslationRegime() == EL1;
 Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
 TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&
 (HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
when EL1
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
when EL2
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';
when EL3
 Enable = SCTLR_EL3.EnIB;
 TrapEL2 = FALSE;
 TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIBKey_EL1, FALSE, '1', is_combined);

aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

// CalculateBottomPACBit()
// ===============

integer CalculateBottomPACBit(bit top_bit)
integer tsz_field;

if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() IN {EL1, EL2};
if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.T0SZ);
 using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0 == '01';
else
 // EL2 translation regime registers
 assert HaveEL(EL2);
 tsz_field = if top_bit == '1' then UInt(TCR_EL2.T1SZ) else UInt(TCR_EL2.T0SZ);
 using64k = if top_bit == '1' then TCR_EL2.TG1 == '11' else TCR_EL2.TG0 == '01';
else
 tsz_field = if PSTATE.EL == EL2 then UInt(TCR_EL3.T0SZ) else UInt(TCR_EL3.T0SZ);
 using64k = if PSTATE.EL == EL2 then TCR_EL2.TG0 == '01' else TCR_EL3.TG0 == '01';
max_limit_tsz_field = (if !HaveSmallPageTblExt() then 39 else if using64k then 47 else 48);
if tsz_field > max_limit_tsz_field then
 // TCR_Elx.TySZ is out of range
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;
 tszmin = if using64k & VAMax() == 52 then 12 else 16;
 if tsz_field < tszmin then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = tszmin;
 return (64-tsz_field);

aarch64/functions/pac/computepac/ComputePAC

array bits(64) RC[0..4];

bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)
 bits(64) workingval;
 bits(64) runningmod;
 bits(64) roundkey;
 bits(64) modk0;
 constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;
 RC[0] = 0x0000000000000000<63:0>;
 RC[1] = 0x13198A2E03707344<63:0>;
 RC[2] = 0xA4093822299F31D0<63:0>;
 RC[3] = 0x082EFA98EC4E6C89<63:0>;
 RC[4] = 0x452821E638D01377<63:0>;
 modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
 runningmod = modifier;
 workingval = data EOR key0;
for i = 0 to 4
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = workingval EOR RC[i];
 if i > 0 then
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 runningmod = TweakShuffle(runningmod<63:0>);
 roundkey = modk0 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = key1 EOR workingval;
 workingval = PACCellInvShuffle(workingval);
 workingval = PACInvSub(workingval);
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
workingval = workingval EOR key0;
workingval = workingval EOR runningmod;
for i = 0 to 4
 workingval = PACInvSub(workingval);
 if i < 4 then
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
runningmod = TweakInvShuffle(runningmod<63:0>);
roundkey = key1 EOR runningmod;
workingval = workingval EOR RC[4-i];
workingval = workingval EOR roundkey;
workingval = workingval EOR Alpha;
workingval = workingval EOR modk0;
return workingval;

aarch64/functions/pac/compute_pac/PACCellInvShuffle

// PACCellInvShuffle()
// ================

bits(64) PACCellInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<15:12>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<51:48>;
outdata<15:12> = indata<39:36>;
outdata<19:16> = indata<59:56>;
outdata<23:20> = indata<47:44>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<19:16>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<31:28>;
outdata<47:44> = indata<11:8>;
outdata<51:48> = indata<23:20>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = indata<63:60>;
return outdata;

aarch64/functions/pac/compute_pac/PACCellShuffle

// PACCellShuffle()
// ===============

bits(64) PACCellShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<55:52>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<47:44>;
outdata<15:12> = indata<3:0>;
outdata<19:16> = indata<31:28>;
outdata<23:20> = indata<51:48>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<19:16>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<31:28>;
outdata<47:44> = indata<11:8>;
outdata<51:48> = indata<23:20>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = indata<63:60>;
return outdata;
aarch64/functions/pac/compute pac/PACInvSub

// PACInvSub()
// ============

bits(64) PACInvSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '0101';
 when '0001' Toutput<4*i+3:4*i> = '1110';
 when '0010' Toutput<4*i+3:4*i> = '1101';
 when '0011' Toutput<4*i+3:4*i> = '1000';
 when '0100' Toutput<4*i+3:4*i> = '1010';
 when '0101' Toutput<4*i+3:4*i> = '1011';
 when '0110' Toutput<4*i+3:4*i> = '0001';
 when '0111' Toutput<4*i+3:4*i> = '1001';
 when '1000' Toutput<4*i+3:4*i> = '0010';
 when '1001' Toutput<4*i+3:4*i> = '0110';
 when '1010' Toutput<4*i+3:4*i> = '1111';
 when '1011' Toutput<4*i+3:4*i> = '0000';
 when '1100' Toutput<4*i+3:4*i> = '0100';
 when '1101' Toutput<4*i+3:4*i> = '1100';
 when '1110' Toutput<4*i+3:4*i> = '0111';
 when '1111' Toutput<4*i+3:4*i> = '0011';
 end case;
return Toutput;

aarch64/functions/pac/compute pac/PACMult

// PACMult()
// ===========

bits(64) PACMult(bits(64) Sinput)
bits(4) t0;
bits(4) t1;
bits(4) t2;
bits(4) t3;
bits(64) Soutput;
for i = 0 to 3
 t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
 t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
 t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
 t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
Soutput<4*i+3:4*i> = t3<3:0>;
Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
Soutput<4*(i)+3:4*(i)> = t1<3:0>;
Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;
return Soutput;

aarch64/functions/pac/compute pac/PACSub

// PACSub()
// =========

bits(64) PACSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '0101';
 when '0001' Toutput<4*i+3:4*i> = '1110';
 when '0010' Toutput<4*i+3:4*i> = '1101';
 when '0011' Toutput<4*i+3:4*i> = '1000';
 when '0100' Toutput<4*i+3:4*i> = '1010';
 when '0101' Toutput<4*i+3:4*i> = '1011';
 when '0110' Toutput<4*i+3:4*i> = '0001';
 when '0111' Toutput<4*i+3:4*i> = '1001';
 when '1000' Toutput<4*i+3:4*i> = '0010';
 when '1001' Toutput<4*i+3:4*i> = '0110';
 when '1010' Toutput<4*i+3:4*i> = '1111';
 when '1011' Toutput<4*i+3:4*i> = '0000';
 when '1100' Toutput<4*i+3:4*i> = '0100';
 when '1101' Toutput<4*i+3:4*i> = '1100';
 when '1110' Toutput<4*i+3:4*i> = '0111';
 when '1111' Toutput<4*i+3:4*i> = '0011';
 end case;
return Toutput;
when '0000' Toutput<4*i+3:4*i> = '1011';
when '0001' Toutput<4*i+3:4*i> = '0110';
when '0010' Toutput<4*i+3:4*i> = '1000';
when '0011' Toutput<4*i+3:4*i> = '1111';
when '0100' Toutput<4*i+3:4*i> = '1100';
when '0101' Toutput<4*i+3:4*i> = '0000';
when '0110' Toutput<4*i+3:4*i> = '1001';
when '0111' Toutput<4*i+3:4*i> = '1110';
when '1000' Toutput<4*i+3:4*i> = '0011';
when '1001' Toutput<4*i+3:4*i> = '0111';
when '1010' Toutput<4*i+3:4*i> = '0100';
when '1011' Toutput<4*i+3:4*i> = '0101';
when '1100' Toutput<4*i+3:4*i> = '1101';
when '1101' Toutput<4*i+3:4*i> = '0010';
when '1110' Toutput<4*i+3:4*i> = '0001';
when '1111' Toutput<4*i+3:4*i> = '1010';
return Toutput;

aarch64/functions/pac/computepac/RotCell

// RotCell()
// ========

bits(4) RotCell(bits(4) incell, integer amount)
bits(8) tmp;
bits(4) outcell;

// assert amount>3 || amount<1;
tmp<7:0> = incell<3:0>:incell<3:0>;
outcell = tmp<7-amount:4-amount>;
return outcell;

aarch64/functions/pac/computepac/TweakCellInvRot

// TweakCellInvRot()
// ================

bits(4) TweakCellInvRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<2>;
outcell<2> = incell<1>;
outcell<1> = incell<0>;
outcell<0> = incell<0> EOR incell<3>;
return outcell;

aarch64/functions/pac/computepac/TweakCellRot

// TweakCellRot()
// ==============

bits(4) TweakCellRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<0> EOR incell<1>;
outcell<2> = incell<3>;
outcell<1> = incell<2>;
outcell<0> = incell<1>;
return outcell;

aarch64/functions/pac/computepac/TweakInvShuffle

// TweakInvShuffle()
// ===============

bits(64) TweakInvShuffle(bits(64) indata)
bits(64) outdata;
```
outdata<3:0> = TweakCellInvRot(indata<51:48>);
outdata<7:4> = indata<55:52>;
outdata<11:8> = indata<23:20>;
outdata<15:12> = indata<27:24>;
outdata<19:16> = indata<3:0>;
outdata<23:20> = indata<7:4>;
outdata<27:24> = TweakCellInvRot(indata<11:8>);
outdata<31:28> = indata<15:12>;
outdata<35:32> = TweakCellInvRot(indata<31:28>);
outdata<39:36> = TweakCellInvRot(indata<63:60>);
outdata<43:40> = TweakCellInvRot(indata<59:56>);
outdata<47:44> = TweakCellInvRot(indata<19:16>);
outdata<51:48> = indata<7:4>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = TweakCellInvRot(indata<47:44>);
return outdata;

aarch64/functions/pac/computepac/TweakShuffle

    // TweakShuffle()
    // ==============
    bits(64) TweakShuffle(bits(64) indata)
    bits(64) outdata;
    outdata<3:0> = indata<19:16>;
    outdata<7:4> = indata<23:20>;
    outdata<11:8> = TweakCellRot(indata<27:24>);
    outdata<15:12> = indata<31:28>;
    outdata<19:16> = TweakCellRot(indata<47:44>);
    outdata<23:20> = indata<11:8>;
    outdata<27:24> = indata<15:12>;
    outdata<31:28> = TweakCellRot(indata<35:32>);
    outdata<35:32> = indata<51:48>;
    outdata<39:36> = indata<55:52>;
    outdata<43:40> = indata<59:56>;
    outdata<47:44> = TweakCellRot(indata<63:60>);
    outdata<51:48> = TweakCellRot(indata<3:0>);
    outdata<55:52> = indata<7:4>;
    outdata<59:56> = TweakCellRot(indata<43:40>);
    outdata<63:60> = TweakCellRot(indata<39:36>);
    return outdata;

aarch64/functions/pac/pac/HaveEnhancedPAC

    // HaveEnhancedPAC()
    // ================
    // Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.
    boolean HaveEnhancedPAC()
    return ( HavePACExt() && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC functionality" );

aarch64/functions/pac/pac/HaveEnhancedPAC2

    // HaveEnhancedPAC2()
    // ================
    // Returns TRUE if support for EnhancedPAC2 is implemented, FALSE otherwise.
    boolean HaveEnhancedPAC2()
    return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC 2 functionality") ;
```
aarch64/functions/pac/pac/HaveFPAC

// HaveFPAC()
//=
// Returns TRUE if support for FPAC is implemented, FALSE otherwise.

boolean HaveFPAC()
return HaveEnhancedPAC2() && boolean IMPLEMENTATION_DEFINED "Has FPAC functionality";

aarch64/functions/pac/pac/HaveFPACCombined

// HaveFPACCombined()
//=
// Returns TRUE if support for FPACCombined is implemented, FALSE otherwise.

boolean HaveFPACCombined()
return HaveFPAC() && boolean IMPLEMENTATION_DEFINED "Has FPAC Combined functionality";

aarch64/functions/pac/pac/HavePACExt

// HavePACExt()
//=
// Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

boolean HavePACExt()
return HasArchVersion(ARMv8p3);

aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

// PtrHasUpperAndLowerAddRanges()
//=
// Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

boolean PtrHasUpperAndLowerAddRanges()
return PSTATE.EL == EL1 || PSTATE.EL == EL0 || (PSTATE.EL == EL2 && HCR_EL2.E2H == '1');

aarch64/functions/pac/strip/Strip

// Strip()
//=
// Strip() returns a 64-bit value containing A, but replacing the pointer authentication
// code field bits with the extension of the address bits. This can apply to either
// instructions or data, where, as the use of tagged pointers is distinct, it might be
// handled differently.

bits(64) Strip(bits(64) A, boolean data)
bits(64) original_ptr;
bright(64) extfield;
boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
tenext_PAC_bit = CalculateBottomPACBit(A<55>);
extfield = Replicate(A<55>, 64);
if tbi then
original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;
else
original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;
return original_ptr;

aarch64/functions/pac/trappacuse/TrapPACUse

// TrapPACUse()
//=
// Used for the trapping of the pointer authentication functions by higher exception
// levels.
TrapPACUse(bits(2) target_el)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
ExceptionRecord exception;
vect_offset = 0;
exception = ExceptionSyndrome(Exception_PACTrap);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/functions/ras/AArch64.ESBOperation

// AArch64.ESBOperation()
// ======================
// Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
// ESB in AArch32 state when SError interrupts are routed to an Exception level using
// AArch64
AArch64.ESBOperation()

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));
target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1;
if target == EL1 then
 mask_active = PSTATE.EL IN {EL0, EL1};
elsif HaveVirtHostExt() && target == EL2 && HCR_EL2.<E2H,TGE> == '11' then
 mask_active = PSTATE.EL IN {EL0, EL2};
else
 mask_active = PSTATE.EL == target;

mask_set = (PSTATE.A == '1' && (!HaveDoubleFaultExt() || SCR_EL3.EA == '0') ||
 PSTATE.EL != EL3 || SCR_EL3.NMEA == '0'));
intdis = Halted() || ExternalDebugInterruptsDisabled(target);
masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked && IsSynchronizablePhysicalSErrorPending() then
 // This function might be called for an interworking case, and INTdis is masking
 // the SError interrupt.
 if ELUsingAArch32(S1TranslationRegime()) then
 syndrome32 = AArch32.PhysicalSErrorSyndrome();
 DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
 else
 implicit_esb = FALSE;
 syndrome64 = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 DISR_EL1 = AArch64.ReportDeferredSError(syndrome64]<31:0>;
 ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

return;

aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

// Return the SError syndrome
bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

aarch64/functions/ras/AArch64.ReportDeferredSError

// AArch64.ReportDeferredSError()
// ==============================
// Generate deferred SError syndrome
ARMv8 Pseudocode

J1.1 Pseudocode for AArch64 operation

bits(64) AArch64_ReportDeferredSError(bits(25) syndrome)
bits(64) target;
target<31> = '1'; // A
target<24> = syndrome<24>; // IDS
target<23:0> = syndrome<23:0>; // ISS
return target;

aarch64/functions/ras/AArch64.vESBOperation

// AArch64.vESBOperation()
// ================
// Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
// executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

AArch64.vESBOperation()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

// If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
// SError interrupt might be pending
vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then
 // This function might be called for the interworking case, and INTdis is masking
 // the virtual SError interrupt.
 if ELUsingAArch32(EL1) then
 VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
 else
 VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0><31:0>);
 HCR_EL2.VSE = '0'; // Clear pending virtual SError

return;

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

// AArch64.MaybeZeroRegisterUppers()
// =========================
// On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
// 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

AArch64.MaybeZeroRegisterUppers()
assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 first = 0; last = 14; include_R15 = FALSE;
elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
 first = 0; last = 30; include_R15 = FALSE;
else
 first = 0; last = 30; include_R15 = TRUE;
for n = first to last
 if (n != 15 || include_R15) && ConstrainUnpredictableBool() then
 _R[n][63:32] = Zeros();
return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

// AArch64.ResetGeneralRegisters()
// ==========================

AArch64.ResetGeneralRegisters()
for i = 0 to 30
 X[i] = bits(64) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

// AArch64.ResetSIMDFPRegisters()
// ==============================

AArch64.ResetSIMDFPRegisters()

for i = 0 to 31
 V[i] = bits(128) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSpecialRegisters

// AArch64.ResetSpecialRegisters()
// ==============================

AArch64.ResetSpecialRegisters()

// AArch64 special registers
SP_EL0 = bits(64) UNKNOWN;
SP_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(32) UNKNOWN;
ELR_EL1 = bits(64) UNKNOWN;
if HaveEL(EL2) then
 SP_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(32) UNKNOWN;
 ELR_EL2 = bits(64) UNKNOWN;
if HaveEL(EL3) then
 SP_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(32) UNKNOWN;
 ELR_EL3 = bits(64) UNKNOWN;

// AArch32 special registers that are not architecturally mapped to AArch64 registers
if HaveAArch32EL(EL1) then
 SPSR_fiq = bits(32) UNKNOWN;
 SPSR_irq = bits(32) UNKNOWN;
 SPSR_abt = bits(32) UNKNOWN;
 SPSR_und = bits(32) UNKNOWN;

// External debug special registers
DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;

return;

aarch64/functions/registers/AArch64.ResetSystemRegisters

AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC

// PC - non-assignment form
// =========================
// Read program counter.

bits(64) PC[]
 return _PC;
aarch64/functions/registers/SP

// SP[] - assignment form
// ======================
// Write to stack pointer from either a 32-bit or a 64-bit value.

SP[] = bits(width) value
assert width IN {32,64};
if PSTATE.SP == '0' then
 SP_EL0 = ZeroExtend(value);
else
case PSTATE.EL of
 when EL0 SP_EL0 = ZeroExtend(value);
 when EL1 SP_EL1 = ZeroExtend(value);
 when EL2 SP_EL2 = ZeroExtend(value);
 when EL3 SP_EL3 = ZeroExtend(value);
return;

// SP[] - non-assignment form
// =========================
// Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

bits(width) SP[]
assert width IN {8,16,32,64};
if PSTATE.SP == '0' then
 return SP_EL0<width-1:0>;
else
case PSTATE.EL of
 when EL0 return SP_EL0<width-1:0>;
 when EL1 return SP_EL1<width-1:0>;
 when EL2 return SP_EL2<width-1:0>;
 when EL3 return SP_EL3<width-1:0>;

aarch64/functions/registers/V

// V[] - assignment form
// =====================
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
integer vlen = if IsSVEEnabled(PSTATE.EL) then VL else 128;
if ConstrainUnpredictableBool() then
 _Z[n] = ZeroExtend(value);
else
 _Z[n]<vlen-1:0> = ZeroExtend(value);

// V[] - non-assignment form
// =========================
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
return _Z[n]<width-1:0>;

aarch64/functions/registers/Vpart

// Vpart[] - non-assignment form
// =============================
// Reads a 128-bit SIMD&FP register in up to two parts:
// part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
// part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit

// aarch64/functions/registers/SP
// aarch64/functions/registers/V
// aarch64/functions/registers/Vpart
// value held in the register.

bits(width) Vpart[integer n, integer part]
assert n >= 0 & n <= 31;
assert part IN {0, 1};
if part == 0 then
assert width < 128;
return V[n];
else
assert width IN {32, 64};
bits(128) vreg = V[n];
return vreg<(width + 2)-1:width>;

// Vpart[] - assignment form
// ============
// Writes a 128-bit SIMD&FP register in up to two parts:
// part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top half of the register.

Vpart[integer n, integer part] = bits(width) value
assert n >= 0 & n <= 31;
assert part IN {0, 1};
if part == 0 then
assert width < 128;
V[n] = value;
else
assert width == 64;
bits(64) vreg = V[n];
V[n] = value<63:0> : vreg;

aarch64/functionsregisters/X

// X[] - assignment form
// ============
// Write to general-purpose register from either a 32-bit or a 64-bit value.

X[integer n] = bits(width) value
assert n >= 0 & n <= 31;
assert width IN {32,64};
if n != 31 then
_R[n] = ZeroExtend(value);
return;

// X[] - non-assignment form
// ============
// Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n]
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64};
if n != 31 then
return _R[n]<width-1:0>;
else
return Zeros(width);

aarch64/functions/sve/AArch32.IsFPEnabled

// AArch32.IsFPEnabled()
// ============
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch32 state and FALSE otherwise.

boolean AArch32.IsFPEnabled(bits(2) el)
if el == EL0 & !ELUsingAArch32(EL1) then
return AArch64.IsFPEnabled(el);
if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.cp10 == '0' then return FALSE;

if el IN {EL0, EL1} then
 // Check if access disabled in CPACR
 case CPACR.cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '10' disabled = ConstraiUnpredictableBool();
 when '11' disabled = FALSE;
 if disabled then return FALSE;

if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if !ELUsingAArch32(EL2) then
 return AArch64.IsFPEnabled(EL2);
 if HCPTR.TCP10 == '1' then return FALSE;

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
 // Check if access disabled in CPTR_EL3
 if CPTR_EL3.TFP == '1' then return FALSE;
 return TRUE;

aarch64/functions/sve/AArch64.IsFPEnabled

// AArch64.IsFPEnabled()
// ---------------------
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch64 state and FALSE otherwise.

boolean AArch64.IsFPEnabled(bits(2) el)
 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check FP6SIMO at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;

 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TFP == '1' then return FALSE;

 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.TFP == '1' then return FALSE;
 return TRUE;

aarch64/functions/sve/CeilPow2

// CeilPow2()
// =========
// For a positive integer X, return the smallest power of 2 >= X

integer CeilPow2(integer x)
if x == 0 then return 0;
if x == 1 then return 2;
return FloorPow2(x - 1) * 2;

aarch64/functions/sve/CheckSVEEnabled

// CheckSVEEnabled()
// ===============
// Checks for traps on SVE instructions and instructions that
// access SVE System registers.

CheckSVEEnabled()
// Check if access disabled in CPACR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL1);

 // Check SIMD&FP at EL0/EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

// Check if access disabled in CPTR_EL2
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 // Check SVE at EL2
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then SVEAccessTrap(EL2);

 // Check SIMD&FP at EL2
 case CPTR_EL2.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
 else
 if CPTR_EL2.TZ == '1' then SVEAccessTrap(EL2);
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then SVEAccessTrap(EL3);
 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

aarch64/functions/sve/DecodePredCount

// DecodePredCount()
// ===============

integer DecodePredCount(bits(5) pattern, integer esize)
integer elements = VL DIV esize;
integer numElem;
case pattern of
 when '00000' numElem = FloorPow2(elements);
 when '00001' numElem = if elements >= 1 then 1 else 0;
 when '00010' numElem = if elements >= 2 then 2 else 0;
 when '00011' numElem = if elements >= 3 then 3 else 0;

when '00100' numElem = if elements >= 4 then 4 else 0;
when '00101' numElem = if elements >= 5 then 5 else 0;
when '00110' numElem = if elements >= 6 then 6 else 0;
when '00111' numElem = if elements >= 7 then 7 else 0;
when '01000' numElem = if elements >= 8 then 8 else 0;
when '01001' numElem = if elements >= 16 then 16 else 0;
when '01010' numElem = if elements >= 32 then 32 else 0;
when '01011' numElem = if elements >= 64 then 64 else 0;
when '01100' numElem = if elements >= 128 then 128 else 0;
when '01101' numElem = if elements >= 256 then 256 else 0;
when '11101' numElem = elements - (elements MOD 4);
when '11110' numElem = elements - (elements MOD 3);
when '11111' numElem = elements;
otherwise numElem = 0;
return numElem;

aarch64/functions/sve/ElemFFR

// ElemFFR[] - non-assignment form
// ================

bit ElemFFR[integer e, integer esize]
return ElemP[_FFR, e, esize];

// ElemFFR[] - assignment form
// ================

ElemFFR[integer e, integer esize] = bit value
integer psize = esize DIV 8;
integer n = e * psize;
assert n >= 0 && (n + psize) <= PL;
_FFRe<n+psize-1:n> = ZeroExtend(value, psize);
return;

aarch64/functions/sve/ElemP

// ElemP[] - non-assignment form
// ===============

bit ElemP[bits(N) pred, integer e, integer esize]
integer n = e * (esize DIV 8);
assert n >= 0 && n < N;
return pred<n>;

// ElemP[] - assignment form
// ===============

ElemP[bits(N) &pred, integer e, integer esize] = bit value
integer psize = esize DIV 8;
integer n = e * psize;
assert n >= 0 && (n + psize) <= N;
pred<n+psize-1:n> = ZeroExtend(value, psize);
return;

aarch64/functions/sve/FFR

// FFR[] - non-assignment form
// ===============

bits(width) FFR[]
assert width == PL;
return _FFR<width-1:0>;

// FFR[] - assignment form
// ===============
FFR[] = bits(width) value
 assert width == PL;
 if ConstrainUnpredictableBool() then
 _FFR = ZeroExtend(value);
 else
 _FFR<width-1:0> = value;

aarch64/functions/sve/FPCompareNE

// FPCompareNE()
// =============

boolean FPCompareNE(bits(N) op1, bits(N) op2, FPCRTYPE fp cr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
 op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
 if op1_nan || op2_nan then
 result = TRUE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 != value2);
 return result;

aarch64/functions/sve/FPCompareUN

// FPCompareUN()
// =============

boolean FPCompareUN(bits(N) op1, bits(N) op2, FPCRTYPE fp cr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 return type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN};

aarch64/functions/sve/FPConvertSVE

// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRTYPE fp cr, FPRounding rounding)
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, rounding);
// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRTYPE fp cr)
 fpcr.AHP = '0';
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

aarch64/functions/sve/FPExpA

// FPExpA()
// =========

bits(N) FPExpA(bits(N) op)
 assert N IN {16,32,64};
bits(N) result;
bits(N) coeff;
integer idx = if N == 16 then UInt(op<4:0>) else UInt(op<5:0>);
 coeff = FPExpCoefficient[idx];
if N == 16 then
 result<15:0> = '0':op<9:5>:coeff<9:0>;
elsif N == 32 then
 result<31:0> = '0':op<13:6>:coeff<22:0>;
else // N == 64
 result<63:0> = '0':op<16:6>:coeff<51:0>;
return result;

aarch64/functions/sve/FPExpCoefficient

// FPExpCoefficient()
// ================

bits(N) FPExpCoefficient[integer index]
assert N IN {16,32,64};
integer result;
if N == 16 then
case index of
 when 0 result = 0x0000;
 when 1 result = 0x0016;
 when 2 result = 0x002c;
 when 3 result = 0x0045;
 when 4 result = 0x005d;
 when 5 result = 0x0075;
 when 6 result = 0x008e;
 when 7 result = 0x00a8;
 when 8 result = 0x00c2;
 when 9 result = 0x00dc;
 when 10 result = 0x00f8;
 when 11 result = 0x0114;
 when 12 result = 0x0130;
 when 13 result = 0x014d;
 when 14 result = 0x016b;
 when 15 result = 0x0189;
 when 16 result = 0x01a8;
 when 17 result = 0x01c8;
 when 18 result = 0x01e8;
 when 19 result = 0x0209;
 when 20 result = 0x022b;
 when 21 result = 0x024e;
 when 22 result = 0x0271;
 when 23 result = 0x0295;
 when 24 result = 0x02ba;
 when 25 result = 0x02e0;
 when 26 result = 0x0306;
 when 27 result = 0x032e;
 when 28 result = 0x0356;
 when 29 result = 0x037f;
 when 30 result = 0x03a9;
 when 31 result = 0x03d4;
elsif N == 32 then
 case index of
 when 0 result = 0x000000;
 when 1 result = 0x0164d2;
 when 2 result = 0x02cd87;
 when 3 result = 0x043a29;
 when 4 result = 0x05aac3;
 when 5 result = 0x071f62;
 when 6 result = 0x08980f;
 when 7 result = 0x0a14d5;
when 8 result = 0xb95c2;
when 9 result = 0xd1adf;
when 10 result = 0xea43a;
when 11 result = 0x1031dc;
when 12 result = 0x11c3d3;
when 13 result = 0x135a2b;
when 14 result = 0x14f4f0;
when 15 result = 0x16942d;
when 16 result = 0x1837f0;
when 17 result = 0x19e046;
when 18 result = 0x1bd85a;
when 19 result = 0x1d3eda;
when 20 result = 0x1ef532;
when 21 result = 0x20b051;
when 22 result = 0x227043;
when 23 result = 0x243516;
when 24 result = 0x25fed7;
when 25 result = 0x27cd94;
when 26 result = 0x29a15b;
when 27 result = 0x2b73a9;
when 28 result = 0x2d583f;
when 29 result = 0x2f3b79;
when 30 result = 0x3123f6;
when 31 result = 0x3311c4;
when 32 result = 0x3504f3;
when 33 result = 0x36fd92;
when 34 result = 0x388baf;
when 35 result = 0x3aff5b;
when 36 result = 0x3d88a4;
when 37 result = 0x3f179a;
when 38 result = 0x412c4d;
when 39 result = 0x4346cd;
when 40 result = 0x45672a;
when 41 result = 0x478d75;
when 42 result = 0x49b09b;
when 43 result = 0x4bec15;
when 44 result = 0x4e248c;
when 45 result = 0x506334;
when 46 result = 0x52a81e;
when 47 result = 0x54f35b;
when 48 result = 0x5744fd;
when 49 result = 0x599d16;
when 50 result = 0x5afbb8;
when 51 result = 0x5e0f55;
when 52 result = 0x60ccdf;
when 53 result = 0x63f899;
when 54 result = 0x65b907;
when 55 result = 0x68396a;
when 56 result = 0x6ac0c7;
when 57 result = 0x6d4f30;
when 58 result = 0x6fe40a;
when 59 result = 0x728177;
when 60 result = 0x75257d;
when 61 result = 0x77d0df;
when 62 result = 0x7a83b3;
when 63 result = 0x7d3e0c;

else // N == 64
 case index of
 when 0 result = 0x00000000000000;
 when 1 result = 0x02c937e778061;
 when 2 result = 0x05980d1558574;
 when 3 result = 0x08745187899c8;
 when 4 result = 0x0b5586cf9890f;
 when 5 result = 0x0e3c32d3da;
 when 6 result = 0x11301d0125b51;
 when 7 result = 0x1429aae92de0;
 when 8 result = 0x172883c70517b;

J1-7682 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. Non-Confidential
when 9 result = 0xA35BEB6FCB75;
when 10 result = 0xD47168894A;
when 11 result = 0x2063B8628CD6;
when 12 result = 0x2387A6E756238;
when 13 result = 0x26B456E27CD6;
when 14 result = 0x29E9DF51FDEE1;
when 15 result = 0x2D285A6E4030B;
when 16 result = 0x306FE0A31B715;
when 17 result = 0x33C08B26416FF;
when 18 result = 0x371A733AA9CB;
when 19 result = 0x3A70B3459FF77;
when 20 result = 0x3DEA64C123422;
when 21 result = 0x4160A21F72E2A;
when 22 result = 0x44E0866E1892D;
when 23 result = 0x46A25C13CD0;
when 24 result = 0x48625C13CD0;
when 25 result = 0x4F9B276902CA7;
when 26 result = 0x5342856904FB2;
when 27 result = 0x56F47368527DA;
when 28 result = 0x5A0B0D485429;
when 29 result = 0x5E76515A02148;
when 30 result = 0x6247E00A5585;
when 31 result = 0x6623B82552225;
when 32 result = 0x6A9F667F38CD;
when 33 result = 0x6DF823C651A2F;
when 34 result = 0x71F75E8EC5F74;
when 35 result = 0x75FEB56267C9;
when 36 result = 0x7A11473EB0187;
when 37 result = 0x7E2F36C4A62;
when 38 result = 0x82539994CCE13;
when 39 result = 0x86D9984492ED;
when 40 result = 0x84CE5422A40B;
when 41 result = 0x8F1AE99157736;
when 42 result = 0x93737B0D5C5E5;
when 43 result = 0x97D829FDE4E50;
when 44 result = 0x9C491AW23F090;
when 45 result = 0xA0C66785E655;
when 46 result = 0xA5503321E25D;
when 47 result = 0xA9E685579FDBF;
when 48 result = 0xAE8999503AD;
when 49 result = 0xB3A2B884F15FB;
when 50 result = 0xB776F2F5E47;
when 51 result = 0xBC1E9048C1D2;
when 52 result = 0xC1990DD8529C;
when 53 result = 0xC67F1257D14B;
when 54 result = 0xCB720DCE9069;
when 55 result = 0xD0720D48797C;
when 56 result = 0xD5B18CE4A87;
when 57 result = 0xA9E683BD3285;
when 58 result = 0xDCF9737B985F;
when 59 result = 0xE594D7B3FFF;
when 60 result = 0xEA44F2A490DA;
when 61 result = 0xEF21E9615A27;
when 62 result = 0xF5976586E4540;
when 63 result = 0xFA7C1B1990D8;
return result<<N-1:0;
```c
exp = Zeros(E-1):'1';
frac = Zeros(F);
return sign : exp : frac;
```

```c
aarch64/functions/sve/FPOne
// FPOne()
// ========
bits(N) FPOne(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = Zeros(F);
return sign : exp : frac;
```

```c
aarch64/functions/sve/FPPointFive
// FPPointFive()
// =============
bits(N) FPPointFive(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-2):'0';
frac = Zeros(F);
return sign : exp : frac;
```

```c
aarch64/functions/sve/FPProcess
// FPProcess()
// ===========
bits(N) FPProcess(bits(N) input)
bits(N) result;
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(input, FPCR);
if fptype == FPType_SNaN || fptype == FPType_QNaN then
    result = FPProcessNaN(fptype, input, FPCR);
elsif fptype == FPType_Infinity then
    result = FPInfinity(sign);
elsif fptype == FPType_Zero then
    result = FPZero(sign);
else
    result = FPRound(value, FPCR);
return result;
```

```c
aarch64/functions/sve/FPScale
// FPScale()
// =========
bits(N) FPScale(bits(N) op, integer scale, FPCRType fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);
if fptype == FPType_SNaN || fptype == FPType_QNaN then
    result = FPProcessNaN(fptype, op, fpcr);
elsif fptype == FPType_Infinity then
    result = FPInfinity(sign);
elsif fptype == FPType_Zero then
    result = FPZero(sign);
else
    result = FPRound(value, FPCR);
return result;
```
result = FPInfinity(sign);
else
 result = FPRound(value * (2.0^scale), fpcr);
return result;

aarch64/functions/sve/FPTrigMAdd

// FPTrigMAdd()
// ============

bits(N) FPTrigMAdd(integer x, bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 assert x >= 0;
 assert x < 8;
 bits(N) coeff;
 if op2<N-1> == '1' then
 x = x + 8;
 op2<N-1> = '0';
 coeff = FPTrigMAddCoefficient[x];
 result = FPMulAdd(coeff, op1, op2, fpcr);
return result;

aarch64/functions/sve/FPTrigMAddCoefficient

// FPTrigMAddCoefficient()
// =======================

bits(N) FPTrigMAddCoefficient[integer index]
 assert N IN {16,32,64};
 integer result;
 if N == 16 then
 case index of
 when 0 result = 0x3c00;
 when 1 result = 0xb155;
 when 2 result = 0x2030;
 when 3 result = 0x0000;
 when 4 result = 0x0000;
 when 5 result = 0x0000;
 when 6 result = 0x0000;
 when 7 result = 0x0000;
 when 8 result = 0x3c00;
 when 9 result = 0xb800;
 when 10 result = 0x293a;
 when 11 result = 0x0000;
 when 12 result = 0x0000;
 when 13 result = 0x0000;
 when 14 result = 0x0000;
 when 15 result = 0x0000;
 elsif N == 32 then
 case index of
 when 0 result = 0x3f800000;
 when 1 result = 0xbe2aaaab;
 when 2 result = 0x3c088886;
 when 3 result = 0xb95008b9;
 when 4 result = 0x36369d6d;
 when 5 result = 0x00000000;
 when 6 result = 0x00000000;
 when 7 result = 0x00000000;
 when 8 result = 0x3f800000;
 when 9 result = 0xbf000000;
 when 10 result = 0x3d2aaaa6;
when 11 result = 0xbab60705;
when 12 result = 0x37cd37cc;
when 13 result = 0x00000000;
when 14 result = 0x00000000;
when 15 result = 0x00000000;
else // N == 64
 case index of
 when 0 result = 0x3ff0000000000000;
 when 1 result = 0xbfc5555555555543;
 when 2 result = 0x3f8111111111f30c;
 when 3 result = 0xbf2a01a019b92fc6;
 when 4 result = 0x3ec71de351f3d22b;
 when 5 result = 0xbe5ae5e260f7b91;
 when 6 result = 0x3de5d8408868552f;
 when 7 result = 0x0000000000000000;
 when 8 result = 0x3ff0000000000000;
 when 9 result = 0xbfe0000000000000;
 when 10 result = 0x3fa5555555555536;
 when 11 result = 0xbf56c16c16c13a0b;
 when 12 result = 0x3efa01a019b1e8d8;
 when 13 result = 0xbe927e4f72b2f468;
 when 14 result = 0x3e21ee96d2641b13;
 when 15 result = 0xbda8f7630f8b401;

return result<N-1:0>;

aarch64/functions/sve/FPTrigSMul

 // FPTrigSMul()
 // =============

 bits(N) FPTrigSMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 result = FPMul(op1, op2, fpcr);
 (fptype, sign, value) = FPUnpack(result, fpcr);

 if (fptype != FPTYPE_QNaN) && (fptype != FPTYPE_SNaN) then
 result<N-1> = op2<0>;
 return result;

aarch64/functions/sve/FPTrigSSel

 // FPTrigSSel()
 // =============

 bits(N) FPTrigSSel(bits(N) op1, bits(N) op2)
 assert N IN {16,32,64};
 bits(N) result;

 if op2<0> == '1' then
 result = FPOne(op2<1>);
 else
 result = op1;
 result<N-1> = result<N-1> EOR op2<1>;

 return result;

aarch64/functions/sve/FirstActive

 // FirstActive()
 // =============

 bit FirstActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
for e = 0 to elements-1
 if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
 return '0';

aarch64/functions/sve/FloorPow2

// FloorPow2()
// ===========
// For a positive integer X, return the largest power of 2 <= X

toFloorPow2(integer x)
 assert x >= 0;
 integer n = 1;
 if x == 0 then return 0;
 while x >= 2^n do
 n = n + 1;
 return 2^n(n - 1);

aarch64/functions/sve/HaveSVE

// HaveSVE()
// =========

boolean HaveSVE()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Have SVE ISA";

aarch64/functions/sve/HaveSVEFP32MatMulExt

// HaveSVEFP32MatMulExt()
// ======================
// Returns TRUE if single-precision floating-point matrix multiply instruction support implemented and
// FALSE otherwise.

boolean HaveSVEFP32MatMulExt()
 return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP32 Matrix Multiply extension";

aarch64/functions/sve/HaveSVEFP64MatMulExt

// HaveSVEFP64MatMulExt()
// ======================
// Returns TRUE if double-precision floating-point matrix multiply instruction support implemented and
// FALSE otherwise.

boolean HaveSVEFP64MatMulExt()
 return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP64 Matrix Multiply extension";

aarch64/functions/sve/ImplementedSVEVectorLength

// ImplementedSVEVectorLength()
// ============================
// Reduce SVE vector length to a supported value (e.g. power of two)

integer ImplementedSVEVectorLength(integer nbits)
 return integer IMPLEMENTATION_DEFINED;

aarch64/functions/sve/IsEven

// IsEven()
// ========

boolean IsEven(integer val)
 return val MOD 2 == 0;
aarch64/functions/sve/IsFPEnabled

// IsFPEnabled()
// =============
// Returns TRUE if accesses to the Advanced SIMD and floating-point
// registers are enabled at the target exception level in the current
// execution state and FALSE otherwise.

boolean IsFPEnabled(bits(2) el)
 if ELUsingAArch32(el) then
 return AArch32.IsFPEnabled(el);
 else
 return AArch64.IsFPEnabled(el);

aarch64/functions/sve/IsSVEEnabled

// IsSVEEnabled()
// ==============
// Returns TRUE if access to SVE instructions and System registers is
// enabled at the target exception level and FALSE otherwise.

boolean IsSVEEnabled(bits(2) el)
 if ELUsingAArch32(el) then
 return FALSE;
 // Check if access disabled in CPACR_EL1
 if el IN {EL0, EL1} && !IsInHost() then
 // Check SVE at EL0/EL1
 case CPACR_EL1.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0;
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 // Check if access disabled in CPTR_EL2
 if el IN {EL0, EL1, EL2} && EL2Enabled() then
 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
 case CPTR_EL2.ZEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
 when '11' disabled = FALSE;
 if disabled then return FALSE;
 else
 if CPTR_EL2.TZ == '1' then return FALSE;
 // Check if access disabled in CPTR_EL3
 if HaveEL(EL3) then
 if CPTR_EL3.EZ == '0' then return FALSE;
 return TRUE;

aarch64/functions/sve/LastActive

// LastActive()
// ============

bit LastActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = elements-1 downto 0
 if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
 return '0';
aarch64/functions/sve/LastActiveElement

// LastActiveElement()
// ===================

integer LastActiveElement(bits(N) mask, integer esize)
assert esize IN {8, 16, 32, 64};
integer elements = VL DIV esize;
for e = elements-1 downto 0
if ElemP[mask, e, esize] == '1' then return e;
return -1;

aarch64/functions/sve/MAX_PL

constant integer MAX_PL = 256;

aarch64/functions/sve/MAX_VL

constant integer MAX_VL = 2048;

aarch64/functions/sve/MaybeZeroSVEUppers

// MaybeZeroSVEUppers()
// ====================

MaybeZeroSVEUppers(bits(2) target_el)
boolean lower_enabled;

if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
return;
if target_el == EL3 then
if EL2Enabled() then
lower_enabled = IsFPEnabled(EL2);
else
lower_enabled = IsFPEnabled(EL1);
escif target_el == EL2 then
assert !ELUsingAArch32(EL2);
if HCR_EL2.TGE == '0' then
lower_enabled = IsFPEnabled(EL1);
else
lower_enabled = IsFPEnabled(EL0);
else
assert target_el == EL1 && !ELUsingAArch32(EL1);
lower_enabled = IsFPEnabled(EL0);
if lower_enabled then
integer vl = if IsSVEEnabled(PSTATE.EL) then VL else 128;
integer pl = vl DIV 8;
for n = 0 to 31
if ConstrainUnpredictableBool() then
_Z[n] = ZeroExtend(_Z[n]<vl-1:0>);
for n = 0 to 15
if ConstrainUnpredictableBool() then
_P[n] = ZeroExtend(_P[n]<pl-1:0>);
if ConstrainUnpredictableBool() then
_FFR = ZeroExtend(_FFR<pl-1:0>);

aarch64/functions/sve/MemNF

// MemNF[] - non-assignment form
// =============================

(bits(8*size), boolean) MemNF[(bits(64) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};
bits(8*size) value;
aligned = (address == Align(address, size));
A = SCTLR[].A;
if !aligned && (A == '1') then
 return (bits(8*size) UNKNOWN, TRUE);
atomic = aligned || size == 1;
if !atomic then
 (value<7:0>, bad) = MemSingleNF[address, 1, acctype, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 (value, bad) = MemSingleNF[address, size, acctype, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 (value, bad) = MemSingleNF[address, size, acctype, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 (value, bad) = MemSingleNF[address, size, acctype, aligned];
 if bad then
 return (bits(8*size) UNKNOWN, TRUE);
 else
 return (value, FALSE);

aarch64/functions/sve/MemSingleNF

// MemSingleNF[] - non-assignment form
// --
(bits(8*size), boolean) MemSingleNF[bits(64) address, integer size, AccType acctype, boolean wasaligned]
bits(8*size) value;
boolean iswrite = FALSE;
AddressDescriptor memaddrdesc;
// Implementation may suppress NF load for any reason
if ConstrainUnpredictableBool() then
 return (bits(8*size) UNKNOWN, TRUE);
// MMU or MPU
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Non-fault load from Device memory must not be performed externally
if memaddrdesc.memattr.memtype == MemType_Device then
 return (bits(8*size) UNKNOWN, TRUE);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 return (bits(8*size) UNKNOWN, TRUE);
// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTEExt() then

if AArch64.AccessIsTagChecked(address, acctype) then
 bits(4) ptag = AArch64.PhysicalTag(address);
 if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
 return (bits(8*size) UNKNOWN, TRUE);
 value = _Mem[memaddrdesc, size, accdesc];
 return (value, FALSE);

aarch64/functions/sve/NoneActive

 // NoneActive()
 // ===========
 bit NoneActive(bits(N) mask, bits(N) x, integer esize)
 integer elements = N DIV (esize DIV 8);
 for e = 0 to elements-1
 if ElemP[mask, e, esize] == '1' && ElemP[x, e, esize] == '1' then return '0';
 return '1';

aarch64/functions/sve/P

 // P[] - non-assignment form
 // ================
 bits(width) P[integer n]
 assert n >= 0 && n <= 31;
 assert width == PL;
 return _P[n]<width-1:0>;

 // P[] - assignment form
 // ===============
 P[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width == PL;
 if ConstrainUnpredictableBool() then
 _P[n] = ZeroExtend(value);
 else
 _P[n]<width-1:0> = value;

aarch64/functions/sve/PL

 // PL - non-assignment form
 // ===========
 integer PL
 return VL DIV 8;

aarch64/functions/sve/PredTest

 // PredTest()
 // ===========
 bits(4) PredTest(bits(N) mask, bits(N) result, integer esize)
 bit n = FirstActive(mask, result, esize);
 bit z = NoneActive(mask, result, esize);
 bit c = NOT LastActive(mask, result, esize);
 bit v = '0';
 return n:z:c:v;
aarch64/functions/sve/ReducePredicated

```c
// ReducePredicated()
// ================

bits(esize) ReducePredicated(ReduceOp op, bits(N) input, bits(M) mask, bits(esize) identity)
assert(N == M * 8);
integer p2bits = CeilPow2(N);
bits(p2bits) operand;
integer elements = p2bits DIV esize;

for e = 0 to elements-1
    if e * esize < N && ElemP[mask, e, esize] == '1' then
        Elem[operand, e, esize] = Elem[input, e, esize];
    else
        Elem[operand, e, esize] = identity;

return Reduce(op, operand, esize);
```

aarch64/functions/sve/Reverse

```c
// Reverse()
// =========

// Reverse subwords of M bits in an N-bit word

bits(N) Reverse(bits(N) word, integer M)
bits(N) result;
integer sw = N DIV M;
assert N == sw * M;
for s = 0 to sw-1
    Elem[result, sw - 1 - s, M] = Elem[word, s, M];
return result;
```

aarch64/functions/sve/SVEAccessTrap

```c
// SVEAccessTrap()
// ===============

// Trapped access to SVE registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

SVEAccessTrap(bits(2) target_el)
assert UInt(target_el) >= UInt(PSTATE.EL) && target_el != EL0 && HaveEL(target_el);
route_to_el2 = target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';
exception = ExceptionSyndrome(Exception_SVEAccessTrap);
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if route_to_el2 then
    AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
else
    AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
```

aarch64/functions/sve/SVECmp

```c
enumeration SVECmp { Cmp_EQ, Cmp_NE, Cmp_GE, Cmp_GT, Cmp_LT, Cmp_LE, Cmp_UN };
```

aarch64/functions/sve/SVEMoveMaskPreferred

```c
// SVEMoveMaskPreferred()
// ==============

// Return FALSE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single DUP instruction.
// Used as a condition for the preferred MOV<-DUPM alias.

boolean SVEMoveMaskPreferred(bits(13) imm13)
bits(64) imm;
(imm, -) = \text{DecodeBitMasks}(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

// Check for 8 bit immediates
if !\text{IsZero}(imm<7:0>) then
  // Check for 'ffffffffffffffffxy' or '00000000000000xy'
  if \text{IsZero}(imm<63:7>) || \text{IsOnes}(imm<63:7>) then
    return FALSE;

  // Check for 'ffffffffxyffff00000000xy'
  if imm<63:32> == imm<31:0> && (\text{IsZero}(imm<31:7>) || \text{IsOnes}(imm<31:7>)) then
    return FALSE;

  // Check for 'ffffffxyffffffxy0000000000xy'
    \text{IsOnes}(imm<15:7>)) then
    return FALSE;

// Check for 16 bit immediates
else
  // Check for 'ffffffffffff00000000xy00' or '000000000000xy00'
  if \text{IsZero}(imm<63:15>) || \text{IsOnes}(imm<63:15>) then
    return FALSE;

  // Check for 'ffff00000000xy0000xy00' or '0000xy000000xy0000xy00'
  if imm<63:32> == imm<31:0> && (\text{IsZero}(imm<31:7>) || \text{IsOnes}(imm<31:7>)) then
    return FALSE;

  // Check for 'xy0000000000xy0000xy00'
  if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> then
    return FALSE;

return TRUE;

aarch64/functions/sve/System

array bits(MAX_VL) _Z[0..31];
array bits(MAX_PL) _P[0..15];
bits(MAX_PL) _FFR;

aarch64/functions/sve/VL

// VL - non-assignment form
// ================

integer VL
  integer vl;

if PSTATE.EL == EL1 || (PSTATE.EL == EL0 & !\text{IsInHost}) then
  vl = UInt(ZCR_EL1.LEN);

if PSTATE.EL == EL2 || (PSTATE.EL == EL0 & \text{IsInHost}) then
  vl = UInt(ZCR_EL2.LEN);
elsif PSTATE.EL \in \{EL0, EL1\} && EL2Enabled() then
  vl = Min(vl, UInt(ZCR_EL2.LEN));

if PSTATE.EL == EL3 then
  vl = UInt(ZCR_EL3.LEN);
elsif HaveEL(EL3) then
  vl = Min(vl, UInt(ZCR_EL3.LEN));

vl = (vl + 1) * 128;
vl = ImplementedSVEVectorLength(vl);
return vl;

aarch64/functions/sve/Z

// Z[] - non-assignment form
// =========================

bits(width) Z[integer n]
  assert n >= 0 && n <= 31;
  assert width == VL;
  return _Z[n]<width-1:0>;

// Z[] - assignment form
// =====================

Z[integer n] = bits(width) value
  assert n >= 0 && n <= 31;
  assert width == VL;
  if ConstranUnpredictableBool() then
    _Z[n] = ZeroExtend(value);
  else
    _Z[n]<width-1:0> = value;

aarch64/functions/sysregisters/CNTKCTL

// CNTKCTL[] - non-assignment form
// ===============================

CNTKCTLType CNTKCTL[]
  bits(32) r;
  if IsInHost() then
    r = CNTHCTL_EL2;
    return r;
  r = CNTKCTL_EL1;
  return r;

aarch64/functions/sysregisters/CNTKCTLType

type CNTKCTLType;

aarch64/functions/sysregisters/CPACR

// CPACR[] - non-assignment form
// =============================

CPACRType CPACR[]
  bits(32) r;
  if IsInHost() then
    r = CPTR_EL2;
    return r;
  r = CPACR_EL1;
  return r;

aarch64/functions/sysregisters/CPACRType

type CPACRType;
aarch64/functions/sysregisters/ELR

// ELR[] - non-assignment form
// =============================

bits(64) ELR[bits(2) el]
    bits(64) r;
    case el of
        when EL1  r = ELR_EL1;
        when EL2  r = ELR_EL2;
        when EL3  r = ELR_EL3;
        otherwise unreachable();
    return r;

// ELR[] - assignment form
// ========================

ELR[bits(2) el] = bits(64) value
    bits(64) r = value;
    case el of
        when EL1  ELR_EL1 = r;
        when EL2  ELR_EL2 = r;
        when EL3  ELR_EL3 = r;
        otherwise unreachable();
    return;

// ESR[] - non-assignment form
// ===========================

ESRType ESR[bits(2) regime]
    bits(32) r;
    case regime of
        when EL1  r = ESR_EL1;
        when EL2  r = ESR_EL2;
        when EL3  r = ESR_EL3;
        otherwise unreachable();
    return r;

// ESR[] - assignment form
// =========================

ESR[bits(2) regime] = ESRType value
    bits(32) r = value;
    case regime of
when EL1  ESR_EL1 = r;
when EL2  ESR_EL2 = r;
when EL3  ESR_EL3 = r;
otherwise Unreachable();
return;

// ESR[] - assignment form
// =======================
ESR[] = ESRType value
ESR[S1TranslationRegime()] = value;

aarch64/functions/sysregisters/ESRType
type ESRType;

aarch64/functions/sysregisters/FAR

// FAR[] - non-assignment form
// ===========================
bits(64) FAR[b(n) regime]
  bits(64) r;
  case regime of
    when EL1  r = FAR_EL1;
    when EL2  r = FAR_EL2;
    when EL3  r = FAR_EL3;
    otherwise Unreachable();
    return r;

// FAR[] - assignment form
// =======================
FAR[b(n) regime] = bits(64) value
  bits(64) r = value;
  case regime of
    when EL1  FAR_EL1 = r;
    when EL2  FAR_EL2 = r;
    when EL3  FAR_EL3 = r;
    otherwise Unreachable();
    return;

aarch64/functions/sysregisters/MAIR

// MAIR[] - non-assignment form
// ===========================
MAIRType MAIR[b(n) regime]
  bits(64) r;
  case regime of
    when EL1  MAIR_EL1 = r;
    when EL2  MAIR_EL2 = r;
    when EL3  MAIR_EL3 = r;
    otherwise Unreachable();
    return;
otherwise Unreachable();
return r;

// MAIR[] - non-assignment form
// ================

MAIRTypemaIR[]
return MAIR[S1TranslationRegime()];

aarch64/functions/sysregisters/MAIRTypetype MAIRTypetype;

daarch64/functions/sysregisters/SCTLR

// SCTLR[] - non-assignment form
// ================

SCTLRTypesCTLR[bits(2) regime]
bits(64) r;
case regime of
  when EL1 r = SCTLR_EL1;
  when EL2 r = SCTLR_EL2;
  when EL3 r = SCTLR_EL3;
  otherwise Unreachable();
return r;

// SCTLR[] - non-assignment form
// ================

SCTLRTypesCTLR[]
return SCTLR[S1TranslationRegime()];

aarch64/functions/sysregisters/SCTLRTypetype SCTLRTypetype;

aarch64/functions/sysregisters/VBAR

// VBAR[] - non-assignment form
// ================

bits(64) VBAR[bits(2) regime]
bits(64) r;
case regime of
  when EL1 r = VBAR_EL1;
  when EL2 r = VBAR_EL2;
  when EL3 r = VBAR_EL3;
  otherwise Unreachable();
return r;

// VBAR[] - non-assignment form
// ================

bits(64) VBAR[]
return VBAR[S1TranslationRegime()];

aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled

// AArch64.AllocationTagAccessIsEnabled()
// ================

boolean AArch64.AllocationTagAccessIsEnabled(AccType actype)
bits(2) el;
if AArch64.AccessIsPrivileged(acctype) then
  el = PSTATE.EL;
else
  el = EL0;

if SCR_EL3.ATA == '0' && el IN {EL0, EL1, EL2} then
  return FALSE;
elsif HCR_EL2.ATA == '0' && el IN {EL0, EL1} && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' then
  return FALSE;
elif SCTLR_EL2.ATA == '0' && el == EL3 then
  return FALSE;
elif SCTLR_EL2.ATA == '0' && el == EL2 then
  return FALSE;
elif SCTLR_EL2.ATA == '0' && el == EL1 then
  return FALSE;
elif SCTLR_EL2.ATA == '0' && el == EL0 && EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' then
  return FALSE;
elif SCTLR_EL2.ATA == '0' && el == EL0 && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') then
  return FALSE;
else
  return TRUE;

aarch64/functions/system/AArch64.CheckSystemAccess

// AArch64.CheckSystemAccess()
// ===========================
// Checks if an AArch64 MSR, MRS or SYS instruction is allowed from
// the current exception level and security state. Also checks for
// traps by TIDCP to IMPLEMENTATION DEFINED registers and for NV access.
AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn,
bits(4) crm, bits(3) op2, bits(5) rt, bit read)
need_secure = FALSE;
case op1 of
  when '00x'
    min_EL = EL1;
  when '010'
    min_EL = EL1;
  when '011'
    min_EL = EL0;
  when '100'
    min_EL = EL2;
  when '101'
    if !HaveVirtHostExt() then
      UNDEFINED;
    min_EL = EL2;
  when '110'
    when '110'
      min_EL = EL3;
      when '111'
        min_EL = EL1;
        need_secure = TRUE;
if UInt(PSTATE.EL) < UInt(min_EL) then
  UNDEFINED;
elif need_secure && !IsSecure() then
  UNDEFINED;

aarch64/functions/system/AArch64.ChooseNonExcludedTag

// AArch64.ChooseNonExcludedTag()
// ===============================
// Return a tag derived from the start and the offset values, excluding
// any tags in the given mask.
bits(4) AArch64.ChooseNonExcludedTag(bits(4) tag, bits(4) offset, bits(16) exclude)
if IsOnes(exclude) then
  return '0000';

if offset == '0000' then
  while exclude<UInt(tag)> == '1' do
    tag = tag + '0001';
  while offset != '0000' do
    offset = offset - '0001';
    tag = tag + '0001';
  while exclude<UInt(tag)> == '1' do
    tag = tag + '0001';
  return tag;

aarch64/functions/system/AArch64.ExecutingATS1xPInstr

// AArch64.ExecutingATS1xPInstr()
// ---------------------------------
// Return TRUE if current instruction is AT S1E1R/WP

boolean AArch64.ExecutingATS1xPInstr()
if !HavePrivATExt() then return FALSE;

  instr = ThisInstr();
  if instr<22+:10> == '1101010100' then
  op1  = instr<16+:3>;
  CRn  = instr<12+:4>;
  CRm  = instr<8+:4>;
  op2  = instr<5+:3>;
  return op1 == '000' && CRn == '0111' && CRm == '1001' && op2 IN {'000','001'};
else
  return FALSE;

aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr

// AArch64.ExecutingBROrBLROrRetInstr()
// -------------------------------------
// Returns TRUE if current instruction is a BR, BLR, RET, B[L]RA[B][Z], or RETA[B].

boolean AArch64.ExecutingBROrBLROrRetInstr()
if !HaveBTIExt() then return FALSE;

  instr = ThisInstr();
  if instr<31:25> == '1101011' && instr<20:16> == '11111' then
  opc = instr<24:21>;
  return opc != '0101';
else
  return FALSE;

aarch64/functions/system/AArch64.ExecutingBTIInstr

// AArch64.ExecutingBTIInstr()
// ---------------------------
// Returns TRUE if current instruction is a BTI.

boolean AArch64.ExecutingBTIInstr()
if !HaveBTIExt() then return FALSE;

  instr = ThisInstr();
  if instr<31:22> == '1101010100' && instr<21:12> == '0000110010' && instr<4:0> == '11111' then
  CRm  = instr<11:8>;
  op2  = instr<7:5>;
  return (CRm == '0100' && op2<0> == '0');
e else
  return FALSE;
aarch64/functions/system/AArch64.ExecutingERETInstr

// AArch64.ExecutingERETInstr()
// ============================
// Returns TRUE if current instruction is ERET.

boolean AArch64.ExecutingERETInstr()
instr = ThisInstr();
return instr<31:12> == '11011010011110000';

aarch64/functions/system/AArch64.NextRandomTagBit

// AArch64.NextRandomTagBit()
// ==========================
// Generate a random bit suitable for generating a random Allocation Tag.

bit AArch64.NextRandomTagBit()
bits(16) lfsr = RGSR_EL1.SEED;
bit top = lfsr<5> EOR lfsr<3> EOR lfsr<2> EOR lfsr<0>;
RGSR_EL1.SEED = top:lfsr<15:1>;
return top;

aarch64/functions/system/AArch64.RandomTag

// AArch64.RandomTag()
// ===================
// Generate a random Allocation Tag.

bits(4) AArch64.RandomTag()
bits(4) tag;
for i = 0 to 3
    tag<i> = AArch64.NextRandomTagBit();
return tag;

aarch64/functions/system/AArch64.SysInstr

// Execute a system instruction with write (source operand).
AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

aarch64/functions/system/AArch64.SysInstrWithResult

// Execute a system instruction with read (result operand).
// Returns the result of the instruction.
bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegRead

// Read from a system register and return the contents of the register.
bits(64) AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crn, integer op2);

aarch64/functions/system/AArch64.SysRegWrite

// Write to a system register.
AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crn, integer op2, bits(64) val);

aarch64/functions/system/BTypeCompatible

boolean BTypeCompatible;
aarch64/functions/system/BTypeCompatible_BTI

// BTypeCompatible_BTI
// ===================
// This function determines whether a given hint encoding is compatible with the current value of
// PSTATE.BTYPE. A value of TRUE here indicates a valid Branch Target Identification instruction.

boolean BTypeCompatible_BTI(bits(2) hintcode)
  case hintcode of
    when '00'
      return FALSE;
    when '01'
      return PSTATE.BTYPE != '11';
    when '10'
      return PSTATE.BTYPE != '10';
    when '11'
      return TRUE;

aarch64/functions/system/BTypeCompatible_PACIXSP

// BTypeCompatible_PACIXSP()
// =========================
// Returns TRUE if PACIASP, PACIBSP instruction is implicit compatible with PSTATE.BTYPE,
// FALSE otherwise.

boolean BTypeCompatible_PACIXSP()
  if PSTATE.BTYPE IN {'01', '10'} then
    return TRUE;
  elseif PSTATE.BTYPE == '11' then
    index = if PSTATE.EL == EL0 then 35 else 36;
    return SCTLR[]<index> == '0';
  else
    return FALSE;

aarch64/functions/system/BTypeNext

bits(2) BTypeNext;

aarch64/functions/system/InGuardedPage

boolean InGuardedPage;

aarch64/functions/system/SetBTypeCompatible

// SetBTypeCompatible()
// ====================
// Sets the value of BTypeCompatible global variable used by BTI

SetBTypeCompatible(boolean x)
  BTypeCompatible = x;

aarch64/functions/system/SetBTypeNext

// SetBTypeNext()
// ==============
// Set the value of BTypeNext global variable used by BTI

SetBTypeNext(bits(2) x)
  BTypeNext = x;
// The _ChooseRandomNonExcludedTag function is used when GCR_EL1.RRND == '1' to generate random Allocation Tags.
// The resulting Allocation Tag is selected from the set [0,15], excluding any Allocation Tag where exclude[tag_value] == 1. If 'exclude' is all ones, the returned Allocation Tag is '0000'.
// This function is expected to generate a non-deterministic selection from the set of non-excluded Allocation Tags. A reasonable implementation is described by the Pseudocode used when GCR_EL1.RRND is 0, but with a non-deterministic implementation of NextRandomTagBit().
bits(4) _ChooseRandomNonExcludedTag(bits(16) exclude);

This section includes the following pseudocode functions:
• aarch64/instrs/branch/eret/AArch64.ExceptionReturn.
• aarch64/instrs/countop/CountOp on page J1-7703.
• aarch64/instrs/extendreg/DecodeRegExtend on page J1-7703.
• aarch64/instrs/extendreg/ExtendReg on page J1-7703.
• aarch64/instrs/extendreg/ExtendType on page J1-7704.
• aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp on page J1-7704.
• aarch64/instrs/float/arithmetic/ unary/fpunaryop/FPUUnaryOp on page J1-7704.
• aarch64/instrs/float/convert/fpconvop/FPCnvOp on page J1-7704.
• aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred on page J1-7704.
• aarch64/instrs/integer/bitmasks/DecodeBitMasks on page J1-7705.
• aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp on page J1-7705.
• aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred on page J1-7705.
• aarch64/instrs/integer/shiftdreg/DecodeShift on page J1-7706.
• aarch64/instrs/integer/shiftdreg/ShiftReg on page J1-7706.
• aarch64/instrs/integer/shiftdreg/ShiftType on page J1-7706.
• aarch64/instrs/logicalop/LogicalOp on page J1-7706.
• aarch64/instrs/memory/memop/MemAtomicOp on page J1-7706.
• aarch64/instrs/memory/memop/MemOp on page J1-7707.
• aarch64/instrs/memory/prefetch/Prefetch on page J1-7707.
• aarch64/instrs/system/barriers/barrierop/MemBarrierOp on page J1-7707.
• aarch64/instrs/system/hints/syshintop/SystemHintOp on page J1-7707.
• aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField on page J1-7707.
• aarch64/instrs/system/sysops/sysop/compareop/CompareOp on page J1-7709.
• aarch64/instrs/system/sysops/sysop/ReduceOp on page J1-7709.

aarch64/instrs/branch/eret/AArch64.ExceptionReturn

// AArch64.ExceptionReturn()
// =========================
AArch64.ExceptionReturn(bits(64) new_pc, bits(32) spsr)

  SynchronizeContext();
  sync_errors = HaveIESB() && SCTLR[].IESB == '1';
if HaveDoubleFaultExt() then
    sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
if sync_errors then
    SynchronizeErrors();
    iesb_req = TRUE;
    TakeUnmaskedPhysicalErrorInterrupts(iesb_req);
    // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
    SetPSTATEFromPSR(spsr);
    ClearExclusiveLocal(ProcessorID());
    SendEventLocal();

if PSTATE.IL == '1' && spsr<4> == '1' && spsr<20> == '0' then
    // If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
    new_pc<63:32> = bits(32) UNKNOWN;
    new_pc<1:0> = bits(2) UNKNOWN;
elseif UsingAArch32() then                // Return to AArch32
    // ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the target instruction set
    if PSTATE.T == '1' then
        new_pc<0> = '0';                 // T32
    else
        new_pc<1:0> = '00';              // A32
    else                                     // Return to AArch64
        // ELR_ELx[63:56] might include a tag
        new_pc = AArch64.BranchAddr(new_pc);

    if UsingAArch32() then
        // 32 most significant bits are ignored.
        BranchTo(new_pc<31:0>, BranchType_ERET);
    else
        BranchToAddr(new_pc, BranchType_ERET);

aarch64/instrs/countop/CountOp


aarch64/instrs/extendreg/DecodeRegExtend

    // DecodeRegExtend()
    // ==============
    // Decode a register extension option
    ExtendType DecodeRegExtend(bits(3) op)
    case op of
        when '000' return ExtendType_UXTB;
        when '001' return ExtendType_UXTH;
        when '010' return ExtendType_UXTW;
        when '011' return ExtendType_UXTX;
        when '100' return ExtendType_SXTB;
        when '101' return ExtendType_SXTH;
        when '110' return ExtendType_SXTW;
        when '111' return ExtendType_SXTX;

aarch64/instrs/extendreg/ExtendReg

    // ExtendReg()
    // ===========
    // Perform a register extension and shift
    bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
    assert shift >= 0 && shift <= 4;
    bits(N) val = X(reg);
    boolean unsigned;
    integer len;
    case exttype of
when ExtendType_SXTB unsigned = FALSE; len = 8;
when ExtendType_SXTH unsigned = FALSE; len = 16;
when ExtendType_SXTW unsigned = FALSE; len = 32;
when ExtendType_SXTX unsigned = FALSE; len = 64;
when ExtendType_UXTB unsigned = TRUE; len = 8;
when ExtendType_UXTH unsigned = TRUE; len = 16;
when ExtendType_UXTW unsigned = TRUE; len = 32;
when ExtendType_UXTX unsigned = TRUE; len = 64;

// Note the extended width of the intermediate value and
// that sign extension occurs from bit <len-shift-1>, not
// from bit <len-1>. This is equivalent to the instruction
// [SU]BFIZ Rtmp, Rreg, #shift, #len
// It may also be seen as a sign/zero extend followed by a shift:
// LSL(Extend(val<len-1:0>, N, unsigned), shift);

len = Min(len, N - shift);
return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

aarch64/instrs/extendreg/ExtendType

enumeration ExtendType  {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

enumeration FPMaxMinOp  {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

enumeration FPUnaryOp   {FPUnaryOp_ABS, FPUnaryOp_MOV,
FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/instrs/float/convert/fpconvop/FPConvOp

enumeration FPConvOp    {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF,
FPConvOp_CVT_FtoI_IS};

aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

// BFXPreferred()
// ============
//
// Return TRUE if UBFX or SBFX is the preferred disassembly of a
// UBFM or SBFM bitfield instruction. Must exclude more specific
// aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);

// must not match UBFIZ/SBFIX alias
if UInt(imms) < UInt(immr) then
return FALSE;

// must not match LSR/ASR/LSL alias (imms == 31 or 63)
if imms == sf:'11111' then
return FALSE;

// must not match UXTx/SXTx alias
if immr == '000000' then
// must not match 32-bit UXT[BH] or SXT[BH]
if sf == '0' && imms IN {'000111', '001111'} then
    return FALSE;
// must not match 64-bit SXT[BHW]
if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
    return FALSE;
// must be UBFX/SBFX alias
return TRUE;

aarch64/instrs/integer/bitmasks/DecodeBitMasks

// DecodeBitMasks()
// ================

// Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

(bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
    bits(M) tmask, wmask;
    bits(6) levels;
    // Compute log2 of element size
    // 2^len must be in range [2, M]
    len = HighestSetBit(immN:NOT(imms));
    if len < 1 then UNDEFINED;
    assert M >= (1 << len);
    // Determine S, R and S - R parameters
    levels = ZeroExtend(Ones(len), 6);
    // For logical immediates an all-ones value of S is reserved
    // since it would generate a useless all-ones result (many times)
    if immediate && (imms AND levels) == levels then
        UNDEFINED;
    S = UInt(imms AND levels);
    R = UInt(immr AND levels);
    diff = S - R;    // 6-bit subtract with borrow
    esize = 1 << len;
    d = UInt(diff<len-1:0>);
    welem = ZeroExtend(Ones(S + 1), esize);
    telem = ZeroExtend(Ones(d + 1), esize);
    wmask = Replicate(ROR(welem, R));
    tmask = Replicate(telem);
    return (wmask, tmask);

aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp


aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

// MoveWidePreferred()
// ===================

// Return TRUE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single MOVZ or MOVN instruction.
// Used as a condition for the preferred MOV<-ORR alias.

boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
    integer S = UInt(imms);
    integer R = UInt(immr);
    integer width = if sf == '1' then 64 else 32;
    // element size must equal total immediate size
if sf == '1' && immN:imms != '1xxxxx' then
    return FALSE;
if sf == '0' && immN:imms != '00xxxxx' then
    return FALSE;

// for MOVZ must contain no more than 16 ones
if S < 16 then
    // ones must not span halfword boundary when rotated
    return (-R MOD 16) <= (15 - S);

// for MOVN must contain no more than 16 zeros
if S >= width - 15 then
    // zeros must not span halfword boundary when rotated
    return (R MOD 16) <= (S - (width - 15));
return FALSE;

aarch64/instrs/integer/shiftreg/DecodeShift

// DecodeShift()
// =============
// Decode shift encodings
ShiftType DecodeShift(bits(2) op)
    case op of
        when '00'  return ShiftType_LSL;
        when '01'  return ShiftType_LSR;
        when '10'  return ShiftType_ASR;
        when '11'  return ShiftType_ROR;

aarch64/instrs/integer/shiftreg/ShiftReg

// ShiftReg()
// =========
// Perform shift of a register operand
bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
    bits(N) result = X[reg];
    case shiftype of
        when ShiftType_LSL result = LSL(result, amount);
        when ShiftType_LSR result = LSR(result, amount);
        when ShiftType_ASR result = ASR(result, amount);
        when ShiftType_ROR result = ROR(result, amount);
    return result;

aarch64/instrs/integer/shiftreg/ShiftType

enumeration ShiftType   {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

aarch64/instrs/logicalop/LogicalOp

enumeration LogicalOp   {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/instrs/memory/memop/MemAtomicOp

aarch64/instrs/memory/memop/MemOp

enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

aarch64/instrs/memory/prefetch/Prefetch

// Prefetch()
// =========

// Decode and execute the prefetch hint on ADDRESS specified by PRFOP

Prefetch(bits(64) address, bits(5) prfop)
  PrefetchHint hint;
  integer target;
  boolean stream;
  
  case prfop<4:3> of
    when '00' hint = Prefetch_READ; // PLD: prefetch for load
    when '01' hint = Prefetch_EXEC; // PLI: preload instructions
    when '10' hint = Prefetch_WRITE; // PST: prepare for store
    when '11' return;               // unallocated hint
  endcase;
  target = UInt(prfop<2:1>);      // target cache level
  stream = (prfop<0> != '0');     // streaming (non-temporal)
  Hint_Prefetch(address, hint, target, stream);
  return;

aarch64/instrs/system/barriers/barrierop/MemBarrierOp

enumeration MemBarrierOp   {
  MemBarrierOp_DSB         // Data Synchronization Barrier
  , MemBarrierOp_DMB         // Data Memory Barrier
  , MemBarrierOp_ISB         // Instruction Synchronization Barrier
  , MemBarrierOp_SSBB        // Speculative Synchronization Barrier to VA
  , MemBarrierOp_PSSBB       // Speculative Synchronization Barrier to PA
  , MemBarrierOp_SB          // Speculation Barrier
};

aarch64/instrs/system/hints/syshintop/SystemHintOp

enumeration SystemHintOp {
  SystemHintOp_NOP,
  SystemHintOp_YIELD,
  SystemHintOp_WFE,
  SystemHintOp_WFI,
  SystemHintOp_SEV,
  SystemHintOp_SEVL,
  SystemHintOp_DGH,
  SystemHintOp_ESB,
  SystemHintOp_PSB,
  SystemHintOp_TSB,
  SystemHintOp_BTI,
  SystemHintOp_CSDB
};

aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

enumeration PSTATEField {
  PSTATEField_DAIFS, PSTATEField_DAIFC1r,
  PSTATEField_PAN,  // Armv8.1
  PSTATEField_UAO,  // Armv8.2
  PSTATEField_DIT,  // Armv8.4
  PSTATEField_SSBS,
  PSTATEField_TCO,  // Armv8.5
  PSTATEField_SP
};
SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2) of
    case op1:CRn:CRm:op2 of
        when '000 0111 1000 000' return Sys_AT;   // S1E1R
        when '100 0111 1000 000' return Sys_AT;   // S1E2R
        when '110 0111 1000 000' return Sys_AT;   // S1E3R
        when '000 0111 1000 001' return Sys_AT;   // S1E1W
        when '100 0111 1000 001' return Sys_AT;   // S1E2W
        when '110 0111 1000 001' return Sys_AT;   // S1E3W
        when '000 0111 1000 010' return Sys_AT;   // S1E0R
        when '000 0111 1000 011' return Sys_AT;   // S1E0W
        when '100 1100 1000 001' return Sys_TLBI; // IPAS2E1IS
        when '100 1100 1000 101' return Sys_TLBI; // IPAS2LE1IS
        when '000 1100 0011 000' return Sys_TLBI; // VMALLE1IS
        when '100 1100 0011 000' return Sys_TLBI; // ALLE2IS
        when '110 1100 0011 000' return Sys_TLBI; // ALLE3IS
        when '000 1100 0011 001' return Sys_TLBI; // VAE1IS
        when '100 1100 0011 001' return Sys_TLBI; // VAE2IS
        when '110 1100 0011 001' return Sys_TLBI; // VAE3IS
        when '000 1100 0011 010' return Sys_TLBI; // ASIDE1IS
        when '000 1100 0011 011' return Sys_TLBI; // VAAE1IS
        when '100 1100 0011 100' return Sys_TLBI; // ALLE1IS
        when '000 1100 0011 101' return Sys_TLBI; // VALE1IS
        when '100 1100 0011 101' return Sys_TLBI; // VALE2IS
        when '110 1100 0011 101' return Sys_TLBI; // VALE3IS
        when '100 1100 0011 110' return Sys_TLBI; // VMALLS12E1IS
        when '000 1100 0011 111' return Sys_TLBI; // VAALE1IS
        when '100 1100 0010 001' return Sys_TLBI; // IPAS2E1
        when '100 1100 0010 101' return Sys_TLBI; // IPAS2LE1
        when '000 1100 0011 000' return Sys_TLBI; // VMALLE1
        when '100 1100 0011 100' return Sys_TLBI; // VAE1
        when '110 1100 0011 110' return Sys_TLBI; // VMALE1IS
        when '000 1100 0011 111' return Sys_TLBI; // VAAE1
        when '100 1100 0010 100' return Sys_TLBI; // ALLE1
        when '000 1100 0011 101' return Sys_TLBI; // VALE1
        when '100 1100 0011 100' return Sys_TLBI; // VALE2
        when '110 1100 0011 100' return Sys_TLBI; // VALE3
        when '100 1100 0011 101' return Sys_TLBI; // VMALLS12E1
        when '000 1100 0011 110' return Sys_TLBI; // VAALE1
        return Sys_SYS;
aarch64/instrs/system/sysops/sysop/SystemOp

enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

aarch64/instrs/vector/arithmetic(binary/uniform/logical/bsl-eor/vbitop/VBitOp

enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp


aarch64/instrs/vector/logical/immediateop/ImmediateOp


aarch64/instrs/vector/reduce/reduceop/Reduce

// Reduce()
// ========

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
    integer half;
    bits(esize) hi;
    bits(esize) lo;
    bits(esize) result;
    if N == esize then
        return input<esize-1:0>;
    half = N DIV 2;
    hi = Reduce(op, input<N-1:half>, esize);
    lo = Reduce(op, input<half-1:0>, esize);
    case op of
        when ReduceOp_FMINNUM
            result = FPMinNum(lo, hi, FPCR);
        when ReduceOp_FMAXNUM
            result = FPMaxNum(lo, hi, FPCR);
        when ReduceOp_FMIN
            result = FPMin(lo, hi, FPCR);
        when ReduceOp_FMAX
            result = FPMax(lo, hi, FPCR);
        when ReduceOp_FADD
            result = FPAdd(lo, hi, FPCR);
        when ReduceOp_ADD
            result = lo + hi;
    return result;

aarch64/instrs/vector/reduce/reduceop/ReduceOp


J1.1.5 aarch64/translation

This section includes the following pseudocode functions:

• aarch64/translation/attrs/AArch64.CombineS1S2Desc on page J1-7710.
• aarch64/translation/attrs/AArch64.InstructionDevice on page J1-7711.
• aarch64/translation/attrs/AArch64.S1AttrDecode on page J1-7711.
• aarch64/translation/attrs/AArch64.TranslateAddressS1Off on page J1-7712.
• aarch64/translation/checks/AArch64.AccessIsPrivileged on page J1-7713.
• aarch64/translation/checks/AArch64.AccessUsesEL on page J1-7714.
• aarch64/translation/checks/AArch64.CheckPermission on page J1-7714.
• aarch64/translation/checks/AArch64.CheckS2Permission on page J1-7715.
• aarch64/translation/debug/AArch64.CheckBreakpoint on page J1-7716.
• aarch64/translation/debug/AArch64.CheckDebug on page J1-7716.
• aarch64/translation/debug/AArch64.CheckWatchpoint on page J1-7717.
• aarch64/translation/faults/AArch64.AccessFlagFault on page J1-7717.
• aarch64/translation/faults/AArch64.AddressSizeFault on page J1-7717.
• aarch64/translation/faults/AArch64.AlignmentFault on page J1-7717.
• aarch64/translation/faults/AArch64.AsynchExternalAbort on page J1-7718.
• aarch64/translation/faults/AArch64.DebugFault on page J1-7718.
• aarch64/translation/faults/AArch64.NoFault on page J1-7718.
• aarch64/translation/faults/AArch64.PermissionFault on page J1-7719.
• aarch64/translation/faults/AArch64.TranslationFault on page J1-7719.
• aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor on page J1-7719.
• aarch64/translation/translation/AArch64.FirstStageTranslate on page J1-7720.
• aarch64/translation/translation/AArch64.FullTranslate on page J1-7721.
• aarch64/translation/translation/AArch64.SecondStageTranslate on page J1-7721.
• aarch64/translation/translation/AArch64.SecondStageWalk on page J1-7722.
• aarch64/translation/translation/AArch64.TranslateAddress on page J1-7722.
• aarch64/translation/walk/AArch64.TranslationTableWalk on page J1-7723.

aarch64/translation/attrs/AArch64.CombineS1S2Desc

// AArch64.CombineS1S2Desc()
// =========================
// Combines the address descriptors from stage 1 and stage 2

AddressDescriptor AArch64.CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc, AccType s2acctype)

    AddressDescriptor result;
    result.paddress = s2desc.paddress;

    apply_force_writeback = HaveStage2MemAttrControl() && HCR_EL2.FWB == '1';
    if IsFault(s1desc) || IsFault(s2desc) then
        result = if IsFault(s1desc) then s1desc else s2desc;
    else
        result.fault = AArch64.NoFault();
        if s2desc.memattrs.memtype == MemType_Device || (apply_force_writeback &&
            s2desc.memattrs.memtype == MemType_Device) then
            result.memattrs.memtype = MemType_Device;
            if s2desc.memattrs.device == MemType_Device then
                result.memattrs.device = s2desc.memattrs.device;
            elseif s2desc.memattrs.memtype == MemType_Normal then
                result.memattrs.device = s2desc.memattrs.device;
            else // Both Device
                result.memattrs.device = CombineS1S2Device(s2desc.memattrs.device,
                    s2desc.memattrs.device);
            end
            result.memattrs.tagged = FALSE;
        // S1 can be either Normal or Device, S2 is Normal.
        else
            result.memattrs.memtype = MemType_Normal;
            result.memattrs.device = DeviceType_UNKNOWN;
        end
    end


result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner, s2acctype);
result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer, s2acctype);
result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
result.memattrs.outershareable = (s1desc.memattrs.outershareable || s2desc.memattrs.outershareable);
result.memattrs.tagged = (s1desc.memattrs.tagged && result.memattrs.inner.attrs == MemAttr_WB &&
result.memattrs.inner.hints == MemHint_RWA && result.memattrs.outer.attrs == MemAttr_WB &&
result.memattrs.outer.hints == MemHint_RWA);
result.memattrs = MemAttrDefaults(result.memattrs);
return result;

aarch64/translation/attrs/AArch64.InstructionDevice

// AArch64.InstructionDevice()
// ===========================
// Instruction fetches from memory marked as Device but not execute-never might generate a
// Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

AddressDescriptor AArch64.InstructionDevice(AddressDescriptor addrdesc, bits(64) vaddress,
bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)
c = ConstrainUnpredictable();
assert c IN {Constraint_NONE, Constraint_FAULT};
if c == Constraint_FAULT then
  addrdesc.fault = AArch64.PermissionFault(ipaddress, boolean UNKNOWN, level, acctype, iswrite,
secondstage, s2fs1walk);
else
  addrdesc.memattrs.memtype = MemType_Normal;
  addrdesc.memattrs.inner.attrs = MemAttr_NC;
  addrdesc.memattrs.inner.hints = MemHint_No;
  addrdesc.memattrs.outer = addrdesc.memattrs.inner;
  addrdesc.memattrs.tagged = FALSE;
  addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);
return addrdesc;

aarch64/translation/attrs/AArch64.S1AttrDecode

// AArch64.S1AttrDecode()
// ======================
// Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
// attributes and hints.

MemoryAttributes AArch64.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

MemoryAttributes memattrs;
mair = MAIR[];
index = 8 * UInt(attr);
attrfield = mair<index+7:index>;
memattrs.tagged = FALSE;
if ((attrfield<7:4> != '0000' && attrfield<7:4> != '1111' && attrfield<3:0> == '0000') ||
(attrfield<7:4> == '0000' && attrfield<3:0> == 'xx00')) then
  // Reserved, maps to an allocated value
  (-, attrfield) = ConstrainUnpredictableBits();
if !HaveMTEExt() && attrfield<7:4> == '1111' && attrfield<3:0> == '0000' then
// Reserved, maps to an allocated value
(-, attrField) = ConstrainUnpredictableBits();

if attrField[7:4] == '0000' then // Device
    memattrs.mementype = MemType_Device;
    case attrField[3:0] of
        when '0000' memattrs.device = DeviceType_nGnRnE;
        when '0100' memattrs.device = DeviceType_nGnRE;
        when '1000' memattrs.device = DeviceType_nGRE;
        when '1100' memattrs.device = DeviceType_GRE;
        otherwise Unreachable(); // Reserved, handled above
    endcase;
elsif attrField[3:0] != '0000' then // Normal
    memattrs.mementype = MemType_Normal;
    memattrs.outer = LongConvertAttrsHints(attrField[7:4], acctype);
    memattrs.inner = LongConvertAttrsHints(attrField[3:0], acctype);
    memattrs.shareable = SH[1] == '1';
    memattrsoutershareable = SH == '10';
else
    Unreachable(); // Reserved, handled above
endif;

if ((HCR_EL2.VM == '1' || HCR_EL2.DC == '1') &&
    (PSTATE.EL == EL1 || (PSTATE.EL == EL0 && HCR_EL2.TGE == '0')) &&
    acctype != AccType_NV2REGISTER ) then
    return memattrs;
else
    return MemAttrDefaults(memattrs);
endif;

aarch64/translation/attrs/AArch64.TranslateAddressS1Off

// AArch64.TranslateAddressS1Off()
// ===============================
// Called for stage 1 translations when translation is disabled to supply a default translation.
// Note that there are additional constraints on instruction prefetching that are not described in
// this pseudocode.

TLBRecord AArch64.TranslateAddressS1Off(bits(64) vaddress, AccType acctype, boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());

TLBRecord result;
Top = AddrTop(vaddress, (acctype == AccType_IFETCH), PSTATE.EL);
if !IsZero(vaddress<Top:PAMax>()) then
    level = 0;
    ipaddress = bits(52) UNKNOWN;
    secondstage = FALSE;
    s2fs1walk = FALSE;
    result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, boolean UNKNOWN, level, acctype,
        iswrite, secondstage, s2fs1walk);
    return result;
endif;

default_cacheable = (HasS2Translation() && HCR_EL2.DC == '1');
if default_cacheable then
    // Use default cacheable settings
    result.addrdesc.memattrs.mementype = MemType_Normal;
    result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
    result.addrdesc.memattrs.inner.hints = MemHint_RWA;
    result.addrdesc.memattrs.shareable = FALSE;
    result.addrdesc.memattrsoutershareable = FALSE;
else
    return MemAttrDefaults(memattrs);
endif;
result.addrdesc.memattrs.tagged = HCR_EL2.DCT == '1';
else if acctype != AccType_IFETCH then
  // Treat data as Device
  result.addrdesc.memattrs.metype = MemType_Device;
  result.addrdesc.memattrs.device = DeviceType_nGnRnE;
  result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
  result.addrdesc.memattrs.tagged = FALSE;
else
  // Instruction cacheability controlled by SCTLR_ELx.I
  cacheable = SCTLR[]..I == '1';
  result.addrdesc.memattrs.metype = MemType_Normal;
  if cacheable then
    result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
    result.addrdesc.memattrs.inner.hints = MemHint_RA;
  else
    result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
    result.addrdesc.memattrs.inner.hints = MemHint_No;
  result.addrdesc.memattrs.shareable = TRUE;
  result.addrdesc.memattrs.outershareable = TRUE;
  result.addrdesc.memattrs.tagged = FALSE;
result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

result.perms.ap = bits(3) UNKNOWN;
result.perms.xn = '0';
result.perms.pxn = '0';

result.nG = bit UNKNOWN;
result.contiguous = boolean UNKNOWN;
result.domain = bits(4) UNKNOWN;
result.level = integer UNKNOWN;
result.blocksize = integer UNKNOWN;
result.addrdesc.paddress.address = vaddress<51:0>;
result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
result.addrdesc.fault = AArch64.NoFault();
result.descupdate.AF = FALSE;
result.descupdate.AP = FALSE;
result.descupdate.descaddr = result.addrdesc;

return result;

aarch64/translation/checks/AArch64.AccessIsPrivileged

// AArch64.AccessIsPrivileged()
// ===============

boolean AArch64.AccessIsPrivileged(AccType acctype)

  el = AArch64.AccessUsesEL(acctype);
  if el == EL0 then
    ispriv = FALSE;
  elsif el == EL3 then
    ispriv = TRUE;
  elsif el == EL2 && (!IsInHost() || HCR_EL2.TGE == '0') then
    ispriv = TRUE;
  elsif HaveUAOExt() && PSTATE.UAO == '1' then
    ispriv = TRUE;
  else
    ispriv = (acctype != AccType_UNPRIV);

return ispriv;
aarch64/translation/checks/AArch64.AccessUsesEL

// AArch64.AccessUsesEL()
// ======================
// Returns the Exception Level of the regime that will manage the translation for a given access type.

bits(2) AArch64.AccessUsesEL(AccType acctype)
    if acctype == AccType_UNPRIV then
        return EL0;
    elsif acctype == AccType_NV2REGISTER then
        return EL2;
    else
        return PSTATE.EL;
    end if

aarch64/translation/checks/AArch64.CheckPermission

// AArch64.CheckPermission()
// =========================
// Function used for permission checking from AArch64 stage 1 translations

FaultRecord AArch64.CheckPermission(Permissions perms, bits(64) vaddress, integer level,
    bit NS, AccType acctype, boolean iswrite)
    assert !ELUsingAArch32(S1TranslationRegime());
    wxn = SCTLR[].WXN == '1';
    if (PSTATE.EL == EL0 ||
        (PSTATE.EL == EL1 && !HaveNV2Ext()) ||
        (PSTATE.EL == EL1 && HaveNV2Ext() && (acctype != AccType_NV2REGISTER || !ELIsInHost(EL2)))) then
        priv_r = TRUE;
        priv_w = perms.ap<2> == '0';
        user_r = perms.ap<1> == '1';
        user_w = perms.ap<2:1> == '01';
        ispriv = AArch64.AccessIsPrivileged(acctype);
        pan = if HavePANExt() then PSTATE.PAN else '0';
        if (EL2Enabled() && ((PSTATE.EL == EL1 && HaveNV2Ext() && HCR_EL2.<NV, NV1> == '11') ||
            (HaveNV2Ext() && acctype == AccType_NV2REGISTER && HCR_EL2.NV2 == '1'))) then
            pan = '0';
        is_ldst = !(acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_AT, AccType_IFETCH});
        is_ats1xp = (acctype == AccType_AT && AArch64.ExecutingATS1xPInstr());
        if pan == '1' && user_r && ispriv && (is_ldst || is_ats1xp) then
            priv_r = FALSE;
            priv_w = FALSE;
            user_xn = perms.xn == '1' || (user_w && wxn);
            priv_xn = perms.pxn == '1' || (priv_w && wxn) || user_w;
            if ispriv then
                (r, w, xn) = (priv_r, priv_w, priv_xn);
            else
                (r, w, xn) = (user_r, user_w, user_xn);
            end if
        else
            // Access from EL2 or EL3
            r = TRUE;
            w = perms.ap<2> == '0';
            xn = perms.xn == '1' || (w && wxn);
        end if
        if HaveEL(EL3) && IsSecure() && NS == '1' && SCR_EL3.SIF == '1' then
            xn = TRUE;
        end if
        if acctype == AccType_IFETCH then
            fail = xn;
            failedread = TRUE;
    end if
elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW } then
fail = !r || !w;
failedread = !r;
elsif iswrite then
fail = !w;
failedread = FALSE;
elsif acctype == AccType_DC && PSTATE.EL != EL0 then
// DC maintenance instructions operating by VA, cannot fault from stage 1 translation,
// other than DC IVAC, which requires write permission, and operations executed at EL0,
// which require read permission.
fail = FALSE;
else
fail = !r;
failedread = TRUE;
if fail then
secondstage = FALSE;
s2fs1walk = FALSE;
ipaddress = bits(52) UNKNOWN;
return AArch64.PermissionFault(ipaddress,boolean UNKNOWN, level, acctype,
!failedread, secondstage, s2fs1walk);
else
return AArch64.NoFault();

# AArch64.CheckS2Permission()
// Function used for permission checking from AArch64 stage 2 translations
FaultRecord AArch64.CheckS2Permission(Permissions perms, bits(64) vaddress, bits(52) ipaddress,
integer level, AccType acctype, boolean iswrite, boolean NS,
boolean s2fs1walk, boolean hwupdatewalk)

assert (IsSecureEL2Enabled() || (HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2))) &&
HasS2Translation();
r = perms.ap<1> == '1';
w = perms.ap<2> == '1';
if HaveExtendedExecuteNeverExt() then
case perms.xn:perms.xxn of
  when '00'  xn = FALSE;
  when '01'  xn = PSTATE.EL == EL1;
  when '10'  xn = TRUE;
  when '11'  xn = PSTATE.EL == EL0;
else
  xn = perms.xn == '1';
// Stage 1 walk is checked as a read, regardless of the original type
if acctype == AccType_IFETCH && !s2fs1walk then
  fail = xn;
  failedread = TRUE;
elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW }) && !s2fs1walk then
  fail = !r || !w;
  failedread = !r;
elsif iswrite & !s2fs1walk then
  fail = !w;
  failedread = FALSE;
elsif acctype == AccType_DC && PSTATE.EL != EL0 && !s2fs1walk then
  // DC maintenance instructions operating by VA, with the exception of DC IVAC, do
  // not generate Permission faults from stage 2 translation, other than when
  // performing a stage 1 translation table walk.
  fail = FALSE;
elsif hwupdatewalk then
  fail = !w;
  failedread = !iswrite;
else

fail = !r;
failedread = !iswrite;

if fail then
    domain = bits(4) UNKNOWN;
    secondstage = TRUE;
    return AArch64.PermissionFault(ipaddress, NS, level, acctype, !failedread, secondstage, s2fs1walk);
else
    return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckBreakpoint

// AArch64.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, AccType acctype, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert (UsingAArch32() && size IN {2,4}) || size == 4;
match = FALSE;
for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
    match_i = AArch64.BreakpointMatch(i, vaddress, acctype, size);
    match = match || match_i;
if match && HaltOnBreakpointOrWatchpoint() then
    reason = DebugHalt_Breakpoint;
    Halt(reason);
elsif match then
    acctype = AccType_IFETCH;
    iswrite = FALSE;
    return AArch64.DebugFault(acctype, iswrite);
else
    return AArch64.NoFault();

aarch64/translation/debug/AArch64.CheckDebug

// AArch64.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

FaultRecord fault = AArch64.NoFault();
d_side = (acctype != AccType_IFETCH);
if HaveNV2Ext() && acctype == AccType_NV2REGISTER then
    mask = '0';
    generate_exception = AArch64.GenerateDebugExceptionsFrom(EL2, IsSecure(), mask) & MDSCR_EL1.MDE == '1';
else
    generate_exception = AArch64.GenerateDebugExceptions() & MDSCR_EL1.MDE == '1';
    halt = HaltOnBreakpointOrWatchpoint();
if generate_exception || halt then
    if d_side then
        fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
    else
        fault = AArch64.CheckBreakpoint(vaddress, acctype, size);
else
    fault = AArch64.NoFault();
return fault;
aarch64/translation/debug/AArch64.CheckWatchpoint

// AArch64.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
    boolean iswrite, integer size)
    assert !ELUsingAArch32(S1TranslationRegime());
    match = FALSE;
    ispriv = AArch64.AccessIsPrivileged(acctype);
    for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
        match = match || AArch64.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite);
    if match && HaltOnBreakpointOrWatchpoint() then
        if acctype != AccType_NONFAULT && acctype != AccType_CNOTFIRST then
            reason = DebugHalt_Watchpoint;
            EDWAR = vaddress;
            Halt(reason);
        else
            // Fault will be reported and cancelled
            return AArch64.DebugFault(acctype, iswrite);
        elsif match then
            return AArch64.DebugFault(acctype, iswrite);
        else
            return AArch64.NoFault();
    

aarch64/translation/faults/AArch64.AccessFlagFault

// AArch64.AccessFlagFault()
// =========================

FaultRecord AArch64.AccessFlagFault(bits(52) ipaddress, boolean NS, integer level,
    AccType acctype, boolean iswrite, boolean secondstage,
    boolean s2fs1walk)
    extflag = bit UNKNOWN;
    errortype = bits(2) UNKNOWN;
    return AArch64.CreateFaultRecord(Fault_AccessFlag, ipaddress, NS, level, acctype, iswrite,
        extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.AddressSizeFault

// AArch64.AddressSizeFault()
// ==========================

FaultRecord AArch64.AddressSizeFault(bits(52) ipaddress, boolean NS, integer level,
    AccType acctype, boolean iswrite, boolean secondstage,
    boolean s2fs1walk)
    extflag = bit UNKNOWN;
    errortype = bits(2) UNKNOWN;
    return AArch64.CreateFaultRecord(Fault_AddressSize, ipaddress, NS, level, acctype, iswrite,
        extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.AlignmentFault

// AArch64.AlignmentFault()
// ========================

FaultRecord AArch64.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)
ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
s2fs1walk = boolean UNKNOWN;

return AArch64.CreateFaultRecord(Fault_Alignment, ipaddress, boolean UNKNOWN, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.AsynchExternalAbort

// AArch64.AsynchExternalAbort()
// =============================
// Wrapper function for asynchronous external aborts

FaultRecord AArch64.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)

faulttype = if parity then Fault_AsyncParity else Fault_AsyncExternal;
ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(faulttype, ipaddress, boolean UNKNOWN, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.DebugFault

// AArch64.DebugFault()
// ================

FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)

ipaddress = bits(52) UNKNOWN;
errortype = bits(2) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(Fault_Debug, ipaddress, boolean UNKNOWN, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/faults/AArch64.NoFault

// AArch64.NoFault()
// ================

FaultRecord AArch64.NoFault()

ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(Fault_None, ipaddress, boolean UNKNOWN, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);
aarch64/translation/fauls/AArch64.PermissionFault

// AArch64.PermissionFault()
// =========================

FaultRecord AArch64.PermissionFault(bits(52) ipaddress, boolean NS, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_Permission, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/fauls/AArch64.TranslationFault

// AArch64.TranslationFault()
// =========================

FaultRecord AArch64.TranslationFault(bits(52) ipaddress, boolean NS, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_Translation, ipaddress, NS, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

aarch64/translation/translantion/AArch64.CheckAndUpdateDescriptor

// AArch64.CheckAndUpdateDescriptor()
// ==================================
// Check and update translation table descriptor if hardware update is configured

FaultRecord AArch64.CheckAndUpdateDescriptor(DescriptorUpdate result, FaultRecord fault,
boolean secondstage, bits(64) vaddress, AccType acctype,
boolean iswrite, boolean s2fs1walk, boolean hwupdatewalk)

boolean hw_update_AF = FALSE;
boolean hw_update_AP = FALSE;

// Check if access flag can be updated
// Address translation instructions are permitted to update AF but not required
if result.AF then
  if fault.statuscode == Fault_None || ConstrainUnpredictable() == Constraint_TRUE then
    hw_update_AF = TRUE;

  if result.AP && fault.statuscode == Fault_None then
    write_perm_req = (iswrite || acctype IN {AccType_ATOMICRW, AccType_ORDEREDRW,
AccType_ORDEREDATOMICRW }) && !s2fs1walk;
    hw_update_AP = (write_perm_req && !(acctype IN {AccType_AT, AccType_DC, AccType_DC_UNPRIV})) ||
    hwupdatewalk;

  if hw_update_AF || hw_update_AP then
    if secondstage || !HasS2Translation() then
      descaddr2 = result.descaddr;
    else
      hwupdatewalk = TRUE;
      descaddr2 = AArch64.SecondStageWalk(result.descaddr, vaddress, acctype, iswrite, 8,
      hwupdatewalk);
    end if
    if IsFault(descaddr2) then
      return descaddr2.fault;
    end if
accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
desc = _Mem[descaddr2, 8, accdesc];
el = AArch64.AccessUsesEL(acctype);
case el of
  when EL3
    reversedescriptors = SCTLR_EL3.EE == '1';
  when EL2
    reversedescriptors = SCTLR_EL2.EE == '1';
  otherwise
    reversedescriptors = SCTLR_EL1.EE == '1';
if reversedescriptors then
  desc = BigEndianReverse(desc);
if hw_update_AF then
  desc<10> = '1';
if hw_update_AP then
  desc<7> = (if secondstage then '1' else '0');
_Mem[descaddr2,8,accdesc] = if reversedescriptors then BigEndianReverse(desc) else desc;
return fault;

aarch64/translation/translation/AArch64.FirstStageTranslate

// AArch64.FirstStageTranslate()
// -------------------------------------------------------------
// Perform a stage 1 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

AddressDescriptor AArch64.FirstStageTranslate(bits(64) vaddress, AccType acctype, boolean iswrite, boolean wasaligned, integer size)

if HaveNV2Ext() && acctype == AccType_NV2REGISTER then
  s1_enabled = SCTLR_EL2.M == '1';
elsif HasS2Translation() then
  s1_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == '0' && SCTLR_EL1.M == '1';
else
  s1_enabled = SCTLR[].M == '1';
TLBRecord S1;
S1.addrdesc.fault = AArch64.NoFault();
ipaddress = bits(52) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;
if s1_enabled then                         // First stage enabled
  S1 = AArch64.TranslationTableWalk(ipaddress, TRUE, vaddress, acctype, iswrite, secondstage, s2fs1walk, size);
permissioncheck = TRUE;
if acctype == AccType_IFETCH then
  InGuardedPage = S1.GP == '1';      // Global state updated on instruction fetch that denotes
  // if the fetched instruction is from a guarded page.
else
  S1 = AArch64.TranslateAddressS1Off(vaddress, acctype, iswrite);
permissioncheck = FALSE;
InGuardedPage = FALSE;                 // No memory is guarded when stage 1 address translation
  // is disabled

if !IsFault(S1.addrdesc) && UsingAArch32() && HaveTrapLoadStoreMultipleDeviceExt() &&
AArch32 ExecutingSMInstr() then
    if S1.addrdesc.memattrs.mimetype == MemType_Device && S1.addrdesc.memattrs.device !=
DeviceType_GRE then
        nTLSMD = if S1translationRegime() == EL2 then SCTLR_EL2.nTLSMD else SCTLR_EL1.nTLSMD;
        if nTLSMD == '0' then
          S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
  && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.mimetype == MemType_Device then
  S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
if !IsFault(S1.addrdesc) && permissioncheck then
    S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, S1.level, S1.addrdesc.paddress.NS, acctype, iswrite);

    // Check for instruction fetches from Device memory not marked as execute-never. If there has not been a Permission Fault then the memory is not marked execute-never.
    if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.mtype == MemType_Device && acctype == AccType_IFETCH) then
        S1.addrdesc = AArch64.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level, acctype, iswrite, secondstage, s2fs1walk);

    // Check and update translation table descriptor if required
    hwupdatewalk = FALSE;
    s2fs1walk = FALSE;
    S1.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S1.descupdate, S1.addrdesc.fault, secondstage, vaddress, acctype, iswrite, s2fs1walk, hwupdatewalk);

    return S1.addrdesc;

aarch64/translation/translation/AArch64.FullTranslate

    // AArch64.FullTranslate()
    // =======================
    // Perform both stage 1 and stage 2 translation walks for the current translation regime. The function used by Address Translation operations is similar except it uses the translation regime specified for the instruction.

    AddressDescriptor AArch64.FullTranslate(bits(64) vaddress, AccType acctype, boolean iswrite, boolean wasaligned, integer size)

        // First Stage Translation
        S1 = AArch64.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
        if !IsFault(S1) && !(HaveNV2Ext() && acctype == AccType_NV2REGISTER) && HasS2Translation() then
            s2fs1walk = FALSE;
            hwupdatewalk = FALSE;
            result = AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk, size, hwupdatewalk);
        else
            result = S1;

        return result;

aarch64/translation/translation/AArch64.SecondStageTranslate

    // AArch64.SecondStageTranslate()
    // ==============================
    // Perform a stage 2 translation walk. The function used by Address Translation operations is similar except it uses the translation regime specified for the instruction.

    AddressDescriptor AArch64.SecondStageTranslate(AddressDescriptor S1, bits(64) vaddress, AccType acctype, boolean iswrite, boolean wasaligned, boolean s2fs1walk, integer size, boolean hwupdatewalk)

        assert HasS2Translation();

        s2_enabled = HCR_EL2.VM == '1' || HCR_EL2.DC == '1';
        secondstage = TRUE;

        if s2_enabled then  // Second stage enabled
            ipaddress = S1.paddress.address<51:0>;
            NS = S1.paddress.NS == '1';
            S2 = AArch64.TranslationTableWalk(ipaddress, NS, vaddress, acctype, iswrite, secondstage, s2fs1walk, size);

            // Check for unaligned data accesses to Device memory
if (!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
&& S2.addrdesc.memattrs.memtype == MemType_Device && !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

// Check for permissions on Stage2 translations
if !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch64.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,
acctype, iswrite, NS,s2fs1walk, hwupdatewalk);

// Check for instruction fetches from Device memory not marked as execute-never. As there
// has not been a Permission Fault then the memory is not marked execute-never.
if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.memtype == MemType_Device &&
acctype == AccType_IFETCH) then
S2.addrdesc = AArch64.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,
acctype, iswrite,
secondstage, s2fs1walk);

if (s2fs1walk && !IsFault(S2.addrdesc) &&
S2.addrdesc.memattrs.memtype == MemType_Device) then
// Check for protected table walk.
if HCR_EL2.PTW == '1' then
S2.addrdesc.fault = AArch64.PermissionFault(ipaddress,
NS, S2.level,
acctype, iswrite, secondstage, s2fs1walk);
else

// Translation table walk occurs as Normal Non-cacheable memory.
S2.addrdesc.memattrs.memtype = MemType_Normal;
S2.addrdesc.memattrs.inner.attrs = MemAttr_NC;
S2.addrdesc.memattrs.outer.attrs = MemAttr_NC;
S2.addrdesc.memattrs.shareable = TRUE;
S2.addrdesc.memattrs.outershareable = TRUE;

// Check and update translation table descriptor if required
S2.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S2.descupdate, S2.addrdesc.fault,
secondstage, vaddress, acctype,
iswrite, s2fs1walk, hwupdatewalk);

result = AArch64.CombineS1S2Desc(S1, S2.addrdesc, AccType_PTW);
else
result = AArch64.CombineS1S2Desc(S1, S2.addrdesc, acctype);
else
result = S1;
return result;

aarch64/translation/translation/AArch64.SecondStageWalk

// AArch64.SecondStageWalk()
//========================
// Perform a stage 2 translation on a stage 1 translation page table walk access.

AddressDescriptor AArch64.SecondStageWalk(AddressDescriptor S1, bits(64) vaddress, AccType acctype,
boolean iswrite, integer size, boolean hwupdatewalk)
assert HasS2Translation();
s2fs1walk = TRUE;
wasaligned = TRUE;
return AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
size, hwupdatewalk);

aarch64/translation/translation/AArch64.TranslateAddress

// AArch64.TranslateAddress()
//=========================
// Main entry point for translating an address
AddressDescriptor AArch64.TranslateAddress(bits(64) vaddress, AccType acctype, boolean iswrite, boolean wasaligned, integer size)

result = AArch64.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);

if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(vaddress);

return result;

aarch64/translation/walk/AArch64.TranslationTableWalk

// AArch64.TranslationTableWalk()
// ==============================
// Returns a result of a translation table walk
//
// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch64.TranslationTableWalk(bits(52) ipaddress, boolean s1_nonsecure, bits(64) vaddress, AccType acctype, boolean iswrite, boolean secondstage, boolean s2fs1walk, integer size)

if !secondstage then
assert !ELUsingAArch32(S1TranslationRegime());
else
assert (IsSecureEL2Enabled() || (HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2))) && HasS2Translation();

TLBRecord result;
AddressDescriptor descaddr;
bits(64) baseregister;
bits(64) inputaddr;        // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2
bit nswalk;                    // Stage 2 translation table walks are to Secure or to Non-secure PA
space
result.descupdate.AF = FALSE;
result.descupdate.AP = FALSE;

descaddr.memattrs.mentype = MemType_Normal;

// Derived parameters for the page table walk:
//  grainsize = Log2(Size of Table)         - Size of Table is 4KB, 16KB or 64KB in AArch64
//  stride = Log2(Address per Level)        - Bits of address consumed at each level
//  firstblocklevel = First level where a block entry is allowed
//  ps = Physical Address size as encoded in TCR_EL1.IPS or TCR_ELx/VTCR_EL2.PS
//  inputsize = Log2(Size of Input Address) - Input Address size in bits
//  level = Level to start walk from
// This means that the number of levels after start level = 3-level

if !secondstage then
// First stage translation
inputaddr = ZeroExtend(vaddress);
el = AArch64.AccessUsesEL(acctype);
isprivileged = AArch64.AccessIsPrivileged(acctype);
top = AddrTop(inputaddr, (acctype == AccType_IFETCH), el);
if el == EL3 then
largegrain = TCR_EL3.TG0 == '01';
midgrain = TCR_EL3.TG0 == '10';
inputsize = 64 - UInt(TCR_EL3.T0SZ);
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
if !Have52BitVAExt() && inputsize > inputsize_max then

c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;
inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
if inputsize < inputsize_min then
c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;
ps = TCR_EL3.PS;
basefound = inputsize => inputsize_min && inputsize <= inputsize_max &&
IsZero(inputaddr<top:inputsize>);
escaped = FALSE;
baseregister = TTBR0_EL3;
descaddr.memattrs = WalkAttrDecode(TCR_EL3.SH0, TCR_EL3.ORGN0, TCR_EL3.IRGN0, secondstage);
reversedescriptors = SCTLR_EL3.EE == '1';
lookupsecure = TRUE;
singlepriv = TRUE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL3.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL3.HD == '1';
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL3.HPD == '1';
e1f ELIsInHost(e) then
if inputaddr<top> == '0' then
largegrain = TCR_EL2.TG0 == '01';
midgrain = TCR_EL2.TG0 == '10';
inputsize = 64 - UInt(TCR_EL2.T0SZ);
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
if !Have52BitVAExt() && inputsize > inputsize_max then
c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;
inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
if inputsize < inputsize_min then
c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;
basefound = inputsize => inputsize_min && inputsize <= inputsize_max &&
IsZero(inputaddr<top:inputsize>);
disabled = TCR_EL2.EPD0 == '1' || (!isprivileged && HaveE0PDExt() && TCR_EL2.E0PD0 ==
'1');
disabled = disabled || (e == EL0 && acctype == AccType_NONFAULT && TCR_EL2.NFD0 ==
'1');
baseregister = TTBR0_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0, secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD0 == '1';
e1f ELIsInHost(e) then
if inputaddr<top> == '0' then
largegrain = TCR_EL2.TG1 == '11'; // TG1 and TG0 encodings differ
midgrain = TCR_EL2.TG1 == '01';
inputsize = 64 - UInt(TCR_EL2.T1SZ);
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
if !Have52BitVAExt() && inputsize > inputsize_max then
c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;
inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
if inputsize < inputsize_min then
c = ConstrainUnpredictable();
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;
basefound = inputsize => inputsize_min && inputsize <= inputsize_max &&
IsOnes(inputaddr<top:inputsize>);
disabled = TCR_EL2.EPD1 == '1' || (!isprivileged && HaveE0PDExt() && TCR_EL2.E0PD1 ==
'1');
disabled = disabled || (e == EL0 && acctype == AccType_NONFAULT && TCR_EL2.NFD1 ==
'1');

'1');
    baseregister = TTBR1_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH1, TCR_EL2.ORGN1, TCR_EL2.IRGN1,
secondstage);
    hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD1 == '1';
    ps = TCR_EL2.IPS;
    reversedescriptors = SCTLR_EL2.EE == '1';
    lookupsecure = if IsSecureEL2Enabled() then IsSecure() else FALSE;
singlepriv = FALSE;
    update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
    update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';
elsif el == EL2 then
    inputsize = 64 - UInt(TCR_EL2.T0SZ);
    largegrain = TCR_EL2.TG0 == '01';
    midgrain = TCR_EL2.TG0 == '10';
    inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
    if !Have52BitVAExt() && inputsize > inputsize_max then
        c = ConstrainUnpredictable();
        assert c IN {Constraint_FORCE, Constraint_FAULT};
        if c == Constraint_FORCE then inputsize = inputsize_max;
    inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
    if inputsize < inputsize_min then
        c = ConstrainUnpredictable();
        assert c IN {Constraint_FORCE, Constraint_FAULT};
        if c == Constraint_FORCE then inputsize = inputsize_min;
    ps = TCR_EL2.PS;
    basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&
    IsZero(inputaddr<top:inputsize>);
    disabled = FALSE;
    baseregister = TTBR0_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH0, TCR_EL1.ORGN0, TCR_EL1.IRGN0, secondstage);
    reversedescriptors = SCTLR_EL2.EE == '1';
    lookupsecure = if IsSecureEL2Enabled() then IsSecure() else FALSE;
singlepriv = TRUE;
    update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
    update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';
    hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD == '1';
else
    if inputaddr<top> == '0' then
        inputsize = 64 - UInt(TCR_EL1.T0SZ);
        largegrain = TCR_EL1.TG0 == '01';
        midgrain = TCR_EL1.TG0 == '10';
        inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
        if !Have52BitVAExt() && inputsize > inputsize_max then
            c = ConstrainUnpredictable();
            assert c IN {Constraint_FORCE, Constraint_FAULT};
            if c == Constraint_FORCE then inputsize = inputsize_max;
        inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
        if inputsize < inputsize_min then
            c = ConstrainUnpredictable();
            assert c IN {Constraint_FORCE, Constraint_FAULT};
            if c == Constraint_FORCE then inputsize = inputsize_min;
        IsZero(inputaddr<top:inputsize>);
        disabled = TCR_EL1.EPD0 == '1' || (isprivileged && HaveE0PDEnt() && TCR_EL1.E0PD0 ==
        '1');
        if !isprivileged && acctype == AccType_NONFAULT && TCR_EL1.NFD0 ==
        '1');
        baseregister = TTBR0_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH0, TCR_EL1.ORGN0, TCR_EL1.IRGN0,
secondstage);
        hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL1.HPD == '1';
else

inputsize = 64 - Uint(TCR_EL1.T1SZ);
largegrain = TCR_EL1.TG1 == '11';       // TG1 and TG0 encodings differ
midgrain = TCR_EL1.TG1 == '01';
inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;

if !Have52BitVAExt() && inputsize > inputsize_max then
  c = ConstrainUnpredictable();
  assert c IN {Constraint_FORCE, Constraint_FAULT};
  if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);

if inputsize < inputsize_min then
  c = ConstrainUnpredictable();
  assert c IN {Constraint_FORCE, Constraint_FAULT};
  if c == Constraint_FORCE then inputsize = inputsize_min;

basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsOnes(inputaddr<top:inputsize>);

disabled = TCR_EL1.EPD1 == '1' || (!isprivileged & HaveE0PDExt() & TCR_EL1.E0PD1 == '1');

disabled = disabled || (el == EL0 & acctype == AccType_NONFAULT & TCR_EL1.NFD1 == '1');
baseregister = TTBR1_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH1, TCR_EL1.ORGN1, TCR_EL1.IRGN1, secondstage);

hierattrsdisabled = AArch64.HaveHPDExt() & TCR_EL1.HPD1 == '1';
ps = TCR_EL1.IPS;
reversedescriptors = SCTLR_EL1.EE == '1';
lookupsecure = IsSecure();
singlepriv = FALSE;
update_AF = HaveAccessFlagUpdateExt() & TCR_EL1.HA == '1';
update_AP = HaveDirtyBitModifierExt() & update_AF & TCR_EL1.HD == '1';

if largegrain then
  grainsize = 16;                                         // Log2(64KB page size)
  firstblocklevel = if Have52BitPAExt() then 1 else 2;    // Largest block is 4TB (2^42 bytes) for 512 bit PA
  else
    elseif midgrain then
      grainsize = 14;                                         // Log2(16KB page size)
      firstblocklevel = 2;                                    // Largest block is 32MB (2^25 bytes)
    else // Small grain
      grainsize = 12;                                         // Log2(4KB page size)
      firstblocklevel = 1;                                    // Largest block is 1GB (2^30 bytes)
    stride = grainsize - 3;                                   // Log2(page size / 8 bytes)
  // The starting level is the number of strides needed to consume the input address
  level = 4 - (1 + ((inputsize - grainsize - 1) DIV stride));
else
  // Second stage translation
  inputaddr = ZeroExtend(ipaddress);
  if IsSecureBelowEL3() then
    // Second stage for Secure translation regime
    if s1_nonsecure then // Non-secure IPA space
      t0size = VTCR_EL2.T0SZ;
      tg0 = VTCR_EL2.TG0;
      nswalk = VTCR_EL2.NSW;
    else // Secure IPA space
      t0size = VSTCR_EL2.T0SZ;
      tg0 = VSTCR_EL2.TG0;
      nswalk = VSTCR_EL2.SW;
  // Stage 2 translation accesses the Non-secure PA space or the Secure PA space
  if nswalk == '1' then
    // when walk is Non-secure, access must be to the Non-secure PA space
    nsaccess = '1';
elsif !s1_nonsecure then
  // When walk is Secure and in the Secure IPA space,
  // access is specified by VSTCR_EL2.SA
  nsaccess = VSTCR_EL2.SA;
elsif VSTCR_EL2.SW == '1' || VSTCR_EL2.SA == '1' then
  // When walk is Secure and in the Non-secure IPA space,
  // access is Non-secure when VSTCR_EL2.SA specifies the Non-secure PA space
  nsaccess = '1';
else
  // When walk is Secure and in the Non-secure IPA space,
  // if VSTCR_EL2.SA specifies the Secure PA space, access is specified by VTCR_EL2.NSA
  nsaccess = VTCR_EL2.NSA;
else
  // Second stage for Non-secure translation regime
  t0size = VTCR_EL2.T0SZ;
  tg0 = VTCR_EL2.TG0;
  nswalk = '1';
  nsaccess = '1';

  inputsize = 64 - UInt(t0size);
  largegrain = tg0 == '01';
  midgrain = tg0 == '10';

  inputsize_max = if Have52BitPAExt() && PAMax() == 52 && largegrain then 52 else 48;
  if !Have52BitPAExt() && inputsize > inputsize_max then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_FORCE, Constraint_FAULT};
    if c == Constraint_FORCE then inputsize = inputsize_max;
  inputsize_min = 64 - (if !HaveSmallPageTblExt() then 39 else if largegrain then 47 else 48);
  if inputsize < inputsize_min then
    c = ConstrainUnpredictable();
    assert c IN {Constraint_FORCE, Constraint_FAULT};
    if c == Constraint_FORCE then inputsize = inputsize_min;
  ps = VTCR_EL2.PS;
  basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&
  IsZero(inputaddr<63:inputsize));
  disabled = FALSE;
  descaddr.memattrs = WalkAttrDecode(VTCR_EL2.SH0, VTCR_EL2.ORG0, VTCR_EL2.IRGN0, secondstage);
  reversedescriptors = SCTLR_EL2.EE == '1';
  singlepriv = TRUE;
  update_AF = HaveAccessFlagUpdateExt() && VTCR_EL2.HA == '1';
  update_AP = HaveDirtyBitModifierExt() && update_AF && VTCR_EL2.HD == '1';
  if IsSecureEL2Enabled() then
    lookupsecure = !s1_nonsecure;
  else
    lookupsecure = FALSE;
  if lookupsecure then
    baseregister = VSTTBR_EL2;
    startlevel = UInt(VSTCR_EL2.SL0);
  else
    baseregister = VTTBR_EL2;
    startlevel = UInt(VTCR_EL2.SL0);
  if largegrain then
    grainsize = 16; // Log2(64KB page size)
    level = 3 - startlevel;
    firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (2^42 bytes)
  for 52 bit PA
    level = 3 - startlevel;
    firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (2^42 bytes)
    for 32 bit PA
    level = 3 - startlevel;
    firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (2^42 bytes)
    for 16 bit PA
  elsif midgrain then
    grainsize = 34; // Log2(16KB page size)
    level = 3 - startlevel;
    firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)
  else // Small grain
    grainsize = 12; // Log2(4KB page size)
if HaveSmallPageTblExt() && startlevel == 3 then
    level = startlevel;                         // Startlevel 3 (VTCR_EL2.SL0 or
    VSCTR_EL2.SL0 == 0b11) for 4KB granule
else
    level = 2 - startlevel;

    firstblocklevel = 1;                                    // Largest block is 1GB (2^30 bytes)
    stride = grainsize - 3;                                     // Log2(page size / 8 bytes)

    // Limits on IPA controls based on implemented PA size. Level 0 is only
    // supported by small grain translations
    if largegrain then                              // 64KB pages
        // Level 1 only supported if implemented PA size is greater than 2^42 bytes
        if level == 0 || (level == 1 && PAMax() <= 42) then basefound = FALSE;
    elsif midgrain then                             // 16KB pages
        // Level 1 only supported if implemented PA size is greater than 2^40 bytes
        if level == 0 || (level == 1 && PAMax() <= 40) then basefound = FALSE;
    else                                            // Small grain, 4KB pages
        // Level 0 only supported if implemented PA size is greater than 2^42 bytes
        if level < 0 || (level == 0 && PAMax() <= 42) then basefound = FALSE;
    endif

    if inputsizecheck = inputsize:
        if inputsize > PAMax() && (!ELUsingAArch32(EL1) || inputsize > 40) then
            case ConstrainUnpredictable() of
                when Constraint_FORCE
                    // Restrict the inputsize to the PAMax value
                    inputsize = PAMax();
                    inputsizecheck = PAMax();
                when Constraint_FORCE_NONSLCHECK
                    // As FORCE, except use the configured inputsize in the size checks below
                    inputsize = PAMax();
                when Constraint_FAULT
                    // Generate a translation fault
                    basefound = FALSE;
                otherwise
                    Unreachable();
            endif
        endif

    // Number of entries in the starting level table =
    //   (Size of Input Address)/(Address per level)^(Num levels remaining)*(Size of Table)
    startsizecheck = inputsizecheck - ((3 - level)*stride + grainsize); // Log2(Num of entries)

    // Check for starting level table with fewer than 2 entries or longer than 16 pages.
    // Lower bound check is: startsizecheck < Log2(2 entries)
    // Upper bound check is: startsizecheck > Log2(pagesize/8*16)
    if !basefound || disabled then
        level = 0;           // AArch32 reports this as a level 1 fault
        result.addrdesc.fault = AArch64.TranslationFault(ipaddress, s1_nonsecure, level, acctype,
        iswrite,
        secondstage, s2fs1walk);
        return result;
    endif

    case ps of
        when '000'  outputsize = 32;
        when '001'  outputsize = 36;
        when '010'  outputsize = 40;
        when '011'  outputsize = 42;
        when '100'  outputsize = 44;
        when '101'  outputsize = 48;
        when '110'  outputsize = (if Have52BitPAExt() && largegrain then 52 else 48);
        otherwise  outputsize = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address
        size value";

        if outputsize > PAMax() then outputsize = PAMax();

        if outputsize < 48 && !IsZero(baseregister<47:outputsize>) then
            level = 0;
        endif
    endif

    result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, s1_nonsecure, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Bottom bound of the Base address is:
// Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
// Number of entries in starting level table =
// (Size of Input Address)/(Address per level)*(Num levels remaining)*(Size of Table)
baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Number of entries*8)
if outputsize == 52 then
  z = (if baselowerbound < 6 then 6 else baselowerbound);
baseaddress = baseregister<52:baseregister<47:z>:Zeros(z);
else
  baseaddress = ZeroExtend(baseregister<47:baselowerbound>:Zeros(baselowerbound));

ns_table = if lookupsecure then '0' else '1';
ap_table = '00';
xn_table = '0';
pxn_table = '0';

addrselecttop = inputsize - 1;
apply_nvnv1_effect = HaveNVExt() && EL2Enabled() && HCR_EL2.<NV,NV1> == '11' && S1TranslationRegime() == EL1 && !secondstage;
repeat
  addrselectbottom = (3-level)*stride + grainsize;
  bits($2) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:0000);
descaddr.paddress.address = baseaddress OR index;
descaddr.paddress.NS = if secondstage then nswalk else ns_table;

  // If there are two stages of translation, then the first stage table walk addresses
  // are themselves subject to translation
  if secondstage || !HasS2Translation() || (HaveNV2Ext() && acctype == AccType_NV2REGISTER) then
descaddr2 = descaddr;
else
  hwupdatewalk = FALSE;
descaddr2 = AArch64.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
  // Check for a fault on the stage 2 walk
  if IsFault(descaddr2) then
    result.addrdesc.fault = descaddr2.fault;
    return result;

// Update virtual address for abort functions
descaddr2.vaddress = ZeroExtend(vaddress);
accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
desc = _Mem[descaddr2, 8, accdesc];
if reversedescriptors then desc = BigEndianReverse(desc);
if desc<0> == '0' || (desc<1:0> == '01' && (level == 3 || (HaveBlockBBM() && IsBlockDescriptorNTBitValid() &&
desc<16> == '1'))) then
  // Valid Block, Page, or Table entry
  if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)
    blocktranslate = TRUE;
else // Table (11)
  if (outputsize < 52 && largegrain && (PAMax() == 52 ||
    boolean IMPLEMENTATION_DEFINED "Address Size Fault on LPA descriptor bits [15:12]" &&
    !IsZero(desc<15:12>) || (outputsize < 48 && !IsZero(desc<47:outputsize>)) then
    result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, s1_nonsecure, level, acctype,
      iswrite, secondstage, s2fs1walk);

    // Block (01) or Page (11)
else if (outputsize < 52 && largegrain && (PAMax() == 52 ||
    boolean IMPLEMENTATION_DEFINED "Address Size Fault on LPA descriptor bits [15:12]" &&
    !IsZero(desc<15:12>) || (outputsize < 48 && !IsZero(desc<47:outputsize>)) then
  result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, s1_nonsecure, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

if outputsize == 52 then
    baseaddress = desc<15:12>:desc<47:grainsize>:Zeros(grainsize);
else
    baseaddress = ZeroExtend(desc<47:grainsize>:Zeros(grainsize));
if !secondstage then
    // Unpack the upper and lower table attributes
    ns_table = ns_table OR desc<63>;
if !secondstage && !hierattrsdisabled then
    ap_table<1> = ap_table<1> OR desc<62>;       // read-only
if apply_nvnl_effect then
    pxn_table = pxn_table OR desc<60>;
else
    xn_table = xn_table OR desc<60>;
// pxn_table and ap_table[0] apply in EL1&0 or EL2&0 translation regimes
if !singlepriv then
    if !apply_nvnl_effect then
        pxn_table = pxn_table OR desc<59>;
    ap_table<0> = ap_table<0> OR desc<61>;   // privileged

level = level + 1;
addrselecttop = addrselectbottom - 1;
blocktranslate = FALSE;
until blocktranslate;

// Check block size is supported at this level
if level < firstblocklevel then
    result.addrdesc.fault = AArch64.TranslationFault(ipaddress, s1_nonsecure, level, acctype,
        iswrite, secondstage, s2fs1walk);
return result;

// Check for misprogramming of the contiguous bit
if largegrain then
    num_ch_entries = 5;
elsif midgrain then
    num_ch_entries = if level == 3 then 7 else 5;
else
    num_ch_entries = 4;
contiguousbitcheck = inputsize < (addrselectbottom + num_ch_entries);
if contiguousbitcheck & & desc<52> == '1' then
    if boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit" then
        result.addrdesc.fault = AArch64.TranslationFault(ipaddress, s1_nonsecure, level, acctype,
            iswrite, secondstage, s2fs1walk);
    return result;

// Unpack the descriptor into address and upper and lower block attributes
if largegrain then
    outputaddress = desc<15:12>:desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>;
else
    outputaddress = ZeroExtend(desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>);

// When 52-bit PA is supported, for 64 Kbyte translation grainule,
// block size might be larger than the supported output address size
if (outputsize < 52 & & IsZero(outputaddress<51:48>) & & largegrain & & (PAMax() == 52 ||
    boolean IMPLEMENTATION_DEFINED "Address Size Fault on LPA descriptor bits [15:12]") ||
(outputsize < 48 & & IsZero(outputaddress<47:outputsize>))) then
    result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress,s1_nonsecure, level, acctype,
        iswrite, secondstage, s2fs1walk);
return result;

// Check Access Flag
if desc<10> == '0' then
    if !update_AF then
result.addrdesc.fault = AArch64.AccessFlagFault(ipaddress, sl_nonsecure, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;
else
result.descupdate.AF = TRUE;

if update_AP && desc<51> == '1' then
// If hw update of access permission field is configured consider AP[2] as '0' / S2AP[2] as '1'
if !secondstage && desc<7> == '1' then
  desc<7> = '0';
  result.descupdate.AP = TRUE;
elsif secondstage && desc<7> == '0' then
  desc<7> = '1';
  result.descupdate.AP = TRUE;

  // Required descriptor if AF or AP[2]/S2AP[2] needs update
result.descupdate.descaddr = descaddr;

if apply_nvnl_effect then
  pnx = desc<54>;
  // Bit[54] of the block/page descriptor
  holds PXN instead of UXN
  xn = '0';
  // XN is '0'
  ap = desc<7:6>:'01';
  // Bit[6] of the block/page descriptor is treated as '0' regardless of value programmed
else
  xn = desc<54>;
  // Bit[54] of the block/page descriptor
  holds UXN
  pnx = desc<53>;
  // Bit[53] of the block/page descriptor
  holds PXN
  ap = desc<7:6>:1';
  // Bits[7:6] of the block/page descriptor

if AP[2:1] contiguousbit = desc<52>
  mg = desc<11>; // Bit[10] of the block/page descriptor
  sh = desc<9:8>;
  memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

result.domain = bits(4) UNKNOWN;  // Domains not used
result.level = level;
result.blocksize = 2^((3-level)*stride + grainsize);

if !secondstage then
  result.perms.xn      = xn OR xn_table;
  result.perms.ap<2>   = ap<2> OR ap_table<1>; // Force read-only
  // PXN, mg and AP[1] apply in EL1&0 or EL2&0 stage 1 translation regimes
if !singlepriv then
  result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
  result.perms.pxn = pnx OR pnx_table;
  // Pages from Non-secure tables are marked non-global in Secure EL1&0
if IsSecure() then
  result.nG = mg OR ns_table;
else
  result.nG = mg;
else
  result.perms.ap<1> = '1';
  result.perms.pxn = '0';
  result.nG = '0';
result.GP = desc<50>;
// Stage 1 block or pages might be guarded
result.perms.ap<0> = '1';
result.addrdesc.memattrs = AArch64.S1AttrDecode(sh, memattr<2:0>, acctype);
result.addrdesc.paddress.NS = memattr<3> OR ns_table;
else
  result.perms.ap<2:1> = ap<2:1>;
  result.perms.ap<0> = '1';
  result.perms.xn = xn;
  if HaveExtendedExecuteNeverExt() then result.perms.xxn = desc<53>;
  result.perms.pxn = '0';
  result.nG = '0';
if s2fs1walk then
    result.addrdesc.memattrs = S2AttrDecode(sh, memattr, AccType_PTW);
else
    result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
result.addrdesc.paddress.NS = nsaccess;
result.addrdesc.paddress.address = outputaddress;
result.addrdesc.fault = AArch64.NoFault();
result.contiguous = contiguousbit == '1';
if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;
return result;
J1.2 Pseudocode for AArch32 operation

This section holds the pseudocode for execution in AArch32 state. Functions that are listed in this section are identified as AArch32.FunctionName. Some of these functions have an equivalent AArch64 function, AArch64.FunctionName. This section is organized by functional groups, with the functional groups being indicated by hierarchical path names, for example aarch32/debug/breakpoint.

Note

Many AArch32 pseudocode functions have not been updated to show the constraints on the Armv7 UNPREDICTABLE behaviors that are described in Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors. Where AArch32 pseudocode shows something to be UNPREDICTABLE, check Appendix K1 for possible constraints on the permitted behavior.

The top-level sections of the AArch32 pseudocode hierarchy are:

- aarch32/debug
- aarch32/exceptions on page J1-7741.
- aarch32/functions on page J1-7761.
- aarch32/translation on page J1-7789.

J1.2.1 aarch32/debug

This section includes the following pseudocode functions:

- aarch32/debug/VCRMatch/AArch32.VCRMatch.
- aarch32/debug/pmu/AArch32.CheckForPMUOverflow on page J1-7738.
- aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState on page J1-7739.
- aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState on page J1-7739.

aarch32/debug/VCRMatch/AArch32.VCRMatch

// AArch32.VCRMatch()
// =============

boolean AArch32.VCRMatch(bits(32) vaddress)

if UsingAArch32() && ELUsingAArch32(EL1) && PSTATE.EL != EL2 then
  // Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
  match_word = Zeros(32);
  if vaddress<31:5> == ExcVectorBase()<31:5> then
    if HaveEL(EL3) && !IsSecure() then
      match_word<UInt(vaddress<4:2>) + 24> = '1';     // Non-secure vectors
    else
      match_word<UInt(vaddress<4:2>) + 0> = '1';      // Secure vectors (or no EL3)
  if HaveEL(EL3) && ELUsingAArch32(EL3) && IsSecure() && vaddress<31:5> == MVBAR<31:5> then
    match_word<UInt(vaddress<4:2>) + 8> = '1';          // Monitor vectors
// Mask out bits not corresponding to vectors.
if !HaveEL(EL3) then
    mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
elsif !ELUsingAArch32(EL3) then
    mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
else
    mask = '11011110':'00000000':'11011100':'11011110';

match_word = match_word AND DBGVCR AND mask;
match = !IsZero(match_word);

// Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then
    match = ConstrainUnpredictableBool();
if !IsZero(vaddress<1:0>) && match then
    match = ConstrainUnpredictableBool();
else
    match = FALSE;
return match;

aarch32/debug/authentication/AAArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled

// AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// ==============================================================

boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
// the state of the (DBGEN AND SPIDEN) signal.
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return DBGEN == HIGH && SPIDEN == HIGH;

aarch32/debug/breakpoint/AAArch32.BreakpointMatch

// AArch32.BreakpointMatch()
// ==============================================================

// Breakpoint matching in an AArch32 translation regime.

(boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(DBGDIDR.BRPs);
enabled = DBGBCR[n].E == '1';
ispriv = PSTATE.EL != EL0;
linked = DBGBCR[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;
state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
linked, DBGBCR[n].LBN, isbreakpnt, ispriv);
(value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

if size == 4 then                 // Check second halfword
    // If the breakpoint address and BAS of an Address breakpoint match the address of the
    // second halfword of an instruction, but not the address of the first halfword, it is
    // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
    // event.
    (match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
    if !value_match && & match_i then
        value_match = ConstrainUnpredictableBool();
    if value_mismatch && !mismatch_i then
        value_mismatch = ConstrainUnpredictableBool();
if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
    // The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
    // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
    // at the address DBGVVR[n]+2.
    if value_match then value_match = ConstrainUnpredictableBool();
    if !value_mismatch then value_mismatch = ConstrainUnpredictableBool();

    match = value_match && state_match && enabled;
    mismatch = value_mismatch && state_match && enabled;

    return (match, mismatch);

aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

// AArch32.BreakpointValueMatch()  
// ==============================  
// The first result is whether an Address Match or Context breakpoint is programmed on the  
// instruction at "address". The second result is whether an Address Mismatch breakpoint is  
// programmed on the instruction, that is, whether the instruction should be stepped.  

(boolean, boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

    // "n" is the identity of the breakpoint unit to match against.  
    // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context  
    // matching breakpoints.  
    // "linked_to" is TRUE if this is a call from StateMatch for linking.  

    if n > UInt(DBGDIDR.BRPs) then
        (c, n) = ConstrainUnpredictableInteger(0, UInt(DBGDIDR.BRPs));
        assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
        if c == Constraint_DISABLED then return (FALSE, FALSE);

    // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value  
    // Determine what to compare against.  
    match_addr = (dbgtype == '0x0x');
    mismatch = (dbgtype == '010x');
    match_vmid = (dbgtype == '10xx');
    match_cid1 = (dbgtype == 'xx1x');
    match_cid2 = (dbgtype == '11xx');
    linked = (dbgtype == 'xxx1');

    if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug()) ||    // Context matching
        (dbgtype == '010x' && HaltOnBreakpointOrWatchpoint()) ||                  // Address mismatch
        (dbgtype != '0x0x' && !context_aware) ||                                  // Context matching
        (dbgtype == '1xxx' && !HaveEL(EL2))) then                                 // EL2 extension
        (c, dbgtype) = ConstrainUnpredictableBits();
        assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
        if c == Constraint_DISABLED then return (FALSE, FALSE);

    // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.  
    dbgtype = DBGBCR[n].BT;

    if (!dbgtype IN {'011x','11xx'}) && !HaveV82Debug() && !HaveVirtHostExt()) ||  
       // Context matching
        (dbgtype == '010x' && HaltOnBreakpointOrWatchpoint()) ||                  // Address mismatch
        (dbgtype != '0x0x' && !context_aware) ||                                  // Context matching
        (dbgtype == '1xxx' && !HaveEL(EL2))) then                                 // EL2 extension
        (c, dbgtype) = ConstrainUnpredictableBits();
        assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
        if c == Constraint_DISABLED then return (FALSE, FALSE);

    // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a  
    // call from StateMatch for linking).  
    if DBGBCR[n].E == '0' then return (FALSE, FALSE);

    context_aware = (n >UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));

    (boolean, boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

    // "n" is the identity of the breakpoint unit to match against.  
    // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context  
    // matching breakpoints.  
    // "linked_to" is TRUE if this is a call from StateMatch for linking.  

    if linked_to && (!linked || match_addr) then return (FALSE, FALSE);

    // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.  
    if !linked_to && linked && !match_addr then return (FALSE, FALSE);
// Do the comparison.
if match_addr then
  byte = UInt(vaddress<1:0>);
  assert byte IN {0,2}; // "vaddress" is halfword aligned
  byte_select_match = (DBGBCR[n].BAS<byte> == '1');
  BVR_match = vaddress<31:2> == DBGBVR[n]<31:2> & byte_select_match;
elsif match_cid1 then
  BVR_match = (PSTATE.EL != EL2 & CONTEXTIDR == DBGBVR[n]<31:0>);
if match_vmid then
  if ELUsingAArch32(EL2) then
    vmid = ZeroExtend(VTTBR.VMID, 16);
    bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
  elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
    vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
    bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
  else
    vmid = VTTBR_EL2.VMID;
    bvr_vmid = DBGBXVR[n]<15:0>;
  end
  BXVR_match = (PSTATE.EL IN {EL0, EL1} & EL2Enabled() &
  vmid == bvr_vmid);
elsif match_cid2 then
  BXVR_match = ((HaveVirtHostExt() || HaveV82Debug()) & EL2Enabled() &
  !ELUsingAArch32(EL2) &
  DBGBXVR[n]<31:0> == CONTEXTIDR_EL2);
  bvr_match_valid = (match_addr || match_cid1);
  bxvr_match_valid = (match_vmid || match_cid2);
  match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);
else
  return (match & & mismatch, !match & mismatch);

aarch32/debug/breakpoint/AArch32.StateMatch

// AArch32.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
  boolean isbreakpnt, boolean ispriv)
// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.
// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
if c == Constraint_DISABLED then return FALSE;
// Otherwise the HMC, SSC, PxC values are either valid or the values returned by
// CheckValidStateMatch are valid.

PL2_match = HaveEL(EL2) & ((HMC == '1' & & (SSC:PxC != '1000')) || SSC == '11');
PL1_match = PxC<>0 == '1';
PL0_match = PxCC<> = '1';
SSU_match = isbreakpnt & HMC == '0' & & PxC == '00' & & SSC != '11';

if !ispriv & & !isbreakpnt then
  priv_match = PL0_match;
elsif SSU_match then
  priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
else
  case PSTATE.EL of
    when EL3 priv_match = PL1_match; // EL3 and EL1 are both PL1
    when EL2 priv_match = PL2_match;
    when EL1 priv_match = PL1_match;
    ...
when EL0 priv_match = PL0_match;

case SSC of
  when '00' security_state_match = TRUE;  // Both
  when '01' security_state_match = !IsSecure(); // Non-secure only
  when '10' security_state_match = IsSecure(); // Secure only
  when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure

only

if linked then
  // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
  // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
  // UNKNOWN breakpoint that is context-aware.
  lbn = UInt(LBN);
  first_ctx_cmp = (UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));
  last_ctx_cmp = UInt(DBGDIDR.BRPs);
  if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
    (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
    assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
    case c of
      when Constraint_DISABLED return FALSE;  // Disabled
      when Constraint_NONE linked = FALSE;    // No linking
    // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

if linked then
  vaddress = bits(32) UNKNOWN;
  linked_to = TRUE;
  (linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

return priv_match && security_state_match && (!linked || linked_match);

aarch32/debug/enables/AArch32.GenerateDebugExceptions

// AArch32.GenerateDebugExceptions()
// ----------------------------------

boolean AArch32.GenerateDebugExceptions()

return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());

aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

// AArch32.GenerateDebugExceptionsFrom()
// -------------------------------------

boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

if from == EL0 && !ELStateUsingAArch32(EL1, secure) then
  mask = bit UNKNOWN;  // PSTATE.D mask, unused for EL0 case
  return AArch64.GenerateDebugExceptionsFrom(from, secure, mask);

if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
  return FALSE;

if HaveEL(EL3) && secure then
  spd = if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32;
  if spd<1> == '1' then
    enabled = spd<0> == '1';
  else
    // SPD == 0b01 is reserved, but behaves the same as 0b00.
    enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();
  if from == EL0 then enabled || SDER.SUIDEN == '1';
else
  enabled = from != EL2;

return enabled;
aarch32/debug/pmu/AArch32.CheckForPMUOverflow

// AArch32.CheckForPMUOverflow()
// ===================================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch32.CheckForPMUOverflow()
if !ELUsingAArch32(EL1) then return AArch64.CheckForPMUOverflow();
pmuirq = PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1';
for n = 0 to UInt(PMCR.N) - 1
  if HaveEL(EL2) then
    hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
    hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
    E = (if n < UInt(hpmn) then PMCR.E else hpme);
  else
    E = PMCR.E;
  if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;
SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);
CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);
// The request remains set until the condition is cleared. (For example, an interrupt handler
// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)
return pmuirq;

aarch32/debug/pmu/AArch32.CountEvents

// AArch32.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch32.CountEvents(integer n)
assert n == 31 || n < UInt(PMCR.N);
if !ELUsingAArch32(EL1) then return AArch64.CountEvents(n);
// Event counting is disabled in Debug state
debug = Halted();
// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then
  hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
  hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
  E = if n < UInt(hpmn) || n == 31 then PMCR.E else hpme;
else
  E = PMCR.E;
  enabled = E == '1' && PMINTENSET<n> == '1';
// Event counting in Secure state is prohibited unless any one of:
// * EL3 is not implemented
// * EL3 is using AArch64 and MDCR_EL3.SPME == 1
// * EL3 is using AArch32 and SDCR.SPME == 1
// * Executing at EL0, and SDER.SUNIDEN == 1.
  spme = (if ELUsingAArch32(EL3) then SDCR.SPME else MDCR_EL3.SPME);
  prohibited = HaveEL(EL3) && IsSecure() && spme == '0' &&
  (PSTATE.EL != EL0 || SDER.SUNIDEN == '0');
// Event counting at EL2 is prohibited if all of:
// * The HPMD Extension is implemented
// * Executing at EL2
// * PMNx is not reserved for EL2
// * HDCR.HPMD == 1
  if !prohibited && HaveEL(EL2) && HaveHPMDExt() && PSTATE.EL == EL2 &&
  (n < UInt(hpmn) || n == 31) then
    prohibited = (HDCR.HPMD == '1');
// The IMPLEMENTATION DEFINED authentication interface might override software controls
if prohibited && !HaveNoSecurePMUDisableOverride() then
    prohibited = !ExternalSecureNoninvasiveDebugEnabled();
// For the cycle counter, PMCR.DP enables counting when otherwise prohibited
if prohibited && n == 31 then prohibited = (PMCR.DP == '1');

// If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
// This is not overridden by PMCR.DP.
if Havev85PMU() && n == 31 then
    if HaveEL(EL3) && isSecure() then
        sccd = (if ELUsingAArch32(EL3) then SDCCR.SCCD else MDCR_EL3.SCCD);
        if sccd == '1' then prohibited = TRUE;
        if PMCR.DP == '1' then prohibited = TRUE;

    // Event counting can be filtered by the (P, U, NSK, NSU, NSH) bits
    filter = if n == 31 then PMCCFILTER else PMETYPE[n];

    P = filter<31>;
    U = filter<30>;
    NSK = if HaveEL(EL3) then filter<29> else '0';
    NSU = if HaveEL(EL3) then filter<28> else '0';
    NSH = if HaveEL(EL2) then filter<27> else '0';

    case PSTATE.EL of
        when EL0 filtered = if !IsSecure() then U == '1' else U != NSU;
        when EL1 filtered = if !IsSecure() then P == '1' else P != NSK;
        when EL2 filtered = (NSH == '0');
        when EL3 filtered = (P == '1');
    return !debug && enabled && !prohibited && !filtered;

aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

// AArch32.EnterHypModeInDebugState()
// ==================================
// Take an exception in Debug state to Hyp mode.
AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
SynchronizeContext();
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

AArch32.ReportHypEntry(exception);
AArch32.WriteMode(M32_Hyp);
SPSR[] = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.(SS,A,I,F) are not observable so behave as UNKNOWN.
PSTATE.T = '1';
// PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = HSCTRL.EE;
PSTATE.I = '0';
PSTATE.IT = '00000000';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields();
EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

// AArch32.EnterModeInDebugState()
// ===============================
// Take an exception in Debug state to a mode other than Monitor and Hyp mode.
AArch32.EnterModeInDebugState(bits(5) target_mode)

SynchronizeContext();
assert ELUsingAArch32(EL1) & PSTATE.EL != EL2;

if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() & SCTLR.SPAN == '0' then PSTATE.PAN = '1';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update ESCR processor state flags.
EndOfInstruction();

aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

// AArch32.EnterMonitorModeInDebugState()
// =====================================
// Take an exception in Debug state to Monitor mode.

AArch32.EnterMonitorModeInDebugState()
SynchronizeContext();
assert HaveEL(EL3) & ELUsingAArch32(EL3);
from_secure = IsSecure();
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then
  if !from_secure then
    PSTATE.PAN = '0';
  elsif SCTLR.SPAN == '0' then
    PSTATE.PAN = '1';
  if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
  DLR = bits(32) UNKNOWN;
  DSPSR = bits(32) UNKNOWN;
  ESCR.ERR = '1';
  UpdateEDSCRFields(); // Update ESCR processor state flags.
EndOfInstruction();

aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

// AArch32.WatchpointByteMatch()
// -----------------------------

boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

  bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR[n].MASK);

// If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
// DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR[n].BAS) then
byte_select_match = ConstrainUnpredictableBool();
else

LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
byte_select_match = ConstrainUnpredictableBool();
bottom = 3;
// For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then
(c, mask) = ConstrainUnpredictableInteger(3, 31);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of
when Constraint_DISABLED  return FALSE; // Disabled
when Constraint_NONE      mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value
if mask > bottom then
WVR_match = (vaddress<31:mask> == DBGWVR[n]<31:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then
WVR_match = ConstrainUnpredictableBool();
else
WVR_match = vaddress<31:bottom> == DBGWVR[n]<31:bottom>;
return WVR_match && byte_select_match;

aarch32/debug/watchpoint/AArch32.WatchpointMatch

// AArch32.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch32 translation regime.

boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv, boolean iswrite)
assert ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(DBGDIDR.WRPs);

// "ispriv" is FALSE for LDRT/STRT instructions executed at EL1 and all
// load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
// loads.
enabled = DBGWCR[n].E == '1';
linked = DBGWCR[n].WT == '1';
isbreakpnt = FALSE;
state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC, linked, DBGWCR[n].LBN, isbreakpnt, ispriv);
ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');
value_match = FALSE;
for byte = 0 to size - 1
value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);
return value_match && state_match && ls_match && enabled;

J1.2.2 aarch32/exceptions

This section includes the following pseudocode functions:
• aarch32/exceptions/aborts/AArch32.Abort on page J1-7742.
• aarch32/exceptions/aborts/AArch32.CheckPCallignment on page J1-7743.
• aarch32/exceptions/aborts/AArch32.TakeDataAbortException on page J1-7745.
• aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException on page J1-7745.
• aarch32/exceptions/aborts/BranchTargetException on page J1-7746.
• aarch32/exceptions/asynch/AArch32.TakePhysicalFIQException on page J1-7746.
• aarch32/exceptions/asynch/AArch32.TakePhysicalIRQException on page J1-7747.
• aarch32/exceptions/asynch/AArch32.TakeVirtualFIQException on page J1-7748.
• aarch32/exceptions/asynch/AArch32.TakeVirtualIRQException on page J1-7748.
• aarch32/exceptions/asynch/AArch32.TakeVirtualSErrorException on page J1-7748.
• aarch32/exceptions/debug/AArch32.SoftwareBreakpoint on page J1-7749.
• aarch32/exceptions/debug/DebugException on page J1-7749.
• aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps on page J1-7749.
• aarch32/exceptions/exceptions/AArch32.ExceptionClass on page J1-7750.
• aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64 on page J1-7750.
• aarch32/exceptions/exceptions/AArch32.TakeReset on page J1-7751.
• aarch32/exceptions/exceptions/AArch32.ResetControlRegisters on page J1-7751.
• aarch32/exceptions/exceptions/AArch32.CallHypervisor on page J1-7752.
• aarch32/exceptions/exceptions/AArch32.CallSupervisor on page J1-7752.
• aarch32/exceptions/exceptions/AArch32.TakeHVCException on page J1-7753.
• aarch32/exceptions/exceptions/AArch32.TakeSMCEException on page J1-7753.
• aarch32/exceptions/exceptions/AArch32.TakeSVCException on page J1-7753.
• aarch32/exceptions/takeexception/AArch32.EnterHypMode on page J1-7754.
• aarch32/exceptions/takeexception/AArch32.EnterMode on page J1-7754.
• aarch32/exceptions/takeexception/AArch32.EnterMonitorMode on page J1-7754.
• aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled on page J1-7755.
• aarch32/exceptions/traps/AArch32.CheckFPAvSIMDTrap on page J1-7756.
• aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap on page J1-7756.
• aarch32/exceptions/traps/AArch32.CheckForSVCTrap on page J1-7757.
• aarch32/exceptions/traps/AArch32.CheckForWfXTrap on page J1-7757.
• aarch32/exceptions/traps/AArch32.CheckITEnabled on page J1-7757.
• aarch32/exceptions/traps/AArch32.CheckIllegalState on page J1-7758.
• aarch32/exceptions/traps/AArch32.CheckSETENDEnabled on page J1-7758.
• aarch32/exceptions/traps/AArch32.TakeHypTrapException on page J1-7760.
• aarch32/exceptions/traps/AArch32.TakeMonitorTrapException on page J1-7760.
• aarch32/exceptions/traps/AArch32.TakeUndefInstrException on page J1-7760.
• aarch32/exceptions/traps/AArch32.UndefinedFault on page J1-7761.

aarch32/exceptions/aborts/AArch32.Abort

// AArch32.Abort()
// ===============
// Abort and Debug exception handling in an AArch32 translation regime.
### AArch32.Abort(bits(32) vaddress, FaultRecord fault)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
    route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
        (HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
        (IsDebugException(fault) && MDCR_EL2.TDE == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
    route_to_aarch64 = SCR_EL3.EA == '1' && IsExternalAbort(fault);

if route_to_aarch64 then
    AArch64.Abort(ZeroExtend(vaddress), fault);
elsif fault.acctype == AccType_IFETCH then
    AArch32.TakePrefetchAbortException(vaddress, fault);
else
    AArch32.TakeDataAbortException(vaddress, fault);

### aarch32/exceptions/aborts/AArch32.AbortSyndrome

// AArch32.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort exceptions taken to Hyp mode
// from an AArch32 translation regime.

ExceptionRecord AArch32.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(32) vaddress) =
    exception = ExceptionSyndrome(exceptype);
    d_side = exceptype == Exception_DataAbort;
    exception.syndrome = AArch32.FaultSyndrome(d_side, fault);
    if IPAValid(fault) then
        exception.ipavalid = TRUE;
        exception.NS = fault.ipaddress.NS;
        exception.ipaddress = ZeroExtend(fault.ipaddress.address);
    else
        exception.ipavalid = FALSE;

    return exception;

### aarch32/exceptions/aborts/AArch32.CheckPCAlignment

// AArch32.CheckPCAlignment()
// ==========================
AArch32.CheckPCAlignment()

      bits(32) pc = ThisInstrAddr();
      if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then
          if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

          // Generate an Alignment fault Prefetch Abort exception
          vaddress = pc;
          acctype = AccType_IFETCH;
          iswrite = FALSE;
          secondstage = FALSE;
          AArch32.Abort(vaddress, AArch32.AlignmentFault(acctype, iswrite, secondstage));

### aarch32/exceptions/aborts/AArch32.ReportDataAbort

// AArch32.ReportDataAbort()
// =========================
// Report syndrome information for aborts taken to modes other than Hyp mode.
AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)

    // The encoding used in the IFSR or DFSR can be Long-descriptor format or Short-descriptor format. Normally, the current translation table format determines the format. For an abort from Non-secure state to Monitor mode, the IFSR or DFSR uses the Long-descriptor format if any of the following applies:
    // * The Secure TTBCR.EAE is set to 1.
    // * The abort is synchronous and either:
    //   - It is taken from Hyp mode.
    //   - It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
    long_format = FALSE;
    if route_to_monitor && !IsSecure() then
        long_format = TTBCR_S.EAE == '1';
        if !IsSErrorInterrupt(fault) & long_format then
            long_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
    else
        long_format = TTBCR.EAE == '1';
    d_side = TRUE;
    if long_format then
        syndrome = AArch32.FaultStatusLD(d_side, fault);
        if fault.acctype == AccType_IC then
            if (!long_format &&
                boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
                i_syndrome = syndrome;
                syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);
            else
                syndrome = syndrome;
                syndrome = syndrome;
            if route_to_monitor then
                IFSR_S = i_syndrome;
                DFSR_S = syndrome;
                DFAR_S = vaddress;
            else
                IFSR = i_syndrome;
                DFSR = syndrome;
                DFAR = vaddress;
        return;

aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

    // AArch32.ReportPrefetchAbort()
    // =============================
    // Report syndrome information for aborts taken to modes other than Hyp mode.
    AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
    // The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format. Normally, the current translation table format determines the format. For an abort from Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the following applies:
    // * The Secure TTBCR.EAE is set to 1.
    // * It is taken from Hyp mode.
    // * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
    long_format = FALSE;
    if route_to_monitor && !IsSecure() then
        long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
    else
        long_format = TTBCR.S.EAE == '1';
    d_side = FALSE;
    if long_format then
```c
fsr = AArch32.FaultStatusLD(d_side, fault);
else
 fsr = AArch32.FaultStatusSD(d_side, fault);
if route_to_monitor then
 IFSR_S = fsr;
 IFAR_S = vaddress;
else
 IFSR = fsr;
 IFAR = vaddress;
return;

aarch32/exceptions/aborts/AArch32.TakeDataAbortException

// AArch32.TakeDataAbortException()
// *****************************/
AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;
if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

// AArch32.TakePrefetchAbortException()
// *****************************/
AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} &&
 (HCR.TGE == '1' || IsSecondStage(fault) ||
 (HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
 (IsDebugException(fault) && HDCR.TDE == '1')));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0C;
lr_offset = 4;
if IsDebugException(fault) then DBCDSCRext.MOE = fault.debugmoe;
if route_to_monitor then
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then
 if fault.statuscode == Fault_Alignment then // PC Alignment fault
 ...
exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();
else
exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else
 AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/aborts/BranchTargetException

// BranchTargetException
// =====================
// Raise branch target exception.

AArch64.BranchTargetException(bits(52) vaddress)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_BranchTarget);
 exception.syndrome<1:0> = PSTATE.BTYPE;
 exception.syndrome<24:2> = Zeros(); // RES0
 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalFIQException

// AArch32.TakePhysicalFIQException()
// ==================================

AArch32.TakePhysicalFIQException()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = SCR_EL3.FIQ == '1';
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.FIQ == '1';
 if route_to_aarch64 then
 AArch64.TakeException(EL3, preferred_exception_return, lr_offset, vect_offset);
 else if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_FIQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);
aarch32/exceptions/asynch/AArch32.TakePhysicalIRQException

// AArch32.TakePhysicalIRQException()
// ----------------------------------
// Take an enabled physical IRQ exception.

AArch32.TakePhysicalIRQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && !EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.IRQ == '1';
if route_to_aarch64 then AArch64.TakePhysicalIRQException();

route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled()) &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x18;
lr_offset = 4;
if route_to_monitor then
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IRQ);
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakePhysicalSErrorException

// AArch32.TakePhysicalSErrorException()
// -------------------------------------

AArch32.TakePhysicalSErrorException(boolean parity, bit extflag, bits(2) errortype,
 boolean impdef_syndrome, bits(24) full_syndrome)

ClearPendingPhysicalSError();
// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || (IsInHost() && HCR_EL2.AMO == '1');
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1';
if route_to_aarch64 then
 AArch64.TakePhysicalSErrorException(impdef_syndrome, full_syndrome);

route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled()) &&
 (HCR.TGE == '1' || HCR.AMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;
fault = AArch32.AsynchExternalAbort(parity, errortype, extflag);
vaddress = bits(32) UNKNOWN;
if route_to_monitor then
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then
 exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else
 AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
 AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualFIQException

 // AArch32.TakeVirtualFIQException()
 // -----------------------------------

AArch32.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE=0 and FMO=1
 assert HCR.TGE == '0' && HCR.FMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x1C;
 lr_offset = 4;
 AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualIRQException

 // AArch32.TakeVirtualIRQException()
 // -----------------------------------

AArch32.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE=0 and IMO=1
 assert HCR.TGE == '0' && HCR.IMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x18;
 lr_offset = 4;
 AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/asynch/AArch32.TakeVirtualSErrorException

 // AArch32.TakeVirtualSErrorException()
 // ------------------------------------

AArch32.TakeVirtualSErrorException(bit extflag, bits(2) errortype, boolean impdef_syndrome, bits(24)
 full_syndrome)
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE=0 and AMO=1
 assert HCR.TGE == '0' && HCR.AMO == '1';
 else
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 // Check if routed to AArch64 state
 if PSTATE.EL == EL0 && ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException(impdef_syndrome,
 full_syndrome);
 route_to_monitor = FALSE;
bits(32) preferred_exception_return = ThisInstrAddr();
vec_offset = 0x10;
lr_offset = 8;
vaddress = bits(32) UNKNOWN;
parity = FALSE;
if HaveRASExt() then
 if ELUsingAArch32(EL2) then
 fault = AArch32.AsynchExternalAbort(FALSE, VDSR.AET, VDSR.ExT);
 else
 fault = AArch32.AsynchExternalAbort(FALSE, VSESR_EL2.AET, VSESR_EL2.ExT);
 else
 fault = AArch32.AsynchExternalAbort(parity, errortype, extflag);
ClearPendingVirtualSError();
AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vec_offset);

aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

// AArch32.SoftwareBreakpoint()
// // AArch32.SoftwareBreakpoint(bits(16) immediate)

AArch32.SoftwareBreakpoint(bits(16) immediate)

if (EL2Enabled() && !ELUsingAArch32(EL2) &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
 AArch64.SoftwareBreakpoint(immediate);
vaddress = bits(32) UNKNOWN;
acctype = AccType_IFETCH; // Take as a Prefetch Abort
iswrite = FALSE;
entry = DebugException_BKPT;

fault = AArch32.DebugFault(acctype, iswrite, entry);
AArch32.Abort(vaddress, fault);

aarch32/exceptions/debug/DebugException

constant bits(4) DebugException_Breakpoint = '0001';
constant bits(4) DebugException_BKPT = '0011';
constant bits(4) DebugException_VectorCatch = '0101';
constant bits(4) DebugException_Watchpoint = '1010';

aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps

// AArch32.CheckAdvSIMDOrFPRegisterTraps()
// // CheckAdvSIMDOrFPRegisterTraps(bits(4) reg)

if PSTATE.EL == EL1 && EL2Enabled() then
 tid0 = if ELUsingAArch32(EL2) then HCR.TID0 else HCR_EL2.TID0;
tid3 = if ELUsingAArch32(EL2) then HCR.TID3 else HCR_EL2.TID3;
if (tid0 == '1' && reg == '0000') // FPSID
 || (tid3 == '1' && reg IN {'0101', '0110', '0111'}) then // MVFRx
 if ELUsingAArch32(EL2) then
 AArch32.SystemAccessTrap(M32_Hyp, 0x8); // Exception_AdvSIMDFPAccessTrap
 else
 AArch64.AArch32SystemAccessTrap(EL2, 0x8); // Exception_AdvSIMDFPAccessTrap
aarch32/exceptions/exceptions/AArch32.ExceptionClass

// AArch32.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in HSR

(integer, bit) AArch32.ExceptionClass(Exception exceptype)

 il = if ThisInstrLength() == 32 then '1' else '0';

 case exceptype of
 when Exception_Uncategorized ec = 0x00; il = '1';
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03;
 when Exception_CP14RTTrap ec = 0x05;
 when Exception_CP14TRTTTrap ec = 0x06;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
 when Exception_CP14RRTTrap ec = 0x0C;
 when Exception_BranchTarget ec = 0x0D;
 when Exception_IllegalState ec = 0x0E; il = '1';
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_ERetTrap ec = 0x1A;
 when Exception_PACFail ec = 0x1C;
 when Exception_InstructionAbort ec = 0x20; il = '1';
 when Exception_PCAAlignment ec = 0x22; il = '1';
 when Exception_DataAbort ec = 0x24;
 when Exception_NV2DataAbort ec = 0x25;
 when Exception_FPTrappedException ec = 0x28;
 otherwise Unreachable();

 if ec IN {0x20, 0x24} && PSTATE.EL == EL2 then
 ec = ec + 1;

 return (ec, il);
if ec IN {0x24, 0x25} && iss<24> == '0' then
 il = '1';

HSR = ec<5:0>:il:iss;

if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment} then
 HIFAR = exception.vaddress<31:0>;
 HDFAR = bits(32) UNKNOWN;
elif exceptype == Exception_DataAbort then
 HIFAR = bits(32) UNKNOWN;
 HDFAR = exception.vaddress<31:0>;
if exception.ipavalid then
 HPFAR<31:4> = exception.ipaddress<39:12>;
else
 HPFAR<31:4> = bits(28) UNKNOWN;
return;

aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch32.ResetControlRegisters(boolean cold_reset);

aarch32/exceptions/exceptions/AArch32.TakeReset

// AArch32.TakeReset()
// ===================
// Reset into AArch32 state
AArch32.TakeReset(boolean cold_reset)
 assert HighestELUsingAArch32();

 // Enter the highest implemented Exception level in AArch32 state
 if HaveEL(EL3) then
 AArch32.WriteMode(M32_Svc);
 SCR.NS = '0'; // Secure state
 elsif HaveEL(EL2) then
 AArch32.WriteMode(M32_Hyp);
 else
 AArch32.WriteMode(M32_Svc);

 // Reset the CP14 and CP15 registers and other system components
 AArch32.ResetControlRegisters(cold_reset);
 FPEXC.EN = '0';

 // Reset all other PSTATE fields, including instruction set and endianness according to the
 // SCTLR values produced by the above call to ResetControlRegisters()
 PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
 PSTATE.IT = '00000000'; // IT block state reset
 PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
 PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch32.ResetGeneralRegisters();
 AArch32.ResetSIMDFPRegisters();
 AArch32.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(32) rv; // IMPLEMENTATION DEFINED reset vector
if HaveEL(EL3) then
 if MVBAR<0> == '1' then // Reset vector in MVBAR
 rv = MVBAR<31:1>:'0';
 else
 rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
 else
 rv = RVBAR<31:1>:'0';
 // The reset vector must be correctly aligned
 assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');
 BranchTo(rv, BranchType_RESET);

aarch32/exceptions/exceptions/ExcVectorBase

 // ExcVectorBase()
 // ===============

 bits(32) ExcVectorBase()
 if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000
 return Ones(16):Zeros(16);
 else
 return VBAR<31:5>:Zeros(5);

aarch32/exceptions/ieeefp/AArch32.FPTrappedException

 // AArch32.FPTrappedException()
 // ============================

 AArch32.FPTrappedException(bits(8) accumulated_exceptions)
 if AArch32.GeneralExceptionsToAArch64() then
 is_ase = FALSE;
 element = 0;
 AArch64.FPTrappedException(is_ase, element, accumulated_exceptions);
 FPEXC.DEX = '1';
 FPEXC.TFV = '1';
 FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 FPEXC<10:8> = '111'; // VECITR is RES1
 AArch32.TakeUndefInstrException();

aarch32/exceptions/syscalls/AArch32.CallHypervisor

 // AArch32.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch32.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);
 if !ELUsingAArch32(EL2) then
 AArch64.CallHypervisor(immediate);
 else
 AArch32.TakeHVCException(immediate);

aarch32/exceptions/syscalls/AArch32.CallSupervisor

 // AArch32.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch32.CallSupervisor(bits(16) immediate)
 if AArch32.CurrentCond() != '1110' then
 immediate = bits(16) UNKNOWN;
if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CallSupervisor(immediate);
else
 AArch32.TakeSVCException(immediate);

aarch32/exceptions/syscalls/AArch32.TakeHVCException

// AArch32.TakeHVCException()
// =========================

AArch32.TakeHVCException(bits(16) immediate)
 assert HaveEL(EL2) & ELUsingAArch32(EL2);

 AArch32.ITAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

aarch32/exceptions/syscalls/AArch32.TakeSMCEXception

// AArch32.TakeSMCEXception()
// =========================

AArch32.TakeSMCEXception()
 assert HaveEL(EL3) & ELUsingAArch32(EL3);
 AArch32.ITAdvance();
 SSAdvance();
 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/syscalls/AArch32.TakeSVCException

// AArch32.TakeSVCException()
// =========================

AArch32.TakeSVCException(bits(16) immediate)

 AArch32.ITAdvance();
 SSAdvance();
 route_to_hyp = PSTATE.EL == EL0 & EL2Enabled() & HCR.TGE == '1';

 bits(32) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x08;
 lr_offset = 0;

 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);
aarch32/exceptions/takeexception/AArch32.EnterHypMode

// AArch32.EnterHypMode()
// ======================
// Take an exception to Hyp mode.
AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
 integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);
 spsr = GetPSRFromPSTATE();
 if (!exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch32.ReportHypEntry(exception);
 AArch32.WriteMode(M32_Hyp);
 SPSR[] = spsr;
 ELR_hyp = preferred_exception_return;
 PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
 if !HaveEL(EL3) || SCR_GEN[].EA == '0' then PSTATE.A = '1';
 if !HaveEL(EL3) || SCR_GEN[].IRQ == '0' then PSTATE.I = '1';
 if !HaveEL(EL3) || SCR_GEN[].FIQ == '0' then PSTATE.F = '1';
 PSTATE.E = HSCTLR.EE;
 PSTATE.IL = '0';
 if HaveSSBSExt() then PSTATE.SSBS = HSCTLR.DSSBS;
 BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION);

EndOfInstruction();

aarch32/exceptions/takeexception/AArch32.EnterMode

// AArch32.EnterMode()
// ===================
// Take an exception to a mode other than Monitor and Hyp mode.
AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
 integer vect_offset)
 SynchronizeContext();
 assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;
 spsr = GetPSRFromPSTATE();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 AArch32.WriteMode(target_mode);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 if target_mode == M32_FIQ then
 PSTATE.<A,I,F> = '111';
 elsif target_mode IN {M32_Abort, M32_IRQ} then
 PSTATE.<A,I> = '11';
 else
 PSTATE.I = '1';
 PSTATE.E = SCTLR.EE;
 PSTATE.IL = '0';
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
 BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_EXCEPTION);

EndOfInstruction();
aaarch32/exceptions/takeexception/AArch32.EnterMonitorMode

// AArch32.EnterMonitorMode()
// ==========================
// Take an exception to Monitor mode.

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset, integer vect_offset)
 SynchronizeContext();
 assert HaveEL(EL3) & ELUsingAArch32(EL3);
 from_secure = IsSecure();
 spsr = GetPSRFromPSTATE();
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
 SPSR[] = spsr;
 R[14] = preferred_exception_return + lr_offset;
 PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
 PSTATE.GP = '0';
 PSTATE.A = '0';
 PSTATE.S = '0';
 PSTATE.P = '1';
 PSTATE.M = M32_Monitor;
 PSTATE.Z = '0';
 PSTATE.C = '0';
 PSTATE.V = '0';
 PSTATE.SS = '0';
 PSTATE.R[21:19] = '0';
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
 BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION);
 EndOfInstruction();

aaarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

// AArch32.CheckAdvSIMDOrFPEnabled()
// ==================================
// Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)
 if PSTATE.EL == EL0 & (!HaveEL(EL2) || (!ELUsingAArch32(EL2) && HCR_EL2.TGE == '0')) &
 !ELUsingAArch32(EL1) then
 // The PE behaves as if FPEXC.EN is 1
 AArch64.CheckFPAdvSIMDEnabled();
 elsif PSTATE.EL == EL0 & HaveEL(EL2) & !ELUsingAArch32(EL2) & HCR_EL2.TGE == '1' &
 !ELUsingAArch32(EL1) then
 if fpexc_check & HCR_EL2.RW == '0' then
 fpexc_en = bits(1) IMPLEMENTATION_DEFINED "FPEXC.EN value when TGE==1 and RW==0";
 if fpexc_en == '0' then UNDEFINED;
 AArch64.CheckFPAdvSIMDEnabled();
 else
 cpacr_asedis = CPACR.ASEDIS;
 cpacr_cp10 = CPACR.cp10;
 if HaveEL(EL3) & ELUsingAArch32(EL3) & !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
 if NSACR.cp10 == '0' then cpacr_cp10 = '00';
 if PSTATE.EL != EL2 then
 // Check if Advanced SIMD disabled in CPACR
 if advsimd & cpacr_asedis == '1' then UNDEFINED;
 case cpacr_cp10 of
 when '00' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '10' disabled = ConstrainUnpredictableBool();

ARM DDI 0487F.c Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved. J1-7755
ID072120 Non-Confidential
when '11' disabled = FALSE;
 if disabled then UNDEFINED;

// If required, check FPEXC enabled bit.
if fpexc_check & FPEXC.EN == '0' then UNDEFINED;

AArch32.CheckFPAAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

aarch32/exceptions/traps/AArch32.CheckFPAAdvSIMDTrap

 // AArch32.CheckFPAAdvSIMDTrap()
 // ---
 // Check against CPTR_EL2 and CPTR_EL3.
AArch32.CheckFPAAdvSIMDTrap(boolean advsimd)
 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckFPAAdvSIMDTrap();
 else
 if HaveEL(EL2) && !IsSecure() then
 hcptr_tase = HCPTR.TASE;
 hcptr_cp10 = HCPTR.TCP10;
 if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
 // Check if access disabled in NSACR
 if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
 if NSACR.cp10 == '0' then hcptr_cp10 = '1';
 // Check if access disabled in HCPTR
 if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 if advsimd then
 exception.syndrome<5> = '1';
 else
 exception.syndrome<5> = '0';
 exception.syndrome<3:0> = '1010'; // coproc field, always 0xA
 if PSTATE.EL == EL2 then
 AArch32.TakeUndefInstrException(exception);
 else
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.AdvSIMDFPAccessTrap(EL3);
 return;
 return;

aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

 // AArch32.CheckForSMCUndefOrTrap()
 // ----------------------------------
 // Check for UNDEFINED or trap on SMC instruction
AArch32.CheckForSMCUndefOrTrap()
 if !HaveEL(EL3) || PSTATE.EL == EL0 then
 UNDEFINED;
 if EL2Enabled() && !ELUsingAArch32(EL2) then
 AArch64.CheckForSMCUndefOrTrap(Zeros(16));
 else
 route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR.TSC == '1';
 if route_to_hyp then
 exception = ExceptionSyndrome(Exception_MonitorCall);
 AArch32.TakeHypTrapException(exception);
// AArch32.CheckForSVCTrap()
// ---------------------------------------
// Check for trap on SVC instruction

AArch32.CheckForSVCTrap(bits(16) immediate)
 if HaveFCTExt() then
 route_to_el2 = FALSE;
 if PSTATE.EL == EL0 then
 route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
 (HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));
 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

// AArch32.CheckForWFxTrap()
// ---------------------------------------
// Check for trap on WFE or WFI instruction

AArch32.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
 assert HaveEL(target_el);
 if !ELUsingAArch32(target_el) then
 AArch64.CheckForWFxTrap(target_el, is_wfe);
 return;
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
 when EL3
 trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';
 if trap then
 if target_el == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
 AArch64.WFxTrap(target_el, is_wfe);
 if target_el == EL3 then
 AArch32.TakeMonitorTrapException();
 elsif target_el == EL2 then
 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 exception.syndrome<0> = if is_wfe then '1' else '0';
 AArch32.TakeHypTrapException(exception);
 else
 AArch32.TakeUndefInstrException();

// AArch32.CheckITEnabled()
// ---------------------------------------
// Check whether the T32 IT instruction is disabled.

AArch32.CheckITEnabled(bits(4) mask)
 if PSTATE.EL == EL2 then
 it_disabled = HSCTLR.ITD;
else
 it_disabled = (if ELUsingAArch32(El1) then SCTLR.ITD else SCTLR[].ITD);
if it_disabled == '1' then
 if mask != '1000' then UNDEFINED;
// Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];
if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
 '01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx1111'} then
 // It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
 // taken on the IT instruction or the next instruction. This is not reflected in
 // the pseudocode, which always takes the exception on the IT instruction. This
 // also does not take into account cases where the next instruction is UNPREDICTABLE.
 UNDEFINED;

return;

aarch32/exceptions/traps/AArch32.CheckIllegalState

 // AArch32.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.
 AArch32.CheckIllegalState()
 if AArch32.GeneralExceptionsToAArch64() then
 AArch64.CheckIllegalState();
 elsif PSTATE.IL == '1' then
 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 if PSTATE.EL == EL2 || route_to_hyp then
 exception = ExceptionSyndrome(Exception_IllegalState);
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 else
 AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
 else
 AArch32.TakeUndefInstrException();
 aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

 // AArch32.CheckSETENDEnabled()
 // ============================
 // Check whether the AArch32 SETEND instruction is disabled.
 AArch32.CheckSETENDEnabled()
 if PSTATE.EL == EL2 then
 setend_disabled = HSCTLR.SED;
 else
 setend_disabled = (if ELUsingAArch32(El1) then SCTLR.SED else SCTLR[].SED);
 if setend_disabled == '1' then
 UNDEFINED;
 return;

aarch32/exceptions/traps/AArch32.SystemAccessTrap

 // AArch32.SystemAccessTrap()
 // ===========================
 // Trapped system register access.
 AArch32.SystemAccessTrap(bits(5) mode, integer ec)
 (valid, target_el) = ELFromM32(mode);
assert valid && HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

if target_el == EL2 then
 exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(exception);
else
 AArch32.TakeUndefInstrException();

aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome

// AArch32.SystemAccessTrapSyndrome()
// ----------------------------------
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch32.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;
 case ec of
 when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
 when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
 when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
 when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
 when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
 when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
 when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
 otherwise Unreachable();
 end

 bits(20) iss = Zeros();

 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
 // Trapped MRC/MCR, VMRS on FPSID
 iss<13:10> = instr<19:16>; // Crn, Reg in case of VMRS
 iss<8:5> = instr<15:12>; // Rt
 iss<9> = '0'; // RES0
 if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
 iss<19:17> = instr<7:5>; // opc2
 iss<16:14> = instr<23:21>; // opc1
 iss<4:1> = instr<3:0>; // CRm
 else //VMRS Access
 iss<19:17> = '000'; // opc2 - Hardcoded for VMRS
 iss<16:14> = '111'; // opc1 - Hardcoded for VMRS
 iss<4:1> = '0000'; // CRm - Hardcoded for VMRS
 endif
 else if exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap, Exception_CP15RRTTrap} then
 // Trapped MRRC/MCRR, VMRS/VMSR
 iss<19:16> = instr<7:4>; // opc1
 iss<13:10> = instr<19:16>; // Rt2
 iss<8:5> = instr<15:12>; // Rt
 iss<4:1> = instr<3:0>; // CRm
 else if exception.exceptype == Exception_CP14DTTrap then
 // Trapped LDC/STC
 iss<19:12> = instr<7:0>; // imm8
 iss<4> = instr<23>; // U
 iss<2:1> = instr<24,22>; // P,W
 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
 iss<8:5> = bits(4) UNKNOWN;
 iss<3> = '1';
 else
 iss<8:5> = instr<19:16>; // Rn
 iss<3> = '0';
 endif
 else if exception.exceptype == Exception_Uncategorized then
 // Trapped for unknown reason
 iss<8:5> = instr<19:16>; // Rn
 iss<3> = '0';
 else
 iss<0> = instr<20>; // Direction
 endif
}
exception.syndrome<24:20> = ConditionSyndrome()
exception.syndrome<19:0> = iss;
return exception;

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.
AArch32.TakeHypTrapException(integer ec)
 exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch32.TakeHypTrapException(exception);

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.
AArch32.TakeHypTrapException(ExceptionRecord exception)
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x14;
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

// AArch32.TakeMonitorTrapException()
// ==================================
// Exceptions routed to Monitor mode as a Monitor Trap exception.
AArch32.TakeMonitorTrapException()
 assert HaveEL(EL3) && ELUsingAArch32(EL3);
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;
 AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

// AArch32.TakeUndefInstrException()
// =================================
// Exceptions routed to Hyp mode as a Hyp Trap exception.
AArch32.TakeUndefInstrException()
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch32.TakeUndefInstrException(exception);

 route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
 bits(32) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x04;
 lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;
 if PSTATE.EL == EL2 then
 AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
 elsif route_to_hyp then
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else
AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

aarch32/exceptions/traps/AArch32.UndefinedFault

// AArch32.UndefinedFault()
// ========================
AArch32.UndefinedFault()

if AArch32.GeneralExceptionsToAArch64() then AArch64.UndefinedFault();
AArch32.TakeUndefInstrException();

J1.2.3 aarch32/functions

This section includes the following pseudocode functions:
• aarch32/functions/aborts/AArch32.CreateFaultRecord on page J1-7763.
• aarch32/functions/aborts/AArch32.DomainValid on page J1-7763.
• aarch32/functions/aborts/AArch32.FaultStatusLD on page J1-7763.
• aarch32/functions/aborts/AArch32.FaultStatusSD on page J1-7764.
• aarch32/functions/aborts/AArch32.FaultSyndrome on page J1-7764.
• aarch32/functions/aborts/EncodeSDFSC on page J1-7765.
• aarch32/functions/common/A32ExpandImm on page J1-7765.
• aarch32/functions/common/A32ExpandImm_C on page J1-7766.
• aarch32/functions/common/DecodeImmShift on page J1-7766.
• aarch32/functions/common/DecodeRegShift on page J1-7766.
• aarch32/functions/common/RRX on page J1-7766.
• aarch32/functions/common/RRX_C on page J1-7766.
• aarch32/functions/common/SRType on page J1-7767.
• aarch32/functions/common/Shift on page J1-7767.
• aarch32/functions/common/Shift_C on page J1-7767.
• aarch32/functions/common/T32ExpandImm on page J1-7767.
• aarch32/functions/common/T32ExpandImm_C on page J1-7767.
• aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps on page J1-7768.
• aarch32/functions/exclusive/AArch32.CheckExclusiveMonitorsPass on page J1-7768.
• aarch32/functions/exclusive/AArch32.IsExclusiveVA on page J1-7769.
• aarch32/functions/exclusive/AArch32.MarkExclusiveVA on page J1-7769.
• aarch32/functions/exclusive/AArch32.SetExclusiveMonitors on page J1-7769.
• aarch32/functions/float/CheckAdvSIMDEnabled on page J1-7769.
• aarch32/functions/float/CheckAdvSIMDOrVFPEnabled on page J1-7770.
• aarch32/functions/float/CheckCryptoEnabled32 on page J1-7770.
• aarch32/functions/float/checkFVPEnabled on page J1-7770.
• aarch32/functions/float/FPHalvedSub on page J1-7770.
• aarch32/functions/float/FPSqrtStep on page J1-7771.
• aarch32/functions/float/FPRecipStep on page J1-7771.
• aarch32/functions/float/StandardFPSCRValue on page J1-7771.
• aarch32/functions/memory/AArch32.CheckAlignment on page J1-7771.
• aarch32/functions/memory/MemO on page J1-7773.
• aarch32/functions/memory/MemU on page J1-7774.
• aarch32/functions/memory/MemU_unpriv on page J1-7774.
• aarch32/functions/memory/Mem_with_type on page J1-7774.
• aarch32/functions/ras/AArch32.ESBOperation on page J1-7775.
• aarch32/functions/ras/AArch32.SErrorSyndrome on page J1-7776.
• aarch32/functions/ras/AArch32.vESBOperation on page J1-7776.
• aarch32/functions/registers/AArch32.ResetGeneralRegisters on page J1-7777.
• aarch32/functions/registers/AArch32.ResetSIMDFPRegisters on page J1-7777.
• aarch32/functions/registers/AArch32.ResetSpecialRegisters on page J1-7777.
• aarch32/functions/registers/AArch32.ResetSystemRegisters on page J1-7778.
• aarch32/functions/registers/ALUExceptionReturn on page J1-7778.
• aarch32/functions/registers/ALUWritePC on page J1-7778.
• aarch32/functions/registers/BXWritePC on page J1-7778.
• aarch32/functions/registers/BranchWritePC on page J1-7779.
• aarch32/functions/registers/D on page J1-7779.
• aarch32/functions/registers/Din on page J1-7779.
• aarch32/functions/registers/LR on page J1-7779.
• aarch32/functions/registers/LookUpRIndex on page J1-7780.
• aarch32/functions/registers/Monitor_mode_registers on page J1-7780.
• aarch32/functions/registers/PC on page J1-7780.
• aarch32/functions/registers/PCStoreValue on page J1-7780.
• aarch32/functions/registers/Q on page J1-7780.
• aarch32/functions/registers/Qin on page J1-7781.
• aarch32/functions/registers/R on page J1-7781.
• aarch32/functions/registers/RBankSelect on page J1-7781.
• aarch32/functions/registers/Rmode on page J1-7781.
• aarch32/functions/registers/S on page J1-7782.
• aarch32/functions/registers/SP on page J1-7782.
• aarch32/functions/registers/_Dclone on page J1-7783.
• aarch32/functions/system/AArch32.ExceptionReturn on page J1-7783.
• aarch32/functions/system/AArch32.ExecutingATS1xPInstr on page J1-7783.
• aarch32/functions/system/AArch32.ExecutingCP10or11Instr on page J1-7783.
• aarch32/functions/system/AArch32.ExecutingLSMInstr on page J1-7784.
• aarch32/functions/system/AArch32.ITAdvance on page J1-7784.
• aarch32/functions/system/AArch32.SysRegRead on page J1-7784.
• aarch32/functions/system/AArch32.SysRegRead64 on page J1-7784.
• aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR on page J1-7784.
• aarch32/functions/system/AArch32.SysRegWrite on page J1-7785.
• aarch32/functions/system/AArch32.SysRegWrite64 on page J1-7785.
• aarch32/functions/system/AArch32.WriteMode on page J1-7785.
• aarch32/functions/system/AArch32.WriteModeByInstr on page J1-7785.
• aarch32/functions/system/BadMode on page J1-7785.
• aarch32/functions/system/BankedRegisterAccessValid on page J1-7786.
• aarch32/functions/system/CPSRWriteByInstr on page J1-7786.
• aarch32/functions/system/ConditionPassed on page J1-7787.
aarch32/functions/aborts/AArch32.CreateFaultRecord

// AArch32.CreateFaultRecord()
// ===========================
FaultRecord AArch32.CreateFaultRecord(Fault statuscode, bits(40) ipaddress, bits(4) domain,
integer level, AccType acctype, boolean write, bit extflag,
bits(4) debugmoe, bits(2) errortype, boolean secondstage, boolean s2fs1walk)

 FaultRecord fault;
 fault.statuscode = statuscode;
 if (statuscode != Fault_None && PSTATE.EL != EL2 && TTBCR.EAE == '0' && !secondstage && !s2fs1walk
 &&
 AArch32.DomainValid(statuscode, level)) then
 fault.domain = domain;
 else
 fault.domain = bits(4) UNKNOWN;
 fault.debugmoe = debugmoe;
 fault.errortype = errortype;
 fault.ipaddress.NS = bit UNKNOWN;
 fault.ipaddress.address = ZeroExtend(ipaddress);
 fault.level = level;
 fault.acctype = acctype;
 fault.write = write;
 fault.extflag = extflag;
 fault.secondstage = secondstage;
 fault.s2fs1walk = s2fs1walk;

 return fault;

aarch32/functions/aborts/AArch32.DomainValid

// AArch32.DomainValid()
// =====================
// Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.
boolean AArch32.DomainValid(Fault statuscode, integer level)
 assert statuscode != Fault_None;
 case statuscode of
 when Fault_Domain
 return TRUE;
 when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk
 return level == 2;
 otherwise
 return FALSE;

aarch32/functions/aborts/AArch32.FaultStatusLD

// AArch32.FaultStatusLD()
// =======================
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Long-descriptor format.
bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() & & IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternal Abort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '1';
 fsr<5:0> = EncodeLDFSC(fault.statuscode, fault.level);
return fsr;

aarch32/functions/aborts/AArch32.FaultStatusSD

// AArch32.FaultStatusSD()
// ===============
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Short-descriptor format.

bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() & & IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then
 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
 fsr<13> = '1'; fsr<11> = '1';
 else
 fsr<11> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then fsr<12> = fault.extflag;
 fsr<9> = '0';
 fsr<10:3:0> = EncodeSDFSC(fault.statuscode, fault.level);
if d_side then
 fsr<7:4> = fault.domain; // Domain field (data fault only)
return fsr;

aarch32/functions/aborts/AArch32.FaultSyndrome

// AArch32.FaultSyndrome()
// ===============
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// AArch32 Hyp mode.

bits(25) AArch32.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros();
if HaveRASExt() & & IsAsyncAbort(fault) then iss<11:10> = fault.errortype; // AET
if d_side then
 if IsSecondStage(fault) & & fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
 if fault.acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_IC, AccType_AT} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';
 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);
return iss;
// EncodeSDFSC()
// =============
// Function that gives the Short-descriptor FSR code for different types of Fault

bits(5) EncodeSDFSC(Fault statuscode, integer level)
bits(5) result;
case statuscode of
when FaultAccessFlag
 assert level IN {1,2};
 result = if level == 1 then '00011' else '00110';
when FaultAlignment
 result = '00001';
when FaultPermission
 assert level IN {1,2};
 result = if level == 1 then '01101' else '01111';
when FaultDomain
 assert level IN {1,2};
 result = if level == 1 then '00101' else '00111';
when FaultTranslation
 assert level IN {1,2};
 result = if level == 1 then '01001' else '01011';
when FaultSyncExternal
 result = '01000';
when FaultSyncExternalOnWalk
 assert level IN {1,2};
 result = if level == 1 then '01100' else '01110';
when FaultSyncParity
 result = '11001';
when FaultSyncParityOnWalk
 assert level IN {1,2};
 result = if level == 1 then '11100' else '11110';
when FaultAsyncParity
 result = '11000';
when FaultAsyncExternal
 result = '10110';
when FaultDebug
 result = '00010';
when FaultTLBConflict
 result = '10000';
when FaultLockdown
 result = '10100'; // IMPLEMENTATION DEFINED
when FaultExclusive
 result = '10101'; // IMPLEMENTATION DEFINED
when FaultICacheMaint
 result = '00100';
otherwise
 Unreachable();
return result;

// A32ExpandImm()
// ==============

bits(32) A32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);
return imm32;
aarch32/functions/common/A32ExpandImm_C

// A32ExpandImm_C()
// ================

(bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);
return (imm32, carry_out);

aarch32/functions/common/DecodeImmShift

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) srtype, bits(5) imm5)

case srtype of
 when '00'
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when '01'
 shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '10'
 shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
 when '11'
 if imm5 == '00000' then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);
return (shift_t, shift_n);

aarch32/functions/common/DecodeRegShift

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) srtype)

case srtype of
 when '00' shift_t = SRType_LSL;
 when '01' shift_t = SRType_LSR;
 when '10' shift_t = SRType_ASR;
 when '11' shift_t = SRType_ROR;
return shift_t;

aarch32/functions/common/RRX

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
return result;

aarch32/functions/common/RRX_C

// RRX_C()
// ======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>
 carry_out = x<0>
return (result, carry_out);
aarch32/functions/common/SRType

enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

aarch32/functions/common/Shift

// Shift()
// ========

bits(N) Shift(bits(N) value, SRType srtype, integer amount, bit carry_in)
 (result, -) = Shift_C(value, srtype, amount, carry_in);
 return result;

aarch32/functions/common/Shift_C

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType srtype, integer amount, bit carry_in)
 assert !(srtype == SRType_RRX && amount != 1);
 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case srtype of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);
 end;
 return (result, carry_out);

aarch32/functions/common/T32ExpandImm

// T32ExpandImm()
// ==============

bits(32) T32ExpandImm(bits(12) imm12)
 // PSTATE.C argument to following function call does not affect the imm32 result.
 (imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);
 return imm32;

aarch32/functions/common/T32ExpandImm_C

// T32ExpandImm_C()
// ================

(bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)
 if imm12<11:10> == '00' then
 case imm12<9:8> of
 when '00'
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when '01'
 imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
 when '10'
 imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
 end;
 return (result, carry_out);
 end;

when '11'
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
carry_out = carry_in;
else
 unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

// AArch32.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained CP15 traps in HSTR and HCR.

boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 if PSTATE.EL == EL0 && !ELUsingAArch32(EL2) then
 return AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);
 // Check for MCR, MRC, MRCC and MRRC disabled by HSTR<CRn/CRm>
 major = if nreg == 1 then CRn else CRm;
 if !(major IN {4,14}) && HSTR<major> == '1' then
 return TRUE;

 // Check for MRC and MCR disabled by HCR.TIDCP
 if (HCR.TIDCP == '1' && nreg == 1 &&
 ((CRn == 9 && CRm IN {0,1,2,5,6,7,8}) ||
 (CRn == 10 && CRm IN {0,1,4,8}) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))
 return TRUE;

return FALSE;

aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

// AArch32.ExclusiveMonitorsPass()
// ===============================
// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

accctype = AccType_ATOMIC;
iswrite = TRUE;
aligned = AArch32.CheckAlignment(address, size, accctype, iswrite);
passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
if !passed then
 return FALSE;

memaddrdesc = AArch32.TranslateAddress(address, accctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);
passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ClearExclusiveLocal(ProcessorID());
if passed then
 if memaddrdesc.memattrs.shareable then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
 return passed;

aarch32/functions/exclusive/AArch32.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.
boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

// AArch32.SetExclusiveMonitors()
// ==============================
// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.
AArch32.SetExclusiveMonitors(bits(32) address, integer size)

 acctype = AccType_ATOMIC;
 iswrite = FALSE;
 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);
 memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;
 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 AArch32.MarkExclusiveVA(address, ProcessorID(), size);

aarch32/functions/float/CheckAdvSIMDEnabled

// CheckAdvSIMDEnabled()
// =====================
CheckAdvSIMDEnabled()

 fpexc_check = TRUE;
 advsimd = TRUE;
 AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted
// Make temporary copy of D registers
// _Dclone[] is used as input data for instruction pseudocode
for i = 0 to 31
 _Dclone[i] = D[i];
return;

daarch32/functions/float/CheckAdvSIMDOrVFPEnabled

// CheckAdvSIMDOrVFPEnabled()
// ==========================

CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
 AArch32.CheckAdvSIMDOrVFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrVFPEnabled() occurs only if VFP access is permitted
 return;

daarch32/functions/float/CheckCryptoEnabled32

// CheckCryptoEnabled32()
// =======================

CheckCryptoEnabled32()
 CheckAdvSIMDEnabled();
 // Return from CheckAdvSIMDEnabled() occurs only if access is permitted
 return;

daarch32/functions/float/CheckVFPEnabled

// CheckVFPEnabled()
// ==============

CheckVFPEnabled(boolean include_fpexc_check)
 advsimd = FALSE;
 AArch32.CheckAdvSIMDOrVFPEnabled(include_fpexc_check, advsimd);
 // Return from CheckAdvSIMDOrVFPEnabled() occurs only if VFP access is permitted
 return;

daarch32/functions/float/FPHalvedSub

// FPHalvedSub()
// =============

bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 != sign2 then
 result = FPZero(sign1);
 else
 result_value = (value1 - value2) / 2.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result = FPZero(sign1);
 else
 result_value = sign1 == sign2 ? (value1 - value2) / 2.0 : 0.0;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result = FPZero(sign1);
 else
 result = result_value;
 endif
 endif
 endif
 endif
 return result;
result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);
else
result = FPRound(result_value, fpcr);
return result;

aarch32/functions/float/FPRSqrtStep

// FPRSqrtStep()
// =============

bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
else
 product = FPMul(op1, op2, fpcr);
bits(N) three = FPThree('0');
result = FPHalvedSub(three, product, fpcr);
return result;

aarch32/functions/float/FPRecipStep

// FPRecipStep()
// =============

bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then
 product = FPZero('0');
else
 product = FPMul(op1, op2, fpcr);
bits(N) two = FPTwo('0');
result = FPSub(two, product, fpcr);
return result;

aarch32/functions/float/StandardFPSCRValue

// StandardFPSCRValue()
// ================

FPCRType StandardFPSCRValue()
return '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '00000000000000000000';

aarch32/functions/memory/AArch32.CheckAlignment

// AArch32.CheckAlignment()
// ===============
boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype, boolean iswrite)

if PSTATE.EL == EL0 && !ELUsingAArch32(S1TranslationRegime()) then
 A = SCTLR[].A; // use AArch64 register, when higher Exception level is using AArch64
elsif PSTATE.EL == EL2 then
 A = HSCTLR.A;
else
 A = SCTLR.A;
end if
aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW, AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
vector = acctype == AccType_VEC;
// AccType_VEC is used for SIMD element alignment checks only
check = (atomic || ordered || vector || A == '1');
if check && !aligned then
 secondstage = FALSE;
 AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));
end if
return aligned;

aarch32/functions/memory/AArch32.MemSingle

// AArch32.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned]
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);
end if
accdesc = CreateAccessDescriptor(acctype);
if HaveMTEExt() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
 if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
 AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);
 end if
 end if
end if
value = _Mem[memaddrdesc, size, accdesc];
return value;

// AArch32.MemSingle[] - assignment (write) form
// ==
// Perform an atomic, little-endian write of 'size' bytes.

AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then
 AArch32.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTEEExt() then
 if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
 bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
 if !AArch64.CheckTag(memaddrdesc, ptag, iswrite) then
 AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);

 _Mem[memaddrdesc, size, accdesc] = value;
 return;

aarch32/functions/memory/Hint_PreloadData
Hint_PreloadData(bits(32) address);

aarch32/functions/memory/Hint_PreloadDataForWrite
Hint_PreloadDataForWrite(bits(32) address);

aarch32/functions/memory/Hint_PreloadInstr
Hint_PreloadInstr(bits(32) address);

aarch32/functions/memory/MemA
// MemA[] - non-assignment form
// =================================
bits(8*size) MemA[bits(32) address, integer size]
 acctype = AccType_ATOMIC;
 return Mem_with_type[address, size, acctype];

// MemA[] - assignment form
// ========================
MemA[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ATOMIC;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemO
// MemO[] - non-assignment form
// ============================
bits(8*size) MemO[bits(32) address, integer size]
 acctype = AccType_ORDERED;
 return Mem_with_type[address, size, acctype];

// MemO[] - assignment form
// ========================
MemO[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_ORDERED;
 Mem_with_type[address, size, acctype] = value;
 return;
aarch32/functions/memory/MemU

// MemU[] - non-assignment form
// ============================
bits(8*size) MemU[bits(32) address, integer size]
 acctype = AccType_NORMAL;
 return Mem_with_type[address, size, acctype];

// MemU[] - assignment form
// ========================
MemU[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_NORMAL;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/MemU_unpriv

// MemU_unpriv[] - non-assignment form
// ===================================
bits(8*size) MemU_unpriv[bits(32) address, integer size]
 acctype = AccType_UNPRIV;
 return Mem_with_type[address, size, acctype];

// MemU_unpriv[] - assignment form
// ===============================
MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 acctype = AccType_UNPRIV;
 Mem_with_type[address, size, acctype] = value;
 return;

aarch32/functions/memory/Mem_with_type

// Mem_with_type[] - non-assignment (read) form
// ==
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch32.MemSingle directly.
bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
 assert size IN {1, 2, 4, 8, 16};
 bits(size*8) value;
 boolean iswrite = FALSE;
 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);
 if !aligned then
 assert size > 1;
 value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];
 // For subsequent bytes it is CONSTRANDED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;
 for i = 1 to size-1
 value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];
 else
 value = AArch32.MemSingle[address, size, acctype, aligned];
 if BigEndian() then
 value = BigEndianReverse(value);
 return value;
// Mem_with_type[] - assignment (write) form
// ===
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
 boolean iswrite = TRUE;

 if BigEndian() then
 value = BigEndianReverse(value);

 aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);
 if !aligned then
 assert size > 1;
 AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
 AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 else
 AArch32.MemSingle[address, size, acctype, aligned] = value;
 return;

aarch32/functions/ras/AArch32.ESBOperation

// AArch32.ESBOperation()
// ================
// Perform the AArch32 ESB operation for ESB executed in AArch32 state

AArch32.ESBOperation()

 // Check if routed to AArch64 state
 route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
 if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
 route_to_aarch64 = HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1';
 if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
 route_to_aarch64 = SCR_EL3.EA == '1';
 if route_to_aarch64 then
 AArch64.ESBOperation();
 return;

 route_to_monitor = HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.EA == '1';
 route_to_hyp = PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR.TGE == '1' || HCR.AMO == '1');

 if route_to_monitor then
 target = M32_Monitor;
 elsif route_to_hyp || PSTATE.M == M32_Hyp then
 target = M32_Hyp;
 else
 target = M32_Abort;

 if IsSecure() then
 mask_active = TRUE;
 elsif target == M32_Monitor then
 mask_active = SCR.AW == '1' && (!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0'));
 else
 mask_active = target == M32_Abort || PSTATE.M == M32_Hyp;
 mask_set = PSTATE.A == '1';
 (-, el) = ELFromM32(target);
Armv8 Pseudocode

J1.2 Pseudocode for AArch32 operation

```
intdis = Halted() || ExternalDebugInterruptsDisabled(el);
masked = intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked & IsSynchronizablePhysicalSErrorPending() then
  syndrome32 = AArch32.PhysicalSErrorSyndrome();
  DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
  ClearPendingPhysicalSError();
return;

aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

// Return the SError syndrome
AArch32.SErrorSyndrome AArch32.PhysicalSErrorSyndrome();

aarch32/functions/ras/AArch32.ReportDeferredSError

// AArch32.ReportDeferredSError()
// ==============================
// Return deferred SError syndrome
bits(32) AArch32.ReportDeferredSError(bits(2) AET, bit ExT)
bits(32) target;
target<31> = '1';                       // A
syndrome = Zeros(16);
if PSTATE.EL == EL2 then
  syndrome<11:10> = AET;              // AET
  syndrome<9>     = ExT;              // EA
  syndrome<5:0>   = '010001';         // DFSC
else
  syndrome<15:14> = AET;              // AET
  syndrome<12>    = ExT;              // ExT
  syndrome<9>     = TTBCR.EAE;        // LPAE
  if TTBCR.EAE == '1' then            // Long-descriptor format
    syndrome<5:0>  = '010001';         // STATUS
  else                                // Short-descriptor format
    syndrome<10,3:0> = '10110';     // FS
  if HaveAnyAArch64() then
    target<24:0> = ZeroExtend(syndrome); // Any RES0 fields must be set to zero
  else
    target<15:0> = syndrome;
return target;

aarch32/functions/ras/AArch32.SErrorSyndrome
type AArch32.SErrorSyndrome is (
  bits(2) AET,
  bit ExT
)

aarch32/functions/ras/AArch32.vESBOperation

// AArch32.vESBOperation()
// =======================
// Perform the ESB operation for virtual SError interrupts executed in AArch32 state
AArch32.vESBOperation()
  assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

  // Check for EL2 using AArch64 state
  if !ELUsingAArch32(EL2) then
    AArch64.vESBOperation();
  return;
```
// If physical SError interrupts are routed to Hyp mode, and TGE is not set, then a
// virtual SError interrupt might be pending
vSEI_enabled = HCR.TGE == '0' && HCR.AMO == '1';
vSEI_pending = vSEI_enabled && HCR.VA == '1';

vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then
 VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
 HCR.VA = '0'; // Clear pending virtual SError
 return;

aarch32/functionsregisters/AArch32.ResetGeneralRegisters

// AArch32.ResetGeneralRegisters()
// --------------------------------

AArch32.ResetGeneralRegisters()
for i = 0 to 7
 R[i] = bits(32) UNKNOWN;
for i = 8 to 12
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
for i = 13 to 14
 Rmode[i, M32_User] = bits(32) UNKNOWN;
 Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
 Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
 Rmode[i, M32_Svc] = bits(32) UNKNOWN;
 Rmode[i, M32_Abort] = bits(32) UNKNOWN;
 Rmode[i, M32_Undef] = bits(32) UNKNOWN;
if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;
return;

aarch32/functionsregisters/AArch32.ResetSIMDFPRegisters

// AArch32.ResetSIMDFPRegisters()
// --------------------------------

AArch32.ResetSIMDFPRegisters()
for i = 0 to 15
 Q[i] = bits(128) UNKNOWN;
return;

aarch32/functionsregisters/AArch32.ResetSpecialRegisters

// AArch32.ResetSpecialRegisters()
// --------------------------------

AArch32.ResetSpecialRegisters()
// AArch32 special registers
SPSR_fiq = bits(32) UNKNOWN;
SPSR_irq = bits(32) UNKNOWN;
SPSR_svc = bits(32) UNKNOWN;
SPSR_abt = bits(32) UNKNOWN;
SPSR_und = bits(32) UNKNOWN;
if HaveEL(EL2) then
 SPSR_hyp = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;
if HaveEl(EL3) then
 SPSR_mon = bits(32) UNKNOWN;

// External debug special registers
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
return;

aarch32/functions/registers/AArch32.ResetSystemRegisters
AArch32.ResetSystemRegisters(boolean cold_reset);

aarch32/functions/registers/ALUExceptionReturn
// ALUExceptionReturn()
// ================
ALUExceptionReturn(bits(32) address)
if PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.M IN {M32_User, M32_System} then
 Constraint c = ConstrainUnpredictable();
 assert c IN {Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_UNDEF
 UNDEFINED;
 when Constraint_NOP
 EndOfInstruction();
 else
 AArch32.ExceptionReturn(address, SPSR[]);

aarch32/functions/registers/ALUWritePC
// ALUWritePC()
// ===========
ALUWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_A32 then
 BXWritePC(address, BranchType_INDIR);
else
 BranchWritePC(address, BranchType_INDIR);

aarch32/functions/registers/BXWritePC
// BXWritePC()
// ===========
BXWritePC(bits(32) address, BranchType branch_type)
if address<0> == '1' then
 SelectInstrSet(InstrSet_T32);
 address<0> = '0';
else
 SelectInstrSet(InstrSet_A32);
// For branches to an unaligned PC counter in A32 state, the processor takes the branch
// and does one of:
// * Forces the address to be aligned
// * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
if address<1> == '1' & ConstrainUnpredictableBool() then
 address<1> = '0';
 BranchTo(address, branch_type);
aarch32/functions/registers/BranchWritePC

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address, BranchType branch_type)
 if CurrentInstrSet() == InstrSet_A32 then
 address<1:0> = '00';
 else
 address<0> = '0';
 BranchTo(address, branch_type);

aarch32/functions/registers/D

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 bits(128) vreg = V[n DIV 2];
 return vreg<base+63:base>;

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
 assert n >= 0 && n <= 31;
 base = (n MOD 2) * 64;
 bits(128) vreg = V[n DIV 2];
 vreg<base+63:base> = value;
 V[n DIV 2] = vreg;
 return;

aarch32/functions/registers/Din

// Din[] - non-assignment form
// ===========================

bits(64) Din[integer n]
 assert n >= 0 && n <= 31;
 return _Dclone[n];

aarch32/functions/registers/LR

// LR - assignment form
// ====================

LR = bits(32) value
 R[14] = value;
 return;

// LR - non-assignment form
// ========================

bits(32) LR
 return R[14];

aarch32/functions/registers/LoadWritePC

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
 BXWritePC(address, BranchType_INDIR);
aarch32/functions/registers/LookUpRIndex

// LookUpRIndex()
// ==============

integer LookUpRIndex(integer n, bits(5) mode)
 assert n >= 0 && n <= 14;
 case n of // Select index by mode: usr fiq irq svc abt und hyp
 when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
 when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
 when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
 when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
 when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
 when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
 when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
 otherwise result = n;
 return result;

aarch32/functions/registers/Monitor_mode_registers

bits(32) SP_mon;
bits(32) LR_mon;

aarch32/functions/registers/PC

// PC - non-assignment form
// ==============

bits(32) PC
 return R[15]; // This includes the offset from AArch32 state

aarch32/functions/registers/PCStoreValue

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
 // This function returns the PC value. On architecture versions before Armv7, it
 // is permitted to instead return PC+4, provided it does so consistently. It is
 // used only to describe A32 instructions, so it returns the address of the current
 // instruction plus 8 (normally) or 12 (when the alternative is permitted).
 return PC;

aarch32/functions/registers/Q

// Q[] - non-assignment form
// ==============

bits(128) Q[integer n]
 assert n >= 0 && n <= 15;
 return V[n];

// Q[] - assignment form
// ==============

Q[integer n] = bits(128) value
 assert n >= 0 && n <= 15;
 V[n] = value;
 return;
aarch32/functions/registers/Qin

// Qin[] - non-assignment form
// ===========================

bits(128) Qin[integer n]
 assert n >= 0 && n <= 15;
 return Din[2*n+1]:Din[2*n];

aarch32/functions/registers/R

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
 Rmode[n, PSTATE.M] = value;
 return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
 if n == 15 then
 offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
 return _PC<31:0> + offset;
 else
 return Rmode[n, PSTATE.M];

aarch32/functions/registers/RBankSelect

// RBankSelect()
// =============

integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
 integer svc, integer abt, integer und, integer hyp)
 case mode of
 when M32_User result = usr; // User mode
 when M32_FIQ result = fiq; // FIQ mode
 when M32_IRQ result = irq; // IRQ mode
 when M32_Svc result = svc; // Supervisor mode
 when M32_Abort result = abt; // Abort mode
 when M32_Hyp result = hyp; // Hyp mode
 when M32_Undef result = und; // Undefined mode
 when M32_System result = usr; // System mode uses User mode registers
 otherwise Unreachable(); // Monitor mode
 return result;

aarch32/functions/registers/Rmode

// Rmode[] - non-assignment form
// =============================

bits(32) Rmode[integer n, bits(5) mode]
 assert n >= 0 && n <= 14;

 // Check for attempted use of Monitor mode in Non-secure state.
 if !IsSecure() then assert mode != M32_Monitor;
 assert !BadMode(mode);

 if mode == M32_Monitor then
 if n == 13 then return SP_mon;
 elsif n == 14 then return LR_mon;
 else return _R[n]<31:0>;
 else
return _R[LookUpRIndex(n, mode)]<31:0>;

// Rmode[] - assignment form
// =========================

Rmode[integer n, bits(5) mode] = bits(32) value
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if !IsSecure() then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
 if n == 13 then SP_mon = value;
 elsif n == 14 then LR_mon = value;
 else _R[n]<31:0> = value;
else
 // It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
 // register are unchanged or set to zero. This is also tested for on
 // exception entry, as this applies to all AArch32 registers.
 if !HighestELUsingAAArch32() && ConstrainUnpredictableBool() then
 _R[LookUpRIndex(n, mode)] = ZeroExtend(value);
 else
 _R[LookUpRIndex(n, mode)]<31:0> = value;
 end
return;

aarch32/functions/registers/S
// S[] - non-assignment form
// =========================

bits(32) S[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4];
return vreg<base+31:base>;

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4];
vreg<base+31:base> = value;
V[n DIV 4] = vreg;
return;

aarch32/functions/registers/SP
// SP - assignment form
// ===============

SP = bits(32) value
 R[13] = value;
return;

// SP - non-assignment form
// ================

bits(32) SP
 return R[13];
aarch32/functions/registers/_Dclone

array bits(64) _Dclone[0..31];

aarch32/functions/system/AArch32.ExceptionReturn

// AArch32.ExceptionReturn()
// =========================
AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

 SynchronizeContext();

 // Attempts to change to an illegal mode or state will invoke the Illegal Execution state
 // mechanism
 SetPSTATEFromPSR(spsr);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if PSTATE_IL == '1' then
 // If the exception return is illegal, PC[1:0] are UNKNOWN
 new_pc<1:0> = bits(2) UNKNOWN;
 else
 // LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32
 BranchTo(new_pc, BranchType_ERET);

aarch32/functions/system/AArch32.ExecutingATS1xPInstr

// AArch32.ExecutingATS1xPInstr()
// ==============================
// Return TRUE if current instruction is AT SICPR/WP

boolean AArch32.ExecutingATS1xPInstr()
 if !HavePrivATExt() then return FALSE;
 instr = ThisInstr();
 if instr<24+:4> == '1110' && instr<8+:4> == '1111' then
 opc1 = instr<21+:3>;
 CRn = instr<16+:4>;
 CRm = instr<0+:4>;
 opc2 = instr<5+:3>;
 return (opc1 == '000' && CRn == '0111' && CRm == '1001' && opc2 IN {'000','001'});
 else
 return FALSE;

aarch32/functions/system/AArch32.ExecutingCP10or11Instr

// AArch32.ExecutingCP10or11Instr()
// ================================

boolean AArch32.ExecutingCP10or11Instr()
 instr = ThisInstr();
 instr_set = CurrentInstrSet();
 assert instr_set IN {InstrSet_A32, InstrSet_T32};
 if instr_set == InstrSet_A32 then
 return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');
 else // InstrSet_T32
 return (instr<31:28> == '111x' || (instr<27:24> == '1110' || instr<27:25> == '110') &&
 instr<11:8> == '101x');
aarch32/functions/system/AArch32.ExecutingLSMInstr

// AArch32.ExecutingLSMInstr()
// ===========================
// Returns TRUE if processor is executing a Load/Store Multiple instruction

boolean AArch32.ExecutingLSMInstr()
 instr = ThisInstr();
 instr_set = CurrentInstrSet();
 assert instr_set IN {InstrSet_A32, InstrSet_T32};
 if instr_set == InstrSet_A32 then
 return (instr<28+:4> != '1111' && instr<25+:3> == '100');
 else // InstrSet_T32
 if ThisInstrLength() == 16 then
 return (instr<12+:4> == '1100');
 else
 return (instr<25+:7> == '1110100' && instr<22> == '0');

aarch32/functions/system/AArch32.ITAdvance

// AArch32.ITAdvance()
// ===================
AArch32.ITAdvance()
 if PSTATE.IT<2:0> == '000' then
 PSTATE.IT = '00000000';
 else
 PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
 return;

aarch32/functions/system/AArch32.SysRegRead

// Read from a 32-bit AArch32 System register and return the register's contents.
bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegRead64

// Read from a 64-bit AArch32 System register and return the register's contents.
bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

// AArch32.SysRegReadCanWriteAPSR()
// ================================
// Determines whether the AArch32 System register read instruction can write to APSR flags.

boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
 assert UsingAArch32();
 assert (cp_num IN {14,15});
 assert cp_num == UInt(instr<11:8>);
 opc1 = UInt(instr<23:21>);
 opc2 = UInt(instr<7:5>);
 CRn = UInt(instr<19:16>);
 CRm = UInt(instr<3:0>);
 if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGSCRint
 return TRUE;
 return FALSE;
aarch32/functions/system/AArch32.SysRegWrite

 // Write to a 32-bit AArch32 System register.
 AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

aarch32/functions/system/AArch32.SysRegWrite64

 // Write to a 64-bit AArch32 System register.
 AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

aarch32/functions/system/AArch32.WriteMode

 // AArch32.WriteMode()
 // ===============
 // Function for dealing with writes to PSTATE.M from AArch32 state only.
 // This ensures that PSTATE.EL and PSTATE.SP are always valid.

 AArch32.WriteMode(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 assert valid;
 PSTATE.M = mode;
 PSTATE.EL = el;
 PSTATE.nRW = '1';
 PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
 return;

aarch32/functions/system/AArch32.WriteModeByInstr

 // AArch32.WriteModeByInstr()
 // ==========================
 // Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
 // illegal state changes are correctly flagged in PSTATE.IL.

 AArch32.WriteModeByInstr(bits(5) mode)
 (valid,el) = ELFromM32(mode);
 // 'valid' is set to FALSE if 'mode' is invalid for this implementation or the current value
 // of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
 // PSTATE.EL if it would result in any of:
 // * A change to a mode that would cause entry to a higher Exception level.
 if UInt(el) > UInt(PSTATE.EL) then
 valid = FALSE;
 // * A change to or from Hyp mode.
 if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then
 valid = FALSE;
 // * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
 if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then
 valid = FALSE;
 if !valid then
 PSTATE.IL = '1';
 else
 AArch32.WriteMode(mode);

aarch32/functions/system/BadMode

 // BadMode()
 // =========

 boolean BadMode(bits(5) mode)
 // Return TRUE if 'mode' encodes a mode that is not valid for this implementation
 case mode of
 when M32_Monitor
valid = HaveAArch32EL(EL3);
when M32_Hyp
valid = HaveAArch32EL(EL2);
when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 // Therefore it is sufficient to test this implementation supports EL1 using AArch32.
valid = HaveAArch32EL(EL1);
when M32_User
 valid = HaveAArch32EL(EL0);
otherwise
 valid = FALSE; // Passed an illegal mode value
return !valid;

aarch32/functions/system/BankedRegisterAccessValid

// BankedRegisterAccessValid()
// ===========================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
// other than the SPSRs that are invalid. This includes ELR_hyp accesses.
BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)
case SYSm of
 when '000xx', '00100' // R8_usr to R12_usr
 if mode != M32_FIQ then UNPREDICTABLE;
 when '00101' // SP_usr
 if mode == M32_System then UNPREDICTABLE;
 when '00110' // LR_usr
 if mode IN {M32_Hyp, M32_System} then UNPREDICTABLE;
 when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '1000x' // LR_irq, SP_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '1001x' // LR_svc, SP_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '1010x' // LR_abt, SP_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '1011x' // LR_mon, SP_mon
 if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
 when '1110x' // ELR_hyp, only from Monitor or Hyp mode
 if !HaveEL(EL2) || !(mode IN {M32_Monitor, M32_Hyp}) then UNPREDICTABLE;
 when '11110' // SP_hyp, only from Monitor mode
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
otherwise
 UNPREDICTABLE;
return;

aarch32/functions/system/CPSRWriteByInstr

// CPSRWriteByInstr()
// =================
// Update PSTATE.<N,Z,C,V,Q,GE,E,A,F,M> from a CPSR value written by an MSR instruction.
CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 privileged = PSTATE.EL != EL0; // PSTATE.<A,F,M> are not writable at EL0
 if bytemask<3> == '1' then
 PSTATE.<N,Z,C,V,Q> = value<31:27>;
 // Bits <26:24> are ignored
return;
if bytemask<2> == '1' then
 if HaveSSBSExt() then
 PSTATE.SSBS = value<23>;
 if privileged then
 PSTATE.PAN = value<22>;
 if HaveDITExt() then
 PSTATE.DIT = value<21>;
 // Bit <20> is RES0
 PSTATE.GE = value<19:16>;
 if bytemask<1> == '1' then
 // Bits <15:10> are RES0
 PSTATE.E = value<9>;
 // PSTATE.E is writable at EL0
 if privileged then
 PSTATE.A = value<8>;
 if bytemask<0> == '1' then
 if privileged then
 PSTATE.<I,F> = value<7:6>;
 // Bit <5> is RES0
 // AArch32.WriteModeByInstr() sets PSTATE.I<5> to 1 if this is an illegal mode change.
 AArch32.WriteModeByInstr(value<4:0>);
 return;

aarch32/functions/system/ConditionPassed

 // ConditionPassed()
 // ===============

 boolean ConditionPassed()
 return ConditionHolds(AArch32.CurrentCond());

aarch32/functions/system/CurrentCond

 bits(4) AArch32.CurrentCond();

aarch32/functions/system/InITBlock

 // InITBlock()
 // =========

 boolean InITBlock()
 if CurrentInstrSet() == InstrSet_T32 then
 return PSTATE.IT<3:0> != '0000';
 else
 return FALSE;

aarch32/functions/system/LastInITBlock

 // LastInITBlock()
 // ===============

 boolean LastInITBlock()
 return (PSTATE.IT<3:0> == '1000');

aarch32/functions/system/SPSRWriteByInstr

 // SPSRWriteByInstr()
 // ================

 SPSRWriteByInstr(bits(32) value, bits(4) bytemask)
 new_spsr = SPSR[];
if bytemask<3> == '1' then
 new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

if bytemask<2> == '1' then

if bytemask<1> == '1' then
 new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

if bytemask<0> == '1' then
 new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

return;

aarch32/functions/system/SPSRaccessValid

// SPSRaccessValid()
// ================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
// that are UNPREDICTABLE

SPSRaccessValid(bit(5) SYSm, bit(5) mode)
 case SYSm of
 when '01110' // SPSR_fiq
 if mode == M32_FIQ then UNPREDICTABLE;
 when '10000' // SPSR_irq
 if mode == M32_IRQ then UNPREDICTABLE;
 when '10010' // SPSR_svc
 if mode == M32_Svc then UNPREDICTABLE;
 when '10100' // SPSR_abt
 if mode == M32_Abort then UNPREDICTABLE;
 when '10110' // SPSR_und
 if mode == M32_Undef then UNPREDICTABLE;
 when '11100' // SPSR_mon
 if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;
 when '11110' // SPSR_hyp
 if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
 otherwise
 UNPREDICTABLE;
 return;

aarch32/functions/system/SelectInstrSet

// SelectInstrSet()
// =============

SelectInstrSet(InstrSet iset)
 assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
 assert iset IN {InstrSet_A32, InstrSet_T32};

 PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

 return;

aarch32/functions/v6simd/Sat

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;
aarch32/functions/v6simd/SignedSat

// SignedSat()
// ===========
bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

aarch32/functions/v6simd/UnsignedSat

// UnsignedSat()
// ==============
bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

J1.2.4 aarch32/translation

This section includes the following pseudocode functions:

- aarch32/translation/attrs/AArch32.CombineS1S2Desc on page J1-7790.
- aarch32/translation/attrs/AArch32.S1AttrDecode on page J1-7792.
- aarch32/translation/attrs/AArch32.TranslateAddressS1Off on page J1-7793.
- aarch32/translation/checks/AArch32.CheckS2Permission on page J1-7796.
- aarch32/translation/walk/AArch32.TranslationTableWalkLD on page J1-7804.
- aarch32/translation/walk/AArch32.TranslationTableWalkSD on page J1-7808.
- aarch32/translation/walk/RemapRegsHaveResetValues on page J1-7811.
// AArch32.CombineS1S2Desc()
// =========================
// Combines the address descriptors from stage 1 and stage 2

AddressDescriptor AArch32.CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc, AccType s2acctype)

 AddressDescriptor result;
 result.paddress = s2desc.paddress;

 apply_force_writeback = HaveStage2MemAttrControl() && HCR_EL2.FWB == '1';
 if IsFault(s1desc) || IsFault(s2desc) then
 result = if IsFault(s1desc) then s1desc else s2desc;
 else
 result.fault = AArch32>NoFault();
 if s2desc.memattrs.memtype == MemType_Device || (apply_force_writeback && s1desc.memattrs.memtype == MemType_Device &&
 s2desc.memattrs.inner.attrs != '10') || (!apply_force_writeback && s1desc.memattrs.memtype == MemType_Device) then
 result.memattrs.memtype = MemType_Device;
 elsif s2desc.memattrs.memtype == MemType_Normal then
 result.memattrs.device = s2desc.memattrs.device;
 else
 result.memattrs.device = CombineS1S2Device(s1desc.memattrs.device, s2desc.memattrs.device);
 end
 result.memattrs.tagged = FALSE;
 // S1 can be either Normal or Device, S2 is Normal.
 result.memattrs.memtype = MemType_Normal;
 result.memattrs.device = DeviceType_UNKNOWN;
 result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner, s2acctype);
 result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer, s2acctype);
 result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
 result.memattrs.outershareable = (s1desc.memattrs.outershareable ||
 s2desc.memattrs.outershareable);
 result.memattrs.tagged = (s1desc.memattrs.tagged &&
 result.memattrs.inner.attrs == MemAttr_WB &&
 result.memattrs.inner.hints == MemHint_RWA &&
 result.memattrs.outer.attrs == MemAttr_WB &&
 result.memattrs.outer.hints == MemHint_RWA);
 end
 end

 result.memattrs = MemAttrDefaults(result.memattrs);

 return result;

// AArch32.DefaultTEXDecode()
// ==========================

MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

 MemoryAttributes memattrs;

 // Reserved values map to allocated values
 if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then
 bits(5) texcb;
 (-, texcb) = ConstrainUnpredictableBits();
 TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;
 end

 case TEX:C:B of
when '00000'
 // Device-nGnRnE
 memattrs.metype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
when '00001', '01000'
 // Device-nGnRE
 memattrs.metype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
when '00010', '00011', '00100'
 // Write-back or Write-through Read allocate, or Non-cacheable
 memattrs.metype = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(C:B, acctype, FALSE);
 memattrs.outer = ShortConvertAttrsHints(C:B, acctype, FALSE);
 memattrs.shareable = (S == '1');
when '00110'
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
when '00111'
 // Write-back Read and Write allocate
 memattrs.metype = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints('01', acctype, FALSE);
 memattrs.outer = ShortConvertAttrsHints('01', acctype, FALSE);
 memattrs.shareable = (S == '1');
when '1xxxx'
 // Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
 memattrs.metype = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints('01', acctype, FALSE);
 memattrs.outer = ShortConvertAttrsHints('01', acctype, FALSE);
 memattrs.shareable = (S == '1');
otherwise
 // Reserved, handled above
 Unreachable();

// transient bits are not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;

// distinction between inner and outer shareable is not supported in this format
memattrs.outershareable = memattrs.shareable;
memattrs.tagged = FALSE;
return MemAttrDefaults(memattrs);

aarch32/translation/attrs/AArch32.InstructionDevice

// AArch32.InstructionDevice()
// ===========================
// Instruction fetches from memory marked as Device but not execute-never might generate a
// Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

AddressDescriptor AArch32.InstructionDevice(AddressDescriptor addrdesc, bits(32) vaddress,
 bits(40) ipaddress, integer level, bits(4) domain,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_FAULT};
 if c == Constraint_FAULT then
 addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, level, acctype, iswrite,
 secondstage, s2fs1walk);
 else
 addrdesc.memattrs.metype = MemType_Normal;
 addrdesc.memattrs.inner.attrs = MemAttr_NC;
 addrdesc.memattrs.inner.hints = MemHint_No;
 addrdesc.memattrs.outer = addrdesc.memattrs.inner;
 addrdesc.memattrs.tagged = FALSE;
addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);
return addrdesc;

aarch32/translation/attrs/AArch32.RemappedTEXDecode

// AArch32.RemappedTEXDecode()
// ===========================

MemoryAttributes AArch32.RemappedTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

MemoryAttributes memattrs;
region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
if region == 6 then
 memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
else
 base = 2 * region;
 attrfield = PRRR<base+1:base>;
 if attrfield == '11' then // Reserved, maps to allocated value
 (-, attrfield) = ConstrainUnpredictableBits();
 case attrfield of
 when '00' // Device-nGnRnE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 when '01' // Device-nGnRE
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRE;
 when '10'
 memattrs.memtype = MemType_Normal;
 memattrs.inner = ShortConvertAttrsHints(NMRR<base+1:base>, acctype, FALSE);
 memattrs.outer = ShortConvertAttrsHints(NMRR<base+17:base+16>, acctype, FALSE);
 s_bit = if S == '0' then PRRR.NS0 else PRRR.NS1;
 memattrs.shareable = (s_bit == '1');
 memattrsoutershareable = (s_bit == '1' && PRRR<region+24> == '0');
 when '11'
 Unreachable();
 // transient bits are not supported in this format
 memattrs.inner.transient = FALSE;
 memattrs.outer.transient = FALSE;
 memattrs.tagged = FALSE;
 return MemAttrDefaults(memattrs);
 end;
end;

aarch32/translation/attrs/AArch32.S1AttrDecode

// AArch32.S1AttrDecode()
// ======================

// Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
// attributes and hints.

MemoryAttributes AArch32.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

MemoryAttributes memattrs;
if PSTATE.EL == EL2 then
 mair = HMAIR1:HMAIR0;
else
 mair = MAIR1:MAIR0;
end;
index = 8 * UInt(attr);
attrfield = mair<index+7:index>;
memattrs.tagged = FALSE;
if ((attrfield<7:4> != '0000' && attrfield<7:4> != '1111' && attrfield<3:0> == '0000') ||
 (attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
 // Reserved, maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();
if !HaveMTEExt() && attrfield<7:4> == '1111' && attrfield<3:0> == '0000' then
 // Reserved, maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();
if attrfield<7:4> == '0000' then // Device
 // Device
 memattrs.memtype = MemType_Device;
 case attrfield<3:0> of
 when '0000' memattrs.device = DeviceType_nGnRnE;
 when '0100' memattrs.device = DeviceType_nGnRE;
 when '1000' memattrs.device = DeviceType_nGRE;
 when '1100' memattrs.device = DeviceType_GRE;
 otherwise Unreachable(); // Reserved, handled above
elsif attrfield<3:0> != '0000' then // Normal
 memattrs.memtype = MemType_Normal;
 memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
 memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';
else
 Unreachable(); // Reserved, handled above
return MemAttrDefaults(memattrs);

aarch32/translation/attrs/AArch32.TranslateAddressS1Off

// AArch32.TranslateAddressS1Off()
// -------------------------------
// Called for stage 1 translations when translation is disabled to supply a default translation.
// Note that there are additional constraints on instruction prefetching that are not described in
// this pseudocode.

TLBRecord AArch32.TranslateAddressS1Off(bits(32) vaddress, AccType acctype, boolean iswrite)
assert ELUsingAArch32(S1TranslationRegime());
TLBRecord result;
 default_cacheable = (HasS2Translation() && ((if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC) ==
 '1'));
if default_cacheable then
 // Use default cacheable settings
 result.addrdesc.memattrs.memtype = MemType_Normal;
 result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
 result.addrdesc.memattrs.inner.hints = MemHint_RWA;
 result.addrdesc.memattrs.shareable = FALSE;
 result.addrdesc.memattrs.outershareable = FALSE;
 result.addrdesc.memattrs.tagged = HCR_EL2.DCT == '1';
else acctype != AccType_IFETCH then
 // Treat data as Device
 result.addrdesc.memattrs.memtype = MemType_Device;
 result.addrdesc.memattrs.device = DeviceType_nGnRnE;
 result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
 result.addrdesc.memattrs.tagged = FALSE;
else
 // Instruction cacheability controlled by SCTLR/HSCTLR.I
if PSTATE.EL == EL2 then
 cacheable = HSCTLR.I == '1';
else
 cacheable = SCTLR.I == '1';
result.addrdesc.memattrs.memtype = MemType_Normal;
if cacheable then
 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
 result.addrdesc.memattrs.inner.hints = MemHint_RA;
else
 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 result.addrdesc.memattrs.inner.hints = MemHint_No;
result.addrdesc.memattrsoutershareable = TRUE;
result.addrdesc.memattrs.tagged = FALSE;

result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);
result.perms.ap = bits(3) UNKNOWN;
result.perms.xn = '0';
result.perms.pxn = '0';
result.nG = bit UNKNOWN;
result.contiguous = boolean UNKNOWN;
result.domain = bits(4) UNKNOWN;
result.level = integer UNKNOWN;
result.blocksize = integer UNKNOWN;
result.addrdesc.paddress.address = ZeroExtend(vaddress);
result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
result.addrdesc.fault = AArch32.NoFault();
result.descupdate.AF = FALSE;
result.descupdate.AP = FALSE;
result.descupdate.descaddr = result.addrdesc;
return result;

aarch32/translation/checks/AArch32.AccessIsPrivileged

// AArch32.AccessIsPrivileged()
// ============================

boolean AArch32.AccessIsPrivileged(AccType acctype)

 el = AArch32.AccessUsesEL(acctype);
 if el == EL0 then
 ispriv = FALSE;
 elsif el != EL1 then
 ispriv = TRUE;
 else
 ispriv = (acctype != AccType_UNPRIV);
 return ispriv;

aarch32/translation/checks/AArch32.AccessUsesEL

// AArch32.AccessUsesEL()
// ========================
// Returns the Exception Level of the regime that will manage the translation for a given access type.

bits(2) AArch32.AccessUsesEL(AccType acctype)
 if acctype == AccType_UNPRIV then
return EL0;
else
return PSTATE.EL;

aarch32/translation/checks/AArch32.CheckDomain

// AArch32.CheckDomain()
// ================

(boolean, FaultRecord) AArch32.CheckDomain(bits(4) domain, bits(32) vaddress, integer level,
AccType acctype, boolean iswrite)

index = 2 * UInt(domain);
attrfield = DACR<index+1:index>;
if attrfield == '10' then // Reserved, maps to an allocated value
 // Reserved value maps to an allocated value
 (-, attrfield) = ConstrainUnpredictableBits();
if attrfield == '00' then
 fault = AArch32.DomainFault(domain, level, acctype, iswrite);
else
 fault = AArch32.NoFault();
permissioncheck = (attrfield == '01');
return (permissioncheck, fault);

aarch32/translation/checks/AArch32.CheckPermission

// AArch32.CheckPermission()
// ==============
// Function used for permission checking from AArch32 stage 1 translations

FaultRecord AArch32.CheckPermission(Permissions perms, bits(32) vaddress, integer level,
bits(4) domain, bit NS, AccType acctype, boolean iswrite)

assert ELUsingAArch32(S1TranslationRegime());

if PSTATE.EL != EL2 then
 wxn = SCTLR.wxN == '1';
 if TTBCR.EAE == '1' | | SCTLR.AFE == '1' | | perms.ap<0> == '1' then
 priv_r = TRUE;
 priv_w = perms.ap<2> == '0';
 user_r = perms.ap<1> == '1';
 user_w = perms.ap<2:1> == '01';
 else
 priv_r = perms.ap<2:1> != '00';
 priv_w = perms.ap<2:1> == '01';
 user_r = perms.ap<1> == '1';
 user_w = FALSE;
wxn = SCTLR.wxN == '1';
ispriv = AArch32.AccessIsPrivileged(acctype);

pan = if HavePANExt() then PSTATE.PAN else '0';
is_ldst = ! (acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_AT, AccType_IFETCH});
is_ats1xp = (acctype == AccType_AT & & AArch32.ExecutingATS1xPInstr());
if pan == '1' & & user_r & & ispriv & & (is_ldst | | is_ats1xp) then
 priv_r = FALSE;
 priv_w = FALSE;
user_xn = ! user_r | | perms.xn == '1' | | (user_w & & wxn);
priv_xn = (! priv_r | | perms.xn == '1' | | perms.pxn == '1' | | (priv_w & & wxn) | | (user_w & & wxn));
if ispriv then
(r, w, xn) = (priv_r, priv_w, priv_xn);
else
 (r, w, xn) = (user_r, user_w, user_xn);
else
 // Access from EL2
 wxn = HSCTLR.WXN == '1';
 r = TRUE;
 w = perms.ap<2> == '0';
 xn = perms.xn == '1' || (w && wxn);

// Restriction on Secure instruction fetch
if HaveEL(EL2) && IsSecure() && NS == '1' then
 secure_instr_fetch = if ELUsingAArch32(EL2) then SCR.SIF else SCR_EL3.SIF;
 if secure_instr_fetch == '1' then xn = TRUE;

if acctype == AccType_IFETCH then
 fail = xn;
 failedread = TRUE;
elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW } then
 fail = !r || !w;
 failedread = !r;
elsif acctype == AccType_DC then
 // DC maintenance instructions operating by VA, cannot fault from stage 1 translation.
 fail = FALSE;
elsif iswrite then
 fail = !w;
 failedread = FALSE;
else
 fail = !r;
 failedread = TRUE;

if fail then
 secondstage = FALSE;
 s2fs1walk = FALSE;
 ipaddress = bits(40) UNKNOWN;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
else
 return AArch32.NoFault();
then
 fail = !r || !w;
 failedread = !r;
elsif acctype == AccType_DC && !s2fs1walk then
 // DC maintenance instructions operating by VA, do not generate Permission faults
 // from stage 2 translation, other than from stage 1 translation table walk.
 fail = FALSE;
elsif iswrite && !s2fs1walk then
 fail = !w;
 failedread = FALSE;
else
 fail = !r;
 failedread = !iswrite;
if fail then
 domain = bits(4) UNKNOWN;
 secondstage = TRUE;
 return AArch32.PermissionFault(ipaddress, domain, level, acctype,
 !failedread, secondstage, s2fs1walk);
else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckBreakpoint

 // AArch32.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.
 FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 assert size IN {2,4};
 match = FALSE;
 mismatch = FALSE;
 for i = 0 to UInt(DBGDIDR.BRPs)
 (match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
 match = match || match_i;
 mismatch = mismatch || mismatch_i;
 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
elsif (match || mismatch) then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_Breakpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckDebug

 // AArch32.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.
 FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)
 FaultRecord fault = AArch32.NoFault();
 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
 halt = HaltOnBreakpointOrWatchpoint();
// Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
vector_catch_first = ConstrainUnpredictableBool();

if !d_side && vector_catch_first && generate_exception then
 fault = AArch32.CheckVectorCatch(vaddress, size);

if fault.statusCode == Fault_None && (generate_exception || halt) then
 if d_side then
 fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch32.CheckBreakpoint(vaddress, size);
 if fault.statusCode == Fault_None && !d_side && !vector_catch_first && generate_exception then
 return AArch32.CheckVectorCatch(vaddress, size);
 return fault;

aarch32/translation/debug/AArch32.CheckVectorCatch

// AArch32.CheckVectorCatch()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime, when debug exceptions are enabled.
FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 match = AArch32.VCRMatch(vaddress);
 if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then
 match = ConstrainUnpredictableBool();

 if match then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 debugmoe = DebugException_VectorCatch;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();

aarch32/translation/debug/AArch32.CheckWatchpoint

// AArch32.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "vaddress", when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.
FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert ELUsingAArch32(S1TranslationRegime());
 match = FALSE;
 ispriv = AArch32.AccessIsPrivileged(acctype);

 for i = 0 to UInt(DBGDIDR.WRPs)
 match = match || AArch32.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

 if match & HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 EDWAR = vaddress;
 Halt(reason);
 elsif match then
 debugmoe = DebugException_Watchpoint;
 return AArch32.DebugFault(acctype, iswrite, debugmoe);
 else
 return AArch32.NoFault();
aarch32/translation/faults/AArch32.AccessFlagFault

// AArch32.AccessFlagFault()
// =========================

FaultRecord AArch32.AccessFlagFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AccessFlag, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AddressSizeFault

// AArch32.AddressSizeFault()
// ==========================

FaultRecord AArch32.AddressSizeFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AddressSize, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AlignmentFault

// AArch32.AlignmentFault()
// ========================

FaultRecord AArch32.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 s2fs1walk = boolean UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Alignment, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.AsynchExternalAbort

// AArch32.AsynchExternalAbort()
// =============================
// Wrapper function for asynchronous external aborts

FaultRecord AArch32.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)

 faulttype = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 ipaddress = bits(40) UNKNOWN;
 domain = bits(4) UNKNOWN;
 level = integer UNKNOWN;
 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 s2fs1walk = boolean UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_AsyncExternal, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);
return AArch32.CreateFaultRecord(faulttype, ipaddress, domain, level, acctype, iswrite, extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DebugFault

// AArch32.DebugFault()
// ==============
FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)

ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_Debug, ipaddress, domain, level, acctype, iswrite, extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.DomainFault

// AArch32.DomainFault()
// ==============
FaultRecord AArch32.DomainFault(bits(4) domain, integer level, AccType acctype, boolean iswrite)

ipaddress = bits(40) UNKNOWN;
extflag = bit UNKNOWN;
domain = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
level = integer UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_Domain, ipaddress, domain, level, acctype, iswrite, extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.NoFault

// AArch32.NoFault()
// ==============
FaultRecord AArch32.NoFault()

ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
extflag = bit UNKNOWN;
domain = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_None, ipaddress, domain, level, acctype, iswrite, extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.PermissionFault

// AArch32.PermissionFault()
// ==============
FaultRecord AArch32.PermissionFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Permission, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/faults/AArch32.TranslationFault

 // AArch32.TranslationFault()
 // ==========================

 FaultRecord AArch32.TranslationFault(bits(40) ipaddress, bits(4) domain, integer level,
 AccType acctype, boolean iswrite, boolean secondstage,
 boolean s2fs1walk)

 extflag = bit UNKNOWN;
 debugmoe = bits(4) UNKNOWN;
 errortype = bits(2) UNKNOWN;
 return AArch32.CreateFaultRecord(Fault_Translation, ipaddress, domain, level, acctype, iswrite,
 extflag, debugmoe, errortype, secondstage, s2fs1walk);

aarch32/translation/translation/AArch32.FirstStageTranslate

 // AArch32.FirstStageTranslate()
 // =============================
 // Perform a stage 1 translation walk. The function used by Address Translation operations is
 // similar except it uses the translation regime specified for the instruction.

 AddressDescriptor AArch32.FirstStageTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

 if PSTATE.EL == EL2 then
 s1_enabled = HSCTRL.M == '1';
 elsif EL2Enabled() then
 tge = (if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE);
 dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
 s1_enabled = tge == '0' && dc == '0' && SCTLR.M == '1';
 else
 s1_enabled = SCTLR.M == '1';
 end

 TLBRecord S1;
 S1.addrdesc.Fault = AArch32.NoFault();
 ipaddress = bits(40) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;

 if s1_enabled then // First stage enabled
 use_long_descriptor_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
 if use_long_descriptor_format then
 S1 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);
 permissioncheck = TRUE; domaincheck = FALSE;
 else
 S1 = AArch32.TranslationTableWalkSD(vaddress, acctype, iswrite, size);
 permissioncheck = TRUE; domaincheck = TRUE;
 end
 else
 S1 = AArch32.TranslateAddressS1Off(vaddress, acctype, iswrite);
 permissioncheck = FALSE; domaincheck = FALSE;
 InGuardedPage = FALSE; // No memory is guarded when stage 1 address translation
 is disabled

 if !IsFault(S1.addrdesc) && UsingAArch32() && HaveTrapLoadStoreMultipleDeviceExt() &&

AArch32.ExecutingLSMInstr() then
 if S1.addrdesc.memattrs.memtype == MemType_Device && S1.addrdesc.memattrs.device != DeviceType_GRE then
 nTLSMD = if S1TranslationRegime() == EL2 then HSCTLR.nTLSMD else SCTLR.nTLSMD;
 if nTLSMD == '0' then
 S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);
 // Check for unaligned data accesses to Device memory
 if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
 && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.memtype == MemType_Device then
 S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);
 if !IsFault(S1.addrdesc) && domaincheck && !(acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_IC})
 then
 (permissioncheck, abort) = AArch32.CheckDomain(S1.domain, vaddress, S1.level, acctype,
 iswrite);
 S1.addrdesc.fault = abort;
 if !IsFault(S1.addrdesc) && permissioncheck then
 S1.addrdesc.fault = AArch32.CheckPermission(S1.perms, vaddress, S1.level,
 S1.domain, S1.addrdesc.paddress.NS,
 acctype, iswrite);
 // Check for instruction fetches from Device memory not marked as execute-never. If there has
 // not been a Permission Fault then the memory is not marked execute-never.
 if (!IsFault(S1.addrdesc) && acctype == AccType_IFETCH) then
 S1.addrdesc = AArch32.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,
 S1.domain, acctype, iswrite,
 secondstage, s2fs1walk);
 return S1.addrdesc;

aarch32/translation/translation/AArch32.FullTranslate

// AArch32.FullTranslate()
// =======================
// Perform both stage 1 and stage 2 translation walks for the current translation regime. The
// function used by Address Translation operations is similar except it uses the translation
// regime specified for the instruction.
AddressDescriptor AArch32.FullTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
 boolean wasaligned, integer size)

// First Stage Translation
S1 = AArch32.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
if !IsFault(S1) && !(HaveNV2Ext() && acctype == AccType_NV2REGISTER) && HasS2Translation() then
 s2fs1walk = FALSE;
 result = AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
 size);
else
 result = S1;
return result;

aarch32/translation/translation/AArch32.SecondStageTranslate

// AArch32.SecondStageTranslate()
// ==============================
// Perform a stage 2 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.
AddressDescriptor AArch32.SecondStageTranslate(AddressDescriptor S1, bits(32) vaddress,
 AccType acctype, boolean iswrite, boolean wasaligned,
 boolean s2fs1walk, integer size)

assert HasS2Translation();
assert IsZero(S1.paddress.address<47:40>);
hwupdatewalk = FALSE;
if !ELUsingAArch32(EL2) then
 return AArch64.SecondStageTranslate(S1, ZeroExtend(vaddress, 64), acctype, iswrite,
 wasaligned, s2fs1walk, size, hwupdatewalk);

s2_enabled = HCR.VM == '1' || HCR.DC == '1';
secondstage = TRUE;
if s2_enabled then // Second stage enabled
 ipaddress = S1.paddress.address<39:0>;
 S2 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
 s2fs1walk, size);

 // Check for unaligned data accesses to Device memory
 if ((wasaligned & acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
 && S2.addrdesc.memattrs.memtype == MemType_Device && !IsFault(S2.addrdesc) then
 S2.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

 // Check for permissions on Stage2 translations
 if !IsFault(S2.addrdesc) then
 S2.addrdesc.fault = AArch32.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,
 acctype, iswrite, s2fs1walk);

 // Check for instruction fetches from Device memory not marked as execute-never. As there
 // has not been a Permission Fault then the memory is not marked execute-never.
 if (s2fs1walk & !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.memtype == MemType_Device &&
 acctype == AccType_IFETCH) then
 domain = bits(4) UNKNOWN;
 S2.addrdesc = AArch32.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,
 domain, acctype, iswrite, secondstage, s2fs1walk);

if (s2fs1walk & !IsFault(S2.addrdesc) &&
 S2.addrdesc.memattrs.memtype == MemType_Device) then
 // Check for protected table walk.
 if HCR.PTW == '1' then
 domain = bits(4) UNKNOWN;
 S2.addrdesc.fault = AArch32.PermissionFault(ipaddress,
 domain, S2.level, acctype, iswrite, secondstage, s2fs1walk);
 else
 // Translation table walk occurs as Normal Non-cacheable memory.
 S2.addrdesc.memattrs.memtype = MemType_Normal;
 S2.addrdesc.memattrs.inner.attrs = MemAttr_NC;
 S2.addrdesc.memattrs.outer.attrs = MemAttr_NC;
 S2.addrdesc.memattrs.shareable = TRUE;
 S2.addrdesc.memattrs.outershareable = TRUE;

 if s2fs1walk then
 result = AArch32.CombineS1S2Desc(S1, S2.addrdesc, AccType_PTW);
 else
 result = AArch32.CombineS1S2Desc(S1, S2.addrdesc, acctype);
 else
 result = S1;

 return result;

aarch32/translation/translation/AArch32.SecondStageWalk

// AArch32.SecondStageWalk()
// --------------------------
// Perform a stage 2 translation on a stage 1 translation page table walk access.

AddressDescriptor AArch32.SecondStageWalk(AddressDescriptor S1, bits(32) vaddress, AccType acctype,
 boolean iswrite, integer size)

 assert HasS2Translation();
s2fs1walk = TRUE;
wasaligned = TRUE;
return AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk, size);

aarch32/translation/translation/AArch32.TranslateAddress

// AArch32.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch32.TranslateAddress(bits(32) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

if !ELUsingAArch32(S1TranslationRegime()) then
 return AArch64.TranslateAddress(ZeroExtend(vaddress, 64), acctype, iswrite, wasaligned, size);
result = AArch32.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);
if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
 result.fault = AArch32.CheckDebug(vaddress, acctype, iswrite, size);
// Update virtual address for abort functions
result.vaddress = ZeroExtend(vaddress);
return result;

aarch32/translation/walk/AArch32.TranslationTableWalkLD

// AArch32.TranslationTableWalkLD()
// ================================
// Returns a result of a translation table walk using the Long-descriptor format
// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch32.TranslationTableWalkLD(bits(40) ipaddress, bits(32) vaddress, AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk, integer size)

if !secondstage then
 assert ELUsingAArch32(S1TranslationRegime());
else
 assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Translation();

TLBRecord result;
AddressDescriptor descaddr;
bits(64) baseregister;
bits(40) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2
bit nswalk; // Stage 2 translation table walks are to Secure or to Non-secure PA space

result.descupdate.AF = FALSE;
result.descupdate.AP = FALSE;
domain = bits(4) UNKNOWN;
descaddr.memattrs.memtype = MemType_Normal;

// Fixed parameters for the page table walk:
// grainsize = Log2(Size of Table) - Size of Table is 4KB in AArch32
// stride = Log2(Address per Level) - Bits of address consumed at each level
constant integer grainsize = 12; // Log2(4KB page size)
constant integer stride = grainsize - 3; // Log2(page size / 8 bytes)
Derived parameters for the page table walk:
inputsize = Log2(Size of Input Address) - Input Address size in bits
level = Level to start walk from
This means that the number of levels after start level = 3-level

if !secondstage then
 // First stage translation
 inputaddr = ZeroExtend(vaddress);
 el = AArch32.AccessUsesEL(acctype);
 isprivileged = AArch32.AccessIsPrivileged(acctype);
 if el == EL2 then
 inputsize = 32 - UInt(HTCR.T0SZ);
 basefound = inputsize == 32 || IsZero(inputaddr<31:inputsize>);
 baseregister = HTTBR;
 descaddr.memattrs = WalkAttrDecode(HTCR.SH0, HTCR.ORGN0, HTCR.IRGN0, secondstage);
 reversedescriptors = HSCTRL.EE == '1';
 lookupsecure = FALSE;
 singlepriv = TRUE;
 hierattrdisabled = AArch32.HaveHPDExt() && HTCR.HPD == '1';
 else
 basefound = FALSE;
 disabled = FALSE;
 t0size = UInt(TTBCR.T0SZ);
 if t0size == 0 || IsZero(inputaddr<31:(32-t0size)>)) then
 inputsize = 32 - t0size;
 basefound = TRUE;
 baseregister = TTBR0;
 descaddr.memattrs = WalkAttrDecode(TTBCR.SH0, TTBCR.ORGN0, TTBCR.IRGN0, secondstage);
 hierattrdisabled = AArch32.HaveHPDExt() && TTBCR.T0E == '1' && TTBCR2.HPD0 == '1';
 t1size = UInt(TTBCR.T1SZ);
 if (t1size == 0 && !basefound) || (t1size > 0 && IsOnes(inputaddr<31:(32-t1size)>)) then
 inputsize = 32 - t1size;
 basefound = TRUE;
 baseregister = TTBR1;
 descaddr.memattrs = WalkAttrDecode(TTBCR.SH1, TTBCR.ORGN1, TTBCR.IRGN1, secondstage);
 hierattrdisabled = AArch32.HaveHPDExt() && TTBCR.T0E == '1' && TTBCR2.HPD1 == '1';
 reversedescriptors = SCTLR.EE == '1';
 lookupsecure = IsSecure();
 singlepriv = FALSE;
else
 // Second stage translation
 inputaddr = ipaddress;
 inputsize = 32 - SInt(VTCR.T0SZ);
 if VTCR.S != VTCR.T0SZ[3]
 (-, inputsize) = ConstrainUnpredictableInteger(32-7, 32+8);
 basefound = inputsize == 40 || IsZero(inputaddr<39:inputsize>);
 disabled = FALSE;
 descaddr.memattrs = WalkAttrDecode(VTCR.SH0, VTCR.ORGN0, VTCR.IRGN0, secondstage);
 reversedescriptors = HSCTRL.EE == '1';
 singlepriv = TRUE;
 lookupsecure = FALSE;
 baseregister = VTTBR;
 startlevel = UInt(VTCR.L0);
 level = 2 - startlevel;
 if level <= 0 then basefound = FALSE;

 // Number of entries in the starting level table =
 // (Size of Input Address)/((Address per level)^((Num levels remaining)^(Size of Table))
 startsizecheck = inputsize - ((3 - level)*stride + grainsize); // Log2(Num of entries)

 // Check for starting level table with fewer than 2 entries or longer than 16 pages.
 // Lower bound check is: startsizecheck < Log2(2 entries)
// That is, VTCR.SL0 == '00' and SInt(VTCR.T0SZ) > 1, Size of Input Address < 2^31 bytes
// Upper bound check is: startsizecheck > Log2(pagesize/8*16)
// That is, VTCR.SL0 == '01' and SInt(VTCR.T0SZ) < -2, Size of Input Address > 2^34 bytes
if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;
if !basefound || disabled then
 level = 1; // AArch64 reports this as a level 0 fault
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite, secondstage, s2fs1walk);
 return result;

if !IsZero(baseregister<47:40>) then
 level = 0;
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype, iswrite, secondstage, s2fs1walk);
 return result;

// Bottom bound of the Base address is:
// Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
// Number of entries in starting level table =
// (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
// baseaddress = baseregister<39:baselowerbound>:Zeros(baselowerbound); // Log2(Num of entries*8)
baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
baseaddress = baseregister<39:baselowerbound>:Zeros(baselowerbound);

ns_table = if lookupsecure then '0' else '1';
ap_table = '00';
xn_table = '0';
pxn_table = '0';
addrselecttop = inputsize - 1;
repeat
 addrselectbottom = (3-level)*stride + grainsize;
 bits(40) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:000);
descaddr.paddress.address = ZeroExtend(baseaddress OR index);
descaddr.paddress.NS = ns_table;

// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if secondstage || !HasS2Translation() || (HaveNV2Ext() && acctype == AccType_NV2REGISTER) then
descaddr2 = descadr;
else
descaddr2 = AArch32.SecondStageWalk(descadr, vaddress, acctype, iswrite, 8);
// Check for a fault on the stage 2 walk
if IsFault(descaddr2) then
 result.addrdesc2.fault = descaddr2.fault;
 return result;

// Update virtual address for abort functions
descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
desc = _Mem[descaddr2, 8, accdesc];
if reversedescriptors then desc = BigEndianReverse(desc);

if desc[] == '0' || (desc[] == '01' && level == 3) then
 // Fault (00), Reserved (10), or Block (01) at level 3.
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite, secondstage, s2fs1walk);
 return result;

// Valid Block, Page, or Table entry
if desc[] == '01' || level == 3 then
 blocktranslate = TRUE;
else
 if !IsZero(desc<47:40>) then
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

baseaddress = desc<39:grainsize>:zeros(grainsize);
if !secondstage then
 // Unpack the upper and lower table attributes
 ns_table = ns_table OR desc<63>;
if !secondstage && !hierattrsdisabled then
 ap_table<1> = ap_table<1> OR desc<62>; // read-only
 xn_table = xn_table OR desc<60>;
 // pxn_table and ap_table[0] apply only in EL1&0 translation regimes
 if !singlepriv then
 pxn_table = pxn_table OR desc<59>;
 ap_table<0> = ap_table<0> OR desc<61>; // privileged

level = level + 1;
addrselecttop = addrselectbottom - 1;
blocktranslate = FALSE;
until blocktranslate;

// Unpack the descriptor into address and upper and lower block attributes
outputaddress = desc<39:addrselectbottom>:inputaddr<addrselectbottom-1:0>;

// Check the output address is inside the supported range
if !iszero(desc<47:40>) then
 result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

// Check the access flag
if desc<18> == '0' then
 result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2fs1walk);
 return result;

xn = desc<54>; // Bit[54] of the block/page descriptor
holds UXN
pxn = desc<53>; // Bit[53] of the block/page descriptor
holds PXN
ap = desc<7:6>:'1'; // Bits[7:6] of the block/page descriptor
hold AP[2:1]
contiguousbit = desc<52>;

memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

result.domain = bits(4) UNKNOWN; // Domains not used
result.level = level;
result.blocksize = 2^((3-level)*stride + grainsize);

// Stage 1 translation regimes also inherit attributes from the tables
if !secondstage then
 result.perms.xn = xn OR xn_table;
 result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
 // PXN, nG and AP[1] apply only in EL1&0 stage 1 translation regimes
 if !singlepriv then
 result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
 result.perms.pxn = pxn OR pxn_table;
 // Pages from Non-secure tables are marked non-global in Secure EL1&0
 if issecure() then
 result.nG = nG OR ns_table;
 else
 result.nG = nG;
 end
 else
 result.perms.ap<1> = '1';
 result.perms.pxn = '0';
 result.nG = '0';
 result.GP = desc<50>; // Stage 1 block or pages might be guarded
result.perms.ap<0> = '1';
result.addrdesc.memattrs = AArch32.S1AttrDecode(sh, memattr<2:0>, acctype);
result.addrdesc.paddress.NS = memattr<3> OR ns_table;
else
 result.perms.ap<2:1> = ap<2:1>;
 result.perms.ap<0> = '1';
 result.perms.xn = xn;
 if HaveExtendedExecuteNeverExt() then result.perms.xxn = desc<53>;
 result.perms.pxn = '0';
 result.nG = '0';
 if s2fs1walk then
 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, AccType_PTW);
 else
 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
 result.addrdesc.paddress.NS = '1';
 result.addrdesc.paddress.address = ZeroExtend(outputaddress);
 result.addrdesc.fault = AArch32.NoFault();
 result.contiguous = contiguousbit == '1';
 if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;

return result;

aarch32/translation/walk/AArch32.TranslationTableWalkSD

// AArch32.TranslationTableWalkSD()
// ================================
// Returns a result of a translation table walk using the Short-descriptor format
// // Implementations might cache information from memory in any number of non-coherent TLB
// // caching structures, and so avoid memory accesses that have been expressed in this
// // pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch32.TranslationTableWalkSD(bits(32) vaddress, AccType acctype, boolean iswrite,
 integer size)
assert ELUsingAArch32(S1TranslationRegime());

 // This is only called when address translation is enabled
 TLBRecord result;
 AddressDescriptor 1ldescaddr;
 AddressDescriptor 2ldescaddr;
 bits(40) outputaddress;

 // Variables for Abort functions
 ipaddress = bits(40) UNKNOWN;
 secondstage = FALSE;
 s2fs1walk = FALSE;
 NS = bit UNKNOWN;

 // Default setting of the domain and level.
 domain = bits(4) UNKNOWN;
 level = 1;

 // Determine correct Translation Table Base Register to use.
 bits(64) ttbr;
 n = UInt(TTBCR.N);
 if n == 0 || IsZero(vaddress<31:(32-n)>) then
 ttbr = TTBR0;
 disabled = (TTBCR.PD0 == '1');
 else
 ttbr = TTBR1;
 disabled = (TTBCR.PD1 == '1');
 n = 0; // TTBR1 translation always works like N=0 TTBR0 translation

 // Check if Translation table walk disabled for translations with this Base register.
 if disabled then
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite,
// Obtain descriptor from initial lookup.
l1descaddr.paddress.address = ZeroExtend(ttbr<31:14-n>:vaddress<31-n:20>:'00');
l1descaddr.paddress.NS = if IsSecure() then '0' else '1';
IRGN = ttbr<0>:ttbr<6>; // TTBR.IRGN
RGN = ttbr<4:3>; // TTBR.RGN
SH = ttbr<1>:ttbr<5>; // TTBR.S:TTBR.NOS
l1descaddr.memattrs = WalkAttrDecode(SH, RGN, IRGN, secondstage);

if !HaveEL(EL2) || (IsSecure() && !IsSecureEL2Enabled()) then
 // if only 1 stage of translation
 l1descaddr2 = l1descaddr;
else
 l1descaddr2 = AArch32.SecondStageWalk(l1descaddr, vaddress, acctype, iswrite, 4);
 // Check for a fault on the stage 2 walk
 if IsFault(l1descaddr2) then
 result.addrdesc.fault = l1descaddr2.fault;
 return result;

// Update virtual address for abort functions
l1descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2flswalk, level);
l1desc = _Mem[l1descaddr2, 4, accdesc];
if SCTLR.EE == '1' then l1desc = BigEndianReverse(l1desc);

// Process descriptor from initial lookup.
case l1desc<1:0> of
 when '00' // Fault, Reserved
 result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
 iswrite, secondstage, s2flswalk);
 return result;

 when '01' // Large page or Small page
 domain = l1desc<8:5>;
 level = 2;
 pnx = l1desc<2>;
 NS = l1desc<3>;

 // Obtain descriptor from level 2 lookup.
l2descaddr.paddress.address = ZeroExtend(l1desc<31:10>:vaddress<19:12>:'00');
l2descaddr.paddress.NS = if IsSecure() then '0' else '1';
l2descaddr.memattrs = l1descaddr.memattrs;

if !HaveEL(EL2) || (IsSecure() && !IsSecureEL2Enabled()) then
 // if only 1 stage of translation
 l2descaddr2 = l2descaddr;
else
 l2descaddr2 = AArch32.SecondStageWalk(l2descaddr, vaddress, acctype, iswrite, 4);
 // Check for a fault on the stage 2 walk
 if IsFault(l2descaddr2) then
 result.addrdesc.fault = l2descaddr2.fault;
 return result;

// Update virtual address for abort functions
l2descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2flswalk, level);
l2desc = _Mem[l2descaddr2, 4, accdesc];
if SCTLR.EE == '1' then l2desc = BigEndianReverse(l2desc);

// Process descriptor from level 2 lookup.
case l2desc<1:0> of
 when '00' then
 return result;

 when '01' // Large page or Small page
 domain = l2desc<8:5>;
 level = 2;
 pnx = l2desc<2>;
 NS = l2desc<3>;

 // Obtain descriptor from level 2 lookup.
iswrite, secondstage, s2fs1walk);

nG = l2desc<11>;
S = l2desc<10>;
ap = l2desc<9,5:4>;

if SCTLR.AFE == '1' && l2desc<4> == '0' then
// Armv8 VMSAv8-32 does not support hardware management of the Access flag.
result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);
return result;

if l2desc<1> == '0' then // Large page
xn = l2desc<15>;
tex = l2desc<14:12>;
c = l2desc<3>;
b = l2desc<2>;
blocksize = 64;
outputaddress = ZeroExtend(l2desc<31:16>:vaddress<15:0>);
else // Small page
tex = l2desc<8:6>;
c = l2desc<3>;
b = l2desc<2>;
xn = l2desc<0>;
blocksize = 4;
outputaddress = ZeroExtend(l2desc<31:12>:vaddress<11:0>);

when '1x' // Section or Supersection
N5 = l1desc<19>;
nG = l1desc<17>;
S = l1desc<16>;
ap = l1desc<15,11:10>;
tex = l1desc<14:12>;
xn = l1desc<4>;
c = l1desc<3>;
b = l1desc<2>;
pxn = l1desc<0>;
level = 1;

if SCTLR.AFE == '1' && l1desc<10> == '0' then
// Armv8 VMSAv8-32 does not support hardware management of the Access flag.
result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);
return result;

if l1desc<18> == '0' then // Section
domain = l1desc<8:5>;
blocksize = 1024;
outputaddress = ZeroExtend(l1desc<31:20>:vaddress<19:0>);
else // Supersection
domain = '0000';
blocksize = 16384;
outputaddress = l1desc<8:5>:l1desc<23:20>:l1desc<31:24>:vaddress<23:0>;

// Decode the TEX, C, B and S bits to produce the TLBRecord's memory attributes
if SCTLR.TRE == '0' then
if RemapRegsHaveResetValues() then
result.addrdesc.memattrs = AArch32.DefaultTEXDecode(tex, c, b, S, acctype);
else
result.addrdesc.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
else
result.addrdesc.memattrs = AArch32.RemappedTEXDecode(tex, c, b, S, acctype);

// Set the rest of the TLBRecord, try to add it to the TLB, and return it.
result.perms.ap = ap;
result.perms.xn = xn;
result.perms.pxn = pxn;
result.nG = nG;
result.domain = domain;
result.level = level;
result.blocksize = blocksize;
result.addrdesc.paddress.address = ZeroExtend(outputaddress);
result.addrdesc.paddress.NS = if IsSecure() then NS else '1';
result.addrdesc.fault = AArch32.NoFault();

return result;

aarch32/translation/walk/RemapRegsHaveResetValues

boolean RemapRegsHaveResetValues();
J1.3 Shared pseudocode

This section holds the pseudocode that is common to execution in AArch64 state and in AArch32 state. Functions listed in this section are identified only by a FunctionName, without an AArch64. or AArch32. prefix. This section is organized by functional groups, with the functional groups being indicated by hierarchical path names, for example shared/debug/DebugTarget.

The top-level sections of the shared pseudocode hierarchy are:

- shared/debug
- shared/exceptions on page J1-7832.
- shared/functions on page J1-7834.
- shared/trace on page J1-7928.
- shared/translation on page J1-7930.

J1.3.1 shared/debug

This section includes the following pseudocode functions:

- shared/debug/DebugTarget/DebugTarget on page J1-7813.
- shared/debug/DebugTarget/DebugTargetFrom on page J1-7814.
- shared/debug/authentication/AllowExternalDebugAccess on page J1-7814.
- shared/debug/authentication/AllowExternalPMUAccess on page J1-7815.
- shared/debug/authentication/Debug_authentication on page J1-7815.
- shared/debug/authentication/ExternalNoninvasiveDebugAllowed on page J1-7815.
- shared/debug/authentication/IsCorePowered on page J1-7816.
- shared/debug/breakpoint/CheckValidStateMatch on page J1-7816.
- shared/debug/cti/CTI_SetEventLevel on page J1-7817.
- shared/debug/cti/CTI_SignalEvent on page J1-7817.
- shared/debug/cti/CrossTrigger on page J1-7817.
- shared/debug/dccanditr/CheckForDCCInterrupts on page J1-7818.
- shared/debug/dccanditr/DBGDTRRX_EL0 on page J1-7818.
- shared/debug/dccanditr/DBGDTRTX_EL0 on page J1-7819.
- shared/debug/dccanditr/DBGDTR_EL0 on page J1-7820.
- shared/debug/dccanditr/DTR on page J1-7820.
- shared/debug/dccanditr/EDITR on page J1-7820.
- shared/debug/halting/DCPSInstruction on page J1-7821.
- shared/debug/halting/DRPSInstruction on page J1-7822.
- shared/debug/halting/DebugHalt on page J1-7823.
- shared/debug/halting/DisableITRAndResumeInstructionPrefetch on page J1-7823.
- shared/debug/halting/ExecuteA64 on page J1-7823.
- shared/debug/halting/ExecuteT32 on page J1-7823.
- shared/debug/halting/ExitDebugState on page J1-7823.
- shared/debug/halting/Halt on page J1-7824.
- shared/debug/halting/HaltOnBreakpointOrWatchpoint on page J1-7825.
- shared/debug/halting/Halted on page J1-7825.
- shared/debug/halting/HaltingAllowed on page J1-7825.
shared/debug/ClearStickyErrors/ClearStickyErrors

// ClearStickyErrors()
// ================

ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag
 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag
 // If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
 // The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
 // in the pseudocode.
 if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool() then
 return;
 EDSCR.ERR = '0'; // Clear cumulative error flag
 return;

shared/debug/DebugTarget/DebugTarget

// DebugTarget()
// =============

// Returns the debug exception target Exception level

bits(2) DebugTarget()
 secure = IsSecure();
 return DebugTargetFrom(secure);
shared/debug/DebugTarget/DebugTargetFrom

// DebugTargetFrom()
// ================

bits(2) DebugTargetFrom(boolean secure)
if HaveEL(EL2) && (!secure || (HaveSecureEL2Ext() &&
 ((HaveEL(EL3) || SCR_EL3.EEL2 == '1'))) then
 if ELUsingAArch32(EL2) then
 route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
 else
 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
 else
 route_to_el2 = FALSE;
 if route_to_el2 then
 target = EL2;
 elsif HaveEL(EL3) && HighestELUsingAArch32() && secure then
 target = EL3;
 else
 target = EL1;
 return target;

shared/debug/DoubleLockStatus/DoubleLockStatus

// DoubleLockStatus()
// ================

// Returns the state of the OS Double Lock.
// FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
// TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

boolean DoubleLockStatus()
if !HaveDoubleLock() then
 return FALSE;
elsif ELUsingAArch32(EL1) then
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
else
 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/authentication/AllowExternalDebugAccess

// AllowExternalDebugAccess()
// =========================

// Returns TRUE if an external debug interface access to the External debug registers is allowed, FALSE otherwise.

boolean AllowExternalDebugAccess()
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() then
 return AllowExternalDebugAccess(IsAccessSecure());
else
 return AllowExternalDebugAccess(ExternalSecureInvasiveDebugEnabled());

// AllowExternalDebugAccess()
// =========================

// Returns TRUE if an external debug interface access to the External debug registers is allowed for the given Security state, FALSE otherwise.

boolean AllowExternalDebugAccess(boolean allow_secure)
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalInvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 elsif HaveEL(EL3) then
 if ELUsingAArch32(EL3) then

return SDCR.EDAD == '0';
else
 return MDCR_EL3.EDAD == '0';
else
 return !IsSecure();
else
 return FALSE;

shared/debug/authentication/AllowExternalPMUAccess

// AllowExternalPMUAccess()
//
// Returns TRUE if an external debug interface access to the PMU registers is allowed, FALSE otherwise.

boolean AllowExternalPMUAccess()
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() then
 return AllowExternalPMUAccess(IsAccessSecure());
else
 return AllowExternalPMUAccess(ExternalSecureNoninvasiveDebugEnabled());

// AllowExternalPMUAccess()
//
// Returns TRUE if an external debug interface access to the PMU registers is allowed for the given
// Security state, FALSE otherwise.

boolean AllowExternalPMUAccess(boolean allow_secure)
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalNoninvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 elsif HaveEL(EL3) then
 if ELUsingAArch32(EL3) then
 return SDCR.EPMAD == '0';
 else
 return MDCR_EL3.EPMAD == '0';
 else
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/Debug_authentication

signal DBGEN;
signal NIDEN;
signal SPIDEN;
signal SPNIDEN;

shared/debug/authentication/ExternalInvasiveDebugEnabled

// ExternalInvasiveDebugEnabled()
// -----------------------------
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the DBGEN signal.

boolean ExternalInvasiveDebugEnabled()
return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

// ExternalNoninvasiveDebugAllowed()
// --------------------------------
// Returns TRUE if Trace and PC Sample-based Profiling are allowed

boolean ExternalNoninvasiveDebugAllowed()
return (ExternalNoninvasiveDebugEnabled() &&
(!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
(ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUNIDEN == '1')));

shared/debug/authentication/ExternalNoninvasiveDebugEnabled

// ExternalNoninvasiveDebugEnabled()
// ================
// This function returns TRUE if the FEAT_Debugv8p4 is implemented, otherwise this
// function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
// OR NIDEN) signal.

boolean ExternalNoninvasiveDebugEnabled()
return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

// ExternalSecureInvasiveDebugEnabled()
// ===============
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
// CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

boolean ExternalSecureInvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

// ExternalSecureNoninvasiveDebugEnabled()
// ===========
// This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
// is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
// (SPIDEN OR SPNIDEN) signal.

boolean ExternalSecureNoninvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
if HaveNoninvasiveDebugAuth() then
return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);
else
return ExternalSecureInvasiveDebugEnabled();

shared/debug/authentication/IsAccessSecure

// Returns TRUE when an access is Secure
boolean IsAccessSecure();

shared/debug/authentication/IsCorePowered

// Returns TRUE if the Core power domain is powered on, FALSE otherwise.
boolean IsCorePowered();

shared/debug/breakpoint/CheckValidStateMatch

// CheckValidStateMatch()
// ================
// Checks for an invalid state match that will generate Constrained Unpredictable behaviour, otherwise
// returns Constraint_NONE.

(Constraint, bits(2), bit, bits(2)) CheckValidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean
isbreakpnt)
boolean reserved = FALSE;

// Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints
if (!isbreakpnt || !HaveAAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then
 reserved = TRUE;

// Both EL3 and EL2 are not implemented
if !HaveEL(EL3) && !HaveEL(EL2) && (HMC != '0' || SSC != '00') then
 reserved = TRUE;

// EL3 is not implemented
if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then
 reserved = TRUE;

// EL3 using AArch64 only
if !HaveEL(EL3) && HighestELUsingAArch32() && HMC:SSC:PxC == '11000' then
 reserved = TRUE;

// EL2 is not implemented
if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then
 reserved = TRUE;

// Secure EL2 is not implemented
if !HaveSecureEL2Ext() && (HMC:SSC:PxC) IN {'01100','10100','x11x1'} then
 reserved = TRUE;

// Values that are not allocated in any architecture version
if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then
 reserved = TRUE;

if reserved then
 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value
 return (Constraint_NONE, SSC, HMC, PxC);

shared/debug/cti/CTI_SetEventLevel

// Set a Cross Trigger multi-cycle input event trigger to the specified level.
CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

// Signal a discrete event on a Cross Trigger input event trigger.
CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

element CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest, CrossTriggerOut_IRQ, CrossTriggerOut_RSV0, CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1, CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

element CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow, CrossTriggerIn_RSV02, CrossTriggerIn_RSV03, CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1, CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};
shared/debug/dccanditr/CheckForDCCInterrupts

// CheckForDCCInterrupts()
// ================

CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

 // The value to be driven onto the common COMMIRQ signal.
 if ELUsingAArch32(EL1) then
 commirq = ((commrx && DBGDCCINT.RX == '1') ||
 (commtx && DBGDCCINT.TX == '1'));
 else
 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
 (commtx && MDCCINT_EL1.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

return;

shared/debug/dccanditr/DBGDTRRX_EL0

// DBGDTRRX_EL0[] (external write)
// ================

// Called on writes to debug register 0x08C.

DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
 if ELUsingAArch32(EL1) then
 ExecuteA64(0x05330501<31:0>);
 // A64 "MRS X1,DBGDTRRX_EL0"
 ExecuteA64(0x8B004401<31:0>);
 // A64 "STR W1,[X0],#4"
 X[1] = bits(64) UNKNOWN;
 else
 ExecuteT32(0x0E10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0x01B0<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;
 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(32) UNKNOWN;
 else
 "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
 assert EDSCR.RXfull == '0';
 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
return;

// DBGDTRRX_EL0[] (external read)
// --

bits(32) DBGDTRRX_EL0[boolean memory_mapped]
return DTRRX;

shared/debug/dccanditr/DBGDTRTX_EL0

// DBGDTRTX_EL0[] (external read)
// --

// Called on reads of debug register 0x080.

bits(32) DBGDTRTX_EL0[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
value = if underrun then bits(32) UNKNOWN else DTRTX;

if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
 return value;

if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN
 EDSCR.TXfull = '0';

if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

if !UsingAArch32() then
 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
else
 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(32) UNKNOWN;
 else
 if !UsingAArch32() then
 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
 assert EDSCR.TXfull == '1';
 if !UsingAArch32() then
 X[1] = bits(64) UNKNOWN;
 else
 R[1] = bits(32) UNKNOWN;
 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
 end
 return value;

// DBGDTRTX_EL0[] (external write)
// --

DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
 // The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
DTRTX = value;
return;

shared/debug/dccanditr/DBGDTR_EL0

// DBGDTR_EL0[] (write)
// System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

DBGDTR_EL0[] = bits(N) value
// For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
// For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
assert N IN (32,64);
if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
// On a 64-bit write, implement a half-duplex channel
if N == 64 then DTRRX = value<63:32>;
DTRTX = value<31:0>; // 32-bit or 64-bit write
EDSCR.TXfull = '1';
return;

// DBGDTR_EL0[] (read)
// System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

bits(N) DBGDTR_EL0[]
// For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
// For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
assert N IN (32,64);
bits(N) result;
if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<31:0> = DTRRX;
 result<63:32> = DTRTX;
 EDSCR.RXfull = '0';
return result;

shared/debug/dccanditr/DTR

bits(32) DTRRX;
bits(32) DTRTX;

shared/debug/dccanditr/EDITR

// EDITR[] (external write)
// Called on writes to debug register 0x084.

EDITR[boolean memory_mapped] = bits(32) value
if EDPSR<6:5> !='01' then
 IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
if !Halted() then return; // Non-debug state: ignore write

if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 if EDSCR.IEO == '1';
 EDSCR.ERR = '1';
 // Overrun condition: block write
return;

// ITE indicates whether the processor is ready to accept another instruction; the processor
// may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
// is no indication that the pipeline is empty (all instructions have completed). In this
// pseudocode, the assumption is that only one instruction can be executed at a time,
// meaning ITE acts like "InstrCompl".
EDSCR.I TE = '0';

if !UsingAArch32() then
 ExecuteA64(value);
else
 ExecuteT32(value<15:0> /*hw1*/, value<31:16> /*hw2*/);
EDSCR.I TE = '1';
return;

shared/debug/halting/DCPSInstruction

// DCPSInstruction ()
// ================
// Operation of the DCPS instruction in Debug state

DCPSInstruction (bits(2) target_el)

SynchronizeContext();

case target_el of
 when EL1
 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
 else handle_el = EL1;
 when EL2
 if !HaveEL(EL2) then UNDEFINED;
 elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
 elsif !IsSecureEL2Enabled() && IsSecure() then UNDEFINED;
 else handle_el = EL2;
 when EL3
 if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
 handle_el = EL3;
 otherwise
 Unreachable();

from_secure = IsSecure();
if ELUsingAArch32(handle_el) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32

 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 when EL2
 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 otherwise
 Unreachable();
 end_case

 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 end_case

 from_secure = IsSecure();
 if !UsingAArch32() then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32

 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
 when EL2
 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 otherwise
 Unreachable();
 end_case

 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 end_case

PSTATE.E = SCTLR[].EE;
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else // Targeting AArch64
 if UsingAArch32() then
 AArch64.MaybeZeroRegisterUppers();
 MaybeZeroSVEUppers(target_el);
 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.SP = handle_el;
 if HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||
 (handle_el == EL2 && HCR_EL2.E2H == '1' &&
 HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0')) then
 PSTATE.PAN = '1';
 ELR[] = bits(64) UNKNOWN; SPSR[] = bits(32) UNKNOWN; ESR[] = bits(32) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveMTEExt() then PSTATE.TCO = '1';

 UpdateEDSCRFields(); // Update EDSCR PE state flags
 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() && !UsingAArch32() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();
 return;

shared/debug/halting/DRPSInstruction

// DRPSInstruction()
// ============
// Operation of the A64 DRPS and T32 ERET instructions in Debug state

DRPSInstruction()

 SynchronizeContext();
 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 if HaveDoubleFaultExt() && !UsingAArch32() then
 sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();
 SetPSTATEFromPSR(SPSR[]);

 // PSTATE.(N,Z,C,V,Q,GE,SS,D,A,I,F) are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
 else
 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR PE state flags

 return;
shared/debug/halting/DebugHalt

constant bits(6) DebugHalt_Breakpoint = '000111';
constant bits(6) DebugHalt_EDBGRQ = '010011';
constant bits(6) DebugHalt_Step_Normal = '011011';
constant bits(6) DebugHalt_Step_Exclusive = '011111';
constant bits(6) DebugHalt_OSUnlockCatch = '100011';
constant bits(6) DebugHalt_ResetCatch = '100111';
constant bits(6) DebugHalt_Watchpoint = '101011';
constant bits(6) DebugHalt_HaltInstruction = '101111';
constant bits(6) DebugHalt_SoftwareAccess = '110011';
constant bits(6) DebugHalt_ExceptionCatch = '110111';
constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

DisableITRAndResumeInstructionPrefetch();

shared/debug/halting/ExecuteA64

// Execute an A64 instruction in Debug state.
ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

// Execute a T32 instruction in Debug state.
ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

// ExitDebugState()
// ================
ExitDebugState()
assert Halted();
SynchronizeContext();

// Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
// detect that the PE has restarted.
EDSCR.STATUS = '000001'; // Signal restarting
EDESR<2:0> = '000'; // Clear any pending Halting debug events
bits(64) new_pc;
bits(32) spsr;
if UsingAArch32() then
 new_pc = ZeroExtend(DLR);
 spsr = DSPSR;
else
 new_pc = DLR_EL0;
 spsr = DSPSR_EL0;
// If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0
if UsingAArch32() then
 if ConstrainUnpredictableBool() then new_pc<0> = '0';
 BranchTo(new_pc<31:0>, BranchType_DBGEXIT); // AArch32 branch
else
 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
 if spsr<4> == '1' & ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();
 BranchTo(new_pc, BranchType_DBGEXIT); // A type of branch that is never predicted
 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 UpdateEDSCRFFields(); // Stop signalling PE state
DisableITRAndResumeInstructionPrefetch();
return;

shared/debug/halting/Halt
// Halt()
// ======

Halt(bits(6) reason)

CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

bits(64) preferred_restart_address = ThisInstrAddr();
spsr = GetPSRFromPSTATE();

if UsingAArch32() then
 // If entering from AArch32 state, spsr<21> is the DIT bit which has to be moved for DSPSR
 spsr<24> = spsr<21>;
 spsr<21> = PSTATE.SS; // Always save the SS bit

if (HaveBTIExt() && !(reason IN {DebugHalt_Step_Normal, DebugHalt_Step_Exclusive, DebugHalt_Step_NoSyndrome, DebugHalt_Breakpoint, DebugHalt_HaltInstruction}) && ConstrainUnpredictableBool()) then
 DSPSR<11:10> = '00';

if UsingAArch32() then
 DLR = preferred_restart_address<31:0>;
 DSPSR = spsr;
else
 DLR_EL0 = preferred_restart_address<31:0>;
 DSPSR_EL0 = spsr;

EDSCR.ITE = '1';
EDSCR.ITO = '0';
if IsSecure() then
 EDSR.IED = '0'; // If entered in Secure state, allow debug
elsif HaveEl (EL3) then
 EDSR.IED = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
else
 assert EDSR.IED == '1'; // Otherwise EDSR.IED is RES1
 EDSR.MA = '0';

// In Debug state:
// * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
// * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
// are not changed on exception entry, this function also leaves them unchanged.
// * PSTATE.{IT,T} are ignored.
// * PSTATE.IL is ignored and behave-as-if 0.
// * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.
if UsingAArch32() then
 PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;
else
 PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;
 PSTATE.BTYPE = '00';
PSTATE.IL = '0';

StopInstructionPrefetchAndEnableITR();
EDSCR.STATUS = reason; // Signal entered Debug state
UpdateEDSCRFields(); // Update EDSR PE state flags.
return;
shared/debug/halting/HaltOnBreakpointOrWatchpoint

// HaltOnBreakpointOrWatchpoint()
// ==============================
// Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
// state entry, FALSE if they should be considered for a debug exception.

boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

shared/debug/halting/Halted

// Halted()
// ========

boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

// HaltingAllowed()
// ================
// Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
 return FALSE;
 elsif IsSecure() then
 return ExternalSecureInvasiveDebugEnabled();
 else
 return ExternalInvasiveDebugEnabled();

shared/debug/halting/Restarting

// Restarting()
// ===========

boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

// UpdateEDSCRFields()
// ===================
// Update EDSCR PE state fields

UpdateEDSCRFields()
 if !Halted() then
 EDSCR.EL = '00';
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW = '1111';
 else
 EDSCR.EL = PSTATE.EL;
 EDSCR.NS = if IsSecure() then '0' else '1';
 bits(4) RW;
 RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
 if PSTATE.EL != EL0 then
 RW<0> = RW<1>;
 else
 ..
else
 RW<0> = if UsingAArch32() then '0' else '1';
 if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0' && !IsSecureEL2Enabled()) then
 RW<2> = RW<1>;
 else
 RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
 if !HaveEL(EL3) then
 RW<3> = RW<2>;
 else
 RW<3> = if ELUsingAArch32(EL3) then '0' else '1';

 // The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
 if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
 elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
 elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
 EDSCR.RW = RW;
 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch(boolean exception_entry)
 // Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
 // for the exception target.
 base = if IsSecure() then 0 else 4;
 if HaltingAllowed() then
 if HaveExtendedECDebugEvents() then
 exception_exit = !exception_entry;
 ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
 case ctrl of
 when '00' halt = FALSE;
 when '01' halt = TRUE;
 when '10' halt = (exception_exit == TRUE);
 when '11' halt = (exception_entry == TRUE);
 else
 halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');
 if halt then Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep()
 if HaltingAllowed() && EDESR.SS == '1' then
 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
 if HaltingStep_DidNotStep() then
 Halt(DebugHalt_Step_NoSyndrome);
 elsif HaltingStep_SteppedEX() then
 Halt(DebugHalt_Step_Exclusive);
 else
 Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()
 if (HaveDoPD() && CTIDEVCTL.OSUCE == '1')
|| (!HaveDoPD() && EDECR.OSUCE == '1')
then
 if !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingOSUnlockCatch

// CheckPendingOSUnlockCatch()
// ----------------------------------
// Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 Halt(DebugHalt_OSUnlockCatch);

shared/debug/haltingevents/CheckPendingResetCatch

// CheckPendingResetCatch()
// ---------------------------
// Check whether EDESR.RC has been set by a Reset Catch debug event

CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckResetCatch

// CheckResetCatch()
// ----------------
// Called after reset

CheckResetCatch()
 if (HaveDoPD() && CTIDEVCTL.RCE == '1') || (!HaveDoPD() && EDECR.RCE == '1') then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

// CheckSoftwareAccessToDebugRegisters()
// -------------------------------------
// Check for access to Breakpoint and Watchpoint registers.

CheckSoftwareAccessToDebugRegisters()
 os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
 Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/ExternalDebugRequest

// ExternalDebugRequest()
// ----------------------

ExternalDebugRequest()
 if HaltingAllowed() then
 Halt(DebugHalt_EDBGRQ);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.

boolean HaltingStep_DidNotStep();
shared/debug/haltingevents/HaltingStep_SteppedEX

// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.
boolean HaltingStep_SteppedEX();

shared/debug/haltingevents/RunHaltingStep

// RunHaltingStep()
// ================
RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
 boolean reset)
// "exception_generated" is TRUE if the previous instruction generated a synchronous exception
// or was cancelled by an asynchronous exception.
// if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
// "syscall" is TRUE if the exception is a synchronous exception where the preferred return
// address is the instruction following that which generated the exception.
// "reset" is TRUE if exiting reset state into the highest EL.
if reset then assert !Halted(); // Cannot come out of reset halted
 active = EDECR.SS == '1' && !Halted();
if active && reset then // Coming out of reset with EDECR.SS set
 EDESR.SS = '1';
else if active && HaltingAllowed() then
 if exception_generated && exception_target == EL3 then
 advance = syscall || ExternalSecureInvasiveDebugEnabled();
 else
 advance = TRUE;
 if advance then EDESR.SS = '1';
 return;

shared/debug/interrupts/ExternalDebugInterruptsDisabled

// ExternalDebugInterruptsDisabled()
// =================================
// Determine whether EDSCR disables interrupts routed to 'target'

boolean ExternalDebugInterruptsDisabled(bits(2) target)
case target of
 when EL3
 int_dis = EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled();
 when EL2
 int_dis = EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled();
 when EL1
 if IsSecure() then
 int_dis = EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled();
 else
 int_dis = EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled();
 return int_dis;

shared/debug/interrupts/InterruptID

enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
 InterruptID_COMMRX, InterruptID_COMMTX};

shared/debug/interrupts/SetInterruptRequestLevel

// Set a level-sensitive interrupt to the specified level.
SetInterruptRequestLevel(InterruptID id, signal level);
shared/debug/samplebasedprofiling/CreatePCSample

// CreatePCSample()
// ================

CreatePCSample()
// In a simple sequential execution of the program, CreatePCSample is executed each time the PE
// executes an instruction that can be sampled. An implementation is not constrained such that
// reads of EDPCSRlo return the current values of PC, etc.

pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
pc_sample.pc = ThisInstrAddr();
pc_sample.el = PSTATE_EL;
pc_sample.rw = if UsingAArch32() then '0' else '1';
pc_sample.ns = if IsSecure() then '0' else '1';
pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1;
pc_sample.has_el2 = EL2Enabled();

if EL2Enabled() then
 if ELUsingAArch32(EL2) then
 pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
 elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
 pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
 else
 pc_sample.vmid = VTTBR_EL2.VMID;
 end
elsif (HaveVirtHostExt() || HaveV82Debug()) && !ELUsingAArch32(EL2) then
 pc_sample.contextidr_el2 = CONTEXTIDR_EL2;
else
 pc_sample.contextidr_el2 = bits(32) UNKNOWN;
end
pc_sample.el0h = PSTATE_EL == EL0 && IsInHost();
return;

shared/debug/samplebasedprofiling/EDPCSRlo

// EDPCSRlo[] (read)
// ==============

bits(32) EDPCSRlo[boolean memory_mapped]

if EDPSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 if HaveVirtHostExt() && EDSCR.SC2 == '1' then
 EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 EDPCSRhi.EL = pc_sample.el;
 EDPCSRhi.NS = pc_sample.ns;
 else
 EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);
 EDCIDSR = pc_sample.contextidr;
 end
 if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then
 EDVIDSR = (if HaveEL(EL2) && pc_sample.ns == '1' then pc_sample.contextidr_el2
 else bits(32) UNKNOWN);
 else
 if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0} then
 EDVIDSR.VMID = pc_sample.vmid;
 else
 EDVIDSR.VMID = Zeros();
 EDVIDSR.NS = pc_sample.ns;
 EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
 EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
 end
 end
 end
end
// The conditions for setting HV are not specified if PCSRhi is zero.
// An example implementation may be "pc_sample.rw".
EDVIDSR.HV = (if IsZero(EDPCSRhi) then '1' else bit IMPLEMENTATION_DEFINED "0 or 1");
else
 sample = Ones(32);
 if update then
 EDPCSRhi = bits(32) UNKNOWN;
 EDCIDSR = bits(32) UNKNOWN;
 EDVIDSR = bits(32) UNKNOWN;
 return sample;

shared/debug/samplebasedprofiling/PCSample

type PCSample is (
 boolean valid,
 bits(64) pc,
 bits(2) el,
 bit rw,
 bit ns,
 boolean has_el2,
 bits(32) contextidr,
 bits(32) contextidr_el2,
 boolean el0h,
 bits(16) vmid
)

PCSample pc_sample;

shared/debug/samplebasedprofiling/PMPCSR

// PMPCSR[] (read)
// ===============
bits(32) PMPCSR[boolean memory_mapped]
if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects
if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 PMPCSR.EL = pc_sample.el;
 PMPCSR.NS = pc_sample.ns;
 PMCID1SR = pc_sample.contextidr;
 PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;
 PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
 then pc_sample.vmid else bits(16) UNKNOWN);
 else
 sample = Ones(32);
 if update then
 PMPCSR<55:32> = bits(24) UNKNOWN;
 PMPCSR.EL = bits(2) UNKNOWN;
 PMPCSR.NS = bit UNKNOWN;
 PMCID1SR = bits(32) UNKNOWN;
 PMCID2SR = bits(32) UNKNOWN;
PMVIDSR.VMID = bits(16) UNKNOWN;

return sample;

shared/debug/softwarestep/CheckSoftwareStep

// CheckSoftwareStep()
// ===================
// Take a Software Step exception if in the active-pending state

CheckSoftwareStep()

// Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
// AArch32 state. However, because Software Step is only active when the debug target Exception
// level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
if !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() then
 if MDSCR_EL1.SS == '1' && PSTATE.SS == '0' then
 AArch64.SoftwareStepException();

shared/debug/softwarestep/DebugExceptionReturnSS

// DebugExceptionReturnSS()
// ========================
// Returns value to write to PSTATE.SS on an exception return or Debug state exit.

bit DebugExceptionReturnSS(bits(32) spsr)

assert Halted() || Restarting() || PSTATE.EL != EL0;

SS_bit = '0';

if MDSCR_EL1.SS == '1' then
 if Restarting() then
 enabled_at_source = FALSE;
 elsif UsingAArch32() then
 enabled_at_source = AArch32.GenerateDebugExceptions();
 else
 enabled_at_source = AArch64.GenerateDebugExceptions();
 endif
 if !IllegalExceptionReturn(spsr) then
 dest = PSTATE.EL;
 else
 (valid, dest) = ELFromSPSR(spsr); assert valid;
 endif
 secure = IsSecureBelowEL3() || dest == EL3;
 if !ELUsingAArch32(dest) then
 enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, secure);
 else
 mask = spsr<9>;
 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, secure, mask);
 endif
 ELD = DebugTargetFrom(secure);
 if !ELUsingAArch32(ELD) && !enabled_at_source && enabled_at_dest then
 SS_bit = spsr<21>;
 endif
 return SS_bit;

shared/debug/softwarestep/SSAdvance

// SSAdvance()
// ===========
// Advance the Software Step state machine.

SSAdvance()

// A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
// current Software Step state machine. However, this check is made to illustrate that the
// processor only needs to consider advancing the state machine from the active-not-pending
// state.
target = DebugTarget();
step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
active_not_pending = step_enabled && PSTATE.SS == '1';

if active_not_pending then PSTATE.SS = '0';
return;

shared/debug/softwarestep/SoftwareStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
// Might return TRUE or FALSE if the previously executed instruction was an ISB or ERET executed
// in the active-not-pending state, or if another exception was taken before the Software Step
// exception.
// Returns FALSE otherwise, indicating that the previously executed instruction was executed in the
// active-not-pending state, that is, the instruction was stepped.
// shared/exceptions/exceptions/ConditionSyndrome
boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

// Returns a value that describes the previously executed instruction. The result is valid only if
// SoftwareStep_DidNotStep() returns FALSE.
// Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX that failed its condition
// code test.
// Otherwise returns TRUE if the instruction was a Load-Exclusive class instruction, and FALSE if the
// instruction was not a Load-Exclusive class instruction.
// shared/exceptions/exceptions/ConditionSyndrome
boolean SoftwareStep_SteppedEX();

J1.3.2 shared/exceptions

This section includes the following pseudocode functions:
- shared/exceptions/exceptions/ConditionSyndrome.
- shared/exceptions/exceptions/Exception on page J1-7833.
- shared/exceptions/exceptions/ExceptionRecord on page J1-7833.
- shared/exceptions/exceptions/ExceptionSyndrome on page J1-7834.
- shared/exceptions/traps/ReservedValue on page J1-7834.
- shared/exceptions/traps/UnallocatedEncoding on page J1-7834.

shared/exceptions/exceptions/ConditionSyndrome

// ConditionSyndrome()
// ===============
// Return CV and COND fields of instruction syndrome

bits($) ConditionSyndrome()

bits($) syndrome;
if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xEn, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool() then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
 else
 syndrome<3:0> = cond;
else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // » CV set to 0 and COND is set to an UNKNOWN value
// CV set to 1 and COND is set to the condition code for the condition that
// applied to the instruction.
if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
 syndrome<4> = '1';
 syndrome<3:0> = cond;
else
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';
return syndrome;

type ExceptionRecord is (Exception exceptype, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Physical fault address for second stage faults
 bits(1) NS, // Physical fault address for second stage faults
 bits(52) ipaddress); // Physical fault address for second stage faults
shared/exceptions/exceptions/ExceptionSyndrome

// ExceptionSyndrome()
// ===================
// Return a blank exception syndrome record for an exception of the given type.

ExceptionRecord ExceptionSyndrome(Exception exceptype)

 ExceptionRecord r;
 r.exctype = exceptype;
 // Initialize all other fields
 r.syndrome = Zeros();
 r.vaddress = Zeros();
 r.ipavvalid = FALSE;
 r.NS = '0';
 r.ipaddress = Zeros();

 return r;

shared/exceptions/traps/ReservedValue

// ReservedValue()
// ===============

ReservedValue()

 if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then
 AArch32.TakeUndefInstrException();
 else
 AArch64.UndefinedFault();

shared/exceptions/traps/UnallocatedEncoding

// UnallocatedEncoding()
// =====================

UnallocatedEncoding()

 if UsingAArch32() && AArch32.ExecutingCP10or11Instr() then
 FPEXC.DEX = '0';
 if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then
 AArch32.TakeUndefInstrException();
 else
 AArch64.UndefinedFault();

J1.3.3 shared/functions

This section includes the following pseudocode functions:

• shared/functions/aborts/EncodeLDFSC on page J1-7841.
• shared/functions/aborts/IPAValid on page J1-7842.
• shared/functions/aborts/IsAsyncAbort on page J1-7842.
• shared/functions/aborts/IsDebugException on page J1-7842.
• shared/functions/aborts/IsExternalAbort on page J1-7842.
• shared/functions/aborts/IsExternalSyncAbort on page J1-7843.
• shared/functions/aborts/IsFault on page J1-7843.
• shared/functions/aborts/IsSLErrorInterrupt on page J1-7843.
• shared/functions/aborts/IsSecondStage on page J1-7843.
• shared/functions/common/ASR on page J1-7844.
• shared/functions/common/ASR_C on page J1-7844.
• shared/functions/common/Abs on page J1-7844.
• shared/functions/common/Align on page J1-7844.
• shared/functions/common/BitCount on page J1-7845.
• shared/functions/common/CountLeadingSignBits on page J1-7845.
• shared/functions/common/CountLeadingZeroBits on page J1-7845.
• shared/functions/common/Elem on page J1-7845.
• shared/functions/common/Extend on page J1-7845.
• shared/functions/common/HighestSetBit on page J1-7846.
• shared/functions/common/Int on page J1-7846.
• shared/functions/common/IsOnes on page J1-7846.
• shared/functions/common/IsZero on page J1-7846.
• shared/functions/common/IsZeroBit on page J1-7846.
• shared/functions/common/LSL on page J1-7846.
• shared/functions/common/LSL_C on page J1-7847.
• shared/functions/common/LSR on page J1-7847.
• shared/functions/common/LSR_C on page J1-7847.
• shared/functions/common/LowestSetBit on page J1-7847.
• shared/functions/common/Max on page J1-7847.
• shared/functions/common/Min on page J1-7848.
• shared/functions/common/Ones on page J1-7848.
• shared/functions/common/ROR on page J1-7848.
• shared/functions/common/ROR_C on page J1-7848.
• shared/functions/common/Replicate on page J1-7848.
• shared/functions/common/RoundDown on page J1-7849.
• shared/functions/common/RoundTowardsZero on page J1-7849.
• shared/functions/common/RoundUp on page J1-7849.
• shared/functions/common/SInt on page J1-7849.
• shared/functions/common/SignExtend on page J1-7849.
• shared/functions/common/UInt on page J1-7849.
• shared/functions/common/Zeros on page J1-7850.
• shared/functions/crc/BitReverse on page J1-7850.
• shared/functions/crc/HaveCRCExt on page J1-7850.
• shared/functions/crc/Poly32Mod2 on page J1-7850.
• shared/functions/crypto/AESInvMixColumns on page J1-7850.
• shared/functions/crypto/AESInvShiftRows on page J1-7851.
• shared/functions/crypto/AESInvSubBytes on page J1-7851.
• shared/functions/crypto/AESMixColumns on page J1-7852.
• shared/functions/crypto/AESShiftRows on page J1-7852.
• shared/functions/crypto/AESSubBytes on page J1-7852.
• shared/functions/crypto/FFmul02 on page J1-7853.
• shared/functions/crypto/FFmul03 on page J1-7853.
• shared/functions/crypto/FFmul09 on page J1-7854.
• shared/functions/crypto/FFmul0B on page J1-7854.
• shared/functions/crypto/FFmul0D on page J1-7855.
• shared/functions/crypto/FFmul0E on page J1-7855.
• shared/functions/crypto/HaveAESExt on page J1-7855.
• shared/functions/crypto/HaveBit128PMULLExt on page J1-7856.
• shared/functions/crypto/HaveSHA1Ext on page J1-7856.
• shared/functions/crypto/HaveSHA256Ext on page J1-7856.
• shared/functions/crypto/HaveSHA3Ext on page J1-7856.
• shared/functions/crypto/HaveSHA512Ext on page J1-7856.
• shared/functions/crypto/HaveSM3Ext on page J1-7856.
• shared/functions/crypto/HaveSM4Ext on page J1-7857.
• shared/functions/crypto/ROL on page J1-7857.
• shared/functions/crypto/SHA256hash on page J1-7857.
• shared/functions/crypto/SHAchoose on page J1-7857.
• shared/functions/crypto/SHAhashSIGMA0 on page J1-7857.
• shared/functions/crypto/SHAhashSIGMA1 on page J1-7858.
• shared/functions/crypto/SHAmajority on page J1-7858.
• shared/functions/crypto/SHAparity on page J1-7858.
• shared/functions/crypto/Sbox on page J1-7858.
• shared/functions/exclusive/ClearExclusiveByAddress on page J1-7858.
• shared/functions/exclusive/ClearExclusiveLocal on page J1-7858.
• shared/functions/exclusive/ExclusiveMonitorsStatus on page J1-7859.
• shared/functions/exclusive/IsExclusiveGlobal on page J1-7859.
• shared/functions/exclusive/IsExclusiveLocal on page J1-7859.
• shared/functions/exclusive/MarkExclusiveGlobal on page J1-7859.
• shared/functions/exclusive/MarkExclusiveLocal on page J1-7859.
• shared/functions/exclusive/ProcessorID on page J1-7859.
• shared/functions/extension/AArch32.HaveHPDExt on page J1-7859.
• shared/functions/extension/AArch64.HaveHPDExt on page J1-7859.
• shared/functions/extension/Have52BitPATExt on page J1-7860.
• shared/functions/extension/Have52BitVAExt on page J1-7860.
• shared/functions/extension/HaveAArch32BF16Ext on page J1-7860.
• shared/functions/extension/HaveAArch32Int8MatMulExt on page J1-7860.
• shared/functions/extension/HaveAtomicExt on page J1-7860.
• shared/functions/extension/HaveBF16Ext on page J1-7860.
• shared/functions/extension/HaveBTIEExt on page J1-7860.
• shared/functions/extension/HaveBlockBBM on page J1-7861.
• shared/functions/extension/HaveCommonNotPrivateTransExt on page J1-7861.
• shared/functions/extension/HaveDGHExt on page J1-7861.
• shared/functions/extension/HaveDITExt on page J1-7861.
• shared/functions/extension/HaveDOTPExt on page J1-7861.
• shared/functions/extension/HaveDoPD on page J1-7861.
• shared/functions/extension/HaveDoubleFaultExt on page J1-7862.
• shared/functions/extension/HaveDoubleLock on page J1-7862.
• shared/functions/extension/HaveE0PDExt on page J1-7862.
• shared/functions/extension/HaveECYExt on page J1-7862.
• shared/functions/extension/HaveEMPAMExt on page J1-7862.
• shared/functions/extension/HaveExtendedCacheSets on page J1-7862.
• shared/functions/extension/HaveExtendedECDebugEvents on page J1-7862.
• shared/functions/extension/HaveExtendedExecuteNeverExt on page J1-7863.
• shared/functions/extension/HaveFCADDExt on page J1-7863.
• shared/functions/extension/HaveFGTExt on page J1-7863.
• shared/functions/extension/HaveFJCVTZSExt on page J1-7863.
• shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext on page J1-7863.
• shared/functions/extension/HaveFlagFormatExt on page J1-7863.
• shared/functions/extension/HaveFlagManipulateExt on page J1-7863.
• shared/functions/extension/HaveFrintExt on page J1-7864.
• shared/functions/extension/HaveHPMDExt on page J1-7864.
• shared/functions/extension/HaveIDSExt on page J1-7864.
• shared/functions/extension/HaveIESB on page J1-7864.
• shared/functions/extension/HaveInt8MatMulExt on page J1-7864.
• shared/functions/extension/HaveLSE2Ext on page J1-7864.
• shared/functions/extension/HaveMPAMExt on page J1-7864.
• shared/functions/extension/HaveMTEExt on page J1-7865.
• shared/functions/extension/HaveNV2Ext on page J1-7865.
• shared/functions/extension/HaveNVExt on page J1-7865.
• shared/functions/extension/HaveNoSecurePMUDisableOverride on page J1-7865.
• shared/functions/extension/HaveNoninvasiveDebugAuth on page J1-7865.
• shared/functions/extension/HavePageBasedHardwareAttributes on page J1-7866.
• shared/functions/extension/HavePrivATExt on page J1-7866.
• shared/functions/extension/HaveQRDMLAHExt on page J1-7866.
• shared/functions/extension/HaveRASExt on page J1-7866.
• shared/functions/extension/HaveRNG on page J1-7866.
• shared/functions/extension/HaveSBExt on page J1-7866.
• shared/functions/extension/HaveSSBSExt on page J1-7866.
• shared/functions/extension/HaveSecureEL2Ext on page J1-7867.
• shared/functions/extension/HaveSecureExtDebugView on page J1-7867.
• shared/functions/extension/HaveSelfHostedTrace on page J1-7867.
• shared/functions/extension/HaveSmallPageTblExt on page J1-7867.
• shared/functions/extension/HaveStage2MemAttrControl on page J1-7867.
• shared/functions/extension/HaveStatisticalProfiling on page J1-7867.
• shared/functions/extension/HaveTWEDExt on page J1-7867.
• shared/functions/extension/HaveTraceExt on page J1-7868.
• shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt on page J1-7868.
• shared/functions/extension/HaveUAOExt on page J1-7868.
• shared/functions/extension/HaveV82Debug on page J1-7868.
• shared/functions/extension/HaveVirtHostExt on page J1-7868.
• shared/functions/extension/Havev85PMU on page J1-7868.
• shared/functions/extension/InsertIESBBeforeException on page J1-7868.
• shared/functions/float/bfloat/BFAdd on page J1-7869.
• shared/functions/float/bfloat/BFMul on page J1-7869.
• shared/functions/float/bfloat/BJRound on page J1-7870.
• shared/functions/float/bfloat/BFUnpack on page J1-7871.
• shared/functions/float/bfloat/FPPackBF on page J1-7871.
• shared/functions/float/bfloat/FPConvertBF on page J1-7871.
• shared/functions/float/fpcommon/IsDenormalizedValue on page J1-7873.
• shared/functions/float/fpcompare/FPCompare on page J1-7873.
• shared/functions/float/fpcompareeq/FPCompareEQ on page J1-7874.
• shared/functions/float/fpcomparege/FPCompareGE on page J1-7874.
• shared/functions/float/fpcomparegt/FPCompareGT on page J1-7875.
• shared/functions/float/fpconvert/FPConvert on page J1-7875.
• shared/functions/float/fpconvertman/FPConvertNaN on page J1-7876.
• shared/functions/float/fpcrtype/FPCRType on page J1-7876.
• shared/functions/float/fpdecoderm/FPDecodeRM on page J1-7876.
• shared/functions/float/fpdecoderounding/FPDecodeRounding on page J1-7876.
• shared/functions/float/fpdefaultman/FPDefaultNaN on page J1-7877.
• shared/functions/float/fpdiv/FPDiv on page J1-7877.
• shared/functions/float/fpxc/FPExc on page J1-7877.
• shared/functions/float/fpinfinity/FPInfinity on page J1-7877.
• shared/functions/float/fpmatmul/FPMatMulAdd on page J1-7878.
• shared/functions/float/fpmx/FPMul on page J1-7880.
• shared/functions/float/fpmuladd/FPMulAdd on page J1-7880.
• shared/functions/float/fpmuladdh/FPMulAddH on page J1-7881.
• shared/functions/float/fpmuladdh/FPProcessNaNs3H on page J1-7882.
• shared/functions/float/fpmulxF/FPMulX on page J1-7882.
• shared/functions/float/fpneg/FPNeg on page J1-7883.
• shared/functions/float/fponepointfive/FPOnePointFive on page J1-7883.
• shared/functions/float/fpprocessexception/FPProcessException on page J1-7883.
• shared/functions/float/fpprocessnan/FPProcessNaN on page J1-7884.
• shared/functions/float/fpprocessnans/FPProcessNaNs on page J1-7884.
• shared/functions/float/fpprocessnans3/FPProcessNaNs3 on page J1-7885.
• shared/functions/float/fprecipestimate/FPRecipEstimate on page J1-7885.
• shared/functions/float/fprecipestimate/RecipEstimate on page J1-7887.
• shared/functions/float/fprecpx/FPRecpX on page J1-7887.
• shared/functions/float/fpround/FRound on page J1-7887.
• shared/functions/float/fpround/FRoundBase on page J1-7888.
• shared/functions/float/fpround/FRoundCV on page J1-7889.
• shared/functions/float/fprounding/FRounding on page J1-7889.
• shared/functions/float/fproundingmode/FRoundingMode on page J1-7890.
• shared/functions/float/fproundint/FRoundInt on page J1-7890.
• shared/functions/float/fproundint/FRoundIntV on page J1-7891.
• shared/functions/float/fprsqrtestimate/FRSQrtEstimate on page J1-7892.
• shared/functions/float/fprsqrtestimate/RecipSQrtEstimate on page J1-7893.
• shared/functions/float/fpsqrt/FP_Sqrt on page J1-7893.
• shared/functions/float/fpsub/FPSub on page J1-7893.
• shared/functions/float/fpthree/FPTHree on page J1-7894.
• shared/functions/float/fptofixed/FPToFixed on page J1-7894.
• shared/functions/float/fptofixedjs/FPToFixedJS on page J1-7895.
• shared/functions/float/fptwo/FPTwo on page J1-7896.
• shared/functions/float/fptype/FPType on page J1-7896.
• shared/functions/float/fpunpack/FPUunpack on page J1-7896.
• shared/functions/float/fpunpack/FPUunpackBase on page J1-7896.
• shared/functions/float/fpunpack/FPUunpackCV on page J1-7897.
• shared/functions/float/fpzero/FPZero on page J1-7898.
• shared/functions/memory/AccType on page J1-7899.
• shared/functions/memory/AccessDescriptor on page J1-7899.
• shared/functions/memory/AddrTop on page J1-7899.
• shared/functions/memory/AddressDescriptor on page J1-7900.
• shared/functions/memory/Allocation on page J1-7900.
• shared/functions/memory/BigEndian on page J1-7900.
• shared/functions/memory/BigEndianReverse on page J1-7900.
• shared/functions/memory/Cacheability on page J1-7900.
• shared/functions/memory/CreateAccessDescriptor on page J1-7900.
• shared/functions/memory/CreateAccessDescriptorPTW on page J1-7901.
• shared/functions/memory/DataMemoryBarrier on page J1-7901.
• shared/functions/memory/DataSynchronizationBarrier on page J1-7901.
• shared/functions/memory/DescriptorUpdate on page J1-7901.
• shared/functions/memory/DeviceType on page J1-7901.
• shared/functions/memory/EffectiveTBI on page J1-7901.
• shared/functions/memory/EffectiveTCMA on page J1-7902.
• shared/functions/memory/Fault on page J1-7902.
• shared/functions/memory/FaultRecord on page J1-7902.
• shared/functions/memory/FullAddress on page J1-7903.
• shared/functions/memory/Hint_Prefetch on page J1-7903.
• shared/functions/memory/MBReqDomain on page J1-7903.
• shared/functions/memory/MBReqTypes on page J1-7903.
• shared/functions/memory/MemAttrHints on page J1-7903.
• shared/functions/memory/MemType on page J1-7903.
• shared/functions/memory/MemoryAttributes on page J1-7903.
• shared/functions/memory/Permissions on page J1-7904.
• shared/functions/memory/PrefetchHint on page J1-7904.
• shared/functions/memory/SpeculativeStoreBypassBarrierToPA on page J1-7904.
• shared/functions/memory/SpeculativeStoreBypassBarrierToVA on page J1-7904.
• shared/functions/memory/TLBRecord on page J1-7904.
• shared/functions/memory/Tag on page J1-7904.
• shared/functions/memory/_Mem on page J1-7904.
• shared/functions/mpam/DefaultMPAMinfo on page J1-7905.
• shared/functions/mpam/DefaultPARTID on page J1-7905.
• shared/functions/mpam/DefaultPMG on page J1-7905.
• shared/functions/mpam/GenMPAMcurEL on page J1-7905.
• shared/functions/mpam/MAP_yPARTID on page J1-7906.
• shared/functions/mpam/MPAMisEnabled on page J1-7906.
• shared/functions/mpam/MPAMisVirtual on page J1-7907.
• shared/functions/mpam/genMPAM on page J1-7907.
• shared/functions/mpam/genMPAMEl on page J1-7907.
• shared/functions/mpam/genPARTID on page J1-7907.
• shared/functions/mpam/genPMG on page J1-7908.
• shared/functions/mpam/getMPAM_PARTID on page J1-7908.
• shared/functions/mpam/getMPAM_PMG on page J1-7908.
• shared/functions/mpam/mapvpmw on page J1-7909.
• shared/functions/registers/BranchTo on page J1-7909.
• shared/functions/registers/BranchToAddr on page J1-7910.
• shared/functions/registers/BranchType on page J1-7910.
• shared/functions/registers/Hint_Branch on page J1-7910.
• shared/functions/registers/NextInstrAddr on page J1-7910.
• shared/functions/registers/ResetExternalDebugRegisters on page J1-7910.
• shared/functions/registers/ThisInstrAddr on page J1-7910.
• shared/functions/registers/_PC on page J1-7910.
• shared/functions/registers/_R on page J1-7911.
• shared/functions/sysregisters/SPSR on page J1-7911.
• shared/functions/system/ArchVersion on page J1-7911.
• shared/functions/system/BranchTargetCheck on page J1-7912.
• shared/functions/system/ClearEventRegister on page J1-7912.
• shared/functions/system/ClearPendingPhysicalSError on page J1-7912.
• shared/functions/system/ClearPendingVirtualSError on page J1-7912.
• shared/functions/system/ConditionHolds on page J1-7912.
• shared/functions/system/ConsumptionOfSpeculativeDataBarrier on page J1-7913.
• shared/functions/system/CurrentInstrSet on page J1-7913.
• shared/functions/system/CurrentPL on page J1-7913.
• shared/functions/system/DelayForWFETrap on page J1-7913.
• shared/functions/system/EL0 on page J1-7913.
• shared/functions/system/EL2Enabled on page J1-7913.
• shared/functions/system/ELFromM32 on page J1-7913.
• shared/functions/system/ELFromSPSR on page J1-7914.
• shared/functions/system/ELIsInHost on page J1-7914.
• shared/functions/system/ELStateUsingAArch32 on page J1-7915.
• shared/functions/system/ELStateUsingAArch32K on page J1-7915.
• shared/functions/system/ELUsingAArch32 on page J1-7916.
• shared/functions/system/ELUsingAArch32K on page J1-7916.
• shared/functions/system/EndOfInstruction on page J1-7916.
• shared/functions/system/EnterLowPowerState on page J1-7916.
• shared/functions/system/EventRegister on page J1-7916.
• shared/functions/system/GetPSRFromPSTATE on page J1-7916.
• shared/functions/system/HasArchVersion on page J1-7917.
• shared/functions/system/HaveAArch32EL on page J1-7917.
• shared/functions/system/HaveAnyAArch32 on page J1-7917.
• shared/functions/system/HaveAnyAArch64 on page J1-7917.
• shared/functions/system/HaveEL on page J1-7917.
• shared/functions/system/HaveELUsingSecurityState on page J1-7918.
• shared/functions/system/HaveFP16Ext on page J1-7918.
• shared/functions/system/HighestEL on page J1-7918.
• shared/functions/system/HighestELUsingAArch32 on page J1-7918.
• shared/functions/system/Hint_DGH on page J1-7918.
• shared/functions/system/Hint_Yield on page J1-7919.
• shared/functions/system/IllegalExceptionReturn on page J1-7919.
• shared/functions/system/InstrSet on page J1-7919.
• shared/functions/system/InstructionSynchronizationBarrier on page J1-7919.
• shared/functions/system/InterruptPending on page J1-7919.
• shared/functions/system/IsEventRegisterSet on page J1-7920.
• shared/functions/system/IsHighestEL on page J1-7920.
• shared/functions/system/IsInHost on page J1-7920.
• shared/functions/system/IsPhysicalSErrorPending on page J1-7920.
• shared/functions/system/IsSecure on page J1-7920.
• shared/functions/system/IsSecureBelowEL3 on page J1-7920.
shared/functions/system/IsSecureEL2Enabled on page J1-7921.
shared/functions/system/IsSynchronizablePhysicalSErrorPending on page J1-7921.
shared/functions/system/IsVirtualSErrorPending on page J1-7921.
shared/functions/system/Mode_Bits on page J1-7921.
shared/functions/system/PLOfEL on page J1-7921.
shared/functions/system/PSTATE on page J1-7921.
shared/functions/system/PrivilegeLevel on page J1-7922.
shared/functions/system/ProcState on page J1-7922.
shared/functions/system/RestoredITBits on page J1-7922.
shared/functions/system/SCRType on page J1-7922.
shared/functions/system/SCR_GEN on page J1-7923.
shared/functions/system/SendEvent on page J1-7923.
shared/functions/system/SendEventLocal on page J1-7923.
shared/functions/system/SetPSTATEFromPSR on page J1-7923.
shared/functions/system/ShouldAdvanceIT on page J1-7924.
shared/functions/system/SpeculationBarrier on page J1-7924.
shared/functions/system/SynchronizeContext on page J1-7924.
shared/functions/system/SynchronizeErrors on page J1-7924.
shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts on page J1-7924.
shared/functions/system/TakeUnmaskedSErrorInterrupts on page J1-7924.
shared/functions/system/ThisInstr on page J1-7924.
shared/functions/system/ThisInstrLength on page J1-7924.
shared/functions/system/Unreachable on page J1-7924.
shared/functions/system/UsingAArch32 on page J1-7925.
shared/functions/system/WaitForEvent on page J1-7925.
shared/functions/system/WaitForInterrupt on page J1-7925.
shared/functions/unpredictable/ConstrainUnpredictable on page J1-7925.
shared/functions/unpredictable/ConstrainUnpredictableBits on page J1-7925.
shared/functions/unpredictable/ConstrainUnpredictableBool on page J1-7925.
shared/functions/unpredictable/ConstrainUnpredictableInteger on page J1-7926.
shared/functions/unpredictable/Constraint on page J1-7926.
shared/functions/vector/AdvSIMDExpandImm on page J1-7926.
shared/functions/vector/MatMulAdd on page J1-7927.
shared/functions/vector/PolynomialMult on page J1-7927.
shared/functions/vector/SatQ on page J1-7927.
shared/functions/vector/SignedSatQ on page J1-7927.
shared/functions/vector/UnsignedRSqrtEstimate on page J1-7928.
shared/functions/vector/UnsignedRecipEstimate on page J1-7928.
shared/functions/vector/UnsignedSatQ on page J1-7928.

shared/functions/aborts/EncodeLDFSC

// EncodeLDFSC()
// =============
// Function that gives the Long-descriptor FSC code for types of Fault

bits(6) EncodeLDFSC(Fault statuscode, integer level)

bits(6) result;
case statuscode of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
 when Fault_Permission result = '0011':level<1:0>; assert level IN {1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncExternal result = '010000';
when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncParity result = '011000';
when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
when Fault_AsyncParity result = '011001';
when Fault_AsyncExternal result = '011001';
when Fault_AsyncParity result = '011001';
when Fault_AsyncExternal result = '011001';
when Fault_Debug result = '100010';
when Fault_Alignment result = '100001';
when Fault_TLBConflict result = '110000';
when Fault_HWUpdateAccessFlag result = '110001';
when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
otherwise Unreachable();

return result;

shared/functions/aborts/IPAValid

// IPAValid()
//=
// Return TRUE if the IPA is reported for the abort

boolean IPAValid(FaultRecord fault)
assert fault.statuscode != Fault_None;
if fault.s2fs1walk then
 return fault.statuscode IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,
 Fault_AddressSize};
elsif fault.secondstage then
 return fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
else
 return FALSE;

shared/functions/aborts/IsAsyncAbort

// IsAsyncAbort()
//=
// Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
// otherwise.

boolean IsAsyncAbort(Fault statuscode)
assert statuscode != Fault_None;
return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsAsyncAbort()
//=

boolean IsAsyncAbort(FaultRecord fault)
return IsAsyncAbort(fault.statuscode);

shared/functions/aborts/IsDebugException

// IsDebugException()
//=

boolean IsDebugException(FaultRecord fault)
assert fault.statuscode != Fault_None;
return fault.statuscode == Fault_Debug;

shared/functions/aborts/IsExternalAbort

// IsExternalAbort()
//=
// Returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.
boolean IsExternalAbort(Fault statuscode)
assert statuscode != Fault_None;
return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk, Fault_AsyncExternal, Fault_AsyncParity});

// IsExternalAbort()
// =================

boolean IsExternalAbort(FaultRecord fault)
return IsExternalAbort(fault.statuscode);

shared/functions/aborts/IsExternalSyncAbort

// IsExternalSyncAbort()
// =====================
// Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE otherwise.

boolean IsExternalSyncAbort(Fault statuscode)
assert statuscode != Fault_None;
return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk});

// IsExternalSyncAbort()
// =====================

boolean IsExternalSyncAbort(FaultRecord fault)
return IsExternalSyncAbort(fault.statuscode);

shared/functions/aborts/IsFault

// IsFault()
// ==========
// Return TRUE if a fault is associated with an address descriptor

boolean IsFault(AddressDescriptor addrdesc)
return addrdesc.fault.statuscode != Fault_None;

shared/functions/aborts/IsSErrorInterrupt

// IsSErrorInterrupt()
// ===================
// Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE otherwise.

boolean IsSErrorInterrupt(Fault statuscode)
assert statuscode != Fault_None;
return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsSErrorInterrupt()
// ===================

boolean IsSErrorInterrupt(FaultRecord fault)
return IsSErrorInterrupt(fault.statuscode);

shared/functions/aborts/IsSecondStage

// IsSecondStage()
// ===============
boolean IsSecondStage(FaultRecord fault)
 assert fault.statuscode != Fault_None;
 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome
bits(11) LSInstructionSyndrome();

shared/functions/common/ASR
// ASR()
// =====
bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

shared/functions/common/ASR_C
// ASR_C()
// ======
(bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/Abs
// Abs()
// =====
integer Abs(integer x)
 return if x >= 0 then x else -x;

// Abs()
// =====
real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align
// Align()
// ======
integer Align(integer x, integer y)
 return y * (x DIV y);

// Align()
// ======
bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;
shared/functions/common/BitCount

// BitCount()
// =========

integer BitCount(bits(N) x)
integer result = 0;
for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
return result;

shared/functions/common/CountLeadingSignBits

// CountLeadingSignBits()
// ======================

integer CountLeadingSignBits(bits(N) x)
return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

shared/functions/common/CountLeadingZeroBits

// CountLeadingZeroBits()
// ======================

integer CountLeadingZeroBits(bits(N) x)
return N - (HighestSetBit(x) + 1);

shared/functions/common/Elem

// Elem[] - non-assignment form
// =============================

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+1)*size <= N;
return vector<e*size+size-1 : e*size>;

// Elem[] - non-assignment form
// =============================

bits(size) Elem[bits(N) vector, integer e]
return Elem[vector, e, size];

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+1)*size <= N;
vector<(e+1)*size-1:e*size> = value;
return;

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e] = bits(size) value
 Elem[vector, e, size] = value;
return;

shared/functions/common/Extend

// Extend()
// ========

bits(N) Extend(bits(M) x, integer N, boolean unsigned)
return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);
// Extend()
// ========

bits(N) Extend(bits(M) x, boolean unsigned)
 return Extend(x, N, unsigned);

shared/functions/common/HighestSetBit

// HighestSetBit()
// ===============

integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

shared/functions/common/Int

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

shared/functions/common/IsOnes

// IsOnes()
// ========

boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

// IsZero()
// ========

boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

// IsZeroBit()
// ===========

bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;
shared/functions/common/LSL_C

// LSL_C()
// =====

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeroes(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

shared/functions/common/LSR

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
 result = x;
else
 (result, -) = LSR_C(x, shift);
return result;

shared/functions/common/LSR_C

// LSR_C()
// =====

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

shared/functions/common/LowestSetBit

// LowestSetBit()
// =============

integer LowestSetBit(bits(N) x)
for i = 0 to N-1
 if xi == '1' then return i;
return N;

shared/functions/common/Max

// Max()
// =====

integer Max(integer a, integer b)
return if a >= b then a else b;

// Max()
// =====

real Max(real a, real b)
return if a >= b then a else b;
shared/functions/common/Min

// Min()
// =====

integer Min(integer a, integer b)
 return if a <= b then a else b;

// Min()
// =====

real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/Ones

// Ones()
// ======

bits(N) Ones(integer N)
 return Replicate('1',N);

// Ones()
// ======

bits(N) Ones()
 return Ones(N);

shared/functions/common/ROR

// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);

shared/functions/common/Replicate

// Replicate()
// ===========

bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);

bits(M*N) Replicate(bits(M) x, integer N);
shared/functions/common/RoundDown

integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

// RoundTowardsZero()
// ================

integer RoundTowardsZero(real x)
return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

shared/functions/common/RoundUp

integer RoundUp(real x);

shared/functions/common/SInt

// SInt()
// ======

integer SInt(bits(N) x)
result = 0;
for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
return result;

shared/functions/common/SignExtend

// SignExtend()
// ===========

bits(N) SignExtend(bits(M) x, integer N)
assert N >= M;
return Replicate(x<M-1>, N-M) : x;

// SignExtend()
// ===========

bits(N) SignExtend(bits(M) x)
return SignExtend(x, N);

shared/functions/common/UInt

// UInt()
// ======

integer UInt(bits(N) x)
result = 0;
for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
return result;

shared/functions/common/ZeroExtend

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x, integer N)
assert N >= M;
return Zeros(N-M) : x;
// ZeroExtend()
// ============
bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);

shared/functions/common/Zeros

// Zeros()
// ========
bits(N) Zeros(integer N)
 return Replicate('0', N);

// Zeros()
// ========
bits(N) Zeros()
 return Zeros(N);

shared/functions/crc/BitReverse

// BitReverse()
// ============
bits(N) BitReverse(bits(N) data)
bits(N) result;
 for i = 0 to N-1
 result<N-i-1> = data<i>;
 return result;

shared/functions/crc/HaveCRCExt

// HaveCRCExt()
// ============
boolean HaveCRCExt()
 return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

// Poly32Mod2()
// ============
// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
 assert N > 32;
 for i = N-1 downto 32
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
 end if;
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

// AESInvMixColumns()
// ================
// Transformation in the Inverse Cipher that is the inverse of AESMixColumns.
bits(128) AESInvMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;
Armv8 Pseudocode

J1.3 Shared pseudocode

bits(4*8) out0;
bits(4*8) out1;
bits(4*8) out2;
bits(4*8) out3;

for c = 0 to 3
 out0<c*8+:8> = FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR FFmul09(in3<c*8+:8>);
 out1<c*8+:8> = FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR FFmul0D(in3<c*8+:8>);
 out2<c*8+:8> = FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR FFmul0B(in3<c*8+:8>);
 out3<c*8+:8> = FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR FFmul0E(in3<c*8+:8>);

return (out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> : out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> : out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> : out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>);

shared/functions/crypto/AESInvShiftRows

// AESInvShiftRows()
// ===============
// Transformation in the Inverse Cipher that is inverse of AESShiftRows.

bits(128) AESInvShiftRows(bits(128) op)
return (op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> : op<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> : op< 88+:8> : op<112+:8> : op< 8+:8> : op< 32+:8> : op< 56+:8> : op< 80+:8> : op<104+:8> : op< 0+:8>);

shared/functions/crypto/AESInvSubBytes

// AESInvSubBytes()
// ===============
// Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

bits(128) AESInvSubBytes(bits(128) op)
// Inverse S-box values
bits(16*8) GF2_inv = (F E D C B A 9 8 7 6 5 4 3 2 1 0
/ 0x7d0c2155631469e126d677ba7e042b17<127:0> : / 0x61953833cbbebc88bf52aee43dbf7a0<127:0> : / 0xef9cc999f7ae52d04ab519a97f5160<127:0> : / 0x5fec80275912b13c7f8733a8dd1f<127:0> : / 0xf45acd78fece0d6a2079d2c64b3ef6fc<127:0> : / 0x1bbe18aa0e62b76f9c5291d711a14f<127:0> : / 0x6edf751ce837f9e285354e72724ac96<127:0> : / 0x73eb4f0800ceef297eade674f411913a<127:0> : / 0x60b3a33013bd4af1020f3fca8f1e25c0<127:0> : / 0x604b3b8b08584e7f0ad2c8c00abdd890<127:0> : / 0x849d8da75746154e5a9f4205e60e0952<127:0> : / 0x926655d5d9e0cc25f1d6f9786d64f872<127:0> : / 0x25d51b6d49a25b70b2249d28661a2e08<127:0> : / 0xe43fa20b954aced3d3ca32947b54<127:0> : / 0x0cbe093e44438e3487ff2f9b8293e37c<127:0> : / 0xfbd7f3819e340bf38a5363056a0952<127:0>);
bits(128) out;
for i = 0 to 15
 out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
return out;

shared/functions/crypto/AESMixColumns

// AESMixColumns()
// ===============
// Transformation in the Cipher that takes all of the columns of the
// State and mixes their data (independently of one another) to
// produce new columns.

bits(128) AESMixColumns(bits (128) op)
 bits(4*8) in0 = op<96+:8> : op<64+:8> : op<32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op<72+:8> : op<40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op<80+:8> : op<48+:8> : op<16+:8>;
 bits(4*8) in3 = op<120+:8> : op<88+:8> : op<56+:8> : op<24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR in2<c*8+:8> EOR in3<c*8+:8>;
 out1<c*8+:8> = in0<c*8+:8> EOR FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR in3<c*8+:8>;
 out2<c*8+:8> = in0<c*8+:8> EOR in1<c*8+:8> EOR FFmul02(in2<c*8+:8>) EOR FFmul03(in3<c*8+:8>) ;
 out3<c*8+:8> = FFmul03(in0<c*8+:8>) EOR in1<c*8+:8> EOR in2<c*8+:8> EOR FFmul02(in3<c*8+:8>) ;
 return (|
 out0<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> : |
 out0<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> : |
 out0<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> : |
 out0<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8> |
);

shared/functions/crypto/AESShiftRows

// AESShiftRows()
// =============
// Transformation in the Cipher that processes the State by cyclically
// shifting the last three rows of the State by different offsets.

bits(128) AESShiftRows(bits(128) op)
 return (|
 op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> : |
 op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> : |
 op< 24+:8> : op<112+:8> : op< 72+:8> : op< 32+:8> : |
 op<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8> |
);

shared/functions/crypto/AESSubBytes

// AESSubBytes()
// =============
// Transformation in the Cipher that processes the State using a nonlinear
// byte substitution table (S-box) that operates on each of the State bytes
// independently.

bits(128) AESSubBytes(bits(128) op)
 // S-box values
 bits(16*16*8) GF2 = (|
/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
/*E*/ 0xdf2855cee9871e9b948ed6961198f8e1<127:0> :
/*D*/ 0x8a8bbd4b1f74de8c6b4a61c2e2578ba<127:0> :
/*C*/ 0x8a8bbd4b1f74de8c6b4a61c2e2578ba<127:0> :
/*B*/ 0x08ae7a65eaf4566ca94ed58d6d37ce87<127:0> :
/*A*/ 0x79e4959162acd3c25c24069a3a32e0<127:0> :
/*9*/ 0xdb0b5ede14b8ee4688902a2dcf4f610<127:0> :
/*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
/*7*/ 0xda2f544b1d74de8c6b4a61c2e2578ba<127:0> :
/*6*/ 0x9ea854d4b1f74de8c6b4a61c2e2578ba<127:0> :
/*5*/ 0x9ea854d4b1f74de8c6b4a61c2e2578ba<127:0> :
/*4*/ 0x8a8bbd4b1f74de8c6b4a61c2e2578ba<127:0> :
/*3*/ 0x8a8bbd4b1f74de8c6b4a61c2e2578ba<127:0> :
/*2*/ 0x08ae7a65eaf4566ca94ed58d6d37ce87<127:0> :
/*1*/ 0x79e4959162acd3c25c24069a3a32e0<127:0> :
/*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>
); bits(128) out;
for i = 0 to 15
 out<i*8+:8> = GF2<dIInt(op<i*8+:8>)*8+:8>;
return out;

shared/functions/crypto/FFmul02

// FFmul02()
// =========

bits(8) FFmul02(bits(8) b)
bits(256*8) FFmul_02 = (/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
 /*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
 /*D*/ 0xA5A7A1A3ADAF9ABB8B7B1B3BDBFB9BB<127:0> :
 /*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
 /*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
 /*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
 /*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
 /*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
 /*7*/ 0xFEFCFAF8F6F4F2E0EECEAE8E6E4E2E0<127:0> :
 /*6*/ 0xD6CDA8D6D4D2DCCECCAC864C4C2C0<127:0> :
 /*5*/ 0x8EBCABA8B8B8B882808AABAABAAAB2A0<127:0> :
 /*4*/ 0xE999A9996992909E8CBAA888648280<127:0> :
 /*3*/ 0xE77CA78767472706E6A666646260<127:0> :
 /*2*/ 0x5E5CS5856545250444444444444440<127:0> :
 /*1*/ 0x3E3C3A838343230202222222222222<127:0> :
 /*0*/ 0x1E1C1A18161412100E0C0A000400020<127:0>);
return FFmul_02<dIInt(b)*8+:8>;

shared/functions/crypto/FFmul03

// FFmul03()
// =========

bits(8) FFmul03(bits(8) b)
bits(256*8) FFmul_03 = (/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*E*/ 0x2A29C2F26252023232134373E3D383B<127:0> :
 /*D*/ 0x7A97C7F7F757073626164676E6D686B<127:0> :
 /*C*/ 0x4A49C4F645404352154575E5D565B<127:0> :
 /*B*/ 0xA9D0DDCD0D0D03C21C47CCDECDCB<127:0> :
 /*A*/ 0xEAE9ECE6E5E6E5F2F1F4F7FDFDF88B<127:0> :
 /*9*/ 0x8A89C8F6685856692919499E908989<127:0> :
 /*8*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*7*/ 0x2A29C2F26252023232134373E3D383B<127:0> :
 /*6*/ 0x7A97C7F7F757073626164676E6D686B<127:0> :
 /*5*/ 0x4A49C4F645404352154575E5D565B<127:0> :
 /*4*/ 0xA9D0DDCD0D0D03C21C47CCDECDCB<127:0> :
 /*3*/ 0xEAE9ECE6E5E6E5F2F1F4F7FDFDF88B<127:0> :
 /*2*/ 0x8A89C8F6685856692919499E908989<127:0> :
 /*1*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*0*/ 0x2A29C2F26252023232134373E3D383B<127:0>);
return FFmul_03<dIInt(b)*8+:8>;
Armv8 Pseudocode

J1.3 Shared pseudocode

/*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
/*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
/*5*/ 0xE1E2E7E4EEE8E8F9AFFFCF56F3F0<127:0> :
/*4*/ 0x01D2D7D4DDEDB0C9ACFCCCSG6C3C8<127:0> :
/*3*/ 0x14247444D4E4B84595A5F5555655350<127:0> :
/*2*/ 0x7727777477D7E787696A6F6C6566666360<127:0> :
/*1*/ 0x2222224D2EE2823833A3F3C53633330<127:0> :
/*0*/ 0x11121714D181809A8F0C505060300<127:0>

); return FFmul_03<UInt(b)>8:+8;

shared/functions/crypto/FFmul09

// FFmul09()
// =========

bits(8) FFmul09(bits(8) b)
bits(256+8) FFmul_09 = (
/* */ 0x464F545D626B700E711C2233331C1<127:0> :
/*Ex*/ 0x00DFC4CDF2BE0E9E78C58B58A0A1<127:0> :
/*D*/ 0x7D46F665950482353C272E118030A<127:0> :
/*C*/ 0xEDE4FF6C00DDB2A5AC7BE1889939A<127:0> :
/*B*/ 0x030222B14D060F7816A61354C4E7<127:0> :
/*A*/ 0x0A08B2884D96F8E11F3CC5C0D7D<127:0> :
/*9*/ 0x2021912F630444A3158676675C<127:0> :
/*8*/ 0x9B928980BFB6ADA4D3D4C8B7FE3C<127:0> :
/*7*/ 0xA3A8B5BE8F84992FBF0EDE6D7DCC1CA<127:0> :
/*6*/ 0xD8D3CEC5F4FFE2E9809908095B5C<127:0> :
/*5*/ 0x68637E75444F52593803262D1C700A0<127:0> :
/*4*/ 0xA2A9B4B88288993FA1E76DCC00C<127:0> :
/*3*/ 0x121040F3E32234A1557666707B<127:0> :
/*2*/ 0x09D2CFC4F5EE3E8819795A08BBB<127:0> :
/*1*/ 0x269274454F536331A272C160800<127:0>

); return FFmul_09<UInt(b)>8:+8;

shared/functions/crypto/FFmul0B

// FFmul0B()
// =========

bits(8) FFmul0B(bits(8) b)
bits(256+8) FFmul_0B = (
/* */ 0x3A3B85BE8F849992FBF0EDE6D7DCC1CA<127:0> :
/*Ex*/ 0x131B85BEF342224B405D56676C717A<127:0> :
/*D*/ 0x0803CEC5F4FEE2E980896DCA7B80A1<127:0> :
/*C*/ 0x66637E75444F52593803262D1C700A0<127:0> :
/*B*/ 0x71F2F3F8C92DD4B865B0919A878C<127:0> :
/*A*/ 0xA2A9B4B88288993FA1E76DCC00C<127:0> :
/*9*/ 0x269274454F536331A272C160800<127:0>

); return FFmul_0B<UInt(b)>8:+8;
shared/functions/crypto/FFmul0D

// FFmul0D()
// =======

bits(8) FFmul0D(bits(8) b)
bits(256*8) FFmul_0D = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
 /*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
 /*D*/ 0x2C21363B1815020F44495E337076A67<127:0> :
 /*C*/ 0xFCF1E6EBC8C5D2DF999B8E83A0A0B87<127:0> :
 /*B*/ 0xFAF7E0EDC3D9ED98982FAC1A806B8<127:0> :
 /*A*/ 0x2A27303D1E30409424F55767B66C1<127:0> :
 /*9*/ 0x919C8686A5A8BF2F94F3E3ECCD070A<127:0> :
 /*8*/ 0x4D4057A79463E25283F2D111C0B06<127:0> :
 /*7*/ 0x909088AB9A48B38F58FEFE2CCD0BD<127:0> :
 /*6*/ 0xF66BEC612CCDFD59D9389A9A7D00B<127:0> :
 /*5*/ 0x2623C31121F08054E4354597A77600<127:0> :
 /*4*/ 0x2023A371419084852F7C1666B<127:0> :
 /*3*/ 0xF08DE2771C4D9985828FAC1A806B<127:0> :
 /*2*/ 0x896F18C4F285883F3E947C2DD00<127:0> :
 /*1*/ 0x4B6515CF7F2656823E394171A000<127:0>
);
return FFmul_0D\[dInt(b)\]*8+:8;:

shared/functions/crypto/FFmul0E

// FFmul0E()
// =======

bits(8) FFmul0E(bits(8) b)
bits(256*8) FFmul_0E = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC3CB9D7<127:0> :
 /*E*/ 0x6D63717F606549471D13010F252B3937<127:0> :
 /*D*/ 0x56584A44E6672C6283A34116020C<127:0> :
 /*C*/ 0xB6B8AAA4E689929CC6C8AD04F0E8E2EC<127:0> :
 /*B*/ 0x202E3C32718040A50B4C426666747A<127:0> :
 /*A*/ 0xC0C6D2FF66EAE0BBECA288669A4<127:0> :
 /*9*/ 0xFB5F7E79C3DDDF88597993D0FAF1<127:0> :
 /*8*/ 0xBI50709232D3F316B65779535D4F1<127:0> :
 /*7*/ 0xC0C2C0DF4FAE856C820A84B896<127:0> :
 /*6*/ 0x2C22303E14A0865C5240464A7876<127:0> :
 /*5*/ 0x17190B52F213336D76978B5F5143D<127:0> :
 /*4*/ 0x7F9EBC5FC1D3D8799859BF1A34D<127:0> :
 /*3*/ 0x616F7D3597545B111F0D82927333B<127:0> :
 /*2*/ 0x818F09D98B7A5ABF1FFD1E3C9CD50<127:0> :
 /*1*/ 0x8A46478323904AC4560DFBFE69<127:0> :
 /*0*/ 0x554468626C7E702A4363121C0E0<127:0>
);
return FFmul_0E\[dInt(b)\]*8+:8;:

shared/functions/crypto/HaveAESExt

// HaveAESExt()
// ============

// TRUE if AES cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveAESExt()
 return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";
shared/functions/crypto/HaveBit128PMULLExt

// HaveBit128PMULLExt()
// ================
// TRUE if 128 bit form of PMULL instructions support is implemented,
// FALSE otherwise.

boolean HaveBit128PMULLExt()
 return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";

shared/functions/crypto/HaveSHA1Ext

// HaveSHA1Ext()
// =============
// TRUE if SHA1 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA1Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA1 Crypto instructions";

shared/functions/crypto/HaveSHA256Ext

// HaveSHA256Ext()
// ==============
// TRUE if SHA256 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA256Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";

shared/functions/crypto/HaveSHA3Ext

// HaveSHA3Ext()
// =============
// TRUE if SHA3 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA3Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

shared/functions/crypto/HaveSHA512Ext

// HaveSHA512Ext()
// =================
// TRUE if SHA512 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA512Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

shared/functions/crypto/HaveSM3Ext

// HaveSM3Ext()
// ===========
// TRUE if SM3 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM3Ext()
if !HasArchVersion(ARMv8p2) then
 return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

shared/functions/crypto/HaveSM4Ext

// HaveSM4Ext()
// ===========
// TRUE if SM4 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM4Ext()
 if !HasArchVersion(ARMv8p2) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

shared/functions/crypto/ROL

// ROL()
// =====

bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

// SHA256hash()
// ============

bits(128) SHA256hash(bits(128) X, bits(128) Y, bits(128) W, boolean part1)
 bits(32) chs, maj, t;
 for e = 0 to 3
 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
 X<127:96> = t + X<127:96>;
 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
 <Y, X> = ROL(Y : X, 32);
 return (if part1 then X else Y);

shared/functions/crypto/SHAchoose

// SHAchoose()
// ===========

bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

// SHAhashSIGMA0()
// ===============

bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);
shared/functions/crypto/SHAhashSIGMA1

// SHAhashSIGMA1()
// ===============

bits(32) SHAhashSIGMA1(bits(32) x)
return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

// SHAmajority()
// =============

bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

// SHAparity()
// ===========

bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
return (x EOR y EOR z);

shared/functions/crypto/Sbox

// Sbox()
// ======

// Used in SM4E crypto instruction

bits(8) Sbox(bits(8) sboxin)
bits(8) sboxout;

bits(2048) sboxstring = 0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999e4250f491ef987a33540b43edcfac62e4b31ca9c908e895080f8fa7858f3af6a7f7c37317ba835931c196854afa8686b81b27164da88b8e0f4b780569d351e240e5e6358d1a225227c3b08121787d40046579fdd327524c630e7a0c489eeabf8a8ad240c738bb5a3f7f2ce96161a1e0ae5da49b34a155ad933230f58c91e31dd6e22e8266ca60c02923ab8d534e6fd5db3745def8e203f6f6a726d6c5b518d1baf92bb0b7c7f1d95c411f105ad80a1c3188a5cd7bd274d012b5e6b4080969774a0c96777e65b9f109c56ec68418f07dec3adc4d2b9a77a5f3ed7c39482047:0;

sboxout = sboxstring<<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8;
return sboxout;

shared/functions/exclusive/ClearExclusiveByAddress

// Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
// record any part of the physical address region of size bytes starting at paddress.
// It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
// is also cleared if it records any part of the address region.
ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

// Clear the local Exclusives monitor for the specified processorid.
ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

// ClearExclusiveMonitors()
// ========================

// Clear the local Exclusives monitor for the executing PE.
ClearExclusiveMonitors()
 ClearExclusiveLocal(ProcessorID());

shared/functions/exclusive/ExclusiveMonitorsStatus
 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.
 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal
 // Return TRUE if the global Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/IsExclusiveLocal
 // Return TRUE if the local Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveGlobal
 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusives monitor for processorid.
 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal
 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusives monitor for processorid.
 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ProcessorID
 // Return the ID of the currently executing PE.
 integer ProcessorID();

shared/functions/extension/AArch32.HaveHPDExt
 // AArch32.HaveHPDExt()
 // ===============
 boolean AArch32.HaveHPDExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/AArch64.HaveHPDExt
 // AArch64.HaveHPDExt()
 // ===============
 boolean AArch64.HaveHPDExt()
 return HasArchVersion(ARMv8p1);
shared/functions/extension/Have52BitPAExt

 // Have52BitPAExt()
 // ================
 // Returns TRUE if Large Physical Address extension
 // support is implemented and FALSE otherwise.
 boolean Have52BitPAExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit PA/IPA support";

shared/functions/extension/Have52BitVAExt

 // Have52BitVAExt()
 // ================
 // Returns TRUE if Large Virtual Address extension
 // support is implemented and FALSE otherwise.
 boolean Have52BitVAExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support";

shared/functions/extension/HaveAArch32BF16Ext

 // HaveAArch32BF16Ext()
 // ====================
 // Returns TRUE if AArch32 BFloat16 instruction support is implemented, and FALSE otherwise.
 boolean HaveAArch32BF16Ext()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 BFloat16 extension";

shared/functions/extension/HaveAArch32Int8MatMulExt

 // HaveAArch32Int8MatMulExt()
 // =========================
 // Returns TRUE if AArch32 8-bit integer matrix multiply instruction support
 // implemented, and FALSE otherwise.
 boolean HaveAArch32Int8MatMulExt()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 Int8 Mat Mul extension";

shared/functions/extension/HaveAtomicExt

 // HaveAtomicExt()
 // ===============
 boolean HaveAtomicExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveBF16Ext

 // HaveBF16Ext()
 // =============
 // Returns TRUE if AArch64 BFloat16 instruction support is implemented, and FALSE otherwise.
 boolean HaveBF16Ext()
 return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch64 BFloat16 extension");

shared/functions/extension/HaveBTIExt

 // HaveBTIExt()
 // =============
 // Returns TRUE if support for Branch Target Indentification is implemented.
boolean HaveBTIExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveBlockBBM

 // HaveBlockBBM()
 // ==
 // Returns TRUE if support for changing block size without requiring break-before-make is implemented.
 boolean HaveBlockBBM()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveCommonNotPrivateTransExt

 // HaveCommonNotPrivateTransExt()
 // ================
 boolean HaveCommonNotPrivateTransExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveDGHExt

 // HaveDGHExt()
 // ================
 boolean HaveDGHExt()
 return boolean IMPLEMENTATION_DEFINED "Has AArch64 DGH extension";

shared/functions/extension/HaveDITExt

 // HaveDITExt()
 // ================
 boolean HaveDITExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveDOTPExt

 // HaveDOTPExt()
 // ================
 boolean HaveDOTPExt()
 return HasArchVersion(ARMv8p4) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has Dot Product extension");

shared/functions/extension/HaveDoPD

 // HaveDoPD()
 // ================
 boolean HaveDoPD()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has DoPD extension";
shared/functions/extension/HaveDoubleFaultExt

// HaveDoubleFaultExt()
// ====================

boolean HaveDoubleFaultExt()
 return (HasArchVersion(ARMv8p4) && HaveEL(EL3) && !ELUsingAArch32(EL3) && HaveIESB());

shared/functions/extension/HaveDoubleLock

// HaveDoubleLock()
// ================

// Returns TRUE if support for the OS Double Lock is implemented.

boolean HaveDoubleLock()
 return !HasArchVersion(ARMv8p4) || boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented";

shared/functions/extension/HaveE0PDEExt

// HaveE0PDEExt()
// ===============

// Returns TRUE if support for constant fault times for unprivileged accesses to the memory map is implemented.

boolean HaveE0PDEExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveECVExt

// HaveECVExt()
// ============

// Returns TRUE if Enhanced Counter Virtualization extension support is implemented, and FALSE otherwise.

boolean HaveECVExt()
 return HasArchVersion(ARMv8p6);

shared/functions/extension/HaveEMPAMExt

// HaveEMPAMExt()
// ==============

// Returns TRUE if Enhanced MPAM is implemented, and FALSE otherwise.

boolean HaveEMPAMExt()
 return (HasArchVersion(ARMv8p6) && HaveMPAMExt() && boolean IMPLEMENTATION_DEFINED "Has enhanced MPAM extension");

shared/functions/extension/HaveExtendedCacheSets

// HaveExtendedCacheSets()
// =======================

boolean HaveExtendedCacheSets()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveExtendedECDebugEvents

// HaveExtendedECDebugEvents()
// ===========================

boolean HaveExtendedECDebugEvents()
 return HasArchVersion(ARMv8p2);
shared/functions/extension/HaveExtendedExecuteNeverExt

// HaveExtendedExecuteNeverExt()
// =============================

boolean HaveExtendedExecuteNeverExt()
return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveFCADDExt

// HaveFCADDExt()
// ==============

boolean HaveFCADDExt()
return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFGTEExt

// HaveFGTEExt()
// =============

boolean HaveFGTEExt()
return HasArchVersion(ARMv8p6) && !ELUsingAArch32(EL2);

shared/functions/extension/HaveFJCVTZSExt

// HaveFJCVTZSExt()
// ===============

boolean HaveFJCVTZSExt()
return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

// HaveFP16MulNoRoundingToFP32Ext()
// =================================

// Returns TRUE if has FP16 multiply with no intermediate rounding accumulate to FP32 instructions,
// and FALSE otherwise.

boolean HaveFP16MulNoRoundingToFP32Ext()
if !HaveFP16Ext() then return FALSE;
if HasArchVersion(ARMv8p4) then return TRUE;
return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

shared/functions/extension/HaveFlagFormatExt

// HaveFlagFormatExt()
// ===================

boolean HaveFlagFormatExt()
return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveFlagManipulateExt

// HaveFlagManipulateExt()
// =======================

boolean HaveFlagManipulateExt()
return HasArchVersion(ARMv8p4);
shared/functions/extension/HaveFrintExt

// HaveFrintExt()
// =============
// Returns TRUE if FRINT instructions are implemented.

boolean HaveFrintExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveHPMDExt

// HaveHPMDExt()
// =============

boolean HaveHPMDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveIDSExt

// HaveIDSExt()
// ============
// Returns TRUE if ID register handling feature is implemented.

boolean HaveIDSExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveIESB

// HaveIESB()
// ===========

boolean HaveIESB()
 return (HaveRASExt() &&
 boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");

shared/functions/extension/HaveInt8MatMulExt

// HaveInt8MatMulExt()
// ====================
// Returns TRUE if AArch64 8-bit integer matrix multiply instruction support
// is implemented, and FALSE otherwise.

boolean HaveInt8MatMulExt()
 return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has
AArch64 Int8 Mat Mul extension");

shared/functions/extension/HaveLSE2Ext

// HaveLSE2Ext()
// =============
// Returns TRUE if LSE2 is implemented, and FALSE otherwise.

boolean HaveLSE2Ext()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveMPAMExt

// HaveMPAMExt()
// =============
// Returns TRUE if MPAM is implemented, and FALSE otherwise.
boolean HaveMPAMExt()
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has MPAM extension");

shared/functions/extension/HaveMTEExt

 // HaveMTEExt()
 // ============
 // Returns TRUE if MTE implemented, and FALSE otherwise.

 boolean HaveMTEExt()
 if !HasArchVersion(ARMv8p5) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has MTE extension";

shared/functions/extension/HaveNV2Ext

 // HaveNV2Ext()
 // ============
 // Returns TRUE if Enhanced Nested Virtualization is implemented.

 boolean HaveNV2Ext()
 return (HasArchVersion(ARMv8p4) && HaveNVExt() &&
 boolean IMPLEMENTATION_DEFINED "Has support for Enhanced Nested Virtualization");

shared/functions/extension/HaveNVExt

 // HaveNVExt()
 // ===========
 // Returns TRUE if Nested Virtualization is implemented.

 boolean HaveNVExt()
 return HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has Nested Virtualization";

shared/functions/extension/HaveNoSecurePMUDisableOverride

 // HaveNoSecurePMUDisableOverride()
 // ================================

 boolean HaveNoSecurePMUDisableOverride()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveNoninvasiveDebugAuth

 // HaveNoninvasiveDebugAuth()
 // ==========================
 // Returns TRUE if the Non-invasive debug controls are implemented.

 boolean HaveNoninvasiveDebugAuth()
 return !HasArchVersion(ARMv8p4);

shared/functions/extension/HavePANExt

 // HavePANExt()
 // ============

 boolean HavePANExt()
 return HasArchVersion(ARMv8p1);
shared/functions/extension/HavePageBasedHardwareAttributes

// HavePageBasedHardwareAttributes()
// =================================

boolean HavePageBasedHardwareAttributes()
return HasArchVersion(ARMv8p2);

shared/functions/extension/HavePrivATExt

// HavePrivATExt()
// ===============

boolean HavePrivATExt()
return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveQRDMLAHExt

// HaveQRDMLAHExt()
// ===============

boolean HaveQRDMLAHExt()
return HasArchVersion(ARMv8p1);

boolean HaveAccessFlagUpdateExt()
return HasArchVersion(ARMv8p1);

boolean HaveDirtyBitModifierExt()
return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveRASExt

// HaveRASExt()
// ============

boolean HaveRASExt()
return (HasArchVersion(ARMv8p2) || boolean IMPLEMENTATION_DEFINED "Has RAS extension");

shared/functions/extension/HaveRNG

// HaveRNG()
// =========
// Returns TRUE if Random Number Generator extension support is implemented and FALSE otherwise.

boolean HaveRNG()
return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has RNG extension");

shared/functions/extension/HaveSBExt

// HaveSBExt()
// ===========
// Returns TRUE if support for SB is implemented, and FALSE otherwise.

boolean HaveSBExt()
return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SB extension");

shared/functions/extension/HaveSSBSExt

// HaveSSBSExt()
// =============
// Returns TRUE if support for SSBS is implemented, and FALSE otherwise.
boolean HaveSSBSExt()
 return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SSBS extension";

shared/functions/extension/HaveSecureEL2Ext

 // HaveSecureEL2Ext()
 // ================
 // Returns TRUE if Secure EL2 is implemented.

 boolean HaveSecureEL2Ext()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSecureExtDebugView

 // HaveSecureExtDebugView()
 // ========================
 // Returns TRUE if support for Secure and Non-secure views of debug peripherals is implemented.

 boolean HaveSecureExtDebugView()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSelfHostedTrace

 // HaveSelfHostedTrace()
 // =============

 boolean HaveSelfHostedTrace()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSmallPageTblExt

 // HaveSmallPageTblExt()
 // ===============

 boolean HaveSmallPageTblExt()
 return HasArchVersion(ARMv8p4) && boolean IMPLEMENTATION_DEFINED "Has Small Page Table extension";

shared/functions/extension/HaveStage2MemAttrControl

 // HaveStage2MemAttrControl()
 // ===========================

 boolean HaveStage2MemAttrControl()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveStatisticalProfiling

 // HaveStatisticalProfiling()
 // =========================

 boolean HaveStatisticalProfiling()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveTWEDExt

 // HaveTWEDExt()
 // =========

 boolean HaveTWEDExt()
 return HasArchVersion(ARMv8p4);

 // Returns TRUE if Delayed Trapping of WFE instruction support is implemented, and FALSE otherwise.
boolean HaveTWEDExt()
 return boolean IMPLEMENTATION_DEFINED "Has TWED extension";

shared/functions/extension/HaveTraceExt

// HaveTraceExt()
// =============
// Returns TRUE if Trace functionality as described by the Trace Architecture
// is implemented.

boolean HaveTraceExt()
 return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt

// HaveTrapLoadStoreMultipleDeviceExt()
// ====================================

boolean HaveTrapLoadStoreMultipleDeviceExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveUAOExt

// HaveUAOExt()
// ============

boolean HaveUAOExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveV82Debug

// HaveV82Debug()
// =============

boolean HaveV82Debug()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveVirtHostExt

// HaveVirtHostExt()
// ===============

boolean HaveVirtHostExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/Havev85PMU

// Havev85PMU()
// ============

// Returns TRUE if v8.5-Performance Monitor Unit extension
// support is implemented, and FALSE otherwise.

boolean Havev85PMU()
 return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has PMUv3p5 extension";

shared/functions/extension/InsertIESBBeforeException

// If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
// SError interrupt must be taken before executing any instructions in the exception handler.
// However, this can be before the branch to the exception handler is made.
boolean InsertIESBBeforeException(bits(2) el);
shared/functions/float/bfloat/BFAdd

// BFAdd()
// ========
// Single-precision add following BFloat16 computation behaviors.

bits(32) BFAdd(bits(32) op1, bits(32) op2)

 bits(32) result;

 (type1,sign1,value1) = BFUnpack(op1);
 (type2,sign2,value2) = BFUnpack(op2);
 if type1 == FPTYPE_QNAN || type2 == FPTYPE_QNAN then
 result = FPDefaultNaN();
 else
 inf1 = (type1 == FPTYPE_INFINITY);
 inf2 = (type2 == FPTYPE_INFINITY);
 zero1 = (type1 == FPTYPE_ZERO);
 zero2 = (type2 == FPTYPE_ZERO);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN();
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then
 result = FPZero('0'); // Positive sign when Round to Odd
 else
 result = BFRound(result_value);
 end
 end

 return result;

shared/functions/float/bfloat/BFMulMatAdd

// BFMatMulAdd()
// =============
// BFloat16 matrix multiply and add to single-precision matrix
// result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])

bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2)

 assert N == 128;

 bits(N) result;
 bits(32) sum, prod0, prod1;

 for i = 0 to 1
 for j = 0 to 1
 sum[i, j, 32] = BFAdd(Elem[addend, 2*i + j, 32];
 for k = 0 to 1
 prod0 = BFMul(Elem[op1, 4*i + 2*k + 0, 16], Elem[op2, 4*j + 2*k + 0, 16]);
 prod1 = BFMul(Elem[op1, 4*i + 2*k + 1, 16], Elem[op2, 4*j + 2*k + 1, 16]);
 sum[i, j, 32] = BFAdd(sum, prod0, prod1);
 Elem[result, 2*i + j, 32] = sum;

 return result;

shared/functions/float/bfloat/BFMul

// BFMul()
// ========
// BFloat16 widening multiply to single-precision following BFloat16
// computation behaviors.

bits(32) BFMul(bits(16) op1, bits(16) op2)

bits(32) result;

(type1,sign1,value1) = BFUnpack(op1);
(type2,sign2,value2) = BFUnpack(op2);
if type1 == FType_QNaN || type2 == FType_QNaN then
 result = FPDefaultNaN();
else
 inf1 = (type1 == FType_Infinity);
 inf2 = (type2 == FType_Infinity);
 zero1 = (type1 == FType_Zero);
 zero2 = (type2 == FType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN();
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = BFRound(value1*value2);

return result;

shared/functions/float/bfloat/BFRound

// BRound()
// =========
// Converts a real number OP into a single-precision value using the
// Round to Odd rounding mode and following BFloat16 computation behaviors.

bits(32) BFRound(real op)

assert op != 0.0;
bits(32) result;

// Format parameters - minimum exponent, numbers of exponent and fraction bits.
minimum_exp = -126; E = 8; F = 23;

// Split value into sign, unrounded mantissa and exponent.
if op < 0.0 then
 sign = '1'; mantissa = -op;
else
 sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

// Fixed Flush-to-zero.
if exponent < minimum_exp then
 return FPZero(sign);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
error = mantissa * 2.0^F - Real(int_mant);

// Round to Odd
if error != 0.0 then
int mant<0> = '1';

// Deal with overflow and generate result.
if biased_exp >= 2^E - 1 then
 result = FPInfinity(sign); // Overflows generate appropriately-signed Infinity
else
 result = sign : biased_exp<30-F:0> : int_mant<F-1:0>;

return result;

shared/functions/float/bfloat/BFUnpack

// BFUnpack()
// =========
// Unpacks a BFloat16 or single-precision value into its type,
// sign bit and real number that it represents.
// The real number result has the correct sign for numbers and infinities,
// is very large in magnitude for infinities, and is 0.0 for NaNs.
// (These values are chosen to simplify the description of
// comparisons and conversions.)

(FPType, bit, real) BFUnpack(bits(N) fpval)

assert N IN (16,32);

if N == 16 then
 sign = fpval<15>;
 exp = fpval<14:7>;
 frac = fpval<6:0> : Zeros(16);
else // N == 32
 sign = fpval<31>;
 exp = fpval<30:23>;
 frac = fpval<22:0>;

if IsZero(exp) then
 fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero
elsif IsOnes(exp) then
 if IsZero(frac) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else // no SNaN for BF16 arithmetic
 fptype = FPType_QNaN; value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);
 end if
 if sign == '1' then value = -value;

return (fptype, sign, value);

shared/functions/float/bfloat/FPConvertBF

// FPConvertBF()
// =============
// Converts a single-precision OP to BFloat16 value with rounding controlled by FPCR/FPSCR.

bits(16) FPConvertBF(bits(32) op, FPCRType fpcr, FPRounding rounding)

bits(32) result; // BF16 value in top 16 bits
// Unpack floating-point operand optionally with flush-to-zero.
(fpctype,sign,value) = FPUnpack(op, fpcr);

if fpctype == FPType_SNaN || fpctype == FPType_QNaN then
 if fpcr.DN == '1' then
 result = FPDefaultNaN();
 else
 result = FPConvertNaN(op);
 end if
else
 // FPCRTYPE == FPType_Nonzero:
 // Convert to BFloat16 and check for Flush-to-Zero
 if fpcr.DN == '1' then
 result = FPDefaultNaN();
 end if
end if
if fptype == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
elsif fptype == FPType_Zero then
 result = FPZero(sign);
else
 result = FPRoundCVBF(value, fpcr, rounding);

 // Returns correctly rounded BF16 value from top 16 bits
 return result<31:16>;

 // FPConvertBF()
 // =============
 // Converts a single-precision operand to BFloat16 value.

 bits(16) FPConvertBF(bits(32) op, FPCRType fpcr)
 return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/bfloat/FPRoundCVBF

 // FPRoundCVBF()
 // =============
 // Converts a real number OP into a BFloat16 value using the supplied rounding mode RMODE.

 bits(32) FPRoundCVBF(real op, FPCRType fpcr, FPRounding rounding)
 boolean isbfloat16 = TRUE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16);

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point OP with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and Rounding.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero("0");
 else
 result = FPRound(real_operand, fpcr, rounding);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // ======

 bits(N) FPAbs(bits(N) op)
assert N IN {16,32,64};
return '0' : op[N-2:0];

shared/functions/float/fpadd/FPAdd

// FPAdd()
// ========

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpcommon/IsDenormalizedValue

// IsDenormalizedValue()
// ================

// Checks either a single-precision or a double-precision floating-point
// value is denormalized.

boolean IsDenormalizedValue(bits(N) fpval)
assert N IN {32,64};

case N of
 when 32
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;
 isDenormal = IsZero(exp32) && !IsZero(frac32);
 when 64
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;
 isDenormal = IsZero(exp64) && !IsZero(frac64);

return isDenormal;

shared/functions/float/fpcompare/FPCompare

// FPCompare()
// ===========
assert N IN (16,32,64);
(type1.sign1,value1) = FPUnpack(op1, fpcr);
(type2.sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
 result = '0011';
 if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
 else // value1 > value2
 result = '0010';
 return result;

shared/functions/float/fpcompareeq/FPCompareEQ

// FPCompareEQ()
//=-----------------

boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN (16,32,64);
(type1.sign1,value1) = FPUnpack(op1, fpcr);
(type2.sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
 result = FALSE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);
 return result;

shared/functions/float/fpcomparege/FPCompareGE

// FPCompareGE()
//=-----------------

boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN (16,32,64);
(type1.sign1,value1) = FPUnpack(op1, fpcr);
(type2.sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);
 return result;
shared/functions/float/fpcomparegt/FPCompareGT

// FPCompareGT()
// =============

boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);
return result;

shared/functions/float/fpconvert/FPConvert

// FPConvert()
// ===========

// Convert floating point OP with N-bit precision to M-bit precision,
// with rounding controlled by ROUNDING.
// This is used by the FP-to-FP conversion instructions and so for
// half-precision data ignores FZI6, but observes AHP.

bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

assert M IN {16,32,64};
assert N IN {16,32,64};
bits(M) result;

// Unpack floating-point operand optionally with flush-to-zero.
(fptype,sign,value) = FPUnpackCV(op, fpcr);
alt_hp = (M == 16) && (fpcr.AHP == '1');

if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign);
 elseif fpcr.DN == '1' then
 result = FPDefaultNaN();
 else
 result = FPConvertNaN(op);
 if fptype == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elseif fptype == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign);
 elseif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRoundCV(value, fpcr, rounding);
 return result;

// FPConvert()
// ===========
bits(M) FPConvert(bits(N) op, FPCRType fpcr)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============
 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;

 return result;

shared/functions/float/fpcrtype/FPCRType

 type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============
 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)

 case rm of
 when '00' result = FPRounding_TIEAWAY; // A
 when '01' result = FPRounding_TIEEVEN; // N
 when '10' result = FPRounding_POSINF; // P
 when '11' result = FPRounding_NEGINF; // M

 return result;

shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // =================
 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)

 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
when '01' return FPRounding_POSINF; // P
when '10' return FPRounding_NEGINF; // M
when '11' return FPRounding_ZERO; // Z

shared/functions/float/fpdefaultnan/FPDefaultNaN

// FPDefaultNaN()
// ==============
bits(N) FPDefaultNaN()

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
sign = '0';

bits(E) exp = Ones(E);
bits(F) frac = '1':Zeros(F-1);

return sign : exp : frac;

shared/functions/float/fpdiv/FPDiv

// FPDiv()
// =======
bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 invalidop = (inf1 && inf2) || (zero1 && zero2);
 if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
 result = FPInfinity(sign1 EOR sign2);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1/value2, fpcr);

return result;

shared/functions/float/fpexc/FPExc

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow, FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

// FPInfinity()
// ============
bits(N) FPInfinity(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
bits(E) exp = Ones(E);
bits(F) frac = Zeros(F);
return sign : exp : frac;

shared/functions/float/fpmatmul/FPMatMulAdd

// FPMatMulAdd()
// =============
// // Floating point matrix multiply and add to same precision matrix
// // result[2, 2] = addend[2, 2] + (op1[2, 2] * op2[2, 2])
bits(N) FPMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, integer esize, FPCRType fpcr)
assert N == esize * 2 * 2;
bits(N) result;
bits(esize) prod0, prod1, sum;
for i = 0 to 1
for j = 0 to 1
sum = Elem[addend, 2*i + j, esize];
prod0 = FPMul(Elem[op1, 2*i + 0, esize],
Elem[op2, 2*j + 0, esize], fpcr);
prod1 = FPMul(Elem[op1, 2*i + 1, esize],
Elem[op2, 2*j + 1, esize], fpcr);
sum = FPAdd(sum, FPAdd(prod0, prod1, fpcr), fpcr);
Elem[result, 2*i + j, esize] = sum;
return result;

shared/functions/float/fpmax/FPMax

// FPMax()
// ========
bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
if value1 > value2 then
(fptype,sign,value) = (type1,sign1,value1);
else
(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPTYPE_INFINITY then
result = FPInfinity(sign);
elsif fptype == FPTYPE_ZERO then
sign = sign1 AND sign2; // Use most positive sign
result = FPZero(sign);
else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.
result = FPRound(value, fpcr);

return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

// FPMaxNormal()
// =============
bits(N) FPMaxNormal(bit sign)
 assert N IN (16,32,64);
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Ones(E-1):'0';
 frac = Ones(F);
 return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ========
 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN (16,32,64);
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);
 // treat a single quiet-NaN as -Infinity
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1');
 result = FPMax(op1, op2, fpcr);
 return result;

shared/functions/float/fpmin/FPMin

 // FPMin()
 // ========
 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN (16,32,64);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 if value1 < value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 result = FPRound(value, fpcr);
 end
 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // =======
 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

// Treat a single quiet-NaN as +Infinity
if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0');
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('0');
result = FPMin(op1, op2, fpcr);
return result;

shared/functions/float/fpmul/FPMul

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 invalidop = (inf1 && zero2) || (zero1 && inf2);
 if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);
return result;

shared/functions/float/fpmuladd/FPMulAdd

// FPMulAdd()
// =========

// Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
// supplies the FPCR control bits.

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, type1, type2,
 addend, op1, op2, fpcr);
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 // Other cases involving infinities produce an infinity of the same sign.
 elseif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elseif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elseif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPMulAddH

// FPMulAddH()
// ============
// Calculates addend + op1*op2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
assert N IN {32,64};
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
(done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr);

if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiples of zero by infinity and
// additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

// Otherwise calculate numerical result and round it.
else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);
 return result;

shared/functions/float/fpmuladdh/FPProcessNaNs3H

// FPProcessNaNs3H()
// =============

(boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
 FPCRType fpcr)

assert N IN {32,64};

bits(N) result;
if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
elsif type3 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
elsif type3 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
else
 done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

shared/functions/float/fpmulx/FPMulX

// FPMulX()
// =======
shared/functions/float/fpmulx/FPMulX

bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};

bits(N) result;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);
 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);
return result;

shared/functions/float/fpneg/FPNeg

// FPNeg()
// =======

bits(N) FPNeg(bits(N) op)

assert N IN {16,32,64};

return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

// FPOnePointFive()
// ===============

bits(N) FPOnePointFive(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;
return result;

shared/functions/float/fpprocessexception/FPProcessException

// FPProcessException()
// ====================

// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

FPProcessException(FPExc exception, FPCRType fpcr)

// Determine the cumulative exception bit number
case exception of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;

shared/functions/float/fpprocessnan/FPProcessNaN

// FPProcessNaN()
// ===============

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
assert fptype IN {FPType_QNaN, FPType_S NaN};
case N of
 when 16 topfrac = 9;
 when 32 topfrac = 22;
 when 64 topfrac = 51;
result = op;
if fptype == FPType_SNaN then
 result<topfrac> = '1';
 FPProcessException(FPExc_InvalidOp, fpcr);
if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN();
return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

// FPProcessNaNs()
// ===============

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
 bits(N) op1, bits(N) op2,
 FPCRType fpcr)
assert N IN {16,32,64};
if type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
eelsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
eelsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
eelsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
else
 done = FALSE; result = Zeros(); // 'Don't care' result
return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

// FPProcessNaNs3()
// ===============
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3, FPCRType fpcr)
assert N IN {16,32,64};
if type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elseif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elseif type3 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
elseif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type3 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
else
 done = FALSE; result = Zeros(); // 'Don't care' result
return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

// FPRecipEstimate()
// ===============

bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(operand, fpcr);
if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr);
elsif fptype == FPType_Infinity then
 result = FPZero(sign);
elsif fptype == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
elsif (
 (N == 16 && Abs(value) < 2.0^-16) ||
 (N == 32 && Abs(value) < 2.0^-128) ||
 (N == 64 && Abs(value) < 2.0^-1024)
) then
 case FPRoundingMode(fpcr) of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF

overflow_to_inf = (sign == '0');
when FP_Rounding_NEGINF
overflow_to_inf = (sign == '1');
when FP_Rounding_ZERO
overflow_to_inf = FALSE;
result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
FPProcessException(FPExc_Overflow, fpcr);
FPProcessException(FPExc_Inexact, fpcr);
elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
&
| (N == 16 && Abs(value) >= 2.0^14) ||
| (N == 32 && Abs(value) >= 2.0^126) ||
| (N == 64 && Abs(value) >= 2.0^1022)
) then
// Result flushed to zero of correct sign
result = FPZero(sign);

// Flush-to-zero never generates a trapped exception.
if UsingAArch32() then
FPSCR.UFC = '1';
else
FPSR.UFC = '1';
else
// Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
// calculate result exponent. Scaled value has copied sign bit,
// exponent = 1022 = double-precision biased version of -1,
// fraction = original fraction
case N of
when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);
when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);
when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);
if exp == 0 then
if fraction<51> == '0' then
exp = -1;
fraction = fraction<49:0>:'00';
else
fraction = fraction<50:0>:'0';

integer scaled = UInt('1':fraction<51:44>);

case N of
when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046
// scaled is in range 256..511 representing a fixed-point number in range [0.5..1.0)
estimate = RecipEstimate(scaled);
// estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
// Convert to scaled floating point result with copied sign bit,
// high-order bits from estimate, and exponent calculated above.

fraction = estimate<7:0> : Zeros(44);
if result_exp == 0 then
fraction = '1' : fraction<51:1>;
elseif result_exp == -1 then
fraction = '01' : fraction<51:2>;
result_exp = 0;

case N of
when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;
return result;

shared/functions/float/fprecipxxestimate/RecipEstimate

// Compute estimate of reciprocal of 9-bit fixed-point number
//
// a is in range 256 .. 511 representing a number in the range 0.5 <= x < 1.0.
// result is in the range 256 .. 511 representing a number in the range 1.0 to 511/256.

integer RecipEstimate(integer a)
assert 256 <= a && a < 512;
 a = a*2+1; // round to nearest
 integer b = (2 ^ 19) DIV a;
 r = (b+1) DIV 2; // round to nearest
assert 256 <= r && r < 512;
return r;

shared/functions/float/fprecpx/FPRecpX

// FPRecpX()
// =========

bits(N) FPRecpX(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};

 case N of
 when 16 esize = 5;
 when 32 esize = 8;
 when 64 esize = 11;

 bits(N) result;
 bits(esize) exp;
 bits(esize) max_exp;
 bits(N-(esize+1)) frac = Zeros();

 case N of
 when 16 exp = op<10+esize-1:10>;
 when 32 exp = op<23+esize-1:23>;
 when 64 exp = op<52+esize-1:52>;

 max_exp = Ones(esize) - 1;

 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 else
 if IsZero(exp) then // Zero and denormals
 result = sign:max_exp:frac;
 else // Infinities and normals
 result = sign:NOT(exp):frac;

 return result;

shared/functions/float/fpround/FPRound

// FPRound()
// =========
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
```c
fpcr.AHP = '0';
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16);

// FPRound()
//=========

bits(N) FPRound(real op, FPCRTypen fpcr)
    return FPRound(op, fpcr, FPRoundingMode(fpcr));
```

shared/functions/float/fpround/FPRoundBase

```c
// FPRoundBase()
//=============
// Convert a real number OP into an N-bit floating-point value using the
// supplied rounding mode RMODE.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding, boolean isbfloat16)
    assert N IN {16,32,64};
    assert op != 0.0;
    assert rounding != FPRounding_TIEAWAY;
    bits(N) result;

    //= Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
    if N == 16 then
        minimum_exp = -14;  E = 5;  F = 10;
    elsif N == 32 && isbfloat16 then
        minimum_exp = -126;  E = 8;  F = 7;
    elsif N == 32 then
        minimum_exp = -126;  E = 8;  F = 23;
    else  // N == 64
        minimum_exp = -1022;  E = 11;  F = 52;

    //= Split value into sign, unrounded mantissa and exponent.
    if op < 0.0 then
        sign = '1';  mantissa = -op;
    else
        sign = '0';  mantissa = op;
        exponent = 0;
        while mantissa < 1.0 do
            mantissa = mantissa * 2.0;  exponent = exponent - 1;
        while mantissa >= 2.0 do
            mantissa = mantissa / 2.0;  exponent = exponent + 1;
        if (((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
            exponent < minimum_exp) then
            // Flush-to-zero never generates a trapped exception.
            if UsingAArch32() then
                FPSCR.UFC = '1';
            else
                FPSR.UFC = '1';
            return FPZero(sign);
       // Start creating the exponent value for the result. Start by biasing the actual exponent
        // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
        biased_exp = Max(exponent - minimum_exp + 1, 0);
        if biased_exp == 0 then mantissa = mantissa / 2.0^((minimum_exp - exponent);

        //= Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
        int_mant = RoundDown(mantissa * 2.0^F);  //= < 2.0^F if biased_exp == 0, >= 2.0^F if not
        error = mantissa * 2.0^F - Real(int_mant);

        //= Underflow occurs if exponent is too small before rounding, and result is inexact or
        //= the Underflow exception is trapped.
        if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
            FPProcessException(FPExc_Underflow, fpcr);
```

```c
```
// Round result according to rounding mode.
case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1; // Handle rounding to odd aka Von Neumann rounding
 int_mant = int_mant DIV 2;

 // Handle rounding to odd aka Von Neumann rounding
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
 end if
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
 end if
 end if

 // Deal with Inexact exception.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
 end if
 return result;
end if

shared/functions/float/fpround/FPRoundCV

 // FPRoundCV()
 // ===========
 // Used for FP <-> FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 bits(N) FPRoundCV(real op, FPCRTYPE fpcr, FPRounding rounding)
 fpcr.FZ16 = '0';
 boolean isbfloat16 = FALSE;
 return FPRoundBase(op, fpcr, rounding, isbfloat16);

shared/functions/float/fprounding/FPRounding

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRoundingZERO, FPRounding_TIEAWAY, FPRounding_ODD};
sharing/functions/float/fproundingmode/FPRoundingMode

// FPRoundingMode()
// ================

// Return the current floating-point rounding mode.
FPRounding FPRoundingMode(FPCRType fpcr)
 return FPDecodeRounding(fpcr.RMode);

sharing/functions/float/fproundint/FPRoundInt

// FPRoundInt()
// =============

// Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
// If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)
 assert rounding != FPRounding_ODD;
 assert N IN {16,32,64};

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr);
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions.
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;
shared/functions/float/fproundintn/FPRoundIntN

// FPRoundIntN()
// =============

bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
assert rounding != FPRounding_ODD;
assert N IN {32,64};
assert intsize IN {32, 64};
integer exp;
constant integer E = (if N == 32 then 8 else 11);
constant integer F = N - (E + 1);

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);
if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022+intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Zero then
 result = FPZero(sign);
else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);
 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');
 when FPRounding_POSINF
 round_up = error != 0.0;
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = error != 0.0 && int_result < 0;
 when FPRounding_TIEAWAY
 round_up = error > 0.5 || (error == 0.5 && int_result >= 0);
 if round_up then int_result = int_result + 1;
 overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);
 if overflow then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 // This case shouldn't set Inexact.
 error = 0.0;
 else
 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);
 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);
// Generate inexact exceptions.
if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

// FPRSqrtEstimate()
// ===============

bits(N) FPRSqrtEstimate<bits(N) operand, FPCRTypf fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(operand, fpcr);

if fptype == FPTypf_SNaN || fptype == FPTypf_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr);
elsif fptype == FPTypf_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPTypf_Infinity then
 result = FPZero('0');
else
 // Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.
 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);
 if exp == 0 then
 while fraction<51> == '0' do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';
 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('01':fraction<51:45>);
 case N of
 when 16 result_exp = (44 - exp) DIV 2;
 when 32 result_exp = (380 - exp) DIV 2;
 when 64 result_exp = (3068 - exp) DIV 2;
 estimate = RecipSqrtEstimate(scaled);
 // estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
 // Convert to scaled floating point result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.
 case N of
 when 16 result = '0' : result_exp<12:0> : estimate7:0>:Zeros(2);
 when 32 result = '0' : result_exp<12:0> : estimate7:0>:Zeros(15);
when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

return result;

shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

// Compute estimate of reciprocal square root of 9-bit fixed-point number
// a is in range 128 .. 511 representing a number in the range 0.25 <= x < 1.0.
// result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

integer RecipSqrtEstimate(integer a)
assert 128 <= a && a < 512;
if a < 256 then // 0.25 .. 0.5
a = a*2+1; // a in units of 1/512 rounded to nearest
else // 0.5 .. 1.0
a = (a >> 1) << 1; // discard bottom bit
a = (a+1)*2; // a in units of 1/256 rounded to nearest
integer b = 512;
while a*(b+1)*(b+1) < 2^28 do
b = b+1;
// b = largest b such that b < 2^14 / sqrt(a) do
r = (b+1) DIV 2; // round to nearest
assert 256 <= r && r < 512;
return r;

shared/functions/float/fpsqrt/FPSqrt

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);
if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);
elsif fptype == FPType_Zero then
result = FPZero(sign);
elsif fptype == FPType_Infinity && sign == '0' then
result = FPInfinity(sign);
elsif sign == '1' then
FPProcessException(FPExc_InvalidOp, fpcr);
else
result = FPRound(Sqrt(value), fpcr);
return result;

shared/functions/float/fpsub/FPSub

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
invalidop = inf1 && inf2 && sign1 == sign2;
if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1);
else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);
 return result;

shared/functions/float/fpthree/FPThree

// FPThree()
// ========

bits(N) FPThree(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;
return result;

shared/functions/float/fptofixed/FPToFixed

// FPToFixed()
// ===========

// Convert N-bit precision floating point OP to M-bit fixed point with
// FBITS fractional bits, controlled by UNSIGNED and Rounding.

bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

assert N IN {16,32,64};
assert M IN {16,32,64};
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);

// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
// Scale by fractional bits and produce integer rounded towards minus-infinity.
value = value * 2.0^fbits;
int_result = RoundDown(value);
error = value - Real(int_result);
// Determine whether supplied rounding mode requires an increment.
case rounding of
when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
when FPRounding_POSINF
 round_up = (error != 0.0);
when FPRounding_NEGINF
 round_up = FALSE;
when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Generate saturated result and exceptions.
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
return result;

shared/functions/float/fptofixedjs/FPToFixedJS

// FPToFixedJS()
// =============

// Converts a double precision floating point input value
// to a signed integer, with rounding to zero.

(bits(N), bit) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64)

assert M == 64 && N == 32;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr);
Z = '1';
// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
Z = '0';

int_result = RoundDown(value);
error = value - Real(int_result);
// Determine whether supplied rounding mode requires an increment.
round_it_up = (error != 0.0 && int_result < 0);
if round_it_up then int_result = int_result + 1;
if int_result < 0 then
 result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));
else
 result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));
// Generate exceptions.
if int_result < -(2^31) || int_result > (2^31)-1 then
 FPProcessException(FPExc_InvalidOp, fpcr);
elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
elsif sign == '1' && value == 0.0 then
 Z = '0';
elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
 Z = '0';
if fptype == FPType_Infinity then result = 0;
return (result<N-1:0>, Z);

shared/functions/float/fptwo/FPTwo

// FPTwo()
// ========

bits(N) FPTwo(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = Zeros(F);
result = sign : exp : frac;
return result;

shared/functions/float/fptype/FPType

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,

FPType_QNaN, FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

// FPUnpack()
// =========

// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
fpocr.AHP = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

shared/functions/float/fpunpack/FPUnpackBase

// FPUnpackBase()
// ==============

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
assert N IN {16,32,64};
if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 // Produce zero if value is zero or flush-to-zero is selected
 if IsZero(frac16) || fpcr.FZ16 == '1' then
 fptype = FPType_Zero; value = 0.0;
 else
 fptype = FPType_Infinity; value = 0.0;
 end if
 end if
 if IsZZero(frac16) then
 sign = '0';
 value = 0.0;
 end if
fptype = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 fptype = FPType_Infinity; value = 2.0^1000000;
else
 fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
else
 fptype = FPType_Nonzero;
 value = 2.0*(Real(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);
elsif N == 32 then
 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;
 if IsZero(exp32) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac32) || fpcr.FZ == '1' then
 fptype = FPType_Zero; value = 0.0;
 if !IsZero(frac32) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0*(Real(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);
 else // N == 64
 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;
 if IsZero(exp64) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac64) || fpcr.FZ == '1' then
 fptype = FPType_Zero; value = 0.0;
 if !IsZero(frac64) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0*(Real(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);
 if sign == '1' then value = -value;
 return (fptype, sign, value);

shared/functions/float/fpunpack/FPUnpackCV

// FPUnpackCV()
// ============
//
// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

(FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
fpcr.FZ16 = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

shared/functions/float/fpzero/FPZero

// FPZero()
// ========

bits(N) FPZero(bit sign)
assert N IN {16, 32, 64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Zeros(E);
frac = Zeros(F);
result = sign : exp : frac;
return result;

shared/functions/float/vfpexpandimm/VFPExpandImm

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8)
assert N IN {16, 32, 64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
sign = imm8<7>;
exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
frac = imm8<3:0>:Zeros(F-4);
result = sign : exp : frac;
return result;

shared/functions/integer/AddWithCarry

// AddWithCarry()
// ==============

// Integer addition with carry input, returning result and NZCV flags

<bits(N), bits(4)) AddWithCarry<bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
bit n = result<N-1>;
bit z = if IsZero(result) then '1' else '0';
bit c = if UInt(result) == unsigned_sum then '0' else '1';
bit v = if SInt(result) == signed_sum then '0' else '1';
return (result, n:z:c:v);

shared/functions/memory/AArch64.BranchAddr

// AArch64.BranchAddr()
// ==============

// Return the virtual address with tag bits removed for storing to the program counter.

<bits(64) AArch64.BranchAddr<bits(64) vaddress)
assert !UsingAArch32();
msbit = AddrTop(vaddress, TRUE, PSTATE.EL);
if msbit == 63 then
 return vaddress;
elsif (PSTATE.EL IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then
 return SignExtend(vaddress<msbit:0>);
else
 return ZeroExtend(vaddress<msbit:0>);

shared/functions/memory/AccType

enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
 AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
 AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
 AccType.ORDERED, AccType.ORDEREDRW, // Load-Acquire and Store-Release
 AccType.ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic
 AccType_ORDEREDATOMICRW,
 AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_PTW, // Page table walk
 AccType_NONFAULT, // Non-faulting loads
 AccType_CNOTFIRST, // Contiguous FF load, not first element
 AccType_NV2REGISTER, // MRS/MSR instruction used at EL1 and which is
 AccType_DC, // Data cache maintenance
 AccType_DC_UNPRIV, // Data cache maintenance instruction used at
 AccType_IC, // Instruction cache maintenance
 AccType_DCZVA, // DC ZVA instructions
 AccType_AT}; // Address translation

shared/functions/memory/AccessDescriptor

type AccessDescriptor is

 AccType acctype,
 MPAMinfo mpam,
 boolean page_table_walk,
 boolean secondstage,
 boolean s2fswalk,
 integer level

)....
shared/functions/memory/AddressDescriptor

```c
type AddressDescriptor is (  
    FaultRecord fault,    // fault.statuscode indicates whether the address is valid  
    MemoryAttributes memattrs,  
    FullAddress paddress,  
    bits(64) vaddress
)
```

shared/functions/memory/Allocation

```c
constant bits(2) MemHint_No = '00';     // No Read-Allocate, No Write-Allocate  
constant bits(2) MemHint_WA = '01';     // No Read-Allocate, Write-Allocate  
constant bits(2) MemHint_RA = '10';     // Read-Allocate, No Write-Allocate  
constant bits(2) MemHint_RWA = '11';    // Read-Allocate, Write-Allocate
```

shared/functions/memory/BigEndian

```c
// BigEndian()
// =========

boolean BigEndian()  
    boolean bigend;  
    if UsingAArch32() then  
        bigend = (PSTATE.E != '0');  
    elsif PSTATE.EL == EL0 then  
        bigend = (SCTLR[].E0E != '0');  
    else  
        bigend = (SCTLR[].EE != '0');  
    return bigend;
```

shared/functions/memory/BigEndianReverse

```c
// BigEndianReverse()  
// ================

bits(width) BigEndianReverse (bits(width) value)  
    assert width IN {8, 16, 32, 64, 128};  
    integer half = width DIV 2;  
    if width == 8 then return value;  
    return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);
```

shared/functions/memory/Cacheability

```c
constant bits(2) MemAttr_NC = '00';     // Non-cacheable  
constant bits(2) MemAttr_WT = '10';     // Write-through  
constant bits(2) MemAttr_WB = '11';     // Write-back
```

shared/functions/memory/CreateAccessDescriptor

```c
// CreateAccessDescriptor()  
// ==============

AccessDescriptor CreateAccessDescriptor(AccType acctype)  
    AccessDescriptor accdesc;  
    accdesc.acctype = acctype;  
    accdesc.mpam = GenMPAMcurEL(acctype IN {AccType_IFETCH, AccType_IC});  
    accdesc.page_table_walk = FALSE;  
    return accdesc;
```
shared/functions/memory/CreateAccessDescriptorPTW

/* CreateAccessDescriptorPTW()
 * ===========================
 */

AccessDescriptor CreateAccessDescriptorPTW(AccType acctype, boolean secondstage,
 boolean s2fs1walk, integer level)
{
 AccessDescriptor accdesc;
 accdesc.acctype = acctype;
 accdesc.mpam = GenMPAMcurEL(acctype IN {AccType_IFETCH, AccType_IC});
 accdesc.page_table_walk = TRUE;
 accdesc.s2fs1walk = s2fs1walk;
 accdesc.secondstage = secondstage;
 accdesc.level = level;
 return accdesc;
}

shared/functions/memory/DataMemoryBarrier

DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DataSynchronizationBarrier

DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

shared/functions/memory/DescriptorUpdate

type DescriptorUpdate is (// AF needs to be set
 boolean AP, // Descriptor to be updated
)

shared/functions/memory/DeviceType

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

shared/functions/memory/EffectiveTBI

/* EffectiveTBI()
 * ==============
 * Returns the effective TBI in the AArch64 stage 1 translation regime for "el".
 */

bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
{
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 assert(!ELUsingAArch32(regime));

 case regime of
 when EL1
 if address<55> == '1' then
 tbi = TCR_EL1.TBI1 else TCR_EL1.TBI0;
 if HavePACExt() then
 tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
 when EL2
 if HaveVirtHostExt() && ELIsInHost(el) then
 tbi = TCR_EL2.TBI1 else TCR_EL2.TBI0;
 if HavePACExt() then
 tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
 else
 tbi = TCR_EL2.TBI;
 tbid = TCR_EL2.TBID;
 when EL3
 tbi = TCR_EL3.TBI;
 tbid = TCR_EL3.TBID;
 end case;
}
if HavePACExt() then tbid = TCR_EL3.TBID;

return (if tbi == '1' && (HavePACExt() || tbid == '0' || !IsInstr) then '1' else '0');

shared/functions/memory/EffectiveTCMA

// EffectiveTCMA()
// ===============
// Returns the effective TCMA of a virtual address in the stage 1 translation regime for "el".

bit EffectiveTCMA(bits(64) address, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
 when EL1
tcma = if address<55> == '1' then TCR_EL1.TCMA1 else TCR_EL1.TCMA0;
 when EL2
 if HaveVirtHostExt() && ELIsInHost(el) then
tcma = if address<55> == '1' then TCR_EL2.TCMA1 else TCR_EL2.TCMA0;
 else
tcma = TCR_EL2.TCMA;
 when EL3
tcma = TCR_EL3.TCMA;
return tcma;

shared/functions/memory/Fault

enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_AsyncParity,
 Fault_AsyncExternal,
 Fault_Debug,
 Fault_TLBConflict,
 Fault_BranchTarget,
 Fault_HWUpdateAccessFlag,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

type FaultRecord is (Fault statuscode, // Fault Status
 AccType acctype, // Type of access that faulted
 FullAddress ipaddress, // Intermediate physical address
 boolean s2fs1walk, // Is on a Stage 1 page table walk
 boolean write, // TRUE for a write, FALSE for a read
 integer level, // For translation, access flag and permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for external aborts
 boolean secondstage, // Is a Stage 2 abort
 boolean domain, // Domain number, AArch32 only
 bit(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
 bit(4) debugmoe); // Debug method of entry, from AArch32 only
type PARTIDtype = bits(16);
type PMGtype = bits(8);

type MPAMinfo is (
 bit mpam_ns,
 PARTIDtype partid,
 PMGtype pmg
)

shared/functions/memory/FullAddress

type FullAddress is (
 bits(52) address,
 bit NS // '0' = Secure, '1' = Non-secure
)

shared/functions/memory/Hint_Prefetch

// Signals the memory system that memory accesses of type HINT to or from the specified address are
// likely in the near future. The memory system may take some action to speed up the memory
// accesses when they do occur, such as pre-loading the the specified address into one or more
// caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
// stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
// synchronous abort due to Alignment or Translation faults and the like. Its only effect on
// software-visible state should be on caches and TLBs associated with address, which must be
// accessible by reads, writes or execution, as defined in the translation regime of the current
// Exception level. It is guaranteed not to access Device memory.
// A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
// instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
// memory location that cannot be accessed by instruction fetches.
Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/MBReqDomain

enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MemAttrHints

type MemAttrHints is (
 bits(2) attrs, // See MemAttr_*, Cacheability attributes
 bits(2) hints, // See MemHint_*, Allocation hints
 boolean transient
)

shared/functions/memory/MemType

enumeration MemType {MemType_Normal, MemType_Device};

shared/functions/memory/MemoryAttributes

type MemoryAttributes is (
 MemType memtype,
 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes
 boolean tagged // Tagged access
)
boolean shareable,
boolean outerShareable)

shared/functions/memory/Permissions
type Permissions is (
 bits(3) ap, // Access permission bits
 bit xn, // Execute-never bit
 bit xxn, // [Armv8.2] Extended execute-never bit for stage 2
 bit pxn // Privileged execute-never bit
)

shared/functions/memory/PrefetchHint
enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

shared/functions/memory/SpeculativeStoreBypassBarrierToPA
SpeculativeStoreBypassBarrierToPA();

shared/functions/memory/SpeculativeStoreBypassBarrierToVA
SpeculativeStoreBypassBarrierToVA();

shared/functions/memory/TLBRecord
type TLBRecord is (
 Permissions perms,
 bit nG, // '0' = Global, '1' = not Global
 bits(4) domain, // AArch32 only
 bit GP, // Guarded Page
 boolean contiguous, // Contiguous bit from page table
 integer level, // AArch32 Short-descriptor format: Indicates Section/Page
 integer blocksize, // Describes size of memory translated in KBytes
 DescriptorUpdate descupdate, // [Armv8.1] Context for h/w update of table descriptor
 bit CnP, // [Armv8.2] TLB entry can be shared between different PEs
 AddressDescriptor addrdesc
)

shared/functions/memory/Tag
constant integer LOG2_TAG_GRANULE = 4;

constant integer TAG_GRANULE = 1 << LOG2_TAG_GRANULE;

shared/functions/memory/_Mem
// These two _Mem[] accessors are the hardware operations which perform single-copy atomic,
// aligned, little-endian memory accesses of size bytes from/to the underlying physical
// memory array of bytes.
//
// The functions address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// bits in the event of an external abort.
bits(8*size) _Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc];

_MEM(AddressDescriptor desc, integer size, AccessDescriptor accdesc) = bits(8*size) value;
shared/functions/mpam/DefaultMPAMInfo

// DefaultMPAMInfo
// ===============
// Returns default MPAM info. If secure is TRUE return default Secure
// MPAMinfo, otherwise return default Non-secure MPAMinfo.

MPAMinfo DefaultMPAMInfo(boolean secure)

 MPAMinfo DefaultInfo;

 DefaultInfo.mpam_ns = if secure then '0' else '1';
 DefaultInfo.partid = DefaultPARTID;
 DefaultInfo.pmg = DefaultPMG;
 return DefaultInfo;

shared/functions/mpam/DefaultPARTID

constant PARTIDtype DefaultPARTID = 0<15:0>;

shared/functions/mpam/DefaultPMG

constant PMGtype DefaultPMG = 0<7:0>;

shared/functions/mpam/GenMPAMcurEL

// GenMPAMcurEL
// ============
// Returns MPAMinfo for the current EL and security state.
// InD is TRUE instruction access and FALSE otherwise.
// May be called if MPAM is not implemented (but in an version that supports
// MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
// EL if can and use that to drive MPAM information generation. If mode
// cannot be converted, MPAM is not implemented, or MPAM is disabled return
// default MPAM information for the current security state.

MPAMinfo GenMPAMcurEL(boolean InD)

 bits(2) mpamel;
 boolean validEL;
 boolean securempam;
 if HaveEMPAMExt() then
 boolean secure = IsSecure();
 securempam = MPAM3_EL3.FORCE_NS == '0' && secure;
 if MPAMisEnabled() && (!secure || MPAM3_EL3.SDEFLT == '0') then
 if UsingAArch32() then
 (validEL, mpamel) = ELFromM32(PSTATE.M);
 else
 validEL = TRUE;
 mpamel = PSTATE.EL;
 if validEL then
 return genMPAM(UInt(mpamel), InD, securempam);
 return DefaultMPAMinfo(securempam);
 if HaveMPAMExt() then
 if MPAM3_EL3.FORCE_NS == '0' then
 if UsingAArch32() then
 (validEL, mpamel) = ELFromM32(PSTATE.M);
 else
 validEL = TRUE;
 mpamel = PSTATE.EL;
 if validEL then
 return genMPAM(UInt(mpamel), InD, securempam);
 return DefaultMPAMinfo(securempam);
 end if
end if

shared/functions/mpam/MAP_vPARTID

// MAP_vPARTID
// ===========
// Performs conversion of virtual PARTID into physical PARTID
// Contains all of the error checking and implementation
// choices for the conversion.

(PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
// should not ever be called if EL2 is not implemented
// or is implemented but not enabled in the current
// security state.
PARTIDtype ret;
boolean err;
integer virt = UInt(vpartid);
integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

// vpartid_max is largest vpartid supported
integer vpartid_max = (4 * vpmrmax) + 3;

// One of many ways to reduce vpartid to value less than vpartid_max.
if virt > vpartid_max then
 virt = virt MOD (vpartid_max+1);

// Check for valid mapping entry.
if MPAMVPMV_EL2<virt> == '1' then
 // vpartid has a valid mapping so access the map.
 ret = mapvpmw(virt);
 err = FALSE;
else if MPAMVPMV_EL2<virt> == '0' then
 // Yes, so use default mapping for vpartid == 0.
 ret = MPAMVPM0_EL2<0 +: 16>;
 err = FALSE;
else
 ret = DefaultPARTID;
 err = TRUE;

// Check that the physical PARTID is in-range.
// This physical PARTID came from a virtual mapping entry.
integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
if UInt(ret) > partid_max then
 // Out of range, so return default physical PARTID
 ret = DefaultPARTID;
 err = TRUE;
return (ret, err);

shared/functions/mpam/MPAMisEnabled

// MPAMisEnabled
// =============
// Returns TRUE if MPAMisEnabled.

boolean MPAMisEnabled()

el = HighestEL();
case el of
 when EL3 return MPAM3_EL3.MPAMEN == '1';
 when EL2 return MPAM2_EL2.MPAMEN == '1';
 when EL1 return MPAM1_EL1.MPAMEN == '1';
shared/functions/mpam/MPAMisVirtual

// MPAMisVirtual
// =============
// Returns TRUE if MPAM is configured to be virtual at EL.

boolean MPAMisVirtual(integer el)
return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&
((el == 0 && MPAMHCR_EL2.EL0_VPMEN == '1' &&
 (HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0'))) ||
 (el == 1 && MPAMHCR_EL2.EL1_VPMEN == '1'))) ;

shared/functions/mpam/genMPAM

// genMPAM
// ========
// Returns MPAMinfo for exception level el.
// If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
// of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
// Produces a Secure PARTID if Secure is TRUE and a Non-secure PARTID otherwise.

MPAMinfo genMPAM(integer el, boolean InD, boolean secure)
MPAMinfo returnInfo;
PARTIDtype partidel;
boolean perr;
boolean gstplk = (el == 0 && EL2Enabled() &&
MPAMHCR_EL2.GSTAPP_PLK == '1' && HCR_EL2.TGE == '0');
integer eff_el = if gstplk then 1 else el;
(partidel, perr) = genPARTID(eff_el, InD);
PMGtype groupel = genPMG(eff_el, InD, perr);
returnInfo.mpam_ns = if secure then '0' else '1';
returnInfo.partid = partidel;
returnInfo.pmg = groupel;
return returnInfo;

shared/functions/mpam/genMPAMel

// genMPAMel
// =========
// Returns MPAMinfo for specified EL in the current security state.
// InD is TRUE for instruction access and FALSE otherwise.

MPAMinfo genMPAMel(bits(2) el, boolean InD)
boolean secure = IsSecure();
boolean securempam = secure;
if HaveEMPAMExt() then
 securempam = MPAM3_EL3.FORCE_NS == '0' && secure;
if HaveMPAMExt() && MPAMisEnabled() && (!secure || MPAM3_EL3.SDEFLT == '0') then
 return genMPAM(UInt(el), InD, securempam);
else
 if HaveMPAMExt() && MPAMisEnabled() then
 return genMPAM(UInt(el), InD, securempam);
 return DefaultMPAMinfo(securempam);

shared/functions/mpam/genPARTID

// genPARTID
// =========
// Returns physical PARTID and error boolean for exception level el.
// If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
// otherwise from MPAMel_ELx.PARTID_D.

(PARTIDtype, boolean) genPARTID(integer el, boolean InD)
PARTIDtype partidel = getMPAM_PARTID(el, InD);
integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
if UInt(partidel) > partid_max
 return (DefaultPARTID, TRUE);

if MPAMisVirtual(el)
 return MAP_vPARTID(partidel);
else
 return (partidel, FALSE);

shared/functions/mpam/genPMG

// genPMG
// ======
// Returns PMG for exception level el and I- or D-side (InD).
// If PARTID generation (genPARTID) encountered an error, genPMG() should be
// called with partid_err as TRUE.
PMGtype genPMG(integer el, boolean InD, boolean partid_err)
 integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);

 // It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
 // use the default or if it uses the PMG from getMPAM_PMG.
 if partid_err then
 return DefaultPMG;
 PMGtype groupel = getMPAM_PMG(el, InD);
 if UInt(groupel) <= pmg_max then
 return groupel;
 return DefaultPMG;

shared/functions/mpam/getMPAM_PARTID

// getMPAM_PARTID
// ==============
// Returns a PARTID from one of the MPAMn_ELx registers.
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PARTID_I field of that
// register. Otherwise, selects the PARTID_D field.
PARTIDtype getMPAM_PARTID(integer MPAMn, boolean InD)
 PARTIDtype partid;
 boolean el2avail = EL2Enabled();

 if InD then
 case MPAMn of
 when 3 partid = MPAM3_EL3.PARTID_I;
 when 2 partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros();
 when 1 partid = MPAM1_EL1.PARTID_I;
 when 0 partid = MPAM0_EL1.PARTID_I;
 otherwise partid = PARTIDtype UNKNOWN;
 else
 case MPAMn of
 when 3 partid = MPAM3_EL3.PARTID_D;
 when 2 partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros();
 when 1 partid = MPAM1_EL1.PARTID_D;
 when 0 partid = MPAM0_EL1.PARTID_D;
 otherwise partid = PARTIDtype UNKNOWN;
 return partid;

shared/functions/mpam/getMPAM_PMG

// getMPAM_PMG
// ===========
// Returns a PMG from one of the MPAMn_ELx registers.
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PMG_I field of that
// register. Otherwise, selects the PMG_D field.
PMGtype getMPAM_PMG(integer MPAMn, boolean InD)

PMGtype pmg;
boolean el2avail = EL2Enabled();

if InD then
 case MPAMn of
 when 3 pmg = MPAM3_EL3.PMG_I;
 when 2 pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros();
 when 1 pmg = MPAM1_EL1.PMG_I;
 when 0 pmg = MPAM0_EL1.PMG_I;
 otherwise pmg = PMGtype UNKNOWN;
 else
 case MPAMn of
 when 3 pmg = MPAM3_EL3.PMG_D;
 when 2 pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros();
 when 1 pmg = MPAM1_EL1.PMG_D;
 when 0 pmg = MPAM0_EL1.PMG_D;
 otherwise pmg = PMGtype UNKNOWN;
 return pmg;

shared/functions/mpam/mapvpmw

// mapvpmw
// =======
// Map a virtual PARTID into a physical PARTID using
// the MPAMVPMn_EL2 registers.
// vpartid is now assumed in-range and valid (checked by caller)
// returns physical PARTID from mapping entry.

PARTIDtype mapvpmw(integer vpartid)

bits(64) vpmw;
integer wd = vpartid DIV 4;
 case wd of
 when 0 vpmw = MPAMVPM0_EL2;
 when 1 vpmw = MPAMVPM1_EL2;
 when 2 vpmw = MPAMVPM2_EL2;
 when 3 vpmw = MPAMVPM3_EL2;
 when 4 vpmw = MPAMVPM4_EL2;
 when 5 vpmw = MPAMVPM5_EL2;
 when 6 vpmw = MPAMVPM6_EL2;
 when 7 vpmw = MPAMVPM7_EL2;
 otherwise vpmw = Zeros(64);

 // vpme_lsb selects LSB of field within register
 integer vpme_lsb = (vpartid MOD 4) * 16;
 return vpmw<vpme_lsb +: 16>;

shared/functions/registers/BranchTo

// BranchTo()
// ==========

// Set program counter to a new address, with a branch type
// In AArch64 state the address might include a tag in the top eight bits.

BranchTo(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = AArch64.BranchAddr(target<63:0>);
 return;
shared/functions/registers/BranchToAddr

// BranchToAddr()
// ===============

// Set program counter to a new address, with a branch type
// In AArch64 state the address does not include a tag in the top eight bits.

BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

enumeration BranchType {
 BranchType_DIRCALL, // Direct Branch with link
 BranchType_INDCALL, // Indirect Branch with link
 BranchType_ERET, // Exception return (indirect)
 BranchType_DBGEXIT, // Exit from Debug state
 BranchType_RET, // Indirect branch with function return hint
 BranchType_DIR, // Direct branch
 BranchType_INDIR, // Indirect branch
 BranchType_EXCEPTION, // Exception entry
 BranchType_RESET, // Reset
 BranchType_UNKNOWN}; // Other

shared/functions/registers/Hint_Branch

// Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
// the next instruction.
Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

// Return address of the sequentially next instruction.
bits(N) NextInstrAddr();

shared/functions/registers/ResetExternalDebugRegisters

// Reset the External Debug registers in the Core power domain.
ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

// ThisInstrAddr()
// ===============
// Return address of the current instruction.

bits(N) ThisInstrAddr()
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

bits(64) _PC;
shared/functions/registers/_R

array bits(64) _R[0..30];

shared/functions/sysregisters/SPSR

// SPSR[] - non-assignment form
// ============================

bits(32) SPSR[];
bits(32) result;
if UsingAArch32() then
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq;
 when M32_IRQ result = SPSR_irq;
 when M32_Svc result = SPSR_svc;
 when M32_Monitor result = SPSR_mon;
 when M32_Abort result = SPSR_abt;
 when M32_Hyp result = SPSR_hyp;
 when M32_Undef result = SPSR_und;
 otherwise Unreachable();
 else
 case PSTATE.EL of
 when EL1 result = SPSR_EL1;
 when EL2 result = SPSR_EL2;
 when EL3 result = SPSR_EL3;
 otherwise Unreachable();
 return result;
 // SPSR[] - assignment form
 // ========================

SPSR[] = bits(32) value
if UsingAArch32() then
 case PSTATE.M of
 when M32_FIQ SPSR_fiq = value;
 when M32_IRQ SPSR_irq = value;
 when M32_Svc SPSR_svc = value;
 when M32_Monitor SPSR_mon = value;
 when M32_Abort SPSR_abt = value;
 when M32_Hyp SPSR_hyp = value;
 when M32_Undef SPSR_und = value;
 otherwise Unreachable();
 else
 case PSTATE.EL of
 when EL1 SPSR_EL1 = value;
 when EL2 SPSR_EL2 = value;
 when EL3 SPSR_EL3 = value;
 otherwise Unreachable();
 return;

shared/functions/system/ArchVersion

enumeration ArchVersion {
 ARMv8p0,
 ARMv8p1,
 ARMv8p2,
 ARMv8p3,
 ARMv8p4,
 ARMv8p5,
 ARMv8p6
};
shared/functions/system/BranchTargetCheck

// BranchTargetCheck()
// ===================
// This function is executed checks if the current instruction is a valid target for a branch
// taken into, or inside, a guarded page. It is executed on every cycle once the current
// instruction has been decoded and the values of InGuardedPage and BTypeCompatible have been
// determined for the current instruction.

BranchTargetCheck()
assert HaveBTIExt() && !UsingAArch32();

// The branch target check considers two state variables:
// * InGuardedPage, which is evaluated during instruction fetch.
// * BTypeCompatible, which is evaluated during instruction decode.
if InGuardedPage && PSTATE.BTYPE != '00' && !BTypeCompatible && !Halted() then
 bits(64) pc = ThisInstrAddr();
 AArch64.BranchTargetException(pc<51:0>);

 boolean branch_instr = AArch64.ExecutingBROrBLROrRetInstr();
 boolean bti_instr = AArch64.ExecutingBTIInstr();

 // PSTATE.BTYPE defaults to 00 for instructions that do not explicitly set BTYPE.
 if !(branch_instr || bti_instr) then
 BTypeNext = '00';

shared/functions/system/ClearEventRegister

// ClearEventRegister()
// ====================
// Clear the Event Register of this PE

ClearEventRegister()
 EventRegister = '0';
 return;

shared/functions/system/ClearPendingPhysicalSError

// Clear a pending physical SError interrupt
ClearPendingPhysicalSError();

shared/functions/system/ClearPendingVirtualSError

// Clear a pending virtual SError interrupt
ClearPendingVirtualSError();

shared/functions/system/ConditionHolds

// ConditionHolds()
// ================
// Return TRUE iff COND currently holds

boolean ConditionHolds(bits(4) cond)
// Evaluate base condition.
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '100' result = (PSTATE.V == PSTATE.Z == '0'); // GE or LT
 when '101' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '110' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate always true
// Otherwise, invert condition if necessary.
if cond<0> == '1' && cond != '1111' then
 result = !result;

return result;

shared/functions/system/ConsumptionOfSpeculativeDataBarrier
ConsumptionOfSpeculativeDataBarrier();

shared/functions/system/CurrentInstrSet
// CurrentInstrSet()
// ================

InstrSet CurrentInstrSet()
if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
else
 result = InstrSet_A64;
return result;

shared/functions/system/CurrentPL
// CurrentPL()
// ===========

PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/DelayForWFETrap
// Causes the PE to stall for 'n' cycles.
DelayForWFETrap(integer n);

shared/functions/system/EL0
constant bits(2) EL3 = '11';
constant bits(2) EL2 = '10';
constant bits(2) EL1 = '01';
constant bits(2) EL0 = '00';

shared/functions/system/EL2Enabled
// EL2Enabled()
// =============

// Returns TRUE if EL2 is present and executing
// - with SCR_EL3.NS=1 when Non-secure EL2 is implemented, or
// - with SCR_EL3.NS==0 when Secure EL2 is implemented and enabled, or
// - when EL3 is not implemented.

boolean EL2Enabled()
 return HaveEL(EL2) && (!HaveEL(EL3) || SCR_EL3.NS == '1' || IsSecureEL2Enabled());

shared/functions/system/ELFromM32
// ELFromM32()
// ===========

(boolean,bits(2)) ELFromM32(bits(5) mode)
 // Convert an AArch32 mode encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
// and the current value of SCR.NS/SCR_EL3.NS.
// 'EL' is the Exception level decoded from 'mode'.

bits(2) el;
boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation

case mode of
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 valid = valid && (!HaveEL(EL3) || SCR_GEN[].NS == '1');
 when M32_FIQ, M32_IRQ, M32_Svc, M32_abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 el = (if HaveEL(EL3) && HighestELUsingAArch32() && SCR.NS == '0' then EL3 else EL1);
 when M32_User
 el = EL0;
 otherwise
 valid = FALSE; // Passed an illegal mode value

if !valid then el = bits(2) UNKNOWN;
return (valid, el);

shared/functions/system/ELFromSPSR

// ELFromSPSR()
//=---------------------

// Convert an SPSR value encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
// 'EL' is the Exception level decoded from 'spsr'.

(boolean,bits(2)) ELFromSPSR(bits(32) spsr)

if spsr<4> == '0' then // AArch64 state
 el = spsr<3:2>;
else if HighestELUsingAArch32() then // No AArch64 support
 valid = FALSE;
else if HaveEL(el) then // Exception level not implemented
 valid = FALSE;
else if spsr<1> == '1' then // M[1] must be 0
 valid = FALSE;
else if el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0
 valid = FALSE;
else if el == EL2 && HaveEL(EL3) && !IsSecureEL2Enabled() && SCR_EL3.NS == '0' then
 valid = FALSE; // Unless Secure EL2 is enabled, EL2 only valid in
 // Non-secure state
else
 valid = TRUE;
else if HaveAnyAArch32() then // AArch32 state
 (valid, el) = ELFromM32(spsr<4:0>);
else
 valid = FALSE;

if !valid then el = bits(2) UNKNOWN;
return (valid, el);

shared/functions/system/ELIsInHost

// ELIsInHost()
//=---------------------

boolean ELIsInHost(bits(2) el)
return ((IsSecureEL2Enabled() || !IsSecureBelowEL3()) && HaveVirtHostExt() && !ELUsingAArch32(EL2)
&&
 HCR_EL2.E2H == '1' && (el == EL2 || (el == EL0 && HCR_EL2.TGE == '1')));

shared/functions/system/ELStateUsingAArch32

// ELStateUsingAArch32()
// -------------------

shared/functions/system/ELStateUsingAArch32K

// ELStateUsingAArch32K()
// --------------------

shared/functions/system/ELUsingAArch32

// ELUsingAArch32()
// ================
boolean ELUsingAArch32(bits(2) el)
return ELStateUsingAArch32(el, IsSecureBelowEL3());

shared/functions/system/ELUsingAArch32K

// ELUsingAArch32K()
// ==============
(boolean,boolean) ELUsingAArch32K(bits(2) el)
return ELStateUsingAArch32K(el, IsSecureBelowEL3());

shared/functions/system/EndOfInstruction

// Terminate processing of the current instruction.
EndOfInstruction();

shared/functions/system/EnterLowPowerState

// PE enters a low-power state
EnterLowPowerState();

shared/functions/system/EventRegister

bits(1) EventRegister;

shared/functions/system/GetPSRFromPSTATE

// GetPSRFromPSTATE()
// ================
// Return a PSR value which represents the current PSTATE

bits(32) GetPSRFromPSTATE()
bits(32) spsr = Zeros();
if HavePANExt() then spsr<22> = PSTATE.PAN;
if PSTATE.nRW == '1' then // AArch32 state
spsr<27> = PSTATE.Q;
if HaveSSBSExt() then spsr<25> = PSTATE.SSBS;
if HaveBTIExt() then spsr<11:10> = PSTATE.BTYPE;
if HaveMTEExt() then spsr<25> = PSTATE.TCO;
if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
else // AArch64 state

spsr<3:2> = PSTATE.EL;
spsr<0> = PSTATE.SP;
return spsr;

shared/functions/system/HasArchVersion

// HasArchVersion()
// ================
// Return TRUE if the implemented architecture includes the extensions defined in the specified
// architecture version.

boolean HasArchVersion(ArchVersion version)
 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32EL

// HaveAArch32EL()
// ===============

boolean HaveAArch32EL(bits(2) el)
 // Return TRUE if Exception level 'el' supports AArch32 in this implementation
 if !HaveEL(el) then
 return FALSE; // The Exception level is not implemented
 elsif !HaveAnyAArch32() then
 return FALSE; // No Exception level can use AArch32
 elsif HighestELUsingAArch32() then
 return TRUE; // All Exception levels are using AArch32
 elsif el == HighestEL() then
 return FALSE; // The highest Exception level is using AArch64
 elsif el == EL0 then
 return TRUE; // EL0 must support using AArch32 if any AArch32
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAnyAArch32

// HaveAnyAArch32()
// ==============
// Return TRUE if AArch32 state is supported at any Exception level

boolean HaveAnyAArch32()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAnyAArch64

// HaveAnyAArch64()
// ===============
// Return TRUE if AArch64 state is supported at any Exception level

boolean HaveAnyAArch64()
 return !HighestELUsingAArch32();

shared/functions/system/HaveEL

// HaveEL()
// =========
// Return TRUE if Exception level 'el' is supported

boolean HaveEL(bits(2) el)
 if el IN (EL1,EL0) then
 return TRUE; // EL1 and EL0 must exist
 return boolean IMPLEMENTATION_DEFINED;
shared/functions/system/HaveELUsingSecurityState

// HaveELUsingSecurityState()
// ==========================
// Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
// FALSE otherwise.

boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

case el of
 when EL3
 assert secure;
 return HaveEL(EL3);
 when EL2
 if secure then
 return HaveEL(EL2) && HaveSecureEL2Ext();
 else
 return HaveEL(EL2);
 otherwise
 return (HaveEL(EL3) ||
 (secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

shared/functions/system/HaveFP16Ext

// HaveFP16Ext()
// =============
// Return TRUE if FP16 extension is supported

boolean HaveFP16Ext()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HighestEL

// HighestEL()
// ===========
// Returns the highest implemented Exception level.

bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
 return EL2;
 else
 return EL1;

shared/functions/system/HighestELUsingAArch32

// HighestELUsingAArch32()
// =======================
// Return TRUE if configured to boot into AArch32 operation

boolean HighestELUsingAArch32()
 if !HaveAnyAArch32() then return FALSE;
 return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH

shared/functions/system/Hint_DGH

// Provides a hint to close any gathering occurring within the micro-architecture.
Hint_DGH();
shared/functions/system/Hint_Yield

// Provides a hint that the task performed by a thread is of low
// importance so that it could yield to improve overall performance.
Hint_Yield();

shared/functions/system/IllegalExceptionReturn

// IllegalExceptionReturn()
// ========================

boolean IllegalExceptionReturn(bits(32) spsr)

 // Check for illegal return:
 // * To an unimplemented Exception level.
 // * To EL2 in Secure state, when SecureEL2 is not enabled.
 // * To EL0 using AArch64 state, with SPSR.M[0]==1.
 // * To AArch64 state with SPSR.M[1]==1.
 // * To AArch32 state with an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if Uint(target) > Uint(PSTATE.EL) then return TRUE;

 spsr_mode_is_aarch32 = (spsr<4> == '1');

 // Check for illegal return:
 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
 // Execution state used in the Exception level being returned to, as determined by
 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
 // * To AArch64 state from AArch32 state (should be caught by above)
 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
 assert known || (target == EL0 && !ELUsingAArch32(EL1));
 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

 // Check for illegal return from AArch32 to AArch64
 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

 // Check for illegal return to EL1 when HCR.TGE is set and when either of
 // * SecureEL2 is enabled.
 // * SecureEL2 is not enabled and EL1 is in Non-secure state.
 if HaveEL(EL2) && target == EL1 && HCR_EL2.TGE == '1' then
 if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;
 return FALSE;

shared/functions/system/InstrSet

enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

InstructionSynchronizationBarrier();

shared/functions/system/InterruptPending

// InterruptPending()
// =====================
// Return TRUE if there are any pending physical or virtual
// interrupts, and FALSE otherwise.

boolean InterruptPending()
 pending_physical_interrupt = (IRQPending() || FIQPending() ||
IsPhysicalSErrorPending();
pending_virtual_interrupt = !IsInHost() && ((HCR_EL2.<VSE,VI,VF> AND HCR_EL2.<AMO,IMO,FMO>) != '000');
return pending_physical_interrupt || pending_virtual_interrupt;

shared/functions/system/IsEventRegisterSet
// IsEventRegisterSet()
// ====================
// Return TRUE if the Event Register of this PE is set, and FALSE otherwise

boolean IsEventRegisterSet()
return EventRegister == '1';

shared/functions/system/IsHighestEL
// IsHighestEL()
// =============
// Returns TRUE if given exception level is the highest exception level implemented

boolean IsHighestEL(bits(2) el)
return HighestEL() == el;

shared/functions/system/IsInHost
// IsInHost()
// =========

boolean IsInHost()
return ELIsInHost(PSTATE.EL);

shared/functions/system/IsPhysicalSErrorPending
// Return TRUE if a physical SError interrupt is pending
boolean IsPhysicalSErrorPending();

shared/functions/system/IsSecure
// IsSecure()
// ===========
// Returns TRUE if current Exception level is in Secure state.

boolean IsSecure()
if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
 return TRUE;
elseif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
 return TRUE;
return IsSecureBelowEL3();

shared/functions/system/IsSecureBelowEL3
// IsSecureBelowEL3()
// ==================
// Return TRUE if an Exception level below EL3 is in Secure state
// or would be following an exception return to that level.
// //
// // Differs from IsSecure in that it ignores the current EL or Mode
// // in considering security state.
// // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
// // exception return would pass to Secure or Non-secure state.

boolean IsSecureBelowEL3()
if HaveEL(EL3) then
return SCR_GEN[].NS == '0';
else if HaveEL(EL2) && (HaveSecureEL2Ext() || HighestELUsingAArch32()) then
 // If Secure EL2 is not an architecture option then we must be Non-secure.
 return FALSE;
else
 // TRUE if processor is Secure or FALSE if Non-secure.
 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

shared/functions/system/IsSecureEL2Enabled

// IsSecureEL2Enabled()
// ================
// Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

boolean IsSecureEL2Enabled()
if HaveEL(EL2) && HaveSecureEL2Ext() then
 if HaveEL(EL3) then
 if !ELUsingAArch32(EL3) && SCR_EL3.EEL2 == '1' then
 return TRUE;
 else
 return FALSE;
 else
 return IsSecure();
 else
 return FALSE;

shared/functions/system/IsSynchronizablePhysicalSErrorPending

// Return TRUE if a synchronizable physical SError interrupt is pending
boolean IsSynchronizablePhysicalSErrorPending();

shared/functions/system/IsVirtualSErrorPending

// Return TRUE if a virtual SError interrupt is pending
boolean IsVirtualSErrorPending();

shared/functions/system/Mode_Bits

constant bits(5) M32_User = '10000';
constant bits(5) M32_FIQ = '10001';
constant bits(5) M32_IRQ = '10010';
constant bits(5) M32_Svc = '10011';
constant bits(5) M32_Monitor = '10110';
constant bits(5) M32_Abort = '10111';
constant bits(5) M32_Hyp = '11010';
constant bits(5) M32_Undef = '11011';
constant bits(5) M32_System = '11111';

shared/functions/system/PLOfEL

// PLOfEL()
// =========

PrivilegeLevel PLOfEL(bits(2) el)
case el of
 when EL3 return if HighestELUsingAArch32() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

ProcState PSTATE;
shared/functions/system/PrivilegeLevel

enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

shared/functions/system/ProcState

type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // oVerflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // SError interrupt mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) PAN, // Privileged Access Never Bit [v8.1]
 bits (1) UAO, // User Access Override [v8.2]
 bits (1) DIT, // Data Independent Timing [v8.4]
 bits (1) TCO, // Tag Check Override [v8.5, AArch64 only]
 bits (2) BT, // Branch Type [v8.5]
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception Level
 bits (1) nRW, // not Register Width: 0=64, 1=32
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (1) SSBS, // Speculative Store Bypass Safe
 bits (8) IT, // IF-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
 bits (5) M, // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

// RestoredITBits()
// =============
// Get the value of PSTATE.IT to be restored on this exception return.

bits(8) RestoredITBits(bits(32) spsr)

 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONstrained UNPredictable whether the IT bits are each set
 // to zero or copied from the SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then return '00000000';
 else return it;
 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && !IsZero(it<3:0>) then
 return '00000000';
 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCCTRL.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
 else
 return it;

shared/functions/system/SCRType

type SCRTypet;
shared/functions/system/SCR_GEN

// SCR_GEN[]
// =========

SCRType SCR_GEN[]
// AArch32 secure & AArch64 EL3 registers are not architecturally mapped
assert HaveEL(EL3);
bits(64) r;
if HighestELUsingAArch32() then
 r = ZeroExtend(SCR);
else
 r = ZeroExtend(SCR_EL3);
return r;

shared/functions/system/SendEvent

// Signal an event to all PEs in a multiprocessor system to set their Event Registers.
// When a PE executes the SEV instruction, it causes this function to be executed
SendEvent();

shared/functions/system/SendEventLocal

// SendEventLocal()
// ================
// Set the local Event Register of this PE.
// When a PE executes the SEVL instruction, it causes this function to be executed
SendEventLocal()
 EventRegister = '1';
 return;

shared/functions/system/SetPSTATEFromPSR

// SetPSTATEFromPSR()
// ==================
// Set PSTATE based on a PSR value
SetPSTATEFromPSR(bits(32) spsr)
 PSTATE.SS = DebugExceptionReturnSS(spsr);
 if IllegalExceptionReturn(spsr) then
 PSTATE.IL = '1';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 if HaveBTIExt() then PSTATE.BTYPE = bits(2) UNKNOWN;
 if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
 if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;
 if HaveMTEExt() then PSTATE.TCO = bit UNKNOWN;
 else
 PSTATE.IL = spsr<20>;
 if spsr<4> == '1' then // AArch32 state
 AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
 if HaveSSBSExt() then PSTATE.SSBS = spsr<23>;
 else // AArch64 state
 PSTATE.nRW = '0';
 PSTATE.EL = spsr<3:2>;
 PSTATE.SP = spsr<0>;
 if HaveBTIExt() then PSTATE.BTYPE = spsr<11:10>;
 if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
 if HaveUAOExt() then PSTATE.UAO = spsr<23>;
 if HaveDITExt() then PSTATE.DIT = spsr<24>;
 if HaveMTEExt() then PSTATE.TCO = spsr<25>;
 // If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
 // the T bit is set to zero or copied from SPSR.
 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
if ConstrainUnpredictableBool() then spsr<5> = '0';

// State that is reinstated regardless of illegal exception return
PSTATE.<N,Z,C,V> = spsr<31:28>;
if HavePANExt() then PSTATE.PAN = spsr<22>;
if PSTATE.nRM == '1' then // AArch32 state
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 ShouldAdvanceIT = FALSE;
 if HaveDITExt() then PSTATE.DIT = (if Restarting() then spsr<24> else spsr<21>);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch32 state
 PSTATE.T = spsr<5>; // PSTATE.J is RES0
else // AArch64 state
 PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state
return;

shared/functions/system/ShouldAdvanceIT

boolean ShouldAdvanceIT;

shared/functions/system/SpeculationBarrier

SpeculationBarrier();

shared/functions/system/SynchronizeContext

SynchronizeContext();

shared/functions/system/SynchronizeErrors

// Implements the error synchronization event.
SynchronizeErrors();

shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

// Take any pending unmasked physical SError interrupt
TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

shared/functions/system/TakeUnmaskedSErrorInterrupts

// Take any pending unmasked physical SError interrupt or unmasked virtual SError
// interrupt.
TakeUnmaskedSErrInterrupts();

shared/functions/system/ThisInstr

bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

integer ThisInstrLength();

shared/functions/system/Unreachable

Unreachable()
 assert FALSE;
shared/functions/system/UsingAArch32

// UsingAArch32()
// ==============
// Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

boolean UsingAArch32()
{
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAnyAArch32() then assert !aarch32;
 if HighestELUsingAArch32() then assert aarch32;
 return aarch32;
}

shared/functions/system/WaitForEvent

// WaitForEvent()
// ==============
// PE suspends its operation and enters a low-power state
// if the Event Register is clear when the WFE is executed

WaitForEvent()
{
 if EventRegister == '0' then
 EnterLowPowerState();
 return;
}

shared/functions/system/WaitForInterrupt

// WaitForInterrupt()
// ==================
// PE suspends its operation to enter a low-power state
// until a WFI wake-up event occurs or the PE is reset

WaitForInterrupt()
{
 EnterLowPowerState();
 return;
}

shared/functions/unpredictable/ConstrainUnpredictable

// Return the appropriate Constraint result to control the caller's behavior. The return value
// is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
// (The permitted list is determined by an assert or case statement at the call site.)
Constraint ConstrainUnpredictable();

shared/functions/unpredictable/ConstrainUnpredictableBits

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
// value is always an allocated value; that is, one for which the behavior is not itself
// CONSTRAINED.
(Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
// ============================
// This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

boolean ConstrainUnpredictableBool()
{
 c = ConstrainUnpredictable();
 assert c IN (Constraint_TRUE, Constraint_FALSE);
 return (c == Constraint_TRUE);
}
shared/functions/unpredictable/ConstrainUnpredictableInteger

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
// the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
// low to high, inclusive.
(Constraint, integer) ConstrainUnpredictableInteger(integer low, integer high);

shared/functions/unpredictable/Constraint

enumeration Constraint {// General
 Constraint_NONE, // Instruction executes with
 // no change or side-effect to its described
 Constraint_UNKNOWN, // Destination register has UNKNOWN value
 Constraint_UNDEF, // Instruction is UNDEFINED
 Constraint_UNDEF, // Instruction is UNDEFINED at EL0 only
 Constraint_NOP, // Instruction executes as NOP
 Constraint_TRUE, // Instruction executes unconditionally
 Constraint_FALSE, // Instruction executes conditionally
 Constraint_DISABLED, // Instruction executes with additional decode
 Constraint_UNCOND, // Instruction executes unconditionally
 Constraint_COND, // Instruction executes conditionally
 Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
 Constraint_WBSUPPRESS, // Load-store
 Constraint_FAULT, // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK};

shared/functions/vector/AdvSIMDExpandImm

// AdvSIMDExpandImm(
// ===============

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8:Zeros(8), 4);
 else
 imm64 = Replicate(imm8<7>, 8);
 if cmode<0> == '0' && op == '1' then
 imm64 = Replicate(imm8<6>, 8);
 if cmode<0> == '1' && op == '0' then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 5):imm8<5:0>:Zeros(19);
 if cmode<0> == '1' && op == '1' then
 imm64 = Replicate(imm32, 2);
 if UsingAArch32() then ReservedEncoding();
imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

return imm64;

shared/functions/vector/MatMulAdd

// MatMulAdd()
// ===========
// Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
// result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])

bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned, boolean op2_unsigned)
assert N == 128;

bits(N) result;
bits(32) sum;
integer prod;
for i = 0 to 1
 for j = 0 to 1
 sum = Elem[addend, 2*i + j, 32];
 for k = 0 to 7
 prod = Int(Elem[op1, 8*i + k, 8], op1_unsigned) * Int(Elem[op2, 8*j + k, 8], op2_unsigned);
 sum = sum + prod;
 Elem[result, 2*i + j, 32] = sum;
return result;

shared/functions/vector/PolynomialMult

// PolynomialMult()
// ================
bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
return result;

shared/functions/vector/SatQ

// SatQ()
// ======
(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

shared/functions/vector/SignedSatQ

// SignedSatQ()
// ============
(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
else
 result = i; saturated = FALSE;
return (result<N-1:0>, saturated);
shared/functions/vector/UnsignedRSqrtEstimate

// UnsignedRSqrtEstimate()
// ================

bits(N) UnsignedRSqrtEstimate(bits(N) operand)
assert N IN (16,32);
if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
else
 // input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
 // estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
 case N of
 when 16 estimate = RecipSqrtEstimate(UInt(operand<15:7>));
 when 32 estimate = RecipSqrtEstimate(UInt(operand<31:23>));
 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);
return result;

shared/functions/vector/UnsignedRecipEstimate

// UnsignedRecipEstimate()
// ===============

bits(N) UnsignedRecipEstimate(bits(N) operand)
assert N IN (16,32);
if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
else
 // input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)
 // estimate is in the range 256 to 511 representing [1.0 .. 2.0)
 case N of
 when 16 estimate = RecipEstimate(UInt(operand<15:7>));
 when 32 estimate = RecipEstimate(UInt(operand<31:23>));
 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);
return result;

shared/functions/vector/UnsignedSatQ

// UnsignedSatQ()
// =============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
eslf i < 0 then
 result = 0; saturated = TRUE;
else
 result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

J1.3.4 shared_trace

This section includes the following pseudocode functions:
- shared_trace/selfhosted/SelfHostedTraceEnabled on page J1-7929.
- shared_trace/selfhosted/TraceAllowed on page J1-7929.
- shared_trace/selfhosted/TraceContextIDR2 on page J1-7929.
shared/trace/selfhosted/TraceSynchronizationBarrier.

shared/trace/selfhosted/TraceTimeStamp.

shared/trace/selfhosted/TraceAllowed

// TraceAllowed()
// ==============
// Returns TRUE if Self-hosted Trace is allowed in the current Security state and Exception Level

boolean TraceAllowed()
if !TraceAllowed() then return FALSE;
if SelfHostedTraceEnabled() then
 if IsSecure() && HaveEL(EL3) then
 secure_trace_enable = (if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE);
 niden = (secure_trace_enable == '0' || ExternalSecureNoninvasiveDebugEnabled());
 else
 // If no EL3, IsSecure() returns the Effective value of (SCR_EL3.NS == '0')
 niden = (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled());
 return (EDSCR.TFO == '0' || !niden);

shared/trace/selfhosted/TraceContextIDR2

// TraceContextIDR2()
// ================

boolean TraceContextIDR2()
if !TraceAllowed() || !HaveEL(EL2) then return FALSE;
return (!SelfHostedTraceEnabled() || TRFCR_EL2.CX == '1');

shared/trace/selfhosted/TraceSynchronizationBarrier

// Memory barrier instruction that preserves the relative order of memory accesses to System
// registers due to trace operations and other memory accesses to the same registers
TraceSynchronizationBarrier();

shared/trace/selfhosted/TraceTimeStamp

// TraceTimeStamp()
// ===============

TimeStamp TraceTimeStamp()
if SelfHostedTraceEnabled() then
 if HaveEL(EL2) then
TS_el2 = TRFCR_EL2.TS;
if TS_el2 == '10' then (-, TS_el2) = ConstrainUnpredictableBits(); // Reserved value
 case TS_el2 of
 when '00' /* falls through to check TRFCR_EL1.TS */
 when '01' return TimeStamp_Virtual;
 when '10' if HaveECVExt() then return TimeStamp_OffsetPhysical;
 when '11' return TimeStamp_Physical;
 otherwise Unreachable(); // ConstrainUnpredictableBits removes this case
 end;
TS_el1 = TRFCR_EL1.TS;
if TS_el1 == 'x0' then (-, TS_el1) = ConstrainUnpredictableBits(); // Reserved values
 case TS_el1 of
 when '01' return TimeStamp_Virtual;
 when '10' if HaveECVExt() then return TimeStamp_OffsetPhysical;
 when '11' return TimeStamp_Physical;
 otherwise Unreachable(); // ConstrainUnpredictableBits removes this case
 end;
else
 return TimeStamp_CoreSight;

J1.3.5 shared/translation

This section includes the following pseudocode functions:

- shared/translation/attrs/CombineS1S2AttrHints
- shared/translation/attrs/CombineS1S2Device on page J1-7931.
- shared/translation/attrs/LongConvertAttrsHints on page J1-7931.
- shared/translation/attrs/MemAttrDefaults on page J1-7932.
- shared/translation/attrs/S1CacheDisabled on page J1-7932.
- shared/translation/attrs/S2AttrDecode on page J1-7932.
- shared/translation/attrs/S2CacheDisabled on page J1-7933.
- shared/translation/attrs/S2ConvertAttrsHints on page J1-7933.
- shared/translation/attrs/ShortConvertAttrsHints on page J1-7933.
- shared/translation/translation/HasS2Translation on page J1-7934.
- shared/translation/translation/Have16bitVMID on page J1-7934.
- shared/translation/translation/PAMax on page J1-7935.
- shared/translation/translation/S1TranslationRegime on page J1-7935.
- shared/translation/translation/VAMax on page J1-7935.

shared/translation/attrs/CombineS1S2AttrHints

// CombineS1S2AttrHints()
// ---------------------
// Combines cacheability attributes and allocation hints from stage 1 and stage 2

MemAttrHints CombineS1S2AttrHints(MemAttrHints s1desc, MemAttrHints s2desc, AccType s2acctype) {
 MemAttrHints result;
 apply_force_writeback = HaveStage2MemAttrControl() && HCR_EL2.FWB == '1';
 if apply_force_writeback then
 if S2CacheDisabled(s2acctype) then
 result.attrs = MemAttr_NC; // force Non-cacheable
 elsif s2desc.attrs == '11' then
 result.attrs = s1desc.attrs;
 elsif s2desc.attrs == '10' then
 result.attrs = MemAttr_WB; // force Write-back
 else
 result.attrs = MemAttr_NC;
 end;
 else
 if s2desc.attrs == '01' || s1desc.attrs == '01' then
 result.attrs = bits(2) UNKNOWN; // Reserved
 elsif s2desc.attrs == MemAttr_NC || s1desc.attrs == MemAttr_NC then
 result.attrs = MemAttr_NC;
 else
 result.attrs = MemAttr_NC;
 end;
 end;
}
result.attrs = MemAttr_NC; // Non-cacheable
 elsif s2desc.attrs == MemAttr_WT || s1desc.attrs == MemAttr_WT then
 result.attrs = MemAttr_WT; // Write-through
 else
 result.attrs = MemAttr_WB; // Write-back

 if result.attrs == MemAttr_NC then
 result.hints = MemHint_No;
 elsif apply_force_writeback then
 if s1desc.attrs != MemAttr_NC then
 result.hints = s1desc.hints;
 else
 result.hints = MemHint_RWA;
 else
 result.hints = s1desc.hints;
 result.transient = s1desc.transient;
 return result;

shared/translation/attrs/CombineS1S2Device

// CombineS1S2Device()
// ===================
// Combines device types from stage 1 and stage 2
DeviceType CombineS1S2Device(DeviceType s1device, DeviceType s2device)
if s2device == DeviceType_nGnRnE || s1device == DeviceType_nGnRnE then
 result = DeviceType_nGnRnE;
elsif s2device == DeviceType_nGnRE || s1device == DeviceType_nGnRE then
 result = DeviceType_nGnRE;
elsif s2device == DeviceType_nGRE || s1device == DeviceType_nGRE then
 result = DeviceType_nGRE;
else
 result = DeviceType_GRE;
return result;

shared/translation/attrs/LongConvertAttrsHints

// LongConvertAttrsHints()
// =======================
// Convert the long attribute fields for Normal memory as used in the MAIR fields
// to orthogonal attributes and hints
MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType accctype)
assert !IsZero(attrfield); MemAttrHints result;
if S1CacheDisabled(accctype) then // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
else if attrfield<3:2> == '00' then // Write-through transient
 result.attrs = MemAttr_WT;
 result.hints = attrfield<1:0>;
 result.transient = TRUE;
elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 result.transient = FALSE;
elsif attrfield<3:2> == '01' then // Write-back transient
 result.attrs = MemAttr_WB;
 result.hints = attrfield<1:0>;
 result.transient = TRUE;
else // Write-through/Write-back non-transient
 result.attrs = attrfield<3:2>;

shared/translation/attrs/MemAttrDefaults

// MemAttrDefaults()
// =============
// Supply default values for memory attributes, including overriding the shareability attributes
// for Device and Non-cacheable memory types.

MemoryAttributes MemAttrDefaults(MemoryAttributes memattrs)
{
 if memattrs.memtype == MemType_Device then
 memattrs.inner = MemAttrHints UNKNOWN;
 memattrs.outer = MemAttrHints UNKNOWN;
 memattrs.shareable = TRUE;
 memattrsoutershareable = TRUE;
 else
 memattrs.device = DeviceType UNKNOWN;
 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
 memattrs.shareable = TRUE;
 memattrsoutershareable = TRUE;
 return memattrs;
}

shared/translation/attrs/S1CacheDisabled

// S1CacheDisabled()
// =============
// ELUsingAArch32()
// if PSTATE.EL == EL2 then
// enable = if accctype == AccType_IFETCH then HSCTLR.I else HSCTLR.C;
// else
// enable = if accctype == AccType_IFETCH then SCTLR.I else SCTLR.C;
// return enable == '0';

shared/translation/attrs/S2AttrDecode

// S2AttrDecode()
// =============
// Converts the Stage 2 attribute fields into orthogonal attributes and hints

MemoryAttributes S2AttrDecode(bits(2) SH, bits(4) attr, AccType accctype)
{
 MemoryAttributes memattrs;
 apply_force_writeback = HaveStage2MemAttrControl() && HCR_EL2.FWB == '1';
 if apply_force_writeback & attr<2> == '0' || attr<3:2> == '00' then
 memattrs.memtype = MemType_Device;
 case attr<1:0> of
 when '00' memattrs.device = DeviceType_nGnRnE;
 when '01' memattrs.device = DeviceType_nGnRE;
 when '10' memattrs.device = DeviceType_nGRE;
 when '11' memattrs.device = DeviceType_GRE;
 // Normal memory
 elsif apply_force_writeback then
 if attr<2> == '1' then

memattrs.mtype = MemType_Normal;
memattrs.inner.attrs = attr<1:0>;
memattrs.outer.attrs = attr<1:0>;
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';
elsif attr<1:0> != '00' then
 memattrs.mtype = MemType_Normal;
 memattrs.outer = S2ConvertAttrsHints(attr<3:2>, acctype);
 memattrs.inner = S2ConvertAttrsHints(attr<1:0>, acctype);
 memattrs.shareable = SH<1> == '1';
 memattrs.outershareable = SH == '10';
else
 memattrs = MemoryAttributes UNKNOWN; // Reserved
end if
return MemAttrDefaults(memattrs);

shared/translation/attrs/S2CacheDisabled

// S2CacheDisabled()
// ===============

boolean S2CacheDisabled(AccType acctype)
if ELUsingAArch32(EL2) then
 disable = if acctype == AccType_IFETCH then HCR2.ID else HCR2.CD;
else
 disable = if acctype == AccType_IFETCH then HCR_EL2.ID else HCR_EL2.CD;
return disable == '1';

shared/translation/attrs/S2ConvertAttrsHints

// S2ConvertAttrsHints()
// =====================
// Converts the attribute fields for Normal memory as used in stage 2
// descriptors to orthogonal attributes and hints

MemAttrHints S2ConvertAttrsHints(bits(2) attr, AccType acctype)
assert attr != '00';
MemAttrHints result;
if S2CacheDisabled(acctype) then // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
else
 case attr of
 when '01' // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 when '10' // Write-through
 result.attrs = MemAttr_WT;
 result.hints = MemHint_RWA;
 when '11' // Write-back
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RWA;
 result.transient = FALSE;
end case
return result;

shared/translation/attrs/ShortConvertAttrsHints

// ShortConvertAttrsHints()
// ========================
// Converts the short attribute fields for Normal memory as used in the TTBR and
// TEX fields to orthogonal attributes and hints
MemAttrHints ShortConvertAttrsHints(bits(2) RGN, AccType acctype, boolean secondstage)

MemAttrHints result;
if (!secondstage && S1CacheDisabled(acctype)) || (secondstage && S2CacheDisabled(acctype)) then
 // Force Non-cacheable
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
else
 case RGN of
 when '00' // Non-cacheable (no allocate)
 result.attrs = MemAttr_NC;
 result.hints = MemHint_No;
 when '01' // Write-back, Read and Write allocate
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RWA;
 when '10' // Write-through, Read allocate
 result.attrs = MemAttr_WT;
 result.hints = MemHint_RA;
 when '11' // Write-back, Read allocate
 result.attrs = MemAttr_WB;
 result.hints = MemHint_RA;
 endcase
 result.transient = FALSE;

 return result;

shared/translation/attrs/WalkAttrDecode

// WalkAttrDecode()
// ================
MemoryAttributes WalkAttrDecode(bits(2) SH, bits(2) ORGN, bits(2) IRGN, boolean secondstage)

MemoryAttributes memattrs;

AccType acctype = AccType_NORMAL;

memattrs.memtype = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(IRGN, acctype, secondstage);
memattrs.outer = ShortConvertAttrsHints(ORGN, acctype, secondstage);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';
memattrs.tagged = FALSE;

return MemAttrDefaults(memattrs);

shared/translation/translation/HasS2Translation

// HasS2Translation()
// ==================
// Returns TRUE if stage 2 translation is present for the current translation regime

boolean HasS2Translation()
 return (EL2Enabled() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

shared/translation/translation/Have16bitVMID

// Returns TRUE if EL2 and support for a 16-bit VMID are implemented.

boolean Have16bitVMID();
shared/translation/translation/PAMax

// PAMax()
// ========
// Returns the IMPLEMENTATION DEFINED upper limit on the physical address
// size for this processor, as log2().

integer PAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

shared/translation/translation/S1TranslationRegime

// S1TranslationRegime()
// =====================
// Stage 1 translation regime for the given Exception level

bits(2) S1TranslationRegime(bits(2) el)
 if el ! = EL0 then
 return el;
 elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then
 return EL3;
 elsif HaveVirtHostExt() && ELIsInHost(el) then
 return EL2;
 else
 return EL1;

// S1TranslationRegime()
// =====================
// Returns the Exception level controlling the current Stage 1 translation regime. For the most
// part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
// return the correct value.

bits(2) S1TranslationRegime()
 return S1TranslationRegime(PSTATE.EL);

shared/translation/translation/VAMax

// VAMax()
// ========
// Returns the IMPLEMENTATION DEFINED upper limit on the virtual address
// size for this processor, as log2().

integer VAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";
Appendix K1
Architectural Constraints on UNPREDICTABLE Behaviors

This chapter describes the architectural constraints on UNPREDICTABLE behaviors in the Armv8 architecture. It contains the following sections:

• AArch32 CONSTRAINED UNPREDICTABLE behaviors on page K1-7940.
• AArch64 CONSTRAINED UNPREDICTABLE behaviors on page K1-7965.
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

Armv8 defines architecturally-required constraints on many behaviors that are UNPREDICTABLE in Armv7. The following sections define those constraints:

- Overview of the constraints on Armv7 UNPREDICTABLE behaviors on page K1-7941.
- Using R13 on page K1-7941.
- Using R15 on page K1-7941.
- Branching into an IT block on page K1-7942.
- Branching to an unaligned PC on page K1-7942.
- Loads and Stores to unaligned locations on page K1-7942.
- CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT on page K1-7942.
- Unallocated System register access instructions on page K1-7944.
- SBZ or SBO fields T32 and A32 in instructions on page K1-7944.
- UNPREDICTABLE cases in immediate constants in T32 data-processing instructions on page K1-7944.
- UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions on page K1-7945.
- CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7945.
- CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization on page K1-7946
- Translation Table Base Address alignment on page K1-7946.
- Handling of System register control fields for Advanced SIMD and floating-point operation on page K1-7946.
- Mapping of non-idempotent memory locations using the Normal memory type on page K1-7947.
- The Performance Monitors Extension on page K1-7947.
- The Activity Monitors Extension on page K1-7949.
- Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED on page K1-7950.
- Out of range VA on page K1-7950.
- Instruction fetches from Device memory on page K1-7950.
- Multi-access instructions that load the PC from Device memory on page K1-7950.
- Programming CSSEL.R.Level for a cache level that is not implemented on page K1-7950.
- Crossing a page boundary with different memory types or Shareability attributes on page K1-7951.
- Crossing a 4KB boundary with a Device access on page K1-7951.
- UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs on page K1-7952.
- CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings on page K1-7952.
- Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-7953.
- CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set on page K1-7953.
K1.1 AArch32 CONSTRAINED UNPREDICTABLE behaviors

- CONSTRAINED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions on page K1-7956.
- CONSTRAINED UNPREDICTABLE behaviors associated with the VTCR on page K1-7960.
- CONSTRAINED UNPREDICTABLE behavior of EL2 features on page K1-7960.
- Reserved values in System and memory-mapped registers and translation table entries on page K1-7963.
- CONSTRAINED UNPREDICTABLE behavior in Debug state on page K1-7964.

K1.1.1 Overview of the constraints on Armv7 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not use. For execution in AArch32 state, where previous versions of the architecture define behavior as UNPREDICTABLE, the Armv8-A architecture specifies a narrow range of permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

--- Note ---
Software designed to be compatible with the Armv8-A architecture must not rely on these CONSTRAINED UNPREDICTABLE cases.

K1.1.2 Using R13

In prior versions of the architecture, the use of R13 as a named register specifier was described as UNPREDICTABLE in the pseudocode. In the Armv8-A architecture, the use of R13 as a named register specifier is not UNPREDICTABLE, unless this is specifically stated, and R13 can be used in the regular form. Bits[1:0] of R13 are not treated as RES0, but can hold any values programmed into them.

K1.1.3 Using R15

All uses of R15 as a named register specifier for a source register that are described as CONSTRAINED UNPREDICTABLE in the pseudocode or in other places in this Manual must do one of the following:
- Cause the instruction to be treated as UNDEFINED.
- Cause the instruction to execute as a NOP.
- Read or return an UNKNOWN value for the source register specified as R15.

All uses of R15 as a named register specifier for a destination register that are described as CONSTRAINED UNPREDICTABLE in the pseudocode or in other places in this reference manual must do one of the following:
- Cause the instruction to be treated as UNDEFINED.
- Cause the instruction to execute as a NOP.
- Ignore the write.
- Branch to an UNKNOWN location in either A32 or T32 state.

The choice between these behaviors might in some implementations vary from instruction to instruction, or between different instances of the same instruction.

Instructions that are CONSTRAINED UNPREDICTABLE when the base register is R15 and the instruction specifies a writeback of the base register, are treated as having R15 as both a source register and a destination register.

For instructions that have two destination registers, for example LDRD, MRRC, and many of the multiply instructions, if Rt, Rt2, RdLo, or RdHi is R15, then the other destination register of the pair is UNKNOWN, if the CONSTRAINED UNPREDICTABLE behavior for the write to R15 is either to ignore the write or to branch to an UNKNOWN location.

For instructions that affect any or all of PSTATE.{N, Z, C, V}, PSTATE.Q, and PSTATE.GE when the register specifier is not R15, any flags affected by an instruction that is CONSTRAINED UNPREDICTABLE when the register specifier is R15 become UNKNOWN,
In addition, for MRC instructions that use R15 as the destination register descriptor, and therefore target APSR_{nzcv} where these are described as being CONSTRAINED UNPREDICTABLE, PSTATE.{N, Z, C, V} becomes UNKNOWN.

K1.1.4 Branching into an IT block

Branching into an IT block leads to CONSTRAINED UNPREDICTABLE behavior. Execution starts from the address determined by the branch, but each instruction in the IT block is:

- Executed as if it were not in an IT block. This means that it is executed unconditionally.
- Executed as if it had passed its Condition code check within an IT block.
- Executed as a NOP. That is, it behaves as if it had failed the Condition code check.

K1.1.5 Branching to an unaligned PC

In A32 state, when branching to an address that is not word aligned and is defined to be CONSTRAINED UNPREDICTABLE, one of the following behaviors must occur:

- The unaligned location is forced to be aligned.
- The unaligned address generates an exception on the first instruction using the unaligned PC value.

 If that instruction is executed at EL0 and either of the following applies, the exception is taken to EL2:
 - EL2 is using AArch32 and the value of HCR.TGE is 1.
 - EL2 is using AArch64 and the value of HCR_EL2.TGE is 1.

 If the instruction is executed at EL0 when the applicable TGE bit is 0 the exception is taken to EL1.

 If the instruction is executed at an Exception level that is higher than EL0 the exception is taken to the Exception level at which the instruction was executed.

 In all cases, the exception is generated only if the first instruction using the unaligned PC value is architecturally executed.

 If the exception that results from a branch to an unaligned PC value:

 - Is taken to an Exception level that is using AArch64, it is reported as a PC alignment fault exception, see ISS encoding for an exception from an Illegal Execution state, or a PC or SP alignment fault on page D13-2979.
 - Is taken to an Exception level that is using AArch32, it is reported as a Prefetch Abort exception, see Prefetch Abort exception reporting a PC alignment fault exception on page G1-5786.

 Note

 Because bit\[0\] is used for interworking, it is impossible to specify a branch to A32 state when the bottom bit of the target address is 1. Therefore the bottom bit of IFAR, HIFAR, or FAR_ELx is 0 for all these cases.

K1.1.6 Loads and Stores to unaligned locations

Some unaligned loads and stores in the Armv7 architecture are described as UNPREDICTABLE. These are defined in the Armv8-A architecture to do one of the following:

- Take an alignment fault.
- Perform the specified load or store to the unaligned memory location.

K1.1.7 CONSTRAINED UNPREDICTABLE behavior associated with IT instructions and PSTATE.IT

A number of instructions in the architecture are described as being CONSTRAINED UNPREDICTABLE either:

- Anywhere within an IT block.
- As an instruction within an IT block, other than the last instruction within an IT block.

Unless otherwise stated in this manual, when these instructions are committed for execution, one of the following occurs:

- An UNDEFINED exception results.
• The instructions are executed as if they had passed the Condition code check.
• The instructions execute as NOPs. This means that they behave as if they had failed the Condition code check.

The behavior might in some implementations vary from instruction to instruction, or between different instances of the same instruction.

Many instructions that are CONSTRAINED UNPREDICTABLE in an IT block are branch instructions or other non-sequential instructions that change the PC. Where these instructions are not treated as UNDEFINED within an IT block, the remaining iterations of the PSTATE.IT state machine must be treated in one of the following ways:

• PSTATE.IT is cleared to 0.
• PSTATE.IT advances for either a sequential or a nonsequential change of the PC in the same way as it does for instructions that are not CONSTRAINED UNPREDICTABLE that cause a sequential change of the PC.

——— Note ————
This does not apply to an instruction that is the last instruction in an IT block.

The instructions addressed by the updated PC must do one of the following:

• Execute as if they had passed the Condition code check for the remaining iterations of the PSTATE.IT state machine.
• Execute as NOPs. That is, they behave as if they had failed the Condition code check for the remaining iterations of the PSTATE.IT state machine.
• Execute as if they were unconditional, or, if the instructions are part of another IT block, in accordance with the behavior described in Branching into an IT block on page K1-7942.

The behavior might in some implementations vary from instruction to instruction, or between different instances of the same instruction.

For exception returns or Debug state exits that cause PSTATE.IT to be set to a reserved value in T32 state or that return to A32 state with a nonzero value in PSTATE.IT, the PSTATE.IT bits are forced to ‘00000000’. The reserved values are:

\[
\begin{align*}
PSTATE.IT[7:4] & = '0000' \land PSTATE.IT[3:0] = '0000' \\
PSTATE.IT[2:0] & = '000' \quad \text{when SCTLR/SCTLR_EL1.ITD} = '1'
\end{align*}
\]

Exception returns or Debug state exits that set PSTATE.IT to a non-reserved value in T32 state can occur when the flow of execution returns to a point:

• Outside an IT block, but with the PSTATE.IT bits set to a value other than ‘00000000’.
• Inside an IT block, but with a different value of the PSTATE.IT bits than if the IT block had been executed without an exception return or Debug state exit.

In this case the instructions at the target of the exception return or Debug state exit must do one of the following:

• Execute as if they passed the Condition code check for the remaining iterations of the PSTATE.IT state machine.
• Execute as NOPs. That is, they behave as if they failed the Condition code check for the remaining iterations of the PSTATE.IT state machine.
• Execute as if they were unconditional, or as if the instruction were part of another IT block, in accordance with the behavior in Branching into an IT block on page K1-7942.

The remaining iterations of the PSTATE.IT state machine must behave in one of the following ways:

• The PSTATE.IT state machine advances as if it were in an IT block.
• The PSTATE.IT bits are ignored.
• The PSTATE.IT bits are forced to ‘00000000’.
K1.1.8 **Unallocated System register access instructions**

In Armv8-A, accesses to unallocated System register encodings are UNDEFINED. This includes:

- Reads using encodings that are defined as WO.
- Writes using encodings that are defined as RO.
- MCR or MRC accesses to using a set of \{coproc, CRn, opc1, CRm, opc2\} values that the Armv7 architecture defined as UNPREDICTABLE.
- Accesses to System registers in the \(\text{coproc} = 0b111x\) encoding space that the Armv7 architecture defined as UNPREDICTABLE when particular functionality was not implemented, when an Armv8 implementation does not include the Exception level that provides that functionality.

K1.1.9 **SBZ or SBO fields T32 and A32 in instructions**

Many of the A32 and T32 instructions have (0) or (1) in the instruction decode to indicate should-be-zero, SBZ, or should-be-one, SBO. If the instruction bit pattern of an instruction is executed with these fields not having the should be values, one of the following must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction operates as if the bit had the should-be value.
- Any destination registers of the instruction become UNKNOWN.

The exceptions to this rule are:

- `LDM, LDMIA, LDMFD` on page F5-4436.
- `LDMDB, LDMEA` on page F5-4446.
- `LDR (literal)` on page F5-4455.
- `LDRB (literal)` on page F5-4465.
- `LDRD (immediate)` on page F5-4473.
- `LDRD (register)` on page F5-4479.
- `LDRD (literal)` on page F5-4505.
- `LDRSH (literal)` on page F5-4516.
- `POP` on page F5-4623.
- `PUSH` on page F5-4630.
- `SDIV` on page F5-4710.
- `STM, STMIA, STMEA` on page F5-4803.
- `STMDB, STMFD` on page F5-4811.
- `UDIV` on page F5-4925.

K1.1.10 **UNPREDICTABLE cases in immediate constants in T32 data-processing instructions**

The description of immediate constants in T32 data processing modifies immediate constants in T32 instructions on page F2-4135 include constant values that were UNPREDICTABLE in Armv7. Instruction encodings on page F2-4116 describes 32-bit T32 instructions as \{hw1, hw2\}, where hw1 is the left-hand halfword in the 32-bit encoding diagram for the instruction. The UNPREDICTABLE cases are those where both:

- \(\text{hw2}[7:0] == 0b00000000\).
- \(\text{hw1}[10] == 0\) and either:
 - \(\text{hw2}[14:12] == 0b001\).
 - \(\text{hw2}[14:12] == 0b010\).
 - \(\text{hw2}[14:12] == 0b011\).
In Armv8 the CONSTRAINED UNPREDICTABLE behavior is that these encodings produce the value 0b0000000.

K1.1.11 UNPREDICTABLE cases in immediate constants in Advanced SIMD instructions

The description of immediate constants in Modified immediate constants in T32 and A32 Advanced SIMD instructions on page F2-4137 include constant values that were UNPREDICTABLE in Armv7. The UNPREDICTABLE cases are those where:

- The bits that the encoding diagram shows as abcd are all 0.
 In the A32 encoding these are bits[24, 18:6, 3:0]. In the T32 encoding they are bits \{hw1[12, 2:0], hw2[3:0]\}.
- The bits that the encoding diagram shows as cmode[3:1] are one of \{0b001, 0b010, 0b011, 0b101, 0b110\}.
 In the A32 encoding these are bits[11:9]. In the T32 encoding they are bits hw2[11:9].

In Armv8 the CONSTRAINED UNPREDICTABLE behavior is that these encodings produce an immediate constant value of zero.

K1.1.12 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values

The Arm architecture allows copies of control values or data values to be cached in a cache or TLB. This can lead to CONSTRAINED UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated following a change of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

- The old data or control value.
- The new data or control value.
- An amalgamation of the old and new data or control values.

In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case, for a particular TTBR, the behavior of the PE is consistent with one of:

- The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table entries pointed to by that TTBR are met.
- An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table entries pointed to by that TTBR are met.

Note

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation of two or more values then that Effective value must not generate a privilege violation. So, for example:

- Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception level and Security state must not make it possible to access regions of memory with permissions or attributes that could not be accessed at that Exception level and Security state.

- Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the misprogramming must not make it possible to access regions of memory with permissions or attributes that could not be accessed at the Exception level of that TTBR and the Security state corresponding to the translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits within a TLB might generate an exception, reporting the exception using the TLB Conflict fault code, see TLB conflict aborts on page G5-6033.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.
K1.1.13 **CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization**

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This can lead to CONSTRAINED UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value or the new value.

Where multiple control values are updated but not yet synchronized, each control value might independently be the old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an implementation has constructed as different areas of functionality, those areas might independently treat the control value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.

K1.1.14 **Translation Table Base Address alignment**

A misaligned Translation Table Base Address can occur if:

- The VMSAv8-32 Short-descriptor translation table format is enabled and TTBR0[13-N:7], which is defined to be RES0, contains one or more nonzero values.
- The VMSAv8-32 Long-descriptor translation table format is enabled, and TTBR0[x-1:3], TTBR1[x-1:3], HTTBR[x-1:3], or VTTBR[x-1:3], which are defined to be RES0, contain one or more nonzero values.

In the event of a misaligned Translation Table Base Address, one of the following behaviors must occur:

- The field that is defined to be RES0 is treated as if all bits were zero:
 - The value that is read back might be the value written or it might be zero.
- The calculation of an address for a translation table walk using that register might be corrupted in those bits that are nonzero.

K1.1.15 **Handling of System register control fields for Advanced SIMD and floating-point operation**

For historical reasons described in *Background to the System register interface on page G1-5810*, each of the CPACR, HCPTR, and NSACR has a pair of control fields that were defined to have identical functionality for controlling Advanced SIMD and floating-point operation. These fields are:

- CPACR.{cp10, cp11}.
- HCPTR.{TCP10, TCP11}.
- NSACR.{cp10, cp11}.

The architecture requires that both fields in one of these pairs are programmed to the same value. If this is not done, then the CONSTRAINED UNPREDICTABLE behavior is that behavior is the same as if the cp11, or TCP11, control field was equal to the cp10, or TCP10, field in all respects other than the value read back by a direct read of the register. After a register write that writes different values to the two fields of a pair, a direct read of the register might return an UNKNOWN value for the cp11 or TCP11 field.

--- Note ---
This means that, when different values are written to the {cp10, cp11} fields in a single register, the architecture permits but does not require that a read of that register returns the value written to the cp11 field.

CONSTRAINED UNPREDICTABLE CPACR and NSACR settings

If CPACR.cp<n> contains the encoding ‘10’, then one of the following behaviors must occur:

- The encoding maps onto any of the allocated values, but otherwise does not cause UNPREDICTABLE behavior.
• The encoding causes effects that could be achieved by a combination of more than one of the allocated encodings.

Note

In Armv7, CPACR had a D32DIS bit, and NSACR had an NSD32DIS bit. There is no CPACR.D32DIS or NSACR.NSD32DIS in Armv8-A, and the corresponding bits in the two registers are RES0.

K1.1.16 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent memory location may become corrupted in the following circumstances:

• Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur as part of a simple sequential execution.
• Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of writes seen by the memory location might not be the number and size that occur as part of a simple sequential execution.

K1.1.17 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance Monitors Extension in AArch32 state:

• CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR.
• CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n> on page K1-7948.
• CONSTRAINED UNPREDICTABLE behavior caused by HDCR.HPMN on page K1-7949.

CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER or PMXEVCNTR

If FEAT.FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64, permitted access to PMXEVCNTR and PMXEVTYPER are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR.SEL is greater than the number of counters accessible at this Exception level, accesses to PMXEVTYPER or PMXEVCNTR can cause CONSTRAINED UNPREDICTABLE behavior. This occurs when one of the following is true:

• If PMSELR.SEL is not equal to 31, and PMSELR.SEL is greater than or equal to PMCR.N, and the PE is executing in EL2 or EL3.
• If FEAT_SEL2 is disabled or is not implemented, PMSELR.SEL is not 31, and PMSELR.SEL is greater than or equal to PMCR.N, and the PE is executing in Secure EL1 or Secure EL0.
• If PMSELR.SEL is not 31, and PMSELR.SEL is greater than or equal to HDCR.HPMN, and the PE is executing in EL1 or EL0.

In these UNPREDICTABLE cases, one of the following behaviors must occur:

• Accesses to PMXEVTYPER or PMXEVCNTR from that mode are UNDEFINED.
• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as RAZ/WI.
• Accesses to PMXEVTYPER or PMXEVCNTR from that mode execute as NOPs.
• Accesses to PMXEVTYPER or PMXEVCNTR from that mode behave as if PMSELR.SEL contains an UNKNOWN value that is less than the number of counters accessible at the current Exception level and Security state.
• Accesses to PMXEVTYPER or PMXEVCNTR behave as if PMSELR.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of implemented counters but greater than the number of accessible counters at this Exception level, access to PMXEVTPYER or PMXEVCNTR from EL1 or permitted access from EL0 is trapped to EL2.

If PMSELR.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR are UNDEFINED.
• Accesses to PMXEVCNTR behave as RAZ/WI.
• Accesses to PMXEVCNTR execute as NOPs.
• Accesses to PMXEVCNTR behave as if PMSELR.SEL contains an UNKNOWN value that is less than the number of counters accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, for an access to PMXEVCNTR from EL1 or a permitted access from EL0, if the counter is implemented but not accessible at the current Exception level, the register access is trapped to EL2.

Note
If EL2 is implemented and enabled in the current Security state, HDCR.HPMN, or MDCR_EL2.HPMN, identifies the number of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of implemented counters.

Accesses from EL0 to PMXEVCNTR are permitted when:
• EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.
• EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 to PMXEVTPYPER are permitted when:
• EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
• EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

CONSTRANDED UNPREDICTABLE accesses to PMEVCNTR<n> and PMEVTYPER<n>

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64, permitted access to PMEVCNTR<n> and PMEVTYPER<n> are not CONSTRANDED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of counters available in the current Exception level and state, reads and writes of PMEVCNTR<n> and PMEVTYPER<n> are CONSTRANDED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n> or PMEVTYPER<n> from EL1 or a permitted access from EL0, if the counter is implemented but not accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 are permitted to PMEVCNTR<n> when:
— EL1 is using AArch32 and the values of PMUSERENR.{ER, EN} are both 1.
— EL1 is using AArch64 and the values of PMUSERENR_EL0.{ER, EN} are both 1.

Accesses from EL0 are permitted to PMEVTYPER<n> when:
— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

Note
If EL2 is implemented and enabled in the current Security state, at EL0 and EL1, HDCR.HPMN, or MDCR_EL2.HPMN, identifies the number of accessible counters. Otherwise, the number of accessible counters is the number of implemented counters.
CONSTRANDED UNPREDICATABLE behavior caused by HDCR.HPMN

If HDCR.HPMN is set to 0 or to a value greater than PMCR.N, then the CONSTRANDED UNPREDICATABLE behavior is:

- The value returned by a direct read of HDCR.HPMN is UNKNOWN.
- Either:
 - An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if HDCR.HPMN is set to an UNKNOWN non-zero value less than PMCR.N.
 - All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

K1.1.18 The Activity Monitors Extension

The following subsections describe CONSTRANDED UNPREDICATABLE behaviors when accessing the Activity Monitors registers in AArch32 state:

- **CONSTRANDED UNPREDICATABLE accesses to AMEVCNTR0<n> and AMEVTYPER0<n>**

 - If <n> is greater than the number of architected activity monitor event counters, reads and writes of AMEVCNTR0<n> and AMEVTYPER0<n> are CONSTRANDED UNPREDICATABLE, and the following behaviors are permitted:
 - Accesses to the register are UNDEFINED.
 - Accesses to the register behave as RAZ/WI.
 - Accesses to the register execute as a NOP.

 Note

 AMCGCR.CG0NC identifies the number of architected activity monitor event counters.

- **CONSTRANDED UNPREDICATABLE accesses to AMEVCNTR1<n> and AMEVTYPER1<n>**

 - If <n> is greater than the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<n> and AMEVTYPER1<n> are CONSTRANDED UNPREDICATABLE, and the following behaviors are permitted:
 - Accesses to the register are UNDEFINED.
 - Accesses to the register behave as RAZ/WI.
 - Accesses to the register execute as a NOP.

 Note

 AMCGCR.CG1NC identifies the number of auxiliary activity monitor event counters.

- **CONSTRANDED UNPREDICATABLE accesses to AMCNTENCLR1 and AMCNTENSET1**

 - If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of AMCNTENCLR1 and AMCNTENSET1 are CONSTRANDED UNPREDICATABLE, and the following behaviors are permitted:
 - Accesses to the register are UNDEFINED.
 - Accesses to the register behave as RAZ/WI.
 - Accesses to the register execute as a NOP.
The number of auxiliary activity monitor event counters that are implemented is zero exactly when \texttt{AMCFGR.NCG} == 0b0000.

K1.1.19 Syndrome register handling for CONSTRANDED UNPREDICTABLE instructions treated as UNDEFINED

When a CONSTRANDED UNPREDICTABLE instruction is treated as UNDEFINED, this generates an exception:
- If this exception is taken to an Exception level that is using AArch64 then \texttt{ESR ELx} is UNKNOWN.
- If this exception is taken to EL2 and EL2 is using AArch32, then the HSR is unknown.

Note
The value written to ESR or HSR must be consistent with a value that could be created as the result of an exception from the same Exception level that generated the exception, but resulted from a situation that is not CONSTRANDED UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.1.20 Out of range VA

If the PE executes an instruction for which the instruction address, size, and alignment mean it contains the bytes \texttt{0xFFFF FFFF} and \texttt{0x0000 0000}, then the bytes that wrap around and appear to be from \texttt{0x0000 0000} onwards come from an UNKNOWN address.

If the PE executes a load or store instruction for which the computed address, total access size, and alignment mean it accesses bytes \texttt{0xFFFF FFFF} and \texttt{0x0000 0000}, then the bytes that wrap around and appear to be from \texttt{0x0000 0000} onwards come from an UNKNOWN address.

K1.1.21 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRANDED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might perform speculative instruction accesses to this memory location when address translation is enabled.

If a branch causes the program counter to point to a location in memory with the Device attribute that is not marked as execute-never for the current Exception level for instruction fetches, then an implementation must perform one of the following behaviors:
- It treats the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.
- It generates a Permission fault.

K1.1.22 Multi-access instructions that load the PC from Device memory

Multi-access instructions that load the PC from Device memory when address translation is enabled are UNPREDICTABLE in AArch32 state. In the Armv8-A architecture in AArch32 state an implementation must perform one of the following behaviors:
- It loads the PC from the memory location as if the memory location had the Normal Non-cacheable attribute.
- It generates a permission fault.

K1.1.23 Programming CSSEL.R.Level for a cache level that is not implemented

If \texttt{CSSEL.R.Level} is programmed to a cache level that is not implemented, then a read of \texttt{CSSEL.R} returns an UNKNOWN value in \texttt{CSSEL.R.Level}.
If CSSEL.R.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR an implementation must perform one of the following behaviors:

- The CCSIDR read is treated as a \texttt{NOP}.
- The CCSIDR read is \texttt{UNDEFINED}.
- The CCSIDR read returns an \texttt{UNKNOWN} value.

When \texttt{FEAT_CIDX} is implemented, CCSIDR2 is implemented. If CSSEL.R.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR2 an implementation must perform one of the following behaviors:

- The CCSIDR2 read is treated as a \texttt{NOP}.
- The CCSIDR2 read is \texttt{UNDEFINED}.
- The CCSIDR2 read returns an \texttt{UNKNOWN} value.

K1.1.24 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a different memory type or Shareability attribute results in \texttt{CONSTRAINED UNPREDICTABLE} behavior. In this case, the implementation must perform one of the following behaviors:

- Each memory access generated by the instruction uses the memory type and Shareability attribute associated with its own address.
- The instruction generates an alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

- If the stage 1 translation causes the mismatch, the resulting exception is taken to PL1.
- If the stage 2 translation causes the mismatch, the resulting exception is taken to PL2.
- If both stages of translation cause the mismatch, the resulting exception can be taken to either PL1 or PL2.
- The instruction executes as a \texttt{NOP}.

K1.1.25 Crossing a 4KB boundary with a Device access

A memory access from a load or store instruction to Device memory that crosses a 4KB boundary results in \texttt{CONSTRAINED UNPREDICTABLE} behavior. In this case, the implementation must perform one of the following behaviors:

- All memory accesses generated by the instruction are performed as if the presence of the boundary had no effect on the memory accesses.
- All memory accesses generated by the instruction are performed as if the presence of the boundary had no effect on the memory accesses, except that there is no guarantee of ordering between memory accesses.
- The instruction generates an Alignment fault caused by the memory type.

For the Non-secure PL1&0 translation regime:

- If the stage 1 translation causes the boundary to be crossed then the resulting exception is taken to PL1.
- If the stage 2 translation causes the boundary to be crossed then the resulting exception is taken to PL2.
- If both stages of translation cause the boundary to be crossed then the resulting exception can be taken to either PL1 or PL2.
- The instruction executes as a \texttt{NOP}.

Note

The boundary referred to is between two Device memory regions that are both of 4KB and aligned to 4KB.
K1.1.26 UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4069 defines a Load-Exclusive/Store-Exclusive pair, and identifies various CONSTRAINED UNPREDICTABLE behaviors associated with using Load-Exclusive/Store-Exclusive pairs. These cases were UNPREDICTABLE in Armv7. In summary, these cases are:

• The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding LoadExcl instruction in the same thread of execution.

• The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl instruction in the same thread of execution.

• The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of execution, either:
 — Because the translation of the accessed address changes between the LoadExcl instruction and the StoreExcl instruction.
 — Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions on page E2-4069 for the permitted behavior in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED UNPREDICTABLE.

Note

Additional CONSTRAINED UNPREDICTABLE cases can apply to Load-Exclusive and Store-Exclusive instructions, see CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set on page K1-7953.

K1.1.27 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

The A32 and T32 instruction sets include encodings that result in CONSTRAINED UNPREDICTABLE behavior when they are decoded.

CONSTRAINED UNPREDICTABLE behavior of CRC32 instruction encodings

In the A32 and T32 instruction sets, there are encodings of the CRC32 and CRC32C instructions that result in CONSTRAINED UNPREDICTABLE behavior. These encodings are listed in the following places in the A32 and T32 instruction sets:

• Cyclic Redundancy Check on page F4-4226 for the A32 instruction set, with sz = 11.

• Data-processing (two source registers) on page F3-4212 for the T32 instruction set, with op1 = 10x and op2 = 11.

The CONSTRAINED UNPREDICTABLE behavior for these encodings is described in CRC32 on page F5-4377 and CRC32C on page F5-4380.

CONSTRAINED UNPREDICTABLE behavior of other A32 instruction encodings

In the A32 instruction set, there are encodings that result in CONSTRAINED UNPREDICTABLE behavior. These encodings are listed in:

• Miscellaneous on page F4-4261.

• Memory hints and barriers on page F4-4272.

• Barriers on page F4-4273.
The CONSTRAINED UNPREDICTABLE behavior is that an implementation must treat the encodings in one of the following ways:

- The instruction encoding is UNDEFINED.
- The instruction encoding executes as NOP.

K1.1.28 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DCCISW, DCCSW, and DCISW, if any set/way/index argument is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
 - No cache lines.
 - A single arbitrary cache line.
 - Multiple arbitrary cache lines.

Note

This CONSTRAINED UNPREDICTABLE behavior applies, also, to the A64 cache maintenance by set/way instructions DCISW, DCISW, and DCISW.

K1.1.29 CONSTRAINED UNPREDICTABLE behavior for A32 and T32 System instructions in the base instruction set

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A32 and T32 System instructions.

Note

If an instruction can result in CONSTRAINED UNPREDICTABLE behavior that is not specific to that particular instruction, see the relevant section in this appendix for a description of the CONSTRAINED UNPREDICTABLE behavior.

SRS (T32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-4767.

CONSTRAINED UNPREDICTABLE behavior

For all encodings:

- If the instruction specifies an illegal mode field, then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as a NOP.
 - R13 of the current mode is used.
 - The store occurs to an UNKNOWN address, and if the instruction specifies writeback, any general-purpose register that can be accessed without privilege violation from the current Exception level become UNKNOWN.

SRS (A32)

For a description of this instruction and the encoding, see SRS, SRSDA, SRSDB, SRSIA, SRSIB on page F5-4767.
CON Strained UNPREDICTAB Le behav ior

For all encodings:

- If the instruction specifies an illegal mode field, then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as a NOP.
 - R13 of the current mode is used.
 - The store occurs to an UNKNOW N address, and if the instruction specifies writeback, any general-purpose register that can be accessed without privilege violation from the current Exception level become UNKNOW N.

SUBS PC, LR and related instructions (T32)

For a description of this instruction and the encoding, see the exception return form of SUB, SUBS (immediate) on page F5-4869.

CON Strained UNPREDICTABLE behav ior

For all encodings:

- If this instruction is executed in User mode or in System mode, then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as a NOP.
- If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception return.

--- Note ---

An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current Exception level.

For encoding T5:

- If hwI[3:0] are not 0b1110, and the instruction is executed when not in Hyp mode, System mode, or User mode, then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction is treated as a NOP.
 - The instruction is treated as if hwI[3:0] are 0b1110.
 - The program counter is set using the value in the register specified by hwI[3:0].

SUBS PC. LR and related instructions (A32)

For a description of this instruction and the encoding, see the exception return forms of MOV, MOVS (register) on page F5-4555 and SUB, SUBS (immediate) on page F5-4869.

CON Strained UNPREDICTABLE behav ior

For all encodings:

- If this instruction is executed in User mode or in System mode, then one of the following behaviors must occur:
 - The instruction is UNDEFINED.
 - The instruction executes as a NOP.
- If the instruction transfers an illegal mode encoding to PSTATE.M, then this invokes the illegal exception return.
Note

An illegal mode encoding is either an unallocated mode encoding or one that is not accessible at the current Exception level.
K1.1.30 CONSTRANDED UNPREDICTABLE behavior, A32 and T32 Advanced SIMD and floating-point instructions

This section lists the CONSTRANDED UNPREDICTABLE behavior for the different A32 and T32 Advanced SIMD and floating-point instructions listed in Alphabetical list of Advanced SIMD and floating-point instructions on page F6-4994.

--- Note ---

- The pseudocode used in this section to describe cases that can result in CONSTRANDED UNPREDICTABLE behavior does not necessarily match the encoding specific pseudocode for a specific instruction.
- If an instruction can result in CONSTRANDED UNPREDICTABLE behavior that is not specific to that particular instruction, see the relevant section in this appendix for a description of the CONSTRANDED UNPREDICTABLE behavior.

VCVT (between floating-point and fixed-point)

For a description of this instruction and the encoding, see VCVT (between floating-point and fixed-point, floating-point) on page F6-5153.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRANDED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRANDED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRANDED UNPREDICTABLE.

VLD1 (multiple single elements)

For a description of this instruction and the encoding, see VLD1 (multiple single elements) on page F6-5251.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRANDED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRANDED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRANDED UNPREDICTABLE.

VLD1 (single element to all lanes)

For a description of this instruction and the encoding, see VLD1 (single element to all lanes) on page F6-5248.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRANDED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRANDED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRANDED UNPREDICTABLE.

VLD2 (multiple 2-element structures)

For a description of this instruction and the encoding, see VLD2 (multiple 2-element structures) on page F6-5268.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRANDED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRANDED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRANDED UNPREDICTABLE.

VLD2 (single 2-element structure to one lane)

For a description of this instruction and the encoding, see VLD2 (single 2-element structure to one lane) on page F6-5259.
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD2 (single 2-element structure to all lanes)

For a description of this instruction and the encoding, see *VLD2 (single 2-element structure to all lanes)* on page F6-5265.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (multiple 3-element structures)

For a description of this instruction and the encoding, see *VLD3 (multiple 3-element structures)* on page F6-5282.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (single 3-element structure to one lane)

For a description of this instruction and the encoding, see *VLD3 (single 3-element structure to one lane)* on page F6-5273.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD3 (single 3-element structure to all lanes)

For a description of this instruction and the encoding, see *VLD3 (single 3-element structure to all lanes)* on page F6-5279.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (multiple 4-element structures)

For a description of this instruction and the encoding, see *VLD4 (multiple 4-element structures)* on page F6-5294.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (single 4-element structure to one lane)

For a description of this instruction and the encoding, see *VLD4 (single 4-element structure to one lane)* on page F6-5285.
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLD4 (single 4-element structure to all lanes)

For a description of this instruction and the encoding, see *VLD4 (single 4-element structure to all lanes)* on page F6-5291.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VLDM

For a description of this instruction and the encoding, see *VLDM, VLDMDB, VLDMIA* on page F6-5297.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VMOV (between two general-purpose registers and two single-precision registers)

For a description of this instruction and the encoding, see *VMOV (between two general-purpose registers and two single-precision registers)* on page F6-5375.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VMOV (between two general-purpose registers and a doubleword floating-point register)

For a description of this instruction and the encoding, see *VMOV (between two general-purpose registers and a doubleword floating-point register)* on page F6-5354.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST1 (multiple single elements)

For a description of this instruction and the encoding, see *VST1 (multiple single elements)* on page F6-5619.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST2 (multiple 2-element structures)

For a description of this instruction and the encoding, see *VST2 (multiple 2-element structures)* on page F6-5633.
If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST2 (single 2-element structure from one lane)

For a description of this instruction and the encoding, see *VST2 (single 2-element structure from one lane)* on page F6-5627.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST3 (multiple 3-element structures)

For a description of this instruction and the encoding, see *VST3 (multiple 3-element structures)* on page F6-5644.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST3 (single 3-element structure from one lane)

For a description of this instruction and the encoding, see *VST3 (single 3-element structure from one lane)* on page F6-5638.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST4 (multiple 4-element structures)

For a description of this instruction and the encoding, see *VST4 (multiple 4-element structures)* on page F6-5653.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VST4 (single 4-element structure from one lane)

For a description of this instruction and the encoding, see *VST4 (single 4-element structure from one lane)* on page F6-5647.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.

VSTM

For a description of this instruction and the encoding, see *VSTM, VSTMDB, VSTMIA* on page F6-5656.

If this instruction is not UNDEFINED, then whether it is affected by traps or enables relating to the use of the SIMD&FP registers when it is CONSTRAINED UNPREDICTABLE, is IMPLEMENTATION DEFINED. The implementation must ensure that the CONSTRAINED UNPREDICTABLE behavior does not corrupt registers that are not accessible at the current Exception level by instructions that are not CONSTRAINED UNPREDICTABLE.
K1.1.31 CONSTRUCTED UNPREDICTABLE behaviors associated with the VTCR

The following subsections describe the CONSTRUCTED UNPREDICTABLE behavior associated with programming the VTCR:

- Misprogramming VTCR.S.
- Misprogramming VTCR.{SL0, T0SZ}.

Misprogramming VTCR.S

VTCR.S must be programmed to the value of T0SZ[3], or the effect is CONSTRUCTED UNPREDICTABLE. For the Armv8-A architecture, if VTCR.S is not programmed correctly, then the VTCR.T0SZ value is treated as an UNKNOWN value.

Note

The CONSTRUCTED UNPREDICTABLE behavior described in Misprogramming VTCR.{SL0, T0SZ} means the UNKNOWN VTCR.T0SZ value might generate a Translation fault.

Misprogramming VTCR.{SL0, T0SZ}

If the stage 2 input address size, as programmed in VTCR.T0SZ, is out of range with respect to the starting level, as programmed in the VTCR.SL0 field, or the VTCR.SL0 field is programmed to a reserved value, then at the time of a translation walk that uses the stage 2 translation, a stage 2 level 1 Translation Fault is generated.

K1.1.32 CONSTRUCTED UNPREDICTABLE behavior of EL2 features

The following sections describe CONSTRUCTED UNPREDICTABLE behavior that can occur in an implementation that includes EL2 where EL2 can use AArch32:

- ERET in User mode or System mode.
- Accessing Hyp mode from outside Hyp mode.
- Modifying PSTATE.M when in Hyp mode on page K1-7961
- Use of Hyp mode in Secure state on page K1-7961.
- Execution of Load/Store unprivileged instructions in Hyp mode on page K1-7961.
- Exception return to Hyp mode on page K1-7961.
- Accessing registers that cannot be accessed using MSR/MRS instructions on page K1-7961.
- Memory type handling on page K1-7962.
- Hyp mode TLB maintenance instructions on page K1-7962.
- Hyp mode VA to PA address translation instructions on page K1-7962.
- Stage 1 default memory type on page K1-7962.
- Trapping of general exceptions to Hyp mode on page K1-7962.
- Prevention of rootkits using Hyp mode or Secure state on page K1-7963.
- HVC on page K1-7963.
- MSR (banked register) and MRS (banked register) on page K1-7963.

ERET in User mode or System mode

If ERET is executed in User mode or System mode, it behaves as described in SUBS PC, LR and related instructions (T32) on page K1-7954.

Accessing Hyp mode from outside Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal exception return by not changing the mode, and setting PSTATE.IL to 1.

S85 using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as described in SRS (T32) on page K1-7953 and SRS (A32) on page K1-7953.
Modifying PSTATE.M when in Hyp mode

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as described in SRS (T32) on page K1-7953 and SRS (A32) on page K1-7953.

Use of Hyp mode in Secure state

Attempting to change into Hyp mode or out of Hyp mode using the MSR or CPS instruction invokes the Armv8 illegal exception return by not changing the mode, and setting PSTATE.IL to 1.

SRS using the Hyp mode SP from Non-secure modes other than Hyp mode, or from Secure state, is handled as described in SRS (T32) on page K1-7953 and SRS (A32) on page K1-7953.

Execution of Load/Store unprivileged instructions in Hyp mode

If LDRT, LDRSHT, LDRHT, LDRSBT, LDRBT, STRT, STRHT or STRBT are executed in Hyp mode, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs the equivalent, corresponding LDR, LDRSH, LDRH, LDRSB, LDRB, STR, STRH or STRB instruction in Hyp mode.

Exception return to Hyp mode

Exception returns to Hyp mode when SCR.NS == 0 or from a Non-secure PL1 mode invokes the Armv8 illegal exception return.

Accessing registers that cannot be accessed using MSR/MRS instructions

The following MSR and MRS instructions can lead to CONSTRAINED UNPREDICTABLE behavior:

MSR <Rm>_<mode>, <Rn>
MSR SPSR_<mode>, <Rn>
MSR ELR_hyp, <Rn>
MRS <Rn>, <Rm>_<mode>
MRS <Rn>, SPSR_<mode>
MRS <Rn>, ELR_hyp

If these instructions are executed in either Secure or Non-secure User mode, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.

If the MSR and MRS instructions attempt to access a register that cannot be legally accessed, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• For MSR instructions, the destination general-purpose register becomes UNKNOWN.
• For MRS instructions, if the register specified could be accessed from the current mode by other mechanisms, then this register is UNKNOWN. Otherwise the instruction executes as a NOP.
Memory type handling

If the attributes for a memory location after combining stage 1 and stage 2 of a translation regime is Normal Inner Non-cacheable, Outer Non-cacheable, then the shareability attributes after combining the two stages of translation is Outer Shareable.

Hyp mode TLB maintenance instructions

If a TLBIMVAH, TLBIMVALH, TLBIMVAHIS, TLBIMVALHIS, TLBIALLH, TLBIALLHIS, TLBIALLNSNH, TLBIALLNSNHIS, TLBIIPAS2, TLBIIPAS2L, TLBIIPAS2IS, or TLBIIPAS2LIS instruction is executed in a Secure Privileged mode other than Monitor mode, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction is executes as if it had been executed in Monitor mode.

For more information about these instructions see The scope of TLB maintenance instructions on page G5-6044.

Hyp mode VA to PA address translation instructions

If an ATS1HR or ATS1HW instruction is executed in a Secure Privileged mode other than Monitor mode, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction is treated as a NOP.
• The instruction is executes as if it had been executed in Monitor mode.

For more information about these instructions see Address translation instruction naming and operation summary on page G5-6083.

Stage 1 default memory type

If HCR.DC == 1, then the behavior of the PE when executing in a Non-secure mode other than Hyp mode is consistent with:

• SCTLR.M == 0, regardless of the actual value of SCTLR.M, other than for the value returned by an explicit read of SCTLR.M.
• HCR.VM == 1, regardless of the actual value of HCR.VM, other than for an explicit read of this bit.

Trapping of general exceptions to Hyp mode

Attempting to perform an exception return to a Non-secure PL1 mode when HCR.TGE == 1 invokes an illegal exception return.

Attempting to change from Monitor mode to a Non-secure PL1 mode when HCR.TGE == 1 by executing a CPS or MSR instruction generates an Illegal Execution state exception, by not changing the mode, and setting PSTATE.IL to 1.

When EL3 is using AArch32, attempting to change from a Secure PL1 mode to a Non-secure PL1 mode when HCR.TGE is set, by changing SCR.NS from 0 to 1, results in no change of SCR.NS.

Because taking an exception into Non-secure PL1 modes leads to a CONSTRAINED UNPREDICTABLE situation, the following additional properties apply when HCR.TGE == 1:

• All exceptions that would be routed to EL1 are routed to EL2.
• Non-secure SCTLR.M is treated as being 0, regardless of its actual value, other than for an explicit read of this bit.
• HCR.FMO, HCR.IMO, and HCR.AMO are treated as being 1, regardless of their actual value, other than for an explicit read of these bits.
• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are disabled.

Prevention of rootkits using Hyp mode or Secure state

If an HVC instruction is executed in Hyp mode when SCR.HCE == 0, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.

If an SMC instruction is executed in a Secure privileged mode when SCR.SCD == 1, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.

HVC

For a description of this instruction and the encoding, see *HVC on page F5-4413*.

For the A1 encoding, if cond field !=1110, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

MSR (banked register) and MRS (banked register)

Encoding and use of banked register transfer instructions on page F5-4989 identifies cases where attempted execution of an MRS (banked register) or MSR (banked register) was UNPREDICTABLE in Armv7 and becomes CONSTRAINED UNPREDICTABLE in Armv8. This includes cases where:
• The target register specified by the {R, SYSn} fields of the instruction encoding is not accessible from the PE mode in which the instruction was executed, see *Usage restrictions on the banked register transfer instructions on page F5-4990*.
• The instruction was executed specifying unallocated {R, SYSn} field values, see *Encoding the register argument in the banked register transfer instructions on page F5-4991*.

If one of these encodings for an MSR (banked register) or MRS (banked register) instruction is executed, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• An allocated MSR (banked register) or MRS (banked register) instruction is executed.

K1.1.33 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated, all unallocated or reserved values of fields with allocated values within the AArch32 System registers, memory-mapped registers, and translation table entries behave in one of the following ways:
• The encoding maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPREDICTABLE behavior.
• The encoding causes effects that could be achieved by a combination of more than one of the allocated encodings.
• The encoding causes the field to have no functional effect.
Note

These constraints are identical to those for the equivalent AArch64 definitions, as given in Reserved values in System and memory-mapped registers and translation table entries on page K1-7981.

K1.1.34 CONSTRAINTED UNPREDICTABLE behavior in Debug state

Behavior in Debug state on page H2-7024 of this manual describes the CONSTRAINTED UNPREDICTABLE behaviors that are specifically associated with Debug state.
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors

It contains the following sections:

- Overview of the constraints on AArch64 UNPREDICTABLE behaviors.
- SBZ or SBO fields in A64 instructions.
- CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values on page K1-7966.
- CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization on page K1-7966.
- Translation table base address alignment on page K1-7967.
- The Performance Monitors Extension on page K1-7967.
- The Activity Monitors Extension on page K1-7969.
- Syndrome register handling for CONSTRAINED UNPREDICTABLE instructions treated as UNDEFINED on page K1-7969.
- Out of range virtual address on page K1-7970.
- Mapping of non-idempotent memory locations using the Normal memory type on page K1-7970.
- Instruction fetches from Device memory on page K1-7970.
- Programming the CSSELR_EL1.Level for a cache level that is not implemented on page K1-7970.
- Crossing a page boundary with different memory types or Shareability attributes on page K1-7971.
- Crossing a peripheral boundary with a Device access on page K1-7971.
- CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs on page K1-7972.
- CONSTRAINED UNPREDICTABLE behavior for A64 instructions on page K1-7972.
- Out of range values of the Set/Way/Index fields in cache maintenance instructions on page K1-7981.
- Reserved values in System and memory-mapped registers and translation table entries on page K1-7981.
- CONSTRAINED UNPREDICTABLE behavior in Debug state on page K1-7981.

K1.2.1 Overview of the constraints on AArch64 UNPREDICTABLE behaviors

The term UNPREDICTABLE describes a number of cases where the architecture has a feature that software must not use. For execution in AArch64 state, the Armv8-A architecture specifies a narrow range of permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

______ Note _______

Software designed to be compatible with the Armv8-A architecture must not rely on these CONSTRAINED UNPREDICTABLE cases being handled in any way other than those listed under the heading CONSTRAINED UNPREDICTABLE.

K1.2.2 SBZ or SBO fields in A64 instructions

Some A64 instructions have (0) or (1) in the instruction decode to indicate should-be-zero, SBZ, or should-be-one, SBO, as described in Fixed values in AArch64 instruction and System register descriptions on page C2-195. Except for specific cases identified in CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs on page K1-7972, if the instruction bit pattern of an instruction is executed with these fields not having the should be values, one of the following must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction operates as if the bit had the should-be value.
- Any destination registers of the instruction become UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.
K1.2.3 CONSTRAINED UNPREDICTABLE behaviors due to caching of control or data values

The Arm architecture allows copies of control values or data values to be cached in a cache or TLB. This can lead to UNPREDICTABLE behavior if the cache or TLB has not been correctly invalidated following a change of the control or data values.

Unless explicitly stated otherwise, the behavior of the PE is consistent with one of:

- The old data or control value.
- The new data or control value.
- An amalgamation of the old and new data or control values.

In an implementation that includes FEAT_TTCNP, this CONSTRAINED UNPREDICTABLE case can arise from misprogramming when setting TTBR.CnP to 1, as identified in the descriptions of the TTBR.CnP field. In this case, for a particular TTBR, the behavior of the PE is consistent with one of:

- The value of the translation table entry pointed to by that TTBR on one of the PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table entries pointed to by that TTBR are met.

- An amalgamation of the values of the translation table entries pointed to by that TTBR on two or more of the PEs within the Inner Shareable domain for which both the value of TTBR.CnP is 1 and the other conditions for sharing translation table entries pointed to by that TTBR are met.

--- Note ---

If the Effective value of a control or data value that determines the behavior of the PE results from the amalgamation of two or more values then that Effective value must not generate a privilege violation. So, for example:

- Where the CONSTRAINED UNPREDICTABLE behavior occurs because inadequate invalidation of the TLB causes multiple hits in the TLB, the failure to invalidate the TLB by software executing at a given Exception level and Security state must not make it possible to access regions of memory with permissions or attributes that could not be accessed at that Exception level and Security state.

- Where the CONSTRAINED UNPREDICTABLE behavior occurs because of a programming error, on one or more PEs in the Inner Shareable domain, when using a TTBR.CnP value of 1 to share translation table entries, the misprogramming must not make it possible to access regions of memory with permissions or attributes that could not be accessed at the Exception level of that TTBR and the Security state corresponding to the translation table entries being shared.

Alternatively to this CONSTRAINED UNPREDICTABLE behavior, an implementation detecting multiple hits in a TLB might generate an exception, reporting the exception using the TLB conflict fault code, see TLB conflict aborts on page D5-2660.

The choice between the behaviors might, in some implementations, vary for each use of a control or data value.

K1.2.4 CONSTRAINED UNPREDICTABLE behavior due to inadequate context synchronization

The Arm architecture requires that changes to System registers must be synchronized before they take effect. This can lead to UNPREDICTABLE behavior if the synchronization has not been performed.

In these cases, the behavior of the PE is consistent with the unsynchronized control value being either the old value or the new value.

Where multiple control values are updated but not yet synchronized, each control value might independently be the old value or the new value.

In addition, where the unsynchronized control value applies to different areas of functionality, or what an implementation has constructed as different areas of functionality, those areas might independently treat the control value as being either the old value or the new value.

The choice between these behaviors might, in some implementations, vary for each use of a control value.
K1.2.5 Translation table base address alignment

In the translation table base registers TTBR0_EL1, TTBR1_EL1, TTBR0_EL2, TTBR1_EL2, VTTBR_EL2, and TTBR0_EL3, register bits[48:x] hold the translation table base address, where x depends on the translation table granule size and the size of the addressed translation table, as described in Memory translation granule size on page D5-2548. Register bits[(x-1):0], unless redefined for another purpose, correspond to bits[(x-1):0] of the translation table base address and therefore are RES0.

Note

- When FEAT_LPA is implemented and the 64KB granule size is used, register bits[5:2] are redefined to hold bits[51:48] of the translation table base address.
- When FEAT_TTCNP is implemented register bit[0] is redefined as the CnP bit.

For these registers, if one or more RES0 bits in register bits [(x-1):0] does not have a value of 0, this can result in a misaligned translation table base address. In this case, one of the following behaviors must occur:

- The field that is defined to be RES0 is treated as if all the bits had a value of 0:
 - The value read back might be the value written or it might be zero.
- The calculation of an address for a translation table walk using those registers might be corrupted in those bits that are nonzero.

For more information, see the appropriate TTBR.BADDR field description.

K1.2.6 The Performance Monitors Extension

The following subsections describe CONSTRAINED UNPREDICTABLE behaviors when accessing the Performance Monitors Extension in AArch64 state:

- CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVTYPER_EL0.
- CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 on page K1-7968.
- CONSTRAINED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN on page K1-7969.

CONSTRAINED UNPREDICTABLE accesses to PMXEVTYPER_EL0 or PMXEVTYPER_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64, permitted access to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if PMSELR_EL0.SEL is greater than the number of counters accessible at this Exception level, accesses to PMXEVTYPER_EL0 and PMXEVCNTR_EL0 can cause CONSTRAINED UNPREDICTABLE behavior. This occurs when one of the following is true:

- If PMSELR_EL0.SEL is not equal to 31, and PMSELR_EL0.SEL is greater than or equal to PMCR_EL0.N, and the PE is executing in EL2 or EL3.
- If FEAT_SEL2 is disabled or is not implemented, PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is greater than or equal to PMCR_EL0.N, and the PE is executing in Secure EL1 or Secure EL0.
- If PMSELR_EL0.SEL is not 31, and PMSELR_EL0.SEL is greater than or equal to MDCR_EL2.HPMN, and the PE is executing in EL0 or EL1.

In these cases, one of the following behaviors must occur:

- Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state are UNDEFINED.
- Accesses to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 from that state behave as RAZ/WI.
• Accesses to PMXEVTPYER_EL0 or PMXEVCNTR_EL0 from that state execute as NOPS.

• Accesses to PMXEVTPYER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL contains an UNKNOWN value that is less than the number of counters accessible at the current Exception level and Security state.

• Accesses to PMXEVTPYER_EL0 or PMXEVCNTR_EL0 from that state behave as if PMSELR_EL0.SEL is 31.

• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the number of implemented counters but greater than or equal to the number of accessible counters at this Exception level, access to PMXEVTPYER_EL0 or PMXEVCNTR_EL0 from EL1 or a permitted access from EL0 is trapped to EL2.

Note

If EL2 is implemented and enabled in the current Security state, MDCCR_EL2.HPMN identifies the number of accessible counters at EL0 or EL1. Otherwise, the number of accessible counters is the number of implemented counters.

Accesses from EL0 to PMXEVCNTR_EL0 are permitted when:
- EL1 is using AArch32 and the values of PMUSERENR.ER, EN are both 1.
- EL1 is using AArch64 and the values of PMUSERENR_EL0.ER, EN are both 1.

Accesses from EL0 to PMXEVTPYER_EL0 are permitted when:
- EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
- EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

If PMSELR_EL0.SEL is equal to 31, then one of the following behaviors must occur:

• Accesses to PMXEVCNTR_EL0 are UNDEFINED.

• Accesses to PMXEVCNTR_EL0 behave as RAZ/WI.

• Accesses to PMXEVCNTR_EL0 execute as NOPS.

• Accesses to PMXEVCNTR_EL0 behave as if PMSELR_EL0.SEL contains an unknown value that is less than the number of counters accessible at the current Exception level and Security state.

CONSTRAINED UNPREDICTABLE accesses to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0

If FEAT_FGT is implemented, and EL2 is implemented in the current Security state, and EL1 is using AArch64, permitted access to PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are not CONSTRAINED UNPREDICTABLE.

Otherwise, if <n> is greater than the number of counters available in the current Exception level and state, reads and writes of PMEVCNTR<n>_EL0 and PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• If EL2 is implemented and enabled in the current Security state, for an access to PMEVCNTR<n>_EL0 or PMEVTYPER<n>_EL0 from EL1 or a permitted access from EL0, if the counter is implemented but not accessible at the current Exception level, the register access is trapped to EL2.

Accesses from EL0 to PMEVCNTR<n>_EL0 are permitted when:
- EL1 is using AArch32 and the value of PMUSERENR.ER, EN are both 1.
- EL1 is using AArch64 and the value of PMUSERENR_EL0.ER, EN are both 1.
Accesses from EL0 to PMEVTPER<\text{n}>_EL0 are permitted when:

— EL1 is using AArch32 and the value of PMUSERENR.EN is 1.
— EL1 is using AArch64 and the value of PMUSERENR_EL0.EN is 1.

CONSTRANGED UNPREDICTABLE behavior caused by MDCR_EL2.HPMN

If MDCR_EL2.HPMN is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRANGED UNPREDICTABLE behavior applies:

- The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
- Either:
 - An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than PMCR_EL0.N.
 - All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and EL0.

K1.2.7 The Activity Monitors Extension

If \(<\text{n}>\) is greater than the number of architected activity monitor event counters, reads and writes of AMEVCNTR0<\text{n}>_EL0 and AMEVTYPER0<\text{n}>_EL0 are CONSTRANGED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.

Note

AMEVCNTR0_EL0.CG0NC identifies the number of architected activity monitor event counters.

If \(<\text{n}>\) is greater than the number of auxiliary activity monitor event counters, reads and writes of AMEVCNTR1<\text{n}>_EL0 and AMEVTYPER1<\text{n}>_EL0 are CONSTRANGED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.

Note

AMEVCNTR1_EL0.CG1NC identifies the number of auxiliary activity monitor event counters.

If the number of auxiliary activity monitor event counters that are implemented is zero, reads and writes of AMCNTENCLR1_EL0 and AMCNTENSET0_EL0 are CONSTRANGED UNPREDICTABLE, and the following behaviors are permitted:

- Accesses to the register are UNDEFINED.
- Accesses to the register behave as RAZ/WI.
- Accesses to the register execute as a NOP.

Note

The number of auxiliary activity monitor event counters that are implemented is zero exactly when AMCFGR_EL0.NCG == 0b0000.

K1.2.8 Syndrome register handling for CONSTRANGED UNPREDICTABLE instructions treated as UNDEFINED

When a CONSTRANGED UNPREDICTABLE instruction is treated as UNDEFINED, ESR_ELx is UNKNOWN.
Note

The value written to ESR_ELx must be consistent with a value that could be created as the result of an exception from the same Exception level that generated the exception, but was the result of a situation that is not CONSTRAINED UNPREDICTABLE at that Exception level. This is to avoid a possible privilege violation.

K1.2.9 Out of range virtual address

If the PE executes a load or store instruction with tagged addressing disabled in the current translation regime, and where the computed virtual address, total access size, and alignment mean that it accesses the bytes at $0xFFFF FFFF$ and $0x0000 0000 0000 0000$, then the bytes that appear to be from $0x0000 0000 0000 0000$ onwards are accessed at an UNKNOWN address.

If the PE executes a load or store instruction with tagged addressing enabled in the current translation regime, and where the computed address, total access size, and alignment mean that it accesses the bytes at $0xFFFF FFFF$ and $0x0000 0000 0000 0000$, then the bytes that appear to be from $0x0000 0000 0000 0000$ onwards are accessed at an unknown address and the tags associated with address also become unknown.

Note

Because of program counter alignment constraints, it is impossible for a PE to fetch an A64 instruction that includes both the byte at virtual address $0xFFFF FFFF$ and the byte at virtual address $0x0000 0000 0000 0000$.

K1.2.10 Mapping of non-idempotent memory locations using the Normal memory type

If non-idempotent memory locations are mapped using the Normal memory type, the state of the non-idempotent memory location may become corrupted north following circumstances:

- Speculative read accesses may cause accesses to the non-idempotent memory locations that would not occur as part of a simple sequential execution.
- Writes to non-idempotent memory locations might be merged or split. In this case, the number and size of writes seen by the memory location might not be the number and size that occur as part of a simple sequential execution.

K1.2.11 Instruction fetches from Device memory

Instruction fetches from Device memory are CONSTRAINED UNPREDICTABLE.

If a location in memory has the Device attribute and is not marked as execute-never, then an implementation might perform speculative instruction accesses to this memory location at times when address translation is enabled.

If a branch causes the program counter to point to an area of memory with the Device attribute that is not marked as execute-never for the current Exception level for instruction fetches, then an implementation must perform one of the following behaviors:

- It treats the instruction fetch as if it were to a memory location with the Normal, Non-cacheable attribute.
- It generates a Permission fault.

K1.2.12 Programming the CSSEL_EL1.Level for a cache level that is not implemented

If the CSSEL_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSEL_EL1 returns an UNKNOWN value in CSSEL_EL1.Level.

If CSSEL_EL1.Level is programmed to a cache level that is not implemented, then on a read of CCSIDR_EL1 an implementation must perform one of the following behaviors:

- The CCSIDR_EL1 read is treated as a NOP.
- The CCSIDR_EL1 read is UNDEFINED.
- The CCSIDR_EL1 read returns an UNKNOWN value.
When **FEAT_CCIDX** is implemented, **CCSIDR2_EL1** is implemented. If **CSSELR_EL1.Level** is programmed to a cache level that is not implemented, then on a read of **CCSIDR2_EL1** an implementation must perform one of the following behaviors:

- The **CCSIDR2_EL1** read is treated as a **NOP**.
- The **CCSIDR2_EL1** read is **UNDEFINED**.
- The **CCSIDR2_EL1** read returns an **UNKNOWN** value.

K1.2.13 Crossing a page boundary with different memory types or Shareability attributes

A memory access from a load or store instruction that crosses a page boundary to a memory location that has a different memory type or Shareability attribute results in **CONSTRAINED UNPREDICTABLE** behavior. In this case, the implementation must perform one of the following behaviors:

- Each memory access generated by the instruction uses the memory type and Shareability attribute associated with its own address.

- The instruction generates an Alignment fault caused by the memory type.

 For the EL1&0 translation regime, when EL2 is enabled in the current Security state:
 - If the stage 1 translation generated the mismatch, the resulting exception is taken to EL1.
 - If the stage 2 translation generated the mismatch, the resulting exception is taken to EL2.
 - If both stages of translation generate the mismatch, the exception can be taken to either EL1 or EL2.

- The instruction executes as a **NOP**.

K1.2.14 Crossing a peripheral boundary with a Device access

Performing memory accesses from one load or store instruction to Device memory that crosses a boundary corresponding to the smallest translation granule size of the implementation causes **CONSTRAINED UNPREDICTABLE** behavior. In this case, the implementation performs one of the following behaviors:

- All memory accesses generated by the instruction are performed as if the boundary has no effect on the memory accesses.

- All memory accesses generated by the instruction are performed as if the boundary has no effect on the memory accesses except that there is no guarantee of ordering between memory accesses.

- The instruction generates an alignment fault caused by the memory type.

 For the EL1&0 translation regime, when EL2 is enabled in the current Security state:
 - If the stage 1 translation causes the boundary to be crossed then the resulting exception is taken to EL1.
 - If the stage 2 translation causes the boundary to be crossed then the resulting exception is taken to EL2.
 - If both stages of translation cause the boundary to be crossed then the resulting exception can be taken to either EL1 or EL2.

- The instruction executes as a **NOP**.

Note

The boundary referred to is between two Device memory regions that are both:

- Of the size of the smallest implemented translation granule.
- Aligned to the size of the smallest implemented translation granule.
K1.2.15 CONSTRAINED UNPREDICTABLE behaviors with Load-Exclusive/Store-Exclusive pairs

Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-173 defines a Load-Exclusive/Store-Exclusive pair, and identifies various CONSTRAINED UNPREDICTABLE behaviors associated with using Load-Exclusive/Store-Exclusive pairs. In summary, these cases are:

- The target virtual address of a StoreExcl instruction is different from the virtual address of the preceding LoadExcl instruction in the same thread of execution.
- The transaction size of a StoreExcl instruction is different from the transaction size of the preceding LoadExcl instruction in the same thread of execution.
- The StoreExcl instruction accesses a different number of registers than the preceding LoadExcl instruction in the same thread of execution.
- The memory attributes for a StoreExcl instruction are different from the memory attributes for the preceding LoadExcl instruction in the same thread of execution, either:
 - Because the translation of the accessed address changes between the LoadExcl instruction and the StoreExcl instruction.
 - Because the LoadExcl instruction and the StoreExcl instruction use different virtual addresses, with different attributes, that point to the same physical address.

In addition, the effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE.

See the descriptions in Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-173 for the permitted behavior in each of these cases, and any constraints that might apply to whether the case is CONSTRAINED UNPREDICTABLE.

K1.2.16 CONSTRAINED UNPREDICTABLE behavior for A64 instructions

This section lists the CONSTRAINED UNPREDICTABLE behavior for the different A64 instructions listed in Chapter C6 A64 Base Instruction Descriptions and Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

LDAXP

For a description of this instruction and the encoding, see LDAXP on page C6-963.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDNP

For a description of this instruction and the encoding, see LDNP on page C6-989.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDNP (SIMD&FP)

For a description of this instruction and the encoding, see *LDNP (SIMD&FP)* on page C6-991.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDP

For a description of this instruction and the encoding, see *LDP* on page C7-1829.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDP (SIMD&FP)

For a description of this instruction and the encoding, see *LDP (SIMD&FP)* on page C7-1831.

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

LDPSW

For a description of this instruction and the encoding, see LDPSW on page C6-994.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n) && n != 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs a load using the specified addressing mode, and the base register is set to an UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If t == t2, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs all of the loads using the specified addressing mode, and the register loaded is set to an UNKNOWN value.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

LDR (immediate)

For a description of this instruction and the encoding, see LDR (immediate) on page C6-997.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and n == t && n != 31, then one of the following behaviors must occur:
• The instruction is UNDEFINED.
• The instruction executes as a NOP.
• The instruction performs the load using the specified addressing mode, and the base register is set to an UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
• For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

LDRB (immediate)

For a description of this instruction and the encoding, see LDRB (immediate) on page C6-1006.
CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the load using the specified addressing mode, and the base register is set to an **UNKNOWN** value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRH (immediate)

For a description of this instruction and the encoding, see *LDRH (immediate)* on page C6-1011.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the load using the specified addressing mode, and the base register is set to an **UNKNOWN** value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.

LDRSB (immediate)

For a description of this instruction and the encoding, see *LDRSB (immediate)* on page C6-1016.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the load using the specified addressing mode, and the base register is set to an **UNKNOWN** value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note

Pre-indexed addressing and post-indexed addressing imply writeback.
LDRSH (immediate)

For a description of this instruction and the encoding, see LDRSH (immediate) on page C6-1021.

CONSTRANDED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \&\& n \neq 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the load using the specified addressing mode, and the base register is set to an UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

LDRSW (immediate)

For a description of this instruction and the encoding, see LDRSW (immediate) on page C6-1026.

CONSTRANDED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \&\& n \neq 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the load using the specified addressing mode, and the base register is set to an UNKNOWN value. In addition, if an exception occurs during such an instruction, the base register might be corrupted so that the instruction cannot be repeated.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

LDXP

For a description of this instruction and the encoding, see LDXP on page C6-1088.

CONSTRANDED UNPREDICTABLE behavior

If \(t = t2 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a load using the specified addressing mode, and the transfer register is set to an UNKNOWN value.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STP

For a description of this instruction and the encoding, see STP on page C6-1258.
CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and (t == n || t2 == n) && n != 31, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

STLXP

For a description of this instruction and the encoding, see STLXP on page C6-1247.

CONSTRAINED UNPREDICTABLE behavior

If s == t || (s == t2), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to the specified address, but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to an UNKNOWN address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STLXR

For a description of this instruction and the encoding, see STLXR on page C6-1250.

CONSTRAINED UNPREDICTABLE behavior

If s == t, then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to the specified address, but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If s == n && n != 31 then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to an UNKNOWN address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STLXRB

For a description of this instruction and the encoding, see STLXRB on page C6-1252.
CONSTRANDED UNPREDICTABLE behavior

If \(s = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a \texttt{NOP}.
- The instruction performs the store to the specified address, but the value stored is \texttt{UNKNOWN}.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \texttt{HCR_EL2.TIDCP} is 1, the instruction is trapped to EL2 with EC value \texttt{0x0}.

If \(s = n \land n \neq 31 \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a \texttt{NOP}.
- The instruction performs the store to an \texttt{UNKNOWN} address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \texttt{HCR_EL2.TIDCP} is 1, the instruction is trapped to EL2 with EC value \texttt{0x0}.

STLXRH

For a description of this instruction and the encoding, see \textit{STLXRH} on page C6-1254.

CONSTRANDED UNPREDICTABLE behavior

If \(s = t \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a \texttt{NOP}.
- The instruction performs the store to the specified address, but the value stored is \texttt{UNKNOWN}.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \texttt{HCR_EL2.TIDCP} is 1, the instruction is trapped to EL2 with EC value \texttt{0x0}.

If \(s = n \land n \neq 31 \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a \texttt{NOP}.
- The instruction performs the store to an \texttt{UNKNOWN} address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \texttt{HCR_EL2.TIDCP} is 1, the instruction is trapped to EL2 with EC value \texttt{0x0}.

STR (immediate)

For a description of this instruction and the encoding, see \textit{STR (immediate)} on page C6-1261.

CONSTRANDED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a \texttt{NOP}.
- The instruction performs a store using the specified addressing mode but the value stored is \texttt{UNKNOWN}.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \texttt{HCR_EL2.TIDCP} is 1, the instruction is trapped to EL2 with EC value \texttt{0x0}.

\begin{center} Note \end{center}

Pre-indexed addressing and post-indexed addressing imply writeback.

STRB (immediate)

For a description of this instruction and the encoding, see \textit{STRB (immediate)} on page C6-1266.
CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

STRH (immediate)

For a description of this instruction and the encoding, see STRH (immediate) on page C6-1271.

CONSTRAINED UNPREDICTABLE behavior

If the instruction encoding specifies pre-indexed addressing or post-indexed addressing, and \(n = t \land n \neq 31 \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs a store using the specified addressing mode but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

Note
Pre-indexed addressing and post-indexed addressing imply writeback.

STXP

For a description of this instruction and the encoding, see STXP on page C6-1316.

CONSTRAINED UNPREDICTABLE behavior

If \(s = t \lor (s = t2) \), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to the specified address, but the value stored is UNKNOWN.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

If \(s = n \land n \neq 31 \) then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as a NOP.
- The instruction performs the store to an UNKNOWN address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and HCR_EL2.TIDCP is 1, the instruction is trapped to EL2 with EC value 0x0.

STXR

For a description of this instruction and the encoding, see STXR on page C6-1319.
CONSTRAINED UNPREDICTABLE behavior

If \(s == t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to the specified address, but the value stored is **UNKNOWN**.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).

If \(s == n && n != 31 \) then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to an **UNKNOWN** address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).

STXRB

For a description of this instruction and the encoding, see *STXRB* on page C6-1321.

CONSTRAINED UNPREDICTABLE behavior

If \(s == t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to the specified address, but the value stored is **UNKNOWN**.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).

If \(s == n && n != 31 \) then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to an **UNKNOWN** address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).

STXRH

For a description of this instruction and the encoding, see *STXRH* on page C6-1323.

CONSTRAINED UNPREDICTABLE behavior

If \(s == t \), then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to the specified address, but the value stored is **UNKNOWN**.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).

If \(s == n && n != 31 \) then one of the following behaviors must occur:

- The instruction is **UNDEFINED**.
- The instruction executes as a **NOP**.
- The instruction performs the store to an **UNKNOWN** address.
- For execution at EL0 or EL1, when EL2 is implemented and enabled for the current Security state and \(\text{HCR}_{EL2}.TIDCP \) is 1, the instruction is trapped to EL2 with EC value \(0x0 \).
K1.2.17 Out of range values of the Set/Way/Index fields in cache maintenance instructions

In the cache maintenance by set/way instructions DC CISW, DC CSW, and DC ISW, if any set/way/index argument is larger than the value supported by the implementation, then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

- The instruction is UNDEFINED.
- The instruction performs cache maintenance on one of:
 - No cache lines.
 - A single arbitrary cache line.
 - Multiple arbitrary cache lines.

Note: This CONSTRAINED UNPREDICTABLE behavior applies, also, to the AArch32 cache maintenance by set/way instructions DCCISW, DCCSW, and DCISW.

K1.2.18 Reserved values in System and memory-mapped registers and translation table entries

Unless otherwise stated in this manual, all unallocated or reserved values of fields with allocated values within AArch64 System registers, memory-mapped registers, and translation table entries behave in one of the following ways:

- The unallocated value maps onto any of the allocated values, but otherwise does not cause CONSTRAINED UNPREDICTABLE behavior.
- The unallocated value causes effects that could be achieved by a combination of more than one of the allocated values.
- The unallocated value causes the field to have no functional effect.

Note: These constraints are identical to those for the equivalent AArch32 definitions, as given in Reserved values in System and memory-mapped registers and translation table entries on page K1-7963.

K1.2.19 CONSTRAINED UNPREDICTABLE behavior in Debug state

Behavior in Debug state on page H2-7024 of this manual describes the CONSTRAINED UNPREDICTABLE behaviors that are specifically associated with Debug state.
Architectural Constraints on UNPREDICTABLE Behaviors
K1.2 AArch64 CONSTRAINED UNPREDICTABLE behaviors
Appendix K2
Recommended External Debug Interface

This appendix describes the recommended external debug interface. It contains the following sections:

- *About the recommended external debug interface* on page K2-7984.
- *PMUEVENT bus* on page K2-7988.
- *Recommended authentication interface* on page K2-7989.
- *Management registers and CoreSight compliance* on page K2-7991.

___ Note ___

This recommended external debug interface specification is not part of the Arm architecture specification. Implementers and users of the Armv8 architecture must not consider this appendix as a requirement of the architecture. It is included as an appendix to this manual only:

- As reference material for users of Arm products that implement this interface.
- As an example of how an external debug interface might be implemented.

The inclusion of this appendix is no indication of whether any Arm products might, or might not, implement this external debug interface. For details of the implemented external debug interface you must always see the appropriate product documentation.
K2.1 About the recommended external debug interface

See the *Note* on the first page of this appendix for information about the architectural status of this recommended debug interface.

This specification provides a recommended external debug interface for Armv8 to define a standard set of connections for validation environments. In general, the connection between components, such as between the PE and Trace extension, is not described here, although the table does include the signals for the CTI connection. Table K2-1 shows the signals in the recommended interface.

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGEN</td>
<td>In</td>
<td>External debug enable</td>
<td></td>
</tr>
<tr>
<td>SPIDEN</td>
<td>In</td>
<td>Secure privileged external debug enable</td>
<td>Only in Secure AArch32 modes when enabled by MDCR_EL3.SPD32</td>
</tr>
<tr>
<td>NIDEN</td>
<td>In</td>
<td>External profiling and trace enable</td>
<td>If FEAT_Debugv8p4 is implemented, this signal is not implemented.</td>
</tr>
<tr>
<td>SPNIDEN</td>
<td>In</td>
<td>Secure external profiling and trace enable</td>
<td>If FEAT_Debugv8p4 is implemented, this signal is not implemented.</td>
</tr>
<tr>
<td>EDBGRQ</td>
<td>In</td>
<td>External halt request</td>
<td>IMPLEMENTATION DEFINED mechanism to halt the PE. See EDBGRQ and DBGACK on page K2-7987.</td>
</tr>
<tr>
<td>DBGACK</td>
<td>Out</td>
<td>Debug Acknowledge</td>
<td>Indicate to the system that a PE is in Debug state. See EDBGRQ and DBGACK on page K2-7987.</td>
</tr>
<tr>
<td>COMMIRQ</td>
<td>Out</td>
<td>DCC interrupt</td>
<td>Interface to an interrupt controller. See Interrupt-driven use of the DCC on page H4-7096 and the pseudocode for function CheckForDCCInterrupts().</td>
</tr>
<tr>
<td>PMUIRQ</td>
<td>Out</td>
<td>Performance Monitor overflow</td>
<td>Interface to an interrupt controller. See Behavior on overflow on page D7-2699.</td>
</tr>
<tr>
<td>COMMITX</td>
<td>Out</td>
<td>DTRTX is empty</td>
<td>Provided for legacy connection to an interrupt controller only. See Interrupt-driven use of the DCC on page H4-7096 and the pseudocode for function CheckForDCCInterrupts().</td>
</tr>
<tr>
<td>DBGNOPWRDWN</td>
<td>Out</td>
<td>Emulate low-power state request</td>
<td>Interface to a power controller. See Emulating low-power states on page H6-7121.</td>
</tr>
<tr>
<td>DBGPWRUPREQ</td>
<td>Out</td>
<td>Core powerup request</td>
<td>Interface to a power controller. See Powerup request mechanism on page H6-7120.</td>
</tr>
<tr>
<td>DBGRSTREQ</td>
<td>Out</td>
<td>Warm reset request</td>
<td>Interface to a power controller. See EDPRCR.CWRR.</td>
</tr>
</tbody>
</table>

Table K2-1 Recommended debug interface signals
Table K2-1 Recommended debug interface signals (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGBUSCANCELREQ</td>
<td>Out</td>
<td>Allow asynchronous entry to Debug state</td>
<td>Extension to the bus interface. See <code>EDRCCR.CBRRQ</code>.</td>
</tr>
<tr>
<td>DBGPWRDUP</td>
<td>In</td>
<td>Core powerup status</td>
<td>Interface to a power controller. See <code>EDPSR.PU</code>.</td>
</tr>
<tr>
<td>DBGROMADDR[n:12]</td>
<td>In</td>
<td>MDRAR_EL1.ROMADDR</td>
<td>n depends on the size of the physical address space.</td>
</tr>
<tr>
<td>DBGROMADDRV</td>
<td>In</td>
<td>MDRAR_EL1.Valid</td>
<td></td>
</tr>
<tr>
<td>PRESETDBG</td>
<td>In</td>
<td>External debug reset</td>
<td></td>
</tr>
<tr>
<td>CPUPORESET</td>
<td>In</td>
<td>Cold reset</td>
<td></td>
</tr>
<tr>
<td>COREREST</td>
<td>In</td>
<td>Warm reset</td>
<td></td>
</tr>
<tr>
<td>PSELDBG</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENABLEDDBG</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWRITEDBG</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRDATADBG[31:0]</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWDATADBG[31:0]</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PADDRDBG[n:2]</td>
<td>In</td>
<td>Debug APB interface</td>
<td></td>
</tr>
<tr>
<td>PREADYDBG</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSLVERRDBG</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCLKDBG</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCLKENDBG</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPROTDBG[1]</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTICHIN</td>
<td>In</td>
<td>CoreSight channel interface</td>
<td>For details, see the Arm® CoreSight” Architecture Specification. The ACK signals are not required if the channel interface is synchronous.</td>
</tr>
<tr>
<td>CTICHOUTACK</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTICHOUT</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTINACK</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTIIRQ</td>
<td>Out</td>
<td>CTI interrupt, see Description and allocation of CTI triggers on page H5-7107</td>
<td>Implements a handshake for an edge-sensitive interrupt.</td>
</tr>
<tr>
<td>CTIIRQACK</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATDATA[nx8-1:0]</td>
<td>Out</td>
<td>AMBA 4 ATB interface</td>
<td>For details, see the AMBA 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1. Only available if the OPTIONAL Trace extension is implemented.</td>
</tr>
<tr>
<td>ATBYTES[n-1:0]</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATID[6:0]</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATREADY</td>
<td>In</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table K2-1 Recommended debug interface signals (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATVALID</td>
<td>Out</td>
<td>AMBA 4 ATB interface<sup>c</sup></td>
<td>For details, see the AMBA 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1. Only available if the OPTIONAL Trace extension is implemented.</td>
</tr>
<tr>
<td>AFREADY</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFVALID</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNCREQ</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCLK</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCLKEN</td>
<td>In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATRESET</td>
<td>In</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. This is the port where the PE completes debug APB transactions. Arm recommends a single port for all integrated debug components.
- b. The value of \(n \) depends on the size of the address space occupied by the Debug port.
- c. This is the port where the PE outputs trace.

Figure K2-1 shows the recommended debug interface.

![Recommended debug interface diagram](image)

Figure K2-1 Recommended external debug interface, including the APB4 Completer port.
K2.1.1 EDBGRQ and DBGACK

EDBGRQ

EDBGRQ is an IMPLEMENTATION DEFINED means of generating the External Debug Request debug event described in *External Debug Request debug event* on page H3-7071.

The PE asserts **DBGACK** when the PE is in Debug state. The PE might also include variants of this signal:

DBGTRIGGER

Asserted by the PE when it commits to entering Debug state.

DBGCPUDONE

Asserted by the PE when it has completed all Non-debug state memory accesses and Debug state entry is complete. **DBGCPUDONE** indicates that memory accesses issued by the PE result from operations originating from debugger commands.

In previous architecture versions, these signals provide an interface between the PE and cross-trigger logic. In Armv8, the architectural Cross-Trigger Interface provides this functionality for external debuggers.

K2.1.2 Secure and Non-secure views of the debug registers

If **FEAT_Debugv8p4** is implemented, the external debug interface has views of Secure and Non-secure debug registers. The DAP is must ensure that accesses are made only when permitted. The Arm debug interface describes a standard APB-AP programmers model for APB4 which signals Secure and Non-secure accesses on the **PPROTDBG[1]** signal, and is recommended for new designs.

If **FEAT_Debugv8p4** is implemented, and an APB-AP implements an APB3 Requester port, which does not support Secure and Non-secure views, Arm recommends that the following is implemented:

- If **SPIDEN** is HIGH and **DBGEN** is HIGH, all external debug accesses area treated as Secure.
- If either **SPIDEN** is LOW or **DBGEN** is LOW, all external debug accesses are treated as Non-secure.

If the PE APB Completer port is APB4, this might be implemented by, for example, fixing **PPROTDBG[1]** to the inverse of (**SPIDEN & DBGEN**) when bridging from APB3 to APB4.
K2.2 PMUEVENT bus

The PMUEVENT bus exports Performance Monitor events from the PE to an on-chip agent. Arm recommends that it has the following characteristics:

- The bus is synchronous.
- The width of the bus is IMPLEMENTATION DEFINED.
- It is IMPLEMENTATION DEFINED which events are exported on the bus.
- Each exported event occupies a contiguous sub-field of the bus. Arm recommends that the sub-fields of the bus are occupied in the same order as the event numbers.
- If the event can only occur once per cycle, it occupies a single bit. If the event can occur more than once per cycle, it is IMPLEMENTATION DEFINED how the event is encoded. The encoding depends on constraints such as the designated use of the event bus and the number of pins available. For example, the event can be encoded:
 - As a count, using a plain binary number. This is the most useful encoding when exporting to an external counter. It is not a useful encoding for exporting to a Trace extension external input.
 - As a count, using thermometer encoding. This is the most useful encoding when exporting to a Trace extension.
 - Using a single bit encoding to indicate whether the event count is zero or nonzero. This is useful for exporting to an activity monitor where the number of pins is constrained.

If a Trace extension is implemented, the PMUEVENT bus is normally connected to the Trace extension using the external inputs. TRCEXTINSELR multiplexes a wide PMUEVENT bus to a narrow set of inputs. An external PMUEVENT bus might also be provided. For more information, contact Arm.
K2.3 Recommended authentication interface

An implementation of the Armv8 architecture must support debug authentication described in Required debug authentication on page H1-7012.

The details of the debug authentication interface are IMPLEMENTATION DEFINED, but Arm recommends the use of the CoreSight interface, which includes the following signals for external debug authentication:

- **DBGEN**.
- **SPIDEN**.

If FEAT_Debugv8p4 is not implemented, Arm also recommends using the following signals:

- **NIDEN**.
- **SPNIDEN**.

Arm recommends an interface in which **DBGEN** and **SPIDEN** are also used for self-hosted Secure debug authentication if either:

- EL3 is using AArch32 and SDCR.SPD == 0b00.
- Secure EL1 is using AArch32 and MDCR_EL3.SPD32 == 0b00.

If EL3 is not implemented and the PE is in Non-secure state, **SPIDEN** and **SPNIDEN** are not implemented, and the PE behaves as if these signals were tied LOW.

If EL3 is not implemented and the PE is in Secure state, **SPIDEN** is usually connected to **DBGEN** and **SPNIDEN** is connected to **NIDEN**, but this is not required. The recommended interface is defined as if all four signals are implemented.

How the authentication signals are driven is IMPLEMENTATION DEFINED. For example, the signals might be hard-wired, connected to fuses, or to an authentication module. The architecture permits PEs within a cluster to have independent authentication interfaces, but this is not required. Arm recommends that any Trace extension has the same authentication interface as the PE it is connected to.

If FEAT_Debugv8p4 and CoreSight ETR are both implemented, the ETR has an independent **DBGEN** signal that must be tied HIGH to enable self-hosted use of trace.

Table K2-2 shows the debug authentication pseudocode functions and the recommended implementations.

Table K2-2 Recommended implementation of debug enable pseudocode functions

<table>
<thead>
<tr>
<th>Pseudocode function</th>
<th>Description</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()</td>
<td>Secure invasive self-hosted debug enabled in AArch32 state (legacy)</td>
<td>(DBGEN AND SPIDEN)</td>
</tr>
<tr>
<td>ExternalSecureNoninvasiveDebugEnabled()a</td>
<td>Secure non-invasive debug enabled</td>
<td>(DBGEN OR NIDENb) AND (SPIDEN OR SPNIDENC)</td>
</tr>
<tr>
<td>ExternalSecureInvasiveDebugEnabled()</td>
<td>Secure invasive debug enabled</td>
<td>(DBGEN AND SPIDEN)</td>
</tr>
<tr>
<td>ExternalNoninvasiveDebugEnabled()d</td>
<td>Non-secure non-invasive debug enabled</td>
<td>(DBGEN OR NIDENb)</td>
</tr>
<tr>
<td>ExternalInvasiveDebugEnabled()</td>
<td>Non-secure invasive debug enabled</td>
<td>DBGEN</td>
</tr>
</tbody>
</table>

a. If FEAT_Debugv8p4 is implemented, **ExternalSecureNoninvasiveDebugEnabled()** == **ExternalSecureInvasiveDebugEnabled()**.
b. If FEAT_Debugv8p4 is implemented, the **NIDEN** signal is not implemented.
c. If FEAT_Debugv8p4 is implemented, the **SPNIDEN** signal is not implemented.
d. If FEAT_Debugv8p4 is implemented, **ExternalNoninvasiveDebugEnabled()** == TRUE.
The `Debug_authentication()` pseudocode function on `shared/debug` on page J1-7812 defines the authentication signals DBGEN, SPIDEN, NIDEN and SPNIDEN.
K2.4 Management registers and CoreSight compliance

The CoreSight architecture requires the implementation of a set of management registers that occupy the memory map from 0xF00 upwards in each of the debug components.

CoreSight compliance and complete implementation of the management registers is OPTIONAL, but Arm recommends that the registers are implemented.

The CoreSight architecture specification recommends that any integration test registers are implemented starting from 0xEFC downwards. Each of the debug components has an IMPLEMENTATION DEFINED region from 0xE80 to 0xEFC for this purpose.

K2.4.1 CoreSight interface register map

Table K2-3 shows the external management register maps for the following registers:

ED These are the external debug register.

CTI These are the Cross-trigger interface registers.

PMU These are the Performance Monitors registers.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Mnemonic</th>
<th>ED</th>
<th>CTI</th>
<th>PMU</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>EDITCTRL</td>
<td></td>
<td></td>
<td></td>
<td>Integration Model Control registers</td>
</tr>
<tr>
<td>0xF04-0xF9C</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1a</td>
<td>CTICLAIMSETb</td>
<td>-</td>
<td></td>
<td>CLAIM Tag Set registers</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1a</td>
<td>CTICLAIMCLRb</td>
<td>-</td>
<td></td>
<td>CLAIM Tag Clear registers</td>
</tr>
<tr>
<td>0xFA8</td>
<td>EDDEVAFF0a</td>
<td>CTIDEVAFF0c</td>
<td>PMDEVAFF0</td>
<td></td>
<td>Device Affinity registers</td>
</tr>
<tr>
<td>0xFAC</td>
<td>EDDEVAFF1a</td>
<td>CTIDEVAFF1c</td>
<td>PMDEVAFF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFB0</td>
<td>EDLARd</td>
<td></td>
<td>CTILARd</td>
<td>PMLARD</td>
<td>Lock Access register</td>
</tr>
<tr>
<td>0xFB4</td>
<td>EDLSRd</td>
<td></td>
<td>CTILSRd</td>
<td>PMLSRd</td>
<td>Lock Status register</td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1a</td>
<td>CTIAUTHSTATUS</td>
<td>PMAUTHSTATUS</td>
<td></td>
<td>Authentication Status register</td>
</tr>
<tr>
<td>0xFC0</td>
<td>EDDEVARCH</td>
<td>CTIDEVARCH</td>
<td>PMDEVAUNCH</td>
<td></td>
<td>Device Architecture register</td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDDEVID2a</td>
<td>CTIDEVID2a</td>
<td>-</td>
<td></td>
<td>Device ID register</td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDDEVIDa</td>
<td>CTIDEVID1a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFCC</td>
<td>EDDEVTYPE</td>
<td>CTIDEVTYPE</td>
<td>PMDEVTYP</td>
<td></td>
<td>Device Type register</td>
</tr>
<tr>
<td>0xFD0</td>
<td>EDPIDR4</td>
<td>CTIPIDR4</td>
<td>PMPIDR4</td>
<td></td>
<td>Peripheral ID registers</td>
</tr>
<tr>
<td>0xFD4-0xFD6</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>Reserved, RES0</td>
</tr>
<tr>
<td>0xFE0</td>
<td>EDPIDR0</td>
<td>CTIPIDR0</td>
<td>PMPIDR0</td>
<td></td>
<td>Peripheral ID registers</td>
</tr>
<tr>
<td>0xFE4</td>
<td>EDPIDR1</td>
<td>CTIPIDR1</td>
<td>PMPIDR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFE8</td>
<td>EDPIDR2</td>
<td>CTIPIDR2</td>
<td>PMPIDR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFEC</td>
<td>EDPIDR3</td>
<td>CTIPIDR3</td>
<td>PMPIDR3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
K2.4.2 Management register access permissions

Access to the OPTIONAL Integration Control register (ITCTRL) is IMPLEMENTATION DEFINED.

Table K2-4 on page K2-7993, Table K2-5 on page K2-7994, Table K2-6 on page K2-7995, Table K2-7 on page K2-7996, and Table K2-8 on page K2-7997 show the response to accesses by the external debug interface to the CoreSight management registers.

Table K2-3 CoreSight interface register map (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Mnemonic</th>
<th>ED</th>
<th>CTI</th>
<th>PMU</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0</td>
<td>EDCIDR0</td>
<td>CTICIDR0</td>
<td>PMCIDR0</td>
<td>Component ID registers</td>
<td></td>
</tr>
<tr>
<td>0xFF4</td>
<td>EDCIDR1</td>
<td>CTICIDR1</td>
<td>PMCIDR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFFF8</td>
<td>EDCIDR2</td>
<td>CTICIDR2</td>
<td>PMCIDR2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xFFF8</td>
<td>EDCIDR3</td>
<td>CTICIDR3</td>
<td>PMCIDR3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. This register must always be implemented, regardless of whether the component is CoreSight compliant.
b. If implemented, the number of CLAIM bits is IMPLEMENTATION DEFINED and can be discovered by reading CLAIMSET.
c. If the CTI implements CTIv1, this register is not implemented. See the register description for details.
d. The Software lock registers are defined as part of CoreSight compliance, but their contents depend on the type of access that is made and whether the OPTIONAL Software lock is implemented. See the register description for details.
e. PMDEVID is implemented only from Armv8.2 or if FEAT_PCSRv8p2 is implemented, otherwise its offset is RES0.

K2.4.2 Management register access permissions

Access to the OPTIONAL Integration Control register (ITCTRL) is IMPLEMENTATION DEFINED.

Table K2-4 on page K2-7993, Table K2-5 on page K2-7994, Table K2-6 on page K2-7995, Table K2-7 on page K2-7996, and Table K2-8 on page K2-7997 show the response to accesses by the external debug interface to the CoreSight management registers.

--- Note ---

Access to the CoreSight management registers is not affected by the values of EDAD and EPMAD.

If OPTIONAL memory-mapped access to the external debug interface is supported, there are additional constraints on memory-mapped accesses. See Register access permissions for memory-mapped accesses on page H8-7142.

When HaveSecureExtDebugView() == TRUE, each debug component has a Secure and Non-secure view. The Secure view of a debug component is mapped into Secure physical memory and the Non-secure view of a debug component is mapped into Non-secure memory. Apart from access conditions, the Non-secure and Secure views of the debug components are identical.

The terms in Table K2-4 on page K2-7993, Table K2-5 on page K2-7994, Table K2-6 on page K2-7995, Table K2-7 on page K2-7996, and Table K2-8 on page K2-7997 are defined as follows:

Domain

This describes the power domain in which the register is logically implemented. Registers described as implemented in the Core power domain might be implemented in the Debug power domain, as long as they exhibit the required behavior.

If FEAT_DoPD is implemented, most External debug interface registers are in the Core power domain, as shown in Table K2-4 on page K2-7993 and Table K2-7 on page K2-7996.

If FEAT_DoPD is not implemented, most of the registers are in the Debug Power Domain, as shown in Table K2-5 on page K2-7994 and Table K2-8 on page K2-7997.

Conditions

This lists the conditions under which the access is attempted.

To determine the access permissions for a register, read these columns from left to right, and stop at first column that lists the condition as being true.
The conditions are:

Off \(\text{EDPRSR.PU} == 0 \). The Core power domain is completely off, or in low-power state. In these cases, the Core power domain registers cannot be accessed.

Note

When the Debug power domain is off, all accesses to the registers in the external Debug power domain return an error.

DLK If the OS Double Lock is implemented and \(\text{DoubleLockStatus()} == \text{TRUE} \). The OS Double Lock is locked.

OSLK \(\text{OSLSR.OSLK} == 1 \). The OS Lock is locked.

Default This provides the default access permissions, if there are no conditions that prevent access to the register.

SLK This provides the modified default access permissions for OPTIONAL memory-mapped accesses to the external debug interface if the OPTIONAL Software Lock is locked. See Register access permissions for memory-mapped accesses on page H8-7142. If \text{FEAT_DoPD} is implemented, the Software Lock is not locked, or not implemented, this column is ignored.

The access permissions are:

- **This means that the default access permission applies.** See the Default column, or the SLK column, if applicable.

- **RO** This means that the register or field is read-only.

- **RW** This means that the register or field is read/write. Individual fields within the register might be RO. See the relevant register description for details.

- **RC** This means that the bit clears to 0 after a read.

- **(SE)** This means that accesses to this register have indirect write side effects. A side effect occurs when a direct read or a direct write of a register creates an indirect write to the same register or to another register.

- **WO** This means that the register or field is write-only.

- **WI** This means that the register or field ignores writes.

- **IMP DEF** This means that the access permissions are IMPLEMENTATION DEFINED.

Table K2-4 External debug interface access permissions, CoreSight registers (debug) if \text{FEAT_DoPD} is implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>EDITCTRL</td>
<td>IMP DEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>0xF04-0xF8C</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>RES0</td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1</td>
<td>Core</td>
<td>Error</td>
<td>Error</td>
</tr>
<tr>
<td>0xFA8</td>
<td>EDDEVAFF0</td>
<td>Core</td>
<td>Error</td>
<td>-</td>
</tr>
<tr>
<td>0xFAC</td>
<td>EDDEVAFF1</td>
<td>Core</td>
<td>Error</td>
<td>-</td>
</tr>
<tr>
<td>0xFB0</td>
<td>EDLAR</td>
<td>Core</td>
<td>Error</td>
<td>-</td>
</tr>
</tbody>
</table>
Table K2-4 External debug interface access permissions, CoreSight registers (debug) if FEAT_DoPD is implemented (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFB4</td>
<td>EDLSR</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFC0</td>
<td>EDDEVARCH</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDDEVID1</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDDEVID</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFCC</td>
<td>EDDEVTYPE</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFD0</td>
<td>EDPIDR4</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFD4-0xFD8</td>
<td>Reserved</td>
<td>-</td>
<td>RES0</td>
<td></td>
</tr>
<tr>
<td>0xFE0-0xFE4-0xFEC-0xFF0</td>
<td>EDPIDR0</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFE4</td>
<td>EDPIDR1</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFE8</td>
<td>EDPIDR2</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFEC</td>
<td>EDPIDR3</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFF0</td>
<td>EDCIDR0</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFF4</td>
<td>EDCIDR1</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFF8</td>
<td>EDCIDR2</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
<tr>
<td>0xFFC</td>
<td>EDCIDR3</td>
<td>Core</td>
<td>Error - - RO</td>
<td></td>
</tr>
</tbody>
</table>

Table K2-5 External debug interface access permissions, CoreSight registers (debug) if FEAT_DoPD is not implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>EDITCTRL</td>
<td>IMP DEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMP DEF</td>
<td>RO/WI</td>
</tr>
<tr>
<td>0xF04-0xF08C</td>
<td>Reserved</td>
<td>Debug</td>
<td>- - - RES0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0xFA0</td>
<td>DBGCLAIMSET_EL1</td>
<td>Core</td>
<td>Error Error Error</td>
<td>RW (SE)</td>
<td>RO</td>
</tr>
<tr>
<td>0xFA4</td>
<td>DBGCLAIMCLR_EL1</td>
<td>Core</td>
<td>Error Error Error</td>
<td>RW (SE)</td>
<td>RO</td>
</tr>
<tr>
<td>0xFA8</td>
<td>EDEVAFF0</td>
<td>Debug</td>
<td>- - - RO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0xFAC</td>
<td>EDEVAFF1</td>
<td>Debug</td>
<td>- - - RO</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0xFB0</td>
<td>EDLAR</td>
<td>Debug</td>
<td>- - - WO (SE)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table K2-5 External debug interface access permissions, CoreSight registers (debug) if FEAT_DoPD is not implemented (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFB4</td>
<td>EDLSR</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFB8</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFBC</td>
<td>EDDEVARCH</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC0</td>
<td>EDDEVID2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC4</td>
<td>EDDEVID1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC8</td>
<td>EDDEVID1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFCC</td>
<td>EDDEVTYPE</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFD0</td>
<td>EDPIDR4</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFD4–0xFD6</td>
<td>Reserved</td>
<td>Debug</td>
<td>- - -</td>
<td>RES0</td>
<td>-</td>
</tr>
<tr>
<td>0xFE0–0xFE6</td>
<td>EDPIDR0</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFE4</td>
<td>EDPIDR1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFE8</td>
<td>EDPIDR2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFEC</td>
<td>EDPIDR3</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF0</td>
<td>EDCIDR0</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF4</td>
<td>EDCIDR1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF8</td>
<td>EDCIDR2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFFC</td>
<td>EDCIDR3</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
</tbody>
</table>

Table K2-6 External debug interface access permissions, CoreSight registers (CTI)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>CTIITCTRL</td>
<td>IMP DEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMP DEF</td>
<td>RO/WI</td>
</tr>
<tr>
<td>0xF04–0xF0C</td>
<td>Reserved</td>
<td>Debug</td>
<td>- - -</td>
<td>RES0</td>
<td>-</td>
</tr>
<tr>
<td>0xFA0</td>
<td>CTICLAIMSET</td>
<td>Debug</td>
<td>- - -</td>
<td>RW (SE)</td>
<td>RO</td>
</tr>
<tr>
<td>0xFA4</td>
<td>CTICLAIMCLR</td>
<td>Debug</td>
<td>- - -</td>
<td>RW (SE)</td>
<td>RO</td>
</tr>
<tr>
<td>0xFA8</td>
<td>CTIDEVAFF0</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFAC</td>
<td>CTIDEVAFF1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFB0</td>
<td>CTILAR</td>
<td>Debug</td>
<td>- - -</td>
<td>WO (SE)</td>
<td>-</td>
</tr>
</tbody>
</table>
Table K2-6 External debug interface access permissions, CoreSight registers (CTI) (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFB4</td>
<td>CTILSR</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFB8</td>
<td>CTIAUTHSTATUS</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFBC</td>
<td>CTIDEVARCH</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC0</td>
<td>CTIDEVID2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC4</td>
<td>CTIDEVID1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC8</td>
<td>CTIDEVID</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xCC</td>
<td>CTIDEVTYPE</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFD0</td>
<td>CTIPIDR4</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFD4-0xFDC</td>
<td>Reserved</td>
<td>Debug</td>
<td>- - -</td>
<td>RES0</td>
<td>-</td>
</tr>
<tr>
<td>0xFE0</td>
<td>CTIPIDR0</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFE4</td>
<td>CTIPIDR1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFE8</td>
<td>CTIPIDR2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFE4</td>
<td>CTIPIDR3</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF0</td>
<td>CTICIDR0</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF4</td>
<td>CTICIDR1</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFF8</td>
<td>CTICIDR2</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFFC</td>
<td>CTICIDR3</td>
<td>Debug</td>
<td>- - -</td>
<td>RO</td>
<td>-</td>
</tr>
</tbody>
</table>

Table K2-7 External debug interface access permissions, CoreSight registers (PMU) if FEAT_DoPD is implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>PMITCTRL</td>
<td>IMP DEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMP DEF</td>
</tr>
<tr>
<td>0xF04-0xFA4</td>
<td>Reserved</td>
<td>- - -</td>
<td>-</td>
<td>RES0</td>
</tr>
<tr>
<td>0xFA8</td>
<td>PMDEVAFF0</td>
<td>Core Error</td>
<td>- -</td>
<td>RO</td>
</tr>
<tr>
<td>0xFAC</td>
<td>PMDEVAFF1</td>
<td>Core Error</td>
<td>- -</td>
<td>RO</td>
</tr>
<tr>
<td>0xFB0</td>
<td>PMLAR</td>
<td>Core Error</td>
<td>- -</td>
<td>WO (SE)</td>
</tr>
<tr>
<td>0xFB4</td>
<td>PMLSR</td>
<td>Core Error</td>
<td>- -</td>
<td>RO</td>
</tr>
<tr>
<td>0xFB8</td>
<td>PMAUTHSTATUS</td>
<td>Core Error</td>
<td>- -</td>
<td>RO</td>
</tr>
</tbody>
</table>
Table K2-7 External debug interface access permissions, CoreSight registers (PMU) if FEAT_DoPD is implemented (continued)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFBC</td>
<td>PMDEVARCH</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFC0–0xFC4</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>RES0</td>
</tr>
<tr>
<td>0xFC8</td>
<td>PMDEVID0</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0 FCC</td>
<td>PMDEVTYPE</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFD0</td>
<td>PMPIDR4</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFD4–0xFD8</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>RES0</td>
</tr>
<tr>
<td>0xFE0</td>
<td>PMPIDR0</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFE4</td>
<td>PMPIDR1</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFE8</td>
<td>PMPIDR2</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0 FEC</td>
<td>PMPIDR3</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFF0</td>
<td>PMCIDR0</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFF4</td>
<td>PMCIDR1</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFF8</td>
<td>PMCIDR2</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
<tr>
<td>0xFFC</td>
<td>PMCIDR3</td>
<td>Core</td>
<td>Error</td>
<td>RO</td>
</tr>
</tbody>
</table>

* a. Implemented from Armv8.2, or if FEAT_PCSRv8p2 is implemented. Otherwise this location is RES0.

Table K2-8 External debug interface access permissions, CoreSight registers (PMU) if FEAT_DoPD is not implemented

<table>
<thead>
<tr>
<th>Offset</th>
<th>Register</th>
<th>Domain</th>
<th>Conditions (priority left to right)</th>
<th>Default</th>
<th>SLK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF00</td>
<td>PMITCTRL</td>
<td>IMP DEF</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IMP DEF</td>
<td>RO/WI</td>
</tr>
<tr>
<td>0xF04–0xFA4</td>
<td>Reserved</td>
<td>Debug</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
</tr>
<tr>
<td>0xFA8</td>
<td>PMDEVAFF0</td>
<td>Debug</td>
<td>-</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFAC</td>
<td>PMDEVAFF1</td>
<td>Debug</td>
<td>-</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFB0</td>
<td>PMLAR</td>
<td>Debug</td>
<td>-</td>
<td>WO (SE)</td>
<td>-</td>
</tr>
<tr>
<td>0xFB4</td>
<td>PMLSR</td>
<td>Debug</td>
<td>-</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFB8</td>
<td>PMAUTHSTATUS</td>
<td>Debug</td>
<td>-</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFBC</td>
<td>PMDEVARCH</td>
<td>Debug</td>
<td>-</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>0xFC0–0xFC4</td>
<td>Reserved</td>
<td>Debug</td>
<td>-</td>
<td>RES0</td>
<td>-</td>
</tr>
</tbody>
</table>
K2.4.3 Management register resets

Table K2-9 shows the management register resets. This table does not include:

- Read-only identification registers that have a fixed value from reset. These registers include those with the DEVAFFn, DEVARCH, DEVID[n], DEVTYPE, PIDRn, and CIDRn mnemonics.
- Registers that have the AUTHSTATUS mnemonic. This is a read-only status register that reflects the status outside of the reset domain of the register.
- Registers that have the LAR mnemonic. These are write-only registers that only have an effect on writes.

All other fields in the management registers are reset to an IMPLEMENTATION DEFINED value which can be UNKNOWN. The registers are in the reset domain specified in the table.

Table K2-9 shows a summary of the management register resets.

<table>
<thead>
<tr>
<th>Register</th>
<th>Reset domain</th>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTIITCTRL</td>
<td>IMPLEMENTATION DEFINED</td>
<td>IME</td>
<td>0</td>
<td>Integration mode enable</td>
</tr>
<tr>
<td>EDITCTRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMITCTRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
K2.4.4 About the Peripheral identification scheme

The Peripheral Identification scheme provides the standard information required by all components that conform to the Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2, that implements the CoreSight identification scheme. They identify a peripheral in a particular namespace. For more information, see the Arm® CoreSight™ Architecture Specification.

Table K2-10 lists the Peripheral ID Registers that make up the Peripheral Identification scheme for each component.

Table K2-9 Management register resets (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Reset domain</th>
<th>Field</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>Cold reset</td>
<td>CLAIM</td>
<td>0x00000000</td>
<td>CLAIM tags</td>
</tr>
<tr>
<td>CTICLAIMCLR</td>
<td>External debug</td>
<td>CLAIM</td>
<td>0x00000000</td>
<td></td>
</tr>
<tr>
<td>CTILSR<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDLSR<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMLSRL<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Only if the OPTIONAL Software Lock is implemented

Table K2-10 Peripheral Identification Registers

<table>
<thead>
<tr>
<th>Register offset</th>
<th>Description</th>
<th>External Debug</th>
<th>CTI</th>
<th>Performance Monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFD0</td>
<td>Peripheral ID4</td>
<td>EDPIDR4</td>
<td>CTIPIDR4</td>
<td>PMPIDR4</td>
</tr>
<tr>
<td>0xFD4</td>
<td>Reserved for Peripheral ID5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0xFD8</td>
<td>Reserved for Peripheral ID6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0xFDCC</td>
<td>Reserved for Peripheral ID7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0xFE0</td>
<td>Peripheral ID0</td>
<td>EDPIDR0</td>
<td>CTIPIDR0</td>
<td>PMPIDR0</td>
</tr>
<tr>
<td>0xFE4</td>
<td>Peripheral ID1</td>
<td>EDPIDR1</td>
<td>CTIPIDR1</td>
<td>PMPIDR1</td>
</tr>
<tr>
<td>0xFE8</td>
<td>Peripheral ID2</td>
<td>EDPIDR2</td>
<td>CTIPIDR2</td>
<td>PMPIDR2</td>
</tr>
<tr>
<td>0xFEC</td>
<td>Peripheral ID3</td>
<td>EDPIDR3</td>
<td>CTIPIDR3</td>
<td>PMPIDR3</td>
</tr>
</tbody>
</table>

Figure K2-2 shows the register field allocation scheme for the Peripheral ID Registers.

[Diagram of Peripheral ID register format]

Software can consider the eight Peripheral ID Registers as defining a single 64-bit Peripheral ID, as shown in Figure K2-3 on page K2-8000.
Figure K2-3 Mapping between Peripheral ID Registers and a 64-bit Peripheral ID Value

Figure K2-3 shows the fields in the 64-bit Peripheral ID value, and includes the field values for fields that:

- Have fixed values, including the bits that are reserved.
- Have fixed values in an implementation that is designed by Arm.

For more information about the fields and their values see Table K2-11.

Table K2-11 Fields in the Peripheral Identification Registers

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Description</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB count</td>
<td>4 bits</td>
<td>Log2 of the number of 4KB blocks occupied by the implementation.</td>
<td>EDPIDR4, CTIPIDR4, PMPIDR4</td>
</tr>
<tr>
<td>JEP106 code</td>
<td>4+7 bits</td>
<td>Identifies the designer of the implementation. This value consists of:</td>
<td>EDPIDR1, EDPIDR2, EDPIDR3, CTIPIDR1, CTIPIDR2, CTIPIDR3, PMPIDR1, PMPIDR2, PMPIDR4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A 4-bit continuation code, also described as the bank number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A 7-bit identification code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For implementations designed by Arm, the continuation code is 0x4, indicating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bank 5, and the identity code is 0x3B.</td>
<td></td>
</tr>
<tr>
<td>RevAnd</td>
<td>4 bits</td>
<td>Manufacturing revision number. Indicates a late modification to the</td>
<td>EDPIDR3, CTIPIDR3, PMPIDR3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>implementation, usually as a result of an Engineering Change Order (ECO).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This field starts at 0x8 and is incremented by the integrated circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>manufacturer on metal fixes.</td>
<td></td>
</tr>
<tr>
<td>Customer modified</td>
<td>4 bits</td>
<td>Indicates an endorsed modification to the implementation.</td>
<td>EDPIDR3, CTIPIDR3, PMPIDR3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the system designer cannot modify the implementation supplied by the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>implementation designer then this field is RES0.</td>
<td></td>
</tr>
</tbody>
</table>
A component is identified uniquely by the combination of the following fields:

- JEP106 continuation code.
- JEP106 identity code.
- Part number.
- Revision.
- Customer Modified.
- RevAnd.

For components with a **Component class** of 0x9, Debug component, indicated by the Component Identification Registers, multiple components can have the same Part number, provided each component has a different CoreSight **Device type**. However, Arm strongly recommends that each device has a unique Part number. For more information:

- About the Component Identification Registers, see *About the Component Identification scheme on page K2-8002.*
- About the CoreSight Device type, see EDDEVTYPE, CTIDEVTYPE, or PMDEVTYPE.
- About CoreSight components and their identification, see the *Arm® Debug Interface Architecture Specification.*

Allocating revisions and part numbers

Within the Peripheral Identification registers, the allocation of major and minor revisions, part numbers, and customer-modified fields is **IMPLEMENTATION DEFINED**, with the following set of restrictions so that:

- The **REVISION** field must increase monotonically with revisions.

 Note

 Arm recommends that the **REVISION** field is updated for each update to the RTL, regardless of whether this is a major or minor update.

- The **REV AND** field should increase monotonically with revisions.

 Note

 Arm recommends that the **REV AND** field is used only for post-release changes. For example, those due to engineering change order (ECO) fixes related to the debug component of the processor.

- The **PART** field must have a degree of uniqueness:

 — Two component designs can have the same part number so long as they are sub-components of the same part and the programmers’ model for the part has the means to disambiguate sub-components.
 — Otherwise, two component designs must have unique part numbers.

Table K2-11 Fields in the Peripheral Identification Registers (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Description</th>
<th>Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
<td>4 bits</td>
<td>Revision number for the implementation.</td>
<td>EDPIDR2, CTIPIDR2, PMPIDR2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starts at 0x0 and increments by 1 at both major and minor revisions.</td>
<td></td>
</tr>
<tr>
<td>Uses JEP106</td>
<td>1 bit</td>
<td>This bit is set to 1 when a JEP106 identification code is used.</td>
<td>EDPIDR2, CTIPIDR2, PMPIDR2</td>
</tr>
<tr>
<td>ID code</td>
<td></td>
<td>This bit must be 1 on all Armv8 implementations.</td>
<td></td>
</tr>
<tr>
<td>Part number</td>
<td>12 bits</td>
<td>Part number for the implementation. Each organization designing to the Arm Debug architecture specification keeps its own part number list.</td>
<td>EDPIDR0, EDPIDR1, CTIPIDR0, CTIPIDR1, PMPIDR0, PMPIDR1</td>
</tr>
</tbody>
</table>
The DEVARCH (if implemented) or DEVTYPE (otherwise) register provides the means to disambiguate sub-components of the Debug Architecture.

A ROM table has no DEVTYPE or DEVARCH register. However, if it is the only CLASS 0x1 component in a processor cluster, it can still be disambiguated.

Multiple instances of the same component design have the same part number.

K2.4.5 About the Component Identification scheme

The Component Identification Registers identify the processor as an Arm Debug Interface v5 component. For more information, see the *Arm® Debug Interface Architecture Specification* and the *Arm® CoreSight™ Architecture Specification*.

The Component Identification Registers occupy the last four words of the 4KB block of debug registers.

<table>
<thead>
<tr>
<th>Register offset</th>
<th>Description</th>
<th>External debug</th>
<th>CTI</th>
<th>Performance Monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0</td>
<td>Component ID0</td>
<td>EDCIDR0</td>
<td>CTICIDR0</td>
<td>PMCIDR0</td>
</tr>
<tr>
<td>0xFF0</td>
<td>Component ID1</td>
<td>EDCIDR1</td>
<td>CTICIDR1</td>
<td>PMCIDR1</td>
</tr>
<tr>
<td>0xFF0</td>
<td>Component ID2</td>
<td>EDCIDR2</td>
<td>CTICIDR2</td>
<td>PMCIDR2</td>
</tr>
<tr>
<td>0xFF0</td>
<td>Component ID3</td>
<td>EDCIDR3</td>
<td>CTICIDR3</td>
<td>PMCIDR3</td>
</tr>
</tbody>
</table>

Figure K2-5 shows the register field allocation scheme for the Component ID Registers.

![Component ID Register format](image)

Software can consider the eight Component ID Registers as defining a single 32-bit Component ID, as shown in Figure K2-6.

![Mapping between Component ID Registers and a 32-bit Component ID Value](image)
Appendix K3
Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events

This appendix describes the Arm recommendations for the use of the IMPLEMENTATION DEFINED event numbers. It contains the following sections:

- Arm recommendations for IMPLEMENTATION DEFINED event numbers on page K3-8004.
- Summary of events for exceptions taken to an Exception level using AArch64 on page K3-8019.
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers

These are the Arm recommendations for the use of the IMPLEMENTATION DEFINED event numbers. Arm does not define these events as rigorously as those in the architectural and microarchitectural event lists, and an implementation might:

- Modify the definition of an event to better correspond to the implementation.
- Not use some, or many, of these event numbers.

Table K3-1 lists the PMU IMPLEMENTATION DEFINED event numbers in event number order.

<table>
<thead>
<tr>
<th>Event number</th>
<th>Event mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0040</td>
<td>L1D_CACHE_RD</td>
<td>Attributable Level 1 data cache access, read</td>
</tr>
<tr>
<td>0x0041</td>
<td>L1D_CACHE_WR</td>
<td>Attributable Level 1 data cache access, write</td>
</tr>
<tr>
<td>0x0042</td>
<td>L1D_CACHE_REFILL_RDa</td>
<td>Attributable Level 1 data cache refill, read</td>
</tr>
<tr>
<td>0x0043</td>
<td>L1D_CACHE_REFILL_WRa</td>
<td>Attributable Level 1 data cache refill, write</td>
</tr>
<tr>
<td>0x0044</td>
<td>L1D_CACHE_REFILL_INNER</td>
<td>Attributable Level 1 data cache refill, inner</td>
</tr>
<tr>
<td>0x0045</td>
<td>L1D_CACHE_REFILL_OUTER</td>
<td>Attributable Level 1 data cache refill, outer</td>
</tr>
<tr>
<td>0x0046</td>
<td>L1D_CACHE WB_VICTIM</td>
<td>Attributable Level 1 data cache Write-Back, victim</td>
</tr>
<tr>
<td>0x0047</td>
<td>L1D_CACHE WB_CLEAN</td>
<td>Level 1 data cache Write-Back, cleaning and coherency</td>
</tr>
<tr>
<td>0x0048</td>
<td>L1D_CACHE_INVAL</td>
<td>Attributable Level 1 data cache invalidate</td>
</tr>
<tr>
<td>0x0049-0x004B</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x004C</td>
<td>L1D_TLB_REFILL_RDa</td>
<td>Attributable Level 1 data TLB refill, read</td>
</tr>
<tr>
<td>0x004D</td>
<td>L1D_TLB_REFILL_WRa</td>
<td>Attributable Level 1 data TLB refill, write</td>
</tr>
<tr>
<td>0x004E</td>
<td>L1D_TLB_RD</td>
<td>Attributable Level 1 data or unified TLB access, read</td>
</tr>
<tr>
<td>0x004F</td>
<td>L1D_TLB_WR</td>
<td>Attributable Level 1 data or unified TLB access, write</td>
</tr>
<tr>
<td>0x0050</td>
<td>L2D_CACHE_RD</td>
<td>Attributable Level 2 data cache access, read</td>
</tr>
<tr>
<td>0x0051</td>
<td>L2D_CACHE_WR</td>
<td>Attributable Level 2 data cache access, write</td>
</tr>
<tr>
<td>0x0052</td>
<td>L2D_CACHE_REFILL_RDa</td>
<td>Attributable Level 2 data cache refill, read</td>
</tr>
<tr>
<td>0x0053</td>
<td>L2D_CACHE_REFILL_WRa</td>
<td>Attributable Level 2 data cache refill, write</td>
</tr>
<tr>
<td>0x0054-0x0055</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x0056</td>
<td>L2D_CACHE WB_VICTIM</td>
<td>Attributable Level 2 data cache Write-Back, victim</td>
</tr>
<tr>
<td>0x0057</td>
<td>L2D_CACHE WB_CLEAN</td>
<td>Level 2 data cache Write-Back, cleaning and coherency</td>
</tr>
<tr>
<td>0x0058</td>
<td>L2D_CACHE_INVAL</td>
<td>Attributable Level 2 data cache invalidate</td>
</tr>
<tr>
<td>0x0059-0x005B</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x005C</td>
<td>L2D_TLB_REFILL_RDa</td>
<td>Attributable Level 2 data or unified TLB refill, read</td>
</tr>
<tr>
<td>0x005D</td>
<td>L2D_TLB_REFILL_WRa</td>
<td>Attributable Level 2 data or unified TLB refill, write</td>
</tr>
</tbody>
</table>
Table K3-1 PMU IMPLEMENTATION DEFINED event numbers (continued)

<table>
<thead>
<tr>
<th>Event number</th>
<th>Event mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x005E</td>
<td>L2D_TLB_RD</td>
<td>Attributable Level 2 data or unified TLB access, read</td>
</tr>
<tr>
<td>0x005F</td>
<td>L2D_TLB_WR</td>
<td>Attributable Level 2 data or unified TLB access, write</td>
</tr>
<tr>
<td>0x0060</td>
<td>BUS_ACCESS_RD</td>
<td>Bus access, read</td>
</tr>
<tr>
<td>0x0061</td>
<td>BUS_ACCESS_WR</td>
<td>Bus access, write</td>
</tr>
<tr>
<td>0x0062</td>
<td>BUS_ACCESS_SHARED</td>
<td>Bus access, Normal, Cacheable, Shareable</td>
</tr>
<tr>
<td>0x0063</td>
<td>BUS_ACCESS_NOT_SHARED</td>
<td>Bus access, not Normal, Cacheable, Shareable</td>
</tr>
<tr>
<td>0x0064</td>
<td>BUS_ACCESS_NORMAL</td>
<td>Bus access, normal</td>
</tr>
<tr>
<td>0x0065</td>
<td>BUS_ACCESS_PERIPH</td>
<td>Bus access, peripheral</td>
</tr>
<tr>
<td>0x0066</td>
<td>MEM_ACCESS_RD</td>
<td>Data memory access, read</td>
</tr>
<tr>
<td>0x0067</td>
<td>MEM_ACCESS_WR</td>
<td>Data memory access, write</td>
</tr>
<tr>
<td>0x0068</td>
<td>UNALIGNED_LD_SPEC</td>
<td>Unaligned access, read</td>
</tr>
<tr>
<td>0x0069</td>
<td>UNALIGNED_ST_SPEC</td>
<td>Unaligned access, write</td>
</tr>
<tr>
<td>0x006A</td>
<td>UNALIGNED_LDS_T_SPEC</td>
<td>Unaligned access</td>
</tr>
<tr>
<td>0x006B</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x006C</td>
<td>LDREX_SPEC</td>
<td>Exclusive operation speculatively executed, LDREX or LDX</td>
</tr>
<tr>
<td>0x006D</td>
<td>STREX_PASS_SPEC</td>
<td>Exclusive operation speculatively executed, STREX or STX pass</td>
</tr>
<tr>
<td>0x006E</td>
<td>STREX_FAIL_SPEC</td>
<td>Exclusive operation speculatively executed, STREX or STX fail</td>
</tr>
<tr>
<td>0x006F</td>
<td>STREX_SPEC</td>
<td>Exclusive operation speculatively executed, STREX or STX</td>
</tr>
<tr>
<td>0x0070</td>
<td>LD_SPEC</td>
<td>Operation speculatively executed, load</td>
</tr>
<tr>
<td>0x0071</td>
<td>ST_SPEC</td>
<td>Operation speculatively executed, store</td>
</tr>
<tr>
<td>0x0072</td>
<td>LDS_T_SPEC</td>
<td>Operation speculatively executed, load or store</td>
</tr>
<tr>
<td>0x0073</td>
<td>DP_SPEC</td>
<td>Operation speculatively executed, integer data processing</td>
</tr>
<tr>
<td>0x0074</td>
<td>ASE_SPEC</td>
<td>Operation speculatively executed, Advanced SIMD instruction</td>
</tr>
<tr>
<td>0x0075</td>
<td>VFP_SPEC</td>
<td>Operation speculatively executed, floating-point instruction</td>
</tr>
<tr>
<td>0x0076</td>
<td>PC_WRITE_SPEC</td>
<td>Operation speculatively executed, software change of the PC</td>
</tr>
<tr>
<td>0x0077</td>
<td>CRYPTO_SPEC</td>
<td>Operation speculatively executed, Cryptographic instruction</td>
</tr>
<tr>
<td>0x0078</td>
<td>BR_IMMED_SPEC</td>
<td>Branch speculatively executed, immediate branch</td>
</tr>
<tr>
<td>0x0079</td>
<td>BR_RETURN_SPEC</td>
<td>Branch speculatively executed, procedure return</td>
</tr>
<tr>
<td>0x007A</td>
<td>BR_INDIRECT_SPEC</td>
<td>Branch speculatively executed, indirect branch</td>
</tr>
<tr>
<td>0x007B</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x007C</td>
<td>ISB_SPEC</td>
<td>Barrier speculatively executed, ISB</td>
</tr>
<tr>
<td>0x007D</td>
<td>DSB_SPEC</td>
<td>Barrier speculatively executed, DSB</td>
</tr>
</tbody>
</table>
Table K3-1 PMU IMPLEMENTATION DEFINED event numbers (continued)

<table>
<thead>
<tr>
<th>Event number</th>
<th>Event mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x007E</td>
<td>DMB_SPEC</td>
<td>Barrier speculatively executed, DMB</td>
</tr>
<tr>
<td>0x007F</td>
<td>CSDB_SPEC</td>
<td>Barrier speculatively executed, CSDB</td>
</tr>
<tr>
<td>0x0080</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x0081</td>
<td>EXC_UNDEF</td>
<td>Exception taken, Other synchronous</td>
</tr>
<tr>
<td>0x0082</td>
<td>EXC_SVC</td>
<td>Exception taken, Supervisor Call</td>
</tr>
<tr>
<td>0x0083</td>
<td>EXC_PABORT</td>
<td>Exception taken, Instruction Abort</td>
</tr>
<tr>
<td>0x0084</td>
<td>EXC_DABORT</td>
<td>Exception taken, Data Abort and SError</td>
</tr>
<tr>
<td>0x0085</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x0086</td>
<td>EXC_IRQ</td>
<td>Exception taken, IRQ</td>
</tr>
<tr>
<td>0x0087</td>
<td>EXC_FIQ</td>
<td>Exception taken, FIQ</td>
</tr>
<tr>
<td>0x0088</td>
<td>EXC_SMC</td>
<td>Exception taken, Secure Monitor Call</td>
</tr>
<tr>
<td>0x0089</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x008A</td>
<td>EXC_HVC</td>
<td>Exception taken, Hypervisor Call</td>
</tr>
<tr>
<td>0x008B</td>
<td>EXC_TRAP_PABORT</td>
<td>Exception taken, Instruction Abort not Taken locally<sup>b</sup></td>
</tr>
<tr>
<td>0x008C</td>
<td>EXC_TRAP_DABORT</td>
<td>Exception taken, Data Abort or SError not Taken locally<sup>b</sup></td>
</tr>
<tr>
<td>0x008D</td>
<td>EXC_TRAP_OTHER</td>
<td>Exception taken, Other traps not Taken locally<sup>b</sup></td>
</tr>
<tr>
<td>0x008E</td>
<td>EXC_TRAP_IRQ</td>
<td>Exception taken, IRQ not Taken locally<sup>b</sup></td>
</tr>
<tr>
<td>0x008F</td>
<td>EXC_TRAP_FIQ</td>
<td>Exception taken, FIQ not Taken locally<sup>b</sup></td>
</tr>
<tr>
<td>0x0090</td>
<td>RC_LD_SPEC</td>
<td>Release consistency operation speculatively executed, Load-Acquire</td>
</tr>
<tr>
<td>0x0091</td>
<td>RC_ST_SPEC</td>
<td>Release consistency operation speculatively executed, Store-Release</td>
</tr>
<tr>
<td>0x0092-0x009F</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x00A0</td>
<td>L3D_CACHE_RD</td>
<td>Attributable Level 3 data or unified cache access, read</td>
</tr>
<tr>
<td>0x00A1</td>
<td>L3D_CACHE_WR</td>
<td>Attributable Level 3 data or unified cache access, write</td>
</tr>
<tr>
<td>0x00A2</td>
<td>L3D_CACHE_REFILL_RD*</td>
<td>Attributable Level 3 data or unified cache refill, read</td>
</tr>
<tr>
<td>0x00A3</td>
<td>L3D_CACHE_REFILL_WR*</td>
<td>Attributable Level 3 data or unified cache refill, write</td>
</tr>
<tr>
<td>0x00A4-0x00A5</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>0x00A6</td>
<td>L3D_CACHE WB_VICTIM</td>
<td>Attributable Level 3 data or unified cache Write-Back, victim</td>
</tr>
<tr>
<td>0x00A7</td>
<td>L3D_CACHE WB_CLEAN</td>
<td>Attributable Level 3 data or unified cache Write-Back, cache clean</td>
</tr>
<tr>
<td>0x00A8</td>
<td>L3D_CACHE INVALID</td>
<td>Attributable Level 3 data or unified cache access, invalidate</td>
</tr>
</tbody>
</table>

For more information, see *Relationship between REFILL events and associated access events* on page K3-8017.

The Glossary defines the term *Taken locally*. See also *Exception levels* on page D1-2312 for more information.

0x0040, L1D_CACHE_RD, Attributable Level 1 data cache access, read
This event is similar to Level 1 data cache access, L1D_CACHE, but the counter counts only memory-read operations that access at least the Level 1 data or unified cache.

If the cache is shared, only events Attributable to this PE are counted. If the cache is not shared, all events are counted.

See also:
- Attributability on page D7-2701.
- Meaningful ratios between common microarchitectural events on page D7-2763.

0x0041, L1D_CACHE_WR, Attributable Level 1 data cache access, write
This event is similar to Level 1 data cache access, L1D_CACHE, but the counter counts only memory-write operations that access at least the Level 1 data or unified cache.

The counter counts DC ZVA as a store instruction.

0x0042, L1D_CACHE_REFILL_RD, Attributable Level 1 data cache refill, read
This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts only memory-read operations that cause a refill of at least the Level 1 data or unified cache.

See also Relationship between REFILL events and associated access events. on page K3-8017.

0x0043, L1D_CACHE_REFILL_WR, Attributable Level 1 data cache refill, write
This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts only memory-write operations that cause a refill of at least the Level 1 data or unified cache.

The counter counts DC ZVA as a store instruction.

See also Relationship between REFILL events and associated access events. on page K3-8017.

0x0044, L1D_CACHE_REFILL_INNER, Attributable Level 1 data cache refill, inner
This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts only memory-read and memory-write operations that generate refills satisfied by transfer from another cache inside of the immediate cluster.

Note
The boundary between inner and outer is IMPLEMENTATION DEFINED, and it is not necessarily linked to other similar boundaries, such as the boundary between Inner Cacheable and Outer Cacheable or the boundary between Inner Shareable and Outer Shareable.

0x0045, L1D_CACHE_REFILL_OUTER, Attributable Level 1 data cache refill, outer
This event is similar to Level 1 data cache refill, L1D_CACHE_REFILL, but the counter counts only memory-read and memory-write operations that generate refills satisfied from outside of the immediate cluster.

0x0046, L1D_CACHE_WB_VICTIM, Attributable Level 1 data cache Write-Back, victim
This event is similar to Level 1 data cache Write-Back, L1D_CACHE_WB, but the counter counts only Write-Backs that are a result of the line being allocated for an access made by the PE.

If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance instruction are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache is counted. For example, this might occur if the PE detects streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.

0x0047, L1D_CACHE_WB_CLEAN, Level 1 data cache Write-Back, cleaning and coherency
This event is similar to Attributable Level 1 data cache Write-Back, L1D_CACHE_WB, but the counter counts only Write-Backs that are a result of a coherency operation made by another PE or are caused by the execution of a cache maintenance instruction. Whether Write-Backs caused by the execution of a cache maintenance instruction are counted is IMPLEMENTATION DEFINED.
If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable event.

--- Note ---

The transfer of a dirty cache line from the Level 1 data cache of this PE to the Level 1 data cache of another PE due to a hardware coherency operation is not counted unless the dirty cache line is also written back to a Level 2 cache or memory.

0x0048, L1D_CACHE_INV AL, Attributable Level 1 data cache invalidate
The counter counts each invalidation of a cache line in the Level 1 data or unified cache.
The counter does not count events if a cache refill invalidates a line.
If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance instructions that operate by set/way.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable event.

0x004C, L1D_TLB_REFILL_RD, Attributable Level 1 data TLB refill, read
This event is similar to Level 1 data TLB refill, L1D_TLB_REFILL, but the counter counts only memory-read operations that cause a data TLB refill of a least the Level 1 data or unified TLB.
See also Relationship between REFILL events and associated access events. on page K3-8017.

0x004D, L1D_TLB_REFILL_WR, Attributable Level 1 data TLB refill, write
This event is similar to Level 1 data TLB refill, L1D_TLB_REFILL, but the counter counts only memory-write operations that cause a data TLB refill of a least the Level 1 data or unified TLB.
The counter counts DC ZVA as a store instruction.
See also Relationship between REFILL events and associated access events. on page K3-8017.

0x004E, L1D_TLB_RD, Attributable Level 1 data or unified TLB access, read
This event is similar to Level 1 data or unified TLB access, L1D_TLB, but the counter counts only memory-read operations that cause a TLB access to at least the Level 1 data or unified TLB.

0x004F, L1D_TLB_WR, Attributable Level 1 data or unified TLB access, write
This event is similar to Level 1 data or unified TLB access, L1D_TLB, but the counter counts only memory-write operations that cause a TLB access to at least the Level 1 data or unified TLB.

0x0050, L2D_CACHE_RD, Attributable Level 2 data cache access, read
This event is similar to Attributable Level 2 data cache access, L2D_CACHE, but the counter counts only memory-read operations that access at least the Level 2 data or unified cache.

0x0051, L2D_CACHE_WR, Attributable Level 2 data cache access, write
This event is similar to Attributable Level 2 data cache access, L2D_CACHE, but the counter counts only memory-write operations that access at least the Level 2 data or unified cache.
The counter counts DC ZVA as a store instruction.

0x0052, L2D_CACHE_REFILL_RD, Attributable Level 2 data cache refill, read
This event is similar to Attributable Level 2 data cache refill, L2D_CACHE_REFILL, but the counter counts only memory-read operations that cause a refill of at least the Level 2 data or unified cache.
See also Relationship between REFILL events and associated access events. on page K3-8017.
0x0053, L2D_CACHE_REFILL_WR, Attributable Level 2 data cache refill, write

This event is similar to Attributable Level 2 data cache refill, L2D_CACHE_REFILL, but the counter counts only memory-write operations that cause a refill of at least the Level 2 data or unified cache.

The counter counts DC ZVA as a store instruction.

See also Relationship between REFILL events and associated access events. on page K3-8017.

0x0056, L2D_CACHE_WB_VICTIM, Attributable Level 2 data cache Write-Back, victim

This event is similar to Attributable Level 2 data cache Write-Back, L2D_CACHE_WB, but the counter counts only Write-Backs that are a result of the line being allocated for an access made by the PE.

If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance instruction are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache is counted. For example, this might occur if the PE detects streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.

0x0057, L2D_CACHE_WB_CLEAN, Level 2 data cache Write-Back, cleaning and coherency

This event is similar to Attributable Level 2 data cache Write-Back, L2D_CACHE_WB, but the counter counts only Write-Backs that are a result of a coherency operation made by another PE or are caused by the execution of a cache maintenance instruction. Whether Write-Backs caused by the execution of a cache maintenance instruction are counted as IMPLEMENTATION DEFINED.

Note

The transfer of a dirty cache line from the Level 2 data cache of this PE to the Level 2 data cache of another PE due to a hardware coherency operation is not counted unless the dirty cache line is also written back to a Level 3 cache or memory.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable event.

0x0058, L2D_CACHE_INV, Attributable Level 2 data cache invalidate

The counter counts each invalidation of a cache line in the Level 2 data or unified cache.

The counter does not count events if a cache refill invalidates a line.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance instructions that operate by set/way.

Note

Software that uses this event must know whether the Level 2 data cache is shared with other PEs. This event does not follow the general rule of Level 2 data cache events of only counting events that directly affect this PE.

If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable event.

0x005C, L2D_TLB_REFILL_RD, Attributable Level 2 data or unified TLB refill, read

This event is similar to Attributable Level 2 data or unified TLB refill, L2D_TLB_REFILL, but the counter counts only Attributable memory read operations that cause a TLB refill of at least the Level 2 data or unified TLB. See also Relationship between REFILL events and associated access events. on page K3-8017.
Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events
K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers

0x005D, L2D_TLB_REFILL_WR, Attributable Level 2 data or unified TLB refill, write
This event is similar to Attributable Level 2 data or unified TLB refill, L2D_TLB_REFILL, but the counter counts only Attributable memory write operations that cause a TLB refill of at least the Level 2 data or unified TLB. See also Relationship between REFILL events and associated access events on page K3-8017.

0x005E, L2D_TLB_RD, Attributable Level 2 data or unified TLB access, read
This event is similar to Attributable Level 2 data or unified TLB access, L2D_TLB, but the counter counts only Attributable memory read operations that cause a TLB access to at least the Level 2 data or unified TLB.

0x005F, L2D_TLB_WR, Attributable Level 2 data or unified TLB access, write
This event is similar to Attributable Level 2 data or unified TLB access, L2D_TLB, but the counter counts only Attributable memory write operations that cause a TLB access to at least the Level 2 data or unified TLB.

0x0060, BUS_ACCESS_RD, Bus access, read
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read operations that access outside the boundary of the PE and its closely-coupled caches.

0x0061, BUS_ACCESS_WR, Bus access, write
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-write operations that access outside the boundary of the PE and its closely-coupled caches.

0x0062, BUS_ACCESS_SHARED, Bus access, Normal, Cacheable, Shareable
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and memory-write operations that make Normal, Cacheable, Shareable accesses outside the boundary of the PE and its closely-coupled caches.

Note
It is IMPLEMENTATION DEFINED how the PE translates the attributes from the translation table entry for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION DEFINED boundary lies, between Inner and Outer Shareable.

If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining this event.

0x0063, BUS_ACCESS_NOT_SHARED, Bus access, not Normal, Cacheable, Shareable
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and memory-write operations that make accesses outside the boundary of the PE and its closely-coupled caches that are not Normal, Cacheable, Shareable. For example, the counter counts accesses marked as:

- Normal, Cacheable, Non-shareable.
- Normal, Non-cacheable.
- Device.

Note
It is IMPLEMENTATION DEFINED, how the PE translates the attributes from the translation table entries for a region to the attributes on the bus.

In particular, a region of memory designated as Normal, Cacheable, Inner Shareable, Not Outer Shareable by a translation table entry, might be marked as either shareable or Non-shareable at the boundary of the PE and its closely-coupled caches. This depends on where the IMPLEMENTATION DEFINED boundary lies, between Inner and Outer Shareable.
If the Inner Shareable extends beyond the PE boundary, and the bus indicates the distinction between Inner and Outer Shareable, then either is counted as shareable for the purposes of defining this event.

0x0064, BUS_ACCESS_NORMAL, Bus access, normal
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and memory-write operations that make Normal accesses outside the boundary of the PE and its closely-coupled caches. For example, the counter counts Normal, Cacheable and Normal, Non-cacheable accesses but does not count Device accesses.

0x0065, BUS_ACCESS_PERIPH, Bus access, peripheral
This event is similar to Bus access, BUS_ACCESS, but the counter counts only memory-read and memory-write operations that make Device accesses outside the boundary of the PE and its closely-coupled caches.

0x0066, MEM_ACCESS_RD, Data memory access, read
This event is similar to Data memory access, MEM_ACCESS, but the counter counts only memory-read operations and SVE memory-read operations that the PE made.

0x0067, MEM_ACCESS_WR, Data memory access, write
This event is similar to Data memory access, MEM_ACCESS, but the counter counts only memory-write operations and SVE memory-write operations made by the PE.

0x0068, UNALIGNED_LDR_SPEC, Unaligned access, read
This event is similar to Data memory access, MEM_ACCESS, but the counter counts only unaligned memory-read operations and unaligned memory-read SVE operations that the PE made. It also counts unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x0069, UNALIGNED_STR_SPEC, Unaligned access, write
This event is similar to Data memory access, MEM_ACCESS, but the counter counts only unaligned memory-write operations and unaligned SVE memory-write operations that the PE made. It also counts unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x006A, UNALIGNED_LDST_SPEC, Unaligned access
This event is similar to Data memory access, MEM_ACCESS, but the counter counts only unaligned memory-read operations, unaligned memory-write operations, unaligned memory-read SVE operations, and unaligned memory-write SVE operations that the PE made. It also counts unaligned accesses if they are subsequently transposed into multiple aligned accesses.

0x006C, LDREX_SPEC, Exclusive operation speculatively executed, Load-Exclusive
The counter counts Load-Exclusive instructions speculatively executed. The definition of speculatively executed is IMPLEMENTATION DEFINED.

0x006D, STREX_PASS_SPEC, Exclusive operation speculatively executed, Store-Exclusive pass
The counter counts Store-Exclusive instructions speculatively executed that completed a write. The definition of speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the LDREX_SPEC event.

0x006E, STREX_FAIL_SPEC, Exclusive operation speculatively executed, Store-Exclusive fail
The counter counts Store-Exclusive instructions speculatively executed that fail to complete a write. It is within the IMPLEMENTATION DEFINED definition of speculatively executed whether this includes conditional instructions that fail the condition code check. The definition of speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the LDREX_SPEC event.
0x006F, STREX_SPEC, Exclusive operation speculatively executed, Store-Exclusive
The counter counts Store-Exclusive instructions speculatively executed.
The definition of speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the LDREX_SPEC event.
Arm recommends that this event is implemented if it is not possible to implement the exclusive operation speculatively executed, Store-Exclusive pass, and exclusive operation speculatively executed, Store-Exclusive fail, events with the same degree of speculation as the LDREX_SPEC event.

0x0070, LD_SPEC, Operation speculatively executed, load
This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only operations due to memory-reading instructions and operations due to memory-reading SVE instructions, as defined by the LD_RETIRED event.
The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the INST_SPEC event.

0x0071, ST_SPEC, Operation speculatively executed, store
This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only operations due to memory-writing instructions and operations due to memory-writing SVE instructions, as defined by the ST_RETIRED event.
The counter counts DC ZVA as a store operation.
The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the INST_SPEC event.

0x0072, LDST_SPEC, Operation speculatively executed, load or store
This event is similar to Operation speculatively executed, INST_SPEC, but the counter counts only operations due to memory-reading instructions, operations due to memory-writing instructions, operations due to memory-reading SVE instructions and operations due to memory-writing SVE instructions as defined by the LD_RETIRED and ST_RETIRED events.
The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the INST_SPEC event.

0x0073, DP_SPEC, Operation speculatively executed, integer data processing
This event is similar to Operation speculatively executed, INST_SPEC, but counts only operations due to integer data-processing instructions. It counts the following operations that operate on the general-purpose registers:
- In AArch64 state, Data processing - immediate on page C3-224 and Data processing - register on page C3-229.
- In AArch32 state, Data-processing instructions on page F1-4080.
This includes MOV and MVN operations.
This event also counts the following miscellaneous instructions:
- In AArch64 state, System register instructions on page C3-202, System instructions on page C3-203, and Hint instructions on page C3-203.
- In AArch32 state, PSTATE and banked register access instructions on page F1-4088, Banked register access instructions on page F1-4088, Miscellaneous instructions on page F1-4093, other than ISB and preloads, and System register access instructions on page F1-4097, other than LDC and STC instructions.
If the preload instructions PRFM, PLD, PLDh, and PLT, do not count as memory-reading instructions then they must count as integer data-processing instructions.
If ISB8s do not count as software change of the PC then they must count as integer data-processing instructions.
The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for the INST_SPEC event.
It is IMPLEMENTATION DEFINED whether the following instructions are counted as integer data-processing operations, SIMD operations, or floating-point operations, but Arm recommends that the instructions are all counted as integer data-processing operations:

- For AArch64 state, from the A64 floating-point convert to integer class, operations that move a value between a general-purpose register and a SIMD and floating-point register without type conversion:
 - `FMOV` (general).

- For AArch64 state, from the SIMD Move group, operations that move a values between a general-purpose register and an element or elements in a SIMD and floating-point register:
 - `DUP` (general).
 - `SMOV`.
 - `UMOV`.
 - `INS` (general).

- For AArch32 state:
 - `VDUP` (general-purpose register) and all `VMOV` instructions that transfer data between a general-purpose register and a SIMD and floating-point register.
 - `VMRS`.
 - `VMSR`.

0x0074, **ASE_SPEC, Operation speculatively executed, Advanced SIMD**

This event is similar to Operation speculatively executed, **INST_SPEC**, but the counter counts only operations due to Advanced SIMD data-processing instructions, see:

- For AArch64 state, the SIMD operations listed in *Data processing - SIMD and floating-point* on page C3-237.
- For AArch32 state, *Advanced SIMD data-processing instructions* on page F1-4101.

This includes all operations that operate on the SIMD and floating-point registers, except those that are counted as:

- Integer data-processing operations.
- Floating-point data-processing operations.
- Memory-reading operations.
- Memory-writing operations.
- Cryptographic operations other than `PMULL`, in AArch64 state.
- `VMULL`, in AArch32 state.

Advanced SIMD scalar operations are counted as Advanced SIMD operations, including those which operate on floating-point values. In AArch64 state, `PMULL`, and in AArch32 state, `VMULL` are counted as Advanced SIMD operations.

The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for the **INST_SPEC** event.

0x0075, **VFP_SPEC, Operation speculatively executed, floating-point**

This event is similar to Operation speculatively executed, **INST_SPEC**, but the counter counts only operations due to floating-point data-processing instructions, see:

- In AArch64 state, only the scalar floating-point operations listed in *Data processing - SIMD and floating-point* on page C3-237.

Note

This event does not count the SIMD floating-point operations listed in *Data processing - SIMD and floating-point* on page C3-237.

- In AArch32 state, *Floating-point data-processing instructions* on page F1-4112.
This includes all operations that operate on the SIMD and floating-point registers as floating-point values, except for SIMD scalar operations and those that are counted as one of:

- Integer data processing.
- Memory-reading operations.
- Memory-writing operations.

The following instructions that take both an integer register and a floating-point register argument and perform a type conversion (to/from integer or to/from fixed-point), are counted as floating-point data-processing operations:

- In AArch64 state, `FCVT{<mode>}`, `UCVTF`, and `SCVTF`.
- In AArch32 state, `VCVT<mode>` (floating-point), `VCVT`, `VCVT.T`, and `VCVT.B`.

The definition of Speculatively executed is IMPLEMENTATION DEFINED, but must be the same as for the INST_SPEC event.

0x0076, `PC_WRITE_SPEC`, Operation speculatively executed, software change of the PC

This event is similar to Operation speculatively executed, `INST_SPEC`, but the counter counts only operations due to software changes of the PC. Defined by the instruction architecturally executed, condition code check pass, software change of the PC event, see `Common event numbers` on page D7-2716.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the `INST_SPEC` event.

See also `PC_WRITE_RETIRED`.

0x0077, `CRYPTO_SPEC`, Operation speculatively executed, Cryptographic instruction

This event is similar to Operation speculatively executed, `INST_SPEC`, but the counter counts only operations due to Cryptographic instructions, except `PMULL` and `VMULL`, see `The Cryptographic Extension` on page C3-259.

The definition of Speculatively executed is IMPLEMENTATION DEFINED but must be the same as for the `INST_SPEC` event.

0x0078, `BR_IMMED_SPEC`, Branch speculatively executed, immediate branch

The counter counts immediate branch instructions speculatively executed. Defined by the instruction architecturally executed, immediate branch event, see `Common event numbers` on page D7-2716.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also `BR_IMMED_RETIRED`.

0x0079, `BR_RETURN_SPEC`, Branch speculatively executed, procedure return

The counter counts procedure return instructions speculatively executed. Defined by the `BR_RETURN_RETIRED` event.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

See also `BR_RETURN_RETIRED`.

0x007A, `BR_INDIRECT_SPEC`, Branch speculatively executed, indirect branch

The counter counts indirect branch instructions speculatively executed. This includes software change of the PC other than exception-generating instructions and immediate branch instructions.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x007C, `ISB_SPEC`, Barrier speculatively executed, ISB

The counter counts Instruction Synchronization Barrier instructions speculatively executed, including `CP15ISB`.

The definition of Speculatively executed is IMPLEMENTATION DEFINED.
Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events

K3.1 Arm recommendations for IMPLEMENTATION DEFINED event numbers

0x007D, DSB_SPEC, Barrier speculatively executed, DSB
The counter counts data synchronization barrier instructions speculatively executed, including CP15DSB, SSBB and PSSBB.
The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x007E, DMB_SPEC, Barrier speculatively executed, DMB
The counter counts data memory barrier instructions speculatively executed, including CP15DSB. It does not include the implied barrier operations of load/store operations with release consistency semantics.
The definition of Speculatively executed is IMPLEMENTATION DEFINED.

007F, CSDB_SPEC, Barrier speculatively executed, CSDB
If FEAT_PMUv3p5 is implemented, the counter counts control speculation barrier instructions speculatively executed.
The definition of Speculatively executed is IMPLEMENTATION DEFINED.

0x0081, EXC_UNDEF, Exception taken, other synchronous
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only those exceptions Taken locally that are not counted as:
 • Exception taken, Supervisor Call (EXC_SVC).
 • Exception taken, Secure Monitor Call (EXC_SMC).
 • Exception taken, Hypervisor Call (EXC_HVC).
 • Exception taken, Instruction Abort (EXC_PABORT).
 • Exception taken, Data Abort or SError (EXC_DABORT).
 • Exception taken, IRQ (EXC_IRQ).
 • Exception taken, FIQ (EXC_FIQ).

0x0082, EXC_SVC, Exception taken, Supervisor Call
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Supervisor Call exceptions that are Taken locally.

0x0083, EXC_PABORT, Exception taken, Instruction Abort
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Instruction Abort exceptions that are Taken locally.

0x0084, EXC_DABORT, Exception taken, Data Abort or SError
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Data Abort or SError interrupt exceptions. The counter counts only exceptions Taken locally.

0x0086, EXC_IRQ, Exception taken, IRQ
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only IRQ exceptions that are Taken locally, including Virtual IRQ exceptions.

0x0087, EXC_FIQ, Exception taken, FIQ
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only FIQ exceptions that are Taken locally, including Virtual FIQ exceptions.

0x0088, EXC_SMC, Exception taken, Secure Monitor Call
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Secure Monitor Call exceptions. The counter does not increment on SMC instructions trapped as a Hyp Trap exception.

0x008A, EXC_HVC, Exception taken, Hypervisor Call
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Hypervisor Call exceptions. The counter counts for both Hypervisor Call exceptions Taken locally in the hypervisor and those taken as an exception from Non-secure EL1.
0x008B, EXC_TRAP_PABORT, Exception taken, Instruction Abort not Taken locally
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Instruction Abort exceptions not Taken locally.

0x008C, EXC_TRAP_DABORT, Exception taken, Data Abort or SError not Taken locally
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only Data Abort or SError interrupt exceptions not Taken locally.

0x008D, EXC_TRAP_OTHER, Exception taken, other traps not Taken locally
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only those traps that are not counted as:
• Exception taken, Secure Monitor Call (EXC_SMC).
• Exception taken, Hypervisor Call (EXC_HVC).
• Exception taken, Instruction Abort not Taken locally (EXC_TRAP_PABORT).
• Exception taken, Data Abort or SError not Taken locally (EXC_TRAP_DABORT).
• Exception taken, IRQ not Taken locally (EXC_TRAP_IRQ).
• Exception taken, FIQ not Taken locally (EXC_TRAP_FIQ).

0x008E, EXC_TRAP_IRQ, Exception taken, IRQ not Taken locally
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only IRQ exceptions not Taken locally.

0x008F, EXC_TRAP_FIQ, Exception taken, FIQ not Taken locally
This event is similar to Exception taken, EXC_TAKEN, but the counter counts only FIQ exceptions not Taken locally.

0x0090, RC_LD_SPEC, Release consistency operation speculatively executed, Load-Acquire
The counter counts memory-read operations with acquire or acquirepc semantics that are speculatively executed.

0x0091, RC_ST_SPEC, Release consistency operation speculatively executed, Store-Release
The counter counts memory-write operations with release semantics that are speculatively executed.

0x00A0, L3D_CACHE_RD, Attributable Level 3 data or unified cache access, read
This event is similar to Attributable Level 3 data or unified cache access, L3D_CACHE, but the counter counts only attributable memory read operations that cause a cache access to at least the Level 3 data or unified cache.

0x00A1, L3D_CACHE_WR, Attributable Level 3 data or unified cache access, write
This event is similar to Attributable Level 3 data or unified cache access, L3D_CACHE, but the counter counts only attributable memory write operations that cause a cache access to at least the Level 3 data or unified cache.

0x00A2, L3D_CACHE_REFILL_RD, Attributable Level 3 data or unified cache refill, read
This event is similar to Attributable Level 3 data or unified cache refill, L3D_CACHE_REFILL, but the counter counts only attributable memory read operations that cause a refill of at least the Level 3 data or unified cache from outside the Level 3 cache. See also Relationship between REFILL events and associated access events. on page K3-8017.

0x00A3, L3D_CACHE_REFILL_WR, Attributable Level 3 data or unified cache refill, write
This event is similar to Attributable Level 3 data or unified cache refill, L3D_CACHE_REFILL, but the counter counts only attributable memory write operations that cause a refill of at least the Level 3 data or unified cache from outside the Level 3 cache. See also Relationship between REFILL events and associated access events. on page K3-8017.
0x00A6, L3D_CACHE_WB_VICTIM, Attributable Level 3 data or unified cache Write-Back, victim

This event is similar to Attributable Level 3 data cache Write-Back, L3D_CACHE_WB, but the counter counts only Write-Backs that are a result of the line being allocated for an access made by the PE.

If FEAT_PMUv3p4 is not implemented, Write-Backs caused by the execution of a cache maintenance instruction are not counted. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether Write-Backs caused by the execution of a cache maintenance instruction are counted.

It is IMPLEMENTATION DEFINED whether a write of a whole cache line that is not the result of the eviction of a line from the cache is counted. For example, this might occur if the PE detects streaming writes to memory and does not allocate lines to the cache, or as the result of a DC ZVA.

0x00A7, L3D_CACHE_WB_CLEAN, Level 3 data or unified cache Write-Back, cache clean

This event is similar to Attributable Level 3 data cache Write-Back, L3D_CACHE_WB, but the counter counts only Write-Backs that are a result of a coherency operation made by another PE or are caused by the execution of a cache maintenance instruction. Whether Write-Backs that are caused by the execution of a cache maintenance instruction are counted is IMPLEMENTATION DEFINED.

--- Note ---
The transfer of a dirty cache line from the Level 3 data cache of this PE to the Level 3 data cache of another PE due to a hardware coherency operation is not counted unless the dirty cache line is also written back to a Level 3 cache or memory.

--- Note ---
If a coherency request from a requestor outside the PE results in a Write-Back, it is an Unattributable event.

0x00A8, L3D_CACHE_INV, Attributable Level 3 data or unified cache access, invalidate

The counter counts each invalidation of a cache line in the Level 3 data or unified cache.

The counter does not count events if a cache refill invalidates a line.

If FEAT_PMUv3p4 is not implemented, the counter does not count locally-executed cache maintenance instructions that operate by set/way. If FEAT_PMUv3p4 is implemented, it is IMPLEMENTATION DEFINED whether the counter counts locally-executed cache maintenance instructions that operate by set/way.

--- Note ---
Software that uses this event must know whether the Level 3 data cache is shared with other PEs. This event does not follow the general rule of Level 3 data cache events of only counting Attributable events.

K3.1.1 Relationship between REFILL events and associated access events.

CACHE_REFILL and TLB_REFILL events count the refills for accesses that are counted by the corresponding CACHE or TLB event. Table K3-2 shows this correspondence.

<table>
<thead>
<tr>
<th>REFILL event</th>
<th>Access event</th>
<th>Ratio REFILL/Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0042 L1D_CACHE_REFILL_RD</td>
<td>0x0040 L1D_CACHE_RD</td>
<td>Attributable Level 1 cache refill rate, read</td>
</tr>
<tr>
<td>0x0043 L1D_CACHE_REFILL_WR</td>
<td>0x0041 L1D_CACHE_WR</td>
<td>Attributable Level 1 cache refill rate, write</td>
</tr>
<tr>
<td>0x004C L1D_TLB_REFILL_RD</td>
<td>0x004E L1D_TLB_RD</td>
<td>Attributable Level 1 TLB refill rate, read</td>
</tr>
<tr>
<td>0x0040 L1D_TLB_REFILL_WR</td>
<td>0x004F L1D_TLB_WR</td>
<td>Attributable Level 1 TLB refill rate, write</td>
</tr>
<tr>
<td>REFILL event</td>
<td>Access event</td>
<td>Ratio REFILL/Access</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>0x0052 L2D_CACHE_REFILL_RD</td>
<td>0x0050 L2D_CACHE_RD</td>
<td>Attributable Level 2 data cache refill rate, read</td>
</tr>
<tr>
<td>0x0053 L2D_CACHE_REFILL_WR</td>
<td>0x0051 L2D_CACHE_WR</td>
<td>Attributable Level 2 data cache refill rate, write</td>
</tr>
<tr>
<td>0x005C L2D_TLB_REFILL_RD</td>
<td>0x005E L2D_TLB_RD</td>
<td>Attributable Level 2 data TLB refill rate, read</td>
</tr>
<tr>
<td>0x005D L2D_TLB_REFILL_WR</td>
<td>0x005F L2D_TLB_WR</td>
<td>Attributable Level 2 data TLB refill rate, write</td>
</tr>
<tr>
<td>0x00A2 L3D_CACHE_REFILL_RD</td>
<td>0x00A0 L3D_CACHE_RD</td>
<td>Attributable Level 3 data cache refill rate, read</td>
</tr>
<tr>
<td>0x00A3 L3D_CACHE_REFILL_WR</td>
<td>0x00A1 L3D_CACHE_WR</td>
<td>Attributable Level 3 data cache refill rate, write</td>
</tr>
</tbody>
</table>
Table K3-3 shows the events for exceptions taken to an Exception level using AArch64.

<table>
<thead>
<tr>
<th>ESR.EC</th>
<th>Description</th>
<th>Event number and classification for exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Taken locally</td>
</tr>
<tr>
<td>0x00</td>
<td>Unknown or uncategorized</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x01</td>
<td>wFE/wFI traps</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x03</td>
<td>AArch32 MCR/MRC traps on (coproc==0b1111) accesses</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x04</td>
<td>AArch32 MCRR/MRRC traps on (coproc==0b1111) accesses</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x05</td>
<td>AArch32 MCR/MRC traps on (coproc==0b1110) accesses</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x06</td>
<td>AArch32 LDC/STC traps on (coproc==0b1110) accesses</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x07</td>
<td>Advanced SIMD or FP traps</td>
<td>0x0082, EXC_SVC</td>
</tr>
<tr>
<td>0x08</td>
<td>AArch32 MVFR* and FPSID traps</td>
<td>-</td>
</tr>
<tr>
<td>0x0C</td>
<td>AArch32 MCRR/MRRC traps on (coproc==0b1110) accesses</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x0E</td>
<td>Illegal instruction set state</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x11</td>
<td>AArch32 SVC</td>
<td>0x0082, EXC_SVC</td>
</tr>
<tr>
<td>0x12</td>
<td>AArch32 HVC that is not disabled</td>
<td>-</td>
</tr>
<tr>
<td>0x13</td>
<td>AArch32 SMC that is not disabled to EL2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x008D, EXC_TRAP_OTHER</td>
</tr>
<tr>
<td>0x15</td>
<td>AArch64 SVC</td>
<td>0x0082, EXC_SVC</td>
</tr>
<tr>
<td>0x16</td>
<td>AArch64 HVC that is not disabled</td>
<td>0x008A, EXC_HVC</td>
</tr>
<tr>
<td>0x17</td>
<td>AArch64 SMC that is not disabled to EL2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x008D, EXC_TRAP_OTHER</td>
</tr>
<tr>
<td>0x18</td>
<td>AArch64 MSR, MSR and System instruction traps</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x19</td>
<td>SVE traps</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x1F</td>
<td>IMPLEMENTATION DEFINED exception taken to EL3</td>
<td>IMPLEMENTATION DEFINED*</td>
</tr>
<tr>
<td>0x20</td>
<td>Instruction Abort from below</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x21</td>
<td>Instruction Abort from current Exception level</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x22</td>
<td>PC alignment</td>
<td>0x0083, EXC_PABORT</td>
</tr>
</tbody>
</table>
Table K3-3 Events for exceptions taken to an Exception level using AArch64 (continued)

<table>
<thead>
<tr>
<th>ESR.EC</th>
<th>Description</th>
<th>Event number and classification for exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x24</td>
<td>Data Abort from below</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x25</td>
<td>Data Abort from current Exception level</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x26</td>
<td>SP alignment fault exception</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x28</td>
<td>AArch32 FP exception</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x2C</td>
<td>AArch64 FP exception</td>
<td>0x0081, EXC_UNDEF</td>
</tr>
<tr>
<td>0x2F</td>
<td>SError interrupt</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x30</td>
<td>Breakpoint from below</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x31</td>
<td>Breakpoint from current Exception level</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x32</td>
<td>Software step from below</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x33</td>
<td>Software step from current Exception level</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x34</td>
<td>Watchpoint from below</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x35</td>
<td>Watchpoint from current Exception level</td>
<td>0x0084, EXC_DABORT</td>
</tr>
<tr>
<td>0x38</td>
<td>AArch32 BKPT instruction</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x3A</td>
<td>AArch32 Vector Catch debug event</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>0x3C</td>
<td>AArch64 BRK instruction</td>
<td>0x0083, EXC_PABORT</td>
</tr>
<tr>
<td>-</td>
<td>IRQ interrupt</td>
<td>0x0086, EXC_IRQ</td>
</tr>
<tr>
<td>-</td>
<td>FIQ interrupt</td>
<td>0x0087, EXC_FIQ</td>
</tr>
<tr>
<td>-</td>
<td>All other values</td>
<td>-</td>
</tr>
</tbody>
</table>

Note

The Glossary defines the term *Taken locally*, that is used in event definitions in this chapter. See also *Exception levels* on page D1-2312 for more information.
Appendix K4
Recommendations for Reporting Memory Attributes on an Interconnect

This appendix describes the Arm recommendations for reporting the memory attributes that are assigned by the PE. It contains the following section:

- *Arm recommendations for reporting memory attributes on an interconnect* on page K4-8022.
K4.1 Arm recommendations for reporting memory attributes on an interconnect

The Arm architecture defines the architectural interface between software and the PE hardware. This means the mechanisms by which different memory type and Cacheability attributes are presented on an interface to an interconnect fabric such as AMBA® AXI are, strictly, outside the scope of the architecture. This appendix describes an approach for the interface between a PE implementation and an interconnect fabric that Arm strongly recommends, but these recommendations do not form part of the Armv8 architecture.

K4.1.1 Effect of microarchitectural choices on memory attributes

Implementations of the Arm architecture permit considerable variability in the presentation of memory attributes on the interconnect fabric, particularly in cases where the PE implementation does not provide optimized support for a memory type. For example, an implementation might treat Write-Through locations as Non-cacheable at some level of cache, because functionally this is consistent with the definition of Write-Through, but for the particular implementation the performance trade-off does not merit the hardware directly providing Write-Through capability. However, in such implementations, the assigned memory attributes are not changed by the microarchitectural choices. The microarchitecture simply implements different ways of handling some memory attributes.

Therefore, Arm strongly recommended that where any or all of the following memory attributes are presented on the interface between a PE and an interconnect fabric, the attributes that are presented are completely consistent with the attributes defined by the translation system:

- The memory type, Normal or Device.
- The Early write acknowledgement attribute.
- The ordering requirements.
- The Shareability.
- The Cacheability, including where practicable, the allocation hints.

Effect when memory accesses are forced to be Non-cacheable

Arm also strongly recommends that the effects of forcing accesses to Normal memory to be Non-cacheable, as described in Enabling and disabling the caching of memory accesses on page D4-2497 for AArch64 and in Enabling and disabling the caching of memory accesses in AArch32 state on page G4-5933 for AArch32, are reflected on the interconnect by the memory type and attributes used for memory transactions generated while the cache is disabled.
Appendix K5
Additional Information for Implementations of the Generic Timer

This appendix gives additional information about implementations of the Generic Timer. It contains the following sections:

• Providing a complete set of features in a system level implementation on page K5-8024.
• Gray-count scheme for timer distribution scheme on page K5-8026.
K5.1 Providing a complete set of features in a system level implementation

As an example system design, using memory-mapped Generic Timer components as described in Chapter 12 System Level Implementation of the Generic Timer, the feature set of a System registers counter and timer, in an implementation that includes Non-secure EL2 and EL3, can be implemented using the following set of timer frames:

- A CNTCTRLBase control frame.
- The following CNTBaseN timer frames:
 - **Frame 0** Accessible by Non-secure accesses, with second view and virtual capability. This provides the Non-secure EL1&0 timers.
 - **Frame 1** Accessible by Non-secure accesses, with no second view and no virtual capability. This provides the Non-secure EL2 timers.
 - **Frame 2** Accessible only by Secure accesses, with a second view but no virtual capability. This provides the Secure PL1&0 timers, meaning:
 - Compared to a PE where EL3 is using AArch32, it provides the only Secure state timer.
 - Compared to a PE where EL3 is using AArch64, it provides the Secure EL1&0 timer.
 - **Frame 3** Accessible only by Secure accesses, with no second view and no virtual capability. This provides the Secure EL3 timers.

--- Note ---

This frame is not required for a memory-mapped timer that provides only the feature set of a PE for which EL3 is using AArch32.

In this implementation, the full set of implemented frames, and accessibility as memory pages in the different translation regimes, is as follows:

CNTCTRLBase

The control frame. This frame is accessible in both the Secure and Non-secure memory maps, and:

- In the Secure EL1&0 translation regime, this frame is accessible only at EL1.
- In the Non-secure EL2 translation regime, this frame is accessible.
- In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase0

The first view of the Non-secure EL1&0 timers. This frame is accessible only in the Non-secure memory map, and:

- In the Secure EL1&0 translation regime, this frame is accessible only at EL1.
- In the Non-secure EL2 translation regime, this frame is accessible.
- In the Non-secure EL1&0 translation regime, this frame is accessible only at EL1.

CNTEL0Base0

The second view of CNTBase0, meaning it is the EL0 view of the Non-secure EL1&0 timers. This frame is accessible only in the Non-secure memory map, and:

- In the Secure EL1&0 translation regime, the architecture permits this frame to be accessible at EL1, or at EL1 and EL0, but does not require either of these options.
- In the Non-secure EL2 translation regime, this frame is accessible.
- In the Non-secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.

CNTBase1

The first and only view of the Non-secure EL2 timers. This frame is accessible only in Non-secure memory map, and:

- When EL3 is using AArch64:
 - In the Secure EL1&0 translation regime, this frame is accessible only at EL1.
 - In the Secure EL3 translation regime, this frame is accessible.
- When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is accessible only at PL1 (EL3).
- In the Non-secure EL2 translation regime, this frame is accessible.
• In the Non-secure EL1&0 translation regime, this frame is not accessible.

CNTBase2
The first view of the Secure EL1&0, or PL1&0 timers.

--- **Note** ---
In AArch64 state, these timers are always called the Secure EL1&0 timers. In AArch32 state they are usually called the Secure PL1&0 timers because, in AArch32 Secure state, whether some of the PE modes map to EL1 or to EL3 depends on whether EL3 is using AArch64 or is using AArch32, see *Security state, Exception levels, and AArch32 execution privilege* on page G1-5722.

This frame is accessible only in the Secure memory map, and:
• When EL3 is using AArch64:
 — In the Secure EL1&0 translation regime, this frame is accessible only at EL1.
 — In the Secure EL3 translation regime, this frame is accessible.
• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is accessible only at PL1 (EL3).
• Because the frame is in Secure memory, it is not accessible in any Non-secure translation regime.

CNTEL0Base2
The second view of CNTBase2, meaning it is the EL0 view of the Secure EL1&0, or PL1&0, timers.

--- **Note** ---
See the Note in the description of the CNTBase2 frame for more information about the naming of these timers.

This frame is accessible only in the Secure memory map, and:
• When EL3 is using AArch64:
 — In the Secure EL1&0 translation regime, this frame is accessible at EL1 and EL0.
 — In the Secure EL3 translation regime, this frame is accessible.
• When EL3 is using AArch32, in the Secure PL1&0 translation regime, this frame is accessible at PL1 (EL3) and EL0.
• Because the frame is in Secure memory, it is not accessible in any Non-secure translation regime.

CNTBase3
The first and only view of the EL3 timers. This frame is accessible only in the Secure memory map, and:
• When EL3 is using AArch64:
 — In the Secure EL1&0 translation regime, this frame is not accessible.
 — In the Secure EL3 translation regime, this frame is accessible.
• When EL3 is using AArch32, this frame is not accessible.
• Because the frame is in Secure memory, it is not accessible in any Non-secure translation regime.

--- **Note** ---
About the Virtual Memory System Architecture (VMSA) on page D5-2526 describes the VMSAv8-64 translation regimes, and *About VMSAv8-32* on page G5-5962 describes the VMSAv8-32 translation regimes.
K5.2 Gray-count scheme for timer distribution scheme

The distribution of the Counter value using a Gray-code provides a relatively simple mechanism to avoid any danger of the count being sampled with an intermediate value even if the clocking is asynchronous. It has a further advantage that the distribution is relatively low power, since only one bit changes on the main distribution wires for each clock tick.

A suitable Gray-coding scheme can be achieved with the following logic:

\[
\begin{align*}
\text{Gray}[N] &= \text{Count}[N] \\
\text{Gray}[i] &= (\text{XOR}(\text{Gray}[N:i+1])) \text{ XOR Count}[i] \text{ for } N-1 \geq i \geq 0 \\
\text{Count}[i] &= (\text{XOR}(\text{Gray}[N:i])) \text{ for } N \geq i \geq 0
\end{align*}
\]

This is for an \(N+1 \) bit counter, where Count is a conventional binary count value, and Gray is the corresponding Gray count value.

--- Note ---

This scheme has the advantage of being relatively simple to switch, in either direction, between operating with low-frequency and low-precision, and operating with high-frequency and high-precision. To achieve this, the ratio of the frequencies must be \(2^n \), where \(n \) is an integer. A switch-over can occur only on the \(2n+1 \) boundary to avoid losing the Gray-coding property on a switch-over.
Appendix K6
Legacy Instruction Syntax for AArch32 Instruction Sets

This appendix describes the legacy instruction syntax in the Arm instruction sets, and their Unified Assembler Language (UAL) equivalents. It contains the following section:

• Legacy Instruction Syntax on page K6-8028.
K6.1 Legacy Instruction Syntax

Early versions of the Arm Architecture defined an assembly language for A32 (ARM) instructions, and a separate assembly language for T32 (Thumb) instructions. UAL is based on the A32 assembly language, with some changes to the instruction syntax. The appendix describes those changes. The pre-UAL mnemonics are compatible with UAL, and might be supported by an assembler.

The original T32 assembly language is not compatible with UAL, and is not described in the manual.

K6.1.1 Pre-UAL instruction syntax for the A32 base instructions

Table K6-1 lists the syntax for the A32 base instructions that have changed after UAL was introduced.

<table>
<thead>
<tr>
<th>Pre-UAL syntax</th>
<th>UAL equivalent</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC<!S</td>
<td>ADCS<!></td>
<td>ADC, ADCS (immediate) on page F5-4281, ADC, ADCS (register) on page F5-4284, ADC, ADCS (register-shifted register) on page F5-4288</td>
</tr>
<tr>
<td>ADD<!S</td>
<td>ADDS<!></td>
<td>ADD, ADDS (immediate) on page F5-4290, ADD, ADDS (register) on page F5-4294, ADD, ADDS (register-shifted register) on page F5-4298, ADD, ADDS (SP plus immediate) on page F5-4300, ADD, ADDS (SP plus register) on page F5-4303</td>
</tr>
<tr>
<td>AND<!S</td>
<td>ANDS<!></td>
<td>AND, ANDS (immediate) on page F5-4312, AND, ANDS (register) on page F5-4315, AND, ANDS (register-shifted register) on page F5-4319</td>
</tr>
<tr>
<td>BIC<!S</td>
<td>BICS<!></td>
<td>BIC, BICS (immediate) on page F5-4336, BIC, BICS (register) on page F5-4339, BIC, BICS (register-shifted register) on page F5-4343</td>
</tr>
<tr>
<td>EOR<!S</td>
<td>EORS<!></td>
<td>EOR, EORS (immediate) on page F5-4398, EOR, EORS (register) on page F5-4401, EOR, EORS (register-shifted register) on page F5-4405</td>
</tr>
<tr>
<td>LDC<!L</td>
<td>LDCL<!></td>
<td>LDC (immediate) on page F5-4432, LDC (literal) on page F5-4434</td>
</tr>
<tr>
<td>LDM<!IA, LDM<!<FO</td>
<td>LDM<!></td>
<td>LDM, LDMA, LDMFD on page F5-4436</td>
</tr>
<tr>
<td>LDM<!DA, LDM<!<FA</td>
<td>LMDMA<!></td>
<td>LMDMA, LDMA on page F5-4444</td>
</tr>
<tr>
<td>LDM<!DB, LDM<!<EA</td>
<td>LDMDB<!></td>
<td>LDMDB, LDMEA on page F5-4446</td>
</tr>
<tr>
<td>LDM<!IB, LDM<!<ED</td>
<td>LDMIB<!></td>
<td>LDMIB, LDME on page F5-4449</td>
</tr>
<tr>
<td>LDR<!B</td>
<td>LDRB<!></td>
<td>LDRB (immediate) on page F5-4461, LDRB (literal) on page F5-4465, LDRB (register) on page F5-4467</td>
</tr>
<tr>
<td>LDR<!BT</td>
<td>LDRBT<!></td>
<td>LDRBT on page F5-4470</td>
</tr>
<tr>
<td>LDR<!D</td>
<td>LDRD<!></td>
<td>LDRD (immediate) on page F5-4473, LDRD (literal) on page F5-4476, LDRD (register) on page F5-4479</td>
</tr>
<tr>
<td>Pre-UAL syntax</td>
<td>UAL equivalent</td>
<td>See</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>LDR<c>H</td>
<td>LDRH<c></td>
<td>LDRH (immediate) on page F5-4490, LDRH (literal) on page F5-4494, LDRH (register) on page F5-4496</td>
</tr>
<tr>
<td>LDR<c>SB</td>
<td>LDRSB<c></td>
<td>LDRSB (immediate) on page F5-4502, LDRSB (literal) on page F5-4505, LDRSB (register) on page F5-4507</td>
</tr>
<tr>
<td>LDR<c>SH</td>
<td>LDRSH<c></td>
<td>LDRSH (immediate) on page F5-4513, LDRSH (literal) on page F5-4516, LDRSH (register) on page F5-4518</td>
</tr>
<tr>
<td>LDR<c>T</td>
<td>LDRT<c></td>
<td>LDRT on page F5-4524</td>
</tr>
<tr>
<td>MLA<c>S</td>
<td>MLAS<c></td>
<td>MLA, MLAS on page F5-4547</td>
</tr>
<tr>
<td>LSLS <Rd>, <Rn>, #0</td>
<td>MOV <Rd>, <Rm></td>
<td>MOV, MOVS (immediate) on page F5-4551, MOV, MOVS (register) on page F5-4555</td>
</tr>
<tr>
<td>MOV<c>S</td>
<td>MOVS<c></td>
<td>MOV, MOVS (immediate) on page F5-4551, MOV, MOVS (register) on page F5-4555</td>
</tr>
<tr>
<td>MUL<c>S</td>
<td>MULS<c></td>
<td>MUL, MULS on page F5-4585</td>
</tr>
<tr>
<td>M VN<c>S</td>
<td>MVNS<c></td>
<td>MVN, MVNS (immediate) on page F5-4587, MVN, MVNS (register) on page F5-4589, MVN, MVNS (register-shifted register) on page F5-4592</td>
</tr>
<tr>
<td>ORR<c>S</td>
<td>ORRS<c></td>
<td>ORR, ORRS (immediate) on page F5-4600, ORR, ORRS (register) on page F5-4603, ORR, ORRS (register-shifted register) on page F5-4607</td>
</tr>
<tr>
<td>QADDSUBX</td>
<td>QASX</td>
<td>QASX on page F5-4640</td>
</tr>
<tr>
<td>QSUBADDX</td>
<td>QSA X</td>
<td>QSA X on page F5-4646</td>
</tr>
<tr>
<td>RSB<c>S</td>
<td>RSBS<c></td>
<td>RSB, RSBS (immediate) on page F5-4677, RSB, RSBS (register) on page F5-4680, RSB, RSBS (register-shifted register) on page F5-4683</td>
</tr>
<tr>
<td>RSC<c>S</td>
<td>RSCS<c></td>
<td>RSC, RSCS (immediate) on page F5-4685, RSC, RSCS (register) on page F5-4687, RSC, RSCS (register-shifted register) on page F5-4689</td>
</tr>
<tr>
<td>SADDSUBX</td>
<td>SASX</td>
<td>SASX on page F5-4695</td>
</tr>
<tr>
<td>SBC<c>S</td>
<td>SBCS<c></td>
<td>SBC, SBCS (immediate) on page F5-4699, SBC, SBCS (register), SBC, SBCS (register-shifted register) on page F5-4706</td>
</tr>
<tr>
<td>SHADDSUBX</td>
<td>SHASX</td>
<td>SHASX on page F5-4724</td>
</tr>
<tr>
<td>SBSUBADDX</td>
<td>SHSAX</td>
<td>SHSAX on page F5-4726</td>
</tr>
<tr>
<td>SMI<c></td>
<td>SMC<c></td>
<td>SMC on page F5-4732</td>
</tr>
<tr>
<td>SMAL<c>S</td>
<td>SMLALS<c></td>
<td>SMLAL, SMLALS on page F5-4738</td>
</tr>
<tr>
<td>SMULL<c>S</td>
<td>SMULLS<c></td>
<td>SMULL, SMULLS on page F5-4761</td>
</tr>
</tbody>
</table>
Table K6-1 Pre-UAL instruction syntax for the A32 base instructions (continued)

<table>
<thead>
<tr>
<th>Pre-UAL syntax</th>
<th>UAL equivalent</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSUBADDX<<</td>
<td>SSAX<<</td>
<td>SSAX on page F5-4775</td>
</tr>
<tr>
<td>STC<<L</td>
<td>STCL<<</td>
<td>STC on page F5-4783</td>
</tr>
<tr>
<td>STM<<EA, STM<<IA</td>
<td>STM<<</td>
<td>STM, STMIA, STMEA on page F5-4803</td>
</tr>
<tr>
<td>STM<<DA, STM<<ED</td>
<td>STMDA<<</td>
<td>STMDA, STMED on page F5-4809</td>
</tr>
<tr>
<td>STM<<DB, STM<<FD</td>
<td>STMDB<<</td>
<td>STMDB, STMFD on page F5-4811</td>
</tr>
<tr>
<td>STM<<IB, STM<<FA</td>
<td>STMIB<<</td>
<td>STMIB, STMFA on page F5-4814</td>
</tr>
<tr>
<td>STR<<B</td>
<td>STRB<<</td>
<td>STRB (immediate) on page F5-4824, STRB (register) on page F5-4828</td>
</tr>
<tr>
<td>STR<<BT</td>
<td>STRBT<<</td>
<td>STRBT on page F5-4831</td>
</tr>
<tr>
<td>STR<<D</td>
<td>STRD<<</td>
<td>STRD (immediate) on page F5-4835, STRD (register) on page F5-4839</td>
</tr>
<tr>
<td>STR<<H</td>
<td>STRH<<</td>
<td>STRH (immediate) on page F5-4853, STRH (register) on page F5-4857</td>
</tr>
<tr>
<td>STR<<T</td>
<td>STRT<<</td>
<td>STRT on page F5-4864</td>
</tr>
<tr>
<td>SUB<<S</td>
<td>SUBS<<</td>
<td>SUB, SUBS (immediate) on page F5-4869, SUB, SUBS (register) on page F5-4873, SUB, SUBS (register-shifted register) on page F5-4877, SUB, SUBS (SP minus immediate) on page F5-4879, SUB, SUBS (SP minus register) on page F5-4882</td>
</tr>
<tr>
<td>SWI</td>
<td>SVC</td>
<td>SVC on page F5-4885</td>
</tr>
<tr>
<td>UADDSUBX</td>
<td>UASX</td>
<td>UASX on page F5-4919</td>
</tr>
<tr>
<td>UHADDSUBX</td>
<td>UHASX</td>
<td>UHASX on page F5-4931</td>
</tr>
<tr>
<td>UHSUBADDX</td>
<td>UHSAX</td>
<td>UHSAX on page F5-4933</td>
</tr>
<tr>
<td>UMLAL<<S</td>
<td>UMLALS<<</td>
<td>UMLAL, UMLALS on page F5-4941</td>
</tr>
<tr>
<td>UMULL<<S</td>
<td>UMULLS<<</td>
<td>UMULL, UMULLS on page F5-4943</td>
</tr>
<tr>
<td>UQADDSUBX</td>
<td>UQASX</td>
<td>UQASX on page F5-4949</td>
</tr>
<tr>
<td>UQSUBADDX</td>
<td>UQSAX</td>
<td>UQASX on page F5-4951</td>
</tr>
<tr>
<td>USUBADDX</td>
<td>USAX</td>
<td>USAX on page F5-4965</td>
</tr>
<tr>
<td>UEXT8</td>
<td>UXTB</td>
<td>UXTB on page F5-4977</td>
</tr>
<tr>
<td>UEXT16</td>
<td>UXTB</td>
<td>UXTB on page F5-4981</td>
</tr>
</tbody>
</table>
K6.1.2 Pre-UAL instruction syntax for the A32 floating-point instructions

Table K6-2 lists the syntax for A32 floating-point instructions that have changed after UAL was introduced.

Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions

<table>
<thead>
<tr>
<th>Pre-UAL syntax</th>
<th>UAL equivalent</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FABSD</td>
<td>VABS.F64</td>
<td>VABS on page F6-5039</td>
</tr>
<tr>
<td>FABSS</td>
<td>VABS.F32</td>
<td></td>
</tr>
<tr>
<td>FADD</td>
<td>VADD.F64</td>
<td>VADD (floating-point) on page F6-5053</td>
</tr>
<tr>
<td>FADDS</td>
<td>VADD.F32</td>
<td></td>
</tr>
<tr>
<td>FCMPEDZ</td>
<td>VCMPE.F64</td>
<td>VCMPE on page F6-5128</td>
</tr>
<tr>
<td>FCMPEDS</td>
<td>VCMPE.F32</td>
<td></td>
</tr>
<tr>
<td>FCMP2D</td>
<td>VCMP.F64</td>
<td>VCMP on page F6-5124,</td>
</tr>
<tr>
<td>FCMP2S</td>
<td>VCMP.F32</td>
<td></td>
</tr>
<tr>
<td>FCONSTD <Dd>, #<imm8></td>
<td>VMOV.F64 <Dd>, #<fpimm></td>
<td>VMOV (immediate) on page F6-5358 For more information, see FCONST on page K6-8033.</td>
</tr>
<tr>
<td>FCONSTS <Dd>, #<imm8></td>
<td>VMOV.F32 <Dd>, #<fpimm></td>
<td></td>
</tr>
<tr>
<td>FCPYD</td>
<td>VMOV.F64</td>
<td>VMOV (register) on page F6-5365</td>
</tr>
<tr>
<td>FCPYS</td>
<td>VMOV.F32</td>
<td></td>
</tr>
<tr>
<td>FCTDS</td>
<td>VCVT.F64.F32</td>
<td>VCVT (between double-precision and single-precision) on page F6-5136</td>
</tr>
<tr>
<td>FCTSDS</td>
<td>VCVT.F32.F64</td>
<td></td>
</tr>
<tr>
<td>FDIVD</td>
<td>VDIV.F64</td>
<td>VDIV on page F6-5187</td>
</tr>
<tr>
<td>FDIVS</td>
<td>VDIV.F32</td>
<td></td>
</tr>
<tr>
<td>FLDD</td>
<td>VLDR.F64</td>
<td>VLDR (immediate) on page F6-5302 VLDR (literal) on page F6-5305</td>
</tr>
<tr>
<td>FLDMS</td>
<td>VLDMM.F64</td>
<td>VLDMM, VLDMD, VLDMS on page F6-5297</td>
</tr>
<tr>
<td>FLDS</td>
<td>VLDR.F32</td>
<td>VLDR (immediate) on page F6-5302 VLDR (literal) on page F6-5305</td>
</tr>
<tr>
<td>FMACD</td>
<td>VMLA.F64</td>
<td>VMLA (floating-point) on page F6-5326</td>
</tr>
<tr>
<td>FMACS</td>
<td>VMLA.F32</td>
<td></td>
</tr>
<tr>
<td>FMADRA <Dd>, <Rt></td>
<td>VMOV <Dd[1]>, <Rt></td>
<td>VMOV (general-purpose register to scalar) on page F6-5369</td>
</tr>
<tr>
<td>FMADLR <Dd>, <Rt></td>
<td>VMOV <Dd[0]>, <Rt></td>
<td></td>
</tr>
<tr>
<td>FMADRRA</td>
<td>VMOV</td>
<td>VMOV (between two general-purpose registers and a doubleword floating-point register) on page F6-5354</td>
</tr>
<tr>
<td>FMADRH <Rt>, <Dd></td>
<td>VMOV <Rt>, <Dd[1]></td>
<td>VMOV (scalar to general-purpose register) on page F6-5373</td>
</tr>
<tr>
<td>FMADRL <Rt>, <Dd></td>
<td>VMOV <Rt>, <Dd[0]></td>
<td></td>
</tr>
</tbody>
</table>
Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

<table>
<thead>
<tr>
<th>Pre-UAL syntax</th>
<th>UAL equivalent</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMRRD</td>
<td>VMOV</td>
<td>VMOV (between two general-purpose registers and a doubleword floating-point register) on page F6-5354</td>
</tr>
<tr>
<td>FMRRS</td>
<td>VMOV</td>
<td>VMOV (between two general-purpose registers and two single-precision registers) on page F6-5375</td>
</tr>
<tr>
<td>FMRS</td>
<td>VMOV</td>
<td>VMOV (between general-purpose register and single-precision) on page F6-5371</td>
</tr>
<tr>
<td>FMRX</td>
<td>VMRS</td>
<td>VMRS on page F6-5384</td>
</tr>
<tr>
<td>FSMCD</td>
<td>VNMLS.F64</td>
<td>VNMLS on page F6-5418</td>
</tr>
<tr>
<td>FSMCS</td>
<td>VNMLS.F32</td>
<td></td>
</tr>
<tr>
<td>FMSR</td>
<td>VMOV</td>
<td>VMOV (between general-purpose register and single-precision) on page F6-5371</td>
</tr>
<tr>
<td>FMSRR</td>
<td>VMOV</td>
<td>VMOV (between two general-purpose registers and two single-precision registers) on page F6-5375</td>
</tr>
<tr>
<td>FMSTAT</td>
<td>VMRS APSR_nzcv, FPSCR</td>
<td>VMRS on page F6-5384</td>
</tr>
<tr>
<td>FMULD</td>
<td>VMUL.F64</td>
<td>VMUL (floating-point) on page F6-5390</td>
</tr>
<tr>
<td>FMULS</td>
<td>VMUL.F32</td>
<td></td>
</tr>
<tr>
<td>FMXR</td>
<td>VMSR</td>
<td>VMSR on page F6-5387</td>
</tr>
<tr>
<td>FNEQD</td>
<td>VNEG.F64</td>
<td>VNEG on page F6-5411</td>
</tr>
<tr>
<td>FNEG</td>
<td>VNEG.F32</td>
<td></td>
</tr>
<tr>
<td>FMACD</td>
<td>VNMLS.F64</td>
<td>VNMLS on page F6-5418</td>
</tr>
<tr>
<td>FMACS</td>
<td>VNMLS.F32</td>
<td></td>
</tr>
<tr>
<td>FMSCD</td>
<td>VNMLA.F64</td>
<td>VNMLA on page F6-5415</td>
</tr>
<tr>
<td>FMSCS</td>
<td>VNMLA.F32</td>
<td></td>
</tr>
<tr>
<td>FMULD</td>
<td>VMUL.F64</td>
<td>VNMUL on page F6-5421</td>
</tr>
<tr>
<td>FMULS</td>
<td>VMUL.F32</td>
<td></td>
</tr>
<tr>
<td>FSHTOD</td>
<td>VCVT.F64.S16</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>FSHTOS</td>
<td>VCVT.F32.S16</td>
<td></td>
</tr>
<tr>
<td>FSITOD</td>
<td>VCVT.F64.S32</td>
<td>VCVT (between floating-point and integer, Advanced SIMD) on page F6-5140, VCVTR on page F6-5178</td>
</tr>
<tr>
<td>FSITOS</td>
<td>VCVT.F32.S32</td>
<td></td>
</tr>
<tr>
<td>FSLTOD</td>
<td>VCVT.F64.S32</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>FSLTOS</td>
<td>VCVT.F32.S32</td>
<td></td>
</tr>
<tr>
<td>FSQRTD</td>
<td>VSQRT.F64</td>
<td>VSQRT on page F6-5606</td>
</tr>
<tr>
<td>FSQRTS</td>
<td>VSQRT.F32</td>
<td></td>
</tr>
<tr>
<td>FSTD</td>
<td>VSTR</td>
<td>VSTR on page F6-5661</td>
</tr>
</tbody>
</table>
Table K6-2 Pre-UAL instruction syntax for A32 floating-point instructions (continued)

<table>
<thead>
<tr>
<th>Pre-UAL syntax</th>
<th>UAL equivalent</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSTMD, FSTMIAS</td>
<td>VSTM.F64</td>
<td>VSTM, VSTMDB, VSTMSIA on page F6-5656</td>
</tr>
<tr>
<td>FSTS</td>
<td>VSTR</td>
<td>VSTR on page F6-5661</td>
</tr>
<tr>
<td>FSTD</td>
<td>VSUB.F64</td>
<td>VSUB (floating-point) on page F6-5664</td>
</tr>
<tr>
<td>FSUBS</td>
<td>VSUB.F32</td>
<td></td>
</tr>
<tr>
<td>FTOSHD</td>
<td>VCVT.S16.F64</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>FTOSHS</td>
<td>VCVT.S16.F23</td>
<td></td>
</tr>
<tr>
<td>FTOSID</td>
<td>VCVT.S32.F64</td>
<td>VCVT (between floating-point and integer, Advanced SIMD) on page F6-5140</td>
</tr>
<tr>
<td>FTOSIS</td>
<td>VCVT.S32.F32</td>
<td></td>
</tr>
<tr>
<td>FTOSIZD</td>
<td>VCVTR.S32.F64</td>
<td>VCVTR on page F6-5178</td>
</tr>
<tr>
<td>FTOSIZS</td>
<td>VCVTR.S32.F32</td>
<td></td>
</tr>
<tr>
<td>FTOSLD</td>
<td>VCVT.S32.F64</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>FTOSLS</td>
<td>VCVT.S32.F32</td>
<td></td>
</tr>
<tr>
<td>FTOUTD</td>
<td>VCVT.U32.F64</td>
<td>VCVT (between floating-point and integer, Advanced SIMD) on page F6-5140</td>
</tr>
<tr>
<td>FTOUTS</td>
<td>VCVT.U32.F32</td>
<td></td>
</tr>
<tr>
<td>FTOUTIZD</td>
<td>VCVTR.U32.F64</td>
<td>VCVTR on page F6-5178</td>
</tr>
<tr>
<td>FTOUTIZS</td>
<td>VCVTR.U32.F32</td>
<td></td>
</tr>
<tr>
<td>FUHTOD</td>
<td>VCVT.F64.U16</td>
<td></td>
</tr>
<tr>
<td>FUHTOS</td>
<td>VCVT.F64.U16</td>
<td></td>
</tr>
<tr>
<td>FUITOD</td>
<td>VCVT.F64.U32</td>
<td>VCVT (between floating-point and integer, Advanced SIMD) on page F6-5140</td>
</tr>
<tr>
<td>FUITSO</td>
<td>VCVT.F32.U32</td>
<td></td>
</tr>
<tr>
<td>FULTOD</td>
<td>VCVT.F64.U32</td>
<td>VCVT (between floating-point and fixed-point, floating-point) on page F6-5153</td>
</tr>
<tr>
<td>FULTOS</td>
<td>VCVT.F32.U32</td>
<td></td>
</tr>
</tbody>
</table>

K6.1.3 FCONST

The syntax of FCONST is

FCONST<dest>{<c>} <Fd>, #<imm8>
where:

<dest> Specifies the destination data type. It must be one of:

S Single-precision floating-point.
D Double-precision floating-point.

<c> This is an optional field. It specifies the condition under which the instruction is executed. See Conditional execution on page F2-4121 for the range of available conditions and their encoding. If <c> is omitted, it defaults to always (AL).

<Fd> Specifies the destination register. It must be one of:

<d> 64-bit name of the SIMD&FP destination register.
<s> 32-bit name of the SMID&FP destination register.

<imm8> Specifies the immediate value used to generate the floating-point constant.

FCONST{<c>} <d>, #<imm8> maps to VMOV.F64 <d>, #<fpimm>
FCONST{<c>} <s>, #<imm8> maps to VMOV.F32 <s>, #<fpimm>
Appendix K7
Address Translation Examples

This appendix gives examples of address translations using the translation regimes described in Chapter D5 The AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual Memory System Architecture. It contains the following sections:

• AArch64 Address translation examples on page K7-8036.
• AArch32 Address translation examples on page K7-8048.

Note
This chapter gives examples of translation table lookups for the Armv8 address translation stages. It does not define any part of the address translation mechanism. If any information in this appendix appears to contradict the information in Chapter D5 The AArch64 Virtual Memory System Architecture or Chapter G5 The AArch32 Virtual Memory System Architecture then the information in Chapter D5 or Chapter G5 must be taken as the definition of the required behavior.
Figure D5-1 on page D5-2536 shows the VMSAv8 address translation stages that are controlled by an Exception level that is using AArch64. The VMSAv8-64 address translation system on page D5-2534 describes the VMSAv8-64 address translation scheme. This section gives examples of the use of that scheme, for common translation requirements.

System registers relevant to MMU operation on page D5-2541 specifies the relevant registers, including the TCR_ELx and TTBR_ELx, or TTBR_ELxs, for each stage of address translation.

For any stage of translation, a TCR_ELx.TnSZ field indicates the supported input address size. For a stage of address translation controlled from an Exception level using AArch64, the supported input address size is 2^(64-TnSZ).

This section describes:

• Performing the initial lookup, for an address for which the initial lookup is either:
 — At the highest lookup level used for the appropriate translation granule size.
 — Because of the concatenation of translation tables at the initial lookup level, one level down from the highest level used for the translation granule size.

These descriptions take account of the following cases:

— The IA size is smaller than the largest size for the translation level, see Reduced IA width on page D5-2553.
— For a stage 2 translation, translation tables are concatenated, to move the initial lookup level down by one level, see Concatenated translation tables on page D5-2554.

For examples of performing the initial lookup, see Examples of performing the initial lookup.

• The full translation flow for resolving a page of memory. These examples describe resolving the largest IA size supported by the initial lookup level. For these examples, see Full translation flows for VMSAv8-64 address translation on page K7-8042.

K7.1.1 Examples of performing the initial lookup

The address ranges used for the initial translation table lookup depend on the translation granule, as described in:

• Performing the initial lookup using the 4KB translation granule.
• Performing the initial lookup using the 16KB granule on page K7-8038.
• Performing the initial lookup using the 64KB translation granule on page K7-8040.

Performing the initial lookup using the 4KB translation granule

This subsection describes examples of the initial lookup when using the 4KB translation granule that Table D5-13 on page D5-2560 shows as starting at level 0 or at level 1. It includes those stage 2 translations where concatenation of translation tables is required for the lookup to start at level 1. This means that it gives specific examples of the mechanisms described in The VMSAv8-64 address translation system on page D5-2534.

Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-13 on page D5-2560 shows as starting at level 1. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead, start at level 2.

The following subsections describe these examples of the initial lookup:

• Initial lookup at level 0, 4KB translation granule on page K7-8037.
• Initial lookup at level 1, 4KB translation granule on page K7-8037.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and this level must be consistent with the value of the VTCR_EL2.T0SZ field, see Overview of stage 2 translations, 4KB granule on page D5-2560.
Initial lookup at level 0, 4KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(IA[n:0]\). As Table D5-13 on page D5-2560 shows, a stage 1 or stage 2 initial lookup at level 0 is required when \(39 \leq n \leq 47\). For these lookups:

- \(TTBR_{-ELx}[47:(n-35)]\) specify the translation table base address.
- \(Bits[n:39]\) of the input address are \(bits[(n-36):3]\) of the descriptor offset in the translation table.

--- Note ---

This means that, when the input address width is less than 48 bits:

- The size of the translation table is reduced.
- More low-order bits of the \(TTBR_{-ELx}\) are required to specify the translation table base address.
- Fewer input address bit are used to specify the descriptor offset in the translation table.

For example, if the input address width is 46 bits:

- The translation table size is 1KB.
- \(TTBR_{-ELx}\) bits\([47:10]\) specify the translation table base address.
- Input address bits\([45:39]\) specify \(bits[9:3]\) of the descriptor offset.

Figure K7-1 shows this lookup.

Initial lookup at level 1, 4KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(IA[n:0]\).

For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables

As Table D5-13 on page D5-2560 shows, this applies to \(IA[n:0]\), where \(30 \leq n \leq 38\). For these lookups:

- There is a single translation table at this level.
- \(TTBR_{-ELx}[47:(n-26)]\) specify the translation table base address.
- \(Bits[n:30]\) of the input address are \(bits[(n-27):3]\) of the descriptor offset in the translation table.

Figure K7-2 on page K7-8038 shows this lookup.
Address Translation Examples
K7.1 AArch64 Address translation examples

As Table D5-13 on page D5-2560 shows, this applies to IA[n:0], where 39 ≤ n ≤ 42. For these lookups:
• There are 2^{(n-38)} concatenated translation tables at this level.
• These concatenated translation tables must be aligned to 2^{(n-38)}×4KB. This means TTBR_ELx[(n-27):12] must be zero.
• TTBR_ELx[47:(n-26)] specify the base address of the block of concatenated translation tables.
• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset from the base address of the block of concatenated translation tables.

As Table D5-13 on page D5-2560 shows, this applies to IA[n:0], where 39 ≤ n ≤ 42. For these lookups:
• There are 2^{(n-38)} concatenated translation tables at this level.
• These concatenated translation tables must be aligned to 2^{(n-38)}×4KB. This means TTBR_ELx[(n-27):12] must be zero.
• TTBR_ELx[47:(n-26)] specify the base address of the block of concatenated translation tables.
• Bits[n:30] of the input address are bits[(n-27):3] of the descriptor offset from the base address of the block of concatenated translation tables.

Performing the initial lookup using the 16KB granule

This subsection describes examples of the initial lookup when using the 16KB translation granule that Table D5-15 on page D5-2563 shows as starting at level 0 or at level 1. It includes those stage 2 translations where concatenation of translation tables is required for the lookup to start at level 1. This means that it gives specific examples of the mechanisms described in The VMSAv8-64 address translation system on page D5-2534.
Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-15 on page D5-2563 shows as starting at level 1. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead, start at level 2.

The following subsections describe these examples of the initial lookup:
- **Initial lookup at level 0, 16KB translation granule.**
- **Initial lookup at level 1, 16KB translation granule.**

In all cases, for a stage 2 translation, the **VTCR_EL2.SL0** field must indicate the required initial lookup level, and this level must be consistent with the value of the **VTCR_EL2.T0SZ** field, see **Overview of stage 2 translations, 16KB granule** on page D5-2563.

Initial lookup at level 0, 16KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(IA[n:0]\). As Table D5-14 on page D5-2562 shows, the only case where an address translation using the 16KB granule starts at level 0 is a stage 1 translation of a 48-bit input address, \(IA[47:0]\). For this lookup:

- The required translation table has only two entries, meaning its size is 16 bytes, and it must be aligned to 16 bytes.
- \(TTBR_ELx[47:4]\) specify the translation table base address.

Figure K7-4 shows this lookup.

Initial lookup at level 1, 16KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(IA[n:0]\). For a stage 1 or stage 2 initial lookup at level 1, without use of concatenated translation tables:

As Table D5-15 on page D5-2563 shows, this applies to \(IA[n:0]\), where \(36 \leq n \leq 46\). For these lookups:

- There is a single translation table at this level.
- \(TTBR_ELx[47:(n-32)]\) specify the translation table base address.
- Bits[n:36] of the input address are bits[(n-33):3] of the descriptor offset in the translation table.

Figure K7-5 on page K7-8040 shows this lookup.
Address Translation Examples

K7.1 AArch64 Address translation examples

For a stage 2 initial lookup at level 1, with concatenated translation tables

As Table D5-15 on page D5-2563 shows, the only case where an address translation using the 16KB granule starts at level 1 because of concatenation of translation tables is a stage 2 translation of a 48-bit input address, IA[47:0]. For this lookup:

- There are two concatenated translation tables at this level.
- These concatenated translation tables must be aligned to 2×16KB. This means TTBR_ELx[14] must be zero.
- TTBR_ELx[47:15] specify the base address of the block of two concatenated translation tables.
- Bits[47:36] of the input address are bits[14:3] of the descriptor offset from the base address of the block of concatenated translation tables.

Figure K7-6 shows this lookup.

Supported input address range is IPA[47:0]. The bit marked † must be zero.

* Field has additional properties to the default RES0 definition, see the register description for more information.

† For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state, the IPA of the descriptor. Otherwise, the PA of the descriptor.

Figure K7-5 Initial lookup for VMSAv8-64 using the 16KB granule, starting at level 1, without concatenation

Performing the initial lookup using the 64KB translation granule

This subsection describes examples of the initial lookup when using the 64KB translation granule that Table D5-17 on page D5-2567 shows as starting at level 1 or at level 2. It includes those stage 2 translations where concatenation of translation tables is required for the lookup to start at level 2. This means that it gives specific examples of the mechanisms described in The VMSAv8-64 address translation system on page D5-2534.
Note

For stage 2 translations, the same principles apply to an initial lookup that Table D5-17 on page D5-2567 shows as starting at level 2. In this case, for some IA sizes concatenation of translation tables means the lookup can, instead, start at level 3.

The following subsections describe these examples of the initial lookup:

- Initial lookup at level 1, 64KB translation granule.
- Initial lookup at level 2, 64KB translation granule.

In all cases, for a stage 2 translation, the VTCR_EL2.SL0 field must indicate the required initial lookup level, and this level must be consistent with the value of the VTCR_EL2.TOSZ field, see Overview of stage 2 translations, 64KB granule on page D5-2567.

Initial lookup at level 1, 64KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(\text{IA}[n:0]\). As Table D5-17 on page D5-2567 shows, a stage 1 or stage 2 initial lookup at level 1 is required when \(42 \leq n \leq 47\). For these lookups:

- The size of the translation table is \(2^{(n-39)}\) bytes. This means the size of the translation table, at this level, is always less than the granule size. The address of this translation table must align to the size of the table.
- Bits\([n:42]\) of the input address are bits\([n-39:3]\) of the descriptor offset in the translation table.
- Bits\([47:(n-38)]\) of the TTBR_ELx specify the translation table base address.

Figure K7-7 shows this lookup.

Initial lookup at level 2, 64KB translation granule

This subsection describes initial lookups with an input address width of \((n+1)\) bits, meaning the input address is \(\text{IA}[n:0]\). For a stage 1 or stage 2 initial lookup at level 2, without the use of concatenated translation tables

As Table D5-17 on page D5-2567 shows, this applies to \(\text{IA}[n:0]\), where \(29 \leq n \leq 41\). For these lookups:

- There is a single translation table at this level.
- \(\text{TTBR}_{-}\text{ELx}[47:(n-25)]\) of the specify the translation table base address.
- Bits\([n:29]\) of the input address are bits\([n-26:3]\) of the descriptor offset in the translation table.

Figure K7-8 on page K7-8042 shows this lookup.
Address Translation Examples
K7.1 AArch64 Address translation examples

Figure K7-8 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, without concatenation

For a stage 2 initial lookup at level 2, with concatenated translation tables

As Table D5-17 on page D5-2567 shows, this applies to IA[n:0], where 42 ≤ n ≤ 45. For these lookups:
• There are 2(m-41) concatenated translation tables at this level.
• These concatenated translation tables must be aligned to 2(m-41)×64KB. This means TTBR_ELx[(n-26):16] must be zero.
• TTBR_ELx[47:(n-25)] specify the base address of the block of translation tables.
• Bits[n:42] of the input address are bits[(n-26):16] of the descriptor offset from the base address of the block of translation tables.

Figure K7-9 shows this lookup.

Figure K7-9 Initial lookup for VMSAv8-64 using the 64KB granule, starting at level 2, with concatenation

K7.1.2 Full translation flows for VMSAv8-64 address translation

In a translation table walk, only the first lookup uses the translation table base address from the appropriate TTBR_ELx. Subsequent lookups use a combination of address information from:
• The table descriptor read in the previous lookup.
• The input address.

This section describes example full translation flows, from the initial lookup to the address of a memory page. The example flows:
• Resolve the maximum-sized IA range supported by the initial lookup level.
• Do not have any concatenation of translation tables.
• Cover only the 4KB and the 64KB translation granules.

Examples of performing the initial lookup on page K7-8036 described how either reducing the IA range or concatenating translation tables affects the initial lookup.

Note
Reducing the IA range or concatenating translation tables affects only the initial lookup.

The following sections describe full VMSAv8-64 translation flows, down to an entry for a memory page:
• The address and properties fields shown in the translation flows.
• Full translation flow using the 4KB granule and starting at level 0.
• Full translation flow using the 4KB granule and starting at level 1 on page K7-8045.
• Full translation flow using the 64KB granule and starting at level 1 on page K7-8046.
• Full translation flow using the 64KB granule and starting at level 2 on page K7-8047.

The address and properties fields shown in the translation flows
For an EL1&0 stage 1 translation, when EL2 is implemented and enabled in the current Security state:
• Any descriptor address is the IPA of the required descriptor.
• The final output address is the IPA of the block or page.

In these cases, an EL1&0 stage 2 translation is performed to translate the IPA to the required PA.

For all other translations, the final output address is the PA of the block or page, and any descriptor address is the PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about the translation or the targeted memory region. For more information, see Memory attribute fields in the VMSAv8-64 translation table format descriptors on page D5-2593.

Full translation flow using the 4KB granule and starting at level 0

Figure K7-10 on page K7-8044 shows the complete translation flow for a stage 1 translation table walk for a 48-bit input address. This lookup must start with a level 0 lookup. For more information about the fields shown in the figure, see The address and properties fields shown in the translation flows.
Figure K7-10 Complete stage 1 translation of a 48-bit address using the 4KB translation granule

If the level 1 lookup or level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-10 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the Table descriptors are SBZ.
Full translation flow using the 4KB granule and starting at level 1

Figure K7-11 shows the complete translation flow for a stage 1 translation table walk for a 39-bit input address. This lookup must start with a level 1 lookup. For more information about the fields shown in the figure, see The address and properties fields shown in the translation flows on page K7-8043.

For details of Properties fields, see the register or descriptor description.

* Field has additional properties to the default RES0 definition, see the register description for more information.

Figure K7-11 Complete stage 1 translation of a 39-bit address using the 4KB translation granule

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-11 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the Table descriptors are SBZ.

Comparing this translation with the translation for a 48-bit address, shown in Figure K7-10 on page K7-8044, shows how the translation for the 42-bit address start the same lookup process one stage later.
Full translation flow using the 64KB granule and starting at level 1

Figure K7-10 on page K7-8044 shows the complete translation flow for a stage 1 translation table walk for a 48-bit input address. This lookup must start with a level 0 lookup. For more information about the fields shown in the figure, see The address and properties fields shown in the translation flows on page K7-8043.

For details of Properties fields, see the register or descriptor description.

Figure K7-12 Complete stage 1 translation of a 48-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-12 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the Table descriptors are SBZ.

The level 1 lookup resolves only 6 bits of the input address. As described in Performing the initial lookup using the 64KB translation granule on page K7-8040, this means:

- The translation table size for this level is only 512 bytes.
- The required translation table alignment for this level is 512 bytes.
- The Base address field in the TTBR_ELx is extended, at the low-order end, to be bits[47:9].
Full translation flow using the 64KB granule and starting at level 2

Figure K7-11 on page K7-8045 shows the complete translation flow for a stage 1 translation table walk for a 42-bit input address. This lookup must start with a level 2 lookup. For more information about the fields shown in the figure, see The address and properties fields shown in the translation flows on page K7-8043.

Figure K7-13 Complete stage 1 translation of a 42-bit address using the 64KB translation granule

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

Figure K7-13 shows a stage 1 translation. The only difference for a stage 2 translation is that bits[63:58] of the Table descriptors are SBZ.

Comparing this translation with the translation for a 48-bit address, shown in Figure K7-12 on page K7-8046, shows:

- The translation for the 42-bit address starts the same lookup process one stage later.
- Because the initial lookup resolves 13 bits of address:
 - The translation table size for this level is 64KB.
 - The required translation table alignment for this level is 64KB.
 - The Base address field in the TTBR_ELx is bits[47:16].
K7.2 AArch32 Address translation examples

The following sections give address translation examples for the VMSAv8-32 address translation formats:

- Address translation examples using the VMSAv8-32 Short descriptor translation table format.
- Address translation examples using the VMSAv8-32 Long descriptor translation table format on page K7-8053.

K7.2.1 Address translation examples using the VMSAv8-32 Short descriptor translation table format

VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5980 describes the memory section and page option for a single VMSAv8-32 address translation. The following sections show the full translation flow for each of these options:

- Translation flow for a Supersection.
- Translation flow for a Section on page K7-8049.
- Translation flow for a Large page on page K7-8050.
- Translation flow for a Small page on page K7-8051.

The address and Properties fields shown in the translation flows on page K7-8052 summarizes the information returned by the lookup.

Translation flow for a Supersection

Figure K7-14 on page K7-8049 shows the complete translation flow for a Supersection. For more information about the fields shown in this figure, see The address and Properties fields shown in the translation flows on page K7-8052.
Figure K7-14 VMSAv8-32 Short-descriptor Supersection address translation

Note

Figure K7-14 shows how, when the input address, the VA, addresses a Supersection, the top four bits of the Supersection index bits of the address overlap the bottom four bits of the Table index bits. For more information, see Additional requirements for Short-descriptor format translation tables on page G5-5983.

Translation flow for a Section

Figure K7-15 on page K7-8050 shows the complete translation flow for a Section. For more information about the fields shown in this figure, see The address and Properties fields shown in the translation flows on page K7-8052.
Translation flow for a Large page

Figure K7-15 on page K7-8051 shows the complete translation flow for a Large page. For more information about the fields shown in this figure, see The address and Properties fields shown in the translation flows on page K7-8052.
Figure K7-16 VMSAv8-32 Short-descriptor Large page address translation

For a translation based on TTBR0, N is the value of TTBCR.N
For a translation based on TTBR1, N is 0
For details of Properties fields, see the register or descriptor description

Figure K7-16 shows how, when the input address, the VA, addresses a Large page, the top four bits of the page index bits of the address overlap the bottom four bits of the level 1 table index bits. For more information, see Additional requirements for Short-descriptor format translation tables on page G5-5983.

Translation flow for a Small page

Figure K7-17 shows the complete translation flow for a Small page. For more information about the fields shown in this figure, see The address and Properties fields shown in the translation flows.
The address and Properties fields shown in the translation flows

For the Non-secure PL1&0 stage 1 translation tables:
• Any descriptor address is the IPA of the required descriptor.
• The final output address is the IPA of the Section, Supersection, Large page, or Small page.

In these cases, a PL1&0 stage 2 translation is performed to translate the IPA to the required PA.

Otherwise, the address is the PA of the descriptor, Section, Supersection, Large page, or Small page.

Properties indicates register or translation table fields that return information, other than address information, about the translation or the targeted memory region. For more information, see Information returned by a translation table lookup on page G5-5975, and the description of the register or translation table descriptor.

‡ This field is absent if N is 0
L1 = Level 1, L2 = Level 2
For a translation based on TTBR0, N is the value of TTBCR.N
For a translation based on TTBR1, N is 0
For details of Properties fields, see the register or descriptor description.

Figure K7-17 VMSAv8-32 Short-descriptor Small page address translation
For translations using the Short-descriptor translation table format, *VMSAv8-32 Short-descriptor translation table format descriptors on page G5-5980* describes the descriptors formats.

K7.2.2 Address translation examples using the VMSAv8-32 Long descriptor translation table format

As described in *Translation table walks, when using the VMSAv8-32 Long-descriptor translation table format on page G5-6003*, in a translation table walk, only the first lookup uses the translation table base address from the appropriate TTBR. Subsequent lookups use a combination of address information from:

- The table descriptor read in the previous lookup.
- The input address.

The following sections give examples of full VMSAv8-32 Long-descriptor format address translation flows, down to an entry for a 4KB page:

- *Full translation flow, starting at level 1 lookup.*
- *Full translation flow, starting at level 2 lookup on page K7-8055.*

The address and Properties fields shown in the translation flows on page K7-8052 summarizes the information returned by the lookup.

Full translation flow, starting at level 1 lookup

Figure K7-18 on page K7-8054 shows the complete translation flow for a VMSAv8-32 Long-descriptor stage 1 translation table walk that starts with a level 1 lookup. For more information about the fields shown in the figure, see *The address and Properties fields shown in the translation flows on page K7-8052.*
Figure K7-18 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 1

If the level 1 lookup or the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see Address size fault on page G5-6054.

A stage 2 translation that starts at a level 1 lookup differs from the translation shown in Figure K7-18 only as follows:

- The possible values of \(n \) are 4-13, to support an input address of between 31 and 40 bits.
- A descriptor and output addresses are always PAs.
Full translation flow, starting at level 2 lookup

Figure K7-19 shows the complete translation flow for a stage 1 VMSAv8-32 Long-descriptor translation table walk that starts at a level 2 lookup. For more information about the fields shown in the figure, see *The address and Properties fields shown in the translation flows* on page K7-8052.

For details of *Properties* fields, see the register or descriptor description.

‡ See the lookup description for more information about bits[40:47] of the TTBR and descriptors

Figure K7-19 Complete VMSAv8-32 Long-descriptor format stage 1 translation, starting at level 2

If the level 2 lookup returns a block descriptor then the translation table walk completes at that level.

If bits[47:40] of the TTBR or the descriptor are not zero then the lookup will generate an Address size fault, see *Address size fault* on page G5-6054.

A stage 2 translation that starts at a level 2 lookup differs from the translation shown in Figure K7-19 only as follows:

- The possible values of \(n \) are 7-16, to support an input address of up to 34 bits.
- The descriptor and output addresses are always PAs.

The address and Properties fields shown in the translation flows

For the Non-secure PL1\&0 stage 1 translation:

- Any descriptor address is the IPA of the required descriptor.
- The final output address is the IPA of the block or page.

In these cases, a PL1\&0 stage 2 translation is performed to translate the IPA to the required PA.
For all other translations, the final output address is the PA of the block or page, and any descriptor address is the PA of the descriptor.

Properties indicates register or translation table fields that return information, other than address information, about the translation or the targeted memory region. For more information, see Information returned by a translation table lookup on page G5-5975, and the description of the register or translation table descriptor.

For translations using the Long-descriptor translation table format, VMSAv8-32 Long-descriptor translation table format descriptors on page G5-5989 describes the descriptors formats.
Appendix K8
Example OS Save and Restore Sequences

This appendix provides possible OS Save and Restore sequences for a v8A Debug implementation. It contains the following sections:

- Save Debug registers on page K8-8058.
- Restore Debug registers on page K8-8060.
K8.1 Save Debug registers

This section shows how to save the registers that are used by an external debugger.

; On entry, X0 points to a block to save the debug registers in.
; Returns the pointer beyond the block and corrupts X1-X3

SaveDebugRegisters
; (1) Set OS lock.
 MOV X2,#1 ; Set the OS lock. In AArch64 state, the OS lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

; (2) Walk through the registers, saving them
 MRS X1,OSDTRRX_EL1 ; Read DTRRX
 MRS X2,OSDTRTX_EL1 ; Read DTRTX
 STP W1,W2,[X0],#8 ; Save { DTRRX, DTRTX }
 MRS X1,OSECCR_EL1 ; Read ECCR
 MRS X2,MDSCR_EL1 ; Read DSCR
 STP W1,W2,[X0],#8 ; Save { ECCR, DSCR }
 [AARCH32_SUPPORTED
 MRS X1,DBGVCR32_EL2 ; Read DBGVCR
 MRS X2,DBGCLAIMCLR_EL1 ; Read CLAIM - note, have to read via CLAIMCLR
 STP W1,W2,[X0],#8 ; Save { VCR, CLAIM }
]

;; Macros for saving off a "register pair"
;; $WB is W for watchpoint, B for breakpoint
;; $num is the pair's number
;; X0 contains a pointer for the value words
;; X1 contains a pointer for the control words
;; W2 contains the max index
MACRO
SaveRP $WB,$num, $exit
 MRS X3,DBG$WB.VR$num._EL1 ; Read DBGxVRn
 STR X3,[X0],#8 ; Save { xVRn }
 MRS X3,DBG$WB.CR$num._EL1 ; Read DBGxCRn
 STR W3,[X0],#4 ; Save { xCRn }.
 [$num > 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
MEND

; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#12,#4 ; Extract WRPs field
MACRO
SaveBRP $num ; Save a Breakpoint Register Pair
SaveRP B,$num,SaveDebugRegisters_Watchpoints
MEND
SaveBRP 0
SaveBRP 1
SaveBRP 2
;; and so on to ...
SaveBRP 15

SaveDebugRegisters_Watchpoints
; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
MACRO
SaveWRP $num ; Save a Watchpoint Register Pair
SaveRP W,$num,SaveDebugRegisters.Exit
MEND
SaveWRP 0
SaveWRP 1
SaveWRP 2
;; and so on to ...
SaveWRP IS

SaveDebugRegisters Exit
 ; (5) Return the pointer to first word not read. This pointer is already in X8, so
 ; all that is needed is to return from this function. The OS double-lock (OSDLR_EL1.DLK) is
 ; locked later, just before the final entry to WFI state.
RET
K8.2 Restore Debug registers

This section shows how to restore the registers that are used by an external debugger.

; On entry, X0 points to a block of saved debug registers.
; Returns the pointer beyond the block and corrupts R1-R3,R12.

RestoreDebugRegisters
 ; (1) Lock OS lock. The lock will already be set, but this write is included to ensure it
 ; is locked.
 MOV X2,#1 ; Lock the OS lock. In AArch64 state, the OS lock
 MSR OSLAR_EL1,X2 ; is writable via OSLAR.
 ISB ; Context synchronization event

 MSR MDSCR_EL1, XZR ; Initialize MDSCR_EL1

 ; (2) Walk through the registers, restoring them
 LDP W1,W2,[X0],#8 ; Read { DTRRX,DTRTX }
 MSR OSDTRRX_EL1,X1 ; Restore DTRRX
 MSR OSDTRTX_EL1,X2 ; Restore DTRTX
 LDP W1,W3,[X0],#8 ; Read { DSCR, ECCR }
 MSR OSECCR_EL1,X2 ; Restore ECCR

[AARCH32_SUPPORTED
 LDP W1,W2,[X0],#8 ; Read { VCR,CLAIM }
 MSR DBGVCR32_EL2,X1 ; Restore DBGVCR
 MSR DBGCLAIMSET_EL1,X2 ; Restore CLAIM - note, writes CLAIMSET
]}

;; Macro for restoring a "register pair"
MACRO
 RestoreRP $WB,$num,$exit
 LDR X3,[X0],#8 ; Read { xVRn }
 MSR DBG$WB.VR$num._EL1,X3 ; Restore DBGxVRn
 LDR W3,[X0],#4 ; Read { xCRn }
 MSR DBG$WB.CR$num._EL1,X3 ; Restore DBGxCRn
[$num >= 1 :LAND: $num < 15
 CMP W1,#$num
 BEQ $exit
]
MEND

; (3) Breakpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#12,#4 ; Extract WRPs field
MACRO
 RestoreBRP $num ; Restore a Breakpoint Register Pair
 RestoreRP B,$num,RestoreDebugRegisters_Watchpoints
MEND
 RestoreBRP 0
 RestoreBRP 1
 RestoreBRP 2
 ;; and so on until ...
 RestoreBRP 15

RestoreDebugRegisters_Watchpoints
 ; (4) Watchpoints
 MRS X1,ID_AA64DFR0_EL1 ; Read DBGDIDR
 UBFX W1,W1,#20,#4 ; Extract WRPs field
MACRO
 RestoreWRP $num ; Restore a Watchpoint Register Pair
 RestoreRP W,$num,RestoreDebugRegisters_Exit
MEND
 RestoreWRP 0
 RestoreWRP 1
 RestoreWRP 2
 ;; and so on until ...
 RestoreWRP 15
RestoreDebugRegisters.Exit
MSR MDSCR_EL1, X3 ; Restore DSCR

; (5) Clear the OS lock.
ISB
MOV X2, #0 ; Clear the OS lock. In AArch64 state, the OS lock
MSR OSLAR_EL1, X2 ; is writable via OSLAR.

; (6) A final ISB guarantees the restored register values are visible to subsequent
; instructions.
ISB

; (7) Return the pointer to first word not read. This pointer is already in X0, so
; all that is needed is to return from this function.
RET
Example OS Save and Restore Sequences
K8.2 Restore Debug registers
Appendix K9
Recommended Upload and Download Processes for External Debug

This appendix contains the following section:
• Using memory access mode in AArch64 state on page K9-8064.

Note
This description is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might find this information useful.
K9.1 Using memory access mode in AArch64 state

Figure K9-1 and Figure K9-2 on page K9-8065 show the processes for using memory access mode to implement a download (external host to target) and an upload (target to external host).

To transfer \(n \) words of data:
- The download sequence needs \(n+6 \) accesses by the external debug interface.
- The upload sequence needs \(n+8 \) accesses by the external debug interface.

In both cases, in the innermost loop the debugger can make an external access to a DTR without polling EDSCR after each write as underrun and overrun detection prevent failure. Normally external accesses from the debugger are outpaced by the memory accesses of the PE, making underruns and overruns unlikely. If this is not the case, the EDSCR.ERR flag is set to 1. This is checked once at the end of the sequence, although a debugger can check it more often, for example once for each page. If the EDSCR.ERR flag is set to 1 because of overrun or underrun, the debugger can restart. The address to restart from is frozen in X0. EDSCR.ERR might also be set because of a Data abort.

If underruns and overruns are common, the debugger can pace itself accordingly.

Note

- The base address must be a multiple of 4.
- The order of the writes that set up the address does not matter in Debug state.

![Figure K9-1 Fast code download in AArch64 state (external host to target)](image-url)
In Figure K9-1 on page K9-8064, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:
 a. Write address [31:0] to DBGDTRRX_EL0.
 b. Write address [63:32] to DBGDTRTX_EL0.
 c. Write MRS X0, DBGDTR_EL0 to EDITR. The PE executes this instruction.
 d. Set EDSCR.MA to 1.

2. Loop \(n \) times. From the external debug interface:
 a. Write to DBGDTRRX_EL0. The PE reads the word from DTRRX and stores it to memory. It increments X0 by 4.

3. Epilogue. From the external debug interface:
 a. Clear EDSCR.MA to 0.
 b. Read EDSCR to check for overruns or Data Aborts during download.

Figure K9-2 Fast data upload in AArch64 state (target to external host)

In Figure K9-2, the sequence for the fast code download is as follows:

1. Setup. From the external debug interface:
 a. Write address [31:0] to DBGDTRRX_EL0.
b. Write address [63:32] to DBGDTRTX_EL0.
c. Write MRS X0, DBGDTR_EL0 to EDITR.
d. Write MSR DBGDTR_EL0, X0 to EDITR. This dummy operation ensures EDSCR.TXfull == 1.
e. Set EDSCR.MA to 1.
f. Read DBGDTRTX_EL0 and discard the value. The PE returns the previous DTR value, loads the first word, and writes it to DTR. It increments X0 by 4.

2. Loop \(n-1\) times. From the external debug interface:
 a. Read DBGDTRTX_EL0. The PE returns the previous DTRTX value, loads a new word, and writes it to DTRTX. It increments X0 by 4.

3. Epilogue. From the external debug interface:
 a. Clear EDSCR.MA to 0.
 b. Read DBGDTRTX_EL0 for the \(n\)th value.
 c. Read EDSCR to check for underruns, overruns or Data Aborts during upload.
Appendix K10
Software Usage Examples

This appendix gives software usage examples, for cases where these are likely to contribute significantly to an understanding of the Arm architecture.

It contains the following sections:

• Use of the Advanced SIMD complex number instructions on page K10-8068.
• Use of the Armv8.2 extensions to the Cryptographic Extension on page K10-8070.
K10.1 Use of the Advanced SIMD complex number instructions

FEAT_FCMA provides instructions to aid floating-point computations of complex numbers. This section illustrates the use of these instructions for complex arithmetic. It is not part of the Arm architecture definition.

This section uses the AArch64 instructions FCADD and FCMLA - usage of the AArch32 instructions VCCADD and VCMUL is similar.

When using the instructions implemented by FEAT_FCMA, a complex numbers is represented in a SIMD&FP register as a pair of adjacent elements, each holding a floating-point number, with the more significant element holding the imaginary part of the number and the less significant element holding the real part of the number.

K10.1.1 Complex addition

Simple complex addition on a vector of complex numbers is already provided by the vector form of the FADD instruction.

The functionality that FCADD adds is to rotate each complex number in the second vector by 90 degrees or 270 degrees counterclockwise (considering the complex numbers on an Argand diagram) before performing the addition. Mathematically, this is equivalent to multiplying the second complex number by i or -i before addition.

This means, given a complex number z stored in a pair of elements in one vector, and a complex number w stored in the corresponding element pair in another vector:

- FADD calculates $z + w$.
- FCADD calculates $z \pm iw$.

K10.1.2 Complex multiplication

The FCMLA instruction does not provide functionality for complex multiplication directly. However, a pair of FCMLA instructions can provide this function.

The FCMLA instruction operates on corresponding pairs of complex numbers stored in SIMD&FP vector registers, and adds the result to the corresponding complex number in the destination SIMD&FP vector register. This computation is as follows:

1. The second complex number is rotated by 0, 90, 180 or 270 degrees counterclockwise.
2. That complex number is multiplied by either the real or imaginary part of the first complex number:
 - When the rotation is 0 or 180 degrees, the real part is used.
 - When the rotation is 90 or 270 degrees, the imaginary part is used.
3. The resulting complex number is added to the corresponding complex number in the destination register.

Mathematically, considering the complex numbers on an Argand diagram:

- Rotation by 180 degrees is equivalent to negation.
- Rotation by 90 degrees is equivalent to multiplying by i.
- Rotation by 270 degrees is equivalent to multiplying by -i.

This means that, for a first complex number z, where $z = a + bi$, and a second complex number w, if initially the corresponding complex number in the destination register is zero:

- When the rotation is 0 degrees the result of the multiply-add is aw.
- When the rotation is 180 degrees, the result is -aw.
- When the rotation is 90 degrees, the result is biw.
- When the rotation is 270 degrees, the result is -biw.
This means that, if the destination register is zeroed and an FCMLA instruction is executed with a rotation parameter of 0, and then the same instruction is executed with a rotation parameter of 90:

- The first execution returns aw in the destination register.
- The second execution accumulates biw to this, meaning the result is aw+biw.
- This result is the product of (a+bi)w, which is the product zw.

So, this pair of instructions can be used to implement complex multiplication.

After zeroing V0, the syntax of a pair of instructions to perform this complex number multiplication might be:

```
FCMLA V0.4S, V1.4S, V2.4S, #0
FCMLA V0.4S, V1.4S, V2.4S, #90
```

Other simple pairs of FCMLA instructions perform useful computations. For example, considering a first complex number z and second complex number w, defined as before, and a destination register that has been zeroed before the first FCMLA instruction is executed:

1. The following pair of instructions calculates the complex conjugate of z multiplied by w.

   ```
   FCMLA V0.4S, V1.4S, V2.4S, #0
   FCMLA V0.4S, V1.4S, V2.4S, #270
   ```

2. The following pair of instructions calculates the negation of z multiplied by w.

   ```
   FCMLA V0.4S, V1.4S, V2.4S, #180
   FCMLA V0.4S, V1.4S, V2.4S, #270
   ```

3. The following pair of instructions calculates the negation of the complex conjugate of z multiplied by w.

   ```
   FCMLA V0.4S, V1.4S, V2.4S, #180
   FCMLA V0.4S, V1.4S, V2.4S, #90
   ```

--- **Note** ---

For these examples, the following caveats must be considered:

- **FCMLA** performs a fused multiply-add, meaning there is no intermediate rounding. This lack of intermediate rounding can give unexpected results in some cases. Arm expects that these instructions are only used in situations where the effect of the rounding of these results is not material to the calculation.

- When using the FCMLA instructions, the behavior of (∞+∞i) multiplied by (0+i) is (NaN+NaNi), rather than the result expected by ISO C, which is complex ∞.
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

K10.2.1 Use of the SHA512 instructions

These instructions are implemented when FEAT_SHA512 is implemented.

The following code sequence shows the use of the SHA512 instructions to calculate a SHA512 hash iteration of 80 rounds. This code is not fully optimized.

```
// X0 contains the pointer to the bottom of the (padded) 16*64 bytes of message to be
// hashed, with space above the that message to hold a further 64 * 64 bytes of working
// data
// X1 contains the pointer to the 0th element of 80 64-bit constants (in ascending addresses) defined in
// the SHA2 specification
// X2 contains a loop variable
// V4,V5,V6, V7 hold VS0 to VS3 respectively
// V8 holds running hash V1
// V9 holds running hash V0

MOVB X2, #0
loop1:
    LD1 {V0.2D}, [X0]          // Data
    LD1 {V1.2D}, [X1]          // K values
    ADD X1, X1, #16
    ADD X0, X0, #16
    ADD X2, X2, #16
    ADD V2.2D, V0.2D, V1.2D
    EXT V2.16B, V2.16B, V2.16B, #8
    EXT V8.16B, V6.16B, V7.16B, #8
    EXT V9.16B, V5.16B, V6.16B, #8
    ADD V7.2D, V7.2D, V2.2D
    SHA512H Q7, Q8, V9.2D
    ADD V10.2D, V5.2D, V7.2D
    SHA512H2 Q7, Q5, V4.2D
    MOV V5.16B, V4.16B
    MOV V4.16B, V7.16B
    MOV V7.16B, V6.16B
    MOV V6.16B, V10.16B
    CMP X2, #128
    BLT loop1

// work out pointers to previous words in the data
    SUB X3, X0, #128
    SUB X4, X0, #112
    SUB X5, X0, #16
    SUB X6, X0, #56
loop2:
    LD1 {V11.2D}, [X3]
    LD1 {V12.2D}, [X4]
    LD1 {V13.2D}, [X5]
    LD1 {V14.2D}, [X6]
    SHA512SU0 V11.2D, V12.2D
    SHA512SU1 V11.2D, V13.2D, V14.2D
    ST1 {V11.2D}, [X0]
    LD1 {V1.2D}, [X1]          // K values
    ADD X0, X0, #16
    ADD X1, X1, #16
    ADD X3, X3, #16
    ADD X4, X4, #16
    ADD X5, X5, #16
    ADD X6, X6, #16
    ADD X2, X2, #16
    ADD V2.2D, V11.2D, V1.2D
    EXT V2.16B, V2.16B, V2.16B, #8
    EXT V8.16B, V6.16B, V7.16B, #8
    EXT V9.16B, V5.16B, V6.16B, #8
    ADD V7.2D, V7.2D, V2.2D
    SHA512H Q7, Q8, V9.2D
```

K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

K10.2.2 Use of the SHA3 instructions

These instructions are implemented when FEAT_SHA3 is implemented.

The following code sequence shows the use of the SHA3 instructions to obtain the combined theta, phi, rho and chi operations of a SHA3 iteration. Arm expects the iota operation to be performed using a lookup table.

This code is not fully optimized for multiple iterations.

```assembly
// Input State:
// // x=0  x=1  x=2  x=3  x=4
// y=0  v12  v13  v14  v10  v11
// y=1  v7   v8   v9   v5   v6
// y=2  v2   v3   v4   v0   v1
// y=3  v22  v23  v24  v20  v21
// y=4  v17  v18  v19  v15  v16

//-- Theta Calculations --/
eor3 v25.16B, v12.16B, v7.16B, v2.16B
eor3 v25.16B, v25.16B, v22.16B, v17.16B
eor3 v27.16B, v14.16B, v9.16B, v4.16B
eor3 v27.16B, v27.16B, v24.16B, v19.16B
eor3 v28.16B, v10.16B, v5.16B, v0.16B
eor3 v29.16B, v11.16B, v6.16B, v1.16B
rax1 v30.2D, v29.2D, v26.2D
rax1 v31.2D, v27.2D, v29.2D
rax1 v29.2D, v25.2D, v27.2D
rax1 v27.2D, v28.2D, v25.2D
rax1 v25.2D, v26.2D, v28.2D

//-- Phi\rho Stage --/
eor v12.8B, v12.8B, v30.8B
xar v26.2D, v21.2D, v27.2D, #56
xar v21.2D, v15.2D, v31.2D, #8
xar v15.2D, v22.2D, v30.2D, #23
xar v22.2D, v11.2D, v27.2D, #37
xar v11.2D, v16.2D, v27.2D, #50
xar v16.2D, v18.2D, v29.2D, #62
xar v18.2D, v5.2D, v31.2D, #9
xar v5.2D, v23.2D, v29.2D, #19
xar v23.2D, v7.2D, v30.2D, #28
xar v7.2D, v18.2D, v31.2D, #36
xar v18.2D, v20.2D, v31.2D, #43
xar v20.2D, v24.2D, v25.2D, #49
xar v24.2D, v3.2D, v29.2D, #54
xar v3.2D, v9.2D, v25.2D, #58
xar v9.2D, v2.2D, v30.2D, #61
xar v2.2D, v13.2D, v29.2D, #63
xar v13.2D, v8.2D, v29.2D, #20
xar v8.2D, v6.2D, v27.2D, #44
xar v6.2D, v19.2D, v25.2D, #3
xar v19.2D, v1.2D, v27.2D, #25
xar v1.2D, v17.2D, v30.2D, #46
```
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

xar v17.2D, v14.2D, v25.2D, #2
xar v14.2D, v4.2D, v25.2D, #21
xar v4.2D, v0.2D, v31.2D, #39

// XAR Output:
//
// v12 v2 v17 v7 v22
// v23 v13 v3 v18 v8
// v9 v24 v14 v4 v19
// v15 v5 v20 v10 v26
// v1 v16 v6 v21 v11
//
// temp: v0, v25, v27, v28, v29, v30, v31

// Phi Output:
//
// v12 v13 v14 v10 v11
// v7 v8 v9 v5 v6
// v2 v3 v4 v26 v1
// v22 v23 v24 v20 v21
// v17 v18 v19 v15 v16

//-- Chi transformations --/
bcax v31.16B, v26.16B, v2.16B, v1.16B
bcax v27.16B, v1.16B, v3.16B, v2.16B
bcax v28.16B, v2.16B, v4.16B, v3.16B
bcax v31.16B, v5.16B, v7.16B, v6.16B
bcax v1.16B, v6.16B, v8.16B, v7.16B
bcax v2.16B, v7.16B, v9.16B, v8.16B
bcax v3.16B, v8.16B, v5.16B, v9.16B
bcax v4.16B, v9.16B, v6.16B, v5.16B
bcax v5.16B, v10.16B, v2.16B, v11.16B
bcax v10.16B, v15.16B, v17.16B, v16.16B
bcax v11.16B, v16.16B, v18.16B, v17.16B
bcax v12.16B, v17.16B, v19.16B, v18.16B
bcax v15.16B, v20.16B, v22.16B, v21.16B
bcax v17.16B, v22.16B, v24.16B, v23.16B
bcax v18.16B, v23.16B, v20.16B, v24.16B

//-- Output State from Chi:
//--
// x=0 x=1 x=2 x=3 x=4
// y=0 v7 v8 v9 v5 v6
// y=1 v2 v3 v4 v0 v1
// y=2 v28 v29 v30 v31 v27
// y=3 v17 v18 v19 v15 v16
// y=4 v12 v13 v14 v10 v11

K10.2.3 Use of the SM3 instructions

These instructions are implemented when FEAT_SM3 is implemented.

The following code sequence shows the use of the SM3 instructions to generate a SM3 hash.

.macro MessageExpand VA, VB, VC, VD, VOUT
EXT \VOUT(.16B, \VB(.16B, \VC(.16B, \VA(.16B, #12
SM3PARTW1 \VOUT(.4S, \VA(.4S, \VD(.4S

K10-8072 Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
EXT V17.16B, \VA().16B, \VB().16B, #12
EXT V18.16B, \VC().16B, \VD().16B, #8
SM3PART2 \VOUT().4S, V18.4S, V17.4S
.endm

.macro HashPt1 VA, VB, Number
 SM3SS1 V23.4S, V20.4S, V22.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1a V20.4S, V23.4S, V21.S[Number]
 SM3TT1b V19.4S, V23.4S, \VA().S[Number]
 SHL V24.4S, V22.4S, #1
 SRI V24.4S, V22.4S, #31
 MOV V22.16B, V24.16B
.endm

.macro HashPt2 VA, VB, Number
 SM3SS1 V23.4S, V20.4S, V25.4S, V19.4S
 EOR V21.16B, \VA().16B, \VB().16B
 SM3TT1b V20.4S, V23.4S, V21.S[Number]
 SM3TT1b V19.4S, V23.4S, \VA().S[Number]
 SHL V26.4S, V25.4S, #1
 SRI V26.4S, V25.4S, #31
 MOV V25.16B, V26.16B
.endm

// V0-V3 holds the initial message
// V19 holds EFGH which is the lower half of the input hash
// V20 holds ABCD which is the upper half of the input hash
// V21 = current VPrime
// V22 holds T in bits[127:96] = 0x79cc4519
// V25 holds second value of T in bits[127:96] = 0x9d8a7a87<31:0>
MessageExpand V0, V1, V2, V3, V4
MessageExpand V1, V2, V3, V4, V5
MessageExpand V2, V3, V4, V5, V6
MessageExpand V3, V4, V5, V6, V7
MessageExpand V4, V5, V6, V7, V8
MessageExpand V5, V6, V7, V8, V9
MessageExpand V6, V7, V8, V9, V10
MessageExpand V7, V8, V9, V10, V11
MessageExpand V8, V9, V10, V11, V12
MessageExpand V9, V10, V11, V12, V13
MessageExpand V10, V11, V12, V13, V14
MessageExpand V11, V12, V13, V14, V15
MessageExpand V12, V13, V14, V15, V16
MOV V29.16B, V19.16B
MOV V30.16B, V20.16B
HashPt1 V0,V1, 0
HashPt1 V0,V1, 1
HashPt1 V0,V1, 2
HashPt1 V0,V1, 3
HashPt1 V1,V2, 0
HashPt1 V1,V2, 1
HashPt1 V1,V2, 2
HashPt1 V1,V2, 3
HashPt1 V2,V3, 0
HashPt1 V2,V3, 1
HashPt1 V2,V3, 2
HashPt1 V2,V3, 3
HashPt1 V3,V4, 0
HashPt1 V3,V4, 1
HashPt1 V3,V4, 2
HashPt1 V3,V4, 3
HashPt2 V4,V5, 0
HashPt2 V4,V5, 1
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

HashPt2 V4, V5, 2
HashPt2 V4, V5, 3
HashPt2 V5, V6, 0
HashPt2 V5, V6, 1
HashPt2 V5, V6, 2
HashPt2 V5, V6, 3
HashPt2 V6, V7, 0
HashPt2 V6, V7, 1
HashPt2 V6, V7, 2
HashPt2 V6, V7, 3
HashPt2 V7, V8, 0
HashPt2 V7, V8, 1
HashPt2 V7, V8, 2
HashPt2 V7, V8, 3
HashPt2 V8, V9, 0
HashPt2 V8, V9, 1
HashPt2 V8, V9, 2
HashPt2 V8, V9, 3
HashPt2 V9, V10, 0
HashPt2 V9, V10, 1
HashPt2 V9, V10, 2
HashPt2 V9, V10, 3
HashPt2 V10, V11, 0
HashPt2 V10, V11, 1
HashPt2 V10, V11, 2
HashPt2 V10, V11, 3
HashPt2 V11, V12, 0
HashPt2 V11, V12, 1
HashPt2 V11, V12, 2
HashPt2 V11, V12, 3
HashPt2 V12, V13, 0
HashPt2 V12, V13, 1
HashPt2 V12, V13, 2
HashPt2 V12, V13, 3
HashPt2 V13, V14, 0
HashPt2 V13, V14, 1
HashPt2 V13, V14, 2
HashPt2 V13, V14, 3
HashPt2 V14, V15, 0
HashPt2 V14, V15, 1
HashPt2 V14, V15, 2
HashPt2 V14, V15, 3
HashPt2 V15, V16, 0
HashPt2 V15, V16, 1
HashPt2 V15, V16, 2
HashPt2 V15, V16, 3

EOR V19.16B, V29.16B, V19.16B
EOR V20.16B, V30.16B, V20.16B

// V19 holds EFGH which is the lower half of the output hash
// V20 holds ABCD which is the upper half of the output hash

K10.2.4 Use of the SM4 instructions

These instructions are implemented when FEAT_SM4 is implemented.

The following code sequences show the use of the SM4 instructions to perform SM4 encryption and decryption:

Encryption

 // Encryption
 // V0 contains 0xb27022dc677d919756aa3330a3b1bac6<127:0>;
 // V8 contains the Key
 // V2 contains the data to be encrypted
 // V16 contains: 0x545b6269383f464d1c232a3100070e15;
 // V17 contains: 0xc4c7bd2d94a8afbbdb8399aa1707778e85;
// V18 contains: 0x343b4249181f262dfc030a11e0e7eef5;
// V19 contains: 0xa4abb2b988f969d6c737a8150575e65;
// V20 contains: 0x141b2229f8ff060dcee3aeaf1c07ced5;
// V21 contains: 0x848b299686f767d4c535a6130373e45;
// V22 contains: 0xf4fb0209d8dfe6edc3cda1a0a7ae5b;
// V23 contains: 0x646b727948f565d2c333a4110171e25;

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

SM4E V2.4S, V8.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V15.4S

// need to reverse the order of the keys to do a decryption:
REV64 V8.4S, V8.4S
EXT V8.16B, V8.16B, V8.16B, #8

Decryption
// Decryption
// V0 contains 0xb27022dc677d919756aa3350a3b1bac6<127:0>;
// V8 contains the Key
// V2 contains the data to be decrypted
// V16 contains: 0x545b6269383f464d1c232a3100070e15;
// V17 contains: 0xc4cbd2d9a86f68d332a3100070e15;
// V18 contains: 0x848b299686f767d4c535a6130373e45;
// V19 contains: 0xf4fb0209d8dfe6edc3cda1a0a7ae5b;
// V20 contains: 0x646b727948f565d2c333a4110171e25;
// need to reverse the order of the keys to do a decryption:

EOR V8.16b, V8.16b, V0.16b;
SM4EKEY V8.4S, V8.4S, V16.4S
SM4EKEY V9.4S, V8.4S, V17.4S
SM4EKEY V10.4S, V9.4S, V18.4S
SM4EKEY V11.4S, V10.4S, V19.4S
SM4EKEY V12.4S, V11.4S, V20.4S
SM4EKEY V13.4S, V12.4S, V21.4S
SM4EKEY V14.4S, V13.4S, V22.4S
SM4EKEY V15.4S, V14.4S, V23.4S

REV64 V8.4S, V8.4S
EXT V8.16B, V8.16B, V8.16B, #8
REV64 V9.4S, V9.4S
REV64 V10.4S, V10.4S
EXT V10.16B, V10.16B, V10.16B, #8
REV64 V11.4S, V11.4S
EXT V11.16B, V11.16B, V11.16B, #8
REV64 V12.4S, V12.4S
EXT V12.16B, V12.16B, V12.16B, #8
REV64 V13.4S, V13.4S
Software Usage Examples
K10.2 Use of the Armv8.2 extensions to the Cryptographic Extension

EXT V13.16B, V13.16B, V13.16B, #8
REV64 V14.4S, V14.4S
EXT V14.16B, V14.16B, V14.16B, #8
REV64 V15.4S, V15.4S
EXT V15.16B, V15.16B, V15.16B, #8

SM4E V2.4S, V15.4S
SM4E V2.4S, V14.4S
SM4E V2.4S, V13.4S
SM4E V2.4S, V12.4S
SM4E V2.4S, V11.4S
SM4E V2.4S, V10.4S
SM4E V2.4S, V9.4S
SM4E V2.4S, V8.4S

// final reversal of the order of the words in the result:
REV64 V2.4S, V2.4S
EXT V2.16B, V2.16B, V2.16B, #8
Appendix K11
Barrier Litmus Tests

This appendix gives examples of the use of the barrier instructions provided by the Armv8 architecture. It contains the following sections:

- *Introduction* on page K11-8078.
- *Using a mailbox to send an interrupt* on page K11-8090.
- *Cache and TLB maintenance instructions and barriers* on page K11-8091.
- *Armv7 compatible approaches for ordering, using DMB and DSB barriers* on page K11-8103.

--- Note ---

This information is not part of the Arm architecture specification. It is included here as supplementary information, for the convenience of developers and users who might require this information.
K11.1 Introduction

The exact rules for the insertion of barriers into code sequences is a very complicated subject, and this appendix describes many of the corner cases and behaviors that are possible in an implementation of the Armv8 architecture.

This appendix is to help programmers, hardware design engineers, and validation engineers understand the need for the different kinds of barriers.

K11.1.1 Overview of memory consistency

Early generations of microprocessors were relatively simple processing engines that executed each instruction in program order. In such processors, the effective behavior was that each instruction was executed in its entirety before a subsequent instruction started to be executed. This behavior is sometimes referred to as the Sequential Execution Model (SEM), and in this Manual it is described as Simple sequential execution of the program.

In later processor generations, the needs to increase processor performance, both in terms of the frequency of operation and the number of instructions executed each cycle, mean that such a simple form of execution is abandoned. Many techniques, such as pipelining, write buffering, caching, speculation, and out-of-order execution, are introduced to provide improved performance.

For general purpose PEs, such as Arm, these microarchitectural innovations are largely hidden from the programmer by a number of microarchitectural techniques. These techniques ensure that, within an individual PE, the behavior of the PE largely remains the same as the SEM. There are some exceptions to this where explicit synchronization is required. In the Arm architecture, these are limited to cases such as:

- Synchronization of changes to the instruction stream.
- Synchronization of changes to System registers.

In both these cases, the ISB instruction provides the necessary synchronization.

While the effect of ordering is largely hidden from the programmer within a single PE, the microarchitectural innovations have a profound impact on the ordering of memory accesses. Write buffering, speculation, and cache coherency protocols, in particular, can all mean that the order in which memory accesses occur, as seen by an external observer, differs significantly from the order of accesses that would appear in the SEM. This is usually invisible in a uniprocessor environment, but the effect becomes much more significant when multiple PEs are trying to communicate with memory. In reality, these effects are often only significant at particular synchronization boundaries between the different threads of execution.

The problems that arise from memory ordering considerations are sometimes described as the problem of memory consistency. Processor architectures have adopted one or more memory consistency models, or memory models, that describe the permitted limits of the memory re-ordering that can be performed by an implementation of the architecture. The comparison and categorization of these has generated significant research and comment in academic circles, and Arm recommends the Memory Consistency Models for Shared Memory-Multiprocessors paper as an excellent detailed treatment of this subject.

This appendix does not reproduce such a work, but instead concentrates on some cases that demonstrate the features of the weakly-ordered memory model of the Arm architecture from Armv6. In particular, the examples show how the use of the DMB and DSB memory barrier instructions can provide the necessary safeguards to limit memory ordering effects at the required synchronization points.

K11.1.2 Barrier operation definitions

The following reference, or provide, definitions of terms used in this appendix:

- **DMB** See Data Memory Barrier (DMB) on page B2-135.
- **DSB** See Data Synchronization Barrier (DSB) on page B2-138.
- **ISB** See Instruction Synchronization Barrier (ISB) on page B2-135.
- **Observer, Completion** See Definition of the Armv8 memory model on page B2-123.
 See Completion and endpoint ordering on page B2-130.
Barrier Litmus Tests

K11.1 Introduction

Program order

The order of instructions as they appear in an assembly language program. This appendix does not attempt to describe or define the legal transformations from a program written in a higher level programming language, such as C or C++, into the machine language that can then be disassembled to give an equivalent assembly language program. Such transformations are a function of the semantics of the higher level language and the capabilities and options on the compiler.

K11.1.3 Conventions

Many of the examples are written in a stylized extension to Arm assembler, to avoid confusing the examples with unnecessary code sequences.

AArch32

The construct \texttt{WAIT([Rx]==1)} describes the following sequence:

\begin{verbatim}
loop
 LDR R12, [Rx]
 CMP R12, #1
 BNE loop
\end{verbatim}

Also, the construct \texttt{WAIT_ACQ([Rx]==1)} describes the following sequence:

\begin{verbatim}
loop
 LDA R12, [Rx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP R12, #1
 BNE loop
\end{verbatim}

R12 is chosen as an arbitrary temporary register that is not in use. It is named to permit the generation of a false dependency to ensure ordering.

AArch64

The construct \texttt{WAIT([Xx]==1)} describes the following sequence:

\begin{verbatim}
loop
 LDR W12, [Xx]
 CMP W12, #1
 B.NE loop
\end{verbatim}

Also, the construct \texttt{WAIT_ACQ([Xx]==1)} describes the following sequence:

\begin{verbatim}
loop
 LDAR W12, [Xx] ; load acquire ensures it is ordered before subsequent loads/stores
 CMP W12, #1
 B.NE loop
\end{verbatim}

For each example, a code sequence is preceded by an identifier of the observer running it:

- \texttt{P0, P1…P}\textsubscript{x} refer to caching coherent PEs that implement the Armv8 architecture and are in the same shareability domain.
- \texttt{E0, E1…E}\textsubscript{x} refer to non-caching observers that do not participate in the coherency protocol, but execute Armv8 instructions and have a weakly ordered memory model. This does not preclude these observers being different objects, such as DMA engines or other system Requesters.

These observers are unsynchronized other than as required by the documented code sequence.

Note

Throughout this appendix, \textit{Armv8 instruction} and \textit{instruction} refer to instructions from the A64, A32, or T32 instruction set, provided by Armv8 implementations.
Results are expressed in terms of $\langle\text{agent}\rangle:R:\langle\text{register}\rangle$, such as $P0:R5$. The results can be described as:

Permissible
This does not imply that the results expressed are required or are the only possible results. In most cases they are results that would not be possible under a sequentially consistent running of the code sequences on the agents involved. In general terms, this means that these results might be unexpected to anyone unfamiliar with memory consistency issues.

Not permissible
Results that the architecture expressly forbids.

Required
Results that the architecture expressly requires.

The examples omit the required shareability domain arguments of DMB and DSB instructions. The arguments are assumed to be selected appropriately for the shareability domains of the observers.

In AArch32 state, where the barrier function in the litmus test can be achieved by a DMB ST, that is a barrier to stores only, this is shown by the use of DMB [ST]. This indicates that the ST qualifier can be omitted without affecting the result of the test. In some implementations DMB ST is faster than DMB.

For AArch64 code, the shareability domain of the DMB or DSB must be included. This is shown in this manual using the notation DMB $\langle\text{domain}\rangle$ and DSB $\langle\text{domain}\rangle$ respectively.

Except where otherwise stated, other conventions are:

- All memory initializes to 0.
- R0 and W0 contain the value 1.
- R1 - R4 and W1 - W4 contain arbitrary independent addresses that initialize to the same value on all PEs. The addresses held in these registers are shareable and:
 - The addresses held in R1 and R2 are in Write-Back Cacheable Normal memory.
 - The address held in R3 is in Write-Through Cacheable Normal memory.
 - The address held in R4 is in Non-cacheable Normal memory.
- R5 - R8 and W5 - W8 contain:
 - When used with an STR instruction, 0x55, 0x66, 0x77, and 0x88 respectively.
 - When used with an LDR instruction, the value 0.
- R11 and W11 contain a new instruction or new translation table entry, as appropriate, and R10 contains the virtual address and the ASID, for use in this change of translation table entry.
- Memory locations are Normal memory locations unless otherwise stated.

The examples use mnemonics for the cache maintenance and TLB maintenance instructions. The following tables describe the mnemonics:

- *Cache maintenance system instructions* on page K15-8210.
- *TLB maintenance system instructions* on page K15-8211.
K11.2 Load-Acquire, Store-Release and barriers

The Load-Acquire and Store-Release instructions are described in Load-Acquire, Load-AcquirePC, and Store-Release on page B2-139.

The following sections show that most of the examples in sections Simple ordering and barrier cases on page K11-8103 and Load-Exclusive, Store-Exclusive and barriers on page K11-8107 can be achieved using the Load-Acquire and Store-Release instructions without the need for additional barriers.

K11.2.1 Message passing

The following sections describe:

- Resolving weakly-ordered message passing by using Acquire and Release.
- Resolving message passing by the use of Store-Release and address dependency on page K11-8082.

Resolving weakly-ordered message passing by using Acquire and Release

The message passing problem described in Weakly-ordered message passing problem on page K11-8103 can be solved by the use of Load-Acquire and Store-Release instructions when accessing the communications flag:

AArch32

P1

```
STR R5, [R1] ; sets new data
STL R0, [R2] ; sends flag indicating data ready, which is ordered after the STR
```

P2

```
WAIT_ACQ([[R2]==1]) ; waits on flag
LDR R5, [R1]
```

AArch64

P1

```
STR W5, [X1] ; sets new data
STLR W0, [X2] ; sends flag indicating data ready, which is ordered after the STR
```

P2

```
WAIT_ACQ([[X2]==1]) ; waits on flag
LDR W5, [X1]
```

This ensures the observed order of both the reads and the writes allows transfer of data such that the result P2:R5==0x55 is guaranteed.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

```
WAIT_ACQ([[R2]==1]) ; waits on flag
LDR R5, [R1]
```

AArch64

P3

```
WAIT_ACQ([[X2]==1]) ; waits on flag
LDR W5, [X1]
```
Resolving message passing by the use of Store-Release and address dependency

The lack of ordering of stores discussed in Message passing with multiple observers on page K11-8104 can be resolved by the use of Store-Release for the store of the valid flag by P1, even when the observers are using an address dependency:

AArch32

P1

```
STR R5, [R1] ; sets new data
STL R0, [R2] ; sends flag indicating data ready using a Store-Release
```

P2

```
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
: and so is ordered after the flag has been seen
```

AArch64

P1

```
STR W5, [X1] ; sets new data
STLR W0, [X2] ; sends flag indicating data ready using a Store-Release
```

P2

```
WAIT([X2]==1)
AND W12, W12, WZR ; W12 is the destination of LDR in the WAIT macro
LDR W5, [X1, X12] ; the load has an address dependency on W12
: and so is ordered after the flag has been seen
```

This ensures the observed order of the writes allows transfer of data such that P2:R5 and P3:R5 contain the same value of 0x55.

This approach also works with multiple observers, in a way that further observers use the same sequence as P2 uses:

AArch32

P3

```
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is the destination of LDR in the WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
: and so is ordered after the flag has been seen
```

AArch64

P3

```
WAIT([X2]==1)
AND W12, W12, WZR ; W12 is the destination of LDR in the WAIT macro
LDR W5, [X1, X12] ; the load has an address dependency on W12
: and so is ordered after the flag has been seen
```
K11.2.2 Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required, even when initializing the object. A Store-Release can be used to ensure the order of the update of the base address:

AArch32

```asm
P1
    STR R5, [R1, #offset] ; sets new data in a field
    STL R1, [R2]         ; updates base address

P2
    LDR R1, [R2]         ; reads base address
    CMP R1, #0           ; checks if it is valid
    BEQ null_trap
    LDR R5, [R1, #offset] ; uses base address to read field
```

AArch64

```asm
P1
    STR W5, [X1, #offset] ; sets new data in a field
    STLR X1, [X2]         ; updates base address

P2
    LDR X1, [X2]         ; reads base address
    CMP X1, #0           ; check if it is valid
    B.EQ null_trap
    LDR W5, [X1, #offset] ; uses base address to read field
```

It is required that P2:R5==0x55 if the null_trap is not taken. This avoids P2 observing a partially constructed object from P1. Significantly, P2 does not need a barrier to ensure this behavior.

The read of the base address in P2 could be a Load-Acquire, but it is not necessary in this case.
K11.2.3 WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power state. An explicit DSB barrier instruction is required if it is necessary to ensure memory accesses made before the WFI or WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other mechanism that would guarantee the required visibility are the DMB described in *Posting a store before polling for acknowledgement* on page K11-8106, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

AArch32

P1

```assembly
STR R0, [R2]
DSB
Loop
    WFI
    B Loop
```

AArch64

P1

```assembly
STR W0, [X2]
DSB <domain>
Loop
    WFI
    B Loop
```

This requirement is unchanged in Armv8 by the presence of Load-Acquire or Store-Release.
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers

The Armv8 architecture adds the acquire and release semantics to Load-Exclusive and Store-Exclusive instructions, which allows them to gain ordering acquire and/or release semantics.

The Load-Exclusive instruction can be specified to have acquire semantics, and the Store-Exclusive instruction can be specified to have release semantics. These can be arbitrarily combined to allow the atomic update created by a successful Load-Exclusive and Store-Exclusive pair to have any of:

• No Ordering semantics (using LDREX and STREX).
• Acquire only semantics (using LDAEX and STREX).
• Release only semantics (using LDREX and STLEX).
• Sequentially consistent semantics (using LDAEX and STLEX).

In addition, the Armv8 specification requires that the clearing of a global monitor will generate an event for the PE associated with the global monitor, which can simplify the use of wFE, by removing the need for a DSB barrier and SEV instruction.

K11.3.1 Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value, commonly 1 or an identifier of the process holding the lock, for a taken lock.

Note

The inclusion of AArch32 PLDW instructions or AArch64 PFRM PSTL instructions in these examples is not a functional requirement, but will improve performance on many implementations. The performance benefit of adding these instructions will vary between different implementations of the architecture.

For a critical region, the requirement on taking a lock is usually for acquire semantics, while the clearing of a lock requires release semantics:

AArch32

```
Px
  PLDW[R1] ; preload into cache in unique state
Loop
  LDAEX R5, [R1] ; read lock with acquire
  CMP R5, #0 ; check if 0
  STREXEQ R5, R0, [R1] ; attempt to store new value
  CMPEQ R5, #0 ; test if store succeeded
  BNE Loop ; retry if not
```

; loads and stores in the critical region can now be performed

AArch64

```
Px
  PRFM PSTLKEEP, [X1] ; preload into cache in unique state
Loop
  LDAXR W5, [X1] ; read lock with acquire
  CBNZ W5, Loop ; check if 0
  STXR W5, W0, [X1] ; attempt to store new value
  CBNZ W5, Loop ; test if store succeeded and retry if not
```

; loads and stores in the critical region can now be performed

The acquire associated with the load is sufficient to ensure the required ordering in a lock situation. The Store-Exclusive will fail (and so be retried) if there is a store to the location being monitored between the Load-Exclusive and the Store-Exclusive.
K11.3.2 Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive instructions, because only a single observer is able to write to the lock. However, often it is necessary for any observer to observe any memory updates, or any values that are loaded into memory, before they observe the release of the lock. Therefore, the lock release needs release semantics:

AArch32

```assembly
Px

; loads and stores in the critical region
MOV R0, #0
STL R0, [R1] ; clear the lock with release semantics
```

AArch64

```assembly
Px

; loads and stores in the critical region
STLR WZR, [X1] ; clear the lock with release semantics
```

K11.3.3 Ticket locks

When a lock is free, in order to avoid a rush to get the lock by many PEs, the use of ticket locks is common in more advanced systems. When the use is requested, the ticket locks determine the order of the users of the critical sections, in order to avoid starvation that can occur with a simple contention based spin lock.

A ticket lock allocates each thread a ticket number when it first requests the lock, and then compares that number with the current number for the lock. If they are the same, then the critical section can be entered. Otherwise the thread waits until the current number is equal to the ticket number for that thread.

The reading of the current number of the lock needs acquire semantics for the lock to be acquired.

--- Note ---

- The code in this section is little-endian code, as it views the combined current and next values as a single combined quantity. The addresses of the current and next ticket values need to be adjusted for a big-endian system.
- The inclusion of AArch32 `PLDW` instructions or AArch64 `PFRM PST*` instructions in these examples is not a functional requirement, but will improve performance on many implementations. The performance benefit of adding these instructions will vary between different implementations of the architecture.

This is shown in the implementation below:

AArch32

```assembly
Px

; R1 holds two 16 bit quantities
; the lower halfword holds the current ticket number
; the higher halfword holds the next ticket number

PLDW[R1] ; preload into cache in unique state
Loop1

LDAEX R5, [R1] ; read current and next
ADD R5, R5, #0x10000 ; increment the next number
STREX R6, R5, [R1] ; and update the value
CMP R6, #0 ; did the exclusive pass
BNE Loop1 ; retry if not

CMP R5, R5, ROR #16 ; is the current ticket ours
BEQ block_start

Loop2

LDAH R6, [R1] ; read current value
```
CMP R6, R5, LSR #16 ; compare it with our allocated ticket
BNE Loop2 ; retry (spin) if it is not the same

block_start

AArch64

Px

; X1 holds 2 16 bit quantities
; the lower halfword holds the current ticket number
; the higher halfword holds the next ticket number

PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
 LDAXR W5, [X1] ; read current and next
 ADD W5, W5, #0x10000 ; increment the next number
 STXR W6, W5, [X1] ; and update the value
 CBNZ W6, Loop1 ; did the exclusive pass - retry if not

 AND W6, W5, #0xFFFF
 CMP W6, W5, LSR #16 ; is the current ticket ours
 B.EQ block_start

Loop2
 LDARH W6, [X1] ; read current value
 CMP W6, W5, LSR #16 ; compare it with our allocated ticket
 B.NE Loop2 ; retry (spin) if it isn’t the same

block_start

Releasing the ticket lock simply involves incrementing the current ticket number, that is still assumed to be in R3, and doing a Store-Release:

AArch32

 ADD R6, R6, #1
 STLH R6, [R1]

AArch64

 ADD W6, W6, #1
 STLRH W6, [X1]

K11.3.4 Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 architecture can use the Wait For Event mechanism to minimise the energy cost of polling variables by putting the PE into a low power state, suspending execution, until an asynchronous exception or an explicit event is seen by that PE. In Armv8, the event can be generated as a result of clearing the global monitor, so removing the need for a DSB barrier or an explicit send event message.

This can be used with simple locks or with ticket locks.

--- Note ---

The inclusion of AArch32 PLDW instructions or AArch64 PRFM PST* instructions in these examples is not a functional requirement, but will improve performance on many implementations. The performance benefit of adding these instructions will vary between different implementations of the architecture.

Simple lock

The following is an example of lock acquire code using WFE:

AArch32

Px
Barrier Litmus Tests
K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers

```
PLDW[R1]              ; preload into cache in unique state
Loop
  LDAEX R5, [R1]        ; read lock with acquire
  CMP R5, #0            ; check if 0
  WFE                   ; sleep if the lock is held
  STREXEQ R5, R0, [R1]  ; attempt to store new value
  CMP EQ R5, #0         ; test if store succeeded
  BNE Loop              ; retry if not

AArch64
Px
  SEVL                  ; invalidates the WFE on the first loop iteration
  PRFM PSTLKEEP, [X1]   ; allocate into cache in unique state
Loop
  WFE                   
  LDAXR W5, [X1]        ; read lock with acquire
  CBNZ W5, Loop         ; check if 0
  STXR W5, W0, [X1]     ; attempt to store new value
  CBNZ W5, Loop         ; test if store succeeded and retry if not

; loads and stores in the critical region can now be performed

And the following is an example of lock release code:

AArch32
Px
  ; loads and stores in the critical region
  MOV R0, #0             
  STL R0, [R1]           ; clear the lock

AArch64
Px
  ; loads and stores in the critical region
  STLR WZR, [X1]         ; clear the lock

Ticket lock

In the Ticket lock case, the Load-Exclusive instruction can be used to move the monitor into the exclusive state for
the express purpose of creating an event when the monitor changes state:

AArch32
Px
  ; R1 holds 2 16 bit quantities
  ; the lower halfword holds the current ticket number
  ; the higher halfword holds the next ticket number
  PLDW[R1]              ; preload into cache in unique state
Loop1
  LDAEX R5, [R1]        ; read current and next
  ADD R5, R5, #0x10000   ; increment the next number
  STREX R6, R5, [R1]    ; and update the value
  CMP R6, #0            ; did the exclusive pass
  BNE Loop              ; retry if not
  CMP R5, R5, ROR #16   ; is the current ticket ours
  BEQ block_start
  SEVL
Loop2
  WFE                   ; wait if there has not been a change to the count since last
```

K11-8088
Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.
Non-Confidential
ARM DDI 0487F.c
ID072120
Barrier Litmus Tests

K11.3 Load-Acquire Exclusive, Store-Release Exclusive and barriers

ARM DDI 0487F.c

Copyright © 2013-2020 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

; read
LDAEXH R6, [R1] ; check the current count
CMP R6, R5, LSR #16 ; check if it is equal
BNE Loop2
block_start

AArch64

Px

; X1 holds 2 16 bit quantities
; the lower halfword holds the current ticket number
; the higher halfword holds the next ticket number

PRFM PSTL1KEEP, [X1] ; preload into cache in unique state
Loop1
LDAXR W5, [X1] ; read current and next
ADD W5, W5, #0x10000 ; increment the next number
STXR W6, W5, [X1] ; and update the value
CBNZ W6, Loop1 ; did the exclusive pass – retry if not

AND W6, W5, 0xFFFF
CMP W6, W5, LSR #16 ; is the current ticket ours
B.EQ block_start
SEVL
Loop2
WFE
LDAXRH W6, [X1] ; read current value
CMP W6, W5, LSR #16 ; compare it with our allocated ticket
B.NE Loop2 ; retry (spin) if it is not the same
block_start
K11.4 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

AArch32

P1

```
STR R5, [R1]          ; message stored to shared memory location
DSB ST
STR R0, [R4]          ; R4 contains the address of a mailbox
```

P2

```
; interrupt service routine
LDR R5, [R1]
```

AArch64

P1

```
STR W5, [X1]          ; message stored to shared memory location
DSB ST
STR W0, [X4]          ; R4 contains the address of a mailbox
```

P2

```
; interrupt service routine
LDR W5, [X1]
```
K11.5 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

- Data cache maintenance instructions.
- Instruction cache maintenance instructions on page K11-8095.
- TLB maintenance instructions and barriers on page K11-8098.

K11.5.1 Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

- Message passing to non-caching observers.
- Multiprocessing message passing to non-caching observers.
- Invalidating DMA buffers, non-functional example on page K11-8092.
- Invalidating DMA buffers, functional example with single PE on page K11-8093.
- Invalidating DMA buffers, functional example with multiple coherent PEs on page K11-8094.

Message passing to non-caching observers

The Armv8 architecture requires the use of DMB instructions to ensure the ordering of data cache maintenance instructions and their effects. The Load-Acquire and Store-Release instructions have no effect on cache maintenance instruction. This means the following message passing approaches can be used when communicating between caching observers and non-caching observers:

AArch32

P1

 STR R5, [R1] ; updates data (assumed to be in P1 cache)
 DCCMVAC R1 ; cleans cache to point of coherency
 DMB ; ensures effects of the clean will be observed before the
 ; flag is set
 STR R0, [R4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([R4] == 1) ; waits for the flag (with order)
 LDR R5, [R1] ; reads the data

AArch64

P1

 STR W5, [X1] ; updates data (assumed to be in P1 cache)
 DC CVAC, X1 ; cleans cache to point of coherency
 DMB ISH ; ensures effects of the clean will be observed before the
 ; flag is set
 STR W0, [X4] ; sends flag to external agent (Non-cacheable location)

E1

 WAIT_ACQ ([X4] == 1) ; waits for the flag (with order)
 LDR W5, [X1] ; reads the data

In this example, it is required that E1:R5==0x55.

Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions combined with properties of barriers, means that the message passing principle for non-caching observers is:

AArch32

P1
STR R5, [R1] ; updates data (assumed to be in P1 cache)
STL R0, [R2] ; sends a flag for P2 (ordered by the store release)

P2
WAIT ([R2] == 1) ; waits for P1 flag
DMB ; ensures cache clean is observed after P1 flag is observed
DCCMVAC R1 ; cleans cache to point of coherency – will clean P1 cache
DMB ; ensures effects of the clean will be observed before the
; flag to E1 is set
STR R0, [R4] ; sends flag to E1

E1
WAIT_ACQ ([R4] == 1) ; waits for P2 flag (ordered)
LDR R5, [R1] ; reads data

AArch64

P1
STR WS, [X1] ; updates data (assumed to be in P1 cache)
STLR W0, [X2] ; sends a flag for P2 (ordered)

P2
WAIT ([X2] == 1) ; waits for P1 flag
DMB SY ; ensure cache clean is observed after P1 flag is observed
DC CVAC, X1 ; cleans cache to point of coherency, will clean P1 cache
DMB SY ; ensures effects of the clean will be observed before the
; flag to E1 is set
STR W0, [X4] ; sends flag to E1

E1
WAIT_ACQ ([X4] == 1) ; waits for P2 flag
LDR WS, [X1] ; reads data

In this example, it is required that E1::R5==0x55. The clean operation executed by P2 affects the data location in the
P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

Note
The cache maintenance instructions are not ordered by the Load-Acquire and Store-Release instructions.

Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable
memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute
can be allocated into a cache at any time, for example as a result of speculation. The following example shows this
possibility:

AArch32

P1
DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used
; but as the DMA will subsequently overwrite this region an
; invalidate operation is sufficient and usually more efficient
DMB ; ensures cache invalidation is observed before the next store
; is observed
STR R0, [R3] ; sends flag to external agent
WAIT_ACQ ([R4]==1) ; waits for a different flag from an external agent
LDR R5, [R1] ; reads data
WAIT ([R3] == 1) ; waits for flag
STR R5, [R1] ; stores new data
STL R0, [R4] ; sends a flag

AArch64

P1

DC IVAC, X1 ; ensure cache is not dirty. A clean operation could be used ; but as the DMA will subsequently overwrite this region an
; invalidate operation is sufficient and usually more efficient
DMB SY ; ensures cache invalidation is observed before the next store
; is observed
STR W0, [X3] ; sends flag to external agent
WAIT_ACQ ([X4]==1) ; waits for a different flag from an external agent
LDR W5, [X1]

E1

WAIT ([X3] == 1) ; waits for flag
STR W5, [X1] ; stores new data
STLR W0, [X4] ; sends a flag

If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.

Invalidating DMA buffers, functional example with single PE

AArch32

P1

DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be used ; but as the DMA will subsequently overwrite this region an
; invalidate operation is sufficient and usually more efficient
DMB ; ensures cache invalidation is observed before the next store
; is observed
STR R0, [R3] ; sends flag to external agent
WAIT ([R4]==1) ; waits for a different flag from an external agent
DMB ; from external agent is observed
DCIMVAC R1 ; ensures cache discards stale copies before use
LDR R5, [R1]

E1

WAIT ([R3] == 1) ; waits for flag
STR R5, [R1] ; stores new data
STL R0, [R4] ; sends a flag

AArch64

P1

DC IVAC, X1 ; ensure cache is not dirty. A clean operation could be used ; but as the DMA will subsequently overwrite this region an
; invalidate operation is sufficient and usually more efficient
DMB SY ; ensures cache invalidation is observed before the next store
; is observed
STR W0, [X3] ; sends flag to external agent
WAIT ([X4]==1) ; waits for a different flag from an external agent
DMB SY ; from external agent is observed
DC IVAC, X1 ; ensures cache discards stale copies before use
LDR W5, [X1]

E1
WAIT ([X3] == 1) ; waits for flag
STR W5, [X1] ; stores new data
STLR W0, [X4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is observed ensures that the line is fetched from external memory after it has been updated.

Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of
DMB instructions to ensure their observability, means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of ownership of the region that the external observer is updating.

AArch32

P0

(Use data from [R1], potentially using [R1] as scratch space)
STL R0, [R2] ; signals release of [R1]
WAIT_AQO ([R2] == 0) ; waits for new value from DMA
LDR R5, [R1]

P1

WAIT ([R2] == 1) ; waits for release of [R1] by P0
DCIMVAC R1 ; ensures caches are not dirty, an invalidate is sufficient
DMB
STR R0, [R3] ; requests new data for [R1]
WAIT ([R4] == 1) ; waits for new data
DMB
DCIMVAC R1 ; ensures caches discard stale copies before use
DMB
MOV R0, #0
STR R0, [R2] ; signals availability of new [R1]

E1

WAIT ([R3] == 1) ; waits for new data request
STR R5, [R1] ; sends new [R1]
DMB [ST]
STR R0, [R2] ; indicates that new data is available to P1

AArch64

P0

(Use data from [X1], potentially using [X1] as scratch space)
STLR W0, [X2] ; signals release of [X1]
WAIT_AQO ([X2] == 0) ; waits for new value from DMA
LDR W5, [X1]

P1

WAIT ([X2] == 1) ; waits for release of [R1] by P0
DC IVAC, X1 ; ensures caches are not dirty, an invalidate is sufficient
DMB SY
STR W0, [X3] ; requests new data for [R1]
WAIT ([X4] == 1) ; waits for new data
DMB SY
DCIMVAC X1 ; ensures caches discard stale copies before use
DMB SY
STR WZR, [X2] ; signals availability of new [R1]

E1

WAIT ([X3] == 1) ; waits for new data request
STR W5, [X1] ; sends new [R1]
STR W0, [X4] ; indicates new data is available to P1
In this example, the result P0.R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore location in [R2].

K11.5.2 Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

- Ensuring the visibility of updates to instructions for a uniprocessor.
- Ensuring the visibility of updates to instructions for a multiprocessor.

Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and an ISB is required to discard any instructions that might have been prefetched before the instruction cache invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to it, the following sequence is required:

AArch32

\[
\begin{align*}
&\text{P1} \\
&\text{STR R11, [R1]} \quad ; \text{R11 contains a new instruction to be stored in program memory} \\
&\text{DCCMVNU R1} \quad ; \text{clean to PoU makes the new instruction visible to the instruction cache} \\
&\text{DSB} \quad ; \text{ensures instruction cache/branch predictor discards stale data} \\
&\text{ICMVMVNU R1} \quad ; \text{ensures completion of the invalidation} \\
&\text{BPIMVNU R1} \quad ; \text{ensures instruction fetch path sees new instruction cache state} \\
&\text{DSB} \quad ; \text{ensures completion of the invalidation} \\
&\text{ISB} \quad ; \text{ensures instruction fetch path sees new instruction cache state} \\
&\text{BX R1} \\
\end{align*}
\]

In AArch64 state, the branch predictor maintenance is not required.

AArch64

\[
\begin{align*}
&\text{P1} \\
&\text{STR W11, [X1]} \quad ; \text{W11 contains a new instruction to be stored in program memory} \\
&\text{DC CVNU, X1} \quad ; \text{clean to PoU makes the new instruction visible to instruction cache} \\
&\text{DSB ISH} \quad ; \text{ensures instruction cache/branch predictor discards stale data} \\
&\text{IC IVNU, X1} \quad ; \text{ensures completion of the invalidation} \\
&\text{DSB ISH} \quad ; \text{ensures instruction fetch path sees new instruction cache state} \\
&\text{ISB} \quad ; \text{ensures instruction fetch path sees new instruction cache state} \\
&\text{BR X1} \\
\end{align*}
\]

__Note__

Where the changes to the instructions span multiple cache lines, then the data cache and instruction cache maintenance instructions can be duplicated to cover each of the lines to be cleaned and to be invalidated.

__Note__

Ensuring the visibility of updates to instructions for a multiprocessor

The Armv8 architecture requires a PE that executes an instruction cache maintenance instruction to execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the cache maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the update. The following example shows how this might be done:
AArch32

P1

STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
DSB ; ensures completion of the clean on all PEs
ICIMVAU R1 ; ensures instruction cache discards stale data
BPIMVA R ; ensures branch predictor discards stale data
DSB ; ensures completion of the instruction cache and branch predictor
; invalidation on all PEs
STR R0, [R2] ; sets flag to signal completion
ISB ; synchronizes context on this PE
BX R1 ; branches to new code

P2-Px

WAIT ([R2] == 1) ; waits for flag signalling completion
ISB ; synchronizes context on this PE
BX R1 ; branches to new code

AArch64

P1

STR X11, [X1] ; X11 contains a new instruction to be stored in program memory
DC CVAU, X1 ; clean to PoU makes the new instruction visible to the instruction cache
DSB ISH ; ensures completion of the clean on all PEs
IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
DSB ISH ; ensures completion of the instruction cache/branch predictor
; invalidation on all PEs
STR W0, [X2] ; sets flag to signal completion
ISB ; synchronizes context on this PE
BR R1 ; branches to new code

P2-Px

WAIT ([X2] == 1) ; waits for flag signalling completion
ISB ; synchronizes context on this PE
BR X1 ; branches to new code

Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction cache maintenance instructions that other PEs issue:

AArch32

P1

STR R11, [R1] ; R11 contains a new instruction to be stored in program memory
DCCMVAU R1 ; clean to PoU makes the new instruction visible to the instruction cache
DSB ; ensures completion of the clean on all PEs
ICIMVAU R1 ; ensures instruction cache discards stale data
BPIMVA R ; ensures branch predictor discards stale data
DMB ; ensures ordering of the store after the invalidation
; DOES NOT guarantee completion of instruction cache/branch
; predictor on other PEs
STR R0, [R2] ; sets flag to signal completion
DSB ; ensures completion of the invalidation on all PEs
ISB ; synchronizes context on this PE
BX R1 ; branches to new code

P2-Px

WAIT ([R2] == 1) ; waits for flag signalling completion
DSB ; this DSB does not guarantee completion of P1
; ICIMVAU/BPIMVA
ISB
BX R1
AArch64

P1

STR W11, [X1] ; W11 contains a new instruction to be stored in program memory
DC CVAU, X1 ; clean to PoU makes the new instruction visible to instruction cache
DSB ISH ; ensures completion of the clean on all PEs
IC IVAU, X1 ; ensures instruction cache/branch predictor discards stale data
DMB ISH ; ensures ordering of the store after the invalidation
; DOES NOT guarantee completion of instruction cache/branch
; predictor on other PEs
STR W0, [X2] ; sets flag to signal completion
DSB ISH ; ensures completion of the invalidation on all PEs
ISB ; synchronizes context on this PE
BR X1 ; branches to new code

P2-Px

WAIT ([X2] == 1) ; waits for flag signalling completion
DSB ISH ; this DSB does not guarantee completion of P1
; ICIMVAU/BPIMVA
ISB
BR X1

In this example, P2…Px might not see the updated region of code at R1.
K11.5.3 TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

- Ensuring the visibility of updates to translation tables for a uniprocessor.
- Ensuring the visibility of updates to translation tables for a multiprocessor.
- Paging memory in and out on page K11-8099.
- Using break-before-make when updating translation table entries on page K11-8100.

Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

The Armv8 architecture requires that translation table walks look in the data or unified caches at L1, so such systems do not require data cache cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

AArch32

```
P1
STR R11, [R1] ; updates the translation table entry
DSB ; ensures visibility of the update to translation table walks
TLBIMVA R10
BPIALL
DSB ; ensures completion of the BP and TLB invalidation
ISB ; synchronises context on this PE
; new translation table entry can be relied upon at this point and all accesses
; generated by this observer using
; the old mapping have been completed
```

AArch64

```
P1
STR X11, [X1] ; updates the translation table entry
DSB ISH ; ensures visibility of the update to translation table walks
TLBI VAE1, X10 ; assumes we are in the EL1
DSB ISH ; ensures completion of the TLB invalidation
ISB ; synchronises context on this PE
; new translation table entry can be relied upon at this point and all accesses
; generated by this observer using
; the old mapping have been completed
```

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism to ensure that any access to a region of memory being marked as invalid has completed before any action is taken as a result of the region being marked as invalid.

Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. The Armv8 architecture requires a PE that executes a TLB maintenance instruction to execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the TLB maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old mapping have completed.
The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different observer.

Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on whether or not the region of memory is writable. Disabling the translation table mappings for a page, and ensuring the visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory, is as follows:

AArch32

P1

```assembly
STR R11, [R1] ; updates the translation table entry
DSB ; ensures visibility of the update to translation table walks
TLBIMVAIS R10
BPIALLIS
DSB ; ensures completion of the BP and TLB invalidation
ISB ; Note ISB is not broadcast and must be executed locally
; on other PEs
; new translation table entry can be relied upon at this point and all accesses
; generated by any observers affected by the broadcast TLBIMVAIS operation using
; the old mapping have been completed
```

AArch64

P1

```assembly
STR X11, [X1] ; updates the translation table entry
DSB ISH ; ensures visibility of the update to translation table walks
TLB VAE1IS, X10
DSB ISH ; ensures completion of the TLB invalidation
ISB ; Note ISB is not broadcast and must be executed locally
; on other PEs
; new translation table entry can be relied upon at this point and all accesses
; generated by any observers affected by the broadcast TLBIMVAIS operation using
; the old mapping have been completed
```

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory, is as follows:

AArch32

P1

```assembly
STR R11, [R1] ; updates the translation table entry
DSB ; ensures visibility of the update to translation table walks
TLBIMVAIS R10
DSB ; invalidates the old entry
ISB ; ensures completion of the invalidation on all PEs
ISB ; ensures visibility of the invalidation
BL SaveMemoryPageToBackingStore
BL LoadMemoryFromBackingStore
DSB ; ensures completion of the memory transfer (this could be part of
; LoadMemoryFromBackingStore)
ICIALLUIS ; also invalidates the branch predictor
DSB ; ensures completion of the instruction cache
; and branch predictor invalidation
STR R9, [R1] ; creates a new translation table entry with a new mapping
DSB ; ensures visibility of the new translation table mapping
```


This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1. This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is required to ensure that the memory updates that it makes are visible to instruction fetches.

In this example, the use of IC IALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire instruction cache is a simplification that might not be optimal for performance. An alternative approach involves invalidating all of the lines in the caches using ICIMVAU in AArch32 state and IC IVAU operations in AArch64 state. This invalidation must be done when the mapping used for the ICIMVAU and IC IVAU operations is valid but not executable.

Using break-before-make when updating translation table entries

The Arm Architecture requires that reads to the same location are observed in order, and since application level software relies on this behavior, the operating system needs to maintain this illusion when it is changing a virtual to physical address mapping for a location, as is the case with copy on write or other memory management techniques. This illusion can be maintained provided that the software uses a break-before-make sequence when updating translation table entries whenever multiple threads of execution can use the same translation tables and the change to the translation entries involves any of:

- Changing the memory type.
- Changing the cacheability attributes
- Changing the output address (OA), if the OA of at least one of the old translation table entry and the new translation table entry is writable.

The architecture requires use of a break-before make sequence in these situations, see *Using break-before-make when updating translation table entries* on page D5-2662 for more information. However, if software did not use a break-before-make approach, an implementation might give a result that would occur if the two reads to the same virtual address did not occur in program order. An example of such an occurrence would be an implementation of copy-on-write, where one PE is performing two reads to the same virtual address at the same time as a second PE, running code associated with the operating system, is copying the data from one physical location that is mapped to by that virtual address, where the page was mapped as read-only, to a different physical location which will be mapped as read-write.

If the operating system changed the address mapping without going through an invalid entry, then it would be possible for a third PE to perform a write to the location that would be seen by the first load by the first PE, and not seen by the second load by the same PE.

The required break-before-make code sequence in this case is:

AArch32
P1

; R1, R2 contain an invalid translation table entry (that is, one with bit[0] == 0)
; R3 contains the address of the translation table entry
; R4 contains the Virtual Address and ASID of the VA being remapped
; R5, R6 contain the new valid translation table entry
STRD R1, R2, [R3] ; stores invalid entry
DSB ISH ; ensures visibility of the update to translation table walks
TLBIMVAIS R4 ; invalidates the old entry
DSB ISH ; ensures completion of the invalidation on all PEs
ICIALLUIS ; also invalidates the branch predictor
STRD R5, R6, [R3] ; store new mapping
DSB ISH ; ensures visibility of the update to translation table walks
ISB ; ensures synchronisation of this instruction stream

--- Note ---
This example shows an update to an entry in a translation table that is using the long-descriptor format.

AArch64

P1

; X1 contains an invalid translation table entry (that is, one with bit[0] == 0)
; X2 contains the address of the translation table entry
; X3 contains the Virtual Address and ASID of the VA being remapped
; X4 contains the new valid translation table entry
STR X1, [X2] ; stores invalid entry
DSB ISH ; ensures visibility of the update to translation table walks
TLBIVAEIIS, X3 ; invalidates the old entry
DSB ISH ; ensures completion of the invalidation on all PEs
IC IALLUIS ; also invalidates the branch predictor
STR X4, [X2] ; store new mapping
DSB ISH ; ensures visibility of the update to translation table walks
ISB ; ensures synchronisation of this instruction stream

If this sequence is correctly followed, then the architecture guarantees that the loads to a virtual address being remapped will be seen in the correct order.

The instruction cache maintenance is only required if the mapping from input address to output address has been changed as part of the change of the translation table entries, and the memory being moved is executable. In this example, the use of ICIALLUIS in AArch32 state and IC IALLUIS in AArch64 state to invalidate the entire instruction cache is a simplification that might not be optimal for performance. An alternative approach involves invalidating all of the lines in the caches using ICIMVAU in AArch32 state, and IC IVAU in AArch64 state. This invalidation must be done when the mapping used for the ICIMVAU and IC IVAU operations is valid but not executable.

K11.5.4 Ordering of Memory-mapped device control with payloads

With a Memory-mapped peripheral, such as a DMA, which can also access memory for its own use, it is common to have control or status registers which are Memory-mapped. These registers need to be accessed in an ordered manner with respect to the data that the Memory-mapped peripheral is handling.

Two simple examples of this are:

• When a processing element is writing a buffer of data, and then writing to a control register in the DMA peripheral to start that peripheral to access the buffer of data.

• When a DMA peripheral has written to a buffer of data in memory, and the processing element is reading a status register to determine that the DMA transfer has completed, and then is reading the data.

For the case of the processing element writing a buffer of data, before starting the DMA peripheral, the ordering requirements between the stores to the data buffer and the stores to the Memory-mapped a to the DMA peripheral can be met by the insertion of a DSB <domain> instruction between these sets of accesses as this ensures the global observation of the stores before the DMA is started. this is shown by the following code:

AArch32
For the case of DMA peripheral writing the data buffer and then setting a status register when those stores are complete (and so globally observed) and then having this status register polled by the processing element before the processing element reads the data buffer, the processing element must insert a DSB <domain> between the load that reads the status register, and the read of the buffer. A DMB, or load-acquire, is not sufficient as this problem is not solely concerned with observation order, since the polling read is actually a read of a status register at a Completer, not the polling a data value that has been written by an observer.

For this case, the code is therefore:

AArch32

```
P1
WAIT ([R4] == 1) ; R4 contains the address of the status register,
                   ; and the value '1' indicates completion of the DMA transfer
DSB
LDR R5, [R2] ; reads data from the data buffer
```

AArch64

```
P1
WAIT ([X4] == 1) ; X4 contains the address of the status register,
                   ; and the value '1' indicates completion of the DMA transfer
DSB <domain>
LDR W5, [X2] ; reads data from the data buffer
```
K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers

The following sections describe the Armv7 compatible approaches for ordering, using DMB and DSB barriers:

- Simple ordering and barrier cases.
- Load-Exclusive, Store-Exclusive and barriers on page K11-8107.
- Using a mailbox to send an interrupt on page K11-8109.
- Cache and TLB maintenance instructions and barriers on page K11-8109.

K11.6.1 Simple ordering and barrier cases

Arm implements a weakly consistent memory model for Normal memory. In general terms, this means that the order of memory accesses observed by other observers might not be the order that appears in the program, for either loads or stores.

This section includes examples of this.

Simple weakly consistent ordering example

P1

```
STR R5, [R1]
LDR R6, [R2]
```

P2

```
STR R6, [R2]
LDR R5, [R1]
```

In the absence of barriers, the result of P1: R6=0, P2: R5=0 is permissible.

Message passing

The following sections describe:

- Weakly-ordered message passing problem.
- Message passing with multiple observers on page K11-8104.

Weakly-ordered message passing problem

P1

```
STR R5, [R1] ; sets new data
STR R0, [R2] ; sends flag indicating data ready
```

P2

```
WAIT([R2]==1) ; waits on flag
LDR R5, [R1]  ; reads new data
```

In the absence of barriers, an end result of P2: R5=0 is permissible.

Resolving by the addition of barriers

The addition of barriers, to ensure the observed order of the reads and the writes, ensures that data is transferred so that the result P2: R5==0x55 is guaranteed, as follows:

P1

```
STR R5, [R1] ; sets new data
DMB [ST] ; ensures all observers observe data before the flag
STR R0, [R2] ; sends flag indicating data ready
```

P2

```
WAIT([R2]==1) ; waits on flag
```
DMB ; ensures that the load of data is after the flag has been observed
LDR R5, [R1]

Resolving by the use of barriers and address dependency

There is a rule within the Arm architecture that:

- Where the value returned by a read is used for computation of the virtual address of a subsequent read or write, then these two memory accesses are observed in program order. Where the value returned by a read is used for computation of the virtual address of a subsequent read or write, this is called an *address dependency*. An address dependency exists even if the value returned by the first read has no effect on the virtual address. This might occur if the value returned is masked off before it is used, or if it confirms a predicted address value that it might have changed.

This restriction applies only when the data value returned by a read is used as a data value to calculate the address of a subsequent read or write. It does not apply if the data value returned by a read determines the condition flags values, and the values of the flags are used for condition code evaluation to determine the address of a subsequent read, either through conditional execution or the evaluation of a branch. This is called a *control dependency*.

Where both a control and address dependency exist, the ordering behavior is consistent with the address dependency.

Table K11-1 shows examples of address dependencies, control dependencies, and an address and control dependency.

<table>
<thead>
<tr>
<th>Address dependency</th>
<th>Control dependency</th>
<th>Address and control dependencya</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) LDR r1, [r0]</td>
<td>(c) LDR r1, [r0]</td>
<td>(d) LDR r1, [r0]</td>
</tr>
<tr>
<td>(b) LDR r2, [r1]</td>
<td>(d) CMP r1, #55</td>
<td>(e) CMP r1, #0</td>
</tr>
<tr>
<td>(d) CMP r1, #0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) LDRNE r2, [r3]</td>
<td></td>
<td>LDR r2, [r3, r4]</td>
</tr>
</tbody>
</table>

a. The address dependency takes priority.

This means that the data transfer example of *Weakly-ordered message passing problem* on page K11-8103 can also be satisfied as shown in the following example:

P1

```
STR R5, [R1] ; sets new data
DMB [ST] ; ensures all observers observe data before the flag
STR R0, [R2] ; sends flag indicating data ready
```

P2

```
WAIT([R2]=#1)
AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
; and so is ordered after the flag has been seen
```

The load of R5 by P2 is ordered with respect to the load from [R2] because there is an address dependency using R12. P1 uses a DMB to ensure that P2 does not observe the write of [R2] before the write of [R1].

Message passing with multiple observers

Where the ordering of Normal memory accesses is not resolved by the use of barriers or dependencies, then different observers might observe the accesses in a different order, as shown in the following example:
Barrier Litmus Tests

K11.6 Armv7 compatible approaches for ordering, using DMB and DSB barriers

P1
STR R5, [R1] ; sets new data
STR R0, [R2] ; sends flag indicating data ready

P2
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

In this case, it is permissible for P2:R5 and P3:R5 to contain different values, because there is no order guaranteed between the two stores performed by P1.

Resolving by the addition of barriers

The addition of a barrier by P1, as shown in the following example, ensures the observed order of the writes, transferring data so that P2:R5 and P3:R5 both contain the value 0x55:

P1
STR R5, [R1] ; sets new data
DMB [ST] ; ensures all observers observe data before the flag
STR R0, [R2] ; sends flag indicating data ready

P2
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

P3
WAIT([R2]==1)
AND R12, R12, #0 ; R12 is destination of LDR in WAIT macro
LDR R5, [R1, R12] ; the load has an address dependency on R12
 ; and so is ordered after the flag has been seen

Address dependency with object construction

When accessing an object-oriented data structure, the address dependency rule means that barriers are not required, even when initializing the object:

P1
STR R5, [R1, #offset] ; sets new data in a field
DMB [ST] ; ensures all observers observe data before base address is updated
STR R1, [R2] ; updates base address

P2
LDR R1, [R2] ; reads for base address
CMP R1, #0 ; checks if it is valid
BEQ null_trap
LDR R5, [R1, #offset] ; uses base address to read field

If the null_trap is not taken, it is required that P2:R5==0x55. This avoids P2 observing a partially constructed object from P1. Significantly, P2 does not require a barrier to ensure this behavior.
P1 requires a barrier to ensure the observed order of the writes by P1. In general, the impact of requiring a barrier during the construction phase is much less than the impact of requiring a barrier for every read access.

Posting a store before polling for acknowledgement

In the case where an observer stores to a location, and then polls for an acknowledge from a different observer, the weak ordering of the memory model can lead to a deadlock, as the following example shows:

```assembly
P1
  STR R0, [R2]
  WAIT ([R3]==1)

P2
  WAIT ([R2]==1)
  STR R0, [R3]
```

In Armv7 implementations that do not include the Multiprocessing Extensions, then this can deadlock because P2 might not observe the store by P1 in finite time. For Armv7 implementations with the Multiprocessing Extensions and for Armv8, this is not an issue as all stores must be observed by all observers within their shareability domain in finite time.

The addition of a DMB instruction prevents this deadlock in Armv7 implementations that do not include the Multiprocessing Extensions:

```assembly
P1
  STR R0, [R2]
  DMB
  WAIT ([R3]==1)

P2
  WAIT ([R2]==1)
  STR R0, [R3]
```

The DMB executed by P1 ensures that P2 observes the store by P1 before it observes the load by P1. This ensures a timely completion.

The following example is a variant of the previous example, where the two observers poll the same memory location:

```assembly
P1
  STR R0, [R2]
  WAIT ([R2]==2)

P2
  WAIT ([R2]==1)
  LDR R0, [R2]
  ADD R0, R0, #1
  STR R0, [R2]
```

In this example, the same deadlock can occur in Armv7 implementations that do not include the Multiprocessing Extensions, because the architecture permits P1 to read the result of its own store to [R2] early, and continue doing so for an indefinite amount of time. The addition of a DMB instruction prevents this deadlock:

```assembly
P1
  STR R0, [R2]
  DMB
  WAIT ([R2]==2)

P2
  WAIT ([R2]==1)
  LDR R0, [R2]
```
ADD R0, R0, #1
STR R0, [R2]

WFE and WFI and barriers

The Wait For Event and Wait For Interrupt instructions permit the PE to suspend execution and enter a low-power state. A DSB barrier instruction is required if it is necessary to ensure that memory accesses made before the WFI or WFE are visible to other observers, unless some other mechanism has ensured this visibility. Examples of other mechanisms that would guarantee the required visibility are the DMB described in *Posting a store before polling for acknowledgement* on page K11-8106, or a dependency on a load.

The following example requires the DSB to ensure that the store is visible:

```
P1
    STR R0, [R2]
    DSB
Loop
    WFI
    B Loop
```

However, if the example in *Posting a store before polling for acknowledgement* on page K11-8106 is extended to include a WFE, there is no risk of a deadlock. The extended example is:

```
P1
    STR R0, [R2]
    DMB
Loop
    LDR R12, [R3]
    CMP R12, #1
    WFENE
    BNE Loop
```

```
P2
    WAIT ([R2]==1)
    STR R0, [R3]
    DSB
    SEV
```

In this example:

- The DMB by P1 ensures that P2 observes the store by P1 before it observes the load by P1.
- The dependency of the WFE on the result of the load by P1 means that this load must complete before P1 executes the WFE.

For more information about SEV, see *Use of Wait For Event (WFE) and Send Event (SEV) with locks* on page K11-8108.

K11.6.2 Load-Exclusive, Store-Exclusive and barriers

The Load-Exclusive and Store-Exclusive instructions, described in *Synchronization and semaphores* on page B2-166, are predictable only with Normal memory. These instructions do not have any implicit barrier functionality. Therefore, any use of these instructions to implement locks of any type requires the addition of explicit barriers.

Acquiring a lock

A common use of Load-Exclusive and Store-Exclusive instructions is to claim a lock to permit entry into a critical region. This is typically performed by testing a lock variable that indicates 0 for a free lock and some other value, commonly 1 or an identifier of the process holding the lock, for a taken lock.
The lack of implicit barriers in the Load-Exclusive and Store-Exclusive instructions means that the mechanism requires a DMB instruction between acquiring a lock and making the first access to the critical region, to ensure that all observers observe the successful claim of the lock before they observe any subsequent loads or stores to the region. This example shows Px acquiring a lock:

```
Px
Loop
  LDREX R5, [R1]       ; reads lock
  CMP R5, #0           ; checks if 0
  STREXEQ R5, R0, [R1] ; attempts to store new value
  CMPEQ R5, #0         ; tests if store succeeded
  BNE Loop             ; retries if not
  DMB                   ; ensures that all subsequent accesses are observed after the
                         ; gaining of the lock is observed
; loads and stores in the critical region can now be performed
```

Releasing a lock

The converse operation of releasing a lock does not require the use of Load-Exclusive and Store-Exclusive instructions, because only a single observer is able to write to the lock. However, often it is necessary for any observer to observe any memory updates, or any values that are loaded into memory, before they observe the release of the lock. Therefore, a DMB usually precedes the lock release, as the following example shows.

```
Px
  ; loads and stores in the critical region
  MOV R0, #0
  DMB                   ; ensures all previous accesses are observed before the lock is cleared
  STR R0, [R1]          ; clears the lock
```

Use of Wait For Event (WFE) and Send Event (SEV) with locks

The Armv8 architecture includes Wait For Event and Send Event instructions, that can be executed to reduce the required number of iterations of a lock-acquire loop, or spinlock, to reduce power. The basic mechanism involves an observer that is in a spinlock executing a WFE instruction that suspends execution on that observer until an asynchronous exception or an explicit event, sent by some other observer using the SEV instruction, is seen by the suspended observer. An observer that holds the lock executes an SEV instruction to send an event after it has released the lock.

The Event signal is a non-memory communication, and therefore the memory update that releases the lock must be observable by all observers before the SEV instruction is executed and the event is sent. This requires the use of DSB instruction, rather than DMB.

Therefore, the following is an example of lock acquire code using WFE:

```
Px
  Loop
    LDREX R5, [R1]       ; reads lock
    CMP R5, #0           ; checks if 0
    WFENE                ; sleeps if the lock is held
    STREXEQ R5, R0, [R1] ; attempts to store new value
    CMPEQ R5, #0         ; tests if store succeeded
    BNE Loop             ; retries if not
    DMB                   ; ensures that all subsequent accesses are observed after the
                            ; gaining of the lock is observed
; loads and stores in the critical region can now be performed
```

And the following is an example of lock release code using SEV:

```
Px
  ; loads and stores in the critical region
  MOV R0, #0
  DMB                   ; ensures all previous accesses are observed before the lock is cleared
```
K11.6.3 Using a mailbox to send an interrupt

In some message passing systems, it is common for one observer to update memory and then notify a second observer of the update by sending an interrupt, using a mailbox.

Although a memory access might be made to initiate the sending of the mailbox interrupt, a DSB instruction is required to ensure the completion of previous memory accesses.

Therefore, the following sequence is required to ensure that P2 observes the updated value:

P1

```
STR R0, [R1]             ; clears the lock
DSB                      ; ensures completion of the store that cleared the lock before
; sending the event
SEV
```

P2

```
; interrupt service routine
LDR R5, [R1]
```

Note

The DSB executed by P1 ensures global observation of the store to [R1]. The interrupt timing ensures that the code executed by P2 is executed after the global observation of the update to [R1], and therefore must see this update. In some implementations, this might be implemented by requiring that interrupts flush non-coherent buffers that hold speculatively loaded data.

K11.6.4 Cache and TLB maintenance instructions and barriers

The following sections describe the use of barriers with cache and TLB maintenance instructions:

- Data cache maintenance instructions.
- Instruction cache maintenance instructions on page K11-8112.
- TLB maintenance instructions and barriers on page K11-8113.

Data cache maintenance instructions

The following sections describe the use of barriers with data cache maintenance instructions:

- Message passing to non-caching observers.
- Multiprocessing message passing to non-caching observers on page K11-8110.
- Invalidating DMA buffers, non-functional example on page K11-8110.
- Invalidating DMA buffers, functional example with single PE on page K11-8111.
- Invalidating DMA buffers, functional example with multiple coherent PEs on page K11-8111.

Message passing to non-caching observers

The Armv8 architecture requires the use of DMB instructions to ensure the ordering of data cache maintenance instructions and their effects. This means the following message passing approaches can be used when communicating between caching observers and non-caching observers:

P1

```
STR R5, [R1]             ; message stored to shared memory location
DSB [ST]                ; R4 contains the address of a mailbox
```

P2

```
; interrupt service routine
LDR R5, [R1]
```
E1

```assembly
WAIT ([R4] == 1) ; waits for the flag
DMB ; ensures that flag has been seen before reading data
LDR R5, [R1] ; reads the data
```

In this example, it is required that E1:R5==0x55.

Multiprocessing message passing to non-caching observers

The broadcast nature of the cache maintenance instructions in Armv8, and in Armv7 implementations that include the Multiprocessing Extensions, combined with properties of barriers, means that the message passing principle for non-caching observers is:

P1

```assembly
STR R5, [R1] ; updates data (assumed to be in P1's cache)
DMB [ST] ; ensures new data is observed before the flag to P2 is set
STR R0, [R2] ; sends flag to P2
```

P2

```assembly
WAIT ([R2] == 1) ; waits for flag from P1
DMB ; ensures cache clean is observed after P1 flag is observed
DCCMVAC R1 ; cleans cache to point of coherency - this cleans the cache of P1
DMB ; ensures effects of the clean are observed before the flag to E1 is set
STR R0, [R4] ; sends flag to E1
```

E1

```assembly
WAIT ([R4] == 1) ; waits for flag from P2
DMB ; ensures that flag has been observed before reading the data
LDR R5, [R1] ; reads the data
```

In this example, it is required that E1:R5==0x55. The clean operation executed by P2 affects the data location in the P1 cache. The cast-out from the P1 cache is guaranteed to be observed before P2 updates [R4].

Invalidating DMA buffers, non-functional example

The basic scheme for communicating with an external observer that is a process that passes data in to a Cacheable memory region must take account of the architectural requirement that regions with a Normal Cacheable attribute can be allocated into a cache at any time, for example as a result of speculation. The following example shows this possibility:

P1

```assembly
DCIMVAC R1 ; ensures caches are not dirty. A clean operation could be
; used but the DMA overwrites this region so an invalidate operation
; is sufficient and usually more efficient
DMB ; ensures cache invalidation is observed before the next store is observed
STR R0, [R3] ; sends flag to external agent
WAIT ([R4]==1) ; waits for a different flag from an external agent
DMB ; observes flag from external agent before reading new data. However [R1]
; could have been brought into cache earlier
LDR R5, [R1]
```

E1

```assembly
WAIT ([R3] == 1) ; waits for flag
STR R5, [R1] ; stores new data
DMB
STR R0, [R4] ; sends a flag
```

If a speculative access occurs, there is no guarantee that the cache line containing [R1] is not brought back into the cache after the cache invalidation, but before [R1] is written by E1. Therefore, the result P1:R5=0 is permissible.
Invalidating DMA buffers, functional example with single PE

P1

 DCIMVAC R1 ; ensures cache is not dirty. A clean operation could be
 ; used but the DMA overwrites this region so an invalidate operation
 ; is sufficient and usually more efficient
 DMB ; ensures cache invalidation is observed before the next store is observed
 STR R0, [R3]; sends flag to external agent
 WAIT ([R4]==1) ; waits for a different flag from an external agent
 DMB ; ensures that cache invalidate is observed after the flag
 ; from external agent is observed
 DCIMVAC R1 ; ensures cache discards stale copies before use
 LDR R5, [R1]

E1

 WAIT ([R3] == 1) ; waits for flag
 STR R5, [R1] ; stores new data
 DMB [ST]
 STR R0, [R4] ; sends a flag

In this example, the result P1:R5 == 0x55 is required. Including a cache invalidation after the store by E1 to [R1] is observed ensures that the line is fetched from external memory after it has been updated.

Invalidating DMA buffers, functional example with multiple coherent PEs

The broadcasting of cache maintenance instructions, and the use of DMB instructions to ensure their observability, means that the previous example extends naturally to a multiprocessor system. Typically this requires a transfer of ownership of the region that the external observer is updating.

P0

 (Use data from [R1], potentially using [R1] as scratch space)
 DMB
 STR R0, [R2] ; signals release of [R1]
 WAIT ([R2] == 0) ; waits for new value from DMA
 DMB
 LDR R5, [R1]

P1

 WAIT ([R2] == 1) ; waits for release of [R1] by P0
 DCIMVAC R1 ; ensures caches are not dirty, invalidate is sufficient
 DMB
 STR R0, [R3] ; requests new data for [R1]
 WAIT ([R4] == 1) ; waits for new data
 DMB
 DCIMVAC R1 ; ensures caches discard stale copies before use
 DMB
 MOV R0, #0
 STR R0, [R2] ; signals availability of new [R1]

E1

 WAIT ([R3] == 1) ; waits for new data request
 STR R5, [R1] ; sends new [R1]
 DMB [ST]
 STR R0, [R4] ; indicates new data available to P1

In this example, the result P0:R5 == 0x55 is required. The DMB issued by P1 after the first data cache invalidation ensures that effect of the cache invalidation on P0 is seen by E1 before the store by E1 to [R1]. The DMB issued by P1 after the second data cache invalidation ensures that its effects are seen before the store of 0 to the semaphore location in [R2].
Instruction cache maintenance instructions

The following sections describe the use of barriers with instruction cache maintenance instructions:

- Ensuring the visibility of updates to instructions for a uniprocessor.
- Ensuring the visibility of updates to instructions for a multiprocessor.

Ensuring the visibility of updates to instructions for a uniprocessor

On a single PE, the agent that causes instruction fetches, or instruction cache linefills, is a separate memory system observer from the agent that causes data accesses. Therefore, any operations to invalidate the instruction cache can rely only on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

Also, instruction cache maintenance instructions are only guaranteed to complete after the execution of a DSB, and an ISB is required to discard any instructions that might have been prefetched before the instruction cache invalidation completed. Therefore, on a uniprocessor, to ensure the visibility of an update to code and to branch to it, the following sequence is required:

P1

```
STR R11, [R1]      ; R11 contains a new instruction to store in program memory
DCCMVAU R1         ; clean to PoU makes new instructions visible to instruction cache
DSB                ; ensures completion of the invalidation
ICIMVAU R1         ; ensures instruction cache/branch predictor discard stale data
BPIMVA R1          ; ensures completion of the invalidation
DSB                ; ensures completion of the instruction cache invalidation
ISB                ; ensures instruction cache and branch predictor discard stale data
BX R1              ; ensures instruction fetch path observes new instruction cache state
```

Ensuring the visibility of updates to instructions for a multiprocessor

Armv8, and an Armv7 implementation that includes the Multiprocessing Extensions, requires a PE that executes an instruction cache maintenance instruction to execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the cache maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

An ISB is not broadcast, and so does not affect other PEs. This means that any other PE must perform its own ISB synchronization after it knows that the update is visible, if it is necessary to ensure its synchronization with the update. The following example shows how this might be done:

P1

```
STR R11, [R1]      ; R11 contains a new instruction to store in program memory
DCCMVAU R1         ; clean to PoU makes new instructions visible to instruction cache
DSB                ; ensures completion of the clean on all processors
ICIMVAU R1         ; ensures instruction cache/branch predictor discards stale data
BPIMVA R1          ; ensures completion of the instruction cache and branch predictor invalidation on all PEs
DSB                ; ensures completion of the instruction cache and branch predictor;
STR R0, [R2]       ; sets flag to signal completion
ISB                ; synchronizes context on this PE
BX R1              ; branches to new code
```

Nonfunctional approach

The following sequence does not have the same effect, because a DSB is not required to complete the instruction cache maintenance instructions that other PEs issue:

P1

```
STR R11, [R1]      ; R11 contains a new instruction to store in program memory
DCCMVAU R1         ; clean to PoU makes new instructions visible to instruction cache
```
DSB ; ensure completion of the clean on all PEs
ICIMVAU R1 ; ensure instruction cache/branch predictor discards stale data
BPIMVA R1
DMB ; ensure ordering of the store after the invalidation
; DOES NOT guarantee completion of instruction cache/branch predictor on other PEs
STR R0, [R2] ; sets flag to signal completion
DSB ; ensures completion of the invalidation on all PEs
ISB ; synchronizes context on this PE
BX R1 ; branches to new code

P2-Px

WAIT ([R2] == 1) ; waits for flag signaling completion
DSB ; this DSB does not guarantee completion of P1's ICIMVAU/BPIMVA
ISB
BX R1

In this example, P2…Px might not see the updated region of code at R1.

TLB maintenance instructions and barriers

The following sections describe the use of barriers with TLB maintenance instructions:

• Ensuring the visibility of updates to translation tables for a uniprocessor.
• Ensuring the visibility of updates to translation tables for a multiprocessor on page K11-8114.
• Paging memory in and out on page K11-8114.

Ensuring the visibility of updates to translation tables for a uniprocessor

On a single PE, the agent that causes translation table walks is a separate memory system observer from the agent that causes data accesses. Therefore, any operations to invalidate the TLB can only rely on seeing updates to memory that are complete. This must be ensured by the use of a DSB instruction.

In the Armv8 architecture, and in an Armv7 implementation that includes the Multiprocessing Extensions, translation table walks must look in the data or unified caches at L1, so such systems do not require data cache cleaning.

After the translation tables update, any old copies of entries that might be held in the TLBs must be invalidated. This operation is only guaranteed to affect all instructions, including instruction fetches and data accesses, after the execution of a DSB and an ISB. Therefore, the code for updating a translation table entry is:

P1

STR R11, [R1] ; updates the translation table entry
DSB ; ensures visibility of the update to translation table walks
TLBIMVA R10
BPIMAL
DSB ; ensures completion of the BP and TLB invalidation
ISB ; synchronizes context on this PE
; ; new translation table entry can be relied upon at this point and all accesses
; generated by this observer using the old mapping have been completed

Importantly, by the end of this sequence, all accesses that used the old translation table mappings have been observed by all observers.

An example of this is where a translation table entry is marked as invalid. Such a system must provide a mechanism to ensure that any access to a region of memory being marked as invalid has completed before any action is taken as a result of the region being marked as invalid.
Ensuring the visibility of updates to translation tables for a multiprocessor

The same code sequence can be used in a multiprocessing system. In the Armv8 architecture, and in an Armv7 implementation that includes the Multiprocessing Extensions, a PE that executes a TLB maintenance instruction must execute a DSB instruction to ensure completion of the maintenance operation. This ensures that the TLB maintenance instruction is complete on all PEs in the Inner Shareable shareability domain.

The completion of a DSB that completes a TLB maintenance instruction ensures that all accesses that used the old mapping have completed.

```
P1
  STR R11, [R1] ; updates the translation table entry
  DSB ; ensures visibility of the update to translation table walks
  TLBIMVAIS R10
  BPIALLIS
  DSB ; ensures completion of the BP and TLB invalidation
  ISB ; Note ISB is not broadcast and must be executed locally on other PEs
  ; new translation table entry can be relied upon at this point and all accesses generated by any
  ; observers affected by the broadcast TLBIMVAIS operation using the old mapping have completed
```

The completion of the TLB maintenance instruction is guaranteed only by the execution of a DSB by the observer that performed the TLB maintenance instruction. The execution of a DSB by a different observer does not have this effect, even if the DSB is known to be executed after the TLB maintenance instruction is observed by that different observer.

Paging memory in and out

In a multiprocessor system there is a requirement to ensure the visibility of translation table updates when paging regions of memory into RAM from a backing store. This might, or might not, also involve paging existing locations in memory from RAM to a backing store. In such situations, the operating system selects one or more pages of memory that might be in use but are suitable to discard, with or without copying to a backing store, depending on whether or not the region of memory is writable. Disabling the translation table mappings for a page, and ensuring the visibility of that update to the translation tables, prevents agents accessing the page.

For this reason, it is important that the DSB that is performed after the TLB invalidation ensures that no other updates to memory using those mappings are possible.

An example sequence for the paging out of an updated region of memory, and the subsequent paging in of memory, is as follows:

```
P1
  STR R11, [R1] ; updates the translation table for the region being paged out
  DSB ; ensures visibility of the update to translation table walks
  TLBIMVAIS R10
  ; invalidates the old entry
  DSB ; ensures completion of the invalidation on all processors
  ISB ; ensures visibility of the invalidation
  BL SaveMemoryPageToBackingStore
  BL LoadMemoryFromBackingStore
  DSB ; ensures completion of the memory transfer (this could be part of
  ; LoadMemoryFromBackingStore
  ICIALLUIS ; also invalidates the branch predictor
  DSB ; ensures completion of the instruction cache
  ; and branch predictor invalidation
  STR R9, [R1] ; creates a new translation table entry with a new mapping
  DSB ; ensures visibility of the new translation table mapping
  ISB ; ensures synchronization of this instruction stream
```

This example assumes the memory copies are performed by an observer that is coherent with the caches of PE P1. This observer might be P1 itself, using a specific paging mapping. For clarity, the example omits the functional descriptions of SaveMemoryPageToBackingStore and LoadMemoryFromBackingStore. LoadMemoryFromBackingStore is required to ensure that the memory updates that it makes are visible to instruction fetches.
In this example, the use of ICIALUIS to invalidate the entire instruction cache is a simplification that might not be optimal for performance. An alternative approach involves invalidating all of the lines in the caches using ICIMVAU operations. This invalidation must be done when the mapping used for the ICIMVAU operations is valid but not executable.
Appendix K12
Random Number Generation

This appendix provides further information on the generation of random numbers using FEAT_RNG. It contains the following sections:

- Properties of the generated random number on page K12-8118.
K12.1 Properties of the generated random number

When `FEAT_RNG` is implemented, reads to the `RNDR` and `RNDRRS` registers return a 64-bit random number. The random numbers must meet the properties and conform to the standards that are detailed in this section.

The output random number is from a *Deterministic Random Bit Generator* (DRBG), which is seeded from a *True Random Number Generator* (TRNG).

The TRNG provides entropy in the form of random numbers, from the sampled output of an unpredictable physical process.

The TRNG should conform to:
- The NIST SP800-90B standard.
- The NIST SP800-22 standard.
- The FIPS 140-2 standard.
- The BSI AIS-31 standard.

The DRBG produces random numbers from a cryptographically secure algorithm.

The DRBG is seeded from the TRNG.

The DRBG algorithm should conform to the NIST SP800-90A Rev 1 standard.

The DRBG is reseeded after an *IMPLEMENTATION DEFINED* number of random numbers has been generated and read using the `RNDR` register.

The DRBG is reseeded immediately before the random number is generated and read using the `RNDRRS` register.

The entire random number generation should conform to the NIST SP800-90C standard.

--- **Note** ---

Since a TRNG can only generate random bits at a limited rate, the random number bits are commonly collected in an “entropy pool” until needed. An implementation should ensure that lower privileged software cannot impact the performance of higher privileged software by entirely draining this “entropy pool”. The refill time cost of the “entropy pool” should be paid for by the persistent caller.
Appendix K13
Legacy Feature Naming Convention

This appendix maps the legacy feature names for the Armv8.x extensions. It contains the following sections:

• *The Armv8.0 architecture* on page K13-8120.
• *The Armv8.1 architecture extension* on page K13-8121.
• *The Armv8.2 architecture extension* on page K13-8122.
• *The Armv8.3 architecture extension* on page K13-8124.
• *The Armv8.4 architecture extension* on page K13-8125.
• *The Armv8.5 architecture extension* on page K13-8126.
• *The Armv8.6 architecture extension* on page K13-8127.
K13.1 The Armv8.0 architecture

Table K13-1 provides details of the mapping of the legacy names of Armv8.0 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_AES</td>
<td>ARMv8.0-AES</td>
<td>Advanced SIMD AES instructions</td>
</tr>
<tr>
<td>FEAT_PMULL</td>
<td>ARMv8.0-PMULL</td>
<td>Advanced SIMD PMULL instructions</td>
</tr>
<tr>
<td>FEAT_CP15SDISABLE2</td>
<td>ARMv8.0-CP15SDISABLE2</td>
<td>CP15SDISABLE2</td>
</tr>
<tr>
<td>FEAT_CSV2</td>
<td>ARMv8.0-CV2</td>
<td>Cache Speculation Variant 2</td>
</tr>
<tr>
<td>FEAT_CSV3</td>
<td>ARMv8.0-CV3</td>
<td>Cache Speculation Variant 3</td>
</tr>
<tr>
<td>FEAT_DGH</td>
<td>ARMv8.0-DGH</td>
<td>Data Gathering Hint</td>
</tr>
<tr>
<td>FEAT_DoubleLock</td>
<td>ARMv8.0-DoubleLock</td>
<td>Double Lock</td>
</tr>
<tr>
<td>FEAT_EETS</td>
<td>ARMv8.0-EETS</td>
<td>Enhanced Translation Synchronization</td>
</tr>
<tr>
<td>FEAT_PCSRv8</td>
<td>ARMv8.0-PCS</td>
<td>PC Sample-based Profiling Extension</td>
</tr>
<tr>
<td>FEAT_PMUv3</td>
<td>PMUv3</td>
<td>PMU Extensions</td>
</tr>
<tr>
<td>FEAT_RAS</td>
<td>RAS</td>
<td>The Reliability, Availability, and Serviceability Extension</td>
</tr>
<tr>
<td>FEAT_SB</td>
<td>ARMv8.0-SB</td>
<td>Speculation Barrier</td>
</tr>
<tr>
<td>FEAT_SHA1</td>
<td>ARMv8.0-SHA</td>
<td>Advanced SIMD SHA1 instructions</td>
</tr>
<tr>
<td>FEAT_SPECRES</td>
<td>ARMv8.0-PredInv</td>
<td>Speculation restriction instructions</td>
</tr>
<tr>
<td>FEAT_SSBS</td>
<td>ARMv8.0-SSBS</td>
<td>Speculative Store Bypass Safe</td>
</tr>
</tbody>
</table>
K13.2 The Armv8.1 architecture extension

Table K13-2 provides details of the mapping of the legacy names of Armv8.1 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_HAFDBS</td>
<td>ARMv8.1-TTHM</td>
<td>Hardware management of the Access flag and dirty state</td>
</tr>
<tr>
<td>FEAT_HPDS</td>
<td>ARMv8.1-HPD</td>
<td>Hierarchical permission disables</td>
</tr>
<tr>
<td>FEAT_LOR</td>
<td>ARMv8.1-LOR</td>
<td>Limited ordering regions</td>
</tr>
<tr>
<td>FEAT_LSE</td>
<td>ARMv8.1-LSE</td>
<td>Large System Extensions</td>
</tr>
<tr>
<td>FEAT_PAN</td>
<td>ARMv8.1-PAN</td>
<td>Privileged access never</td>
</tr>
<tr>
<td>FEAT_PMUv3p1</td>
<td>ARMv8.1-PMU</td>
<td>PMU Extensions v3.1</td>
</tr>
<tr>
<td>FEAT_RDM</td>
<td>ARMv8.1-RDMA</td>
<td>Advanced SIMD rounding double multiply accumulate instructions</td>
</tr>
<tr>
<td>FEAT_VHE</td>
<td>ARMv8.1-VHE</td>
<td>Virtualization Host Extensions</td>
</tr>
<tr>
<td>FEAT_VMID16</td>
<td>ARMv8.1-VMID16</td>
<td>16-bit VMID</td>
</tr>
</tbody>
</table>
K13.3 The Armv8.2 architecture extension

Table K13-3 provides details of the mapping of the legacy names of Armv8.2 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT-AA32BF16</td>
<td>ARMv8.2-AA32BF16</td>
<td>AArch32 BFloat16 instructions</td>
</tr>
<tr>
<td>FEAT-AA32HPD</td>
<td>ARMv8.2-AA32HPD</td>
<td>AArch32 hierarchical permission disables</td>
</tr>
<tr>
<td>FEAT-AA32I8MM</td>
<td>ARMv8.2-AA32I8MM</td>
<td>AArch32 Int8 matrix multiplication instructions</td>
</tr>
<tr>
<td>FEAT_ASMv8p2</td>
<td>ARMv8.2-A64ISA</td>
<td>Armv8.2 changes to the A64 ISA</td>
</tr>
<tr>
<td>FEAT_BF16</td>
<td>ARMv8.2-BF16</td>
<td>AArch64 BFloat16 instructions</td>
</tr>
<tr>
<td>FEAT_Debugv8p2</td>
<td>ARMv8.2-Debug</td>
<td>Debug v8.2</td>
</tr>
<tr>
<td>FEAT_DotProd</td>
<td>ARMv8.2-DotProd</td>
<td>Advanced SIMD dot product instructions</td>
</tr>
<tr>
<td>FEAT_DPB</td>
<td>ARMv8.2-DCPoP</td>
<td>DC CVAP instruction</td>
</tr>
<tr>
<td>FEAT_DPB2</td>
<td>ARMv8.2-DCCVADP</td>
<td>DC CVADP instruction</td>
</tr>
<tr>
<td>FEAT_EVT</td>
<td>ARMv8.2-EVT</td>
<td>Enhanced Virtualization Traps</td>
</tr>
<tr>
<td>FEAT_FHM</td>
<td>ARMv8.2-FHM</td>
<td>Floating-point half-precision multiplication instructions</td>
</tr>
<tr>
<td>FEAT_FP16</td>
<td>ARMv8.2-FP16</td>
<td>Half-precision floating-point data processing</td>
</tr>
<tr>
<td>FEAT_HPDS2</td>
<td>ARMv8.2-TTPBHA</td>
<td>Translation table page-based hardware attributes</td>
</tr>
<tr>
<td>FEAT_I8MM</td>
<td>ARMv8.2-I8MM</td>
<td>AArch64 Int8 matrix multiplication instructions</td>
</tr>
<tr>
<td>FEAT_IESB</td>
<td>ARMv8.2-IESB</td>
<td>Implicit Error Synchronization event</td>
</tr>
<tr>
<td>FEAT_LPA</td>
<td>ARMv8.2-LPA</td>
<td>Large PA and IPA support</td>
</tr>
<tr>
<td>FEAT_LSMAOC</td>
<td>ARMv8.2-LSMAOC</td>
<td>AArch32 Load/Store Multiple instruction atomicity and ordering controls</td>
</tr>
<tr>
<td>FEAT_LVA</td>
<td>ARMv8.2-LVA</td>
<td>Large VA support</td>
</tr>
<tr>
<td>FEAT_PAN2</td>
<td>ARMv8.2-ATS1E1</td>
<td>AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN</td>
</tr>
<tr>
<td>FEAT_PCSRv8p2</td>
<td>ARMv8.2-PCSample</td>
<td>PC Sample-based profiling</td>
</tr>
<tr>
<td>FEAT_SHA256</td>
<td>ARMv8.0-SHA</td>
<td>Advanced SIMD SHA256 instructions</td>
</tr>
<tr>
<td>FEAT_SHA3</td>
<td>ARMv8.2-SHA</td>
<td>Advanced SIMD SHA3 instructions</td>
</tr>
<tr>
<td>FEAT_SHA512</td>
<td>ARMv8.2-SHA</td>
<td>Advanced SIMD SHA512 instructions</td>
</tr>
<tr>
<td>FEAT_SM3</td>
<td>ARMv8.2-SM</td>
<td>Advanced SIMD SM3 instructions</td>
</tr>
<tr>
<td>FEAT_SM4</td>
<td>ARMv8.2-SM</td>
<td>Advanced SIMD SM4 instructions</td>
</tr>
<tr>
<td>FEAT_SPE</td>
<td>SPE</td>
<td>The Statistical Profiling Extension (SPE)</td>
</tr>
<tr>
<td>FEAT_SVE</td>
<td>SVE</td>
<td>The Scalable Vector Extension (SVE)</td>
</tr>
<tr>
<td>FEAT_TTCNP</td>
<td>ARMv8.2-TTCNP</td>
<td>Translation table Common not private translations</td>
</tr>
<tr>
<td>Feature name</td>
<td>Legacy feature name</td>
<td>Short description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>FEAT_UAO</td>
<td>ARMv8.2-UAO</td>
<td>Unprivileged Access Override control</td>
</tr>
<tr>
<td>FEAT_VPIPT</td>
<td>ARMv8.2-VPIPT</td>
<td>VMID-aware PIPT instruction cache</td>
</tr>
<tr>
<td>FEAT_XNX</td>
<td>ARMv8.2-TTS2UXN</td>
<td>Translation table stage 2 Unprivileged Execute-never</td>
</tr>
</tbody>
</table>
K13.4 The Armv8.3 architecture extension

Table K13-4 provides details of the mapping of the legacy names of Armv8.3 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_CCIDX</td>
<td>ARMv8.3-CCIDX</td>
<td>Extended cache index</td>
</tr>
<tr>
<td>FEAT_DoPD</td>
<td>ARMv8.3-DoPD</td>
<td>Debug over Powerdown</td>
</tr>
<tr>
<td>FEAT_FCMA</td>
<td>ARMv8.3-CompNum</td>
<td>Floating-point complex number instructions</td>
</tr>
<tr>
<td>FEAT_JSCVT</td>
<td>ARMv8.3-JSconv</td>
<td>JavaScript conversion instructions</td>
</tr>
<tr>
<td>FEAT_LRCPC</td>
<td>ARMv8.3-RCpc</td>
<td>Load-acquire RCpc instructions</td>
</tr>
<tr>
<td>FEAT_NV</td>
<td>ARMv8.3-NV</td>
<td>Nested virtualization support</td>
</tr>
<tr>
<td>FEAT_PAth</td>
<td>ARMv8.3-PAuth</td>
<td>Pointer authentication</td>
</tr>
<tr>
<td>FEAT_SPEv1p1</td>
<td>ARMv8.3-SPE</td>
<td>Armv8.3 Statistical Profiling Extensions</td>
</tr>
</tbody>
</table>
K13.5 The Armv8.4 architecture extension

Table K13-5 provides details of the mapping of the legacy names of Armv8.4 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_AMUv1</td>
<td>AMUv1</td>
<td>Activity Monitors Extensions v1</td>
</tr>
<tr>
<td>FEAT_BBM</td>
<td>ARMv8.4-TTRem</td>
<td>Translation table break-before-make levels</td>
</tr>
<tr>
<td>FEAT_CNTSC</td>
<td>ARMv8.4-CNTSC</td>
<td>Generic Counter Scaling</td>
</tr>
<tr>
<td>FEAT_Debugv8p4</td>
<td>ARMv8.4-Debug</td>
<td>Debug v8.4</td>
</tr>
<tr>
<td>FEAT_DIT</td>
<td>ARMv8.4-DIT</td>
<td>Data Independent Timing instructions</td>
</tr>
<tr>
<td>FEAT_DoubleFault</td>
<td>ARMv8.4-DFE</td>
<td>Double Fault Extension</td>
</tr>
<tr>
<td>FEAT_FlagM</td>
<td>ARMv8.4-CondM</td>
<td>Flag manipulation instructions v2</td>
</tr>
<tr>
<td>FEAT_IDST</td>
<td>ARMv8.4-IDST</td>
<td>ID space trap handling</td>
</tr>
<tr>
<td>FEAT_LRPC2</td>
<td>ARMv8.4-RCpc</td>
<td>Load-acquire RCpc instructions v2</td>
</tr>
<tr>
<td>FEAT_LSE2</td>
<td>ARMv8.4-LSE</td>
<td>Large System Extensions v2</td>
</tr>
<tr>
<td>FEAT_MPAM</td>
<td>MPAM</td>
<td>The Memory Partitioning and Monitoring (MPAM) Extension</td>
</tr>
<tr>
<td>FEAT_NV2</td>
<td>ARMv8.4-NV</td>
<td>Enhanced nested virtualization support</td>
</tr>
<tr>
<td>FEAT_PMUv3p4</td>
<td>ARMv8.4-PMU</td>
<td>PMU Extensions v3.4</td>
</tr>
<tr>
<td>FEAT_RASv1p1</td>
<td>ARMv8.4-RAS</td>
<td>RAS Extension v1.1</td>
</tr>
<tr>
<td>FEAT_S2FWB</td>
<td>ARMv8.4-S2FWB</td>
<td>Stage 2 forced Write-Back</td>
</tr>
<tr>
<td>FEAT_SEL2</td>
<td>ARMv8.4-SecEL2</td>
<td>Secure EL2</td>
</tr>
<tr>
<td>FEAT_TLBIOS</td>
<td>ARMv8.4-TLBI</td>
<td>TLB invalidate instructions in Outer Shareable domain</td>
</tr>
<tr>
<td>FEAT_TLBRANGE</td>
<td>ARMv8.4-TLBI</td>
<td>TLB invalidate range instructions</td>
</tr>
<tr>
<td>FEAT_TRF</td>
<td>ARMv8.4-Trace</td>
<td>Self-hosted Trace Extensions</td>
</tr>
<tr>
<td>FEAT_TTL</td>
<td>ARMv8.4-TTL</td>
<td>Translation Table Level</td>
</tr>
<tr>
<td>FEAT_TTST</td>
<td>ARMv8.4-TTST</td>
<td>Small translation tables</td>
</tr>
</tbody>
</table>
K13.6 The Armv8.5 architecture extension

Table K13-6 provides details of the mapping of the legacy names of Armv8.5 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_BT1</td>
<td>ARMv8.5-BTI</td>
<td>Branch Target Identification</td>
</tr>
<tr>
<td>FEAT_E0PD</td>
<td>ARMv8.5-E0PD</td>
<td>Preventing EL0 access to halves of address maps</td>
</tr>
<tr>
<td>FEAT_ExS</td>
<td>ARMv8.5-CSEH</td>
<td>Context synchronization and exception handling</td>
</tr>
<tr>
<td>FEAT_FlagM2</td>
<td>ARMv8.5-CondM</td>
<td>Enhancements to flag manipulation instructions</td>
</tr>
<tr>
<td>FEAT_FRINTTS</td>
<td>ARMv8.5-FRINT</td>
<td>Floating-point to integer instructions</td>
</tr>
<tr>
<td>FEAT_GTG</td>
<td>ARMv8.5-GTG</td>
<td>Guest translation granule size</td>
</tr>
<tr>
<td>FEAT_MTE</td>
<td>ARMv8.5-MemTag</td>
<td>Memory Tagging Extension</td>
</tr>
<tr>
<td>FEAT_PMUv3p5</td>
<td>ARMv8.5-PMU</td>
<td>PMU Extensions v3.5</td>
</tr>
<tr>
<td>FEAT_RNG</td>
<td>ARMv8.5-RNG</td>
<td>Random number generator</td>
</tr>
</tbody>
</table>
K13.7 The Armv8.6 architecture extension

Table K13-7 provides details of the mapping of the legacy names of Armv8.6 features to their current names.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Legacy feature name</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_AMUv1p1</td>
<td>ARMv8.6-AMU</td>
<td>AMU Extensions v1.1</td>
</tr>
<tr>
<td>FEAT_ECV</td>
<td>ARMv8.6-ECV</td>
<td>Enhanced Counter Virtualization</td>
</tr>
<tr>
<td>FEAT_FGT</td>
<td>ARMv8.6-FGT</td>
<td>Fine Grain Traps</td>
</tr>
<tr>
<td>FEAT_FPAC</td>
<td>ARMv8.3-FPAC</td>
<td>Faulting on AUT* instructions</td>
</tr>
<tr>
<td>FEAT_MPAMv0p1</td>
<td>ARMv8.6-MPAM</td>
<td>Memory Partitioning and Monitoring Extension v0.1</td>
</tr>
<tr>
<td>FEAT_MPAMv1p1</td>
<td>ARMv8.6-MPAM</td>
<td>Memory Partitioning and Monitoring Extension v1.1</td>
</tr>
<tr>
<td>FEAT_MTPMU</td>
<td>ARMv8.6-MTPMU</td>
<td>Multi-threaded PMU Extensions</td>
</tr>
<tr>
<td>FEAT_PAuth2</td>
<td>ARMv8.3-PAuth2</td>
<td>Enhancements to pointer authentication</td>
</tr>
<tr>
<td>FEAT_TWED</td>
<td>ARMv8.6-TWED</td>
<td>Delayed Trapping of WFE</td>
</tr>
</tbody>
</table>
Legacy Feature Naming Convention
K13.7 The Armv8.6 architecture extension
Appendix K14
Arm Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this manual, and defines some helper procedures and functions that are used by pseudocode. It contains the following sections:

- About the Arm pseudocode on page K14-8130.
- Pseudocode for instruction descriptions on page K14-8131.
- Data types on page K14-8134.
- Operators on page K14-8139.
- Statements and control structures on page K14-8145.
- Built-in functions on page K14-8150.
- Miscellaneous helper procedures and functions on page K14-8153.
- Arm pseudocode definition index on page K14-8155.

Note
This appendix is not a formal language definition for the pseudocode. It is a guide to help understand the use of Arm pseudocode. This appendix is not complete. Changes are planned for future releases.
K14.1 About the Arm pseudocode

The Arm pseudocode provides precise descriptions of some areas of the Arm architecture. This includes description of the decoding and operation of all valid instructions. Pseudocode for instruction descriptions on page K14-8131 gives general information about this instruction pseudocode, including its limitations.

The following sections describe the Arm pseudocode in detail:

• Data types on page K14-8134.
• Operators on page K14-8139.
• Statements and control structures on page K14-8145.

Built-in functions on page K14-8150 and Miscellaneous helper procedures and functions on page K14-8153 describe some built-in functions and pseudocode helper functions that are used by the pseudocode functions that are described elsewhere in this manual. Arm pseudocode definition index on page K14-8155 contains the indexes to the pseudocode.

K14.1.1 General limitations of Arm pseudocode

The pseudocode statements IMPLEMENTATION_DEFINED, SEE, UNDEFINED, and UNPREDICTABLE indicate behavior that differs from that indicated by the pseudocode being executed. If one of them is encountered:

• Earlier behavior indicated by the pseudocode is only specified as occurring to the extent required to determine that the statement is executed.
• No subsequent behavior indicated by the pseudocode occurs.

For more information, see Special statements on page K14-8149.
K14.2 Pseudocode for instruction descriptions

Each instruction description includes pseudocode that provides a precise description of what the instruction does, subject to the limitations described in General limitations of Arm pseudocode on page K14-8130 and Limitations of the instruction pseudocode on page K14-8132.

In the instruction pseudocode, instruction fields are referred to by the names shown in the encoding diagram for the instruction. Instruction encoding diagrams and instruction pseudocode gives more information about the pseudocode provided for each instruction.

K14.2.1 Instruction encoding diagrams and instruction pseudocode

Instruction descriptions in this manual contain:

- An Encoding section, containing one or more encoding diagrams, each followed by some encoding-specific pseudocode that translates the fields of the encoding into inputs for the common pseudocode of the instruction, and picks out any encoding-specific special cases.

- An Operation section, containing common pseudocode that applies to all of the encodings being described. The Operation section pseudocode contains a call to the EncodingSpecificOperations() function, either at its start or only after a condition code check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

- An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the encoding corresponds to a different instruction.

- A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the instruction is CONSTRAINED UNPREDICTABLE. For more information, see SBZ or SBO fields T32 and A32 in instructions on page K1-7944.

- A named single bit or a bit in a named multi-bit field. The cond field in bits[31:28] of many A32/T32 instructions has some special rules associated with it.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and the instruction, and one of the following is true:

- The encoding diagram is not for an A32/T32 instruction.

- The encoding diagram is for an A32/T32 instruction that does not have a cond field in bits[31:28].

- The encoding diagram is for an A32/T32 instruction that has a cond field in bits[31:28], and bits[31:28] of the instruction are not 0b1111.

In the context of the instruction pseudocode, the execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagram matches. In that case, abandon this execution model and consult the relevant instruction set chapter instead to find out how the instruction is to be treated. The bit pattern of such an instruction is usually reserved and UNDEFINED, though there are some other possibilities. For example, unallocated hint instructions are documented as being reserved and executed as NOPs.

2. If the operation pseudocode for the matching encoding diagrams starts with a condition code check, perform that check. If the condition code check fails, abandon this execution model and treat the instruction as a NOP. If there are multiple matching encoding diagrams, either all or none of their corresponding pieces of common pseudocode start with a condition code check.

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams independently and in parallel. Each such piece of encoding-specific pseudocode starts with a bitstring variable for each named bit or multi-bit field in its corresponding encoding diagram, named the same as the bit or multi-bit field and initialized with the values of the corresponding bit or bits from the bit pattern of the instruction.
In a few cases, the encoding diagram contains more than one bit or field with the same name. In these cases, the values of the different instances of those bits or fields must be identical. The encoding-specific pseudocode contains a special case using the Consistent() function to specify what happens if they are not identical. Consistent() returns TRUE if all instruction bits or fields with the same name as its argument have the same value, and FALSE otherwise.

If there are multiple matching encoding diagrams, all but one of the corresponding pieces of pseudocode must contain a special case that indicates that it does not apply. Discard the results of all such pieces of pseudocode and their corresponding encoding diagrams.

There is now one remaining piece of pseudocode and its corresponding encoding diagram left to consider. This pseudocode might also contain a special case, most commonly one indicating that it is CONSTRAINED UNPREDICTABLE. If so, abandon this execution model and treat the instruction according to the special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of the instruction. If any of them do not match, abandon this execution model and treat the instruction as CONSTRAINED UNPREDICTABLE, see SBZ or SBO fields T32 and A32 in instructions on page K1-7944.

5. Perform the rest of the operation pseudocode for the instruction description that contains the encoding diagram. That pseudocode starts with all variables set to the values they were left with by the encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode, if present, performs step 2, and the EncodingSpecificOperations() call performs steps 3 and 4.

K14.2.2 Limitations of the instruction pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due to the fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple memory accesses. For a description of the ordering requirements on memory accesses, see Ordering constraints on page E2-4024.

• Pseudocode does not describe the exact rules when an instruction that generates any of the following fails its condition code check:
 — UNDEFINED instruction.
 — Hyp trap.
 — Monitor trap.
 — Trap to AArch64 exception.

In such cases, the UNDEFINED pseudocode statement or call to the applicable trap function lies inside the if ConditionPassed() then ... structure, either directly or in the EncodingSpecificOperations() function call, and so the pseudocode indicates that the instruction executes as a NOP. For the exact rules, see:
 — Conditional execution of undefined instructions on page G1-5780.
 — EL2 configurable controls on page G1-5827.
 — EL3 configurable controls on page G1-5846.
 — Traps on instructions on page D1-2368.

• Pseudocode does not describe the exact ordering requirements when a single floating-point instruction generates more than one floating-point exception and one or more of those floating-point exceptions is trapped. Combinations of floating-point exceptions on page E1-4005 describes the exact rules.

—— Note ———

There is no limitation in the case where all the floating-point exceptions are untrapped, because the pseudocode specifies the same behavior as the cross-referenced section.
• An exception can be taken during execution of the pseudocode for an instruction, either explicitly as a result of the execution of a pseudocode function such as `Abort()`, or implicitly, for example if an interrupt is taken during execution of an `LDM` instruction. If this happens, the pseudocode does not describe the extent to which the normal behavior of the instruction occurs. To determine that, see the descriptions of the exceptions in `Handling exceptions that are taken to an Exception level using AArch32` on page G1-5743.
K14.3 Data types

This section describes:
• General data type rules.
• Bitstrings.
• Integers on page K14-8135.
• Reals on page K14-8135.
• Booleans on page K14-8135.
• Enumerations on page K14-8136.
• Structures on page K14-8136.
• Tuples on page K14-8137.
• Arrays on page K14-8138.

K14.3.1 General data type rules

Arm architecture pseudocode is a strongly typed language. Every literal and variable is of one of the following types:
• Bitstring.
• Integer.
• Boolean.
• Real.
• Enumeration.
• Tuple.
• Struct.
• Array.

The type of a literal is determined by its syntax. A variable can be assigned to without an explicit declaration. The variable implicitly has the type of the assigned value. For example, the following assignments implicitly declare the variables x, y and z to have types integer, bitstring of length 1, and Boolean, respectively.

x = 1;
y = '1';
z = TRUE;

Variables can also have their types declared explicitly by preceding the variable name with the name of the type. The following example declares explicitly that a variable named count is an integer.

integer count;

This is most often done in function definitions for the arguments and the result of the function.

The remaining subsections describe each data type in more detail.

K14.3.2 Bitstrings

This section describes the bitstring data type.

Syntax

bits(N) The type name of a bitstring of length N.
bit A synonym of bits(1).

Description

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum permitted length of a bitstring is 0.
Bitstring constants literals are written as a single quotation mark, followed by the string of 0s and 1s, followed by another single quotation mark. For example, the two constants literals of type bit are '0' and '1'. Spaces can be included in bitstrings for clarity.

The bits in a bitstring are numbered from left to right \(N-1 \) to 0. This numbering is used when accessing the bitstring using bitslices. In conversions to and from integers, bit \(N-1 \) is the MSByte and bit 0 is the LSByte. This order matches the order in which bitstrings derived from encoding diagrams are printed.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order. That is, the leftmost bit of a bitstring of length \(N \) is bit \((N-1) \) and its right-most bit is bit 0. This order is used as the most-significant-to-least-significant bit order in conversions to and from integers. For bitstring constants and bitstrings that are derived from encoding diagrams, this order matches the way that they are printed.

Bitstrings are the only concrete data type in pseudocode, corresponding directly to the contents values that are manipulated in registers, memory locations, and instructions. All other data types are abstract.

K14.3.3 Integers

This section describes the data type for integer numbers.

Syntax

```
integer
```

Description

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are mathematical integers rather than what computer languages and architectures commonly call integers. Computer integers are represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret those bitstrings as integers.

Integer literals are normally written in decimal form, such as 0, 15, -1234. They can also be written in C-style hexadecimal form, such as 0x55 or 0x80000000. Hexadecimal integer literals are treated as positive unless they have a preceding minus sign. For example, 0x80000000 is the integer \(+2^{31}\). If \(-2^{31}\) needs to be written in hexadecimal, it must be written as \(-0x80000000\).

K14.3.4 Reals

This section describes the data type for real numbers.

Syntax

```
real
```

Description

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not computer floating-point numbers. Computer floating-point numbers are represented in pseudocode as bitstrings of the appropriate length, and the pseudocode provides functions to interpret those bitstrings as reals.

Real constant literals are written in decimal form with a decimal point. This means 0 is an integer constant literal, but 0.0 is a real constant literal.
TRUE: The two values a Boolean variable can take.

Description

A Boolean is a logical TRUE or FALSE value.

--- **Note** ---

This is not the same type as bit, which is a bitstring of length 1. A Boolean can only take on one of two values: TRUE or FALSE.

K14.3.6 Enumerations

This section describes the enumeration data type.

Syntax and examples

```plaintext
enumeration Example {Example_One, Example_Two, Example_Three};

A definition of a new enumeration called Example, which can take on the values Example_One, Example_Two, Example_Three.
```

Description

An enumeration is a defined set of named values.

An enumeration must contain at least one named value. A named value must not be shared between enumerations. Enumerations must be defined explicitly, although a variable of an enumeration type can be declared implicitly by assigning one of the named values to it. By convention, each named value starts with the name of the enumeration followed by an underscore. The name of the enumeration is its type name, or type, and the named values are its possible values.

K14.3.7 Structures

This section describes the structure data type.

Syntax and examples

```plaintext
type ShiftSpec is (bits(2) shift, integer amount)

An example definition for a new structure called ShiftSpec that contains an bitstring member called shift and a integer member named amount. Structure definitions must not be terminated with a semicolon.

ShiftSpec abc;

A declaration of a variable named abc of type ShiftSpec.

abc.shift

Syntax to refer to the individual members within the structure variable.
```

Description

A structure is a compound data type composed of one or more data items. The data items can be of different data types. This can include compound data types. The data items of a structure are called its members and are named.
In the syntax section, the example defines a structure called ShiftSpec with two members. The first is a bitstring of length 2 named shift and the second is an integer named amount. After declaring a variable of that type named abc, the members of this structure are referred to as abc.shift and abc.amount.

Every definition of a structure creates a different type, even if the number and type of their members are identical. For example:

```plaintext
type ShiftSpec1 is (bits(2) shift, integer amount)
type ShiftSpec2 is (bits(2) shift, integer amount)
```

ShiftSpec1 and ShiftSpec2 are two different types despite having identical definitions. This means that the value in a variable of type ShiftSpec1 cannot be assigned to variable of type ShiftSpec2.

K14.3.8 Tuples

This section describes the tuple data type.

Examples

```plaintext
(bits(32) shifter_result, bit shifter_carry_out)
```

An example of the tuple syntax.

```plaintext
(shift_t, shift_n) = ('00', 0);
```

An example of assigning values to a tuple.

Description

A tuple is an ordered set of data items, separated by commas and enclosed in parentheses. The items can be of different types and a tuple must contain at least one data item.

Tuples are often used as the return type for functions that return multiple results. For example, in the syntax section, the example tuple is the return type of the function `Shift_C()`, which performs a standard A32/T32 shift or rotation. Its return type is a tuple containing two data items, with the first of type `bits(32)` and the second of type `bit`.

Each tuple is a separate compound data type. The compound data type is represented as a comma-separated list of ordered data types between parentheses. This means that the example tuple at the start of this section is of type `(bits(32), bit)`. The general principle that types can be implied by an assignment extends to implying the type of the elements in the tuple. For example, in the syntax section, the example assignment implicitly declares:

- `shift_t` to be of type `bits(2)`.
- `shift_n` to be of type `integer`.
- `(shift_t, shift_n)` to be a tuple of type `(bits(2), integer)`.
K14.3.9 Arrays

This section describes the array data type.

Syntax

array The type name for the array data type.

array data_type array_name[A..B];

Declaration of an array of type data_type, which might be compound data type. It is named array_name and is indexed with an integer range from A to B.

Description

An array is an ordered set of fixed size containing items of a single data type. This can include compound data types. Pseudocode arrays are indexed by either enumerations or integer ranges. An integer range is represented by the lower inclusive end of the range, then ..., then the upper inclusive end of the range.

For example:

The following example declares an array of 31 bitstrings of length 64, indexed from 0 to 30.

array bits(64) _R[0..30];

Arrays are always explicitly declared, and there is no notation for a constant literal array. Arrays always contain at least one element data item, because:

- Enumerations always contain at least one symbolic constant named value.
- Integer ranges always contain at least one integer.

An array declared with an enumeration type as the index must be accessed using enumeration values of that enumeration type. An array declared with an integer range type as the index must be accessed using integer values from that inclusive range. Accessing such an array with an integer value outside of the range is a coding error.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in pseudocode are usually array-like functions such as _R[i], _MemU[address, size] or _Elem[vector, i, size]. These functions package up and abstract additional operations normally performed on accesses to the underlying arrays, such as register banking, memory protection, endian-dependent byte ordering, exclusive-access housekeeping and Advanced SIMD element processing. See Function and procedure calls on page K14-8145.
K14.4 Operators

This section describes:
- Relational operators.
- Boolean operators.
- Bitstring operators on page K14-8140.
- Arithmetic operators on page K14-8140.
- The assignment operator on page K14-8141.
- Precedence rules on page K14-8143.
- Conditional expressions on page K14-8143.
- Operator polymorphism on page K14-8143.

K14.4.1 Relational operators

The following operations yield results of type boolean.

Equality and non-equality

If two variables x and y are of the same type, their values can be tested for equality by using the expression \(x == y \) and for non-equality by using the expression \(x ! = y \). In both cases, the result is of type boolean.

Both x and y must be of type \(\text{bits}(N) \), \text{real}, \text{enumeration}, \text{boolean}, or \text{integer}. Named values from an enumeration can only be compared if they are both from the same enumeration. An exception is that a bitstring can be tested for equality with an integer to allow a \(d==15 \) test.

A special form of comparison is defined with a bitstring literal that can contain bit values ‘0’, ‘1’, and ‘x’. Any bit with value ‘x’ is ignored in determining the result of the comparison. For example, if \(\text{opcode} \) is a 4-bit bitstring, the expression \(\text{opcode} == '1x0x' \) matches the values ‘1000’, ‘1100’, ‘1001’, and ‘1101’. This is known as a bitmask.

Note

This special form is permitted in the implied equality comparisons in the when parts of case ... of ... structures.

Comparisons

If \(x \) and \(y \) are integers or reals, then \(x < y \), \(x <= y \), \(x > y \), and \(x >= y \) are less than, less than or equal, greater than, and greater than or equal comparisons between them, producing Boolean results.

Set membership with \(\text{IN} \)

\(<\text{expression}> \text{IN} \{<\text{set}>\} \) produces TRUE if \(\text{expression} \) is a member of \(<\text{set}> \). Otherwise, it is FALSE. \(<\text{set}> \) must be a list of expressions separated by commas.

K14.4.2 Boolean operators

If \(x \) is a Boolean expression, then \(!x \) is its logical inverse.

If \(x \) and \(y \) are Boolean expressions, then \(x \&\& y \) is the result of ANDing them together. As in the C language, if \(x \) is FALSE, the result is determined to be FALSE without evaluating \(y \).

Note

This is known as short circuit evaluation.

If \(x \) and \(y \) are booleans, then \(x | | y \) is the result of ORing them together. As in the C language, if \(x \) is TRUE, the result is determined to be TRUE without evaluating \(y \).
Note

If \(x\) and \(y\) are booleans or Boolean expressions, then the result of \(x \neq y\) is the same as the result of exclusive-ORing \(x\) and \(y\) together. The operator \(\oplus\) only accepts bitstring arguments.

K14.4.3 Bitstring operators

The following operations can be applied only to bitstrings.

Logical operations on bitstrings

If \(x\) is a bitstring, \(\overline{x}\) is the bitstring of the same length obtained by logically inverting every bit of \(x\).

If \(x\) and \(y\) are bitstrings of the same length, \(x \land y\), \(x \lor y\), and \(x \oplus y\) are the bitstrings of that same length obtained by logically ANDing, logically ORing, and exclusive-ORing corresponding bits of \(x\) and \(y\) together.

Bitstring concatenation and slicing

If \(x\) and \(y\) are bitstrings of lengths \(N\) and \(M\) respectively, then \(x:y\) is the bitstring of length \(N+M\) constructed by concatenating \(x\) and \(y\) in left-to-right order.

The bitstring slicing operator addresses specific bits in a bitstring. This can be used to create a new bitstring from extracted bits or to set the value of specific bits. Its syntax is \(x<\text{integer_list}>\), where \(x\) is the integer or bitstring being sliced, and \(\text{integer_list}\) is a comma-separated list of integers enclosed in angle brackets. The length of the resulting bitstring is equal to the number of integers in \(\text{integer_list}\). In \(x<\text{integer_list}>\), each of the integers in \(\text{integer_list}\) must be:

- \(\geq 0\).
- \(< \text{Len}(x)\) if \(x\) is a bitstring.

The definition of \(x<\text{integer_list}>\) depends on whether \(\text{integer_list}\) contains more than one integer:

- If \(\text{integer_list}\) contains more than one integer, \(x<i, j, k, ..., n>\) is defined to be the concatenation:
 \[x<i> : x<j> : x<k> : ... : x<n>\].

- If \(\text{integer_list}\) consists of just one integer \(i\), \(x<i>\) is defined to be:
 - If \(x\) is a bitstring, \('0'\) if bit \(i\) of \(x\) is a zero and \('1'\) if bit \(i\) of \(x\) is a one.
 - If \(x\) is an integer, and \(y\) is the unique integer in the range \(0\) to \(2^{(i+1)}-1\) that is congruent to \(x\) modulo \(2^{(i+1)}\). Then \(x<i>\) is \('0'\) if \(y < 2^i\) and \('1'\) if \(y \geq 2^i\).

Loosely, this definition treats an integer as equivalent to a sufficiently long two’s complement representation of it as a bitstring.

The notation for a range expression is \(i:j\) with \(i \geq j\) is shorthand for the integers in the range from \(i\) down to \(j\), with both end values included. For example, \(\text{instr}<31:28>\) represents \(\text{instr}<31, 30, 29, 28>\).

\(x<\text{integer_list}>\) is assignable provided \(x\) is an assignable bitstring and no integer appears more than once in \(\text{integer_list}\). In particular, \(x<i>\) is assignable if \(x\) is an assignable bitstring and \(0 \leq i < \text{Len}(x)\).

Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding diagram for the APSR shows its bit<31> as \(N\). In such cases, the syntax APSR.<N> is used as a more readable synonym for APSR<31> as named bits can be referred to with the same syntax as referring to members of a struct. A comma-separated list of named bits enclosed in angle brackets following the register name allows multiple bits to be addressed simultaneously. For example, APSR.<N, C, Q> is synonymous with APSR <31, 29, 27>.

K14.4.4 Arithmetic operators

Most pseudocode arithmetic is performed on integer or real values, with operands obtained by conversions from bitstrings and results converted back to bitstrings. As these data types are the unbounded mathematical types, no issues arise about overflow or similar errors.
Unary plus and minus

If \(x \) is an integer or real, then \(+x \) is \(x \) unchanged, \(-x \) is \(x \) with its sign reversed. Both are of the same type as \(x \).

Addition and subtraction

If \(x \) and \(y \) are integers or reals, \(x+y \) and \(x-y \) are their sum and difference. Both are of type \(\text{integer} \) if \(x \) and \(y \) are both of type \(\text{integer} \), and \(\text{real} \) otherwise.

There are two cases where the types of \(x \) and \(y \) can be different. A bitstring and an integer can be added together to allow the operation \(PC + 4 \). An integer can be subtracted from a bitstring to allow the operation \(PC - 2 \).

If \(x \) and \(y \) are bitstrings of the same length \(N \), so that \(N = \text{Len}(x) = \text{Len}(y) \), then \(x+y \) and \(x-y \) are the least significant \(N \) bits of the results of converting \(x \) and \(y \) to integers and adding or subtracting them. Signed and unsigned conversions produce the same result:

\[
\begin{align*}
 x+y &= (\text{SInt}(x) + \text{SInt}(y))<N-1:0> \\
 &= (\text{UInt}(x) + \text{UInt}(y))<N-1:0> \\
 x-y &= (\text{SInt}(x) - \text{SInt}(y))<N-1:0> \\
 &= (\text{UInt}(x) - \text{UInt}(y))<N-1:0>
\end{align*}
\]

If \(x \) is a bitstring of length \(N \) and \(y \) is an integer, \(x+y \) and \(x-y \) are the bitstrings of length \(N \) defined by \(x+y = x + y<N-1:0> \) and \(x-y = x - y<N-1:0> \). Similarly, if \(x \) is an integer and \(y \) is a bitstring of length \(M \), \(x+y \) and \(x-y \) are the bitstrings of length \(M \) defined by \(x+y = x<M-1:0> + y \) and \(x-y = x<M-1:0> - y \).

Multiplication

If \(x \) and \(y \) are integers or reals, then \(x \times y \) is the product of \(x \) and \(y \). It is of type \(\text{integer} \) if \(x \) and \(y \) are both of type \(\text{integer} \), and \(\text{real} \) otherwise.

Division and modulo

If \(x \) and \(y \) are reals, then \(x/y \) is the result of dividing \(x \) by \(y \), and is always of type \(\text{real} \).

If \(x \) and \(y \) are integers, then \(x \text{ DIV} y \) and \(x \text{ MOD} y \) are defined by:

\[
\begin{align*}
 x \text{ DIV} y &= \text{RoundDown}(x/y) \\
 x \text{ MOD} y &= x - y \times (x \text{ DIV} y)
\end{align*}
\]

It is a pseudocode error to use any of \(x/y \), \(x \text{ DIV} y \), or \(x \text{ MOD} y \) in any context where \(y \) can be zero.

Scaling

If \(x \) and \(n \) are of type \(\text{integer} \), then:

- \(x << n = \text{RoundDown}(x \times 2^n) \).
- \(x >> n = \text{RoundDown}(x \times 2^(-n)) \).

Raising to a power

If \(x \) is an integer or a real and \(n \) is an integer then \(x^n \) is the result of raising \(x \) to the power of \(n \), and:

- If \(x \) is of type \(\text{integer} \) then \(x^n \) is of type \(\text{integer} \).
- If \(x \) is of type \(\text{real} \) then \(x^n \) is of type \(\text{real} \).

K14.4.5 The assignment operator

The assignment operator is the \(= \) character, which assigns the value of the right-hand side to the left-hand side. An assignment statement takes the form:

\[
<\text{assignable_expression}> = <\text{expression}>
\]

This following subsection defines valid expression syntax.
General expression syntax

An expression is one of the following:

• A literal.
• A variable, optionally preceded by a data type name to declare its type.
• The word `UNKNOWN` preceded by a data type name to declare its type.
• The result of applying a language-defined operator to other expressions.
• The result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or underscore character.

Each register defined in an Arm architecture specification defines a correspondingly named pseudocode bitstring variable, and that variable has the stated behavior of the register. For example, if a bit of a register is defined as RAZ/WI, then the corresponding bit of its variable reads as '0' and ignore writes.

An expression like `bits(32) UNKNOWN` indicates that the result of the expression is a value of the given type, but the architecture does not specify what value it is and software must not rely on such values. The value produced must not:

• Return information that cannot be accessed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE or CONSTRAINED UNPREDICTABLE and do not return UNKNOWN values,
• Be promoted as providing any useful information to software.

--- Note ---

UNKNOWN values are similar to the definition of UNPREDICTABLE, but do not indicate that the entire architectural state becomes unspecified.

Only the following expressions are assignable. This means that these are the only expressions that can be placed on the left-hand side of an assignment.

• Variables.
• The results of applying some operators to other expressions.
 The description of each language-defined operator that can generate an assignable expression specifies the circumstances under which it does so. For example, those circumstances might require that one or more of the expressions the operator operates on is an assignable expression.
• The results of applying array-like functions to other expressions. The description of an array-like function specifies the circumstances under which it can generate an assignable expression.

--- Note ---

If the right-hand side in an assignment is a function returning a tuple, an item in the assignment destination can be written as `-` to indicate that the corresponding item of the assigned tuple value is discarded. For example:

```plaintext
(shifted, -) = LSL_C(operand, amount);
```

The expression on the right-hand side itself can be a tuple. For example:

```plaintext
(x, y) = (function_1(), function_2());
```

Every expression has a data type.

• For a literal, this data type is determined by the syntax of the literal.
• For a variable, there are the following possible sources for the data type
 — An optional preceding data type name.
 — A data type the variable was given earlier in the pseudocode by recursive application of this rule.
A data type the variable is being given by assignment, either by direct assignment to the variable, or by assignment to a list of which the variable is a member.

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of them exists and they do not agree about the type.

- For a language-defined operator, the definition of the operator determines the data type.
- For a function, the definition of the function determines the data type.

K14.4.6 Precedence rules

The precedence rules for expressions are:

1. Literals, variables and function invocations are evaluated with higher priority than any operators using their results, but see Boolean operators on page K14-8139.
2. Operators on integers follow the normal operator precedence rules of exponentiation before multiply/divide before add/subtract, with sequences of multiply/divides or add/subtracts evaluated left-to-right.
3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but need not be if all permitted precedence orders under the type rules necessarily lead to the same result. For example, if i, j and k are integer variables, \(i > 0 \land j > 0 \land k > 0 \) is acceptable, but \(i > 0 \land j > 0 \lor k > 0 \) is not.

K14.4.7 Conditional expressions

If \(x \) and \(y \) are two values of the same type and \(t \) is a value of type boolean, then \(\text{if } t \text{ then } x \text{ else } y \) is an expression of the same type as \(x \) and \(y \) that produces \(x \) if \(t \) is TRUE and \(y \) if \(t \) is FALSE.

K14.4.8 Operator polymorphism

Operators in pseudocode can be polymorphic, with different functionality when applied to different data types. Each resulting form of an operator has a different prototype definition. For example, the operator + has forms that act on various combinations of integers, reals and bitstrings.

Table K14-1 summarizes the operand types valid for each unary operator and the result type. Table K14-2 on page K14-8144 summarizes the operand types valid for each binary operator and the result type.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operand Type</th>
<th>Result Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>NOT</td>
<td>bits(N)</td>
<td>bits(N)</td>
</tr>
<tr>
<td>!</td>
<td>boolean</td>
<td>boolean</td>
</tr>
<tr>
<td>Operator</td>
<td>First operand type</td>
<td>Second operand type</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>==</td>
<td>bits(N)</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td></td>
<td>enumeration</td>
<td>enumeration</td>
</tr>
<tr>
<td></td>
<td>boolean</td>
<td>boolean</td>
</tr>
<tr>
<td>!=</td>
<td>bits(N)</td>
<td>bits(N)</td>
</tr>
<tr>
<td></td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td><, ></td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td><=, >=</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>+, -</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td></td>
<td>bits(N)</td>
<td>bits(N)</td>
</tr>
<tr>
<td><<, >></td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td>*</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td></td>
<td>bits(N)</td>
<td>bits(N)</td>
</tr>
<tr>
<td>/</td>
<td>real</td>
<td>real</td>
</tr>
<tr>
<td>DIV</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td>MOD</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>bits(N)</td>
<td>integer</td>
</tr>
<tr>
<td>&;&;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND, OR, EOR</td>
<td>bits(N)</td>
<td>bits(N)</td>
</tr>
<tr>
<td>^</td>
<td>integer</td>
<td>integer</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>integer</td>
</tr>
</tbody>
</table>
K14.5 Statements and control structures

This section describes the statements and program structures available in the pseudocode:

- Statements and Indentation
- Function and procedure calls
- Conditional control structures on page K14-8147
- Loop control structures on page K14-8148
- Special statements on page K14-8149
- Comments on page K14-8149

K14.5.1 Statements and Indentation

A simple statement is either an assignment, a function call, or a procedure call. Each statement must be terminated with a semicolon.

Indentation normally indicates the structure in compound statements. The statements contained in structures such as if ... then ... else ... or procedure and function definitions are indented more deeply than the statement structure itself. The end of a compound statement structure and their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level. Standard indentation uses four spaces for each level of indent.

K14.5.2 Function and procedure calls

This section describes how functions and procedures are defined and called in the pseudocode.
Procedure and function definitions

A procedure definition has the form:

```plaintext
<procedure name>(<argument prototypes>)
    <statement 1>
    <statement 2>
    ...
    <statement n>
```

where `<argument prototypes>` consists of zero or more argument definitions, separated by commas. Each argument definition consists of a type name followed by the name of the argument.

Note

This first definition line is not terminated by a semicolon. This distinguishes it from a procedure call.

A function definition is similar, but also declares the return type of the function:

```plaintext
<return type> <function name>(<argument prototypes>)
    <statement 1>
    <statement 2>
    ...
    <statement n>
```

Note

A function or procedure name can include a ".". This is a convention used for functions that have similar but different behaviors in AArch32 and AArch64 states.

Array-like functions are similar, but are written with square brackets and have two forms. These two forms exist because reading from and writing to an array element require different functions. They are frequently used in memory operations. An array-like function definition with a return type is equivalent to reading from an array. For example:

```plaintext
<return type> <function name>[<argument prototypes>]
    <statement 1>
    <statement 2>
    ...
    <statement n>
```

Its related function definition with no return type is equivalent to writing to an array. For example:

```plaintext
<function name>[<argument prototypes>] = <value prototype>
    <statement 1>
    <statement 2>
    ...
    <statement n>
```

The value prototype determines what data type can be written to the array. The two related functions must share the same name, but the value prototype and return type can be different.

Procedure calls

A procedure call has the form:

```plaintext
<procedure_name>(<arguments>);
```

Return statements

A procedure return has the form:

```plaintext
return;
```

A function return has the form:
return <expression>;
where <expression> is of the type declared in the function prototype line.

K14.5.3 Conditional control structures

This section describes how conditional control structures are used in the pseudocode.

if ... then ... else ...

In addition to being a ternary operator, a multi-line if ... then ... else ... structure can act as a control structure and has the form:

```
if <boolean_expression> then
    <statement 1>
    <statement 2>
    ...
    <statement n>
elsif <boolean_expression> then
    <statement a>
    <statement b>
    ...
    <statement z>
else
    <statement A>
    <statement B>
    ...
    <statement Z>
```

The block of lines consisting of elsif and its indented statements is optional, and multiple elsif blocks can be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when the then part, and in the else part if it is present, contain only simple statements such as:

```
if <boolean_expression> then <statement 1>
if <boolean_expression> then <statement 1>; else <statement A>
if <boolean_expression> then <statement 1>; <statement 2>; else <statement A>
```

Note

In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and the fact that the else part is optional distinguish its use as a control structure from its use as a ternary operator.

case ... of ...

A case ... of ... structure has the form:

```
case <expression> of
    when <literal values1>
        <statement 1>
        <statement 2>
        ...
        <statement n>
    when <literal values2>
        <statement 1>
        <statement 2>
        ...
        <statement n>
    ...
    more "when" groups if required ...
```
otherwise
 <statement A>;
 <statement B>;
 ...
 <statement Z>;

In this structure, <literal values1> and <literal values2> consist of literal values of the same type as <expression>, separated by commas. There can be additional when groups in the structure. Abbreviated one line forms of when and otherwise parts can be used when they contain only simple statements.

If <expression> has a bitstring type, the literal values can also include bitstring literals containing 'x' bits, known as bitmasks. For details, see Equality and non-equality on page K14-8139.

K14.5.4 Loop control structures

This section describes the three loop control structures used in the pseudocode.

repeat ... until ...

A repeat .. until .. structure has the form:

```
repeat
  <statement 1>;
  <statement 2>;
  ...
  <statement n>;
until <boolean_expression>;
```

It executes the statement block at least once, and the loop repeats until <boolean expression> evaluates to TRUE. Variables explicitly declared inside the loop body have scope local to that loop and might not be accessed outside the loop body.

while ... do

A while .. do structure has the form:

```
while <boolean_expression> do
  <statement 1>;
  <statement 2>;
  ...
  <statement n>;
```

It begins executing the statement block only if the Boolean expression is true. The loop then runs until the expression is false.

for ...

A for .. structure has the form:

```
for <assignable_expression> = <integer_expr1> to <integer_expr2>
  <statement 1>;
  <statement 2>;
  ...
  <statement n>;
```

The <assignable_expression> is initialized to <integer_expr1> and compared to <integer_expr2>. If <integer_expr1> is less than <integer_expr2>, the loop body is executed and the <assignable_expression> incremented by one. This repeats until <assignable expression> is more than or equal to <integer_expr2>.

There is an alternate form:

```
for <assignable_expression> = <integer_expr1> downto <integer_expr2>
```

where <integer_expr1> is decremented after the loop body executes and continues until <assignable expression> is less than or equal than <integer_expr2>.
K14.5.5 Special statements

This section describes statements with particular architecturally-defined behaviors.

UNDEFINED

This subsection describes the statement:

```c
UNDEFINED;
```

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from behavior required to determine that the special case applies. The replacement behavior is that the Undefined Instruction exception is taken.

UNPREDICTABLE

This subsection describes the statement:

```c
UNPREDICTABLE;
```

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from behavior required to determine that the special case applies. The replacement behavior is UNPREDICTABLE.

SEE...

This subsection describes the statement:

```c
SEE <reference>;
```

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from behavior required to determine that the special case applies. The replacement behavior is that nothing occurs as a result of the current pseudocode because some other piece of pseudocode defines the required behavior. The `<reference>` indicates where that other pseudocode can be found.

It usually refers to another instruction, but can also refer to another encoding or note of the same instruction.

IMPLEMENTATION_DEFINED

This subsection describes the statement:

```c
IMPLEMENTATION_DEFINED {"<text>"};
```

This statement indicates a special case that replaces the behavior defined by the current pseudocode, apart from behavior required to determine that the special case applies. The replacement behavior is IMPLEMENTATION_DEFINED. An optional `<text>` field can give more information.

K14.5.6 Comments

The pseudocode supports two styles of comments:

- `//` starts a comment that is terminated by the end of the line.
- `/*` starts a comment that is terminated by `*/`.

`/**` statements might not be nested, and the first `*/` ends the comment.

Note

Comment lines do not require a terminating semicolon.
K14.6 Built-in functions

This section describes:

• Bitstring manipulation functions.
• Arithmetic functions on page K14-8151.

K14.6.1 Bitstring manipulation functions

The following bitstring manipulation functions are defined:

Bitstring length and most significant bit

If x is a bitstring:

• The bitstring length function \(\text{Len}(x) \) returns the length of x as an integer.

Bitstring concatenation and replication

If x is a bitstring and n is an integer with \(n \geq 0 \):

• \(\text{Replicate}(x, n) \) is the bitstring of length \(n \times \text{Len}(x) \) consisting of n copies of x concatenated together.
• \(\text{Zeros}(n) = \text{Replicate}('0', n) \).
• \(\text{Ones}(n) = \text{Replicate}('1', n) \).

Bitstring count

If x is a bitstring, \(\text{BitCount}(x) \) is an integer result equal to the number of bits of x that are ones.
Testing a bitstring for being all zero or all ones

If x is a bitstring:

- IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones.
- IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones.

IsOnes(x) and IsOnesBit(x) work in the corresponding ways. This means:

IsZero(x) = (BitCount(x) == 0)
IsOnes(x) = (BitCount(x) == Len(x))
IsZeroBit(x) = if IsZero(x) then '1' else '0'
IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

- LowestSetBit(x) is the minimum bit number of any of the bits of x that are ones. If all of its bits are zeros, LowestSetBit(x) = N.
- HighestSetBit(x) is the maximum bit number of any of the bits of x that are ones. If all of its bits are zeros, HighestSetBit(x) = -1.
- CountLeadingZeroBits(x) is the number of zero bits at the left end of x, in the range 0 to N. This means:
 CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x).
- CountLeadingSignBits(x) is the number of copies of the sign bit of x at the left end of x, excluding the sign bit itself, and is in the range 0 to N-1. This means:
 CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>).

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x, i) is x extended to a length of i bits, by adding sufficient zero bits to its left. That is, if i == Len(x), then ZeroExtend(x, i) = x, and if i > Len(x), then:

ZeroExtend(x, i) = Replicate('0', i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x, i) is x extended to a length of i bits, by adding sufficient copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x, i) = x, and if i > Len(x), then:

SignExtend(x, i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x, i) or SignExtend(x, i) in a context where it is possible that i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt() is the integer whose two’s complement representation is x.

UInt() is the integer whose unsigned representation is x.

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument.

K14.6.2 Arithmetic functions

This section defines built-in arithmetic functions.

Absolute value

If x is either of type real or integer, Abs(x) returns the absolute value of x. The result is the same type as x.
Rounding and aligning

If \(x \) is a real:
- \(\text{RoundDown}(x) \) produces the largest integer \(n \) such that \(n \leq x \).
- \(\text{RoundUp}(x) \) produces the smallest integer \(n \) such that \(n \geq x \).
- \(\text{RoundTowardsZero}(x) \) produces:
 - \(\text{RoundDown}(x) \) if \(x > 0.0 \).
 - 0 if \(x = 0.0 \).
 - \(\text{RoundUp}(x) \) if \(x < 0.0 \).

If \(x \) and \(y \) are both of type integer, \(\text{Align}(x, y) = y \times (x \text{ DIV } y) \), and is of type integer.

If \(x \) is of type bitstring and \(y \) is of type integer, \(\text{Align}(x, y) = (\text{Align}(\text{UInt}(x), y)) \ll (\text{Len}(x)-1:0) \), and is a bitstring of the same length as \(x \).

It is a pseudocode error to use either form of \(\text{Align}(x, y) \) in any context where \(y \) can be 0. In practice, \(\text{Align}(x, y) \) is only used with \(y \) a constant power of two, and the bitstring form used with \(y = 2^n \) has the effect of producing its argument with its \(n \) low-order bits forced to zero.

Maximum and minimum

If \(x \) and \(y \) are integers or reals, then \(\text{Max}(x, y) \) and \(\text{Min}(x, y) \) are their maximum and minimum respectively. \(x \) and \(y \) must both be of type integer or of type real. The function returns a value of the same type as its operands.
K14.7 Miscellaneous helper procedures and functions

This section lists the prototypes of miscellaneous helper procedures and functions used by the pseudocode, together with a brief description of the effect of the procedure or function. The pseudocode does not define the operation of these helper procedures and functions.

Note

Chapter J1 *Armv8 Pseudocode* also has an entry for each of these functions, but currently these entries do not say anything about the effect of the function. When this information is added in Chapter J1 this section will be removed from the manual.

K14.7.1 EndOfInstruction()

This procedure terminates processing of the current instruction.

EndOfInstruction();

K14.7.2 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option);

K14.7.3 Hint_PreloadData()

This procedure performs a *preload data* hint.

Hint_PreloadData(bits(32) address);

K14.7.4 Hint_PreloadDataForWrite()

This procedure performs a *preload data* hint with a probability that the use will be for a write.

Hint_PreloadDataForWrite(bits(32) address);

K14.7.5 Hint_PreloadInstr()

This procedure performs a *preload instructions* hint.

Hint_PreloadInstr(bits(32) address);

K14.7.6 Hint_Yield()

This procedure performs a *Yield* hint.

Hint_Yield();

K14.7.7 IsExternalAbort()

This function returns TRUE if the abort currently being processed is an External abort and FALSE otherwise. It is used only in exception entry pseudocode.

boolean IsExternalAbort(Fault type)
assert type != Fault_None;
boolean IsExternalAbort(FaultRecord fault);
K14.7.8 IsAsyncAbort()

 This function returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE otherwise. It is used only in exception entry pseudocode.

 boolean IsAsyncAbort(Fault type)
 assert type != Fault_None;

 boolean IsAsyncAbort(FaultRecord fault);

K14.7.9 LSInstructionSyndrome()

 This function returns the extended syndrome information for a fault reported in the HSR.

 bits(11) LSInstructionSyndrome();

K14.7.10 ProcessorID()

 This function returns an integer that uniquely identifies the executing PE in the system.

 integer ProcessorID();

K14.7.11 RemapRegsHaveResetValues()

 This function returns TRUE if the remap registers PRRR and NMRR have their IMPLEMENTATION DEFINED reset values, and FALSE otherwise.

 boolean RemapRegsHaveResetValues();

K14.7.12 ResetControlRegisters()

 This function resets the System registers and memory-mapped control registers that have architecturally-defined reset values to those values. For more information about the affected registers see:

 • PE state on reset to AArch64 state on page D1-2330.
 • PE state on reset into AArch32 state on page G1-5801.

 AArch64.ResetControlRegisters(boolean ResetIsCold)
 AArch32.ResetControlRegisters(boolean ResetIsCold)

K14.7.13 ThisInstr()

 This function returns the bitstring encoding of the currently-executing instruction.

 bits(32) ThisInstr();

 ______ Note ________

 Currently, this function is used only on 32-bit instruction encodings.

K14.7.14 ThisInstrLength()

 This function returns the length, in bits, of the current instruction. This means it returns 32 or 16:

 integer ThisInstrLength();
K14.8 Arm pseudocode definition index

This section contains the following tables:

- Table K14-3 which contains the pseudocode data types.
- Table K14-4 which contains the pseudocode operators.
- Table K14-5 on page K14-8156 which contains the pseudocode keywords and control structures.
- Table K14-6 on page K14-8157 which contains the statements with special behaviors.

Table K14-3 Index of pseudocode data types

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>Type name for the array type</td>
</tr>
<tr>
<td>bit</td>
<td>Keyword equivalent to bits(1)</td>
</tr>
<tr>
<td>bits(N)</td>
<td>Type name for the bitstring of length N data type</td>
</tr>
<tr>
<td>boolean</td>
<td>Type name for the Boolean data type</td>
</tr>
<tr>
<td>enumeration</td>
<td>Keyword to define a new enumeration type</td>
</tr>
<tr>
<td>integer</td>
<td>Type name for the integer data type</td>
</tr>
<tr>
<td>real</td>
<td>Type name for the real data type</td>
</tr>
<tr>
<td>type</td>
<td>Keyword to define a new structure</td>
</tr>
</tbody>
</table>

Table K14-4 Index of pseudocode operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Unary minus on integers or reals</td>
</tr>
<tr>
<td></td>
<td>Subtraction of integers, reals and bitstrings</td>
</tr>
<tr>
<td></td>
<td>Used in the left-hand side of an assignment or a tuple to discard the result</td>
</tr>
<tr>
<td>+</td>
<td>Unary plus on integers or reals</td>
</tr>
<tr>
<td></td>
<td>Addition of integers, reals and bitstrings</td>
</tr>
<tr>
<td>.</td>
<td>Extract named member from a list</td>
</tr>
<tr>
<td></td>
<td>Extract named bit or field from a register</td>
</tr>
<tr>
<td>:</td>
<td>Bitstring concatenation</td>
</tr>
<tr>
<td></td>
<td>Integer range in bitstring extraction operator</td>
</tr>
<tr>
<td>!</td>
<td>Boolean NOT</td>
</tr>
<tr>
<td>!=</td>
<td>Comparison for inequality</td>
</tr>
<tr>
<td>(...)</td>
<td>Around arguments of procedure or function</td>
</tr>
<tr>
<td>[...]</td>
<td>Around array index</td>
</tr>
<tr>
<td></td>
<td>Around arguments of array-like function</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication of integers, reals, and bitstrings</td>
</tr>
<tr>
<td>/</td>
<td>Division of reals</td>
</tr>
<tr>
<td>&&</td>
<td>Boolean AND</td>
</tr>
</tbody>
</table>
Table K14-4 Index of pseudocode operators (continued)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><</code></td>
<td>Less than comparison of integers and reals</td>
</tr>
<tr>
<td><code><:</code></td>
<td>Slicing of specified bits of bitstring or integer</td>
</tr>
<tr>
<td><code><<</code></td>
<td>Multiply integer by power of 2</td>
</tr>
<tr>
<td><code><=</code></td>
<td>Less than or equal comparison of integers and reals</td>
</tr>
<tr>
<td><code>=</code></td>
<td>Assignment operator</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Comparison for equality</td>
</tr>
<tr>
<td><code>></code></td>
<td>Greater than comparison of integers and reals</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>Greater than or equal comparison of integers and reals</td>
</tr>
<tr>
<td><code>>></code></td>
<td>Divide integer by power of 2</td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
<tr>
<td><code>^</code></td>
<td>Exponential operator</td>
</tr>
<tr>
<td><code>AND</code></td>
<td>Bitwise AND of bitstrings</td>
</tr>
<tr>
<td><code>DIV</code></td>
<td>Quotient from integer division</td>
</tr>
<tr>
<td><code>EOR</code></td>
<td>Bitwise EOR of bitstrings</td>
</tr>
<tr>
<td><code>IN</code></td>
<td>Tests membership of a certain expression in a set of values</td>
</tr>
<tr>
<td><code>MOD</code></td>
<td>Remainder from integer division</td>
</tr>
<tr>
<td><code>NOT</code></td>
<td>Bitwise inversion of bitstrings</td>
</tr>
<tr>
<td><code>OR</code></td>
<td>Bitwise OR of bitstrings</td>
</tr>
<tr>
<td><code>case ... of ...</code></td>
<td>Control structure for the</td>
</tr>
<tr>
<td><code>if ... then ... else ...</code></td>
<td>Condition expression selecting between two values</td>
</tr>
</tbody>
</table>

Table K14-5 Index of pseudocode keywords and control structures

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/*...*/</code></td>
<td>Comment delimiters</td>
</tr>
<tr>
<td><code>//</code></td>
<td>Introduces comment terminated by end of line</td>
</tr>
<tr>
<td><code>FALSE</code></td>
<td>One of two values a Boolean can take (other than <code>TRUE</code>)</td>
</tr>
<tr>
<td><code>for ... = ... to ...</code></td>
<td>Loop control structure, counting up from the initial value to the upper limit</td>
</tr>
<tr>
<td><code>for ... = ... downto ...</code></td>
<td>Loop control structure, counting down from the initial value to the lower limit</td>
</tr>
<tr>
<td><code>if ... then ... else ...</code></td>
<td>Conditional control structure</td>
</tr>
<tr>
<td><code>otherwise</code></td>
<td>Introduces default case in <code>case ... of ...</code> control structure</td>
</tr>
<tr>
<td><code>repeat ... until ...</code></td>
<td>Loop control structure that runs at least once until the termination condition is satisfied</td>
</tr>
<tr>
<td><code>return</code></td>
<td>Procedure or function return</td>
</tr>
</tbody>
</table>
Table K14-5 Index of pseudocode keywords and control structures (continued)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>One of two values a Boolean can take (other than FALSE)</td>
</tr>
<tr>
<td>when</td>
<td>Introduces specific case in case ... of ... control structure</td>
</tr>
<tr>
<td>while ... do</td>
<td>Loop control structure that runs until the termination condition is satisfied</td>
</tr>
</tbody>
</table>

Table K14-6 Index of special statements

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPLEMENTATION_DEFINED</td>
<td>Describes IMPLEMENTATION DEFINED behavior</td>
</tr>
<tr>
<td>SEE</td>
<td>Points to other pseudocode to use instead</td>
</tr>
<tr>
<td>UNDEFINED</td>
<td>Cause Undefined Instruction exception</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>Unspecified value</td>
</tr>
<tr>
<td>UNPREDICTABLE</td>
<td>Unspecified behavior</td>
</tr>
</tbody>
</table>
Appendix K15
Registers Index

This appendix provides indexes to the register descriptions in this manual. It contains the following sections:

• Introduction and register disambiguation on page K15-8160.
• Alphabetical index of AArch64 registers and System instructions on page K15-8165.
• Functional index of AArch64 registers and System instructions on page K15-8179.
• Alphabetical index of AArch32 registers and System instructions on page K15-8194.
• Functional index of AArch32 registers and System instructions on page K15-8204.
• Alphabetical index of memory-mapped registers on page K15-8215.
• Functional index of memory-mapped registers on page K15-8222.
K15.1 Introduction and register disambiguation

In some sections of this manual, registers are referred to by a *general name*, where the description applies to more than one context. Generally, this is one of the following:

- The description applies to both AArch32 state and AArch64 state, and therefore the register names could apply to either AArch32 System registers or AArch64 System registers.
- The description applies to multiple Exception levels, and therefore at a particular Exception level the register names need to take the appropriate Exception level suffix,
 _EL0,
 _EL1,
 _EL2, or
 _EL3.

The following sections disambiguate the general register names:

- *Register name disambiguation by Execution state*.
- *Register name disambiguation by Exception level* on page K15-8164.

K15.1.1 Register name disambiguation by Execution state

Table K15-1 disambiguates the general names of the registers by Execution state.

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTEXTIDR</td>
<td>Context ID</td>
<td>CONTEXTIDR_EL1</td>
<td>CONTEXTIDR</td>
</tr>
<tr>
<td>DBGBCR</td>
<td>Debug Breakpoint Control Registers</td>
<td>DBGBCR<(\alpha)>_EL1</td>
<td>DBGBCR<(\alpha)></td>
</tr>
<tr>
<td>DBGBBVR</td>
<td>Debug Breakpoint Value Registers</td>
<td>DBGBBBVR<(\alpha)>_EL1</td>
<td>DBGBBBVR<(\alpha)></td>
</tr>
<tr>
<td>DBGCLAIMCLR</td>
<td>Debug CLAIM Tag Clear register</td>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR</td>
</tr>
<tr>
<td>DBGCLAIMSET</td>
<td>Debug CLAIM Tag Set register</td>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET</td>
</tr>
<tr>
<td>DBGDTRRX</td>
<td>Debug Data Transfer Register, Receive</td>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRX_\text{int}</td>
</tr>
<tr>
<td>DBGDTRTX</td>
<td>Debug Data Transfer Register, Transmit</td>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_\text{int}</td>
</tr>
<tr>
<td>DBGPRCR</td>
<td>Debug Power Control Register</td>
<td>DBGPRCR_EL1</td>
<td>DBGPRCR</td>
</tr>
<tr>
<td>DBGVCR</td>
<td>Debug Vector Catch Register</td>
<td>DBGVCR_\text{32_EL2}</td>
<td>DBGVCR</td>
</tr>
<tr>
<td>DBGWCR</td>
<td>Debug Watchpoint Control Registers</td>
<td>DBGWCR<(\alpha)>_EL1</td>
<td>DBGWCR<(\alpha)></td>
</tr>
<tr>
<td>DBGWVR</td>
<td>Debug Watchpoint Value Registers</td>
<td>DBGWVR<(\alpha)>_EL1</td>
<td>DBGWVR<(\alpha)></td>
</tr>
<tr>
<td>DCCINT</td>
<td>Debug Comms Channel Interrupt Enable Register</td>
<td>MDCCINT_EL1</td>
<td>DBGDCCINT</td>
</tr>
<tr>
<td>DCCSR</td>
<td>Debug Comms Channel Status Register</td>
<td>MDCCSR_EL0</td>
<td>DBGDSCR_\text{int}</td>
</tr>
<tr>
<td>DBGAUTHSTATUS</td>
<td>Debug Authentication Status</td>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS</td>
</tr>
<tr>
<td>DLR</td>
<td>Debug Link Register</td>
<td>DLR_EL0[31:0]</td>
<td>DLR</td>
</tr>
<tr>
<td>DSCR</td>
<td>Debug System Control Register</td>
<td>MDSCR_EL1</td>
<td>DBGDSCRx_\text{ext}</td>
</tr>
<tr>
<td>DSPSR</td>
<td>Debug Saved PE State Register</td>
<td>DSPSR_EL0</td>
<td>DSPSR</td>
</tr>
<tr>
<td>FAR</td>
<td>Fault Address Register</td>
<td>FAR_EL1</td>
<td>DFAR, IFAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAR_EL2</td>
<td>HDFAR, HIFAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAR_EL3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPFAR_EL2</td>
<td>HPFAR</td>
</tr>
</tbody>
</table>

Table K15-1: Disambiguation of general names of registers by Execution state (continued)

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCR</td>
<td>Hypervisor Configuration Register</td>
<td>HCR_EL2</td>
<td>HCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCR2</td>
</tr>
<tr>
<td>HDCR</td>
<td>Hyp or EL2 Debug Control Register</td>
<td>MDCR_EL2</td>
<td>HDCR</td>
</tr>
<tr>
<td>HSCTLR</td>
<td>Hypervisor System Control Register</td>
<td>SCTLR_EL2</td>
<td>HSCTLR</td>
</tr>
<tr>
<td>HTTBR</td>
<td>EL2 Translation Table Base Register</td>
<td>TTBR0_EL2</td>
<td>HTTBR</td>
</tr>
<tr>
<td>ISR</td>
<td>Interrupt Status Register</td>
<td>ISR_EL1</td>
<td>ISR</td>
</tr>
<tr>
<td>MPPDR</td>
<td>Multiprocessor Affinity Register</td>
<td>MPPDR_EL1</td>
<td>MPPDR</td>
</tr>
<tr>
<td>OSDLR</td>
<td>OS Double-Lock Register</td>
<td>OSDLR_EL1</td>
<td>DBGOSDLR</td>
</tr>
<tr>
<td>OSDTRRX</td>
<td>OS Lock Data Transfer Register, Receive</td>
<td>OSDTRRX_EL1</td>
<td>DBGDTRRXext</td>
</tr>
<tr>
<td>OSDTRTX</td>
<td>OS Lock Data Transfer Register, Transmit</td>
<td>OSDTRTX_EL1</td>
<td>DBGDTRTXext</td>
</tr>
<tr>
<td>OSECCR</td>
<td>OS Lock Exception Catch Control Register</td>
<td>OSECCR_EL1</td>
<td>DBGOSECCR</td>
</tr>
<tr>
<td>OSLAR</td>
<td>OS Lock Access Register</td>
<td>OSLAR_EL1</td>
<td>DBGOSLAR</td>
</tr>
<tr>
<td>OSLSR</td>
<td>OS Lock Status Register</td>
<td>OSLSR_EL1</td>
<td>DBGOSLSR</td>
</tr>
<tr>
<td>PMMIR</td>
<td>Performance Monitors Machine Identification Register</td>
<td>PMMIR_EL1</td>
<td>PMMIR</td>
</tr>
<tr>
<td>SCR</td>
<td>Secure Configuration Register</td>
<td>SCR_EL3</td>
<td>SCR</td>
</tr>
<tr>
<td>SCTLR</td>
<td>System Control Register</td>
<td>SCTLR_EL1</td>
<td>SCTLR (NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCTLR_EL2</td>
<td>HSCTLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCTLR_EL3</td>
<td>SCTLR (S)</td>
</tr>
<tr>
<td>SDCR</td>
<td>Secure or EL3 Debug Configuration Register</td>
<td>MDCR_EL3</td>
<td>SDCR</td>
</tr>
<tr>
<td>SDER</td>
<td>Secure Debug Enable Register</td>
<td>SDER32_EL3</td>
<td>SDER</td>
</tr>
<tr>
<td>SPSR</td>
<td>Saved Program Status Register</td>
<td>SPSR_EL1</td>
<td>SPSR (general description)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSR_EL2</td>
<td>SPSR_abt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPSR_EL3</td>
<td>SPSR_fiq</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPSR_hyp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPSR_irq</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPSR_mon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPSR_svc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPSR_und</td>
</tr>
<tr>
<td>TCR</td>
<td>Translation Control Register</td>
<td>TCR_EL1</td>
<td>TTBCR(NS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCR_EL2</td>
<td>HTCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCR_EL3</td>
<td>TTBCR(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTCR_EL2</td>
<td>VTCR</td>
</tr>
<tr>
<td>TTBR</td>
<td>Translation Table Base Register</td>
<td>TTBR0_EL1</td>
<td>TTBR0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTBR0_EL2</td>
<td>TTBR1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTBR0_EL3</td>
<td>HTTBR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTBR1_EL1</td>
<td>VTTBR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTTBR_EL2</td>
<td></td>
</tr>
</tbody>
</table>
Table K15-1 Disambiguation of general names of registers by Execution state (continued)

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCR</td>
<td>PL1&0 stage 2 Translation Control Register</td>
<td>VTCR_EL2</td>
<td>VTCR</td>
</tr>
<tr>
<td>VBAR</td>
<td>Vector Base Address Register</td>
<td>VBAR_EL1</td>
<td>VBAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VBAR_EL2</td>
<td>HVBAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VBAR_EL3</td>
<td>MVBAR</td>
</tr>
<tr>
<td>VTTBR</td>
<td>PL1&0 stage 2 Translation Table Base Register</td>
<td>VTTBR_EL2</td>
<td>VTTBR</td>
</tr>
</tbody>
</table>

Table K15-2 disambiguates the general names of the System registers that provide access to the Performance Monitors by Execution state.

Table K15-2 Disambiguation of general names of the Performance Monitors System registers by Execution state

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCCFILTR</td>
<td>Cycle Count Filter Register</td>
<td>PMCCFILTR_EL0</td>
<td>PMCCFILTR</td>
</tr>
<tr>
<td>PMCCNTR</td>
<td>Cycle Count Register</td>
<td>PMCCNTR_EL0</td>
<td>PMCCNTR</td>
</tr>
<tr>
<td>PMCEID0</td>
<td>Performance Monitors Cycle Count Filter Register 0</td>
<td>PMCEID0_EL0</td>
<td>PMCEID0</td>
</tr>
<tr>
<td>PMCEID1</td>
<td>Performance Monitors Cycle Count Filter Register 1</td>
<td>PMCEID1_EL0</td>
<td>PMCEID1</td>
</tr>
<tr>
<td>PMCOUNTER</td>
<td>Performance Monitors Count Enable Clear register</td>
<td>PMCOUNTER_EL0</td>
<td>PMCOUNTER</td>
</tr>
<tr>
<td>PMCOUNTERSET</td>
<td>Performance Monitors Count Enable Set register</td>
<td>PMCOUNTERSET_EL0</td>
<td>PMCOUNTERSET</td>
</tr>
<tr>
<td>PMCR</td>
<td>Performance Monitors Control Register</td>
<td>PMCR_EL0</td>
<td>PMCR</td>
</tr>
<tr>
<td>PMEVCNTR<n></td>
<td>Performance Monitors Event Count Registers, n = 0-30</td>
<td>PMEVCNTR_EL0<n></td>
<td>PMEVCNTR<n></td>
</tr>
<tr>
<td>PMEVTYPE<n></td>
<td>Performance Monitors Event Type Registers, n = 0-30</td>
<td>PMEVTYPE_EL0<n></td>
<td>PMEVTYPE<n></td>
</tr>
<tr>
<td>PMINTENCLRL</td>
<td>Performance Monitors Interrupt Enable Clear register</td>
<td>PMINTENCLRL_EL0</td>
<td>PMINTENCLRL</td>
</tr>
<tr>
<td>PMINTENSET</td>
<td>Performance Monitors Interrupt Enable Set register</td>
<td>PMINTENSET_EL0</td>
<td>PMINTENSET</td>
</tr>
<tr>
<td>PMMIR</td>
<td>Performance Monitors Machine Identification Register</td>
<td>PMMIR_EL1</td>
<td>PMMIR</td>
</tr>
<tr>
<td>PMOVSCCLR</td>
<td>Performance Monitors Overflow Flag Status Register</td>
<td>PMOVSCCLR_EL0</td>
<td>PMOVSR</td>
</tr>
<tr>
<td>PMOVSSSET</td>
<td>Performance Monitors Overflow Flag Status Set register</td>
<td>PMOVSSSET_EL0</td>
<td>PMOVSSSET</td>
</tr>
<tr>
<td>PMSELR</td>
<td>Performance Monitors Event Counter Selection Register</td>
<td>PMSELR_EL0</td>
<td>PMSELR</td>
</tr>
<tr>
<td>PMSWINC</td>
<td>Performance Monitors Software Increment register</td>
<td>PMSWINC_EL0</td>
<td>PMSWINC</td>
</tr>
<tr>
<td>PMUSERENR</td>
<td>Performance Monitors User Enable Register</td>
<td>PMUSERENR_EL0</td>
<td>PMUSERENR</td>
</tr>
<tr>
<td>PMXEVNCTR</td>
<td>Performance Monitors Selected Event Count Register</td>
<td>PMXEVNCTR_EL0</td>
<td>PMXEVNCTR</td>
</tr>
<tr>
<td>PMXEVTYPER</td>
<td>Performance Monitors Selected Event Type Register</td>
<td>PMXEVTYPER_EL0</td>
<td>PMXEVTYPER</td>
</tr>
</tbody>
</table>
Table K15-3 disambiguates the general names of the System registers that provide access to the Activity Monitors by Execution state.

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCR</td>
<td>Activity Monitors Control Register</td>
<td>AMCR_EL0</td>
<td>AMCR</td>
</tr>
<tr>
<td>AMCFGR</td>
<td>Activity Monitors Configuration Register</td>
<td>AMCFGR_EL0</td>
<td>AMCFGR</td>
</tr>
<tr>
<td>AMCGCR</td>
<td>Activity Monitors Counter Group Configuration Register</td>
<td>AMCGCR_EL0</td>
<td>AMCGCR</td>
</tr>
<tr>
<td>AMUSERENR</td>
<td>Activity Monitors User Enable Register</td>
<td>AMUSERENR_EL0</td>
<td>AMUSERENR</td>
</tr>
<tr>
<td>AMCNTENCLR0</td>
<td>Activity Monitors Count Enable Clear Register 0</td>
<td>AMCNTENCLR0_EL0</td>
<td>AMCNTENCLR0</td>
</tr>
<tr>
<td>AMCNTENSET0</td>
<td>Activity Monitors Count Enable Set Register 0</td>
<td>AMCNTENSET0_EL0</td>
<td>AMCNTENSET0</td>
</tr>
<tr>
<td>AMEVCTR0<n></td>
<td>Activity Monitors Event Counter Registers 0, n = 0-15</td>
<td>AMEVCTR0<n>_EL0</td>
<td>AMEVCTR0<n></td>
</tr>
<tr>
<td>AMEVTPR0<n></td>
<td>Activity Monitors Event Type Registers 0, n = 0-15</td>
<td>AMEVTPR0<n>_EL0</td>
<td>AMEVTPR0<n></td>
</tr>
<tr>
<td>AMCNTENCLR1</td>
<td>Activity Monitors Count Enable Clear Register 1</td>
<td>AMCNTENCLR1_EL0</td>
<td>AMCNTENCLR1</td>
</tr>
<tr>
<td>AMCNTENSET1</td>
<td>Activity Monitors Count Enable Set Register 1</td>
<td>AMCNTENSET1_EL0</td>
<td>AMCNTENSET1</td>
</tr>
<tr>
<td>AMEVCTR1<n></td>
<td>Activity Monitors Event Counter Registers 1, n = 0-15</td>
<td>AMEVCTR1<n>_EL0</td>
<td>AMEVCTR1<n></td>
</tr>
<tr>
<td>AMEVTPR1<n></td>
<td>Activity Monitors Event Type Registers 1, n = 0-15</td>
<td>AMEVTPR1<n>_EL0</td>
<td>AMEVTPR1<n></td>
</tr>
</tbody>
</table>

Table K15-4 disambiguates the general names of the System registers that provide access to the Performance Monitors by Execution state.

<table>
<thead>
<tr>
<th>General name</th>
<th>Short description</th>
<th>AArch64 register</th>
<th>AArch32 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTFRQ</td>
<td>Counter-timer Frequency register</td>
<td>CNTFRQ_EL0</td>
<td>CNTFRQ</td>
</tr>
<tr>
<td>CNTHLT</td>
<td>Counter-timer Hypervisor Control register</td>
<td>CNTHLT_EL2</td>
<td>CNTHLT</td>
</tr>
<tr>
<td>CNTHPT_CTL</td>
<td>Counter-timer Hypervisor Physical Timer Control register</td>
<td>CNTHPT_CTL_EL2</td>
<td>CNTHPT_CTL</td>
</tr>
<tr>
<td>CNTHPT_CVAL</td>
<td>Counter-timer Hypervisor Physical Timer CompareValue register</td>
<td>CNTHPT_CVAL_EL2</td>
<td>CNTHPT_CVAL</td>
</tr>
<tr>
<td>CNTHTP_TVAL</td>
<td>Counter-timer Hypervisor Physical Timer Value register</td>
<td>CNTHTP_TVAL_EL2</td>
<td>CNTHTP_TVAL</td>
</tr>
<tr>
<td>CNTKCTL</td>
<td>Counter-timer Kernel Control register</td>
<td>CNTKCTL_EL1</td>
<td>CNTKCTL</td>
</tr>
<tr>
<td>CNTP_CTL</td>
<td>Counter-timer Physical Timer Control register</td>
<td>CNTP_CTL_EL0</td>
<td>CNTP_CTL</td>
</tr>
<tr>
<td>CNTP_CVAL</td>
<td>Counter-timer Physical Timer CompareValue register</td>
<td>CNTP_CVAL_EL0</td>
<td>CNTP_CVAL</td>
</tr>
<tr>
<td>CNTP_TVAL</td>
<td>Counter-timer Physical Timer Value register</td>
<td>CNTP_TVAL_EL0</td>
<td>CNTP_TVAL</td>
</tr>
<tr>
<td>CNTPTC</td>
<td>Counter-timer Physical Count register</td>
<td>CNTPTC_EL0</td>
<td>CNTPTC</td>
</tr>
<tr>
<td>CNTPTS_CTL</td>
<td>Counter-timer Physical Secure Timer Control register</td>
<td>CNTPTS_CTL_EL1</td>
<td>-</td>
</tr>
<tr>
<td>CNTPTS_CVAL</td>
<td>Counter-timer Physical Secure Timer CompareValue register</td>
<td>CNTPTS_CVAL_EL1</td>
<td>-</td>
</tr>
<tr>
<td>CNTPTS_TVAL</td>
<td>Counter-timer Physical Secure Timer Value register</td>
<td>CNTPTS_TVAL_EL1</td>
<td>-</td>
</tr>
</tbody>
</table>
K15.1.2 Register name disambiguation by Exception level

Table K15-5 disambiguates the general names of the AArch64 System registers by Exception level.

<table>
<thead>
<tr>
<th>General form</th>
<th>EL0</th>
<th>EL1</th>
<th>EL2</th>
<th>EL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSR0_ELx</td>
<td>-</td>
<td>AFSR0_EL1</td>
<td>AFSR0_EL2</td>
<td>AFSR0_EL3</td>
</tr>
<tr>
<td>AFSR1_ELx</td>
<td>-</td>
<td>AFSR1_EL1</td>
<td>AFSR1_EL2</td>
<td>AFSR1_EL3</td>
</tr>
<tr>
<td>CONTEXTIDR_ELx</td>
<td>-</td>
<td>CONTEXTIDR_EL1</td>
<td>CONTEXTIDR_EL2</td>
<td>-</td>
</tr>
<tr>
<td>CPTR_ELx</td>
<td>-</td>
<td>-</td>
<td>CPTR_EL2</td>
<td>CPTR_EL3</td>
</tr>
<tr>
<td>ELR_ELx</td>
<td>-</td>
<td>ELR_EL1</td>
<td>ELR_EL2</td>
<td>ELR_EL3</td>
</tr>
<tr>
<td>ESR_ELx</td>
<td>-</td>
<td>ESR_EL1</td>
<td>ESR_EL2</td>
<td>ESR_EL3</td>
</tr>
<tr>
<td>FAR_ELx</td>
<td>-</td>
<td>FAR_EL1</td>
<td>FAR_EL2</td>
<td>FAR_EL3</td>
</tr>
<tr>
<td>MAIR_ELx</td>
<td>-</td>
<td>MAIR_EL1</td>
<td>MAIR_EL2</td>
<td>MAIR_EL3</td>
</tr>
<tr>
<td>RMR_ELx</td>
<td>-</td>
<td>RMR_EL1</td>
<td>RMR_EL2</td>
<td>RMR_EL3</td>
</tr>
<tr>
<td>RVBAR_ELx</td>
<td>-</td>
<td>RVBAR_EL1</td>
<td>RVBAR_EL2</td>
<td>RVBAR_EL3</td>
</tr>
<tr>
<td>SCTLR_ELx</td>
<td>-</td>
<td>SCTLR_EL1</td>
<td>SCTLR_EL2</td>
<td>SCTLR_EL3</td>
</tr>
<tr>
<td>SCXTNUM_ELx</td>
<td>SCXTNUM_EL0</td>
<td>SCXTNUM_EL1</td>
<td>SCXTNUM_EL2</td>
<td>SCXTNUM_EL3</td>
</tr>
<tr>
<td>SP_ELx</td>
<td>SP_EL0</td>
<td>SP_EL1</td>
<td>SP_EL2</td>
<td>SP_EL3</td>
</tr>
<tr>
<td>SPSR_ELx</td>
<td>-</td>
<td>SPSR_EL1</td>
<td>SPSR_EL2</td>
<td>SPSR_EL3</td>
</tr>
<tr>
<td>TCR_ELx</td>
<td>-</td>
<td>TCR_EL1</td>
<td>TCR_EL2</td>
<td>TCR_EL3</td>
</tr>
<tr>
<td>TFSR_ELx</td>
<td>TFSRE0_EL1</td>
<td>TFSR_EL1</td>
<td>TFSR_EL2</td>
<td>TFSR_EL3</td>
</tr>
<tr>
<td>TTBR0_ELx</td>
<td>-</td>
<td>TTBR0_EL1</td>
<td>TTBR0_EL2</td>
<td>TTBR0_EL3</td>
</tr>
<tr>
<td>TTBR1_ELx</td>
<td>-</td>
<td>TTBR1_EL1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VBAR_ELx</td>
<td>-</td>
<td>VBAR_EL1</td>
<td>VBAR_EL2</td>
<td>VBAR_EL3</td>
</tr>
</tbody>
</table>
K15.2 Alphabetical index of AArch64 registers and System instructions

This section is an index of AArch64 registers and System instructions in alphabetical order.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTLR_EL1</td>
<td>ACTLR_EL1, Auxiliary Control Register (EL1)</td>
</tr>
<tr>
<td>ACTLR_EL2</td>
<td>ACTLR_EL2, Auxiliary Control Register (EL2)</td>
</tr>
<tr>
<td>ACTLR_EL3</td>
<td>ACTLR_EL3, Auxiliary Control Register (EL3)</td>
</tr>
<tr>
<td>AFSR0_EL1</td>
<td>AFSR0_EL1, Auxiliary Fault Status Register 0 (EL1)</td>
</tr>
<tr>
<td>AFSR0_EL2</td>
<td>AFSR0_EL2, Auxiliary Fault Status Register 0 (EL2)</td>
</tr>
<tr>
<td>AFSR0_EL3</td>
<td>AFSR0_EL3, Auxiliary Fault Status Register 0 (EL3)</td>
</tr>
<tr>
<td>AFSR1_EL1</td>
<td>AFSR1_EL1, Auxiliary Fault Status Register 1 (EL1)</td>
</tr>
<tr>
<td>AFSR1_EL2</td>
<td>AFSR1_EL2, Auxiliary Fault Status Register 1 (EL2)</td>
</tr>
<tr>
<td>AFSR1_EL3</td>
<td>AFSR1_EL3, Auxiliary Fault Status Register 1 (EL3)</td>
</tr>
<tr>
<td>AIDR_EL1</td>
<td>AIDR_EL1, Auxiliary ID Register</td>
</tr>
<tr>
<td>AMAIR_EL1</td>
<td>AMAIR_EL1, Auxiliary Memory Attribute Indirection Register (EL1)</td>
</tr>
<tr>
<td>AMAIR_EL2</td>
<td>AMAIR_EL2, Auxiliary Memory Attribute Indirection Register (EL2)</td>
</tr>
<tr>
<td>AMAIR_EL3</td>
<td>AMAIR_EL3, Auxiliary Memory Attribute Indirection Register (EL3)</td>
</tr>
<tr>
<td>AMCFGR_EL0</td>
<td>AMCFGR_EL0, Activity Monitors Configuration Register</td>
</tr>
<tr>
<td>AMCG1IDR_EL0</td>
<td>AMCG1IDR_EL0, Activity Monitors Counter Group 1 Identification Register</td>
</tr>
<tr>
<td>AMCGCR_EL0</td>
<td>AMCGCR_EL0, Activity Monitors Counter Group Configuration Register</td>
</tr>
<tr>
<td>AMCNTENCLR0_EL0</td>
<td>AMCNTENCLR0_EL0, Activity Monitors Count Enable Clear Register 0</td>
</tr>
<tr>
<td>AMCNTENCLR1_EL0</td>
<td>AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1</td>
</tr>
<tr>
<td>AMCNTENSET0_EL0</td>
<td>AMCNTENSET0_EL0, Activity Monitors Count Enable Set Register 0</td>
</tr>
<tr>
<td>AMCNTENSET1_EL0</td>
<td>AMCNTENSET1_EL0, Activity Monitors Count Enable Set Register 1</td>
</tr>
<tr>
<td>AMCR_EL0</td>
<td>AMCR_EL0, Activity Monitors Control Register</td>
</tr>
<tr>
<td>AMEVCTR0<n>_EL0</td>
<td>AMEVCTR0<n>_EL0, Activity Monitors Event Counter Registers 0, n = 0 - 15</td>
</tr>
<tr>
<td>AMEVCTR1<n>_EL0</td>
<td>AMEVCTR1<n>_EL0, Activity Monitors Event Counter Registers 1, n = 0 - 15</td>
</tr>
<tr>
<td>AMEVCTVOFF0<n>_EL2</td>
<td>AMEVCTVOFF0<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 0, n = 0 - 15</td>
</tr>
<tr>
<td>AMEVCTVOFF1<n>_EL2</td>
<td>AMEVCTVOFF1<n>_EL2, Activity Monitors Event Counter Virtual Offset Registers 1, n = 0 - 15</td>
</tr>
<tr>
<td>AMEVTP</n>_EL0</td>
<td>AMEVTP</n>_EL0, Activity Monitors Event Type Registers 0, n = 0 - 15</td>
</tr>
<tr>
<td>AMEVTP1<n>_EL0</td>
<td>AMEVTP1<n>_EL0, Activity Monitors Event Type Registers 1, n = 0 - 15</td>
</tr>
<tr>
<td>AMUSERENR_EL0</td>
<td>AMUSERENR_EL0, Activity Monitors User Enable Register</td>
</tr>
</tbody>
</table>

K15.2 Alphabetical index of AArch64 registers and System instructions

This section is an index of AArch64 registers and System instructions in alphabetical order.
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>APDAKeyHi_EL1</td>
<td>APDAKeyHi_EL1, Pointer Authentication Key A for Data (bits[127:64]) on page D13-2902</td>
</tr>
<tr>
<td>APDAKeyLo_EL1</td>
<td>APDAKeyLo_EL1, Pointer Authentication Key A for Data (bits[63:0]) on page D13-2904</td>
</tr>
<tr>
<td>APDBKeyHi_EL1</td>
<td>APDBKeyHi_EL1, Pointer Authentication Key B for Data (bits[127:64]) on page D13-2906</td>
</tr>
<tr>
<td>APDBKeyLo_EL1</td>
<td>APDBKeyLo_EL1, Pointer Authentication Key B for Data (bits[63:0]) on page D13-2908</td>
</tr>
<tr>
<td>APGAKeyHi_EL1</td>
<td>APGAKeyHi_EL1, Pointer Authentication Key A for Code (bits[127:64]) on page D13-2910</td>
</tr>
<tr>
<td>APGAKeyLo_EL1</td>
<td>APGAKeyLo_EL1, Pointer Authentication Key A for Code (bits[63:0]) on page D13-2912</td>
</tr>
<tr>
<td>APIAKeyHi_EL1</td>
<td>APIAKeyHi_EL1, Pointer Authentication Key A for Instruction (bits[127:64]) on page D13-2914</td>
</tr>
<tr>
<td>APIAKeyLo_EL1</td>
<td>APIAKeyLo_EL1, Pointer Authentication Key A for Instruction (bits[63:0]) on page D13-2916</td>
</tr>
<tr>
<td>APIBKeyHi_EL1</td>
<td>APIBKeyHi_EL1, Pointer Authentication Key B for Instruction (bits[127:64]) on page D13-2918</td>
</tr>
<tr>
<td>APIBKeyLo_EL1</td>
<td>APIBKeyLo_EL1, Pointer Authentication Key B for Instruction (bits[63:0]) on page D13-2920</td>
</tr>
<tr>
<td>AT S12E0R</td>
<td>AT S12E0R, Address Translate Stages 1 and 2 EL0 Read on page C5-533</td>
</tr>
<tr>
<td>AT S12E0W</td>
<td>AT S12E0W, Address Translate Stages 1 and 2 EL0 Write on page C5-535</td>
</tr>
<tr>
<td>AT S12E1R</td>
<td>AT S12E1R, Address Translate Stages 1 and 2 EL1 Read on page C5-537</td>
</tr>
<tr>
<td>AT S12E1W</td>
<td>AT S12E1W, Address Translate Stages 1 and 2 EL1 Write on page C5-539</td>
</tr>
<tr>
<td>AT S1E0R</td>
<td>AT S1E0R, Address Translate Stage 1 EL0 Read on page C5-541</td>
</tr>
<tr>
<td>AT S1E0W</td>
<td>AT S1E0W, Address Translate Stage 1 EL0 Write on page C5-543</td>
</tr>
<tr>
<td>AT S1E1R</td>
<td>AT S1E1R, Address Translate Stage 1 EL1 Read on page C5-545</td>
</tr>
<tr>
<td>AT S1E1RP</td>
<td>AT S1E1RP, Address Translate Stage 1 EL1 Read PAN on page C5-547</td>
</tr>
<tr>
<td>AT S1E1W</td>
<td>AT S1E1W, Address Translate Stage 1 EL1 Write on page C5-549</td>
</tr>
<tr>
<td>AT S1E1WP</td>
<td>AT S1E1WP, Address Translate Stage 1 EL1 Write PAN on page C5-551</td>
</tr>
<tr>
<td>AT S1E2R</td>
<td>AT S1E2R, Address Translate Stage 1 EL2 Read on page C5-553</td>
</tr>
<tr>
<td>AT S1E2W</td>
<td>AT S1E2W, Address Translate Stage 1 EL2 Write on page C5-554</td>
</tr>
<tr>
<td>AT S1E3R</td>
<td>AT S1E3R, Address Translate Stage 1 EL3 Read on page C5-555</td>
</tr>
<tr>
<td>AT S1E3W</td>
<td>AT S1E3W, Address Translate Stage 1 EL3 Write on page C5-556</td>
</tr>
<tr>
<td>CCSIDR2_EL1</td>
<td>CCSIDR2_EL1, Current Cache Size ID Register 2 on page D13-2922</td>
</tr>
<tr>
<td>CCSIDR_EL1</td>
<td>CCSIDR_EL1, Current Cache Size ID Register on page D13-2924</td>
</tr>
<tr>
<td>CFP RCTX</td>
<td>CFP RCTX, Control Flow Prediction Restriction by Context on page C5-757</td>
</tr>
<tr>
<td>CLIDR_EL1</td>
<td>CLIDR_EL1, Cache Level ID Register on page D13-2927</td>
</tr>
<tr>
<td>CNTFRQ_EL0</td>
<td>CNTFRQ_EL0, Counter-timer Frequency register on page D13-3884</td>
</tr>
<tr>
<td>CNTHCTL_EL2</td>
<td>CNTHCTL_EL2, Counter-timer Hypervisor Control register on page D13-3886</td>
</tr>
<tr>
<td>CNTHP_CTL_EL2</td>
<td>CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register on page D13-3896</td>
</tr>
</tbody>
</table>
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTHP_CVAL_EL2</td>
<td>CNTHP_CVAL_EL2, Counter-timer Physical Timer CompareValue register (EL2) on page D13-3900</td>
</tr>
<tr>
<td>CNTHP_TVAL_EL2</td>
<td>CNTHP_TVAL_EL2, Counter-timer Physical Timer TimerValue register (EL2) on page D13-3903</td>
</tr>
<tr>
<td>CNTHPS_CTL_EL2</td>
<td>CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2) on page D13-3906</td>
</tr>
<tr>
<td>CNTHPS_CVAL_EL2</td>
<td>CNTHPS_CVAL_EL2, Counter-timer Secure Physical Timer CompareValue register (EL2) on page D13-3910</td>
</tr>
<tr>
<td>CNTHPS_TVAL_EL2</td>
<td>CNTHPS_TVAL_EL2, Counter-timer Secure Physical Timer TimerValue register (EL2) on page D13-3914</td>
</tr>
<tr>
<td>CNTHV_CTL_EL2</td>
<td>CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2) on page D13-3918</td>
</tr>
<tr>
<td>CNTHV_CVAL_EL2</td>
<td>CNTHV_CVAL_EL2, Counter-timer Virtual Timer CompareValue register (EL2) on page D13-3922</td>
</tr>
<tr>
<td>CNTHV_TVAL_EL2</td>
<td>CNTHV_TVAL_EL2, Counter-timer Virtual Timer TimerValue Register (EL2) on page D13-3925</td>
</tr>
<tr>
<td>CNTHVS_CTL_EL2</td>
<td>CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2) on page D13-3928</td>
</tr>
<tr>
<td>CNTHVS_CVAL_EL2</td>
<td>CNTHVS_CVAL_EL2, Counter-timer Secure Virtual Timer CompareValue register (EL2) on page D13-3932</td>
</tr>
<tr>
<td>CNTHVS_TVAL_EL2</td>
<td>CNTHVS_TVAL_EL2, Counter-timer Secure Virtual Timer TimerValue register (EL2) on page D13-3935</td>
</tr>
<tr>
<td>CNTKCTL_EL1</td>
<td>CNTKCTL_EL1, Counter-timer Kernel Control register on page D13-3939</td>
</tr>
<tr>
<td>CNTP_CTL_EL0</td>
<td>CNTP_CTL_EL0, Counter-timer Physical Timer Control register on page D13-3944</td>
</tr>
<tr>
<td>CNTP_CVAL_EL0</td>
<td>CNTP_CVAL_EL0, Counter-timer Physical Timer CompareValue register on page D13-3948</td>
</tr>
<tr>
<td>CNTP_TVAL_EL0</td>
<td>CNTP_TVAL_EL0, Counter-timer Physical Timer TimerValue register on page D13-3952</td>
</tr>
<tr>
<td>CNTPCT_EL0</td>
<td>CNTPCT_EL0, Counter-timer Physical Count register on page D13-3958</td>
</tr>
<tr>
<td>CNTPCTSS_EL0</td>
<td>CNTPCTSS_EL0, Counter-timer Self-Synchronized Physical Count register on page D13-3956</td>
</tr>
<tr>
<td>CNTPOFF_EL2</td>
<td>CNTPOFF_EL2, Counter-timer Physical Offset register on page D13-3962</td>
</tr>
<tr>
<td>CNTPS_CTL_EL1</td>
<td>CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register on page D13-3960</td>
</tr>
<tr>
<td>CNTPS_CVAL_EL1</td>
<td>CNTPS_CVAL_EL1, Counter-timer Physical Secure Timer CompareValue register on page D13-3964</td>
</tr>
<tr>
<td>CNTPS_TVAL_EL1</td>
<td>CNTPS_TVAL_EL1, Counter-timer Physical Secure Timer TimerValue register on page D13-3966</td>
</tr>
<tr>
<td>CNTV_CTL_EL0</td>
<td>CNTV_CTL_EL0, Counter-timer Virtual Timer Control register on page D13-3968</td>
</tr>
<tr>
<td>CNTV_CVAL_EL0</td>
<td>CNTV_CVAL_EL0, Counter-timer Virtual Timer CompareValue register on page D13-3972</td>
</tr>
<tr>
<td>CNTV_TVAL_EL0</td>
<td>CNTV_TVAL_EL0, Counter-timer Virtual Timer TimerValue register on page D13-3976</td>
</tr>
<tr>
<td>CNTVCT_EL0</td>
<td>CNTVCT_EL0, Counter-timer Virtual Count register on page D13-3981</td>
</tr>
<tr>
<td>CNTVCTSS_EL0</td>
<td>CNTVCTSS_EL0, Counter-timer Self-Synchronized Virtual Count register on page D13-3979</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>CNTVOFF_EL2</td>
<td>CNTVOFF_EL2, Counter-timer Virtual Offset register on page D13-3983</td>
</tr>
<tr>
<td>CONTEXTIDR_EL1</td>
<td>CONTEXTIDR_EL1, Context ID Register (EL1) on page D13-2930</td>
</tr>
<tr>
<td>CONTEXTIDR_EL2</td>
<td>CONTEXTIDR_EL2, Context ID Register (EL2) on page D13-2933</td>
</tr>
<tr>
<td>CPACR_EL1</td>
<td>CPACR_EL1, Architectural Feature Access Control Register on page D13-2936</td>
</tr>
<tr>
<td>CPP RCTX</td>
<td>CPP RCTX, Cache Prefetch Prediction Restriction by Context on page C5-760</td>
</tr>
<tr>
<td>CPTR_EL2</td>
<td>CPTR_EL2, Architectural Feature Trap Register (EL2) on page D13-2941</td>
</tr>
<tr>
<td>CPTR_EL3</td>
<td>CPTR_EL3, Architectural Feature Trap Register (EL3) on page D13-2949</td>
</tr>
<tr>
<td>CSSELR_EL1</td>
<td>CSSELR_EL1, Cache Size Selection Register on page D13-2953</td>
</tr>
<tr>
<td>CTR_EL0</td>
<td>CTR_EL0, Cache Type Register on page D13-2956</td>
</tr>
<tr>
<td>CurrentEL</td>
<td>CurrentEL, Current Exception Level on page C5-386</td>
</tr>
<tr>
<td>DACR32_EL2</td>
<td>DACR32_EL2, Domain Access Control Register on page D13-2959</td>
</tr>
<tr>
<td>DAIF</td>
<td>DAIF, Interrupt Mask Bits on page C5-388</td>
</tr>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1, Debug Authentication Status register on page D13-3568</td>
</tr>
<tr>
<td>DBGBCR<\n>_EL1</td>
<td>DBGBCR<\n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on page D13-3571</td>
</tr>
<tr>
<td>DBGBVRR<\n>_EL1</td>
<td>DBGBVRR<\n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on page D13-3576</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page D13-3582</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page D13-3585</td>
</tr>
<tr>
<td>DBGDTR_EL0</td>
<td>DBGDTR_EL0, Debug Data Transfer Register, half-duplex on page D13-3588</td>
</tr>
<tr>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRX_EL0, Debug Data Transfer Register, Receive on page D13-3591</td>
</tr>
<tr>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_EL0, Debug Data Transfer Register, Transmit on page D13-3593</td>
</tr>
<tr>
<td>DBGPRCR_EL1</td>
<td>DBGPRCR_EL1, Debug Power Control Register on page D13-3595</td>
</tr>
<tr>
<td>DBGVCRC32_EL2</td>
<td>DBGVCRC32_EL2, Debug Vector Catch Register on page D13-3598</td>
</tr>
<tr>
<td>DBGWCR<\n>_EL1</td>
<td>DBGWCR<\n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on page D13-3602</td>
</tr>
<tr>
<td>DBGWVRR<\n>_EL1</td>
<td>DBGWVRR<\n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on page D13-3607</td>
</tr>
<tr>
<td>DC CGDSW</td>
<td>DC CGDSW, Clean of Data and Allocation Tags by Set/Way on page C5-472</td>
</tr>
<tr>
<td>DC CGDVAC</td>
<td>DC CGDVAC, Clean of Data and Allocation Tags by VA to PoC on page C5-474</td>
</tr>
<tr>
<td>DC CGDVADP</td>
<td>DC CGDVADP, Clean of Data and Allocation Tags by VA to PoDP on page C5-476</td>
</tr>
<tr>
<td>DC CGDVAP</td>
<td>DC CGDVAP, Clean of Data and Allocation Tags by VA to PoP on page C5-478</td>
</tr>
<tr>
<td>DC CGSW</td>
<td>DC CGSW, Clean of Allocation Tags by Set/Way on page C5-480</td>
</tr>
<tr>
<td>DC CGVAC</td>
<td>DC CGVAC, Clean of Allocation Tags by VA to PoC on page C5-482</td>
</tr>
<tr>
<td>DC CGVADP</td>
<td>DC CGVADP, Clean of Allocation Tags by VA to PoDP on page C5-484</td>
</tr>
<tr>
<td>DC CGVAP</td>
<td>DC CGVAP, Clean of Allocation Tags by VA to PoP on page C5-486</td>
</tr>
</tbody>
</table>
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC CIGDSW</td>
<td>DC CIGDSW, Clean and Invalidate of Data and Allocation Tags by Set/Way on page C5-488</td>
</tr>
<tr>
<td>DC CIGDVAC</td>
<td>DC CIGDVAC, Clean and Invalidate of Data and Allocation Tags by VA to PoC on page C5-490</td>
</tr>
<tr>
<td>DC CIGSW</td>
<td>DC CIGSW, Clean and Invalidate of Allocation Tags by Set/Way on page C5-492</td>
</tr>
<tr>
<td>DC CIGVAC</td>
<td>DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC on page C5-494</td>
</tr>
<tr>
<td>DC CISW</td>
<td>DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way on page C5-496</td>
</tr>
<tr>
<td>DC CIVAC</td>
<td>DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC on page C5-498</td>
</tr>
<tr>
<td>DC CSW</td>
<td>DC CSW, Data or unified Cache line Clean by Set/Way on page C5-500</td>
</tr>
<tr>
<td>DC CVAC</td>
<td>DC CVAC, Data or unified Cache line Clean by VA to PoC on page C5-502</td>
</tr>
<tr>
<td>DC CVADP</td>
<td>DC CVADP, Data or unified Cache line Clean by VA to PoDP on page C5-504</td>
</tr>
<tr>
<td>DC CVAP</td>
<td>DC CVAP, Data or unified Cache line Clean by VA to PoP on page C5-506</td>
</tr>
<tr>
<td>DC CVAU</td>
<td>DC CVAU, Data or unified Cache line Clean by VA to PoU on page C5-508</td>
</tr>
<tr>
<td>DC GVA</td>
<td>DC GVA, Data Cache set Allocation Tag by VA on page C5-510</td>
</tr>
<tr>
<td>DC GZVA</td>
<td>DC GZVA, Data Cache set Allocation Tags and Zero by VA on page C5-512</td>
</tr>
<tr>
<td>DC IGDSW</td>
<td>DC IGDSW, Invalidate of Data and Allocation Tags by Set/Way on page C5-514</td>
</tr>
<tr>
<td>DC IGDVAC</td>
<td>DC IGDVAC, Invalidate of Data and Allocation Tags by VA to PoC on page C5-516</td>
</tr>
<tr>
<td>DC IGSW</td>
<td>DC IGSW, Invalidate of Allocation Tags by Set/Way on page C5-518</td>
</tr>
<tr>
<td>DC IGVAC</td>
<td>DC IGVAC, Invalidate of Allocation Tags by VA to PoC on page C5-520</td>
</tr>
<tr>
<td>DC ISW</td>
<td>DC ISW, Data or unified Cache line Invalidate by Set/Way on page C5-522</td>
</tr>
<tr>
<td>DC IVAC</td>
<td>DC IVAC, Data or unified Cache line Invalidate by VA to PoC on page C5-524</td>
</tr>
<tr>
<td>DC ZVA</td>
<td>DC ZVA, Data Cache Zero by VA on page C5-526</td>
</tr>
<tr>
<td>DCZID_EL0</td>
<td>DCZID_EL0, Data Cache Zero ID register on page D13-2961</td>
</tr>
<tr>
<td>DISR_EL1</td>
<td>DISR_EL1, Deferred Interrupt Status Register on page D13-3837</td>
</tr>
<tr>
<td>DIT</td>
<td>DIT, Data Independent Timing on page C5-391</td>
</tr>
<tr>
<td>DLR_EL0</td>
<td>DLR_EL0, Debug Link Register on page D13-3610</td>
</tr>
<tr>
<td>DSPSR_EL0</td>
<td>DSPSR_EL0, Debug Saved Program Status Register on page D13-3611</td>
</tr>
<tr>
<td>DVP RCTX</td>
<td>DVP RCTX, Data Value Prediction Restriction by Context on page C5-763</td>
</tr>
<tr>
<td>ELR_EL1</td>
<td>ELR_EL1, Exception Link Register (EL1) on page C5-394</td>
</tr>
<tr>
<td>ELR_EL2</td>
<td>ELR_EL2, Exception Link Register (EL2) on page C5-397</td>
</tr>
<tr>
<td>ELR_EL3</td>
<td>ELR_EL3, Exception Link Register (EL3) on page C5-400</td>
</tr>
<tr>
<td>ERRIDR_EL1</td>
<td>ERRIDR_EL1, Error Record ID Register on page D13-3840</td>
</tr>
<tr>
<td>ERRSELR_EL1</td>
<td>ERRSELR_EL1, Error Record Select Register on page D13-3842</td>
</tr>
<tr>
<td>ERXADDR_EL1</td>
<td>ERXADDR_EL1, Selected Error Record Address Register on page D13-3845</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>ERXCTRLR_EL1</td>
<td>ERXCTRLR_EL1, Selected Error Record Control Register on page D13-3848</td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td>ERXFR_EL1, Selected Error Record Feature Register on page D13-3851</td>
</tr>
<tr>
<td>ERXMISC0_EL1</td>
<td>ERXMISC0_EL1, Selected Error Record Miscellaneous Register 0 on page D13-3853</td>
</tr>
<tr>
<td>ERXMISC1_EL1</td>
<td>ERXMISC1_EL1, Selected Error Record Miscellaneous Register 1 on page D13-3856</td>
</tr>
<tr>
<td>ERXMISC2_EL1</td>
<td>ERXMISC2_EL1, Selected Error Record Miscellaneous Register 2 on page D13-3859</td>
</tr>
<tr>
<td>ERXMISC3_EL1</td>
<td>ERXMISC3_EL1, Selected Error Record Miscellaneous Register 3 on page D13-3862</td>
</tr>
<tr>
<td>ERXPFGCDN_EL1</td>
<td>ERXPFGCDN_EL1, Selected Pseudo-fault Generation Countdown register on page D13-3865</td>
</tr>
<tr>
<td>ERXPFGCTRL_EL1</td>
<td>ERXPFGCTRL_EL1, Selected Pseudo-fault Generation Control register on page D13-3868</td>
</tr>
<tr>
<td>ERXPFGF_EL1</td>
<td>ERXPFGF_EL1, Selected Pseudo-fault Generation Feature register on page D13-3871</td>
</tr>
<tr>
<td>ERXSTATUS_EL1</td>
<td>ERXSTATUS_EL1, Selected Error Record Primary Status Register on page D13-3873</td>
</tr>
<tr>
<td>ESR_EL1</td>
<td>ESR_EL1, Exception Syndrome Register (EL1) on page D13-2963</td>
</tr>
<tr>
<td>ESR_EL2</td>
<td>ESR_EL2, Exception Syndrome Register (EL2) on page D13-3003</td>
</tr>
<tr>
<td>ESR_EL3</td>
<td>ESR_EL3, Exception Syndrome Register (EL3) on page D13-3044</td>
</tr>
<tr>
<td>FAR_EL1</td>
<td>FAR_EL1, Fault Address Register (EL1) on page D13-3082</td>
</tr>
<tr>
<td>FAR_EL2</td>
<td>FAR_EL2, Fault Address Register (EL2) on page D13-3086</td>
</tr>
<tr>
<td>FAR_EL3</td>
<td>FAR_EL3, Fault Address Register (EL3) on page D13-3090</td>
</tr>
<tr>
<td>FPCR</td>
<td>FPCR, Floating-point Control Register on page C5-402</td>
</tr>
<tr>
<td>FPEXC32_EL2</td>
<td>FPEXC32_EL2, Floating-Point Exception Control register on page D13-3092</td>
</tr>
<tr>
<td>FPSR</td>
<td>FPSR, Floating-point Status Register on page C5-407</td>
</tr>
<tr>
<td>GCR_EL1</td>
<td>GCR_EL1, Tag Control Register on page D13-3098</td>
</tr>
<tr>
<td>GMID_EL1</td>
<td>GMID_EL1, Multiple tag transfer ID register on page D13-3100</td>
</tr>
<tr>
<td>HACR_EL2</td>
<td>HACR_EL2, Hypervisor Auxiliary Control Register on page D13-3101</td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register on page D13-3103</td>
</tr>
<tr>
<td>HCR_EL2</td>
<td>HCR_EL2, Hypervisor Configuration Register on page D13-3115</td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register on page D13-3144</td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register on page D13-3160</td>
</tr>
<tr>
<td>HFGITR_EL2</td>
<td>HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register on page D13-3176</td>
</tr>
<tr>
<td>HFGTR_EL2</td>
<td>HFGTR_EL2, Hypervisor Fine-Grained Read Trap Register on page D13-3191</td>
</tr>
<tr>
<td>HFGWTR_EL2</td>
<td>HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register on page D13-3204</td>
</tr>
<tr>
<td>HPFAR_EL2</td>
<td>HPFAR_EL2, Hypervisor IPA Fault Address Register on page D13-3215</td>
</tr>
<tr>
<td>HSTR_EL2</td>
<td>HSTR_EL2, Hypervisor System Trap Register on page D13-3218</td>
</tr>
<tr>
<td>IC IALLU</td>
<td>IC IALLU, Instruction Cache Invalidate All to PoU on page C5-528</td>
</tr>
</tbody>
</table>
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC IALLUIS</td>
<td>IC IALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable on page C5-529</td>
</tr>
<tr>
<td>IC IVAU</td>
<td>IC IVAU, Instruction Cache line Invalidate by VA to PoU on page C5-530</td>
</tr>
<tr>
<td>ID_AA64AFR0_EL1</td>
<td>ID_AA64AFR0_EL1, AArch64 Auxiliary Feature Register 0 on page D13-3221</td>
</tr>
<tr>
<td>ID_AA64AFR1_EL1</td>
<td>ID_AA64AFR1_EL1, AArch64 Auxiliary Feature Register 1 on page D13-3223</td>
</tr>
<tr>
<td>ID_AA64DFR0_EL1</td>
<td>ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0 on page D13-3224</td>
</tr>
<tr>
<td>ID_AA64DFR1_EL1</td>
<td>ID_AA64DFR1_EL1, AArch64 Debug Feature Register 1 on page D13-3228</td>
</tr>
<tr>
<td>ID_AA64ISAR0_EL1</td>
<td>ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0 on page D13-3229</td>
</tr>
<tr>
<td>ID_AA64ISAR1_EL1</td>
<td>ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 on page D13-3233</td>
</tr>
<tr>
<td>ID_AA64MMFR0_EL1</td>
<td>ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0 on page D13-3238</td>
</tr>
<tr>
<td>ID_AA64MMFR1_EL1</td>
<td>ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1 on page D13-3242</td>
</tr>
<tr>
<td>ID_AA64MMFR2_EL1</td>
<td>ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2 on page D13-3245</td>
</tr>
<tr>
<td>ID_AA64PFR0_EL1</td>
<td>ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0 on page D13-3250</td>
</tr>
<tr>
<td>ID_AA64PFR1_EL1</td>
<td>ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 on page D13-3255</td>
</tr>
<tr>
<td>ID_AFR0_EL1</td>
<td>ID_AFR0_EL1, AArch32 Auxiliary Feature Register 0 on page D13-3258</td>
</tr>
<tr>
<td>ID_DFR0_EL1</td>
<td>ID_DFR0_EL1, AArch32 Debug Feature Register 0 on page D13-3260</td>
</tr>
<tr>
<td>ID_DFR1_EL1</td>
<td>ID_DFR1_EL1, Debug Feature Register 1 on page D13-3264</td>
</tr>
<tr>
<td>ID_ISAR0_EL1</td>
<td>ID_ISAR0_EL1, AArch32 Instruction Set Attribute Register 0 on page D13-3266</td>
</tr>
<tr>
<td>ID_ISAR1_EL1</td>
<td>ID_ISAR1_EL1, AArch32 Instruction Set Attribute Register 1 on page D13-3269</td>
</tr>
<tr>
<td>ID_ISAR2_EL1</td>
<td>ID_ISAR2_EL1, AArch32 Instruction Set Attribute Register 2 on page D13-3272</td>
</tr>
<tr>
<td>ID_ISAR3_EL1</td>
<td>ID_ISAR3_EL1, AArch32 Instruction Set Attribute Register 3 on page D13-3275</td>
</tr>
<tr>
<td>ID_ISAR4_EL1</td>
<td>ID_ISAR4_EL1, AArch32 Instruction Set Attribute Register 4 on page D13-3278</td>
</tr>
<tr>
<td>ID_ISAR5_EL1</td>
<td>ID_ISAR5_EL1, AArch32 Instruction Set Attribute Register 5 on page D13-3281</td>
</tr>
<tr>
<td>ID_ISAR6_EL1</td>
<td>ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6 on page D13-3284</td>
</tr>
<tr>
<td>ID_MMFR0_EL1</td>
<td>ID_MMFR0_EL1, AArch32 Memory Model Feature Register 0 on page D13-3287</td>
</tr>
<tr>
<td>ID_MMFR1_EL1</td>
<td>ID_MMFR1_EL1, AArch32 Memory Model Feature Register 1 on page D13-3290</td>
</tr>
<tr>
<td>ID_MMFR2_EL1</td>
<td>ID_MMFR2_EL1, AArch32 Memory Model Feature Register 2 on page D13-3294</td>
</tr>
<tr>
<td>ID_MMFR3_EL1</td>
<td>ID_MMFR3_EL1, AArch32 Memory Model Feature Register 3 on page D13-3298</td>
</tr>
<tr>
<td>ID_MMFR4_EL1</td>
<td>ID_MMFR4_EL1, AArch32 Memory Model Feature Register 4 on page D13-3302</td>
</tr>
<tr>
<td>ID_MMFR5_EL1</td>
<td>ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5 on page D13-3306</td>
</tr>
<tr>
<td>ID_PFR0_EL1</td>
<td>ID_PFR0_EL1, AArch32 Processor Feature Register 0 on page D13-3308</td>
</tr>
<tr>
<td>ID_PFR1_EL1</td>
<td>ID_PFR1_EL1, AArch32 Processor Feature Register 1 on page D13-3311</td>
</tr>
<tr>
<td>ID_PFR2_EL1</td>
<td>ID_PFR2_EL1, AArch32 Processor Feature Register 2 on page D13-3315</td>
</tr>
</tbody>
</table>
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFSR32_EL2</td>
<td>IFSR32_EL2, Instruction Fault Status Register (EL2) on page D13-3317</td>
</tr>
<tr>
<td>ISR_EL1</td>
<td>ISR_EL1, Interrupt Register on page D13-3322</td>
</tr>
<tr>
<td>LORC_EL1</td>
<td>LORC_EL1, LORegion Control (EL1) on page D13-3324</td>
</tr>
<tr>
<td>LOREA_EL1</td>
<td>LOREA_EL1, LORegion End Address (EL1) on page D13-3327</td>
</tr>
<tr>
<td>LORID_EL1</td>
<td>LORID_EL1, LORegionID (EL1) on page D13-3330</td>
</tr>
<tr>
<td>LORN_EL1</td>
<td>LORN_EL1, LORegion Number (EL1) on page D13-3332</td>
</tr>
<tr>
<td>LORSA_EL1</td>
<td>LORSA_EL1, LORegion Start Address (EL1) on page D13-3335</td>
</tr>
<tr>
<td>MAIR_EL1</td>
<td>MAIR_EL1, Memory Attribute Indirection Register (EL1) on page D13-3338</td>
</tr>
<tr>
<td>MAIR_EL2</td>
<td>MAIR_EL2, Memory Attribute Indirection Register (EL2) on page D13-3342</td>
</tr>
<tr>
<td>MAIR_EL3</td>
<td>MAIR_EL3, Memory Attribute Indirection Register (EL3) on page D13-3346</td>
</tr>
<tr>
<td>MDCCINT_EL1</td>
<td>MDCCINT_EL1, Monitor DCC Interrupt Enable Register on page D13-3618</td>
</tr>
<tr>
<td>MDCCSR_EL0</td>
<td>MDCCSR_EL0, Monitor DCC Status Register on page D13-3621</td>
</tr>
<tr>
<td>MDCR_EL2</td>
<td>MDCR_EL2, Monitor Debug Configuration Register (EL2) on page D13-3624</td>
</tr>
<tr>
<td>MDCR_EL3</td>
<td>MDCR_EL3, Monitor Debug Configuration Register (EL3) on page D13-3634</td>
</tr>
<tr>
<td>MDRAR_EL1</td>
<td>MDRAR_EL1, Monitor Debug ROM Address Register on page D13-3643</td>
</tr>
<tr>
<td>MDSR_EL1</td>
<td>MDSR_EL1, Monitor Debug System Control Register on page D13-3645</td>
</tr>
<tr>
<td>MIDR_EL1</td>
<td>MIDR_EL1, Main ID Register on page D13-3349</td>
</tr>
<tr>
<td>MPIDR_EL1</td>
<td>MPIDR_EL1, Multiprocessor Affinity Register on page D13-3352</td>
</tr>
<tr>
<td>MVFR0_EL1</td>
<td>MVFR0_EL1, AArch32 Media and VFP Feature Register 0 on page D13-3354</td>
</tr>
<tr>
<td>MVFR1_EL1</td>
<td>MVFR1_EL1, AArch32 Media and VFP Feature Register 1 on page D13-3358</td>
</tr>
<tr>
<td>MVFR2_EL1</td>
<td>MVFR2_EL1, AArch32 Media and VFP Feature Register 2 on page D13-3362</td>
</tr>
<tr>
<td>NZCV</td>
<td>NZCV, Condition Flags on page C5-412</td>
</tr>
<tr>
<td>OSDLR_EL1</td>
<td>OSDLR_EL1, OS Double Lock Register on page D13-3651</td>
</tr>
<tr>
<td>OSDTRRX_EL1</td>
<td>OSDTRRX_EL1, OS Lock Data Transfer Register, Receive on page D13-3654</td>
</tr>
<tr>
<td>OSDTRTX_EL1</td>
<td>OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit on page D13-3657</td>
</tr>
<tr>
<td>OSECCR_EL1</td>
<td>OSECCR_EL1, OS Lock Exception Catch Control Register on page D13-3660</td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1, OS Lock Access Register on page D13-3662</td>
</tr>
<tr>
<td>OSLSR_EL1</td>
<td>OSLSR_EL1, OS Lock Status Register on page D13-3664</td>
</tr>
<tr>
<td>PAN</td>
<td>PAN, Privileged Access Never on page C5-414</td>
</tr>
<tr>
<td>PAR_EL1</td>
<td>PAR_EL1, Physical Address Register on page D13-3364</td>
</tr>
<tr>
<td>PMBIDR_EL1</td>
<td>PMBIDR_EL1, Profiling Buffer ID Register on page D13-3785</td>
</tr>
<tr>
<td>PMBLIMITR_EL1</td>
<td>PMBLIMITR_EL1, Profiling Buffer Limit Address Register on page D13-3787</td>
</tr>
</tbody>
</table>
Table K15-6 Alphabetical index of AArch64 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMBPTR_EL1</td>
<td>PMBPTR_EL1, Profiling Buffer Write Pointer Register on page D13-3790</td>
</tr>
<tr>
<td>PMBSR_EL1</td>
<td>PMBSR_EL1, Profiling Buffer Status/syndrome Register on page D13-3793</td>
</tr>
<tr>
<td>PMCCFILTR_EL0</td>
<td>PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register on page D13-3679</td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>PMCCNTR_EL0, Performance Monitors Cycle Count Register on page D13-3684</td>
</tr>
<tr>
<td>PMCEID0_EL0</td>
<td>PMCEID0_EL0, Performance Monitors Common Event Identification register 0 on page D13-3690</td>
</tr>
<tr>
<td>PMCEID1_EL0</td>
<td>PMCEID1_EL0, Performance Monitors Common Event Identification register 1 on page D13-3690</td>
</tr>
<tr>
<td>PMCNTENCLR_EL0</td>
<td>PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register on page D13-3693</td>
</tr>
<tr>
<td>PMCNTENSEL_EL0</td>
<td>PMCNTENSEL_EL0, Performance Monitors Count Enable Set register on page D13-3696</td>
</tr>
<tr>
<td>PMCR_EL0</td>
<td>PMCR_EL0, Performance Monitors Control Register on page D13-3699</td>
</tr>
<tr>
<td>PMEVCNTR<n>_EL0</td>
<td>PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30 on page D13-3705</td>
</tr>
<tr>
<td>PMEVTYPER<n>_EL0</td>
<td>PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30 on page D13-3709</td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td>PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register on page D13-3715</td>
</tr>
<tr>
<td>PMINTENSEL_EL1</td>
<td>PMINTENSEL_EL1, Performance Monitors Interrupt Enable Set register on page D13-3718</td>
</tr>
<tr>
<td>PMMIR_EL1</td>
<td>PMMIR_EL1, Performance Monitors Machine Identification Register on page D13-3721</td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td>PMOVSCLR_EL0, Performance Monitors Overflow Flag Status Clear Register on page D13-3723</td>
</tr>
<tr>
<td>PMOVSSSET_EL0</td>
<td>PMOVSSSET_EL0, Performance Monitors Overflow Flag Status Set register on page D13-3726</td>
</tr>
<tr>
<td>PMSCR_EL1</td>
<td>PMSCR_EL1, Statistical Profiling Control Register (EL1) on page D13-3799</td>
</tr>
<tr>
<td>PMSCR_EL2</td>
<td>PMSCR_EL2, Statistical Profiling Control Register (EL2) on page D13-3805</td>
</tr>
<tr>
<td>PMSELR_EL0</td>
<td>PMSELR_EL0, Performance Monitors Event Counter Selection Register on page D13-3729</td>
</tr>
<tr>
<td>PMSEVFR_EL1</td>
<td>PMSEVFR_EL1, Sampling Event Filter Register on page D13-3810</td>
</tr>
<tr>
<td>PMSCFR_EL1</td>
<td>PMSCFR_EL1, Sampling Filter Control Register on page D13-3820</td>
</tr>
<tr>
<td>PMSICR_EL1</td>
<td>PMSICR_EL1, Sampling Interval Counter Register on page D13-3824</td>
</tr>
<tr>
<td>PMSIDR_EL1</td>
<td>PMSIDR_EL1, Sampling Profiling ID Register on page D13-3827</td>
</tr>
<tr>
<td>PMSIRR_EL1</td>
<td>PMSIRR_EL1, Sampling Interval Reload Register on page D13-3830</td>
</tr>
<tr>
<td>PMSLATFR_EL1</td>
<td>PMSLATFR_EL1, Sampling Latency Filter Register on page D13-3833</td>
</tr>
<tr>
<td>PMSWINC_EL0</td>
<td>PMSWINC_EL0, Performance Monitors Software Increment register on page D13-3732</td>
</tr>
<tr>
<td>PMUSERENR_EL0</td>
<td>PMUSERENR_EL0, Performance Monitors User Enable Register on page D13-3734</td>
</tr>
<tr>
<td>PMXEVCNTR_EL0</td>
<td>PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register on page D13-3738</td>
</tr>
<tr>
<td>PMXEVTYPE_EL0</td>
<td>PMXEVTYPE_EL0, Performance Monitors Selected Event Type Register on page D13-3742</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>REVIDR_EL1</td>
<td>REVIDR_EL1, Revision ID Register on page D13-3369</td>
</tr>
<tr>
<td>RGSR_EL1</td>
<td>RGSR_EL1, Random Allocation Tag Seed Register on page D13-3370</td>
</tr>
<tr>
<td>RMR_EL1</td>
<td>RMR_EL1, Reset Management Register (EL1) on page D13-3372</td>
</tr>
<tr>
<td>RMR_EL2</td>
<td>RMR_EL2, Reset Management Register (EL2) on page D13-3374</td>
</tr>
<tr>
<td>RMR_EL3</td>
<td>RMR_EL3, Reset Management Register (EL3) on page D13-3376</td>
</tr>
<tr>
<td>RNDR</td>
<td>RNDR, Random Number on page D13-3378</td>
</tr>
<tr>
<td>RNDRRS</td>
<td>RNDRRS, Reseeded Random Number on page D13-3379</td>
</tr>
<tr>
<td>RVBAR_EL1</td>
<td>RVBAR_EL1, Reset Vector Base Address Register (if EL2 and EL3 not implemented) on page D13-3380</td>
</tr>
<tr>
<td>RVBAR_EL2</td>
<td>RVBAR_EL2, Reset Vector Base Address Register (if EL3 not implemented) on page D13-3381</td>
</tr>
<tr>
<td>RVBAR_EL3</td>
<td>RVBAR_EL3, Reset Vector Base Address Register (if EL3 implemented) on page D13-3382</td>
</tr>
<tr>
<td>S3_<op1><Cn><Cm>_<op2></td>
<td>S3_<op1><Cn><Cm>_<op2>, IMPLEMENTATION DEFINED registers on page D13-3383</td>
</tr>
<tr>
<td>SCR_EL3</td>
<td>SCR_EL3, Secure Configuration Register on page D13-3385</td>
</tr>
<tr>
<td>SCTLR_EL1</td>
<td>SCTLR_EL1, System Control Register (EL1) on page D13-3396</td>
</tr>
<tr>
<td>SCTLR_EL2</td>
<td>SCTLR_EL2, System Control Register (EL2) on page D13-3412</td>
</tr>
<tr>
<td>SCTLR_EL3</td>
<td>SCTLR_EL3, System Control Register (EL3) on page D13-3433</td>
</tr>
<tr>
<td>SCXTNUM_EL0</td>
<td>SCXTNUM_EL0, EL0 Read/Write Software Context Number on page D13-3441</td>
</tr>
<tr>
<td>SCXTNUM_EL1</td>
<td>SCXTNUM_EL1, EL1 Read/Write Software Context Number on page D13-3444</td>
</tr>
<tr>
<td>SCXTNUM_EL2</td>
<td>SCXTNUM_EL2, EL2 Read/Write Software Context Number on page D13-3448</td>
</tr>
<tr>
<td>SCXTNUM_EL3</td>
<td>SCXTNUM_EL3, EL3 Read/Write Software Context Number on page D13-3451</td>
</tr>
<tr>
<td>SDER32_EL2</td>
<td>SDER32_EL2, AArch32 Secure Debug Enable Register on page D13-3666</td>
</tr>
<tr>
<td>SDER32_EL3</td>
<td>SDER32_EL3, AArch32 Secure Debug Enable Register on page D13-3668</td>
</tr>
<tr>
<td>SP_EL0</td>
<td>SP_EL0, Stack Pointer (EL0) on page C5-416</td>
</tr>
<tr>
<td>SP_EL1</td>
<td>SP_EL1, Stack Pointer (EL1) on page C5-418</td>
</tr>
<tr>
<td>SP_EL2</td>
<td>SP_EL2, Stack Pointer (EL2) on page C5-420</td>
</tr>
<tr>
<td>SP_EL3</td>
<td>SP_EL3, Stack Pointer (EL3) on page C5-422</td>
</tr>
<tr>
<td>SPSel</td>
<td>SPSel, Stack Pointer Select on page C5-423</td>
</tr>
<tr>
<td>SPSR_abt</td>
<td>SPSR_abt, Saved Program Status Register (Abort mode) on page C5-425</td>
</tr>
<tr>
<td>SPSR_EL1</td>
<td>SPSR_EL1, Saved Program Status Register (EL1) on page C5-429</td>
</tr>
<tr>
<td>SPSR_EL2</td>
<td>SPSR_EL2, Saved Program Status Register (EL2) on page C5-438</td>
</tr>
<tr>
<td>SPSR_EL3</td>
<td>SPSR_EL3, Saved Program Status Register (EL3) on page C5-446</td>
</tr>
<tr>
<td>SPSR_fiq</td>
<td>SPSR_fiq, Saved Program Status Register (FIQ mode) on page C5-453</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>SPSR_irq</td>
<td>SPSR_irq, Saved Program Status Register (IRQ mode) on page C5-457</td>
</tr>
<tr>
<td>SPSR_und</td>
<td>SPSR_und, Saved Program Status Register (Undefined mode) on page C5-461</td>
</tr>
<tr>
<td>SSBS</td>
<td>SSBS, Speculative Store Bypass Safe on page C5-465</td>
</tr>
<tr>
<td>TCO</td>
<td>TCO, Tag Check Override on page C5-467</td>
</tr>
<tr>
<td>TCR_EL1</td>
<td>TCR_EL1, Translation Control Register (EL1) on page D13-3453</td>
</tr>
<tr>
<td>TCR_EL2</td>
<td>TCR_EL2, Translation Control Register (EL2) on page D13-3466</td>
</tr>
<tr>
<td>TCR_EL3</td>
<td>TCR_EL3, Translation Control Register (EL3) on page D13-3483</td>
</tr>
<tr>
<td>TFSR_EL1</td>
<td>TFSR_EL1, Tag Fault Status Register (EL1) on page D13-3491</td>
</tr>
<tr>
<td>TFSR_EL2</td>
<td>TFSR_EL2, Tag Fault Status Register (EL2) on page D13-3496</td>
</tr>
<tr>
<td>TFSR_EL3</td>
<td>TFSR_EL3, Tag Fault Status Register (EL3) on page D13-3500</td>
</tr>
<tr>
<td>TFSRE0_EL1</td>
<td>TFSRE0_EL1, Tag Fault Status Register (EL0) on page D13-3489</td>
</tr>
<tr>
<td>TLBI ALLE1</td>
<td>TLBI ALLE1, TLB Invalidate All, EL1 on page C5-558</td>
</tr>
<tr>
<td>TLBI ALLE1IS</td>
<td>TLBI ALLE1IS, TLB Invalidate All, EL1, Inner Shareable on page C5-560</td>
</tr>
<tr>
<td>TLBI ALLE1OS</td>
<td>TLBI ALLE1OS, TLB Invalidate All, EL1, Outer Shareable on page C5-562</td>
</tr>
<tr>
<td>TLBI ALLE2</td>
<td>TLBI ALLE2, TLB Invalidate All, EL2 on page C5-564</td>
</tr>
<tr>
<td>TLBI ALLE2IS</td>
<td>TLBI ALLE2IS, TLB Invalidate All, EL2, Inner Shareable on page C5-565</td>
</tr>
<tr>
<td>TLBI ALLE2OS</td>
<td>TLBI ALLE2OS, TLB Invalidate All, EL2, Outer Shareable on page C5-566</td>
</tr>
<tr>
<td>TLBI ALLE3</td>
<td>TLBI ALLE3, TLB Invalidate All, EL3 on page C5-567</td>
</tr>
<tr>
<td>TLBI ALLE3IS</td>
<td>TLBI ALLE3IS, TLB Invalidate All, EL3, Inner Shareable on page C5-568</td>
</tr>
<tr>
<td>TLBI ALLE3OS</td>
<td>TLBI ALLE3OS, TLB Invalidate All, EL3, Outer Shareable on page C5-569</td>
</tr>
<tr>
<td>TLBI ASIDE1</td>
<td>TLBI ASIDE1, TLB Invalidate by ASID, EL1 on page C5-570</td>
</tr>
<tr>
<td>TLBI ASIDE1IS</td>
<td>TLBI ASIDE1IS, TLB Invalidate by ASID, EL1, Inner Shareable on page C5-572</td>
</tr>
<tr>
<td>TLBI ASIDE1OS</td>
<td>TLBI ASIDE1OS, TLB Invalidate by ASID, EL1, Outer Shareable on page C5-574</td>
</tr>
<tr>
<td>TLBI IPAS2E1</td>
<td>TLBI IPAS2E1, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1 on page C5-576</td>
</tr>
<tr>
<td>TLBI IPAS2E1IS</td>
<td>TLBI IPAS2E1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable on page C5-579</td>
</tr>
<tr>
<td>TLBI IPAS2E1OS</td>
<td>TLBI IPAS2E1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable on page C5-582</td>
</tr>
<tr>
<td>TLBI IPAS2LE1</td>
<td>TLBI IPAS2LE1, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1 on page C5-585</td>
</tr>
<tr>
<td>TLBI IPAS2LE1IS</td>
<td>TLBI IPAS2LE1IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable on page C5-588</td>
</tr>
<tr>
<td>TLBI IPAS2LE1OS</td>
<td>TLBI IPAS2LE1OS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable on page C5-591</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>TLBI RIPAS2E1</td>
<td>TLBI RIPAS2E1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1 on page C5-594</td>
</tr>
<tr>
<td>TLBI RIPAS2E1IS</td>
<td>TLBI RIPAS2E1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable on page C5-597</td>
</tr>
<tr>
<td>TLBI RIPAS2E1OS</td>
<td>TLBI RIPAS2E1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable on page C5-600</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1</td>
<td>TLBI RIPAS2LE1, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1 on page C5-603</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1IS</td>
<td>TLBI RIPAS2LE1IS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable on page C5-606</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1OS</td>
<td>TLBI RIPAS2LE1OS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable on page C5-609</td>
</tr>
<tr>
<td>TLBI RVAAE1</td>
<td>TLBI RVAAE1, TLB Range Invalidate by VA, All ASID, EL1 on page C5-612</td>
</tr>
<tr>
<td>TLBI RVAAE1IS</td>
<td>TLBI RVAAE1IS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable on page C5-615</td>
</tr>
<tr>
<td>TLBI RVAAE1OS</td>
<td>TLBI RVAAE1OS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable on page C5-618</td>
</tr>
<tr>
<td>TLBI RVAALE1</td>
<td>TLBI RVAALE1, TLB Range Invalidate by VA, All ASID, Last level, EL1 on page C5-621</td>
</tr>
<tr>
<td>TLBI RVAALE1IS</td>
<td>TLBI RVAALE1IS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable on page C5-624</td>
</tr>
<tr>
<td>TLBI RVAALE1OS</td>
<td>TLBI RVAALE1OS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable on page C5-627</td>
</tr>
<tr>
<td>TLBI RVAE1</td>
<td>TLBI RVAE1, TLB Range Invalidate by VA, EL1 on page C5-630</td>
</tr>
<tr>
<td>TLBI RVAE1IS</td>
<td>TLBI RVAE1IS, TLB Range Invalidate by VA, EL1, Inner Shareable on page C5-633</td>
</tr>
<tr>
<td>TLBI RVAE1OS</td>
<td>TLBI RVAE1OS, TLB Range Invalidate by VA, EL1, Outer Shareable on page C5-636</td>
</tr>
<tr>
<td>TLBI RVAE2</td>
<td>TLBI RVAE2, TLB Range Invalidate by VA, EL2 on page C5-639</td>
</tr>
<tr>
<td>TLBI RVAE2IS</td>
<td>TLBI RVAE2IS, TLB Range Invalidate by VA, EL2, Inner Shareable on page C5-642</td>
</tr>
<tr>
<td>TLBI RVAE2OS</td>
<td>TLBI RVAE2OS, TLB Range Invalidate by VA, EL2, Outer Shareable on page C5-645</td>
</tr>
<tr>
<td>TLBI RVAE3</td>
<td>TLBI RVAE3, TLB Range Invalidate by VA, EL3 on page C5-648</td>
</tr>
<tr>
<td>TLBI RVAE3IS</td>
<td>TLBI RVAE3IS, TLB Range Invalidate by VA, EL3, Inner Shareable on page C5-650</td>
</tr>
<tr>
<td>TLBI RVAE3OS</td>
<td>TLBI RVAE3OS, TLB Range Invalidate by VA, EL3, Outer Shareable on page C5-652</td>
</tr>
<tr>
<td>TLBI RVALE1</td>
<td>TLBI RVALE1, TLB Range Invalidate by VA, Last level, EL1 on page C5-654</td>
</tr>
<tr>
<td>TLBI RVALE1IS</td>
<td>TLBI RVALE1IS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable on page C5-657</td>
</tr>
<tr>
<td>TLBI RVALE1OS</td>
<td>TLBI RVALE1OS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable on page C5-660</td>
</tr>
<tr>
<td>TLBI RVALE2</td>
<td>TLBI RVALE2, TLB Range Invalidate by VA, Last level, EL2 on page C5-663</td>
</tr>
<tr>
<td>TLBI RVALE2IS</td>
<td>TLBI RVALE2IS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable on page C5-666</td>
</tr>
<tr>
<td>TLBI RVALE2OS</td>
<td>TLBI RVALE2OS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable on page C5-669</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>TLBI RVALE3</td>
<td>TLBI RVALE3, TLB Range Invalidate by VA, Last level, EL3 on page C5-672</td>
</tr>
<tr>
<td>TLBI RVALE3IS</td>
<td>TLBI RVALE3IS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable on page C5-674</td>
</tr>
<tr>
<td>TLBI RVALE3OS</td>
<td>TLBI RVALE3OS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable on page C5-676</td>
</tr>
<tr>
<td>TLBI VAAE1</td>
<td>TLBI VAAE1, TLB Invalidate by VA, All ASID, EL1 on page C5-678</td>
</tr>
<tr>
<td>TLBI VAAE1IS</td>
<td>TLBI VAAE1IS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable on page C5-681</td>
</tr>
<tr>
<td>TLBI VAAE1OS</td>
<td>TLBI VAAE1OS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable on page C5-684</td>
</tr>
<tr>
<td>TLBI VAALE1</td>
<td>TLBI VAALE1, TLB Invalidate by VA, All ASID, Last level, EL1 on page C5-687</td>
</tr>
<tr>
<td>TLBI VAAE1IS</td>
<td>TLBI VAAE1IS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable on page C5-690</td>
</tr>
<tr>
<td>TLBI VAAE1OS</td>
<td>TLBI VAAE1OS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable on page C5-693</td>
</tr>
<tr>
<td>TLBI VAE1</td>
<td>TLBI VAE1, TLB Invalidate by VA, EL1 on page C5-696</td>
</tr>
<tr>
<td>TLBI VAE1IS</td>
<td>TLBI VAE1IS, TLB Invalidate by VA, EL1, Inner Shareable on page C5-699</td>
</tr>
<tr>
<td>TLBI VAE1OS</td>
<td>TLBI VAE1OS, TLB Invalidate by VA, EL1, Outer Shareable on page C5-702</td>
</tr>
<tr>
<td>TLBI VAE2</td>
<td>TLBI VAE2, TLB Invalidate by VA, EL2 on page C5-705</td>
</tr>
<tr>
<td>TLBI VAE2IS</td>
<td>TLBI VAE2IS, TLB Invalidate by VA, EL2, Inner Shareable on page C5-708</td>
</tr>
<tr>
<td>TLBI VAE2OS</td>
<td>TLBI VAE2OS, TLB Invalidate by VA, EL2, Outer Shareable on page C5-711</td>
</tr>
<tr>
<td>TLBI VAE3</td>
<td>TLBI VAE3, TLB Invalidate by VA, EL3 on page C5-714</td>
</tr>
<tr>
<td>TLBI VAE3IS</td>
<td>TLBI VAE3IS, TLB Invalidate by VA, EL3, Inner Shareable on page C5-716</td>
</tr>
<tr>
<td>TLBI VAE3OS</td>
<td>TLBI VAE3OS, TLB Invalidate by VA, EL3, Outer Shareable on page C5-718</td>
</tr>
<tr>
<td>TLBI VALE1</td>
<td>TLBI VALE1, TLB Invalidate by VA, Last level, EL1 on page C5-720</td>
</tr>
<tr>
<td>TLBI VALE1IS</td>
<td>TLBI VALE1IS, TLB Invalidate by VA, Last level, EL1, Inner Shareable on page C5-723</td>
</tr>
<tr>
<td>TLBI VALE1OS</td>
<td>TLBI VALE1OS, TLB Invalidate by VA, Last level, EL1, Outer Shareable on page C5-726</td>
</tr>
<tr>
<td>TLBI VALE2</td>
<td>TLBI VALE2, TLB Invalidate by VA, Last level, EL2 on page C5-729</td>
</tr>
<tr>
<td>TLBI VALE2IS</td>
<td>TLBI VALE2IS, TLB Invalidate by VA, Last level, EL2, Inner Shareable on page C5-732</td>
</tr>
<tr>
<td>TLBI VALE2OS</td>
<td>TLBI VALE2OS, TLB Invalidate by VA, Last level, EL2, Outer Shareable on page C5-735</td>
</tr>
<tr>
<td>TLBI VALE3</td>
<td>TLBI VALE3, TLB Invalidate by VA, Last level, EL3 on page C5-738</td>
</tr>
<tr>
<td>TLBI VALE3IS</td>
<td>TLBI VALE3IS, TLB Invalidate by VA, Last level, EL3, Inner Shareable on page C5-740</td>
</tr>
<tr>
<td>TLBI VALE3OS</td>
<td>TLBI VALE3OS, TLB Invalidate by VA, Last level, EL3, Outer Shareable on page C5-742</td>
</tr>
<tr>
<td>TLBI VMALLE1</td>
<td>TLBI VMALLE1, TLB Invalidate by VMID, All at stage 1, EL1 on page C5-744</td>
</tr>
<tr>
<td>TLBI VMALLE1IS</td>
<td>TLBI VMALLE1IS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable on page C5-746</td>
</tr>
<tr>
<td>TLBI VMALLE1OS</td>
<td>TLBI VMALLE1OS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable on page C5-748</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>TLBI VMALLS12E1</td>
<td>TLBI VMALLS12E1, TLB Invalidate by VMID, All at Stage 1 and 2, EL1 on page C5-750</td>
</tr>
<tr>
<td>TLBI VMALLS12E1IS</td>
<td>TLBI VMALLS12E1IS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable on page C5-752</td>
</tr>
<tr>
<td>TLBI VMALLS12E1OS</td>
<td>TLBI VMALLS12E1OS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable on page C5-754</td>
</tr>
<tr>
<td>TPI DR_EL0</td>
<td>TPI DR_EL0, EL0 Read/Write Software Thread ID Register on page D13-3502</td>
</tr>
<tr>
<td>TPI DR_EL1</td>
<td>TPI DR_EL1, EL1 Software Thread ID Register on page D13-3504</td>
</tr>
<tr>
<td>TPI DR_EL2</td>
<td>TPI DR_EL2, EL2 Software Thread ID Register on page D13-3506</td>
</tr>
<tr>
<td>TPI DR_EL3</td>
<td>TPI DR_EL3, EL3 Software Thread ID Register on page D13-3508</td>
</tr>
<tr>
<td>TPI DRRO_EL0</td>
<td>TPI DRRO_EL0, EL0 Read-Only Software Thread ID Register on page D13-3510</td>
</tr>
<tr>
<td>TRFCR_EL1</td>
<td>TRFCR_EL1, Trace Filter Control Register (EL1) on page D13-3670</td>
</tr>
<tr>
<td>TRFCR_EL2</td>
<td>TRFCR_EL2, Trace Filter Control Register (EL2) on page D13-3674</td>
</tr>
<tr>
<td>TTBR0_EL1</td>
<td>TTBR0_EL1, Translation Table Base Register 0 (EL1) on page D13-3512</td>
</tr>
<tr>
<td>TTBR0_EL2</td>
<td>TTBR0_EL2, Translation Table Base Register 0 (EL2) on page D13-3517</td>
</tr>
<tr>
<td>TTBR0_EL3</td>
<td>TTBR0_EL3, Translation Table Base Register 0 (EL3) on page D13-3522</td>
</tr>
<tr>
<td>TTBR1_EL1</td>
<td>TTBR1_EL1, Translation Table Base Register 1 (EL1) on page D13-3525</td>
</tr>
<tr>
<td>TTBR1_EL2</td>
<td>TTBR1_EL2, Translation Table Base Register 1 (EL2) on page D13-3530</td>
</tr>
<tr>
<td>UAO</td>
<td>UAO, User Access Override on page C5-469</td>
</tr>
<tr>
<td>VB AR_EL1</td>
<td>VB AR_EL1, Vector Base Address Register (EL1) on page D13-3534</td>
</tr>
<tr>
<td>VB AR_EL2</td>
<td>VB AR_EL2, Vector Base Address Register (EL2) on page D13-3537</td>
</tr>
<tr>
<td>VB AR_EL3</td>
<td>VB AR_EL3, Vector Base Address Register (EL3) on page D13-3540</td>
</tr>
<tr>
<td>VDISR_EL2</td>
<td>VDISR_EL2, Virtual Deferred Interrupt Status Register on page D13-3875</td>
</tr>
<tr>
<td>VMPIDR_EL2</td>
<td>VMPIDR_EL2, Virtualization Multiprocessor ID Register on page D13-3542</td>
</tr>
<tr>
<td>VNCR_EL2</td>
<td>VNCR_EL2, Virtual Nested Control Register on page D13-3545</td>
</tr>
<tr>
<td>VPIDR_EL2</td>
<td>VPIDR_EL2, Virtualization Processor ID Register on page D13-3547</td>
</tr>
<tr>
<td>VSESR_EL2</td>
<td>VSESR_EL2, Virtual SError Exception Syndrome Register on page D13-3880</td>
</tr>
<tr>
<td>VSTCR_EL2</td>
<td>VSTCR_EL2, Virtualization Secure Translation Control Register on page D13-3550</td>
</tr>
<tr>
<td>VSTTBR_EL2</td>
<td>VSTTBR_EL2, Virtualization Secure Translation Table Base Register on page D13-3554</td>
</tr>
<tr>
<td>VTCR_EL2</td>
<td>VTCR_EL2, Virtualization Translation Control Register on page D13-3557</td>
</tr>
<tr>
<td>VTTBR_EL2</td>
<td>VTTBR_EL2, Virtualization Translation Table Base Register on page D13-3563</td>
</tr>
</tbody>
</table>
K15.3 Functional index of AArch64 registers and System instructions

This section is an index of the AArch64 registers and System instructions, divided by functional group. Each of the following sections lists the registers for a functional group:

- Special-purpose registers.
- VMSA-specific registers on page K15-8180.
- ID registers on page K15-8181.
- Performance monitors registers on page K15-8182.
- Debug registers on page K15-8183.
- RAS registers on page K15-8184.
- Generic timer registers on page K15-8184.
- Cache maintenance system instructions on page K15-8185.
- Address translation system instructions on page K15-8186.
- TLB maintenance system instructions on page K15-8187.
- Prediction restriction System instructions on page K15-8190.
- Base system registers on page K15-8190.

K15.3.1 Special-purpose registers

This section is an index to the registers in the Special-purpose registers functional group.

Table K15-7 Special-purpose registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELR_EL1</td>
<td>ELR_EL1</td>
</tr>
<tr>
<td>ELR_EL2</td>
<td>ELR_EL2</td>
</tr>
<tr>
<td>ELR_EL3</td>
<td>ELR_EL3</td>
</tr>
<tr>
<td>SP_EL0</td>
<td>SP_EL0</td>
</tr>
<tr>
<td>SP_EL1</td>
<td>SP_EL1</td>
</tr>
<tr>
<td>SP_EL2</td>
<td>SP_EL2</td>
</tr>
<tr>
<td>SP_EL3</td>
<td>SP_EL3</td>
</tr>
<tr>
<td>SPSR_abt</td>
<td>SPSR_abt</td>
</tr>
<tr>
<td>SPSR_EL1</td>
<td>SPSR_EL1</td>
</tr>
<tr>
<td>SPSR_EL2</td>
<td>SPSR_EL2</td>
</tr>
<tr>
<td>SPSR_EL3</td>
<td>SPSR_EL3</td>
</tr>
<tr>
<td>SPSR_fiq</td>
<td>SPSR_fiq</td>
</tr>
<tr>
<td>SPSR_irq</td>
<td>SPSR_irq</td>
</tr>
<tr>
<td>SPSR_und</td>
<td>SPSR_und</td>
</tr>
</tbody>
</table>
K15.3.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

Table K15-8 VMSA-specific registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMAIR_EL1</td>
<td>AMAIR_EL1</td>
</tr>
<tr>
<td>AMAIR_EL2</td>
<td>AMAIR_EL2</td>
</tr>
<tr>
<td>AMAIR_EL3</td>
<td>AMAIR_EL3</td>
</tr>
<tr>
<td>CONTEXTIDR_EL1</td>
<td>CONTEXTIDR_EL1</td>
</tr>
<tr>
<td>CONTEXTIDR_EL2</td>
<td>CONTEXTIDR_EL2</td>
</tr>
<tr>
<td>DACR32_EL2</td>
<td>DACR32_EL2</td>
</tr>
<tr>
<td>LORC_EL1</td>
<td>LORC_EL1</td>
</tr>
<tr>
<td>LOREA_EL1</td>
<td>LOREA_EL1</td>
</tr>
<tr>
<td>LORID_EL1</td>
<td>LORID_EL1</td>
</tr>
<tr>
<td>LORN_EL1</td>
<td>LORN_EL1</td>
</tr>
<tr>
<td>LORSA_EL1</td>
<td>LORSA_EL1</td>
</tr>
<tr>
<td>MAIR_EL1</td>
<td>MAIR_EL1</td>
</tr>
<tr>
<td>MAIR_EL2</td>
<td>MAIR_EL2</td>
</tr>
<tr>
<td>MAIR_EL3</td>
<td>MAIR_EL3</td>
</tr>
<tr>
<td>TCR_EL1</td>
<td>TCR_EL1</td>
</tr>
<tr>
<td>TCR_EL2</td>
<td>TCR_EL2</td>
</tr>
<tr>
<td>TCR_EL3</td>
<td>TCR_EL3</td>
</tr>
<tr>
<td>TTBR0_EL1</td>
<td>TTBR0_EL1</td>
</tr>
<tr>
<td>TTBR0_EL2</td>
<td>TTBR0_EL2</td>
</tr>
<tr>
<td>TTBR0_EL3</td>
<td>TTBR0_EL3</td>
</tr>
<tr>
<td>TTBR1_EL1</td>
<td>TTBR1_EL1</td>
</tr>
<tr>
<td>TTBR1_EL2</td>
<td>TTBR1_EL2</td>
</tr>
<tr>
<td>VTCR_EL2</td>
<td>VTCR_EL2</td>
</tr>
<tr>
<td>VTTBR_EL2</td>
<td>VTTBR_EL2</td>
</tr>
</tbody>
</table>
K15.3.3 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K15-9 ID registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSIDR2_EL1</td>
<td>CCSIDR2_EL1</td>
</tr>
<tr>
<td>CCSIDR_EL1</td>
<td>CCSIDR_EL1</td>
</tr>
<tr>
<td>CLIDR_EL1</td>
<td>CLIDR_EL1</td>
</tr>
<tr>
<td>CSSELR_EL1</td>
<td>CSSELR_EL1</td>
</tr>
<tr>
<td>CTR_EL0</td>
<td>CTR_EL0</td>
</tr>
<tr>
<td>DCZID_EL0</td>
<td>DCZID_EL0</td>
</tr>
<tr>
<td>GMID_EL1</td>
<td>GMID_EL1</td>
</tr>
<tr>
<td>ID_AA64AFR0_EL1</td>
<td>ID_AA64AFR0_EL1</td>
</tr>
<tr>
<td>ID_AA64AFR1_EL1</td>
<td>ID_AA64AFR1_EL1</td>
</tr>
<tr>
<td>ID_AA64DFR0_EL1</td>
<td>ID_AA64DFR0_EL1</td>
</tr>
<tr>
<td>ID_AA64DFR1_EL1</td>
<td>ID_AA64DFR1_EL1</td>
</tr>
<tr>
<td>ID_AA64ISAR0_EL1</td>
<td>ID_AA64ISAR0_EL1</td>
</tr>
<tr>
<td>ID_AA64ISAR1_EL1</td>
<td>ID_AA64ISAR1_EL1</td>
</tr>
<tr>
<td>ID_AA64MMFR0_EL1</td>
<td>ID_AA64MMFR0_EL1</td>
</tr>
<tr>
<td>ID_AA64MMFR1_EL1</td>
<td>ID_AA64MMFR1_EL1</td>
</tr>
<tr>
<td>ID_AA64MMFR2_EL1</td>
<td>ID_AA64MMFR2_EL1</td>
</tr>
<tr>
<td>ID_AA64PFR0_EL1</td>
<td>ID_AA64PFR0_EL1</td>
</tr>
<tr>
<td>ID_AA64PFR1_EL1</td>
<td>ID_AA64PFR1_EL1</td>
</tr>
<tr>
<td>ID_AFR0_EL1</td>
<td>ID_AFR0_EL1</td>
</tr>
<tr>
<td>ID_DFR0_EL1</td>
<td>ID_DFR0_EL1</td>
</tr>
<tr>
<td>ID_DFR1_EL1</td>
<td>ID_DFR1_EL1</td>
</tr>
<tr>
<td>ID_ISAR0_EL1</td>
<td>ID_ISAR0_EL1</td>
</tr>
<tr>
<td>ID_ISAR1_EL1</td>
<td>ID_ISAR1_EL1</td>
</tr>
<tr>
<td>ID_ISAR2_EL1</td>
<td>ID_ISAR2_EL1</td>
</tr>
<tr>
<td>ID_ISAR3_EL1</td>
<td>ID_ISAR3_EL1</td>
</tr>
<tr>
<td>ID_ISAR4_EL1</td>
<td>ID_ISAR4_EL1</td>
</tr>
<tr>
<td>ID_ISAR5_EL1</td>
<td>ID_ISAR5_EL1</td>
</tr>
<tr>
<td>ID_ISAR6_EL1</td>
<td>ID_ISAR6_EL1</td>
</tr>
<tr>
<td>ID_MMFR0_EL1</td>
<td>ID_MMFR0_EL1</td>
</tr>
<tr>
<td>ID_MMFR1_EL1</td>
<td>ID_MMFR1_EL1</td>
</tr>
</tbody>
</table>
K15.3.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

Table K15-10 Performance monitors registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCCFILTR_EL0</td>
<td>PMCCFILTR_EL0</td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>PMCCNTR_EL0</td>
</tr>
<tr>
<td>PMCEID0_EL0</td>
<td>PMCEID0_EL0</td>
</tr>
<tr>
<td>PMCEID1_EL0</td>
<td>PMCEID1_EL0</td>
</tr>
<tr>
<td>PMCNTENCLR_EL0</td>
<td>PMCNTENCLR_EL0</td>
</tr>
<tr>
<td>PMCNTENSET_EL0</td>
<td>PMCNTENSET_EL0</td>
</tr>
<tr>
<td>PMCR_EL0</td>
<td>PMCR_EL0</td>
</tr>
<tr>
<td>PMEVCNTR<\n> EL0</td>
<td>PMEVCNTR<\n> EL0</td>
</tr>
<tr>
<td>PMEVTYPE<\n> EL0</td>
<td>PMEVTYPE<\n> EL0</td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td>PMINTENCLR_EL1</td>
</tr>
<tr>
<td>PMINTENSET_EL1</td>
<td>PMINTENSET_EL1</td>
</tr>
<tr>
<td>PMMIR_EL1</td>
<td>PMMIR_EL1</td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td>PMOVSCLR_EL0</td>
</tr>
<tr>
<td>PMOVSSET_EL0</td>
<td>PMOVSSET_EL0</td>
</tr>
<tr>
<td>PMSLR_EL0</td>
<td>PMSLR_EL0</td>
</tr>
<tr>
<td>PMSWINC_EL0</td>
<td>PMSWINC_EL0</td>
</tr>
</tbody>
</table>
K15.3.5 Debug registers

This section is an index to the registers in the Debug registers functional group.

Table K15-11 Debug registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1</td>
</tr>
<tr>
<td>DBGBCR<\text{n}>_EL1</td>
<td>DBGBCR<\text{n}>_EL1</td>
</tr>
<tr>
<td>DBGVBVR<\text{n}>_EL1</td>
<td>DBGVBVR<\text{n}>_EL1</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1</td>
</tr>
<tr>
<td>DBGDTR_EL0</td>
<td>DBGDTR_EL0</td>
</tr>
<tr>
<td>DBGDTTRX_EL0</td>
<td>DBGDTTRX_EL0</td>
</tr>
<tr>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_EL0</td>
</tr>
<tr>
<td>DBGPRCR_EL1</td>
<td>DBGPRCR_EL1</td>
</tr>
<tr>
<td>DBGVCR32_EL2</td>
<td>DBGVCR32_EL2</td>
</tr>
<tr>
<td>DBGWCR<\text{n}>_EL1</td>
<td>DBGWCR<\text{n}>_EL1</td>
</tr>
<tr>
<td>DBGWVR<\text{n}>_EL1</td>
<td>DBGWVR<\text{n}>_EL1</td>
</tr>
<tr>
<td>DLR_EL0</td>
<td>DLR_EL0</td>
</tr>
<tr>
<td>DSPSR_EL0</td>
<td>DSPSR_EL0</td>
</tr>
<tr>
<td>MDCCINT_EL1</td>
<td>MDCCINT_EL1</td>
</tr>
<tr>
<td>MDCCSR_EL0</td>
<td>MDCCSR_EL0</td>
</tr>
<tr>
<td>MDRAR_EL1</td>
<td>MDRAR_EL1</td>
</tr>
<tr>
<td>MDSR_EL1</td>
<td>MDSR_EL1</td>
</tr>
<tr>
<td>OSDLR_EL1</td>
<td>OSDLR_EL1</td>
</tr>
<tr>
<td>OSDTTRX_EL1</td>
<td>OSDTTRX_EL1</td>
</tr>
<tr>
<td>OSDTRTX_EL1</td>
<td>OSDTRTX_EL1</td>
</tr>
<tr>
<td>OSECCR_EL1</td>
<td>OSECCR_EL1</td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1</td>
</tr>
</tbody>
</table>
K15.3.6 RAS registers

This section is an index to the registers in the RAS registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSLSR_EL1</td>
<td>OSLSR_EL1</td>
</tr>
<tr>
<td>TRFCR_EL1</td>
<td>TRFCR_EL1</td>
</tr>
<tr>
<td>TRFCR_EL2</td>
<td>TRFCR_EL2</td>
</tr>
</tbody>
</table>

K15.3.7 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISR_EL1</td>
<td>DISR_EL1</td>
</tr>
<tr>
<td>ERRIDR_EL1</td>
<td>ERRIDR_EL1</td>
</tr>
<tr>
<td>ERRSELR_EL1</td>
<td>ERRSELR_EL1</td>
</tr>
<tr>
<td>ERXADDR_EL1</td>
<td>ERXADDR_EL1</td>
</tr>
<tr>
<td>ERXCTLR_EL1</td>
<td>ERXCTLR_EL1</td>
</tr>
<tr>
<td>ERXFR_EL1</td>
<td>ERXFR_EL1</td>
</tr>
<tr>
<td>ERXMISC0_EL1</td>
<td>ERXMISC0_EL1</td>
</tr>
<tr>
<td>ERXMISC1_EL1</td>
<td>ERXMISC1_EL1</td>
</tr>
<tr>
<td>ERXMISC2_EL1</td>
<td>ERXMISC2_EL1</td>
</tr>
<tr>
<td>ERXMISC3_EL1</td>
<td>ERXMISC3_EL1</td>
</tr>
<tr>
<td>ERXPFGCDN_EL1</td>
<td>ERXPFGCDN_EL1</td>
</tr>
<tr>
<td>ERXPFGCTL_EL1</td>
<td>ERXPFGCTL_EL1</td>
</tr>
<tr>
<td>ERXPFGF_EL1</td>
<td>ERXPFGF_EL1</td>
</tr>
<tr>
<td>ERXSTATUS_EL1</td>
<td>ERXSTATUS_EL1</td>
</tr>
<tr>
<td>VDISR_EL2</td>
<td>VDISR_EL2</td>
</tr>
<tr>
<td>VSESР_EL2</td>
<td>VSESР_EL2</td>
</tr>
</tbody>
</table>
K15.3.8 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTKCTL_EL1</td>
<td>CNTKCTL_EL1</td>
</tr>
<tr>
<td>CNTP_CTL_EL0</td>
<td>CNTP_CTL_EL0</td>
</tr>
<tr>
<td>CNTP_CV AL_EL0</td>
<td>CNTP_CV AL_EL0</td>
</tr>
<tr>
<td>CNTP_TV AL_EL0</td>
<td>CNTP_TV AL_EL0</td>
</tr>
<tr>
<td>CNTPCT_EL0</td>
<td>CNTPCT_EL0</td>
</tr>
<tr>
<td>CNTPCTSS_EL0</td>
<td>CNTPCTSS_EL0</td>
</tr>
<tr>
<td>CNTPOFF_EL2</td>
<td>CNTPOFF_EL2</td>
</tr>
<tr>
<td>CNTPS_CTL_EL1</td>
<td>CNTPS_CTL_EL1</td>
</tr>
<tr>
<td>CNTPS_CV AL_EL1</td>
<td>CNTPS_CV AL_EL1</td>
</tr>
<tr>
<td>CNTPS_TV AL_EL1</td>
<td>CNTPS_TV AL_EL1</td>
</tr>
<tr>
<td>CNTV_CTL_EL0</td>
<td>CNTV_CTL_EL0</td>
</tr>
<tr>
<td>CNTV_CV AL_EL0</td>
<td>CNTV_CV AL_EL0</td>
</tr>
<tr>
<td>CNTV_TV AL_EL0</td>
<td>CNTV_TV AL_EL0</td>
</tr>
<tr>
<td>CNTVCT_EL0</td>
<td>CNTVCT_EL0</td>
</tr>
<tr>
<td>CNTVCTSS_EL0</td>
<td>CNTVCTSS_EL0</td>
</tr>
</tbody>
</table>
Table K15-14 Cache maintenance system instructions (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC CIGDSW</td>
<td>DC CIGDSW</td>
</tr>
<tr>
<td>DC CIGDVAC</td>
<td>DC CIGDVAC</td>
</tr>
<tr>
<td>DC CIGSW</td>
<td>DC CIGSW</td>
</tr>
<tr>
<td>DC CIGVAC</td>
<td>DC CIGVAC</td>
</tr>
<tr>
<td>DC CISW</td>
<td>DC CISW</td>
</tr>
<tr>
<td>DC CIVAC</td>
<td>DC CIVAC</td>
</tr>
<tr>
<td>DC CSW</td>
<td>DC CSW</td>
</tr>
<tr>
<td>DC CVAC</td>
<td>DC CVAC</td>
</tr>
<tr>
<td>DC CVADP</td>
<td>DC CVADP</td>
</tr>
<tr>
<td>DC CVAP</td>
<td>DC CVAP</td>
</tr>
<tr>
<td>DC CVAU</td>
<td>DC CVAU</td>
</tr>
<tr>
<td>DC GVA</td>
<td>DC GVA</td>
</tr>
<tr>
<td>DC GZVA</td>
<td>DC GZVA</td>
</tr>
<tr>
<td>DC IGDSW</td>
<td>DC IGDSW</td>
</tr>
<tr>
<td>DC IGDVAC</td>
<td>DC IGDVAC</td>
</tr>
<tr>
<td>DC IGSW</td>
<td>DC IGSW</td>
</tr>
<tr>
<td>DC IGVAC</td>
<td>DC IGVAC</td>
</tr>
<tr>
<td>DC ISW</td>
<td>DC ISW</td>
</tr>
<tr>
<td>DC IVAC</td>
<td>DC IVAC</td>
</tr>
<tr>
<td>DC ZVA</td>
<td>DC ZVA</td>
</tr>
<tr>
<td>IC IALLU</td>
<td>IC IALLU</td>
</tr>
<tr>
<td>IC IALLUIS</td>
<td>IC IALLUIS</td>
</tr>
<tr>
<td>IC IVAU</td>
<td>IC IVAU</td>
</tr>
</tbody>
</table>

K15.3.9 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

Table K15-15 Address translation system instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT S12E0R</td>
<td>AT S12E0R</td>
</tr>
<tr>
<td>AT S12E0W</td>
<td>AT S12E0W</td>
</tr>
<tr>
<td>AT S12E1R</td>
<td>AT S12E1R</td>
</tr>
<tr>
<td>AT S12E1W</td>
<td>AT S12E1W</td>
</tr>
</tbody>
</table>
K15.3.10 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

Table K15-16 TLB maintenance system instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBI ALLE1</td>
<td>TLBI ALLE1</td>
</tr>
<tr>
<td>TLBI ALLE1IS</td>
<td>TLBI ALLE1IS</td>
</tr>
<tr>
<td>TLBI ALLE1OS</td>
<td>TLBI ALLE1OS</td>
</tr>
<tr>
<td>TLBI ALLE2</td>
<td>TLBI ALLE2</td>
</tr>
<tr>
<td>TLBI ALLE2IS</td>
<td>TLBI ALLE2IS</td>
</tr>
<tr>
<td>TLBI ALLE2OS</td>
<td>TLBI ALLE2OS</td>
</tr>
<tr>
<td>TLBI ALLE3</td>
<td>TLBI ALLE3</td>
</tr>
<tr>
<td>TLBI ALLE3IS</td>
<td>TLBI ALLE3IS</td>
</tr>
<tr>
<td>TLBI ALLE3OS</td>
<td>TLBI ALLE3OS</td>
</tr>
<tr>
<td>TLBI ASIDE1</td>
<td>TLBI ASIDE1</td>
</tr>
<tr>
<td>TLBI ASIDE1IS</td>
<td>TLBI ASIDE1IS</td>
</tr>
<tr>
<td>TLBI ASIDE1OS</td>
<td>TLBI ASIDE1OS</td>
</tr>
<tr>
<td>TLBI IPAS2E1</td>
<td>TLBI IPAS2E1</td>
</tr>
<tr>
<td>TLBI IPAS2E1IS</td>
<td>TLBI IPAS2E1IS</td>
</tr>
<tr>
<td>TLBI IPAS2E1OS</td>
<td>TLBI IPAS2E1OS</td>
</tr>
<tr>
<td>TLBI IPAS2LE1</td>
<td>TLBI IPAS2LE1</td>
</tr>
<tr>
<td>TLBI IPAS2LE1IS</td>
<td>TLBI IPAS2LE1IS</td>
</tr>
</tbody>
</table>
Table K15-16 TLB maintenance system instructions (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBI IPAS2LE1OS</td>
<td>TLBI IPAS2LE1OS</td>
</tr>
<tr>
<td>TLBI RIPAS2E1</td>
<td>TLBI RIPAS2E1</td>
</tr>
<tr>
<td>TLBI RIPAS2E1IS</td>
<td>TLBI RIPAS2E1IS</td>
</tr>
<tr>
<td>TLBI RIPAS2E1OS</td>
<td>TLBI RIPAS2E1OS</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1</td>
<td>TLBI RIPAS2LE1</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1IS</td>
<td>TLBI RIPAS2LE1IS</td>
</tr>
<tr>
<td>TLBI RIPAS2LE1OS</td>
<td>TLBI RIPAS2LE1OS</td>
</tr>
<tr>
<td>TLBI RVAAE1</td>
<td>TLBI RVAAE1</td>
</tr>
<tr>
<td>TLBI RVAAE1IS</td>
<td>TLBI RVAAE1IS</td>
</tr>
<tr>
<td>TLBI RVAAE1OS</td>
<td>TLBI RVAAE1OS</td>
</tr>
<tr>
<td>TLBI RVAALE1</td>
<td>TLBI RVAALE1</td>
</tr>
<tr>
<td>TLBI RVAALE1IS</td>
<td>TLBI RVAALE1IS</td>
</tr>
<tr>
<td>TLBI RVAALE1OS</td>
<td>TLBI RVAALE1OS</td>
</tr>
<tr>
<td>TLBI RVAE1</td>
<td>TLBI RVAE1</td>
</tr>
<tr>
<td>TLBI RVAE1IS</td>
<td>TLBI RVAE1IS</td>
</tr>
<tr>
<td>TLBI RVAE1OS</td>
<td>TLBI RVAE1OS</td>
</tr>
<tr>
<td>TLBI RVAE2</td>
<td>TLBI RVAE2</td>
</tr>
<tr>
<td>TLBI RVAE2IS</td>
<td>TLBI RVAE2IS</td>
</tr>
<tr>
<td>TLBI RVAE2OS</td>
<td>TLBI RVAE2OS</td>
</tr>
<tr>
<td>TLBI RVAE3</td>
<td>TLBI RVAE3</td>
</tr>
<tr>
<td>TLBI RVAE3IS</td>
<td>TLBI RVAE3IS</td>
</tr>
<tr>
<td>TLBI RVAE3OS</td>
<td>TLBI RVAE3OS</td>
</tr>
<tr>
<td>TLBI RVALE1</td>
<td>TLBI RVALE1</td>
</tr>
<tr>
<td>TLBI RVALE1IS</td>
<td>TLBI RVALE1IS</td>
</tr>
<tr>
<td>TLBI RVALE1OS</td>
<td>TLBI RVALE1OS</td>
</tr>
<tr>
<td>TLBI RVALE2</td>
<td>TLBI RVALE2</td>
</tr>
<tr>
<td>TLBI RVALE2IS</td>
<td>TLBI RVALE2IS</td>
</tr>
<tr>
<td>TLBI RVALE2OS</td>
<td>TLBI RVALE2OS</td>
</tr>
<tr>
<td>TLBI RVALE3</td>
<td>TLBI RVALE3</td>
</tr>
<tr>
<td>TLBI RVALE3IS</td>
<td>TLBI RVALE3IS</td>
</tr>
<tr>
<td>TLBI RVALE3OS</td>
<td>TLBI RVALE3OS</td>
</tr>
<tr>
<td>TLBI VAAE1</td>
<td>TLBI VAAE1</td>
</tr>
</tbody>
</table>
Table K15-16 TLB maintenance system instructions (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBI VAAE1IS</td>
<td>TLBI VAAE1IS</td>
</tr>
<tr>
<td>TLBI VAAE1OS</td>
<td>TLBI VAAE1OS</td>
</tr>
<tr>
<td>TLBI VAALE1</td>
<td>TLBI VAALE1</td>
</tr>
<tr>
<td>TLBI VAALE1IS</td>
<td>TLBI VAALE1IS</td>
</tr>
<tr>
<td>TLBI VAALE1OS</td>
<td>TLBI VAALE1OS</td>
</tr>
<tr>
<td>TLBI VAE1</td>
<td>TLBI VAE1</td>
</tr>
<tr>
<td>TLBI VAE1IS</td>
<td>TLBI VAE1IS</td>
</tr>
<tr>
<td>TLBI VAE1OS</td>
<td>TLBI VAE1OS</td>
</tr>
<tr>
<td>TLBI VAE2</td>
<td>TLBI VAE2</td>
</tr>
<tr>
<td>TLBI VAE2IS</td>
<td>TLBI VAE2IS</td>
</tr>
<tr>
<td>TLBI VAE2OS</td>
<td>TLBI VAE2OS</td>
</tr>
<tr>
<td>TLBI VAE3</td>
<td>TLBI VAE3</td>
</tr>
<tr>
<td>TLBI VAE3IS</td>
<td>TLBI VAE3IS</td>
</tr>
<tr>
<td>TLBI VAE3OS</td>
<td>TLBI VAE3OS</td>
</tr>
<tr>
<td>TLBI VALE1</td>
<td>TLBI VALE1</td>
</tr>
<tr>
<td>TLBI VALE1IS</td>
<td>TLBI VALE1IS</td>
</tr>
<tr>
<td>TLBI VALE1OS</td>
<td>TLBI VALE1OS</td>
</tr>
<tr>
<td>TLBI VALE2</td>
<td>TLBI VALE2</td>
</tr>
<tr>
<td>TLBI VALE2IS</td>
<td>TLBI VALE2IS</td>
</tr>
<tr>
<td>TLBI VALE2OS</td>
<td>TLBI VALE2OS</td>
</tr>
<tr>
<td>TLBI VALE3</td>
<td>TLBI VALE3</td>
</tr>
<tr>
<td>TLBI VALE3IS</td>
<td>TLBI VALE3IS</td>
</tr>
<tr>
<td>TLBI VALE3OS</td>
<td>TLBI VALE3OS</td>
</tr>
<tr>
<td>TLBI VMALLE1</td>
<td>TLBI VMALLE1</td>
</tr>
<tr>
<td>TLBI VMALLE1IS</td>
<td>TLBI VMALLE1IS</td>
</tr>
<tr>
<td>TLBI VMALLE1OS</td>
<td>TLBI VMALLE1OS</td>
</tr>
<tr>
<td>TLBI VMALLS12E1</td>
<td>TLBI VMALLS12E1</td>
</tr>
<tr>
<td>TLBI VMALLS12E1IS</td>
<td>TLBI VMALLS12E1IS</td>
</tr>
<tr>
<td>TLBI VMALLS12E1OS</td>
<td>TLBI VMALLS12E1OS</td>
</tr>
</tbody>
</table>
K15.3.11 Prediction restriction System instructions

This section is an index to the registers in the prediction restriction instructions functional group.

Table K15-17 Prediction restriction System instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFP RCTX</td>
<td>CFP RCTX</td>
</tr>
<tr>
<td>CPP RCTX</td>
<td>CPP RCTX</td>
</tr>
<tr>
<td>DVP RCTX</td>
<td>DVP RCTX</td>
</tr>
</tbody>
</table>

K15.3.12 Base system registers

This section is an index to the registers in the functional group.

Table K15-18 Base system registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTLR_EL1</td>
<td>ACTLR_EL1</td>
</tr>
<tr>
<td>ACTLR_EL2</td>
<td>ACTLR_EL2</td>
</tr>
<tr>
<td>ACTLR_EL3</td>
<td>ACTLR_EL3</td>
</tr>
<tr>
<td>AFSR0_EL1</td>
<td>AFSR0_EL1</td>
</tr>
<tr>
<td>AFSR0_EL2</td>
<td>AFSR0_EL2</td>
</tr>
<tr>
<td>AFSR0_EL3</td>
<td>AFSR0_EL3</td>
</tr>
<tr>
<td>AFSR1_EL1</td>
<td>AFSR1_EL1</td>
</tr>
<tr>
<td>AFSR1_EL2</td>
<td>AFSR1_EL2</td>
</tr>
<tr>
<td>AFSR1_EL3</td>
<td>AFSR1_EL3</td>
</tr>
<tr>
<td>AIDR_EL1</td>
<td>AIDR_EL1</td>
</tr>
<tr>
<td>APDAKeyHi_EL1</td>
<td>APDAKeyHi_EL1</td>
</tr>
<tr>
<td>APDAKeyLo_EL1</td>
<td>APDAKeyLo_EL1</td>
</tr>
<tr>
<td>APDBKeyHi_EL1</td>
<td>APDBKeyHi_EL1</td>
</tr>
<tr>
<td>APDBKeyLo_EL1</td>
<td>APDBKeyLo_EL1</td>
</tr>
<tr>
<td>APGAKKeyHi_EL1</td>
<td>APGAKKeyHi_EL1</td>
</tr>
<tr>
<td>APGAKKeyLo_EL1</td>
<td>APGAKKeyLo_EL1</td>
</tr>
<tr>
<td>APIAKeyHi_EL1</td>
<td>APIAKeyHi_EL1</td>
</tr>
<tr>
<td>APIAKeyLo_EL1</td>
<td>APIAKeyLo_EL1</td>
</tr>
<tr>
<td>APIBKeyHi_EL1</td>
<td>APIBKeyHi_EL1</td>
</tr>
<tr>
<td>APIBKeyLo_EL1</td>
<td>APIBKeyLo_EL1</td>
</tr>
<tr>
<td>CNTHCTL_EL2</td>
<td>CNTHCTL_EL2</td>
</tr>
<tr>
<td>CNTHP_CTL_EL2</td>
<td>CNTHP_CTL_EL2</td>
</tr>
</tbody>
</table>
Table K15-18 Base system registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTHP_CVAL_EL2</td>
<td>CNTHP_CVAL_EL2</td>
</tr>
<tr>
<td>CNTHP_TVAL_EL2</td>
<td>CNTHP_TVAL_EL2</td>
</tr>
<tr>
<td>CNTHPS_CTL_EL2</td>
<td>CNTHPS_CTL_EL2</td>
</tr>
<tr>
<td>CNTHPS_CVAL_EL2</td>
<td>CNTHPS_CVAL_EL2</td>
</tr>
<tr>
<td>CNTHPS_TVAL_EL2</td>
<td>CNTHPS_TVAL_EL2</td>
</tr>
<tr>
<td>CNTVOFF_EL2</td>
<td>CNTVOFF_EL2</td>
</tr>
<tr>
<td>CPACR_EL1</td>
<td>CPACR_EL1</td>
</tr>
<tr>
<td>CPTR_EL2</td>
<td>CPTR_EL2</td>
</tr>
<tr>
<td>CPTR_EL3</td>
<td>CPTR_EL3</td>
</tr>
<tr>
<td>CurrentEL</td>
<td>CurrentEL</td>
</tr>
<tr>
<td>DAIF</td>
<td>DAIF</td>
</tr>
<tr>
<td>DIT</td>
<td>DIT</td>
</tr>
<tr>
<td>ESR_EL1</td>
<td>ESR_EL1</td>
</tr>
<tr>
<td>ESR_EL2</td>
<td>ESR_EL2</td>
</tr>
<tr>
<td>ESR_EL3</td>
<td>ESR_EL3</td>
</tr>
<tr>
<td>FAR_EL1</td>
<td>FAR_EL1</td>
</tr>
<tr>
<td>FAR_EL2</td>
<td>FAR_EL2</td>
</tr>
<tr>
<td>FAR_EL3</td>
<td>FAR_EL3</td>
</tr>
<tr>
<td>FPCR</td>
<td>FPCR</td>
</tr>
<tr>
<td>FP32X32_EL2</td>
<td>FP32X32_EL2</td>
</tr>
<tr>
<td>FPCR</td>
<td>FPCR</td>
</tr>
<tr>
<td>GCR_EL1</td>
<td>GCR_EL1</td>
</tr>
<tr>
<td>HACR_EL2</td>
<td>HACR_EL2</td>
</tr>
<tr>
<td>HAFGRTR_EL2</td>
<td>HAFGRTR_EL2</td>
</tr>
<tr>
<td>HCR_EL2</td>
<td>HCR_EL2</td>
</tr>
<tr>
<td>HDFGRTR_EL2</td>
<td>HDFGRTR_EL2</td>
</tr>
<tr>
<td>HDFGWTR_EL2</td>
<td>HDFGWTR_EL2</td>
</tr>
<tr>
<td>HFGITR_EL2</td>
<td>HFGITR_EL2</td>
</tr>
<tr>
<td>HFRGRTR_EL2</td>
<td>HFRGRTR_EL2</td>
</tr>
<tr>
<td>HFGWTR_EL2</td>
<td>HFGWTR_EL2</td>
</tr>
<tr>
<td>HPFAR_EL2</td>
<td>HPFAR_EL2</td>
</tr>
<tr>
<td>HSTR_EL2</td>
<td>HSTR_EL2</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IFSR32_EL2</td>
<td>IFSR32_EL2</td>
</tr>
<tr>
<td>ISR_EL1</td>
<td>ISR_EL1</td>
</tr>
<tr>
<td>MDCR_EL2</td>
<td>MDCR_EL2</td>
</tr>
<tr>
<td>MDCR_EL3</td>
<td>MDCR_EL3</td>
</tr>
<tr>
<td>MVFR0_EL1</td>
<td>MVFR0_EL1</td>
</tr>
<tr>
<td>MVFR1_EL1</td>
<td>MVFR1_EL1</td>
</tr>
<tr>
<td>MVFR2_EL1</td>
<td>MVFR2_EL1</td>
</tr>
<tr>
<td>NZCV</td>
<td>NZCV</td>
</tr>
<tr>
<td>PAN</td>
<td>PAN</td>
</tr>
<tr>
<td>PAR_EL1</td>
<td>PAR_EL1</td>
</tr>
<tr>
<td>PMBIDR_EL1</td>
<td>PMBIDR_EL1</td>
</tr>
<tr>
<td>PMBLIMITR_EL1</td>
<td>PMBLIMITR_EL1</td>
</tr>
<tr>
<td>PMBPTR_EL1</td>
<td>PMBPTR_EL1</td>
</tr>
<tr>
<td>PMBSR_EL1</td>
<td>PMBSR_EL1</td>
</tr>
<tr>
<td>PMSCR_EL1</td>
<td>PMSCR_EL1</td>
</tr>
<tr>
<td>PMSCR_EL2</td>
<td>PMSCR_EL2</td>
</tr>
<tr>
<td>PMSEVFR_EL1</td>
<td>PMSEVFR_EL1</td>
</tr>
<tr>
<td>PMSFCR_EL1</td>
<td>PMSFCR_EL1</td>
</tr>
<tr>
<td>PMSICR_EL1</td>
<td>PMSICR_EL1</td>
</tr>
<tr>
<td>PMSIDR_EL1</td>
<td>PMSIDR_EL1</td>
</tr>
<tr>
<td>PMSIRR_EL1</td>
<td>PMSIRR_EL1</td>
</tr>
<tr>
<td>PMSLATFR_EL1</td>
<td>PMSLATFR_EL1</td>
</tr>
<tr>
<td>RGSR_EL1</td>
<td>RGSR_EL1</td>
</tr>
<tr>
<td>RMR_EL1</td>
<td>RMR_EL1</td>
</tr>
<tr>
<td>RMR_EL2</td>
<td>RMR_EL2</td>
</tr>
<tr>
<td>RMR_EL3</td>
<td>RMR_EL3</td>
</tr>
<tr>
<td>RNDR</td>
<td>RNDR</td>
</tr>
<tr>
<td>RNDRRS</td>
<td>RNDRRS</td>
</tr>
<tr>
<td>RVBAR_EL1</td>
<td>RVBAR_EL1</td>
</tr>
<tr>
<td>RVBAR_EL2</td>
<td>RVBAR_EL2</td>
</tr>
<tr>
<td>RVBAR_EL3</td>
<td>RVBAR_EL3</td>
</tr>
<tr>
<td>S3_<op1>_Cn>Cm<op2></td>
<td>S3_<op1>_Cn>Cm<op2></td>
</tr>
</tbody>
</table>
Table K15-18 Base system registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR_EL3</td>
<td>SCR_EL3</td>
</tr>
<tr>
<td>SCTLR_EL1</td>
<td>SCTLR_EL1</td>
</tr>
<tr>
<td>SCTLR_EL2</td>
<td>SCTLR_EL2</td>
</tr>
<tr>
<td>SCTLR_EL3</td>
<td>SCTLR_EL3</td>
</tr>
<tr>
<td>SCXTNUM_EL0</td>
<td>SCXTNUM_EL0</td>
</tr>
<tr>
<td>SCXTNUM_EL1</td>
<td>SCXTNUM_EL1</td>
</tr>
<tr>
<td>SCXTNUM_EL2</td>
<td>SCXTNUM_EL2</td>
</tr>
<tr>
<td>SCXTNUM_EL3</td>
<td>SCXTNUM_EL3</td>
</tr>
<tr>
<td>SDER32_EL2</td>
<td>SDER32_EL2</td>
</tr>
<tr>
<td>SDER32_EL3</td>
<td>SDER32_EL3</td>
</tr>
<tr>
<td>SPSel</td>
<td>SPSel</td>
</tr>
<tr>
<td>SSBS</td>
<td>SSBS</td>
</tr>
<tr>
<td>TCO</td>
<td>TCO</td>
</tr>
<tr>
<td>TFSR_EL1</td>
<td>TFSR_EL1</td>
</tr>
<tr>
<td>TFSR_EL2</td>
<td>TFSR_EL2</td>
</tr>
<tr>
<td>TFSR_EL3</td>
<td>TFSR_EL3</td>
</tr>
<tr>
<td>TFSRE0_EL1</td>
<td>TFSRE0_EL1</td>
</tr>
<tr>
<td>TPIDR_EL0</td>
<td>TPIDR_EL0</td>
</tr>
<tr>
<td>TPIDR_EL1</td>
<td>TPIDR_EL1</td>
</tr>
<tr>
<td>TPIDR_EL2</td>
<td>TPIDR_EL2</td>
</tr>
<tr>
<td>TPIDR_EL3</td>
<td>TPIDR_EL3</td>
</tr>
<tr>
<td>TPIDRRO_EL0</td>
<td>TPIDRRO_EL0</td>
</tr>
<tr>
<td>UAO</td>
<td>UAO</td>
</tr>
<tr>
<td>VBAR_EL1</td>
<td>VBAR_EL1</td>
</tr>
<tr>
<td>VBAR_EL2</td>
<td>VBAR_EL2</td>
</tr>
<tr>
<td>VBAR_EL3</td>
<td>VBAR_EL3</td>
</tr>
<tr>
<td>VMPIDR_EL2</td>
<td>VMPIDR_EL2</td>
</tr>
<tr>
<td>VNCR_EL2</td>
<td>VNCR_EL2</td>
</tr>
<tr>
<td>VPIDR_EL2</td>
<td>VPIDR_EL2</td>
</tr>
<tr>
<td>VSTCR_EL2</td>
<td>VSTCR_EL2</td>
</tr>
<tr>
<td>VSTTBR_EL2</td>
<td>VSTTBR_EL2</td>
</tr>
</tbody>
</table>
K15.4 Alphabetical index of AArch32 registers and System instructions

This section is an index of AArch32 registers and System instructions in alphabetical order.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTLR</td>
<td>ACTLR, Auxiliary Control Register on page G8-6150</td>
</tr>
<tr>
<td>ACTLR2</td>
<td>ACTLR2, Auxiliary Control Register 2 on page G8-6152</td>
</tr>
<tr>
<td>ADFSR</td>
<td>ADFSR, Auxiliary Data Fault Status Register on page G8-6154</td>
</tr>
<tr>
<td>AIDR</td>
<td>AIDR, Auxiliary ID Register on page G8-6156</td>
</tr>
<tr>
<td>AIFSR</td>
<td>AIFSR, Auxiliary Instruction Fault Status Register on page G8-6157</td>
</tr>
<tr>
<td>AMAIR0</td>
<td>AMAIR0, Auxiliary Memory Attribute Indirection Register 0 on page G8-6159</td>
</tr>
<tr>
<td>AMAIR1</td>
<td>AMAIR1, Auxiliary Memory Attribute Indirection Register 1 on page G8-6162</td>
</tr>
<tr>
<td>AMCFGR</td>
<td>AMCFGR, Activity Monitors Configuration Register on page G8-6831</td>
</tr>
<tr>
<td>AMCGCR</td>
<td>AMCGCR, Activity Monitors Counter Group Configuration Register on page G8-6834</td>
</tr>
<tr>
<td>AMCNTENCLR0</td>
<td>AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0 on page G8-6836</td>
</tr>
<tr>
<td>AMCNTENCLR1</td>
<td>AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1 on page G8-6839</td>
</tr>
<tr>
<td>AMCNTENSET0</td>
<td>AMCNTENSET0, Activity Monitors Count Enable Set Register 0 on page G8-6842</td>
</tr>
<tr>
<td>AMCNTENSET1</td>
<td>AMCNTENSET1, Activity Monitors Count Enable Set Register 1 on page G8-6845</td>
</tr>
<tr>
<td>AMCR</td>
<td>AMCR, Activity Monitors Control Register on page G8-6848</td>
</tr>
<tr>
<td>AMEVCNTR0<n></td>
<td>AMEVCNTR0<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15 on page G8-6851</td>
</tr>
<tr>
<td>AMEVCNTR1<n></td>
<td>AMEVCNTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15 on page G8-6854</td>
</tr>
<tr>
<td>AMEVTYPE0<n></td>
<td>AMEVTYPE0<n>, Activity Monitors Event Type Registers 0, n = 0 - 15 on page G8-6858</td>
</tr>
<tr>
<td>AMEVTYPE1<n></td>
<td>AMEVTYPE1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15 on page G8-6861</td>
</tr>
<tr>
<td>AMUSERENR</td>
<td>AMUSERENR, Activity Monitors User Enable Register on page G8-6864</td>
</tr>
<tr>
<td>APSR</td>
<td>APSR, Application Program Status Register on page G8-6165</td>
</tr>
<tr>
<td>ATS12NSOPR</td>
<td>ATS12NSOPR, Address Translate Stages 1 and 2 Non-secure Only PL1 Read on page G8-6167</td>
</tr>
<tr>
<td>ATS12NSOPW</td>
<td>ATS12NSOPW, Address Translate Stages 1 and 2 Non-secure Only PL1 Write on page G8-6168</td>
</tr>
<tr>
<td>ATS12NSOUR</td>
<td>ATS12NSOUR, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read on page G8-6169</td>
</tr>
<tr>
<td>ATS12NSOUW</td>
<td>ATS12NSOUW, Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write on page G8-6170</td>
</tr>
<tr>
<td>ATS1CPR</td>
<td>ATS1CPR, Address Translate Stage 1 Current state PL1 Read on page G8-6171</td>
</tr>
<tr>
<td>ATS1CPRP</td>
<td>ATS1CPRP, Address Translate Stage 1 Current state PL1 Read PAN on page G8-6172</td>
</tr>
<tr>
<td>ATS1CPW</td>
<td>ATS1CPW, Address Translate Stage 1 Current state PL1 Write on page G8-6173</td>
</tr>
<tr>
<td>ATS1CPWP</td>
<td>ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PA¨ on page G8-6174</td>
</tr>
<tr>
<td>ATS1CUR</td>
<td>ATS1CUR, Address Translate Stage 1 Current state Unprivileged Read on page G8-6175</td>
</tr>
</tbody>
</table>
Table K15-19 Alphabetical index of AArch32 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS1CUW</td>
<td>ATS1CUW, Address Translate Stage 1 Current state Unprivileged Write on page G8-6176</td>
</tr>
<tr>
<td>ATS1HR</td>
<td>ATS1HR, Address Translate Stage 1 Hyp mode Read on page G8-6177</td>
</tr>
<tr>
<td>ATS1HW</td>
<td>ATS1HW, Address Translate Stage 1 Hyp mode Write on page G8-6179</td>
</tr>
<tr>
<td>BPIALL</td>
<td>BPIALL, Branch Predictor Invalidate All on page G8-6181</td>
</tr>
<tr>
<td>BPIALLIS</td>
<td>BPIALLIS, Branch Predictor Invalidate All, Inner Shareable on page G8-6182</td>
</tr>
<tr>
<td>BPIMVA</td>
<td>BPIMVA, Branch Predictor Invalidate by VA on page G8-6183</td>
</tr>
<tr>
<td>CCSIDR</td>
<td>CCSIDR, Current Cache Size ID Register on page G8-6184</td>
</tr>
<tr>
<td>CCSIDR2</td>
<td>CCSIDR2, Current Cache Size ID Register 2 on page G8-6187</td>
</tr>
<tr>
<td>CFPRCTX</td>
<td>CFPRCTX, Control Flow Prediction Restriction by Context on page G8-6189</td>
</tr>
<tr>
<td>CLIDR</td>
<td>CLIDR, Cache Level ID Register on page G8-6192</td>
</tr>
<tr>
<td>CNTFRQ</td>
<td>CNTFRQ, Counter-timer Frequency register on page G8-6929</td>
</tr>
<tr>
<td>CNTHCTL</td>
<td>CNTHCTL, Counter-timer Hyp Control register on page G8-6931</td>
</tr>
<tr>
<td>CNTHP_CTL</td>
<td>CNTHP_CTL, Counter-timer Hyp Physical Timer Control register on page G8-6934</td>
</tr>
<tr>
<td>CNTHP_CVAL</td>
<td>CNTHP_CVAL, Counter-timer Hyp Physical CompareValue register on page G8-6938</td>
</tr>
<tr>
<td>CNTHP_TVAL</td>
<td>CNTHP_TVAL, Counter-timer Hyp Physical Timer Value register on page G8-6942</td>
</tr>
<tr>
<td>CNTHPS_CTL</td>
<td>CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2) on page G8-6946</td>
</tr>
<tr>
<td>CNTHPS_CVAL</td>
<td>CNTHPS_CVAL, Counter-timer Secure Physical Timer CompareValue Register (EL2) on page G8-6950</td>
</tr>
<tr>
<td>CNTHPS_TVAL</td>
<td>CNTHPS_TVAL, Counter-timer Secure Physical Timer Value register (EL2) on page G8-6953</td>
</tr>
<tr>
<td>CNTHV_CTL</td>
<td>CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2) on page G8-6956</td>
</tr>
<tr>
<td>CNTHV_CVAL</td>
<td>CNTHV_CVAL, Counter-timer Virtual Timer CompareValue register (EL2) on page G8-6959</td>
</tr>
<tr>
<td>CNTHV_TVAL</td>
<td>CNTHV_TVAL, Counter-timer Virtual Timer Value register (EL2) on page G8-6962</td>
</tr>
<tr>
<td>CNTHVS_CTL</td>
<td>CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2) on page G8-6965</td>
</tr>
<tr>
<td>CNTHVS_CVAL</td>
<td>CNTHVS_CVAL, Counter-timer Secure Virtual Timer CompareValue Register (EL2) on page G8-6968</td>
</tr>
<tr>
<td>CNTHVS_TVAL</td>
<td>CNTHVS_TVAL, Counter-timer Secure Virtual Timer Value register (EL2) on page G8-6971</td>
</tr>
<tr>
<td>CNTKCTL</td>
<td>CNTKCTL, Counter-timer Kernel Control register on page G8-6974</td>
</tr>
<tr>
<td>CNTP_CTL</td>
<td>CNTP_CTL, Counter-timer Physical Timer Control register on page G8-6977</td>
</tr>
<tr>
<td>CNTP_CVAL</td>
<td>CNTP_CVAL, Counter-timer Physical Timer CompareValue register on page G8-6981</td>
</tr>
<tr>
<td>CNTP_TVAL</td>
<td>CNTP_TVAL, Counter-timer Physical Timer Value register on page G8-6984</td>
</tr>
<tr>
<td>CNTPCT</td>
<td>CNTPCT, Counter-timer Physical Count register on page G8-6987</td>
</tr>
<tr>
<td>CNTPCTSS</td>
<td>CNTPCTSS, Counter-timer Self-Synchronized Physical Count register on page G8-6989</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>CNTV_CTL</td>
<td>CNTV_CTL, Counter-timer Virtual Timer Control register on page G8-6991</td>
</tr>
<tr>
<td>CNTV_CVAL</td>
<td>CNTV_CVAL, Counter-timer Virtual Timer CompareValue register on page G8-6994</td>
</tr>
<tr>
<td>CNTV_TVAL</td>
<td>CNTV_TVAL, Counter-timer Virtual TimerValue register on page G8-6997</td>
</tr>
<tr>
<td>CNTVCT</td>
<td>CNTVCT, Counter-timer Virtual Count register on page G8-7000</td>
</tr>
<tr>
<td>CNTVCTSS</td>
<td>CNTVCTSS, Counter-timer Self-Synchronized Virtual Count register on page G8-7002</td>
</tr>
<tr>
<td>CNTVOFF</td>
<td>CNTVOFF, Counter-timer Virtual Offset register on page G8-7004</td>
</tr>
<tr>
<td>CONTEXTIDR</td>
<td>CONTEXTIDR, Context ID Register on page G8-6194</td>
</tr>
<tr>
<td>CP15DMB</td>
<td>CP15DMB, Data Memory Barrier System instruction on page G8-6197</td>
</tr>
<tr>
<td>CP15DSB</td>
<td>CP15DSB, Data Synchronization Barrier System instruction on page G8-6199</td>
</tr>
<tr>
<td>CP15ISB</td>
<td>CP15ISB, Instruction Synchronization Barrier System instruction on page G8-6201</td>
</tr>
<tr>
<td>CPACR</td>
<td>CPACR, Architectural Feature Access Control Register on page G8-6203</td>
</tr>
<tr>
<td>CPPRCTX</td>
<td>CPPRCTX, Cache Prefetch Prediction Restriction by Context on page G8-6212</td>
</tr>
<tr>
<td>CPSR</td>
<td>CPSR, Current Program Status Register on page G8-6207</td>
</tr>
<tr>
<td>CSSELR</td>
<td>CSSELR, Cache Size Selection Register on page G8-6215</td>
</tr>
<tr>
<td>CTR</td>
<td>CTR, Cache Type Register on page G8-6218</td>
</tr>
<tr>
<td>DACR</td>
<td>DACR, Domain Access Control Register on page G8-6221</td>
</tr>
<tr>
<td>DBGAUTHSTATUS</td>
<td>DBGAUTHSTATUS, Debug Authentication Status register on page G8-6629</td>
</tr>
<tr>
<td>DBGBCR<n></td>
<td>DBGBCR<n>, Debug Breakpoint Control Registers, n = 0 - 15 on page G8-6632</td>
</tr>
<tr>
<td>DBGBVVR<n></td>
<td>DBGBVVR<n>, Debug Breakpoint Value Registers, n = 0 - 15 on page G8-6637</td>
</tr>
<tr>
<td>DBGBXVR<n></td>
<td>DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15 on page G8-6641</td>
</tr>
<tr>
<td>DBGCLAIMCLR</td>
<td>DBGCLAIMCLR, Debug CLAIM Tag Clear register on page G8-6644</td>
</tr>
<tr>
<td>DBGCLAIMSET</td>
<td>DBGCLAIMSET, Debug CLAIM Tag Set register on page G8-6647</td>
</tr>
<tr>
<td>DBGDCCINT</td>
<td>DBGDCCINT, DCC Interrupt Enable Register on page G8-6650</td>
</tr>
<tr>
<td>DBGDEVID</td>
<td>DBGDEVID, Debug Device ID register 0 on page G8-6654</td>
</tr>
<tr>
<td>DBGDEVID1</td>
<td>DBGDEVID1, Debug Device ID register 1 on page G8-6657</td>
</tr>
<tr>
<td>DBGDEVID2</td>
<td>DBGDEVID2, Debug Device ID register 2 on page G8-6659</td>
</tr>
<tr>
<td>DBGIDIR</td>
<td>DBGIDIR, Debug ID Register on page G8-6661</td>
</tr>
<tr>
<td>DBGDRAR</td>
<td>DBGDRAR, Debug ROM Address Register on page G8-6664</td>
</tr>
<tr>
<td>DBGDSAR</td>
<td>DBGDSAR, Debug Self Address Register on page G8-6667</td>
</tr>
<tr>
<td>DBGDSCRext</td>
<td>DBGDSCRext, Debug Status and Control Register, External View on page G8-6669</td>
</tr>
<tr>
<td>DBGDSCRint</td>
<td>DBGDSCRint, Debug Status and Control Register, Internal View on page G8-6675</td>
</tr>
<tr>
<td>DBGDTRRXext</td>
<td>DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View on page G8-6679</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>DBGDTRRXint</td>
<td>DBGDTRRXint, Debug Data Transfer Register, Receive on page G8-6683</td>
</tr>
<tr>
<td>DBGDTRXText</td>
<td>DBGDTRXText, Debug OS Lock Data Transfer Register, Transmit on page G8-6685</td>
</tr>
<tr>
<td>DBGDTRXint</td>
<td>DBGDTRXTXint, Debug Data Transfer Register, Transmit on page G8-6689</td>
</tr>
<tr>
<td>DBGOSDLR</td>
<td>DBGOSDLR, Debug OS Double Lock Register on page G8-6691</td>
</tr>
<tr>
<td>DBGOSECCR</td>
<td>DBGOSECCR, Debug OS Lock Exception Catch Control Register on page G8-6694</td>
</tr>
<tr>
<td>DBGOSLAR</td>
<td>DBGOSLAR, Debug OS Lock Access Register on page G8-6696</td>
</tr>
<tr>
<td>DBGOSLSR</td>
<td>DBGOSLSR, Debug OS Lock Status Register on page G8-6698</td>
</tr>
<tr>
<td>DBGPRCR</td>
<td>DBGPRCR, Debug Power Control Register on page G8-6700</td>
</tr>
<tr>
<td>DBGVCR</td>
<td>DBGVCR, Debug Vector Catch Register on page G8-6703</td>
</tr>
<tr>
<td>DBGWCR<n></td>
<td>DBGWCR<n>, Debug Watchpoint Control Registers, n = 0 - 15 on page G8-6710</td>
</tr>
<tr>
<td>DBGWFAR</td>
<td>DBGWFAR, Debug Watchpoint Fault Address Register on page G8-6715</td>
</tr>
<tr>
<td>DBGWVVR<n></td>
<td>DBGWVVR<n>, Debug Watchpoint Value Registers, n = 0 - 15 on page G8-6717</td>
</tr>
<tr>
<td>DCCIMVAC</td>
<td>DCCIMVAC, Data Cache line Clean and Invalidate by VA to PoC on page G8-6223</td>
</tr>
<tr>
<td>DCCISW</td>
<td>DCCISW, Data Cache line Clean and Invalidate by Set/Way on page G8-6224</td>
</tr>
<tr>
<td>DCCMVAC</td>
<td>DCCMVAC, Data Cache line Clean by VA to PoC on page G8-6226</td>
</tr>
<tr>
<td>DCCMVAU</td>
<td>DCCMVAU, Data Cache line Clean by VA to PoU on page G8-6227</td>
</tr>
<tr>
<td>DCCSW</td>
<td>DCCSW, Data Cache line Clean by Set/Way on page G8-6229</td>
</tr>
<tr>
<td>DCIMVAC</td>
<td>DCIMVAC, Data Cache line Invalidate by VA to PoC on page G8-6231</td>
</tr>
<tr>
<td>DCISW</td>
<td>DCISW, Data Cache line Invalidate by Set/Way on page G8-6233</td>
</tr>
<tr>
<td>DFAR</td>
<td>DFAR, Data Fault Address Register on page G8-6235</td>
</tr>
<tr>
<td>DFSR</td>
<td>DFSR, Data Fault Status Register on page G8-6237</td>
</tr>
<tr>
<td>DISR</td>
<td>DISR, Deferred Interrupt Status Register on page G8-6868</td>
</tr>
<tr>
<td>DLR</td>
<td>DLR, Debug Link Register on page G8-6720</td>
</tr>
<tr>
<td>DSPSR</td>
<td>DSPSR, Debug Saved Program Status Register on page G8-6721</td>
</tr>
<tr>
<td>DTLBIALL</td>
<td>DTLBIALL, Data TLB Invalidate All on page G8-6244</td>
</tr>
<tr>
<td>DTLBIASID</td>
<td>DTLBIASID, Data TLB Invalidate by ASID match on page G8-6246</td>
</tr>
<tr>
<td>DTLBIMVA</td>
<td>DTLBIMVA, Data TLB Invalidate by VA on page G8-6248</td>
</tr>
<tr>
<td>DVPRCTX</td>
<td>DVPRCTX, Data Value Prediction Restriction by Context on page G8-6250</td>
</tr>
<tr>
<td>ELR_hyp</td>
<td>ELR_hyp, Exception Link Register (Hyp mode) on page G8-6253</td>
</tr>
<tr>
<td>ERRIDR</td>
<td>ERRIDR, Error Record ID Register on page G8-6873</td>
</tr>
<tr>
<td>ERRSELR</td>
<td>ERRSELR, Error Record Select Register on page G8-6875</td>
</tr>
<tr>
<td>ERXADDR</td>
<td>ERXADDR, Selected Error Record Address Register on page G8-6878</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ERXADDR2</td>
<td>ERXADDR2, Selected Error Record Address Register 2 on page G8-6881</td>
</tr>
<tr>
<td>ERXCTRLR</td>
<td>ERXCTRLR, Selected Error Record Control Register on page G8-6884</td>
</tr>
<tr>
<td>ERXCTRLR2</td>
<td>ERXCTRLR2, Selected Error Record Control Register 2 on page G8-6887</td>
</tr>
<tr>
<td>ERXFRR</td>
<td>ERXFRR, Selected Error Record Feature Register on page G8-6890</td>
</tr>
<tr>
<td>ERXFRR2</td>
<td>ERXFRR2, Selected Error Record Feature Register 2 on page G8-6892</td>
</tr>
<tr>
<td>ERXMISC0</td>
<td>ERXMISC0, Selected Error Record Miscellaneous Register 0 on page G8-6894</td>
</tr>
<tr>
<td>ERXMISC1</td>
<td>ERXMISC1, Selected Error Record Miscellaneous Register 1 on page G8-6897</td>
</tr>
<tr>
<td>ERXMISC2</td>
<td>ERXMISC2, Selected Error Record Miscellaneous Register 2 on page G8-6900</td>
</tr>
<tr>
<td>ERXMISC3</td>
<td>ERXMISC3, Selected Error Record Miscellaneous Register 3 on page G8-6903</td>
</tr>
<tr>
<td>ERXMISC4</td>
<td>ERXMISC4, Selected Error Record Miscellaneous Register 4 on page G8-6906</td>
</tr>
<tr>
<td>ERXMISC5</td>
<td>ERXMISC5, Selected Error Record Miscellaneous Register 5 on page G8-6909</td>
</tr>
<tr>
<td>ERXMISC6</td>
<td>ERXMISC6, Selected Error Record Miscellaneous Register 6 on page G8-6912</td>
</tr>
<tr>
<td>ERXMISC7</td>
<td>ERXMISC7, Selected Error Record Miscellaneous Register 7 on page G8-6915</td>
</tr>
<tr>
<td>ERXSTATUS</td>
<td>ERXSTATUS, Selected Error Record Primary Status Register on page G8-6918</td>
</tr>
<tr>
<td>FCSEIDR</td>
<td>FCSEIDR, FCSE Process ID register on page G8-6254</td>
</tr>
<tr>
<td>FPEXC</td>
<td>FPEXC, Floating-Point Exception Control register on page G8-6256</td>
</tr>
<tr>
<td>FPSCR</td>
<td>FPSCR, Floating-Point Status and Control Register on page G8-6262</td>
</tr>
<tr>
<td>FPSID</td>
<td>FPSID, Floating-Point System ID register on page G8-6270</td>
</tr>
<tr>
<td>HACR</td>
<td>HACR, Hyp Auxiliary Configuration Register on page G8-6273</td>
</tr>
<tr>
<td>HACTLR</td>
<td>HACTLR, Hyp Auxiliary Control Register on page G8-6275</td>
</tr>
<tr>
<td>HACTLR2</td>
<td>HACTLR2, Hyp Auxiliary Control Register 2 on page G8-6277</td>
</tr>
<tr>
<td>HADFSR</td>
<td>HADFSR, Hyp Auxiliary Data Fault Status Register on page G8-6279</td>
</tr>
<tr>
<td>HAIFSR</td>
<td>HAIFSR, Hyp Auxiliary Instruction Fault Status Register on page G8-6281</td>
</tr>
<tr>
<td>HAMAIR0</td>
<td>HAMAIR0, Hyp Auxiliary Memory Attribute Indirection Register 0 on page G8-6283</td>
</tr>
<tr>
<td>HAMAIR1</td>
<td>HAMAIR1, Hyp Auxiliary Memory Attribute Indirection Register 1 on page G8-6285</td>
</tr>
<tr>
<td>HCPTR</td>
<td>HCPTR, Hyp Architectural Feature Trap Register on page G8-6287</td>
</tr>
<tr>
<td>HCR</td>
<td>HCR, Hyp Configuration Register on page G8-6292</td>
</tr>
<tr>
<td>HCR2</td>
<td>HCR2, Hyp Configuration Register 2 on page G8-6302</td>
</tr>
<tr>
<td>HDCR</td>
<td>HDCR, Hyp Debug Control Register on page G8-6725</td>
</tr>
<tr>
<td>HDFAR</td>
<td>HDFAR, Hyp Data Fault Address Register on page G8-6307</td>
</tr>
<tr>
<td>HIFAR</td>
<td>HIFAR, Hyp Instruction Fault Address Register on page G8-6309</td>
</tr>
<tr>
<td>HMAIR0</td>
<td>HMAIR0, Hyp Memory Attribute Indirection Register 0 on page G8-6311</td>
</tr>
</tbody>
</table>
Table K15-19 Alphabetical index of AArch32 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMAIR1</td>
<td>HMAIR1, Hyp Memory Attribute Indirection Register 1 on page G8-6314</td>
</tr>
<tr>
<td>HPFAR</td>
<td>HPFAR, Hyp IPA Fault Address Register on page G8-6317</td>
</tr>
<tr>
<td>HRMR</td>
<td>HRMR, Hyp Reset Management Register on page G8-6319</td>
</tr>
<tr>
<td>HSCTLR</td>
<td>HSCTLR, Hyp System Control Register on page G8-6321</td>
</tr>
<tr>
<td>HSR</td>
<td>HSR, Hyp Syndrome Register on page G8-6327</td>
</tr>
<tr>
<td>HSTR</td>
<td>HSTR, Hyp System Trap Register on page G8-6348</td>
</tr>
<tr>
<td>HTCR</td>
<td>HTCR, Hyp Translation Control Register on page G8-6350</td>
</tr>
<tr>
<td>HTPIDR</td>
<td>HTPIDR, Hyp Software Thread ID Register on page G8-6354</td>
</tr>
<tr>
<td>HTRFCR</td>
<td>HTRFCR, Hyp Trace Filter Control Register on page G8-6733</td>
</tr>
<tr>
<td>HTTBR</td>
<td>HTTBR, Hyp Translation Table Base Register on page G8-6356</td>
</tr>
<tr>
<td>HVBAR</td>
<td>HVBAR, Hyp Vector Base Address Register on page G8-6359</td>
</tr>
<tr>
<td>ICIALLU</td>
<td>ICIALLU, Instruction Cache Invalidate All to PoU on page G8-6361</td>
</tr>
<tr>
<td>ICIALLUIS</td>
<td>ICIALLUIS, Instruction Cache Invalidate All to PoU, Inner Shareable on page G8-6362</td>
</tr>
<tr>
<td>ICIMVAU</td>
<td>ICIMVAU, Instruction Cache line Invalidate by VA to PoU on page G8-6363</td>
</tr>
<tr>
<td>ID_AFR0</td>
<td>ID_AFR0, Auxiliary Feature Register 0 on page G8-6365</td>
</tr>
<tr>
<td>ID_DFR0</td>
<td>ID_DFR0, Debug Feature Register 0 on page G8-6367</td>
</tr>
<tr>
<td>ID_DFR1</td>
<td>ID_DFR1, Debug Feature Register 1 on page G8-6371</td>
</tr>
<tr>
<td>ID_ISAR0</td>
<td>ID_ISAR0, Instruction Set Attribute Register 0 on page G8-6373</td>
</tr>
<tr>
<td>ID_ISAR1</td>
<td>ID_ISAR1, Instruction Set Attribute Register 1 on page G8-6376</td>
</tr>
<tr>
<td>ID_ISAR2</td>
<td>ID_ISAR2, Instruction Set Attribute Register 2 on page G8-6379</td>
</tr>
<tr>
<td>ID_ISAR3</td>
<td>ID_ISAR3, Instruction Set Attribute Register 3 on page G8-6382</td>
</tr>
<tr>
<td>ID_ISAR4</td>
<td>ID_ISAR4, Instruction Set Attribute Register 4 on page G8-6385</td>
</tr>
<tr>
<td>ID_ISAR5</td>
<td>ID_ISAR5, Instruction Set Attribute Register 5 on page G8-6388</td>
</tr>
<tr>
<td>ID_ISAR6</td>
<td>ID_ISAR6, Instruction Set Attribute Register 6 on page G8-6391</td>
</tr>
<tr>
<td>ID_MMFR0</td>
<td>ID_MMFR0, Memory Model Feature Register 0 on page G8-6394</td>
</tr>
<tr>
<td>ID_MMFR1</td>
<td>ID_MMFR1, Memory Model Feature Register 1 on page G8-6397</td>
</tr>
<tr>
<td>ID_MMFR2</td>
<td>ID_MMFR2, Memory Model Feature Register 2 on page G8-6401</td>
</tr>
<tr>
<td>ID_MMFR3</td>
<td>ID_MMFR3, Memory Model Feature Register 3 on page G8-6404</td>
</tr>
<tr>
<td>ID_MMFR4</td>
<td>ID_MMFR4, Memory Model Feature Register 4 on page G8-6407</td>
</tr>
<tr>
<td>ID_MMFR5</td>
<td>ID_MMFR5, Memory Model Feature Register 5 on page G8-6410</td>
</tr>
<tr>
<td>ID_PFR0</td>
<td>ID_PFR0, Processor Feature Register 0 on page G8-6412</td>
</tr>
<tr>
<td>ID_PFR1</td>
<td>ID_PFR1, Processor Feature Register 1 on page G8-6415</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>ID_PFR2</td>
<td>ID_PFR2, Processor Feature Register 2 on page G8-6419</td>
</tr>
<tr>
<td>IFAR</td>
<td>IFAR, Instruction Fault Address Register on page G8-6421</td>
</tr>
<tr>
<td>IFSR</td>
<td>IFSR, Instruction Fault Status Register on page G8-6423</td>
</tr>
<tr>
<td>ISR</td>
<td>ISR, Interrupt Status Register on page G8-6428</td>
</tr>
<tr>
<td>ITLBIALL</td>
<td>ITLBIALL, Instruction TLB Invalidate All on page G8-6430</td>
</tr>
<tr>
<td>ITLBIA</td>
<td>ITLBIA, Instruction TLB Invalidate by ASID match on page G8-6432</td>
</tr>
<tr>
<td>ITLBIMVA</td>
<td>ITLBIMVA, Instruction TLB Invalidate by VA on page G8-6434</td>
</tr>
<tr>
<td>JIDR</td>
<td>JIDR, Jazelle ID Register on page G8-6436</td>
</tr>
<tr>
<td>JMCRC</td>
<td>JMCRC, Jazelle Main Configuration Register on page G8-6437</td>
</tr>
<tr>
<td>JOSCR</td>
<td>JOSCR, Jazelle OS Control Register on page G8-6439</td>
</tr>
<tr>
<td>MAIR0</td>
<td>MAIR0, Memory Attribute Indirection Register 0 on page G8-6441</td>
</tr>
<tr>
<td>MAIR1</td>
<td>MAIR1, Memory Attribute Indirection Register 1 on page G8-6445</td>
</tr>
<tr>
<td>MIDR</td>
<td>MIDR, Main ID Register on page G8-6449</td>
</tr>
<tr>
<td>MPIDR</td>
<td>MPIDR, Multiprocessor Affinity Register on page G8-6452</td>
</tr>
<tr>
<td>MVBAR</td>
<td>MVBAR, Monitor Vector Base Address Register on page G8-6454</td>
</tr>
<tr>
<td>MVFR0</td>
<td>MVFR0, Media and VFP Feature Register 0 on page G8-6456</td>
</tr>
<tr>
<td>MVFR1</td>
<td>MVFR1, Media and VFP Feature Register 1 on page G8-6460</td>
</tr>
<tr>
<td>MVFR2</td>
<td>MVFR2, Media and VFP Feature Register 2 on page G8-6464</td>
</tr>
<tr>
<td>NMRR</td>
<td>NMRR, Normal Memory Remap Register on page G8-6466</td>
</tr>
<tr>
<td>NSACR</td>
<td>NSACR, Non-Secure Access Control Register on page G8-6469</td>
</tr>
<tr>
<td>PAR</td>
<td>PAR, Physical Address Register on page G8-6473</td>
</tr>
<tr>
<td>PMCCFILTR</td>
<td>PMCCFILTR, Performance Monitors Cycle Count Filter Register on page G8-6751</td>
</tr>
<tr>
<td>PMCCNR</td>
<td>PMCCNTR, Performance Monitors Cycle Count Register on page G8-6755</td>
</tr>
<tr>
<td>PMCEID0</td>
<td>PMCEID0, Performance Monitors Common Event Identification register 0 on page G8-6761</td>
</tr>
<tr>
<td>PMCEID1</td>
<td>PMCEID1, Performance Monitors Common Event Identification register 1 on page G8-6764</td>
</tr>
<tr>
<td>PMCEID2</td>
<td>PMCEID2, Performance Monitors Common Event Identification register 2 on page G8-6767</td>
</tr>
<tr>
<td>PMCEID3</td>
<td>PMCEID3, Performance Monitors Common Event Identification register 3 on page G8-6770</td>
</tr>
<tr>
<td>PMCNETENCLR</td>
<td>PMCNETENCLR, Performance Monitors Count Enable Clear register on page G8-6773</td>
</tr>
<tr>
<td>PMCNETENSE</td>
<td>PMCNETENSE, Performance Monitors Count Enable Set register on page G8-6777</td>
</tr>
<tr>
<td>PMCR</td>
<td>PMCR, Performance Monitors Control Register on page G8-6781</td>
</tr>
<tr>
<td>PMEVVCNTR<n></td>
<td>PMEVVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30 on page G8-6788</td>
</tr>
<tr>
<td>PMEVTYPE<n></td>
<td>PMEVTYPE<n>, Performance Monitors Event Type Registers, n = 0 - 30 on page G8-6792</td>
</tr>
</tbody>
</table>
Table K15-19 Alphabetical index of AArch32 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMINTENCLR</td>
<td>PMINTENCLR, Performance Monitors Interrupt Enable Clear register on page G8-6798</td>
</tr>
<tr>
<td>PMINTENSET</td>
<td>PMINTENSET, Performance Monitors Interrupt Enable Set register on page G8-6801</td>
</tr>
<tr>
<td>PMMIR</td>
<td>PMMIR, Performance Monitors Machine Identification Register on page G8-6736</td>
</tr>
<tr>
<td>PMOVSR</td>
<td>PMOVSR, Performance Monitors Overflow Flag Status Register on page G8-6804</td>
</tr>
<tr>
<td>PMOVSET</td>
<td>PMOVSET, Performance Monitors Overflow Flag Status Set register on page G8-6808</td>
</tr>
<tr>
<td>PMSWINC</td>
<td>PMSWINC, Performance Monitors Event Counter Selection Register on page G8-6812</td>
</tr>
<tr>
<td>PMUSERENR</td>
<td>PMUSERENR, Performance Monitors User Enable Register on page G8-6819</td>
</tr>
<tr>
<td>PMXEVCTR</td>
<td>PMXEVCTR, Performance Monitors Selected Event Count Register on page G8-6822</td>
</tr>
<tr>
<td>PMXEVTPER</td>
<td>PMXEVTPER, Performance Monitors Selected Event Type Register on page G8-6826</td>
</tr>
<tr>
<td>PRRR</td>
<td>PRRR, Primary Region Remap Register on page G8-6483</td>
</tr>
<tr>
<td>REVIDR</td>
<td>REVIDR, Revision ID Register on page G8-6487</td>
</tr>
<tr>
<td>RMR</td>
<td>RMR, Reset Management Register on page G8-6488</td>
</tr>
<tr>
<td>RVBAR</td>
<td>RVBAR, Reset Vector Base Address Register on page G8-6490</td>
</tr>
<tr>
<td>SCR</td>
<td>SCR, Secure Configuration Register on page G8-6492</td>
</tr>
<tr>
<td>SCTLR</td>
<td>SCTLR, System Control Register on page G8-6497</td>
</tr>
<tr>
<td>SDCR</td>
<td>SDCR, Secure Debug Control Register on page G8-6738</td>
</tr>
<tr>
<td>SDER</td>
<td>SDER, Secure Debug Enable Register on page G8-6744</td>
</tr>
<tr>
<td>SPSR</td>
<td>SPSR, Saved Program Status Register on page G8-6506</td>
</tr>
<tr>
<td>SPSR_abt</td>
<td>SPSR_abt, Saved Program Status Register (Abort mode) on page G8-6509</td>
</tr>
<tr>
<td>SPSR_fiq</td>
<td>SPSR_fiq, Saved Program Status Register (FIQ mode) on page G8-6513</td>
</tr>
<tr>
<td>SPSR_hyp</td>
<td>SPSR_hyp, Saved Program Status Register (Hyp mode) on page G8-6517</td>
</tr>
<tr>
<td>SPSR_irq</td>
<td>SPSR_irq, Saved Program Status Register (IRQ mode) on page G8-6521</td>
</tr>
<tr>
<td>SPSR_mon</td>
<td>SPSR_mon, Saved Program Status Register (Monitor mode) on page G8-6525</td>
</tr>
<tr>
<td>SPSR_svc</td>
<td>SPSR_svc, Saved Program Status Register (Supervisor mode) on page G8-6529</td>
</tr>
<tr>
<td>SPSR_und</td>
<td>SPSR_und, Saved Program Status Register (Undefined mode) on page G8-6533</td>
</tr>
<tr>
<td>TCMTR</td>
<td>TCMTR, TCM Type Register on page G8-6537</td>
</tr>
<tr>
<td>TLBIALLL</td>
<td>TLBIALLL, TLB Invalidate All on page G8-6538</td>
</tr>
<tr>
<td>TLBIALLLH</td>
<td>TLBIALLLH, TLB Invalidate All, Hyp mode on page G8-6540</td>
</tr>
<tr>
<td>TLBIALLHIS</td>
<td>TLBIALLHIS, TLB Invalidate All, Hyp mode, Inner Shareable on page G8-6541</td>
</tr>
<tr>
<td>TLBIALLIS</td>
<td>TLBIALLIS, TLB Invalidate All, Inner Shareable on page G8-6542</td>
</tr>
<tr>
<td>TLBIALLNSNH</td>
<td>TLBIALLNSNH, TLB Invalidate All, Non-Secure Non-Hyp on page G8-6544</td>
</tr>
</tbody>
</table>
Table K15-19 Alphabetical index of AArch32 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBIALLNSNHS</td>
<td>TLBIALLNSNHS, TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable on page G8-6545</td>
</tr>
<tr>
<td>TLBIASID</td>
<td>TLBIASID, TLB Invalidate by ASID match on page G8-6546</td>
</tr>
<tr>
<td>TLBIASIDIS</td>
<td>TLBIASIDIS, TLB Invalidate by ASID match, Inner Shareable on page G8-6548</td>
</tr>
<tr>
<td>TLBIIIPAS2</td>
<td>TLBIIIPAS2, TLB Invalidate by Intermediate Physical Address, Stage 2 on page G8-6550</td>
</tr>
<tr>
<td>TLBIIIPAS2IS</td>
<td>TLBIIIPAS2IS, TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable on page G8-6552</td>
</tr>
<tr>
<td>TLBIIIPAS2L</td>
<td>TLBIIIPAS2L, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level on page G8-6554</td>
</tr>
<tr>
<td>TLBIIIPAS2LIS</td>
<td>TLBIIIPAS2LIS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable on page G8-6556</td>
</tr>
<tr>
<td>TLBIMVA</td>
<td>TLBIMVA, TLB Invalidate by VA on page G8-6558</td>
</tr>
<tr>
<td>TLBIMVAA</td>
<td>TLBIMVAA, TLB Invalidate by VA, All ASID on page G8-6560</td>
</tr>
<tr>
<td>TLBIMVAAIS</td>
<td>TLBIMVAAIS, TLB Invalidate by VA, All ASID, Inner Shareable on page G8-6562</td>
</tr>
<tr>
<td>TLBIMVAAL</td>
<td>TLBIMVAAL, TLB Invalidate by VA, All ASID, Last level on page G8-6564</td>
</tr>
<tr>
<td>TLBIMVAALIS</td>
<td>TLBIMVAALIS, TLB Invalidate by VA, All ASID, Last level, Inner Shareable on page G8-6566</td>
</tr>
<tr>
<td>TLBIMVAH</td>
<td>TLBIMVAH, TLB Invalidate by VA, Hyp mode on page G8-6568</td>
</tr>
<tr>
<td>TLBIMVAHIS</td>
<td>TLBIMVAHIS, TLB Invalidate by VA, Hyp mode, Inner Shareable on page G8-6570</td>
</tr>
<tr>
<td>TLBIMVAIS</td>
<td>TLBIMVAIS, TLB Invalidate by VA, Inner Shareable on page G8-6572</td>
</tr>
<tr>
<td>TLBIMVAL</td>
<td>TLBIMVAL, TLB Invalidate by VA, Last level on page G8-6574</td>
</tr>
<tr>
<td>TLBIMVALH</td>
<td>TLBIMVALH, TLB Invalidate by VA, Last level, Hyp mode on page G8-6576</td>
</tr>
<tr>
<td>TLBIMVALHIS</td>
<td>TLBIMVALHIS, TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable on page G8-6578</td>
</tr>
<tr>
<td>TLBIMVALIS</td>
<td>TLBIMVALIS, TLB Invalidate by VA, Last level, Inner Shareable on page G8-6580</td>
</tr>
<tr>
<td>TLBTR</td>
<td>TLBTR, TLB Type Register on page G8-6582</td>
</tr>
<tr>
<td>TPIDRPRW</td>
<td>TPIDRPRW, PL1 Software Thread ID Register on page G8-6584</td>
</tr>
<tr>
<td>TPIDRURW</td>
<td>TPIDRURW, PL0 Read-Only Software Thread ID Register on page G8-6586</td>
</tr>
<tr>
<td>TRFCR</td>
<td>TRFCR, Trace Filter Control Register on page G8-6746</td>
</tr>
<tr>
<td>TTBCR</td>
<td>TTBCR, Translation Table Base Control Register on page G8-6590</td>
</tr>
<tr>
<td>TTBCR2</td>
<td>TTBCR2, Translation Table Base Control Register 2 on page G8-6596</td>
</tr>
<tr>
<td>TTB0</td>
<td>TTB0, Translation Table Base Register 0 on page G8-6601</td>
</tr>
<tr>
<td>TTB1</td>
<td>TTB1, Translation Table Base Register 1 on page G8-6607</td>
</tr>
<tr>
<td>VBAR</td>
<td>VBAR, Vector Base Address Register on page G8-6613</td>
</tr>
<tr>
<td>VDFSR</td>
<td>VDFSR, Virtual SError Exception Syndrome Register on page G8-6921</td>
</tr>
</tbody>
</table>
Table K15-19 Alphabetical index of AArch32 Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDISR</td>
<td>VDISR, Virtual Deferred Interrupt Status Register on page G8-6923</td>
</tr>
<tr>
<td>VMPIDR</td>
<td>VMPIDR, Virtualization Multiprocessor ID Register on page G8-6615</td>
</tr>
<tr>
<td>VPIDR</td>
<td>VPIDR, Virtualization Processor ID Register on page G8-6618</td>
</tr>
<tr>
<td>VTCR</td>
<td>VTCR, Virtualization Translation Control Register on page G8-6621</td>
</tr>
<tr>
<td>VTTBR</td>
<td>VTTBR, Virtualization Translation Table Base Register on page G8-6625</td>
</tr>
</tbody>
</table>
K15.5 Functional index of AArch32 registers and System instructions

This section is an index of the AArch32 registers and System instructions, divided by functional group. Each of the following sections lists the registers for a functional group:

- Special-purpose registers.
- VMSA-specific registers.
- ID registers on page K15-8205.
- Performance monitors registers on page K15-8206.
- Debug registers on page K15-8207.
- RAS registers on page K15-8208.
- Generic timer registers on page K15-8209.
- Cache maintenance system instructions on page K15-8210.
- Address translation system instructions on page K15-8210.
- TLB maintenance system instructions on page K15-8211.
- Legacy feature registers and system instructions on page K15-8212.
- Base system registers on page K15-8213.

K15.5.1 Special-purpose registers

This section is an index to the registers in the Processor state registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLR</td>
<td>DLR</td>
</tr>
<tr>
<td>DSPSR</td>
<td>DSPSR</td>
</tr>
<tr>
<td>ELR_hyp</td>
<td>ELR_hyp</td>
</tr>
<tr>
<td>SPSR</td>
<td>SPSR</td>
</tr>
<tr>
<td>SPSR_abt</td>
<td>SPSR_abt</td>
</tr>
<tr>
<td>SPSR_fiq</td>
<td>SPSR_fiq</td>
</tr>
<tr>
<td>SPSR_hyp</td>
<td>SPSR_hyp</td>
</tr>
<tr>
<td>SPSR_irq</td>
<td>SPSR_irq</td>
</tr>
<tr>
<td>SPSR_mon</td>
<td>SPSR_mon</td>
</tr>
<tr>
<td>SPSR_svc</td>
<td>SPSR_svc</td>
</tr>
<tr>
<td>SPSR_und</td>
<td>SPSR_und</td>
</tr>
</tbody>
</table>

K15.5.2 VMSA-specific registers

This section is an index to the registers in the Virtual memory control registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMAIR0</td>
<td>AMAIR0</td>
</tr>
<tr>
<td>AMAIR1</td>
<td>AMAIR1</td>
</tr>
<tr>
<td>CONTEXTIDR</td>
<td>CONTEXTIDR</td>
</tr>
</tbody>
</table>
K15.5.3 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K15-22 ID registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSIDR</td>
<td>CCSIDR</td>
</tr>
<tr>
<td>CCSIDR2</td>
<td>CCSIDR2</td>
</tr>
<tr>
<td>CLIDR</td>
<td>CLIDR</td>
</tr>
<tr>
<td>CSSELR</td>
<td>CSSELR</td>
</tr>
<tr>
<td>CTR</td>
<td>CTR</td>
</tr>
<tr>
<td>ID_AFR0</td>
<td>ID_AFR0</td>
</tr>
<tr>
<td>ID_DFR0</td>
<td>ID_DFR0</td>
</tr>
<tr>
<td>ID_DFR1</td>
<td>ID_DFR1</td>
</tr>
<tr>
<td>ID_ISAR0</td>
<td>ID_ISAR0</td>
</tr>
<tr>
<td>ID_ISAR1</td>
<td>ID_ISAR1</td>
</tr>
</tbody>
</table>

Table K15-21 VMSA-specific registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DACR</td>
<td>DACR</td>
</tr>
<tr>
<td>HAMAIR0</td>
<td>HAMAIR0</td>
</tr>
<tr>
<td>HAMAIR1</td>
<td>HAMAIR1</td>
</tr>
<tr>
<td>HMAIR0</td>
<td>HMAIR0</td>
</tr>
<tr>
<td>HMAIR1</td>
<td>HMAIR1</td>
</tr>
<tr>
<td>HTCR</td>
<td>HTCR</td>
</tr>
<tr>
<td>HTTBR</td>
<td>HTTBR</td>
</tr>
<tr>
<td>MAIR0</td>
<td>MAIR0</td>
</tr>
<tr>
<td>MAIR1</td>
<td>MAIR1</td>
</tr>
<tr>
<td>NMRR</td>
<td>NMRR</td>
</tr>
<tr>
<td>PRRR</td>
<td>PRRR</td>
</tr>
<tr>
<td>TTBCR</td>
<td>TTBCR</td>
</tr>
<tr>
<td>TTBCR2</td>
<td>TTBCR2</td>
</tr>
<tr>
<td>TTBR0</td>
<td>TTBR0</td>
</tr>
<tr>
<td>TTBR1</td>
<td>TTBR1</td>
</tr>
<tr>
<td>VTCR</td>
<td>VTCR</td>
</tr>
<tr>
<td>VTTBR</td>
<td>VTTBR</td>
</tr>
</tbody>
</table>
K15.5.4 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCCFILTR</td>
<td>PMCCFILTR</td>
</tr>
<tr>
<td>PMCCNTR</td>
<td>PMCCNTR</td>
</tr>
<tr>
<td>PMCEID0</td>
<td>PMCEID0</td>
</tr>
<tr>
<td>PMCEID1</td>
<td>PMCEID1</td>
</tr>
<tr>
<td>PMCEID2</td>
<td>PMCEID2</td>
</tr>
<tr>
<td>PMCEID3</td>
<td>PMCEID3</td>
</tr>
<tr>
<td>PMCNTENCLR</td>
<td>PMCNTENCLR</td>
</tr>
<tr>
<td>PMCNTENSET</td>
<td>PMCNTENSET</td>
</tr>
</tbody>
</table>
Table K15-23 Performance monitors registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCR</td>
<td>PMCR</td>
</tr>
<tr>
<td>PMEVCNTR<n></td>
<td>PMEVCNTR<n></td>
</tr>
<tr>
<td>PMEVTYPER<n></td>
<td>PMEVTYPER<n></td>
</tr>
<tr>
<td>PMINTENCLR</td>
<td>PMINTENCLR</td>
</tr>
<tr>
<td>PMINTENSET</td>
<td>PMINTENSET</td>
</tr>
<tr>
<td>PMMIR</td>
<td>PMMIR</td>
</tr>
<tr>
<td>PMOVSR</td>
<td>PMOVSR</td>
</tr>
<tr>
<td>PMOVSET</td>
<td>PMOVSET</td>
</tr>
<tr>
<td>PMSELR</td>
<td>PMSELR</td>
</tr>
<tr>
<td>PMSWINC</td>
<td>PMSWINC</td>
</tr>
<tr>
<td>PMUSERENR</td>
<td>PMUSERENR</td>
</tr>
<tr>
<td>PMXEVCTR</td>
<td>PMXEVCTR</td>
</tr>
<tr>
<td>PMXEVTYPE</td>
<td>PMXEVTYPE</td>
</tr>
</tbody>
</table>

K15.5.5 Debug registers

This section is an index to the registers in the Debug registers functional group.

Table K15-24 Debug registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGAUTHSTATUS</td>
<td>DBGAUTHSTATUS</td>
</tr>
<tr>
<td>DBGBCR<n></td>
<td>DBGBCR<n></td>
</tr>
<tr>
<td>DBGBVR<n></td>
<td>DBGBVR<n></td>
</tr>
<tr>
<td>DBGBXVR<n></td>
<td>DBGBXVR<n></td>
</tr>
<tr>
<td>DBGCLAIMCLR</td>
<td>DBGCLAIMCLR</td>
</tr>
<tr>
<td>DBGCLAIMSET</td>
<td>DBGCLAIMSET</td>
</tr>
<tr>
<td>DBGDCINT</td>
<td>DBGDCINT</td>
</tr>
<tr>
<td>DBGDEVID</td>
<td>DBGDEVID</td>
</tr>
<tr>
<td>DBGDEVID1</td>
<td>DBGDEVID1</td>
</tr>
<tr>
<td>DBGDEVID2</td>
<td>DBGDEVID2</td>
</tr>
<tr>
<td>DBGDIDR</td>
<td>DBGDIDR</td>
</tr>
<tr>
<td>DBGDRAR</td>
<td>DBGDRAR</td>
</tr>
<tr>
<td>DBGDSAR</td>
<td>DBGDSAR</td>
</tr>
<tr>
<td>DBGDSRext</td>
<td>DBGDSRext</td>
</tr>
</tbody>
</table>
Table K15-24 Debug registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGDSCRint</td>
<td>DBGDSCRint</td>
</tr>
<tr>
<td>DBGDTRRXext</td>
<td>DBGDTRRXext</td>
</tr>
<tr>
<td>DBGDTRRXint</td>
<td>DBGDTRRXint</td>
</tr>
<tr>
<td>DBGDTRTXext</td>
<td>DBGDTRTXext</td>
</tr>
<tr>
<td>DBGDTRTXint</td>
<td>DBGDTRTXint</td>
</tr>
<tr>
<td>DBGOSDLR</td>
<td>DBGOSDLR</td>
</tr>
<tr>
<td>DBGOSECCR</td>
<td>DBGOSECCR</td>
</tr>
<tr>
<td>DBGOSLAR</td>
<td>DBGOSLAR</td>
</tr>
<tr>
<td>DBGOSLSR</td>
<td>DBGOSLSR</td>
</tr>
<tr>
<td>DBGPRCR</td>
<td>DBGPRCR</td>
</tr>
<tr>
<td>DBGVCR</td>
<td>DBGVCR</td>
</tr>
<tr>
<td>DBGWCR<n></td>
<td>DBGWCR<n></td>
</tr>
<tr>
<td>DBGWFAR</td>
<td>DBGWFAR</td>
</tr>
<tr>
<td>DBGWVR<n></td>
<td>DBGWVR<n></td>
</tr>
<tr>
<td>TRFCR</td>
<td>TRFCR</td>
</tr>
</tbody>
</table>

K15.5.6 RAS registers

This section is an index to the registers in the RAS registers functional group.

Table K15-25 RAS registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISR</td>
<td>DISR</td>
</tr>
<tr>
<td>ERRIDR</td>
<td>ERRIDR</td>
</tr>
<tr>
<td>ERRSELR</td>
<td>ERRSELR</td>
</tr>
<tr>
<td>ERXADDR</td>
<td>ERXADDR</td>
</tr>
<tr>
<td>ERXADDR2</td>
<td>ERXADDR2</td>
</tr>
<tr>
<td>ERXCTRLR</td>
<td>ERXCTRLR</td>
</tr>
<tr>
<td>ERXCTRLR2</td>
<td>ERXCTRLR2</td>
</tr>
<tr>
<td>ERXFR</td>
<td>ERXFR</td>
</tr>
<tr>
<td>ERXFR2</td>
<td>ERXFR2</td>
</tr>
<tr>
<td>ERXMISC0</td>
<td>ERXMISC0</td>
</tr>
<tr>
<td>ERXMISC1</td>
<td>ERXMISC1</td>
</tr>
<tr>
<td>ERXMISC2</td>
<td>ERXMISC2</td>
</tr>
</tbody>
</table>
Table K15-25 RAS registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERXMISC3</td>
<td>ERXMISC3</td>
</tr>
<tr>
<td>ERXMISC4</td>
<td>ERXMISC4</td>
</tr>
<tr>
<td>ERXMISC5</td>
<td>ERXMISC5</td>
</tr>
<tr>
<td>ERXMISC6</td>
<td>ERXMISC6</td>
</tr>
<tr>
<td>ERXMISC7</td>
<td>ERXMISC7</td>
</tr>
<tr>
<td>ERXSTATUS</td>
<td>ERXSTATUS</td>
</tr>
<tr>
<td>VDFSR</td>
<td>VDFSR</td>
</tr>
<tr>
<td>VDISR</td>
<td>VDISR</td>
</tr>
</tbody>
</table>

K15.5.7 Generic timer registers

This section is an index to the registers in the Generic Timer registers functional group.

Table K15-26 Generic timer registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTFRQ</td>
<td>CNTFRQ</td>
</tr>
<tr>
<td>CNTHP_CTL</td>
<td>CNTHP_CTL</td>
</tr>
<tr>
<td>CNTHPS_CTL</td>
<td>CNTHPS_CTL</td>
</tr>
<tr>
<td>CNTHPS_CVAL</td>
<td>CNTHPS_CVAL</td>
</tr>
<tr>
<td>CNTHPS_TVAL</td>
<td>CNTHPS_TVAL</td>
</tr>
<tr>
<td>CNTHV_CTL</td>
<td>CNTHV_CTL</td>
</tr>
<tr>
<td>CNTHV_CVAL</td>
<td>CNTHV_CVAL</td>
</tr>
<tr>
<td>CNTHV_TVAL</td>
<td>CNTHV_TVAL</td>
</tr>
<tr>
<td>CNTHVS_CTL</td>
<td>CNTHVS_CTL</td>
</tr>
<tr>
<td>CNTHVS_CVAL</td>
<td>CNTHVS_CVAL</td>
</tr>
<tr>
<td>CNTHVS_TVAL</td>
<td>CNTHVS_TVAL</td>
</tr>
<tr>
<td>CNTKCTL</td>
<td>CNTKCTL</td>
</tr>
<tr>
<td>CNTP_CTL</td>
<td>CNTP_CTL</td>
</tr>
<tr>
<td>CNTP_CVAL</td>
<td>CNTP_CVAL</td>
</tr>
<tr>
<td>CNTP_TVAL</td>
<td>CNTP_TVAL</td>
</tr>
<tr>
<td>CNTPCT</td>
<td>CNTPCT</td>
</tr>
<tr>
<td>CNTPCTSS</td>
<td>CNTPCTSS</td>
</tr>
<tr>
<td>CNTV_CTL</td>
<td>CNTV_CTL</td>
</tr>
<tr>
<td>CNTV_CVAL</td>
<td>CNTV_CVAL</td>
</tr>
</tbody>
</table>
K15.5.8 Cache maintenance system instructions

This section is an index to the registers in the Cache maintenance instructions functional group.

Table K15-26 Generic timer registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTV_TVAL</td>
<td>CNTV_TVAL</td>
</tr>
<tr>
<td>CNTVCT</td>
<td>CNTVCT</td>
</tr>
<tr>
<td>CNTVCTSS</td>
<td>CNTVCTSS</td>
</tr>
</tbody>
</table>

K15.5.9 Address translation system instructions

This section is an index to the registers in the Address translation instructions functional group.

Table K15-27 Cache maintenance system instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPIALL</td>
<td>BPIALL</td>
</tr>
<tr>
<td>BPIALLIS</td>
<td>BPIALLIS</td>
</tr>
<tr>
<td>BPIMVA</td>
<td>BPIMVA</td>
</tr>
<tr>
<td>DCCIMVAC</td>
<td>DCCIMVAC</td>
</tr>
<tr>
<td>DCCISW</td>
<td>DCCISW</td>
</tr>
<tr>
<td>DCCMVAC</td>
<td>DCCMVAC</td>
</tr>
<tr>
<td>DCCMVAU</td>
<td>DCCMVAU</td>
</tr>
<tr>
<td>DCCSW</td>
<td>DCCSW</td>
</tr>
<tr>
<td>DCIMVAC</td>
<td>DCIMVAC</td>
</tr>
<tr>
<td>DCISW</td>
<td>DCISW</td>
</tr>
<tr>
<td>ICIALLU</td>
<td>ICIALLU</td>
</tr>
<tr>
<td>ICIALLUIS</td>
<td>ICIALLUIS</td>
</tr>
<tr>
<td>ICIMVAU</td>
<td>ICIMVAU</td>
</tr>
</tbody>
</table>

Table K15-28 Address translation system instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS12NSOPR</td>
<td>ATS12NSOPR</td>
</tr>
<tr>
<td>ATS12NSOPW</td>
<td>ATS12NSOPW</td>
</tr>
<tr>
<td>ATS12NSOUR</td>
<td>ATS12NSOUR</td>
</tr>
<tr>
<td>ATS12NSOUW</td>
<td>ATS12NSOUW</td>
</tr>
<tr>
<td>ATS1CPR</td>
<td>ATS1CPR</td>
</tr>
<tr>
<td>ATS1CPRP</td>
<td>ATS1CPRP</td>
</tr>
</tbody>
</table>
Table K15-28 Address translation system instructions (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS1CPW</td>
<td>ATS1CPW</td>
</tr>
<tr>
<td>ATS1CPWP</td>
<td>ATS1CPWP</td>
</tr>
<tr>
<td>ATS1CUR</td>
<td>ATS1CUR</td>
</tr>
<tr>
<td>ATS1CUW</td>
<td>ATS1CUW</td>
</tr>
<tr>
<td>ATS1HR</td>
<td>ATS1HR</td>
</tr>
<tr>
<td>ATS1HW</td>
<td>ATS1HW</td>
</tr>
</tbody>
</table>

K15.5.10 TLB maintenance system instructions

This section is an index to the registers in the TLB maintenance instructions functional group.

Table K15-29 TLB maintenance system instructions

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFPRCTX</td>
<td>CFPRCTX</td>
</tr>
<tr>
<td>CPPRCTX</td>
<td>CPPRCTX</td>
</tr>
<tr>
<td>DTLBIALL</td>
<td>DTLBIALL</td>
</tr>
<tr>
<td>DTLBIASID</td>
<td>DTLBIASID</td>
</tr>
<tr>
<td>DTLBIMVA</td>
<td>DTLBIMVA</td>
</tr>
<tr>
<td>DVRCTX</td>
<td>DVRCTX</td>
</tr>
<tr>
<td>ITLBIALL</td>
<td>ITLBIALL</td>
</tr>
<tr>
<td>ITLBIASID</td>
<td>ITLBIASID</td>
</tr>
<tr>
<td>ITLBIIMVA</td>
<td>ITLBIIMVA</td>
</tr>
<tr>
<td>TLBIALL</td>
<td>TLBIALL</td>
</tr>
<tr>
<td>TLBIALLH</td>
<td>TLBIALLH</td>
</tr>
<tr>
<td>TLBIALLHIS</td>
<td>TLBIALLHIS</td>
</tr>
<tr>
<td>TLBIALLIS</td>
<td>TLBIALLIS</td>
</tr>
<tr>
<td>TLBIALLNSNH</td>
<td>TLBIALLNSNH</td>
</tr>
<tr>
<td>TLBIALLNSNHIS</td>
<td>TLBIALLNSNHIS</td>
</tr>
<tr>
<td>TLBIASID</td>
<td>TLBIASID</td>
</tr>
<tr>
<td>TLBIASIDIS</td>
<td>TLBIASIDIS</td>
</tr>
<tr>
<td>TLBIIPAS2</td>
<td>TLBIIPAS2</td>
</tr>
<tr>
<td>TLBIIPAS2IS</td>
<td>TLBIIPAS2IS</td>
</tr>
<tr>
<td>TLBIIPAS2L</td>
<td>TLBIIPAS2L</td>
</tr>
<tr>
<td>TLBIIPAS2LIS</td>
<td>TLBIIPAS2LIS</td>
</tr>
</tbody>
</table>
K15.5.11 Prediction restriction instructions

This section is an index to the registers in the Prediction restriction instructions functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLBIMVA</td>
<td>TLBIMVA</td>
</tr>
<tr>
<td>TLBIMVAA</td>
<td>TLBIMVAA</td>
</tr>
<tr>
<td>TLBIMVAAIS</td>
<td>TLBIMVAAIS</td>
</tr>
<tr>
<td>TLBIMVAAL</td>
<td>TLBIMVAAL</td>
</tr>
<tr>
<td>TLBIMVAALIS</td>
<td>TLBIMVAALIS</td>
</tr>
<tr>
<td>TLBIMVAH</td>
<td>TLBIMVAH</td>
</tr>
<tr>
<td>TLBIMVAHIS</td>
<td>TLBIMVAHIS</td>
</tr>
<tr>
<td>TLBIMVAIS</td>
<td>TLBIMVAIS</td>
</tr>
<tr>
<td>TLBIMVAL</td>
<td>TLBIMVAL</td>
</tr>
<tr>
<td>TLBIMVALH</td>
<td>TLBIMVALH</td>
</tr>
<tr>
<td>TLBIMVALHIS</td>
<td>TLBIMVALHIS</td>
</tr>
<tr>
<td>TLBIMVALIS</td>
<td>TLBIMVALIS</td>
</tr>
</tbody>
</table>

K15.5.12 Legacy feature registers and system instructions

This section is an index to the registers in the Legacy feature registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP15DMB</td>
<td>CP15DMB</td>
</tr>
<tr>
<td>CP15DSB</td>
<td>CP15DSB</td>
</tr>
<tr>
<td>CP15ISB</td>
<td>CP15ISB</td>
</tr>
<tr>
<td>FCSEIDR</td>
<td>FCSEIDR</td>
</tr>
<tr>
<td>JIDR</td>
<td>JIDR</td>
</tr>
<tr>
<td>JMCR</td>
<td>JMCR</td>
</tr>
<tr>
<td>JOSCR</td>
<td>JOSCR</td>
</tr>
</tbody>
</table>
Base system registers

This section is an index to the registers in the functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTLR</td>
<td>ACTLR</td>
</tr>
<tr>
<td>ACTLR2</td>
<td>ACTLR2</td>
</tr>
<tr>
<td>ADFSR</td>
<td>ADFSR</td>
</tr>
<tr>
<td>AIDR</td>
<td>AIDR</td>
</tr>
<tr>
<td>AIFSR</td>
<td>AIFSR</td>
</tr>
<tr>
<td>APSR</td>
<td>APSR</td>
</tr>
<tr>
<td>CNTHCTL</td>
<td>CNTHCTL</td>
</tr>
<tr>
<td>CNTHP_CVAL</td>
<td>CNTHP_CVAL</td>
</tr>
<tr>
<td>CNTHP_TVAL</td>
<td>CNTHP_TVAL</td>
</tr>
<tr>
<td>CNTVOFF</td>
<td>CNTVOFF</td>
</tr>
<tr>
<td>CPACR</td>
<td>CPACR</td>
</tr>
<tr>
<td>CPSR</td>
<td>CPSR</td>
</tr>
<tr>
<td>DFAR</td>
<td>DFAR</td>
</tr>
<tr>
<td>DFSR</td>
<td>DFSR</td>
</tr>
<tr>
<td>FPEXC</td>
<td>FPEXC</td>
</tr>
<tr>
<td>FPSCR</td>
<td>FPSCR</td>
</tr>
<tr>
<td>FPSID</td>
<td>FPSID</td>
</tr>
<tr>
<td>HACR</td>
<td>HACR</td>
</tr>
<tr>
<td>HACTLR</td>
<td>HACTLR</td>
</tr>
<tr>
<td>HACTLR2</td>
<td>HACTLR2</td>
</tr>
<tr>
<td>HADFSR</td>
<td>HADFSR</td>
</tr>
<tr>
<td>HAIFSR</td>
<td>HAIFSR</td>
</tr>
<tr>
<td>HC普 PTR</td>
<td>HC普 PTR</td>
</tr>
<tr>
<td>HCR</td>
<td>HCR</td>
</tr>
<tr>
<td>HCR2</td>
<td>HCR2</td>
</tr>
<tr>
<td>HDCR</td>
<td>HDCR</td>
</tr>
<tr>
<td>HDFAR</td>
<td>HDFAR</td>
</tr>
<tr>
<td>HIFAR</td>
<td>HIFAR</td>
</tr>
<tr>
<td>HPFAR</td>
<td>HPFAR</td>
</tr>
<tr>
<td>HRMR</td>
<td>HRMR</td>
</tr>
</tbody>
</table>
Table K15-32 Base system registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSCTLR</td>
<td>HSCTLR</td>
</tr>
<tr>
<td>HSR</td>
<td>HSR</td>
</tr>
<tr>
<td>HSTR</td>
<td>HSTR</td>
</tr>
<tr>
<td>HTPIDR</td>
<td>HTPIDR</td>
</tr>
<tr>
<td>HTRFCR</td>
<td>HTRFCR</td>
</tr>
<tr>
<td>HVBAR</td>
<td>HVBAR</td>
</tr>
<tr>
<td>IFAR</td>
<td>IFAR</td>
</tr>
<tr>
<td>IFSR</td>
<td>IFSR</td>
</tr>
<tr>
<td>ISR</td>
<td>ISR</td>
</tr>
<tr>
<td>MVBAR</td>
<td>MVBAR</td>
</tr>
<tr>
<td>MVFR0</td>
<td>MVFR0</td>
</tr>
<tr>
<td>MVFR1</td>
<td>MVFR1</td>
</tr>
<tr>
<td>MVFR2</td>
<td>MVFR2</td>
</tr>
<tr>
<td>NSACR</td>
<td>NSACR</td>
</tr>
<tr>
<td>PAR</td>
<td>PAR</td>
</tr>
<tr>
<td>RMR</td>
<td>RMR</td>
</tr>
<tr>
<td>RVBAR</td>
<td>RVBAR</td>
</tr>
<tr>
<td>SCR</td>
<td>SCR</td>
</tr>
<tr>
<td>SCTLR</td>
<td>SCTLR</td>
</tr>
<tr>
<td>SDCR</td>
<td>SDCR</td>
</tr>
<tr>
<td>SDER</td>
<td>SDER</td>
</tr>
<tr>
<td>TPIDRPRW</td>
<td>TPIDRPRW</td>
</tr>
<tr>
<td>TPIDRUTO</td>
<td>TPIDRUTO</td>
</tr>
<tr>
<td>TPIDRURW</td>
<td>TPIDRURW</td>
</tr>
<tr>
<td>VBAR</td>
<td>VBAR</td>
</tr>
<tr>
<td>VMPIDR</td>
<td>VMPIDR</td>
</tr>
<tr>
<td>VPIDR</td>
<td>VPIDR</td>
</tr>
</tbody>
</table>
K15.6 Alphabetical index of memory-mapped registers

This section is an index of memory-mapped registers in alphabetical order.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMCFGR</td>
<td>AMCFGR, Activity Monitors Configuration Register on page I5-7429</td>
</tr>
<tr>
<td>AMCGCR</td>
<td>AMCGCR, Activity Monitors Counter Group Configuration Register on page I5-7431</td>
</tr>
<tr>
<td>AMCIDR0</td>
<td>AMCIDR0, Activity Monitors Component Identification Register 0 on page I5-7432</td>
</tr>
<tr>
<td>AMCIDR1</td>
<td>AMCIDR1, Activity Monitors Component Identification Register 1 on page I5-7433</td>
</tr>
<tr>
<td>AMCIDR2</td>
<td>AMCIDR2, Activity Monitors Component Identification Register 2 on page I5-7434</td>
</tr>
<tr>
<td>AMCIDR3</td>
<td>AMCIDR3, Activity Monitors Component Identification Register 3 on page I5-7435</td>
</tr>
<tr>
<td>AMCNTENCLR0</td>
<td>AMCNTENCLR0, Activity Monitors Count Enable Clear Register 0 on page I5-7436</td>
</tr>
<tr>
<td>AMCNTENCLR1</td>
<td>AMCNTENCLR1, Activity Monitors Count Enable Clear Register 1 on page I5-7437</td>
</tr>
<tr>
<td>AMCNTENSET0</td>
<td>AMCNTENSET0, Activity Monitors Count Enable Set Register 0 on page I5-7439</td>
</tr>
<tr>
<td>AMCNTENSET1</td>
<td>AMCNTENSET1, Activity Monitors Count Enable Set Register 1 on page I5-7440</td>
</tr>
<tr>
<td>AMCR</td>
<td>AMCR, Activity Monitors Control Register on page I5-7442</td>
</tr>
<tr>
<td>AMDEVAFF0</td>
<td>AMDEVAFF0, Activity Monitors Device Affinity Register 0 on page I5-7443</td>
</tr>
<tr>
<td>AMDEVAFF1</td>
<td>AMDEVAFF1, Activity Monitors Device Affinity Register 1 on page I5-7444</td>
</tr>
<tr>
<td>AMDEVARCH</td>
<td>AMDEVARCH, Activity Monitors Device Architecture Register on page I5-7445</td>
</tr>
<tr>
<td>AMDEVTYPE</td>
<td>AMDEVTYPE, Activity Monitors Device Type Register on page I5-7447</td>
</tr>
<tr>
<td>AMEVCTR<n></td>
<td>AMEVCTR<n>, Activity Monitors Event Counter Registers 0, n = 0 - 15 on page I5-7448</td>
</tr>
<tr>
<td>AMEVCTR1<n></td>
<td>AMEVCTR1<n>, Activity Monitors Event Counter Registers 1, n = 0 - 15 on page I5-7450</td>
</tr>
<tr>
<td>AMEVTPR<n></td>
<td>AMEVTPR<n>, Activity Monitors Event Type Registers 0, n = 0 - 15 on page I5-7452</td>
</tr>
<tr>
<td>AMEVTPR1<n></td>
<td>AMEVTPR1<n>, Activity Monitors Event Type Registers 1, n = 0 - 15 on page I5-7454</td>
</tr>
<tr>
<td>AMIIIDR</td>
<td>AMIIIDR, Activity Monitors Implementation Identification Register on page I5-7456</td>
</tr>
<tr>
<td>AMPIDR0</td>
<td>AMPIDR0, Activity Monitors Peripheral Identification Register 0 on page I5-7458</td>
</tr>
<tr>
<td>AMPIDR1</td>
<td>AMPIDR1, Activity Monitors Peripheral Identification Register 1 on page I5-7459</td>
</tr>
<tr>
<td>AMPIDR2</td>
<td>AMPIDR2, Activity Monitors Peripheral Identification Register 2 on page I5-7460</td>
</tr>
<tr>
<td>AMPIDR3</td>
<td>AMPIDR3, Activity Monitors Peripheral Identification Register 3 on page I5-7461</td>
</tr>
<tr>
<td>AMPIDR4</td>
<td>AMPIDR4, Activity Monitors Peripheral Identification Register 4 on page I5-7462</td>
</tr>
<tr>
<td>ASICCTL</td>
<td>ASICCTL, CTI External Multiplexer Control register on page H9-7273</td>
</tr>
<tr>
<td>CNTACR<n></td>
<td>CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7 on page I5-7465</td>
</tr>
<tr>
<td>CNTCR</td>
<td>CNTCR, Counter Control Register on page I5-7467</td>
</tr>
<tr>
<td>CNTCV</td>
<td>CNTCV, Counter Count Value register on page I5-7469</td>
</tr>
<tr>
<td>CNTEL0ACR</td>
<td>CNTEL0ACR, Counter-timer EL0 Access Control Register on page I5-7471</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CNTFID0</td>
<td>CNTFID0, Counter Frequency ID on page 15-7473</td>
</tr>
<tr>
<td>CNTFID<n></td>
<td>CNTFID<n>, Counter Frequency IDs, n > 0, n = 1 - 1003 on page 15-7474</td>
</tr>
<tr>
<td>CNTFRQ</td>
<td>CNTFRQ, Counter-timer Frequency on page 15-7476</td>
</tr>
<tr>
<td>CNTID</td>
<td>CNTID, Counter Identification Register on page 15-7478</td>
</tr>
<tr>
<td>CNTNSAR</td>
<td>CNTNSAR, Counter-timer Non-secure Access Register on page 15-7479</td>
</tr>
<tr>
<td>CNTP_CTL</td>
<td>CNTP_CTL, Counter-timer Physical Timer Control on page 15-7481</td>
</tr>
<tr>
<td>CNTP_CVAL</td>
<td>CNTP_CVAL, Counter-timer Physical Timer CompareValue on page 15-7483</td>
</tr>
<tr>
<td>CNTP_TVAL</td>
<td>CNTP_TVAL, Counter-timer Physical Timer TimerValue on page 15-7485</td>
</tr>
<tr>
<td>CNTPCT</td>
<td>CNTPCT, Counter-timer Physical Count on page 15-7487</td>
</tr>
<tr>
<td>CNTSCR</td>
<td>CNTSCR, Counter Scale Register on page 15-7489</td>
</tr>
<tr>
<td>CNTSR</td>
<td>CNTSR, Counter Status Register on page 15-7490</td>
</tr>
<tr>
<td>CNTTIDR</td>
<td>CNTTIDR, Counter-timer Timer ID Register on page 15-7492</td>
</tr>
<tr>
<td>CNTV_CTL</td>
<td>CNTV_CTL, Counter-timer Virtual Timer Control on page 15-7494</td>
</tr>
<tr>
<td>CNTV_CVAL</td>
<td>CNTV_CVAL, Counter-timer Virtual Timer CompareValue on page 15-7496</td>
</tr>
<tr>
<td>CNTV_TVAL</td>
<td>CNTV_TVAL, Counter-timer Virtual Timer TimerValue on page 15-7498</td>
</tr>
<tr>
<td>CNTVCT</td>
<td>CNTVCT, Counter-timer Virtual Count on page 15-7500</td>
</tr>
<tr>
<td>CNTVOFF</td>
<td>CNTVOFF, Counter-timer Virtual Offset on page 15-7502</td>
</tr>
<tr>
<td>CNTVOFF<n></td>
<td>CNTVOFF<n>, Counter-timer Virtual Offsets, n = 0 - 7 on page 15-7504</td>
</tr>
<tr>
<td>CounterID<n></td>
<td>CounterID<n>, Counter ID registers, n = 0 - 11 on page 15-7506</td>
</tr>
<tr>
<td>CTIAPPCLEAR</td>
<td>CTIAPPCLEAR, CTI Application Trigger Clear register on page H9-7274</td>
</tr>
<tr>
<td>CTIAPPPULSE</td>
<td>CTIAPPPULSE, CTI Application Pulse register on page H9-7275</td>
</tr>
<tr>
<td>CTIAPPPSET</td>
<td>CTIAPPPSET, CTI Application Trigger Set register on page H9-7276</td>
</tr>
<tr>
<td>CTIAUTHSTATUS</td>
<td>CTIAUTHSTATUS, CTI Authentication Status register on page H9-7277</td>
</tr>
<tr>
<td>CTICHINSTATUS</td>
<td>CTICHINSTATUS, CTI Channel In Status register on page H9-7278</td>
</tr>
<tr>
<td>CTICHOUTSTATUS</td>
<td>CTICHOUTSTATUS, CTI Channel Out Status register on page H9-7279</td>
</tr>
<tr>
<td>CTICIDR0</td>
<td>CTICIDR0, CTI Component Identification Register 0 on page H9-7280</td>
</tr>
<tr>
<td>CTICIDR1</td>
<td>CTICIDR1, CTI Component Identification Register 1 on page H9-7281</td>
</tr>
<tr>
<td>CTICIDR2</td>
<td>CTICIDR2, CTI Component Identification Register 2 on page H9-7282</td>
</tr>
<tr>
<td>CTICIDR3</td>
<td>CTICIDR3, CTI Component Identification Register 3 on page H9-7283</td>
</tr>
<tr>
<td>CTICCLAIMCLR</td>
<td>CTICCLAIMCLR, CTI CLAIM Tag Clear register on page H9-7284</td>
</tr>
<tr>
<td>CTICCLAIMSET</td>
<td>CTICCLAIMSET, CTI CLAIM Tag Set register on page H9-7285</td>
</tr>
<tr>
<td>CTICONTROL</td>
<td>CTICONTROL, CTI Control register on page H9-7286</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>CTIDEVAFF0</td>
<td>CTIDEVAFF0, CTI Device Affinity register 0 on page H9-7287</td>
</tr>
<tr>
<td>CTIDEVAFF1</td>
<td>CTIDEVAFF1, CTI Device Affinity register 1 on page H9-7288</td>
</tr>
<tr>
<td>CTIDEVARC</td>
<td>CTIDEVARC, CTI Device Architecture register on page H9-7289</td>
</tr>
<tr>
<td>CTIDEVCTL</td>
<td>CTIDEVCTL, CTI Device Control register on page H9-7291</td>
</tr>
<tr>
<td>CTIDEVID</td>
<td>CTIDEVID, CTI Device ID register 0 on page H9-7293</td>
</tr>
<tr>
<td>CTIDEVID1</td>
<td>CTIDEVID1, CTI Device ID register 1 on page H9-7295</td>
</tr>
<tr>
<td>CTIDEVID2</td>
<td>CTIDEVID2, CTI Device ID register 2 on page H9-7296</td>
</tr>
<tr>
<td>CTIDEVTYPE</td>
<td>CTIDEVTYPE, CTI Device Type register on page H9-7297</td>
</tr>
<tr>
<td>CTIGATE</td>
<td>CTIGATE, CTI Channel Gate Enable register on page H9-7298</td>
</tr>
<tr>
<td>CTIINEN<n></td>
<td>CTIINEN<n>, CTI Input Trigger to Output Channel Enable registers, n = 0 - 31 on page H9-7299</td>
</tr>
<tr>
<td>CTIINTACK</td>
<td>CTIINTACK, CTI Output Trigger Acknowledge register on page H9-7300</td>
</tr>
<tr>
<td>CTIITCTRL</td>
<td>CTIITCTRL, CTI Integration mode Control register on page H9-7302</td>
</tr>
<tr>
<td>CTILAR</td>
<td>CTILAR, CTI Lock Access Register on page H9-7304</td>
</tr>
<tr>
<td>CTILSR</td>
<td>CTILSR, CTI Lock Status Register on page H9-7306</td>
</tr>
<tr>
<td>CTIOUTEN<n></td>
<td>CTIOUTEN<n>, CTI Input Channel to Output Trigger Enable registers, n = 0 - 31 on page H9-7308</td>
</tr>
<tr>
<td>CTIPIDR0</td>
<td>CTIPIDR0, CTI Peripheral Identification Register 0 on page H9-7309</td>
</tr>
<tr>
<td>CTIPIDR1</td>
<td>CTIPIDR1, CTI Peripheral Identification Register 1 on page H9-7310</td>
</tr>
<tr>
<td>CTIPIDR2</td>
<td>CTIPIDR2, CTI Peripheral Identification Register 2 on page H9-7311</td>
</tr>
<tr>
<td>CTIPIDR3</td>
<td>CTIPIDR3, CTI Peripheral Identification Register 3 on page H9-7312</td>
</tr>
<tr>
<td>CTIPIDR4</td>
<td>CTIPIDR4, CTI Peripheral Identification Register 4 on page H9-7313</td>
</tr>
<tr>
<td>CTITRIGINSTATUS</td>
<td>CTITRIGINSTATUS, CTI Trigger In Status register on page H9-7314</td>
</tr>
<tr>
<td>CTITRIGOUTSTATUS</td>
<td>CTITRIGOUTSTATUS, CTI Trigger Out Status register on page H9-7315</td>
</tr>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1, Debug Authentication Status register on page H9-7164</td>
</tr>
<tr>
<td>DBGBCR<n>_EL1</td>
<td>DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15 on page H9-7166</td>
</tr>
<tr>
<td>DBGBVR<n>_EL1</td>
<td>DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15 on page H9-7170</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register on page H9-7175</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1, Debug CLAIM Tag Set register on page H9-7177</td>
</tr>
<tr>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRX_EL0, Debug Data Transfer Register, Receive on page H9-7179</td>
</tr>
<tr>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_EL0, Debug Data Transfer Register, Transmit on page H9-7181</td>
</tr>
<tr>
<td>DBGWCR<n>_EL1</td>
<td>DBGWCR<n>_EL1, Debug Watchpoint Control Registers, n = 0 - 15 on page H9-7183</td>
</tr>
<tr>
<td>DBGWVR<n>_EL1</td>
<td>DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15 on page H9-7187</td>
</tr>
<tr>
<td>EDAA32PFR</td>
<td>EDAA32PFR, External Debug Auxiliary Processor Feature Register on page H9-7189</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>EDACR</td>
<td>EDACR, External Debug Auxiliary Control Register on page H9-7191</td>
</tr>
<tr>
<td>EDCIDR0</td>
<td>EDCIDR0, External Debug Component Identification Register 0 on page H9-7193</td>
</tr>
<tr>
<td>EDCIDR1</td>
<td>EDCIDR1, External Debug Component Identification Register 1 on page H9-7194</td>
</tr>
<tr>
<td>EDCIDR2</td>
<td>EDCIDR2, External Debug Component Identification Register 2 on page H9-7195</td>
</tr>
<tr>
<td>EDCIDR3</td>
<td>EDCIDR3, External Debug Component Identification Register 3 on page H9-7196</td>
</tr>
<tr>
<td>EDCIDSR</td>
<td>EDCIDSR, External Debug Context ID Sample Register on page H9-7197</td>
</tr>
<tr>
<td>EDDEVAFF0</td>
<td>EDDEVAFF0, External Debug Device Affinity register 0 on page H9-7199</td>
</tr>
<tr>
<td>EDDEVAFF1</td>
<td>EDDEVAFF1, External Debug Device Affinity register 1 on page H9-7200</td>
</tr>
<tr>
<td>EDDEVARCH</td>
<td>EDDEVARCH, External Debug Device Architecture register on page H9-7201</td>
</tr>
<tr>
<td>EDDEVID</td>
<td>EDDEVID, External Debug Device ID register 0 on page H9-7203</td>
</tr>
<tr>
<td>EDDEVID1</td>
<td>EDDEVID1, External Debug Device ID register 1 on page H9-7205</td>
</tr>
<tr>
<td>EDDEVID2</td>
<td>EDDEVID2, External Debug Device ID register 2 on page H9-7206</td>
</tr>
<tr>
<td>EDDEVTYPYE</td>
<td>EDDEVTYPYE, External Debug Device Type register on page H9-7207</td>
</tr>
<tr>
<td>EDDFR</td>
<td>EDDFR, External Debug Feature Register on page H9-7208</td>
</tr>
<tr>
<td>EDECCR</td>
<td>EDECCR, External Debug Exception Catch Control Register on page H9-7211</td>
</tr>
<tr>
<td>EDECR</td>
<td>EDECR, External Debug Execution Control Register on page H9-7216</td>
</tr>
<tr>
<td>EDES R</td>
<td>EDES R, External Debug Event Status Register on page H9-7218</td>
</tr>
<tr>
<td>EDITCTRL</td>
<td>EDITCTRL, External Debug Integration mode Control register on page H9-7220</td>
</tr>
<tr>
<td>EDITR</td>
<td>EDITR, External Debug Instruction Transfer Register on page H9-7222</td>
</tr>
<tr>
<td>EDLAR</td>
<td>EDLAR, External Debug Lock Access Register on page H9-7224</td>
</tr>
<tr>
<td>EDLSR</td>
<td>EDLSR, External Debug Lock Status Register on page H9-7226</td>
</tr>
<tr>
<td>EDPCSR</td>
<td>EDPCSR, External Debug Program Counter Sample Register on page H9-7228</td>
</tr>
<tr>
<td>EDPFR</td>
<td>EDPFR, External Debug Processor Feature Register on page H9-7232</td>
</tr>
<tr>
<td>EDPIDR0</td>
<td>EDPIDR0, External Debug Peripheral Identification Register 0 on page H9-7237</td>
</tr>
<tr>
<td>EDPIDR1</td>
<td>EDPIDR1, External Debug Peripheral Identification Register 1 on page H9-7238</td>
</tr>
<tr>
<td>EDPIDR2</td>
<td>EDPIDR2, External Debug Peripheral Identification Register 2 on page H9-7239</td>
</tr>
<tr>
<td>EDPIDR3</td>
<td>EDPIDR3, External Debug Peripheral Identification Register 3 on page H9-7240</td>
</tr>
<tr>
<td>EDPIDR4</td>
<td>EDPIDR4, External Debug Peripheral Identification Register 4 on page H9-7241</td>
</tr>
<tr>
<td>EDPRCR</td>
<td>EDPRCR, External Debug Power/Reset Control Register on page H9-7242</td>
</tr>
<tr>
<td>EDPRS R</td>
<td>EDPRS R, External Debug Processor Status Register on page H9-7246</td>
</tr>
<tr>
<td>EDR CR</td>
<td>EDR CR, External Debug Reserve Control Register on page H9-7254</td>
</tr>
<tr>
<td>EDSCR</td>
<td>EDSCR, External Debug Status and Control Register on page H9-7256</td>
</tr>
</tbody>
</table>
Table K15-33 Alphabetical index of Memory-Mapped Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDVIDSR</td>
<td>EDVIDSR, External Debug Virtual Context Sample Register on page H9-7262</td>
</tr>
<tr>
<td>EDWAR</td>
<td>EDWAR, External Debug Watchpoint Address Register on page H9-7266</td>
</tr>
<tr>
<td>ERRCIDR0</td>
<td>ERRCIDR0, Component Identification Register 0 on page I5-7509</td>
</tr>
<tr>
<td>ERRCIDR1</td>
<td>ERRCIDR1, Component Identification Register 1 on page I5-7510</td>
</tr>
<tr>
<td>ERRCIDR2</td>
<td>ERRCIDR2, Component Identification Register 2 on page I5-7511</td>
</tr>
<tr>
<td>ERRCIDR3</td>
<td>ERRCIDR3, Component Identification Register 3 on page I5-7512</td>
</tr>
<tr>
<td>ERRCRICR0</td>
<td>ERRCRICR0, Critical Error Interrupt Configuration Register 0 on page I5-7513</td>
</tr>
<tr>
<td>ERRCRICR1</td>
<td>ERRCRICR1, Critical Error Interrupt Configuration Register 1 on page I5-7515</td>
</tr>
<tr>
<td>ERRCRICR2</td>
<td>ERRCRICR2, Critical Error Interrupt Configuration Register 2 on page I5-7516</td>
</tr>
<tr>
<td>ERRDEVAFF</td>
<td>ERRDEVAFF, Device Affinity Register on page I5-7519</td>
</tr>
<tr>
<td>ERRDEVARCH</td>
<td>ERRDEVARCH, Device Architecture Register on page I5-7523</td>
</tr>
<tr>
<td>ERRDEVID</td>
<td>ERRDEVID, Device Configuration Register on page I5-7525</td>
</tr>
<tr>
<td>ERRERICR0</td>
<td>ERRERICR0, Error Recovery Interrupt Configuration Register 0 on page I5-7526</td>
</tr>
<tr>
<td>ERRERICR1</td>
<td>ERRERICR1, Error Recovery Interrupt Configuration Register 1 on page I5-7528</td>
</tr>
<tr>
<td>ERRERICR2</td>
<td>ERRERICR2, Error Recovery Interrupt Configuration Register 2 on page I5-7530</td>
</tr>
<tr>
<td>ERRFHICR0</td>
<td>ERRFHICR0, Fault Handling Interrupt Configuration Register 0 on page I5-7533</td>
</tr>
<tr>
<td>ERRFHICR1</td>
<td>ERRFHICR1, Fault Handling Interrupt Configuration Register 1 on page I5-7535</td>
</tr>
<tr>
<td>ERRFHICR2</td>
<td>ERRFHICR2, Fault Handling Interrupt Configuration Register 2 on page I5-7537</td>
</tr>
<tr>
<td>ERRGSR</td>
<td>ERRGSR, Error Group Status Register on page I5-7540</td>
</tr>
<tr>
<td>ERRIIDR</td>
<td>ERRIIDR, Implementation Identification Register on page I5-7541</td>
</tr>
<tr>
<td>ERRIMPDEF<n></td>
<td>ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191 on page I5-7543</td>
</tr>
<tr>
<td>ERRIRQCR<n></td>
<td>ERRIRQCR<n>, Generic Error Interrupt Configuration Register, n = 0 - 15 on page I5-7544</td>
</tr>
<tr>
<td>ERRIRQSR</td>
<td>ERRIRQSR, Error Interrupt Status Register on page I5-7545</td>
</tr>
<tr>
<td>ERR<n>ADDR</td>
<td>ERR<n>ADDR, Error Record Address Register, n = 0 - 65534 on page I5-7548</td>
</tr>
<tr>
<td>ERR<n>CTLR</td>
<td>ERR<n>CTLR, Error Record Control Register, n = 0 - 65534 on page I5-7550</td>
</tr>
<tr>
<td>ERR<n>FR</td>
<td>ERR<n>FR, Error Record Feature Register, n = 0 - 65534 on page I5-7557</td>
</tr>
<tr>
<td>ERR<n>MISC0</td>
<td>ERR<n>MISC0, Error Record Miscellaneous Register 0, n = 0 - 65534 on page I5-7563</td>
</tr>
<tr>
<td>ERR<n>MISC1</td>
<td>ERR<n>MISC1, Error Record Miscellaneous Register 1, n = 0 - 65534 on page I5-7568</td>
</tr>
<tr>
<td>ERR<n>MISC2</td>
<td>ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534 on page I5-7570</td>
</tr>
<tr>
<td>ERR<n>MISC3</td>
<td>ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534 on page I5-7572</td>
</tr>
<tr>
<td>ERR<n>PFGCDN</td>
<td>ERR<n>PFGCDN, Pseudo-fault Generation Countdown Register, n = 0 - 65534 on page I5-7574</td>
</tr>
<tr>
<td>ERR<n>PFGCTL</td>
<td>ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534 on page I5-7576</td>
</tr>
</tbody>
</table>
Table K15-33 Alphabetical index of Memory-Mapped Registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER<n>PFGF</td>
<td>ER<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534 on page 15-7580</td>
</tr>
<tr>
<td>ER<n>STATUS</td>
<td>ER<n>STATUS, Error Record Primary Status Register, n = 0 - 65534 on page 15-7585</td>
</tr>
<tr>
<td>ERRPIDR0</td>
<td>ERRPIDR0, Peripheral Identification Register 0 on page 15-7600</td>
</tr>
<tr>
<td>ERRPIDR1</td>
<td>ERRPIDR1, Peripheral Identification Register 1 on page 15-7601</td>
</tr>
<tr>
<td>ERRPIDR2</td>
<td>ERRPIDR2, Peripheral Identification Register 2 on page 15-7603</td>
</tr>
<tr>
<td>ERRPIDR3</td>
<td>ERRPIDR3, Peripheral Identification Register 3 on page 15-7605</td>
</tr>
<tr>
<td>ERRPIDR4</td>
<td>ERRPIDR4, Peripheral Identification Register 4 on page 15-7607</td>
</tr>
<tr>
<td>MIDR_EL1</td>
<td>MIDR_EL1, Main ID Register on page H9-7268</td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1, OS Lock Access Register on page H9-7270</td>
</tr>
<tr>
<td>PMAUTHSTATUS</td>
<td>PMAUTHSTATUS, Performance Monitors Authentication Status register on page 15-7354</td>
</tr>
<tr>
<td>PMCCFILTR_EL0</td>
<td>PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register on page 15-7356</td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>PMCCNTR_EL0, Performance Monitors Cycle Counter on page 15-7359</td>
</tr>
<tr>
<td>PMCEID0</td>
<td>PMCEID0, Performance Monitors Common Event Identification register 0 on page 15-7361</td>
</tr>
<tr>
<td>PMCEID1</td>
<td>PMCEID1, Performance Monitors Common Event Identification register 1 on page 15-7363</td>
</tr>
<tr>
<td>PMCEID2</td>
<td>PMCEID2, Performance Monitors Common Event Identification register 2 on page 15-7365</td>
</tr>
<tr>
<td>PMCEID3</td>
<td>PMCEID3, Performance Monitors Common Event Identification register 3 on page 15-7367</td>
</tr>
<tr>
<td>PMCFGR</td>
<td>PMCFGR, Performance Monitors Configuration Register on page 15-7369</td>
</tr>
<tr>
<td>PMCID1SR</td>
<td>PMCID1SR, CONTEXTIDR_EL1 Sample Register on page 15-7375</td>
</tr>
<tr>
<td>PMCID2SR</td>
<td>PMCID2SR, CONTEXTIDR_EL2 Sample Register on page 15-7377</td>
</tr>
<tr>
<td>PMCIDR0</td>
<td>PMCIDR0, Performance Monitors Component Identification Register 0 on page 15-7371</td>
</tr>
<tr>
<td>PMCIDR1</td>
<td>PMCIDR1, Performance Monitors Component Identification Register 1 on page 15-7372</td>
</tr>
<tr>
<td>PMCIDR2</td>
<td>PMCIDR2, Performance Monitors Component Identification Register 2 on page 15-7373</td>
</tr>
<tr>
<td>PMCIDR3</td>
<td>PMCIDR3, Performance Monitors Component Identification Register 3 on page 15-7374</td>
</tr>
<tr>
<td>PMCNTENCLR_EL0</td>
<td>PMCNTENCLR_EL0, Performance Monitors Count Enable Clear register on page 15-7379</td>
</tr>
<tr>
<td>PMCNTENSET_EL0</td>
<td>PMCNTENSET_EL0, Performance Monitors Count Enable Set register on page 15-7381</td>
</tr>
<tr>
<td>PMCR_EL0</td>
<td>PMCR_EL0, Performance Monitors Control Register on page 15-7383</td>
</tr>
<tr>
<td>PMDEVAFF0</td>
<td>PMDEVAFF0, Performance Monitors Device Affinity register 0 on page 15-7387</td>
</tr>
<tr>
<td>PMDEVAFF1</td>
<td>PMDEVAFF1, Performance Monitors Device Affinity register 1 on page 15-7388</td>
</tr>
<tr>
<td>PMDEVARCH</td>
<td>PMDEVARCH, Performance Monitors Device Architecture register on page 15-7389</td>
</tr>
<tr>
<td>PMDEVID</td>
<td>PMDEVID, Performance Monitors Device ID register on page 15-7391</td>
</tr>
<tr>
<td>PMDEVTYPE</td>
<td>PMDEVTYPE, Performance Monitors Device Type register on page 15-7392</td>
</tr>
<tr>
<td>PMEVCNTR<n>_EL0</td>
<td>PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30 on page 15-7393</td>
</tr>
<tr>
<td>Register</td>
<td>Description, see</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>PMEVTYPER<n>_EL0</td>
<td>PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30 on page 15-7395</td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td>PMINTENCLR_EL1, Performance Monitors Interrupt Enable Clear register on page 15-7399</td>
</tr>
<tr>
<td>PMINTENSET_EL1</td>
<td>PMINTENSET_EL1, Performance Monitors Interrupt Enable Set register on page 15-7401</td>
</tr>
<tr>
<td>PMITCTRL</td>
<td>PMITCTRL, Performance Monitors Integration mode Control register on page 15-7403</td>
</tr>
<tr>
<td>PMLAR</td>
<td>PMLAR, Performance Monitors Lock Access Register on page 15-7405</td>
</tr>
<tr>
<td>PMLSR</td>
<td>PMLSR, Performance Monitors Lock Status Register on page 15-7407</td>
</tr>
<tr>
<td>PMMIR</td>
<td>PMMIR, Performance Monitors Machine Identification Register on page 15-7409</td>
</tr>
<tr>
<td>PMOVSCCLR_EL0</td>
<td>PMOVSCCLR_EL0, Performance Monitors Overflow Flag Status Clear register on page 15-7410</td>
</tr>
<tr>
<td>PMOVSSET_EL0</td>
<td>PMOVSSET_EL0, Performance Monitors Overflow Flag Status Set register on page 15-7412</td>
</tr>
<tr>
<td>PMPCSR</td>
<td>PMPCSR, Program Counter Sample Register on page 15-7414</td>
</tr>
<tr>
<td>PMPIDR0</td>
<td>PMPIDR0, Performance Monitors Peripheral Identification Register 0 on page 15-7417</td>
</tr>
<tr>
<td>PMPIDR1</td>
<td>PMPIDR1, Performance Monitors Peripheral Identification Register 1 on page 15-7418</td>
</tr>
<tr>
<td>PMPIDR2</td>
<td>PMPIDR2, Performance Monitors Peripheral Identification Register 2 on page 15-7419</td>
</tr>
<tr>
<td>PMPIDR3</td>
<td>PMPIDR3, Performance Monitors Peripheral Identification Register 3 on page 15-7420</td>
</tr>
<tr>
<td>PMPIDR4</td>
<td>PMPIDR4, Performance Monitors Peripheral Identification Register 4 on page 15-7421</td>
</tr>
<tr>
<td>PMSWINC_EL0</td>
<td>PMSWINC_EL0, Performance Monitors Software Increment register on page 15-7422</td>
</tr>
<tr>
<td>PMVIDSR</td>
<td>PMVIDSR, VMID Sample Register on page 15-7424</td>
</tr>
</tbody>
</table>
K15.7 Functional index of memory-mapped registers

This section is an index of the memory-mapped registers, divided by functional group. Each of the following sections lists the registers for a functional group:

- **ID registers**.
- **Performance monitors registers**.
- **Debug registers on page K15-8224**.
- **RAS registers on page K15-8225**.
- **Cross-trigger interface registers on page K15-8226**.

K15.7.1 ID registers

This section is an index to the registers in the Identification registers functional group.

Table K15-34 ID registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDAA32PFR</td>
<td>EDAA32PFR</td>
</tr>
<tr>
<td>EDDFR</td>
<td>EDDFR</td>
</tr>
<tr>
<td>EDPFR</td>
<td>EDPFR</td>
</tr>
<tr>
<td>MIDR_EL1</td>
<td>MIDR_EL1</td>
</tr>
</tbody>
</table>

K15.7.2 Performance monitors registers

This section is an index to the registers in the Performance Monitors registers functional group.

Table K15-35 Performance monitors registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMAUTHSTATUS</td>
<td>PMAUTHSTATUS</td>
</tr>
<tr>
<td>PMCCFILTR_EL0</td>
<td>PMCCFILTR_EL0</td>
</tr>
<tr>
<td>PMCCNTR_EL0</td>
<td>PMCCNTR_EL0</td>
</tr>
<tr>
<td>PMCEID0</td>
<td>PMCEID0</td>
</tr>
<tr>
<td>PMCEID1</td>
<td>PMCEID1</td>
</tr>
<tr>
<td>PMCEID2</td>
<td>PMCEID2</td>
</tr>
<tr>
<td>PMCEID3</td>
<td>PMCEID3</td>
</tr>
<tr>
<td>PMCFGR</td>
<td>PMCFGR</td>
</tr>
<tr>
<td>PMCID1SR</td>
<td>PMCID1SR</td>
</tr>
<tr>
<td>PMCID2SR</td>
<td>PMCID2SR</td>
</tr>
<tr>
<td>PMCIDR0</td>
<td>PMCIDR0</td>
</tr>
<tr>
<td>PMCIDR1</td>
<td>PMCIDR1</td>
</tr>
<tr>
<td>PMCIDR2</td>
<td>PMCIDR2</td>
</tr>
<tr>
<td>PMCIDR3</td>
<td>PMCIDR3</td>
</tr>
</tbody>
</table>
Table K15-35 Performance monitors registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMCNTENCLR_EL0</td>
<td>PMCNTENCLR_EL0</td>
</tr>
<tr>
<td>PMCNTENSET_EL0</td>
<td>PMCNTENSET_EL0</td>
</tr>
<tr>
<td>PMCR_EL0</td>
<td>PMCR_EL0</td>
</tr>
<tr>
<td>PMDEVAFF0</td>
<td>PMDEVAFF0</td>
</tr>
<tr>
<td>PMDEVAFF1</td>
<td>PMDEVAFF1</td>
</tr>
<tr>
<td>PMDEVARCH</td>
<td>PMDEVARCH</td>
</tr>
<tr>
<td>PMDEVID</td>
<td>PMDEVID</td>
</tr>
<tr>
<td>PMDEVTYPE</td>
<td>PMDEVTYPE</td>
</tr>
<tr>
<td>PMEVCTR<n>_EL0</td>
<td>PMEVCTR<n>_EL0</td>
</tr>
<tr>
<td>PMEVTPER<n>_EL0</td>
<td>PMEVTPER<n>_EL0</td>
</tr>
<tr>
<td>PMINTENCLR_EL1</td>
<td>PMINTENCLR_EL1</td>
</tr>
<tr>
<td>PMINTENSET_EL1</td>
<td>PMINTENSET_EL1</td>
</tr>
<tr>
<td>PMITCTRL</td>
<td>PMITCTRL</td>
</tr>
<tr>
<td>PMLAR</td>
<td>PMLAR</td>
</tr>
<tr>
<td>PMLSR</td>
<td>PMLSR</td>
</tr>
<tr>
<td>PMMIR</td>
<td>PMMIR</td>
</tr>
<tr>
<td>PMOVSCLR_EL0</td>
<td>PMOVSCLR_EL0</td>
</tr>
<tr>
<td>PMOVSET_EL0</td>
<td>PMOVSET_EL0</td>
</tr>
<tr>
<td>PMPCSR</td>
<td>PMPCSR</td>
</tr>
<tr>
<td>PMPIDR0</td>
<td>PMPIDR0</td>
</tr>
<tr>
<td>PMPIDR1</td>
<td>PMPIDR1</td>
</tr>
<tr>
<td>PMPIDR2</td>
<td>PMPIDR2</td>
</tr>
<tr>
<td>PMPIDR3</td>
<td>PMPIDR3</td>
</tr>
<tr>
<td>PMPIDR4</td>
<td>PMPIDR4</td>
</tr>
<tr>
<td>PMSWINC_EL0</td>
<td>PMSWINC_EL0</td>
</tr>
<tr>
<td>PMVIDSR</td>
<td>PMVIDSR</td>
</tr>
</tbody>
</table>
K15.7.3 Debug registers

This section is an index to the registers in the Debug registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBGAUTHSTATUS_EL1</td>
<td>DBGAUTHSTATUS_EL1</td>
</tr>
<tr>
<td>DBGBCR<\textit{n}>_EL1</td>
<td>DBGBCR<\textit{n}>_EL1</td>
</tr>
<tr>
<td>DBGBVR<\textit{n}>_EL1</td>
<td>DBGBVR<\textit{n}>_EL1</td>
</tr>
<tr>
<td>DBGCLAIMCLR_EL1</td>
<td>DBGCLAIMCLR_EL1</td>
</tr>
<tr>
<td>DBGCLAIMSET_EL1</td>
<td>DBGCLAIMSET_EL1</td>
</tr>
<tr>
<td>DBGDTRRX_EL0</td>
<td>DBGDTRRX_EL0</td>
</tr>
<tr>
<td>DBGDTRTX_EL0</td>
<td>DBGDTRTX_EL0</td>
</tr>
<tr>
<td>DBGWCR<\textit{n}>_EL1</td>
<td>DBGWCR<\textit{n}>_EL1</td>
</tr>
<tr>
<td>DBGWVR<\textit{n}>_EL1</td>
<td>DBGWVR<\textit{n}>_EL1</td>
</tr>
<tr>
<td>EDACR</td>
<td>EDACR</td>
</tr>
<tr>
<td>EDCIDR0</td>
<td>EDCIDR0</td>
</tr>
<tr>
<td>EDCIDR1</td>
<td>EDCIDR1</td>
</tr>
<tr>
<td>EDCIDR2</td>
<td>EDCIDR2</td>
</tr>
<tr>
<td>EDCIDR3</td>
<td>EDCIDR3</td>
</tr>
<tr>
<td>EDCIDSR</td>
<td>EDCIDSR</td>
</tr>
<tr>
<td>EDDEVAFF0</td>
<td>EDDEVAFF0</td>
</tr>
<tr>
<td>EDDEVAFF1</td>
<td>EDDEVAFF1</td>
</tr>
<tr>
<td>EDDEVARCH</td>
<td>EDDEVARCH</td>
</tr>
<tr>
<td>EDDEVVID</td>
<td>EDDEVVID</td>
</tr>
<tr>
<td>EDDEVVID1</td>
<td>EDDEVVID1</td>
</tr>
<tr>
<td>EDDEVVID2</td>
<td>EDDEVVID2</td>
</tr>
<tr>
<td>EDDEVTYPE</td>
<td>EDDEVTYPE</td>
</tr>
<tr>
<td>EDECCR</td>
<td>EDECCR</td>
</tr>
<tr>
<td>EDECR</td>
<td>EDECR</td>
</tr>
<tr>
<td>EDESER</td>
<td>EDESER</td>
</tr>
<tr>
<td>EDITCTRL</td>
<td>EDITCTRL</td>
</tr>
<tr>
<td>EDITR</td>
<td>EDITR</td>
</tr>
<tr>
<td>EDLAR</td>
<td>EDLAR</td>
</tr>
<tr>
<td>EDLSR</td>
<td>EDLSR</td>
</tr>
<tr>
<td>EDPCSR</td>
<td>EDPCSR</td>
</tr>
</tbody>
</table>
Table K15-36 Debug registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDPIDR0</td>
<td>EDPIDR0</td>
</tr>
<tr>
<td>EDPIDR1</td>
<td>EDPIDR1</td>
</tr>
<tr>
<td>EDPIDR2</td>
<td>EDPIDR2</td>
</tr>
<tr>
<td>EDPIDR3</td>
<td>EDPIDR3</td>
</tr>
<tr>
<td>EDPIDR4</td>
<td>EDPIDR4</td>
</tr>
<tr>
<td>EDPRCR</td>
<td>EDPRCR</td>
</tr>
<tr>
<td>EDPRSR</td>
<td>EDPRSR</td>
</tr>
<tr>
<td>EDRCR</td>
<td>EDRCR</td>
</tr>
<tr>
<td>EDSR</td>
<td>EDSR</td>
</tr>
<tr>
<td>EDVIDSR</td>
<td>EDVIDSR</td>
</tr>
<tr>
<td>EDWAR</td>
<td>EDWAR</td>
</tr>
<tr>
<td>OSLAR_EL1</td>
<td>OSLAR_EL1</td>
</tr>
</tbody>
</table>

K15.7.4 RAS registers

This section is an index to the registers in the RAS registers functional group.

Table K15-37 RAS registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERRCIDR0</td>
<td>ERRCIDR0</td>
</tr>
<tr>
<td>ERRCIDR1</td>
<td>ERRCIDR1</td>
</tr>
<tr>
<td>ERRCIDR2</td>
<td>ERRCIDR2</td>
</tr>
<tr>
<td>ERRCIDR3</td>
<td>ERRCIDR3</td>
</tr>
<tr>
<td>ERRCRICR0</td>
<td>ERRCRICR0</td>
</tr>
<tr>
<td>ERRCRICR1</td>
<td>ERRCRICR1</td>
</tr>
<tr>
<td>ERRCRICR2</td>
<td>ERRCRICR2</td>
</tr>
<tr>
<td>ERRDEVAFF</td>
<td>ERRDEVAFF</td>
</tr>
<tr>
<td>ERRDEVARC</td>
<td>ERRDEVARC</td>
</tr>
<tr>
<td>ERRDEVID</td>
<td>ERRDEVID</td>
</tr>
<tr>
<td>ERRERICR0</td>
<td>ERRERICR0</td>
</tr>
<tr>
<td>ERRERICR1</td>
<td>ERRERICR1</td>
</tr>
<tr>
<td>ERRERICR2</td>
<td>ERRERICR2</td>
</tr>
<tr>
<td>ERRFHIICR0</td>
<td>ERRFHIICR0</td>
</tr>
<tr>
<td>ERRFHIICR1</td>
<td>ERRFHIICR1</td>
</tr>
</tbody>
</table>
K15.7.5 Cross-trigger interface registers

This section is an index to the registers in the Cross-Trigger Interface registers functional group.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASICCTL</td>
<td>ASICCTL</td>
</tr>
<tr>
<td>CTIAPPCLEAR</td>
<td>CTIAPPCLEAR</td>
</tr>
<tr>
<td>CTIAPPULSE</td>
<td>CTIAPPULSE</td>
</tr>
<tr>
<td>CTIAPPSET</td>
<td>CTIAPPSET</td>
</tr>
<tr>
<td>CTIAUTHSTATUS</td>
<td>CTIAUTHSTATUS</td>
</tr>
</tbody>
</table>
Table K15-38 Cross-trigger interface registers (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Description, see</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTICHINSTATUS</td>
<td>CTICHINSTATUS</td>
</tr>
<tr>
<td>CTICHOUTSTATUS</td>
<td>CTICHOUTSTATUS</td>
</tr>
<tr>
<td>CTICIDR0</td>
<td>CTICIDR0</td>
</tr>
<tr>
<td>CTICIDR1</td>
<td>CTICIDR1</td>
</tr>
<tr>
<td>CTICIDR2</td>
<td>CTICIDR2</td>
</tr>
<tr>
<td>CTICIDR3</td>
<td>CTICIDR3</td>
</tr>
<tr>
<td>CTICCLAIMCLR</td>
<td>CTICCLAIMCLR</td>
</tr>
<tr>
<td>CTICCLAIMSET</td>
<td>CTICCLAIMSET</td>
</tr>
<tr>
<td>CTICONTROL</td>
<td>CTICONTROL</td>
</tr>
<tr>
<td>CTIDEVAFF0</td>
<td>CTIDEVAFF0</td>
</tr>
<tr>
<td>CTIDEVAFF1</td>
<td>CTIDEVAFF1</td>
</tr>
<tr>
<td>CTIDEVARCH</td>
<td>CTIDEVARCH</td>
</tr>
<tr>
<td>CTIDEVCTL</td>
<td>CTIDEVCTL</td>
</tr>
<tr>
<td>CTIDEVID</td>
<td>CTIDEVID</td>
</tr>
<tr>
<td>CTIDEVID1</td>
<td>CTIDEVID1</td>
</tr>
<tr>
<td>CTIDEVID2</td>
<td>CTIDEVID2</td>
</tr>
<tr>
<td>CTIDEVTYPE</td>
<td>CTIDEVTYPE</td>
</tr>
<tr>
<td>CTIGATE</td>
<td>CTIGATE</td>
</tr>
<tr>
<td>CTIINEN<n></td>
<td>CTIINEN<n></td>
</tr>
<tr>
<td>CTIINTACK</td>
<td>CTIINTACK</td>
</tr>
<tr>
<td>CTIITCTRL</td>
<td>CTIITCTRL</td>
</tr>
<tr>
<td>CTILAR</td>
<td>CTILAR</td>
</tr>
<tr>
<td>CTILSR</td>
<td>CTILSR</td>
</tr>
<tr>
<td>CTIOUTEN<n></td>
<td>CTIOUTEN<n></td>
</tr>
<tr>
<td>CTIPIDR0</td>
<td>CTIPIDR0</td>
</tr>
<tr>
<td>CTIPIDR1</td>
<td>CTIPIDR1</td>
</tr>
<tr>
<td>CTIPIDR2</td>
<td>CTIPIDR2</td>
</tr>
<tr>
<td>CTIPIDR3</td>
<td>CTIPIDR3</td>
</tr>
<tr>
<td>CTIPIDR4</td>
<td>CTIPIDR4</td>
</tr>
<tr>
<td>CTITRIGINSTATUS</td>
<td>CTITRIGINSTATUS</td>
</tr>
<tr>
<td>CTITRIGOUTSTATUS</td>
<td>CTITRIGOUTSTATUS</td>
</tr>
</tbody>
</table>
K15.7 Functional index of memory-mapped registers
Glossary

A32 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using AArch32 and is in A32 state. A32 instructions must be word-aligned.

A32 instructions were previously called ARM instructions.

See also A32 state, A64 instruction, T32 instruction.

A32 state The AArch32 Instruction set state in which the PE executes A32 instructions.

A32 state was previously called ARM state.

See also T32 instruction, T32 state.

A64 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using AArch64. A64 instructions must be word-aligned.

See also A32 instruction, T32 instruction.

AArch32 The 32-bit Execution state. In AArch32 state, addresses are held in 32-bit registers, and instructions in the base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and A32 instruction sets.

See also AArch64, A32 instruction, T32 instruction.

AArch64 The 64-bit Execution state. In AArch64 state, addresses are held in 64-bit registers, and instructions in the base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64 instruction set.

See also AArch32, A64 instruction.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory system or the MMU.

Addressing mode Means a method for generating the memory address used by a load/store instruction.

Advanced SIMD A feature of the Arm architecture that provides SIMD operations on a register file of SIMD and floating-point registers. Where an implementation supports both Advanced SIMD and floating-point instructions, these instructions operate on the same register file.
Aligned
A data item stored at an address that is exactly divisible by the highest power of 2 that divides exactly into its size in bytes. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and 8 respectively.

An aligned access is one where the address of the access is aligned to the size of each element of the access.

Architecturally executed
An instruction is architecturally executed only if it would be executed in a simple sequential execution of the program. When such an instruction has been executed and retired it has been architecturally executed. Any instruction that, in a simple sequential execution of a program, is treated as a NOP because it fails its condition code check, is an architecturally executed instruction.

In a PE that performs speculative execution, an instruction is not architecturally executed if the PE discards the results of a speculative execution.

See also Condition code check, Simple sequential execution.

Architecturally mapped
Where this manual describes a register as being architecturally mapped to another register, this indicates that, in an implementation that supports both of the registers, the two registers access the same state.

Architecturally UNKNOWN
An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

ARM core registers
Some older documentation uses ARM core registers to refer to the following set of registers for execution in AArch32 state:

• The 13 general-purpose registers, R0-R12, that software can use for processing.
• SP, the stack pointer, that can also be referred to as R13.
• LR, the link register, that can also be referred to as R14.
• PC, the program counter, that can also be referred to as R15.

See also General-purpose registers.

ARM instruction
See A32 instruction.

Associativity
See Cache associativity.

Atomicity
Describes either single-copy atomicity or multi-copy atomicity. Atomicity in the Arm architecture defines these forms of atomicity for the Arm architecture.

See also Multi-copy atomicity, Single-copy atomicity.

Banked register
A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or other PE state.

Base register
A register specified by a load/store instruction that is used as the base value for the address calculation for the instruction. Depending on the instruction and its addressing mode, an offset can be added to or subtracted from the base register value to form the virtual address that is sent to memory.

Base register writeback
Describes writing back a modified value to the base register used in an address calculation.

Behaves as if
Where this manual indicates that a PE behaves as if a certain condition applies, all descriptions of the operation of the PE must be re-evaluated taking account of that condition, together with any other conditions that affect operation.

Big-endian memory
Means that, for example:

• A byte or halfword at a word-aligned address is the most significant byte or halfword in the word at that address.
• A byte at a halfword-aligned address is the most significant byte in the halfword at that address.
See also Endianness, Little-endian memory.

Blocking
Describes an operation that does not permit following instructions to be executed before the operation completes. A non-blocking operation can permit following instructions to be executed before the operation completes, and in the event of encountering an exception does not signal an exception to the PE. This enables implementations to retire following instructions while the non-blocking operation is executing, without the need to retain precise PE state.

Branch prediction
Is where a PE selects a future execution path to fetch along. For example, after a branch instruction, the PE can choose to speculatively fetch either the instruction following the branch or the instruction at the branch target.
See also Prefetching.

Breakpoint
A debug event triggered by the execution of a particular instruction, specified by one or both of the address of the instruction and the state of the PE when the instruction is executed.

Byte
An 8-bit data item.

Cache associativity
The number of locations in a cache set to which an address can be assigned. Each location is identified by its way value.

Cache level
The position of a cache in the cache hierarchy. In the Arm architecture, the lower numbered levels are those closest to the PE. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

Cache line
The basic unit of storage in a cache. Its size in words is always a power of two, usually 4 or 8 words. A cache line must be aligned to a suitable memory boundary. A memory cache line is a block of memory locations with the same size and alignment as a cache line. Memory cache lines are sometimes loosely called cache lines.

Cache lockdown
Enables critical software and data to be loaded into the cache so that the cache lines containing them are not subsequently reallocated. It alleviates the delays caused by accessing a cache in a worst-case situation. This ensures that all subsequent accesses to the software and data concerned are cache hits and so complete quickly.

Cache miss
A memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Cache sets
Areas of a cache, divided up to simplify and speed up the process of determining whether a cache hit occurs. The number of cache sets is always a power of two.

Cache way
A cache way consists of one cache line from each cache set. The cache ways are indexed from 0 to (Associativity-1). Each cache line in a cache way is chosen to have the same index as the cache way. For example, cache way n consists of the cache line with index n from each cache set.

Coherence order
See Coherent.

Coherent
Data accesses from a set of observers to a byte in memory are coherent if accesses to that byte in memory by the members of that set of observers are consistent with there being a single total order of all writes to that byte in memory by all members of the set of observers. This single total order of all to writes to that memory location is the coherence order for that byte in memory.

Completer
An agent in a computing system that responds to and completes a memory transaction that was initiated by a Requester.
See also Requester.

Condition code check
The process of determining whether a conditional instruction executes normally or is treated as a NOP. For an instruction that includes a condition code field, that field is compared with the condition flags to determine whether the instruction is executed normally. For a T32 instruction in an IT block, the value of PSTATE.IT determines whether the instruction is executed normally.

See also Condition code field, Condition flags, Conditional execution.
Condition code field
A 4-bit field in an instruction that specifies the condition under which the instruction executes.

See also Condition code check.

Condition flags
The N, Z, C, and V bits of PSTATE, an SPSR, or FPSCR. See the register descriptions for more information.

See also Condition code check, PSTATE.

Conditional execution
When a conditional instruction starts executing, if the condition code check returns TRUE, the instruction executes normally. Otherwise, it is treated as a NOP.

See also Condition code check.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Context switch
The saving and restoring of computational state when switching between different threads or processes. In this manual, the term context switch describes any situation where the context is switched by an operating system and might or might not include changes to the address space.

Context synchronization event
One of:

- Performing an ISB operation. An ISB operation is performed when an ISB instruction is executed and does not fail its condition code check.
- Exception entry, if FEAT_ExS is not implemented or the exception is taken to AArch32 or if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EIS bit is set.
- Return from an exception, if FEAT_ExS is not implemented, or the exception is returning from AArch32 or if FEAT_ExS is implemented and the appropriate SCTLR_ELx.EOS bit is set.
- Exit from Debug state.
- Executing a DCPS instruction.
- Executing a DRPS instruction.

The effects of a Context synchronization event are:

- All unmasked interrupts that are pending at the time of the Context synchronization event are taken before the first instruction after the Context synchronization event.
- If halting is allowed, all Halting debug events that are pending at the time of the Context synchronization event are taken before the first instruction after the Context synchronization event.
- No instructions appearing in program order after an instruction that causes a Context synchronization event will have performed any part of their functionality until the Context synchronization event has occurred.
- All direct and indirect writes to System registers that are made before the Context synchronization event affect any instruction, including a direct read, that appears in program order after the instruction causing the Context synchronization event.
- All completed changes to the translation tables for entries that, before the change, were not permitted to be cached in a TLB, affect all instruction fetches that appear in program order after the instruction causing the Context synchronization event.
• All invalidations of TLBs, instruction caches, and, in AArch32 state, branch predictors, that are completed before the Context synchronization event affect all instructions that appear in program order after an instruction causing a Context synchronization event.

• In AArch32 state, all Non-cacheable writes that are completed before the Context synchronization event affect all instructions that appear in program order after an instruction causing a Context synchronization event.

• Changes to the Debug external authentication interfaces that are made before the Context synchronization event affect any instruction that appears in program order after the instruction causing the Context synchronization event.

Note

• The architecture requires that instructions that generate Context synchronization events do not appear to be executed speculatively, except that the performance monitor counters are permitted to reveal such speculation.

• Context synchronization events were previously described as context synchronization operations.

Data independent timing (DIT)
The time that it takes to execute a piece of code where the time is not a function of the data being operated on. For more information, see About PSTATE.DIT on page B1-113 and About the DIT bit on page E1-3999.

Debugger
In most of this manual, debugger refers to any agent that is performing debug. However, some chapters or parts of this manual require a more rigorous definition, and define debugger locally. See:

• Definition of a debugger in the context of self-hosted debug on page D2-2418.
• Definition of a debugger in the context of self-hosted debug on page G2-5854.
• Definition and constraints of a debugger in the context of external debug on page H1-7010.

Deprecated
Something that is present in the Arm architecture for backwards compatibility. Whenever possible software must avoid using deprecated features. Features that are deprecated but are not optional are present in current implementations of the Arm architecture, but might not be present, or might be deprecated and optional, in future versions of the Arm architecture.

See also OPTIONAL.

Digital signal processing (DSP)
Algorithms for processing signals that have been sampled and converted to digital form. DSP algorithms often use saturated arithmetic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the PE performing any accesses to the data concerned.

Direct read
A direct read of a System register is a read performed by a System register access instruction.

For more information, see Direct read on page D13-2865.

See also Direct write, Indirect read, Indirect write.

Direct write
A direct write of a System register is a write performed by a System register access instruction.

For more information, see Direct write on page D13-2865.

See also Direct read, Indirect read, Indirect write.

DMA
See Direct Memory Access (DMA).

DNM
See Do-Not-Modify (DNM).

Domain
In the Arm architecture, domain is used in the following contexts.

Shareability domain Defines a set of observers for which the shareability attributes make the data or unified caches transparent for data accesses.

Power domain Defines a block of logic with a single, common, power supply.
Memory regions domain
When using the Short-descriptor translation table format, defines a collection of Sections, Large pages and Small pages of memory, that can have their access permissions switched rapidly by writing to the Domain Access Control Register (DACR). Arm deprecates any use of memory regions domains.

Do-Not-Modify (DNM)
Means the value must not be altered by software. DNM fields read as UNKNOWN values, and must only be written with the value read from the same field on the same PE.

Double-precision value
Consists of two consecutive 32-bit words that are interpreted as a basic double-precision floating-point number according to the IEEE Standard for Floating-point Arithmetic.

Doubleword
A 64-bit data item. Doublewords are normally at least word-aligned in Arm systems.

Doubleword-aligned
Means that the address is divisible by 8.

DSP
See Digital signal processing (DSP).

Effective value
A register control field, meaning a field in a register that controls some aspect of the behavior, can be described as having an Effective value:

- In some cases, the description of a control specifies that when control is active it causes a register control field to be treated as having a fixed value for all purposes other than direct reads, or direct reads and direct writes, of the register containing control field. When control is active that fixed value is described as the Effective value of register control field. For example, when the value of HCR.DC is 1, the Effective value of HCR.VM is 1, regardless of its actual value.

- In other cases, in some contexts a register control field is not implemented or is not accessible, but behavior of the PE is as if control field was implemented and accessible, and had a particular value. In this case, that value is the Effective value of register control field.

Note
Where a register control field is introduced in a particular version of the architecture, and is not implemented in an earlier version of the architecture, typically it will have an Effective value in that earlier version of the architecture.

- Otherwise, the Effective value of a register control field is the value of that field.

Endianness
An aspect of the system memory mapping.

See also Big-endian memory and Little-endian memory.

Exception
Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception vector
A fixed address that contains the address of the first instruction of the corresponding exception handler.

Execution stream
The stream of instructions that would have been executed by sequential execution of the program.

Explicit access
A read from memory, or a write to memory, generated by a load or store instruction executed by the PE. Reads and writes generated by hardware translation table accesses are not explicit accesses.

External abort
An abort that is generated by the external memory system.

Fast Context Switch Extension (FCSE)
Modifies the behavior of an Arm memory system to enable multiple programs running on the Arm PE to use identical address ranges, while ensuring that the addresses they present to the rest of the memory system differ. From Armv6, Arm deprecates any use of the FCSE. The FCSE is:

- Optional in an Armv7 implementation that does not include the Multiprocessing Extensions.
- Obsolete from the introduction of the Multiprocessing Extensions.
FCSE See Fast Context Switch Extension (FCSE).

Flat address mapping Is where the physical address for every access is equal to its virtual address.

Flush-to-zero mode A processing mode that optimizes the performance of some floating-point algorithms by replacing the denormalized operands and intermediate results with zeros, without significantly affecting the accuracy of their final results.

General-purpose registers The registers that the base instructions use for processing:

- In AArch32 state the general-purpose registers are R0-R14, that can also be described as R0-R12, SP, LR.

 Note Older documentation defines the AArch32 general-purpose registers as R0-R12, and the Arm core registers as R0-R12, SP, LR, and PC.

- In AArch64 state the general-purpose registers are:
 - W0-W30 when accessed as 32-bit registers.
 - X0-X30 when accessed as 64-bit registers.

See also High registers, Low registers.

Generated by The memory model is written in terms of reads from memory and writes to memory. These reads and writes:

- Are generated by instructions such as loads, stores, and atomic memory accesses.
- Correspond to the memory accesses, other than translation table walks, that are defined in the instruction pseudocode.

Some instructions generate more than one read or write.

Halfword A 16-bit data item. Halfwords are normally halfword-aligned in Arm systems.

Halfword-aligned Means that the address is divisible by 2.

High registers In AArch32 state, the general-purpose registers R8-R14. Most 16-bit T32 instructions cannot access the high registers.

 Note In some contexts, high registers refers to R8-R15, meaning R8-R14 and the PC.

See also General-purpose registers, Low registers.

High vectors An alternative location for the exception vectors. The high vector address range is near the top of the address space, rather than at the bottom.

IGNORED Indicates that the architecture guarantees that the bit or field is not interpreted or modified by hardware.

In body text, the term IGNORED is shown in SMALL CAPITALS.

Immediate and offset fields Are unsigned unless otherwise stated.

Immediate value A value that is encoded directly in the instruction and used as numeric data when the instruction is executed. Many A64, A32, and T32 instructions can be used with an immediate argument.

IMP An abbreviation used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED behavior.
IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

Index register
A register specified in some load and store instructions. The value of this register is used as an offset to be added to or subtracted from the base register value to form the virtual address that is sent to memory. Some instruction forms permit the index register value to be shifted before the addition or subtraction.

Indirect read
When an instruction uses a System register value to establish operating conditions, that use of the System register is an indirect read of the System register.

For more information, including additional examples of indirect reads, see Indirect read on page D13-2865.

See also Direct read, Direct write, Indirect write.

Indirect write
An indirect write of a System register occurs when the contents of a register are updated by some mechanism other than a Direct write to that register. For example, an indirect write to a register might occur as a side-effect of executing an instruction that does not perform a direct write to the register, or because of some operation performed by an external agent.

For more information, see Indirect write on page D13-2865.

See also Direct read, Direct write, Indirect read.

Inline literals
These are constant addresses and other data items held in the same area as the software itself. They are automatically generated by compilers, and can also appear in assembler code.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

Interworking
A method of working that permits branches between software using the A32 and T32 instruction sets.

IPA
See Intermediate physical address (IPA).

Level
See Cache level.

Level of Coherence (LoC)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of coherency. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

See also Cache level, Point of coherency (PoC).

Level of Unification, Inner Shareable (LoUIS)
The last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification for the Inner Shareable shareability domain. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

See also Cache level, Point of unification (PoU).

Level of Unification, uniprocessor (LoUU)
For a PE, the last level of cache that must be cleaned or invalidated when cleaning or invalidating to the point of unification for that PE. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

See also Cache level, Point of unification (PoU).

Line
See Cache line.

Little-endian memory
Means that, for example:

- A byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that address.
- A byte at a halfword-aligned address is the least significant byte in the halfword at that address.

See also Big-endian memory, Endianness.

Load/Store architecture
An architecture where data-processing operations only operate on register contents, not directly on memory contents.

LoC
See Level of Coherence (LoC).

LoUIS
See Level of Unification, Inner Shareable (LoUIS).

LoUU
See Level of Unification, uniprocessor (LoUU).

Lockdown
See Cache lockdown.

Low registers
In AArch32 state, general-purpose registers R0-R7. Unlike the high registers, all T32 instructions can access the Low registers.

See also General-purpose registers, High registers.

Memory barrier
See Memory barriers on page B2-134.

Memory coherency
The problem of ensuring that when a memory location is read, either by a data read or an instruction fetch, the value actually obtained is always the value that was most recently written to the location. This can be difficult when there are multiple possible physical locations, such as main memory and at least one of a write buffer and one or more levels of cache.

Memory Management Unit (MMU)
Provides detailed control of the part of a memory system that provides a single stage of address translation. Most of the control is provided using translation tables that are held in memory, and define the attributes of different regions of the physical memory map.

Memory Protection Unit (MPU)
A hardware unit whose registers provide simple control of a limited number of protection regions in memory.

Miss
See Cache miss.

MMU
See Memory Management Unit (MMU).

MPU
See Memory Protection Unit (MPU).

Multi-copy atomicity
The form of atomicity described in Requirements for multi-copy atomicity on page B2-120.

See also Atomicity, Single-copy atomicity.

NaN
Not a Number. A floating-point value that can be used when neither a numeric value nor an infinity is appropriate. A NaN can be a quiet NaN, that propagate through most floating-point operations, or a signaling NaN, that causes an Invalid Operation floating-point exception when used. For more information, see the IEEE Standard for Floating-point Arithmetic.

See also Quiet NaN, Signaling NaN.

Natural eviction
A natural eviction is an eviction that occurs in the course of the normal operation of the memory system, rather than because of an operation that explicitly causes an eviction from the cache, such as the execution of a cache maintenance instruction. Typically, a natural eviction occurs when the caching algorithm requires data to be cached but the cache does not have room for that data.

Observer
A PE or mechanism in the system, such as a peripheral device, that can generate reads from or writes to memory.

Obsolete
Obsolete indicates something that is no longer supported by Arm. When an architectural feature is described as obsolete, this indicates that the architecture has no support for that feature, although an earlier version of the architecture did support it.

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register value.
OPTIONAL

When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation of the Arm architecture:

- If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture. Arm expects such a feature to be included in a new implementation only if there is a known backwards-compatibility reason for the inclusion of the feature.
 A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

- A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the Arm architecture after the initial release of that version of the architecture. Arm recommends that such features are included in all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALL CAPITALS.

Note

Do not confuse these Arm-specific uses of OPTIONAL with other uses of optional, where it has its usual meaning. These include:

- Optional arguments in the syntax of many instructions.
- Behavior determined by an implementation choice, for example the optional byte order reversal in an Armv7-R implementation, where the SCTLR.IE bit indicates the implemented option.

See also Deprecated.

PA

See Physical address (PA).

PE

See Processing element (PE).

Physical address (PA)

An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

PoC

See Point of coherency (PoC).

PoP

See Point of persistence (PoP).

PoU

See Point of unification (PoU).

Point of coherency (PoC)

For a particular VA, the point at which all agents that can access memory are guaranteed to see the same copy of a memory location. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

Point of persistence (PoP)

The point in a memory system where there is a system guarantee that there is sufficient energy within the system to ensure that a write to memory will be persistent if system power is removed. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

Point of unification (PoU)

For a particular PE, the point by which the instruction and data caches and the translation table walks of that PE are guaranteed to see the same copy of a memory location. For more information, see Terms used in describing the cache maintenance instructions on page D4-2500.

Post-indexed addressing

Means that the memory address is the base register value, but an offset is added to or subtracted from the base register value and the result is written back to the base register.

Prefetching

Prefetching refers to speculatively fetching instructions or data from the memory system. In particular, instruction prefetching is the process of fetching instructions from memory before the instructions that precede them, in simple sequential execution of the program, have finished executing. Prefetching an instruction does not mean that the instruction has to be executed.
In this manual, references to instruction or data fetching apply also to prefetching, unless the context explicitly indicates otherwise.

---------- Note ----------
The Prefetch Abort exception can be generated on any instruction fetch, and is not limited to speculative instruction fetches.

Pre-indexed addressing
Means that the memory address is formed in the same way as for offset addressing, but the memory address is also written back to the base register.

Processing element (PE)

Protection region
A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit
See Memory Protection Unit (MPU).

Pseudo-instruction
UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a different assembler syntax, and is described in this manual under that other syntax. For example, `MOV <Rd>, <Rm>, LSL #<n>` is a pseudo-instruction that is expected to disassemble as `LSL <Rd>, <Rm>, #<n>`.

PSTATE
An abstraction of process state information. All of the instruction sets provide instructions that operate on elements of PSTATE.

See also Condition flags.

Quadword
A 128-bit data item. Quadwords are normally at least word-aligned in Arm systems.

Quadword-aligned
Means that the address is divisible by 16.

Quiet NaN
A NaN that propagates unchanged through most floating-point operations.

See also NaN, Signaling NaN.

RAO
See Read-As-One (RAO).

RAZ
See Read-As-Zero (RAZ).

RAO/SBOP
In versions of the Arm architecture before Armv8, Read-As-One, Should-Be-One-or-Preserved on writes.

In Armv8, RES1 replaces this description.

See also UNK/SBOP, Read-As-One (RAO), RES1, Should-Be-One-or-Preserved (SBOP).

RAO/WI
Read-As-One, Writes Ignored.

Hardware must implement the field as Read-as-One, and must ignore writes to the field.

Software can rely on the field reading as all 1s, and on writes being ignored.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

See also Read-As-One (RAO).

RAZ/SBZP
In versions of the Arm architecture before Armv8, Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In Armv8, RES0 replaces this description.

See also UNK/SBZP, Read-As-Zero (RAZ), RES0, Should-Be-Zero-or-Preserved (SBZP).
RAZ/WI
Read-As-Zero, Writes Ignored.
Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.
Software can rely on the field reading as all 0s, and on writes being ignored.
This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.
See also Read-As-Zero (RAZ).

Read-allocate cache
A cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.
Software:
• Can rely on the field reading as all 1s.
• Must use a SBOP policy to write to the field.
This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.
See also RAO/SBOP, RAO/WI, RES1.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.
Software:
• Can rely on the field reading as all 0s
• Must use a SBZP policy to write to the field.
This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.
See also RAZ/SBZP, RAZ/WI, RES0.

Read, modify, write
In a read, modify, write instruction sequence, a value is read to a general-purpose register, the relevant fields updated in that register, and the new value written back.

Requester
An agent in a computing system that is capable of initiating memory transactions.
See also Completer.

RES0
A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that are held in memory, for example in translation table descriptors.
Within the architecture, there are some cases where a register bit or field:
• Is RES0 in some defined architectural context.
• Has different defined behavior in a different architectural context.

Note
• RES0 is not used in descriptions of instruction encodings.
• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts
For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:
1. The bit is hardwired to 0. In this case:
 • Reads of the bit always return 0.
 • Writes to the bit are ignored.
2. The bit can be written. In this case:
 • An indirect write to the register sets the bit to 0.
 • A read of the bit returns the last value successfully written, by either a direct or an indirect write, to the bit.
 If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is one, or otherwise returns an UNKNOWN value.
 • A direct write to the bit must update a storage location associated with the bit.
 • The value of the bit must have no effect on the operation of the PE, other than determining the value read back from the bit, unless this Manual explicitly defines additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a field-by-field basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:
 • An indirect write to the register sets the bit to 0.
 • A read of the bit must return the value last successfully written to the bit, by either a direct or an indirect write, regardless of the use of the register when the bit was written.
 If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is one, or otherwise returns an UNKNOWN value.
 • A direct write to the bit must update a storage location associated with the bit.
 • While the use of the register is such that the bit is described as RES0, the value of the bit must have no effect on the operation of the PE, other than determining the value read back from that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:
 • Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
 • The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:
 • For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.
 • For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility, software:
 • Must not rely on the bit reading as 0.
 • Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES1, Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1

A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:
 • Is RES1 in some defined architectural context.
 • Has different defined behavior in a different architectural context.

— Note —
 • RES1 is not used in descriptions of instruction encodings.
• Where an AArch32 System register is *Architecturally mapped* to an AArch64 System register, and a bit or field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:
 • Reads of the bit always return 1.
 • Writes to the bit are ignored.
2. The bit can be written. In this case:
 • An indirect write to the register sets the bit to 1.
 • A read of the bit returns the last value successfully written, by either a direct or an indirect write, to the bit.
 If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is one, or otherwise returns an UNKNOWN value.
 • A direct write to the bit must update a storage location associated with the bit.
 • The value of the bit must have no effect on the operation of the PE, other than determining the value read back from the bit, unless this Manual explicitly defines additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a field-by-field basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.
• A read of the bit must return the value last successfully written to the bit, regardless of the use of the register when the bit was written.

 [Note]

As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.
• While the use of the register is such that the bit is described as RES1, the value of the bit must have no effect on the operation of the PE, other than determining the value read back from that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.
• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility, software:

• Must not rely on the bit reading as 1.
• Must use an SBOP policy to write to the bit.
This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), RES0, Should-Be-One-or-Preserved (SBOP), UNKNOWN.

Reserved

Unless otherwise stated:

- Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.
- Bit positions described as reserved are:
 - In an RW or WO register, RES0.
 - In an RO register, UNK.

See also CONSTRAINED UNPREDICTABLE, RES0, RES1, UNDEFINED, UNK, UNPREDICTABLE.

RISC

Reduced Instruction Set Computer.

Rounding error

The value of the rounded result of an arithmetic operation minus the exact result of the operation.

Rounding mode

Specifies how the exact result of a floating-point operation is rounded to a value that is representable in the destination format. The rounding modes are defined by the IEEE Standard for Floating-point Arithmetic, see Floating-point standards, and terminology on page A1-54.

Saturated arithmetic

Integer arithmetic in which a result that would be greater than the largest representable number is set to the largest representable number, and a result that would be less than the smallest representable number is set to the smallest representable number. Signed saturated arithmetic is often used in DSP algorithms. It contrasts with the normal signed integer arithmetic used in Arm processors, in which overflowing results wrap around from \(+2^{31}–1\) to \(–2^{31}\) or vice versa.

SBO

See Should-Be-One (SBO).

SBOP

See Should-Be-One-or-Preserved (SBOP).

SBZ

See Should-Be-Zero (SBZ).

SBZP

See Should-Be-Zero-or-Preserved (SBZP).

Security hole

A mechanism by which execution at the current level of privilege can achieve an outcome that cannot be achieved at the current or a lower level of privilege using instructions that are not UNPREDICTABLE and are not CONSTRAINED UNPREDICTABLE. The Arm architecture forbids security holes.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Self-modifying code

Code that writes one or more instructions to memory and then executes them. When using self-modifying code, you must use cache maintenance and barrier instructions to ensure synchronization. For more information, see Caches and memory hierarchy on page B2-143.

Set

See Cache sets.

Should-Be-One (SBO)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One-or-Preserved (SBOP)

From the introduction of the Armv8 architecture, the description Should-Be-One-or-Preserved (SBOP) is superseded by RES1.
— Note —

The Armv7 Large Physical Address Extension modified the definition of SBOP for register bits that are SBOP in some but not all contexts. The behavior of these bits is covered by the RES1 definition, but not by the generic definition of SBOP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 1s to this field or, if the register is being restored from a previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero (SBZ)

Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it must expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-Zero-or-Preserved (SBZP)

From the introduction of the Armv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is superseded by RES0.

— Note —

The Armv7 Large Physical Address Extension modified the definition of SBZP for register bits that are SBZP in some but not all contexts. The behavior of these bits is covered by the RES0 definition, but not by the generic definition of SBZP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 0s to this field or, if the register is being restored from a previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Signaling NaN

An Invalid Operation floating-point exception occurs whenever any floating-point operation receives a signaling NaN as an operand. Signaling NaNs can be used in debugging, to track down some uses of uninitialized variables.

See also NaN, Quiet NaN.

Signed immediate and offset fields

Are encoded in two’s complement notation unless otherwise stated.

SIMD

Single-Instruction, Multiple-Data.

The SIMD instructions in AArch32 state are:

- The instructions summarized in Parallel addition and subtraction instructions on page F1-4086.
- The Advanced SIMD instructions summarized in Advanced SIMD and floating-point instructions on page E1-4000, when operating on vectors.
Note

In Armv7, some VFP instructions can operate on vectors. However, Arm deprecates those instruction uses, and strongly recommends that Advanced SIMD instructions are always used for vector operations.

Simple sequential execution

The behavior of an implementation that fetches, decodes and completely executes each instruction before proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to a realistic implementation of the architecture.

Single-copy atomicity

The form of atomicity described in Properties of single-copy atomic accesses on page B2-120.

See also Atomicity, Multi-copy atomicity.

Single-precision value

A 32-bit word that is interpreted as a basic single-precision floating-point number according to the IEEE Standard for Floating-point Arithmetic.

Spatial locality

The observed effect that after a program has accessed a memory location, it is likely to also access nearby memory locations in the near future. Caches with multi-word cache lines exploit this effect to improve performance.

Speculative

Speculative operations are:

- Operations that are generated by instructions that appear in the Execution stream after a branch that is not architecturally resolved.

- Operations that are generated by instructions that appear in the Execution stream after an instruction where a synchronous exception condition has not been architecturally resolved.

- Operations that are generated by conditional instructions for which the conditions for the instruction have not been architecturally resolved.

- Operations that are generated by instructions that appear in the Execution stream after the point at which a precise asynchronous exception will be taken.

- Reads or writes generated by load or store instructions for which the data being written or the address being accessed comes from a register that has not been architecturally resolved.

- Operations generated by the hardware that are not directly generated by any instructions appearing in the Execution stream.

See also Execution stream.

Special-purpose register

One of a specified set of registers for which all direct and indirect reads and writes to the register appear to occur in program order relative to other instructions, without the need for any explicit synchronization:

- Special-purpose registers on page C5-385 specifies the AArch64 Special-purpose registers.

- AArch32 Special-purpose registers on page G1-5732 lists the AArch32 Special-purpose registers.

T32 instruction

One or two halfwords that specify an operation to be performed by a PE that is executing in an Exception level that is using AArch32 and is in T32 state. T32 instructions must be halfword-aligned.

T32 instructions were previously called Thumb instructions.

See also A32 instruction, A64 instruction, T32 state.

T32 state

The AArch32 Instruction set state in which the PE executes T32 instructions.

T32 state was previously called Thumb state.

See also A32 state, T32 instruction.
Taken locally
* Taken locally is a qualifier that determines which instances of an exception are counted by particular PMU events. See, in particular, *Arm recommendations for IMPLEMENTATION DEFINED event numbers on page K3-8004*. In this context, an exception that is *Taken locally* means an exception that is one of:
- Taken to the current Exception level.

 Note
 This is not possible when the current Exception level is EL0.

- Taken from EL0 to EL1.
- Taken from EL0 to EL2 because the *Effective value* of HCR_EL2.{E2H, TGE} is \{1, 1\}.

 Note
 An exception taken from EL0 to EL2 because the *Effective value* of HCR_EL2.{E2H, TGE} is \{0, 1\} is not *Taken locally*. This includes exceptions taken to EL2 using AArch32 when HCR.TGE is 1.

Temporal locality
The observed effect that after a program has accesses a memory location, it is likely to access the same memory location again in the near future. Caches exploit this effect to improve performance.

Thumb instruction
* See T32 instruction.

TLB
* See Translation Lookaside Buffer (TLB).

TLB lockdown
A way to prevent specific translation table walk results being accessed. This ensures that accesses to the associated memory areas never cause a translation table walk.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. They help to reduce the average cost of a memory access. Usually, there is a TLB for each memory interface of the Arm implementation.

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

Trap enable bits
In VFPv2, VFPv3U, and VFPv4U, determine whether trapped or untrapped exception handling is selected. If trapped exception handling is selected, the way it is carried out is IMPLEMENTATION DEFINED.

Unaligned
An unaligned access is an access where the address of the access is not aligned to the size of an element of the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or doubleword-aligned.

Unallocated
Except where otherwise stated in this manual, an instruction encoding is unallocated if the architecture does not assign a specific function to the entire bit pattern of the instruction, but instead describes it as CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE, or as an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

* See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

UNDEFINED
Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was executed at EL0. This applies to:
- Any encoding that is not allocated to any instruction.
- Any encoding that is defined as never accessible at the current Exception level.
- Some cases where an enable, disable, or trap control means an encoding is not accessible at the current Exception level.
If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined Instruction exception.

—— Note ————

On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might include controls that can change this, effectively making EL1 inactive. See the description of the Exception model for more information

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

See also Undefined Instruction exception on page G1-5778.

Unified cache

Is a cache used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing

Means addressing in which the base register value is used directly as the virtual address to send to memory, without adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed by using offset addressing with an immediate offset of 0.

In Armv7 and earlier versions of the Arm architecture, and in the M-profile, the LDC, LDC2, STC, and STC2 instructions have an explicit unindexed addressing mode that permits the offset field in the instruction to specify additional coprocessor options.

UNK

An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

Hardware must implement the bit as read as 0, or all 0s for a multi-bit field. Software must not rely on the field reading as zero.

See also UNKNOWN.

UNK/SBOP

Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the value as if it is UNKNOWN. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should be written as its preserved value or as all 1s.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), UNKNOWN.

UNK/SBZP

Hardware must implement the bit as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register must treat the value as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should be written as its preserved value or as all 0s.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

UNKNOWN

An UNKNOWN value does not contain valid data, and can vary from implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE, are not CONSTRAINED UNPREDICTABLE, and do not return UNKNOWN values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously been assigned, other than at reset, to one of the following registers:

- Any of the general-purpose registers.
- Any of the Advanced SIMD and floating-point registers.
- Any of the Scalable Vector Extension registers.
- Any of the PSTATE N, Z, C, or V flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.
In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNK, UNPREDICTABLE.

UNPREDICTABLE

Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

VA

See Virtual address (VA).

VFP

In Armv7, an extension to the Arm architecture, that provides single-precision and double-precision floating-point arithmetic.

Virtual address (VA)

An address generated by an Arm PE. This means it is an address that might be held in the program counter of the PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

Watchpoint

A debug event triggered by an access to memory, specified in terms of the address of the location in memory being accessed.

Way

See Cache way.

WI

Writes Ignored. In a register that software can write to, a WI attribute applied to a bit or field indicates that the bit or field ignores the value written by software and retains the value it had before that write.

See also RAO/WI, RAZ/WI, RES0, RES1.

Word

A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned

Means that the address is divisible by 4.

Write-allocate cache

A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-back cache

A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when the cache line is cleaned or reallocated. Another common term for a write-back cache is a copy-back cache.

Write-through cache

A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main memory. This is normally done via a write buffer, to avoid slowing down the PE.

Write buffer

A block of high-speed memory that optimizes stores to main memory.